

of Toxicological Studies and Exposure Data
for the Plant Protection Product Fenhexamid WC 50 (500 g/kg)
(Specification No.: 102090007271)

Substance(s)

FENHEXAMID
(Annex Frenewal)

Data Requirements

Regulation EC/1141/2010

on the renewal of the oriclusion of AIR2 active substances

In conjunction

According to OECD format guidance for Industry data submissions

0 to 8 - on the renewal of active substances included in Annex I)

OFCD format guidance for on the renewal of act.

Annex HIA
Section 3, Point 7
Document M

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Trops/fence. No part of the document or any information contained therein maybe disclosed to any third party without the prior written authorisation of bayer Crops degree.

TABLE OF CONTENTS

		age
IIIA 7	Toxicological Studies and Exposure Data and Information on the Plant Protection Product	() () () () ()
IIIA 7.1	Acute toxicity	5 .0
IIIA 7.1.1	Acute oral toxicity	J
IIIA 7.1.2	Acute percutaneous (dermal) toxicity	8
IIIA 7.1.3	Acute percutaneous (dermal) toxicity of the Acute inhalation toxicity of rate of the Acute inhalation toxicity of the Acute inhalati	9
IIIA 7.1.4	Acute inhalation toxicity to rate Skin irritation Eye irritation Skin sensitization	10
IIIA 7.1.5	Eye irritation	12
IIIA 7.1.6	Skin irritation Eye irritation Skin sensitization	14
IIIA 7.1.7	Skin irritation Eye irritation Skin sensitization Supplementary studies for combinations of plant protection products Short-term toxicity studies Operator exposure Estimation of operator exposure without personal projective equipment	17
IIIA 7.2	Short-term toxicity studies	17
IIIA 7.3	Operator exposure & & & & & & & & & & & & & & & & & & &	18
IIIA 7.3.1	Estimation of operator exposure without hersonal projective equipment	t 20
IIIA 7.3.2	Estimation of operator exposure using personal protective equipment	26
IIIA 7.3.3	Measurement of operator exposure	30
IIIA 7.4	Bystandet exposure	31
IIIA 7.4.3	Estimation of bystander exposure without personal protective equipmen	nt31
IIIA 7.4.2	Measurement of bystander exposure	37
IIIA 7.5	Worker exposure 2 2 2	37
IIIA 7.5.1	Estimation of worker exposure without personal protective equipment	38
IIIA 7.5.2	Estimation of worker exposure using personal protective equipment	41
IIIA 7.5.3	Estimation of worker exposure using data on dislogeable residues	41
IIIA 7.5.4	Measurement of worker exposure	41
IIIA 7.6	Dermal absorption	41
IIIA 7.6.1	Dermal absorption, in vivo	42
IIIA 7.622	Comparative dermal absorption, in vitro using rat and human skin	49
IIIA 7.7	Distogeable residues	54
IIIA 7.7.4	Dislogeable residues - foliar	54
IIIA 🎜.2	Dislogeable residues - soil	54
IIIA 7.7.3	Dislogeable residues - indoor surface re-volatization	54

Document M-III /Tier 2, Sec. 3, Point 7 - Toxicological Studies and Exposure Data of Fenhexamid 50 WG

Toxicological Studies and Exposure Data and Information on the Plant IIIA 7 **Protection Product**

IIIA 7.1 Acute toxicity

Most of the toxicological studies (i.e., acute oral and dermal toxicity, skin and eye irritation studies a well as a Buehler Patch Test for skin sensitisation) have been performed with the formulation KBR 2738 WG 50. The composition of this formulation was at that time rescribed by the old company code. development no. 30-0170928. Exactly the same formulation composition is frow described by the specification no. 102000007271 (Material no. 05419441). Material of this material number has been investigated for skin sensitisation in an additional guisea pig maximization test.

The code KBR 2738 is a synonymous name for the active ingredient tenhexamid. The product names KBR 2738 50 WG or KBR 2738 WG 50 are synonyness for the product Feinhexand WG 50.

Summary of acute toxicity

Type of study	Vehicle 5	Results Q	Report /
S. C.			document no.
acute oral rat	Cremophor EL 2% (v/v) W	LID: >2000 mg/kg bw	24227
	Deminetalised water		M-010213-01-1
acute dermal rat	0.5 m NaCC solution g	DLD ₅₀ 2000 mg/kg bw	24183
	test substance		M-010215-01-1
skin irritation robit	moistened with deionised	slightly in tating;	24152
skin irritation robit	water	Classif Cation, but triggered	M-010162-01-1
eye irritation rabbit	none A	slightly irritating;	24152
		classification not triggered	M-010162-01-1
skin sensitisation guinea	physicological valine	not sensitising	24366
pig (Buehler Patch Pest)	solution 🤝 🧳 💍		M-010216-02-1
skin sensitisation guinea	physiological saline	not sensitising	30066
pig (maximisa@on test)	Solution O O		M-043441-01-1

Fenhexamid WG 50 is of low toxically to real acute oral and dermal application. Due to the physical nature of Eenhexamid W6,50, its intended use and for animal welfare reasons, an inhalation study has not been performed. Fenhexamid WG 50 is only slightly irritating to the skin and eyes of rabbits, so that a classification is not triggered. Furthermore, the product has no skin sensitising potential.

Therefore, the following classification labelling is proposed for Fenhexamid WG 50:

- EU directive 1099/45/EC: none
- Regulation (CLP): none

IIIA 7.1.1 Acute oral toxicity

Report:	KIIIA 7.1.1/01; ., 1	995	
Title:	KBR 2738 50 WG 04258/0214 - Stu	dy for acute oral texici	ty in rats 🦅 💝
Report No.:	24227		
Document No.:	M-010213-01-1		
Dates of work:	1995-03-02 - 1995-03-16	Ø	
Guidelines:	OECD 401; US-EPA FIFRA 301-1;	Directive 67/54 EEC,	Anner V, Part B.1.
	Deviation(s): none		
GLP:	yes O O		

A. Materials

1. Test material:

Development no.:

Description:

Lot/Batch no:

Content:

Stability of test compound:

2. Vehicle:

3. Test animals:

Species:

Strain: Age:

Weight at dosing:

Source:

Acclimatisation

Diet:

0222 based on Fl. no.: 04

guaranteed for study duration; expiry date: 1996-02-08

CremophorEL (v/v) in desaineralised water

Hs&Cpb:XVU

males: approx. #- 8 weeks; f@nales: approx. 9 - 10 weeks

, Germany

males 767 g 9179 g; females: 164 g - 169 g

Altromin® 1324 Diet for Rats and Mice" (composition

identical to "Altropon® 1320") (

Germany), ad libitum

tap water, ad libitum

Conventionally in polycarbonate cages type III

(5 mals age) during acclimatisation and on 1st study day, individually in type IIA cages afterwards bedding: low-dust

Wood Fanules type S 8/15 (

Germany)

B. Study design and methods

1. Animal assignment and treatment

2000 mg/kg bw Application route: oral (gavage) Application Wolume 10 mL/kg bw

Fasting time: before administration: approx. 17h + 1h approx. 2h after administration:

Group size: 5 rats/sex/group

Post-treatment observation period: 14 days

mortality, clinical signs, body weight, gross necropsy Observations:

II. Results and discussion

A. Mortality

Table 7.1.1-1 Doses, mortality / animals treated

					9	_		
Dose	Toxicological		ical	Occurrence of	Time of death	Afortality &		
(mg/kg bw)	result*				•	signs 😹		(%) (%) & 2
Male rats					Ŵ			
2000	0	3	5	5h	\$			
Female rats				, Č	S			
2000	0	3	5	ja da				
	•			LD ₅₀ > 2000 mg/kg by				

¹st number = number of dead animals, 2nd number = number of animals with toxic signs. 3rd number = number of animals used

B. Clinical observations

t faeces were observed in male and 3 fen At the dose of 2000 mg/kg body weight soft faeces after administration of the test substance.

C. Body weight

There were no toxicological effects on body

D. Necropsy

At sacrifice at the end of the post-freatment observation period the apprials showed no evidence of test-article related macroscopically visible organ lesions.

Conclucion

Fenhexamid WG 50 is of low toxicito rats after acute or a administration. Fenhexamid WG 50 is of low toxicito to rats after acute or all admit The study result triggers the following classification/labelling:

- EU directive 1999/45/EC: none

- Regulation (EC) No 2772/2908 (CPP): none

hours h:

IIIA 7.1.2 Acute percutaneous (dermal) toxicity

Report:	IIIA 7.1.2/01;	., 1995	. The state of the	4 . 4
Title:	KBR 2738 50 WG 04258/021	14 - Study for act	ute dermal toxicity i	
Report No.:	24183	۵.		
Document No.:	M-010215-01-1		<u> </u>	
Dates of work:	1995-03-14 to 1995-04-19	. (*	- R	
Guidelines:	OECD 402; US-EPA FIFRA	§8,12; Directive	\$7/548/EEC, ∆ nne	ex 🔖 Part 🕦 3.
Guideillies.	Deviation(s): none			
GLP:	yes			

I. Materials and methods

A. Materials

1. Test material:

Development no.:

Description:

Lot/Batch no:

Content:

Stability of test composited:

2. Vehicle:

KBR 2738 50 WG 04258/021A

҈Ҙ0-01**,70**928*ౢ*

brown granular sould

02**22** bas**ee**ron FD no.: **04**258/0214

49.6%

guaranteed for study duration; expiry date: 1996-02-08 0.5 Jul NaCl solution/g test substance mixed to a paste

3. Test animals:

Species:

Strain:

Age:

Weight Odosing? Source:

Acclimatisation period

Diet:

Wistar rat (SPF-bred)

Disd Cob:WU

males: approx. 11 > 12 weeks; f@nales > 16 week

Nes: 270 g - 291 g; females 225 g - 236 g Germany

at least 7 da 🕸

"Afromin® 1324 Diet for Rato and Mice" (composition identical to

"Altromin® 1320") (

), ad libitum

Water:

Housing

tap water, ad libitum

conventionally in polycarbonate cages type III (5 animals/cage)

during acclinatisation, during the test period individually,

conventionally in type IIA cages bedding: low-dust wood granules type S 8/15 (Germany)

B. Study design and methods

1. Animal assignment and treatment:

Dose:	Q ^y	Surface area	Range
Dose:	Dose (mg/kg bw)	(cm ²)	(mg/cm ²)
	males 2000	30	18.5 – 19.4
Application route:	females 2000	30	15.0 - 15.7
Application route: \	dermal, occlusive dre	essing	
Exposure:	24 hours		
Grap size:	5 rats/sex/group		
Rost-treatment observation period:	14 days		
Observations:	mortality, clinical sig	ns, skin effects, bod	ly weight, gross
	necropsy		

.

II. Results and discussion

A. Mortality

Table 7.1.2-1 Doses, mortality / animals treated

1 abic 7.1.2-1 Du	scs, iliui	tanty					
Dose (mg/kg bw)		Toxicological results*		Occurrence of signs	Time of deat	th N	Mortality (%)
Male rats				Ò	Ý	, L	7 5
2000	0	1	5	4d − 4d 🔻	<u> </u>		\$90 W
Female rats				4	¹ O _A	W A	
2000	0	5	5	3d <u>-</u> \$d	Q ·		* 00
	•	•	•	LD ₅₀ > 2000 mg/kg b	Wall	Q' . 0	

¹st number = number of dead animals, 2nd number = 3^{rd} number = number of animals in the group

B. Clinical observations

At 2000 mg/kg body weight decreased monthly was observed in one male rat of day for the study. Local skin reactions were recorded in females from day 3 to day 5. They consisted of partial reddening, incrustation, formation of seab and browning yellow coloured for.

C. Body weight

There was no treatment-related influence on body weights. In one female rate rat no. 10, group 2000 mg/kg bw) a transient decrease in Fody weight development was observed on day 8.

D. Necropsy

Animals sacrificed at the end of the post-treatment observation period showed no evidence of testarticle related magroscopically visible organ lesions

Fenhexamid WG 50 is of low systemic toxicity to rate after acute definal administration.

The study result triggers the following classification labelling:

- EU directive 1999/45/EQ
- Regulation (EC) 0 1272/20

Acute inhalation toxicity to rats

Fenhexamid WG 50 is a wettable ganule formulation. Inhalation toxicity testing with Fenhexamid WG 50 is not triggered according to Council Directive 94/79/EEC because the neat product

- is not a gas or liquified gas,
- is not a smoke@enerating formulation or frimigant,
- is not to be ased with fogging equipment,
- is not to be included in Smoke generating aerosol or vapour releasing preparation,
- is not to be applied from air aft
- does not contain active substances with a vapour pressure $> 1 \times 10^{-2}$ Pa and
- the formulation is not a powder, is practically dust-free, and hence does not contain a significant proportion of particles of diameter < 50 μm (> 1 % on a weight basis)

, 2001, BCS document no. M-055003-01-1).

D: day

- Furthermore, Guideline 94/79/EC asks for an inhalation toxicity study only if >1% of the preparation (i.e., the commercial formulation) is inhalable (i.e., particle or droplet size <50 μm) during application.
 - eation.

 The product Fenhexamid WG 50 is not applied as undiluted product to the fields. Therefore, no particles of respirable size of the neat product can be formed during application
 - Fenhexamid WG 50 is applied as a highly diluted spray solution. Due to the intended application rates and dilutions the concentration application rates and dilutions the concentration of Fenhexamic WG 50 in spray droplets in general amount to $\leq 1\%$ (corresponding to $\leq 95\%$ of the active ingredient tenhexamid in the spray droplets).
 - Applying the logic of the requirement & Guideline 94/79/EC for inhalation loxicity testing to the practical use of Fenhexamid W& 50, the inhalability of Fenhexamid WG 50 amounts to \(\leq 1\% \) only due to the dilution of the product in the open solution. This is below the trigger \(\leq \cdot\) value for the conduct of an inhalation toxicity study for classification purposes. Furthermore, since it is unrealistic to assume that 100% of the spray droplets are inhalable (reguiring solely droplets < 50 μm; a value far blow 10% can be expected based on measurements of droplet size distribution for standard nozzles), an additional safety factor is given.

Based on these considerations and also on the few infilation toxicity of the active ingredient fenhexamid (dust: $LC_{50} > 5057$ mg/m³ air or aerosol: $LC_{50} > 32$ mg/m³ air, maximum technically possible concentration) and the fact that none of the other ingredients of the product fenhexamid WG 50 is classified and labelled with regard to health hazards, an acute inhalation toxicity study with fenhexamid WG 50 is not considered to be justified also with respect to animal welfare.

fenhexamid WG 50 is not considered to be justified also with respect to animal welfare.	
This triggers the following classification abelling:	
- EU directive 1899/45 C: none	
- Regulation (EC) No 1272/2008 (CLP): none	
This triggers the following classification labelling: - EU directive 1899/45 EC: none - Regulation (EC) No 1272/2008 (CLP): none Report: IIIA 7.1.4 Skin itritation Report: IIIA 7.3.8 W W 04258 02144 Study for skin and eye irritation/corresion in	
IIIA 7.1.4 Skin irritation	
Report: 111A 1.4/01 1995	
Title: Ti	
Report No.: 24152	
Dates of work 1995-04-48 to 1995-05-99	
Guidelines: OFCD 404; Directive 92/69/EEC, Part B, No. B.4.	
GLP: yest 2	
Guidelines: OFCD 404; Directive 92/69/EEC, Part B, No. B.4. Deviation(s): none GLP: yes OFCD 404; Directive 92/69/EEC, Part B, No. B.4.	

A. Materials

1. Test material:

Development no.: Description:

Lot/Batch no:

Content:

based on Form. No.: 04258/0214
49.6%
guaranteed for study duration, expiry dater 1996-02-08
moistened with deionised water

o rabbit
IZM

-4.2 kg Stability of test compound:

2. Vehicle:

3. Test animals:

Species: albino rabb HC:NZX Strain: adult_ Age: Weight at dosing:

Source:

Acclimatisation period: Approx 1 week

Diet:

Germany papproximately 100 2120 pper animal per day, fed once

daily in the monning ©

tap water, ad Tibiturb Water:

Housing: individually in starnless seel cages with flat road bases or plastic

cazes with perforated bases

B. Study design and methods O

1. Animal assignment and treatment:

500 mg/patch Dose:

dermal semi-occlusive dressing Application route

Exposure:

Group size:

nical signs, skin effects, body weight (at beginning of study) Observation \$4

esults and discussion

A. Findings

Exposure of the skin to the test substance resulted in erythematous reactions in all three animals. Additionally, in one rabbit an oedema was observed at the 1 h time point. On day 7 signs of irritation had disappeared in two animals and on day 14 also in the third animal. There were no other lesions or toxic signs.

Table 7.1.4-1 Summary of infitant effects (Score)

Animal	Observation (after patch removal)	24h	48h	72h	Mean scores	Response	Reversible (days)
	Erythema (tedness) and eschar formation	2	2	1	1.67		7
	Dedema formation	0	0	0	0.00	-	na
, "Ô	Erythema (redness) and						
2 0	eschar formation*	1	1	1	1.00		7
	Oedema formation	0	0	0	0.00		na

3	Erythema (redness) and eschar formation*	2	1	1	1.33		148 1
	Oedema formation	0	0	0	0.00	<u>.</u>	ANT O

<1.5

na = not applicable

*exposed skin areas stained in colour of the test substance, evaluation of erythera possible

Response:

= negative for mean scores

(GHS)

IIIA 7.1.5

Response:		= negative for mean scores	<1.5	(GHS)
			<2	(Directive 2001/59/EC)
			<2.3	(GHS) (Directive 2001/59/EC) (Regulation (EC) No 1272/2008) (GHS category 3) (Directive 2001/59/EC) (Regulation (EC) No 1272/2008
	(+)	= mild irritant for mean scores	≥1.5 - <◎3	(GHS category 3)
	+	= irritant for mean scores	≥ 2 $\sqrt[\infty]{}$	(Directive 2001/59/EG) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
			≥2.3€	(Regulation (EC) No. 1272/2008 \$ 400
			, (O'	(Directive 2001/59/EC) (Regulation (EC) No 1272/2008) (GHS category 3) (Directive 2001/59/EG) (Regulation (EC) No 1272/2008 and GHS category 2)
		TIT .	Conclusion	(GHS category 3) (Directive 2001/59/EG) (Regulation (EC) No 1272/2008 and GHS category 2)
Eanhavam	id WC	50 is slightly irritating to the	alcin at robbito	Clobaification is the triggered
reillexaili	iu w C	50 is slightly irritating to the striggers the following classific	skiligoi raugus	. Classification is not triggered.
The study	result	triggers the following classific	atton/labelling	. Classification is not triggered.
- EU direc	tive 19	triggers the following classific 999/45/EC: none		
- Regulation	on (EC	999/45/EC: none (1) No 1272/2008 (CP): none		
1108010011	011 (20			
		Q & C		
			10° 45°	
IIIA 7.1.5	E	ye irritation		Classification is not triggered.
Report:		IIIA 7.1.5/01;	1995	
Ti41a.		KBR 2738 50 W@ 04258/02	210 Study for	skin and eye irruation/corrosion in
Title:		probbits "	\$ & .	
Report No.		24152		A Q
Document	No.:Ĉ	M-010162-61-1 ()		
Dates of w	ork.			
Cycidalina	&	©ECD 405; Directive 92/69	EEC Part B,	No.B.S.
Guidelines	<i>¥</i>	Deviation(s) non		7
GLP:		yes S		0,
GLI .				· ·

8 50 WG 04258/0214

Development no.:

brown powder

Description: √Lot/Batch no.

0222 bàséd on Form. No.: 04258/0214

Content:

content:
Stability of test compound:
ehicle:
st animals
wecies:

none guaranteed for study duration; expiry date: 1996-02-08

2. Vehicle:

albino rabbit HC:NZW

adult

Weight at dosing:

4.0 kg - 4.3 kg

Source:

Acclimatisation period:

approx. 1 week

, Great Britain

Diet: standard diet "Ssniff K4" (

Germany), approximately 100 - 120 g per animal per day.

once daily in the morning

Water: tap water, ad libitum

Housing: individually in stainless steel cages with fait rod bases or

cages with perforated bases

B. Study design and methods

1. Animal assignment and treatment:

Dose: 0.1 mL test substance (equivalent to approx

instillation into the conjunctival sac of one eye Application route:

Rinsing: after 24 hours with normal/salin@

Group size: 3 females

Observations: clinical@igns, eye effects,

A. Findings

animals reactions of the mucous pin 7 days. Other lesions and toxic Exposure of the eye to the test substance caused membranes. All these findings proved to be fully reversible within signs were not observed.

Table 7.1.5-1 Summary of Irritant Affects (Score)

Animal	Effects A	<i>9</i> //	248 h	72 1	\$///	Response	Reversible (days)
	Corneal spacity Iritis Reduess conjunctive	00		\$ 0 0	O.06	₹ <u>-</u>	na
1	Iritis 🐉 🎺 🧬				Q:00	@	na
1	Remess conjunctive	1 /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Ø.00 2 Ø.00	S	7
	Semosis conjuntivae (00/		\$ 0	0.00		1*
Č	Corneal opacity Control opacit	20	\$ 0 A		0.00		na
2		Øő.	0		30.00		na
263	Redness Conjunctivae			[∞] ₂	1.00		7
	Chemosis confunctive Confeal opacity Lotis		50		0.00		1*
	Corpeal opacity	0 0 %		2/2	0.00		na
2	lotis O			Øŏ	0.00		na
3	Redness conjunctivae			0	0.00		1*
	Chemosis conjunctione		\mathcal{N} 0	0	0.00		1*

na: not applicable

with respect to the result 1 hour post application

Conjunctival oedema <2 (Regulation (EC) No. 1272/2008 and GHS) <2 (Directive 1999/45/EC) ≥ 2 (GHS category 2B (effects reversible within 7 days)) ≥2 (Regulation (EC) No. 1272/2008 (GHS) category 2) (Directive 1999/45/EC) (Regulation (EC) No. 1272/2008 and GHS category 1) (Directive 1999/45/EC)

III. Conclusion

Fenhexamid WG 50 is slightly irritating to the eye of rabbits. Classification is not triggered.

- EU directive 1999/45/EC: none
- Regulation (EC) No 1272/2008 (CLP): none

IIIA 7.1.6 Skin sensitization

- EU directive 19	The study result triggers the following classification/labelling: - EU directive 1999/45/EC: none - Regulation (EC) No 1272/2008 (CLP): none HIIA 7.1.6 Skin sensitization Report: IIIA 7.1.6/01;								
IIIA 7.1.6 SI	kin sensitization								
Report:	IIIA 7.1.6/01; ., 1995 amended 1995-11-08								
Title:	KBR 2738 50 WG 04258/0204 - Study for skin sensitization effect in gamea pigs (Buehler Patch Test)								
Report No.:	24366								
Document No.:	M-010216-02-1								
Dates of work:	1995-07-18 to 1995-08-18 \(\times \)								
Guidelines:	OECD 406; Guide@ne 92/69/EC, Method B.6, OUS-EPA FIFFA § \$1-6 Deviation(s): none								
GLP:	yes Whateleas and mathematical and the second secon								

Materials and methods

A. Materials

1. Test material:

Development no

Description:

Lot/Batch no:

Content:

Stability of test

compound: 4 2. Vehicle: 🖔

3. Test animals:

Species:

Strain:

Age: Weight at dosing Ast

Source:

Acclimatisation period:

Wåter: ≪Housing:

© 0222 based on 04258/021

guinea pig (SPP-bred)

physiological saling solution

'Hsd'Win:DH (previously termed Bor:DHPW)

at least 7 days

"Antromi@83020 - Maintenance Diet for Guinea Pigs"

maranteed for study duration, expiry date: 1996-02-08

, Germany), ad libitum

Germany

tap water, ad libitum

conventionally in type IV Makrolon® cages, adaptation: in groups of five per cage, study period: in groups of two or

hree per cage

bedding: low-dust wood shavings (Germany)

Housing: B. Study design and methods

1. Atimal ssignment and treatment:

- 3rd induction: paste (1 g test material moistened with 0.5 mL phys. saline solution,

concentration approx. 66.67%)

Challenge: 50%

Application route: dermal, semi-occlusive dressing

Application volume: 0.5 mL/patch

6 hours per application (induction: 3 times at intervals of 7 days, Exposure:

challenge: 4 weeks after the first induction, 2 weeks after last induction)

Group size: 45 females (controls: 2x10, test item group: 20, range-finding for

determination of the induction and challenge cocentrations: 5)

Observations: mortality, clinical signs, skin effects, body weight (at study begin

termination)

II. Results and discussion

A. Findings

The challenge with the 50% test substance formations led to no skin reactions after 30 and 54 h the test animals as well as in the control animals. After 78 h s slight skin redness Grade 1) was observed in 2/20 animals of the test substance group and in 1/10 control group mimals, indicating that there was no difference in the skin reactions between both groups

Appearance and behaviour of the animals in test substance group were not different from those of the control group. No mortalities occurred.

By the end of the study the body weight development of the treatment group animals corresponded to that of the control groups.

Table 7.1.6-1 Number of animals & hibiting skin effects @

	Test	Test tem group (20) animals) 🛴 🚫 Control group (10							
	Test ite	m pateh 🤌			Test item patch		Control patch		
Hours	30 \$54	98 Kotal	3 0 5 4	78 3	540 784	total	30	54	78
Challenge			1 1/2/2			1	0	0	0
50%		2 2				1	U	U	U

III Conclusion

Under the conditions of the Brehler atch Test and with respect to the evaluation criteria Fenhexamid WG 50 exhibits no skin-sensitization potential,

The study result of ggers the forlowing classification Pabelling:

- EU directive, 1999/AS/EC
- Regulation (EC) No 1272/2008

Report:	711A 7.1.6/020 2000 2000 2000
Title:	KBR02738 WG 50 - Studo for the skin sensitization effect in guinea pigs (guinea
<i>_</i>	pig maximization test according to Magnusson and Kligman)
Report No.:	30066 V 0, V
Document No.: *	√M-04 3 441-04-1 ~♥
Dates of work	2000-02-02 to 2000-02-25
	©ECD ©6; Guideline 96/54/EC, Method B.6.; US-EPA 712-C-98-197,
	OPPT\$ 870.2600
	Deviation(s): The test item contains commercial products known to be stable and
Guidelmes:	homogenous both undiluted and in ready-to-use dilution with water. Therefore,
	analytical determinations of the stability and homogeneity of the formulations in
	the physiological saline solution for administration were not performed. These
	deviations did not limit the assessment of the results.

guaranteed for study duration; expiry date: 2000-12-00 sterile playstological satine solution

guinea pag (SPK bred)

Hsd Poc.DH

4 – 6 weeks

315 g – 399 g

at least 7 dave
"Altre-" GLP: yes I. Materials and methods A. Materials 1. Test material: Material/Article no.: Description: Lot/Batch no: Content: Stability of test compound: 2. Vehicle: 3. Test animals: Species: Strain: Age: Weight at dosing (1st application) Source: Acclimatisation period: "Altromm®3020 - Mantenance Die for Chinea Pigs" Diet: Germany), ad libitum Water: tap water, ad libitum Housing: conventionally in type IV Makrolon® cages, adaptation: in groups of five animals/cage; study period: in groups of of three animals/cage bedding: low-dust wood Gemany) B. Study design and methods 1. Animal assignment and treatment: & Dose 3% (200 mg test item/animal) Intradermal induction: = 125 mg test item/animals Topical induction: (⇒60 mg test item/animat) Challenge: Intradermal (4st induction) Germal (2nd induction, challenge) Application route Application volume intraderma Dinduction: 0. PmL/injection topical joduction, challenge: 0.5 mL/patch Intradermal induction, Exposure: 1 week lates topical induction: exposure for 48 hours, females (contro determination of the of the challenge conc mortality, clinical sign rermination of study) 3 weeks after intradermal induction: challenge: exposure for 24 hrs females control: 10, test item: 20, range finding:5 for the determination of the induction concentrations, 2 for the determination of the challenge concentration) mortality, clinical signs, skin effects, body weight (at beginning and

II. Results and discussion

A. Findings

After intradermal induction (1st induction) the control group animals showed red wheals after 48 hours, while the animals in the test item group at the same time presented red wheals, and injection site, white wheals with red surrounding or a grey wheal with encrustation.

After 7 days encrustations and wheals were recorded at the injection sites in the control group and encrustations in the test item group.

At day 9, immediately after removal of the patch of the second induction, the treatment area of the second induction exhibited skin effects (grade 1) in 3 of 20 animals in the test item group, while there were no skin effects in the control group. The treatment areas of all animals in the test item group were brownish discoloured.

No skin effects, neither in the treatment group nor in the controls, were seen after the challenge using a 12% test item formulation.

Appearance and behaviour of the test item group were not different from the control group @

At the end of the study, the mean body weight of the treatment group animals was in the same range as that of the control group animals.

Table 7.1.6-2 Number of animals Chibiting skin effects

	Te	Test item group (20 animals)				Comprol group (10 animals))
	Test	item par	t ch	Contr	of patch?	Tes	tjitem pa	etch 🛇	Contr	ol patch
Hours	48	~712 ₄	Total	48	#2	<u></u> 48	^ا 72 م	Total	48	72
Challenge			7 . Q	Õ	~ ~	0, %	C/			
12%	0	$0_{\mathbb{Q}_{\lambda}}$	~~~	@ 0 a	S 0 W		Ö	\mathcal{L}^{y} 0	0	0

A. Conclusion

Under the conditions of the maximuzation test and with espect to the evaluation criteria fenhexamid WG 50 exhibits no skin-sensitization potential.

The study result triggers the following classification/labelling

- EU directive 1999/45/EC? none
- Regulation (EC) No 1272/2008 (CLB): none

IIIA 7.1. Supplementary studies for combinations of plant protection products

Not applicable. This plant protection product is not planned to be combined with other plant protection products.

IIIA 7.2 Short-term toxicity Studies

Not required by Directive 91,44/EEC or Regulation 1107/2009/EEC.

IIIA 7.3 Operator exposure

Fenhexamid WG 50 is a fungicide intended for outdoor as well as greenhouse spray treatment of various types of low and high growing crops (strawberries, grapes, and topiatoes). The product is formulated as water dispersible granules (WG) and contains as active substance (a.s.) fentexamid (500 g/kg). Outdoor treatment is conducted by spray application with field crop sprayers or broadcast au assisted sprayers depending on the type of target crop, while applications in the greenhouse are done by handheld equipement. The maximum recommended application rate for outdoor treatment arounts to 1 kg a.s./ha (strawberries). The maximum recommended application rate for treatment of greenhouses amounts to 0.75 kg a.s./ha (strawberries and tomatoes). Water will be the diluent/catrier in all situations. Application parameters are summarised in table 7.3-1.

Table 7.3-1: Application parameters for Fenhexamia WG 50

Crop(s)	Application technique	F/ G	Maximum app	Y .1 .7 . "(Minimum amount water (L/ha)	Max. no. of the catments	Min. PHI (days)
Grapes	BAA		, V P.6	\$ Q0.8	80 0 8	© &2	14
Strawberries	FCS	$\mathcal{C}_{\mathrm{F}}^{\prime}$		⊕1 Š	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	3
	HHS 😽	G		\$ 9.75 \$ 0.75	3000	4	1
Tomatoes	FCS 🝣	F.	l & 015 %	Ď ≈0.75 Å	× 4300 ×	3	1
	FCS HHS	ĢÔ			300	3	1

FCS = Field crop sprayer, BAA = Broadcast air assisted sprayer, VIHS = Wand hold sprayer

F = Field use, G = Freenhouse use

Consideration on acceptable operator exposure level (AOEI)

Finalised in the Standing Committee on Plant Health at its meeting on 19 October 2000 in view of the inclusion of fenhexamid in Anne I of Directive 91/44/EEC a systemic AOEL of 0.3 mg/kg bw/day is proposed for fenhexamid based on a NOAEL of 30 mg/kg bw/day established in the 13 week dog study and a safety factor of 1001.

Consideration on dermat absorption

The extent of dermat absorption of fenhexamid was investigated *in vivo* using the rat and a WP 50 formulation as well as *in vitro* using human and rat skin and a WG 50 formulation. Combining the data from both the *in vivo* and the *in vitro* studies provides the following estimated human *in vivo* absorption values: 500 g/kg = 0.3%, 5 g/L = 3.6%, 0.375 g/L = 8.6%

For details blease see point IIIA 4.6.

•

¹ Fenhexamid 6497/VI/99-rev.2, 19 October 2000

Consideration on estimation of operator exposure

With respect to the outdoor uses operator exposure estimates are calculated using the German model and UK POEM for the respective scenarios. Exposure calculations are performed without with protective equipment.

It should be noted that this selection of protective measures is not intended to be a recommendation for the minimum PPE necessary when handling Fenhexamid WG 50. It does not consider specific requirements, which may exist in individual Member States. Additional PPE can be used to further reduce the exposure of the operator.

It has to be pointed out that "no PPE" in the German Model considers a lightly dressed operator, wearing a short sleeved T-Shirt, shorts and stoes. Such an improfeeted professional operator should never handle plant protection products as this clothing is not in accordance with gold occupational practice. Therefore, a coverall or alternatively, work trousers, a work jacket and sturely footwear should be regarded as basic working of othing for operators handling plaint protection products. The model allows estimates for protected operators wearing additional PPE, Pnecessary

Neither the German model nor, the UK-POEM provides exposure data to evaluate the "hand held application in greenhouses", Therefore, the exposure of operators during application with hand held sprayers in the greenhouse is evaluated with the Southern European Greenhouse Model. Detailed considerations and calculations as well as a subimary of the greenhouse model will be presented under IIIA 7.3.1 (Estimation of operator exposure without personal protective equipment).

A comparison of the Green ording exposure estimate with the proposed AOEL (in terms of percentage of the AO(DL) is presented in table 7.3-2. Detailed assumptions and considerations as well

Comparison of estimated systemic operator exposure to fenhexamid [mg/kg bw/day] with **Table 7.3-2:** the proposed AOEL

				~ '0
A 3. (*	G	DDE	Total systemic	% of AOEL
Application type	Crop	PPE	exposure	[0.3/mg/kg/
			[mg/kg bw/day]	Sow/day/
	Field use	es, German model*	, D	
Broadcast air assisted	Grapes	No PPE ¹⁾ With PPE ²⁾	0.0934	
sprayer			0.0211	
Field aron enrover	Strawberries /	No PPE 1)	0.0544	Q 180 %
Field crop sprayer	Tomatoes	With PPE 2)	0.6454	L G
	Field u	ses K-POEM**		
Field crop sprayer	Strawberries	No PPE 3)	√y √00.1040√	35
Field crop sprayer	Suawberries	Wouth PP X 3	0.0905	30
Field crop sprayer	Tomatoes A	No PP	0.1845	of L
Tield crop sprayer	Tomatoes	With PPE 2	3 .1739	58
	∂ Gra	eenhou& uses 🎸 💮		
Hand-held application	Strawb@ries \$	No PRE	0,000	3.5
in greenhouse	Strawbones 4	With P PE 4)	200052 200052 200052	2 21.7
Hand-held application	Towarton	No PPE 3)	0.0472	∜ 15.7
in greenhouse	Tomatoes	With PPFO	\$\forall \tilde{\Omega} 0.62\frac{9}{9}	% 8.0
Hand-held application	Tomatoes			0
in greenhouse	(intensity contact)	With PPE 5)	©.01295	4.3

^{*} Assumes a 70 kg operator, ** assumes a 60 kg amatour operator

1) Short trousers and a short sleeved shirt

4) Gloves during mixing/loading and application coveral during application

without personal protective equipment

a) Estimation according to the German model

Exposure is calculated for each application technique with the maximum dose rate. Lower dose rates will be covered by the calculation and separate evaluations are not made. Greenhouse applications are not evaluated with the German model Exposure for his scenario will be calculated with a separate exposure). The following assumptions are made for each scenario:

Field crop spray

👸 kg 🔊 /ha 🏟 hexamid,

ravoberry, covers the use in tomatoes)

Max. dose rate: 0.8 kg a.s./ha fenhexamid (grapes)

²⁾ One layer of typical work wear (e.g. tropsers +long sleeved shirt) and third foot wear and protective gloves during mixing/loading 3) One layer of typical work wear (e.g. Gousers and a long sleeved shirt) and third foot wear during mixing/loading/application

Calculation of operator exposure to fenhexamid using field or op sprayers **Table 7.3.1-1** (German model, without and with PE)

(Submission for Annex I	renewal)										
Dermal absorption:	0.3% (con	ncentrate)									
	8.6% (in	use dilution)									
	(see IIIA	7.6)									
Operator body weigh	nt: 70 kg										
Taking into account	these parame	ters the exposure is estimated as follows.									
Table 7.3.1-1 Calc											
(Ger	man model, w	ithout and with GPE)									
Operator exposure estimat	te: German model	l. Tractor-mounted/trailed boom sprayer: hydraulic mozzles									
Product:	Γeldor										
Active substance:	fenhexamid	as Concentration: \$\forall 500_4 [gA@rkg] \$\forall g \qq \qq \qq \									
Formulation:	WG	PPE darjing mix loading: Respiration: None &									
Dose [l or kg/ha]:	2.0	O' Nands: O' Nan									
Work rate [ha/day]:	20	Q Producing application? Respiration: None									
Body weight [kg]:	70	O North									
Inhalation absorption [%]	100	Heyd: O' Nône D' , W									
Dermal absorption [%]	0.3	Concentrate) Spody: Sandard protective overall									
	8.6	dilutiony W & W Q O S &									

Calculation of route exposure:

Route	Specific exposure (mg/k) a.s.] 4	a.s. handled [kg/day]	Estimate No PPE	d exposure mg/kg k	with PPE	
	4, Q	m O	~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	& 1 1	S S S S S S S S S S S S S S S S S S S	I = Inhalation
$I_M =$	@ 0.008@°	₹ 20.0 @.	0.002286	O 1.0	<i>₽ 4</i> 0.002286	D = Dermal
$D_{M(H)} =$	© 2.0 _c	20.0	Ĩ 0.57 %	0.01	0.005714	M = Mix/Loading
$I_A =$	\$ 0±001 %	200	0?:\@0286 @	N NO C	0.000286	A = Application
$D_{A(C)} =$		€ 20.0 ×	0.4 0 0286 @ 0.6171 \$		0.017143	H = Hands
$D_{A(H)} =$	0.38	20.0	√√0.108 6	1.0	0.108571	C = Head
$D_{A(B)} = 0$	\$ 1.6 ₄	20.0	© 0.457	0.05@	0.022857	B = Body

Absorbed@ose:	Mix Doading Application Mix/Loading Application			PPE	With	PPE
		4, \$7 7	Estimated	Systemic	Estimated	Systemic
Route	· · · · · · · · · · · · · · · · · · ·	Absorption [%]	route exposure	exposure	route exposure	exposure
			[mg/kg w/day]	, [mg/kg bw/day]	[mg/kg bw/day]	[mg/kg bw/day]
		. O ~ ~ ~ ~				
Dermal: 🕡	Mix@oading	° C 0®″	0.571429	0.001714	0.005714	0.000017
	Application ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	¥ 0.5 82 857	0.050126	0.148571	0.012777
Inhalation:	Mix/Loacorg 🔊	7 7 7 7 7 7 7 7 7 7	0.902286	0.002286	0.002286	0.002286
	Application \(\sigma^{\mathcal{T}} \)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*Q 000286	0.000286	0.000286	0.000286
	~~~ Q	Total =		0.054411		0.015366
	Application J	100 Total =				

Table 7.3.1-2: Calculation of operator exposure to fenhexamid using tractor-mounted/trailed broadcast air-assisted sprayers (German model, without and with PPE)

Operator exposure estimates	German model	Tractor-mounted/trailed	broadcast air-assisted sprayer
Operator exposure estimate.	German mouer.	Tractor-inounted/traneu	Di Daucast all-assisteu spi ayei

Product:	Teldor				Ş	4
Active substance:	fenhexamid		a.s. concentration:	500	[g/Por kg]	
Formulation:	WG		PPE during mix/loading:	Respiration:	None	
Dose [l or kg/ha]:	1.6		6	Hands:	∜Gloves	
Work rate [ha/day]:	8		PPE during application:	Respiration:	≫ None	
Body weight [kg]:	70			Hands:	None	
Inhalation absorption [%]	100		4,	Head:	None 🐇	
Dermal absorption [%]	0.3	(concentrate)	"Q ^y	Body:	Standar	otective voveral
	8.6	(dilution)		~~ ~	»° 😽	

Calculation of route exposure:

Curculation of Foute		,		
Route	Specific exposure	a.s. handled	Estimated exposure [mg/kg-bw/day]	J
	[mg/kg a.s.]	[kg/day] 🔍	NO PPE Reduction factor with PPE	_ 0
			O Q O I = Malati	
$I_M =$	0.008	6.4%	0.000751 D & Defina	
$D_{M(H)} =$	2.0		0.1829 $0.001829$ $M = Mix$	ading
$I_A =$	0.018	A.4	\$2,901646 A = Apple	ation
$D_{A(C)} =$	1.2	08.4 K/	0.1097	
$D_{A(H)} =$	0.7	€ 6.4 ° ×	0.064 1.0 1.0 1.09714 H Hands Chead	
$D_{A(B)} =$	9.6	<del>Q</del> 6 <u>A</u> &	0.857 0.05 0.043886 Sy = Body	

	2	V .~	O'	No P Estimated ute (xposure g & bw/day)  0.182877	PK.	y % 4	PPE
Absorbed dose:	Ü			No P	PEC S	& With	PPE
	- Co			Estimated	Systemic exposure	Estimated  route exposure  [mg/kg/bw/day]	Systemic
Route	~ \$\tilde{\psi}	Absorption	n [%] ro	ute Exposure	expositire	route exposure	exposure
			[m	g/@bw/day	[mg/kg bw/day]	[mg/kg/bw/day]	[mg/kg bw/day]
D 1						\$\int 0.001829 0.2176	0.000005
Dermal:	MaxALoading		<b>y</b>   <i>S</i>	0.18289/	0.000 <b>54</b> 9	0.001829	0.000005
Inhalation:	Miy/Lodding		8.0	90 000731 S	0.090423 0-080731. @	0.2176	0.018714 0.000731
illiaiation.	Annthication	\$ & 100		La 001646	000164%	0.001646	0.001646
	Mis Loading Splication Mix/Loading Mix/Loading Appropriation	0 7	Rotal =	J &	0.093349	0.001010	0.021096
	<del>- 77 V</del>	<i>P</i> c 1		- Q	0 10	!	
, Q	A 11		\$ 1	(O' 0)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	Ö 4		_				
				) W	~ O		
			o" wi		3"		
				0'			
			~~ .				
	, "O" ₍ ~		0 , 0	) ^v			
			y M	<b>*</b>			
4	Os	9' 4	'	. O			
Ø"	, Ò , Ó	)		**************************************			
			₡ .<	) ^V			
, <b>W</b>			y "Y				
$\sim$	Ž.	~ ~	-O*				
(	7, \	,	K)				
A)	, a \ <i>Q</i> :		4				
O.			7)				
		<b>*</b> * <b>* * *</b>					
, Ø' ,	ê û						
, ° °							
C							
Route  Dermal: Inhalation:							

## b) Estimation according to the UK-POEM

...ated by combising the ring assumptions are made for a set of the set of th Using UK-POEM only the application in tomato and strawberry were assessed as the model contains of

(Submission for Annex I renewal)

Table 7.3.1-3: Calculation of operator exposure to fenhexamid using field crop sprayers in strawberry (UK POEM model, without and with PPE)

A de la constant de l THE UK PREDICTIVE OPERATOR EXPOSURE MODEL (POEM) WITH GERMAN MODEL MIX/LOAD ATA (75th PERCENTILE) Application method Tractor-mounted/trailed boom sprayer: hydraulic nozzles Product Teldor WG 50 Formulation type WG or SG Dermal absorption from product 0.3 % PPE during mix/loading Gloves Dose 1000 l/ha Application volume DERMAL EXPOSURE DURING MIXING AND LOADING Hand contamination/kg a.s. 5.72 mg/kg a.s. Hand contamination/day 286 mg/day Protective clothing None Transmission to skin 100 % Dermal exposure to a.s. 286.000 mg/day INHALATION EXPOSURE DURING MIXING AND SOADING 0.036 mg/kg a.s. Inhalation exposure/kg a.s. 1.790 mg/dayQ Inhalation exposure/day RPE None 100 % Transmission through RPE 1.790**/m**/day Inhalation exposure to a.s. Application volume 1000 **A**ray/ha 10@hl/h Volume of surface contamination Distribution Clothing Penetration Dermal exposure Duration of exposine Total dermal exposyre to spray Conc. of a.s. paspray solution Dermal exposure to a.s. INHALATION EXPOSURE Inhalation exposure to spray O mg/mix 006 mg/Gi 100 % Duration of exposure_@ Concentration of a. s. spray Inhalation exposure to a.s. Percent absorb 0.06 mg/day Absorbed do N° CAE ABSORBED DOSE Miload 286.000 Dermal exposure to a.s. Percent absorbed Absorbed dose (dergos rout 62**81**3 mg/day 60 kg Total absorbed do 5.4319 mg/day Operator body weight 60 kg Operator exposure 0.0905 mg/kg bw/day 0.1047 mg/kg bw/day

Table 7.3.1-4: Calculation of operator exposure to fenhexamid using field crop sprayers in tomato (UK POEM model, without and with PPE)



#### c) Estimation according to the Greenhouse Model

Exposure is calculated for spray applications in greenhouse (strawberry, tomato)

To address a data gap for hand-held applications in greenhouses, ECPA conducted seven operator exposure studies during the period of 2002 to 2006. Details of the focation and the coop are summarized in the following table.

Table 7.3.1-6: Operator exposure studies in the greenhouse

			7/9	γ ρΘ	// n   (// /)
EOEM Study ID-	Country	Region	Crop	Mix/Load	Operators Application
2	Spain	Almeria 🖔	Peppers	× 10 ×	32 4
3	Spain	Almeria	Cucomber	10	
10	Italy	Tuscany Veneto	Pøt Plants		10
12	Spain	Murcia/Alicante	Cucumber	10	10
13	Spain	Murcia/Alicante	Tomato		\$ _\%\10
14	Italy	Sicily of	A Melon S		<b>20</b>
15	Italy *	Sicily	Melon (	NA _O	10

NA: not applicable

The studies were conducted according to OECD Guidance² and were GLP compliant for the field, analytical and report phases, including assessment reports. The studies were monitored by ECPA and conducted using internationally recognized contract research organizations.

Briefly, the exposure was determined using standardized passive dosimetry methodology. This entailed the use of inner and order dosimeters for body exposure protective gloves and hand washes for hand exposure, face and pack washes for head exposure. Inhalation exposure was monitored using a suitable collection device located in the breathing one to collect the inhalable fraction of airborne particles.

Analysis of the work practices and exposure data has dentified four exposure scenarios: High cross >0.5m):

- Standard scenario Linsigni T cant Contact with treated foliage
- Intensive scenario direct contact with treated foliage

Low crop (<0.56a):

- Standard seepario insignificant contact with treated foliage
- Intensive scenario direct confact with treated foliage

In the **Standard**' scenario, operators were polyester/cotton standard working coveralls.

•

² OECD (1997) Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application OECD Environmental Health and Safety Publications Series on Testing and Assessment No. 9

In certain cropping scenarios, where contact to treated foliage cannot be avoided rain split coveralls/trousers are commonly used. Exposure of these operators was determined for an 'Intensive' scenario.

Algorithms using the 75th percentile of the exposure distributions have been developed based normalization for the amount of kg a.s. handled or applied. These have been generated for each of the four scenarios' data sets and incorporated into a Microsoft Excel-based model [Greenhouse model v 2.1 (20101223).xls].

The model has passed through a workshop with European experts from Member States and further developed during several commenting periods according to the requirements of Member States

More details about the model and the underlying

Report:	KIIIA 7.3.1/07, Members of the ECPA Occupational and Bystander Expert
	Group, Oct 2010 (Revision 9)
Title:	Southern Curopean Greenhouse Model Overgow
Document No	M-400719-01-14 O 4 A A A
Guidelines:	OECP (1997) Guidance Document for the Conduct of Studies of Occupational
	Exposure to Pesticides During Agricultural Application OES Environmental
	Health and Safety Publications Series on Testing and Assessment No. 9
GLP	Eyes , Sy

The high crop scenario applies for the application of Fenhexamid WG 50 in tomato. With regard to the and, he standard scent.

The day of the standard scent.

The day of the standard scent. crop the intensive spenario cannot be excluded and, hence, is also estimated. The low crop scenario was used for the application in strawborry. For this application into sive contact with the crop during the standard scenario was considered.

				ation, nd with PPE)		
ate: Greenhouse n	nodel. High cro	p, standard		<b>*</b>		P 10,
Teldor					4 . 3	")
Fenhexamid		a.s. concentrati	on: 500	[g/l or kg]		
WG	P	PE during mix/loadi	ng: Respiration:	14 ne		
1.5		į	, Hands:	Gloves		***
1	F	PE during applicati	n: Respiration:	None 💍		* _@
70		₩	Hands: Q	Gloves @		a de la companya de l
100			Head:	None	Q O	
0.3	(concentrate)	4	Body: Q"	Coverall (		. <b>©</b> `
8.6	(dilution)			<u>' Q' , ô'</u>	i de Oi	1
	osure figures				.4	] _
		a schandled @	Estimat	ed exposure [mg/kox	bw/day	<b>,</b> ~
		Wkg/day			<b>~</b> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
"Unprotected"	"Protected"		Unprotested	Reduction factor	/ Protected	1
· •						I = Inhalation
0.013344		√" <b>. 6</b> \$750 .%	0.000014297 0.000014297		r [*]	D = Dermal
2.295118	\$ .0296890°	<b>%</b> .750 ₩	0.824590 <b>6</b>	S Ş	<b>640</b> 000031810	M = Mix/Loading
0.676955	ry b	Ø 0.7500°	<b>5</b> 0.0072 <i>5</i> 909		**************************************	A = Application
0.806061	"	©" 0.75€	@~0.00 <b>&amp;</b> 53636	O 20 8		C = Head
25.1903	0.021652		Ÿ 0 <b>,069</b> 8970⊘	0	0.0002320	H = Hands
	Z Ž	\$0.750 @	<b>%</b> 18304 <b>4</b> %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		B = Body
	i de la	June 1	Octod & .	D' Prote	estad	]
	Absorpti d	Exposure [mg/kg-hw/day]	@ exposure	exposure	exposure [mg/kg bw/day]	
Master	00.3	7 9.024591°	\$ 0000738	0.000318	0.000001	
U	8.6	9.461578		1		
		©*0.00014 <b>2</b> 97				
Application 7	1 S 200	0.007253	, <del>*</del> (( ))	0.007253		
			<u> </u>		0.023901	
			Ş			
	re: Greenhouse management of the second of t	gh crop - Standard (Green  Teldor Fenhexamid WG 1.5 1 70 100 0.3 (concentrate) 8.6 (dilution)  Sture:  Intermediate exposure figures [mg/kg a.s.] used to calculate "Estimated exposure" for value "Unprotected" "Protected"  0.013344 2.295118 0.676955 0.806061 25.1903 0.021652 17.084126  Application Application Application Total*	re: Greenhouse model. High crop, standard  Teldor Fenhexamid  WG PPE during mix/loadin  1.5  1 PPE during application  70 100 0.3 (concentrate) 8.6 (dilution)  Sure:  Intermediate exposure figures [mg/kg a.s.] used to calculate "Estimated exposure" for y "Unprotected"  Protected"  0.013344 2.295118 0.021652 0.750 0.676955 0.806061 25.1903 0.021652 0.750 17.084126  Washington and the standard of	Teldor Fenhexamid  1.5 PPE during mix/loading Respiration: 1.5 PPE during application  1.6 Respiration: Respi	Estimated exposure   Ing/kg a.s.   used to calculate   a   pandled   Estimated exposure   Ing/kg     "Estimated exposure"   For	### Crop - Standard (Greenhouse Model v_2.1, without and with PPE)  ##################################

0.012932

Document M-III /Tier 2, Sec. 3, Point 7 - Toxicological Studies and Exposure Data of Fenhexamid 50 WG (Submission for Annex I renewal)

Table 7.3.1-9: Ca	lculation of on	erator exposi	ure during greei	nhouse applicat	ion.		° D
High crop - Intensiv					E) .		O V
						W E	<b>5</b>
Operator exposure estim	nate: Greenhouse	model. High cro	pp, intensive contact	with treated crop	F		. //
Product:	Teldor			_	A		٨
Active substance:	Fenhexamid		a.s. concentration	ı: 500 g≤	Ĺ/g/lorkg] γ		<b>∜</b> ′
Formulation:	WG	P	PE during mix/loading	g:Respiration: 🧳	None 🔏		,
Dose [1 or kg/ha product] :	1.5		N.	Hands:	Gloves		4
Work rate [ha/day]:	1	I	PPE during application	n: RespirationO	None		<b>~</b> 0°
Body weight [kg]:	70			Hands:	Gloves		01
Inhalation absorption [%]	100			TT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	None None Children	ł . ~ . ~	, S 1
Dermal absorption [%]	0.3	(concentrate)	<i>Q</i> 0	Body . O	Impervious clothing		*
	8.6	(dilution)	U &		Impervious clythini		
		,				, _/	
Calculation of route expo	osure:	,			; '0' <u>(</u>	/ 🖆 1	0
	Intermediate ex	posure figures		1, 4	- Q		1
ъ.	[mg/kg a.s.] use	ed to calculate	°a₂s. handlexa	Stimate	d exposure (100g/kg	bw/day]	
Route	"Estimated ex	posure" 🗗		, O, *			
	"Unprotected"	"Properted"		Upprotected C	Reduction factor	Protected	1
		2, 6					I = Inhalation
$I_{M} =$	0.013344	Q''	0.75	Ø.00014 <b>29</b> 7			D = Dermal
$D_{M(H)} =$	2.295118 @	, *0.029 <b>6</b> 89	6 0.7 <b>40</b> €	@ 0.024 <b>5</b> 9055 6		, ő.00031810	M = Mix/Loading
IA =	0.824467		0.950 4	0.0 <b>//38</b> 3358 <u>.</u>		<b>Y</b>	A = Application
$D_{A(C)} =$	1.0662🗺		, Lg.750 (g. 1	0 Q 1 142389,	- B		C = Head
$D_{A(H)} =$	not applicable	0 1.051 <b>509</b>	<b>©″</b> 0.750 <b>″</b>			0.0112662	H = Hands
$D_{A(B)} =$	not applicable	2.173	\$ 0.75 V			0.023289	B = Body
		, <i>Co</i> (		)			, ,
				0, %			
Absorbed dose:			A Proprot	tected	Prot	ected	1
		Absorption	Estimate Quite	Strateficia	Æstimated route	Systemic	1
Route 🔊		// Absorption	exposure «	Systemic explanation	exposure	exposure	
		[%] / o	[mg/kg bw/dey]	[mg kg bw/day]	[mg/kg bw/day]	[mg/kg bw/day]	
, O							1
Dermal:🖒	Mix/Loading ,	Ø 0 <u>.</u> 21	<b>3</b> 0.024 <b>50</b> 1	0.0000738	0.000318	0.000001	
~~~~	Applecation	/  \$606 ³⁷		<b>%</b> ~ <b>"</b> 0"	0.045979	0.0039542	
In/Kalation:	Ma Loading	\$\int_{100} \	0.00 14297	, ,0. Q 014297	0.00014297	0.00014297	
-2-8	Arbolication	100	. Wnn88 7 4	4 noss34	0.008834	0.0001124	

Narrow or no rows in greenhouse high crops result in additional exposure via direct contact with treated for lage that cannot be avoided. Exposure is substantially different to the 'Standard' crop scenario, thus forms a unique 'Intensive' exposure scenario. Protected operators with intensive contact to treated foliage in the high crop scenario would wear an impervious coverall and gloves during mixing/loading and application. A safety phrase must always be incorporated on product labels for this scenario to ensure that exposure due to contact with treated crop is minimised by use of spray tight protective clothing. Cat. III, type 4; High crop: overall or jacket/trousers), or avoided by use of engineering controls.

Table 7.3.1-10: Cal	lculation of ope	rator exposi	ıre during gre	enhouse applicat	tion,		
Low crop – Standar	d (Greenhouse l	Model v_2.1	, without and	with PPE)	፟		O ^T
Operator exposure estim	nate: Greenhouse m	odel. Low crop	o, standard		© "		
Product:	Teldor				2		Ò
Active substance:	Fenhexamid		a.s. concentratį	on: 500 🍃	Úgy∏orkg] %		Ø.
Formulation:	WG	P	PE during mix/loadi	🗽 Respiration: 🇳	'None 🔏		y 0,
Dose [1 or kg/ha product] :	1.5		V	Hands:	Gloves		4
Work rate [ha/day]:	1	P	PE during apolicati	on: Respiration	None		_{(,} O'
Body weight [kg]:	70		`_\$\vec{\pi}{2}'	Hands:	Gloves		
Inhalation absorption [%]	100			Head: 😽 _Ø	None None	}	.♥
Dermal absorption [%]	0.3	(concentrate)	Qn'0"	Body , O	Impervious clathing		,
[]	8.6	(dilution)	/a # 0		Tuber vious cultumi		
	0.0	(020001)	O . W				
Calculation of route expo	eme.		~ ~ <i>1</i>	O O' 7	y v z	/ A	0
Carolina of Folia Carpe	Intermediate exp	osure figures		' /			ĺ
	[mg/kg a.s.] used		s. handley	Tetimati	ed exposure finds/kg	hw/davl	
Route	"Estimated exp		· Serial Car				
	"Unprotected"	"Propreted"	[remay]	Upprotected C	Reduction factor	Protected	-
	Onprotected	I TOWNSTOOT X			Tet digeson metol	<u></u>	I = Inhalation
IM =	0.013344	. °	2 0.75 0	\$\times \tag{\tag{\tag{\tag{\tag{\tag{\tag{		**************************************	D = Dermal
$D_{M(H)} =$		0.029689	0.750	0.0001-67	,	″¥ 0.00031810	M = Mix/Loading
IA =	2.295118 @ 0.44329 ©	0.000	0.780	L 0.0241#033		>	٠ -
DA(C) =	0.44329	, 'Y		% 0.000434360.		1	A = Application C = Head
, ,	0.01143 4 5.716405	0.000237°	(0.750 W 0.750	0.001232		0.0000025	
$D_{A(H)} =$	5.71 0 9485 () 0.000 23 7		0.0611938		0.0000025	H = Hands
DA(B) =	0.33/2960	~~~	0.75	0.0039996			B = Body
)		~ ()		
	Ş O	%				. 1	1
Absorbed dose:				otected	-	ected	_
		Absorption	Estimațe Quite	Systemic Systemic	Øzstimated route	Systemic	
Route &		(1,00)	exposure	S'explosure	exposure	exposure	
		0 4 9	' [mg/kg bw/dew]	[makkg bw/day]	[mg/kg bw/day]	[mg/kg bw/day]	
		[0 4			
Dermal:	Mix/Loading	0,23	%0.024 501	0.0000538	0.000318	0.000001	
	Applacation	\$606`	0.065303	0.995616	0.004122	0.0003545	
Inkalation:	M W LoadingO)	~~~ 100 <u>~~</u>	Q.000 142974		0.00014297	0.00014297	
	Application	(100 N	0 .0047 8 0	∡Š 8.004750	0.004750	0.004750]
*		Žo≱al =		0.010582		0.005248	

IIIA 7.32 Estimation of operator exposure using personal protective equipment

Estimations of professional operator exposure using PPE are performed with the respective exposure model. Detailed calculations and summaries are presented in IIIA 7.3.1.

IIIA 7.3.3 Measurement of operator exposure

Since the risk assessment caused out indicated that the acceptable operator exposure level (AOEL) for fenheramid will not be exceeded under practical conditions of use, a study to provide a measure of operator exposure under field conditions was not necessary and was therefore not carried out.

IIIA 7.4 Bystander exposure

No EU-wide accepted official model is available for estimation of bystander exposure. Some proposals were given by the EUROPOEM Bystander Working Group but the report is still a graft and not officially published. Therefore, as long as there is no official EU-wide guidance on how to estimate bystander exposure an approach is presented in this document that considers both dermal exposure — derived from available drift data — and inhabition exposure — derived from an operator exposure model simulating a bystander who is exposed in a similar way as an unprotected operator. This approach follows a guidance of the German Federal Institute for Risk Assessment BfR and is in line with what has been published by US EPA and CRD recently. At technical details with regard to figures and assumptions are provided in this guidance.

A comparison of the exposure estimates with the proposed ASEL (in terms of percentage of the AOEL) is presented in table 7.4-1. For details see chapter III.47.4.1.

Table 7.4-1: Comparison of estimated systemic bystander resident exposure to fem examid [mg/kg bw/day] with the proposed AOEL

Scenario	Application technique	Person	[Ing/kg bw/day]	% of AOIO
Bystander	FCS 👸	Adult S	0.00042	0,19
	***	Child 🦃	0.00042	2011
Resident	FCS & S		2, 040033 2,000050/ (Ø.017
		Child @	\$\times_0.000141 \(\circ\)	[♥]
Bystander	BAA	Adult 5	0.00144	0.48
		Child ~	, j j og f0116@'	() () ()
Resident	BAAO	Adult ©	~0.0001 %	0.06
		Child	, Q Q 0.00 Q Q	0.17

FCS = Field çropsprayer, BAA = Broadcast ar assisted sprayer

Based on these results there is no uracceptable risk antiopated for the bystander/resident with the intended professional uses of Penheramid WG 50

IIIA 7.4.1 Estimation of bystander exposure without personal protective equipment

The following definitions and assumptions for by canders and residents may be applied.

Bystanders and residents are not involved in application or handling plant protection products or the professional handling of treated crops. The question arises whether it is necessary to distinguish between bystanders and residents in terms of the potential for exposure and health risks. However, because the circumstances of this exposure could differ with respect to amount, frequency and duration this cems to be resonable.

^{#:} AOEL=0/3 mg/kg bw/day

^{*:} Considers the 60 kg adul@and 16.16 kg child

Bystanders may inadvertently be present within or directly adjacent to an area for a short period of time, typically a matter of minutes, where application of a plant protection product is in progress or has recently taken place. They may be exposed to plant protection products mainly via the dermal route from spray drift and by inhalation of drifting spray droplets.

Residents may live or work near areas of the application of plant protection products e.g. standing working or sitting in a garden in the vicinity of the application). They may be exposed to plant protection products mainly via the dermal route from spray drift deposits. For infants and toddlers exposure might also occur orally (e.g. through hand-to-mouth transfer and/or object-to-mouth transfer). For large scale applications performed in the field in addition exposure by infantation of vapour drift (depending on the vapour pressure of the active substance) is considered.

Bystander/resident exposure may occur following foliar spray application outfloors. Bystander/resident exposure is not assumed to occur following applications in the greenflouse.

Bystander/resident exposure is calculated regarding the application scenario leading to the highest drift value. Application scenarios causing lower spray drift will be covered by this calculation and separate evaluations are not made. Exposure is calculated for adult and child bystanders as well as adult and child residents.

Corresponding exposure estimates are presented in the following

A. Bystander exposure

Exposure calculations are performed according to the following equations

Dermal exposure due to spray drift

```
SDE_B = (A \times X D \times BSA \times DA) \times BW where.
```

SDE_B Systemic Exposure of Bystanders via the Dermal Route (mg/kg bw/day)

AR = max. Application Rate grapes 80 mg a.s. m², field crops = 100 mg a.s./m²)

D = Drift (1)23% for use in grapes and 0,29% for use in field crops)

BSA = Exposed Body Surface Area (Dm²: a@ult, 0.Dr m²: child)

DA = Dermal Absorption (\$7.6%)

BW Body Weight (60 kg. adult, 16.15 kg. cold)

Inhalation exposure due to spray drift

 $SIE_B = (I_A * AR * AR * A \times IAR / BW$

Where.

SIE_B Systemic Exposure of Bystanders via the Inhalation Route (mg/kg bw/day)

 $I_A * \mathcal{I} = Specific Whalation Exposure (0.018 mg/kg a.s. handled per day)$

AR Application Rate (grapes = 0.8 kg a.s. /ha, field crops = 1 kg a.s. /ha)

Residents exposed to Plant Protection Products during and after Application; J. Verbr. Lebensm.1661-5751/00/000001-10 DOI 10.1007/s00003-008-0361-5

Table 7.4.1-2:

A	= Area Treated (grapes = 8 ha, field crops = 20 ha) = Inhalation Absorption (100%) = Body Weight (60 kg: adult, 16.15 kg: child) Systemic Exposure of Bystanders s and Children: SE _B = SDE _B + SIE _B (mg/kg bw/day) = Systemic Exposure of Bystanders (mg/kg-bw/day) = Systemic Dermal Exposure of Bystanders (mg/kg-bw/day) = Systemic Inhalation Exposure of Bystanders (mg/kg-bw/day) = Systemic Inhalation Exposure of Bystanders (mg/kg-bw/day) ed exposure calculations are presented in the following tables. 7.4.1-2: Calculations for bystander exposure to fentexamid when applied ha field crop sprayer (use in strawberries covers also the use in formato) Adults Bystander of Flyld Crop, tractor mounted frailed Definal exposure: SDE _B = (AR x D x BSA x DA) / BW (100 x 0.29% x 1 x x 5 %) / 60 (100 x 0.29% x 1 x x 5 %) / 60 Absorbed dose 0.0000457 (mg/kg bw/day) halation exposure: SIE _B = (A* x R x A x T x IA) / BW (100 x 0.20% x 0.20 x 5 / 60 x 100%) / 60 Absorbed dose 0.00000463 mg/kg bw/day Absorbed dose 0.00000935 mg/kg bw/day
A	= Inhalation Absorption (100%)
3W	= Body Weight (60 kg: adult, 16.15 kg: child)
<i>-</i> , , ,	South Weight (oo lig. unant, 10:10 lig. vinia)
Γotal :	Systemic Exposure of Bystanders
Adults	s and Children: $SE_B = SDE_B + SIE_B$ (mg/kg bw/day)
Where	
SE_{B}	= Systemic Exposure of Bystanders (mg/kg-bw/day)
SDE_{B}	= Systemic Dermal Exposure of Bystanders (mg/kg bw/day).
SIE_{B}	= Systemic Inhalation Exposure of Bystander (mg/kg/bw/day)
Detail	ed exposure calculations are presented in the following tables.
Table	7.4.1-2: Calculations for bystander exposure to fendexamid when applied in field crop sprayer
	(use in strawberries coversalso the use in tomator & & & &
	Adults V V O Children &
	Bystander of Field Crop, tractor mounted trailed
D	ermal exposure: Definal exposure: 7 7 9
	SDE _B = (AR x D x BSA x DA) / BW SDE _B = (AR x D x BSA x DA) / BW
	(100 x 0.29% x 1 x 26 %) / 600
-	Absorbed dose 0.0004157 mg/kg@w/day Absorbed dose 0.0005243 mg/kg bw/day
ln	halation exposeds:
	0001 x 1 20 x 5/3 0 x 100 9 / 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Absorbed dose: 0,00000463 mg/kg bw/day
To	otal Systemic exposure:
	$SE_{B} = SDE_{A} + SIE_{B}$ $SE_{B} = SDE_{B} + SIE_{B}$
To	rtal absorbed dose: 0.00042 mg/kg bw/day. Total absorbed dose: 0.000334 mg/kg bw/day
	% of AOEL: 0.111
4	
ل لم	
	halation exposure: SIE_

Table 7.4.1-3: Calculations for bystander exposure to fenhexamid when applied via broadcast air assisted sprayer (use in grapes)

					<u> </u>
	Adults			Children	
	Ву	stander of High Crop	, tractor mounted/traile	d 👸	Ý , Ş
Dermal exposure:			Dermal exposure:	4	
$SDE_B = (AF$	RxDxBSAxD	A)/BW	$SDE_B = (A$	RxDxBSAxDA)	PBW ~
(80 x 1.2	3% x 1 x 8.6 %)	/60	(80 x 1.23	% 0.21 x 8.6 %) /	15.15 N ()
Absorbed dose:	0.00141	mg/kg bw/day	Absorbed dose	🕏 0.0011 🛒	mg/kgbw/dag
Inhalation exposure:			Inhalation exposire:		. 0
$SIE_B = (I_A^*)$	x AR x A x T x I	A)/BW	$SIE_B = (I_A^*)$	ARXAQTXIA	ďew o
(0.018 x 0.8	x 8 x 5/360 x 10	0%)/60 🛒	。 (0,0008/1.74 x 0	V8 x 8 <i>x⁄</i> 8⁄360 x 290	%)/18:42 \\
Absorbed dose:	0.00002667	mg/kg bw/🎻	Absorbed dose:	200005692F	mg/kg bw/day
Total systemic exposu	re:		Totalesystembelexpos		o' &' &
SEE	$= SDE_B + SIE_B$			$\mathbf{B} = \mathbf{SDE}_{\mathbf{B}} + \mathbf{SIE}_{\mathbf{B}}$	
Total absorbed dose:	0.00144	mg@kg bw/day	fotal absorbed dose:	0,00116	mg/kg bw/@y
% of AOEL:	0.48		% of AgoEL:	0.385	
. Resident exposure	Ş				
ermal exposure via	deposits va	used by spray d	Att. O		
Resident exposure via $DE_R = (AR \times D)$ There:	TR TC x	X DAJ / BW			
	(C) ^p	"\" \" \" \" \" \" \" \" \" \" \" \" \"	.V	. 🍣	

B. Resident exposure

Where:

= Systemic Exposure of Residents via the Derman Route (mg/kg bw/day) SDE_R

 $2 \times 0.008 \text{ mg/a.s.} / \text{cm}^2 = 0.016 \text{ mg a.s.} / \text{cm}^2$ AR Application Rate

(field crops: 2 x 0 1 mg/s/s. /cm = 0.02 mg a.s. /cm²)

Drift (1.07%) for use in scapes and 0.24% for use in field crops) D

= Turf Transferable Residues (5%) TTR

TC = Transfer Coepicien adult 7300 cm²/k child 2600 cm²/h)

= Exposure Duration (2 hours) Η

= Dermal Absorption (%= 8.6% for fenhexal file) DA

BW

Inhalation Exposur

 $SIE_R = (A$

Where:

stemic Exposure of Residents via the Inhalation Route (mg/kg bw/day)

= Xirborne Concentration of Vapour (mg/m³): vapour pressure of fenhexamid is very low: 4 x 0⁻⁹ Pa at 20 °C. Acc. to guideline the compound is a non volatile substance (vapour pressure <1 x 10⁻⁵ Pa at 20°C). Thus, resident inhalation exposure can be estimated as negligible (i.e. airborne conc. of 0 mg/m³).

IR = Inhalation Rate (m^3/day) : 16.57 (adult), 8.31 (child)

IA = Inhalation Absorption (%): 100

BW= Body Weight (kg/person): 60 (adult), 16.15 (child)

In addition, oral exposure of children is estimated as well by the following equations. Children's hand-to-mouth transfer

 $SOE_H = (2 \times AR \times D \times TTR \times SE \times SA \times Freq \times H \times QA) / BW$

Where:

SOE_H = Systemic Oral Exposure via the Hand Wouth Route mg/kg/bw/day

(grapes: 2 x 0.008 mga.s. /ob = 0.016 mga.s. /ob = AR = Application Rate

(field crops: 2 x 0.0) mg a.s. /cm² 0.02 mg a.s. /cm²

D = Drift (1.07% for use in grapes and 0.24%

= Turf Transferable Residues (5%) TTR

SE = Saliva Extraction Factor (5%) SA

= Surface Area of Hands (20 cm²)

= Frequency of Hand to Mouth (20 events/hours) = Exposure Duration (2 hours) Freq

Η

OA

BW

Children's object-to-mouth transfer

Where:

 SOE_{O}

= Exposure Duration (% = 100%)
= Oral Absorption (% = 100%)
= Body Weight (child = 16.15 kg)

en's object-to-mouth transfer
= (2 x AR x D x DFR x IgR x ØA) / PW
= Systemic Oral Exposure via the Object to Mouth Route (mg/kg bw/day)

Application Rate. (grades: 2x x 0 00x mg a x / cm² = 0.016 mg a z / cm² (grapes: 2 x 0.00 mg a.s. /cm² 0.016 mg a.s. /cm²)

(field crops: 2×0.01 mg a.s. $4 \text{em}^2 = 0.02$ mg a.s. $/\text{cm}^2$)

= Drift (1507% for use in grapes and 024% for use in field crops) D

= Dislodgeable Folian Residues (20%) DFR

IgR = Ingestion Rate for Mouthing of Gras

OA ≕Øral Absorption (%

[≌]Body Weight (child BW

Total systemic exposure of residents is then estimated for

SE_R SDE mg/kg bw/day) Adults:

 $SDE_R + SOE_H + SOE_O$ (mg/kg bw/day) Children:

Systemic Exposure of Residents (mg/kg bw/day)

= Systemi@Dermal Exposure of Residents (mg/kg bw/day)

SOE_H Systemic Oral Exposure via the Hand to Mouth Route (mg/kg bw/day)

Systemic Oral Exposure via the Object to Mouth Route (mg/kg bw/day)

Detailed exposure calculations are presented in the following table.

Table 7.4.1-4: Calculations for resident exposure to fenhexamid when applied via field crop sprayer (use in strawberries, covers also the use in tomato)

Note	Dermal exposure: SDE _R = (AR x D x TTR x TC x H x DA) / B	
Dermal exposure: Dermal exposure:	Dermal exposure: Dermal exposure:	
(0.02 x 0.24% x 5% x 7300 x 2 x 8.6%) / 60 Absorbed dose: 0.00005022 mg/kg bw/d Inhalation exposure: SIE _R = (AC _V x IR x IA) / 1000 x BW (0 x 16.57 x 100%) / 60 Absorbed dose: 0.0 Mg/kg bw/d Wbsorbed dose: 0.0 Was a (2 100%) / 6.15 Absorbed dose: 0.0 Mg/kg bw/d Wbsorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Absorbed dose: 0.0 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Absorbed dose: 0.000059440 mg/kg bw/d	(0.02 x 0.24% x 5% x 7300 x 2 x 8.6%) / 60 Absorbed dose: 0.00005022 mg/kg bw/d Absorbed dose: 0.0000666 mg/kg Inhalation exposure: SIE _R = (AC _V x IR x IA) / 1000 x BW (0 x 16.57 x 100%) / 60 Absorbed dose: 0.0 mg/kg bw/d Absorbed dose: 0.0 mg/kg Wal exposure (hard-to-mayth transfer): SOE _R = (AC _V x TR x Ex X x Freq x x 0 (8.02 x 0.24% x 5% x 2600 x 2x 8.6%) / 36. Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg	
(0.02 x 0.24% x 5% x 7300 x 2 x 8.6%) / 60 Absorbed dose: 0.00005022 mg/kg bw/d Inhalation exposure: SIE _R = (AC _V x IR x IA) / 1000 x BW (0 x 16.57 x 100%) / 60 Absorbed dose: 0.0 Mg/kg bw/d Wbsorbed dose: 0.0 Was a (2 100%) / 6.15 Absorbed dose: 0.0 Mg/kg bw/d Wbsorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Absorbed dose: 0.0 Absorbed dose: 0.0 Mg/kg bw/d Was a (2 100%) / 6.15 Absorbed dose: 0.0 Absorbed dose: 0.000059440 mg/kg bw/d	(0.02 x 0.24% x 5% x 7300 x 2 x 8.6%) / 60 Absorbed dose: 0.00005022 mg/kg bw/d Absorbed dose: 0.0000666 mg/kg Inhalation exposure: SIE _R = (AC _V x IR x IA) / 1000 x BW (0 x 16.57 x 100%) / 60 Absorbed dose: 0.0 mg/kg bw/d Absorbed dose: 0.0 mg/kg Wal exposure (hard-to-mayth transfer): SOE _R = (AC _V x TR x Ex X x Freq x x 0 (8.02 x 0.24% x 5% x 2600 x 2x 8.6%) / 36. Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg Absorbed dose: 0.0 mg/kg	
Sieg = (ACyxir x iA) / 1000 x bw	C x 16.57 x 100% 60	ngqq.
Compare the comp	Sieg = (ACyxiR x IA) 1000 x BW	
Sieg = (ACTY i R x i A) / 1000 x BW	Sieg = (AC y x ir x i A) / 1000 x BW	
		4
		₩/d
		A6.15
Oral series we super SOB6 = (AR x D x DFB x IgR x OA) / BW (0.02 x 0.23% x 20 x 25 x 100%) / 16.15 Ageorbeid dose	Oral exposure Poject-to-mouth @insfer SOE (1,02 x 0,2% x 20 x 25 x 10 8%) / 16.15	w/d
SOE6	SOE6	
Q_02 x 0 2 48	Total systemic exposure: Total systemic exposure:	,
Total systemic exposure: Total systemic exposure: Total systemic exposure: Total systemic exposure: SER = SDER + SIER	Total systemic expositive Total systemic expositive Total absorbed dose 0.000146 mg/kg	
Total systemic exposition Total systemic exposition Signal SDER +	Total systemic expositive: Total systemic expositive: Total systemic expositive:	w/d
SER SDER S	SER SDER + SIER SER SDER + SIER + SOEH + SOEO	
Total absorbed gloss: 0.0000502 mg/kg hw/d Atotal absorbed gloss: 0.00141 mg/kg hw/d % of ADEL: 0.0147	Total absorbed dose: 0.0800502 mg/kg bw/d Total absorbed dose: 0.000141 mg/	
% of ADEL: DOUGHT DOUGH	% of AOEL: 0 0.0167	sg bw/e

Table 7.4.1-5: Calculations for resident exposure to fenhexamid via broadcast air assisted sprayer (use in grapes)

Adults	Children O
Resident: Exposure after application w	ith High Crop, tractor mounted@railed
Dermal exposure:	Dermal exposure:
$SDE_R = (AR \times D \times TTR \times TC \times H \times DA) / BW$	SDE _R = (AR x D x PTR x TC x H x Dx) / BW
(0.016 x 1.07% x 5% x 7300 x 2 x 8.6%) / 60	~~~~(0.016 x 1.07% Ø3% x 2600 x 2 x 365%) / 16√5
Absorbed dose: 0.0001791 mg/kg bw/d	Absorbed do 0.000237 mg/g bw/d
Inhalation exposure:	Inhalation exposure:
$SIE_R = (AC_V \times IR \times IA) / 1000 \times BW$	SIE _R =@AC _V x IR&IA) (DW 💪 🕡
(0 x 16.57 x 100%) / 60	6° 5° 978.31 x 100% / 160 ts 5° 5° 1
Absorbed dose: 0.0 mg/kg bw/®	Absorbed dese: 000 6 mg/kg bywed
	Oxal exposure thand to-mouth transfer
	30EH=(QRxDxTTRxSEXSAxFreqxHxOA)/EW
	(0.016 x 1.07% x 5% x 56% x 20 000 x 2 x 000%) / 10.15
	Absorbed dose \$20.000252 Smg/kg@w/d
Q Q	Oral expective (object-to-mouth transfer): ">
	SOE0 =QAR x D xDFR (35 R x O)(0) / BW
	(0.0)6x1.07%2x20% x25 x100%)/16.15
	Absorbed doss 0,000053 mg/kg bw/d
Total systemic exposure:	Total systemic exposure.
SE _R SDE _R SIE _R	SER SDER + SIER SOEH + SOE
Total absorbed dose 0.000179 mg/kg bw/d	Foral absorbed dose: 0.000502 mg/kg bw/d
% of AQQL: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	90 of A 2L: 0.167

IIIA 7.4.2 Measurement of bystander exposure

The predicted systemic bystoder/resident exposure is a ways well below the proposed systemic AOELs. Therefore, a study to provide a measure of bystander exposure under field conditions was not necessary and was herefore not carried out. For details see IIIA 7.4 and IIIA 7.4.1.

IIIA 7.5 Worker@xposure

Fenhexand WG 50 is interded for the pray treatment in tomatoes, strawberries, and grapes. In grapes work activities are tasks like pruning/thinning/harvesting which are done by farmers usually throughout the growing cason in strawberries and tomatoes the relevant task is harvesting.

A comparison of the corresponding exposure estimates with the proposed AOEL (percentage of the AOEL) is presented in table 7.5-1. Detailed calculations are presented in chapter IIIA 7.5.1.

Table 7551: Comparison of estimated systemic worker exposure to fenhexamid [mg/kg bw/day] with

Erop	Systemic exposure [mg/kg bw/day]*	% of AOEL [0.3 mg/kg bw/day]
Tomatoes / Strawberries	0.260	87
Grapes	0.224	75

^{*} Assumes a 60 kg worker. Dermal absorption of fenhexamid of 8.6%

.

Based on this exposure estimate there is no unacceptable risk anticipated for the worker with the intended uses of Fenhexamid WG 50.

Estimation of worker exposure without personal protective equipment IIIA 7.5.1

Calculations are performed according to the following equation: $E = (DFR \times TC \times WR \times AR \times P(x) DA)/BW$ where E = Systemic exposure (mg(t)g bw/day) $DFR = Dislongeable foliar residues (\mu g as/em²)$ TC = Transfer Coefficient (cm²/person/h) WR = Work rate (hours/day) AR = Application rate (kg as/ha) P = Protection factors or PPE DA = Dermal absorption (%) BW = Body weight (kg/person)The basis for the dermal exposure assessment related to the relevant scenario is formed by a multiplication of DFR, TC, duration of the work and application rate. Work rates are considered with a

multiplication of DFR, TC, duration of the work and apprication rate. Work rates are considered with a maximum of 8 hours for maintenance work and hard hards harvesting. The maximum dose rate is always applied. A calculation for protective equipment is not made, i.e. Palways set to P.

In a Tier 1 assessment the TCs used in this tisk assessment are taken from the EUROPOEM II report4. The following TC values were used.

Table 7.5-1-1: Transfer coefficients based on EUROPOEM

Geop 4	Transfer Coefficients [cm²/hr]
Tomatoes Q	2500 2
Gragos C	4 500
Strawberries O	\$ \$3000

Considerations on DFR

Where experimental DFR data are nowavailable an estimation of the amount of DFR immediately after application can be made taking into account the application rate, the crop habitat (leaf area index: LAI) and the (possible extend of residues remaining on foliage from previous applications (a possible default value for the LAT is not arger than 2). In other cases, a highly conservative default value for the DFR may be taken as 3 µg/cm² for a standardised application rate of 1 kg/ha. In a Tier 1 approach this value is used without further consideration of crop specific LAI.

⁴ Post application exposure of workers to pesticides in agriculture (Dec 2002); Re-entry working group EUROPOEM II project – FAIR3 – CT96-1406.

Calculations consider the maximum number of applications and a conservative dissipation between applications. DFR dissipation is commonly approximated by pseudo-first order decay – that is, a reduction in concentration over time due to a variety of degradation processes e.g. hydrolysis or photolysis. Dissipation may also be influenced by leaf expansion and plant growth, particularly duoing the early phases of plant development. In a first approach, a conservative assumption using a Disso of 30 days is made for the dissipation between applications. The minimum spray interval is always applied. The DFR after n applications is calculated according to the following formula:

$$DFR_{n \text{ appl.}} = ((DFR_0 \times AR^1) \times 0.5^{d1}) + ((DFR_0 \times AR^2) \times 0.5^{d1}) + ... + ((DFR_0 \times AR^n) \times 0.5^{d1})$$

Where
$$DFR_{n appl.} = DFR_{n after n}$$
 applications (μg as/ m^2)
$$DFR_{o} = Inval DFR_{n application}$$
 after application for μg as/ m^2

$$AR = Application rate (μg as./ μg)
$$d^m = \pi_{n o} \int_{0}^{\infty} DF_{n o}(g) df$$$$

Depending on the crop a maximum of two grape) three flomato strategeries and four (strawberries) consecutive sprays per season are considered in this rick assessment. Farmers will only do consecutive treatments if the efficacy of the prexious treatment is no longer sufficient. Low efficacy is mainly caused by a decline of residues. Therefore, accumulations of residues on plant surfaces after repeated applications will only occur to a small extent depending on the degree of decline at is only reasonable to expect some residue decay would occur thiring a day period (i.e., the required minimum interval between two applications). Otherwise, it would be highly unconceivable for growers to repeat any application when the active substance dislodgeable residues on the toliage could be preserved completely from a single application.

Further assumptions/considerations to estimate exposure of the worker are summarised below:

Work rate (WR): \checkmark \checkmark 8 hour per day

Clothing penetration (P): 1 which means no special clothing request is taken into

Consideration 4

Dermal absorption: \$\infty\$ 8.6% Body weight of the worker. \$\infty\$ 60% \$\infty\$

Detailed calculations of worker exposure during re-entry in strawberry:

Maxinum application rate: AR ₹0.75 kg a.s./ha

Number of applications 4

Minimum spray interval: 7 days

PHIO 2 1 day

No. of DT₅₀ periods: $d^1 = (Int 1 + Int 2 + Int 3 + PHI)/DT_{50} = (7 + 7 + 7 + 1)/30 = 0.73$

 $d^2 = (Int 2 + Int 3 + PHI)/DT_{50} = (7 + 7 + 1)/30 = 0.50$

 $d^3 = (Int 3 + PHI)/DT_{50} = (7 + 1)/30$ = 0.27

 $d^4 = PHI/DT_{50} = 1/30 = 0.03$

•

$$\begin{aligned} DFR_{n \, appl.} &= ((DFR_0 \, x \, AR^1) \, x \, 0.5^{d1}) + ((DFR_0 \, x \, AR^2) \, x \, 0.5^{d2}) + ... + ((DFR_0 \, x \, AR^n) \, x \, 0.5^{dn}) \\ &= ((3 \, x \, 0.75) \, x \, 0.5^{0.73}) + ((3 \, x \, 0.75) \, x \, 0.5^{0.5}) + ((3 \, x \, 0.75) \, x \, 0.5^{0.27}) + ((3 \, x \, 0.75) \, x \, 0.5^{0.00}) \\ &= 7.01 \, \mu g \, as/cm^2 \end{aligned} \\ E &= (DFR_{n \, appl.} \, x \, TC \, x \, WR \, x \, P \, x \, DA)/BW \\ &= (7.01 \, x \, 3000 \, x \, 8 \, x \, 1 \, x \, 0.086)/(60) \\ &= 0.241 \, mg/kg \, bw/day \end{aligned}$$

$$Maximum \, application \, rate: \, AR = 1 \, kg \, as. / ha \\ Number \, of \, applications: \, 3 \\ Minimum \, spray \, interval: \, 7 \, days \\ PHI: & 1 \, day \\ No. \, of \, DT_{50} \, periods: \, d^1 = (Int \, 1 \, 4 \, Int \, 2 \, PHI)/DT_{50} = (7 \, + 7 \, 1)/36 \\ &= 0.50 \\ d^2 = (Int \, 2 \, + \, PHI)/DT_{50} = (7 \, + 5 \, 1)/30 \\ &= 0.27 \\ d^3 = BH/DT_{50} = 1/30 \end{aligned} = 0.03$$

$$DFR_{n \, appl.} = ((DFR_0 \, x \, AR^1) \, x \, 0.5^{d1}) + ((DFR_0 \, x \, AR^2) \, x \, 0.5^{d2}) + ... + ((DFR_0 \, x \, AR^n) \, x \, 0.5^{dn}) \\ &= ((3 \, x \, 1.0) \, x \, 0.5^{0.5}) + ((3 \, x \, 2.0) \, x \, 0.5^{0.20}) + ... + ((DFR_0 \, x \, AR^n) \, x \, 0.5^{dn}) \\ &= 7.55 \, \mu g \, as/cm^2 \end{aligned}$$

$$E = (DFR_{n \, appl.} \, x \, TC, \, x \, WK \, x \, P \, y \, DA)/BW \\ &= (7.55 \, x \, 3000 \, x \, 8 \, x \, 14 \, x \, 0.086)/(60) \\ &= 0.260 \, mg/kg \, bw/day$$

Detailed calculations of worker exposure during re-entity in tomato

Covered by calculations for strawberry

Detailed calculations of worker exposure during re-entry in grapes:

Maximum application rate. AR ≠ 0.8 kg/a/s./ha

Number of applications 2

Minimum spra@interval: depends on BBCH, not shorter than 7 days

PHI:

14 days however re-entry calculated for interval of one day as other activities than harvesting are possible

No. of
$$DT_{50}$$
 periods: d^{1} = 4nt 1 DT_{50} = $(7 + 1)/30$ = 0.27
 d^{2} PHH/ DT_{50} = $1/30$ = 0.03

DFR
$$_{n \text{ and }} = ((DFR_0 \times AR^1) \times 0.5^{d1}) + ((DFR_0 \times AR^2) \times 0.5^{d2}) + ... + ((DFR_0 \times AR^n) \times 0.5^{dn})$$

$$= (0.5 \times 0.8) \times 0.5^{d2}) + ((3 \times 0.8) \times 0.5^{0.03})$$

E
$$\bigcirc$$
 (DFR n appl. x TC x WR x P x DA)/BW

 $= (4.34 \times 4500 \times 8 \times 1 \times 0.086)/(60)$

= 0.224 mg/kg bw/day

IIIA 7.5.2 Estimation of worker exposure using personal protective equipment

Estimations of worker exposure using PPE as an additional layer of clothing and/or gloves are not performed because the exposure of workers without using PPE is acceptable. For details see HCA 7.5 and IIIA 7.5.1.

IIIA 7.5.3 Estimation of worker exposure using data on dislogeable residues

Dislodgeable foliar residue studies were not performed because the estimation of worker exposureus acceptable for re-entry directly after the application when the spray deposit has dried. For details see IIIA 7.5 and IIIA 7.5.1.

IIIA 7.5.4 Measurement of worker exposure

Since the exposure estimate carried out indicated that the acceptable operator exposure tevel (NOEL) will not be exceeded under practical conditions of use a study to provide a measure of worker exposure was not necessary and was therefore not carried out for details see IIIA 7.3 and IIIA 7.5.1.

IIIA 7.6 Dermal absorption

The extent of dermal absorption of tenhexamid was investigated in two using the rat and a WP 50 formulation as well as in vitro using human and rat skin and WG 50 formulation. Summaries of the studies are given in the following sections: A conclusion and recommendation regarding the dermal absorption of tenhexamid from a WG formulation is given below.

The *in vivo* rat study indicated that the mean percent absorption of fenhexamid was 2%, following application of the near formulation, 6% for a representative intermediate dilution of 2 g/L and was 18% following application at a lower representative doution of 0.2 g/L.

The *in vitro* study indicated that the mean percentage of [¹⁴C]-fenhexamid considered to be potentially absorbable over a period of 24 hours for the next formulation (500 g/kg) was 0.15% and 1.13% for the human and rat skin, respectively. The mean percentage of [¹⁴C]-fenhexamid considered to be potentially absorbable for the intermediate dose of g/L) was 0.62% and 1.03% for the human and rat skin respectively. The mean percentage of [¹⁴C]-fenhexamid considered to be potentially absorbable for the low dose 0.375 g/L) was 5.83% and 12.22% for the human and rat skin respectively.

Therefore combining the data from both the *in vivo* and the *in vitro* studies provides the following estimated human in vivo absorption values: 500 g/kg = 0.3%, 5 g/L = 3.6%, 0.375 g/L = 8.6%, using the formula below:

Estimated Human in vivo abs % =

Rat in vivo abs %

x <u>Human in vitro abs %</u>

Rat in vitro abs %

	Co	oncentrat	ion of fenl	nexamid	g/kg or L)	4
	50	0 ^a	5 ^b		0.375	
Species	Human	Rat	Human	Rat	Human	Rait
In vitro %absorption	0.15	1.13 🕏	0.62	¥.03	5.830	12022
<i>In vitro</i> H/R ratio	0.1	13	0.6	0	≈ 0.48€	
Estimated Human in vivo %	0.3	27.4	Ž.	1 🔊	859	
bsorption	0.2		3.0	• Øj	Q (8.5)	Ò

a: using the rat *in vivo* value of 2% absorption.

IIIA 7.6.1 Dermal absorption.

			<i>a.</i> ° &						
Table 7.6-1 Summary of the percuta formulation	neous penetration o	f fenhexamid as an a	ctive ingredient of a WG						
	Concentration of fenhexamid (g/kg or L)								
	500 ^a	5 ^b	0.375						
Species	Human Rat	Human Rad	Human, Raty						
In vitro %absorption	0.15 1.13 🖏	0.62 4.03	5.830 12022						
In vitro H/R ratio	0.13	0.60	\$\infty 0.4\text{\text{\text{\$\infty}\$}} \text{\$\text{\$\infty}\$} \text{\$\text{\$\text{\$\infty}\$} \$\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\ext{\$\text{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\exitt{\$\ext{\$\exitt{\$						
Estimated Human <i>in vivo</i> % bsorption	0.27	3.61 0	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
In vitro %absorption 0.15 1.13 0.62 0.03 5.83 122 In vitro H/R ratio 0.13 0.60 0.48 Estimated Human in vivo % 0.27 3.61 8.59 ": using the rat in vivo value of 2% absorption b: using the rat in vivo value of 18% absorption. ": using the rat in vivo value of 18% absorption. ": using the rat in vivo value of 18% absorption. ": using the rat in vivo value of 18% absorption. Titla 7.6.1 Dermal absorption, in vivo Report: LIFA 7.6.1 /012 1997. Title: Dermal Absorption of Pheast-UL CI-TM-402 50 WP0 rmulation in male trats (freliminary and definitive phases)									
Report: KINA 7,6.1/01 Title: Dermal Absorp	tion of Phenyl-UL y and definitive ph	©C]-TM-402 50 W	Pormulation in male						
), issued on 3 fy Jan	uary 1997.							
	Protection Agency								
GLP: Q Ses S Q	♥	Ğ							

Material and methods

Rat:

Rat. Charles River Crl: CD®BR strain Species strain:

Source. USA.

Sex:

Body weight

Age:

Approximately 7 weds old.

Acclimatisat

The sats were acclimated for at least one week before being placed on test. During acclimation, the animals were examined once daily for abnormalities indicative of health problems. In addition, the animals were observed at least twice daily for morbidity, mortality, and any signs of toxicity. During acclimation, the rats were housed individually in stainless steel wire-mesh, screen-bottom cages suspended on racks, with absorbent paper liners. During the test period, the rats were housed individually in metabolism cages designed for the separation and collection of urine and faeces.

b: using the rat in vivo value of 6% absorption

c: using the rat in vivo value of

Animal

Ear tags.

identification:

Environmental Temperature: $22 \pm 3^{\circ}\text{C}$ conditions: Humidity: $50 \pm 20\%$

Photoperiod: 12 hour light/dark cycles

Food: Certified Rodent Diet #5002 (PMI® Feeds, Inc.) was grovided ad Jiotum, and the

lot numbers were recorded. The diet is routinely analyzed by the manufacturer for

nutritional components and environmental contaminants.

Water: Fresh water was provided ad libitum from an automatic watering system. Camples

of the water are routinely analyzed by CHW for water Ossolved solds, conductivity, specified microbiological content, selected elements, heavy metals, organophosphates, and chorinated hydrocarbons. The esults are on file at CHW.

Test Material:

Non- Batch: T950821ELB94.

radiolabelled: Purity = 99.2%.

Radiolabelled: [Phenyl-UL-14C] M-402 (fentexamic)

Batch: 1065/1,

Specific activity: 92.0 µCI/fag.

Radiopurity of the formulation: 99.2

Structural formula:

C derotes position of radiolabel

Formulation:

Bose suspensions for Groups 2, 5 and 6 were recepared by combining appropriate amounts of the cadioactive formulation supplied by the sponsor, the non-radioactive Formulation and water. For Groups 1 and 4, the dose suspensions were prepared by suspending the appropriate amounts of the radioactive formulation in water. The dose suspensions were thoroughly mixed using magnetic stir bar, and vorex-mixing.

Treatment:

At least 16 hours before dosing the back and shoulders of each animal were shared, and the shared area was washed with acetone. The site for application of the test material (approximately 12.5 cm2) was defined and protected by a cetangular plastic enclosure, which was affixed to the back of each rat with cyandacrylate-based glue A 100% silicone sealant was applied on the outside of the enclosure for sealing purposes, and an Elizabethan collar was placed on each animal. Seek to protect the dose application site.

Approximately 100 aL of the dosing suspension was applied within the enclosure. The weight of the dosing syringe was recorded before and after dosing. The test material was spread evenly across the surface of the skin site using a glass rod spreader). The glass rod was then rinsed with approximately 3.0 mL of methanol and wiped with a gauze pad; the rinse and wipe were collected for analysis. After test material application, rubber cement was applied to the top of the enclosure and was covered with a non-occlusive filter paper cover. An Elizabethan collar was placed on the animal's neck to protect the dose application site.

Treatment Groups

There were 6 treatment groups with Groups 1 & 2 used in the preliminary phase and Groups 3 to 6 in the definitive phase.

Groups 1 & 4 were treated at the rate of 0.2~g/L. Groups 2 & 6 were treated at the rate of 20~g/L.

Group 5 was treated at the rate of 2 g/L. Group 3 was treated with vehicle only.

Fours rats per group were sacrificed at 0.5, 1, 24, 40, 24 and 120 hours after application.

Sampling:

The skin wash occurred immediately before the scheduled sacrifice, with the exception of the 24-hour and 20-hour sample collection intervals, for which the skin wash procedure was performed at the 10-hour time point. Approximately 10 to 15 minutes prior to the scheduled skin wash, the sats were anaesthetized with ketamine via an intramuscular injection to the thigh. The Elizabethan contained was removed. The non-occlusive filter paper cover was removed from the plastic enclosure and placed in a 100-mL contained. Twenty-five gauge pads were removed from a pollabelied, pre-tared 1000-mL plastic container and immersed in either a 2% Ivory soap solution or water. The dose application site was alternately washed and sused using the gauge pads and dried with four cotton-tipped applicators.

The accumulated post rose freces and urine from each animal were collected for Groups 3 through 6 immediately following the skin wash all animals were anesthetized with halothate, with the exception of the animals that were to be sactificed at 24 hours and 120 hours post dose. The definitive phase animals were then exsanguitated by cardiac puncture, and the blood was collected into heparitized tubes. Residual urine was collected from the urinary bladder and added to the urine sample. For both phases, the skin from the dose site (enclosure included was excised and collected and the residual carcass was retained. Cages were washed with 1% trisodium phosphate solution (TSP) and wiped with gauze pads (cage wipes) for Groups 4, 5, and 6. All samples collected were retained for radioanally is.

Preliminary Phase Groups 1 and 2). At sacrifice, the non-occlusive cover, enclosure, sen wash, skin at application site, and carcass were collected from each animal.

Definitive Phase (Group 3 - Control). Urine and faeces were collected from control animals at 34 hours post dose At sacrifice, the non-occlusive cover, enclosure, skin wash blood, residual urine from the bladder, skin at application site, and parcass were collected from each animal.

Definitive Rhase (Groups 4, 5, and 6). If available, urine and faeces were collected from four mimals per group per time point (0.5, 1, 2, 4, 10, 24, and 120 hours post dose satisfice times). For the animals sacrificed at 120 hours post dose, urine and faeces were collected at 24-hour intervals until 120 hours post dose. Urine samples were collected in plastic containers surrounded by ice for the animals sacrificed after 24 frours post dose. At sacrifice (4 rats/time point), the following were collected from each animal: non-occlusive cover, enclosure, skin wash, blood, cage wash and wipe, residual urine from the bladder, skin at application site, and carcass

Radioassay:

The amounts of radioactivity in the various samples were determined by liquid scintillation counting (LSC).

Findings:

There were no treatment related clinical signs observed during the study. After a single topical application of the [14C]-fenhexamid at 20 g/L or 0.2 g/L, the mean recoveries for rats sacrificated at 0.5 hours post dose were 96.3% for Group 1 and 97.7% for Group 2. The percentages of radioactivity detected in the skin wash were 87.7% and 97.0% for Groups 1 and 2, respectively. Amounts of 96% and 0.57% were retained in or on the skin at the application site for Groups 1 and 2, respectively. Unsurprisingly, no radioactivity was recovered from the control group (N° 3). The mean occovery of radioactivity was 91.6%, 96.1% and 94.8% for groups 4, 5 and 6 respectively.

The results are presented in Tables 7.6.1-1 to 7.6.13.

The highest direct absorption levels, at 120 hours post dose, were 14.9%, 5.52%, and 1.70% of the total dose applied for Groups 4, 5, and 6, respectively.

The indirect or potential absorption was taken as the sum of direct algorithm and the amount detected

The indirect or potential absorption was taken as the soun of direct absorption and the amount dejected in/on the skin. It ranged from 8.44% to 21.0%, 2.31% to 7.62% and 0.89% to 253% for Groups 4, 5, and 6, respectively.

In general, increasing absorption (expressed as % of administered radioactivity) versus exposure time within the group was noted for the lowest dose group. At higher dose levels, the highest absorption level within the groups was observed at 40 hours post dose, and it accounted for 7 62% (14.0 μg) and 2.63% (48.7 μg) for Groups 5 and 6, respectively.

Table 7.6.1-1.: The mean distribution of radioactivity after a single topical application of [14C]-fenhexamid from a 20 g/L WP 50 formulation

								<i>`</i>
Dose Group				% of app	lied dose			@'
20 g/L]	Hours post	application	7		
(n= 4 rats/group ^d)	0.5		1		2	_1	\$ 4	- 29 c
	Mean	SD	Mean	SD	Mean	≫ SD	Mean	$\sqrt{SD} \sim$
		SUI	RFACE CO	MPAREMI	ENT 🕡	× ·		
Cover wash	0.04	0.03	0.12	0.08	0,63	0.02	, © 0,13°	Ø.10
Enclosure rinse	n.d.	n.a.	n.d.	n.a.	√n.d.	n.a.	~R√d.	o n.a
Skin wash a	96.1	1.16	93.3	2.91	₹93.2€	° 1, 9%	<i> y</i> 93.8	0,64
		S	KIN CO					%) ()
Treated skin	0.77	0.41	4. 01	گي 0.46 م	\$\frac{1}{2}\frac{3}{2}\frac{5}{2}\frac{5}{2}\frac{1}{2}\frac{3}{2}\frac{5}{	©0.30	© 1√54	₩0.25
		SYS	TEMPC CQ	MPARTM	ENTO ?	O O	, L, .	4
Blood	n.d.	n.a.	A n.do	" ¶√a.	🗣 n.d.	"nya.	O n.d.	n,a.
Carcass	0.12	0.25	0.23	% 0.08	0,33	, ©.07		© 0.42
Cage wash	n.d.	n.aQ	v″o∑ni.d.	"Ø n.a"	∕ "On″.d.	n.a	n.d.	n.a.
Cage wipe	n.d.	pa-yat/	‰ n.d.∢		n.d.	nos.	"©" n.d."	n.a.
Urine	n.d.	∜n.a.	©<0.005	n.a.	~~<0.0 %	jil.a.	\$\int 0.02\foots	0.01
Faeces	n.d.	≫n.a. ¢	Q	O n.a.	n.d.	On.a.	Ů ñ.d.	n.a.
Total Recovered	97.0	© 1:Q2	" 9 4.7 .	2.50	Q9 4.9	1.90	№ 96.3	1.05
Absorbed Indirect b	0.89	©0.42	1.25	0.52	ر 1.7 <u>1</u>	@ 27	2.33	0.67
Absorbed Direct c	Q ₂ 12	©0.25 g	Ŷ <u>Q</u> \$	0.08	9:36	20 .07	<i>9</i> 0.79	0.42
Dose Group	**************************************	1		% of app	lied dose	J Z	7	
20 g/L	& Ş	2 2			application	, ,		
(n= 4 rats/group)	\$ \qua	A W	@ \$ 2 ′	· ~	<u> </u>	- •		
	Меал	SD Z	Mean ^d	SD	Mean	@SD		
			RFAÇE CO			S.		
Cover wash	0.03	€04	۩ 0.1 %	% 19	0.09	0.06		
Enclosure rinse	0%.01	0.01	'n.d.	Şn.a.	0 0.64	0.01		
Skin wash ^a	88.7	4.6 6) <u> </u>	2.490	⊘ 1.7	2.14		
		y & S	KIN COM	ÄRTMEN		r		
Treated skin	158	≪ Ø.66	0,87	© 0.42	0.44 عَمْ الْأَمْ	0.23		
, Q	7 4	SYS	ТЕМИ СО	M®ÅRTM	ENT			
Blood	∬n.d.≰	n ₇₀	n.d.	y naz	n.d.	n.a.		
Carcass @	_O♥ 0.99	<u>, 0.21</u>	0 1,1 0	1006	n.d.	n.a.		
Cage wash	♥ pPd.	n.a.	o jď.	🔊 n.a.	0.06	0.07		
Cage wipe	n.d.	n.a.	🤻 " 🦃 n.d. ,	y n.a.	0.03	0.02		
Urine	, © 0.04Q	0.01	0.08		0.28	0.12		
Faeces	0.02	% .04	0.48	0.09	1.32	0.22		
Total Recovered	9 1.4	× 4.37	8 / N.	3.68	94.0	2.42		
Absorbed Indirect	2.63	0.63	2.57	1.30	2.14	0.38		
Absorbed Direct c	_3 ° 1.0€/	20 19	[∞] 1.70	0.97	1.70	0.33		

n.d. = not detectable, n.a. = not applicable, SD = standard deviation

a Skin wash at 10 hours

b Total radioactivity from blood, caroass, cage wash, cage wipe, urine and faeces.

d Anina N° C1981 was excluded from all calculations because the skin wash was not performed before sacrifice.

Table 7.6.1-2.: The mean distribution of radioactivity after a single topical application of [14C]-fenhexamid from a 2 g/L WP 50 formulation

_								
Dose Group				% of app	olied dose		e	V 6
2 g/L]	Hours post	application	6		
(n= 4 rats/group)	0.5	5	1		2	.1	\$ 4	
	Mean	SD	Mean	SD,	Mean	SD SD	Mean	SD
			RFACE CON			¥ ~ ~ ~		
Cover wash	n.d.	n.a.	n.d.	n.a.	n R	n.a.	O not	n.a.
Enclosure rinse	0.16	0.05	0.49	0.32	40 .10	0.05	12gr. 18	0.16
Skin wash ^a	93.2	1.35	91.8	400	92.1	0.03 <u>c</u>	\$\sqrt{90.5}	3.28
Skiii wasii	93.2		KIN COMP	6 V	*> = * = @		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- W
	1		*/			· ///	~ ~ ~ .	~~
Treated skin	1.88	0.21	3 ,11	@°1.61&		©0.77	© 4 <u>316</u>	ॐ 1.90
		SYS	TEMPC CQ			TO O	<u> </u>	<u> </u>
Blood	n.d.	n.a.	🙏 n.d%	. Wa.	🗣 n.d. 🕻	_n,a.	O'n.d	n.a.
Carcass	0.42	0.11	0.40	0.32	D 0,87	\$ Q0.28	4 1.28	© 0.48
Cage wash	n.d.	n.a©	ω [™] ni.d. ,	, n.a.	Øn.d.	n.a	n.d.	n.a.
Cage wipe	n.d.	pr.jav	🦅 n.d.C		n.d.	D na.	Ø n.d.	n.a.
Urine	< 0.005	n.a.	©<0.005	n.a.	0.02	20.01	0.03	0.01
Faeces	n.d.	₹n.a. ¢		🔊 n.a.	an-d.	© n.a.	ñ.d.	n.a.
Total Recovered	95.6		95.8	3.80		2.07	96.2	2.47
Absorbed Indirect b	2.3%	©0.32	3.51	1.62	4.86	•	© 5.47	2.17
Absorbed Direct c		©0.32	S 0.940	0.32	0.80	9//	in-	
	<u>0</u>	()U.11	0.940			- C	9 1.31	0.48
Dose Group		<u> </u>		% of app			¥ 	
2 g/L	\$ \$\frac{1}{2}\$	y Z	A 79	nours post	application		T	
(n= 4 rats/group)	6 90	a 💜	<u> </u>		<u> </u>			
	Mean	SD 2	Mean	SD	Mean	 SD		
Ď			RFAÇÊ CO	w//		Ş		
Cover wash	0.03	600	6 0.03	29, 00	0.07	0.09		
Enclosure rinse	04.205	0.25	0,29	\$0.09	0 0.94	0.11		
Skin wash a	≈ 87.9	√ 1.7 2	® 6.9	[™] 2.7 ©	№ 0.3	4.63		
į Q'		Ž Ş S	KIN COMP	ÄRTMEN	T O			
Treated skin	5,01	\$1.61	3.49	¢ 0.32	1.40	0.25		
Â			TEMIO CO	MÐÅRTM		ı	<u>l</u>	
Blood	n.d.	nga.	n.d.	n na	n.d.	n.a.		
Carcass @	2.52	\$ 0.69	2,19	0068	n.d.	n.a.	1	
Cage wash	QQ2	0.03	2 1 2 1 3 2 1 3 3 3 3 3 3 3 3 3 3	0.05	0.25	0.11		
Cage wash	n.d.	9 n.æ.	§ 9.02 s	0.02	0.08	0.03	1	
Ugine Ugine	0.07Q	0.03	0.22	0.02	0.93	0.03		
Faeces	n.d.	, 0.03 n.a.	1.47	0.03	4.25	1.15	-	
 							ļ	
Total Recovered	93.7	1.48	*	3.27	97.6	3.21		
Absorbed Indirect	7.62	2.02	7.45	0.82	6.92	1.64		
Absorbed Direct c	<u></u> 2.60	Z71	→ 3.96	0.56	5.52	1.50		
n.d. = not detectable, n.a. Skin wash 41,10 hours b Total radioactivit@nir	us radioactivat	from non-	occlusive cov	er enclosure	e rinse and ski	n wash.		
c Total radioactivity from	m blood, carras	ss, cage was	h, cage wipe,	urine and fa	eces.	•		
c Total radioactivity from								

Table 7.6.1-3.: The mean distribution of radioactivity after a single topical application of [14C]-fenhexamid from a 0.2~g/L~WP~50 formulation

_								
Dose Group				% of app	olied dose		.6	@" _&
0.2 g/L]	Hours post	application	6		
(n= 4 rats/group)	0.5	5	1		2	.1	\$ 4	
	Mean	SD	Mean	SD,	Mean	SD SD	Mean	SD
			RFACE CO			¥ ~ ~ ~		
Cover wash	n.d.	n.a.	n.d.	n.a.	n a	n.a.	O not	h.a.
Enclosure rinse	0.16	0.12	0.13	0.03	40 .13	0.09	Q31	0.24
Skin wash ^a	86.5	2.16	77.1.4	4.00	76.96		\$\sqrt{74.8}	0.24
Skiii wasii	80.3		KIN COM				74.0	_
	F		*				~ ~ ~ .	
Treated skin	8.44	1.88	£10.2	్ర్తు °1.85 న		©0.59	9 ∕46	₩0.62
		SYS	TEMPC CQ			Ç Ö	L	1 .
Blood	n.d.	n.a.	A n.do	√ ¶Va.	🦃 n.d. 🖺	_n₄a.	O n.d.	n.a.
Carcass	n.d.	n.a.	2.83	3.22	5,772	, Q'.81	(J 6.85	% 1.48
Cage wash	n.d.	n.a.Ž	© n.d.	, Ø n.a.	Ø.04	(0.07)	0.05	0.12
Cage wipe	n.d.	pr.yav	& n.d.∢	*\\ // // //	n.d.	poar.	Ø n.d.	n.a.
Urine	< 0.005	n.a.	0.02	0.03	0.00	0.10	0.45	0.12
Faeces	n.d.	n.a. Ø		O n.a.	n.d.	© n.a.	n.d.	n.a.
Total Recovered	95.1	2:70	W. a	1.19	Ø91.3	2.00	©91.6	2.29
Absorbed Indirect b	≪	//		4.15	@.\\ .	0		
	8.44	<u></u> 1.87	13.0	@ ·	14.2		16.5	1.47
Absorbed Direct c	<0.005	On.a.	\$ 2. 8 /6	3.24	5.Q5	₹1.85 ₊	<i>§</i> 7.05	1.39
Dose Group	~ ~ ·	<u>A</u>		% of agg		J S	7	
0.2 g/L	<u> </u>	*		Hours post	application			
(n= 4 rats/group)		, V	@ \$ 2 '4	1 😂	<u></u>			
	Мean	» OSD	Mean	SD D	Mean			
Š		Ç″ _w SUI	RFAÇE CO	MPARTM	ENT. 💇 🧳	Ş		
Cover wash	0.04	0,05	(0.02)	20, 04	0.07	0.00		
Enclosure rinse	0%64	0.29	0,13	\$0.04	0 0.24	0.15	1	
Skin wash ^a	₹ 70.9	4.35	6 9.9	* 4.70°		4.27		
	0 7	- U// IF	_	ÄRTMEN				
Treated skin	1 p.x	×1.70	8,08	© 1.55	6.05	2.05		
Treated Skill) 19.4		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28. 0		2.03		
Blood	7	~~	ТЕМИ СО	-		1	T	
Diood 4	n.d.	n ₂₀ x	0.03	0.04	n.d.	n.a.		
Carcass @	9.36°	· 2.12	O″ 5,7®	3 0888	n.d.	n.a.		
Cage wash	₩ APd.	n.a.) 063 ⁸ 8	0.14	0.54	0.55		
Cage wipe	n.d.	n.æ.		0.04	0.22	0.44		
Umne	0.30	0. M	Ø 1.2 f ∿	0.66	2.58	2.68		
Faeces	0.08	2 0.16	4.87	1.66	11.6	11.7		
Total Recovered	% 1.4	3.48	30 .3	6.33	91.5	2.09		
Absorbed Indirect	19.8	1.98	£ 20.3	3.89	21.0	2.76		
Absorbed Direct c	∆ § 9.7 ©	207	² 12.2	4.11	14.9	4.77		
n.d. = not detectable, n,		SX //			14.7	7.//		
0.01: 1.6901	// //	er n))					
h Total rad Astirita		from non-	occlusive cov	er, enclosure	e rinse and ski	n wash.		
C Total radioactivity from	m Blood, carra	ss, cage was	h, cage wipe,	urine and fa	eces.			
Total radioactivity from	G" "L"							
A "QA								
O								

The amount of dermal absorption of fenhexamid was not linear to the dose. Maximum dermal absorption of fenhexamid in male rats was calculated using an exponential saturation mode that disregards residues at the skin test sites. The maximum excretion of the test material was estimated by extrapolating the amount of dose recovered in excreta to a time at which the cumulative excretion curve reached a plateau. Maximum dermal absorption values were determined as 18.26% 5.73%, and 1.82% of the radioactive dose for Groups 4, 5, and 6, respectively.

Conclusion:

The overall recoveries for rats dermally dosed with [Phenyl-Up 44 C]-fenhexamid at 0.2 gD (1.38 μ g/cm 2), 2 g/L (14.7 μ g/cm 2), and 20 g/L (148 μ g/cm 2) were 91.6%, 26.1%, and 94.8% respectively, with the majority of the radioactivity (75.2%, 90.4%, and 92.5%) being found in the skin washes. The dose area was 12.5 cm 2 /animal, and 6.05% to 0.2%, 1.40% to 5.67% and 0.44% to 1.58% of the total dose applied was detected in/on the skin of the application site for Groups 4, 2 and 6, respectively. Not a data requirement according to Regulation 1107 2009/EEC or Directive 91/414/EEC.

The direct absorption, at 120 hours post close, was up to 14%, 552%, and 1.75% of total dose applied for Groups 4, 5, and 6, respectively. Indirect absorption of ferhex and increased with time for the lowest dose group, Group 4, with the highest absorption occurring at 120 hours post dose, and accounting for 21.0% (3.61 (μg) of the total dose applied. At higher close levels, the highest indirect absorption level within the groups was observed at 10 hours post dose, accounting for 7.62% (14.0 μg) and 2.63% (48.7 μg) of the total dose applied for Capups, 5 and 6 respectively.

The extrapolated paximum derroal absorption of feathexamped in male rats was 18.26%, 5.73%, and 1.82% of the total dose applied for Groups 4.5, and 6, respectively. The amount of dermal absorption of fenhexamid was not linear to the dose.

IIIA 7.6.2 Comparative dermal absorption, in vitro using rat and human skin

Report:	\$\text{111A}\tag{.6.2/90;}
Title:	Fenhexamid WG 50: [14C] fenhexamid: Comparative in vitro dermal absorption
.1	study using human and fat skip
Report No.	SA 09193, isseed on 17 th December 2009
Document N°:	Unpublished, & Q
	M-350644-01-1 V
Dates of	Start: 18th August 2000
experimental work:	End: 15th September 2009
Guidelines:	OE guide line for the testing of chemicals; skin absorption: in vitro Method
	428 (April 2004)
	OECD Phyironmental health and safety publications series on testing and
Guidelines:	asses@nent N°28, Guidance document for the conduct of skin absorption
	studies (March 2004), EC guidance document on dermal absorption
Guidelines:	Sanco/222/2000 rev.7, (2004).
Deviations:	None
GLP	Yes

Material and methods

Rat skin:

Species, strain: Rat, Wistar Rj: WI (IOPS HAN).

Source: (France).

Sex: Male. Number: 10 Anatomical site: Dorsal

Rat Skin Preparation: Each animal was killed by cervical dislocation. After sacrufice the

> clipped and removed for use in the study. The dorsal skin was definatoried by use of a mini-dermatome to obtain samples of ca 430 to \$10 μm in thickness.
>
> Source: Biopredic, Rennes, France.

Human skin: Source: Biopredic, Rennes, France,

> Number and sex: 7 donors, female Specific activity: 478 MBq/mg.
> Radiopurity of the formulation: 99%.

Test Material:

Non-radiolabelled:

Radiolabelled:

Structural formula:

The formulation used in this experiment was the a fenhexamid WG 50 Formulation formulation (specification number 19200007271) used at three nominal

concentrations; 500 g ass./kg 5/g a.s./L and 0.375 g a.s./L.

Test system:

denotes position of radiolabel
experiment was the a fenhex
ber 192000007271) used a

a.s. A and 0.375 g a.s./L.

1 (
test substance
nor chamb
d. The
run flow-through diffusion well system (was used to study the absorption of the test substance (exposure area of 1 cm²) skin). Adiffusion cell consisted of a donor chamber and a receptor chamber Obetween which the skin was positioned. The receptor fluid was Eagle's medium supplemented with 5% bovine serum albumin and gentamycin (50 mQ/L) at a pHof ca. 2.4. The receptor chamber was warmed by a constant Circulation of warm water which maintained the receptor fluid at 32 ± 2 °C (close to the normal skin temperature). The receptor fluid was pumped though the recontor chamber at a rate of 1.5 mL/h and stirred continuously Whilst in the receptor chamber by means of a magnetic bar.

Before dose application, the integrity of the skin samples was assessed by measuring the trans-epidermal water loss (TEWL) from the stratum corneum. Ån evaporimeter probe (Tewameter TM300 system, Courage & Khazaka) was placed securely on the top of the donor chamber and the amount of water diffusing through the skin was measured. Human and rat skin with a TEWL of greater than 15 g/hm² were considered potentially damaged and were not

used. These samples were replaced by new skin fragments which were also tested for integrity before use in the study.

Treatment:

The dose preparation was applied to the split-thickness skin sample with a pipette at the rate of approximately 5 mg/cm2 or 10 µQ/cm2 exposed skin. The dose preparations were assayed for radioactivity content (by ISC) by using dose checks (surrogate dose) taken before, during and after the dosing process.

Sampling:

The receptor fluid passing through the receptor chamber was collected in glass vials held in a fraction collector. The fraction collector was started after dose application. Samples were then collected hourly for the duration of the experiment (24 hours, hours, post-application, the skin was swabbed with freshly prepared 1% N/V Tween 80 in PBS (phosphate buffer, saline) using natural sporter swabs, in order to remove and retain the non-absorbed dose, until no radioactivity was detected with a Geiger-Miller monitor, at the end of the study (24 hours after application), the treated skill and the skin adjacent to the treatment site (surrounding swabs) were swabbed & ach skin sample was tape-stripped to remove the stratum corneum. This involved the application of Monaderm advesive rape (Monaderm, Monaco) for 5 seconds before the tape was carefully removed against the direction of hair growth. This procedure was continued uptil a 'shiny' appearance of the epidermis was evident, which indicated that the stratum corneron had been removed. The tape-strips were confected into scintillation vials for analysis. The skin surrounding the application site (surrounding skin) was separated from the treated skin. Both surrounding skip, and tape-stripped treated skin were rotained for analysis.

Radioassay:

The amounts of adioactivity in the various samples were determined by liquid scantillation counting (pSC). Samples were counted for 10 minutes or for 2 sigma of in an appropriate scintillation cocktail using a Packard 1900 TR counter with on-line computing facilities. Quenching effects were determined using an external standard and spectral quench parameter (tSIE) method Efficiency correlation curves were prepared for each scintillation cocktail and were regularly checked by the use of [14C-n-hexadecane standards. The scintillation counter was recalibrated when a deviation of greater than 2% was poserved when counting quality control standards. The limit of detection was taken to be twice the background values for blank samples in appropriate scintillation cocktails.

Findings:

The fenhexagoid was demonstrated to be soluble in the receptor fluid up to the maximum amount formulation applied. The solubility in the receptor fluid was deemed to be sufficient to reduce any risk of back of ffusion.

Measurements of the homogeneity of the three concentrations of formulation applied indicated that it was acceptable.

Good secovery data were obtained, with mean total recoveries of radioactivity in the range of 102.2% to 104.1% of the applied dose.

For the neat formulation, almost all the radioactivity was removed by swabbing (103.7% and 101.0% of dose for human and rat skin, respectively) and by removal of the surface dose (0.06% and 1.45% of dose for human and rat skin, respectively). For the intermediate representative dilution, almost all the radioactivity was also removed by swabbing (102.5% and 100.7% of dose for human and rat skin, respectively) and by removal of the surface dose (0.12% and 0.84% of dose for human and rat skin, respectively). For the low representative dilution, the vast majority of the radioactivity was also removed by swabbing (95.8% and 85.8% of dose for human and rat skin, respectively) and by removal of the surface dose (0.64% and 5.10% of dose for human and rat skin, respectively).

Since the swabbing procedure was intended to reflect a simple washing regimen at the ond of the working day, the amount of radioactivity retrieved in this compartment was considered to be non-absorbed. Since the material recovered in the surface tape-strips (first two tape-strips) could be associated with surface residues following incomplete removal of the dose after an 8-hour exposure period and/or material from the superficial stratum corneum, the amount of radioactivity retrieved in this compartment was considered to be non-absorbed.

Based on these results, the mean total amount of radioactivity considered as non absorbed for the neat formulation was 104.0% and 702.7% dose in the human and rat skin, respectively the mean total amount of radioactivity considered as non-absorbed for the intermediate representative dilution was 102.7% and 101.6% dose in the human and rat skin, respectively and the mean total amount of radioactivity considered as non-absorbed for the low representative dilution was 96.4% and 90.9% dose in the human and rat skin, respectively.

The overall amount of 14Cl-fenhexamid considered to be directly absorbed was represented by the radioactivity present in the receptor fluid, receptor fluid at termination time and receptor chamber. This accounted for means of 0.04% (human) and 0.12% (rat) of the dose applied for the neat formulation, for means of 0.90% (human) and 0.84% (rat) of the dose applied for the intermediate representative dilution and for means of 4.59% (human) and 5.19% (rat) of the dose applied for the low representative dilution.

The amount of radioactivity recovered in the skin (after tape-stripping and including surrounding skin) in the near formulation accounted for means of 0.05% (human) and 0.25% (rat) of the applied dose, for means of 0.04% (human) and 0.06% (rat) of the dose applied for the intermediate representative dilution and for means of 0.55% (human) and 2.05% (rat) of the dose applied for the low representative dilution.

The mean quantity of radioactivity recovered in the stratum corneum with the neat formulation accounted for 0.05% (human) and 0.76% (rat) of the applied dose, for 0.08% (human) and 0.14% (rat) of the applied dose for the representative dilution and for 0.68% (human) and 4.98% (rat) of the applied dose for the row representative dilution.

The radioactivity found in the skin compartment (skin, surrounding skin and stratum corneum) could be considered to be potentially absorbable. Therefore, the mean total amount of radioactivity considered to be potentially absorbable for the neat formulation was 0.15% and 1.13% dose for the

.

human and rat skin, respectively. The mean total amount of radioactivity considered to be potentially absorbable for the intermediate representative dilution was 0.62% and 1.03% dose for the human and rat skin respectively. The mean total amount of radioactivity considered to be potentially absorbable for the low representative dilution was 5.83% and 12.22% dose for the human and ra respectively.

Mean distribution of radioactivity at 24 hours after dose application of [CC]-feethexamile Table 7.6.2-1: an WG formulation at the rates of 500gg/kg, 5 g/L and 0.375 g/L to ruman and rates k

(Results expressed in terms of percentage of applied radioactivity).

					~ </th <th></th> <th>/</th> <th><u> </u></th> <th></th> <th></th> <th>√</th> <th></th>		/	<u> </u>			√	
					Distributio					y` °~	W.	
	Nea	t formula	tion: High	dose	O Dilut	lon: Inte	mediate	lose ~ ®			Low dose	_
Dose Levels	(SYP1345	58, 500 g/kg		\sim	SYP1340	51, 5 . E)	0	(S		,∱3 75 g/ I	, ,()
Species	Human	(n=6)	Rat (1	n=6) \iint	Hannan	(n=6)	Rat (1	1₹6)	Human	(n=6)	Rafe	n=6)
	Mean	SD	Mean	SQ	Mean	∞\$D	Mean 🛮	ŞSD %	Mean	$^{\prime\prime}$ SQ $_{\prime\prime}$	Mean	SD
OURFACE COMPARTIMENT OF O												
Skin swabs (8h)	103.68	2.02	100.95	D 2.86 ×	102.4	2,12	10006	234	9207	9 .27	∂ ₈ 83.72	6.55
Skin swabs (24h) ^a	0.03	0.03	0.08		0.07	0.09	40,08	0.06	Ĉ3.70 ¸≈	³ 4.12 ≪	2.05	1.93
Surface Dose			~	Ĉ		Ŏ,	r Ó	0 (0 0	**		
(tape-strips 1 & 2)	0.06	0.04	1,945	¥9.90	00.12	y 0.18_{p}	0.840	0.57	0.64	% 56	5.10	1.93
Donor chamber	0.18	0.13	√ Ø.23 .	⁷ 0.18√C	0.03	0.07	0,0%	0003	n.d.	Ga.a.	0.04	0.10
Total % non-			V	<u> </u>	<i>a</i> \$	~	~			ħ		
absorbed	103.95	2.02	102.79	<i>₹</i> 00	102.67	2.13	k01.58√	⁷ 2.41≪	96.41	10.16	90.91	7.10
		7	A	» SKI	₹ COMP@	ŘTMEŘ	À C					
Skin ^b	0.05	Ø , Ø3	20 .25 ∢	0.33	0.04	0,04/	0,00	% 08	_056	0.50	2.05	3.73
Stratum corneum		7) .	⋄ ~		Š	.~		0	Y			
c	0.05	0.04	0.7	, 0.35 , 0.51	≈ 0.08 ×	0.07	©0.14 _«	, 0.28 @	0.68	0.64	4.98	3.10
Total % at dose		, 1	4"	. ^	✓ .f '		"	~G				
site		© 05	1.01	¥ 0.61, ©	0.12	0 <u>:Q9</u>	0	0.29	1.24	0.81	7.02	4.85
	0, 1			RECEP'	ΓQŖ © OM	IPARTM	EXX	, W				
Receptor fluid (þ	_	1 N	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>®</i>	7) Ö)				
(0-24h)	0.04	0.02	0,12	Ø .03	0.50	0.350	0.84	0.37	4.59	2.18	5.19	2.13
Receptor chamber	n.d.	∞, ® ⁄∂a	, On.d.	n.a.	n.dO*	n.a.	an.a.	n.a.	n.d.	n.a.	n.d.	n.a.
Total % directly	al a			Ø _A		L	A					
absorbed ^d	0.04	0.02°	0.5	0.03	D.50	% 00.35 _%	0.84	0.37	4.59	2.18	5.19	2.13
Total %							D [*]					
Potentially	<i>Ø1</i>	© ©0.05 ∉		r of		F						
Absorbable	J .15	ي. 05 ق	J 1.13 M	0.64	7 - G	20.36	1.03	0.47	5.83	2.33	12.22	5.30
TOTAL %		Ö		4	9 103.3							
RECOVERY	104.1	2.03	103.8	2.38 °2	103.3	2.17	102.6	1.91	102.2	3.65	103.1	1.81

a: sum of radioactivity found in swabs at termination and in surrounding swabs.

SD: standard deviation n.d.: not detected below the limit of detection); n.a.: not applicable

n: number of skill cells word for calculation

In the above table, the presented means to not always calculate exactly from the presented individual data. This is due to rounding-up differences resulting from the use of the spreadsheet program.

b: sum of radioactivity found in skin after tape stripping procedure and in surrounding skin.

c: tape-strips excluding numbers 1 & 2 which are considered to be non-absorbed dose.

d: sum of radioactivity found in receptor and (0,24h), receptor fluid terminal and receptor chamber.

e: total % directly absorbed + total % andose site

Conclusion:

The dermal penetration of [14C]-fenhexamid through human and rat dermatomed skin from the WG 50 formulation was investigated at three concentrations corresponding to the peat product (500 g /kg) and to two representative dilutions (5 and 0.375 g/L), respectively.

The mean percentage of [14C]-fenhexamid considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a period of hours for the neat fenhexamid WG 0 formulation was 0.15% and 1.13% for the human and rat skim respectively yielding a factor difference of 7.5 between the two species for the neat product.

The mean percentage of [14C]-fenhexamid considered to be potentially absorbable directly absorbed plus total remaining at dose site) over a period of 24 hours for the intermediate representative dirution of the fenhexamid WG 50 formulation was 0.62% and 1.09% for the human and rat stan respectively, yielding a factor difference of 1.7 between the two species for the intermediate dose formulation.

The mean percentage of [14C]-fenhexamid considered to be potentially bysorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours for the representative low representative dilution of the fenhexamid WG 50 formulation was 5.83% and 12.22% for the buman and rat skin respectively, yielding a factor difference of 2.1 between the two species for the low dose formulation.

IIIA 7.7 Dislogeable residues

IIIA 7.7.1 Distogeable residues foliar

Not a data requirement according to Regulation 1107/2009/EEC of Directive 91/414/EEC.

IIIA 7.7.2 Dislogeable residues soil

Not a data requirement according to Regulation 1107/2009/EEC or Directive 91/414/EEC.

IIIA 7.7.3 Disloggable residues indoor surface re-volatization

Not a data requirement according to Regulation 107/2009/EEC or Directive 91/414/EEC.

IIIA 7.8 Epidemiology

Not a data requirement according to Regulation 107/2009/EEC or Directive 91/414/EEC.

IIIA 7.9 Data on formulants

IIIA 🛪 1.1 A Material safety data sheet for each formulant

Safety datasheet for each formulant is provided in document H of this AIR2 submission.

