

Pharmaceuticals R&D Event

Boston, US June 28, 2023

Agenda Pharmaceuticals R&D Event

Session	Start/EDT	Start/CEST	Content	Speaker
	08:00 am	14:00 pm	Welcome	Oliver Maier
	08:10 am	14:10 pm	Transforming Bayer Pharma for Sustained Growth	Stefan Oelrich
	08:25 am	14:25 pm	Reshaping Innovation at Bayer Pharma	Christian Rommel
1	08:50 am	14:50 pm	Making a Difference in Neurology & Rare Diseases Leveraging a Unique Platform to Build a Presence in Immunology	Christian Rommel
	08:55 am	14:55 pm	Vividion Therapeutics: Removing the Boundaries of Druggability	Aleksandra Rizo
	09:15 am	15:15 pm	Q&A (15 min)	Stefan Oelrich, Christian Rommel, Aleksandra Rizo
	09:30 am	15:30 pm	Coffee Break	
	09:40 am	15:40 pm	Driving Leadership in Focus Areas of Oncology	Dominik Ruettinger
	10:00 am	16:00 pm	Shaping new Treatment Paradigms in Cardiovascular Diseases	Maria Borentain
2			Shaping new Treatment Paradigms in Cardiovascular Diseases Q&A (15 min)	
2	10:00 am	16:00 pm		Maria Borentain
2	10:00 am 10:25 am	16:00 pm 16:25 pm	Q&A (15 min)	Maria Borentain Dominik Ruettinger, Maria Borentain
2	10:00 am 10:25 am 10:40 am	16:25 pm 16:40 pm	Q&A (15 min) BlueRock Therapeutics: Leading the way in PSC therapies	Maria Borentain Dominik Ruettinger, Maria Borentain Seth Ettenberg
2	10:00 am 10:25 am 10:40 am 11:00 am	16:25 pm 16:25 pm 16:40 pm 17:00 pm	Q&A (15 min) BlueRock Therapeutics: Leading the way in PSC therapies Asklepios BioPharmaceutical: Pioneering AAV-based Gene Therapies	Maria Borentain Dominik Ruettinger, Maria Borentain Seth Ettenberg R. Jude Samulski
2	10:00 am 10:25 am 10:40 am 11:00 am 11:20 am	16:00 pm 16:25 pm 16:40 pm 17:00 pm 17:20 pm	Q&A (15 min) BlueRock Therapeutics: Leading the way in PSC therapies Asklepios BioPharmaceutical: Pioneering AAV-based Gene Therapies Concluding Remarks	Maria Borentain Dominik Ruettinger, Maria Borentain Seth Ettenberg R. Jude Samulski

Cautionary Statements Regarding Forward-Looking Information

This presentation may contain forward-looking statements based on current assumptions and forecasts made by Bayer management.

Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer's public reports which are available on the Bayer website at www.bayer.com.

The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

Transforming Bayer Pharma for Sustained Growth

Stefan Oelrich

Revised innovation model

Greater focus, streamlined portfolio, emphasis on precision medicine Expanding US footprint

Building US presence; Expanding both R&D and commercial footprint 3

Late-stage pipeline potential

From two to up to four blockbusters with a combined peak sales potential of €12bn

We Have Taken Actions to Increase Focus, Quality and Productivity of Our Innovation Model

Focus

Portfolio too broad for company size

Focus areas driven by value, differentiation, feasibility and competencies

Quality

Incremental innovation

Shift to breakthrough innovation leveraging scientific advances, platforms, precision medicine and Al

Productivity

Complex operating model

Shift to value creation, asset-centric operating model, leaner governance with renewed leadership team

Zeroing in on High Unmet Need With Great Value Potential

Optimizing our R&D focus to 4 broad therapeutic areas

Focus areas prioritized based on

- // Value & differentiation
- // Feasibility & risk
- // Bayer's strengths

¹ including Precision Cardiovascular, Nephrology & Acute Care

7

We Have Expanded Our Capabilities And Pipeline Through Strategic Acquisitions and Collaborations

INNOVATION ENGINE

- # Establishing Cell & Gene therapy platform through acquisition of BlueRock and AskBio
- # Gaining access to cutting-edge chemoproteomics platform through acquisition of Vividion
- // Collaborating with top academia, pharma partners and biotech companies
- // LEAPS as a feeder of breakthrough technologies

~ **100 deals** signed in the last 4 years

Building US Footprint

Research & Development

Increased presence at the world's most vibrant Pharma innovation hubs

- // Increased R&D footprint in the US with the acquisition of BlueRock, AskBio and Vividion
- // Established the Bayer Research and Innovation Center in Cambridge/Boston

Commercial

Expanding US commercial footprint reflecting new products and pipeline assets with global rights

- // Improved presence in oncology, in particular to support Nubeqa
- # Ensuring Kerendia & Verquvo in cardio-renal have appropriate marketing and sales support

Nubeqa Has The Potential to Become The New Standard of Care in Prostate Cancer Across Indications

11

Kerendia With Strong Launch Dynamics And The Option to Broaden The Use in CKD And to Expand into HF

- // One of the strongest launch dynamics in CV despite initial COVID restrictions
- // Continued US market uptake with broad utility and relevance across GPs and specialists
- // China: NRDL Listing starting March 2023; granted Extended Indication in China in mid-May, including CV outcomes from FIGARO-DKD

¹Entresto developed and commercialized by Novartis ²Source: IQVIA TRx April 2023 ³Source: Vijay et al, 2021 ⁴ Peak Sales Potentia

12

Elinzanetant as Investigational Non-hormonal Treatment Option in The Menopause Market With Peak Sales Potential of >€1bn

Elinzanetant

- // First, non-hormonal, once-daily, oral neurokinin-1,3 receptor antagonist
- // Differentiated, double mode of action
- // Phase II indicated significant and rapid improvement in VMS and positive safety profile

Current Status

- // Four Phase III studies (OASIS-1 OASIS-4)
- // First Phase III data expected in H2 2023
- // Potential launch: 2025

¹ Source: Market Research - IPSOS - Global VMS Women Segmentation ² Peak Sales Potential

13

Currently Un(der)treated Patients May Provide Asundexian a Strong Entry Point Into The Anticoagulation Market

Asundexian

- // Innovative, once-daily, oral small molecule FXIa inhibitor
- // Paradigm shift in thrombosis prevention, with the potential to uncouple efficacy from bleeding risk
- // Broad Phase II study program PACIFIC confirmed consistent safety and near maximum FXIa inhibition

Current Status

- // Two Phase III studies (OCEANIC-AF and OCEANIC-STROKE)
- U.S. FDA Fast Track Designation granted for both indications
- // Phase III data expected in H2 2025

¹ Top 8 markets: US, CN, JP, EU5; ² Peak Sales Potential

Revised innovation model

Greater focus, streamlined portfolio, emphasis on precision medicine Expanding US footprint

Building US presence; Expanding both R&D and commercial footprint 3

Late-stage pipeline potential

From two to up to four blockbusters with a combined peak sales potential of €12bn

Reshaping Innovation at Bayer Pharma

Christian Rommel

Key Messages Today

- // We have reshaped our approach to innovation guided by value, differentiation, feasibility, and our competencies.
- // We have streamlined our portfolio towards precision medicine, with a narrower therapeutic area focus but a wider range of modalities.
- We will leverage partnerships, data science, new trial designs, biomarker technologies, and improved governance to accelerate our drug development processes and move to a higher, more sustainable R&D productivity.
- We are already starting to see a step change in the quality and differentiation of our new molecular entities with the vast majority offering the potential to be first- or best-in-class.

Patients and Society Need and Demand Transformational Change

The New Face of Bayer Pharma R&D

Building on 160 years of innovation, we've significantly transformed our organization and shaped our strategy

New Bayer innovation strategy setting the path for scientific leadership and increased value for patients

- Diversified modalities
- Refocused therapeutic areas
- Increased R&D footprint in the US

Extended capabilities and pipeline through strategic acquisitions

- BlueRock
- AskBio
- Vividion

Fast-tracked our ambition through key R&D decisions

- New R&D operating model
- Leaner, simpler governance
- Rigorous portfolio health check

KEY FIGURES:

BAYER

€3.2bn spend on R&D

5,800 FTEs at Bayer Pharma R&D (including platform companies)

25 NMEs and 45 projects in development

€9bn value increase of late-stage assets since 2021 ~**100 deals** signed in the last 4 years

Our People are Key for our Transformation and Future Success

Revamped leadership in action to transform our organization and unleash the potential of our people

BAYER

A Multi Faceted Innovation Engine to Unlock Value for Patients

Addressing need for breakthrough science with diverse research capabilities, technologies and talents

Bolstering Science and Pipeline Through our Platform Companies

Balancing organizational synergies and scientific independence

SYNERGIES

Cross-company interaction
 and synergistic BD&L
 activities to accelerate
 technology development

Building on respective scientific capabilities to expand early pipeline

Leverage Bayer's expertise to accelerate pre-clinical and clinical development

Our Science & Portfolio Strategy Evolution

Innovation and Growth Potential as a Key Focus to Increase Value

= Focus areas

Bubble size represents absolute change in scales between 2022-2028, in case of a positive CAGR

Source: Evaluate Pharma; incl. OTC sales; May 8, 2023; ¹Endorine includes Obesity; ²gastro-Intestinal includes OTC

Refined Focus Areas with Highest Impact and Value Potential

Clear strategic mandates guiding decision making and resource allocation

Oncology	Cardiovascular+	Neurology & Rare Diseases	Immunology
Become a Top Oncology Company	Remain Top player, shift to precision medicine	Advance a competitive Cell & Gene therapy	Build expertise and portfolio
Drive leadership in focus areas, accelerate growth through competitive early- stage pipeline	Enhance our leadership in precision cardiovascular, nephrology and acute care	pipeline Drive and de-risk platform with focus on first-in-market potential	Advance our pipeline to build a presence and support other focus areas
		(i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	

Targeting the Sweet Spot of Precision Medicine Across our Focus Areas

Through disease understanding and value potential assessment

- // Address individual patients' needs to achieve improved and sustainable health by delivering transformative medicines: the right treatment, to the right patient, at the right time
- // Optimized outcomes by focusing on highest unmet needs, value potential, differentiation and risk mitigation
- // Open for disruption in large indications

A Diverse and Innovative Modality Toolkit to Deliver our Ambition

Delivering innovative and competitive medicines in our focus therapeutic areas

			Oncology	Cardiovascular+	Neurology & Rare Diseases	Immunology
Small Molecules	Small Molecules (SMOL) RNA targeting Protein degraders Peptides Conjugates	BAYER R				
Protein Therapeutics	Antibody Conjugates Multispecific antibodies Monoclonal antibodies	BAYER ER	\bigcirc			\bigcirc
Radiotherapy	Targeted Radiotherapy Antibody SMOL peptide	BAYER				
Chemoproteomics	Covalent binders Heterobifunctional degraders Molecular glues		\bigcirc	\bigcirc		\bigcirc
Cell Therapy	Pluripotent Stem Cells (PSCs)	BlueRock		\bigcirc	\bigcirc	\bigcirc
	Adeno-Associated Virus (AAV) based gene therapy	AskBio				
Genetic Medicine	CRISPR-based gene editing	Mammoth Biosciences				
	Non-viral gene delivery	ACUITAS THERAPEUTICS				
		Combined with Bayer in-house innovation capabilities				

Bayer innovation capabilities

Reshaping R&D Execution Through Data Science and AI

Exploiting increasing convergence of biology and technology to continuously optimize our portfolio

PRIORITIES

BAYER

- // Dedicated Data Science & Al organization created in 2021
- // Uncovering new biology harnessing the power of multi-modal data
- // Al driven compound optimization
- // Automation and machine learning accelerating clinical trials powered by real world data

PARTNERSHIPS

Accelerating drug discovery with **Google Cloud**, applying machine learning for Quantum chemistry

Schrödinger

🗿 Recursion.

Schrodinger collaboration to codevelop de novo design to accelerate drug discovery

Partnership with **Recursion** to strengthen digital drug discovery and advance new therapies

Moving to Higher, Sustainable Level of R&D Productivity

Supported by key levers

INCREASE IN PTS

- // Moving toward precision medicine
- // Improved validation of targets and translation to patient - target disease link
- // Strategic investments in new biomarker approaches
- // Improved patient profiling and selection using advanced Data Science/AI approaches

REDUCTION OF COSTS

- // Digitization of clinical trials
- // Lean, innovative, adaptive clinical trial design in stratified population, as well as platform studies
- // Reduction of in-vivo/wet lab work by applying prediction tools
- // New ways of working leveraging organizational synergies

DECREASE IN CYCLE TIMES

- // Improved governance and decision making (fail / accelerate fast)
- // Accelerate development from IND to launch through tailored development approaches
- Unlock the potential of Real-World
 Data with AI and Machine learning.
 Automation and digitization enabling
 decentralized trails

Pursuing Industry Leading Innovation Across all Focus Areas

Selected assets with innovation, differentiation and high value profile

	Program ¹ (Indication)	Phase 0	Phase I	Phase II	Phase III	
Cardiovascular	Asundexian (SPAF, Stroke)				FDA	A fast track, FIC
including Precision CV, Nephrology & Acute Care	a2AP ant mAb (Ischemic Stroke)		FIG	0		
	sGC Activator Oral (Chronic Kidney Disease)		FI	С		
	mEGFR/HER2i (Lung Cancer)		FI	C/BIC		
Oncology	DGKalpha Inh. (Cancer)		FIC			
	NRF2 Inh (Cancer)		FIC			
	PSMA-SMOL-TAC (Prostate Cancer)		FIC/BIC			
Neurology &	Bemdaneprocel (Parkinson's)			FDA fast track,	FIC	
Rare Diseases	AB-1005 (Parkinson's)			FIC		
	AB-1003 (<i>LGMD2I/R9</i>)			BIC		
Other	Elinzanetant (Vasomotor Symptoms)				BI	С

¹ Selected assets out of 40+ development projects

BAYER

A Focused R&D Strategy to Deliver an Innovative, Differentiated and Sustainable Pipeline

OUR FOCUS

OUR PRIORITIES

4	core	Therapeutic Areas
---	------	--------------------------

- Oncology
- Cardiovascular+
- Neurology & Rare Diseases
- Immunology

6 modalities

Small molecules, Protein Therapeutics, Radiotherapy, Chemoproteomics, Cell Therapy, Genetic medicine

3 platform companies

AskBio, BlueRock, Vividion

Science & Portfolio

- // Launch elinzanetant and asundexian
- // Progress and accelerate high-value assets
- // Focused investments in BD&L
- // Maximize impact from platform companies
- // Unlock full potential of precision medicine

Productivity

- // Excellence in execution to generate more value and improve capital efficiency in R&D
- // Shift to asset-centric operating model
- // Increase agility and dynamic resource allocation
- // Accelerate data science & AI across R&D
 value chain

Key Messages Today

- // We have reshaped our approach to innovation guided by value, differentiation, feasibility, and our competencies.
- // We have streamlined our portfolio towards precision medicine, with a narrower therapeutic area focus but a wider range of modalities.
- We will leverage partnerships, data science, new trial designs, biomarker technologies, and improved governance to accelerate our drug development processes and move to a higher, more sustainable R&D productivity.
- We are already starting to see a step change in the quality and differentiation of our new molecular entities with the vast majority offering the potential to be first- or best-in-class.

Making a Difference in Neurology & Rare Diseases

Christian Rommel

Bayer in Neurology & Rare Diseases

Opportunity to become leaders in transforming patient care

MARKET ATTRACTIVENESS

BAYER

High unmet medical needs

// Many underserved or previously intractable diseases with high unmet need

Paradigm shift in patient treatments

// Transition from symptomatic treatment to transformative therapies addressing disease root causes with long-lasting clinical benefit

Attractive growth market

- # Exciting scientific breakthroughs in Neurology and rapid advances in new modalities including CGT
- // ~7000 known rare disease, 80% of which are genetic in origin

BAYER'S KEY STRENGTHS

Enabled by our existing capabilities

- # State-of-the-art technology platforms for cell and gene therapy
- Bundling capabilities of strong in-house teams, platforms and partnerships in key technologies such as gene editing and lipid nanoparticles
- Bayer know-how and experience across the value chain
- // Infrastructure and upscaling know-how

Synergies with other therapeutic areas

Ø Opportunity to address unmet needs at the intersection of cardiovascular and ophthalmology to leverage synergies

Neurology and Rare Diseases Pipeline Overview

Significant proportion of our cell & gene therapy pipeline to enable potential medical advances in NRD

	PRECLINICAL		CLINICAL		ΓΙΟΝ
		•	AB-1005	Parkinson's	
		•	AB-1005	Multiple System	Atrophy
🏶 AskBio		•	AB-1001	Huntington's	
		•	ACTUS-101	Pompe (LOPD)	FDA fast track & ODD USA/EU
		٠	AB-1003	LGMD2i/R9 ²	FDA fast track & ODD EU
	• • •			-	
		•	DA01 / Bemdaneprocel	Parkinson's	FDA fast track
-	• •				
Mammoth Biosciences	• •				

STRATEGIC PRIORITIES

Further inclusion of BlueRock and AskBio in Bayer's Innovation ecosystem, leveraging synergies while keeping them largely independent

Build a **competitive and differentiated portfolio** and de-risk assets and platform approach in clinical stage

Once derisked, identify **areas** for scale and growth

NRD Pipeline Overview - all platform companies' therapeutic areas ex-NRD not shown

Leveraging a Unique Platform to Build a Presence in Immunology

Christian Rommel

Bayer Entering Immunology

Significant unmet medical need despite rapid scientific advances

MARKET ATTRACTIVENESS

High unmet medical needs

- // Many underserved diseases
- // Globally increasing incidence & prevalence

Robust research innovation

Advancing disease understanding, biomarker research to drive future precision therapies

Potential for long-lasting remission

Novel precision targets empowered by new technology (incl. Machine Learning & AI) for better disease understanding

Attractive growth market

- // Among top-growing pharma markets
- // Efficient clinical trials and attractive PTS

Immunology

BAYER'S KEY STRENGTHS

Enabled by our existing capabilities

- Access to highly differentiated Vividion's chemoproteomics platform
- // Highly differentiated small molecules library
- Covalent and non-covalent small molecules, direct functional modulators, degraders
- Rapidly accelerating assets in preclinical and clinical development

Synergies with other therapeutic areas

Relevant expertise enabling Bayer's other strategic focus areas

Immunology Early Pipeline Overview

Targeting central drivers of inflammation

	PRECLINICAL	CLINICAL	LEAD INDICATION	STRATEGIC PRIORITIES
		٠	Atopic Dermatitis	Leverage existing
BAYER	•		RA-ILD	capabilities to fully enable Vividion platform and
	•		Interferon dysregulation	realize synergies with Bayer R&D
	•		Inflammatory Bowel Disease (IBD)	Develop strong foundation
	•		Psoriatic arthritis, Psoriasis, IBD	and accelerate data generation to drive
THERAPEUTIOS	•		TH-17/TH-1 autoimmune	disease understanding
	•		Alopecia and vitiligo	Augment early-stage
			Most autoimmune diseases	pipeline through attractive external innovation once
	•		Psoriasis, IBD	de-risked

Vividion Therapeutics: Removing the Boundaries of Druggability

Aleksandra Rizo

Key Messages Today

- // While hundreds of proteins are known to be drivers of diseases, just ~10% can be drugged by current therapies
- // Chemoproteomics technologies can be used to selectively target and bind to yet unaccessible proteins, thereby removing today's boundaries of druggability
- // Vividion has a world leading industrial scale chemoproteomics platform based on a unique covalent custom build library that can identify potent and selective drugs in innovative and efficient way thereby unlocking the full potential of small molecule therapies
- # Bayer's strength in small molecules enables significant synergies and ability to leverage Vividion's platform
- // Vividion is advancing an attractive pipeline in Oncology and Immunology with first program to enter the clinic in 2023

SCIENTIFIC FOUNDERS

BENJAMIN CRAVATT

Professor and Co-Chair, Dept. of Molecular Medicine The Scripps Research Institute Member, Natl Academy of Sciences 2022 Wolf Prize in Chemistry

PHIL BARAN

Chair, Chemistry The Scripps Research Institute McArthur Genius Award Member, Natl. Academy of Sciences

JIN-QUAN YU

Professor, Chemistry The Scripps Research Institute McArthur Genius Award

COMPANY PROFILE

- // Small molecule drug discovery and development
 - **Operations initiated in 2017**
 - ~200 employees
 - 8,000 m² of lab/office space in San Diego, CA

Bayer-Vividion Synergies

- // Bayer acquired Vividion in August 2021
- // Vividion's unique chemoproteomics platform fits well with Bayer's historical strength and expertise in small molecules
- // Acquisition places Bayer and Vividion in a strong position to unlock undruggable targets and generate first-inclass novel drug candidates for the benefit of patients
- // Through Bayer's "Arm's Length" operating model, Vividion operates autonomously and with full accountability to develop and advance its portfolio and technologies
- As a result of this structure, Vividion can maintain its entrepreneurial culture of a startup while accessing Bayer's global resources and strengths to accelerate transformation and advance new scientific breakthroughs

Limitations of Conventional Small Molecule Drug Discovery

- // 100s of human proteins are known to cause disease
- // Only ~10% of these disease-causing proteins/targets are drugged by current therapies¹
- // Despite advances in genomics, structural biology, and high-throughput screening, most disease relevant targets are inaccessible to conventional chemistry – perceived as pocketless or undruggable

¹ Source: Oprea et al.,Nature Reviews Drug Discovery, 17: 317-332, 2018.

Potential to Transform Small Molecule Drug Discovery

Vividion's "Covalent First" Platform Expands Druggable Space

Drug-like potency and selectivity requires:

- // Large contact surface between drug and protein
- // Multiple specific types (polar) of interactions
- // Deep pockets

Drug-like potency and selectivity requires:

- // Small contact surface and minimal polar interactions that guide covalent bond formation
- // Reactive amino acid (cysteine)
- // Shallow pockets

Drugs for targets **within druggable classes** (e.g., enzymes, receptors) Allows for druggability <u>of all/any disease relevant targets</u> (e.g., enzymes, receptors, transcription factors, ubiquitin ligases)

Foundations of the Vividion Platform

The Innovation and Efficiency of the Vividion Drug Discovery Platform

Industrial Scale Chemoproteomics Platform Accelerates Discovery of Novel Shallow Pockets

INDIVIDUAL LIBRARY OF VIVIDION COMPOUNDS

Most screening assays only capable of tracking one target at a time, usually in unnatural settings

Vividion technology simultaneously tracks small molecule interactions against 1000s of targets in natural settings to discover potent and selective compounds at the same time

Range of Approaches to Modulate Undruggable Targets

First-in-class and/or Best-in-class Small Molecule Therapeutics

DIRECT FUNCTIONAL MODULATORS (DFMs)

- // Allosteric Inhibitors
- // Allosteric Activators
- // Protein-protein Interaction (PPI) Inhibitors

PROTEIN DEGRADERS

// Functionalize silent binders to enable targeted protein degradation

Continuous Library Expansion Allows for Pipeline Growth and Durable Competitive Advantage

Unique Pipeline of First or Best in Class Programs

Pipeline Progress as of 2Q2023

	Targets/Program ¹	Indication	Enablement	Lead-Op	DC Enabling	IND Enabling	Clinical Entry
ONCOLOGY	NRF2 (inhibitor)	NRF2 dependent cancers					•
	STAT3 (inhibitor)	NSCLC, ALCL					
	Kinase (PPI inhibitor)	Mutated / amplified cancers					
	TF (degrader)	mCRPC					
	Driver oncogene (inhibitor)	Breast cancer					
	Restricted E3 (degrader)	E3 expressing cancers					
	TF (inhibitor)	Melanoma					
NMMUNOLOGY	STAT3 (inhibitor)	PSA, PSO, IBD					
	NRF2 (activator)	IBD					
	Kinase (inhibitor)	Psoriasis, IBD					
	TF (inhibitor)	Alopecia and vitiligo					
	Dual TF (inhibitor)	TH-17/TH-1 autoimmune					
	Adapter (inhibitor)	Most autoimmune diseases					

¹Multiple Roche-partnered programs in different stages of development; milestone payments can be expected per agreement

Targeting Traditionally Undruggable Transcription Factor NRF2 Enables Two Distinct MOAs to Address Oncology and Immunology Diseases

ONCOLOGY: NRF2 inhibitor

- Increase KEAP1-directed proteasomal degradation of NRF2
- // Constitutive activation of NRF2 function enriched in multiple solid tumors (lung sq/ad, esophageal sq/ad, head & neck, bladder cancer)
- Potential to broaden the patient population further (pan-cancer approach) in combination with SOC chemotherapy

Upcoming milestone: VVD-037 expected to enter the clinic by end of 2023

IMMUNOLOGY: NRF2 activator

- // Decrease KEAP1-directed proteasomal degradation and drive NRF2 accumulation
- Initial indication IBD where pre-clinical evidence demonstrates impact on all three pathological domain levels (cytoprotective/tissue preservation, leukocyte trafficking and inflammatory mediator production)
- Potential for other inflammatory diseases where oxidative damage, insufficient stress resistance and chronic inflammation contribute to the underlying pathophysiology (e.g., COPD, NASH)

Upcoming milestone: Potential IND by end 2024

STAT3 is Traditionally Undruggable Transcription Factor That Plays Key Roles in Multiple Oncology & Immunology Diseases

STAT3

BAYER

Utilizing same mechanism/inhibitor in two different disease areas offers potential to address multiple patient populations

ONCOLOGY

- Prevents STAT3 DNA binding and blocks downstream gene transcription
- Addresses primary checkpoint therapy resistance mechanism in genetically defined patient population (LKB1 mutant lung adenocarcinoma)
- Additional opportunity in T-cell lymphomas where STAT3 GOF mutation and/or high-pSTAT3 levels supports STAT3 dependence

Upcoming milestone: VVD-850 potential IND by end of 2023

IMMUNOLOGY

- Blockade of STAT3 DNA binding prevents both IL-6 cytokine family and IL-23 signaling for inhibition of TH17 cell function with novel potential to simultaneously increase Treg frequency
- Central role in multiple pathogenic cytokine signaling pathways hence potential to treat wide spectrum of human autoimmune diseases
- Initial entry in psoriasis & psoriatic arthritis followed by IBD

Upcoming milestone: Potential IND by end of 2024

Key Messages Today

- // While hundreds of proteins are known to be drivers of diseases, just ~10% can be drugged by current therapies
- // Chemoproteomics technologies can be used to selectively target and bind to yet unaccessible proteins, thereby removing today's boundaries of druggability
- // Vividion has a world leading industrial scale chemoproteomics platform based on a unique covalent custom build library that can identify potent and selective drugs in innovative and efficient way thereby unlocking the full potential of small molecule therapies
- # Bayer's strength in small molecules enables significant synergies and ability to leverage Vividion's platform
- // Vividion is advancing an attractive pipeline in Oncology and Immunology with first program to enter the clinic in 2023

Driving Leadership in Focus Areas of Oncology

Dominik Ruettinger

Key Messages Today

- // Our Oncology R&D strategy is based on precision drug development which enables fast identification of the most promising targets and commercially viable programs
- // We focus on expanding the druggable target pool, developing "kinder medicines", and addressing resistance
- // We are rapidly building an early pipeline in precision molecular oncology and next gen immuno-oncology
- // Targeted radiotherapies (TRT) provide another highly attractive opportunity in oncology - we have a wealth of expertise and experience

Oncology will Remain a Major Segment of the Pharma Market and we have a Strong Foundation to Build on Oncology opportunity

MARKET ATTRACTIVENESS

BAYER'S KEY STRENGTHS

High unmet need

- // Growing health burden, with cancer being the second
- // 30M new cases annually expected by 2040

One of the largest and fastest growing segments

// 2021-28 CAGR of 12%, expected to reach

Disruptive innovation in Oncology

Access to "undruggable" targets, new biomarker

BAYER Focus Where External Opportunity Meets Internal Strength

SCIENTIFIC FOCUS: PRECISION DRUG DEVELOPMENT

(PROJECTED) UNMET NEED

Targeted Radionuclide Therapies (TRT)

Precision Molecular Oncology (PMO)

Next Generation Immuno-Oncology (IO)

Lung Cancer (NSCLC)

Other Tumors with high unmet need

Patient number

BAYER E R

A Rapidly Expanding, Changing Patient Population

Patients are younger, diagnosed earlier, increasingly treatment resistant

Source: Nat Rev Clin Onc 2022;19:656 Nat Med 2023;29:1113 Cancer Research UK, https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence, accessed June 2023

We aim to Meet the Needs of Cancer Patients with Precision Drug Development

Identifying high impact and commercially viable programs earlier

Fit for purpose modality

Right Target

8

(+) vividion

Increase productivity & success rate of delivering Precision **Medicines that** patients need

Driven by value & differentiation

Leverage Bayer strengths in small molecules, biologics and TRT

Considering elements such as FIC/BIC, pricing power, unmet need & competitive intensity

Oncology – Pipeline Update¹ (as of Jun 16, 2023)

Rapidly building a balanced portfolio with 3 new clinical entries in 2023

Candidate medication	Indication	Modality	Compound Origin	Phase 0 ²	Phase I	Phase II	Phase III
Darolutamide (AR Inhibitor)	Prostate Cancer (mHSPC) (ARANOTE)		Orion				
	Adjuvant Prostate Cancer (DASL-HiCaP) ³	" **•					
	Prostate Cancer with Biochemical Recurrence after Curative Radiotherapy (ARASTEP)						
Copanlisib (PI3K Inhibitor)	Non-Hodgkin Lymphoma (CHRONOS-4)	" Å	Bayer				
Regorafenib (combi Nivolumab) (BAY 734506)	Solid tumors (recurrent or metastatic)	*	Bayer				
mEGFR/HER2 Inhibitor (BAY 2927088)	Advanced Non-small Cell Lung Cancer with EGFR Mutation and/or HER2 Mutation	Å	Bayer/Broad Institute			·	
DGKzeta Inhibitor (BAY 2965501)	Advanced solid tumors	" Å.	Bayer/DKFZ			•	
CCR8 Ab (BAY 3375968)	Advanced solid tumors	6 33	Bayer			Facult	
Elimusertib (ATR Inhibitor) (BAY 1895344)	Advanced solid tumors, Non-Hodgkin's Lymphoma, Mantle Cell Lymphoma	Å	Bayer			Focus today	
AhR Inhibitor (BAY 2416964)	Advanced solid tumors	*	Bayer/DKFZ			toddy	
DGKalpha Inh (BAY 2862789)	Cancer	" **	Bayer/DKFZ				
PSMA TAC (BAY 3546828)	Advanced Prostate Cancer	×	Lantheus (prev. Progenics)				
PSMA SMOL TAC (BAY 3563254)	Advanced Prostate Cancer	X	Noria Therapeutics/PSMA Therapeutics				
VVD NRF2 Inh (BAY 3605349)	Cancer	*	Vividion				
VVD STAT3 Inh (BAY 3630914)	Cancer	*	Vividion				

አ Protein Therapeutics 🧤 Cell Therapy 🏮 Contrast Agent 🛛 🎽 Genetic Medicine 🛞 Radiotherapy 🙏 Small Molecule

¹ Bayer and partner sponsored + 3rd party label enabling studies with first patient first visit ² Pre-clinical selected assets on path to IND ³ Co-operative group trial led by Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP)

mEGFR/HER2i (BAY 2927088): Targeting Underserved NSCLC Mutations

Covalent and potent molecule with high selectivity for mutants over wild-type EGF receptor

PHASE

UNMET NEED

- # Exon 20 insertion (ex20ins) mutations in EGFR and HER2 in NSCLC are associated with poor patient prognosis and resistance to first- and secondgeneration TKIs
- // New therapies are also needed to overcome secondary resistance mutations (eg EGFR C797X) to TKI therapy as well as toxicity from wtEGFRi
- // Limited efficacy and tolerability of recently approved treatments for EGFR exon20ins

PROFILE & MODE OF ACTION

- Ø Oral, reversible, potent TKI targeting EGFR and HER2 driver mutations, including ex20ins and EGFR C797X acquired resistance mutations
- # High selectivity for mutant forms vs. wild-type EGFR

ADDRESSABLE PATIEN	IT POPULATION	ŔŶĨ
Indication	Patients	
Advanced Non-small Cell Lung Cancer with EGFR mutations or HER2 mutations 1L and 2L	1L - ~20K patients 2L ~9K patients US, EU5 & Japan	
ASSET POTENTIAL		G
Indication	Asset Potential	
Advanced Non-small Cell Lung Cancer with EGFR mutations or HER2 mutation		
●○○ <€500m ●●○)€500m-€1bn ●●●>	€1bn
CURRENT STATUS + N	EXT MILESTONES	
FPFV October 2021, ongoing ex	pansion cohorts to compl	ete in 202

mEGFR/HER2i (BAY 2927088): Key Preclinical Data

Indicates potential for high clinical activity with reduced EGFR-mediated toxicities

PHASE

BAYER

PRECLINICAL DATA

- # Strong activity and selectivity for mutants vs. wild-type EGFR
- Ongoing FiH trial in patients with advanced NSCLC harboring specific EGFR or HER2 mutations

- # BAY 2927088 is highly potent in EGFR/HER2 exon20ins and EGFR C797S in vitro and in vivo
- // BAY 2927088 is less potent on EGFR wild-type: Treatment at efficacious dose does not affect wild-type EGFR activity in murine skin – in contrast to competitors

DGKa/z (BAY 2965501 / BAY 2862789): Inhibiting Diacylglycerol Kinases to Overcome Immunosuppression

Highly selective DGK inhibitor for cancer immunotherapy with first-in-class potential

UNMET NEED

- Most cancer patients do not derive clinical long-term benefit from immune checkpoint inhibitors (ICIs) due to primary or acquired resistance.
- // Multi-indication asset for immune sensitive tumors and potential to address immune checkpoint inhibitors resistance

PROFILE & MODE OF ACTION

- // Modality: SMOL
- Ø DGK inhibition can overcome an immuno-suppressive tumor environment with a differentiated mode of action: enhancement of suboptimal T cell priming against low-affinity tumor antigens and (re-) activation of silenced T-cells
- // The inhibition of DGKz and DGKa with 2 highly selective NMEs represents a First in Class and Best in Class multi-indication potential in immunooncology with monotherapy and combination options

ADDRESSABLE PATIEN		þ		
Indication	Patients			
Advanced Non-small Cell Lung Cancer, PD-1 Relapsed/Refractory	~120k patients US, EU5 & Japan	_		
ASSET POTENTIAL	Ś	հ		
Indication	Asset Potential			
NSCLC, PD-1 R/R	•••	_		
●○○ <€500m ●●()€500m–€1bn ●●● >€1bn			
CURRENT STATUS + NEXT MILESTONES				
FPFV November 2022 (DGKz). Ant escalation mid of 2024 FPFV expected Q3 2023 (DGKa). A				

escalation H2 2024

DGKz (BAY 2965501): Key Preclinical Data

Highly selective DGK inhibitor for cancer immunotherapy with first-in-class potential

PHASE

Source: Offringa, Kirchhoff et al., AACR 2023

CCR8 (BAY 3375968): Reactivating the Immune Response Against Tumors

Depleting suppressive Tregs through CCR8 may overcome checkpoint inhibition resistance

UNMET NEED

- // Most cancer patients do not derive clinical long-term benefit from immune checkpoint inhibitors (ICIs) due to primary or acquired resistance.
- // Regulatory T cells (Tregs) are one of the key resistance mechanisms hampering the efficacy of ICIs across many tumor types.

MODE OF ACTION

- # Our CCR8 (chemokine receptor 8) antibody is designed to deplete tumorresident, activated regulatory T cells resulting in a (re-) activation of the anti-tumor immune response.
- # BAY 3375968 is expected to demonstrate a better efficacy and side effect profile than other non-CCR8 Treg-targeting agents due to specific depletion of tumor-infiltrating CCR8+ Tregs without impacting effector cells and peripheral Tregs.

ADDRESSABLE PATIENT POPULATION

Indication	Patients				
Advanced solid tumors in combination with ICI - NSCLC,TNBC, Melanoma, HNSCC	>200K patients US, EU5 & Japan				
ASSET POTENTIAL		(D)			
Indication	Asset Potential				
Advanced solid tumors in combination with ICI - NSCLC,TNBC, Melanoma, HNSCC ●○○○ <€500m	●●● ●●●● ●●●●● ●●●●●	>€1bn			
CURRENT STATUS + NEXT MILESTONES					
		10.0004			

FPFV October 2022. Anticipated completion of dose escalation H2 2024

CCR8 Antibody (BAY 3375968): Key Preclinical Data

Depleting suppressive Tregs through CCR8 may overcome checkpoint inhibition resistance

PRECLINICAL DATA

An anti-mouse CCR8 surrogate antibody (Ab) showed strong in *vivo* response in monotherapy which was further improved by combination with a checkpoint inhibitor anti-PD-L1 agent

Targeted Radiotherapies (TRT) Offers a Specific Mode of Action which Addresses Treatment Resistance in Areas of High Unmet Need

SPECIFIC MOA OF TRT CAN UNLOCK A BROAD OPPORTUNITY SPACE

MARKET EXPECTED TO GROW TO \$20BN BY 2030

Source: Nuclear Medicine Report & Directory 2021 and 2022 (Part 1, 2, 3) - MEDraysintell; TRT Market Sizing for Compass

We have the Right Expertise, Tools & Manufacturing Capabilities in Place to Produce Best-in-Class TRT Precision Medicines

Strong scientific experience & expertise as well as commercial capability

Through multiple iterations, we now have the toolkit to produce best-inclass medicines augmented through smart deals: Ratio & Bicycle

Differentiated & fit for purpose assets for high value patient populations of high unmet need

// Launched in 2013 for mCRPC

Several Lifecycle management activities ongoing

/2Pre-clinicalP0 & P1programsprograms

Highly differentiated mechanism of action achieved by synergistic design of components

Rapid expansion of programs expected through internal discovery and external deals

Key Messages Today

- // Our Oncology R&D strategy is based on precision drug development which enables fast identification of the most promising targets and commercially viable programs
- // We focus on expanding the druggable target pool, developing "kinder medicines", and addressing resistance
- // We are rapidly building an early pipeline in precision molecular oncology and next gen immuno-oncology
- // Targeted radiotherapies (TRT) provide another highly attractive opportunity in oncology - we have a wealth of expertise and experience

Shaping new Treatment Paradigms in Cardiovascular Diseases

Maria Borentain

Key Messages Today

- // CV diseases represent a significant health burden and #1 leading cause of death with still high unmet medical need
- // Our focus within cardiovascular include selected areas within nephrology and acute care
- // Our R&D approach is based on three value pools with an increasing focus in precision medicine: targeting rare indications, subpopulations, and disruption in large indications
- # Building on our strong heritage and expertise we will continue to develop innovative therapies to address the needs of patients with cardiovascular diseases

Bayer to Continue Leadership Position in CV

MARKET ATTRACTIVENESS

High unmet medical needs

- // Leading cause of death
- // Increasing disease burden and rising comorbidities
- // Huge impact on healthcare systems and workforce

Emerging trends

- // Novel drug modalities offer new opportunities
- // Advanced tools like multi-omics enable precision medicine
- // Digital solutions enable early diagnosis and targeted treatment

Attractive growth market

- # Worldwide market value of €65bn (2022) continuing to grow at a steady pace
- // Pharma industry underinvests in CV R&D in relation to disease burden
- # Huge opportunity in precision CV due to scientific progress

Cardiovascular, Nephrology & Acute Care

BAYER'S KEY STRENGTHS

Record of success

- // Industry leader in cardiovascular
- // Expertise along the entire value chain
- // Established global commercial footprint

Exciting recent and near-term launches

- // Late-stage pipeline asset asundexian: Innovative, once-daily, oral small molecule FXIa inhibitor
- Successful launch of Kerendia with LCM potential

Strategic focus on precision CV

- # Expertise available to address and internalize scientific progress
- # External collaborations & platform companies further enhance our transition into precision CV

BAYER E R

CV: A Success Story set to Continue

Recent successes fuel our ambition for the future to help even more patients in need

¹ Peak = Peak Sales Potential; ² Late-stage pipeline asset

We Focus on Three Value Pools to Build on our Leadership in CV

Gradual shift from large indications to high value subpopulations and rare indications

PATIENT FOCUS

DISEASE AREAS

SELECTED INDICATIONS (INDICATIVE)

Cardiovascular+ – Pipeline Update ¹ (as of Jun 16, 2023)

Candidate medication	Indication	Modality	Compound Origin	Phase 0 ²	Phase I	Phase II	Phase III
Finerenone (MR Antagonist)	Heart Failure (HFmr/pEF) (FINEARTS-HF) Non-diabetic CKD (FIND-CKD)	" Å	Bayer				
Vericiguat (sGC Stimulator)	Heart Failure (HFrEF) (VICTOR ³)	<u>.</u>	Bayer				
Asundexian (FXIa Inhibitor) (BAY 2433334)	Stroke Prevention in Atrial Fibrillation (OCEANIC-AF) 2° Stroke Prevention (OCEANIC-STROKE) Major Adverse Cardiac Events Prevention (PACIFIC-AMI)		Bayer				
Congestive Heart Failure rAAV Gene Therapy (AB-1002 aka NAN-101)	Congestive Heart Failure	ğ	AskBio				
sGC Activator Oral (BAY 3283142)	Chronic Kidney Disease (CKD)	Å	Bayer				
Anti-a2AP (BAY 3018250)	Acute Ischemic Stroke; Pulmonary Embolism	b 33	Bayer				
sGC Activator Inhale (BAY 1211163)	Acute Respiratory Distress Syndrome	,	Bayer				
SEMA 3a (BAY 3401016)	Alport Syndrome	53	Bayer/Evotec				
Anti-coagulant (BAY 3389934)	Anti-coagulation	Å	Bayer				

አ Protein Therapeutics 🦉 Cell Therapy 🛱 Contrast Agent 🛛 👹 Genetic Medicine 🕅 Radiotherapy 🧘 Small Molecule

Focus today

Cardiovascular +: Including Precision Cardiovascular, Nephrology & Acute Care

¹ Bayer and partner sponsored + 3rd party label enabling studies with first patient first visit ² Pre-clinical selected assets on path to IND ³ Conducted by Merck & Co

BAYER

Finerenone is a Potent, Highly Selective Non-Steroidal MRA with Differentiated Profile

DIFFERENT BINDING MODES BETWEEN THE STEROIDAL MRAS AND THE NONSTEROIDAL FINERENONE¹

// Finerenone and steroidal mineralocorticoid receptor antagonists differ in their molecular receptor binding mode resulting in distinct effects on gene expression

PRECLINICAL DATA: RECEPTOR PROFILE, DRUG METABOLISM AND TISSUE DISTRIBUTION OF FINERENONE²

	Spironolactone	Eplerenone	Finerenone
MRA Class	Steroidal	Steroidal	Non-steroidal
Potency	High	Low	High
Selectivity	Low	Medium	High
Metabolites	Multiple, active	No active	No active
Tissue distribution ³	Kidney>>heart (>6-fold)	Kidney>heart (~3-fold)	Balanced (1:1)

- // No sexual side effects including gynecomastia
- // Balanced kidney safety
- // Low incidence of hyperkalaemia-related adverse events with clinical impact and permanent treatment discontinuation⁴

Source: ¹Kolkhof P, Nowack C, Eitner F. Curr Opin Nephrol Hypertens. 2015;24:417-424. ²Modified from: Kolkhof B, Borden SA. Mol Cell Endocrinol. 2012;350:310-317. ³ Determined in rodents. ⁴ Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, Kolkhof P, Nowack C, Gebel M, Ruilope LM, Bakris GL; FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022 Feb 10; 43(6):474-484. doi: 10.1093/eurheartj/ehab777. Erratum in: Eur Heart J. 2022 May 21;43(20):1989.

PHASE

≡

Large Integrated Program to Investigate Finerenone as a Foundational Treatment for Chronic Kidney Disease (CKD)

Strong launch dynamics and the option to broaden the use in CKD

STUDY DATA

Finerenone effective in reducing cardiovascular and renal events in patients with T2D and CKD

Key results of the FIDELITY pooled analysis¹:

LA

Composite CV Outcome

Composite Kidney Outcome

HR = 0.77 (95% CI 0.67-0.88), *p*=0.0002 NNT 59²

Relative risk reduction compared to placebo

-23%

ONGOING PHASE III STUDIES

Potential to Broaden the Use of Finerenone in CKD

Non-diabetic CKD

- # FIND-CKD: randomized, double-blind, placebocontrolled, parallel-group, multicenter phase III trial in CKD patients without diabetes
- // Phase III data expected in 2026

- # FINE-ONE: randomized, double blind, placebocontrolled, parallel-group, multicenter phase III trial in CKD patients with type 1 diabetes (T1D)
- // Phase III data expected in 2025

Source: Agarwal, R. et al., data presented at ESC 2021 ¹ including > 13,000 randomized pts; ²at 36 months /// Bayer Pharmaceuticals R&D Event /// Boston /// June 28, 2023

Potential to Expand the Indication of Finerenone in Heart Failure

Phase 3 FINEARTS-HF with mildly reduced / preserved EF (HFmrEF/HFpEF) is ongoing

UNMET MEDICAL NEED Clinical data suggest benefit of finerenone in heart failure Cumulative incidence (%)² 8 // HF is the fastest-growing global CV disease Phase 3 HR = 0.68with approximately ~60m HF patients **FIGARO-**Placebo: 173/3666 (4.7%) (95% Cl, 0.54-0.86), p=0.0013 6 worldwide DKD: Reduced risk of // About 50% of HF patients have HF with **HF-related** Finerenone: 120/3686 (3.3%) LVEF \geq 40%. They suffer from a high CV 2 mortality rate (42% within 5y of diagnosis) death or first HHF¹ despite SoC 12 18 24 30 36 42 48 0 6 Months since randomisation // Renal dysfunction and HFmrEF/pEF frequently coexist, due to shared comorbidities and factors impacting CV hospitalisation⁴ CV death⁴ Phase 2 macrovascular and microvascular circulation **ARTS-HF³**: Cumulative probability of CV hospitalisation (%) 0 2 01 12 02 05 0 20 Cumulative probability of CV death (%) 0 C P 0 0 ę Eplerenone 30 Eplerenone Reduced Finerenone 10→20 mg Finerenone 10→20 mg risk of CV hospitalization 15 **UPCOMING DEVELOPMENT MILESTONES** and CV death vs eplerenone 5 // Phase 3 data expected in 2024 Dav Day Dav Dav Follow Dav Dav Dav Dav

Follow

-up⁵

30

60

90

-up⁵

90

30

60

¹ First hospitalisation for HF defined as first event after randomisation; ² Source: cumulative incidence calculated by Aalen–Johansen estimator using deaths due to other causes as competing risk. Filippatos G, et al. Circulation 2022;145:437–447 ³ Both phase 2a study ARTS and phase 2b study ARTS-HF were in HFrEF, ⁴ Source: Kolkhof P, et al. Handb Exp Pharmacol 2017;243:271–305; 2. Filippatos G, et al. Eur Heart J 2016;37:2105–2114; ⁵ 30-day period after cessation of study drug

PHASE \equiv

BAYER

80

FXI(a) Inhibitors Are a Promising And Distinct New Class of Drugs For Thrombosis Prevention

Separating thrombosis protection from haemostasis via selective modulation of the coagulation system

Mode of Action¹⁻³

// Paradigm shift in thrombosis prevention, with the potential to uncouple efficacy from bleeding risk

Patients with genetically higher FXI levels show increased risk of ischemic stroke⁴

FXa, activated Factor X; FXI(a), activated Factor XI, FXII(a), activated Factor XII; TF, tissue factor

Source: ¹ Piccini JP et al. Lancet 2022;399:1383–1390. ² Fredenburgh JC, Weitz JI. Hamostaseologie 2021;41:104–110. ³ Gailani D et al. J Thromb Haemost 2015;13:1383–1395. ⁴ Gill D et al. Stroke 2018;49:2761–2763

Phase III Decision for Asundexian Strongly Backed by Results From PACIFIC Phase II Program

Innovative, once-daily, oral small molecule FXIa inhibitor

Study Data: PACIFIC-AF

- PACIFIC
- **Bleeding:** Asundexian at near maximum FXIa inhibition showed lower rates of observed bleeding versus apixaban in PACIFIC-AF
- Efficacy: too few events to draw conclusion

Study Data: PACIFIC-STROKE

// **Bleeding:** no significant increase vs. Placebo on top of Antiplatelet/Dual Antiplatelet

Recurrent stroke and TIA in patients with any extra-/intracranial atherosclerosis²

Source: ¹ Piccini JP, Caso V, Connolly SJ, Fox KAA, Oldgren J, Jones WS, Gorog DA, Durdil V, Viethen T, Neumann C, Mundl H, Patel MR; PACIFIC-AF Investigators. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): a multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet. 2022 Apr 9;399(10333):1383-1390. doi: 10.1016/S0140-6736(22)00456-1. Epub 2022 Apr 3. PMID: 35385695. Data presented at ACC 2022 and ESC 2022. ² Data presented at ESC in August-2022 in Barcelona, and ESOC May-2023 in Munich (data on file)

consistent safety at near maximum FXIa inhibition¹

BAYER E R

OCEANIC Phase III Program

Study program well on track

141 4 1 1 611 111 41

The OCEANIC program consists of two Phase III studies

Patients with atrial fibrillation			
Active comparator-controlled trial (apixaban)			
# of patients	~18,000 patients		
Minimum treatment period	9 months		
Primary efficacy endpoint:	stroke or systemic embolism		
Primary safety endpoint:	ISTH major bleeding		
First patient first visit:	Q4 2022		
Data expected:	H2 2025		

OCEANIC-STROKE

Patients with non-cardioembolic ischemic stroke

Placebo-controlled trial			
# of patients	~9,300 patients		
Minimum treatment period	3 months		
Primary efficacy endpoint:	ischemic stroke		
Primary safety endpoint:	ISTH major bleeding		
First patient first visit:	Q1 2023		
Data expected:	H2 2025		

Started in Dec 2022 (~27,000 patients, across 40 countries) First topline data expected H2 / 2025

The NO/sGC/cGMP Pathway is a Key Modulator of Patho-Mechanisms in Cardiovascular and Renal Function Bayer has a strong 20+ year legacy in sGC

PHASE

UNMET NEED

- // Impairment of the NO/sGC/cGMP signaling can cause cardiovascular, cardiopulmonary and cardiorenal diseases
- // Oxidative stress is a hallmark of CKD/DKD and there is a need to reduce progression to end-stage renal disease (ESRD) and CV mortality
- // Inactivation of sGC disrupts the local regulation of perfusion, resulting in ischemia, the main cause of end-organ damage in diabetes patients

PROFILE & MODE OF ACTION

- // Oxidative stress results in heme-oxygenation and hemefree sGC (soluble Guanylyl Cyclase)
- // Oxidized/ heme free sGC limits the activity of Nitric Oxide (NO) and therefore impairs cGMP signaling
- // Re-activation of sGC is expected to restore regulation of perfusion in affected organs
- // sGC activators specifically
 - # Binds and activates oxidized/ heme free sGC
 - // Independent from and additive to endogenous NO

Source: Stasch & Hobbs, Handb Exptl Pharmacol 2009; Follmann et al., Angew. Chem. Int. Ed. 2013;52:9442-9462 Sandner, Biol Chem. 2018 Jun 27;399(7):679-690; Sandner et al., Handb Exptl Pharmacol 2021

sGC Activator Front-Runner Runcaciguat Confirmed Strong UACR Reduction of the Drug Class

- // In various experimental models, soluble guanylyl cyclase (sGC) activators¹
 - // Lowered blood pressure
 - // Decreased proteinuria
 - // Improved renal outcomes
- // These sGC activators did so in a dose-dependent manner, in diabetic, as well non-diabetic, CKD models

Renal creatinine clearance

Source: ¹ Hahn MG et al. J Med Chemistry 2021;64:5323–5344; ²Ron T. Gansevoort et al. Oral presentation ERA 2023

Phase 2 CONCORD Study²:

Runcaciguat demonstrated beneficial effects in patients with CKD & advanced CVD

- # A reduction in UACR was observed in all strata and significant UACR reductions were seen in patients with diabetes on top of RAASi and on top of SGLT2 inhibitors
- // The small reduction in SBP with runcaciguat suggests that improvement in UACR is not driven by changes in BP
- A small reduction in eGFR was observed with runcaciguat

Runcaciguat was well tolerated

Data show estimated mean percent change and 95% confidence interval (ANCOVA) for the PPS.

85

BAYER

sGC Activator Oral (BAY 3283142)

Preclinical pharmacodynamic data confirm comparable profiles of BAY3283142 and runcaciguat in CKD

PHASE

- Preclinical model shows BAY328 is highly effective in CKD prevention (decrease in proteinuria and glomerulopathy)
- BAY3283142 pharmacokinetics with favorable Peak/Trough profile allows for once daily dosing

CKD is a progressive condition that affects >10% of the general population worldwide, amounting to ~700 million individuals¹ **Asset Potential** ● ○ ○ <€500m ● ● ○ €500m –€1bn ● ● ● >€1bn **Upcoming Development Milestones** Initiation of Phase 2 program

ĨŇ

Anti-a2AP (BAY 3018250)

Timely vessel opening represents a high unmet medical need in acute ischemic stroke (AIS) and pulmonary embolism, areas without innovation for more than 2 decades

UNMET NEED

- Current thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates
- Surviving patients often experience significant sustained disability
- The clinical and economic burden of AIS is considered high and still rising
 - # >2 million patients hospitalized with AIS in US, EU4 and JP
 - Average healthcare cost of stroke per person estimated at ~US\$140k in US
- Incidence of PE is still rising and comes with high mortality as well as considerable economic burden
 - >500k patients hospitalized with AIS US, EU4 and JP, expected to increase to 700K by 2030
 - In EU and US deaths are expected to be around 600k by 2030. Average healthcare costs are US\$12-20k in the US

PROFILE & MODE OF ACTION

// Fibrinolysis

Active lysis of acute embolic or thrombotic clots without increasing risk of bleeding by blocking the endogenous Plasmin inhibitor a2Ap

tPA

Potential for significant differentiation vs SoC with a profile that allows use in a broad eligible population based on efficacy coupled with no increase in bleeding profile

PHASE

BAYER

Anti-a2AP (BAY 3018250)

Potential to be the first in class, effective thrombolytic with no increase in bleeding risk and a wider treatment window

PRECLINICAL DATA

In animal models, BAY 3018250 demonstrated to be an effective thrombolytic with no increased bleeding risk.

- 1. Accelerates clot dissolution on a PE model
- Increased clot dissolution in a venous thromboembolism model 2.
- 3. In vivo bleeding experiments do not indicate an increased risk of bleeding

Sema3A mAB¹ for Alport patients

Aiming to delay disease progression and onset of end-stage renal disease

UNMET NEED

- # Rare genetic kidney disease with progressive loss of filtration capacity, leading to end stage renal disease and dialysis early with the need for kidney transplant in 4th/5th decade
- // Progressive hearing-loss (frequent)
- // Variable vision impairment (less frequent)

PROFILE & MODE OF ACTION

- # Semaphorin-3A (Sema3A) is an extracellular guidance protein and a well-known regulator of the actin cytoskeleton
- # Alterations of the actin cytoskeleton, particularly of podocytes, are a key pathophysiological feature of Alport Syndrome
- Sema3A is upregulated in injured human kidneys and implicated in the development and progression of acute and chronic kidney diseases
- # Sema3A antibody blocks Sema3A activity

- # Start of Phase 1 with first dosing of healthy subjects in June 2023
- // Study data expected in 2024

¹ Compound Origin: Bayer / Evotec

BAYER E R

Sema3A mAB¹ for Alport patients

Evidence of Sema3A in kidney disease

First to market potential in Alport syndrome – a rare genetic disease

PHASE

PRECLINICAL DATA

Sema3A is upregulated in injured mouse kidneys

Sema3A induces detrimental changes in primary human kidney cell morphology

Therapeutic efficacy of Sema3A inhibition in Alport mouse model

¹Compound Origin: Bayer / Evotec

Key Messages Today

- // CV diseases represent a significant health burden and #1 leading cause of death with still high unmet medical need
- // Our focus within cardiovascular include selected areas within nephrology and acute care
- // Our R&D approach is based on three value pools with an increasing focus in precision medicine: targeting rare indications, subpopulations, and disruption in large indications
- # Building on our strong heritage and expertise we will continue to develop innovative therapies to address the needs of patients with cardiovascular diseases

BlueRock Therapeutics: Leading the way in PSC Therapies

Seth Ettenberg

Key Messages Today

- // A new frontier of cellular medicine was launched with the commercialization of cell therapies for hematological cancers
- // Pluripotent stem cell (PSC) derived therapies with the potential to broaden the impact of cellular medicine beyond cancer are the next frontier.
- // BlueRock is one of the leaders of this next field, with end-to-end capabilities for delivering innovative PSC-based therapies
- // Near-term OpCT-001 IND filing for the treatment of primary photoreceptor diseases (e.g., retinitis pigmentosa, cone/rod dystrophies)
- // Advancing bemdaneprocel for Parkinson's Disease into phase 2 clinical development based on positive readout of our phase 1 study
- # Bayer and BlueRock are working to change the future of medicines by replacing the cells that are lost to diseases

The Cell Therapy Market Is Expected to Reach >USD25bn by 2026

HISTORY OF FDA CELL THERAPY APPROVALS¹

- # First cell therapy approved in 2017, majority of currently approved cell therapies still CAR-T based for hematological malignancies
- // Cell therapies expected to remain one of the fastest growing therapeutic options in the pharmaceutical sector
- // Key considerations for successful commercialization:
 - // streamlining supply chain and administration logistics
 - // patient and caregiver support
 - innovative payment solutions

NUMBER OF CELL THERAPIES IN CLINICAL DEVELOPMENT TODAY²

GLOBAL SALES OF CELL THERAPIES³ (USDbn)

Cord Blood approvals not included in approved therapies

Sources: 1 FDA Approved Cellular and Gene Therapy Products 2 Pharma Intelligence, Informa 3 EvaluatePharma, Oct. 2022 for pipeline and sales/ forecast

BlueRock Therapeutics is a Leader in PSC Biology, Bringing Therapies From Bench to the Clinic

MISSION: To discover and develop new cell therapies that change the way disease is treated and improve patients' lives

FOUNDING SCIENCE

Lorenz Studer, MD MSK Cancer Center

Gordon Keller, PhD University Health Network

ler, PhD Bruce Blazar, MD ealth University of Minnesota

FOUR SITES ACROSS USA, Canada and Germany

Cambridge (HQ) // Immunology Research // Clinical & Regulatory // Pilot cGMP facility

New York // Neurology Research // Platform technology

Toronto // Cardiac research

- Device and formulations
- // Pilot cGMP facility

Berlin

Support for clinical programs and coordination of regulatory processes in Europe

Focus on four disease areas (Neurology, Cardiology, Immunology, Ophthalmology)

AUTOLOGOUS VERSUS ALLOGENEIC CELL THERAPY

Cell therapy is the administration of cells into a patient that are derived from the patient (autologous) or a healthy donor (allogeneic)

SOURCES FOR CELL THERAPY

Adult Harvestable Cells:

Harvested from adult donor

access and cell expansion Examples include:

body

// Isolated T-cells for CAR-T therapy

// Can differentiate into any cell type in the

Allogeneic PSCs with unlimited potential for

Limited available quantities, difficulty in

- // MSCs
- // HSCs

Pluripotent Stem Cells (PSC):

expansion and scalability

ADMINISTRATION

Final cell product can be administered in different ways, depending on the therapeutic approach and indication

```
Systemic delivery
Examples include:
// Intravenous
```


Direct delivery to target area:

Examples include:

- // Intracranial
- // Spinal cord
- // Heart
- Eye

Source: ¹ El-Kadiry 2021. Frontiers in Medicine, p.2340.

Pluripotent Stem Cells Have the Potential to Restore Lost Cellular Function and Introduce New Functions to Address Multiple Diseases

Source: El-Kadiry 2021. Frontiers in Medicine, p.2340.

BAYER

BlueRock Has End-to-end Capabilities in PSC Technology

CORE FOUNDATIONAL REPROGRAMMING TECHNOLOGY

- // Donor material fully consented for commercial use
- // Proprietary, non-integrating, highefficiency reprogramming technology; deep analytics
- // Defined cGMP-compliant processes, including master cell banking

EXPERTISE IN BRINGING CELL THERAPY TO THE CLINIC

- // Thorough understanding and ability to differentiate cells into specified medicines at scale, reproducibly
- // Demonstrated ability to bring differentiated cells into clinical development

COMMERCIAL MANUFACTURING CAPABILITIES

- Commercial scale production of cryopreserved product
- // Technology transfer to commercial manufacturing facility in Berkeley (Bayer)

Ongoing Partnerships for Continued Advancement of PSC Therapies

Partnerships enables BlueRock to continually push the boundaries of PSC-based therapies

BAYER

BlueRock's Pipeline Addresses Areas of High-Unmet Needs

AREA	TARGET DISEASE	CELL TYPE	DISCOVERY	PRECLINICAL	IND-ENABLING	CLINICAL
<u>N</u>	Parkinson's Disease	Dopaminergic Neuron	Bemdaneprocel			
Neurology	Demyelinating Disorders	Oligodendrocyte				
Ž	Lysosomal Storage Disorders	Microglia				
logy	Primary Photoreceptor Disease	Photoreceptor Precursor Cell (PRP)	ОрСТ-001			
Ophthalmology	Early / Intermediate Dry AMD	Retinal Pigment Epithelium (RPE)				FUJ:FILM
Oph	Late Dry AMD / GA PRP + RPE					
Cardiology	Heart Failure	Cardiomyocyte				
lmmunology & Oncology	Oncology	Myeloid				
a Ond	Autoimmune Disease	Regulatory T Cell				

Focus today

BAYER E R

Primary Photoreceptor Disease is a Group of IRDs That Lead to Irreversible Vision Loss in Children and Adults

Primary Photoreceptor Diseases (PPD) Background

- # A group of inherited retinal disorders (IRDs) that specifically affect the function / structure of the photoreceptor cells (cone, rods) in the retina
- // Includes Retinitis Pigmentosa, cone and cone-rod dystrophies; ~65% of all IRDs

GENETIC CAUSES OF INHERITED RETINAL DISORDERS (IRDs)

¹ US, EU4 + UK Source: Rattner, A. et. al. Annu. Rev. Genet. 2009, Kantar Health, 2020 and Luxturna PI ⁴ BR Analysis

CURRENT TREATMENTS AND UNMET NEED

- # Over 200k¹ patients are currently affected with primary photoreceptor disease
- // There are no specific treatment options available, management is focused on supporting patients as vision loss progresses (guide dogs, visual aids)
- Most therapies in development only target specific genetic mutations

CELL THERAPY APPROACH

- # BlueRock's cell therapy can potentially treat an entire class of diseases
- // OpCT-001 will be evaluated for patients with Retinitis Pigmentosa as well as cone and cone-rod dystrophies

BlueRock's Ophthalmology Ambition: Restoring Vision by Replacing Degenerated Tissue in the Retina with Functional Cells

ANATOMY OF THE HUMAN EYE

BAYER

Photoreceptors in the retina

- // Convert light into nerve signals
- **Rods**: responsible for vision at low light levels
- Cones: active at higher light levels, responsible for color vision

Retinal pigment epithelium (RPE)

- Single layer of cells, essential for maintaining vision
- Changes in the RPE can impair visual function and lead to retinopathy (i.e., RP, AMD, SD)

PSC DERIVED RETINAL CELL DIFFERENTIATION

Source: Yang, et al., 2021. Frontiers in pharmacology, 12, p.727870.

OpCT-001 – Cell Therapy for PRP Cell Replacement

OpCT-001 cells engraft and display characteristics of functional photoreceptors

In addition to phenotypic maturation, transplanted photoreceptors begin to show physical maturation including the formation of inner and outer segments and the trafficking of rhodopsin to outer segments

Rat model

ADDRESSABLE PATIENT POPULATION

Indication	Patients			
Primary Photoreceptor Disease	US, EU4/UK, ~200k			
ASSET POTENTIAL	ر الله الله الله الله الله الله الله الل			
Indication	Asset Potential			
Primary photoreceptor disease	•••			
●○○ <€500m ●●○ €500m–€1bn ●●● >€1bn				
STATUS AND UPCOMING DEVELOPMENT				

IND submission in the next 12 months

Parkinson's Disease is a Progressive, Neurodegenerative Condition Defined by Dopaminergic Neuron Loss and Motor Impairment

PD Motor Symptoms Caused by Loss of DA Neurons

Healthy dopamine \bigcirc Healthy **PD** Patient •• neurons (DA) in the brain make the Presynaptic Terminal neurotransmitter dopamine critical for $\textcircled{\bullet}$ (\cdot, \cdot) several brain • Dying \bigcirc • functions, including Neuron $(\cdot \cdot)$ • movement Dopamine Loss of DA cells results in less dopamine and leads to Parkinson's Disease Postsynaptic Terminal

Current Treatments and Unmet Need

- // PD is the second most common neurodegenerative
 disorder in the US
- // Limited treatment options available as patients progress
- // Medications, effective at early stages, become less and less effective with disease progression
- // Significant unmet need for longer-lasting therapies that will alter the disease trajectory

- # Bemdaneprocel is being developed as a one-time cell therapy that will provide dopaminergic neurons to the brain to restore lost dopaminergic function
- // The goal is to alter disease progression and reverse symptoms over time, so patients remain independent and live a life that is not defined by their diagnosis

Source: Song 2016. Frontiers in aging neuroscience, 8, p.65.; Kalia 2015. The Lancet. 386(9996), 896-912.; Bridi 2018. Frontiers in neuroscience, 12, p.80.

BAYER

All Patients from Phase 1 Trial have Completed 1-Year Follow-up

Memorial Sloan Kettering Cancer Center	
Weill Medi	Cornell cine UCI University of California, Irvine
Phase I Study Sum	mary
Trial Design	 Multi-center, open label, Phase I trial assessing bemdaneprocel authentic cell therapy for Parkinson's Disease
Enrollment Criteria	 Subjects with PD (male/female) Patients diagnosed ≥3 and ≤15 years ago Responsive to L-dopa, but inadequate relief of motor symptoms
Objectives	 Safety, tolerability, PET-imaging for cell survival at years 1 & 2 Preliminary efficacy (motor, non-motor) at years 1 & 2
Dosing	 Two cohorts - low and high doses Immunosuppression for 12 months following transplantation

Bemdaneprocel Surgical Procedure

Surgery Overview

- // Single burr hole per hemisphere with three tracts for cell delivery
- # Bemdaneprocel custom procedure minimizes needle passes and burr holes to decrease surgical risk and optimize coverage

Sources: ct.gov NCT04802733

Bemdaneprocel is the First PSC-derived Dopaminergic Cell Therapy with Positive Data in PD

TOPLINE PHASE 1 RESULTS

- // The study met the primary endpoint; bemdaneprocel was well tolerated with no major safety issues by all twelve patients in both the low and high dose cohorts through one year
- # Feasibility of transplantation, and evidence of transplanted cell survival and engraftment in both cohorts was demonstrated through one year.
- // Detailed phase 1 trial data from primary and secondary endpoints will be presented at the 2023 International Congress of Parkinson's Disease and Movement Disorders (MDS) taking place in Copenhagen from Aug. 27 – 31, 2023

Phase 1 Study Endpoints

Primary Endpoint:

// Safety and tolerability at 1-year post-transplant

Secondary Endpoints (1- and 2-year post transplant):

- // Evidence of cell survival F-DOPA PET
- // Changes in motor function Changes in MDS-UPDRS III
- // Changes in waking hours in "OFF" state
- // Continued safety and tolerability

Q3 2023 planned presentation of Phase 1 data in a medical meeting Phase 2 clinical study expected to begin enrolling patients in H1 2024

BlueRock is a Leader in the Development of PSC-derived Therapies

PARKINSON'S DISEASE

- // Report Ph1 results of bemdaneprocel
- // Initiate bemdaneprocel Ph 2 study
- # Advance follow-on PD program (DA02)

OPHTHALMOLOGY

- // IND filing for OpCT-001
- // Initiate FIH study

HEART FAILURE

- Ø Demonstration of PoC in large animal models
- // IND filing for cardiomyocytes

Asklepios BioPharmaceutical: Pioneering AAVbased Gene Therapies

R. Jude Samulski

Key Messages Today

// Highly attractive market:

Gene therapy market expected to grow significantly until the end of the decade

// Pioneer in AAV-based gene therapy:

Unparalleled pipeline, talent and manufacturing capabilities

// Robust therapeutic pipeline:

Balanced portfolio addressing monogenic and pathway disorders

// Scalable platform for continued growth and innovation: Building a platform enables to extend the field of application of the technology to multiple diseases

FDA January 21, 2019

We anticipate that by 2020 we will be receiving more than 200 INDs per year, building upon our total of more than 800 active cell-based or directly administered gene therapy INDs currently on file with the FDA.

And by 2025, we predict that the FDA will be approving 10 to 20 cell and gene therapy products a year based on an assessment of the current pipeline and the clinical success rates of these products [....]

We're working to expand our review group dedicated to the evaluation of these applications to keep pace with the rapid expansion in new product development. Our eventual goal is to add about 50 additional clinical reviewers to the group charged with overseeing the clinical investigation, development, and review of these products In the case of gene therapy, it's similarly a product innovation that has marked an inflection point in the development of these therapies, and a surge in new product activity. In this case, it was the advent of safe and effective vectors for the delivery of gene therapy products, such as the adoption of adeno-associated virus (AAV) vectors.

The Gene Therapy Market is Expected to Reach €17bn in 2028

Gene therapies in clinical development today¹

Gene Therapy sales [2021-2028; €bn]²

- // Majority of approved gene therapies are based on AAV vector technology
- # First AAV gene therapy approval in 2017; number of gene therapy approvals is expected to increase significantly until 2030, resulting in strong anticipated sales growth
- // Shaping of access models, policies and payer environment are crucial to sustainable success

Source: ¹ ASGCT Q1/2023 report; ² Evaluate Pharma Feb 2023 , Fx rate based on central financial 1.01US\$ = 1€

AskBio is a Pioneer in AAV-based Gene Therapy with Unparalleled Pipeline, Talent and Manufacturing Capabilities

AskBio Built Industry Leading Manufacturing Facilities and Technologies, which are Crucial to Bring Gene Therapies to Patients Gene therapy manufacturing overview

¹ neDNA is made using technology licensed from Touchlight IP Ltd; ²Technology licensed from Touchlight IP Ltd

AskBio Industry Leading Platforms

AskBio's Technology and Pipeline is a Key Innovation Engine for Bayer's CVD, Neurology and Rare Disease Ambition

Platform	Asset	1	Pre-clinical	Phase I
		Parkinson's Disease (AB-1005)		
Gene	CNS	Multiple System Atrophy (AB-1005)		
therapy platform		Huntington's Disease (AB-1001)		
(AAV ¹)	cv	Congestive Heart Failure (AB-1002)		
AskBio	Neuro-	Pompe Disease (ACTUS-101)		
	muscular	Limb Girdle Muscular Dystrophy 2i (AB-1003)		

¹ Excludes partnered programs

Balanced Portfolio Addressing Monogenic and Pathway Disorders

MONOGENIC DISORDERS

- // Mutation occurs in the DNA sequence of a single gene.
- // Most monogenic disorders are rare diseases such as Pompe disease, Huntington's disease, hemophilia and cystic fibrosis.
- // Historically the first to be targeted by gene therapy
- // Smaller patient populations

PATHWAY DISORDERS

- // Caused by mutations in several genes and can be compounded by environmental factors such as smoking or diet
- // Common examples include heart disease, cancer and type 2 diabetes
- // Require more complex therapeutic approaches than monogenic disease-targeting therapies, which are mainly gene addition (or augmentative) gene therapies
- // Larger patient populations

Midbrain Infusion of AAV2-AADC

 Dopamine Pathways
 Serotonin Pathways

- Dopaminergic neurons in the midbrain (SNc, VTA) project to multiple brain regions
- Goal of gene delivery

 restore dopamine synthesis in midbrain dopaminergic neurons

Substantia Nigra Ventral Tegmental Area Locus coeruleus

AAV2-AADC: 5 Children Subsequently Learned to Walk Independently

SUBJECT 10 (BASELINE) - AGE 4.5 YEARS

3 YEARS POST-GT - AGE 7.5 YEARS

Building a Therapeutic Platform Enables to Extend the Field of Application of the Technology to Multiple Diseases

VALIDATION IN SINGLE GENE DEFECT

EXPANSION TO LARGER MARKET SIZES WITH SAME TECHNOLOGY

Parkinson's Disease Gene Therapy (AB-1005)

DISEASE & UNMET MEDICAL NEED

- // Parkinson's Disease is the most common movement disorder caused by the progressive neurodegeneration of dopaminergic neurons
- // Limited symptomatic treatment options available
 - // Dopaminergic medications, effective at early stages, become less and less effective with disease progression
 - // Deep brain stimulation (DBS) carries the risk of infections, stroke, seizures, is costly and typically requires follow-up maintenance surgeries
- // No approved treatments to slow or change the course of disease progression

OUR APPROACH

- // The AB-1005 vector expresses a neurotrophic factor (GDNF) essential for the development and survival of dopaminergic neurons
- # AB-1005 aims to slow, stop or reverse disease progression by restoring function and providing neuroprotection to susceptible dopaminergic neurons
- # Restored dopaminergic tone potentially results in the improvement of motor control including restored ability to perform activities of daily living. Possible improvements on the non-motor symptoms of PD and the function of neuronal networks are being assessed.
- // Surgical Delivery: One-time bilateral delivery of AB-1005 via minimally invasive, MRI-monitored neurosurgery

Turning back the clock on Parkinson's disease

ADDRESSABLE PATIENT POPULATION **Patients** Indication Parkinson's Disease US ~1 million **ASSET POTENTIAL** Indication **Asset Potential** Parkinson's Disease <€500m ●●()€500m–€1bn ●●● >€1bn

18-month clinical data shows marked motor improvement compared to natural history

13.07 hrs

12 months

Patient-reported recovery of motor performance

OFF time improved by 52%

0.29 hrs 2.64 hrs

0.08 hrs 2.22 hrs

13.70 hrs

18 months

0.60 hrs

10.78 hrs

Baseline

Dvskinesia

4.62 hrs

- Functional effects are progressive, similar to NHP studies: Ongoing improvements reported beyond 6 months, unlike brief improvement in other CGTs or placebo effects
- Clinically meaningful improvements consistent with anticipated MoA - neuron regrowth and progressive restoration of dopamine function

UPCOMING DEVELOPMENT **MILESTONES**

Initiation of randomized, double-blinded, shamsurgery controlled Phase 2 RESTORE-PD study

PHASE

CLINICAL DATA

Multiple System Atrophy (MSA) Gene Therapy

MSA is a fast-progressing disease

Glial dysfunction and loss of neurotrophic factors (GDNF)

a-synuclein aggregation in the brain

with symptoms similar to

Neuroinflammation

Parkinson's

AB-1005 (AAV2-GDNF) already well tolerated in Parkinson's Disease patients¹

DISEASE & UNMET MEDICAL NEED

Onset: Mid-life

BAYER

Prognosis: Death ~8-10 years after diagnosis

Epidemiology (US & EU): Prevalence ~35K, incidence ~4.5K per year

Unmet medical need: No disease-modifying therapy

SoC: Symptom management

Clinical competition: Several clinical programs addressing α -synuclein

OUR APPROACH

Surgical Delivery: One-time bilateral delivery via MRI-monitored neurosurgery

MONOGENIC

DISORDERS

AskBio

PATHWAY

Why GDNF for MSA:

- // 76% loss of GDNF in MSA post-mortem tissue⁴
- // Degeneration of the dopaminergic neurons causes parkinsonian features in MSA
- // Improve "sick-but-not-dead" neurons by GDNF restoration to
 - // Enhance dopamine production
 - // Increase neurite density
 - // Reduce α -synuclein accumulation
 - // Attenuate neuroinflammation

Multiple System Atrophy (MSA) Gene Therapy

MSA is an adult-onset, spontaneously occurring rare neurodegenerative disease

PHASE I

BAYER

PRECLINICAL DATA

- // MSA is pathologically defined by glial cytoplasmic inclusions (GCIs) containing α-synuclein
- // AAV2-GDNF delivery in a GM1 knock-out transgenic mouse attenuated the accumulation of α -synuclein in the substantia nigra.¹

ADDRESSABLE PATIENT POPULATION

UPCOMING DEVELOPMENT MILESTONES

Recruitment & dosing of Phase 1 RESTORE-MSA study

PATHWAY

Limb-girdle Muscular Dystrophy 2I/R9 Gene Therapy

AB-1003: Mitigate the Molecular Pathobiology and Improve Functions

DISEASE & UNMET MEDICAL NEED

BAYER

- // Limb-girdle muscular dystrophy 2I/R9 (LGMD2I/R9) is a monogenic, rare disease.
- // Autosomal recessive muscular dystrophy is caused by mutations in the gene for fukutin-related protein (FKRP), needed for glycosylation of α-dystroglycan (α-DG).
- // LGMD2I/R9 patients are prone to cardiac fibrosis, respiratory complications, and dysphagia that may lead to early death.
- // The management of LGMD2I/R9 is supportive. No diseasemodifying treatments are approved.

OUR APPROACH

- Single-time systemic administration of AB-1003 contains a normal FKRP gene and uses an AAV9 capsid and the Syn-100 promoter.
 - # Self-complementary AAV technology to target and express FKRP protein, predominantly in skeletal muscle, diaphragm and cardiomyocytes.
 - # Syn-100 muscle-specific promoter enables relatively low doses
- // Non-clinical safety and bioactivity data from two different disease mouse models demonstrated FKRP expression in target tissues and functional improvements

Limb-girdle Muscular Dystrophy 2I/R9 Gene Therapy

Innovative Clinical Trial Design to Support Accelerated Development and Regulatory Approval

BAYER E

PRECLINICAL DATA

Robust Bioactivity in Preclinical Dose Range Finding Study

Evaluation	Low dose	High dose
Muscle strength	>75% of wild-type	>90% of wild-type
Exercise distance	>75% of wild-type	>90% of wild-type
Mean Serum CK levels	Comparable to wild-type	Comparable to wild-type

// Part I of a Phase 1/2 study has started in Q1 2023:

- // Double-blind, randomized, placebo-controlled design (N=10) to establish safety, tolerability, and preliminary efficacy
- // Part I will build the foundation for the registrational Part II of the clinical study.

ADDRESSABLE PATIE	ENT POPULATION	î șî
Indication	Patients	
Limb-Girdle (LGMD2I/R9)	~7k worldwide	
ASSET POTENTIAL		G
Indication	Asset Potential	
Limb-Girdle (LGMD2i)		
●○○ <€500m ●●○ €50	00m–€1bn ●●● >€1bn	
UPCOMING DEVELOP	MENT MILESTONES	

- Dosing the First Subject
- Completion of Part I Enrollment

MONOGENIC DISORDERS ASkBio PATHWAY DISORDERS

Congestive Heart Failure Gene Therapy

AB-1002 (AAV2i.8.I-1c): improves intracellular calcium cycling, decreases fibrosis and reverses remodeling

DISEASE & UNMET MEDICAL NEED

- # HF is a high prevalent disease, especially in the Western world
- # For HFrEF well established guidelines are in place for treatment of those in earlier stages of the disease.
- // In patients with end stage heart failure, mortality is 50% at 5 years, and limited therapeutic options are available.
- // No disease modifying treatment available for any stages of CHF

OUR APPROACH

- # AB-1002 targets a subset of advanced HFrEF patients (NYHA III) who have non-ischemic etiology.
- # Abnormal calcium cycling secondary to a decrease in the Sarcoplasmic reticulum calcium ATPase (SERCA2a) and an increase in protein phosphatase 1 activity in heart failure.
- # AB-1002 uses gene therapy to deliver a critical protein: a constitutively active form of inhibitor 1 of c which when expressed improves intracellular calcium cycling, decreases fibrosis and reverses remodeling.
- // These cellular/molecular effects improve the overall function of the failing heart and the functional status of the patient.

Congestive Heart Failure Gene Therapy

AB-100 (AAV2i.8.I-1c): Preliminary results suggest clinically meaningful improvements

PHASE

BAYER

CLINICAL DATA

- # Eight subjects with non-ischemic congestive heart failure (CHF) treated;
 7 of the 8 subjects completed primary follow up (12 months)
- No product- or delivery-related serious adverse events at either tested dose
- Study participants in both cohorts exhibit directionally favorable efficacy results as evidenced by
 - 1. New York Heart Association (NYHA) class reduction
 - 2. Left Ventricular Ejection Fraction (LVEF) increase
 - 3. Peak oxygen consumption (VO2 max) improvement
 - 4. Quality of life assessment improvement.

DDRESSABLE PATIE	INT POPULATION	
Indication	Patients	
Chronic Heart Failure	US/EU5 ~ 1.6 million	
SSET POTENTIAL		Ś
Indication	Asset Potential	
Chronic Heart Failure	•••	
●○○ <€500m ●●○ €50	0m-€1bn ●●● >€1bn	
JPCOMING DEVELOP	MENT MILESTONES	3

 Initiation of GenePPhit: A phase II, adaptive, randomized, doubleblind, placebo controlled, multicenter trial

The Individual AskBio Sites Contribute Their Respective Competency Strongholds to the End-to-End Development Platform AskBio competence distribution

BAYER E R

Key Messages Today

// Highly attractive market:

Gene therapy market expected to grow significantly until the end of the decade

// Pioneer in AAV-based gene therapy:

Unparalleled pipeline, talent and manufacturing capabilities

// Robust therapeutic pipeline:

Balanced portfolio addressing monogenic and pathway disorders

// Scalable platform for continued growth and innovation: Building a platform enables to extend the field of application of the technology to multiple diseases

Concluding Remarks

Christian Rommel

1

Seize the opportunity for more impact

Building on our long legacy and learnings, world-class expertise and differentiating modalities and platforms, we have an opportunity to **increase the scale of our impact** for patients and for Bayer.

Clear focus on value & differentiation

Through rigorous assessment and prioritization, we now have a sharper focus on the areas of **greatest unmet need and highest potential** where we can make a difference by targeting the sweet spot of precision medicine.

Execute Innovation strategy

Our R&D strategy is already up and running – we have a clear strategic focus, the platforms, the strategic partners, the modalities and the capabilities to deliver at pace – we are positioned to succeed.

Ready to move to the next phase of our history

We are building a **truly differentiated high-value pipeline**, delivering patient impact, and delivering on our bold Pharma ambition. Following a thorough portfolio pruning, the vast majority of our (pre)clinical NME's have the potential to be first- or best-in-class, today.

Pharmaceuticals R&D Event

Boston, US June 28, 2023

Appendix: Pharmaceuticals – Pipeline Overview¹ (as of June 16, 2023) BAYER

Phase 0 ²	
DGKalpha Inh (BAY 2862789)	Å
PSMA TAC (BAY 3546828)	X)
PSMA SMOL TAC (BAY 3563254)	X)
VVD NRF2 Inh (BAY 3605349)	" *.
VVD STAT3 Inh (BAY 3630914)	" Å
Anti-coagulant (BAY 3389934)	, *
Next Generation Liver MRI (BAY 3393081)	Ō

Oncology

Immunology Others

Cardiovascular+5

Neurology & Rare Diseases

Phase I			Phase II	Phase III
Elimusertib (ATR Inhibitor) (BAY 1895344)	" Å		Regorafenib (combi Nivolumab) (BAY 734506) // Solid tumors (recurrent or metastatic)	Copanlisib (F // Non-Hodgkin Ly
AhR Inhibitor (BAY 2416964)	"		Asundexian (FXIa Inhibitor) (BAY 2433334)	Darolutamide
mEGFR/HER2 Inhibitor (BAY 2927088)	Å	// Major Adverse Cardiac Events Prevention (PACIFIC-AMI)		// Prostate Cancer
DGKzeta Inhibitor (BAY 2965501)			Zabedosertib (IRAK4 Inh.) (BAY 1834845) // Atopic Dermatitis (DAMASK)	// Adjuvant Prosta // Prostate Cancer Radiotherapy (A
CCR8 Ab (BAY 3375968)	3		Gadoquatrane (High Relaxivity Contrast Agent)	Finerenone (
Congestive Heart Failure rAAV Gene Therapy (AB-1002 aka NAN-101)	ğ		(BAY 1747846) // Magnetic Resonance Imaging (HRCA-PAT)	// Heart Failure (H // Non-diabetic Ck
sGC Activator Oral (BAY 3283142)	, Å.		Runcaciguat (sGC Activator) (BAY 1101042) // Non-prolif. Diabetic Retinopathy (NPDR) (NEON-NPDR)	Vericiguat (s // Heart Failure (H
Anti-a2AP (BAY 3018250)	3			Asundexian
sGC Activator Inhale (BAY 1211163)	-			// Stroke Preventio // 2º Stroke Preven
SEMA 3a (BAY 3401016)	3			Elinzanetant
Bemdaneprocel (Parkinson's Disease Cell Therapy) (<i>BRT-DA01</i>)	N.			// Vasomotor Sym
Parkinson's Disease rAAV Gene Therapy (AB-1005 aka AAV2-GDNF-PD)	ğ			// Retinal Vein Oce
Multiple System Atrophy rAAV Gene Therapy (AB-1005 aka AAV2-GDNF-MSA)	ð			
Pompe Disease rAAV Gene Therapy (ACTUS-101)	ğ			Submissio
Huntington's Disease rAAV Gene Therapy (AB-1001 aka BV-101)	ð			Aflibercept 8 // EU, JP, US ⁴ : Dia // EU, JP, US ⁴ , CN
LGMD2I/R9 rAAV Gene Therapy (AB-1003 aka LION-101)	ð			
GPR84 Antagonist (BAY 3178275)	, Åo			

Copanlisib (PI3K Inhibitor) // Non-Hodgkin Lymphoma (CHRONOS-4)	. ∔ ₀ O
Darolutamide (AR Inhibitor) // Prostate Cancer (mHSPC) (ARANOTE) // Adjuvant Prostate Cancer (DASL-HiCaP) // Prostate Cancer with Biochemical Recurrence after Curative Radiotherapy (ARASTEP)	Å O
Finerenone (MR Antagonist) // Heart Failure (HFmr/pEF) (FINEARTS-HF) // Non-diabetic CKD (FIND-CKD)	Å 0
Vericiguat (sGC Stimulator) // Heart Failure (HFrEF) (VICTOR ³)	بد 0
Asundexian (FXIa Inhibitor) // Stroke Prevention in Atrial Fibrillation (OCEANIC-AF) // 2° Stroke Prevention (OCEANIC-STROKE)	Å •
Elinzanetant (Neurokinin-1,3 Rec Antagonist) // Vasomotor Symptoms (OASIS)	Å. 🔴
Aflibercept 8mg (VEGF Inhibitor) // Retinal Vein Occlusion (QUASAR)	* O

ubmissions

libercept 8mg (VEGF-Inhibitor) U, JP, US4: Diabetic Macular Edema (DME) U, JP, US⁴, CN: Neovasc. Age-rel. Macular Degen. (nAMD)

New molecular entity አ Protein Therapeutics 🦉 Cell Therapy 📮 Contrast Agent 🛛 🍯 Genetic Medicine 🔀 Radiotherapy 🎿 Small Molecule Life cycle management

¹ Bayer and partner sponsored + 3rd party label enabling studies with first patient first visit ² Pre-clinical selected assets on path to IND ³ Conducted by Merck & Co ⁴ US submission made by Regeneron ⁵ Including Precision Cardiovascular, Nephrology & Acute Care

Appendix: Abbreviations (1/4)

AAV	Adeno-associated virus	CGT	Cell and gene therapy
Ab	Antibody	CHF	Congestive heart failure
ADC	Antibody-drug conjugate	CI	Confidence interval
AF	Atrial fibrillation	CKD	Chronic Kidney Disease
AI	Artificial intelligence	CMC	Chemistry, manufacturii
AIS	Acute ischemic stroke	COPD	Chronic Obstructive Pul
ALCL	Anaplastic large cell lymphoma	CRC	Colorectal cancer
AMD	Age-related macular degeneration	CV	Cardiovascular
APT	Antiplatelet therapy	DA	Dopamine
AR	Androgen receptor	DAPT	Dual Antiplatelet Therap
BCR	Biochemical relapse	DBS	Deep brain stimulation
BD&L	Business Development & Licensing	DC	Development Candidate
BIC	Best in class	DDRi	DNA damage repair inh
bn	billion	DFMs	Direct Functional Modul
BP	Blood pressure	DGK	Diacylglycerol Kinases
CAGR	Compound Annual Growth Rate	DKD	Diabetic Kidney Diseas
CAR-T	Chimeric antigen receptor modified T cells	DMD	Duchenne Muscular Dy
cGMP	Current good manufacturing practice	DNA	Deoxyribonucleic acid

re se iring and controls ulmonary Disorder ару ate hibitors lulators S ase Dystrophy

Appendix: Abbreviations (2/4)

DOACs	Direct oral anticoagulants	GP	General practitioner
eGFR	estimated glomerular filtration rate	GU	Genitourinary
EGFR	Epidermal Growth Factor Receptor	HCC	Hepatocellular Carcin
ESRD	End-stage renal disease	HER2	Human epidermal gro
EU5	France, Germany, Italy, Spain, United Kingdom	HF	Heart failure
fAD	familial Altzheimer's disease	HFF	Hospitalization heart
FDA	U.S. Food and drug administration	HFmrEF	Heart failure with mid
FIC	First in class	HFpEF	Heart failure with pres
FIH	First-in-Human	HFrEF	Heart Failure with red
FKRP	Fukutin-related protein	HNSCC	Head and neck squar
FPFV	First Patient First Visit	HR	Hazard ratio
FTE	Full Time Equivalent	HSCs	Hematopoietic stem of
GA	Geographic Atrophy	HTS	High throughput scree
GCIs	Glial cytoplasmic inclusions	IBD	Inflammatory Bowel
GDNF	Glial cell line-derived neurotrophic factor	ICIs	Immune checkpoint in
GI	Gastrointestinal	IND	Investigational New D
GM1	GM1 gangliosidoses	Inh	Inhibitor
GOF	Gain of function	IO	Immuno-Oncology

GU	Genitourinary
HCC	Hepatocellular Carcinoma
HER2	Human epidermal growth factor receptor 2
HF	Heart failure
HFF	Hospitalization heart failure
HFmrEF	Heart failure with midrange ejection fraction
HFpEF	Heart failure with preserved ejection fraction
HFrEF	Heart Failure with reduced Ejection Fraction
HNSCC	Head and neck squamous cell carcinoma
HR	Hazard ratio
HSCs	Hematopoietic stem cells
HTS	High throughput screening
IBD	Inflammatory Bowel Disease
ICIs	Immune checkpoint inhibitors
IND	Investigational New Drug
Inh	Inhibitor

Appendix: Abbreviations (3/4)

IRDs	Inherited retinal disorders
ISTH	International Society on Thrombosis and Hemostasis
LCM	Life Cycle Management
LC-MS/MS	Liquid chromatography tandem mass spectrometry
LGMD2i/R9	Limb-Girdle Muscular Dystrophy
LOPD	Late onset Pompe Disease
LVEF	Left Ventricular Ejection Fraction
m	million
mCRPC	Metastatic castration resistant prostate cancer
MDS	Movement Disorders
mHSPC	Metastatic hormone sensitive prostate cancer
MOAs	Mode of action
MRA	Mineralocorticoid Receptor Antagonist
MSA	Multiple System Atrophy
MSCs	Mesenchymal stem cells
NASH	Non-alcoholic steatohepatitis
ndCKD	Non-diabetic chronic kidney disease

NHP	Nonhuman primate
nmCRPC	non-metastatic castration resistant prostate cancer
NME	New Molecular Entity
NNT	Number needed to treat
NO	Nitric Oxide
NRD	Neurology and Rare Diseases
NRLD	National Reimbursement Drug List
NSCLC	Non small cell lung cancer
NYHA	New York Heart Association
ODD	Orphan drug designation
OSM	Oncostatin M
отс	Over-the-counter
PD	Parkinson's Disease
PD-L1	Programmed Cell Death Ligand 1
PPD	Primary Photoreceptor Diseases
PPI	Protein-protein Interaction
PRP	Photoreceptor Precursor Cell

Appendix: Abbreviations (4/4)

PSA	Psoriatic arthritis	SPAF
PSC	Pluripotent Stem Cells	sq/ad
PSO	Psoriasis	T1D
PTS	Probability of Technical Success	T2D
RA-ILD	Rheumatoid arthritis associated interstitial lung disease	ТА
RCC	Renal cell carcinoma	TF
R&D	Research & Development	TH
RED	Research & Early Development	TKI
RNA	Ribonucleic acid	TNBC
ROS1	C-ros oncogene 1)	TRT
RP	Retinitis Pigmentosa	TRx
RPE	Retinal pigment epithelium	UACF
RTP HQ	Research Triangle Park Headquarter	Ub
SD	Stargardt's disease	VKA
sGC	Soluble guanylate cyclase	VMS
SGLT2i	Sodium-glucose Cotransporter-2 inhibitor s	VTA
SMOL	Small Molecule	VVD
SOC	Standard of Care	WW

SPAF	Stroke Prevention In Atrial Fibrillation
sq/ad	squamous/adenocarcinoma
T1D	Type 1 diabetes
T2D	Type 2 diabetes
ТА	Therapeutic areas
TF	Transcription Factor
тн	T helper
ТКІ	Tyrosine kinase inhibitor
TNBC	Triple Negative Breast Cancer
TRT	Targeted radiotherapy
TRx	Total prescriptions
UACR	Urine Albumin Creatinine Ratio
Ub	Ubiquitin
VKA	Vitamin K Antagonists
VMS	Vasomotor symptoms
VTA	Ventral tegmental area
VVD	Vividion
WW	Worldwide