Bayer AG - Water Security 2021

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

"Health for all, hunger for none" – putting an end to hunger and helping everyone lead a healthy life, while at the same protecting ecosystems. That's what we aspire to achieve, guided by our corporate purpose "Science for a better life." The major issues of our time can only be addressed if we work together. Our campaigns voranbringen in Germany and "This is why we science" in the United States underscore our approach. We are a life science company and a global leader in health care and nutrition. Our innovative products support efforts to overcome the major challenges presented by a growing and aging global population. We help prevent, alleviate and treat diseases. We also aim to ensure the world has a reliable supply of high-quality food, feed and plant-based raw materials. As part of this endeavor, the responsible use of natural resources is always a top priority.

We aim to enhance our company’s earning power and create value for customers, patients, shareholders, employees and society. Growth and sustainability are integral parts of our strategy, guided by our corporate values of Leadership, Integrity, Flexibility and Efficiency, or LIFE for short.

This culture ensures a common identity throughout the Bayer Group.

The management structure of the Bayer Group comprises three divisions – Pharmaceuticals, Consumer Health and Crop Science – which are also our reporting segments. We operate sites around the world, and some are used by multiple segments. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries.

The portfolio and structural measures announced in late 2018 led to the following changes in the corporate structure: (1) The sale of our Animal Health business unit, agreed in August 2019, was completed and has therefore no longer been a part of the Bayer Group since August 2020. As a result, it no longer constitutes a reportable segment and has been accounted for retroactively for 2018 and 2019 as a discontinued operation. (2) The services previously performed by Business Services are gradually being transferred to the enabling functions and divisions as part of the Group restructuring.

As in our previous CDP reports, we are reporting according to the operational control approach to provide an accurate picture of Bayer’s life science businesses.

Forward-Looking Statements

This report may contain forward-looking statements based on current assumptions and forecasts made by Bayer management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer's public reports which are available on the Bayer website at www.bayer.com. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

W-CH0.1a

(W-CH0.1a) Which activities in the chemical sector does your organization engage in?

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2020</td>
<td>December 31 2020</td>
</tr>
</tbody>
</table>

W0.3

(W0.3) Select the countries/areas for which you will be supplying data.

Brazil
Chile
Germany
India
Italy
Mexico
Peru
South Africa
Spain

W0.4
W0.4 Select the currency used for all financial information disclosed throughout your response.

EUR

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

No

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th></th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Vital</td>
<td>DIRECT USE: The PRIMARY USE of FRESH WATER is for cooling purposes, the production process and irrigation of fields and greenhouses for seed production. Clean water is a limiting factor for our production and THUS considered VITAL. E.g. if the water has a high concentration of salts, it will not be appropriate for cooling purposes due to its corrosive characteristics to pipes. INDIRECT USE: The PRIMARY USE IN THE SUPPLY CHAIN is for raw material/product supply, incl. seeds produced by contracted growers. Looking downstream, e.g. at Crop Science’s customers, FRESHWATER is PRIMARILY USED for irrigation in agriculture. It is THUS considered VITAL since it could impede raw material/product supply and/or hamper the use of our Crop Science products. We expect our FUTURE DEPENDENCY IN DIRECT AND INDIRECT OPERATIONS to remain the same BECAUSE freshwater will remain vital for our production and the irrigation of fields with our current strategy, to ensure the provision of raw materials and products and the use of our products by our customers.</td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Important</td>
<td>Not very important</td>
<td>DIRECT USE: The PRIMARY USE of NON-FRESH WATER i.e. recycled water is for cooling purposes, through the reuse of treated wastewater or steam condensate recovery as process water and irrigation of fields and greenhouses for our seeds production. In general, it has neutral importance for our direct use. However, we selected “IMPORTANT” BECAUSE some of our sites are located in water scarce regions: here the reuse of water is gaining importance. We also encourage our sites to efficiently utilize resources, including water. Through water recycling we reduced our water withdrawals in our operations. This is another reason WHY we consider the use of non-fresh water in direct operations as important. INDIRECT USE: Usually surface or municipal water is used along the value chain e.g. for irrigation in agriculture and THUS NON-FRESH WATER is NOT PRIMARILY USED and considered “not very important”. Moreover, brackish and produced water are NOT material for Bayer. We expect our FUTURE DEPENDENCY IN DIRECT AND INDIRECT OPERATIONS to remain the same BECAUSE we are expecting a similar water availability situation across our sites as today based on current forecasts and we expect our suppliers and customers to continue using surface or municipal water.</td>
</tr>
</tbody>
</table>

W1.2
Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Water withdrawals – total volumes</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>100%</td>
</tr>
<tr>
<td>Entrained water associated with your metals & mining sector activities – total volumes (only metals and mining sector)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced water associated with your oil & gas sector activities – total volumes (only oil and gas sector)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>26-50</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>76-99</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>100%</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100%</td>
</tr>
<tr>
<td>The provision of fully-functioning, safety managed WASH services to all workers</td>
<td>76-99</td>
</tr>
</tbody>
</table>

Method and Frequency:
- **W1.2b**

All workers

Fully-functioning, recycled/reused Water

Water consumption

Temperature

Water recycled/reused

The provision of fully-functioning, safety managed WASH services to all workers

Health and safety of our employees are very important aspects for Bayer. As highlighted in our Water Position, we use our local presence to support projects providing access to clean water and sanitation to our employees and the communities in which we operate. Bayer is committed to the UN CEO Water Mandate and in 2020 actively participated in the Human Rights and WASH Working Group. **METHOD AND FREQUENCY**: We constantly monitor and assess our HSE performance including the existence of fully-functioning WASH services through our audits worldwide, according to ANNUAL HSE Audit programs as defined on a risk-based approach. All our production sites provide fully-functioning WASH services to all workers, and we estimate these sites to represent over 95% of Bayer’s total water usage. Since our operations include many small Crop Science farming sites worldwide and audits are conducted on a random basis, we are not able to guarantee 100% coverage.
(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th></th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>57325</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In 2020 total water withdrawal was about the same as last year DUE TO the fact that there were no significant changes in business activities and the number of sites remained unchanged. Water volumes from all sources are expected to stay about the same in THE FUTURE, as no significant changes are expected. Please note that differences between volumes of water withdrawn, consumed and discharged can be explained, for example, by quantities of water used as raw materials in products, unquantified losses due to evaporation, leaks and volumes of condensate generated through the use of steam as a source of energy. This is why total water consumption does not equal total water withdrawals minus discharges (C (24,830) ≠ W (57,325) - D (24,566)).</td>
<td></td>
</tr>
<tr>
<td>Total discharges</td>
<td>24566</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In 2020 total water discharges were about the same as last year DUE TO the fact that there were no significant changes in business activities and the number of sites remained unchanged. Water discharges are expected to decrease IN THE FUTURE because Bayer works continuously on reducing the discharges. Please note that differences between volumes of water withdrawn, consumed and discharged can be explained, for example, by quantities of water used as raw materials in products, unquantified losses due to evaporation, leaks and volumes of condensate generated through the use of steam as a source of energy. This is why total water consumption does not equal total water withdrawals minus discharges (C (24,830) ≠ W (57,325) - D (24,566)).</td>
<td></td>
</tr>
<tr>
<td>Total consumption</td>
<td>24830</td>
<td>Lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In 2020 total water consumption was 5% LOWER compared to last year. This is DUE TO the impact of the pandemic situation in the water consumption of selected sites and products, while overall business activities stayed similar. Water consumption is expected to stay about the same IN THE FUTURE as no significant changes are expected. Please note that differences between volumes of water withdrawn, consumed and discharged can be explained, for example, by quantities of water used as raw materials in products, unquantified losses due to evaporation, leaks and volumes of condensate generated through the use of steam as a source of energy. This is why total water consumption does not equal total water withdrawals minus discharges (C (24,830) ≠ W (57,325) - D (24,566)).</td>
<td></td>
</tr>
</tbody>
</table>

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Water from areas with water stress</th>
<th>% withdrawn with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>1-10</td>
<td>Higher</td>
<td>WRI Aqueduct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APPLICATION OF TOOL TO EVALUATE WHETHER WATER HAS BEEN WITHDRAWN FROM STRESSED AREAS: To identify the sites in water-scarce regions we have applied the Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool (thresholds:"high" and "extremely high" in the overall water risk indicator or "extremely high" in the baseline water stress indicator). We analyzed all sites worldwide which are considered environmentally relevant and thus monitored in our central BAYER SITE INFORMATION SYSTEM "BaySIS". From BaySIS, we mapped the total water use to each site that was located in a water-scarce region according to the WRI Aqueduct analysis and defined those sites as "large user", which used more than 0.1% of our total water use. In this process 14 Bayer sites were identified based on 2020 data which are located in a water-scarce region and are relevant for our water consumption analysis. These sites have the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the overall water risk indicator or "extremely high" in the baseline water stress indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use) REASON FOR CHANGE TO PREVIOUS YEAR: From operational perspective about the same as the previous year. The reporting increase of 0.7% is driven by adjustments in our control and measurement systems in one site. REDUCTION OF WITHDRAWALS FROM AREAS WITH WATER STRESS: In 2020, water withdrawals of the five largest sites (as reported 2019) located in a water-scarce regions DECREASED 15.5%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source of water</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>19302</td>
<td>About the same</td>
<td>i) Water withdrawal from FRESH SURFACE WATER IS RELEVANT as it is VITAL for cooling purposes, production processes as well as irrigation of fields and greenhouses for seed production. Clean water is a limiting factor for our production and THUS considered essential. E.g. if the water has a high concentration of salts, it will not be appropriate for cooling purposes due to its corrosive characteristics to pipes. ii) In 2020, total water withdrawal from fresh surface water was ABOUT THE SAME compared to 2019. This is DUE TO the fact that there were no significant changes of business activities and the number of sites remained unchanged.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>As in previous years, brackish surface water was NOT RELEVANT in 2020 BECAUSE we did not use brackish surface water in our operations. As described above, brackish water is not suitable for our production. E.g. if the water has a high concentration of salts, it will not be appropriate for cooling purposes due to its corrosive characteristics to pipes. This is also the reason WHY (non-) usage is consistent with the previous year and is expected to stay the same for our operations IN THE FUTURE.</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>21132</td>
<td>About the same</td>
<td>i) Groundwater is RELEVANT BECAUSE we have own deep wells in many sites for our own water supply. ii) In 2020, total water withdrawal from groundwater was ABOUT THE SAME compared to 2019. This is DUE TO the fact that there were no significant changes of business activities and the number of sites remained unchanged.</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>As in previous years, non-renewable groundwater was NOT RELEVANT in 2020 BECAUSE we do not use non-renewable groundwater in our operations. We do not have any sites in regions with non-renewable groundwater aquifers. This is also the reason WHY (non-) usage is consistent with the previous year and is expected to stay the same for our operations IN THE FUTURE.</td>
</tr>
<tr>
<td>Produced/Entained water</td>
<td>Relevant</td>
<td>775</td>
<td>Higher</td>
<td>i) Water from produced water / process water is RELEVANT BECAUSE we extract produced water from our raw materials and from production processes. ii) In 2020, total water withdrawal from produced water / process water was HIGHER compared to 2019 DUE TO several individual process reviews of producing sites.</td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>16116</td>
<td>Lower</td>
<td>i) Water from third party sources is RELEVANT BECAUSE we withdraw water from third parties for drinking water in most sites. In addition, water from third party sources is used for production. ii) In 2020, total water withdrawal from third party sources was LOWER compared to 2019. This is DUE TO the impact of the pandemic situation in the water consumption of selected sites and products, while overall business activities stayed similar.</td>
</tr>
</tbody>
</table>

W1.2i
Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance of treatment level to discharge</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15085</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i) Discharges to fresh surface water are RELEVANT in sites where water can be directly returned to the natural water cycle without treatment (after being carefully tested and categorized as environmentally safe according to official provisions) or after treatment in our own water treatment plants. All wastewater is subject to strict controls before it is discharged. 37.8% of water used by Bayer is cooling water that does not come into contact with products. It can be returned to the water cycle without further treatment in line with official permits. ii) In 2020 total water discharges to fresh surface water were ABOUT THE SAME compared to 2019. This is DUE TO the fact that there were no significant changes of business activities and the number of sites remained unchanged.</td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i) Discharges to brackish surface water/seawater are RELEVANT BECAUSE we have sites located at the coast which discharge some of their used water into the sea (after careful analysis, during which it is categorized as environmentally safe according to official provisions and returned to the natural water cycle) or after treatment in our own water treatment plants. ii) In 2020, total water discharges to brackish surface water/seawater were ABOUT THE SAME compared to 2019. This is DUE TO the fact that there were no significant changes of business activities and the number of sites remained unchanged.</td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td>Relevant</td>
<td>More lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2699</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i) Discharges to groundwater are RELEVANT because in some sites we operate absorption wells. After being carefully tested and categorized as environmentally safe according to official provisions, the water seeps into the ground, permeates the soil and finally refills the groundwater. The stated volume of 2,699 megaliters/year also includes evaporation from the absorption wells, as well as discharges into the ground far below the groundwater. ii) In 2020, total water discharges to groundwater were MUCH LOWER compared to 2019 DUE TO shifting of water discharge to third-party destinations (see below).</td>
<td></td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant</td>
<td>Much higher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i) Water discharges to third-party destinations are RELEVANT as the water is discharged to treatment plants before it can be led back to the environment. All wastewater is subject to strict controls before it is discharged into the various disposal channels. In 2020, 74.7% of Bayer's industrial wastewater were treated within direct operations, and 23.8% were treated by third parties. ii) In 2020 total water discharges to third party destinations were MUCH HIGHER compared to 2019 DUE TO shifting discharges from previous groundwater discharges to third-party destinations.</td>
<td></td>
</tr>
</tbody>
</table>

W-CH1.3

Do you calculate water intensity for your activities in the chemical sector?

W-1.4

Do you engage with your value chain on water-related issues?

Yes, our suppliers

Yes, our customers or other value chain partners
(W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

<table>
<thead>
<tr>
<th>% of suppliers by number</th>
<th>Less than 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total procurement spend</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Rationale for this coverage
i) WHY THEY WERE SELECTED: In 2020, Bayer has requested 0.72% of its suppliers (approx. 701 out of 97,362), representing approx. 20.6% of the total procurement spend, to report on water management. BECAUSE IT IS NOT FEASIBLE to assess all 97,362 suppliers, they are selected based on COUNTRY AND BUSINESS CATEGORY SUSTAINABILITY RISKS AND STRATEGIC IMPORTANCE. This process was revised in 2020 with the support of an external consultancy, enabling a more detailed view of the risks in the categories environment (e.g. climate and energy), social standards (e.g. child labor) and corporate governance (e.g. data protection). This more targeted analysis by individual risk criteria increases transparency in our supply chain. ii) HOW SUPPLIERS ARE INCENTIVIZED TO REPORT: A special clause in our standard supply contracts requests suppliers to comply with the sustainability requirements defined in our Supplier Code of Conduct. Already in 2020, we stipulated that all strategically important suppliers must present an EcoVadis assessment of at least 45 of 100 points (“green” assessment) or a comparable audit result. In addition, beginning in 2021 all potential new suppliers with a procurement spend of more than EUR 250,000 will be examined in advance with regard to sustainability aspects. Suppliers receive access to trainings and extensive information material, e.g. on responsible use of water, as offered by capability building conferences and information platforms from the “Pharmaceutical Supply Chain Initiative” (PSCI), where Bayer is a member and the TIS initiative, which is testing a collaboration platform.

Impact of the engagement and measures of success
i) The TYPE OF INFORMATION requested includes HSE and sustainability aspects, e.g. water consumption or water reduction programs. During on-site audits the suppliers’ water management is also checked. ii) Wherever evaluation results are unsatisfactory, the INFORMATION IS USED to develop improvement measures. In the event of critical results, Bayer requests the suppliers to rectify the identified weaknesses within an appropriate period of time based on specific action plans. iii) To MEASURE THE SUCCESS, we set ambitious targets and measure success in terms of target fulfillment, e.g. our target is to continue to evaluate all relevant suppliers by the end of 2021. SUCCESS IS also MEASURED through re-assessments or follow-up audits. Our regular monitoring shows that in 2020 357 of our 701 suppliers evaluated have improved their sustainability performance.

Comment
The TIS initiative continues to test the usability of a collaboration platform involving Bayer suppliers as another element of supplier development. It provides users with numerous best practice examples and dialogue opportunities, as well as activities, tips, case studies and expert suggestions on the topics of water, energy and waste.
Type of engagement
Incentivizing for improved water management and stewardship

Details of engagement
Water management and stewardship action is integrated into your supplier evaluation

% of suppliers by number
Less than 1%

% of total procurement spend
1-25

Rationale for the coverage of your engagement
RATIONALE: Bayer regards adherence to sustainability standards within its supply chain as an important lever for minimizing risks. This is WHY sustainability clauses are in our electronic ordering systems and standard supply contracts. The sustainability clause requests all suppliers to comply with the sustainability requirements defined in our Supplier Code of Conduct and authorizes Bayer to conduct EVALUATIONS AND ON-SITE AUDITS, if necessary. BECAUSE it is not feasible to assess all 97,362 suppliers, suppliers are selected based on country and business category sustainability risks and strategic importance. TO FURTHER INCENTIVIZE suppliers to participate in the engagement, suppliers receive access to trainings and extensive information material, e.g. on responsible use of water, as offered by capability building conferences and information platforms from PSCI. The TfS initiative continues to test the usability of a collaboration platform involving Bayer suppliers as another element of supplier development.

Impact of the engagement and measures of success
i) OUTCOMES OF THE ENGAGEMENT: In the event of a critical sustainability performance, Bayer requests suppliers to rectify identified weaknesses within an appropriate period of time based on specific action plans. We do not only build supplier capabilities, but also minimize procurement-specific risks and ensure smooth production processes through these requirements. ii) To MEASURE THE SUCCESS, we set ambitious targets and measure success in terms of target fulfillment, e.g. our target is to continue to evaluate all relevant suppliers by the end of 2021. SUCCCESS is also MEASURED through re-assessments or follow-up audits. Our regular monitoring shows that in 2020 357 of our 701 suppliers evaluated have improved their sustainability performance.

Comment
The TfS initiative continues to test the usability of a collaboration platform involving Bayer suppliers as another element of supplier development. It provides users with numerous best practice examples and dialogue opportunities, as well as activities, tips, case studies and expert suggestions on the topics of water, energy and waste.

Type of engagement
Innovation & collaboration

Details of engagement
Educate suppliers about water stewardship and collaboration

% of suppliers by number
Less than 1%

% of total procurement spend
1-25

Rationale for the coverage of your engagement
RATIONALE: We offer our suppliers a wide range of development and dialogue opportunities on sustainability. Within the scope of our supplier sustainability evaluations, we have identified a country risk particularly for China and India. DESCRIPTION OF ENGAGEMENT: To focus more closely on supplier development, in 2020 we expanded our sustainability team in procurement: procurement employees primarily in countries with an increased sustainability risk such as China, India and Brazil help to develop suppliers at the local level. The focus here is on local sustainability risks. Furthermore we conducted supplier training and workshops in China and India in cooperation with PSCI and TfS. The PSCI Sustainability webinar offers additional advanced training modules for our suppliers. One PSCI sustainability webinar deals with wastewater treatment technologies. Through Bayer's Health, Safety and Environment (HSE) audits, suppliers are also educated regarding specific findings, among others about water stewardship. Furthermore, the PSCI website also provides a resource library with water-related information for suppliers. The TfS initiative provides users with numerous best-practice examples and dialogue opportunities, as well as activities, tips, case studies and expert suggestions on the topics of water, energy and waste.

Impact of the engagement and measures of success
i) OUTCOMES OF THE ENGAGEMENT: Through the supplier capability trainings and audits, Bayer improves the suppliers' awareness and know-how regarding water-related activities. Through this kind of education, suppliers get an improved understanding of Bayer's sustainability requirements and thereby are able to better carry out their water management. ii) HOW SUCCESS IS MEASURED: Bayer is keeping track of the suppliers' sustainability performance. In the event of a critical sustainability performance, Bayer requests suppliers to rectify identified weaknesses within an appropriate period of time based on specific action plans. 494 people participated at the environmental session of the Supplier Conference of PSCI in China and 392 people attended the environmental session at the Supplier Conference in India in September 2020. In addition, the PSCI webinar on wastewater treatment technologies was received by 893 attendees.

Comment

W1.4c
What is your organization’s rationale and strategy for prioritizing engagements with customers or other partners in its value chain?

PARTNERS & RATIONALE: Crop Science (CS) engages with participants in the food value chain such as farmers, the processing industry, exporters and dealers to ensure the safe handling of crop protection products, esp. in countries without statutory requirements or certification for users, to protect water bodies and to promote sustainable agriculture.

METHOD: CS is DIRECTLY COOPERATING with farmers and the food value chain to develop tailored solutions for sustainable agriculture to safeguard and increase yields and to improve quality of harvest. Bayer reinforces its support for sustainable agriculture with Bayer ForwardFarming: a knowledge platform in which CS partners with 24 farms to demonstrate sustainable agriculture. We recommend biological remediation systems such as PhytobacTM to prevent discharges of crop protection active ingredients into water bodies. We also collaborate with external partners on the development of a GIS based risk management system for water protection in agriculture. With the BayG.A.P. Service program we TRAIN & SUPPORT growers to successfully implement good agricultural practices. Bayer, through (online) TRAININGS & AGRONOMIC ADVICE at customer events and partner courses, enables farmers to use crop protection products effectively and safely. We support grower’s education in sustainable water use to decrease our seed production water consumption footprint.

MEASURES: We track the reach of our trainings and partnerships. In 2020, due to the pandemic, CS replaced numerous on-site trainings with virtual measures, nevertheless increasing the number of farmers trained to around 1.7 million worldwide.

CS has initiated about 265 food value chain partnership initiatives in 39 countries and 64 crops. 2259 growers worldwide have been trained with BayG.A.P. and additional 1625 participants followed the BayG.A.P. Online Training Platform. 1032 growers from India and Thailand obtained the G.A.P. Letter of Conformance or local G.A.P. certification.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

No

W3. Procedures

W-CH3.1

(W-CH3.1) How does your organization identify and classify potential water pollutants associated with its activities in the chemical sector that could have a detrimental impact on water ecosystems or human health?

W-CH3.1a

(W-CH3.1a) Describe how your organization minimizes adverse impacts of potential water pollutants on water ecosystems or human health. Report up to ten potential pollutants associated with your activities in the chemical sector.

<table>
<thead>
<tr>
<th>Potential water pollutant</th>
<th>Value chain stage</th>
<th>Description of water pollutant and potential impacts</th>
<th>Management procedures</th>
<th>Please explain</th>
</tr>
</thead>
</table>

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.
Direct operations

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
Enterprise Risk Management
International methodologies
Databases
Other

Tools and methods used
WRI Aqueduct
ISO 31000 Risk Management Standard
IPCC Climate Change Projections
FAO/AQUASTAT
Internal company methods
External consultants
Other, please specify (EcoVadis, On-site audits)

Comment
Water is integrated into our company-wide risk management process together with other non-financial risks. We assess risks using a long-term perspective, e.g. likelihood of occurrence based on a period of 10 years. Risks are monitored continuously by the risk owners while the risk portfolio is reviewed regularly by the Bayer Assurance Committee. Environmental risks are reviewed as part of the HSE management system and internal audits. Water KPIs are monitored in our central site database BaySIS.

Supply chain

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
Enterprise Risk Management
International methodologies
Databases
Other

Tools and methods used
WRI Aqueduct
ISO 31000 Risk Management Standard
IPCC Climate Change Projections
FAO/AQUASTAT
Internal company methods
External consultants
Other, please specify (Eco Vadis, On-site audits)

Comment
We verify our suppliers' adherence to Bayer's Code of Conduct through continuous supplier assessments and audits. Among others, this allows us to identify water-related supply chain risks. We receive additional results via audits and assessments of suppliers which are shared with us via the “Together for Sustainability” initiative and the “Pharmaceutical Supply Chain Initiative”.

CDP
Other stages of the value chain

Coverage
Partial

Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Enterprise Risk Management
Databases
Other

Tools and methods used
ISO 31000 Risk Management Standard
Regional government databases
Other, please specify (Decision Support Tool to reduce runoff from agricultural fields)

Comment
Our ERM also includes downstream risks e.g. active ingredients in the environment including water. The risks are integrated into our company-wide ERM using the same process and time horizon stated in the first row. In addition, an internal Stewardship (STW) tool is used to identify areas of concern related to water quality. STW is developing a GIS (Geographic Information System) based water protection tool in order to identify areas prone to surface water runoff and to promote Best Management Practices in Agriculture. Major goal is to reduce non target transport of pesticides (valid for a broad range of product categories) into water bodies. The implementation of STW tools, like Phytobac and the digital runoff analyzer/field advisor support us in achieving the goals set by our corporate transformational commitments (i.e. environmental impact reduction).
Which of the following contextual issues are considered in your organization's water-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>WHY/Relevance: As described above, Bayer uses water for cooling purposes, the production process and irrigation of field and greenhouses for seed production. Clean water is a limited factor for our production and THUS considered essential. THEREFORE, water availability at a basin level is relevant for us and included in our water-related risk assessments.</td>
<td></td>
</tr>
<tr>
<td>HOW/Assessment: Water withdrawals, use and discharges (including quality parameters) are measured at site level and monitored annually in our central Bayer Site Information System "BaySiS" (TOOL/METHOD: internal company methods). BaySiS analyzes across several dimensions, e.g. water use, withdrawals and discharges by geography or divisions/sites. Additionally, we have identified the sites in water-risk regions applying the water risk framework of the WRI, included in the AQUEDUCT WATER RISK ATLAS. In addition, we develop appropriate measures to manage our water-related risks.</td>
<td></td>
</tr>
</tbody>
</table>

Water quality at a basin/catchment level | Relevant, always included |
| WHY/Relevance: As described above, clean water is a limiting factor for our production and THUS considered essential. E.g. if the water has a high concentration of salts, it will not be appropriate for cooling purposes due to its corrosive characteristics to pipes. THEREFORE, water quality at a basin level is relevant for us and included in our water-related risk assessments. |
| HOW/Assessment: Water withdrawals, use and discharges (including quality parameters) are measured at site level and monitored annually in our central Bayer Site Information System "BaySiS" (TOOL/METHOD: internal company methods). BaySiS allows analyses across several dimensions, e.g. water use, withdrawals and discharges by geography or divisions/sites. Additionally, we have identified the sites in water-risk regions applying the water risk framework of the WRI, included in the AQUEDUCT WATER RISK ATLAS. In addition, we develop appropriate measures to manage our water-related risks. |

Stakeholder conflicts concerning water resources at a basin/catchment level | Not relevant, included |
| WHY/Relevance: We consider this issue not relevant BECAUSE in the last years no relevant stakeholder conflicts concerning water resources at local level have been identified. |
| HOW/Assessment: We assess environmental incidents via our Bayer Site Information System (BaySiS), which requests information from all sites on incidents, including e.g. community complaints (TOOL/METHOD: internal company methods). As we are consciously managing and monitoring our water use and quality parameters at site level, we currently do not expect this issue to become relevant in the future. |

Implications of water on your key commodities/raw materials | Not relevant, included |
| WHY/Relevance: This issue is not relevant BECAUSE at the moment water quantity and quality meet our current demands without materially impacting the environment. However, we are conscious of the importance of water for our business and, with a preventive approach, we analyze in detail the most relevant water-related aspects for our business. |
| HOW/Assessment: Regarding the supply of raw materials, our Supplier Code of Conduct (SCoC) and our Sustainability Contract Clause are the main strategy to protect us against sustainability related supply risks, e.g. it contains aspects related to water management and responsible use water. The SCoC is an important component for supplier selection and evaluation like sustainability online assessments and on-site audits. In 2020, Bayer requested 0.72% (approx. 701 out of 97,362) suppliers, representing approx. 20.6% of the total procurement spend, to report on water management. Through partnerships, we further drive these topics. Supplier evaluation was conducted by a leading web-based service provider of sustainability performance evaluations (TOOL/METHOD: OTHER: (Ecovadis) for sustainability performance monitoring. Besides, the main initiatives in which we foster the engagement with suppliers and their evaluation in relation to sustainability topics are “Together for Sustainability” and the “Pharmaceutical Supply Chain Initiative”. Based on these regular evaluations and projections, we currently do not expect this issue to become relevant in the future. |

Water-related regulatory frameworks | Relevant, always included |
| WHY/Relevance: With its business focus and a water use of 57 million m3, Bayer operates in a water-intensive industry. This is why water-related regulatory frameworks are relevant for our business as we have to comply with various water-related laws and regulations. For example, e.g. the Water Framework Directive in Europe. Compliance with regulatory frameworks is essential for our long-term economic success. We do not tolerate any violation of laws, codes of conduct or internal regulations. Compliant and lawful conduct also factors into the performance evaluations of all managerial employees. |
| HOW/Assessment: The regulatory frameworks and changes in regulation are taken into account in our risk management system, as well as in the analysis made by our HSE and sustainability managers (TOOL/METHOD: INTERNAL COMPANY METHODS, ERM). Potential compliance risks are entered into a global compliance risk management database that we use to develop suitable measures for specific processes, business activities or countries, for example. At a local level, these aspects are also factored in our internal assessments at the production sites (e.g. in the context of their ISO 14001 certifications) and included in HSE audits. Comply with the relevant wastewater thresholds at our production sites worldwide is reviewed by supervisory authorities and external auditors and also at regular intervals through on-site audits by internal experts. |

Status of ecosystems and habitats | Relevant, always included |
| WHY/Relevance: Biodiversity is an important asset to us, which we aim to protect and preserve in the scope of all our activities. As crop management practices are one of the main drivers for biodiversity loss, biodiversity is of particular relevance for the activities of Bayer's Crop Science Division. An example of the relevance of the status of ecosystems and habitats for our business is shown by the importance of pollinators in agriculture as systems providing pollination services for many of our crops. It is estimated that five to eight percent of global crop production is directly attributable to animal pollination. |
| WHY/Relevance: As described above, clean water is a limiting factor for our production and THUS considered essential. Thereby, water-related regulatory frameworks are relevant for our business as we have to comply with various water-related laws and regulations. For example, e.g. the Water Framework Directive in Europe. Compliance with regulatory frameworks is essential for our long-term economic success. We do not tolerate any violation of laws, codes of conduct or internal regulations. Compliant and lawful conduct also factors into the performance evaluations of all managerial employees. |
| HOW/Assessment: The regulatory frameworks and changes in regulation are taken into account in our risk management system, as well as in the analysis made by our HSE and sustainability managers (TOOL/METHOD: INTERNAL COMPANY METHODS, ERM). Potential compliance risks are entered into a global compliance risk management database that we use to develop suitable measures for specific processes, business activities or countries, for example. At a local level, these aspects are also factored in our internal assessments at the production sites (e.g. in the context of their ISO 14001 certifications) and included in HSE audits. Comply with the relevant wastewater thresholds at our production sites worldwide is reviewed by supervisory authorities and external auditors and also at regular intervals through on-site audits by internal experts. |

Access to fully-functioning, safely managed WASH services for all employees | Relevant, always included |
| WHY/Relevance: Providing employees with access to fully-functioning, safely managed WASH services is relevant because clean water, sanitation and hygiene are important for us as mentioned in our water position and we consider it as relevant for employee satisfaction. For example, satisfaction could be impacted if the access to safe water, sanitation and hygiene (WASH) was not provided at certain sites, thus cutting across Bayer's commitment to the UN CEO Water Mandate. In 2020 Bayer actively participated in the Human Rights and WASH Working Group. In the past, we've invested significantly in clean water, sanitation and hygiene projects both at our facilities and in surrounding communities. The majority of our sites provide safe and clean drinking water for all employees, contractors, and visitors. |
| HOW/Assessment: HSE and sustainability managers constantly assess our HSE performance incl. water-related services and fully-functioning WASH services through our audits at sites (TOOL/METHOD: INTERNAL COMPANY METHODS). With Bayer's commitment to the UN CEO Water Mandate, Bayer has committed itself to implementing access to safe water, sanitation and hygiene at the workplace at an appropriate level of standard for all employees in all premises under our control. Our analysis shows a high level of alignment with the WASH guiding principles. However, wherever we detected performance gaps, we continue to close them. |

Other contextual issues, please specify | Please select |
Investors

Relevant, always included

We consider investors as relevant in our risk assessment because water-related risks and opportunities could have an impact on their investment decisions. For example, our investor base comprises investors that require our reports to evaluate our sustainability performance, including water-related topics, not meeting our investors’ expectations could negatively impact our investment decisions. We consider our investors as a relevant stakeholder group and include their relevant information on water topics in our Annual Report and in our CDP Water Security Report. Furthermore, we have regular dialogues with investors, analysts, and rating agencies and conduct roadshows and investor conferences as well as stockholder forums. We explain our strategy and implementation of our non-financial targets, and provide information on the most important aspects of our water-related activities, including water-related risks. An example of our investor relations activities is the “Together for Sustainability” and the “Pharmaceutical Supply Chain Initiative”.

Employees

Relevant, always included

Employees are relevant in water risk assessment because clean water, sanitation, and hygiene are important for us as an employer. Furthermore, they play a crucial role in determining employee satisfaction. The key employee-related risk factor considered is water-related risks affecting employee satisfaction. But satisfaction could be impacted if the access to safe water, sanitation and hygiene (WASH) was not provided at certain sites, thus cutting across Bayer’s commitment to the UN H2O Water Mandate, which reflects our commitment to ensure WASH access for all employees in all premises under our control. In 2020, Bayer actively participated in the Management of Human Rights and Water Security Group. METHOD OF ENGAGEMENT: We assess employees satisfaction with the help of institutionalized feedback discussions and regular employee surveys and implement any measures to reduce or prevent the employee risk. Relevant information is reported in our Annual Sustainability Report and the CDP Water Security Report.

Regulators

Relevant, always included

We consider regulators as relevant because water-related risks and opportunities could pose a risk to our investment decisions or a change in emission limits in wastewater which could result in higher operating costs. METHOD OF ENGAGEMENT: We keep an open dialogue with our local government agencies and ministries. We proactively engage with our local authorities regarding our water management priorities.

Local communities

Relevant, always included

We consider local communities as relevant in our risk assessment because the acceptance of the local community is key for the successful operation and reputation of Bayer. Further, local communities play a decisive role in the success of any investment project. The key risk we consider is a potential loss of reputation and acceptance within the community, e.g., due to water scarcity or exceeded annually renewable levels in the watershed. We are currently pursuing with authorities and ministries at local, national and international level including targeted discussions with political decision-makers and active involvement in specialist workshops and cooperation projects. Furthermore, Bayer is a member of the Development Alliance, Bay Area Council and Biocom, addressing water access and quality issues. In Thailand, we are a Member of the Federation of Thai Industries engaged in water-related topics in Thailand. Bayer is also engaging with the EU Commission on the topic of active pharmaceutical ingredients in the environment. Other examples of multi-stakeholder dialogues in which Bayer is actively involved are the National Water Stewardship Action Plans and the EU’s Water Framework Directive. We consider water users at a local level as relevant in our risk assessment because they could have an impact on the water quality and quantity in a shared river basin as the main risk factors considered. For example, if the water does not meet our quality requirements, e.g., having a high concentration of salts, it will not be appropriate for cooling purposes due to its corrosive characteristics to pipes. Moreover, if withdrawal rates from other water users go beyond annually renewable levels in the watershed, this could have an impact on the availability of water for our manufacturing purposes. METHOD OF ENGAGEMENT: We include other water users at a local level in our risk assessment and we continuously conduct comprehensive benchmarking and best practice analyses including other companies and competitors to identify risks and opportunities at a local level.

River basin management authorities

Relevant, always included

We consider river basin management authorities as relevant for all our sites because their regulatory framework and changes in regulation are included in our risk management system, as well as in the analysis made by our HSE and sustainability managers. At a local level, these aspects are also factored in our internal assessments at the production sites and included in HSE audits. At some sites, we also maintain periodic meetings with the authorities in order to follow potential regulations in regulation. For example, in California, USA, Bayer is active in the California Water Institute (CWI), the State Water Resources Control Board, and the San Francisco Bay Area Council. In Germany, we actively participate in environmentally-related working groups of the German Chemical Industry Association (VCI), as well as in the German-Irish Water Dialogue (GID). In India, for example, we participate in the Industrial Water Dialogue (IWD), a platform for businesses to discuss water-related issues.

Supplier assessments include their adherence to water-related regulation, for example with regard to discharge parameters and withdrawal levels and reputational aspects. METHOD OF ENGAGEMENT: We use water, risks and management aspects are covered through suppliers’ sustainability performance monitoring and by HSE audits. For example, through our regular supplier audits by external independent audit partners, Bayer audits suppliers as well as participating in initiatives such as Ecomaps (EcoVadis). However, the evaluation results are, e.g., related to water topics, are unsatisfactory, corrective measures are defined together with our suppliers, thus ensuring they observe environmental standards in the future. Regularly conducted follow-up audits and re-assessments enable Bayer to continually observe the environmental development of our suppliers and to initiate appropriate countermeasures in a timely manner. In 2020, Bayer requested 0.72% of our suppliers (approx. 701 out of 97,362 suppliers worldwide), representing approx. 20% of the total procurement spend. Through participation in the ecoVadis’ Sustainability Benchmarking Initiative, we actively participate in the methodology of the platform, which is based on the ecoVadis platform. This platform is also open to other companies, which enables other stakeholders to access this platform. Bayer is also an active member of the European Water Efficiency Platform (EWP) and the German Water Efficiency Platform (GWP).

Supplier assessments include their adherence to water-related regulation, for example with regard to discharge parameters and withdrawal levels and reputational aspects. METHOD OF ENGAGEMENT: We actively engage in open and trustful dialogue with employee representatives worldwide. The main dialogue formats are regular employee-briefing sessions and information events for managers, as well as the European Forum, at which employee representatives from all European sites engage in discussions with the Board of Management on issues of overarching relevance to the company. It is part of our management in water scarce regions to train employees for sustainable use of the resource. For example, we have several initiatives to create awareness for water use and consumption among employees. E.g. our site in Ica, Peru has set up the water stewardship committee, which aims at sensitizing employees about water resource conservation through a comprehensive management program from 2020. In Chile, Peru and Argentina, present monthly an update of the regional water conditions to the specific production teams with the purpose of create awareness for water use.

NGOs

Relevant, always included

We consider NGOs as relevant in our risk assessment because they publicly comment on certain company matters which might impact our reputation and therefore potentially our business growth as the risk factors discussed by NGOs. E.g., the topic of active ingredients in the (aquatic) environment is one of the stakeholder groups included in our regulatory and internal assessment through various methods of engagement. An important part of our stakeholder dialogue takes place in the direct vicinity of our sites. We are working on being recognized everywhere as a reliable partner and attractive employer that is aware of its social responsibility. In the case of investment projects for example, the stakeholder role in ensuring their support is crucial for the success of the project. Thus, we keep an open dialogue with community members and local management, which is supported by the respective country organization. This dialogue includes personal discussions with citizens’ initiatives, representatives of religious communities and the regional press. This community dialogue is anchored in a globally valid corporate policy on site management.
Water utilities at a local level

Relevant, always included

We consider water utilities/suppliers at a local level as relevant in our risk assessment BECAUSE they can strongly impact our operations e.g. through supply bottlenecks or major price fluctuations. As water is a limiting factor for our production, these RISKS are always factored in to our assessments. METHOD OF ENGAGEMENT: Bayer minimizes procurement-specific risks for goods and services of strategic importance, such as supply bottlenecks or major price fluctuations, through long-term contracts and active supplier management. In this way we ensure both the company's global competitiveness and smooth production processes. For example, Bayer verifies the observance of sustainability requirements by our suppliers through online assessments and on-site audits. Water utilities/suppliers at a local level are also included into water-related questions in the risk assessments. Furthermore, our sites are in regular contact with their water suppliers. One example of a multi-stakeholder dialogue in which Bayer was actively involved in was the national dialogue on trace substances in Germany under the patronage of the German environmental ministry. The dialogue involved stakeholder representatives from environmental associations, politics at local and national level, water utilities and industry.

METHOD OF ENGAGEMENT: Bayer minimizes procurement-specific risks for goods and services of strategic importance, such as supply bottlenecks or major price fluctuations, through long-term contracts and active supplier management. In this way we ensure both the company's global competitiveness and smooth production processes. For example, Bayer verifies the observance of sustainability requirements by our suppliers through online assessments and on-site audits. Water utilities/suppliers at a local level are also included into water-related questions in the risk assessments. Furthermore, our sites are in regular contact with their water suppliers. One example of a multi-stakeholder dialogue in which Bayer was actively involved in was the national dialogue on trace substances in Germany under the patronage of the German environmental ministry. The dialogue involved stakeholder representatives from environmental associations, politics at local and national level, water utilities and industry.

Other stakeholder, please specify

Please select

W3.3d

(W3.3d) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

i) APPLICATION OF TOOLS: In the past, we used the WBCSD Tool, Ceres or AQUASTAT to help us identify sites with water risks. Following the acquisition of our new Crop Science business, we reviewed our water risk procedures and tested several water tools including WRI Aqueduct, the WBCSD Global Water Tool, Pfister et al. and the Global Flood Hazard Frequency and Distribution Dataset. Ultimately, we chose Aqueduct to identify sites at water risk BECAUSE it is a state-of-the-art tool, providing a broad range of indicators, especially the Composite Indicator “Overall Water Risk”. To intersect the Aqueduct layers with our sites, we used the geographic information system tool ArcGIS.

THE TOOLS ARE USED BECAUSE they help us identifying sites with water risks. Internal methods e.g. discussions with the sites and experts are used IN ORDER TO control the relevance of the results for Bayer.

Whenever water risks are identified with these tools and deemed material to our company, they are integrated into OUR ENTERPRISE RISK MANAGEMENT. Our company-wide ERM covers financial and non-financial risks related to our direct operations and the value chain. We also integrate audits and web-based monitoring in our SUPPLY CHAIN MANAGEMENT BECAUSE it offers a standardized assessment for an extensive scope of suppliers.

The tools are APPLIED COMPANY-WIDE e.g. the WBCSD tool and WRI Aqueduct were applied to ALL environmentally-relevant SITES. In this process, 14 sites at risk, with the potential to have a substantive impact on the business (additional threshold: >0.1% of total Bayer water use), were identified in 2020.

Looking at our suppliers, we have requested 0.72% (approx. 20.6% of total procurement spend) in 2020 to report on water management. Because it is not feasible to assess all 97,362 suppliers, suppliers are selected based on country and business category sustainability risks and strategic importance. In addition to the assessments of EcoVadis, on-site audits are conducted by external auditors.

Water is integrated into our risk assessment using a LONG-TERM PERSPECTIVE, e.g. likelihood of occurrence is calculated based on a period of up to 10 YEARS.

ii) HOW OUTCOMES ARE USED TO INFORM INTERNAL DECISION-MAKING: As mentioned above, whenever water risks are identified and deemed material to our company, they are integrated into Bayer’s ERM. The risk owners decide on a targeted risk level based on a cost-benefit analysis and define a risk management strategy as well as risk management measures. These include risk avoidance, risk reduction, risk transfer and risk acceptance. We address site-level risks e.g. flooding through our local crisis organization. We have implemented early warning systems, ensure continuous reporting and carry out regular crisis simulation exercises. The risk owners assess such risks and define appropriate measures together with Business Continuity Management and the responsible specialist units. Supplier online assessments and audits are analyzed and documented in order to define improvement measures in case of unsatisfactory results. Bayer requests the suppliers to rectify the identified weaknesses based on specific action plans.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain
(W4.1a) How does your organization define substantive financial or strategic impact on your business?

i. Bayer defines a risk as having a substantive financial impact, if the identified risk is relevant for the respective risk owner and/or function. E.g. with regard to our Product Supply Function, a potential impact of €7 million cash flow is regarded to be substantive and monitored in the database.

INDICATORS/THRESHOLDS:

Risks are classified as high, medium or low to assess their materiality regarding the overall risk portfolio. Impact is rated according to quantity and/or quality. The quantitative assessment reflects the possible loss of cash flows. Risks are evaluated with regard to their potential impact and likelihood of occurrence, taking into account established mitigation measures, in a 5x5 matrix.

1) The likelihood of occurrence is assessed on a scale ranging from very unlikely (<10%), unlikely (10%-30%), possible (30-50%), likely (50-70%), very likely (>70%) over a period of 10 years.

2) The potential impact is determined on a scale from moderate (>€150-250 mio), medium (>€250-750 mio), significant (>€750-1,500 mio), major (>€1,500-2,500 mio) to severe (>€2,500 mio).

The qualitative assessment is based on criteria such as the impact on our strategy or reputation, the potential loss of stakeholder confidence, and the potential violation of sustainability principles. The higher rating, qualitatively or quantitatively, determines the overall assessment.

Risks with a potential impact of >€5,000 million are separately examined by the Bayer Assurance Committee to determine their potential to endanger the company’s continued existence. A report on the risk portfolio is submitted to the Board of Management and the Audit Committee of the Supervisory Board at least once a year.

The DEFINITION APPLIES to our direct operations and to our value chain. Risks are REVIEWED in our risk management system, incl. risks from seasonal fluctuations, natural disasters or actives in the environment.

For EXAMPLE, actives in the environment have been assessed qualitatively with regard to sustainability principles and reputation/stakeholder confidence.

ii. In addition, sites that are located in regions considered at water risk according to WRI Aqueduct and are “large water users” are DEFINED to have the potential to have a substantive impact on the business with regard to water-related risks.

INDICATORS/THRESHOLDS:

1) The Baseline Water Stress Indicator (BWS) and the Overall Water Risk Score (OWR) from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region. Thresholds: BWS: “extremely high” = total annual water withdrawal >60% of average annual available blue water; OWR = “high” and “extremely high” = Default weighting>3 (computed out of 12 water risk indicators in WRI Aqueduct e.g. BWS, inter-annual and seasonal variability, flood occurrence, drought severity, groundwater stress, access to water, threatened amphibians).

2) In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as “large user” when they use >0.1% of our total water use.

The DEFINITION also APPLIES to our direct operations. Metrics and thresholds are REVIEWED continuously, incl. external resources/research, internal discussions with experts and an internal review process at site/divisional level.

EXAMPLE: Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (OWR “high” and “extremely high” or BWS “extremely high”) and are defined as “large water users”.

iii. Suppliers have the potential to have a SUBSTANTIVE IMPACT on the business if they are classified as strategically important or potential high-risk suppliers.

INDICATORS/THRESHOLDS:

1) Strategically important suppliers are defined as suppliers that have a major influence on business, incl. procurement spend and long-term collaboration prospects (3-5 years).

2) The risk definition for potential high-risk suppliers is based on country and business category sustainability risks.

The DEFINITION APPLIES to our entire supply chain. Data are REVIEWED and updated continuously. Strategically important and potential high-risk suppliers’ sustainability performance, incl. water-related aspects, is evaluated via assessments and on-site audits.

EXAMPLE: In 2020, Bayer evaluated almost all suppliers with a significant procurement spend (> €0.5 million p.a., this threshold was reduced compared to 2019, therefore the number of suppliers requiring evaluation increased) that are regarded as potentially high-risk suppliers due to their combined country and category sustainability risk. Within the scope of our supplier sustainability evaluations, we have identified a country risk particularly for China and India. In this respect, we conducted supplier trainings and workshops in China and India in cooperation with PSCI and TIS.
(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>1-25</td>
<td>The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: “high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (“high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator) and are defined as “large water users” (>0.1% of Bayer’s total water use).</td>
</tr>
</tbody>
</table>

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin

<table>
<thead>
<tr>
<th>Chile</th>
<th>Other, please specify (Maipo, North Chile, Pacific Coast)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities

<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company’s total global revenue that could be affected

Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: “high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (“high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator) and are defined as “large water users” (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Spain</th>
<th>Other, please specify (Tagus 2, Tagus)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities

<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company’s total global revenue that could be affected

Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: “high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (“high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator) and are defined as “large water users” (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.
are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer's total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company's annual electricity generation that could be affected by these facilities

<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company's total global revenue that could be affected

Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company's annual electricity generation that could be affected by these facilities

<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company's total global revenue that could be affected

Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company's annual electricity generation that could be affected by these facilities

<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company's total global revenue that could be affected

Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.
The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: “high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as “large user” when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (“high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator) and are defined as “large water users” (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company’s annual electricity generation that could be affected by these facilities</th>
<th>% company’s global oil & gas production volume that could be affected by these facilities</th>
<th>% company’s total global revenue that could be affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>1</td>
<td>1-25</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Unknown</td>
</tr>
<tr>
<td>Mexico</td>
<td>1</td>
<td>1-25</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Balsas</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Other, please specify (Lerma / Salamanca, Rio Lerma)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Unknown

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Chile</th>
<th>Other, please specify (Maipo, North Chile, Pacific Coast)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>
The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Rapel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td></td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>1-25</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Rapel</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Other, please specify (Sarya, India West Coast)</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>1-25</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Comment

The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: "high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as "large user" when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct ("high" and "extremely high" in the Overall Water Risk Indicator or "extremely high" in the Baseline Water Stress Indicator) and are defined as "large water users" (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.
production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Other, please specify (Rio de Janeiro Coast, Uruguay - Brazil, South Atlantic Coast)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Unknown

Comment
The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: “high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as “large user” when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (“high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator) and are defined as “large water users” (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Other, please specify (Ica, Peru, Pacific Coast)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Unknown

Comment
The Overall Water Risk Indicator and the Baseline Water Stress Indicator from the WRI Aqueduct Water Tool have been used to measure if a site is located in a water-scarce region (threshold: “high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator). In BaySIS, we monitor the annual water use of all environmentally-relevant sites. We define them as “large user” when they use >0.1% of our total water use. Applying these thresholds to all environmentally-relevant sites worldwide, 14 Bayer sites were identified based on 2020 data as having the potential to have a substantive impact on the business as they are located in a region considered at water risk according to WRI Aqueduct (“high” and “extremely high” in the Overall Water Risk Indicator or “extremely high” in the Baseline Water Stress Indicator) and are defined as “large water users” (>0.1% of Bayer’s total water use). Bayer divisions operate global production networks with multiple production steps for a single product across different sites (internal and external). We operate sites around the world. As of December 31, 2020, the Bayer Group comprised 385 consolidated companies in 83 countries. Depending on market and customer demands productions have individual back up and flexibility strategies. Revenue contribution of individual sites can therefore not directly be allocated.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Other, please specify (GHAAS Basin3349)</th>
</tr>
</thead>
</table>

CDP
Primary potential impact
Brand damage

Company-specific description
Pollution due to chemical residues in water is a general problem in several countries, e.g. in India, and not a specific Bayer problem. This circumstance might be picked up by the media or NGOs, drawing public attention to the topic. EFFECT ON BAYER: With the zero liquid discharge strategy of the Indian government this risk is especially relevant in India. Not meeting the wastewater quality norms would lead to a stoppage of production by the State Pollution Control Board. Our facilities in India installed online analyzers for monitoring critical parameters at the final WWTP (waste water treatment plant) outlet, which are linked to the Pollution Control Board server with live data upload and automatically shut off the discharge valve in case of exceeding the limits. Thus, we see no risk of discharging any waste water not meeting the norm. However, we believe that there is a reputational risk related to water pollution in India. If the topic receives high media coverage, this could affect our brand image, even if our own production wastewaters are not affected. METHOD TO IDENTIFY IMPACT: We thoroughly analyze Bayer’s exposure to risks incl. water via our ERM, which reviews the risk portfolio twice a year. Pollution due to water discharges has not been identified as a risk. Based on internal discussions with the Corporate Health, Safety and Environment Dpt. (HSE) and our global water risk assessment, we identified a low reputational risk with brand damage as primary impact.

Timeframe
More than 6 years

Magnitude of potential impact
Low

Likelihood
About as likely as not

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
47300000

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact
CALCULATION APPROACH: Brand damage could have an impact on our stock price. For example, we estimated an impact of a 0.1% decrease of our stock price, which would affect the company's market capitalization by around EUR 47.3 million based on year-end 2020 market capitalization. TIMESCALE: As financial markets can react quickly, we assume a short-term timescale for this effect.

Primary response to risk
Engage with local communities

Description of response
Bayer is actively engaged in a continuous dialogue with stakeholders including e.g. employees, customers, neighbors, NGOs, politicians and the general public. We are actively participating in stakeholder panels e.g. at river-basin level or irrigation boards. In India, we are actively participating in the Industry forum of the Estate. Waste management incl. water and wastewater are part of the agenda points for various site level meetings and interactions. The site conducts trainings on the subject as part of the ISO 14001 activities. Every employee from each level takes part and contributes to the subject and improvement measures. To create awareness for water management, various boards are displayed at prominent locations across the site. Furthermore, we take action to ensure the correct application of our products. Other relevant actions are the comprehensive monitoring systems at this site to ensure appropriate reaction times and risk management responses. The entire volume of the generated industrial waste water is pumped to the WWTP for treatment through a ground pipeline. There is a holding capacity of several days between receipt of generated process waste water in the WWTP and discharge after biological treatment and final discharge. This provides ample scope for action even in worst case scenario of failure in treatment process.

Cost of response
0

Explanation of cost of response
There are no specific costs related to this response strategy as the above measures are part of the normal operating procedures and HSE management at our sites.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Germany</th>
<th>Other, please specify (all EU basins)</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Regulatory</th>
<th>Tighter regulatory standards</th>
</tr>
</thead>
</table>

Primary potential impact
Constraint to growth

Company-specific description
EXPLANATION: Increasing requirements for the use of crop protection, pharmaceutical or chemical products under the EU Green Deal for existing and upcoming EU Directives may lead to restrictions in some uses and an increasing need for measures to reduce the concentration of respective active ingredients mainly in surface water. This might impact individual Bayer products. This discussion is relevant for whole Europe with specific aspects (like trace substances) for Germany where Bayer’s headquarter is located. EFFECT ON BAYER: In a worst-case scenario, active ingredients might be prohibited in certain uses representing a constraint to growth for Bayer. DETAILS ON METHOD FOR IDENTIFYING THE PRIMARY IMPACT: The risk was analyzed as part of our company-wide Enterprise Risk Management (ERM) evaluating the risk with regard to likelihood of occurrence (on a 5-step scale as described in question 4.1a) and impact. As the impact could not be evaluated financially, it was evaluated qualitatively in terms of reputation and sustainability and found to be low.
Timeframe
4-6 years

Magnitude of potential impact
Low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1

Potential financial impact figure - maximum (currency)
149000000

Explanation of financial impact
During our risk assessment, it was concluded that the primary potential impact cannot be evaluated financially. Following our risk analysis method, the risk was evaluated qualitatively with regard to reputational effects and sustainability and was classified as risk with low impact. For risks that can be evaluated quantitatively, risks with low impact are defined to have a financial impact of less than EUR 150 million. Therefore, we came up with an estimated financial impact between EUR 1 and 149 million for this risk. Timescale: Our ERM takes a long-term perspective e.g. likelihood of occurrence is calculated based on a period of 10 years.

Primary response to risk
Engage with regulators/policymakers

Description of response
Bayer was actively involved in the national dialogue on trace substances under the patronage of the German environmental ministry. The dialogue involved representatives from environmental associations, politics, water utilities and industry. Bayer is also engaging with the EU Commission on the topic. Active pharmaceutical ingredients (API) can enter the environment through human or animal excreta, improper disposal or during production. Surface waters are particularly relevant. Pharmaceuticals and Consumer Health carry out ecotoxicological investigations of pharmaceutical residues and degradation products to assess the potential environmental impact of these products. In connection with the approval process for human and veterinary pharmaceuticals in Europe and the US, an environmental risk assessment takes place for all new active ingredients. Furthermore, to our knowledge, the existing concentrations of individual API in drinking water do not have any relevant adverse effects on human health. On the basis of its report on mixtures of API in drinking water published in 2017, the WHO currently does not identify any immediate health risks and sees no need to act in the short term. To further guarantee the safety of drinking water resources partly against the background of a potential increase in the use of pharmaceuticals, the WHO recommends that this issue be observed comprehensively over a longer period of time. Bayer is actively participating in the stakeholder dialogue.

Cost of response
4400000

Explanation of cost of response
As Bayer's EU lobbying work also included water-related discussions, we added the costs incurred at our liaison offices in Europe in 2020 to estimate the costs of our engagement with policy makers in the EU. Including human resources, material and project expenses, the costs incurred at our liaison offices totaled approximately EUR 2 million in Berlin, Germany and EUR 2.4 million in Brussels, Belgium. The costs represent 2020 costs and are recurring each year.
Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>India</th>
<th>Other, please specify (Several basins in developing countries)</th>
</tr>
</thead>
</table>

Stage of value chain

<table>
<thead>
<tr>
<th>Stage of value chain</th>
<th>Supply chain</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Type of risk & Primary risk driver</th>
<th>Reputation & markets - Negative media coverage</th>
</tr>
</thead>
</table>

Primary potential impact

<table>
<thead>
<tr>
<th>Primary potential impact</th>
<th>Company brand damage</th>
</tr>
</thead>
</table>

Company-specific description

EXPLANATION: Undetected sustainability risks of one or more suppliers could potentially lead to a serious social, ethical or environmental issue with large negative media coverage. For example, low enforcement of wastewater standards for pharmaceutical or chemical suppliers especially in developing countries could potentially lead to incidences of increased respective concentrations of harmful substances in environmental water bodies and potentially in drinking water. Such an event took place in India in 2019, where there was a spill-over related to suppliers of several companies in the industry. After diligent investigations by Bayer, it was confirmed that Bayer suppliers were not affected. EFFECT ON BAYER: A sustainability issue at a supplier company may occur and lead to negative media coverage, affecting public opinion, Bayer image and perception by stakeholders. The main consequence would be a potential reputational impact resulting in increased organizational effort or interruption of supply as we can't use the supplier any longer. If such incidences occur and are picked up by (social) media or NGOs, they impose a reputational risk for the entire industry, including Bayer. Even if Bayer suppliers are not affected, Bayer could be made partially or fully responsible in the public opinion. DETAILS ON METHOD FOR IDENTIFYING THE IMPACT: The risk was analyzed as part of our company-wide Enterprise Risk Management (ERM) evaluating the risk with regard to likelihood of occurrence (on a 5-step scale as described in question 4.1a) and impact. As the impact could not be evaluated financially, it was evaluated qualitatively in terms of reputation and sustainability and found to be significant.

Timeframe

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>1-3 years</th>
</tr>
</thead>
</table>

Magnitude of potential impact

<table>
<thead>
<tr>
<th>Magnitude of potential impact</th>
<th>Medium</th>
</tr>
</thead>
</table>

Likelihood

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Unlikely</th>
</tr>
</thead>
</table>

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure - minimum (currency)

750000000

Potential financial impact figure - maximum (currency)

1500000000

Explanation of financial impact

During our risk assessment, it was concluded that the potential impact on reputation cannot be evaluated financially. Following our risk analysis method, the risk was evaluated qualitatively and was classified as risk with “significant” impact (scales “sustainability” and “reputation/stakeholder confidence”) according to Bayer’s risk methodology (=medium impact according to CDP drop down options). For risks that can be evaluated quantitatively, risks with significant impact are defined to have a financial impact of EUR 750 million to 1,500 million. Therefore, we came up with an equivalent financial impact between EUR 750 and 1,500 million for this risk. Timescale: Our risk management takes a long-term perspective e.g. likelihood of occurrence is calculated based on a period of 10 years.

Primary response to risk

<table>
<thead>
<tr>
<th>Primary response to risk</th>
<th>Supplier engagement - Increase supplier reporting on water</th>
</tr>
</thead>
</table>

Description of response

Our Supplier Code of Conduct (SCoC) and our Sustainability Contract Clause are the main strategy to protect us against sustainability related supplier risks, e.g. it contains aspects related to water management and responsible water use. The SCoC is an important component for supplier selection and evaluation like sustainability online assessments and on-site audits. In 2020, Bayer requested 0.72% (ca. 701 out of 97,362 suppliers), representing approx. 20.6% of the total procurement spend, to report on water management. Through partnerships, we further drive those topics. Supplier evaluation was conducted by a leading web-based service provider of sustainability performance evaluations (EcoVadis) for sustainability performance monitoring. Besides, the main initiatives in which we foster the engagement with suppliers and their evaluation in relation to sustainability topics are “Together for Sustainability” and the “Pharmaceutical Supply Chain Initiative”.

Cost of response

318000

Explanation of cost of response

To estimate the reported costs we summed up the membership fees for the two supplier initiatives and the interface to EcoVadis. In 2020 we spent more than EUR 118,000 for membership fees for supplier initiatives and EcoVadis and about EUR 200,000 on initiatives related to the engagement with suppliers and their assessment and audits in relation to sustainability topics, including water. In addition, we conduct internal HSE audits and supplier-paid TFS audits and EcoVadis assessments. As these are part of our regular HSE management or paid by suppliers, we do not include them as extra costs.
Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Type of opportunity</th>
<th>Products and services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary water-related opportunity</td>
<td>Increased sales of existing products/services</td>
</tr>
</tbody>
</table>

Company-specific description & strategy to realize opportunity
The OPPORTUNITY is Crop Science's excellent position to offer products and services that support improved cultivation techniques and thus improve water management in agriculture. This opportunity is considered STRATEGIC BECAUSE the whole agricultural business is strongly tied to water and weather phenomena. ACTION TO REALIZE this opportunity: Crop Science offers farmer trainings and promotes water-saving cultivation systems. For EXAMPLE, • Our digital farming platform Climate FieldView™ enables farmers to improve their yields through data support. This takes place through the sensor-based collection and storage of large volumes of machine-generated agronomic data directly at the farmers' accounts. The application of this data not only helps farmers, but also creates substantial advantages for the environment: thanks to precision agricultural machinery and digital tools, inputs such as seeds, water, fertilizer and crop protection products are only used when and where they are necessary. Climate FieldView™ is currently available in North America, South America, Turkey, South Africa and Europe. • With the Digital Farming approach and our expanding Smallholder Farming Initiative we promote innovations, e.g. helping farmers to enhance their water efficiency in countries such as India and Ghana. Examples of Digital Farming solutions are spraying tools and auto-steering or GPS-controlled tractors. • In July 2017, Bayer and the Israeli company Netafim Ltd. joined forces to enhance the application of crop protection products through drip irrigation systems. The new approach called DripByDrip focuses on tailored irrigation solutions enabling targeted use of crop protection products leading to increased yield with fewer resources and inputs. • Bayer continues to use HydroBio, which uses satellite imagery, soil data and hyper-local weather data to deliver irrigation insights for farmers to help improve irrigation water-use efficiency and maximize yields. In 2019 we introduced Smart Center in Argentina providing irrigation recommendations to farmers and learning opportunities around water conservation strategies.

Estimated timeframe for realization
More than 6 years

Magnitude of potential financial impact
High

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
88000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
FINANCIAL IMPLICATIONS apply to Crop Science as a whole with sales of EUR 18.8 billion in 2020 of which crop protection has a major impact with EUR 8.8 billion. The global seed and crop protection market as a whole grew moderately in 2020 (+2%; 2019: +0%). For Crop Science, we expect sales growth of ~2% (Fx & portf. adj.) for FY 2021. A continued growth of the crop protection demand by 1% (compared to 2020) would translate into EUR 88 million additional revenues. Our offerings of products/services helping farmers to use water more efficiently are contributing to this growth.

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Viluco</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Chile</td>
</tr>
</tbody>
</table>

Other, please specify (Maipo, North Chile, Pacific Coast)

Latitude
-33.797945

Longitude
-70.775807

Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
65

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
65

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
0

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
In 2020, withdrawals increased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 2

Facility name (optional)
Alcala de Henares

Country/Area & River basin

Latitude
40.487748

Longitude
-3.38913

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
68

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
68
Total water discharges at this facility (megaliters/year)
46
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
46
Total water consumption at this facility (megaliters/year)
46
Comparison of total consumption with previous reporting year
Lower
Please explain
In 2020, water discharges and consumption decreased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 3
Facility name (optional)
El Ejido
Country/Area & River basin
Spain
Other, please specify (Spain, South and East Coast)
Latitude
36.724435
Longitude
-2.772505
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
71
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
71
Total water discharges at this facility (megaliters/year)
0
Comparison of total discharges with previous reporting year
Much lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
1
Comparison of total consumption with previous reporting year
Much lower
Please explain
In 2020, withdrawals increased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 4
Facility name (optional)
Petit
Country/Area & River basin

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Latitude
-26.1087
Longitude
28.3593
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
70
Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
70
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
0
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
3
Comparison of total consumption with previous reporting year
Much higher

Please explain
In 2020, withdrawals decreased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 5
Facility name (optional)
San Juan de Abajo
Country/Area & River basin
Mexico Other, please specify (Ameca / Ixtapa, Pacific Central Coast)

Latitude
20.790748
Longitude
-105.204344
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
75
Comparison of total withdrawals with previous reporting year
Much higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
75
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
0
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
1
Comparison of total consumption with previous reporting year
About the same
Please explain
In 2020, withdrawals increased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 6

Facility name (optional)
Latina and Sicily

Country/Area & River basin

<table>
<thead>
<tr>
<th>Italy</th>
<th>Other, please specify (Garigliano, Italy, West Coast)</th>
</tr>
</thead>
</table>

Latitude
41.467567

Longitude
12.903597

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
81

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
24

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
55

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
2

Total water discharges at this facility (megaliters/year)
1

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
1

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
2

Comparison of total consumption with previous reporting year
Much lower

Please explain
In 2020, withdrawals increased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 7

Facility name (optional)
Lerma

Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Other, please specify (Lerma / Toluca, Rio Lerma)</th>
</tr>
</thead>
</table>
Latitude
19.28872

Longitude
-99.535833

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
89

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
89

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/dentrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
66

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
66

Total water consumption at this facility (megaliters/year)
86

Comparison of total consumption with previous reporting year
Much higher

Please explain
In 2020, withdrawals and consumption increased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 8

Facility name (optional)
Tlaxcala

Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Balsas</th>
</tr>
</thead>
</table>

Latitude
19.308497

Longitude
-98.391946

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>
<table>
<thead>
<tr>
<th>Water Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total water withdrawals (megaliters/yr)</td>
<td>122</td>
</tr>
<tr>
<td>Comparison of total withdrawals</td>
<td>Much higher</td>
</tr>
<tr>
<td>Withdrawals from fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - renewable</td>
<td>122</td>
</tr>
<tr>
<td>Withdrawals from groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from produced/entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from third party sources</td>
<td>0</td>
</tr>
<tr>
<td>Total water discharges (megaliters/yr)</td>
<td>50</td>
</tr>
<tr>
<td>Comparison of total discharges</td>
<td>Lower</td>
</tr>
<tr>
<td>Discharges to fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to brackish surface water</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to third party destinations</td>
<td>50</td>
</tr>
<tr>
<td>Total water consumption (megaliters/yr)</td>
<td>54</td>
</tr>
<tr>
<td>Comparison of total consumption</td>
<td>Lower</td>
</tr>
</tbody>
</table>

Please explain

In 2020, water discharges and consumption decreased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

<table>
<thead>
<tr>
<th>Facility Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility reference number</td>
<td>Facility 9</td>
</tr>
<tr>
<td>Facility name (optional)</td>
<td>La Charca</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Mexico</td>
</tr>
<tr>
<td>Other, please specify (Lerma / Salamanca, Rio Lerma)</td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>20.42381</td>
</tr>
<tr>
<td>Longitude</td>
<td>-101.059221</td>
</tr>
<tr>
<td>Located in area with water stress</td>
<td>Yes</td>
</tr>
<tr>
<td>Primary power generation source</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil & gas sector business division</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total water withdrawals at this facility</td>
<td>136</td>
</tr>
<tr>
<td>Comparison of total withdrawals</td>
<td>Much higher</td>
</tr>
<tr>
<td>Withdrawals from fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water</td>
<td>0</td>
</tr>
</tbody>
</table>
Withdrawals from groundwater - renewable
136
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
10
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
10
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
10
Comparison of total consumption with previous reporting year
Higher
Please explain
In 2020, withdrawals, water discharges and consumption increased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 10
Facility name (optional)
Melipilla
Country/Area & River basin
Chile
Other, please specify (Maipo, North Chile, Pacific Coast)

Latitude
-33.677121
Longitude
-71.151965
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
238
Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
106
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
123
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
9
Total water discharges at this facility (megaliters/year)
0
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
9
Comparison of total consumption with previous reporting year
Much lower
Please explain
In 2020, withdrawals and consumption decreased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.
Facility reference number
Facility 11
Facility name (optional)
Santa Julia
Country/Area & River basin
Chile
Latitude
-34.0611
Longitude
-70.75904
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
314
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
314
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
33
Comparison of total discharges with previous reporting year
Much lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
33

Total water consumption at this facility (megaliters/year)
26

Comparison of total consumption with previous reporting year
Much lower

Please explain
In 2020, water discharges and consumption decreased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

Facility reference number
Facility 12

Facility name (optional)
Vapi

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>Other, please specify (Sarya, India West Coast)</th>
</tr>
</thead>
</table>

Latitude
20.368748

Longitude
72.93512

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
510

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
8

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
502

Total water discharges at this facility (megaliters/year)
214

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
214

Total water consumption at this facility (megaliters/year)
203

Comparison of total consumption with previous reporting year
Lower

Please explain
In 2020, withdrawals, water discharges and consumption decreased. The deviations from last year values are due to several successful water efficiency projects, e.g. optimized cooling towers or condensate recovery.
Facility reference number
Facility 13

Facility name (optional)
Belford Roxo

Country/Area & River basin
Brazil Other, please specify (Rio de Janeiro Coast, Uruguay - Brazil, South Atlantic Coast)

Latitude
-22.7665

Longitude
-43.392301

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
594

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
542

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
52

Total water discharges at this facility (megaliters/year)
261

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
261

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
261

Comparison of total consumption with previous reporting year
Much higher

Please explain
In 2020, withdrawals, water discharges and consumption increased. The deviations from last year values still are due to improvements in the measurement and accounting process.

Facility reference number
Facility 14

Facility name (optional)
Ica

Country/Area & River basin
Peru Other, please specify (Ica, Peru, Pacific Coast)
Latitude
-14.0681
Longitude
-75.741904
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
659
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
659
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
108
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
108
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
112
Comparison of total consumption with previous reporting year
About the same
Please explain
In 2020, withdrawals decreased. The deviations from last year values still lie within the range which we consider as usual due to variations in production.

W5.1a
(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?
Water withdrawals – total volumes
% verified
76-100
What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the reasonable assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.
Water withdrawals – volume by source
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the limited assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.

Water withdrawals – quality
% verified
Not verified

What standard and methodology was used?
<Not Applicable>

Water discharges – total volumes
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the reasonable assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.

Water discharges – volume by destination
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the limited assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.

Water discharges – volume by treatment method
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the limited assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.

Water discharge quality – quality by standard effluent parameters
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the limited assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.

Water discharge quality – temperature
% verified
Not verified

What standard and methodology was used?
<Not Applicable>

Water consumption – total volume
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the limited assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.

Water recycled/reused
% verified
76-100

What standard and methodology was used?
Standard: ISAE 3000; Methodology: The auditor Deloitte has verified water data as part of the limited assurance for the Bayer Sustainability Report 2020, incl. the following procedures: recording of systems and processes for collection, analysis, validation and aggregation of data and their documentation on a sample basis; site visits; analytical procedures. Scope: Global: Water data is measured at site level and monitored annually at global level in our central Bayer Site Information System.
(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

(W6.1a) Select the options that best describe the scope and content of your water policy.

| Scope | Rationale: The Bayer Water Position is COMPANY-WIDE BECAUSE water is a GLOBAL topic and one of our MAIN ENVIRONMENTAL ASPECTS. Bayer provides innovative solutions to global challenges. The availability of fresh water represents such a challenge. Also, water is essential for us as a manufacturing company. THIS IS WHY our Water Position covers the selected content company-wide securing our license to operate. (ii) Overview: Our Water Position includes a description of our BUSINESS DEPENDENCY ON WATER outlining that water is a major rate-limiting factor for agriculture and the importance of fresh water for our energy- and water-intensive operations (also recognizing their LINKAGE). The position includes our commitment to reduce our BUSINESS IMPACT ON WATER by improving WATER-RELATED PERFORMANCE IN DIRECT OPERATIONS AND BEYOND e.g. with our own WATER USE REDUCTION and SUPPLIER targets, our commitment to drive site-specific projects for water reuse/recycling/reduction or waste water treatment and our commitment to develop INNOVATIVE PRODUCTS AND TECHNOLOGIES for the market, e.g. for improved waste water treatment. WATER STEWARDSHIP and water efficiency in AGRICULTURE is included in our commitment to ensure the supply of food through water-efficient products and farming techniques. We also include customer EDUCATION e.g. skills building for farmers as part of our product stewardship responsibilities. BEYOND COMPLIANCE, we also support water-related community projects. The position outlines our focus on the HUMAN RIGHT TO WATER AND SANITATION: we use our local presence to provide access to clean water and sanitation to our employees and the communities in which we operate. It outlines our focus on AWARENESS AND SKILLS BUILDING, e.g. by working with farmers and supporting education and science. The position further outlines our commitment to align with PUBLIC POLICY INITIATIVES e.g. multi-lateral partnerships. In 2021 we want to update our Water Position together with our Divisions.

<table>
<thead>
<tr>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide Description of business dependency on water</td>
<td></td>
</tr>
<tr>
<td>Description of business impact on water</td>
<td></td>
</tr>
<tr>
<td>Description of water-related performance standards for direct operations</td>
<td></td>
</tr>
<tr>
<td>Description of water-related standards for procurement</td>
<td></td>
</tr>
<tr>
<td>Reference to international standards and widely-recognized water initiatives</td>
<td></td>
</tr>
<tr>
<td>Company water targets and goals</td>
<td></td>
</tr>
<tr>
<td>Commitment to align with public policy initiatives, such as the SDGs</td>
<td></td>
</tr>
<tr>
<td>Commitment beyond regulatory compliance</td>
<td></td>
</tr>
<tr>
<td>Commitment to water-related innovation</td>
<td></td>
</tr>
<tr>
<td>Commitment to stakeholder awareness and education</td>
<td></td>
</tr>
<tr>
<td>Commitment to water stewardship and/or collective action</td>
<td></td>
</tr>
<tr>
<td>Acknowledgement of the human right to water and sanitation</td>
<td></td>
</tr>
<tr>
<td>Recognition of environmental linkages, for example, due to climate change</td>
<td></td>
</tr>
<tr>
<td>Other, please specify (Water efficiency in agriculture)</td>
<td></td>
</tr>
</tbody>
</table>

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes

(W6.2a)
(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Sustainability Officer (CSO)</td>
<td>RELATION TO WATER: The highest level of responsibility for water-related issues lies with Bayer’s CEO who also functions as Bayer’s Chief Sustainability Officer (CSO). As CSO he is responsible for the GROUP-WIDE SUSTAINABILITY PROGRAM INCL. WATER-RELATED TARGETS AND MEASURES. The position was selected to ensure that WATER-RELATED RISKS AND OPPORTUNITIES are identified AT GROUP-LEVEL and WATER-RELATED TARGETS AND MEASURES ARE DRIVEN GROUP-WIDE and integrated into Bayer’s business strategy. EXAMPLE: (1) in 2019 Bayer used the Aqueduct Water Risk Atlas to ascertain sites located in areas threatened by water scarcity. The CSO decided to set the target that 100% of these sites have a water management system by 2020. This target was achieved. (2) In addition, since 2021, we are part of the “Water and Climate Leaders” initiated by the World Meteorological Organization (WMO) to pursue and advocate for changes leading towards sustainable water management and water-related climate adaptation.</td>
</tr>
</tbody>
</table>

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - same meetings</td>
<td>i) WHO BRIEFS ON WHAT: All relevant risks, including water-related risks, are monitored by our integrated risk management system and are regularly reviewed by the Bayer Assurance Committee. The Committee is chaired by the Chief Financial Officer and meets twice a year. The results are reported to the Board of Management and approved by the Board of Management for publication in Bayer’s Annual Report. In addition, water-related strategic decisions are brought up in board discussions by the Head of Public Affairs, Science and Sustainability (PASS), the HSE Head or the CSO as needed. The HSE Head informs the board about environmental KPIs incl. water-related KPIs and target achievement in the context of the annual board meeting dedicated to the approval of our Annual Report (AR). The CSO and the CFO are informed several times by the AR taskforce during the reporting cycle from Aug to Feb. The HSE Head monthly reports HSE KPIs to the board. ii) CONTRIBUTION TO BOARD OVERSIGHT: The governance mechanisms selected contribute to an informed view of the board on water-related issues and ensure a coherent and Group-wide response, if needed. Examples: Through the reporting of water-related KPIs, the board can ensure a Group-wide response in case of any deviations of water parameters from the required values. Through the integration of water-related issues in major investment decisions, the regular review of water-related risks, and the integration of water-related issues in the review of strategic decisions or R+D priorities, the board can ensure e.g. an adequate inclusion of water risks and opportunities in our business, sustainability or risk management strategy. E.g. all capital expenditures above EUR 10 million undergo an ecological assessment; CAPEX above EUR 20 million go into the board. An example of a water-related board decision was the decision to sign the WASH Pledge as part of our Sustainability strategy.</td>
<td></td>
</tr>
</tbody>
</table>
(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Chief Sustainability Officer (CSO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
POSITION: The CSO is the Chairman of the Board of Management. In this position, he reports to the Supervisory Board. He is the direct superior of the Head of PASS (PA, Science & Sustainability) who leads the Group-wide Sustainability function. REPORTING NATURE: In REGULAR JOUR FIXES, the CSO and PASS Head discuss operational topics in the field of sustainability, incl. water-related issues. For REGULAR MEETINGS of the Board of Management, the Supervisory Board and the Sustainability Council the Group-wide sustainability strategy incl. water-related issues is discussed. Target achievement is reported ANNUALLY to the board in a REGULAR BOARD MEETING. DETAILS: The CSO is responsible for the Group-wide Sustainability Program incl. water-related targets and measures. He is also responsible for fulfilling Bayer’s commitment to the CEO Water Mandate. He signs off the CDP Water Request, the sustainability section in our Annual Report and our Sustainability Report incl. water KPIs and measures.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Board/Executive board Chief Sustainability Officer (CSO)</td>
<td>Improvements in waste water quality - direct operations</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-monetary reward</td>
<td>Board/Executive board Other, please specify (all employees)</td>
<td>Reduction of water withdrawals</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Please explain

<table>
<thead>
<tr>
<th>Role</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSO</td>
<td>Improvements in waste water quality - direct operations</td>
<td>i) DETAILS ON THE INDICATOR/S: Board members are incentivized on the attainment of sustainability KPIs, 30% OF THE DIVISIONAL COMPONENT WITHIN VARIABLE COMPENSATION is based on the attainment of qualitative targets including sustainability. As outlined in the Compensation Report of Bayer’s Annual Report, in 2020 sustainability targets for board members included to “integrate sustainability into divisional strategic plans and elevate sustainability objectives”. In addition, the board member responsible for HSE is also incentivized on the target „quality assurance and safety in production“. This includes adherence to regulations related to EMISSIONS INTO WATER. To ensure local water compliance, the responsibility is delegated through the direct reporting line down to the individual plant managers. i) RATIONALE: These indicators were chosen because compliance is essential for our long-term economic success and sustainability is a key strategic lever for Bayer. In 2019, we announced a comprehensive package of measures and new sustainability targets, pursuing our sustainability targets with the same vigor as our financial targets. THIS IS WHY the above indicators were chosen. From 2021 onward sustainability will also be part of the long-term incentives for all board members. The Supervisory Board defines those targets over a 4-year span, with a minimum, target and maximum value.</td>
</tr>
<tr>
<td>CSO</td>
<td>Reduction of water withdrawals</td>
<td>i) DETAILS ON THE INDICATOR/S: All Bayer employees globally can contribute to the worldwide innovation platform WeSolve to develop solutions, including those referring to water. Innovation coaches accompany the process starting from the submission of the idea until the finding of the solution. This process refers to all challenges, including water-related topics outlined in the performance indicator column. Another possibility for all Bayer employees is the Catalyst Box Program, where employees can get sponsorship and coaching to develop their business ideas. Innovation coaches accompany the process. During the 12-week program the team with 2-4 members gets a physical box with tools and learning materials, a budget of up to EUR 1,500, access to online courses, 4.5 hours of 1:1 coaching with experienced Lean Startup Coaches and a pitch training. This program refers to all business ideas and challenges, including water-related topics outlined in the performance indicator column. i) RATIONALE: Bayer has introduced the worldwide innovation platform WeSolve and the Catalyst Box Program to strengthen the innovation culture in all business areas and to enhance worldwide collaboration.</td>
</tr>
</tbody>
</table>

W6.5
Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

- Yes, direct engagement with policy makers
- Yes, trade associations
- Yes, funding research organizations

W6.5a

W6.5a What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/commitments?

PROCESS: Bayer’s organizational processes are designed to ensure a common approach for all direct and indirect engagement activities, consistent with our Sustainability Strategy - across divisions and geographies.

Sustainability is a core element of our Group Strategy and is the direct responsibility of Bayer’s CEO. In his role as CSO, he is supported by the Public Affairs, Science and Sustainability (PASS) function, which not only is responsible for the outreach to political stakeholders but also to develop strategies and identify areas of activity, targets, KPIs, management systems and corporate policies and compiles the Sustainability Report on behalf of the Board of Management.

The close interaction between Public Affairs and Sustainability ensure alignment and consistence with regard to our water commitments also in direct and indirect interactions with political stakeholders across the globe.

We are currently working on our Water Stewardship Strategy and continue our work on water targets together with our divisions. Our core elements within this topic are Operation, Value Chain and Partnering. Our plan is to set up a new overall water commitment, define targets and develop a water position based on our Water Stewardship Strategy.

ACTION FOR INCONSISTENCIES: This process ensures that there are no inconsistencies in our corporate advocacy actions. If the PASS function discovers inconsistency in local advocacy actions, the department would raise them with the country head.

W6.6

W6.6 Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1

W7.1 Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Long-term business objectives | 11-15 | i) ISSUES INTEGRATED: Through the establishment of sustainability goals we included water-related topics into our long-term non-financial business objectives (e.g. in supplier management or resource efficiency). For instance, we set the target to establish a water management at all sites in water-scarce regions focusing on issues such as wastewater standards and water efficiency.
ii) EXAMPLES HOW ISSUES ARE INTEGRATED: Within its Corporate Health, Safety and Sustainability Roadmap, Bayer sets specific goals to operationalize its objectives, including goals to assess and mitigate the risk of soil and groundwater contamination at all sites worldwide, and standards for wastewater emissions. This way, sustainability is integrated into our long-term business objectives, leading to projects with sustainability and business relevance. The development of non-financial goals changed the awareness of the importance of sustainability within the company for securing Bayer’s license to operate. The Supplier Code of Conduct also addresses a responsible water management by Bayer’s suppliers. By evaluating our suppliers we minimize potential risks in our supply chain and show our suppliers the importance of water in general, but also for Bayer in particular. |
| Strategy for achieving long-term objectives | 11-15 | i) ISSUES: Water resource considerations such as the development of drought tolerant plant varieties are factored into new product development and thereby have an IMPACT on our strategy for achieving long-term business objectives. Water-related issues to achieve our Water Position include e.g. KPIs on water emissions or projects, which provide access to clean water and sanitation to communities in which we operate, impacting our local acceptance.
ii) EXAMPLES HOW ISSUES ARE INTEGRATED: By including water resource considerations into our innovation strategy they influence our product development and improvements in resource efficiency. The OUTCOME is new products and services and thus the realization of new sales potentials. For instance, Bayer developed hybrid rice seeds that withstand abiotic and biotic challenges like stress and submergence. This helps safeguarding and increasing yields significantly, consequently improving livelihoods in countries like Philippines, India, Bangladesh that are struck by weather-related calamities. Bayer is developing direct seeded rice, a cropping system that not only reduces water requirements but also optimizes GHG emissions. The introduction of water KPIs has allowed us to implement improvement mechanisms, e.g. leading to cost saving opportunities due to improved resource efficiency. With our CEO Water Mandate commitment we commit to ensure access to safe water, sanitation and hygiene for all employees in all premises under our control. |
| Financial planning | 11-15 | i) ISSUES: Water issues integrated into financial planning, e.g. investment decisions, especially include water use and emissions into water.
ii) EXAMPLES HOW ISSUES ARE INTEGRATED: Water resource considerations are factored into location planning for new operations IMPACTING our investment decisions. According to Bayer’s Ecological Assessment of New Investments Guideline, all investments above EUR 10 million must be evaluated with regard to their environmental impact. The assessment includes both a product and process evaluation. The process evaluation assesses the impacts of the new investment projects on organisms and the local environment which are specific to the location and the facility (e.g. water use and emissions into water). The OUTCOME is an improved risk assessment at site level to secure long-term investments. As mentioned above, water resource considerations are factored into new product development and have an IMPACT on the rollout of new products and services with new sales potentials. For instance, Bayer developed and offers hybrid rice seeds that withstand abiotic and biotic challenges like stress and submergence. This helps safeguarding and increasing yields significantly and consequently improving livelihoods in countries that are struck by weather-related calamities. Bayer is also developing direct seeded rice, a cropping system which reduces water requirements and promotes convenience for ageing farmers and optimizes GHG emissions, especially Methane. |

W7.2
(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Water-related CAPEX (+/- % change)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Water-related OPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain

i) Explanation: According to Bayer’s Ecological Assessment of New Investments Guideline, all investments above EUR 10 million must be evaluated with regard to their environmental impact. The assessment includes a product and process evaluation. The process evaluation assesses the impacts of new investment projects, considering specific conditions of the location and the facility (e.g. water use, emissions into water). The water-related investments evaluated according to this guideline have stayed the same over the last years. This is why we assume that water-related CAPEX has stayed and will stay approximately the same. The same applies to our water-related OPEX. In 2020, we had water-related operating costs of approx. EUR 30 million, which are about the same as in the previous year. ii) Approx. EUR 25 million of water-related operating EXPENDITURE WERE FOR waste water treatment incl. pre-treatment and approx. EUR 5 million for Water incl. Cooling Tower Make-up Water.

W7.3

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

W7.3a

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

No

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, but we are currently exploring water valuation practices

Please explain

Bayer has analyzed the possibility to introduce an internal price of water as a possible tool to favor green investments. We came to the conclusion that an internal price on water is currently not meaningful for Bayer. Yet, WE CONSTANTLY REVISIT OUR ANALYSIS and conclusions in order to adapt to continuous developments and change. Rationale: Attributing financial value to the materiality of water risk is an emerging field. Upon make-or-buy assessments, internal water prices can bias the profitability of investments, thereby leading to unjustified outsourcing. In addition, due to specifics of our business, an internal price on water is not meaningful for Bayer and hence not a preferred tool to favor green investments.

W8. Targets

W8.1
Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide targets and goals</td>
<td>Targets are monitored at the corporate level</td>
<td>In the context of setting its non-financial Group targets, Bayer assesses its water performance in a holistic way since 2013. This includes, for example, the analysis of water parameters such as water use, quality and discharge, the identification of sites exposed to water risks using the World Resources Institute Aqueduct Tool as well as the analysis of site-specific water projects and accompanying initiatives in the local communities where we are active. As water is a local issue, we recognized the need to handle water targets at a local level. Our water management tools to identify site-specific water issues are based on BASIN SPECIFIC DATA. Based on this data, our sites set SITE-SPECIFIC TARGETS that fit to their individual water situation. Besides, we also set a GROUP-WIDE TARGET to ascertain whether all our sites that are located in water-scarce areas or in areas identified as being threatened by water scarcity have a water management system. We have set ourselves the target of achieving 100% coverage in 2020. This target was achieved. Using a monitoring tool developed by Bayer, the corporate PASS function annually analyzes the site data at corporate level including a site-specific risk review and progress analysis. During the non-financial target setting process we also analyzed possibilities to set ACTIVITY SPECIFIC TARGETS or goals. Following individual functional analyses, dedicated company-wide supplier targets and goals were set related to our supplier engagement activities, focusing on improving their sustainability management including water. We are currently working on our Water Stewardship Strategy and continue our work on water targets together with our DIVISIONS. Our core elements within this topic are Operation, Value Chain and Partnering. We will cover downstream and upstream activities. Our plan is to set up a new overall water commitment, define new targets and develop a new water position based on our Water Stewardship Strategy.</td>
</tr>
<tr>
<td>Business level specific targets and/or goals</td>
<td>Goals are monitored at the corporate level</td>
<td></td>
</tr>
<tr>
<td>Activity level specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/facility specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country level targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W8.1a
(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Target 1</th>
</tr>
</thead>
</table>

Category of target
Supplier engagement

Level
Company-wide

Primary motivation
Water stewardship

Description of target
As pointed out in our Global Water Position, Bayer aims at protecting water resources and improving water-use-efficiency both within the company and beyond. As part of our supplier management we have set the global target to continue to evaluate 100% of potentially high-risk suppliers with significant spend by 2020. This target was defined to improve sustainability practices in our supply chain, to support us to define improvement measures together with our suppliers but also to help Bayer minimize risks beyond its own operations. This target was achieved at 98%.

Quantitative metric
Other, please specify (% high-risk suppliers evaluated)

Baseline year
2013

Start year
2013

Target year
2021

% of target achieved
98

Please explain
As the overall coverage of our relevant high-risk suppliers through sustainability evaluations will continue to remain an important requirement for Bayer, Bayer will continue to strive for achieving 100% on this target. In 2021, it is furthermore planned to develop a new/additional KPI set regarding our sustainability activities. Furthermore Bayer will as well focusing on raising the percentage of “green scores” with our relevant suppliers.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Target 2</th>
</tr>
</thead>
</table>

Category of target
Other, please specify (Water management)

Level
Company-wide

Primary motivation
Water stewardship

Description of target
As pointed out in our Global Water Position, Bayer aims at protecting water resources and improving water-use-efficiency both within the company and beyond. A very important step regarding the systematic integration of water management into the business has been the definition of new targets in 2013, incl. the company-wide target of establishing a water management at 100% of sites in water-scarce areas by 2017. This ensured that all of these sites have implemented water management processes and develop site-specific measures and targets. Following the acquisition of the agriculture business in 2018, Bayer used the Aqueduct Water Risk Atlas to ascertain whether all our sites that are located in water-scarce areas or in areas threatened by water scarcity have a water management system, including the newly acquired business. In 2019, 95% of these sites already had a water management system. We have set ourselves the target of achieving 100% coverage in 2020. This target was achieved.

Quantitative metric
Other, please specify (% of sites with water management in scarce areas)

Baseline year
2013

Start year
2013

Target year
2020

% of target achieved
100

Please explain
In 2017, our target to establish water management at all sites in water-scarce areas was achieved. As water is a local issue, our individual sites have set local targets. Following the acquisition of the agriculture business in 2018, Bayer used the Aqueduct Water Risk Atlas to ascertain whether all our sites that are located in water-scarce areas or in areas threatened by water scarcity have a water management system, including the newly acquired business. Using a monitoring tool developed by Bayer, the corporate Public Affairs, Science and Sustainability (PASS) function annually analyzes the site data at corporate level including a site-specific risk review and progress analysis. Our analysis showed that, at the end of 2020, 100% of these sites have a water management system.
(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

Goal
Improve wastewater quality beyond compliance requirements

Level
Company-wide

Motivation
Risk mitigation

Description of goal
To underline the commitments in Bayer’s GLOBAL Water Position, Bayer strives to extend COMPANY-WIDE pollution prevention, e.g. by implementing our procedure for the evaluation of Active Ingredients (AI) in manufacturing wastewater. IMPORTANCE FOR BAYER: Water quality is very important for us as well as the achievement of water security, taking into consideration our total discharges of 24,566 megaliters in 2020. IMPLEMENTATION: We have successfully completed our pilot phase in 2019 and started to implement our AI procedure for all divisions in 2020. Our risk assessments are based on site-specific assumptions for AI emissions and PNECs (Predicted No Effect Concentrations derived from ecotoxicological studies), according to a guideline by AESGP, EFPIA and Medicines for Europe. These assessments are the basis for defining new threshold values of AI emissions and for enhancements of effluent treatment where needed, e.g. by applying alternative means of disposing of product-containing wastewater such as incineration, distillation or chemical treatment. Additionally, Bayer experts are working on the “Pharmaceuticals in the Environment” topic and are collaborating with other companies and organizations in external projects in this field, e.g. the Eco-Pharmaco-Stewardship initiative of European pharmaceutical associations. As a result we have adopted the initiative’s methods for the risk assessment of pharmaceutical traces in production wastewater as part of the AI procedure.

Baseline year
2020

Start year
2020

End year
2023

Progress
i) INDICATORS: We track the progress in terms of the PERCENTAGE OF ACTIVE INGREDIENTS (AI) THAT HAVE PASSED THE RISK ASSESSMENT as key indicator for the progress of implementation.
ii) The THRESHOLD FOR SUCCESS is the establishment and company-wide implementation of the threshold values related to AI concentration levels. The goal is to complete assessments of effluent/wastewater of 90% of our manufactured and formulated AI by the end of 2023.
iii) PROGRESS: The global procedure implementing the new AI assessment requirements was issued in 2020 after completing a multi-year pilot effort at various operating sites in all divisions. Currently, we are establishing the required calculation tools and a PNEC database. All sites have two years to complete their assessments from July 2020 on. Reevaluations must be done after 5 years or any major operation changes. Additionally, we are currently working to improve our Water Stewardship Strategy and continue our work on longer-term (e.g., 2030) water targets together with our divisions. Our core elements within this topic are Operation and Value Chain including Partnering. Our plan is to set up an ambitious new overall water commitment, define new targets and develop a new water position based on our Water Stewardship Strategy.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>Total water withdrawals, usage and discharges for all environmentally relevant sites worldwide; Water-related supplier engagement activities; Total recycled water for all environmentally relevant sites worldwide</td>
<td>ISAE 3000</td>
<td>Total water withdrawals, usage, discharges and the amount of recycled water as well as water-related supplier engagement activities are described within Bayer’s Sustainability Report 2020, which is verified by the auditor Deloitte. Thus, they are included in the verification process.</td>
</tr>
<tr>
<td>W8 Targets</td>
<td>Water goals and targets</td>
<td>ISAE 3000</td>
<td>Water targets and their monitoring are included in Bayer’s Sustainability Report 2020, which is verified by the auditor Deloitte. Thus, they are included in the verification process.</td>
</tr>
</tbody>
</table>

W10. Sign off

W-FI
Further information for W2.2:

To identify and monitor water-related environmental or compliance issues, we reviewed answers provided by our sites for Bayer's Annual Report regarding the corresponding GRI indicators for environmental compliance as well as their answers in internal tools such as BaySIS, where we report compliance-related incidents such as "environmental incidents" and "transport incidents" with potential environmental impact. "Environmental incidents" are defined as incidents in the course of our business activities that result in the release of substances into the environment. Factors that determine whether there is a reporting obligation include, in particular, the nature and quantity of the substance, the amount of damage caused or any consequences for nearby residents. In accordance with our internal voluntary commitment, we report any leakage of substances with a high hazard potential from a quantity of 100 kg upward. "Transport incidents" include accidents that cause personal injury, significant damage to property, environmental impact through the release of substances, or leakage of hazardous materials. We record transport incidents using defined criteria. Assessment is based on the leaked load, graded according to the volume and hazardous material class, personal injury and blocked transportation routes. We take into account both our own chemical transport movements and those we commission and pay third parties to perform on our behalf. Based on this review, no relevant compliance incident related to water was identified. We further discussed this result with our HSE managers who confirmed the finding above.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayer AG Chairman of the Board of Management (CEO) and Chief Sustainability Officer (CSO)</td>
<td>Board chair</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate's Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

Yes

SW. Supply chain module

SW0.1

(SW0.1) What is your organization's annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>43545000000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?

Yes

SW0.2a

(SW0.2a) Please share your ISIN in the table below.

<table>
<thead>
<tr>
<th>ISIN country code</th>
<th>ISIN numeric identifier (including single check digit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>000BAY0017</td>
</tr>
</tbody>
</table>

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

This is confidential

SW1.2
(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No, this is confidential data</td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

Requesting member
California Department of General Services (DGS)

Category of project
Other

Type of project
Other, please specify

Motivation

Estimated timeframe for achieving project
Please select

Details of project
Customers are kindly asked to address their specific information requests directly to their respective contacts as information can only be provided directly to the custom.

Projected outcome

Requesting member
S.C. Johnson & Son, Inc.

Category of project
Other

Type of project
Other, please specify

Motivation

Estimated timeframe for achieving project
Please select

Details of project
Customers are kindly asked to address their specific information requests directly to their respective contacts as information can only be provided directly to the custom.

Projected outcome

Requesting member
Wal Mart de Mexico

Category of project
Other

Type of project
Other, please specify

Motivation

Estimated timeframe for achieving project
Please select

Details of project
Customers are kindly asked to address their specific information requests directly to their respective contacts as information can only be provided directly to the custom.

Projected outcome

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

No

SW3.1
(SW3.1) Provide any available water intensity values for your organization’s products or services.

Product name

Water intensity value

Numerator: Water aspect
Please select

Denominator

Comment
Diversity of product lines makes accurately accounting for each product / product line cost ineffective. Furthermore, doing so would require us to disclose business sensitive / proprietary information.

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
<th>Are you ready to submit the additional Supply Chain questions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investors</td>
<td>Public</td>
<td>Yes, I will submit the Supply Chain questions now</td>
</tr>
<tr>
<td>Customers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please confirm below
I have read and accept the applicable Terms