Soil vs. Cotton

YOU WILL NEED:
- Cotton balls
- White plastic spoon
- A strong magnet
- Water
- A clear plastic cup
- A blender
- "Iron-fortified" breakfast cereal

WHAT TO DO:
1. Pour some of the cereal mix into a clear plastic cup.
2. Mix two cups of iron-fortified cereal with two cups of water in a blender. Carefully pour the mixture into the cup containing the cereal mix. Stir the mix inside the cup gently with the plastic spoon. Notice the consistency.
3. Fill the third plastic cup with water. Place one or more seeds between the cotton balls. Fill the rest of the cup with soil, so you can bury the seeds.
4. Carefully pour a small amount of water over the cup containing the seeds. Only pour in enough water until the soil is just moistened, not soaked. This will help the cotton balls breathe.
5. Place the cup on a window sill where the sun shines. Water the seeds more if they start to wilt. Do not let the soil dry out, but avoid waterlogging.
6. Watch and wait and write down what happens.

WHAT THIS MEANS:

Much of what is absorbed as "taste" is due to our sense of smell. "Taste" is not the ability to tell the specific flavor of the candy. Just perhaps a sensation of stickiness or dryness. If, however, the candy dissolves, you can identify the specific tastes because some, but not all, molecules volatilize as I said: "think of smoke". A package at the back of the store to the nutritionists cannot tell the future. This is not scientific. Based on the need for flavor, the nutritionists can make specific statements about the needs of certain people.

Kids and Science: Pointers for Parents

What pointers of science have you heard before? You may be aware of some of these. Not all of them are necessarily accurate. Here are some pointers to help you understand science:

1. **Education and Learning:**
 -Expose children to role models. Contact scientists in your local community. Think about visiting schools or universities where science is a major discipline. Encourage children to visit science museums, planetariums, and other places where science is celebrated.

2. **Understanding Your Role:**
 -Scientists say their interest in science was first sparked before age 11. How do you think children are interested in science? Scientists say when it came to their favorite science teacher, they were more likely to choose a science teacher who encouraged them to ask questions and explore scientific ideas.

3. **Nurturing Their Interests:**
 -Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools.

4. **Exposure to Role Models:**
 -Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools.

5. **Be Aware That Girls Like Science as Much as Boys:**
 -Mounting evidence indicates that girls and boys start equally interested in science, but by age 11, girls are less likely to consider careers in science. Why? Scientists say their interest in science was first sparked before age 11. How do you think children are interested in science? Scientists say when it came to their favorite science teacher, they were more likely to choose a science teacher who encouraged them to ask questions and explore scientific ideas.

6. **Check Out School Science Programs:**
 -Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools. Ask your children's teachers to spend time with students in local schools.

7. **Be Aware That Girls Like Science as Much as Boys:**
 -Mounting evidence indicates that girls and boys start equally interested in science, but by age 11, girls are less likely to consider careers in science. Why? Scientists say their interest in science was first sparked before age 11. How do you think children are interested in science? Scientists say when it came to their favorite science teacher, they were more likely to choose a science teacher who encouraged them to ask questions and explore scientific ideas.

8. **Be Aware That Girls Like Science as Much as Boys:**
 -Mounting evidence indicates that girls and boys start equally interested in science, but by age 11, girls are less likely to consider careers in science. Why? Scientists say their interest in science was first sparked before age 11. How do you think children are interested in science? Scientists say when it came to their favorite science teacher, they were more likely to choose a science teacher who encouraged them to ask questions and explore scientific ideas.

Cool Science Web Sites

- Don't Make Science Make Sense
- Making Science Make Sense
- All About Science Guy — scienceguy.com
- PBS Science Friday — pbs.org/scifri
- Earth and Sky — earthsky.org
- Making Science Make Sense
- Cool Science — sciencefriday.com
- Bill Nye the Science Guy — byeny.org
- Bayer’s® Kids and Science: Pointers for Parents — makingsscience.com
- Making Science Make Sense® is Bayer’s award-winning, company-wide initiative that advances science literacy through hands-on, inquiry-based science learning, employee volunteerism and public education. For more information, visit makingsscience.com.
PLANT POWER

WHAT TO DO:
1. Fill a jar with water and place an ice cube inside. Place a small plant inside of the jar.
2. Cover with a lid, and place it in a sunny spot.
3. Check each day to see if the plant is growing.

WHAT THIS MEANS:
By growing a plant, we can understand the growth and development of living organisms.

EXPERIMENT 1

WHAT YOU WILL NEED:
- Plant
- Jar
- Ice cube

STRANGE ACTING GOOP

WHAT TO DO:
1. Put one cup of cornstarch into the bowl.
2. Add 1/2 cup of water.
3. Mix well.
4. Slowly dip your finger into the gooey mixture. Grab some in your hand and squeeze. What happens?
5. Now lift up the balloon so that the baking soda runs into the plastic bottle.
6. Slowly add one cup of vinegar into the plastic bottle.

WHAT THIS MEANS:
By mixing two substances, we can observe the chemical changes that occur.

EXPERIMENT 2

WHAT YOU WILL NEED:
- Bowl
- Cornstarch
- Water

IT'S CHEMICAL!

WHAT TO DO:
1. Place a slice of bread in the bowl.
2. Add 1/2 cup of water.
3. Mix well.
4. After a few days, when the leaves have formed, cut a piece of cardboard big enough to cover the tray. Cut out a circle in the middle of the cardboard, and put it over the tray. Again, check each day to see how the seeds are growing.

WHAT THIS MEANS:
By understanding the growth of plants, we can appreciate the importance of science in children.

EXPERIMENT 3

WHAT YOU WILL NEED:
- Bowl
- Bread
- Water

DANCING RAISINS

WHAT TO DO:
1. Pour vinegar into the small bottle until it is about half full.
2. Using a funnel, pour two teaspoons of baking soda into the back of the bottle.
3. Slowly add one cup of vinegar into the plastic bottle.
4. How do raisins react to the baking soda mix in the plastic bottle?

WHAT THIS MEANS:
By observing the reaction, we can understand the chemical changes that occur.

EXPERIMENT 4

WHAT YOU WILL NEED:
- Plastic bottle
- Baking soda
- Vinegar

MILK MAGIC

WHAT TO DO:
1. Pour the heavy cream into the pot. Heat the heavy cream until it becomes rubbery.
2. Once it begins to simmer, slowly stir in a few teaspoons of vinegar.
3. Continue to stir until it thickens up.
4. After the heavy cream has thickened, turn off the heat and let it cool.
5. Cut the plastic bottle, mix it with rubberized heavy cream under cold water. You now have your own plastic.

WHAT THIS MEANS:
By mixing two substances, we can observe the chemical changes that occur.
It’s easy to be a scientist. Simply look around and ask, “why?” As a science-based company, Bayer is committed to reawakening the one that’s inside of every one of us.

MAKE SCIENCE ACCESSIBLE TO ALL

By fostering curiosity, creativity and critical thinking skills to creating awareness of the importance of science literacy among parents and simply look around and ask, “why?”

EXPERIMENT 1: PLANT POWER

WHAT TO DO:
1. Fill a shallow tray with your chosen potting compost, then sprinkle watercress seeds on the surface and water gently.
2. Place a funnel into the neck of a bottle, pour water into the bottle and cut off the top of the bottle. Once enough Gas Adheres to a Raisin, it will rise to the surface.

WHAT THIS MEANS:
In this experiment, you can learn about molecules. A molecule is one of the basic units of matter. It is the smallest particle into which a substance can be divided and still retain its chemical identity. In this experiment, you will be mixing an aqueous solution of baking soda and vinegar. The baking soda and vinegar will react to form carbon dioxide, which is then released into the air, making it dance. The dancing raisins are a result of the gas that is produced by the reaction.

EXPERIMENT 2: STRANGE ACTING GOOP

WHAT TO DO:
1. Slowly add one cup of vinegar into the plastic bottle.
2. Add four to six raisins to the water/baking soda mix in the PLASTIC BOTTLE.
3. Pour one-and-a-half cups of water into the plastic bottle.
4. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water.
5. Gently add one cup of vinegar into the plastic bottle.
6. What happens?

WHAT THIS MEANS:
In this project, the vinegar and baking soda react to form a gas (carbon dioxide). As the gas forms, it adheres to the raisins in the bottle. Once enough Gas Adheres to a Raisin, it will rise to the surface. When the Gas Adheres to the raisins, the Gas Adheres to the raisins and rises to the surface, creating a dancing raisin effect. The gas adheres to the raisins and forms a bubble, which causes the raisin to rise up.

EXPERIMENT 3: IT’S CHEMICAL!

WHAT TO DO:
1. Pour water into a small bottle until it is about half full and place it on a piece of cloth. Check the bottle each day to see how the seeds are growing.
2. After a few days, when the leaves have formed, cut a piece of cardboard big enough to cover the tray. Cut out a circle in the middle of the cardboard, and put it over the tray. Again, check each day to see how the seeds are growing.

WHAT THIS MEANS:
In this experiment, you can learn about photosynthesis. Photosynthesis is the process by which plants convert light energy into chemical energy. The leaves of a plant absorb light energy from the sun and use it to convert carbon dioxide and water into glucose and oxygen. The glucose is then used by the plant for energy, and the oxygen is released into the atmosphere. The simplest wonders around us can be explained by the science of photosynthesis.

EXPERIMENT 4: DANCING RAISINS

WHAT TO DO:
1. Pour water into a small bottle until it is about half full and place it on a piece of cloth. Check the bottle each day to see how the seeds are growing.
2. Add 1/2 cup of water.
3. What to do:
 - Add 1/2 cup of water.
 - Add four to six raisins to the water/baking soda mix in the PLASTIC BOTTLE.
 - Pour one-and-a-half cups of water into the plastic bottle.
 - Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water.
 - Add two cups of vinegar to the plastic bottle, and stir gently, being careful not to let the baking soda out of the balloon.
 - The Ballon inflates with gas, and the raisins float. When the Gas forms, it adheres to the raisins in the plastic bottle, and the raisins rise to the surface.

WHAT THIS MEANS:
In this project, you can learn about the concept of acid-base reactions. The reaction between vinegar and baking soda produces carbon dioxide, which causes the raisins to rise to the surface. The raisins are then removed from the plastic bottle and placed on a piece of cloth. The gas adheres to the raisins and forms a bubble, which causes the raisin to rise up.

EXPERIMENT 5: MILK MAGIC

WHAT TO DO:
1. Pour heavy cream into the pot. Heat the heavy cream until it is simmering slowly.
2. Once it begins to simmer, slowly stir in a few teaspoons of vinegar.
3. Continue to stir until the cream is thickened.
4. After the heavy cream turns rubbery, turn off the heat and cool it.
5. Place the rubberised heavy cream under cool water. Now you have your own plastic.

WHAT THIS MEANS:
Many plastics are made from natural or synthetic oils, which contain organic carbon-containing substances. This project demonstrates how to create new plastics using artificial carbon-containing substances. The plastic in this experiment is a result of the chemical reaction between the cream and vinegar.

EXPERIMENT 1

YOU WILL NEED:
- A shallow tray for growing seeds
- Watercress seeds
- Potting compost
- A funnel
- Measuring cup
- Vinegar
- Baking soda
- A medium-sized plastic bottle
- A small pot
- A teaspoon
- A measuring cup
- Raisins
- Vinegar

WHAT TO DO:
- Fill the tray with potting compost. Sprinkle watercress seeds on the surface and water gently.
- Place a funnel into the neck of a bottle, pour water into the bottle and cut off the top of the bottle.
- Once enough Gas Adheres to a Raisin, it will rise to the surface.
- Slowly add one cup of vinegar into the plastic bottle.
- Add four to six raisins to the water/baking soda mix in the PLASTIC BOTTLE.
- Pour one-and-a-half cups of water into the plastic bottle.
- Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water.
- Add two cups of vinegar to the plastic bottle, and stir gently, being careful not to let the baking soda out of the balloon.

EXPERIMENT 2

YOU WILL NEED:
- A shallow tray for growing seeds
- Watercress seeds
- Potting compost
- A funnel
- Measuring cup
- Vinegar
- Baking soda
- A medium-sized plastic bottle
- A small pot
- A teaspoon
- A measuring cup
- Raisins
- Vinegar

WHAT TO DO:
- Fill the tray with potting compost. Sprinkle watercress seeds on the surface and water gently.
- Place a funnel into the neck of a bottle, pour water into the bottle and cut off the top of the bottle.
- Once enough Gas Adheres to a Raisin, it will rise to the surface.
- Slowly add one cup of vinegar into the plastic bottle.
- Add four to six raisins to the water/baking soda mix in the PLASTIC BOTTLE.
- Pour one-and-a-half cups of water into the plastic bottle.
- Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water.
- Add two cups of vinegar to the plastic bottle, and stir gently, being careful not to let the baking soda out of the balloon.
- The Ballon inflates with gas, and the raisins float. When the Gas forms, it adheres to the raisins in the plastic bottle, and the raisins rise to the surface.

WHAT THIS MEANS:
In this project, you can learn about the concept of acid-base reactions. The reaction between vinegar and baking soda produces carbon dioxide, which causes the raisins to rise to the surface. The raisins are then removed from the plastic bottle and placed on a piece of cloth. The gas adheres to the raisins and forms a bubble, which causes the raisin to rise up.

EXPERIMENT 3

YOU WILL NEED:
- A shallow tray for growing seeds
- Watercress seeds
- Potting compost
- A funnel
- Measuring cup
- Vinegar
- Baking soda
- A medium-sized plastic bottle
- A small pot
- A teaspoon
- A measuring cup
- Raisins
- Vinegar

WHAT TO DO:
- Fill the tray with potting compost. Sprinkle watercress seeds on the surface and water gently.
- Place a funnel into the neck of a bottle, pour water into the bottle and cut off the top of the bottle.
- Once enough Gas Adheres to a Raisin, it will rise to the surface.
- Slowly add one cup of vinegar into the plastic bottle.
- Add four to six raisins to the water/baking soda mix in the PLASTIC BOTTLE.
- Pour one-and-a-half cups of water into the plastic bottle.
- Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water.
- Add two cups of vinegar to the plastic bottle, and stir gently, being careful not to let the baking soda out of the balloon.
- The Ballon inflates with gas, and the raisins float. When the Gas forms, it adheres to the raisins in the plastic bottle, and the raisins rise to the surface.

WHAT THIS MEANS:
In this project, you can learn about the concept of acid-base reactions. The reaction between vinegar and baking soda produces carbon dioxide, which causes the raisins to rise to the surface. The raisins are then removed from the plastic bottle and placed on a piece of cloth. The gas adheres to the raisins and forms a bubble, which causes the raisin to rise up.

EXPERIMENT 4

YOU WILL NEED:
- A shallow tray for growing seeds
- Watercress seeds
- Potting compost
- A funnel
- Measuring cup
- Vinegar
- Baking soda
- A medium-sized plastic bottle
- A small pot
- A teaspoon
- A measuring cup
- Raisins
- Vinegar

WHAT TO DO:
- Fill the tray with potting compost. Sprinkle watercress seeds on the surface and water gently.
- Place a funnel into the neck of a bottle, pour water into the bottle and cut off the top of the bottle.
- Once enough Gas Adheres to a Raisin, it will rise to the surface.
- Slowly add one cup of vinegar into the plastic bottle.
- Add four to six raisins to the water/baking soda mix in the PLASTIC BOTTLE.
- Pour one-and-a-half cups of water into the plastic bottle.
- Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water.
- Add two cups of vinegar to the plastic bottle, and stir gently, being careful not to let the baking soda out of the balloon.
- The Ballon inflates with gas, and the raisins float. When the Gas forms, it adheres to the raisins in the plastic bottle, and the raisins rise to the surface.

WHAT THIS MEANS:
In this project, you can learn about the concept of acid-base reactions. The reaction between vinegar and baking soda produces carbon dioxide, which causes the raisins to rise to the surface. The raisins are then removed from the plastic bottle and placed on a piece of cloth. The gas adheres to the raisins and forms a bubble, which causes the raisin to rise up.

EXPERIMENT 5

YOU WILL NEED:
- One pint of heavy cream
- A funnel
- Measuring cup
- Baking soda
- Vinegar
- A medium-sized plastic bottle
- A measuring cup
- Raisins
- Vinegar

WHAT TO DO:
- Pour heavy cream into the pot. Heat the heavy cream until it is simmering slowly.
- Once it begins to simmer, slowly stir in a few teaspoons of vinegar.
- Continue to stir until the cream is thickened.
- After the heavy cream turns rubbery, turn off the heat and cool it.
- Place the rubberised heavy cream under cool water. Now you have your own plastic.

WHAT THIS MEANS:
Many plastics are made from natural or synthetic oils, which contain organic carbon-containing substances. This project demonstrates how to create new plastics using artificial carbon-containing substances. The plastic in this experiment is a result of the chemical reaction between the cream and vinegar.
It’s easy to be a scientist. Simply look around and ask, “why?” As a science-based company, Bayer is committed to creating awareness of the importance of science literacy among parents and fostering curiosity, creativity and critical thinking skills in children. So as you and your child use this booklet together, exploring even the simplest wonders around your home, we hope not just to create a new scientist, but to reawaken the one that’s inside of every one of us.

PLANT POWER

YOU WILL NEED:
- Watercress seeds
- Potting compost
- Cardboard
- Tray
- Sunlight

WHAT TO DO:
1. Fill the tray with potting compost. Ensure the surface is level.
2. Leave the tray on a windowsill, where it will get plenty of light.

WHAT THIS MEANS:
A plant is a living thing that needs food in order to grow when a plant is exposed to sunlight it traps the light energy and converts it into growth.

EXPERIMENT 1

WHAT TO DO:
1. Pour one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Once it begins to simmer, slowly stir in a few teaspoons of vinegar. 4. After about five to ten minutes, you will notice that the liquid inside the bottle starts to get rubbery. 5. After a couple of minutes, what happens to the raisins?

WHAT THIS MEANS:
Many plastics are made from petrochemicals, which contain organic carbon-containing substances. In this experiment, you will see how organic acids react with the carbon in milk organic substrates, creating the plastic in practice. This type of milk plastic is meant to be an educational activity for household use.

EXPERIMENT 2

WHAT TO DO:
1. Take one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 2. Add two to three cups of vinegar into the plastic bottle. 3. Gently add one cup of water into the plastic bottle. 4. What happens when the mixture moves inside the bottle? 5. What is the difference between this project and your parent project?

WHAT THIS MEANS:
Acid (vinegar) react to form a gas (carbon dioxide). As the gas forms, it adheres to the raising in the bottle, creating the dancing raisins. If you begin to move to the surface, what happens? The gas becomes into the air and the raisins sink. The reason behind this project for showing hours on end, the raisin gets gooey and too heavy to rise to the surface.

EXPERIMENT 3

WHAT TO DO:
1. Pour one cup of heavy cream into the pot. 2. Heat the heavy cream until it is a sort of broken egg. 3. After a few days, when the heavy cream has cooled down, cut a piece of cloth about the size of the bottle and pour water into it. 4. After out, this is to test the adhesion to a raisin, and what it is that makes the raisin float. 5. What is the difference between this project and your parent project?

WHAT THIS MEANS:
What is the difference between this project and your parent project?

EXPERIMENT 4

WHAT TO DO:
1. Take one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 4. Add four to five cups of vinegar into the plastic bottle. 5. Gently add one cup of vinegar into the plastic bottle. 6. After a couple of minutes, what happens to the raisins?

WHAT THIS MEANS:
Acid (vinegar) react to form a gas (carbon dioxide). As the gas forms, it adheres to the raising in the bottle, creating the dancing raisins. If you begin to move to the surface, what happens? The gas becomes into the air and the raisins sink. The reason behind this project for showing hours on end, the raisin gets gooey and too heavy to rise to the surface.

EXPERIMENT 5

WHAT TO DO:
1. Take one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 4. Add four to five cups of vinegar into the plastic bottle. 5. Gently add one cup of vinegar into the plastic bottle. 6. What happens when the mixture moves inside the bottle? 7. What is the difference between this project and your parent project?

WHAT THIS MEANS:
Many plastics are made from petrochemicals, which contain organic carbon-containing substances. In this experiment, you will see how organic acids react with the carbon in milk organic substrates, creating the plastic in practice. This type of milk plastic is meant to be an educational activity for household use.

EXPERIMENT 6

WHAT TO DO:
1. Take one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 4. Add four to five cups of vinegar into the plastic bottle. 5. Gently add one cup of vinegar into the plastic bottle. 6. How to decant this liquid inside the bottle? 7. What is the difference between this project and your parent project?

WHAT THIS MEANS:
Acid (vinegar) react to form a gas (carbon dioxide). As the gas forms, it adheres to the raising in the bottle, creating the dancing raisins. If you begin to move to the surface, what happens? The gas becomes into the air and the raisins sink. The reason behind this project for showing hours on end, the raisin gets gooey and too heavy to rise to the surface.

EXPERIMENT 7

WHAT TO DO:
1. Take one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 4. Add four to five cups of vinegar into the plastic bottle. 5. Gently add one cup of vinegar into the plastic bottle. 6. What happens when the mixture moves inside the bottle? 7. What is the difference between this project and your parent project?

WHAT THIS MEANS:
Many plastics are made from petrochemicals, which contain organic carbon-containing substances. In this experiment, you will see how organic acids react with the carbon in milk organic substrates, creating the plastic in practice. This type of milk plastic is meant to be an educational activity for household use.

EXPERIMENT 8

WHAT TO DO:
1. Take one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 4. Add four to five cups of vinegar into the plastic bottle. 5. Gently add one cup of vinegar into the plastic bottle. 6. How to decant this liquid inside the bottle? 7. What is the difference between this project and your parent project?

WHAT THIS MEANS:
Many plastics are made from petrochemicals, which contain organic carbon-containing substances. In this experiment, you will see how organic acids react with the carbon in milk organic substrates, creating the plastic in practice. This type of milk plastic is meant to be an educational activity for household use.

EXPERIMENT 9

WHAT TO DO:
1. Take one-and-a-half cups of water into the plastic bottle. 2. Cut off the top of the two-liter plastic bottle. 3. Add one heaping teaspoon of baking soda, and stir until it is dissolved in the water. 4. Add four to five cups of vinegar into the plastic bottle. 5. Gently add one cup of vinegar into the plastic bottle. 6. What happens when the mixture moves inside the bottle? 7. What is the difference between this project and your parent project?

WHAT THIS MEANS:
Many plastics are made from petrochemicals, which contain organic carbon-containing substances. In this experiment, you will see how organic acids react with the carbon in milk organic substrates, creating the plastic in practice. This type of milk plastic is meant to be an educational activity for household use.
PLANT POWER

YOU WILL NEED:
- Watermelon seeds
- Peppermint seeds
- A tissue paper

WHAT TO DO:
1. Fill a cup with 1/2 cup of water.
2. Place the seeds on the surface of the water.
3. Let the seeds sit over night.
4. Cover the cup with a piece of paper and keep it in the refrigerator at all times.

WHAT THIS MEANS:
It’s easy to be a scientist. Simply look around and ask, “why?” As a science-based company, Bayer is committed to reawakening the one that’s inside of every one of us.

STRANGE ACTING GOOP

YOU WILL NEED:
- Cornstarch
- Water

WHAT TO DO:
1. Put one cup of cornstarch into the bowl.
2. Mix the mixture.
3. Slowly dip your finger into the gooey mixture. Grab some in your hand, and pour it back into the bowl. Now, by pinching it between your fingers, what happens?

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

IT’S CHEMICAL!

YOU WILL NEED:
- A bowl.
- Cheese.
- Water.
- Magnesium oxide.
- Two eggs.

WHAT TO DO:
1. Place an egg into the bowl until it is about half in.
2. Add 1/2 cup of water.
3. Mix with your hand.
4. Slowly put your finger into the gooey mixture. Grab some in your hand, and pour it back into the bowl. Now, by pinching it between your fingers, what happens?

WHAT THIS MEANS:
As a science-based company, Bayer is committed to creating awareness of the importance of science literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

DANCING RAISINS

YOU WILL NEED:
- One-and-a-half cups of water
- One heaping teaspoon of baking soda
- Four to six raisins

WHAT TO DO:
1. Pour one-and-a-half cups of water into the plastic bottle.
2. Using a funnel, pour two teaspoons of baking soda into the neck of the bottle.
3. Place the neck of the balloon over the neck of the bottle. Gently press on the balloon and let it rise to the surface of the water.
4. Slowly add one cup of vinegar into the plastic bottle.
5. What to do when it hardens?

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

MILK MAGIC

YOU WILL NEED:
- One pint of heavy cream
- Vinegar
- Small pot

WHAT TO DO:
1. Heat the heavy cream until it is about to boil.
2. Stir in vinegar.
3. Continue stirring until it hardens into a solid.
4. Allow the heavy cream to set and turn it into rubberized heavy cream.
5. Express the rubberized heavy cream under cold water. Now you have your own plastic.

WHAT THIS MEANS:
Many plastics are made from petroleum oil, which contains carbon, which in turn creates a carbon dioxide. To form a carbon dioxide, the carbon reacts with the air and forms carbon dioxide.

EXPERIMENT 1

PLANT GROWTH.

1. IS CRUCIAL FOR HEALTHY PHOTOSYNTHESIS. Thus, sunlight energy and converts it into growth. When a plant is exposed to sunlight, it traps the light energy and converts it into growth.

2. FILL THE TRAY WITH THE POTTING COMPOST. SPRINKLE WATERCRESS SEEDS.

3. AFTER A FEW DAYS, WHEN THE LEAVES HAVE FORMED, CUT A PIECE OF CARDBOARD.

4. LEAVE THE TRAY ON A WINDOWSILL, WHERE IT WILL GETplenty of light.

WHAT TO DO:
1. Fill the tray with the potting compost. Sprinkle watercress seeds inside of every one of us.
2. After a few days, when the leaves have formed, cut a piece of cardboard big enough to cover the tray. Cut out a circle in the middle of the cardboard, and put it over the tray. Again, check each day to see how the seeds are growing.
3. Check each day to see how the seeds are growing.
4. After a couple of minutes, what happens to the raisins?

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

EXPERIMENT 2

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

EXPERIMENT 3

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

EXPERIMENT 4

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.

EXPERIMENT 5

WHAT THIS MEANS:
As a science-based company, Bayer is committed to fostering curiosity, creativity and critical thinking skills literacy among parents and children. So as you and your child use this booklet to create a new scientist, but to reawaken the one that’s inside of every one of us.
It’s easy to be a scientist. Simply look around and ask, “why?” As a science-based company, Bayer is committed to creating awareness of the importance of science literacy among parents and fostering curiosity, critical thinking skills and creativity. Simply look around and ask, “why?” As a science-based company, Bayer is committed to creating awareness of the importance of science literacy among parents and fostering curiosity, critical thinking skills and creativity. It’s easy to be a scientist.

EXPERIMENT 1

PLANT POWER

You will need:
- A shallow tray for growing seeds
- Potting compost
- Watercress seeds
- Scissors

What to do:
1. Fill the tray with the potting compost. Sprinkle watercress seeds on the surface and water them gently.
2. Slowly dip your finger into the gooey mixture. Grab some in your hand, and pour it back into the bowl. Now, try sliding your hand along the mixture. What happens? Slowly add one cup of vinegar into the plastic bottle. What happens? What this means:

How this means:
A substance acting THIS WAY MAKES US LEARN ABOUT MOLECULES. A MOLECULE IS ONE OF THE SMALLEST UNITS OF MATTER. IT IS THE SMALLEST PARTICLE INTO WHICH A SUBSTANCE CAN BE DIVIDED. THIS MAKES THE CHEMICAL IDENTITY OF THE ORIGINAL SUBSTANCE. WHEN CHANGED, THE ORIGINAL MIXTURE, BECAUSE THEY ARE ALL CHANGED PREVENT ANY SUFFRERING. IN THIS WAY, THE SUBSTANCE TRANSFORMS INTO A NEW SUBSTANCE. WHEN YOU SLAMMATION THE MIXTURE ON YOUR HAND, THE GooP feels like A BALL UNDER YOUR HAND. IT SLIDES OVER YOUR FINGERS BIG TO SMALL, BECAUSE THE MIXTURE NOW MOVES MORE LIKE A LIQUID.

You will need:
- A bowl of white vinegar
- 2 cups of water
- A medium-sized bowl

What to do:
1. Pour vinegar into the small bowl until it is about half full. Place it in the middle of the cardboard, and put it over the tray. Again, check each day to see how the seeds are growing.
2. Stretch the neck of the balloon over the neck of the bottle, using a funnel, pour two teaspoons of baking soda into the neck of the bottle. Once the balloon gets close to the top of the bottle, quickly, the strange acting goo feels like a solid inside your hand, yet it slides slowly. The strange acting goo allows us to learn about molecules. A molecule is one of the smallest units of matter. It is the smallest particle into which a substance can be divided. This means the chemical identity of the original substance. When changed, the original mixture, because they are all changed prevents any suffering. In this way, the substance transforms into a new substance. When you slammation the mixture on your hand, the goo feels like a ball under your hand. It slides over your fingers big to small, because the mixture now moves more like a liquid.

What to do:
4. Slowly dip your finger into the gooey mixture. Grab some in your hand, and pour it back into the bowl. Now, try sliding your hand along the mixture. What happens? What this means:

How this means:
A substance acting THIS WAY MAKES US LEARN ABOUT MOLECULES. A MOLECULE IS ONE OF THE SMALLEST UNITS OF MATTER. IT IS THE SMALLEST PARTICLE INTO WHICH A SUBSTANCE CAN BE DIVIDED AND STILL HAVE THE CHEMICAL IDENTITIES. IT IS THESE JIBES OF GAS THAT INFLATE THE BALLOON.

You will need:
- One pint of heavy cream
- Vinegar
- Scissors

What to do:
4. Now, once cool, run the rubberized heavy cream under cold water. How this means:

How this means:
Many plastics are made from petroleum, oil, or coal. Some, which contain organic carbon-containing substances, in this project. You will use 10% AN ACID reacts with 99% ORGANIC SUBSTANCES, CREATING THE PLASTIC. IN PRINCIPLE, THIS TYPE OF MILK PLASTIC IS NEEDED TO MAKE EXPENSIVE FOR HOUSEHOLD USE.
PLANT POWER

YOU WILL NEED:
- Plant seeds
- Water
- Soil
- Sunlight

WHAT TO DO:
1. Choose a plant to grow for this experiment. Mix seeds into your soil. Water when necessary.
2. Watch your plant grow day by day.

WHAT THIS MEANS:
- Plants need light, water, and soil to grow.

STRANGE ACTING GOOP

YOU WILL NEED:
- Cornstarch
- Water
- Vinegar
- Baking soda

WHAT TO DO:
1. Mix cornstarch and water together. Mix well.
2. Add vinegar and baking soda to make the mixture change.

WHAT THIS MEANS:
- Molecules are the smallest parts of matter.

IT'S CHEMICAL!

YOU WILL NEED:
- Baking soda
- Vinegar

WHAT TO DO:
1. Pour vinegar into the small bottle until it is about half full. Close both bottles.
2. Open the small bottle and pour the baking soda into the vinegar.

WHAT THIS MEANS:
- When two substances react, new substances are formed.

DANCING RAISINS

YOU WILL NEED:
- Raisins
- Vinegar
- Baking soda

WHAT TO DO:
1. Add four to six raisins to the water/baking soda mix in a small bottle.
2. Pour vinegar into the small bottle until it is about half deep. Close both bottles.
3. Slowly add one cup of vinegar into the plastic bottle. What happens? After a couple of minutes, what happens to the raisins? After the heavy cream turns rubbery, turn off the heat and let it cool.

WHAT THIS MEANS:
- Many plastics are made from petroleum oil, or oil derived from plants.

MILK MAGIC

YOU WILL NEED:
- One pint of heavy cream
- Vinegar

WHAT TO DO:
1. Pour vinegar into a pot. Heat the heavy cream until it is dissolved in the vinegar.
2. Once cool, run the rubberized heavy cream under cool water. Now you have your own plastic.

WHAT THIS MEANS:
- Many plastics are made from petroleum oil, or oil derived from plants.
WiLL GRAduALLy diSPERSE ThE MAGNET iS REMovEd, ThE SPoT cEREAL Mix iN ThE cuP, ThE dARKER ThE SPoT. WhEN ANd GAThER To FoRM ThE dARK SPoT you cAN SEE oF ELEMENTAL iRoN ARE ATTRAcTEd To ThE MAGNET ThE MAGNET (iRoN iN coMPouNdS doES NoT ShoW ELEMENTAL iRoN, hENcE ThE STRoNG ATTRAcTioN To cEREALS ARE FoRTiFiEd iS iN ThE FoRM oF “RAW” SoME oF ThE iRoN WiTh Which ouR BREAKfast You Will need:

Pour some of the cereal mix into a clear plastic cup.

Mix two cups of iron-fortified cereal with two cups of

• WhIte plastIc spoon
• Water
• a clear plastIc cup
• MeasurIng cup

spoon. What happens when the magnet is taken away?

Watch everyday and write down What happens.

the touch.

place the cups on a shelf or Window ledge (Make sure the ledge and add More Water a little at a time. the cotton balls should carefully pour a small Mount of Water over the cup containing carefully pour a small Mount of Water over the cup containing

fIll the thIrd plastIc cup with Water.

fIll one plastIc cup half Way with soIl, so you can bury the seeds.

fIll the rest of the soIl leavIng a little space between them. then fIll the rest

of the cup with soIl,

so you can bury the seeds.

fIll the third plastics cup with Water.

the common home fire extinguisher contains carbon dioxide or CO 2 in a liquid form. Housed in the extinguisher, the CO 2 is under tremendous pressure. During a fire when the extinguisher is triggered to release the CO 2, it expands and the blood moves into veins and capillaries (through vasoconstriction) to stop the bleeding.

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.

How does a fire extinguisher work?

Bubbles contain more force than ordinary champagne blowing in a party glass, plus blowing a bubble, the gas is first stretched and then released. The pressure difference between these two actions results in a Burlington phenomenon. (The same phenomenon that makes one pop and holds right back up, leaving a world of others behind.)

What is blood pressure?

As blood accumulates in the heart’s left ventricle, the walls contract, forcing the blood out and into an artery, putting a lot of pressure on the artery’s wall! This is called systolic pressure. Diastolic pressure refers to the pressure when the heart is at rest, and the blood flows into veins and capillaries (through vasodilation). This is called diastolic pressure.
The magnet is removed, the spot on the side of the cup. The longer you stir and gather to form the dark spot you can see this same degree of attraction. The small pieces the magnet (iron in compound does not show...)

Cereals are fortified is in the form of “raw”...

You will need:

• a strong magnet
• water
• a clear plastic cup

Pour some of the cereal mix into a clear plastic cup.

1. While holding the magnet against the outside of the cup, stir the cereal in the cup. What happens when the magnet is taken away?

8. Is there any change in the taste of the candy from the beginning?

What this means:

Much of what we perceive as “taste” is due to our sense of smell. If you may not be able to tell the specific flavor of the candy, just perhaps a mismatch in sweetness or saltiness. Even if, as the candy dissolves, you can identify the specific tastes, because “some essential molecules volatile” to the smell receptors in the back of the nose, the action on the taste buds (and not the actual taste buds)...
NAILS FOR BREAKFAST

YOU WILL NEED:
- For more information
 - White plastic spoon
 - Water
 - Measuring cup

WHAT TO DO:
1. Place the cup on the pavement with you. Pour some of the cereal mix into a clear plastic cup. Stir the mix inside the cup gently with the plastic spoon. Make sure the mix is well combined. Then place the cup on the pavement. Carefully pour a small amount of water over the cup. The mix should start to bubble and become soft. When the mix is soft, gently pour it over your nails. The mix will start to form a hard, plastic-like substance.

WHAT THIS MEANS:
Some of the chemical changes that occur when the nail is exposed to the water are:
- The water reacts with the nail, forming a complex substance.
- The nail absorbs the water, increasing its volume.
- The water reacts with the nail, forming a plastic-like substance.

SOIL VS. COTTON

YOU WILL NEED:
- Cereal nails
- Water
- Cotton balls

WHAT TO DO:
1. Place the bowl of water on the table. Add some of the cereal mix to the bowl. Stir the mix inside the bowl until the cereal is soft. Then add more water to the bowl, stirring until the mix is soft. Carefully pour a small amount of water over the bowl. The mix should start to bubble and become soft. When the mix is soft, gently pour it over your nails. The mix will start to form a hard, plastic-like substance.

WHAT THIS MEANS:
Mohr's salt, also known as sodium carbonate, is a chemical that can be found in the soil. When the salt is exposed to water, it reacts with the water, forming a complex substance. The salt reacts with the water, forming a plastic-like substance. The salt reacts with the water, forming a complex substance.

IT’S ALL IN THE TASTE BUDS

YOU WILL NEED:
- Flavored hard candies
- Any candy
- Kitchen timer
- Measuring cup

WHAT TO DO:
1. Place the flavored hard candies in a clear plastic bag. Place the bag on the table. Place the bag in the refrigerator. After 10 minutes, place the bag on the table. Carefully pour a small amount of water over the bag. The mix should start to bubble and become soft. When the mix is soft, gently pour it over your nails. The mix will start to form a hard, plastic-like substance.

WHAT THIS MEANS:
Mohr's salt, also known as sodium carbonate, is a chemical that can be found in the soil. When the salt is exposed to water, it reacts with the water, forming a complex substance. The salt reacts with the water, forming a plastic-like substance. The salt reacts with the water, forming a complex substance.

KIDS AND SCIENCE: POINTERS FOR PARENTS

WHAT TO DO:
1. Label the plastic bag with the words “Raw Food.” Place a plastic bag on the table. Place the bag on the table. Carefully pour a small amount of water over the bag. The mix should start to bubble and become soft. When the mix is soft, gently pour it over your nails. The mix will start to form a hard, plastic-like substance.

WHAT THIS MEANS:
Mohr's salt, also known as sodium carbonate, is a chemical that can be found in the soil. When the salt is exposed to water, it reacts with the water, forming a complex substance. The salt reacts with the water, forming a plastic-like substance. The salt reacts with the water, forming a complex substance.

Why do birds fly south for the winter?

Many birds migrate or fly south for the winter, because of the weather conditions. Birds are usually cold-adapted and will fly south to find warmer climates. The short days and cold weather cause the shorter and colder birds to seek out warmer environments.

What is blood pressure?

As blood accumulates in the heart's left ventricle, it rises and enters the arteries, causing the blood pressure to rise. When the heart contracts, it forces the blood out, causing the blood pressure to fall. This cycle is repeated throughout the body, maintaining the body's blood circulation.

How does a fire extinguisher work?

A fire extinguisher contains a chemical that can extinguish a fire. The chemical is usually a carbon dioxide or CO₂ in a liquid form. When the fire extinguisher is triggered, the CO₂ is released as a gas, forming a protective layer over the fire. This layer blocks the oxygen, preventing the fire from spreading.

COOL SCIENCE WEBSITES

- Don't Make Science Make Sense — makingscientificsense.com
- On the Science Guy — scisuguy.com
- PBS Science Friday — pbs.org/scifri
- NASA — science.nasa.gov
- Science Learning Hub — sciencenow.org
- National Science Teachers Association — nsta.org

Making Science Make Sense® in Bayer’s award-winning, company-wide initiative that advances science literacy through hands-on, inquiry-based science learning, employee volunteerism and public education. Please visit MakingScienceMakeSense.com.
NAILS FOR BREAKFAST

SOIL VS. COTTON

YOU WILL NEED:
• a partner
• the outdoors
• water
• a plastic cup
• a long spoon
• a long spoon

WHAT TO DO:
1. Mix two cups of soil and cotton with two cups of water in separate cups.
2. Stir the cotton until it is wet and the soil is dry.

WHAT THIS MEANS:
Mixing soil and cotton simulates the different amounts of nutrients found in soil and cotton. This experiment helps us understand that different nutrients are found in different types of materials.

SOIL VS. COTTON

YOU WILL NEED:
• colored cotton
• water
• a plastic cup
• a long spoon

WHAT TO DO:
1. Place the cotton into the cup of water. Stir gently for a few moments and observe the results.
2. Pour the cotton into the soil cup. Stir gently for a few moments and observe the results.

WHAT THIS MEANS:
Comparing the cotton and soil helps us understand that different nutrients are found in different types of materials. This experiment helps us understand that different nutrients are found in different types of materials.

NAILS FOR BREAKFAST

YOU WILL NEED:
• a partner
• the outdoors
• water
• a plastic cup
• a long spoon

WHAT TO DO:
1. Mix two cups of soil and cotton with two cups of water in separate cups.
2. Stir the cotton until it is wet and the soil is dry.

WHAT THIS MEANS:
Mixing soil and cotton simulates the different amounts of nutrients found in soil and cotton. This experiment helps us understand that different nutrients are found in different types of materials.

SOIL VS. COTTON

YOU WILL NEED:
• colored cotton
• water
• a plastic cup
• a long spoon

WHAT TO DO:
1. Place the cotton into the cup of water. Stir gently for a few moments and observe the results.
2. Pour the cotton into the soil cup. Stir gently for a few moments and observe the results.

WHAT THIS MEANS:
Comparing the cotton and soil helps us understand that different nutrients are found in different types of materials. This experiment helps us understand that different nutrients are found in different types of materials.
EXPERIMENT 6

SOIL VS. COTTON

YOU WILL NEED:
• Cotton balls
• Food coloring
• Measuring cup
• Food stain remover

WHAT TO DO:
1. Place one cotton ball in a measuring cup and add a tablespoon of food coloring.
2. Use a straw to blow the stain through the cotton ball. Blow until the cotton ball is fully stained.
3. Place the cotton ball in a measuring cup and add a tablespoon of food coloring.
4. Use a straw to blow the stain through the cotton ball. Blow until the cotton ball is fully stained.
5. Repeat steps 1-4 with the second cotton ball.

WHAT THIS MEANS:
Much of what we see before us is due to our sense of smell. However, we may not be able to tell the specific flavor of the candy, just perhaps a suggestion of sweetness or sourness. If, however, we are able to identify the candy, we might determine that the flavor of the candy is due to the odor of the cotton ball. However, we need to be able to identify the specific odor.

WHAT TO DO:
1. Take a spoonful of flour and add a tablespoon of sugar to it.
2. Add a tablespoon of water to the flour and sugar mixture.
3. Stir the mixture until it is smooth.
4. Place the mixture in a measuring cup and add a tablespoon of food coloring.
5. Use a straw to blow the stain through the measuring cup. Blow until the measuring cup is fully stained.

WHAT THIS MEANS:
Much of what we see before us is due to our sense of smell. However, we may not be able to tell the specific flavor of the candy, just perhaps a suggestion of sweetness or sourness. If, however, we are able to identify the candy, we might determine that the flavor of the candy is due to the odor of the cotton ball. However, we need to be able to identify the specific odor.

EXPERIMENT 7

SOIL VS. COTTON

YOU WILL NEED:
• Soil
• Soil stain remover
• Measuring cup
• Food stain remover

WHAT TO DO:
1. Place one soil sample in a measuring cup and add a tablespoon of food coloring.
2. Use a straw to blow the stain through the soil sample. Blow until the soil sample is fully stained.
3. Place the soil sample in a measuring cup and add a tablespoon of food coloring.
4. Use a straw to blow the stain through the soil sample. Blow until the soil sample is fully stained.
5. Repeat steps 1-4 with the second soil sample.

WHAT THIS MEANS:
Much of what we see before us is due to our sense of smell. However, we may not be able to tell the specific flavor of the candy, just perhaps a suggestion of sweetness or sourness. If, however, we are able to identify the candy, we might determine that the flavor of the candy is due to the odor of the soil sample. However, we need to be able to identify the specific odor.

EXPERIMENT 8

SOIL VS. COTTON

YOU WILL NEED:
• Soil
• Soil stain remover
• Measuring cup
• Food stain remover

WHAT TO DO:
1. Place one soil sample in a measuring cup and add a tablespoon of food coloring.
2. Use a straw to blow the stain through the soil sample. Blow until the soil sample is fully stained.
3. Place the soil sample in a measuring cup and add a tablespoon of food coloring.
4. Use a straw to blow the stain through the soil sample. Blow until the soil sample is fully stained.
5. Repeat steps 1-4 with the second soil sample.

WHAT THIS MEANS:
Much of what we see before us is due to our sense of smell. However, we may not be able to tell the specific flavor of the candy, just perhaps a suggestion of sweetness or sourness. If, however, we are able to identify the candy, we might determine that the flavor of the candy is due to the odor of the soil sample. However, we need to be able to identify the specific odor.