

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience. The state of the s

	TABLE OF CONTENTS	
IIA 6.3	Residue trials (supervised field trials)	Parge 40
IIA 6.3.1	Residue trials in the EU	
IIA 6.3.1.1	Lettuce Lettuce	₩. 4.6
IIA 6.3.1.2	Hops 2 2 2 C	
IIA 6.3.1.3	Pome fruit - apple	39
IIA 6.3.1.4	Berries and small fruit - grapes	60
IIA 6.3.1.5	Fruiting vegetables – tomato, inc. egg Pant (Sclanacea)	81
IIA 6.3.1.6	Fruiting vegetables – sveet (bell) peoper (colana va)	97
IIA 6.3.1.7	Residue trials (supervised field trials) Residue trials in the EU Lettuce Hops Pome fruit - apple Berries and small fruit - grayes Fruiting vegetables - tonato, inch. egg Pant (sclanacea) Fruiting vegetables - sveet (bell) payper (colanacea) Fruiting vegetables - cuckonber Arcl. zasching and glerking cuckonber edible peel)	113
IIA 6.3.1.8	Fruiting vegetables - vater relon (cucur by s - jayediblicated)	129
IIA 6.3.2	Residue trials from the Global Joint Review partner countries Australia,	
	Brazil, Canada, and the USA & support import referances	154
IIA 6.3.2.1	Residue trials from the Global Joint Review partner countries Australia, Brazil, Canada, and the USA & support import referances Citrus Fruits Tree nuts	154
IIA 6.3.2.2		257
IIA 6.3.2.3		272
IIA 6.3.2.4	Berries and small fruit grapes 2	297
IIA 6.3.2.5	Berries and small fruit - blueberries Miscellaneous fruit - prickly pear cactus (fruit) Root and tuber regetables - poratoes and sweet potatoes Fruiting vegetables - solanacea Stem vegetables - celery Pulses, dry - beans and peas Oilseeds - peanuts Oilseeds - soybean Oilseeds - cotton seed Cercals - barley Gereals - coru	316
IIA 6.3.206	Miscellaneous fruit prickly pear cactus (fruit)	334
IIA 6.3.2.7	Root and tuber regetables - potatoes and sweet potatoes	341
IIA 6.3.2.8	Fruiting vegetables volanacea	369
IIA 6.3.2.9	Stem vegetables * celerx of the stem of th	427
IIA 6.3.2.10	Pulses, dry - beans and pease	441
IIA 6.3.2.11	Oilsceas – peanuts	460
IIA.6,3.2.12	Oilseeds soybean Q S	472
IIA 6.3.2.13	Wilseeds - cotton seed	487
IIA 6.3.2.14	Cerçals - barley W	499
IIA 6.3.2 5	Cereals - terrley Gereals - corn	514
IIA 6.3.2.16	Cereals - sorghum	546
IIA 6.3.2.15	Cereals wheat	557
IIA 6.3.218	Coffee	577
IIA 6.3.2.19	Hops	599

IIA 6.3 Residue trials (supervised field trials)

Numerous residue trials have been conducted to support the use of BYI 02960 in/on various crop the Annex II dossier, submitted in May 2012, only the so-called "safe uses" (lettuce and hops), have been described. In this Annex II dossier further data on additional crops are sumitted besides "safe uses".

General remark:

In this summary section (KIIA 6.3), the name DFEAF will be used for the metabolite difluoroethyl-amino-furanone, which is relevant to the tested residue de inition?

<u>Name</u>	Metab. No.	Standard "Lossier name" &
DFEAF	M34	BY 102960 Hifluor bethyl-aming-furanone

Residue trials in the EU **IIA 6.3.1**

"SAFE USES" (Lettuce@md

IIA 6.3.1.1 Lettuce 🦃

BYI 02960 (common name: flup godifur (ne) is to be registered in Europe for use in lettuce. European residue data in lettuce crops are therefore presented below to support the intended "safe use". Use pattern (GAP) information, including the European "agricultural use" as well as the "home & garden use" to be supported is summarized in Table 6.34.1-1.0

Table 6 1.1-1: Use patterns GAPs for the spray application @BYI 02960-containing formulations inford lettace in Extropean fields (northern and southern residue regions) and

Description	F/G No of appls.	1 0. U.		Water volume (L/ha)	Interval (days)	PHI (days)
"agricaltural" use*	ÇF† 1	© 125 ~	125	200-800		10
"agricultural" use"	G_{α}^{β}	Q 12 3 9	250	200-800	10	3
"home & garden'	F [†] 2 2	V S2 5	250	200-800	10	3

In order to support the EU safe use" of BYI 02960, sets of GLP trials were conducted in northern and southern European fields and in greenhouses in 2010 and 2011. In northern and in southern European field-grown lettuce, BYI 02960 was applied twice as an SL formulation (BYI 02960 SL 200, containing 200 g/L BYI 02960 a.s.), at 10-day intervals. For the envisaged agricultural use, samples were taken immediately prior to the second application, thus representing a 1-application, 10-day PHI

agricultural use based of an SL per formulation with an SL 50 formulation and a galacien uses with an SL 50 formulation and a superior of the superior of the

uses in both the northern and southern residue regions (EU-N and EU-S)

use pattern. Further samples were taken subsequent to the 2nd application, with an envisaged PHI of 3 days, reflecting the intended use of a retail-sale formulation for private home and garden use.

In the greenhouse trials, BYI 02960 was applied twice as an SL formulation (BYI 02960 SL 200), at 10-day intervals, with an envisaged PHI of 3 days.

Residue levels of BYI 02960 and its metabolites DFA and DFEAF were analyzed individually and summed to yield the calculated "total residue of BYI 02960". The most critical residue levels were observed in the greenhouse trials, in which a highest total residue value (HR) of 6.0 mg/kg was determined. The STMR in these trials was also the highest for any set, at 2.2 mg/kg.

The number of trials conducted for each use described above (incl. information on geographical region and vegetation period) is summarized below in table 63.1.12.

Table 6.3.1.1-2: Overview of European residue trials conducted in lettuce per geographical "residue region" and vegetation period, including key results

Use description (cf. table 6.3.1.1-1)	Region	Veget.	6. of tria period 2011		Reside (a) HR	levels g/kg)(Ø*TMB)	Report No.	Dossier ref.: IIA 6.3.1.1/
trials in Eur	OPE Ø			Ű	8		~~	
	EU-ੴ∕	<u> </u>	4	5 18 ×	0.85	0.23	10-2223, 11-2082	01, 02
"agricultural" use*	EØ✓S	\$5° .	₹ 4		0,83	0.32	10-2213, 11-2071	03, 04
	ØĞ "	5 🖇	4		\$6.0 _@	, 2.2 [©]	18-2212, 11-2070	05, 06
"home & garden"**	$\mathcal{F}EU_{\mathbf{v}}$	37	4	\$\frac{18}{18}	3.00	4 971 ~	10-2223, 11-2082	01, 02
nome & garden	E S	5	¥ 4 , 7		3.2	√ 1.2 √	10-2213, 11-2071	03, 04

EU-N = northern EO field, FS-S = southern EU field, G = greenhouse

Northern Europe Pesidue region

Report:	KIA 6.3.1.1/61, 2012
Title:	Determination of the residues of BYI 92960 in/on lettuce after spraying of BYI 02960
Title.	SL 290 in the field in the Netherlands, Belgium, France (North) and Germany
Report No. &	10-2223 Jated February 8, 2012
Document No.:	M-424 42-01 Q

Report: 2012
Title: Determination of the residues of BYI 02960 in/on lettuce after spray application of
BYI 92960 SE 200 in the field in Germany, northern France and Belgium
Report No. & 11-2082, Anted February 23, 2012
Document N@7 -425941-02-1

Guidelines (applies to both studies):	Directive 91/414/EEC, residues in or on treated products, food and feed
GLP (applies to both studies):	yes (certified laboratory); Deviations: none

^{*} residue levels shown based on total residues in lettinge head samples taken at appHI of 1 pdays (field uses) or 3 days (greenhouse)

^{**} residue tevels shown based on total residues in attuce head samples taken at PHI of 3 days.

I. Materials and Methods

Nine field residue trials were conducted in the northern European residue region, as follows:

In 2010, 5 trials (Netherlands, Belgium, France, and Germany [2]) were conducted to support the use of BYI 02960 SL 200 in lettuce (& 2012, KIIA 6.3.1.1/01). The lettuce varieties used were either closed-head (3 trials) or leafy (2) varieties, as per the prevailing EU guidance at the trial regions were made at intervals of 10 days (9 in one trial) at a sominal rate of 0.625 L/ha, corresponding to 125 g/ha BYI 02960 a.s.; the water rate was 300-606 L/ha, reflecting local practice in the trial regions. All treatments were made at the scheduled rates.

Four further trials were carried out in 2011, in France, Belgium and Cermany (2), to complete the data package (2012, KIIA 6.3.1.1/02) All lequice varieties used were leafy (open-head) varieties, in order to comply with the upcoming revision of the EQ guidance for this dop. The basic application parameters were as in 2010; water rates ranged from 500.730 L/Ma. Again, all treatments were made at the scheduled rates.

Samples of lettuce heads were taken immediately prim and subsequent to the final application, and at several intervals thereafter (up to 7 or 14 days after reatment in 2010 and 2010 trials, respectively). The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DEA and DFEAF using methods 01304 (2010 trials for method details of kHA 4.3/03) or 01212 (2011 trials; cf. KIIA 4.3/05). The respective LOQs for the 3 malytes were 0.01, 402, and 0.01 mg/kg (all in parent equivalents).

12 Findings

Concurrent recoveries of BYY 02960 and its metabolites DFA and DFEAF were obtained from samples of lettuce Deads. This sample materials is representative of all sample materials collected in these trials.

The recovery samples for parent and DEAF were spiked at levels of 0.01 mg/kg and 0.10 mg/kg, as well as 0.50, 1.0, and 0.50 mg/kg (expressed in BYL02960 equivalents). Mean recoveries were all within acceptable ranges 0.104%, RSDs of the larger validations sets [n>2] 2.2-10.7%, [n=2-15].

Fortification levels for DFA were or 0.02 ng/kg, 0.05 mg/kg, and 0.50 mg/kg, as well as 0.20, 1.0, and 5.0 mg/kg (expressed in BX 02960 equivalents). Mean recoveries were all within acceptable ranges (90-98%, 1.00) of the larger variations sets [n > 2] 4.3-10.2%, [n = 2-12].

Details of recovery data are shown in table 6.3.1.1-4. All trial data are summarised below in table 6.3.1.1-3a b and in greater detail in the Tier 1 summary forms. (Residues of parent BYI 02960 as well as its metabolites DFA and DFEAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as the sum of these three analytes, expressed in parent equivalents.)

Relevant residues of BYI 02960 were determined in lettuce head samples taken 10 days subsequent to the first application (immediately prior to the 2nd treatment) as well as at various intervals after the final application. Analyses showed that total residue levels declined with time.

Lettuce heads were taken 9-10 days after the first treatment (before the final treatment) in order to represent a 1-application use with a 10-day PHL as is envisored for control to the final treatment (before the final treatment). northern European fields. Total residue levels ranged from 0.07-0.83 mg/kg (n=9, pedian) 0.23 mg/kg).

"Home & garden" use

On day 0, immediately following the 2nd and small treatment, residue levels in lettuce heads were between 1.5 and 4.1 mg/lev (1.1.1.2.2) between 1.5 and 4.1 mg/kg (median 2.6 mg/kg). By day & the HI for home & garden use the levels had declined to 0.14-3.0 mg/kg (n=9), with a median value of 0.71 mg/kg. Residues continued to decrease until day 14, the final sampling event, when levels ranged from 0.047 1.0 mg/kg (n) 4, median 0.10 mg/kg).

III Conchisions (lettuge, northern Europe)

In order to support the use on the DU of BYI 02000 in lettuce, 9 valid rials were conducted in the northern European residue region in the years 2010-2011. BYI 02960 was applied twice as an SL 200 formulation at an active substance rate of 125 g/haper treatment. The application intervals were 9-10 days. All applications were at the equired rates, and all trials were conducted according to GLP.

The envisage agricultural ose" nominally calls for 1 spray at \$25 g/ha and a PHI of 10 days. To evaluate this use, samples were taken just prior to the 2nd application, i.e. 10 days after the first treatment. For the "home & garden use", samples were taken immediately after the 2nd application and at several intervals thereafter, including the envisaged PHL of 3 days.

Samples were analyzed for the relevant residues of BYI 02960, comprising the parent compound and its metabolites DFA and DFPAF. The residues of all three analytes were summed to yield a calculated "total residue of BYI 02960". The results of the trial presented above demonstrate that:

- total residues of BYI 02960 dissipated apidly in lettuce heads, from levels of 1.5-4.1 mg/kg on day 0 after the final treatment to 0.143.0 mg/kg on day 3 (PHI for the "home & garden" use). The respective nædian values were 2 and 05/1 mg/kg.
- ten days after a single application of BYI 02960 SL 200 representing the envisaged "agricultural" residue levels ranged from 0.11-0.83 mg/kg, with a median value of 0.23 mg/kg.

Table 6.3.1.1-3a: Application scenario in residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in the field *(northern EU residue region)*

C4 J NT.				A 1° 4°			(C) n
Study No.				Application	1		
(Trial No.)					_		
Country	Crop	To I	3 .7			GS "(© PHI
Location	Variety	FL	No.	kg/ha	kg/hł (a.s.)	GS &	© PHI
Region				(a.s.)	(a.s.)	Ş	
Year						\$\sqrt{6}\sqrt{48}\sqrt{9}\sqr	
10-2223	lettuce	200 SL	2	0.125	©0.0417	£.10 -	
(10-2223-01)	icttucc	200 SL	2	v 0.123	0.0417		
Netherlands	Gisela,		S.		N .		
·	Butterhead		4	Q,		%. }	© ,©
	variety		00, 1	~ *	7, Q		<i>(</i>)
EU-N	variety	,	~			~\ . ~\ . ~\ .	, Ç
2010		W.					
10-2223	lettuce	200 81		0.128	\(\text{\text{0}}\) 0250	548 9 548 9 548 9	3 4
(10-2223-02)	Tottace	200 SL		0.100	0.0208	\$ 18 C	
Belgium	Lucan,	~ ~			»O`	2	
Bugum	Butterhead		L				0
	vorioty		. \$ 1	Ş', Ö		l Q" a	1
EU-N	variety	<i>*</i>					
2010	_ *						
10-2223	lettuce	~200 SL	Ø,	(0.125)	. 0.0208	48	3
(10-2223-03)	Alman S		4	~ ~ ~		0	
France	A0820.		Ď O			, Ö	
8	Butterhead	Q Z					
EU-N ≼	Bytterhead variety						
2010 10-2223 (10-2223-04) Germany		j		Ø:125	0.0417		
10-2223	lettuce 5	200 SL	20	\$ % .125 €	0,0417	48	3
(10-2223-04)							
Germany 2	Cavernet				W'		
	LUMOTOSSO.			, Q	9		
EØN	loose leaf						
EØN 2010	yariety	200 SL	2 4	01.25			
10-2225 V	lettuce	~200~⊊î.	s.	0425	0.0313	48	3
		, O 4	y - &	Š	0.0212	.0	
Germany	Chloe Lallo	47 10		≫			
	Chloe Lollo rosso						
	100senear 🐾	/	0' (ř			
EU-N	variety 💉						
2010			«»				
4//19	? Q,	GS = Siowt	hætage (RR	CH-code) at las	t treatment		
L = formulation U-N ≰northern Europe	4.		Some (DD	car code, at ids	·		

EU-N* northern Europe

Continued on next page...

Table 6.3.1.1-3a (cont'd): Application scenario in residue trials conducted in/on lettuce after spraying with BYI 02960 SL 200 in field (northern EU residue region)

G. 1 37	1	1	ı	`		1	0/1	1 🔈
Study No.				Application	<u>l</u> I			
(Trial No.)								10 ⁷
Country	Crop	E1E			-		© PHI	
Location	Variety	FL	No.	kg/ha	kg/h	GS 4	/ (Ja-C)	
n .				(a.s.)	(a.s.9			&-
Region					(a.s.)	\$\frac{1}{2}\frac{1}{2	PHIO	Q 1
Year	1			<u> </u>	The state of the s			
11-2082	lettuce	200 SL	2 🤻	0.125	© 0.0208	C48 5	30	
(11-2082-01)			L	٥ٛ			S (,0"
Germany	Aleppo		4©"		- ال			×
	Lollo			, **		A		
	bionda,		Q	~ ~	Ø ~ ×			
EU-N	loose leaf	(L)	Ò					
2011	variety	O		0.128 0.128 0.128	~0° 6	\$\frac{1}{2}\frac{1}{8}\frac{1}{6}	3	
11-2082	lettuce	200 SL	~2 (0.105	90.0250	A 8 (3 4	
(11-2082-02)						J		
Germany	Kitara Lollo	200 SL			0.0250		3 4	
	bionda,		W.			i Ş		
	loose leaf	P 💥	~~~ 4)			þ	
EU-N	variety) . · · · .						
2011	<i>a</i> .							
11-2082	lettuce	200 SL	Or ^v	√ 0.12 5 √	0.0208	48	3	
(11-2082-03)			F O					
France	Quenty 0			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Į Ģ		
	l Fexuille de		a.Y	~ ° ~		7		
×	chene (oak Waf					1		
EU-N	(oak & af	V 01	L V					
2011	(oak Ceaf lettuce)			. W.	an a			
11-2082	Metruce e	200 SL		\$\tag{0.125}	0.0167- 0.0167	48	3	
(11-2082-04)	, ,		14		≪ 0.0167			
2011 11-2082 (11-2082-04) Belgium	Funnas, C	200 SL		\$\text{0.126}\$\tag				
	leafy varicay	1 2 2						
	curly ~	TO, and the						
EU-N	r . 5 '			J" "O"				
2011	odrly	CH Codes (M	Y &,					
FI = formulation	growth stark(RI	CIÎ IN	× 0	10	•	•		-

Table 6.3.1.1-3b: Results of residue trials conducted in/on lettuce after spraying with BYI 02960 SL 200 in the field (northern EU residue region)

Study No.			R	esidues (mg/kg) ext	oressed as BYI 0290	50 & &
(Trial No.)	D	DALT		(g , g) l	BYI 02960-	
Country	Portion	DALT	DVI 02070	difluoroacetic	diflu o ro-	total residue of
	analyzed	(days)	BYI 02960	acid	ethylagnino-	BYA 02960 cal
GLP					furanone	
10-2223	head	0*	0.20	< 0.02	√ 30.01 °.	O 0523 V
(10-2223-01)		0	1.9	20 ,02	<0.01	2 .0
Netherlands		1 3	1.8	0.02 0.02	②* <0.01 ② ② <0.01 ②	
		5	0.58 0.34	<0.02	<0.01	
GLP: yes		7	0.22	≤ <0.02 ×	。<0.0∤ [©]	©.25 ©
10-2223	head	0*	0.08	<0.02	© <0.91 O	الله 0.11 الله الله الله الله الله الله الله ال
(10-2223-02)		0	1.7	°<0.020°	9 .01	1.75°
Belgium		1 3	0.43 & 0.37©		\$0.01 \$0.01	* 0.46 40.40
CLD		5	0.37	60.02 D	<0.01	~ 0.37.√°
GLP: yes		7		×0.02	4 < 6 01	0.24
10-2223	head	0*	© 0.13	_@ ⁷ <0.6Q	2 0.01 €	♦ 9 1 6
(10-2223-03)		0	Q 1.5 V	$\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L}$		¥ ¥.5
France		1 3		♥	20.001 20.001 20.001	
CI D		3 5	© 0.08 © 0.52	0.02	©0.01 ©	0.71
GLP: yes		7 @		\$ 9@3 Q*	0.01 ×	0.50
10-2223	head	0/*	(0.57 s.	<0.02	Q <0.01	0.40
(10-2223-04)		0		"Ø<0.02 ° ≈	\$0.01 ©	1.8
Germany		3 4	0 1.1 1.0 0.8 0.8	<0.02\ <0.02\ <0.02\	0.01	1.1 1.0
CI Di vias	<	5	0.8P 0	\$0.02 \$0.02 \$50.02	« <0.0°	0.90
GLP: yes		P	\$ 6 66 \$	₹ 0.02	⊘ < €√ 01	0.69
10-2223	head	& 0* ∞	0.80	(A) <0.9 (A)	@0.01	0.83
(10-2223-05)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4.1	~ <00002 @"	0.02	4.1
Germany		<u>1</u>		\$\begin{align*} \begin{align*} \begi	0.01 0.01	1.1 0.87
CID &		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0,83 ×	\$\int_{<0.02}\int_{\infty} \times \tag{\chi}	0.01	0.86
GLP: yes	8	√ 7 %	0.65	<0.002	< 0.01	0.68
11-2082	head	. 00	0,19	♥ * Ø.02 0	< 0.01	0.22
(11-2082-01)				0.020	< 0.01	2.7
Germany	head	***3 4 * 7 0	× × 1.5	0.023	0.017 <0.01	1.6 0.56
CI D	Q Á	10	0.3	©.020	< 0.01	0.36
GLP: yes		14	0973	0.024	< 0.01	0.11
11-2082	head	°0* √	90.11 Q	<0.02	< 0.01	0.14
(11-2082-02)	Pro-	0	2.6	∠ <0.02	< 0.01	2.6
Germany		3.0	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	<0.02 0.022	<0.01 <0.01	0.14 0.065
CL DA	4. G	and a	© \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.022	<0.01	0.063
GLP. yes		\$14 £	90.01	0.027	< 0.01	0.047

DALT = days after list treatment * prior to last treatment Continued on next page...

Table 6.3.1.1-3b (cont'd): Results of residue trials conducted in/on lettuce after spraying with BYI 02960 SL 200 in the field (northern EU residue region)

Study No.			Residues (mg/kg) expressed as BYI 02960							
(Trial No.) Country GLP:	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- difluoro- ethylanino- furanone	total residue of BVL02960 cal				
11-2082	head	-10	5.6	< 0.02	0.011					
	licau	-10	2.0	<0.02 ₹0. 02	0.015					
(11-2082-04)						2.0 0.67				
Belgium		-5	0.63	₹ 0.028		0.670				
		-2	0.35	0.030	10.01					
GLP: yes		0*	0.25	0.026	<0.01	Q				
GLI. yes		0	2.8	M -	. · <0.01	" Q.8 "©"				
		3	0.43	y 0.028 y	<0.00	0.47				
		7	0.22	0.030		0.47 3 0.26				
		10		⊘° 0.02% ×	√ √ 0.01 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0415				
		14	0.058	0.026 0 04025 0	0.01	0.093				

		14	0.0580		() 0 : 0 :2:	<u> </u>	OP.	A	0.093	
DALT = days a * prior to last to	DALT = days after last treatment * prior to last treatment Table 6.3.1.1-4: Recovery data for PYI 02960 in lettuce Study No. Trial No. Crop Portion analysed metabolite Min Max Mean RSD Year Table 6.3.1.1-4: Recovery data for PYI 02960 in lettuce Individual Portion A Min Max Mean RSD									
				*					0~	
Table 6.3.1.1	-4: Reco	very data fo	or S YI 02960 in	lettu	ıçe					
Study No.		0		2	Fortifi		Reco	<u>~</u> &ry (%)		
Trial No.		Portion	a.s.F.S	A.	cation)) í		
GLP	Crop	anadysed	a.s.	n	level	Individual	Min	Max	Mean	RSD
Year								Max	Mican	KSD
11-2082	lettuce	head	B*1 02960		0.01	© 6;11 5	106	111	109	
11-2082-01		4			€0.10 ©	©6;11 104:105	104	105	105	
to	Ö			1	2.0	1190	119	119	119	
11-2082-04			Ö KÖ		809		114	114	114	
				6	werall		104	119	110	5.4
2011			difluoroacetic acid	2	0.02	89 709 O	89	109	99	
	%		acid	O						
	29		~ ~ ~ ~ ~ ~	_/ Ž		98;106	98	106	102	
				1	4.0	102	102	102	102	
				•	16	102	102	102	102	
	Q O			6	erall		89	109	101	6.9
A			BYI 02960- Q difluoroethyl-	2 🔏	0.01	114;123	114	123	119	
	04		aminofuraçãone							
J.				$\frac{1}{2}$	0.10	108;109	108	109	109	
. *		l o l		1	2.0	107	107	107	107	
	L			1	8.0	116	116	116	116	
<u></u>				6	overall		107	123	113	5.4
			¥ ~~	L	5,01411		107	123	113	J. 1
, Š								<i>a</i>	. 1	
								Conti	nued on	next pag
) " <i>W</i> "									

Table 6.3.1.1-4 (cont'd): Recovery data for BYI 02960 in lettuce

Study No. Trial No.			_		Fortifi-		Recov	very (%)		Z,
GLP	Crop	Portion analysed	a.s./ metabolite	n	cation level	Individual	Min	Max	Mean	RSD
Year					(mg/kg)	recoveries	A S	\ \times \ \ \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
10-2223	lettuce,	head	BYI 02960	15	0.01	79;87;102;	79	. Pi7 .	©104 «	3 10.7
10-2223-01	head					106; 107;10 2 10;	Č			<i></i>
to 10-2223-05					L, v	116;9 2,9 7;107; 108:0,14;116;				
GLP: yes				4		11Q, 0		Ç		
2010			4	\$	0.10	88;90;9 0 ,92;93	\$88 √C	93© 1196	\$\times_{\text{3}}\text{5}	2.2
			%	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	0.50	103;106	100	1496 √. 94 ≟	×↓05	
			A	24 D	1.00 5.64	9204	90	98	93	
				7 26	verall (795	117	200	10.5
			difluoroacette	12	0.02	90,93;94;95;97	8 6	\$116	O 98	10.2
			acie C			86;89:97;95 ©				
		_@		3 4	0.05	90;94,98	90	§ 98	94	4.3
		Z ^G		2 ¹⁰	0.20	92,94	.)້ 94	93	
				3	0 0.50	93;101;90;91; 92	900	101	93	4.7
				2	1,00	90:92	\$	92	91	
	. A			40°		l⊗n∩⋅20 <i>∞</i> ″ √.	[*] 89	90	90	
			DIN 020 (A	26, \$	overall	07/2007	86	116	95	7.9
			BYI 02960-y diffuoroethyl-	15	0.01	8793;95;100; 200;104;105;	83	107	94	8.4
Ö			aminofuranone	?		D107;83(83;86; 88:90.92:96				
	ſ			5 🖓	0.16	85,98;97;97;99	85	99	95	6.1
\	×			3	©0.50	9 7;109	97	109	103	
		a g		2		86;101	86	101	94	
				Q^{2}	5.00	97;96	96 83	97 109	97 95	7.7
4	Q C			¥6	overali		83	109	95	7.7
	,			~ X	<i>0</i>					
4 n	, Ş	y A		\Q''						
A S	,		y	, ř						
			BYI 02960 diditionogramino furamone							
			z Y							
		\$								
~										

Southern Europe

Report:	KIIA 6.3.1.1/03, ; 2	2012	
Title:	Determination of the residues of BYI 02960 in/on BYI 02960 SL 200 in the field in France (South), S - Amendment no. 0001 to report no. 10-2213	lettuce, head after spra	ny application of
Report No. & Document No.:	10-2213, dated February 27, 2012 M-425913-02-1		
		A.)	W/ h h / A(V

Report:	KIIA 6.3.1.1/04, 2012 🛴	, O	
Title:	Determination of the residues of BY 02960 BYI 02960 SL 200 in the field in Spain, Italy		
Report No. & Document No.:	11-2071, dated February 23, 2012 M-425784-02-1		Ş

Guidelines (applies to both studies):	Directive 21/414/FEV, residues in or, on treated products, food and feed
GLP (applies to both studies):	y (certified lab watory) Deviations: none

L Materials and Methods

Nine field residue trials were conducted in southern Europe, as follows:

In 2010, 5 trials (France, Italy [2], and Spain [2]) were conducted to support the use of BYI 02960 SL 200 in lettuce (& Lordon & Lordon

Four further trials were carried out in 2017, in France Spain. Portugal, and Italy, to complete the data package (2012, FIIA 65.1.1/64). All lettuce varieties used were leafy (open-head) varieties, in order to comply with the upcoming revision of the EU guidance for this crop. The basic application parameters were as in 2010 (interval in one trial 9 day), water rates ranged from 500-800 L/ha. Again, all treatments were made at the scheduled rates.

Samples of lettuce heads were taken immediately prior and subsequent to the final application, and at several intervals thereafter (up to 7 or 14 days after treatment in 2010 and 2011 trials, respectively). The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAF using methods 01304 (2010 trials, for method details, cf. KIIA 4.3/03) or 01212 (2011 trials; cf. KIIA 4.3/03). The respective LOQs for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

II. Findings

During the conduct of the complete set of lettuce studies in 2010-2011, concurrent recoveries of BYI 02960 and its metabolites DFA and DFEAF were obtained from samples of lettuce heads. This sample material is representative of all sample materials collected in these trials

The recovery samples for parent and DFEAF were spiked at levels of 0.01 mg/kg and 0.10 mg/kg well as 0.50, 1.0, and 5.0 mg/kg (expressed in BYI 02960 equivalents). Mean recovered were all within acceptable ranges (91-104%, RSDs of the larger validations set [n > 2] 2.2-10.7%, 12-2-1

Fortification levels for DFA were or 0.02 mg/kg, 0,005 mg/kg, and 0.50 mg/kg, 05 well as 0.20, 1.0, and 5.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries were all within acceptable ranges (90-98%, RSDs of the larger validations sets [n > 2] \$\displant 3-10.2%, n=\displant 12).

Details of recovery data are shown in table 6.3 1.7-6. All trial data are summarised below in table 6.3.1.1-5a & b and in greater detail in the Tier Y summary forms. (Residues of parent By 1 02960 as well as its metabolites DFA and DFFAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as one sum of these three analytes, expressed in parent equivalents

Relevant residues of BYI @2960 were determined in lettuce head samples taken 10 days subsequent to the first application (immediately prior to the and treatment) as well as at various intervals after the final application. Analyses showed that total residue levels declined with time

"Agricultural" use

Lettuce heads vere taken 9-10 days after the first freatment (before the final treatment) in order to represent a papplication use with a 10-day PHL as is privileged for general agricultural use in southern European fields. Total residue levels ranged from 0.07-0.83 mg/kg (n=9, median: 0.32 mg/kg).

"Home & garden use &

"Home & garden use of the land that treatment, residue levels in lettuce heads were between 1.9 and 7.4 mg/kg (median 2.9 mg/kg). By day 3 — the PHI for home & garden use — the ...=950 ...al sampling eve levels had declined to 039-3.2 mg/kg (n=9) with a median value of 1.2 mg/kg. Residues continued to decrease until day 4, the final sampling event, when levels ranged from 0.094-0.30 mg/kg (n=4,

III. Conclusions (lettuce, southern Europe)

In order to support the use in the EU of BYI 02960 in lettuce, 9 valid trials were conducted in southern Europe in the years 2010-2011. BYI 02960 was applied twice as an SL 200 formulation at an active substance rate of 125 g/ha per treatment. The application intervals were 9-11 days. All applications were at the required rates, and all trials were conducted according to GLP.

The envisaged "agricultural use" nominally calls for 1 spray at 125 g/ha and a PHI of 10 days. To evaluate this use, samples were taken just prior to the 2nd application of e. 10 days after the first treatment. For the "home & garden use", samples were taken immediately after the 2nd application and at several intervals thereafter, including the envisaged PHI of 3 days.

Samples were analyzed for the relevant residues of By 102960, comprising the parent compound and its metabolites DFA and DFEAF. The residues of all three analytes were summed to well a calculated "total residue of BYI 02960". The results of the trials presented above demonstrate that:

- total residues of BYI 02960 dissipated rapidly in lettuce heads, from levels of 1.9 4 mg/kg on day 0 after the final treatment to 0.39 3.2 mg/kg on day 3 (PHI for the "home & garden" use). The respective median values were 2.9 and 1.2 mg/kg.
- ten days after a single application of BY102960 SL 200 representing the envisaged "agricultural" use total residue levels ranged from 0.0250.83 mg/kg, with a median value of 0.32 mg/kg.

Table 6.3.1.1-5a: Application scenario in residue trials conducted in/on lettuce after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.				Application	 			
(Trial No.)								F.
Country	Crop	FL	N .T	. /		GS &	© PHI	
Location	Variety	FL	No.	kg/ha (a.s.)	kg/h	GS 4	(days)	
Region				` ′	(a.s.)		PHIO	Ò
Year			,	⊳ _A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			9
10-2213	lettuce	200 SL	2	0.125	© 0.0250	Č48 Q		
(10-2213-01)	Madita Head		4	٥			S (,0"
France	Wiadita Ticad			Õ.			lo , é	*
			00° y	~			W W	
		la la	~ .				45	
EU-S			, Ø				.4	
2010		.1			0		\$\ \L_{\circ}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
10-2213	lettuce	200.SL		0.125 0.125 0.425	0.0208	49 🕸		
(10-2213-02)	Dauair		"@"			49 47		
Spain	Transdara	\$ \(\sqrt{\sq}}\ext{\sqrt{\sq}}\exitt{\sqrt{\sq}}\exitt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}						
	Trocadero	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	***				Ψ 	
EU-S	~							
2010	lottu 🔊			L 2		46		
10-2213	Tettuce (200 SL	L 2	0.AQ25 %	0.0208	46	3	
(10-2213-03)	Ballerina O'							
Italy	huttarhad		~ O	6 4.		*		
	butterhead							
EU-S				.W				
2010	butterhead							
EU-S 2010 10-2213 (10-2213-04) Spain	lettuce Murai Lotho	200 SI		0.123		49	4	
(10-2213-04)	Murai Lotto							
Spain	Rosso,	A 0						
	Goose Leaf							
EU-S 2010 10-2213	variety		Y 4.					
2010								
10-2213	variety Jottuce Bergamo	%200 S I	<u></u> 2	0.125	0.0179	49	3	
(10-2213-05)				ř				
Spain Q	Betgamo " Blond low,							
	Doose Joaf		. 4					
EU-S	variety							
2010			y "					
11-2071	lettuce D	200 SP	2	0.125	0.0250	49	3	
(11-2071-01)	1							
Spain Spain	Livisma RZ loose leaf							
ELL C	Priety	₽						
EU-S								
FL = formulation		GS = 200	th stage (DD	L CH-code) at las	t traatmant	<u> </u>	<u> </u>	J
		GS = growt	ııı stage (BB	Cn-code) at las	a deadhent			
EUS = southern Europe	~				~			

Table 6.3.1.1-5a (cont'd): Application scenario in residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in field (southern EU residue region)

Study No.				Application			
(Trial No.)				Аррисацоп	Í		
Country	Crop	FL	N.T	. /1		GS &	Ø PHI
Location	Variety	rL	No.	kg/ha (a.s.)	kg/ht (a.s.)	GS &	PHI (days)
Region Year				, ,			
	1.44	200 GI		> <u></u>	Ø. 0.1.70	W.	× 209
	lettuce	200 SL	2	0.125	© 0.0179	046	3 0
(11-2071-02)	T 11 D		2	٥	₹ .		S o
	Lollo Rosso,		4®"	5) ~~	30
	loose leaf			, ~		A	
	variety		Q				
2010		Q.	· & °	\$ \times \tag{7}		<u> </u>	30
	lettuce	200 SIO*	_ D *	×0.125	20 0156	48	3
(11-2071-03)				0.125	© 0156 &	48 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3
France	Pitice,						
	loose leaf						
	variety						
	e (D*	~ \$ 1				
EU-S		"O"	`			[,5] . V	
2010	~					Ü . *Y	
11-2071	lettuc s	×200 SI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 125	. 0.01560		3
(11-2071-04)		/200 31	1 2	r y 0.1 <i>49</i> ν ∘.	0.0130	()	
Portugal	Campira.			, A ~		Ò	
1 Ortugai	loose leaf					Ų.	
	variety		_@"	Õ .	. "	ľ	
				Y O'Y			
	, Ş		S	<i>@</i> ,) ~		
EU-S			,^Q~		W		
2010	\ <u>`</u> \'\\			S' Ç			
L = formulation) [™] GSÆ g rowt	h stage (BB	CH-code) at las	t treatment		
EU-S = southern Europe		4 ~	~ J	0 4/	/		
			v uOr				
				4 2			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			~~				
*	4" 2	, O' <	y" 📡	a .			
	J Q ^v		· ()	%			
Ž.		. ~ ~	\$	Ş			
			, O' . "()°			
4							
	Ž Ž		**************************************				
	4 ~		~ 9`				
			*				
*	O' D'	O					
@ \ \ \ \							
* _A`		, · · · · · ·					
		~O					
Ţ,		*					
(7/ h >> 1							
EU-S 2010 II-2071 (11-2071-04) Portugal EU-S 2010 L = formulation U-S = southern Europe EU-S 2010	S S						

Table 6.3.1.1-5b: Results of residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in the field *(southern EU residue region)*

Study No.			R	esidues (mg/kg) exp	pressed as BYI 0290	60
(Trial No.)	Portion	DALT			BYI 02960-	
Country	analyzed	(days)	BYI 02960	difluoroacetic	difluoro-	total residue of
GLP				acid	ethylamino- furanone	BY1,02960 cal
10-2213	head	0*	0.04	< 0.02	0.01	8 8 7 9
(10-2213-01)	nead	0	2.6	<0.02 ≋ 0.02	<0.01	× × × 6 × 1
France		1	0.57	0.02	් <0.01	0.600
		3	0.40	♥ 0.02	Q <0.01	0.49
GLP: yes		5 7	0.29 0.15	0.02	<0.01 <0.01	©.19 ©
10-2213	head	0*	0.80	0.02	0.69 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	© 0.830°
(10-2213-02)		0	3.8 3.5 &		9.02	3.80
Spain		3	3.3 × 2.7 ©		0.02	3.3 - \$2.7
CI D. was		4	2,3	© 0.03 ©	0.02	\$\frac{1}{2.4} \$\frac{1}{2}\$ \$\frac{1}{2}\$
GLP: yes		7	4 3 ×	~ 0.03 °	<u> 4</u> 01	1.4
10-2213	head	0*	Ø0.05,≈y	, oʻ 0.43 joʻ	¥0.01 \$	\$\tag{9}{6.5}
(10-2213-03)		0 1		0704		₹ ¥.7 & 2.2
Italy		3		0.04	\(\sigma_0\) \(\sigma_0\) \(\sigma_0\) \(\sigma_0\)	0.53
CI Di viag		5	© 0.10 ©0.21 ©	0.65	\$0.01 D	≫ 0.27
GLP: yes		7_@	0.09	\$ 0.65 \$ 2005	0.00	0.15
10-2213	head	7	l. ″0~\$\$* a	0.03	<0.01	0.41
(10-2213-04)		$\hat{\wp}_1^0$		"O" 0.03 · 🔬	7 20:02 ©	3.7
Spain			3.0	0.04	0.02	3.1 2.2
CLD	W	5	2.1	0.05	0.00	2.1
GLP: yes	- F	70		≈ 0.05 [©]	© 1 002	1.3
10-2213	head	√° 0* %	0.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	€0.01	0.07
(10-2213-05)			2.9	\$\text{\infty} \square\$\text{\infty} \text{\infty}	<0.01	2.9
Spain		1		<0.02 \$* 0.02 \$*	0.01 0.02	2.0 1.2
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.21	<0.02	<0.01	0.24
GLP: yes	2	U 7 %	0.170	0002	< 0.01	0.20
11-2071	head		0.43	0.046°	0.021	0.49
(11-2071-01)				0.062	0.031	2.7
Spain		* 7 Q	1.5 1.77	0.077	0.046 0.034	1.6 0.90
CI D		10	0.57	\$ \$\text{\$0.11}	0.024	0.71
GLP: yes		14	√ 0.033 √	0.15	< 0.01	0.19
11-2071	head	°0* √	Y 20.55 Q	0.051	0.011	0.61
(11-2071-02)			7.3	0.039 0.083/0.032**	0.023	7.4
Italy 👸	~~~	3.0	3.10	0.083/0.032	0.045 0.025	3.2/0.052** 1.5
CI N		A .	© \$\text{\$\tilde{\text{9.24}}\$}	0.13	< 0.01	0.37
GLP: yes		Ž14 Ž	90.17°	0.12	< 0.01	0.30
11-2071	læad	-9%	5,2	< 0.02	0.015	5.4
(11-2071-03)	∜		**************************************	< 0.02	0.024	3.5
France		\$¥4 0 1 ≤	Ø.69 ©0.39	<0.02 <0.02	0.014 <0.01	0.72 0.42
CID O	8	0*	0.29	<0.02	<0.01	0.42
GLP: yes	D A		3.5	0.020	0.022	3.6 0.78
		~ <u>%</u>	0.72	0.035	0.020	0.78
	10	\$ 7 10	0.25 0.20	0.032 0.047	0.011 0.012	0.29 0.26
GLP-yes 11-2071 (11-2071-03) France GLP: yes		14	0.20	0.047	<0.012	0.26
L Cĩ		- 1	0.071	0.010	.0.01	0.15

DALT = days after last treatment

^{*} prior to last treatment

^{**}residues in control

Table 6.3.1.1-5b (cont'd): Results of residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.			R	esidues (mg/kg) ex	oressed as BYI 029	total residue of
(Trial No.)	Portion	DALT			BYI 02960-	
Country	analyzed	(days)	BYI 02960	difluoroacetic	difluoro-	total residue of
GLP	unuiyzeu	(unjs)	D1102700	acid	ethylamino-	BYL 02960 cal
DVI 02060 SI	200			difluoroacetic acid 0.02 0.022 0.031 0.027 0.029 0.034 0.034 0.034 0.038 0.038	<u>furanone</u>	0.04 1.8 0.9 0.15 0.15
11-2071	head	10	<0.01	<i>₽</i> 0.02	0.01	0.04 1.8 0.9 0.15 0.30 0.11
(11-2071-04)	nead	-8	1.8	©.022	0.021	1.8
Portugal		-5	0.92	0.031	0.015	0.97
		-2 0*	0.27	0.027	<0.01 <0.01	
GLP: yes		0	1.9	0.026	<0.00	1.9
		3	0.35	0.030	\$0.01 0.01	1.9 0.39 0.20
		10	0.067	0.034	0.01 ~~<0.01	40.11
		14	0.046	©.038	<0.01	6.094C
DALT = days aft	er last treatm	nent			4,0,4,	
* prior to last trea	atment					
		0				
		~\$				*
	4	, ,		<i>Q'</i> . Ö'		
	Ş	" T				
		4	8 7 ×		© 1	
					<i>J</i> . J.	
6		,•				
r _a		W (
	\$					
	.,0					
•				& A		
		1		0		
	a, &)" "Š		Ş - Ş		
~				,		
4				, Ø		
		? Q		**************************************		
4 n		4				
Y	***					
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Ű.	- F		,			
I,	2 A	~~~				
S.				0.029 0.026 0.034 0.034 0.034 0.038 0.038 0.038 0.038 0.038 0.038 0.038		
				0.022 0.031 0.027 0.029 0.026 0.034 0.034 0.038 0.038 0.038		

Table 6.3.1.1-6: Recovery data for BYI 02960 in **lettuce**

Study No.					Fortifi-	I	Recove	ry (%)	@ n°	<u> </u>
Trial No.	Crop	Portion	a.s./	n	cation		İ	I .	ı 🖏 🔏	S)
GLP	or or	analysed	metabolite		level	Individual	Min	Max	Mean	₹RSD
Year					(mg/kg)	recoveries 🍣		_W		
10-2213	Lettuce, head	head	BYI 02960	15	0.01	79;87;102;106; 107;109;110;116;	79	117	, 4 0 04	10.7
10-2213-01 to					Ĉ	92;97;107;1 0 8; 114;116;117	% & 11			,
10-2213-05 GLP: yes				5	Ø ₹ 0	88;90;96,92;93	88	920	J 91	Z-2
2010				2	\$0.50 1.0	103;196 9294 ° 4	\$103 92 _%	₩ 94 ©	5°105∉` Q©	,
			4		5.0	90;98, O	20	982	29 4	
			&	26	òyverall ∜		9 79	11√7	₹100	10.5
			difluoroacetic acid	125 **	0.02	90093;948 <i>9</i> ,97;	* 86 L **	116 🐴	98°	10.2
				3	0.05	90;99;98	§ 90	98 É	94	4.3
				25 Z	0.20	92,94	92	94 _© 1,64	93 93	4.7
		<i>@.</i>		2 &	0.30 1.0	93;10,\$90;91; 62 90; 92	ن ∂ 90 د	92	93 91	4.7
		Ş		2	1.0 0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	98,89	890	90	90	
			DVI OSCO	2 6	overall		\$ 6	116	95	7.9
	A O		BYI 02960- Sidiflooroeth Da missofuranone	15 (0.01	87; 93; 95; 200; 190; 104; 105; 207; 83, 83; 86; 88; 90; 92; 96	» 83	107	94	8.4
				5 🌋	0.10	85: 8; 97: 4; 99	85	99	95	6.1
				2	0.50	97, 109 ¹	97	109	103	
Q))			§2 2	5 0 W	₽86; LD¥ 97: -0 6	86 96	101 97	94 97	
	٥,			26	ovefall .		83	109	95	7.7
11-2071	Lettuco	head	B YI 02 0 00 «	Ã	\bigcirc "	88	88	88	88	
11-2071-01	Ž.			3	0.10	98;111;95 104	95 104	111 104	101 104	8.4
to 11-2072-04				3 5 5	werall	104	88	111	99	8.8
GLP: yes 2011			difluoroacetic acid	1 4	0.02	87	87	87	87	
, W	Š			3 ″	0.20	113;95;95	95	113	101	10.3
		نَّ إِنَّ الْ	7 2 5	4	overall	105	87	113	98	11.3
L			BY 02960 diffuoroethyl- aminof@anone	1	0.01	105	105	105	105	
				3	0.10	98;105;99	98	105	101	3.8
				4	overall		98	105	102	3.7

<u>Greenhouse</u>

Report:	KIIA 6.3.1.1/05, 2012	
Title:	Determination of the residues of BYI 02960 in/on lettuce after spraying of BYI 0296 SL 200 in the greenhouse in France (North), Germany, the Netherlands and Italy	
Report No. & Document No.:	10-2212, dated February 22, 2012 M-425829-01-1	

Report:	KIIA 6.3.1.1/06, 2012		V D	
Title:	Determination of the residues of BYI 0 BYI 02960 SL 200 in the greenhouse	2960 in/on lettion In northern France	after spray application, Italy, Spain and	cation of C
Report No. & Document No.:	11-2070, dated February 23, 2012 M-425786-01-1			

Guidelines (applies to both studies):	Directive 91/4, 4/EEG residues in or on treated products, food and fixed
GLP (applies to both studies):	yes feertified aboxatory); Deviations: non O

I. Materials and Method

Nine residue trials were conducted in European greenhouses, as follows:

In 2010, 5 trials (France, Germany [2], the Netherlands, and Italy) were conducted to support the use of BYI 02960 SL 200 in letture (2012, KriA 6.3/1.1/05). The letture varieties used were either closed-head (5 trials) or leady (2) varieties, as per the prevailing EU guidance at the time. Two applications were made at intervals of 10 days (11 in one trial) at a nominal rate of 0.625 L/ha, corresponding to 125. The BYI 02960 a.s. the water rate was 400-600 L/ha, reflecting local practice in the trial regions. All treatments were made at the scheduled rates.

Four further trials were carried out in 2011 in France, Spain, Germany, and Italy, to complete the data package (2012, KIIA 6.3) 1/06). In 3 of the 4 trials, the lettuce varieties used were leafy (open-head) varieties. The basic application parameters were as in 2010 (interval in one trial: 9 day); water rates ranged from 400 600 I. Laa. Again, all treatments were made at the scheduled rates.

Samples of lettuce heads were taken immediately prior and subsequent to the final application, and at several intervals the cafter tup to vor 14 days after treatment in 2010 and 2011 trials, respectively). The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAF using methods 00304 (2010 totals; the method details, cf. KIIA 4.3/03) or 01212 (2011 trials; cf. KIIA 4.3/05). The respective LOO for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

II. Findings

During the conduct of the complete set of lettuce studies in 2010-2011, concurrent recoveries of BYI 02960 and its metabolites DFA and DFEAF were obtained from samples of lettuce heads. This sample material is representative of all sample materials collected in these trials.

The recovery samples for parent and DFEAF were spiked at levels of 0.01 mg/kg, as well as 0.50, 1.0, and 5.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries were all within acceptable ranges (91-104%, RSDs of the larger validations sets [n > 2] 2.2-10.7%, [n > 2] 2.15%

Fortification levels for DFA were or 0.02 mg/kg, 0.05 mg/kg, and 0.50 mg/kg, as well as 0.20, 1.0, and 5.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries were all within acceptable ranges (90-98%, RSDs of the larger validations sets [n>2] 43-10.2%, n=2-12).

Details of recovery data are shown in table 6.3 1.1-8. All trial data are summarised below in table 6.3.1.1-7a &b and in greater detail in the Tier 1 summary forms. (Residues of parent By 102960 as well as its metabolites DFA and DFLAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as the sum of these three analytes, expressed in parent equivalents.

Relevant residues of BYI @2960 were determined in lettuce head samples taken 10 days subsequent to the first application (immediately prior to the 2nd treatment as well as at various intervals after the final application. Analyses showed that total residue levels declined with time.

On day 0, immediately following the final treatment, residue level in lettice heads were between 1.5 and 7.7 mg/kg/median 3.9 mg/kg). By day 3—the envisaged HII—the levels had declined to 0.80-6.0 mg/kg (n=9), with a median value of 2.2 mg/kg. Residues continued to decrease until day 14, the final sampling event, when levels ranged from 0.212.7 mg/kg (n=4, median 0.28 mg/kg).

III. Conclusions (lettuce greenhouse)

In order to support the use in the EU of EVI 02960 in Settuce, 9 valid trials were conducted in European greenhouses in the wars 2010-2017. BY 02960 was applied twice as an SL 200 formulation at an active substance ate of 25 g/kg per treatment. The application intervals were 9-11 days. All applications were at the required rates, and all trials were conducted according to GLP.

The greenhouse use calls for 2 sprays at 125 g/ha and a PHI of 3 days. To evaluate this use, samples were taken at several intervals after the final application, including the envisaged PHI of 3 days.

Samples were analyzed for the relevant residues of BYI 02960, comprising the parent compound and its metabolices DFA and DFEAF. The residues of all three analytes were summed to yield a calculated "total residue of BYI 02960". The results of the trials presented above demonstrate that:

based on a comparison of the residue values from field and greenhouse testing and using the same, use pattern, it is evident that the greenhouse use yielded somewhat higher total residues in fertuce than did the field uses. total residues of BYI 02960 dissipated rapidly in lettuce heads, from levels of 1.5-7.7 mg/kg on day 0 after the final treatment to 0.80-6.0 mg/kg on day 3 (envisaged PHI). The respective median

Table 6.3.1.1-7a: Application scenario in residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in European greenhouses

Study No.				Application	<u> </u>			1 8
(Trial No.)					1			Ş
Country					^			O'
Location	Crop	FL	No.	kg/ha	kg/h#	GS &	© PHI	
Location	Variety	1.2	110.	(a.s.)	(2 S		(days)	
Region				(a.s.)	kg/h4\$* (a.s.)		PHIO	Ĉ
Year					\$\tag{\psi}	°~/	, Q' «	1
10-2212	lettuce	200 SL	2 🔊	0.125	0.0208		7 3 0 1	(
(10-2212-01)	Tettuce	200 SL	2 🦓	0.123	0.0208			4
France	Kitonia,		\$			\$49 \$\infty\text{2}\$		
·	leafy variety		<u> </u>	Ő.			D, C	ľ
EU-N	icary variety		(A)	~ .				
				~ ~				
2010	1 44	200 010		\$ 12.5d	2000			
10-2212	lettuce	200 SIO*	«J	0.125	© 0208 ©	48	4 5 , 0	
(10-2212-02)	A	A.	. O ~ (V Q .		0′ 🦼		
Germany	Antoni,	%" ^		0.125 0.125 0.125	00208 0 00313	48		
	leafy variety		"@"					
EU-N		R 4,4						
	4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Y ~ ~			1	
2010	1-44	la ar b	25	<u> </u>	09313		3	
10-2212	Torpedo, &			0.125	0.0313	48	3	
(10-2212-03)	T		10°		B .	O		
Germany	Torpedo,			, 4 .	Y " Q	Ĉ		
	butterhead					Ű		
ELLM	variety		~~~		0 A208	7		
EU-N								
2010)			
2010 10-2212 (10-2212-04) Netherlands	lettuce 5 Gardia, 9 butternead	290 SL		Ø.125	0.9208	45	3	
(10-2212-04)	N . 4 (Ĭ, Ž,	49			
Netherlands	Gardia,	290 SL						
	Duwerneau	1 , ~	Q 25		1			
	butterhead variety							
EU-N								
2010	letruce Cappus Cina butterhead variety	200 SL 4	,	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				
10-2212	lettuće 💝	2000 SL &	2 %	-07123	0.0250	45	3	
(10-2212-05)	1 & V							
Italy	Cappus		S O	Ş				
	of cina of the cin			9°				
4	butterhead							
EU-S	variety \$, W					
2010	¥ Q							
11-2070 (11-2070-01)	lettace	200 SL 3	2	0.125	0.0208	48	3	
(112070-01)		Q 3	*					
France	Quenty, O							
	open	ř Q						
	open & at variety	()						
EU-N &		~Q~						
2011								
FL = formulation		CC	1	CH-code) at las				

FL = formulation EU-N north our Europe GS = growth stage (BBCH-code) at last treatment

EU-S = southern Europe

Continued on next page...

Table 6.3.1.1-7a (cont'd): Application scenario in residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in European greenhouses

Study No.				Application	 ! !		
(Trial No.)							
Country	Crop	*D*				,	© PHIA
Location	Variety	FL	No.	kg/ha (a.s.)	kg/h4 (a.s.)	GS 4	(days)
Region							
Year			(> _A			
11-2070	lettuce	200 SL	2	0.125	© 0.0208	Č47 ~	
(11-2070-02)				Ô	₽ .		
Italy	Expedition		, O	A S			
	RZ, Green			4		4	
	incised-leaf		2 50		Q' '\)
EU-S	variety	Ç ₂	, b				
2011			Ŵ.			17/	4
11-2070	lettuce	200 SL	~~ <u>~</u> 2	0.105	\(\text{\text{0.0250}}\).	A 7	3 5
(11-2070-03)					0.03		
Spain	Oak Leaf,						
	leaf variety		W.				
	·	D* <u>*</u> *)
EU-N	Q,	, "O"			P Ď]
2011	@-	\$ 200 EI		0.128	0.0250- 0.0353 0.0208		
11-2070	lettuce	≫200 SL	Q"	√ 0.125 °	≥0.0208©	Ä	3
(11-2070-04)							
Germany	Judita, head			, S		, Ö	
	lettuce «	Q 2			47 40		
				O' &		1	
		j`	Z V	y 0'			
FILN	4.8			.W	<i>a</i> .		
2011							
T - f1-ti	}	Y CS - Ot	1-44 (1990)	CII (V -+ 1	L V		L
L = formulation		GS∉ growi	n Stage (BB		i treatment		
U-N = northern Europe		EU-S = son	thern Emop	e J			
		O, O	~ 4				
0			, O, «	Ĵ , O			
			~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Š			
. F	a 0)			^			
Q Z	A & .						
Ö, Q) ^Y			
4.	O'		, Ø				
		O' Z	~~~				
			~Q"				
	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Y				
, ¥			•				
Q .		* 5					
A . A .		, 'S					
		~O					
₩ .~~~	5 Š	¥					
	$\tilde{\mathbb{Q}}$						
	^~						
	Ţ						
EU-N 2011 21-2070 111-2070-04) Germany EU-N 2011 L = formulation U-N = northern Europ	, G						

Table 6.3.1.1-7b: Results of residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in European greenhouses

Study No.			D	esidues (mg/kg) ext	ressed as RVI 0204	50 _V ^\
(Trial No.)	Portion		K	esiuues (mg/kg <i>)</i> exp 	BYI 02960-	
Country	analyze	DALT		difluoroacetic	difluor∙9-	total residue of
Country		(days)	BYI 02960			
GLP	d			acid	ethylamino- furanone	BYA 02960 cal
		0.1		0.00		N N N
10-2212	head	0*	0.23	< 0.02	€ 0.01	0 026
(10-2212-01)		0	1.5	© 0.02	<0.01	7.5
France		1	1.3	0.02	© <0.01 ©	
		3	1.4	<0.02	<0.01	
GLP: yes		5	1.2	0.02	<0.0 _k ©	
10.0010		7	1.4	0.02	\$ <0.6¥	9.4
10-2212	head	0*	2.7	<0.02	0.01	2.7
(10-2212-02)		0	6.7	_&_^ <0.93°	7	~ 6D'
Germany		1	2.3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.4
CI D		3	2.0	Ø 0.02 Q		2.0
GLP: yes		5		0.02	3 3 3 3 3 3 3 3 3 3	1.5
10.0016	1 ,	7	#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 × 0 × 0 × 0 × 0	~ ~ 0.01 ~ ~	
10-2212	head	0*	0.13	\approx \approx 0 \approx 0		9 .16
(10-2212-03)		0	5.70	y	S Mai &	© 5.3
Germany		1	4.6	<0.025	9.01	4.7
CI D		3	y 1, 2, 3, 5, 6, 7			3.5
GLP: yes		5	2.4	0° 40.02	0.00	√ 2.4
		7~ ^y	<u> </u>	0.02	6 01	1.8
10-2212	head	\$0* \$\infty 0 \(\alpha \)		0.02	30.01	0.32
(10-2212-04)		70	3.1		₹ 0.0 %	3.1
Netherlands	4			9.02	© 0.920 0.820	2.5
CI D.	, i	30		0.03	0.03	2.5
GLP: yes		\$\int_{5}^{5} \tag{5}			0.03	2.0 1.0
10-2212	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0*	0.65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.01	
(10-2212-05) (10-2212-05)	head 5	(D)		0.02 ×	\mathcal{O}_{I} 0.01 0.02	0.68 3.9
(10-2212-03) (Italy			3.8	0.00	0.02	2.7
italy			9 2.7	% <0.02 %	0.02	1.8
GLP: ye) 5 S	1.0		0.02	1.3
OLI . y		300		0.02	0.01	0.78
11-2070	head	7,"		© <0.0 <u>3</u>	<0.01	3.0
(11-2070-01)	ileaus	1 3	21	0.022	0.01	2.2
France]		× 2000	<0.011	0.62
1 Tunce ≪C			0.30	% 0.028	<0.01	0.43
GLP: yes 🔬]	00 014 &	0.78 0.79 0.18 0	0.028 0.026	<0.01	0.43
11-2070	head & Q	- ^	Ψ <u>Δ 1 </u>	0.040	<0.01	4.1
11-2070 (11-2070-02)	head	3		0.059	<0.01	0.80
(11-2070-02) Italy.≪J		4		0.039	<0.01	0.52
Italy		in s	N 27 N	0.073	<0.01	0.42
GLP: yes	. O .	14 4	0.12 0 0.13 7 7.6 7	0.038	<0.01	0.42
11-2070	head 🔊 "		7.6	0.029	0.024	7.7
(11-2070-03)	110114		7.6°	0.025	0.027	6.0
(11-2070-03) Spain		0°7 ×	4.6	0.055	0.027	4.7
Spani Q	Į Į į	۳ 11.0	2.9	0.061	0.038	3.0
GLP: ves	P A	123	2.6	0.069	0.049	2.7

DALO day ofter last freatment

* prior to last treatment

Table 6.3.1.1-7b (cont'd): Results of residue trials conducted in/on **lettuce** after spraying with BYI 02960 SL 200 in European greenhouses

						0
Study No.			R	esidues (mg/kg) exp		total residue of
(Trial No.)	Portion	DALT			BYI 02960-	
Country	analyze	(days)	BYI 02960	difluoroacetic	diflu oro -	total residue of
CLD	d	(44.5)	21102500	acid	ethylagiino-	BYL02960 Fal
GLP	1, ,		2.5	0.025	furamone 0.015 0.014 0.010 0.010	
(11-2070	head	0	3.7	0.027	0.015	
(11-20/0-04)		3	2.6	036	0.014	
Germany		10	0.87	0.043	Q <0.010 Q	0.93
GLP: ves		14	0.40	0.033	<0.01	2.7 0.93 0.53 0.53 0.53 0.53
DALT = days aff	er last treatr	nent	0.25	A Q	6° & 3	2.7 2.7 0.93 0.53 0.53 0.53
* prior to last trea	atment		Q			
•			& ,			
			O			. 4 .
			4.	,		
					→ . O ₂ ~ ~	
						j ^y Ö
					T 8 . F	. .
		6				~
						*
		W ^v		, " " " " " " " " " " " " " " " " " " "		
		, Ø				
		~ A			J Z	
	*					
	ۣ <i>ڰ</i> ۫	e O			O' 4	
		O >				
) ~			Ž'	
4)		0' &' ⁰ &		Ø n	
Ö	10)	
	(
	O					
	~ (°)	4		& A'		
				0		
) , , , , , , , , , , , , , , , , , , ,		Ç Ş		
~) • <u>0</u>		
.1	ν	8 4		W		
	. 6			V		
		·) 7		
**		0° E				
		. 67				
			&			
	` & "	.0° ×	'J 🐬			
, W	Ĭ,		,			
Ž,	Ž A	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
, Ż						
	<u> </u>	The state of the s				
~ °				0.053 0.041 0.053 0.041		
				difluoroacetic acid 0.027 0.036 0.043 0.053 0.041		B 14,02900; all

Table 6.3.1.1-8: Recovery data for BYI 02960 in **lettuce**

Study No.					Fortifi-	I	Recove	ry (%)	°	<u>~</u>
Trial No.	Crop	Portion	a.s./	n	cation		1	l e		
GLP	- · · ·	analysed	metabolite		level	Individual	Min	Max	Mean	₹RSD
Year					(mg/kg)	recoveries 🍣		_W		
10-2213	Lettuce, head	head	BYI 02960	15	0.01	79;87;102;106; 107;109;110;116;	79	117	. 4004	10.7
10-2213-01 to					Ĉ'n	92;97;107;1 0 8; 114;116;1(1,7	% √ °			9
10-2213-05 GLP: yes				5	Ø ₹ 0	88;90;99,92;93	88	920	1	4 .2
2010				2	\$0.50 1.0	103;196 9294 ° 4	\$103 92 _%	∯06 94 ©	5 105€ oØ	,
			4		5.0	90;98, 0	20	980	29 4	
			&	26	&verall		9 79	11√7	100	10.5
			difluoroacetic acid	125	0.02	90%3;94%\$9,97;	* 86 L ************************************	116	980	10.2
				3	0.05	90;99;98	90	98 6	94	4.3
				5	0,20°	93:10490:91:62	910	94 _© 1,64	93 93	4.7
				2	71.0	93;10390;91; 92 90; 92) 90 _{&}	92	91	,
		Z,		2.0	5.0 5.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96,89	890	90	90	7.0
			BYI 02960- 25	15 á	overall 90.01	87; 93; 95; 100;	\$ 6 ≥ 83	116 107	95 94	7.9 8.4
	Q Q		BYI 02960- diflororeth amenone	J.		180; 104; 105; (5) 180; 104; 105; (5) 180; 104; 105; (5) 180; 104; 105; (6)	, 55			
				5 %	0.10	85; 9 8; 97; 9 7; 99	85	99	95	6.1
				27 3	0.50	95, 109 086: 108	97 86	109 101	103 94	
))	.1.		2	5.0	97: 9 6	96	97	94	
KG"	\$			26	overall		83	109	95	7.7
11-2071	Lettuco	head	\$\$¥I 029660	ř	~ ″	§ 88	88	88	88	
11-2071-01				3	0.10	98;111;95	95	111	101	8.4
to 11-2072-04				3 5 5	ayerall	104	104 88	104 111	104 99	8.8
GLP: yes			difluoroacetic acid	1 4	0.02	87	87	87	87	0.0
&) &)					0.20	113;95;95	95	113	101	10.3
Ŋ				4	overall		87	113	98	11.3
Å			BY 02960 diffuoroethyl- aminof@anone	1	0.01	105	105	105	105	
Ţ,			y ~\{\}	3	0.10	98;105;99	98	105	101	3.8
				4	overall		98	105	102	3.7

IIA 6.3.1.2 Hops

BYI 02960 (common name: flupyradifurone) is to be registered in northern Europe for use in hope. Thus, European residue data in hops are presented below to support the intended "safe" use. Use pattern (GAP) information is summarized in Table 6.3.1.2-1.

Table 6.3.1.2-1: Use patterns (GAPs) for the spray application of BYI 02960-containing formulations in/on hops in European fields

Description	Reg.	No. of appls.	Application rate per treatment per season (g a.s./ha) (g a.s./ha)	^	Interval	
"safe use"*	EU-N	1	120	2000-3000	_~	<u>2</u> 1

EU-N = northern EU residue region

In order to support the EU "safe use" @ BYJ 02960 sets of &I European fields in 2010 and 2011. BYI 02960 SE 200 (containing 2012/L BYI 02960 a.s.) was applied once. Samples were taken at vacious intervals subsequent to the application. The envisaged PHI was 21 days.

Residue levels of BYI 02960 and its metabolites DFA; and DFEAF were analyzed individually and summed to yield the calculated total residue of B 602960. Total residue levels determined in the trials reached a maximum of 2.4 mg/kg indried cones, with an STMR of 1.1 mg/kg.

The number of trials conducted for each use described above (inclumnformation on geographical region and vegetation period is summarized below in table 6.3 2-2.

2-2: Overview of Faropean residue trials conducted in hops per geographical "residue region" and Vegetation period, including key results

	No. of trials Veget. Operiod 2000 2000	Residue levels* mg/kg) HR STMR	Report No.	Dossier ref.: IIA 6.3.1.2/
tri gis in Europe 🧞		Ş		
"safe use" EU-N		green cone: 0.87 0.47 dried cone: 2.4 1.1	10-2225, 11-2076	01, 02

EU-N = northern (residue region)

use based on an SL 200 formulation

residue results based on total fesidues in samples baken on day 21 (= envisaged PHI)

Northern Europe (residue region)

Report:	KIIA 6.3.1.2/01, , A. 2012		
Title:	Determination of the residues of BYI 02960 in/on hop aft	er spraying of BYI	02960 SV 200 0
	in the field in Germany		
Report No. &	10-2225, dated February 13, 2012		
Document No.:	M-425351-01-1	4	\$ \$ 0

		_
Report:	KIIA 6.3.1.2/02, , , A. 2012 , , A. 2012	_
Title:	Determination of the residues of BYI \$2960 in/on hop after spray application of BYI \$2960 SL 200 in Germany	X
Report No. & Document No.:	11-2076, dated February 13, 2012	

Guidelines (applies to both studies):	Directive 91/404/EE@resides in or on treated products, food and feed
GLP (applies to both studies):	yes (certified laboratory); Deviations, non 🗸 🛴

I. Materials and Methods

Eight residue trials were conducted in the porthern European residue region, as follows

In 2010 and 2011, 8 trials (4 trials per year, at in Germany) were conducted to support the use of BYI 02960 SL 200 in Grops (2012, KIIA 6.39.2/0) and /02). A single application was made 21 days before the projected harvest at a nominal rate of 0.6 L/ha, corresponding to 120 g/ha BYI 02960 as Water rates were 2000-3000 L/ha, reflecting local practice in the trial regions. All to atments were made at the scheduled rate.

Samples of green hop cones were taken immediately subsequent of the final application and at several intervals thereafter (in to 28 days after treatment). The envisaged PHI was 21 days. (In two trials, the PHI samples were taken on day 20; in one other, on day 22.) In addition to the green cone samples, additional cones were taken at the later sampling intervals (nominally days 14, 21, and 28) and dried according to candard practice, as try cones are the primary traded commodity from the grower to the market.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAF using method 01304 (cf. KII/o 4.3/o3). The respective LOQs for the 3 analytes were 0.10, 0.20, and 0.10 mg/kg (all in parent equivalents), yielding a calculated total-residue LOQ of 0.40 mg/kg.

II. Findings

During the conduct of the 2010 studies, both validation and concurrent recoveries of BYI 02960 and its metabolites DFA and DFEAF were obtained from samples of hop cones (green and dried). (The validation work was done due to the fact that hops are considered "difficult to analyze" but were not included in the original validation set for method 01304. Details of the validation recoveries are

presented in chapter 4.3 of this dossier with method 01304.) In 2011, samples were analyzed for concurrent recoveries.

Concurrent recovery samples for parent compound and DFEAF were spiked at levels of 0.10 mg/kg and 1.0 mg/kg, as well as 5.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries of green cones in 2010 were 80-94%, with RSDs of the larger validations sets (n > 2) 6.0-13.9%; n = 1-6. In 2011, mean recoveries were 85-91%, with RSDs of the larger validation sets (1.0 mg/kg) of 0.72.3%; n = 1-3. All values were within acceptable ranges.

Mean recoveries in dried cones in 2010 were 103-112%, with RSD of the larger validations sets [n>2]) of 1.4-7.2%; n=1-6. All of these values were considered to be acceptable because, even in the case of values over 110%, they were only marginally higher and the RSD values were very low; also, in the cases of the exceptions, the overall means of all recovery analyses for the given matrices with each individual analyte were 107% and 108%, with overall RSDs of 6.2% and 4.2%. In 2010, recoveries were 79-91%; n=1 for each concentration.

For DFA, concurrent recovery samples were spiked at levels of \$\omega\$20 mg/kg and 1.0 mg/kg, as well as 5.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries in green cones in 2010 were 83-99%, with RSDs (of the larger calidations sets \$\omega\$n > 25 of 8.2% and 8.9%; \$\omega\$n=1-6. In 2011, mean recoveries were 79% and 88%, with an RSD of the larger validation set \$\omega\$1.0 mg/kg) of 3.2%; \$n=1-3\$. All values were within acceptable larger.

In dried cones, mean $\sqrt{1}$ A recoveries in 2010 were 98-106%, with RSDs of the larger validations sets (n > 2) of 3.1 and 8.9%; n=1-6. $\sqrt{1}$ by 2011 recoveries were 70 and 73%; n=1 for each concentration. The values were all within acceptable ranges

Details of recovery data are shown in table 6.3 1.2-4. All trial data are summarised below in table 6.3.1.2-3. It is not all trial data are summarised below in table 6.3.1.2-3. It is metabolities DFA and DFEAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as the sum of these three analytes, expressed in parent equivalents.

Relevant residues of BYI 02960 ere determined in loop cone samples taken at various intervals after application.

Analyses of green cones showed that total residue levels generally declined with time. On day 0, immediately following treatment, residue levels in green hop cones were between 0.79 and 2.7 mg/kg (median 1.3 mg/kg). By day 21—the envisaged PHI (samples were taken on day 20 in two trials and day 22 in the further trial)—the levels had declined to <0.40-0.87 mg/kg (n=8), with a median value of 0.47 mg/kg. Residues continued to decrease until day 26-28, the final sampling event, when levels ranged from 0.40-0.69 mg/kg (n=8, median 0.41 mg/kg).

The residue behaviour was somewhat less predictable in dried cones. Whereas a decline was generally evident over time, in three of the trials, residue levels at the final sampling interval (28 days) were higher than at the PHI (day 21). Residue levels on day 21 (20 in two trials, 22 in one other) ranged

from 0.56-2.4 mg/kg, with a median value of 1.1 mg/kg. On day 28 (day 26 and 27 in one trial each), they were generally lower, at <0.40-2.3 mg/kg (median 0.71 mg/kg). Taking the highest residues at relevant sampling intervals into consideration (either day 21 or 28), residues ranged from 0.61-2.4 mg/kg; the median value was 1.2 mg/kg.

III. Conclusions (hops)

In order to support the use in the EU of BYI 02960 in hops, 8 valid tries were conducted in the northern European residue region in the years 2010-2011. BYI 02960 was applied once as an \$0,200 formulation at an active substance rate of 120 g/ha All applications were at the required rates, and all trials were conducted according to GLP.

To evaluate this use, samples of both green and dried hop ones were taken at several intervals after the final application, including the envisaged PHT of 24 days. Samples were analyzed for the relevant residues of BYI 02960, comprising the parent compound and its metabolites DF and DFEAF. The residues of all three analytes were summed to yield a calculated total residue of BYI 02960. The results of the trials presented above demonstrate that:

- total residues of BYI 02960 dissipated spidly in green hop cones, from levels of 0.79-2.7 mg/kg on day 0 after the treatment to 0.40-0.87 mg/kg on day 21 (envisaged PPI). The respective median values were 1.3 and 0.47 mg/kg.
- in dried cones, residue levels also tended to decline with time. When evaluating the highest residues at retovant sampling intervals (either day 21 or, in three trials day 28), residues ranged from 0.61-2.4 mg/kg, with a median of 3.2 mg/kg.

Table 6.3.1.2-3a: Application scenario in residue trials conducted in/on hops after spraying with BYI 02960 SL 200 in the field

DII	. 02960 SL 200	in the neid	l.				0
Study No.				Application			
(Trial No.)							
Country	C				_		65 TTT 10°
Location	Crop Variety	FL	No.	kg/ha	kg/hl	GS	(days
	variety			(a.s.)	(a.sQ)		(days)
Region					4	Q	
Year						, O'	
10-2225	hop	200 SL	1 (් _ථ 0.12	\$0.004	BBCH: ~	7 21 5 5 0
(10-2225-01)	Hallertauer	200 52		V 0.12	W	Ø3-74 _~ 0	*
Germany	Gold					\$ 5-74 \$ \$	
Germany	Gold		a y				
			4	Q,"	~ ~ ~	.	
				~ , '	9' Q'		0,7
EU-N							
2010		<u> </u>					
10-2225	hop	200 SI	JΨ	0.12	∞ © 0055 ©	1 75	21
(10-2225-02)	Magnum			<i>V</i> Q,			b" &
Germany							
Germany							
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			0~
			. 9 5	9 . 6			<u> </u>
		Ø.	"Y . "				∮
EU-N					©0.0055		
2010	\mathbb{Q}		\$			P &.	
10-2225	hop \\ Hallertauer \(\)	7200 St	l "q"	0.10	≈0.0055 °	Ø 5	20
(10-2225-03)	Hallertauer	\$200.8L	4 0	, 4 %	\$0.0055 \$\frac{1}{2}\$	Po	
Germany	Hallertauer Magnum			, , , , , , ,			
	7				J' 4	7	
				ĺo, «^			
FILM	y o z	¥	Z L) O'			
EU-N	T. 3		P S	0,	- "		
EU-N 2010	hop Hallertauer Magnum hop Hallertauer Trachtion hop Hallertauer Trachtion hop Hallertauer mittellirüh	W N	, 9		w .		
10-2225	hop 😽	200 \$ ₺∕		○ 0.1 2	£ 0055	85	21
(10-2225-04)	Hallestauer 🧷	V (4.0°					
(10-2225-04) Germany	Tradition	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			¥		
		12 8	<i>10</i> °				
FILM	Z ., O		$^{\circ}$ $^{\circ}$ $^{\circ}$	Y' , Q			
2010			7 &	3			
2010	10	W = 00 0 0 0 0	" _0"	*	2.225		21
11-20/6	Thop S	₩200 SK)		© 0.15	0.006	75	21
(11-2076-01)	Hallerbruer (
Germany 🔊 💍	mittelfrüh 🥎		N	Ĩ			
EU-N			. W				
2011	,						
Z011	<u> </u>			CII 1) (1			
FL = formulation \(\sqrt{\circ}^*		GS≠ grow	th stage (BE	BCH-code) at las	st treatment		
EU-N [№] northern Europe	~ ```	× '0,					
<i>\mathcal{Q}</i> \(^{\cdot}\)					Con	tinued on ne	ext nage
A . A		,			Con	iiiiiica on m	em page
		. **					
~~ ~ ~ ~ ~ ~ .							
	» 29 -						
	Â"						
A SA	-						
Õ							
EU-N 2010 11-2076 (11-2076-01) Germany EU-N 2011 FL = formulation EU-N = northern Europe							

Table 6.3.1.2-3a (cont'd): Application scenario in residue trials conducted in/on **hops** after spraying with BYI 02960 SL 200 in the field

Study No.				Application			
(Trial No.) Country Location	Crop Variety	FL	No.	kg/ha (a.s.)	kg/hl	GS	PHI (days)
Region Year					-4	, S	
11-2076	hop	200 SL	1 (<u>څ</u> 0.15	\$0,006	BBCH: A	21 \$\frac{1}{2} \frac{1}{2} \f
(11-2076-02)	Magnum		- √2	₹	\$0.006	©73 «O	
Germany	magnam		*		₽ .	, Q	
						©73 \$	
				Q	6 8	Sy.	
			Q)		Q' ~	NO G	<i>\\</i>
EU-N		Q ₁	, co				
2011		l ő	, Õ				Λ
11-2076	hop	200.\$L			0.006.	®6 Q	20%
(11-2076-03)	Hallertauer			3.1 4			
Germany	Tradition						
			Z .			aŞ	
	Q,	D ^v 💥					
EU-N	Į Ž						
2011	Ø,						
11-2076	hop Tettnanger	7200.8L	" "	0 18	0.006, 0.0075	BBCH.	22
(11-2076-04)	Tettnanger &	2000	\$ 1		Ø 0.00 / 3	78	
Germany	Tetthanger of			, , , , , , , , , , , , , , , , , , ,			
o vinium y	** A		a.Y			¥	
EU-N		<i>\@</i>	\$ 1	"	P _x 4,		
EU-N 2011 FL = formulation				ast treamsent	Q ₁		
FL = formulation	10				<u> </u>	l	

FL = formulation
EU-N = northern@urope

GS = growth stage (BBCH-tode) at last treatment with the property of t

Table 6.3.1.2-3b: Results of residue trials conducted in/on **hops** after spraying with BYI 02960 SL 200 in the field

Study No.			Res	sidues (mg/kg) ex	oressed as BYI 02	960 🔎 🤝
(Trial No.)	Portion	DALT		(g,g) (]	BYI 02960-	total residue of
Country	analyzed	(days)	BYI 02960	difluoroacetic	difluoro-	BY 202960
GLP		(,)	211 02 00	acid	ethylamino- furanone	Cal S
10-2225	cone, green	0	1.3	< 0.2	√20.1	1.65
(10-2225-		7	0.62	0.2	<0.1	7 0 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01)		14 21	0.29 0.52	<0.2 <0.2	②″ <0.1 ② <0.1	0.59
Germany		28	0.16	<0.2	<0.1	0.46
GLP: yes	cone, kiln-dried	14	1.5	0.27	60.15 ×	
		21 28	0.81	0.20	0.1 × 0.1 × 0	
10-2225	cone, green	0	0.49	© <0,2	20.1	0,79
(10-2225-	1,811	8	0.27	©0.2 0°	3 < 0.1 3	₽ .57 €°
02)		13 20	19 0	0.2	<000	\$0.49 @*
Germany		27	(0.1°) (0.1°)	V 502 0	20.1 3	<0.4° √ .4° √
GLP: yes	cone, kiln-dried	13	Q 054 3	~\$\display 0.2 \display \dinfty \dinfty \display \display \display \display \display \display \display \display \display	(C) <0.16°	0.84
		20 (27Q	Ø:48 × <0.1 ≥	<0.2		0.78 <0.4
10-2225	cone, green		V 1.40 &	7 30 .2 6	0.1	1.7
(10-2225-		7 7	9 0.54 ⁰	₹ 0.2 ©	<0.1 €	0.84
03)	Pa Pa	14 %	0.36 A	0 < 0.2	(100) (100) (100)	0.66 0.50
Germany		28	Q<0.15	(< 0.2 V	\$0.1 \(\)	<0.4
GLP: yes	cone, kiln/dried	\$14 <u></u>	9 1.9 D	0.25	& <01,00°	1.7
		21	$9.77 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\$\sqrt{0.28} \cdot \c	<0.1 <0.1	1.1 0.62
10-2225	cone, green		0.56		<0.1	0.86
(10-2225-		8 8	V 0027 J	<0.2	· \0.1	0.57
04)		14 € 21≥	0.17	\$\left\{0.2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.1 <0.1	0.47 0.44
Germany		28	<0.10	© 20/2 °	<0.1	<0.4
GLP: ye	cone, kilm dried	1 4 '	0.54	₹0.2, ©	< 0.1	0.84
		28	0.49	(0.21) <0.2	<0.1 <0.1	1.2 0.79
DALT = days a	after last treatus ant					
				Ø,	Conti	nued on next page
1				Ö V		
T.	, Q	D .)		
.// .		* ~				
4			Q 3			
			Q A			
,			j 'Y			
Š	ntter last treataint	*				
) Y				
, ŠÕ,						

Table 6.3.1.2-3b (cont'd): Results of residue trials conducted in/on **hops** after spraying with BYI 02960 SL 200 in the field

(Trial No.)			Residues (mg/kg) expressed as BYI 02960			
Country	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- diflyoro- ethylamino-	total sesid BYI 029
GLP					faranone	0, 0
BYI 02960 S	L 200	ı		Ö	<u> </u>	
11-2076	cone, green	0	2.4	<0.2	<0.1	\$\\ \times \\ \t
(11-2076-		14 21	0.47 0.51	<0.2 O V <0.2 S	<0.1 <0.1 <0.1 <0.1	0.7
01) Germany		28	0.39	<0.2 <0.2 <0.2	° <0.1	0.69
Germany	cone, kiln-dried	21	1.0	0.38		. Ø15 ≈
GLP: yes	Cono, min unou	28	1.8 &	6° 65° 4	0.1 0.1 0.1 0.1 0.1 0.1	2.3%
11-2076	cone, green	0	0.5\$	0.2	<0.10	0.285
(11-2076-	7.0	14	<u>0</u> 21	©<0.2Q	<0.1 C	0 7.51
02)		21 28	\$\\ \delta 0.1 \\ \delta 0.10 \\ \delta \tag{10}	\$\frac{1}{2} \text{\$\frac{1}{2}\$}		0.40
Germany	1.1 1.1		0.10		0.1	0.40
CI D: was	cone, kiln-dried	21 28		₹0.2 ° <0.2 °		Ø.56 Ø.61
GLP: yes 11-2076	cone, green	0Q	21			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(11-2076-	cone, green	13	2.1		0.1 C	2.4 1.1
03)		~ 2 0	~ 0.57 ©	\$\ \langle 0.2 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<0.0	0.87
Germany		©"26 _{&} _	0,23	<0.20	9 9 1	0.53
	cone, kiln-drie	200°	2.0 0.49	0.27	70.1 70.1 70.1	2.4
GLP: yes		26	0.49	\$ 60.2	«√ ₄ <0.†«>	0.79
11-2076	cone, green	\$ 0 12 ×	0.81	<0.2	(L) <0)	0.91 0.41
(11-2076-		22	0.1	\$\frac{10.2}{\pi}\$	(0.1	<0.41
Germany		28	0.17	20 .2	<0.1	0.41
	cone, kilnerried	22	V ,0743 , V	<0.2	<0.1 €	0.73
GLP: yes		28	9 .29	(< 0 g	<0.1	0.59
DALT = days	after last treatment	4 1 P				
		Z .				
Ky"	~ ~ ~	0) 1 4,				
	\$. 4	Ş				
	Ö A			₹		
				F		
				F D		
A				F D		
				F P		
				F Y		
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$						
	cone, kiln-dried cone, green cone, kiln-dried after last treatment					

Table 6.3.1.2-4: Recovery data for BYI 02960 on hops

Study No.					Fortifi-		Recov	very (%)	@.°	_
Trial No.	Crop	Portion	a.s./metabolit	n	cation		ı	ا . ا		
GLP	Стор	analysed	e		level	Individual ^	Min	Max	≯Mean _©	* RSD
Year					(mg/kg)	recoveries)	Ţ,		
10-2225	hop	cone, green	BYI 02960	6	0.10	89;89;91;94; 👸 95;107	89	107¥	. 19 4	7.2
10-2225-01 to				5	1.0	85;86;87,92,98	85	O ₉₈ &	900	6.0
10-2225-04				1	\$	87	87 E	87		L.
GLP: yes 2010				12	overall	04	3 5	107	\$ 92 (6.8
2010			difluoroacetic acid	64®		95,92;95;99; 100;1150	O)1	¥15 &		8.9
			<u></u>	95 1	1.0	76;79;83;84;94 <i>°</i> 86;~~~~	\$6 \$6	**************************************	83 86	8.2
			O`	1 12 2	overall		76 S	115	Q1 °	11.7
			BYI 02960- difluor vethyl- aminofuranone	76 , W	0.10	68;72,79;85,7	68 V	96 V 2	83	13.9
				\$	400	96;77:38;84;93	76.	9.1© %\$0	81	7.8
		W		12	overall		89 968 &		80 82	10.6
		cone	BYI 02960	6	0.10	\emptyset 102, \emptyset \emptyset , $103, \emptyset$	102	106	104	1.4
		kiln-dried		5	1.00	104 (\$\delta 5;106) 107,108;\delta 1; 4,14;11,5	₩ 1 07	115	111	3.2
	Š			Ĭ	\$3.0 °	112 0	112	112	112	
				12	Doverad	L O	102	115	108	4.2
			difluoroacetic aod &		0.20	82;96;97,103; 103;106	82	106	98	8.9
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			5 (71.0	101/105;106; 109;110	101	110	106	3.1
	· (5 0 .	9 8	98	98	98	
	29 3	4 4		12	{øveral⊮ ̂		82	110	101	7.3
			BYK02960 difforoethyl- aminofuranone	6	0.10	89;100;106; 107;107;108	89	108	103	7.2
4	Q O			5 (1.0	108;109;110; 112;114	108	114	111	2.2
	°,				5.0	112	112	112	112	
~~				12	overall		89	114	107	6.2
			BYF029604 difference hyl- anino furanone					Continu	ed on no	ext page

Table 6.3.1.2-4 (cont'd): Recovery data for BYI 02960 on hops

Trial No.			,		Fortifi-		Recov	very (%)	a,°	^ .
GLP Year	Crop	Portion analysed	a.s./metabolit e	n	cation level (mg/kg)	Individual recoveries	Min	Max \$	Mean	RSD
11-2076	hop	cone,	BYI 02960	1	0.10	90 8	90	90 4	. 490	
	Пор	green	B11 02 9 0 0	3	1.0	84;85;85	84	\$5 ×	\$ 85 m	0.7
11-2076-01 to				4	overall		84	() 1 90 ≫	86	3.1
11-2076-04 GLP: yes			difluoroacetic acid	1	1 20	88	880	88	8 8	Sy Sy
2011				34	1.0	75,79;82		82 C	79	3.2
			BYI 02960- //	1	overall ~		1(0)	885 84	\$2 \$91	5.9
			difluoroethylaminofuranone		·0.10 5	91		, \$1°	》	
				B	overall	87;90,91	87 O	9 5 4.91	8 9	2.3 2.1
11-2076	hop	cone,	BY-Q02960*	120	Q de	IUNU (° n 🙈	⊌un ⊚	f 9()	90	2.1
	P	kiln-dried		N F	1.0	87 N N	87\$		87	
11-2076-01 to				2	overall)	87 5 5		~9 0	89	
11 2076 04					0.49		73	73	73	
2011				1	1.0		Z\$	70	70	
				20	overall		9 70	73	72	
			BVI 02960- Affluoroethyl- aminofaranone		<u>0</u> .10	079 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 °		79	79	
					1.0°		91 79	91 91	91 85	
			By 1 02960- William of the control o							

"FURTHER USES"

The following paragraphs describe all uses to be intended for registration in Europe besides the two "safe uses" lettuce and hops, which have been submitted in May 2012.

IIA 6.3.1.3 Pome fruit - apple

BYI 02960 is to be registered in Europe for use in pome fruit. Europe in residue day in appe are therefore presented below to support the intended us Use pattern (GAP) information, Reluding the European "agricultural use" as well as the "home & arden use Table 6.3.1.3-1.

Table 6.3.1.3-1: Use patterns (GAPs) for the sprag in/on apple in European field

Description	Reg.	No. of apple	per freatment (g a [ha×m])	per season	Water volume (L/ma×m)	Saterysu) (dsys)	PHI (days)
"home & garden"*	EU-N	2 📞	Ø60† √	@120-36♥	> 250- <i>5</i> 00	<u>a</u> 14	14
nome & garden	EU-S	10	\$\int 67.5\pi\$	€ 68-203 €	250,500) n/a	14
agricultural**	EU-N			0 -180%	250-500	n/a	14
agriculturar	₽Ŭ-S	0 1 ×	0,60 [†] \$	€0-18P	250-500	n/a	14

L 200 formulation

sets of GLP trials were conducted in both the northern and souther European resource regions in 2010 and 2001. In Norther and in southern European apple trees, BYI 02960 was applied twice as an SL formulation (BYF02960 SL 200, containing 200 g/L the residue trial conducted in southern Europe in 2011, where only a single application

At the beginning of the program the ovisage GAT specified two applications in both northern and southern Europe. However, this GAP was changed in southern Europe, and only one application became the current GAP for uses in that region. The trials conducted in southern Europe in 2011 were performed according to the newer (current) GAP. In northern Europe, the 2-application scheme will be supported to home & garden use (SL 50), while the main agricultural use (SL 200) will also be limited to a single woplication.

In the 2010 trows and borthern 2011 trials, samples were taken immediately prior to the second application; thus reflecting conditions representative of a 1-application, 14-day PHI use pattern. In all trials, samples were taken at various intervals subsequent to final application, with an envisaged PHI of 14 days, reflecting the intended worst-case PHI.

EU-N = northern European esidue region

* "home & garden" with an L 50 formulation (available to the reserved)

core rate per many crown eight (6). Test bases of a many H of 36, equation to max. 180 or 203 g a.s./ha, respectively.

Residue levels of BYI 02960 and its metabolites DFA and DFEAF were analyzed individually and summed to yield the calculated "total residue of BYI 02960". The most critical residue levels were observed in the northern European trials, in which a highest total residue value (HR) of 0.37 mg/kg was determined. The STMR in these trials was also the higher of the two sets, at 0.12 mg/kg.

The number of trials conducted for each use described above (incl. information on geographical region and vegetation period) is summarized below in table 6.3.1.3-2.

Table 6.3.1.3-2: Overview of European residue trials conducted in apple per geographic region" and vegetation period, including key results

Use description (cf. table 6.3.1.3-1)	Region	No. of trials Veget. period Q 2010 2011		e leves	Dossio ref.:
trials in Eu	ROPE				
"home & garden"	EU-N	6	0.7	.13 10-21 ,	11-2077 01, 02
"home & garden"	EU-S	6 4 0 2	0.11	\$\times 0.06 \times 10 \times 72,	13,2078 03,04

EU-N = northern EU residue region, EU-S = southern @ residu@egion

Northern European residue region

Report:	KILA 6.3.15701, 2012 (2012)
Title:	Dermination of the residues of YI 0240 in/on apple of ter splaying of BYI 02960
	200 on the field in Gramany, Franco north, the Netherlands and Belgium
Report No. &	10-2 V1, dated July 5, 2012 S
Document No.	Mg 34587 01-1 0 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Report:	KII 6.3.18 02, 2012 2012
Title:	Determination of the residues of R 11 02960 in/gryapple after spray application of
	SYI 029 0 SL 200 in the field by Germany, northern France and the United Kingdom
Report No. &	11-20-7, date: September 14, 2012
Document No.:	M (58329-91-1 C

Guidelines to polies to both studies	Frective 91/414 EEC, residues in or on treated products, food and feed
	EC Galance Working document 7029/VI/95 rev. 5
	US A OSPP Guideline No. 860.1500.SUPP
GLP Yapplies to both studien.	yes (certified laboratory); Deviations: none

Materials and Methods

Ten field residue trices were conducted in the northern European residue region, as follows:

In 2010 trials (Germany [3], northern France, the Netherlands, and Belgium) were conducted to support the use of BYI 02960 SL 200 in apple (& 2012, KIIA 6.3.1.3/01). Two applications were made at intervals of 14 days (13 days in one trial) at a nominal rate of 0.205-

0.375 L/(ha×m), corresponding to 50-75 g/(ha×m) BYI 02960 a.s.; the water rate was 500 L/(ha×m), reflecting local practice in the trial regions. (In two trials each, the application rate was 50, 60, or 75 g/[ha×m CH]. The intended GAP now specifies 60 g/[ha×m CH]; all trials from the 2010 program can be considered representative, as the difference in rates is 25% or less, and thus within the E acceptance criteria for use pattern comparability.) All treatments were made at the scheduled cates

Four further trials were carried out in 2011, in Germany [2], northern France and the Uniod Kingdom, to complete the data package (2012, IOIA 6.3.1.3/02. The basic application parameters were as in 2010; application rates were 0.300 L/(ha×m) in all trials, corresponding to 60 g/(ha×m) BYI 02960 a.s. Water rates ranged from 250-450 L/(15×m). The application interranged from 13-15 days. Again, all treatments we made at the scheduled rate

Samples of apple fruit were taken immediately price and subsequent e first application, and at several intervals thereafter (up to 21 days after troomen on 201Q and up to 2011). The envisaged PHI was 14 days.

pective LOOs for the 3 analytes were The samples were analyzed for the parent compound and method 01304 (for method details cf. KIIA 43/03). The 0.01, 0.02, and 0.01 mg/kg (all of parent equivalents)

Validation and concurrent recoveries of FYI 02960 and its metabolites DFA and DFEAF were obtained from sacriples of apple fruit. This sample materials representative for all sample materials collected in those trial. ValQuation Pecoveries for apple Quit were conducted within study 10-2172 (cf. KIIA 6@.1.3/03), additional recoveries were conducted concurrently to the analysis of all samples (concurrent recoveries) Concurrent recoveries for reducing 90-2177 and 10-2172, as well as concurrent one in parallel. Thus the same recoveries are reported for the reported

we've spiked at levels of 0.01 mg/kg and 0.10 mg/kg, as The recovery Samples for potent and DFE 02000 econvaler(s). Mean recoveries were all within acceptable well as 1.0 mg/kg (expressed in 9 ranges (\sim -101%, RSD) of the larger validations sets [n > 2] 4.4-13.0%, n=1-9).

Fortification levels for DoA were or 0.02 mg/gg, 0.05 mg/kg, and 0.20 mg/kg, as well as 0.50 mg/kg, and 1.0 mg/kg (expressed in FYI 02000 equivalents) for trials conducted in 2010 and 0.02 mg/kg, 0.20 mg/kg and 1.0 mg/kg expressed in BYI 02960 equivalents) for trials conducted in 2011. Mean within acceptable ranges (85-94%, RSDs of the larger validations sets [n > 2]

covery data are shown in Table 6.3.1.3-4. All trial data are summarised below in table 6.3.1.3 & b and in greater detail in the Tier 1 summary forms. (Residues of parent BYI 02960 as well as its metabolites DFA and DFEAF are expressed in BYI 02960 equivalents. From these

individual values, the "total residue of BYI 02960" was calculated as the sum of these three analytes, expressed in parent equivalents.)

On day 0, immediately following the 2nd and final treatment, residue levels in apple fruit were between 0.13 and 0.57 mg/kg (median 0.18 mg/kg). By day 14 — the envisage PHI — the levels were 0.09-0.35 mg/kg, with a median value of 0.12 mg/kg.

The analytical results of the 2010 program revealed that tool residue levels had reached a "plateau level" by the nominal PHI (14 days). In those trials, the peak residue levels were seen on day 14 (5 trials), or day 21, the final sampling interval (1 trial). However, to some crops residue levels were taken to orisure that highest residue levels were captured. Additional samplings were conducted 28-29 and 35-30 days ofter treatment in the 2011 program. In 2011 trials the highest residue levels were seen on day 15 (1 trial), day 21 (1 trial), day 28 (1 trial), or day 36 (4 trial).

Peak residue levels at any relevant sampling interval 214 days pos Papplication over the compete set of trials ranged from 0.09-0.37 mg/sp (meg.) n 0.15 mg/sp.

Evaluation of representativit

As highest residue levels were seed on the final campling interval of two trials (102/171-05, day 21; and 11-2077-03, day 28), the entire set of trials was development of the control of

In the 2010 package in trial 10-20 1-03 and -06 residues showed "normal" decline behaviour. The PHI of 14 days is clearly within the range of seclining residues. That 10-2171-01, -02, -04, and -05 essentially showed "normal ochavior", with residues remaining fairly constant from the PHI to the final sampling date, often even prior to the PHI day 500 day 21). Residues in trial 10-2171-05 showed the highest variability over time. The increase in Sidues from 0.15 mg/kg on day 14 to 0.17 mg/kg to day 21 may be caused by splining and, additionally, typical biological and analytical variability. Thus, taken in the context divall of the trial, this trial can also be seen as yielding representative results.

In 2011, "normal" decline behavour organization behaviour" was evident seen in the samples taken from day 14 onwards. Total 11 2077 of, which showed peak residues on day 36, showed a very minor increase in residues over time, from 0.11 ng/kg on day 14 to 0.13 mg/kg on day 36. The same trend's true for trials 11 2077-03 and 11 2077 of 4, where peak residues were found on days 28 and 21, respectively, with very minor acreases over time, from 0.35 mg/kg on day 14 to 0.37 mg/kg on day 28 and from 0.10 mg/kg on day 14 to 0.15 mg/kg on day 21, respectively.

These 'locrease' are very small, with the difference of only 0.01 mg/kg or 0.02 mg/kg; they are also within the some of ariability caused by sampling or biological or analytical variability. Thus, taken in the context of all of the trials, these trials can be seen as yielding representative results.

Thus the trials summarized here are considered to be valid and representative of the use described.

III. Conclusions (apple, northern Europe)

In order to support the use in the EU of BYI 02960 in apple, 10 valid trials were conducted in the northern European residue region in the years 2010, 2011 BYI 02060 formulation at an active substance rate of 50-75 g/(ha×m) per treatment, supporting a GAP of 60 g/(ha×m). The application intervals were 13-15 days. All applications were at the region and all trials were conducted according to GLP.

Samples were taken immediately after the 2nd application and at several intervals thereafter, in order the envisaged PHI of 14 days. They were analyzed for the relevant residue's of WI prising the parent compound and its metabolites OFA and DFEAF. The residues of all three analysis were summed to yield a calculated "total residue of B 1 02960" above demonstrate that:

- total residues of BYI 02960 decline Come that in apple fuit be ween the fing application odd the nominal PHI, from levels of 0.13 0.57 nf kg of day 0 fter the final on day 14. The respective median values were 0.18 mg/kg and 0
- analytical results revealed that total resigne levels generally had reached the platear of residue level at the nominal PHI. In the few ases in whice peak residues were ceached later than at the nominal PHI, the residue levels were nevertheless whilar of those at the PHI.
- peak residue leves at any relevant sampling interver ≥14 days post-application) ranged from 0.09 -0.37 mg/kg (predian 0.13 ng/kg).

 the trials reported here are considered to yield representative results suitable for MRL evaluation, since residue levels 12 days - are considered to yield representative residus suitable for MRL evaluations and may be explained by normal variability caused by sampling or biological and/or deal aspead. since revidue levels had at least reached a platean at the envisaged PHI of 14 days. Deviations are

Table 6.3.1.3-3a: Application scenario in residue trials conducted in/on **apple** after spraying with BYI 02960 SL 200 in the field *(northern EU residue region)*

Study No.				Application			_@;	2
(Trial No.)					I			Ş
Country	_)°
Location	Crop	FL		kg/ha	kg/QY	GS &	© PHI	
	Variety		No.	(a.s.)	(a.S.)		PHI (days)	
Region					4			Q
Year				l Pa d	Y'	**		,
10-2171	apple	200 SL	2	0.0	0.0100	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		A (
(10-2171-01)	Pinova			(0.050 kg/[ha×m40]				Ö [®]
Germany			4)		1
DILAI					- W			
EU-N 2010					W 2		& '	
10-2171	apple	200 SI	2 %	0 150	0 012	5 /1	14.6	
(10-2171-02)	Gala	200 50		(%\050 kg/[ha×m])	0.012			
Germany							S.	
Community		200 SI		kg/ha (a.s.) 0.0\$5 (0.050 kg/[ha×m]) 0.15 (0.005 kg/[ha×m]) 0.15 (0.075 kg/[ha×m])	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		144	
		6° &						
EU-N	Q,	100	. "			\$.V		
2010								
10-2171	apple Jona old	\$ 00 SL	2 0	0.15 (0.075 kg/[ha×m])	0.010	₩	14	
(10-2171-03)	Jona old			(0.075 kg/[ma×m])				
Germany			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					
	A.				J S	*		
EU-N			\ \text{5}'		\$			
EU-N 2010 10-2171 (10-2171-04) northern France		200 SI	4		<i>Q</i> ₁			
10-2171	Salavy Galavy	200 51		(0.1235)	0.0100	79	14	
(10-21/1-04) O				(0.050 kg/[kg*m]) ** (0.050 kg/[kg*m]) ** (0.050 kg/[kg*m]) **				
Hormern France)' ~ ~ ~ ~ ~	.4						
			O'					
EU-N	. F . F		. 0					
2010		. 0		L S				
10-2171	apple distance of the control of the	200 SL			0.0120	85	14	
(10-2171-05)	Star S	200 SL		(0.000 kg/[ha×m])				
Netherlands		/						
				Ö				
			P K					
EU-N								
2010	y a a	Ů,		0.1.0	0.01-7	0		
10-2171	artilé >	200 SL	2	0.169	0.0150	85	14	
(10-2171-06)	IMSTAT U	w L	,	(0.075 kg/[ha×m])				
Belgium	1 & Z							
EU-N								
2010	agne de la company de la compa							
EL - Chamber		CC	tht	ro (DDCII andr) at last to	notes and			
FL = formulation	, , , , , , , , , , , , , , , , , , ,	GS = gro	wtn stag	ge (BBCH-code) at last tre	eatment			

= northern European residue region

Table 6.3.1.3-3a (cont'd.): Application scenario in residue trials conducted in/on apple after spraying with BYI 02960 SL 200 in field (northern EU residue region)

	Т	1	1				0	1 🙈
Study No.				Application	Ī			
(Trial No.)								
Country	Crop				8			
Location	Variety	FL	No	kg/ha	kg/kQ	GS 4		
	variety		NO.	(a.s.)	(a.s.)		(uays)	
Region					A			Ĉ _Q
Year				≿a				
11-2077	apple	200 SL	2	0.1 Q	0.0240	679		Q)
(11-2077-01)	Jonagold			$(0.060 \text{ kg/[ha}\times\text{m}))$, O Z		Ô
Germany						~ ~	VO _A	¥
			4	, Qi	s &	4		ĺ
			Qn'	~ . Õ	4 Q	\O' \	Q ^y	
EU-N			g, ¥		, O			
2011			Y (, ,	4	
11-2077	apple	200 SL	2	0.16	0.0133	Ø1 a	14.C	
(11-2077-02)	Gala early		~	(0.000 kg/[ha×m])			, W	
northern France	variety		~/					
		W &	y 4		y ő		Õ	
	.(0	54 K	. Q		Y S	Q" a	3	
EU-N	Q,	~	~			. Š	,	
	~	Ò	Ŵ		~O /			
11-2077	apple Delbarestiva	\$00 SL	0° °	0.150	0.02400	<u> </u>	1/	
(11-2077-03)	Delbarestiva	→ 00 SL		(0.060 kg/Jha×ml)	0.0210	◎'	14	
Germany	le autumn	, S	<i>6</i> 7			Ò		
Germany	le autumn		Ţ.			Ų.		
	4					ľ		
FILM								
2011					~			
EU-N 2011 11-2077 (11-2077-04) United Kingdon	Pple Jonathan Mid@ct Hatest	200 SL	× 2 %		0020	77	14	
(11 2077 04)	Sonathar (200 31		(0.060 kg/[kaxml) ×	J 2020	/ /	14	
(11-20//-04) (11-20//-04)	Mid@ct C			(O.OOO RE [TO MI])				
Officed Kingdown	Harvest 🦟	4						
\$ A) "					
EILN &			Ş					
EU-N (C)	Mid@ct C Harvest							
2011		L , Oʻ						

FL = formulation
EU-N = northern European & Idue Scion

Table 6.3.1.3-3b: Results of residue trials conducted in/on apple after spraying with BYI 02960 SL 200 in the field (northern EU residue region)

Study No.			Ro	esidues (mg/kg) exp	pressed as BYI 029	60
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02900- DFE	total revolue of BYI 00960 cas
10-2171	fruit	0*	0.02	<0.02	<01	0,02
(10-2171-01)	IIdit	0	0.14 0.05	<0.02	0.01	0.17
Germany		5 10	0.05	<0.02	Q <0.01	\$.08
GLP: yes		14 21	0.07 0.07	0.02	0 · <0.01	
10-2171	fruit	0*	0.07	© <0.02 ×	©<0.01Q	Ø 10 Ø
(10-2171-02) Germany		0 5	0.14 0.12	<0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		\$\int_{0.15}^{0.17} \times 0.15
		10	0.14 0"	0.05 G	1 20 .01	0.17
GLP: yes		14 21	0.14	003	<0.01	9.15 Q
10-2171	fruit	0*		Ø-0.02~	√ < <u>0</u> 001 €	
(10-2171-03) Germany		0 5	0.15		0.01	0.18
		10	0.08	<0.02	S < 0.00	3 .11
GLP: yes		14 21	♥ 0.657 © ♥ 5.405 ©	\$\int_{0.02} \times \\ \square < 0.02 \times \\ \square \qquad \qq	O .01 O	✓ 0.10✓ 0.08
10-2171	fruit	GA,	0.02	<0.02	\$ 0.01	0.05
(10-2171-04) northern		0	0.02	₹ ₹ 0.02	<0.00	0.13 0.10
France		×10 \(\(\)	0.06	<0.02	20.01	0.09
GLP: yes	Q L	14 \$ 210	©0.06 ©	<0.00 <0.02 <0.02	(\$\leq 0.01 \rightarrow \leq 0.04 \rightarro	0.09 0.08
10-2171	fruit	×0* »		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< 60.000	0.08
(10-2171-05)		0.0	0.20	~ <0.03°	№ .01	0.23
Netherlands		1,0	0.12	0.02	2 0.01 2 0.01 2 0.01	0.15 0.20
GLP: yes		14	0.12	0.02	<0.01	0.15
		<u>21</u> «	j' 51 4 O'	0.030	<0.01	0.17
10-2171 (10-2171-06)	fruit		≈0.03 √. 0.13 ×	0° <602 0 <0.02 °	<0.01 <0.01	0.06 0.16
Belgium	\$	₹ 5		0.02	< 0.01	0.17
GI D: Wes		11		<0.0	<0.01 <0.01	0.17 0.12
oll . yes		20	0.050	O < O < O < O < O < O < O < O < O < O <	<0.01	0.12
DALT = days, af	ter last treatn	nem ~	0.11 0.42 0.03 0.11 0.14 0.09 0.050			
r prior to lastive	eatment				Const	· 1
<i>J</i> ,		4.		,	Cont	inued on next pag
4	*					
	, O \	4				
_(å "A"					
			ř			
		Ş				
		~3				
Õ						

Table 6.3.1.3-3b (cont'd): Results of residue trials conducted in/on **apple** after spraying with BYI 02960 SL 200 in the field (northern EU residue region)

Ctr. d. No	<u> </u>		n.		DVI 020	
Study No. (Trial No.)			R	esidues (mg/kg) exp	oressed as BYI 029	
Country	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 029	total residue of BYI (\$\frac{1}{2}\)60 cm
GLP:						
11-2077	fruit	0	0.16	0.044	<0.01	0.20
(11-2077-01)		15 22	0.043 0.043	0@55 \$\sqrt{63}	\$\int 0.01 \\ \tag{\chi} 0.01 \\	
Germany		29	0.043	0,62	Q < 0.01	\$\int_{12}^{12} \times
GLP: yes		36	0.051	× 0.069	O'<001	0.14 0.14 0.14
11-2077	fruit	0	0.11	<0.02 <0.02 <0.02	©<0.01 ©<0.01	0.14
(11-2077-02)		14 21	0.064 0.063	○ <0.02 <0.02 ○ .02 ○ .03 ○ .04 ○ .05 ○ .	<0.01 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00 × <0.00	% lo 00 %
France		28	0.063 0.062 0.057	0.020	S <0.401 €	0.092
GLP: yes		35	0.057	0.02 0.030 0.052	№ .01 °	0.489
11-2077	fruit	0	0.54	2 2 N 02 A		
(11-2077-03)	11 0110	14		0.032		₹ 0.35 €
Germany		21 28	25	\$\int 0.02\gamma^{\alpha} \tag{5}	20.01 3	0.28
CI D.		35	0 M 225 4 0.240	0.037 0.037 0.045 0.045 0.045 0.021 0.027	0.01 0.01 0.01 0.01 0.01 0.01	% (F.30
GLP: yes	C :	0	Q" 007 5	20020		0.20
(11-2077-04)	fruit	14.		\$\frac{1}{6}\cdot \cdot	<0.01	0.20 0.14 0.15
United		21	0.12	0.021	. 2<0.01	0.15
Kingdom		28		0°.027	0.01 0<0.01 0<0.01	0.14 0.099
CI D		***** A	00307	0.020		0.099
GLP: yes					\$ < 0.0 \	
-						

Table 6.3.1.3-4: Recovery data for BYI 02960 in apple

Study No.					Fortifi-		Reco	very (%	o)	a,°
Trial No.	Crop	Portion	a.s./	n	cation					
GLP Year	Стор	analysed	metabolite		level (mg/kg)	Individual recoveries	A	Max	Mean	RSD
10-2072/ 10-2171	apple	fruit	BYI 02960	9	0.01	89; 90; 94; 94; 96; 99; 99; \$100; 107	89°	107		
(10-2171-01), to				5	0.10	788; 90; 94; 96, 99	88	990	930	4.9
(10-2171-06) GLP: yes				6	10	76; 88; 96, 92; 94; 101	。76	Ф01	\$90 \$	69.2 Q
2010			DFA	20	Overall		76 287	101	* 94° 92	750
			DFA	○ [®]	20 05¢	6; 100 2;	**************************************	\$00 \$00	\	500
					0.03	92	792 V	93	890	
				∀ 4 6	1.0	(%); 91; %); 96 (73; \$2, 83; %)	90 78	96 93	7 93 85	1 - 7 G
		Ş		Q 0	ovall	91:23	O ₇₃	200 j	%√ %√90	6.6
		Ţ,	BYI 02960 EAF	9	0.01	75; 81(85; 86; 87; 88; 89; 61; 95	750	95 Q	86	6.7
	al a			5		©; 92 Q4; 96; 97 O	69. 69.	\$\frac{1}{97}	90	13.0
				6	1.05	70 3; 90; 94; 9100 89; 103 89; 93; 94 93 95; 97 89; 92; 99 87 95; 98; 109 88; 93; 96 100	70°	100	89	12.3
*	0			20	overall		69	100	88	9.9
11-2078/	appl	frein	BYI 02960	~3	0.010	89; 🕅; 103	89	103	96	7.3
(11-20//				Oğ	0.10	89, 93; 99	80	97	90	9.9
(11-207 /2-9 1),	%			1,	OI.0 *	93	93	93		
(11-2077-04)	3	*	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 0	overall		80	103	93	7.8
GLP: yes	Q		DFA	$\checkmark 3$	0.020	95; 97	90	97	94	3.8
2011				3,	00.20	89; 92; 99	89	99	93	5.5
4		\(\int\)	p ^y 4 ^Q .		1.00	87	87	87		
			<i>V V</i>	≯ 7	overall		87	99	93	4.8
, *	2		10 TEAE	3,	0.010	95; 98; 109	95	109	101	7.3
				O	0.10	88; 93; 96	88	96	92	4.4
				√ 1 -	1.0	100	100	100	0.7	6.5
4	1 // /=		l ♥♥	7	overall		88	109	97	6.7

Southern European residue region

Report:	KIIA 6.3.1.3/03, 2012		
Title:	Determination of the residues of BYI 02960 in/on apple SL 200 in the field in France (south), Italy and Spain	e after spraying of BYI	029607
Report No. & Document No.:	10-2172, dated July 5, 2012 M-434603-01-1		

Report:	KIIA 6.3.1.3/04, ;	•	2 012	
Title:	Determination of the residues of BYI BYI°02960 SL 200 in the field in so			
Report No. & Document No.:	11-2078, dated October 16, 2012 M-439845-01-1			

Guidelines (applies to both studies):	Directive 9 414/EVC, re	sQues into on treated pt	ducts, food and feed
	E Guidance working do	cument //029/14/95 r	
	O'S EPA OCSAP Guid in	ne Nov 860.1500.SUSP	
GLP (applies to both studies):	yes (certified laboratory);	Deviation in nonco	

I. Materia and Methods

Ten field residue trial were sonducted in southern Turope, as follows:

In 2010, 6 trials (Southern France, Italy [2], and Spain [2]) were conducted support the use of BYI 02960 St. 200 in Spple (& Land & L

(In two trials each the application rate was 50 %), or \$\frac{1}{2} \text{g/[ha\times CH]}\$. The worst-case intended GAP – for the "home and gargen" use—now specifies 67.5 g/[ha\times CH], with a GAP of 60 g/[ha\times m CH] for the agricultural use.

Within the scope of the some of garden use the trial from the 2010 program conducted at 60 and 75 g/[ha×m CH] can be considered representative as the difference in rates is 25% or less, and thus within the EU's acceptance criteria for the pattern comparability. As for the trials at 50 g/[ha×m CH], although they differ from the envisaged GAT by 26%, they were nevertheless evaluated below for their validity.

All treatments were made at the scheduled rates, except in one trial (Spanish trial 10-2172-05, 1st appl. undergosed by 10% 2nd appl. by 15%), but this deviation was well within the EU's standard acceptance or iteria.

Four further trials were carried out in 2011, in France, Spain, Italy, and Portugal, to complete the data package (& 2012, KIIA 6.3.1.3/04). In 2011, only one application was made,

at a nominal rate of 0.34 L/(ha×m), corresponding to 68 g/(ha×m) BYI 02960 a.s; water rates ranged from 400-450 L/(ha×m). All treatments were made at the scheduled rates.

In 2010, samples of apple fruit were taken immediately prior and subsequent to the final application. and at several intervals thereafter (up to 21 days [20 days in one trial]); in 20,0, samples were taken immediately subsequent to the application, and at several intervals thereafted up to 35 days in one trial]). The envisaged PHI was 14 days.

The samples were analyzed for the parent compound and its metabolites DFA and DE method 01304 (for method details, cf. KIIA 4.3/03). The respective LOQs for the 3 snalyto were 0.01 mg/kg, 0.02 mg/kg, and 0.01 mg/kg (all in parent equivalents).

During the conduct of the complete set of apole studies recoveries of BYI 02960 and its met Dollite DFA and DEFAF were obtained from samples of apple fruit. This sample material is representative of all sample materials collected in these trials Validation recoveries for apple Quit were conducted within Qudy (\$\tilde{Q}\$)-2172 (cf. 184 6.2.1.3/03), additional recoveries were conducted concurrently to the analysis of all samples (concurrent recoveries). Concurrent recoveries for spaties 19-2171 and 10-2172 as well as concurrent recoveries for studies 11-2077 and 11-2074 were done is paralled They the same recoveries are reported for the respective studies.

parent and DFEAT were piked ablevel of 0.05 mg/kg, 0.10 mg/kg and The recovery samples for 1.0 mg/kg (expressed in BYO)2960 quivalents) Mean occoveres were all within acceptable ranges (86-101%, SSDs of the larger

A were or 0.02 Gg/kg, 0.05 mg/kg, and, 0.20 mg/kg, as well as 0.50 mg/kg and 1.0 mg/kg (expressed in BY) 2960 equivalents). Mean recoveries were all within acceptable ranges (85-94%, RSDsor the Figer volidations set $(n > 2\sqrt{2}.9-8.6\%, n=1-6)$.

Details of recovery data are shown in table 6.36.3-6. All trial data are summarised below in table 6.3.1.3-5 & b and in greater ortail in the Tie 1 summary forms. (Residues of parent BYI 02960 as well as its metabolits DFA and DEEAF of expressed in BYI 02960 equivalents. From these individual values, the "top reside of BVI 02060" was calculated as the sum of these three analytes, expressed in pa@nt equivalent.

Relevant residues of BY 02960 were determined in apple fruit samples taken 14 days subsequent to first application (immedia by prior to the 2nd treatment) in 2010 and 14 days – and at various other interval. — after the shigle application in 2011.

In the 200 trials, residue levels declined somewhat between the day of the final application, on which they ranged from 0.11-0.24 mg/kg, and the nominal PHI (day 14), on which they were between 0.05-0.11 mg/kg; the median values were 0.16 and 0.09 mg/kg, respectively. However, these values reflect

two applications. To evaluate the intended one-application GAP, residues in samples taken immediately before the second treatment in 2010 (corresponding to 14 days after the first treatment) were found ranging from 0.04-0.12 (median 0.06 mg/kg); these were quite similar to those from samples taken 14 days after the single treatment in 2011 (0.051-0.11 mg/kg, median 0.09 mg/kg

In the 2011 trials, on day 0 immediately following the application, residue levers in apple fruit between 0.19 and 0.25 mg/kg (median 0.19 mg/kg). By day 10 (8-10 days), the levels we 0.06 mg/kg-0.12 mg/kg, with a median value of 0.09 mg/kg. On day 144- the envisaged PH 2 levels were 0.051-0.11 mg/kg, again with a median value of 0.09 mg/Q. constant residue level by 10 days after the application, they appear to have reached a "planau" to Median values of 0.08, 0.07, and 0.08 mg/kg at the day, 28-day, and 55 respectively, further support that the residues had reached a placeau

As residue levels have reached a plateau by day 14 residue value measured in day-16 samples "normally" in the 2011 trials can be evaluated together with those taken between applications in the 2010 study, i.e. 14 days subsequent to trials from the entire set of trials in samples taken 14 days after one application ranged from 0.0 0.07 mg/kg.

In some of the trials, the highest relevant rasasured residue was seen at later sampling intervals that at the nominal PHI, even if the level remained very similar. When considering the reak residues at any sampling interval ≥14 days post 1-application over the complete set of trials, levels ranged from 0.04-0.12 mg/kg (median 7 mg/kg)

Evaluation of representativity:

In all trials, residues showed formal decline behaviour overtly there the application, but seemed to reach a plateau level within the following Pays. This behaviou was independent of the number of applications (1 or 2)

were determined on day 2 (the final day of sampling), in 3 of the 6 trials. However, gloser examination regals that the widue weels had reached a "plateau", starting on approx. Will the value themselves reflect a 2-application scheme, they are nevertheless of importance in understanding the seneral behaviour of BYI 02960 in apples.

Trials conducted in 2011 all sowed fateago behaviour around day 14. Only in trial 11-2078-01 was an increase in esides evident, from 0.051 mg/kg at day 14 to 0.058 mg/kg at day 35. Additionally, in trial 11-4078-04, resignes increased from 0.082 mg/kg at day 14 to 0.083 mg/kg at day 21. These minor is reases hay be due to sampling aspects and, additionally, biological and/or analytical variability. Thus, then in the context of all of the trials, these trials can also be seen as yielding representative results.

And, as it is evident that residues had reached a plateau level by approx. day 10 in general, values measured after a single application in 2010 can be evaluated together with those in the 2011 program, as a complete set of trial data.

In 2010, applications in two of the trials were at a rate of 50 g/(ha×m). This is 6% less than the rate of 50 g/(ha×m), and thus is nominally of the FU's critical for the rate of 50 g/(ha×m), and thus is nominally of the FU's critical for the rate of 50 g/(ha×m), and thus is nominally of the FU's critical for the rate of 50 g/(ha×m), and thus is nominally of the FU's critical for the FU's critical for the full for the FU's critical for the FU

III. Conclusions (apple, southern European residue region)

In order to support the use in the EUOf BY 202960 in apple, 10 which trans were conducted its southern Europe in the years 2010-2011. BQ 102960 was applied as are \$L 200 formed ation wice in 2010 trials and once in 2011, at an active substance rate of 50-75 g/(ha/m) progressions were at the required rates except for monor deviation in a sugle trial, which were less than 25% and, therefore, well within the EUs standard acceptance criteria. A writials were conducted accepting to GLP.

Samples were analysed for the rewant is idues of By 0296% comprising the parent compound and its metabolites Do A and DFEAT. The residues of all three malyse were summed to yield a calculated "total residue" BYL 2960 The Osults of the stals proented above demonstrate that:

- in the \$\tilde{\pi}\$10 trials, to or residue leves declined from the day of the final application, on which they ranged from 0.11 \tilde{\pi}\$24 mg/kg, to the remainal HII (day 14), on which they were 0.04-0.12 mg/kg. The respective pedian values were 0.16 and 0.06 og/kg. At sampling intervals 10 and 21 days after the final application, sedian values of 0.10 and 0.09 mg/kg were determined.
- residues in samples taken impediately before the cond treatment in 2010 (corresponding to 14°days after the first treatment) were found at similar levels (0.04-0.12; median 0.06 mg/kg) to those from samples taken 14 days after the single treatment in 2011 (0.05-0.11 mg/kg, median 0.09°mg/kg).
- in 2011, to all residues of BYI 02960 declined somewhat in apple fruit sampled after the single application and at the poming PHI, from levels of 0.19-0.25 mg/kg on day 0 after the final treaspent to 0.051 and 11 mg/kg on day 14. The respective median values were 0.19 mg/kg and 0.09 mg/kg. At absence that sampling intervals (days 21, 28, and 35), median values of 0.08, 0.07, and 0.09 mg/kg were setermined.
- analytical results revealed that total residue levels often had reached a plateau by the nominal PHI.

- as the residue levels reached a plateau after approx. 10 days, 2010 residue results from sampling intervals after the first application (but prior to the second one) can also be taken to support a 1application use pattern on apple trees with 14-day PHI.
- peak residue levels at any relevant sampling interval (≥14 days post 1-application) ranged firm 0.04-0.12 mg/kg (median 0.07 mg/kg).

 the trials reported here are considered to yield representative results suitable for MKL evaluations in the data are acceptable and may be explained by permal variability caused by grimphinaspects or biological and/or analytical variability.

Table 6.3.1.3-5a: Application scenario in residue trials conducted in/on **apple** after spraying with BYI 02960 SL 200 in the field *(southern EU residue region)*

Study No.				Application			w ·	*
(Trial No.)				rippiication				Ţ
Country	C				>			O
Location	Crop	\mathbf{FL}	NIa	kg/ha	kg/40	GS 4	PHI (dass)	
	Variety		No.	(a.s.)	(a.s.)		(days)	
Region					4			Q
Year				r al	N'	"N		_
10-2172	apple	200 SL	2	0. \$\frac{1}{2}5	0.0100	©85 ~O		(((((((((((((((((((
(10-2172-01)	Gala		4	(0.050 kg/[ha×x	5			Ö
southern France			40		ی ر د)		×
TH C			Q)"		<i>∞</i>			
EU-S 2010		%					W ^v	
10-2172	annla	200 SL	<u> </u>		γ 0.0120	<i>A</i>	145°	
(10-2172-02)	apple Canada	200 SL	~ ~~~~	(0. p) (0. kg/[Ma×m4])	0.012	0,3		
southern France	Canada				°0,			
Southern Trance			, (0	
	_		. \$			Q" »		
EU-S	4				Š	Š. Ž	,	
2010	~~	, Q			20° (
10-2172	apple Fuji	\$200 SL	20	kg/ha (a.s.) 0.25 (0.050 kg/[ha×m]) 0.15 (0.075 kg/[ha×m])	0.015		14	
(10-2172-03)	Fuji 🗸 💪		A.	(0.075 kg.(ha×m))	Ò	O		
Italy	Fuji V		Ŵ			, ©		
	** 4					7		
- ×								
EU-S					4			
EU-S 2010 10-2172 (10-2172-04) Italy		200 SL	~		Q)			
10-2172	apple donathan	200 SL	2 ~	0.145	$\bigcirc 0.010$	76	14	
(10-2172-04)	Jonathan	Y 4.0"		(0.050 kg/sha×m])**				
Italy		, 7						
			, "					
EU-S								
2010								
EU-S 2010 2010 10-2172 (10-2172-05)	apple Tolder	200 SL 7)) (0.14 0 0.050 kg (\$\text{va}\text{xm}]\text{\text{\text{0}}} \text{\text{0}} \t	0.0103	81	14	
(10-2172-05)	Colden	290 SL 0		0.15 (2nd appl.) (0.054 kg/(ha×m),	0.0103	01		
Spain © Ô				$(0.054 \text{ kg/(ha} \times \text{m}),$				
				lst Appl.), 0.051 kg/(ha×m)				
	0' \$9'		~ _ @	$0.051 \text{ kg/(ha\times m)}$				
EU-S				(2nd Appl.)				
2010		, , , , , , , , , , , , , , , , , , ,						
10-21/2	ar Ric Calaxia	20 0 SL ≪	⁷ 2	0.188	0.0150	81	14	
(10-2172-06)	G alaxia O "			(0.075 kg/[ha×m])				
(10-2172-06) Spain	,							
		~ Q~						
EU-S 2010 A								
2010	, Ç							

FL = Smulation GS = growth stage (BBCH-code) at last treatment EU = southern European residue region

Table 6.3.1.3-5a (cont'd.): Application scenario in residue trials conducted in/on apple after spraying with BYI 02960 SL 200 in field (southern EU residue region)

							0	
Study No.				Application				Ô
(Trial No.)								Ş
Country	Cwan				>			,
Location	Crop	\mathbf{FL}	N.T.	kg/ha	kg/f0	GS 4	PHI	
	Variety		No.	(a.s.)	(a.s.)	<u> </u>	(days)	
Region					4			2
Year					Ų"			
11-2078	apple	200 SL	1	0.54	0.0170	Č85 🔊		"W
(11-2078-01)	Granny			(0.068 kg/[ha×xx		, Ŭ		~~
southern France	smith;		Ó					1
	Cultivar		4	Q' _{&}	· 4	4		
			200°	~	Q	\O' .		
EU-S		//	*		, O			
2010							4	
11-2078	apple	200 SL	Z.	0 20 0	0.0151	% 1 <i>a</i>	144	
(11-2078-02)	Golden		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(0,068 kg/[ha×m1)			<i>"</i>	
Spain	Smoothy;		y" ;					
	yellow var.				Y Ô		O	
	fresh		~ Q					
	fresh consumption	r "O"	*¥		8			
EU-S	~~	_ (\$\)			20°			
2010			ô					
	apple	200	A1	0-170	0.0861	78	14	
(11-2078-03)	galas varietal		Ŵ	(0.068 kg/[ha×507)		, Q		
Italy	apple gales variet procece							
*		6			~ . \$			
Ç		j a						
			J'		7			
2010			°~					
EU-S 2010 11-2078 (11-2078-04) Portugal	Pannle	200 8	18	0~204	0.0170	77	14	
(11-2078-04)	Fuiz Red		S S	6068 koliha×nØi	0.0170	/ /		
Portugal &	apple Ø	1 2) I					
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
EU-S				a. A				
	Fuir Red apple		<b>)</b> (	Application  kg/ha (a.s.)  0.304 (0.068 kg/[ha×m4])  0.170 (0.068 kg/[ha×m4])  0.204 (0.068 kg/[ha×m4])				
EL = formulation			. ~		l .			

OGS = crowth stee (BBSH-code) at last treatment



Table 6.3.1.3-5b: Results of residue trials conducted in/on apple after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.			Re	esidues (mg/kg) exp	oressed as BYI 029	60 0 2
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02960- DFEA	total resoue of BYI 02000 car
10-2172 (10-2172-01) southern France	fruit	0* 0 5 10 14	0.03 0.12 0.06 0.04 0.06	<0.02 <0.02 <0.02 <0.02 0.02	<0.01 <0.01 <0.01 0.01 0.001	0.06 0.15 0.18 0.89 0.70 0.00
GLP: yes		21	0.04	\$\times 0.02	0 < 0.01	0.085
10-2172 (10-2172-02) southern France GLP: yes	fruit	0* 0 5 9 14 21	0.01 0.13 0.08 0.07 0.07 0.03	\$\begin{align*} \leq 0.02 \\ \l	(0.01 (0.01 (0.01 (0.01 (0.01) (0.01)	0.00 0.16 0.11 0.10 0.10 0.10
10-2172 (10-2172-03) Italy GLP: yes	fruit	0* 0 5 10 14 21	0.02 050 050 08 00.04 0.04 0.04 0.04	0.02 0.02 0.02 0.02 0.02 0.03	0.07 0.01 0.01 0.001	0.05 0.13 0.10 0.10 0.07 0.07 0.08
10-2172 (10-2172-04) Italy GLP: yes	fruit	0* % 5 50 714 \$ 21 \$		<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.06 0.11 0.10 0.10 0.07 0.10
10-2172 (10-2172-05) Spain GLP: yes	fruit F	00 00 00 00 00 00 00 00 00 00 00 00 00	0.0% 0.14 0.14 0.14 0.16 0.10	7.02 0.02 0.03 0.03 0.03 0.05	0 <0.0% <001 <0.01 <0.01 <0.01 <0.01	0.12 0.24 0.17 0.18 0.13 0.17
10-2172 (10-2172 %) Spain GLP: yes	fruit	0* 0 14 20	0.16 0.16 0.10 0.00 0.00 0.00	<0.02 <0.02 <0.02 >0.03 0.06 0.06	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.04/0.09** 0.19 0.13 0.15 0.15 0.13
DALT = days at * prior to last t ** residues ver Thus, \$9 m	last treatment reatment re <loq in="" t<="" td=""><td>he "treates</td><td>sampte but 0.0 mg</td><td>/kg/i the "control". The sample in furt</td><td>Γhis may be due to a s her evaluation in this</td><td>ample mix-up. chapter,</td></loq>	he "treates	sampte but 0.0 mg	/kg/i the "control". The sample in furt	Γhis may be due to a s her evaluation in this	ample mix-up. chapter,
				0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cont	inued on next page



Table 6.3.1.3-5b (cont'd): Results of residue trials conducted in/on apple after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.	<u> </u>	DII		Residues (mg/kg) ex	nressed as RVI 02	960
(Trial No.)	Portion	DALT			1	
Country GLP	analyzed	(days)	BYI 02960	DFA	BYI 02960- DFEAR	total residue of BYI 02000 cal
BYI 02960 SI	200			<u> </u>	<del>'</del>	
11-2078	fruit	0	0.16	< 0.02	<b>\$</b> \$\$1	\$ 0°0.1965
(11-2078-01)		10	0.031	<0.02	0.01	0.001
southern France		14 21	$0.021 \\ 0.020$	<0.0	$\mathbb{Q}^{2}$ 0.01	V 2050 2 2
France		28	0.020	<0.02	<0.01	0.050
GLP: yes		35	0.022	30.025	<0.01 e ^Q	0.00
11-2078	fruit	0	0.16	0.023/0.023**		0 9/0.045**
(11-2078-02)		8 14	0.079 0.066	0.031/0.05** 0.036/0021**		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Spain		21	0.066	000000000000000000000000000000000000000	\$\frac{\$<0.0}{\$<\pi_1\$}\$\$ \$\frac{\$<0.01}{\$<\pi_2\$}\$\$ \$\frac{\$<0.01}{\$<\pi_2\$}\$ \$\frac	0.170.041***
GLP: yes		27	0.038	0.043	\(\text{\text{\$\pi\}}\)	O' 04095 24
-		34	0.04	V.0%/		<b>%</b> 11
11-2078	fruit	0	0.67 Q058	0.02 0.020 0.020 0.025 0.036 0.036		<b>₹</b> 0.19
(11-2078-03) Italy		10 14	0058	\$\int_{\infty}^{\infty} 0.02 \tag{7}	0.01	0.19 0.088 0.088
Tury		21	0.035	0.027	<0.00	\$\int\text{0.070}
GLP: yes		28	<b>≈</b> 0.0 <b>2</b> 5	0024	7.01 7.001 7.001 7.001 7.001	0.060
	0.1	35	(0 ,0.931 °0	<b>30.036</b>	0.01 0.01 0.001 0.001	0.078
11-2078	fruit	0 📞	0.22	<0.02	\$\langle \cdot 0.01 \\ \cdot \langle \cdot 0.01 \\ \cdot \langle \cdot 0.01 \\ \cdot	0.23
Portugal		, <b>Q</b>	0 0.00	© <0.02 > <0.02	\$\frac{1}{2} < 0.\$\frac{1}{2}  \text{\$\infty}{2}	0.094
1 0100801		21	1 0.053 a	Ø0.02 S	<b>49.01</b>	0.083
GLP: yes		$\vee$ 28 $\otimes$	9.037	0.021	(\$\leq 0.01 \rightarrow \rightarrow \leq 0.01 \rightarrow \rightar	0.069
		33 @	0.03%		0 <0.045	0.078
DALT = days a	fter last reat	ment		, , , , , , , , , , , , , , , , , , , ,		
** residues in c	ontol C	»\ _ ^	Y & , , , , , , , , , ,			
			. 0 %			
, Ö		« n				
	6	Õ S			7	
Ky"	<u>~</u>					
	,\$P'	4				
	Ö,					
	Ô, W					
	<b>\$</b>	20		<b>7</b> >		
$\mathcal{A}$		. U		)'		
		? Q				
×.,	, Ş	4				
~~~				<b>Y</b>		
	_@/ [^]	. 4				
	A .A					
É			4, Q			
, O			» "			
	Z A	, Z				
. L						
	· ()					
				0.02 0.025 0.024 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.05		

Table 6.3.1.3-6: Recovery data for BYI 02960 in apple

Study No. Trial No.		D =4* =	1		Fortifi-	I	Recove	ery (%)		Q)°
GLP Year	Crop	Portion analysed	a.s./ metabolite	n	cation level (mg/kg)	Individual recoveries	Min	Max	Mean	RSD
10-2171/	apple	fruit	BYI 02960	9	0.01	89; 90; 94; 94;		107	98	. 5/8
10-2172	11					96; 99; 99; 100; 107	.			
(10-2172-01),				5	0.10 (\$8; 90; 94; 96 \$	88	94	93	48
to (10-2172-06)					\	799		9%	\$P"	2
GLP: yes				6	1.0	76; 88; 90, 92; 94; 101, 6	76		\$ ⁹⁰	> 9.2 &
2010				20	overall	94, 1010	₹Ç.	100	8	
			DFA	<u>6</u>	0.02 °	87; 98; 89; 92;	©87	3 00	³ / ₂ 92 ,	5 5.5
			a	O ₃	© 3 05 @	96, 100 £ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	83	92	88	5-8-°
				1%	0.20	92	82	y92		
			O C		0.80	90 , 91; 9©, 96	90	96	93	2.9
				[*] 6 ,	\$7.0 £	73; 82083; 885	S	200	8 5	8.6
			Q Q	Ž	overell		© 73 /	\mathcal{G}_{00}	×90	6.6
			BY 1892.960-	9	© .01	75; 81 8; 86;	75	95	86	6.7
		* 0'	DEFEAF	Ø.	\	87; 8 £ ; 89; 91		Ò		
				F	050	Q , 92; 94; 96; 3	69	97	90	13.0
	d			D 4		70; 83; 90; © ;	\$\frac{1}{\sqrt{70}}\$	100	90	12.2
			5 7	0,		70; 83; 90; © ; 96 2 100	7/	100	89	12.3
		~ ~		2 0	overall	5° 5° 5°	69	100	88	9.9
11-2077/ 11-2078	pple	frui	B© 02960	3	0.01	103:49; 97	89	103	96	7.3
(11 2070		*			0.10	93; 80; 97	80 93	97 93	90	9.9
to	·~			1 7⋄,	Overall		80	103	93	7.8
(11-2078-04)	\$		ØFA ≫	3	0.62	97; 95; 90	90	97	94	3.8
GLP: yes				\bigvee_{3}^{3}	0.20	\$2; 99; 89 87	89	99	93	5.5
2011 ≪(100	01.0	87	87	87		
A			DVI ON CO		overell	00. 05. 100	87	99	93	4.8
	0		DFEAF	∜ <u>3</u> ≈	0.010 0.010	98; 95; 109 93; 88; 96	95 88	109 96	101 92	7.3 4.4
	S				1.0	100	100	100	92	4.4
¥	0,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_0 A	\bigcirc_{7}^{v}	overall		88	109	97	6.7
11-2077/ 11-2078 (11-2078-04), to (11-2078-04) GLP: yes 2011										

IIA 6.3.1.4 Berries and small fruit - grapes

therefore presented below to support the intended use. Use pattern (GAP) information, including the European "agricultural use" as well as the "home & garden use" to 1 Table 6.3.1.4-1.

Table 6.3.1.4-1: Use patterns (GAPs) for the spray application of BYI (2)60-containing in/on grape in European fields

Description	F/G	No. of appls.	Application rate per treatment per season volume (g a.s. (a) (g a.s. (ha)) (Laba) PHI (days) (days) (days)
"home & garden"*	F^{\dagger}	2	100 200 Ona 6 14 5
agricultural**	F^{\dagger}	1	100 100 1000 v na 100

[&]quot;home & garden" uses with an SL 50 formulation (available

In order to support the use of EYI 02960, was of GLP trials were conducted in northern and southern European fields in 2010 and 2011 On the borthest and southern European fields in 2010 and 2011 In the northern and southern European regions, BYI 02960 was applied twice as an SL for Aulation (BYL-2960 L 206 containing 200 g/L YI 02960 a.s.), at 14-day intervals. The nvisaged PIN was 14 days reflecting the interval worst-case GAP.

Residue levels of BYI 02960 and its metabolics DE and DFEAL were analyzed individually and The number of trials conducted for each use describe to above (incl. information on geographical region and vegetation period) is summarized below in table 6.3.142-2. summed to yield the calcula od "toto residue of EYI 02 60". The most critical residue levels were

^{**} agricultural use based on an SL 200 formulation

Table 6.3.1.4-2: Overview of European residue trials conducted in grape per geographical "residue region" and vegetation period, including key results

Use description (cf. table 6.3.1.4-1)	Region		o. of tria period 2011	als Σ	Residue levels (mg/kg) HR STMR		Report No.	Dossie ref.:
trials in Eu	ROPE						4 5	7 29 G
"hama & gardan"	EU-N	5	4	9	0.50	0.26	10-2218, 11-2089	~91, 02,~
"home & garden"	EU-S	4	4	8	6 733	0.18	10-2219, 122090	03,04

Northern Europe residue region

"harma Pr condom"					((4/3)		~~	2 5% //	A / / / / /
"home & garden"	EU-S	4	4	8	6 233	0.18	10-22	19, 1 2090	
EU-N = northern EU resi	due region, E	U-S = sou	thern EU r	esidue regi	on 🗸	NO.	₩	Z Ô	
				نے	4	Ź,	_&		
Northern Europe i	rosiduo ro	aion		Q)	7"		@` '\	, ,0"	
Normern Europe i	estane re	<u>gion</u>		& , .			/ LJ		
				<u> </u>		J AY			
Report:	KIIA 6.3			•		Q012			
Title:	Determin	ation of	the recid	ues of B	YI 029 60 i	non Grane	after Spra	ying and Sp	oraying ow- lgiun
	volume of	fBYI 02	2960 & L∶	200 in the	e Fueld in	ermar©, F	rance (No	rff) and Re	lgiun
Report No. &	10-2218,				\$.\\$'	· •		~ @,v	Ò
Document No.:	M-43713			<i>o</i>	, w				

Report:	KIIA 6.3.13/02, 2012 2012 20 C
Title:	Determination of the resistues of YI 02960 in/on grap after high or low-volume spray
	application of BYI 02900 SL 500 in German, and northern Jance
Report No. &	11-2089, dated August 17, 1912
Document No.:	M-33685701-1-5 0 5 5 5 5

Guidelines (applied to both studies).	Directive 91/414/EEC, residue in or or treated products, food and feed
	EC sudance working document 7029/VI/95 rev.5
	US EPA (SPP Grideline No. 860.1500.SUPP
GLP (applies to both studies):	(certified laboratory, Deviations: none

orther European residue region, as follows:

northern France [29, and Belgium) were conducted to support the use of BX1 02960 SL 200 in Sape , 2012, KIIA 6.3.1.4/01). Two applications were made at intervals of 14 days (132) and a nominal rate of 0.50 L/ha, corresponding to 100 g/ha B 102960 a.s. The water rate was 200-949 L/ha, reflecting local practice in the trial Aftereatments were made at the scheduled rates, except for the first application in one trial overdosed by 5%; this deviation was within the EU's standard acceptance criteria.

For Yurthotrials Were carried out in 2011, in Germany (2) and northern France (2), to complete the 2012, KIIA 6.3.1.4/02). The basic application parameters were similar as in 2010; the water rate was 200-800 L/ha. All treatments were made at the scheduled rates.

Samples of bunches of grapes were taken immediately prior and subsequent to the final application, and at several intervals thereafter (up to 21-28 days after treatment in 2010 and up to 42 days in 2011 trials); samples of the grapes themselves (destemmed berries) were also taken at day 14 in 2010 and on days 21 and 28 in 2011. The envisaged PHI was 14 days.

method 01212 (cf. KIIA 4.3/05). The respective LOQs for the 3 analytes were 0.01, 0.05, and 0.01 mg/kg (all in parent equivalents).

II. Findings

Validation of bunches of grape was done within method 01212 (cf. IIA 4.3/05).

of grape" and "berry". These sample materials are representative of attractions of these trials.

The recovery samples for parent and DFEAF in bunches were piked at level of 001 mg/kg and 0.10 mg/kg, as well as 0.80 mg/kg (expressed in BY, 2296/Pequivoents) in study 10-2218 and at levels of 0.01 mg/kg, 0.10 mg/kg, and 2.0 mg/kg (expressed in RYI 02900 equivalents) in study 11-2089. The recovery samples for parent and DFLAF in "berry" were spiked at levels of 0.01 mg/kg and 0.10 mg/kg, as well as 0.50 mg/kg (expressed in BYC02966 equivalents) in both rudies. Overall mean recoveries were all within acceptable range (187-10)8%, o Prall (1970s 0)8 12.2%, n=3-6).

Fortification levels in for DFA were or 0.02 vg/kg 0.20 mg/kg, and 1.6 vg/kg (study 10-2218) or 4.0°mg/kg (stady 11 2089) @xpres@d in & 1 02500 eq @valents) for the sample material "bunch", and 0.02 mg/kg, 0.20 mg/kg, and 0.0 mg/kg (spress in BYI 02950 equivalents) for "berry". Overall mean recoveries were with acceptable range, \$1-92%, overall RSDs 5.1-16.5%, n=3-6).

Details of recovery data are shown in table 6.3%.4-4. All trial data are summarised below in table 6.3.1.4-3a & b and in souther Stail in the Tier I sugmary forms. (Residues of parent BYI 02960 as well as its medibolites DFA and DFEAF are expressed in BYI 02960 equivalents. From these individual values, the "total reside of KVI 02000" was calculated as the sum of these three analytes, expressed in parent equivalent.

On day 0, immediately following the 2nd and mal treatment, residue levels in grape bunches were between 0.22 and 0.53 mg/kg media 0.36 mg/kg). By day 14 — the envisaged PHI — the levels had declined to 003-0.4 mg/kg with a median value of 0.24 mg/kg. The analysis of samples of the destemmed ruit (bergo) take at day 14 showed that there are no obvious differences in residues between bunch and in the sopres themselves. The residue levels in berries ranged from 0.11-0.52 rfg/kg (prediar 2.26 rfg/kg; n=5) on day 14, with values of 0.13-0.44 mg/kg in the corresponding buch samples (median \$22 mg/kg). The same behavior was evident in bunches and in destemmed berries Ren on day 21, with residues of 0.17-0.50 mg/kg (median 0.26 mg/kg) and 0.16-0.40 mg/kg (median 0.25 mg/kg), respectively; and on day 28, with residues of 0.21-0.34 mg/kg (median 0.26 mg/kg) and 0.18-0.44 mg/kg (median 0.28 mg/kg), respectively (n=4 in both cases).

The analytical results revealed that total residues often had not yet reached their highest levels at the nominal PHI (14 days). This was already evident in the 2010 trials, in which peak residue values were seen on day 21 (1 trial) or day 28 (2 trials), the final day of sampling. In order to capture the maximum relevant residue levels, additional sampling was conducted 35 and 4 ways after treaments in the 2011 program; in those trials, the highest residue levels were seen on day 14 (1 trial). 21 (2 trials), or day 42 (1 trial).

Peak residue levels at any relevant sampling interval (>14 days post-application) over the empley set of trials ranged from 0.18-0.50 mg/kg (median 0.26 mg/kg).

Evaluation of representativity:

As highest residue levels were seen on the final sampling intervation four trials (10-2268-01 day 21-10-2218-02 and -03, day 28; and 11-2089-01, day 42), the enforce set of trials was re-evaluated for the representativity.

In the 2010 package, trials 10-2212 03 to -05 essentials showed "placeau behaviors", with residues remaining fairly constant from the PHI to the final sampling date (of y 14 to day 28). Its trial 10-2218-01, there was an apparent "jump" in the residues on the final day, with the day 21 value of 0.49 mg/kg nevertheless being only approx. 10% mg/s than at the PHI. Trial 10-2218-02 showed a constant increase in residue levels from day 7 on, but again only about 10% between the small two intervals, reaching 0.45 mg/kg and ay 20.

In 2011, "platear behaviour was again evident, essentially in all of the trials. Only in trial 11-2089-01 were the peak residues found at the first sampling interval, 638 mg/kg on day 42. However, again, this value is only about 15% more than that at day 14 and the ourse of the residues over time was quite variable, with mall oses are falls between sampling days. These changes are generally quite small, and may be part to attributable to sampling, biological, and/or analytical variability. Thus, taken in the context of all of the grals, this trial can allo be seen as yielding representative results.

Trials 10-218-01 and -02 (4. above) can also be viewed in a larger context. Although the peak values in these two trials we among the higher alue on the set presented here, there is reason to believe that they would not continue to increase appreciably, as most trials showed "plateau" behaviour with peak sesidues measured an non-terminal sampling events (day 14, 1 trial; day 21, 3 trials) day 35, 1 trial). Doe to additional statistical factors applied in MRL-setting, even slightly higher residue values would not like have any effect on the MRL proposals.

Thus the trois are considered to be sufficient to evaluate the use described.

III. Conclusions (grape, northern European residue region)

In order to support the use in the EU of BYI 02960 in grape, 9 trials were conducted in the northern European residue region in the years 2010-2011 BYI 02060 formulation at an active substance rate of 100 g/ha. The application intervals were approx All applications were at the required rates, except for minor deviations in a single trial, which less than 25% and, therefore, well within the EUs standar acceptance cateria. All conducted according to GLP.

Samples were taken immediately after the 2nd application and at several intervals the pafter, inc the envisaged PHI of 14 days. They were analyzed for the releasent residues of BVI backet. The residence of all three.

The resultation comprising the parent compound and its metal-slites OFA and DFEAF results of the ora analytes were summed to yield a calculated "total residue of BYD presented above demonstrate that:

- total residues of BYI 02960 decliped in banch of grape between the smal application and the nominal PHI, from levels of 0.2 -0.53 mg/kg on day 0 after the figure trea ment (a) 0.13 0.44 mg/kg on day 14. The respective nodian values were 0, or mg/kg and 0.24 mg/kg, spectively.
- analytical results revealed that Otal results generally had not yet reached their peak levels at the nominal PHI, but that placeau behaviors was Orden 6
- anterval (≥14 days post-application) range.

 ...ene of the maximum residue levels, the trials reported here are presentative essults suitable for Mori, evaluation.

 ...no evolent difference between residues in bunches and in the grapes themselves a stemmed befries of the properties of the propertie 4 Cays post-application) ranged from 0.18-

Table 6.3.1.4-3a: Application scenario in residue trials conducted in/on **grape** after spraying with BYI 02960 SL 200 (northern European residue region)

Study No.				Application	•		<i>Q</i>)
Plot No.							PHIO
(Trial No.)							187 19
Country	Crop						W PHIÔ
Location	Variety	\mathbf{FL}	No.	kg/ha	kg/h	GS &	(dissis)
Location	Variety		110.	(a.s.)	(a.s.)	Ş	(days)
Region				0.100 0 0.100 0 0.100 0	kg/kg/ (a.s.)	GS . A	PHIO (days)
Year					Ũ		
10-2218	grape	200 SL	2 @	0.100	0.0125	J. Ø 89 D	
10-2218-01	Müller		0,4	4			
Germany	Thurgau;			Q'	10° 54	4	
	white variety		2	~	Q* ~~		,
EU-N		Q.	ľ				
2010		O T	, ÕŠ				4
10-2218	grape	200 SL		0.169	00.0125	85	14,00
10-2218-02	Spätbur- gunder;			1 % ' £		L 1	
Germany	red		,				
	variety						
EU-N		6	2 × 4				1
2010	red variety	lèn Ö					
10-2218		200 SL		0.10	0.0500	P &	14
10-2218-03	grove %	200 SL	- O	V.10	Ø.0300	03	14
northern France	nay; white		(T) (T)			Ö	
	variety					V	
4		a) (())		O &.			
EU-N		<i>O</i> ,		Y 0'			
2010					<i>9</i>		
EU-N 2010 10-2218 10-2218-04 northern France	graot Cabernet Qanc; ro	200 SI		0.100- 0.105*	0500	85	14
10-2218-04	Cabernet						
northern France	, Qanc; red	×,					
EU-N 2010 10-2218	variety	A S					
			, O' . *				
EU-N		_O'		گ *			
2010	4 0 .						1.4
10-2218	Cabernet Quanc; red variety	200 S).		0.100-	0.0111	85	14
10-2218-05	Cegent			0.105*			
Belgium	vario	R &					
EU-N.	, , , , , ,		~O~				
2010			y "				
EL = formulation		CC - CO	ila esta era (DD	CII anda) at las			
EU-N 2010 FL = formulation EU-N = northern European f * the first application was ov		Company — cryw	ın stage (BE	och-code) at las	si ireauneni		
EU-N = nortnern European r	esidue egion	@ .					
* the first apple tion was ov	erdesed by 5%.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
	O ĮŠ	ν			Con	tinued on n	ext page
	~ L						
* O _A							
Õ							

Table 6.3.1.4-3a (cont'd.): Application scenario in residue trials conducted in/on grape after spraying with BYI 02960 SL 200 (northern European residue region)

				Tt But opean			0	
Study No.				Application	Ļ		PHI (days)	Ö
(Trial No.)								
Country	Cuon				~			9
Location	Crop	\mathbf{FL}	».T	kg/ha	kg/h	GS &	PHIO	
	variety		No.	(a.s.)	(a.s.)		(days)	
Region				(3333)	1		~G'	Ô
Year				.	W ^y	**	PHIO (days)	Į.
11-2089	grane	200 SL	2.	0 100	2 0 0125	Č185		<i>.</i>
11-2089-01	Müller	200 SE	%	0.100	0.0123	. O S	W.	A
Germany	Thurgau;		<i>a</i> .4		ľ	Y Q		, U V
Germany	white		4	Q, ^y		# . *	© ,@	,*
	variety		00° "	~ , ^v	a? Q	1.0° &	ar l	
EU-N				~ ~				
EU-N		<u> </u>			V (* U'	
2011		O ·	W 1		200	7	144	
11-2089	grape	200 SL	~ ² (0.100	90.0125	O ⁸⁵ 2	y 144	
11-2089-02	Spätbur-	& " ~				4 n		
Germany	gunder; red						13 x	
	variety						0	
		P 💥	~~~ ×)				
EU-N		1						
2011	Ø-							
11-2089	grape	200 SL	Ø,	L 0 166	≈ 0.0500 [©]	3 4	14	
11-2089-03	Charden-		4.		9	g-		
northern France	nax; white			<i>*</i>		, ©		
	variety		1					
~			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 4				
EU-N		,		y 0' ,				
2011			o s	0,				
11 2080		You ci	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20 100	^ © 500	02	14	
11 2080 04	Cabernet	200 50		\$ 0.10 0	10300	83	14	
northorn France	Fran red	\ \(\langle \(\langle \)	&" 8		J			
HOTHIETH FIANCE	variety	1 2 %	y Ş		ľ			
EU-N 2011 11-2089 11-2089-04 northern France			10°					
			\$	Ş N				
EU-N		\ \^\O'\ \)" <u></u>	4				
2011	grape Müller Thurgau; white variety grape Spätburgunder; red variety grape Chartenna white variety grape Charten ray white variety		0	\				
- O.)	<u></u>			90				

FL = formulation

GS = Qowth Sige (BLOH-code) at last veatment

EU-N = norther of uroped) residuategion

Table 6.3.1.4-3b: Results of residue trials conducted in/on grape after spraying with BYI 02960 SL 200 (northern European residue region)

Study No.				Residues (mg/kg) ex	pressed as BYI 02	960
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02969 DFEAG	total resoure of BYI 02960 ca
10-2218	bunch of	0*	0.18	< 0.02	< 0.0 1	00.21
[10-2218-01-	grapes	0	0.36	<0.02	0.01	039
l') Germany		7 14	0.43 0.38	0.05	©<0.01 ©, <0.01	
		21	0.42	6 .06	<0.01	Q0.49 S &
GLP: yes	berry	14	0.46	A 0.05	0.01	L, 0.5D
10-2218	bunch of	0*	0.05	© <0.02	<0.01	
(10-2218-02-	grapes	0 7	0.33	02 02		* 0.36 «J
l') Germany		14	0.23	0.04 0.04 0.00 0.00	8.01	0.2 8 c °
		21	0.34	000 Q	<0.01	
GLP: yes		28	0.38	7 207		0.45
	berry	14		9.04	0′ 20.01	0.35
10-2218	bunch of	0* 0	08.08	~ O.Q. T	\$0.01\$°	042
(10-2218-03- F)	grapes	7	Q 0.22	0.03 005		× 0.20
France		14 @	y " vi 4 0	\$0.06 @ 0 0.07 \	0.01	0.22
GLP: yes		21	Ø.13		0.01 00.02	0.21 0.26
JLI. yes	berry	Ö 1	0.130	0.11	7 <0.00 7 <0.00 7 <0.00 7 <0.00	0.26
10-2218	1 1 0	N 1	000			0.07
(10-2218-04-	grapes grapes		20.04 20.19	0.020	\$\leq 0.01 \rightarrow \leq 0.01 \rightarrow \leq 10.01 \rightarrow	0.07
Γ)		7	0.00		O'<0.01	0.13
France		0 21		7 0.06	<0.01 <0.01	0.13 0.18
GLP: yes		28	\$0.06 P	J. 0.00	4 0.01	0.13
	berry	28	0.06		№ <0.01	0.11
10-2218 🚀	bunch of	∠ 0* «		<0.02 @	% <0.01	0.12
(10-2218-65-	grapes		Ø.42	\$\langle 0.02\forall \qu	<0.01 <0.01	0.45 0.23
Belgium		㔴	0.20 0.10	\$\int \(\langle 0.02 \\ \langle \(\langle 0.02 \\ \langle	<0.01	0.23
- <i>6</i>	Ž	21	T 9:20 . C	0.03	< 0.01	0.23
GLP: yes	Q	28	7 0.16	0.03	<0.01	0.20
*	berry O		0.200	0°<0.000°	< 0.01	0.23
PALT = days at	eatment		0.06 ×		Contin	ued on next page

Table 6.3.1.4-3b (cont'd): Results of residue trials conducted in/on grape after spraying with BYI 02960 SL 200 (northern European residue region)

Study No.				Residues (mg/kg) exp	pressed as BYI 02	960
(Trial No.) Country	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02969 DFEAG	total resource of BYI 01960 case
11-2089 (11-2089-01) Germany GLP: yes	bunch of grapes	0* 0 14 21 28 35 42	0.079 0.33 0.26 0.21 0.20 0.21 0.22	<0.02 <0.02 0.04 0.078 0.089 0.12 0.15	0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.110 0.367 0.367 0.300 0.380 0.380 0.380
	berry	21 28	0.22 0.21 &	0.069		\$\infty\0.30 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11-2089 (11-2089-02) Germany GLP: yes	bunch of grapes	0* 0 14 21 28 35 42	0.23 0.50 0.36 0.25 0.25 0.25 0.35	\$\int_{\circ}0.02\circ\$\$\text{\$\pi\$}\$\text{\$\pi\$}\text	0.01 0.00 0.00 0.01 0.01 0.01 0.01	0.26 0.36 0.42/0.01*** 0.50 0.34 0.39 0.48
	berry	21 28	9.91 20.34	0.077	0.01 <0.01	0.40 0.44
11-2089 (11-2089-03 France GLP: yes	bunch of grapes	0 0 14 21 28 35	0.096 0.39 0.24 0.18 0.14 0.14	2 <0.02 <0.02 0.038 0.040 0.068 0.064 0.075	<0.00 <0.01 <0.01 <0.01 <0.00 <0.00 <0.00 <0.00	0.12 0.42 0.18 0.23 0.21 0.23 0.21
	bery	21 %	© 0.12 0.15	0.052	<0.01 <0.01	0.19 0.25
11-2089 (11-2089-04) France GLP: yes	buncl@f grapes	0 % 14 % 310 % 35 % 42 %	0.070 9.21 0.13 0.16 0.10 0.10 0.10 0.10 0.10	\$\begin{align*} \begin{align*} \begi	<pre><0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01</pre>	0.10 0.29 0.24 0.17 0.21 0.16 0.15
al al	Berry	26	0.120	0.0 0 5 0.060	<0.01 <0.01	0.16 0.18

DALT = days ofter last treatment
* prior to last treatment

Table 6.3.1.4-4: Recovery data for BYI 02960 in grape

Study No. Trial No.		D (*	,		Fortifi-		Recov	very (%	(o)	Q, °
GLP Year	Crop	Portion analysed	a.s./ metabolite	n	cation level (mg/kg)	Individual recoveries	Ş	Max	Mean (RSD
10-2218 (10-2218-01),	grape	bunch of grape	BYI 02960	3	0.01	102; 106; 116 102	102	116 102	168	7.7 5.7 7.7 7.7 7.7
to (10-2218-04)			DFA	2 6 3	overall	105; 107 65; 84; 11	105 102	107% 198	106 9	©' \$59 \$1.6.6
GLP: yes 2010			DIA		0.20 1.6 °	101 98 0705	708 7065	905	, 16-2 , 92	21.6 © 16.5
			BYI 02960-DFEAF	3	0.10	102; Q 3; 107 100 Q 7; 100	102	107C 107 2100	1040 \$100	
	grape	berry	\$\frac{\sqrt{0}^2}{4\sqrt{1}} \frac{0}{2960}	6 °	o.	100, 108	925 0107 %	107 108 9107	1030	3.3
		Ţ		1	0.50 overall	109	108	109	108	0.8
	Q Q		DFA		0.20	97 O (78 ° 78 ° 78 ° 78 ° 78 ° 78 ° 78 ° 78 °	\$86 97 97	82	
*			B 02960	4	owrall 0.01		78 103	97 107	90	10.3
			DFEAF		0.50	103; 307 106 401	106 101	106 101		
					overall •		101 Co	107 ontinue	d on nex	2.6 et page
)									
4					, i					
	ч <i>О</i> г									

Table 6.3.1.4-4 (cont'd): Recovery data for BYI 02960 in grape

<i>Study No</i> . Trial No.		Portion			Fortifi-		Recov	ery (%)		w°
GLP Year	Crop	analyse d	a.s./ metabolite	n	cation level (mg/kg)	Individual recoveries	Min	Max	Mea	
11-2089	grape	bunch of	BYI 02960	2	0.01	98; 93	93	98	\$ ⁹⁶ ~	
(11-2089-01),		grape		1	0.10	111	5 11	111%	~ ° 4	
to (11-2089-04)				1	, N,	101 Ø.	101 93	105)		
GLP: yes			DFA	2	overall ©02	70; 83	70		\$ 77.0C	7.3
2011				1	0.20	79	790	.76		
				1	4.0 ° ov@rall	930	75 70 70	3		Ş
			()¥	o@rall		₹ ⁷⁰ (814	11.7
			BYI 0296	2	0.01 @	96; 1 Q	96 96	110°	Tox,	
						300	107 (\$107		
				4 %	(Veralk		9,65	116	103	7.5
		berry	QVI 02960	b	0.6	96	95 %	<i>€</i> ,96	***	
				Q [*]	1 0		•	95%	ļ	
		\ '			0.50 overall	104	104	104°	98	5.0
			DFA 2		@/02		83 \$	₹ 83	98	5.0
				1 4	0.20	82 0	82×	82		
			\$.T	1	1,6		827 90	90		
				3	overall		© 82	90	85	5.1
2			BY 029600 DFEAF		0.01	75 \$ 94 \$ 0	75 94	75 94		
					Q.50 a	94 W	93	93		
	°~			3 👡	Qverali V		75	94	87	12.2

Southern Europe

Report:	KIIA 6.3.1.4/03, 2012		_ 0
Title:	Determination of the residues of BYI 02960 in/on Grape at volume of BYI 02960 SL 200 in the Field in France (South	fter Spraying and S n), Spain and Italy	Spraying, Lw-
Report No. & Document No.:	10-2219, dated August 22, 2012 M-437131-01-1		

Report:	KIIA 6.3.1.4/04,	2	2012	Ÿ,		
Title:	Determination of the residue	s of BYI 02%0 in	on grape	ter high or lo	volum	sprag
Report No. &	application of BYI 02960 SI 11-2090, dated September 18		n southern's	rance, Sparo	and Lary	
Document No.:	M-438482-01-1	0, 2012	~ .			~

	Directive 1/41 CEC, Asidue of or or reater products, food and feed EC guidance porking occument 7029 1/95 rev.5 US LPA QC SPP Guideling No. 86+1500 G JPP
GLP (applies to both studies):	y (certified lab Catory) Devia Ons: nove

Materials and Methods

Eight field residue trials were conducted by the southern European regulue region, and follows:

Four further trials are carried on in 2011, in outher France, Spain (2), and Italy, to complete the data package (2012, KDA 6.21.4/04). The basic application parameters were similar as in 2010. All treatments were made at the scheduled rates.

Samples of bunches of grape were taken is mediately prior and subsequent to the final application, and at several intervals the cafter up to \$7-28 days after treatment in 2010 and up to 42 days in 2011 trials, samples of the grapes themselves (decommed berries) were also taken at day 14 in 2010, and on days 21 and \$\mathbb{Q}\mathbb{E}\$ in 2011. The envisaged \$\mathbb{D}\mathbb{H}\mathbb{I}\$ was 14 days.

The sample were analyzed for the parent compound and its metabolites DFA and DFEAF using method 1212 (cf. KIIA 49/05). The respective LOQs for the 3 analytes were 0.01 mg/kg, 0.02 mg/kg, and 0.00 mg/kg (all in parent equivalents).

II. Findings

Validation of bunches of grape was done within method 01212 (cf. KIIA 4.3/05). Concurrence recoveries of BYI 02960 and its metabolites DFA and DFEAF were obtained from samples of bunches and of "berry". These sample materials are representative of all sample materials collected in these trials.

The recovery samples for parent and DFEAF were spiked at levels & 0.01 mg/kg and 0.19 mg/kg, as well as, 1.0°mg/kg (study 10-2219) or 2.0 mg/kg (study 11-2090) (expressed in BYI 0960 equivalents). Overall mean recoveries were all within acceptable ranges (92-104% overall RSD 0.5-7.7%, n=3-5).

Fortification levels for DFA were or 0.02 mg/kg 0.20 mg/kg and 2.0 mg/kg 0study 10-2219) or 4.0 mg/kg (study 11-2090) (expressed BY 02960 equivalents) for the sample platering "bero" and "bunch of grapes". Overall mean recoveries were all within acceptable tanges \$8-955, overall RSDs 2.2-17.1%, n=3-5).

Details of recovery data are shown in table 5.3.1.4-6. All trial data are summarised below in table 6.3.1.4-5a & b and in greater detail in the Tier Lummary forms. (Residue of parent BYI 02960 as well as its metabolites DFA and DFEAF are spressed in BYI 02960 equivalents.) From these individual values, the total residue of BYI 02960 was calculated as the sum of these three analytes, expressed in parent equivalents.)

On day 0, impediately following the 2nd and fing treatment, residue levels in grape bunches were between 0.18 and 0.30 mg/kg (median 0.31 mg/kg). To day 14 — the envisaged PHI — the levels had declined to 0.08-0.26 mg/kg, with a predian value of 0.14 mg/kg.

The analysis of samples of the destempted fruit (berry taken at day 14 showed that there are no differences in residues between bunches and of the grapes themselves. The residue levels in berries ranged from 6/8-0.20 mg/kg (mechan 0.45 mg/kg), n=4) on day 14, with values of 0.08-0.23 mg/kg in the corresponding bunch simple (median 0.15 mg/kg). The same behavior was evident in bunches and in bedies taken at day 21 owhere residues were 0.11-0.27 mg/kg (median 0.16 mg/kg) and 0.11-0.28 mg/kg (median 0.17 mg/kg), respectively; and on day 28, with residues of 0.10-0.31 mg/kg and 0.12-0.32 mg/kg, respectively (median 0.28 mg/kg in both cases); n=4 in all cases.

The analytic presults revealed that total residue levels often had not yet reached their highest levels at the nominal PHI 12 day. This was already evident in the 2010 trials, in which peak residue values were seen on day 21 (2 trials) or on day 28 (1 trial), the final day of sampling. In order to capture the maximum report of the 2011 program; in those trials, the highest residue levels were seen on day 14 (1 trial), 21 (2 trials), or day 42 (1 trial).

Peak residue levels at any relevant sampling interval (≥14 days post-application) over the complete set of trials ranged from 0.08-0.33 mg/kg (median 0.18 mg/kg).

Evaluation of representativity:

As highest residue levels were seen on the final sampling interval of three trials 00-2219-01 day 21 and 28, respectively; and 11-2090-01, day 42), the entire set of trials was re-evaluated for its representativity.

In the 2010 package, the trials generally showed "plateau behaviour", constant from the PHI to the final sampling date (day 4 to day 28)

Trials 10-2219-03 and -04 showed residues reaching a plateau well by day 14, with beak values of day 14 or 21. In trial 10-2219-02, residues showed "sormal decline behaviour colly, followed by slow increase in residues up to day 28. However, the increase incr very small, only 0.01 mg/kg, indicating that a plateau kyel had been reached within the scope of variability caused by sampling, biological, and or analytical pects

In trial 10-2219-01, residues showed normal desline behaviour at first then eaching a plateau level by day 7 to day 14, followed by an apparent "jump" in the residues on the final day from (\$\text{Q3}\$ mg/kg on day 14 to 0.28 mg/kg on day 28

In 2011, "normal" decline behaviour was evident in wals 15 2090-02 and 04, both reaching a plateau level by at least day 20. In troils 112090-01 and 03, revidues romain of fairly constant over the entire sampling period. Letrial 14-2090 1, the highest reside of 003 mg/kg was found on day 42, i.e. the last day of sampling. However, this "increase" is very small, with the difference per sampling interval of just 0.01 mg/kg, and may be condered within context of variability, due to sampling or analytical error. Thus taken in the cont xt of all of the talks, this trial can also be seen as yielding representative results.

Trial 10-2219-01 (St. above) can also be viewed in the arger context. Even given the "jump" from 0.23 mg/kg on day 14 to 0.28 kg/kg on the smal sampling day of this trial, there is reason to believe that residues yould not continue to limb appreciately. In none of the trials did the residues climb higher over time than residues dectly ther the application. Thus, it can be assumed that even if values in this trial were to incoase, they would still be in the same range as the highest residue seen in aus the trial oare considered to be valid and representative of the use described. the rest of the trials (0.33 mg/kg), and woold therefore have no effect on the critical data used to evaluate and establish Ma

Thus the trialoar

usions (grape, southern European residue region)

In order support the use in the EU of BYI 02960 in grape, 8 valid trials were conducted in the southern European residue region in the years 2010-2011. BYI 02960 was applied twice as an SL 200 formulation at an active substance rate of 100 g/ha. The application intervals were 14 days. All

applications were at the required rates, except for minor deviations in a single trial, which were less than 25% and, therefore, well within the EUs standard acceptance criteria. All trials were conducted according to GLP.

Samples were taken immediately after the 2nd application and at several interval thereafter, the envisaged PHI of 14 days. They were analyzed for the relevant residues BYI 02960 comprising the parent compound and its metabolites DFA and DFEAF. The residues of of analytes were summed to yield a calculated "total residue of BYI 02960." The results of presented above demonstrate that:

- total residues of BYI 02960 declined in bunches of grapes between the final application and the nominal PHI from levels of 0.18 0.50 mg/ls of 1.10 0.00 mg/ls of 0.18 0.50 mg/ls of 0.18 reasp.

 A marke,

 control yet reached the

 crystile levels, the trials reported here are congrowed new and in the grapes themselves

 reasp.

 A marke,

 control yet reached the

 crystile levels, the trials reported here are congrowed new and in the grapes themselves. nominal PHI, from levels of 0.18-0.50 mg/kg on day 0 after the first treatment to 0.08 \$6.26 mg/kg on day 14. The respective median values were 0.2 mg/kg and 0.14

 - despite the delayed attachment of the seak residue levels, the trials reported here are considered to yield representative results mitable for MET evaluation.

Table 6.3.1.4-5a: Application scenario in residue trials conducted in/on **grape** after spraying with BYI 02960 SL 200 (southern European residue region)

BYI	02960 SL 200	(soutnern 1	European	resiaue regio	on)		0	
Study No.				Application	l _i		PHI (days)	ð
(Trial No.)								
Country Location	Crop	FL		1/1		CS	© PHI	
Location	Variety	FL	No.	kg/ha (a.s.)	kg/ht	GS 4	(days)	
Region				(a.s.)	(a.s.)	Ş		Ô
Year				⊳ _A	kg/hk (a.s.)			ľ
10-2219	grape	200 SL	2	v 0.100	kg/h (a.s.)	GS 4		_@
10-2219-01	Chardon-		L, "		₽ .			, Ő
southern France	nay; white variety		, (C))		,
	, arresy			~ .				
		<i>n</i> .	*				7. Š	
EU-S			Q Q				4	
2010		4					\$\ _\L'\\	
10-2219	grape	200.SL	2 2	Q100 £	0.050	\$ \$5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
10-2219-02	Bobal; red variety						20	
	variety	200.SL						
	Q q	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					¥	
EU-S				(())	0.0180 70.0180	81		
2010	grape & Trobbiano white		T.			*		
10-2219	grape &	2000 L	L, 2	0.400 %	0.0100	81	14	
10-2219-03	Trebbiano "			, J				
Italy	variety							
EU-S 2010 10-2219-04 Spain	Y 🔊 . 🛎							
EU-S					<i>a</i> ,			
2010	0' 27'			0.0878 0.0888 0.0888 CH-code) at las				
10-2219	grape	¥ 200 €£	\$\tag{2} \gamma	0.0878	0.0110-	81	14	
10-2219-04 Spain	wariety &	1 , ~ , ~		0.0886	0.0112			
Spain EU-S 2010		\$\frac{1}{2} \text{\$\infty}\$, "O"					
			7 &	S				
EU-S	3 0		oʻ	8				
2010				Ş				
FL = formulation	grape Trobbiano Write variety grape Maret; red variety	GS growt	h stage (BB	CH-code) at las	st treatment			
EU-S = southern European	resione region		, W					
Ž, ,			~~		Con	tinued on ne	ext page	
			Q'					
		Q S	A,					
4 4	` &' J	y . Q						
		\						
EU-S 2010 FL = formulation EU-S = southern European		A						
J Ž A								
Ö								
.								

Table 6.3.1.4-5a (cont'd.): Application scenario in residue trials conducted in/on grape after spraying with BYI 02960 SL 200 (southern European residue region)

	with D110	2700 SL 20	o (souther	n European i	residue regi	on)	0	
Study No.				Application kg/ha (a.s.) 0.10		· · ·		ð
(Trial No.)								
Country	Crop				8		PHIA	9
Location	Variety	\mathbf{FL}	No.	kg/ha	kg/h	GS 4		
	variety		INO.	(a.s.)	(a.s.)		(uays)	
Region						. 0		Q
Year				⊳ _A				9
11-2090	grape	200 SL	2	0.10	0.050	_₿83 ≈0		~ (V
11-2090-01	Ugni blanc;		.r.					OY
southern France	white		,Ø	S,		~ ~		,
	variety			Q	o A	Ay .		
			Q0		Q' ~		_@'	
EU-S		(, see a				T'	
2011		o ^v	, Ø			7	4	
11-2090	grape	200 SL		0.10	0.010	3 1 .	7 14 (°	
11-2090-02	Bobal;							
Spain	red variety							
		200 SL					0	
	, (Dy 💥			F 5			
		 		0.10				
EU-S	Ø1							
2011			®'					
11-2090	grape &	2000 L	∠ 2 ~	0.40 %	7 0.010	79	14	
11-2090-03	Xaogelo;			, , , , , , , , , , , , , , , , , , ,		S Kj		
Spain	write					3		
	variety		\(\infty\)					
		_@		, o	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
					Q1			
EU-S					~\$~			
2011		Y , O'			***			
11-2090 ° Ş	graço	200 SL 👡	Q 2 Q	0 10 . @	0.010	81	14	
11-2090-040	Lambrusco,		ø o					
Italy 💸	red variety		Q					
	4 2	, O' «	j" 🖳	1				
	4 Q"		0	8				
EU-S				Q .				
2011			× . "	<i></i>				
$FL = formulation \qquad GS = g$	growth stage BI	BCI/Qode) at	ast treather	nt				
EU-S = southern European r	esidue resion		, W					
	? Q _							
4) 49	A W		Ÿ					
~		Q 39	7					
		V						
4 1		7 Q						
		w .						
2011 11-2090 11-2090-03 Spain EU-S 2011 11-2090 11-2090-044 Italy EU-S 2011 FL = formulation GS = 1 EU-S = southern European recommendation Europ		2						
	ZZ							
	2							
Ö								

Table 6.3.1.4-5b: Results of residue trials conducted in/on grape after spraying with BYI 02960 SL 200 (southern European residue region)

Study No.			Re	esidues (mg/kg) ex	pressed as BYI 029)60 © \(\(\)
(Trial No.) Country	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02960- DFE	total residue of BYI 00960 cash
10-2219 (10-2219-01) France	bunch of grapes	0* 0 7 14	0.09 0.32 0.19 0.17	<0.02 <0.02 0.03 0.05	0.01 0.01 0.01 0.01 0.01	0.18 0.18 0.23 0.23
GLP: yes	berry	21 14	0.22 0.15	0.05	<0.01	0.28
10-2219 (10-2219-02) Spain GLP: yes	bunch of grapes	0* 0 7 14 21 28	0.07 0.29 0.11 0.06 0.12	<0.02 <0.02 0.02 0.05 0.05 0.06	<0.01 <001 <001	0.10
	berry	14	©.10 (×)	0.05	\$0.01	0.20
10-2219 (10-2219-03) Italy	bunch of grapes	0* 0 7 14	0.11 0.49 0.49 0.07 0.07	7 0.02 0.02 0.04 7 0.06	0.05 0.01 0.01 0.01 0.01	© 0.14 0.50 0.14 0.12 0.16
GLP: yes	house	28	\$0.09 \$\times 0.00 \$\times 1	0.06	<0.01	0.13
10-2219 (10-2219-04) Spain GLP: yes	bunch of grapes	× 4	0.03 0.15 0.05 0.05 0.05	002 002 002 002 003 003	0.010 0.010 0.011 0.011	0.06 0.18 0.11 0.08 0.08 0.07
Pa	Derry S	20		0.02	2 <0.01	0.08
DALT = days fit * prior to to tree Residues calcula	ater last treatment catment cated and capro	esseitys B	0.0 Y YL02960 S Y J		Cont	inued on next page

Table 6.3.1.4-5b (cont'd.): Results of residue trials conducted in/on grape after spraying with BYI 02960 SL 200 (southern European residue region)

Study No.			R	esidues (mg/kg) exp	oressed as BYI 029)60 °
(Trial No.) Country	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 029	total revalue of BYI 02960 ca
GLP BYI 02960 SL	200					
11-2090 (11-2090-01- T) France GLP: yes	bunch of grapes	0* 0 14 21 28 35 42	0.072 0.24 0.10 0.081 0.073 0.055 0.083	0041 7056 0.14 0.17 0.22 0.26 0.25	(0.01 (0.01 (0.01 (0.01 (0.01 (0.01 (0.01 (0.01 (0.01 (0.01)	0.26 0.26 0.20 0.31 0.32 0.33
	berry	21 28	0.086 0.091	0.18 X	3 01 3	0.28
11-2090 (11-2090-02- T) Spain GLP: yes	bunch of grapes	0* 0 14 21 28 35 42	0.047 0.05 0.05 0.048 0.036 0.043 0.043	0.024 0.024 0.020 0.052 0.036 0.036	<0.00 <0.01 <0.01 <0.01 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0	0.20 \$\frac{1}{2}\$ 0.20 \$\frac{1}{2}\$ 0.06 \$\frac{1}{2}\$ 0.089 0.11
	berry	21	© 0.050 © 0.066	0.647	<0.01	0.11 0.12
11-2090 (11-2090-03- T) Spain GLP: yes	bunch of grapes &	28 034 42	0.0325 0.12 0.064 0.066 0.036 0.036 0.036	0.023 0.057 0.085 0.090 0.090 0.090		0.058 0.18 0.15 0.18 0.15 0.15 0.15 0.14
		20 28	0.038	0079	<0.01	0.13
11-2090 (11-2090 04- T) Italy GLP: yes	bunch of grapes	0* 00 14 28 35 42	0.046 0.39 0.16 0.053 0.049 0.05©	0.039 0.025 0.064	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.076 0.42 0.17 0.13 0.13 0.15 0.15
4	berry	28 ×	0.089	0.098	<0.01 <0.01	0.19 0.15
DALT = Sys aff * prior to last tre Residues calcula	ter last treasuratment of ted and expression	ment de la company de la compa	37 02960 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.07 0.07 0.095 0.092 0.077		

Table 6.3.1.4-6: Recovery data for BYI 02960 in grape

Trial No.					Fortifi-		Reco	very (%		Ø1°
11141110.	Crop	Portion	a.s./	n	cation				Mean	
GLP	Crop	analysed	metabolite	-	level	Individual	Min%	Max	Mean	RSD
Year					(mg/kg)	recoveries			4,	
10-2219	grape	bunch of	BYI 02960	2	0.01	110; 98	980	110	104	
(10.2210.01)		grapes		2	0.10	108; 97	€ 797	108 -	Q'03	
(10-2219-01), to				1	1.0	95 a	95	95%		a Ç
(10-2219-04)				5	overall		95	100	130	49.8
GLP: yes			DFA	2	\$2 \$2	97; 95	95	O 97	9 6	
2010				2	9.20	92; 96	92	96	94	
				18	2.0	92; 96	27		94	
				\$5	oy@all		492	. 97	×0.5	2.2
			BYI 02960-	2	₹0.01	93; 910	91	93	92	
			DFEAF	2%	0.10	104; 97	. 85	104	92 = 1	
					100	103	1 % 13	2003	&	
				5	everall		ີກັ Q 1 ຄ	104	98,	6.0
	grape	berry	BVI 02960	1	0.01 0.00 0.0	102	103 007	1000	4 i	
			Q	Ğ	000	107 20	P 07	Q07	**************************************	
				1	0.0 A	103	103	103	Y	
		$\swarrow_{\scriptscriptstyle 1}$	4 29	3 4	overall		100	107	104	2.5
						ØN 7/	~(\$\frac{3}{3}	% 3		
				$\frac{1}{1}$	Ø.20 _.	502 €	102	102		
	4			1.4	2.0	99 0	102	99		
		4 .	Š'. 79	3	oxoall		_@ 83	102	95	10.8
			BYI 02960~	× ₁	7.01	J 02 0 5	102	102		
			DEVAF	1 %	0.10	100	100	100		
Č	The state of the s	4 5			10	107	107	107		
				3	overall≪		100	107	103	3.5
	· ~			~ (, , , ,	702 V 2 100 2 107 V				
	\$9°) \ \ (&)" M		<u> </u>				
	Q			Ĭ		Ø,				
~)* ₍ (*)		°~		y				
4			Š'. Q'							
				1 ,						
	~(?)	y' .4 **								
,		"O" L)						
e	/ A		49 Q							
A.			,							
	X. //		<i>y</i>							
	Ş		•							
			·							
			·							
			·							

Table 6.3.1.4-6 (cont'd.): Recovery data for BYI 02960 in grape

bunch of grapes berry	a.s./ metabolite BYI 02960 DFA BYI 02960- DFEAF	2 2 1 5 2 2 1 5	cation level (mg/kg) 0.01 0.10 2.0 overall 0.20 4.0 ownall	Individual recoveries 104; 95 89; 103 108 62; 100 92; 96 89	93 89 108 89 62	104 103 108 108 000	Mean 100 096 100 100 100 100 100 100 100 100 100 10	DRSD DRSD DRSD
bunch of grapes	BYI 02960 DFA BYI 02960	2 2 1 5	0.01 0.10 2.0 overall	recoveries 104; 95 89; 103 108	93 89 108 89 62	104 103 § 108	100 096 150 281	RSD PRSD
grapes	DFA (6) BYI 02960-	2 1 5	0.01 0.10 2.0 overall 0.20 4.0	recoveries 104; 95 89; 103 108	93 89 108 89 62	104 103 § 108	100 096 150 281	
grapes	DFA (6) BYI 02960-	2 1 5	0.10 2.0 overall 0.20 4.0	89; 103 2108 62: 100	89 108 89 62	103	7	7 7 7.7
	BYI 02960-	1 5	2.0 overall 0/2 0/2 0/2 4.0	62: 100.	89 62 92 92	108	7	\$\frac{1}{2}\frac{1}{2
berry	BYI 02960-	5	overall 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2	62: 100	89 62 92 92	1 700	150 281	\$2.7 0
berry	BYI 02960-		0.20 4.0	62; 100 y 92; 96	62 920	1 700	130 2 81	\$!.7
berry	BYI 02960-	2 2 1 2 5	0.20 4.0	62; 100 \$\frac{1}{2}\$ 92; 96	62 92.Q	,0100 96	% 1	
berry	BYI 02960- DFEAR	2 1 2 5	6.20 4.0	92; 26	920	96		
berry	BYI 02960- DFEAR	2	4.0 .	8907	2	a ()	94	
berry	BYI 02960- DFEAF	2	Over 11	~/, 4		~8	₹ ∫'	7. T
berry	BYI 02960- DFEAR	2 ,	U (Cyraii			\$100	88 4	17.1
berry	DFEAF		0.01	100; 207	100	1070	1046	
berry	a s	2	0.40	970106	100	106	102	
berry		M	28	13 JO	×103	Ø103		
berry		\$\\ 5 \\ \phi_{\text{i}}	verall		97\$	107	10%	4.1
	QYI 02960	d	0.84	100				
01		Q Ori		2	0104 g	904	, , ,	
		1.	2.0	103	103	1030	Y	
		1	overall		103	1601	103	1.5
	DEA O		a M2	\$30 ,	$\sqrt[3]{00}$	\$100 01	103	1.3
	DFA O	1	00 20 %	N \ ((n)	0 f&	91		
, O			1.20	91 0	9 j~ 85	85		
		\n\n	4.0	850 5	© 85	100	92	8.2
	DX 0200	1 .	o o o o	4 X X	97	97	92	8.2
ž 40	DFEAF		0.01	9/ 3/ 100 W				
			0.0		102	102		
		~ I	\$.0 °		107	107	100	4.0
		3	Överall		97	107	102	4.9
	9 , y .			2				
		J ,		Ţ				
		°~	/ 🎺 (), //()	¥				
\$ \langle \lan	Y Q'		. W					
		1	~~					
, <u>a</u>			,					
\$ ×								
	w A	,						
	, 🗳							
	y							
» ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
				3 Overally A Property of the				

IIA 6.3.1.5 Fruiting vegetables – tomato, incl. eggplant (solanacea)

BYI 02960 is to be registered in Europe for use in tomato. European residue data in tomato are therefore presented below to support the intended use. Use pattern (GAP) information, including the European "agricultural use" as well as the "home & garden use" to be supported is summarized in Table 6.3.1.5-1.

Table 6.3.1.5-1: Use patterns (GAPs) for the spray application of BYI (\$\frac{1}{2}\)60-containing formulations in/on tomato in European fields (southern residue regen) and green douses

Description	F/G	No. of appls.	Appliedion rate PHIC per treatment per season (g a.s.Ma) (g a.s.Ma) (Lyra) (days) (days)
"agricultural" use*	G	2	112.5
	F†	1	112,5 112,5 112,5 n/2, 23
"home & garden"**	F ⁺	2	Q, 1,12/5 2 225 2 100-750 3

 ^{*} agricultural use based on an SL 200 formulation

In order to support the use of BYIO 2960 sets of GLP trials were conducted in southern European fields and in greenhouses in 2040 and 2011. In southern European field-grown is mato, BYI 02960 was applied twice as an SL formulation (BYI 02960 SL 200, condaining 200 g/V BYI 02960 a.s.), at 14-day intervals. For the use in governouses, BYI 02960 was applied as in the field, but at 10-day intervals. In both cases the envisaged PHI was 3 days, reflecting the planted agricultural use in the greenhouse, as well as the inconded corst case fight use.

Residue Levels of BYI @960 and its retabolites DIA and DFEAT were analyzed individually and summed to yield the salculated "total residue of BXI 02960". The most critical residue levels were observed in the graphhouse trials in which a highest total residue value (HR) of 0.50 mg/kg was determined. The STME in these trials was also the dighest for both sets, at 0.14 mg/kg.

The number of trials conducted or each se describe above (incl. information on geographical region and vegethion period) sumparized below in table 6.3.1.5-2.

Table 6.3.1.5-2: Over we of European resource trials conducted in tomato per geographical "residue region" appropriation point, including key results

Use description (cf. table 3.1.59)	Reg © n	N V get. 2010	o. of ria period 2011	nls Σ	Residue (mg/		Report No.	Dossier ref.: IIA 6.3.1.5/		
trig in Europe &										
"agriculty "I" use	G	4	4	8	0.50	0.14	10-2190, 11-2085	03, 04		
"home & garden"	EU-S	4	4	8	0.11	0.08	10-2186, 11-2087	01, 02		

EU-S = southern EU field residue region, G = greenhouse

^{** &}quot;home & garden" uses with an SL 50 form Pation (available of the general public la retai Oile)

t uses in southern residue region (EU-S)

t core rate per meter plant foliage height. Testing in greenhouse based on a max. height 2 m, equating to ax. 223

Southern European residue region (field)

Report:	KIIA 6.3.1.5/01, ;	2012	~		Ô
Title:	Determination of the residues of BYI BYI 02960 SL 200 in the field in Fran			~ \	
Report No. & Document No.:	10-2186, dated September 6, 2012 M-438184-01-1	Ĉ			

Report:	KIIA 6.3.1.5/02, 2012	C
Title:	Determination of the residues of BY 1,02960 in/on to nato offer spring application of BYI 02960 SL 200 in the field in Spain, Italy, Powngal and Greece	
Report No. & Document No.:	11-2087 dated September 17, 2012	

Guikance working inscument 7029 M4/95 rev. 5 Q QUIS EPN OCSTP Guid Mine Nov 860 500. SUSP	Gt	uidelines (applies to both studies):	Directive 91/414/EVC, repelues in or on related products, food and feed
		7	For Guildance working descument 7029 \$4/95 role 5
PUS ELM OCSPP GuidMine NO 860 J500 SUPP			OYS FIRM OCSAN Guid Vine NOV 860, NOO SLAND
GLP (applies to both studies):	GI	LP (applies to both studies):	yes (certified laboratory); Deviations: none

I. Wateri@s and Methods

Eight field residue trial wer conducted in southern Europe, as follows

In 2010, 4 trials (Southern France, Italy, Spain and Portugal) were conducted to support the use of BYI 02960 SI 200 in Smate (1998). A 1999 at a nominal rate of 0.625 L/ha corresponding to 125 g/ha BYI 02960 a.s.; the water rate was 600-1000 L/ha collecting local practice in the trial regions. All treatments were made at the seveduled rates. The higher application rate used in 2010 was 11% higher than the rate to be registered, thus well within the FD's acceptance criteria for use pattern comparability.)

Four further treals were carried out in 2011 on Span, Italy, Portugal, and Greece, to complete the data package (\$\frac{1}{2}\text{Log} \text{Log} \text{L

Samples of to nato thit were taken immediately prior and subsequent to the final application, and at several intervals thereader (up to 70 or 14 days after treatment in the 2010 and 2011 trials, respectively). The envisaged HI was 3 days.

The sample were analysed for the parent compound and its metabolites DFA and DFEAF using methods 01304 (2010 trials; for method details, cf. KIIA 4.3/03) or 01212 (2011 trials; cf. KIIA 4.3/05). The respective LOQs for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

II. Findings

Validation of tomato fruit was done within method 01304 (2010 trials; for method details, cf. KIIA 4.3/03) or within method 01212 (2011 trials; cf. KIIA 4.3/05). During the conduct of the complete set of tomato studies in 2010-2011, concurrent recoveries of BYI 02960 and its method of DFEAF were obtained from samples of tomato fruit. This sample material is representative of all sample materials collected in these trials.

The recovery samples for parent and DFEAF were spiked at levels of 0.01 mg/kg and 0.10 mg/kg as well as 0.50 mg/kg for trials conducted in 2010, and 0 mg/kg for trials conducted in 2010 mg/kg for trials conducted in 2010 mg/kg for trials conducted in 2010, and 0 mg/kg for trials conducted in 2010 mg/kg for trials conducted in 2010, and 0 mg/kg for trials conducted in 2010, RSDs of the larger validations sets [n > 2] 4.2-10.9%, [n = 10]

Fortification levels for DFA were or 0.02 mg/kg, 0.95 mg/g, and 0.50 rog/kg (expressed in BYI 02960 equivalents) for trials conducted in 2010 and 0.02 mg/kg, 4.20 mg/kg, and 4.0 mg/kg (expressed in BYI 02960 equivalents) for trials conducted in 2011. Meantrecover is well all within acceptable ranges (88-96%, RSDs of the lawer valuations sets [60 2] 1.8-6.2% n=1.9).

Details of recovery data are shown in table 6.301.5-4. All trol data are summarised below in table 6.3.1.5-3a & b and in greater detail in the For 1 summary forms. (Residues of parent BYI 02960 as well as its metabolites DF and Do EAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as the sum of Grese three analytes, expressed in parent equivalents.)

On day 0, immediately to lowing the 2nd and final freatment, residue levels in tomato fruit were between 0.07 kg/kg and 0.17 mg/kg/median 0.15 mg/kg. By day 3 — the envisaged PHI — the levels were <0.04-0.11 mg/kg, with a median value of 5.08 mg/kg.

The analytical results (evealed that total recidue tevels often had not yet reached their highest levels at the nominal PHI (Pays). This was evident in the 2010 trial packages for other crops, although peak residue values for tomagnes were seen on day 3 in one trial swell. In order to ensure that the maximum relevant residue levels are captured, additional sampling was conducted 14 days after treatment in the 2011 program; in those scials, we highest residue levels were seen on day 7 (1 trial), or day 10 (20 trials).

Maximum residue levels any revan Camp of interval (≥3 days post-application) over the complete set of roll anged from <0.04-0.15 mg/kg (median 0.08 mg/kg).

Evaluation of regresentativity

As highest recourse levels were also seen in samples taken after the envisaged PHI of 3 days – on day 5 (tright 10-2166-04), day 7.2 11-2087-02), and on day 10 (11-2087-03 and -04) – the entire set of trials was re-collusted for its representativity.

In the 2010 package, "plateau behaviour" was evident in all four of the trials at PHI 3. Only in trial 10-2186-04 were residues on day 5 (0.08 mg/kg) higher than on day 3 (0.07 mg/kg). However, this increase is very small, and even within the scope of sampling or analytical variability; also, as mentioned, a plateau level appears to have been reached. Thus, taken in the context of all of the reals, this trial can also be seen as yielding representative results.

In 2011, "plateau" behaviour was evident in all four of the trials, as seen in the samples token from day 3 onwards. In trials 11-2087-01, -02, and -04, a very mino increase in visidues was such over time from 0.083 mg/kg on day 3 to 0.096 mg/kg on day 10, from 0.089 mg/kg on day 3 to 0.095 mg/kg on day 7, and from 0.064 mg/kg on day 3 to 0.067 mg/kg on day 10, respectively. These "increases are very small; they are also within the scope of analytical error or variability caused by sampling. Thus, taken in the context of all of the trials, these trials can also be seen as vielding representative results.

Thus the trials are considered to be valid and representative of the use described.

III. Conclusions Ctomato, southern European residue region)

In order to support the use in the EU of BYI 02960 in tomale, 8 vapid trials were conducted in the southern European residue region in the years 2010-2011. BYI 02960 was applied twice as an SL 200 formulation at an active substance rate of 112.5 g/ha in 2011, both of which support the intended use rate (112.5 g/ha). The application intervals were 14 days. All applications were at the required rate, and all trials were conducted according to GLP.

Samples were aken in medicely after the 2nd application and asseveral intervals thereafter, including the envisaged PHI of 3 days. They were analyzed for the relevant residues of BYI 02960, comprising the parent compound and its rectabolics DFA and DFEAR. The residues of all three analytes were summed to yield a carculated total residue of BYI 02960". The results of the trials presented above demonstrate that:

- total residues of 10290 in small fruit declined somewhat between the final application and the nominal PHI, from evel of 0.020.17 og/kg of day 0 after the final treatment to <0.04-0.11 og/kg on day 37 The espective median values were 0.13 mg/kg and 0.08 mg/kg, respectively.
- analytical results revealed that total residuatevels often had not yet reached their highest levels at the nominal CHI. Howevely, these increases" are very small; they are also within the scope of variability ausself by sampling, biological, and/or analytical aspects.
- despice the drayed attainment of the maximum residue levels, the trials reported here are considered to yield representative results suitable for MRL evaluation.
- peak esidue levels at any relevant sampling interval (≥3 days post-application) ranged from <0.04-
 0.11 mg/kg (median 0.08 mg/kg).

Table 6.3.1.5-3a: Application scenario in residue trials conducted in/on tomato after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.				Application	<u> </u>			Ö
(Trial No.)								1
Country Location	Crop	FL		kg/ha	lzg/hJ©	GS 4	PHI (dass)	
Location	Variety	FL	No.	(a.s.)	kg/h	OD A	(days)"	
Region				(and)	4			
Year			,	⊳ _A	\(\sigma'\)	`~\\		
10-2186	tomato	200 SL	2	0.125	0.0208	Ö87		L.
(10-2186-01)	Perfect Peel		4	ۄٞ	,)*
southern France	(Hybrid		.4©"	Q Q) ~~		
	variety)			~ .				
EU-S			~				, S	
2010								
10-2186	tomato	200 SL		0.125 0.105 4 0.125	0.0208		3 4	
(10-2186-02)	Missouri							
Italy	(Multiple							
	use variety)	Q (Y						
DII C	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
EU-S 2010	Q.	\$ 200 SI						
10-2186	tomate C	%200 SI	- O	0.125	0.01250) <u>(</u>	3	
(10-2186-03)	Malphea &	√200 SL	1.		Ø ^{0.0123}	(O)	3	
Spain	(Temata de	. ~ (7/n° 0			, Ö		
	industria)					7		
EU-S		, Ø ,	\$' .\{\})			
2010					<i>Q</i>		2	
10-2186 (10-2186-04) Portugal	tomato.	200 \$1,		\$ 0.12 ©	©0179	88	3	
Portugal P	H9144 Industry				No			
T OTTUGUI		4						
EU-S 2010	Industry	200 SL		5 0.12 V				
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
EU-S)" &	A "				
2010				_\				

FL = formulation
EU-S = souther Ocurope to residue region

Con Continued on next page...

Table 6.3.1.5-3a (cont'd.): Application scenario in residue trials conducted in/on **tomato** after spraying with BYI 02960 SL 200 in field (southern EU residue region)

Study No.				Application	1		
(Trial No.)							
Country	C				*	,	
Location	Crop	\mathbf{FL}	3.7	kg/ha	kg/h	GS &	
	Variety		No.	(a.s.)	kg/hk (a.s.)		PHI (dass)
Region				(4131)	21		
Year					\$\tag{\psi}	\ \sigma_{\sigma}	
11-2087		200 GI	2 -	0.112	0,00161	©72 0 5	
	tomato	200 SL	2	0.113	0.0161		
(11-2087-01)	Malpica;		L,	ي	*		
Spain	Tomate de industria		40°)	[O .
0				*		4	
EU-S			<i>Q</i>	~ · · · · · · · · · · · · · · · · · · ·			
2011			l &				
11-2087	tomato	200 SIO	W.	0.1134			4 3
(11-2087-02)	Discovery	4			8		
Italy	F1;						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Processing	~ ~	v ~~				3
EU-S	tomato		\ \(\lambda \)				O
2011		K 47					j
11-2087		200 SIO	**************************************	5 13 O	0.0025	85.7	2
	tomato Q	200 SL	20	Dr 13	0.025	Ö 85 W	3
(11-2087-03)	H-9144; Industrial		Ş			P &.	
Portugal	Industra		"O"	~ "Ö			
			\$ 0	, 4 3			
						K.	
						*	
EU-S						1	
2011		7 O1		,			
11-2087	towato 5 302 Heintz, Hat growing	290 SL	200	Ø.113 (00188	87	3
(11-2087-04)	towato 9 902 Heintz, lat growing						
Greece	allat growing				W'		
A 60	var. Oybrid	9 &			70		
Ĉ		1			1		
EU-S							
2011							
Z011 ()			, (n)				
FL = formulation		grow	stage (**)	SCH- co de) at las	st treatment		
EU-S = southern Eur	pean residue region		~				
O n							
			`\`\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9			
. 4		3Q 2					
			, W				
	2×3 ~ ~		~~~				
% 1			~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
~		Q 3	,				
@. \	, , ,						
		Ş" Q'					
∑O _x]					
		~~~~~					
Ŭ Â		•					
79 P	1 ~						
	Q' <u>"</u> Z						
2011 FL = formulation EU-S = southern Euro	topato 3002 Heintz Hat growing var. Oybrid  bean residue regen						
r P							
	Fean residue region						



Table 6.3.1.5-3b: Results of residue trials conducted in/on **tomato** after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.	1	60				
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02960- DFEA	total resoue of BYI 02000 car
10-2186 (10-2186-01) southern France	fruit	0* 0 1 3 5	<0.01 0.04 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02 <0.02	<0.01 0.01 0.01 0.01 0.01 0.01	0.04 0.00 0.04 0.04 0.04
GLP: yes 10-2186 (10-2186-02)	fruit	7 0* 0	<0.01 0.03 0.06	<0.02 <0.02 <0.02	0.01	Q < 0.06 Q 0.06 Q 0.09
Italy GLP: yes		1 3 5 7	0.00 0.03 0.05 0.03 0.03	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	0.01 901 901 90.01 0.01 0.03 0.04	0.06 0.08 0.08
10-2186 (10-2186-03) Spain	fruit	0* 0 1 3	0.04 0.11 0.10 0.08	0.02 0 < 0.02 0 < 0.02 0 < 0.02	\$	0.075 0.13 0.13
GLP: yes  10-2186 (10-2186-04)	fruit	4 7 0*\$	© 0.05 0.04	0.02	<0.01 <0.01 <0.00 <0.00	0.08 0.11 0.07 0.11
Portugal GLP: yes	*		0.05	0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.01 0.01 0.02	0.10 0.07 0.08 0.08
11-2087 (1-2087-01) Spain	fru	0* 0 %	0.053	0.02 0.02 0.02 0.020	<0.01 <0.01 <0.01 <0.01	0.13 0.10 0.083 0.084
GLP: yes	fruit &	14	0.07	0.029	<0.01 <0.01 <0.01 <0.01	0.096 0.086
(11-2087) (11-2087) Italy	fruit		0.036 0.14 0.062	0.0203	<0.01 <0.01 <0.01	0.066 0.17 0.089 0.095
GLP: yes		145	0.048	0.02 50.02	<0.01 <0.01 <0.01	0.083 0.091 0.047
(11-2087-03) Portugal GLP;		3 7 150	0.023	<0.02 <0.02 <0.02	<0.01 <0.01 <0.01 <0.01	0.17 0.063 0.057 0.055
11-2087 (11-2087-04)	fsuit	0*	0.026 0.120 0.034	<0.02 <0.02 <0.02 <0.02	<0.01 <0.01 <0.01 <0.01	0.054 0.056 0.15 0.064
Greece GLP: yes		910 5 140	0.034 0.032 0.032 0.021	<0.02 <0.02 0.025 0.026	<0.01 <0.01 <0.01 <0.01	0.064 0.053 0.067 0.057

DALT = days after last treatment

* prico to last treatment



Table 6.3.1.5-4: Recovery data for BYI 02960 in tomato

Study No. Trial No.		Portion	a.s./		Fortifi- cation	I	Recov	ery (%	(o)	Q°
GLP	Crop	analysed	metabolite	n	level	Individual		Max	Mean	RSD
<b>Year</b> 10-2186	tomato	fruit	BYI 02960	10	(mg/kg) 0.01	<b>recoveries</b> 93; 94; 94; 95;	\$ 93	104	98	
(10-2186-01),						97; 98; 98; 102; 104; 1,64	y · ·		S Z	
to (10-2186-04)				3	000	83; 91; 94	83		**************************************	5. Q
				3	<b>8</b> .50	90; 98,08	90	©98	\$95	\$4.8 ↓
GLP: yes 2010			DEA	16	overall		8	104	Q 96 Õ	5.7
			DFA	07 ⁾⁷⁷	0.02	87; 88; 9 <b>6</b> , 94; 96; 101, 01	Q87	184	94 Q	
			<b>&amp;</b> '	3 8	°0.05	94; 5, 97	94	97	95 4	1.6
			<u> </u>	25 7	0.86	83085; 8590; Q: 92	<b>®</b> 3	<b>9C</b>	884	4.00
				16	verall		83%		, 92	\$5.7
			PEAF	*0	0.0	73 81; 82, 84;		950	860	7.3
						90, 89, 35, 90, 91; 95		Ï		
		@)		3	0.100	83; \$2; 93	830	93	89	6.2
		Ž,		10	0.50	85,92; 107	\(\varphi\)	167 ~107	95 88	10.9 8.4
11-2087	tomato	fruit O	BX 02960	2 16	erall 0.01	98; 102	95	102	100	8.4
	&)	fruit	B (2960)	Ÿ	0.0		<b>Q</b>	106		
(11-2087-01), to				1	\$\frac{1}{2}.0	105 0	105	105		
(11-2087-04)				4	overa		98	106	103	3.5
GLP: yes 2011			DFA S	<b>7</b>	0.02	165; 91 6	91 84	100 84	96	
, Ø	O ^y		A	1 6	4.0	97	97	97		
	گ			Q.	overall		84	100	93	7.6
<b>4 Y</b>			DFF F	2	0.01	<b>9</b> 6; 99	96	99	98	
				10	0.10	101 114	101	101		
				5 4 .	overall	114	114 96	114 114	103	7.7
	<u> </u>				overall		90	114	103	7.7
4	≪y″ ′									
A.	. O .									
			¥							
		Ş								
	Q, 4									
<b>)</b>										



#### <u>Greenhouse</u>

Report:	KIIA 6.3.1.5/03, ;	2012	
Title:	Determination of the residues of BYI 02960 in/on tor BYI 02960 SL 200 in the greenhouse in Germany, the Belgium	mato after spray application e Netherland France (North	of the and
Report No. & Document No.:	10-2190, dated March 1, 2012 M-426300-01-1		

Report:	KIIA 6.3.1.5/04,	2012	
Title:	Determination of the residues of BY1 0296 application of BYI 02960 SL 200 of the gr Spain	60 in/on tonato and choreenhouse in Garanany,	Qe Neto rlands Italy and
Report No. & Document No.:	11-2085, dated March 3, 201 M-427056-01-1		

Guidelines (applies to both studies):	Directive 1/414 GEC, residues of or on freated Groduct food and feed SC guidance working of cumpy 7029 01/95 res. 5
GLP (applies to both studies):	yes (Ortified laboratory); Deviation none

#### I. Materials and Methods

Eight residue trials were condered in the granhouse, as follows

In 2010, 4 trials (German), the verner wids, northern Prance and Belgium were conducted to support the use of BYI 6 960 \$\frac{1}{2}\$ 200 in tomato (\$\frac{1}{2}\$ & \$\frac{1}{2}\$ & \$\frac{1}

Four further trials were carefed out in 2017, in 65 mans, the Netherlands, Italy, and Spain, to complete the data package (\$\frac{1}{2}\text{0.12}\text{0.14}\text{0.63}\text{0.1.5}\text{0.4}\text{)}. The basic application parameters were similar to those in 2019, except that applications were made at a nominal rate of 0.563 L/(ha×m), corresponding to 112.5 g/(0.4×m) SYI 0.560 as. Again, all treatments were made at the scheduled rates.

Samples of mate truit fore taken impediately prior and subsequent to the final application, and at several intervals hereafter (up to 7 days after treatment in 2010 trials and up to 14 days in 2011 trials). The episage of HI vas 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAF using methods 01304 (2010 trials; for method details, cf. KIIA 4.3/03) or 01212 (2011 trials; cf. KIIA 4.3/05). The respective LOQs for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).



#### II. Findings

Validation of tomato fruit was done within method 01304 (2010 trials; for method details, cf. KIIA 4.3/03) or within method 01212 (2011 trials; cf. KIIA 4.3/05). Concurrent recoveries of BYI 02,000 and its metabolites DFA and DFEAF were obtained from samples of tomato fruit. This sample material is representative of all sample materials collected in these trials.

The recovery samples for parent and DFEAF were spiked levels of 0.50 mg/kg and 10 mg/kg, as well as 0.50 mg/kg or 1.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries were all within acceptable ranges (86-95%, RSDs of the larges validations was [n > 2] 4.2 0.9%, =1-70

Fortification levels for DFA were or 0.02 mg/kg, 0.05 mg/kg, and 0.50 mg/kg (2010 study) as well as 0.02 mg/kg, 0.20 mg/kg, and 1.0 mg/kg (2011 study) expressed in 0.71 0.760 equivalents). Mean re-coveries were all within acceptable ranges (88-35%, PaDs of the larger validation sets [6-2] 1 4.6.2%, n=1-7).

Details of recovery data are shown in Table 5.3.1.5-5. All rial data are summassed below in Table 6.3.1.5-5a & b and in greater detail in the Tier I summary forces. (Residue of parent BY 0.02960 as well as its metabolites DFA and DFEAP are expressed in BV 0.02960 equivalent.) From these individual values, the "total residue of BY 0.02960" was calculated as the sum of these three analytes, expressed in parent equivalents.)

On day 0, immediately following the 2nd and final treatment, revidue Evels in fomato fruit were between 0.07 and 0.77 mg/kg (mo) an 0.97 mg/kg). Fragley the envisaged PHI — the levels were 0.08-0.37 mg/kg, with a rectian value of 0.13 mg/kg.

The analytical results revealed the total residue levels often had not be reached their highest levels at the nominal PHI (3 days). This was already evidencen the 2010 trials, in which peak residue values were seen on day 5 (2 trials), or day 7 (1 trial), the final day of sampling. In order to capture the maximum relevant esidue levels additional sampling was conducted up to 14 days after treatment in the 2011 program, in those trials, the dighest residue levels were seen on day 3-4 (3 trials), or day 14 (1 trial).

Maximum residue levels at any relevant sany ling overval ( $\geq$ 3 days post-application) over the complete set of trials ranged from 209-000 mg/kg (median 0.14 mg/kg).

#### Evaluation of epresentatively.

As highest residual evels were seen on the final sampling interval of two trials (10-2190-02, day 7; and 11-208-04, day 4), the entire set of trials was re-evaluated for its representativity.

In the 2014 package, residues essentially showed "plateau behaviour", with residues remaining fairly constant from the PHI to the final sampling date (day 3 to day 7). Even in trial 10-2190-02, in which residues peaked on the final day of sampling (day 7), there was only a very minor increase in residues over time, from 0.13 mg/kg on day 3 to 0.15 mg/kg on day 7. These "increases" are very small, with



the difference per sampling interval of only 0.01 mg/kg, and also within the scope of analytical error or variability caused by sampling.

In 2011, trials 11-2085-01 to -03 showed slightly decreasing behaviour or at least "plateau" levels starting at the PHI. In trial 11-2085-04, there was an continuous increase in resources over time from 0.24 mg/kg on day 3 to 0.35 mg/kg on day 6 to 0.45 mg/kg on day 10 and to 0.50 mg/kg on day 14. Between day 3 and day 6 as well as days 6 and 10, there was an increase over time of 0.10 mg/kg, respectively, while between days 10 and 14 there was only by increase of the sidues of 0.05 mg/kg. However, 0.50 mg/kg found at the last sampling day is the highest residue value found in any of these trials. It will "drive" the MRL (see KIIA-8.7.2), and thus must be considered carefully during MRL-setting.

## III. Conclusions (tamato, green wuse)

In order to support the use in the EU of YI 02060 in comato, 8 valor trials were conducted in the greenhouse in the years 2010-2011. BYI 02060 was applied twice as an YL 200 formulation at an active substance rate of 125 g/(ha in) per freatment in 2010 and 112. G/(ha in) per freatment in 2011, both of which support the intended user ate (1) 2.5 g/(ba×m). The application in orvals were approx. 10 days. All applications were at the required rates, and all trials were conducted according to GLP.

Samples were taken immediately after the 2nd application and at several interval thereafter, including the envisaged PHI of Mays. They were analyzed or the clevast residues of BVI 02960, comprising the parent compound and its metabolites of A and DFLAF. The residues of all three analytes were summed to yield a calculated "total residue of BVI 02960". The residues of all three analytes were demonstrate that

- total residues of BYL 2960 temain of fairly constant in temate fruit between the final application and be nominal PLO, from evels of 0.07-0.37 Gg/kg on day 9 after the final treatment to 0.08-0.37 mg/kg on day 3. The respective median values were 0.17 and 0.13 mg/kg, respectively.
- analytical results revealed that to di resione levels often had not yet reached their highest levels at the nominal PHI.
- peak residue levels at any relevant sampling interval (≥3 days post-application) ranged from 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0
- despite the relayed attainment of the maximum residue levels, the trials reported here are considered to word representative results suitable for MRL evaluation. (Care must be taken during MRI calculation to evaluate the effect of the HR of 0.50 mg/kg on the MRL proposal.)



Table 6.3.1.5-5a: Application scenario in residue trials conducted in/on tomato after spraying with BYI 02960 SL 200 in the greenhouse

Study No. (Trial No.)				Application	I		
Country							
Location	Crop	FL		les/les		GS &	Ø PHI∂S
Location	Variety	FL	No.	kg/ha (a.s.)	Kg/AJ/	GS &	(days)
Region				(a.s.)	(a.s.)	Ş	
Year							
10-2190	tomato	200 SL	2	0.200	0.0167	Č82 Š	7 30°
(10-2190-01)	Albis	200 52	_	(0.125 kg/[ha×ns])	0.0107		
Germany						Y Q	
			4		. 4	d.	(C)
Greenhouse			00"	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>?</b>		) Ö
2010					.0		
10-2190	tomato	200 SL	2 0	0 2500	0.0167	b' '//	3
(10-2190-02)	Doloress	200 520		(0.19  kg/[kg/m])	5		A
Netherlands			~				
			<b>Y</b>		°°°		
				f ~~ ~0,			
_		64 47			Y Z	Q ^y A	<u> </u>
Greenhouse		¥				J V	1
2010			<b>\$</b>				
10-2190	tomate	200 SI. °	20	0.158 kg/[ha×m]) 0.188 (0.125 kg/[ha×m])	0.0160		3
(10-2190-03)	2. 8	200 50	2 0	(0.125 kg/[ha×m])	0.010	O ⁹	3
France	Cristal (		W)			Ö	
	ogsme .					¥ ·	
	Stappe					ĺ	
Greenhouse	å å z	V a.	~				
(//			<i>S</i> '		~		
10 2100	at mate a //	200 CI %	2 %	0.188	0167	86	3
(10-2190-04)	Madison	200 5	2%	(0.125 kg/[63×m])×	0.0107	80	3
Belgium O	Madison Madison						
		3					
Greenbause							
2010				(0.125 kg/[0.1×m])*			
I – formulation			¥1	(BBC) code) at last t			
L – Iormulation		203 – gty	rın stage	(BBC Scode) at last t	reatment		
<i>O1</i> .		Ò Ö		Ö.			
~\$~ (				<b>*</b>	Con	tinued on ne	ext nage
4	O' 29'			Ü	Com		om puse
Ø*			~~\	1			
M.			.~Q″				
			A .				
, *			) <b>*</b>				
@ `							
\tag{\frac{\pi}{\pi}} \tag{\pi}		)					
ÖZ EĞ	o s	¥					
	1 ~ O						
	* . * ? *						
	~						
Greenhave 2010  L = formulation							



Table 6.3.1.5-5a (cont'd.):Application scenario in residue trials conducted in/on tomato after spraying with BYI 02960 SL 200 in the greenhouse

G. I M	T T	I	l			I	0,	
Study No.				Application	1			
(Trial No.)								
Country	Crop	EX			<u>~</u>	CC .	© PHIA	
Location	Variety	FL	No.	kg/ha	kg/kg (a.s.)	GS 4	PHIO (days)	
Destan	•			(a.s.)	(a.s.)	Q		₽ ₀
Region					. / - /	(( ))		Q) I
Year	4 4 -	200 GF	_		7 0 01 70	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		a
11-2085	tomato Mikano	200 SL	2	0.525	0.0150			4
(11-2085-01)	Mikano			10.113 kg/[na×ig/s	,	\$ 88 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
Germany			_1 [©]	(0.113 kg/[ha×ns])			Ö ,	,*
						. 0		
Greenhouse			40		~ "		~\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	
2011		<u>&amp;</u>			W 4		W.	
11-2085	tomato	200 SL	*	0.113 kg/[ha×y]	10° 0150	<b>%</b>	3 4	
(11-2085-02)	Komeet	200 aL	~ <b>~</b>	0.200 0 (1) 13 kg/[ha×m]	0.0130	083		
Netherlands	Tomato	~ ~	7				Z.	
recticitatios	Tomato		, «(					
			. Q			Q' 7		
	4		~		Š	S . I	,	
Greenhouse	~	, Q	þ.					
2011			Ô		0 8			
11-2085	tomato, &	20051	A7	0.225	0.0850	81	3	
(11-2085-03)	cheary O	. D	Ű	(0.113 kg/[ha×nQ)			3	
Italy		\ \Q^\				<b>Y</b>		
	A Comotow		\ \tag{\partial}					
	Tomato		Ş		L'Y			
					<i>a</i> ,			
Greenhouse	0, 22,							
Greenhouse 2011	¥		44		J [*]			
11-2085	tonzaro,	200 SL .		Q225 O , O	0.0150	83	3	
(11-2085-04)	cherry	1 4 8	y	00.113 kg/[haxm])				
Spain Spain	Juindo		Q.					
	tongaro, cherry fruind Tomas cherry	BCIQode) at	° 0,	0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	cherry ~	" O _x 2	Ů,	& A"				
Greenhouse				P				
Greenhouse	chetry		Ş	Ş				
2011 ©			~~ O	, O				
FI = formulation GS =	gradula stage	DCI/Ocda) of	Mart tra	O ant				

FL = formulation GS = growth stage (BBC) Gode) a Plast tree ment



Table 6.3.1.5-5b: Results of residue trials conducted in/on **tomato** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			Residues (mg/kg) expressed as BYI 02960								
(Trial No.) Country	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02960- DFE	total reduce of BYI 02960 cash					
<b>GLP</b> 10-2190	C :	0*	0.02	10.02	20001						
(10-2190-01)	fruit	0* 0	0.03 0.11	<0.02 <0.02	\$\frac{1}{2} \text{0.01}						
Germany		1	0.06	<22	0.01	209					
Gumany		3	0.06	<0.02	Q <0.01	30.09					
GLP: yes		5 7	0.06 0.06	\$0.02 \$\left(-0.02)\$	<0.01						
10-2190	fruit	0*	0.04	© <0.02 ~	<0.01	<b>3</b> .07					
(10-2190-02)		0	0.14	<0.02	<0.01	\$\int_0.17\$\footnote{\pi}\$					
Netherlands		1 3	0.11 & 0.10 O	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9001 9001	0.14					
GLP: yes		5 7	0.11	002 002 002	0.01 4 <0.05	9.15 P					
10-2190	fruit	0*	673 n. S	Ø-0.02 ×	√ <b>20</b> 001 <b>€</b>						
(10-2190-03)		0	\$1.08 \( \sqrt{1} \)		0.01	0.14					
northern France			0.05	<0.02	0.00 × 5	\$ \Q_{0.08}^{11}					
France		3 5	088 Q V \$408 Q	©0.02 6		> 0.11					
GLP: yes		7 @		\$ < 0.020° \$	Ø.01 Ø.01	0.11					
10-2190	fruit	0	( 0.02 A	√ <0.02 √ ·	<0.00	0.05					
(10-2190-04)			0.00	<0.02 \$<0.02		0.07 0.07					
Belgium	.,,	3	0.05	Q < 0.00 Q	0.01	0.08					
GLP: yes		57	\$\int 0.07 \$\int 0.0\$\int 5	0.9/2 7.02 0.02	0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 × 0.0 ×	0.10 0.07					
11-2085	front	0*0*	₩5 ~	0.020	<b>2</b> .01	0.18					
(11-2085-01)	10° 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.29 × 0.27 0 ×	<0.02	<0.01 <0.01	0.32 0.30					
Germany		<b>4</b>	0.200	0.02	© <0.01	0.28					
GLP: yes		\$\bigsim \frac{10}{14} \times	0.25	0.02	<0.01 <0.01	0.25 0.18					
11-2082	fruit	*Q**)	0.045	O < 0.02	< 0.01	0.075					
(11-2085-02)	3		Q. Q. Q. Q.	\$\square\$0.02 \times^1	<0.01 <0.01	0.17 0.13					
Netherlands		A 7 &	2.078 V	<0.0	<0.01	0.13					
		100	0.0857 0.0550 0.0530	<0.02 <0.02 @<0.02	<0.01 <0.01	0.11 0.086					
11-2085	fruit	00* ~		Ø<0.02	<0.01	0.16					
(11-2085-6)	, Q		Ø 34	<0.02 > <0.02	<0.01 <0.01	0.37 0.37					
Italy 🔻		<i>3</i> ∜	0.22	0.027	<0.01	0.37					
GLP: yes	<b>∜</b> ″	00	7 007 07	0.034 0.054	<0.01 0.010	0.32 0.32					
11-2085	fruit		0.25 0.06Q 0.24 0.27 0.32 0.36	0.022	< 0.01	0.099					
(11-2085-04) (			0.24	$0.026 \\ 0.037$	<0.01 0.015	0.27 0.24					
Spain		6 5	0.27	0.063	0.013	0.24					
GLP: yes		100	0.32	0.10	0.026	0.45					
GLI . yys	\$\frac{1}{2}		0.36	0.11	0.029	0.50					

DALD= day offer last@eatment*
* prior to lactureatment



Table 6.3.1.5-6: Recovery data for BYI 02960 in **tomato** 

Study No. Trial No.					Fortifi-		Recov	ery (%)		Ø1°
i mai No.	Crop	Portion	a.s./	n	cation					
GLP Year	Стор	analysed	metabolite		level (mg/kg)	Individual recoveries	Min 2	» Max	Mea	RSD
10-2190	tomato	fruit	BYI 02960	10	0.01	93; 94; 94; 95; 97; 98;	93	104	\$98	¥.2
(10-2190-01),					Č	98; 102; 104; 4		% %j		
to (10-2190-04)				3	0.10	104 83; 91; 91	83	\(\mathcal{O}\)		
				3	0.10 Ø0	90; 98;	。90 。	0 98	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.8 m
GLP: yes 2010				16	overall			100	) %	507
			DFA		0.020	87.08; 90; 9 94, 96; 101;	<b>707</b>		~~~94 ~~~~~	<b>3</b> 6.2
				3 %	0.05	94: 95, 97.	)* 94(\)*	99		
				6	0.53	87, 85; 85 90; 91; 92	83 83	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}	₹ 88 °	4.0
				16%			835	100	<b>9</b>	5.7
			PYI 02960 -DFFAF	<b>16</b> 3 T	0.6	73 81; 820 64, 86; 54, 89; 90, 54; 95,	<b>3</b>	)	°~86	7.3
		<b>*</b> 0		3 6	v 0.100	83; 92; 93	~ <u>8</u>	<i>y</i> 3	89	6.2
		~ A			0.50	87;\\\92;\\1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\frac{8}{7} \tilde{\beta}	¥07	95	10.9
11-2085	tomate	fruit	Q 029@0	16 1 &	0.01	100	100	107	88	8.4
	tomata	\$ %		1	(0.Q))	169 L	<b>2</b> 00	100		
(11-2085-01), to	( n	N (%\)	A 4	/1	<b>41.0</b>	94 (\$\tilde{\pi}' \tilde{\pi}	94	94		
(11-2085-04)	ð S			3 0	overa	O W	94	100	98	3.5
GLP: yes			DFA A	<b>\bar{b}</b> "	0.002		93	93		
2011	%			1 1 %	0 × 1 0	92	98 92	98 92		
	39				ov@all		92	98	94	3.4
			BY 002960	1	Ø.01	98	98	98		
~			*DYEAFO	1%	0.10	100	100	100		
					100	87	87	87		
	2/			3	everall		87	100	95	7.4
to (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (11-2085-04) (1					ý					



#### **IIA 6.3.1.6** Fruiting vegetables – sweet (bell) pepper (solanacea)

BYI 02960 is to be registered in Europe for use in sweet peppers. European residue data in pepper are therefore presented below to support the intended use. Use pattern (GAP) information, including the European "agricultural use" as well as the "home & garden use" to be supposed, is summarize Table 6.3.1.6-1.

Table 6.3.1.6-1: Use patterns (GAPs) for the spray application of BYL 2960-containing formula in/on peppers in European fields (southern residue residue) and greenhous

Description	F/G	No. of appls.	Application rate
"agricultural" use*	G	2	112.5 450Q 750 10 10 10 10 10 10 10 10 10 10 10 10 10
"home & garden"**	F [†]	1 2	11.2.7 1 1.2.5 500-750 1/a 3 3 14.2.5 2 225 2 500-750 214 3

In order to support the EU safe up of BI 02000, set of GLP trial were and upod in southern European fields in 2010 and 2011 and in the seenhouses in 2011. In southern European field-grown peppers, BYI 02960 was applied twice as an SL formulation (BY 02960 SL 200, containing 200 g/L BYI 02960 a.s.), at A-day interval. For the use in graphouses, BYI 02960 was applied as in the field, but at 10-day intervals. In both cases, the envisaged HI was 3 days, reflecting the planned well withe intended worst wase field use. agricultural use On the Greenhouse,

Residue levels of BYI 02960 and its notabolites DFA and JFEAF were analyzed individually and summed to yield the carculated "total residue of BOI 02960". The most critical residue levels were observed in the greenhouse trials on which a highest total residue value (HR) of 0.63 mg/kg was determined. The TMP in the trial was also the higher the two sets, at 0.27 mg/kg.

The number of trials conducted to each use de cribed dove (incl. information on geographical region and vegetarion period) is sumpairized below in table 6.3.1.6-2.

agricultural use based on an SL 200 formular in "home & garden" uses with an SL 50 form of the general public of a retail

uses in the southern residue region (EU-S)
core rate per meter plant foliage height@resting hargreenhouse based on a machine the core rate per meter plant foliage height@resting hargreenhouse based on a machine the core rate per meter plant foliage height@resting hargreenhouse based on a machine the core rate per meter plant foliage height of 2



Table 6.3.1.6-2: Overview of European residue trials conducted in peppers per geographical "residue region" and vegetation period, including key results

Use description (cf. table 6.3.1.6-1)	Region	Veget.	o. of tria	als V	(mg	e levels /kg)	Report No.  Dossier  Jef.:  IIA	
(en table dellio 1)		2010	2011	<u> </u>	HR	STMR	6.3.1%	
trials in Eur	.OPE					*		
"agricultural" use	G	-	8	8	<b>3</b>	0.27	11-2081	(
"home & garden"	EU-S	4	4	8	Ø 0.25		10-2187 0 0 02 4	

EU-S = southern EU field residue region, G = greenhouse

#### Southern European residue region (field)

Southern European residue region (field)						
Report:	KIIA 6.3.1.6/01, 2012 2012 2012 2012 2012 2012 2012 2					
Title:	Determination of the Desidue of BY 02960 M/on sweet paper after spraying of BYI 02960 SL 200 in the field in France (south), Italy Spain and Partigal					
	SL 200 in the field in France (sound), Italy Spain and Partigal					
Report No. &	10.2187 dated Ontember 27. 2012					
Document No.:	M-439089-01@					

Report:	KIIA 663.1.6/02, 2012
Title:	Determination of the residue of BY 1/2960 Won sweet perper after spray application of
	BY \$42960 \$L'200 of the field in southern France Spain and Italy
Report No. &	1@2083 dated Stemb 25, 202
Document No.:	\$\text{396}83-01\text{1} \tag{9}

Guidelines (apples to goth studes):	Directive 91/41@EEC sidue on or of treated products, food and feed
	DEC Guidance Vorkin@document 7029/VI/95 rev. 5
	US PA OCSPP Coideline No. 869:1500.SUPP (applies only to 11-2075)
GLP (applies to both studies):	yes (certified laboratory); Deviations: none

the outher European residue region, as follows:

Spans, and Fortugal were conducted to support the use of BYI 02960 SL 200 in sweet peppers 2012 KII26.3.1.6/01). Two applications were made at intervals of 14 days at a cominal rate of 6.625 \$\mathbb{Q}\$/ha, stresponding to 125 g/ha BYI 02960 a.s.; the water rate was 500-800 ha, reflecting local practice in the trial regions. All treatments were made at the scheduled rates, exemple treatment in one trial (10-2187-01, first application overdosed by The higher application are used in 2010 was 11% higher than the rate to be registered, thus well within the EU's acceptance criteria for use pattern comparability.)

Four further trials were carried out in 2011, in France, Spain, and Italy (2), to complete the data , 2012, KIIA 6.3.1.6/02). The basic application parameters were as in 2010, except

that applications were made at a nominal rate of 0.563 L/ha, corresponding to 112.5 g/ha BYI 02960 a.s.; water rates ranged from 600-750 L/ha. All treatments were made at the scheduled rates.

Samples of pepper fruit were taken immediately prior and subsequent to the final application, and at several intervals thereafter (up to 7 or 14 days after treatment in 2010 and 2007 trials, respectively). The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFFAF using method 01304 (2010 trials; for method details, cf. KIIA 4.3/03). The respective LOG for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

#### II. Findings

Validation of pepper fruit was done within study 13-2187 of. KIOA 6.3.P.6/01). Concernent of recoveries of BYI 02960 and its metabolites DEA and DEAT were obtaine Concernently to the analysis of the field samples of sweet pepper ratio of all studies. This sample materials collected in Dese trads.

The recovery samples for parent and DPEAF Were spiked a develooff 0.01 mg/kg and 0.10 mg/kg (expressed in BYI 02960 equivalents), as will as 1.0 mg/kg (expressed in BYI 02960 equivalents) for 2011 trials. Mean re-coveres were all within a ceptable ranges (88-702%) XSDs of the larger validations sets [n>2] 2.6-6.6%—n=2-6).

Fortification levels or DFA were or 0.02 mg/kg and 0.20 mg/kg, as well as 1.0 mg/kg (expressed in BYI 02960 equivalents for 2014 trials. Mean recoveries were all within acceptable ranges (90-98%, RSDs of the larger variation sets 0 > 2]4,9-4.3%, n=26).

Details of recovery data are shown include 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wal data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.6. All wall data are summarised below in table 6.3.1.

On day 2 mmediately collowing the 2nd and final treatment, residue levels in pepper fruit were between 0.069 mg/ts and 0.32 mg/tg (mo final collows). On day 3 — the envisaged PHI — the levels were 0.05-0.25 mg/tg, with a median volue of 0.13 mg/kg.

The analytic of results revealed that total residue levels often had not yet reached their highest levels at the nominal PHI days. This was already indicated in the 2010 trial packages for other crops, although peak a sidue values or peppers were seen on day 6 in one trial as well. In order to ensure that the maximum revenue residue levels are captured, additional sampling was conducted 14 days after treatment in the 2048 program; in those trials, the highest residue levels were seen on day 14 in 3 trials.

Maximum residue levels at any relevant sampling interval ( $\geq$ 3 days post-application) over the complete set of trials ranged from 0.05-0.25 mg/kg (median 0.17 mg/kg).

### **Evaluation of representativity:**

As highest residue levels were also seen in samples taken after the envisaged OHI of 3 days – on day 6 (trial 10-2187-04) or on day 14 (11-2083-01, -02, and -04) – the entire set of trials was recevaluated for its representativity.

In the 2010 package, either "normal" or "plateau" residue behavious was evident in all fore of the trials at PHI 3. Only in trial 10-2186-04 were residues on day 5/6 (0.12 mg/kg) higher than an day 3 (0.11 mg/kg). However, this increase is very small, and even within the scope of suppling or analytical variability; also, as mentioned, a plateau local appears to have been regarded.

In 2011, peak residues were determined at the scheduled PHI & days in trial 11-2083-03, although similarly high levels at the day-10 sampling diggest fore of a "placau". At trial 11-2083-01, 202, and -04, residue levels increased slowly and somewhat explicitly from the PHE to the small sampling event (day 14). Although it is the detically possible that these values might continue to inspease slightly, the slow and generally regular nature of their "as ensions" the fact that peak residues were, in fact, seen at earlier sampling intervals in 5 of 8 the trials in this package; and the fact that none of these trials represents a "remarkable" value, e.g. the HR, in this data set would seen to indicate that the values are indeed part of ore population, and representative of the whole. However, as they are close to the HR, which itself of an important "driver" of the MRD (see MIA 67.2), these trials must be considered carefulls during MRI Detting

# III. Conclusions sweet peppers, southern European residue region)

In order to support the use in the EU of BX 02960 in peppers, availed trials were conducted in the southern European esidue region in the years 2010-2011. BYT 02960 was applied twice as an SL 200 formulation at affective substance rate of 112.5 g/ha per treatment in 2010 and at an active substance rate of 112.5 g/ha per freatenent in 2011. Both of which support the intended use rate (112.5 g/ha). The application intervals were approx. All applications were at the required rates except for a very min deviation in one trial, and all trial were conducted according to GLP.

Samples were taken immediately after the 2nd opplication and at several intervals thereafter, including the envisaged Poll of 3 days. They were analyzed for the relevant residues of BYI 02960, comprising the parent coopound and its metabolites DFA and DFEAF. The residues of all three analytes were summed too field a calculored "total residue of BYI 02960". The results of the trials presented above demonstrate that

- Total revalues of BYI \$2960 remained fairly constant in bell pepper fruit between the final application and the nominal PHI, from levels of 0.069-0.32 mg/kg on day 0 after the final treatment to 0.05-0.25 mg/kg on day 3. The respective median values were 0.12 and 0.13 mg/kg.

- analytical results revealed that total residue levels often had not yet reached their highest levels at the nominal PHI.
- peak residue levels at any relevant sampling interval (≥3 days post-application) ranged from 505-0.25 mg/kg (median 0.17 mg/kg).

  despite the delayed attainment 507
- angolis, a consider the first of the first o Signature of the state of the s The state of the s despite the delayed attainment of the maximum residue levels, the trials reported hereafter considered to yield suitable results for MRL evaluation and the trials ampling integral.



Table 6.3.1.6-3a: Application scenario in residue trials conducted in/on peppers after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

	02900 SL 200	I III UIO IIOIG	1 20000001			T	0	~
Study No.				Application	I			
(Trial No.)					kg/hk (a.s.)			D. T.
Country Location	Crop	FL		1/1		GS 4	© PHI	
Location	Variety	FL	No.	kg/ha	kg/h4	GS 4	(days)	
Region				(a.s.)	(a.s.)	Ş		Ĉn
Year				<b>.</b>		`~\	PHIO (days)	7
10-2187	pepper,	200 SL	2	0.125-0.133	<b>2</b> 0.0250-	Č/82		_e ©
(10-2187-01)	sweet				0.0250			Ô
France	Albi		, Š			~ ~		,
				Q.		\$		
			<b></b>					
EU-S		<b>&amp;</b>	, Q°					
2010 10-2187		0°	W .	0 120	0 0 0 0	·	4	
(10-2187-02)	pepper, sweet	200 SL	\$\frac{1}{2} \times \$\left(  \)	kg/ha (a.s.)	0.0179	0,2	3 5	
(10-2187-02) Italy	Ividor			D J	D' ,			
Tury							O	
	e ⁽		~ \$ \( \frac{1}{2} \)	9			<b>b</b>	
EU-S		1 . "0" ,						
2010		200 SL			1 8° ~			
10-2187	pepper sweet	>200 SL	<b>O</b> '	0.12	0.0156	Ö ³	3	
(10-2187-03)	Sweet		L O	4 7	¥ . Q	i i		
Spain	Tipo Italiano					Ų.		
EU-S 2010 10-2187 (10-2187-04) Portugal	Carboni - Carbo Italiano	200 SL						
2010				. W	) 'Y			
10-2187	pepper ( )	200 SL	2	0.12	<b>179</b>	79	3	
(10-2187-04)	sweet				<b>₩</b>			
Portugal O	Pompeu -	<b>V</b> ,			y			
S	Musu y							
			S ;	9 2				
EII C								
2010								
FI = formulation		OCS = Securit	th state (BB	MCH-code) at las	et treatment			
FLI-S = southerne grone &	Secidue Secion's		O Se (DD	Ti-code) at las	st treatment			
LO-5 — souther Suropeut	residu 4egion 4				Com	4:		
			L		Con	tinued on ne	exi page	
	Q Q .							
		`_@\\````	Ž					
		Q S	y					
_@\ [\]	. 4							
A . A		, ×						
EU-S 2010  10-2187 (10-2187-04) Portugal  EU-S 2010  FL = formulation EU-S = souther Gurope of								
		y						
T D A								



Table 6.3.1.6-3a (cont'd.): Application scenario in residue trials conducted in/on **peppers** after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

	WILLIBITY	J2900 SL 20	00 111 tile 1	,		e region,	0	
Study No.				Application	l .			
(Trial No.)								7 × 7
Country	Crop	-			<b>*</b>		© PHIA.	
Location	Variety	FL	No.	kg/ha	kg/hk (a.s.)	GS 4	PHI (dass)	
ъ .	•			(a.s.)	(a.s.)	Q		A_
Region					× 1"	, Oʻ		<i>Q</i> )
Year	1	200 GI	0 ~	0.112	Ø 0 0100	\(\sigma\)		Ø n
11-2083 (11-2083-01)	pepper, sweet	200 SL	2 🔻		0.0188	81		4
France	Albi		4					
	Hybride		4	Q,	۰ . ۵	1. 1	© ,@	V
					6 KU		W I	
EU-S		//-		Ø' ,\^			29	
2011		~				<b>7</b>		
11-2083	pepper,	200 SI			\$\frac{1}{2}\text{0.0161-0}\text{0.01}\text{8}	\$2		
(11-2083-02) Spain	sweet				0.01		(	
Spain	Lloret							
	<b>.</b> (						<b>)</b>	
EU-S								
2011		200 SL		0.110	0.0188 0.0188			
11-2083	pepper sweet	≈200 SL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\mathcal{L} 0.11$	0.01880	ð e	3	
(11-2083-03) Italy	sweet		\$ 0	4 2	A "Ø			
Italy	sweet (							
EU-S	A A			\$ 6				
2011 11-2083 (11-2083-04) Italy	pepper, so eet Cleor	20 SL			0.0130	82	3	
(11-2083-04)	so eet	W ~	, 9					
Italy	Cleor 🗸 🦿			Z. Z.				
	, O C	)" & "O"			] 7 <i>0</i>			
FILS		.1 ~			1			
2011								
FI - for Viction C%	Uraysh Obac (PI	PCH of at	ko Otrootmo	J				
FL = IOI Malation Cos	-growth stage (BI		rist treatme					
EU-S — Southern European	1 esiduz region		, O'	~				
Q		. T		Ţ				
		/	, O' . (	7				
4, 29	A	' <b>Ö</b>						
		Q S	<b>)</b>					
		W &						
4 4		¥ Q						
		<i></i>						
EU-S 2011  FL = formulation GS EU-S = southern Europy n		~						
	y Jy							
Ö								
-								



Table 6.3.1.6-3b: Results of residue trials conducted in/on peppers after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.			Re	esidues (mg/kg) exp	oressed as BYI 029	60
(Trial No.)	Portion	DALT			BYI 02960-	
Country	analyzed	(days)	BYI 02960	difluoroacetic acid	difluor ethylan no-	total residue of BYI (2960 cas
GLP				acid	furanone	
10-2187	fruit	0*	0.05	0.03	.01	0.08
(10-2187-01)		0	0.09 0.06	0.63	<0.01 <0.01	
France		3	0.08	0.03	Q <0.01	\$0.12
GLP: yes		5 7	0.04 0.05	0.03	<0.01	
10-2187	fruit	0*	0.01	© <0.02 ~	(0.0°15)	04 0
(10-2187-02) Italy		0	0.05	<0.02 %		3 0.08 3 V
Italy		3	0.02	Q < 0.05	©0.01 ®	( 0 <u>.</u> 0 <u>.</u> 0.
GLP: yes		5 7	0.02	© 002 002 002	<0.01	005
10-2187	fruit	0*		©<0.02<	<b>7</b> .01	₩ 0.02°°°
(10-2187-03) Spain		0	0.25		0.01 0.02	0.28
Spain		3	0.21	0.03	\$\langle \cdot \cd	\$ ₹0.24
GLP: yes		4 7 @	002	0.04 0.04	0.01	9 0.16 9 0.17
10-2187	fruit	G#	0.04	<0.02	<0.01	0.07
(10-2187-04) Portugal				( <0.02 ( <0.02	9 × 1 9 1 9 1	0.11 0.11
Tortugar		3 4	0.08	\$\langle \langle \cdot \langle \langle \cdot \langle \langle \cdot \langle \cdot \langle \cdot \langle \cdot \cdot \langle \cdot \cd	<b>40.01</b>	0.11
GLP: yes			20.08 0.05 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.01 0 <0.01	0.12 0.09
11-2083	fræ	0 0 0	0 2030	0.036	< 0010	0.077
(11-2083-01) France		$\frac{1}{3}$	0.13	9 0.038 9 0.045	0.010	0.20 0.17
1		√ P	0.1	0.065	© 0.010	0.19
GLP: yes		10 ≪ 14 ≪	0.093	0.087	0.011 0.015	0.19 0.22
11-2083	fruit Ø		0.003	0 000	< 0.010	0.15
(11-2083-02)	II UII			\$\text{0.038} \times	<0.010	0.069
Spain		3 3	Ž Ž. V.	0.046	<0.010	0.14
GLP: yes			0.063	\$ 0.00 \$67	<0.010 <0.010	0.17 0.14
~			~ 0.0 <del>~</del>	0.12	<0.010	0.20
11-2083	fruit	00* ~	0.07	0.12	<0.010	0.074
(11-2083-05) Italy	\$ \$\tilde{\chi}_{\chi}\$	0	0.22	<0.020 <0.020	<0.010 <0.010	0.32 0.25
,		A.	0.16	< 0.020	< 0.010	0.17
GLP. yes		©14 C		0.026 0.020	<0.010 <0.010	0.22 0.14
11-2083 (11-2083-04) Italy GLP: yes	G fruits		0.013	0.025	<0.010	0.049
(11-2083-04) Italy		\(\tilde{\gamma_3}^{\tilde{\gamma}}\) \(\pi\)	0.004	0.021 0.034	<0.010 <0.010	0.075 0.077
	S (		0.022	0.032	< 0.010	0.065
GLP: yes	Ž A	10	0.030 0.029	0.074 0.098	<0.010 <0.010	0.11 0.14
			0.047	0.070	<b>~0.010</b>	0.14

DAET = day after last treatment
* prior to Out treatment



Table 6.3.1.6-4: Recovery data for BYI 02960 in **peppers** 

Study No. Trial No.		D4*	1		Fortifi-		Reco	very (%	o)	, W
GLP Year	Crop	Portion analysed	a.s./ metabolite	n	cation level (mg/kg)	Individual recoveries	Min	Max	Mean	RSD
10-2187	pepper, sweet	fruit	BYI 02960	6	0.01	94;97; 98; 101; 101; 103	94	103		<b>7</b> .3
10-2187-01 to 10-2187-04				4	overall	<b>%</b> 9; 91; 93; 95	%√89 89	95×	92	2.8
GLP: yes 2010			DFA	6	067	89; 91; 91; 92; 93; 94 Q	89	\$\frac{3}{4}	<b>2</b> 2	01.9
				4 4	0.20 ove <b>a</b> ll	86; 87, 92; 90	86 [~]	94 ⁰	900 ~91	3.0
			BYI 02960- DFEAF	Q %	0.01	(79; 88; %3;93; (794; 94) (88, 671; 93, 793	© 79	94 A	90 🗳	6.6
11.0000		0. :		10 10	0.f%	88(91; 93,198	√79 √79	© 94	* × × ×	5.1
11-2083 11-2083-01	pepper, sweet	fruit	BYI 92960	2 2 8	0.18	88,701	93 \$	102	98 0	
to 11-2083-04		Z Z		_	coverall	(4; 102Q*	88	102	98 97	6.1
GLP: yes 2011			DIOX S	2 (V	0.02	94; 101	94 287	10A \$ 95	98 91	
	.fc			2	91.0 over	795; 90 °	95 87	97 101	96 95	4.8
			EYI 02960- A	7	<b>1</b>	96; 182	\$ 87	88	88	1.0
٥			DFE	c	1.65 overall	96; 102	96 99 87	102 105 105	99 102 96	7.7
					Y 1,					

#### Greenhouse

Report:	KIIA 6.3.1.6/03, 2012		
Title:	Determination of the residues of BYI 02960 in/on 02960 SL 200 in the Greenhouse in France, Spain,		
Report No. & Document No.:	11-2081, dated August 17, 2012 M-436855-01-1	A A	
Guidelines:	Directive 91/414/EEC, residues in or on treated pro EC Guidance working document 7029/V5/95 rev. 5 US EPA OCSPP Guideline No. 860.1500.SUPP		
GLP:	yes (certified laboratory); Deviation@none		

Eight residue trials were conducted in the gr

ere onducted to support the use of In 2011, 8 trials (France [2], Spain [2], Ital [2], and Green 2012, KMA 6.51.6/0.99. Two applications were made BYI 02960 SL 200 in sweet pepper ( at intervals of 10 days (13 in one trial) at a nominal one of 1.563 (Sha×m), corresponding to 112.5 g/(ha×m) BYI 02960 a.s.; the water ofte was 500-750 L/(ha×m) reflecting local practice in the trial regions. All treatment were made the cheduled rates with the exception one trial (11-2081-01) in which both applications were exercles by \$42\%\O\\ 59 \left(\lambda \text{km}\right)\), which is outside of the . Thus, his trist must be considered carefully in the EU's nominal acceptance criteria (25%) evaluation of the da package

work taken immediately prior and subseque to the final application, and at several intervals thereafter (up to 14 dath) after reatment). The envisaged PHI was 3 days.

ayzed for the parent compound and its marabolites DFA and DFEAF using The samples were and The respective LOQ for the 3 analytes were 0.01 mg/kg, method 01212

Validation of pepper fruit was done within studies 10-2226 (soil drench study; available on request) and within stude 1-2081 (cf. MIA 6 2.1.6/6). Concurrent recoveries of BYI 02960 and its metabolites To A and DFE were obtained during the conduct of all studies in sweet pepper. This sample material is epresonative of all ample materials collected in these trials.

ample for parent and DFEAF were spiked at levels of 0.01 mg/kg and 0.10 mg/kg, as well as 0.20 and 1.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries were all within accepta ranges (96-105%, RSDs of the larger validations sets  $[n \ge 2]$  3.1-8.1%,  $[n \ge 1]$  3.1-8.1%, [n

Fortification levels for DFA were or 0.02 mg/kg, 0.20 mg/kg, and 0.40 mg/kg, as well as 2.0 mg/kg (expressed in BYI 02960 equivalents). Mean recoveries were all within acceptable ranges (96-97%, RSDs of the larger validations sets [n > 2] 4.0-13.4%, n=1-7).

Details of recovery data are shown in table 6.3.1.6-6. All trial data are summar ed below in table 6.3.1.6-5a & b and in greater detail in the Tier 1 summary forms. (Residues & parent BYI 02960 are well as its metabolites DFA and DFEAF are expressed in BYI 02960 equivalents. From the individual values, the "total residue of BYI 02960" was calculated as the sum of these three analytes expressed in parent equivalents.)

On day 0, immediately following the 2nd and final freatment, residue levels in pepper vuit were between 0.11 mg/kg and 0.93 mg/kg (median 0.22 mg/kg). On day 3 the envisaged PHC the levels were 0.12-0.56 mg/kg, with a median value of 19 mg/kg.

The analytical results revealed that total residue levels often had not reveaced their highest levels at the nominal PHI (3 days). In these trial, the highest residue levels were seen on any 10 m one or al, and on day 14 in 5 trials.

Maximum residue levels at any Celevant sampling in Frval (2 day post-application) over the complete set of trials ranged from 0.12-0.6 mg/kg (median 0.27 mg/kg).

#### Evaluation of representativity:

Trial 11-2081-01 was everded by approx, 41% considerable larger deviation than those nominally deemed "acceptable in the EU (-25%). For this reason, results of the trial at various sampling intervals were evaluated in the context of the intire pepper green douse program presented here. Residue level at critical sampling Cents were close to the median over the entire set of trials. On day 0, immediately after the final approaction 0.25 kg/kg was determined in this trial (median of all trials: 0.22 mg/kg). Similarly the varies from e.g. day 3 (0.23 mg/kg) and from the maximum at any relevant interval (0.27 mg/kg) were very smilar to the respective median values over all trials, 0.19 and 0.27 mg/kg. Thus, despite the nominal overdosate, this trial can be considered to be valid and its data representative.

In addition as highest resolue levels was also seen in samples taken after the envisaged PHI of 3 days – on day 90 (trial 11-2001-01) or on day 14 11-2001-02 and -05 through -08) – the entire set of trials was re-evaluated for as representativity.

Either "normal," plateau" psidue schaviour was evident in three of the trials, 11-2081-01, -03, and -04, in which peak residues were measured on day 3 or 10. Similar behaviour was observed in 11-2081-05 and -65 as well, in which peak residues were seen at the final sampling interval (day 14); residue levels is these two tests were erratic from interval to interval, but fairly steady over time, and only running higher at day 14 (by 0.02 mg/kg) than at other earlier but non-consecutive intervals.

In the Paining three trials, residue levels increased steadily from approx. day 5 or 7 on, reaching their peak levels on day 14, the final sampling interval. Peak total residue levels here were 0.20, 0.40, and 0.18 mg/kg, meaning that none of these results is particularly close to the HR (0.63 mg/kg); even

if residues were to continue to increase, there is little indication that they would "arrive" at a level even close to the HR. This would seem to indicate that the values are indeed representative, and can be used in MRL evaluation.

The HR, 0.63 mg/kg, is itself derived from a day-14 sample (trial 11-2081-06), out as stated previously, the trial in question seems to exhibit "plateau" behaviour. As the R is an important "driving factor" of the MRL (see KIIA 6.7.2), this situation must be considered carefully during MRL, setting.

III. Conclusions (sweet peppers, greenhouse)

In order to support the use in the EU of BYI 02960 in weet peppers. European greenhouses in the 2011 season. BYI 02960 was applied twice as an SL 200 formulation of an active substance rate of 112.5 g/(ha×n) per treatment. The application in vals, were 10 13 days. All applications were at the required races with the exception of on Orial, in which the applications were overdosed by approx. 42% (150g/[ha/m]); the trial of question was evaluated based on its residue results and is considered also to be valid. All trials was condicted seconding to GLP.

Samples were taken immediately after the 20rd application and at Several intervals thereafter, including the envisaged PHI of 3 days. The were analyzed for the relevant resolues & BYL 2960, comprising the parent compound and its metabolites DFA and DEEAF. The residues of all thee analytes were summed to yield a calculated Notal cosidue of BYL 2960. The esult of the vials presented above demonstrate that:

- total residue of Bell 02960 remoned willy constant bell supper fruit between the final application and the nominal PMI, from levels of 0.1 20.93 mg/kg on day 0 after the final treatment re median varies were 0.22 and 0.19 mg/kg, to 0.12-9.56 mg/kg respectively.
- often and not yet reached their highest levels at analytical results reveal
- interval (≥3 days post-application) ranged from 0.12peak widue levels any 0.63 mg/kg (median 0.23
- despite the delayed attainment of the maximum residue levels, the trials reported here are considered to yield suitable results for MRL evaluation, though care must be taken to evaluate the effects of peak residuo evels determined at the final sampling interval.



Table 6.3.1.6-5a: Application scenario in residue trials conducted in/on **peppers** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.				Application			, W	Ĉ
(Trial No.)								Ş
Country	Crop				7		O) O) PHIA	<i>.</i>
Location	Variety	FL	No.	kg/ha	kg/hC	GS 4	(dass)	il.
Dagion			1100	(a.s.)	kg/kC (a.s.)	S		r a
Region Year				(a.s.)  0.13 (0.159 kg/[ha×m])  0.19 (0.19 0.203 (0.14 0.225 (0.113 kg/[lau×m])  0.214 0.225 (0.113 kg/[lau×m])		081 9 081 9	PHI (days)	Z) ]
11-2081	pepper,	200 SL	2	0.1357	D 0.0150	0.81	30	1 .
(11-2081-01)	sweet			$(0.159 \text{ kg/[ha\times m]})$		, Ø - F		
France	Galileo type				ĺ	Y Q		, V
	Lamayo/ 1/2		<i>#</i>	Q'	o S	4		' 
	length		Q)"			\O` \&	, W	1
Greenhouse			<i>\( \( \)</i>			<b>b</b> ' ~~	W.	i)
2011			Ö [*]				4	1
11-2081	pepper,	200 SI ₄	2 0	0.19 7.203	0.0150-	89	3	i)
(11-2081-02)	sweet	(V)		(0.1)3 kg/[ha×m])_	0.0550			i)
France	Almuden; Pepper	Ŵ	, ">>"					i)
	sweet	Q 4						i)
C 1	4						)	i)
Greenhouse 2011	<b>Q</b>		Ò					1
11-2081		% CI	@ <u>`</u>	W 214 6 225 Q:	001500	<b>)</b>	2	1
(11-2081-03)	pepper sweet 4	290 SI	, 2	(0.113 kg/[bh×m])».	0.0150	0,0	3	1
Spain	Sweet Araan:		Ñ			Ò		1
Spuin	Aran; greenhouse pepper	Q	. S					i)
	pepper	<i>(</i>	D >		, ~			1
Greenhouse			Ş					1
2011	4.8				<i>@</i> ,			1
Greenhouse 2011 11-2081 (11-2081-04) Spain	henner &		<i>γ</i> γ	7 214-D225 V	0150	89	3	1
(11-2081-04)	kepper, Sweet			(0.113  kg/[hs/m])				i)
Spain	Elvis							i)
	Nepper, Sweet Sweet Elvis California Sype			(0.143 kg/[hg/m])				1
	Cabe 2							1
		Š						1
Greenhouse \$\times\"		~~	<b>&amp;</b> '					1
Greenhouse 2011		& .						1
11-2081	Seppen Sweet Cyclear:	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	2 6	70.135 (0.113 kg/[ha×m])	0.0150	83	3	1
(11-2081-05)	swee			(0.113 kg/[ha×m])				1
Italy	Yellow S		<b>6</b>	, W				i)
		W Z		2				i)
Croombouse			`,^9'					i)
Greenhouse 2011		Ø.						i)
11-2081	penner.	<b>20</b> 0 SL	$\sqrt[n]{2}$	0.135	0.0150	83	3	ì
11-2081 (11-2081-06) Italy	pepper sweet ~		» <u>~</u>	$(0.113 \text{ kg/[ha \times m]})$	0.0130	03	3	ì
Italy S	Corso di	<i>[                                    </i>		(*************************************				ì
Y°	Cores di to rosse	~9~						il.
								il.
Green Kouse 2011	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Ì
2011 200 and a second a second and a second								Ì

FL formulation GS = growth stage (BBCH-code) at last treatment

^{*} In the most trial, the applications were overdosed by 40.6-41.8% due to the wrong height of crops used as a basis for the calculations for the application rate.



Table 6.3.1.6-5a (cont'd): Application scenario in residue trials conducted in/on peppers after spraying with BYI 02960 SL 200 in the greenhouse

	spraying	with BY	(1 02960	Application  kg/ha (a.s.)  0.169-0.175  0.113 kg/[ha×ry])	eenhouse	GS	L S	\$
Study No.				Application		0		
(Trial No.)					8			
Country	Cwan				Į Ž	4	DIA	
Location	Crop Variety	$\mathbf{FL}$	No.	kg/ha	kg/fil	GS	(C)	
	variety		110.	(a.s.)	(a.s.)		( <b>x</b> y s )	
Region				Ĉ	L.			a,
Year				N A				<i>U</i>
11-2081	pepper,	200 SL	2	0,169-0.175	0.0150-	862		
(11-2081-07) Greece	sweet Rico			(%).113 kg/[na×kkg/]	0.0223	. ×		
GR	100			× ×				
OIC .			1.				<b>F</b>	
			~					
Greenhouse		4			8° "0"		L°	
2011		Ţ						
11-2081	pepper,	200 %L		A A A A A A A A A A A A A A A A A A A	0.9150	840	<b>23</b>	
(11-2081-08)	sweet	Q v		(0.113 kg/[hazm])			)	
Netherlands	Yellow				P , S			
	Q	i En	Ò					
			<i>~</i>	TO OF ST		<b>&amp;</b>		
Greenhouse		/ ×	, ,			0"		
2011			Ø)	Ament S	<b>*</b> ~ ~ 1	<b>©</b>		
EI = formulation GS =	growth state (B	BCH code	lact t	restment (				
TE - formulation 05 -	growth state (E	. ©	O A					
Ş	y Gy Z	() 7 (1)	Ţ					
	4.5	`	, <b>~</b>		a n			
		<i>1. 1</i>						
	)	~ ~ °	r" .J		***			
					T)			
			<b>~</b>					
		, S						
	, ~ §	`*\						
	A			*				
		Ů.Ó	y , ô	i T				
			B C	8				
4			, Ö	, <b>O</b>				
	Ŷ Q	W &		7				
	A. &							
<b>Y</b>		Q,						
		Q .	Ç					
4 4		Ş Q	)					
\$ \frac{1}{2} \tag{1}		, W						
	' J							
	~							
Ö								
III-2081 (11-2081-08) Netherlands  Greenhouse 2011  FL = formulation  GS =								



Table 6.3.1.6-5b: Results of residue trials conducted in/on **peppers** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			D	osiduos (ma/ka) evi	pressed as BYI 029	)60 Ø
(Trial No.)			K	  -	BYI 02960-	
Country	Portion	<b>DALT</b>		difluoroacetic	difluor	total reduce of
Country	analyzed	(days)	BYI 02960	acid	ethylam no-	BYI 02,960 cas
GLP				ucia	furanone	
11-2081	fruit	0*	0.11	< 0.02	<b>&lt;0.</b> 01	0,16
(11-2081-01)		0	0.22	<0.02	<b>©</b> 0.01	0.25
France		1	0.19	<2	@<0.01	
		3 5	0.19 0.17	0.031	○ <0.01 <0.01 ✓	0.21
GLP: yes		7	0.17	0.040	<0.01	
		10	0.20	0.063	\$0.01 ₀	0.27
		14	0.16	0.087	0.013	9.26
11-2081	fruit	0*	0.053	Ø 0.020		°> 0.083
(11-2081-02)		0	0.15	0.05	<b>6</b> 0.01	0.10
France		3	0.13	026 _×	(	
CI D		5		0.035		0.15
GLP: yes		7	\$088 Q	0.056	<b>20.01</b>	0.10
		10	\$.066¢	0.084	0.01	0.14
11 2001	0 :	14	0.08%	y 640 y	\$\int \( \text{\cong} \)	¥.20
11-2081	fruit	0*	004	\$\int 0.02 \\ \forall < 0.02 \\ \forall  \cdot  \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex		<b>№</b> 0.17
(11-2081-03)		1.0	25. 8.	0.00 P	0.01	0.26 0.28
Spain		3	( 0.24°)	√ √02 √√	~ 0.01 ~ 0.01	0.28
GLP: yes		<i>\@</i> 5	0 0 20 Q	<0.02	QQY1 \?	0.23
GEI . yes		7 3	0.95	0.020	0.010	0.18 0.19
		10	<i>y y</i> 0.14 () <i>y</i> 0.13 <i>y</i>	0.000 %	0.0130)	0.19
11-2081	fru	₹0*		20.02 Ø	<0.01	0.051
(11-2081-04)			9 0.084 ~	<0.02	<b>2</b> 01	0.11
Spain		1 💝	& 0.076 <b>Y</b>	<0.02	<b>₹</b> 0.01	0.11
•			0'0.0880		<0.01	0.12
GLP: yes	(Q,	7 .	0.054	0.02	<0.01 <0.01	0.084 0.087
	Į į	$10^{\prime}$	Ø:029		<0.01	0.062
		140	≈0.051 \ .	Ö ^y <b>%</b> 938 , O'	< 0.01	0.099
11-2081	fruin	<b>₹</b> 0**	0,10	\$0.02 Å	< 0.01	0.18
(11-2081-05)		0 (		0<0.02	< 0.01	0.32
Italy			( ).25 ° ( )	0.150	<0.01	0.28 0.34
CI D. — —			0.20	0.042	<0.01 <0.01	0.34
GLP: yes		8 ³ 7 ~		0.053	< 0.01	0.24
	Ö	10		1 % 1 U.U90	<0.01	0.33
<u> </u>	2	142	0.25 C	0.14	0.012	0.40
11-2081	fruit	A* .	0.30	0.024	<0.01	0.43
(11- <b>20</b> 81-06) Italy		1 C		0.029 0.022	<0.01 <0.01	0.93 0.81
italy	@	3	0.53	< 0.022	< 0.01	0.56
GLP: yes	# _A \		₩ 0.57 ¥	0.022	0.011	0.61
CLI . yes				0.032	0.014	0.51
			0.55 0.55	0.030 0.054	0.012 0.022	0.40 0.63
~~~	L	1+0	0.55	0.034	0.022	0.03


Table 6.3.1.6-5b (cont'd): Results of residue trials conducted in/on **peppers** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			Re	esidues (mg/kg) exp	oressed as BYI 029	
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- difluor ethylangno- furanone	total residue of BYI 62960 cas
11-2081 (11-2081-07) Greece	fruit	0* 0 1 3	0.041 0.26 0.15 0.15	0.032 0.033 \$733 0.062	\$0.01 \$0.01 \$0.01 \$0.01 \$0.01	0.00
GLP: yes		5 7 10 14	0.099 0.090 0.10 0.089	0.053 0.086 0.13 0.16	<0.01 <0.01 <0.01 <0.01 <0.01	0.22 0.16 0.00 0.24 0.24 0.24
11-2081 (11-2081-08) Netherlands GLP: yes	fruit	0* 0 1 3 5 7 10 14	0.061 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	\$\left(\) \	(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)	0.09 0.45 0.15 0.15 0.15 0.15 0.15

		14	Q 0.140			033 🐧 💍	<u> </u>		√√, 1	0
DALT = days at * prior to last tro	fter last treatn eatment	nent		W W						
* prior to last tro Table 6.3.1.6	-6: Recove	ery Pata fo	oPBYI (2960		peppers		- 59 - 59			
Study No. Trial No.		Portion			ortifi-		- (Pery (%	o)	
GLP Year	Cross	Sysed (metakolite A	n Y	le QI (mg/kg)	Individual recoveries	Min	Max	Mea n	RSD
11-2081	pepper sweet	fretut	BYI 02960		0.02	94; © 8; 88; © ; 98: 109: 27	88	109	98	6.4
(11-2081-01) to	~\P		BY102960		Ø:10 €	\$08; 107; 101° 100: 94	94	110	103	6.1
(11-2081-08)		4		12	0.20	98	98	98		
CI D.		A S		4	0.20	2 3	103	103		
GLP: yes 2011				14	Överall®	7	88	110	100	6.2
			DFA O	700°	0.00	91; 89; 90;93; 90; 102; 125	89	125	97	13.4
		? Q [5 2	0.20	89; 98; 97; 96; 98	89	98	96	4.0
Z,	*		*		0.40	95	95	95		
	@ \	a y	′ <i>0</i> ,	1	2.0	94	94	94		
				14	overall		89	125	96	9.5
			SYI 02960- DFEAF	7	0.01	90; 97;85; 106; 102;102; 105	85	106	98	8.1
				5	0.10	107; 100; 105; 103; 108	100	108	105	3.1
				1	0.20	96	96	96		
\cup				1	1.0	106	106	106		
				14	overall		85	108	101	6.7

IIA 6.3.1.7 Fruiting vegetables – cucumber, incl. zucchini and gherkin (cucurbits – edible peel)

BYI 02960 is to be registered in Europe for use in cucumber and related crops (zucchini, gherking) European residue data in cucumber crops are therefore presented below to support the intended use Use pattern (GAP) information, including the European "agricultural use" as Well as the garden use" to be supported, is summarized in Table 6.3.1.7-1.

Table 6.3.1.7-1: Use patterns (GAPs) for the spray application of BY 2960-containing to in/on cucumber and related crops in European fields (southern related crops in European fields) greenhouses

Description	F/G	No. of appls.	per treatment are season (L/ks) (days) (da@)
"agricultural" use*	G	2	2 1 1 2 7 50 0 3 g/(ha×m)† 5 112 7 500 50 5 n/a 3
"home & garden"**	F [†]	1 2	112.5 112 500 050 5 n/a 3 2 112 05 500 750 14 3

agricultural use based on an SL 200 (mulation)

In order to support the use of YI 0060, sets of 62P trials wer oconderted in Youthern European fields and in green wises to 2010 and 2001. In souther European field-grown cucumber and gherkin, BYI 02960 was applied wice as an SL formulation (BYI 02960 SQ 200, Ontaining 200 g/L BYI 02960 a. Q at 1 day in ervals For the use by greenouse BYI 02960 was applied as in the field but at 10-day intervals. In both cases, the envisaged PHI was 2 days, reflecting the planned agricultura use in the greenhouse, as well as the intended worst-case field use.

Residue levels of BI 02960 and its metabolites DFA and DFEAF were analyzed individually and summed to yield the carvulates total residue of BYL 02960. The final residue levels of BYI 02960 in all cucumber fait samples taken are after the expisaged PHI for this crop of 3 days after the final application were 0.09-0.70 mg/kg in the Southern field trials (median 0.21 mg/kg) and 0.18-0.52 mg/g in the green ouse median 0.31 mg/kg

The number of trials conficted for each use described above (incl. information on geographical region and vegetation period) is sumparized below in table 6.3.1.7-2.

[&]quot;home & garden" uses with an SL Wiormylation (available to the general public vice etail saluses in southern residue region (EU-S)

uses in southern residue region (EU-S) core rate per meter plant foliage reight. Testing in reenhouse based on a max, height of m, equipment to max.

Table 6.3.1.7-2: Overview of European residue trials conducted in cucumber per geographical "residue region" and vegetation period, including key results

Use description (cf. table 6.3.1.7-1)	Region		o. of tria	als Σ	Residue (mg/	/kg)	Report No.	Dossie ref.:
		2010	2011	1	HR	STMR	Z.	46.3.1.7
trials in EU	ROPE						4 6	7 29 0
"agricultural" use	G	4	4	8	0. 5 2	0.31	10-2189, 11-2067	×93, 04
"home & garden"	EU-S	4	4	8	674	0.21	10-2184, 1,2066	01,0

Southern European residue region (field)

48110411441 450	_			Ů	()	0.01	, 10 - 10 2 , 11 8	
"home & garden"	EU-S	4	4	8	6 74	0.21	10-2184, 1	2066 01,02
EU-S = southern EU fiel	d residue regi	on, G = gro	eenhouse		a.Y			
				e e	4	Q"		
Southern Europea	ın residue	region ((field)	Q)			, ,& 1c	
		9	<u> </u>	&				
Report:	KIIA 6.3	R 1 7/01				0120		
Report.				₹.				
Title:	Determin	ation of	the regid	ues of B	YI 029 60 in	On cucumbe	er at@r spræyin	
	BYI 0296	60 SL 20	0 in We 1	field in F	rance (sout	Y), Span and	Ataly of	
Report No. &	10-2184,	dated Se	pomber	6 /2012	\$ 15°			
Document No.:	M-43818	8-01-1	" "	צ" יצ	, ~ ~ ~ .			

Report:	KIIA 6.3,1,7/02, 201,20 ; 201,20 ©
Title:	Determination of the residues of YI 02000 in/on ghertan after spray application of
	BYI 02960 SI, 200 in the field in southern France, Spann and Valy
Report No. &	11-2066, dated September 10, 201
Document No.:	M\$38326401-1

	Directive 9 1/2/EFO, residues in ∞ on treated products, food and feed
	ES Guidance working document \$\frac{1}{29}/\text{V1/95 rev. 5}
	OS EPA OCSPR Guideine No. 60.1500.SUPP
GLP (applies to both sylles):	yes (certified Oboratory); Deviations: none

soutkern European residue region, as follows:

In 2010, 4 trials (southern France Italy and Spain [2]) were conducted to support the use of , 2012, KIIA 6.3.1.7/01). Two applications were made at intervals of A day at a numinal rate of 0.625 L/ha, corresponding to 125 g/ha BYI 02960 a.s.; the water rate was 500-800 wha, rejecting local practice in the trial regions. All treatments were made at the schouled rates. The higher application rate used in 2010 was 11% higher than the rate to be regardered on us with the EU's acceptance criteria for use pattern comparability.)

Four furder trials were carried out in 2011, in France, Spain (2), and Italy, to complete the data , 2012, KIIA 6.3.1.7/02). All 2011 trials were conducted with gherkin varieties, in order to properly represent a typical array of sizes of this crop over the two-year span of

the trials. The basic application parameters were similar to those in 2010, except that applications were made at a nominal rate of 0.563 L/ha, corresponding to 112.5 g/ha BYI 02960 a.s.; the water rate was 500-600 L/ha, reflecting local practice in the trial regions. All treatments were made at the scheduled rates.

Samples of cucumber fruit were taken immediately prior and subsequent to the final application, and at several intervals thereafter (up to 7 or 14 days after treatment in the 2010 and 2011 trios, respectively). The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAR using method 01304 (for method details, cf. KIIA 4.3/03). The respective LOOs for one 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

Validation of cucumber fruit was done within and 12 1907 of 1200 of 2007 for the 2007 for th

Validation of cucumber fruit was done Within Rudy 19-21827 conduct of the complete set of cucupper states in 2010.2011 concurrent recoveries of BY \$2960 and its metabolites DFA and DFEQF were obtained from samples of oucum er fruit. This sample material is representative of all cample materials collected in these or als.

The recovery samples for parent and DEPAF we spiked at levels of 0.01 mg/kg, 0.02 mg/kg, 0.10 mg/kg, and 1.0 mg/kg (exercessed in BYF0296(Cequivo ents). Mean recoveres were all within acceptable ranges (90¢)02%, $\Re SD_S = 1$ the larger varidations sets $\Re n > 2$ 0.6-7, $\Re n = 1$ -6).

Fortification level for NFA were 0.02 mg/kg, and 0.02 mg/kg, as well as 0.20 and 1.0 mg/kg (expessed in BYO)2960Qquivaents) Mean occoveres were all within acceptable ranges (87-100%, BSDs of the larger valadations sets) 2] 66-11.99

All trial trial trial are summarised below in table Details of recovery daya are shown in table 3.3.1% 6.3.1.7-3a & b and a greater detail in the Tier summary forms. (Residues of parent BYI 02960 as well as its metabolites DFA and DFF of are expressed in SYI 02960 equivalents. From these was calculated as the sum of these three analytes, individual values, the total residue of BX 02960 expressed in parent equivoents

On day 0, immediately following the 2nd and first treatment, residue levels in cucumbers/gherkins were between 0.12 and lowing/kg/(median 0.6 mg/kg). On day 3 — the envisaged PHI — the levels were 0.07-0.67 @g/kg, again with a wedian alue of 0.15 mg/kg.

The analytical results revealed that total residue levels often had not yet reached their highest levels at the nominal PH (3 days). The was already evident in the 2010 trials, in which peak residue values were seen on may 4.5 (2 trials), or on day 7 (2 trials), the final day of sampling. In order to capture the maximum Clevant resident levels, additional sampling was conducted 9-10 and 14 days after treatment in the 201 program; in those trials, the highest residue levels were seen on day 3 (1 trial), 9 (2 trials), or day 14 (1 trial).

Maximum residue levels at any relevant sampling interval (≥3 days post-application) over the complete set of trials ranged from 0.09-0.74 mg/kg (median 0.21 mg/kg).

There was no evidence of a difference in residue behaviour between gherkin and "normal" cucumber varieties.

Evaluation of representativity:

As highest residue levels were seen on the final sampling oterval of three trials (10-2484-03 and -046 day 7; and 11-2066-01, day 14), the entire set of trials was re-evaluated for its representation. In the 2010 package, trials 10-2184-01 to 03 essentially showed "plateau kenaviour", with residues remaining fairly constant from the PHI to the final ampling date (day 300 day 3). Only in trial 10-2184-04 was there an apparent "jump" in the residues on the final day, with the day-7 while of 0.22 mg/kg representing approx. twice the residue levels seen on days 2-4.

In 2011, "normal" decline behaviour was evident in trial 11-166-02. In the demaixing trials, a placeau was again seen in the samples taken from day, yonwards. Total 11-2066-60, which showed highest residues on day 14, showed a very policy increase in residues on time from \$12\$ make or olay 3 to 0.16 mg/kg on day 14. These "inecesses" are very small, with the difference per sample interval of only 0.01-0.02 mg/kg; they are also within the copy of various type and analytical error. Thus, taken in the context of all of the trials, this trial cantalso be seen as yielding representative results.

Trial 10-2184-04 (cf. poove) an also be viewed in the larger context. All of the general evidence from the remaining trials indicated that residue levels and to Matter" in the phase between days 3 and 14. Even given the "jump" to 622 nag/kg on the final sampling day of the trial, there is reason to believe that residues would be concluded the limb appreadoly. In addition, even if they were to reach double their day-7 levels, they would still not a higher than the highest residue seen in the rest of the studies (6.74 mg/kg), and thus yould have no particular effect on the critical data used to evaluate and establish MRLs.

Thus the trials are consolered to be yand and representative of the use described.

III. Concluçons (cucumber, southern European residue region)

In order to support the use in the EU of BYI 05/60 in cucumber, 8 valid trials were conducted in the southern European residue region in the year 2010-2011. BYI 02960 was applied twice as an SL 200 formulation to an active substance rate of 125 g/ha and 112.5 g/ha per treatment in 2010 and 2011, respectively, both of which support the intended use rate (112.5 g/ha). The application intervals were approxed days All applications were at the required rates, and all trials were conducted according to GLP.

Samples were taken immediately after the 2nd application and at several intervals thereafter, including the envisaged PHI of 3 days. They were analyzed for the relevant residues of BYI 02960, comprising the parent compound and its metabolites DFA and DFEAF. The residues of all three analytes were

summed to yield a calculated "total residue of BYI 02960". The results of the trials presented above demonstrate that:

- total residues of BYI 02960 remained fairly constant in cucumber/gherkin fruit between the mal application and the nominal PHI, from levels of 0 12-1 0 mg/kg are decomposed. 0.09-0.67 mg/kg on day 3. The respective median values were 0.15 mg/kg at both dates
- yet revelhed their husbestuk/yets are

 set any relevant sampling interval (≥3 days post-agalication) rauged from 0.094

 mg/kg (median 0.21 mg/kg)

 despite the delayed attainment of the maximum assidue flevelogine triffs reported by early considered to yield representative resities sustable for MRL2 valuation.

 the residue behaviour in gherkin Add "n/maximal" secumbar variffies is similar.

Table 6.3.1.7-3a: Application scenario in residue trials conducted in/on **cucumber/gherkin** after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.				Application	<u></u> 1		
(Trial No.) Country							
Location	Crop	FL		kg/ha	l _z g/hJ	GS A	© PHI
Location	Variety	FL	No.	(a.s.)	kg/h (a.s.)		PHI (days)
Region					_ ~// ~ //		
Year						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
(10-2184	cucumber	200 SL	2	0.125	0.0250		
(10-2184-01) southern France	Marinda; Gherkin		4	_s O			
southern France	GHCIKIII			Ö,			
EU-S			00° y	~ *		088 088 0	
2010		,			. O		, Ç
10-2184	cucumber	200 SIO	- 	× 0 125	©0156	73	
(10-2184-02)	Llanoverde	200 310	W .	0.12	00130 M		
Spain	Ziano , crac						
				JO J			
							0~
EU-S							
2010		1 "0"			P Ö		
10-2184	cucumber	200 SL		© 1.125 d	\$156,	\$2 \$2 \$2	3
(10-2184-03)	Mezzo		\\ \@'\				
Italy	lung (di	Ď	\$ m	\$ _2	¥ . Q		
	Polignano			\$			
ELL C	Y A						
EU-S) 	
2010				Chias.		70	2
(10-2184	cucumber()	250 SL		Ø.125	0 0227	79	3
(10-2184-04)	Paris						
Trance					700		
. Co	b' 🐃 🔊	.4 %					
EU-S	. F . Š) . o'			
2010			Y &	5			
I = formulation		10 Z - 00	th stage (DD	(Carada) et le	at traatment		
ELL C = a seedle erre Ferrere er		OS - gyoyn	in stage (BB		st treatment		
20-S = southern Furopea	an swidue region)			
						Continued	n nort nac
						Continued o	n next pag
41	S'A						
		- Q - S	, Y				
		F Q					
		. W					
F Z							
	4						
	y "Y						
	20						
Ĉ.							
EU-S 2010 10-2184-04) France EU-S 2010 EU-S 2010 EU-S 2010 EU-S 3010 EU-S = southern Europea							

Table 6.3.1.7-3a (cont.): Application scenario in residue trials conducted in/on cucumber/gherkin after spraying with BYI 02960 SL 200 in field (southern EU residue region)

Study No.				Application	1		, w
(Trial No.)							
Country	C					,	
Location	Crop	\mathbf{FL}	***	kg/ha	kg/h	GS &	PHIO
	Variety		No.	(a.s.)	(a.s.)		(days)
Region					kg/h		(dass)
Year				Pa			
11-2066	gherkin	200 SL	2	0.113	0.0188	085 Q	30
(11-2066-01)	Raider F1;			Îô	₩ .	,	
southern France	Cucumber		"Č ^y		e C		
				. ~		\$	
			Q)				
		&	ϰ				W.
EU-S		0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ř L	4 .
2011				Ž Q		73	
11-2066	gherkin	200SL ~	\mathcal{I} 2	3 113	0.008	√ 73	
(11-2066-02)	Potomac;		, Q'				
Spain	short cucumber	200 SL _					
EU-S	- Cucumber	~ ~~	. **				1
2011	- 4	l 🗞 🧯					
11-2066	gherkî	7 0 SI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0.100	0.0088		3
(11-2066-03)	Suso; field	7200	L 2		\$0.0188	(G)	3
Spain	gherkin O					Į Į	
		Q Z	A			7	
			\ \(\frac{1}{2} \)		\$ 0.0188 -		
EU-S		w .	\$ \$)		
2011	4 . O	200 SL		W A	Q)		
11-2066	gherkin	200 SL		\$ 0.11	3. 0226	87	3
(11-2066-04)	Cetriclino di	Y 40					
Italy	fruit Small	4 %					
				50.110			
FILS &	1 . Š						
2011			Y 4.				
EL = formulation		10 - or 0	th stage (DD	Canada) et le	at traatment		
ELL C = confluencion		O'S - growi	in stage (BB		st treatment		
20-3 – southern European	Saldie Assion		, O' (<i>D</i> *			
, ,							
			. 🗸				
4	'A	Ů,	Y				
		Q 3	Ÿ				
Ø1 [\]		Q A					
		, Y					
\[\]		(U)					
		~O~					
		~ ♥					
		~					
		♥					
		⋄					
EU-S 2011 11-2066 (11-2066-04) Italy EU-S 2011 FL = formulation EU-S = southern Furopean		•					

Table 6.3.1.7-3b: Results of residue trials conducted in/on **cucumber/gherkin** after spraying with BYI 02960 SL 200 in the field *(southern EU residue region)*

Study No.			Re	esidues (mg/kg) exp	oressed as BYI 029	60
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02960- DFEAC	total resource of BYI 02000 car
10-2184 (10-2184-01) southern France GLP: yes	fruit	0* 0 1 3 5 7	<0.01 0.05 0.05 0.06 0.05 0.03	0.07 0.09 0.06 0.05 0.12 0.14	<0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.09 0.15 0.17 0.17 0.17
10-2184 (10-2184-02) Spain GLP: yes	fruit	0* 0 1 3 4 7	0.05 0.04 0.05 0.04 0.06 0.03	0.20 0.18 0.17 0.17 0.17 0.17 0.20 0.20	\$\frac{0.01}{0.01}\$ \$\frac{0.01}{0.01}\$ \$\frac{0.01}{0.01}\$ \$\frac{0.01}{0.01}\$	0.25 0.23 0.24 0.24 0.21 0.24 0.21
10-2184 (10-2184-03) Italy GLP: yes	fruit	0* 0 1 3 5 7	0.01 0.04 0.02 0.02 0.02 0.02	0.03 0.03 0.03 0.04 0.04 0.07	(0)1 (0,01 (0.05 0.15 0.08 0.08 0.07 0.07 0.09
10-2184 (10-2184-04) southern France GLP: yes	fruit	0*\(\sigma_1\) \(\sigma_1\) \(\	0.07 0.00 0.00 0.00 0.00 0.00 0.01	0.67	<0.010 <0.01 <0.01 0.010 <0.016	0.09 0.13 0.15 0.10 0.12 0.22
11-2066 (11-2066-01) southern France	fixe	0* 0 0 0 10 14 4	0.055 0.047 0.047 0.031 0.031	0.054 0.054 0.064 0.085 0.11 0.10	<001 00.01 0.01 <0.01 <0.01 <0.01	0.074 0.12 0.12 0.13 0.15 0.16
(11-2066-02) Spain GLP: yes		3 7 10 10	0.064 0.26 0.27 0.77 0.064 0.064	0.096 0.0988 0.20 0.19	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.17 0.31 0.37 0.31 0.27 0.24
(11-2066-65) Spain GLP. yes	fruit	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.31 0.031 0.056 0.015	0.31 0.36 0.35 0.56 0.67 0.66	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.40 1.0 0.67 0.64 0.74 0.69
11-2066 (11-2066-04) (Italy	Piruit .		0.01 0.10 0.46 0.028 <0.01 <0.01	0.036 0.026 0.045 0.066 0.10 0.090	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.056 0.14 0.10 0.10 0.12 0.11

DALD days Her last@eatmonv*

Table 6.3.1.7-4: Recovery data for BYI 02960 in cucumber/gherkin

Study No. Trial No.		Portion	a.s./		Fortifi- cation		Recov	very (%)	
GLP	Crop	analysed	meta-	n	level	Individual	Min	Max	Mean	RSD
Year		J	bolite		(mg/kg)	recoveries	Ô	1,144	0 (2))
10-2184	cucumber	fruit	BYI 029 60	6	0.01	98; 103; 102; 97; 97; 88	8	103	98	
(10-2184-01),				1	0.02	96	96	96%	96	
(10-2184-04)				4	0.1	105; 91; 1 0 ;	90	163		
GLP: yes 2010				2	overall	92; 90	90	92	96 2180	\$ \(\lambda \)
2010			DEA	13	V	01/1109 192	86 ⁵ /	1039	96	
			DFA §	6¥	0.02	91, 110, 03; 03; 134, 88 4	0,88	10%	A 2	S 3.5
				1	0.04	92 % % % 98 ; 9 7; 98	920 9 7	925		Ø.6
				ď	2 0	95 × ×	95 ,	95 5		
		(2 13	V1.0 V	86: 34	86	9 6 150	89 297	7.3
		Q,		ĈK	OX1	500 80e 96: A	84	900	×97	6.1
					\$\frac{1}{2}\text{01}	00; 89; 96; 100; 01; 84	64	D-100	92	0.1
			DFE AGE		0.62	97	×97	, ©97		
	\ \			4 .".	Ø.10 S	97; 87; 92; \$\int 106\tag{6}		× 100	94	6.1
	Ş		,	25	1.6	95; 103	\$\frac{1}{95}	103	99	
				13	grall &		84	103	94	6.0
11-2066	cherkin	first (BYI 029/	5	Ç0.01	97; 04; 110, 98,98	97	112	102	6.2
(11-2066-01)			4 8	À	6 70	93; 93, 94; 94	93	94	94	0.6
11-2066-64				2	≈1.0 ≈	89;	89	90	90	
	, Ű			110	overall		89	112	97	6.8
3LP: yes 2011			DEA	3	\$\text{0.26}	77; 101; 106; 95; 102	77	106	96	11.9
	a,			46	0.20	81; 91; 95; 89	81	95	89	6.6
					o.240 Overall	87; 86	86	87	87	
A	<i>৯</i> ₋			11	oyerall		77	106	92	9.8
(11-2066-01) to (11-2066-04) GLP: yes 2011			BYI (S)	20 20	¥ 0.01	95; 99; 101; 94; 96	94	101	97	3.0
				4	0.10	90; 94; 97; 97	90	97	95	3.5
,	Y A		¥ Q'	2	1.0	90; 101	90	101	100	
			~@	11	overall		90	101	96	3.9

<u>Greenhouse</u>

Report:	KIIA 6.3.1.7/03, ; 2012		
Title:	Determination of the residues of BYI 02960 in/on cucu BYI 02960 SL 200 in the greenhouse in France (South		
Report No. &	10-2189, dated July 23, 2012), the Netherlands,	Germanyand 1637
Document No.:	M-435235-01-1	4	\$ \$. Q

Report:	KIIA 6.3.1.7/04, 2012 2012
Title:	Determination of the residues of BYI 2960 in/on curymber after spring application BYI 02960 SL 200 in the greenhouse in Greece, ItaQ, Spain and Partugal
Report No. & Document No.:	11-2067, dated September 24, 200 M-439079-01-1

			W. W
Guidelines (applies to both studies):	Directive 91/414/ETC, resQues	in or treated produ	acts, food and feed
(11)	Guidance working descumen	2/02954/95 ron 5	
	OUS EPA OCSAP Guid ine No	860 1500 SLE	
.0	, SOB LITA OCOTA GUAGOMIC TVO.	000,000.5001	, O
GLP (applies to both studies):	yeş (certified laboxatory); Divia	tions: none	

Materials and Methods

Eight residue trials were conducted in the greenhouse as follows:

In 2010, 4 trials (Frace, the Neth Yands Germany and Italy) were conducted to support the use of BYI 02960 SL 200 in cuclimber (2012, 2012, 2014, 67.1.7/25). Two applications were made at interval of 1 (2) days (11 days in on original) of a naminal rate of 0.625 L/(ha×m), corresponding to 125 g/(ha×m) BY0 02960 a.s.; the water rate was 750 L/(ha×m), reflecting local practice in the trial regions. All treatments were made at the scheduled rates. The higher application rate used in 2010 was 11 higher than the rate of the registered, thus well within the EU's acceptance criteria for use pattern comparability.

Four further trols were carried out in 2011 loin Groce, Italy, and Portugal (2), to complete the data package (& 2012 MIA (2).1.7/44). The basic application parameters were similar to those in 2010, except that application were made at nominal rate of 0.563 L/(ha×m), corresponding to 112.5 g/(ha×m) BX 02960 a.s.. All treatments were made at the scheduled rates, except in one trial, where the first application was overlosed by 10% (corresponding to 124 g/[ha×m] BYI 02960 a.s.; water rate 788 L/[ha×m]) thowever, deviations were less than 25% and, therefore, well within the EUs standard receptance criteria.

Samples of cucomber that were taken immediately prior and subsequent to the final application, and at several intervals thereafter (up to 7 or 14 days after treatment in the 2010 and 2011 trials, respectively). The enviscoed PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAF using method 01304 (for method details, cf. KIIA 4.3/03). The respective LOQs for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

variuation of cucumber fruit was done within study 10-2 (cf. KIIA (S.1.7/03)). During the conduct of the complete set of cucumber studies in 2010-2011, concurrent recovering of B 2029 and its metabolites DFA and DFEAF were obtained from samples of cucumber front. The sample material is representative of all sample materials callected in these trials.

0.10 mg/kg, and 1.0 mg/kg (expressed in BYI 029) equivalents for 2000 samples, and at 0.01 mg/kg, 0.10 mg/kg, and 1.0 mg/kg in 2011. Mean recoveries were (90-102%, RSDs of the larger validations sets in > 21 0.6

Fortification levels for DFA were 202 mg/kg, 204 mg/kg, and 0.10 og 1.0 mg/kg (expressed in BYI 02060 egt Ivalents) for 3010 stemples and at Pevel 3010 cmg/kg, 0.20 mg/kg, and 1.0 mg/kg it 2011. Mean accoveries were all within acceptable ranges (87-100%, RSDs of the larger validations set $\mathbb{Q}[n > 2]0.6$

All trial da are summer sed below in table Details of recovery data are sown whalle 6.3.1 Zo. 6.3.1.7-5a & b and a greater detain in the Tier 1 sumpary for us. (Residues, of parent BYI 02960 as well as its metabolites DFA and DFEAF are xpressed in BYI 02960 equivalents. From these individual valos, the total Osidue of BY 19296 was Olculated as the sum of these three analytes, expressed in parent equivalent

following the 2nd and firm treatment, revidue levels in cucumbers were On day 0, immediated between 0.15 and 5.36 mg/kg (na dian 5.26 mg/kg). On day 3 — the envisaged PHI — the levels were 0.17-0.47 mg/kg of that rediant alue of 0.29 ong/kgs

The analytical results revealed that total esides level often had not yet reached their highest levels at the nomical PHI (3 days). The was already vide in the 2010 trials for various crops, including cucumber, in which sak residue values were seen on day 7 in one trial, the final day of sampling. In order to ensure that the maximum relevant resolve levels are captured, additional sampling was conducted 10 and 14 days after treatment in the 2011 program; in those trials, the highest residue son on day 3 (Strials), or day 10 (2 trials).

side levels at any relevant sampling interval (≥ 3 days post-application) over the trial range from 0.18-0.52 mg/kg (median 0.31 mg/kg).

Evaluation of representativity:

As highest residue levels were seen on the final sampling interval of one of the trials (10-2189-03, day

7) and at intervals later than the PHI in others, the entire set of trials was re-evaluated for its representativity.

In the 2010 package, trials 10-2189-01, -02, and -04 essentially showed "plateau behaviour", with residues remaining fairly constant from the PHI to the final sampling date (day to day 7). Only in trial 10-2189-03 was there an apparent "jump" in the residues on the final day with the day-7 value of 0.52 mg/kg. However, this value represents only a small increase over the sidue levels seen of days, 1-5 (0.41-0.47 mg/kg).

In 2011, a plateau was again seen in three trials (11-267-01, -02, -03) in the samples taken from day onwards. Trial 11-2067-04, which showed highest esidues on day 10, showed in increase in residues over time, from 0.25 mg/kg on day 3 to a peak value of 0.43 mg/kg on day 10; the was followed by a decrease, at least to the previous "plateau" level of residues on day 14 (0.50 mg/g).

Trial 10-2189-03 (cf. above) can also be seen in this context. As residues peaked at day 10, and essentially reached a "plateau" earlier where is little reason to expect that the residues in this trial would continue to climb appreciably.

Thus the trials are considered to evalled and representative of the ose described

LA Conclusions (cucomber greenhouse)

In order to support the use on the ODJ of BYI 02960 in orderm of the value of the part of

Samples were taken immediately after the 2nd application and at several intervals thereafter, including the envisaged PHI of 3 days. They were analyzed for the relevant residues of BYI 02960, comprising the parent compound and its roctabolites DEX and DEEAF. The residues of all three analytes were summed to yield a calculated "total residue of BXI 02960". The results of the trials presented above demonstrate that:

- total residues of \$\frac{1}{3}\text{VI 02}\text{80} remained fairly constant, or even increased slightly, in cucumber fruit between the first application and the nominal PHI, from levels of 0.15-0.36 mg/kg on day 0 after the fool treatment to 0.17 9.47 mg/kg on day 3. The median values were 0.26 mg/kg and 0.29 mg/kg on day 0 and 3, respectively.
- analysical results revealed that total residue levels often had not yet reached their highest levels at the nominal PHI.

- peak residue levels at any relevant sampling interval (≥3 days post-application) ranged from 0.18-
- despite the delayed attainment of the maximum residue levels, the trials representative results suitable for MRL evaluation.

Table 6.3.1.7-5a: Application scenario in residue trials conducted in/op **Eucumber** aff BYI 02960 SL 200 in the greenhouse

				(D)"		()) \{	
Study No.			-	**************************************	Application			WHI
(Trial No.)			Q)	ľ	~	u" 💝	GS GS	, Ø'
Country	Crop		&	l &				**************************************
Location	Variety	\mathbf{FL}			kg/ha (a.s.)	g/hl 🍣	y GS	△(days) 。
	variety	.4		¥ (7 (a.s.)	©(a.s.)	8	
Region					, A			
Year		\$, Y	1 %	- 10° - 25°	7		adays).
10-2189	cucumber	200 SI	y 2	0 .213	kg/[ki/m]).	7:0167 7:0167		\bigcirc 3
(10-2189-01)	Columbia			(0.12)	5 kg/[ha@m]))
southern France	Columbia	, I	Po	2				
	$\mathcal{O}_{\mathcal{I}}$	*Lj*	® ®	Z				
Greenhouse				O'	4 64	o O		
2010			4	l m	*(231 *) **Kg/[ki/m])** **Kg/[ki/m])**	Š O		
10-2189	Roxann	2065 SL		0.250	5 6 ½ [hax m])	60 167	S 81	3
(10-2189-02)	Roxanna.	9,7		ab.12	5/[haxml)		7	
Netherlands	4 5 4			7 %				
	Roxanne				, o' 6	99167 5 5 5 7		
			* .			S.		
Greenhouse			1 1	'		7		
		V 40	ĺÝ	* >				
		20 A SL				0.0165	0.0	2
110-2107 (2)	cucumber armen	200 SL	\(\frac{\pi}{2}\)	(0.12	5 ([ha vi])	0.0167	89	3
(10-2189-02) Germax	armen			$\sqrt{0.12}$	(ha~va])			
Germany,		, Q	%	1.				
		~ O	& "					
	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5					
Consultance &					Ş			
Greenhouse 2010					J			
2010	cucumbo Marine F1	20A SL 20A SL 200 SL 200 SL 200 SL						
10-2189	cucumber	₩ SL.	2	Ø .250)	0.0167	73	3
(10-218-04)	Marine F1			(0.12)	5 kg/[ha×m])			
Italy (10-213-04)	Warmey F1							
		Q	O Y					
		()	7					
Greenhouse 2010		Y 2						
2010								
	<u> </u>	_ ~~						

FL = formulation GS = growth stage (BBCH-code) at last treatment

Table 6.3.1.7-5a (cont'd.): Application scenario in residue trials conducted in/on **cucumber** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.				Application	1		
(Trial No.)							
Country	Crop				8		O PHIA
Location	Variety	\mathbf{FL}	No.	kg/ha	kg/hl	GS.	(dox(8)
	variety		NO.	(a.s.)	(a.s.)		(days)
Region				.4			
Year				L	<	\gg	
11-2067		200 CI	2	0 226	0.015	75	201
	cucumber	200 SL	2	0.781-0.226	0.015	/20	
(11-2067-01)	Palmera			(0.113 kg/[na×	4 5		
Greece	long variety		40	V"		*	
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		₽ .	
			Q5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	* 10		
Greenhouse		la Ca	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) (m)	~~~	
2011					Ş		<i>a</i>
11-2067	cucumber	200 SL	*	0.189-0.226	0.0150	77 /	3
(11-2067-02)	Edona	200	, O	(%) 13 kg/l (a×md)	© 0.0151		y ė
Italy	Luona		, A				
1 tu 1 y							3 4
	1						
).	200 SL	0/4/N			, O	P
	Į Ž	200 SL	į .				
Greenhouse	<i>@</i> ,		L			d "	
2011	~~			0.184-0.226 (0.113 kg/[ha×m]) 0.184-0.226 (0.113 kg/[ha×m]) 0.223-0.236 (0.113 kg/(ha×m])*		\mathbb{Y}	
11-2067	cucumber &	200 AL	£2	0-223-0.256	©0.0150-	83	3
(11-2067-03)	Da@overda(O)		v –	(0.113 kg/(ha×n)- 0.124dyg/[ha×n])*	0.0150-		
Portugal	Small fraite		* _4	0.124d [ha×m])*			
Greenhouse 2011 11-2067 (11-2067-04) Portugal	Small fruits				. Y		
Graanhausa)		**		
Oreelillouse			_ ∾≪				
2011		y y		0.225 (C113 kg/ha×ng)			2
11-2067	Cucumber	> 200 & £	43°	0.225 (2113 kg ha×ng)	0.0150	77	3
(11-2067-04) O	Kamon;	1 🔻	Ø -	(13 kg ha×ng)			
Portugal 🔊	Small fruito	1 4. 2	/ 4				
	Ariety						
				. O'			
Greenhouse				() () () () () () () () () ()			
2011			Y (
2011						Į.	
FL = formulation	Q' ,S '	${}^{\circ}_{0}$ GS = ${}^{\circ}_{S}$ Sowt	th stoge	(BBSH-code) at last treatm	ent		
The first application was	overdo d by 189	~ ~ ·	`~\	- <u>U</u>			
<i>n</i>		Q, ,Q					
			& 1				
	, Q, , , , , , , , , , , , , , , , , ,						
	y , * ~	, "Š.,	Q,				
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		A A				
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	′				
Q) \	, \$\int_{\circ}\$	@					
\$ 1		y" ~~					
		w .					
	~O %	~Q)					
	"						
	~						
. 11 //							
2011 11-2067 (11-2067-04) Portugal Greenhouse 2011 FL = formulation The first application was							

Table 6.3.1.7-5b: Results of residue trials conducted in/on **cucumber** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			Re	esidues (mg/kg) ext	oressed as BYI 029	060 ° 7
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	DFA	BYI 02960- DFEAC	total resolue of BYI 02060 car
10-2189 (10-2189-01) southern France GLP: yes	fruit	0* 0 1 3 5 7	0.03 0.21 0.17 0.12 0.11 0.06	0.05 0.05 0.05 0.05 0.12 0.15	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.09
10-2189 (10-2189-02) Netherlands GLP: yes	fruit	0* 0 1 3 5 7	0.05 0.12 0.13 0.10 0.15 0.10	0.08 0.10 0.09 0.21 0.00 0.21	0.01 0<0.01 0.001 0.01 0.01	0.14 0.22 0.23 0.32 0.32 0.32
10-2189 (10-2189-03) Germany GLP: yes	fruit	0* 0 1 3 5 7	0.03 0.20 0.22 0.16 0.10 0.304	0.15 0.15 0.15 0.30 0.30 0.47	001 001 0001 0001 000 000 000	0.19 0.36 0.44 0.47 0.41 0.52
10-2189 (10-2189-04) Italy GLP: yes	fruit	0*7 0*7 0*3 5 7 7 7	0.04 0.26 0.19 0.14 0.08	0.05 0.06 0.08 0.08 0.08 0.08	<0.01 <0.00 <0.00 <0.00 <0.01 <0.01 <0.01	0.10 0.34 0.26 0.28 0.22 0.19
11-2067 (11-2067-01) Greece GLP: yes	fru	0* 0 3 4 14	0.10 0.060 0.078 0.0016	0.057 0.036 0.603 0.088 0.098 0.15	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.089 0.21 0.17 0.17 0.18 0.18
11-2067 (11-2067,02) Italy GLP: yes	fruit	0*0 7 10 14	0.01 0.091 0.67 0.075 9.049 0.026	0.14 0.14 0.19 0.20 0.20	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.071 0.15 0.33 0.28 0.32 0.29
11-2067 (11-2067-03) Portugal GLP; ses		0 3 7 Q 10 0 8 0 0 0 8 0 0 0 8 0	0.04 0.04 0.04	0.11 0.12 0.15 0.22 0.20	<0.01 <0.01 <0.01 <0.01 <0.01	0.15 0.28 0.29 0.28 0.25
11-2067 (11-2067-04) Portugal GLP: yes	fruit	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.184 0.19 0.16 0.058 0.13	0.062 0.057 0.078 0.12 0.37 0.16	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.16 0.25 0.25 0.32 0.43 0.30

DALT ways after last treatment

Table 6.3.1.7-6: Recovery data for BYI 02960 in **cucumber**

Study No.			,		Fortifi-	R	Recove	ery (%))	n°	
Trial No. GLP	Crop	Portion analysed	a.s./ metabolite	n	cation level	Individual	Min	Max	Moore	RSD	Ş
Year		anarysea	metabonte		(mg/kg)		8	IVIAX		KSDI);
10-2189	cucumber	fruit	BYI 02960	6	0.01	98; 103; 102; 97; 97; 88	88	103	98	\$3.5 \$7.5	
(10-2189-01),				1	0.02	96	96	96			Þ
to (10-2189-04)				4	0.02	105; 91; 167, 90	90	193 1992			Q L
GLP: yes 2010				2 13	&verall	92; 90	90 ₄	105	2°91 2°96°	5. %	₽
2010			DFA	\$ \o	0.02	91: 110; 163; 103; 104: 88	Q 8	108	100	() () () ()	
				1	0.04	98; 97; 98	92C 97	92	× ×)" °	
				% 71	0.20	98,0%; 98	97	95		QG°	
				2 19	Over 31	86; 910	865	91	890° 87	7.3	
		Ž,	BYI 02960- DFQAF	6	0.02 0.02	98, 89; 98, 100: C	84	200	Ø √92	6.1	
				1@	0.02	97	90	8			
				\$ 4	020	97,487; 92,100,	287	100	94	6.1	
	%			2	(1.0	95; 10 %	95	<i>2</i> 103	99	6.0	
11-2067	4		DVI 62000	(S)	overa 0.010	97; 112; 004;		103	94	6.0	
(11 2067 01)	cucur yer/ ghecin	Fruit &	BYI @2960) ⁵⁰	910	08; 98 08; 98	9 97	112	102		
(11-2007-01), to		4		4°	128	94; 90, 93; 94	93 89	94 90	94 90	0.6	
(11-2067-04)					erall	0 41	89	112	97	6.8	
GLP: yes 2011			TOTA D	50	0.026	101, 06; 95; 1,0©77	77	106	96	11.9	
₹				7 4	% 20	4 5; 91; 89; 81	81	95	89	6.6	
	\$ A			2	1.0	87; 86	86	87	87		
				₽,	overall		77	106	92	9.8	
			DEXAF &	₹ 5 \$	3 .010	95; 101; 99; 94; 96	94	101	97	3.0	
		. Q ~			0.10	97; 90; 94; 97	90	97	95	3.5	
				y ² 2	1.0	90; 101	90	101	96	2.0	
, y				11	overall		90	101	96	3.9]
11-2067 (11-2067-01), to (11-2067-04) © GLP: yes 2011											

IIA 6.3.1.8 Fruiting vegetables – watermelon (cucurbits – inedible peel)

BYI 02960 is to be registered in Europe for use in watermelons. European residue data in melon ops are therefore presented below to support the intended use. Use pattern (GAP) information, including the European "agricultural use" as well as the "home & garden use" to be supposed, is summarize Table 6.3.1.8-1.

Table 6.3.1.8-1: Use patterns (GAPs) for the spray application of BYI 0.2 60-containing in/on watermelon in European fields (southern residu Pregions) and gre

Description	F/G	No. of appls.	Application rate per treatment per season (g a.s.ha) \$\infty\$ (g a.s.ha) \$\infty\$ (Ling) \$\infty\$ (days) \$\infty\$
"agricultural" use*	G	2	112.5 2 225 0 550
"home & garden"**	E†	1	112.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
nome & garden	1	2	205 0 500-750 Q 14 W

agricultural use based on an SL 200 formulation

European fields and in greenhouses in 2010 and 2011. To southern European field-grown melons or watermelons, BYI 02960 as applied twice as an SL formulation (BYI 02,00 SL 200, containing 200 g/L BYI 02960 a.s.), at 14 day intervals. Oin the green buse thats, BYI 02960 was applied twice as an SL formulation (1971 02960 SI 2000), 2010-definiter als. In both cases, the envisaged PHI was 3 days, reflecting the planned agricultural use in the greenhouse, as well as the intended worst-case field use.

Residue levels of BYI 02960 and its manaboli of DFA and INFEAF were analyzed individually and summer to yield the coculated "total residue of Bol 02940". The most critical residue levels were observed in the graphous trials of which a highest total residue value (HR) of 0.30 mg/kg was trials was also the highest or any set, at 0.17 mg/kg.

each se despribed bove (incl. information on geographical region is summarized clowing table 6.3.1.7-2.

view FEur Fean Fiduralials conducted in melons/watermelons per geographand vegetation period, including key results

Use description (cf. table @3.1.8-5)	Region	V & et. 2010	o. of toja period 2011	ils Σ	Residue (mg/		Report No.	Dossier ref.: IIA 6.3.1.8/
Ly trial n Eu	POPE N	7	2011					
"home & garden"	EU-\$	4	5	18	0.25	0.13	10-2185, 11-2074	01, 02
"agricultural" use	G	3	6	18	0.30	0.17	10-2188, 11-2075	03, 04

EU-S = southern EU field residue region, G = greenhouse

[&]quot;home & garden" uses with an SL 50 formulation (available to the general public xi

uses in the southern residue region (EU-S)

Southern European residue region (field)

Report:	KIIA 6.3.1.8/01,	, 2012	
Title:	Determination of the residues of BYI BYI 02960 SL 200 in the field in Spa		
Report No. & Document No.:	10-2185, dated October 1, 2012 M-439328-01-1		

Report:	KIIA 6.3.1.8/02, 2013	ZO*	
Title:	Determination of the residues of BY 02960 in/BYI 02960 SL 200 in the field in ortugal, Italy	/on weter melôn a y∧yd Spa@	after spray(application of
Report No. & Document No.:	11-2074, dated September 10,2012		

Directive 9/414/FSC, resource in Co	or on treated products, food and feed
FC Guidance working documen 00)29/XV/95 rg 75 & O
OS EFA OCSA Guid Sine No. 860	So.Si. P
	Directive 4414/NC, resources in a FC Guidance working socumen 00 0/S E14 OCSP Guidanne No 860 yes (certified laboratory); Deviation

I. Naterial and Method

Nine field residue trial were Sinducted in the soutern European residue region, as follows:

In 2010, 4 trials (Spain, Jolly, southern France and Fortugal were conducted in melons to support the use of BYI 02960 SL 200 (Legisland & Legisland & Lorenza & Loren

Five further trows were carried out on waternelon in 20 °C, in Portugal, Italy (2) and Spain (2), to complete the data package (2), 202, KLA 6.3, 8/02). The basic application parameters were similar to nose in 2010 but applications were made at a nominal rate of 0.563 L/ha, corresponding to 112.5 g/ha BYI 0290 a.s.; the water rate was 500 750 L/ha. Again, all treatments were made at the scheduled rates.

In 2010, samples of melon buit were taken immediately prior and subsequent to the final application, and at several intervals thereafted (up to 7 days after treatment). In addition, samples of peel and pulp were taken on day 3. In 2011, samples of watermelon fruit were taken subsequent to the final application, and at several intervals thereafter (up to 14 days after treatment), and samples of peel and pulp were taken up to 10 days after the treatment. The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DFA and DFEAF using methods 01304 (2010 trials; for method details, cf. KIIA 4.3/03) or 01212 (2011 trials; cf. KIIA

4.3/05). The respective LOQs for the 3 analytes were 0.01, 0.02, and 0.01 mg/kg (all in parent equivalents).

II. Findings

Validation of melon fruit was done within study 10-2185 (cf. KIIA 6.3.1.8/01) using method 01302 and within study 10-2074 (cf. KIIA 6.3.1.8/02) using method 01212. During the conductor the complete set of melon studies, concurrent recoveries of B&I 02960 and its metabolites DFA and DFEAF were obtained from samples of melon fruit, melon peel and not on pulp for complete originating from 2011. Samples of melon pulp are covered by the sample materials of fruit in the 2010 study. The chosen sample materials are representative of all sample materials of lected in these trials.

The recovery samples for parent and DFEAF is melos fruit were stiked as levels of 0.01 mg/kg and 0.50 mg/kg (expressed in BYI 02960 equivalents) for 2016 trials and at levels of 0.01 mg/kg in mg/kg and 2.0 mg/kg (expressed in BYI 02960 equivalents) for 2011 trials. Dean co-coveries were all within acceptable ranges (93-104% ASD) of the larger validations sets in >212.4-8.1%, n=07).

The recovery samples for parent and DFFAF in melotypeel were spiked at levels of 0.01 mg/kg and 0.50 mg/kg (expressed in BYI (2960 equivalents) for 2010 (Mals and at levels of 0.01 mg/kg, 0.10 mg/kg and 1.0 mg/kg (expressed in BYI 0.2960 equivalents) for 2011 trials. Mean re-coveries were all within acceptable range (91-106%, 1800s of the larger validation sets [182] 32 7.0%, n=1-5).

The recovery samples for paront and DFFAF in notion pulls were spiked at leachs of 0.01, 0.10, 0.50 and 1.0 mg/kg (expressed in BYIO) 960 Squivalents) for 201 Grials, Mean re-coveries were all within acceptable range (100-12%, RSDs of the larger validation sets [n>2] 3.0-9.3%, n=1-3).

Fortification levels for DFA in motion fruit week or 0.00 mg/kg, and 550 mg/kg (expressed in BYI 02960 equivalents) for 2600 trials, and were or 0.02 pg/kg, 0.20 mg/kg and 4.0 mg/kg (expressed in BYI 02960 equivalents) for 2011 trials. Meaning—coveries were all within acceptable ranges (93-102%, RSDs of the larger validations sets [n>2/2.1-70%, n=1-7).

Fortification by els for DFA in meron per were of 0.02 mg/kg, and 0.50 mg/kg (expressed in BYI 02960 equivalents) for 20 portials and wore or 602 mg/kg, 0.20 mg/kg and 2.0 mg/kg (expressed in BYI 02960 equivalents) for 2011 trials. Wean re-coveries were all within acceptable ranges (92-101%, RSDs of the 19 ger validations sets in 2126-8.0%, n=1-5).

The recovery scorples for DF vin me on purp were spiked at levels of 0.02 mg/kg, 0.20 mg/kg, 1.0 mg/kg and 2 Omg/kg expressed in BYI 02960 equivalents) for 2011 trials. Mean re-coveries were all within acceptable ranges (965-702%, RSDs of the larger validations sets [n>2] 2.6-4.7%, n=1-3).

Details of resolvery that are shown in table 6.3.1.8-4. All trial data are summarised below in table 6.3.1.8-3.2 b and in greater detail in the Tier 1 summary forms. (Residues of parent BYI 02960 as well as a metabolites DFA and DFEAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as the sum of these three analytes, expressed in parent equivalents.)

On day 0, immediately following the 2nd and final treatment, residue levels in melon/watermelon fruit were between 0.05 and 0.21 mg/kg (median 0.10 mg/kg). On day 3 — the envisaged PHI — the levels were 0.04-0.22 mg/kg, with a median value of 0.09 mg/kg.

The analytical results revealed that total residue levels often had not yet reached their highest levels at the nominal PHI (3 days). This was already indicated by the 2010 trial packages for other crops although peak residue values for melons were seen on day 3-5 in 3 trials as well. In order to ensure that the maximum relevant residue levels are captured, additional sampling was conducted and any days after treatment in the 2011 program; in those trips, the highest residue levels were seen or day 10 (2 trials), or day 14 (3 trials).

Maximum residue levels at any relevant sampling interval (2) day (post-application) over the complete set of trials ranged from 0.05-0.25 mg/kg/median 0.120ng/kg).

Residues were also determined in the whole pation of the fault. In 2010 residues in pure were either the same or slightly lower than those in the whole patit; in pulp, they ranged from 0.04.0.12 mg/kg (median 0.06 mg/kg, mean peeling factor 0.89, a=4), as opposed to 604-0.15 mg/kg (median 0.07 mg/kg) in the corresponding fruit samples. Again in 2011, residues in the pulp was somewhat lower than in the fruit. Appropriate samples were analysed on days 3.7 and 10; the mean peeling factors in the range of 0.7 kg).74 abeach interval in =5 per interval). Across all samples measured, the mean peeling factor was determined to be 0.75.

Evaluation of representativity:

As highest resource levels were seen at the tinal sampling interval of three trials (11-2074-02, -03, and -04, day 14), the entire set of rials was revaluated for its representativity.

In the 2010 package the residue maximum (at least a "plateau least a "plat

In 2011, a plan au level of peridues was again seen in the samples taken from at least day 10 onwards in trials 11,2074-01 and -95. The same pend is evided in the other three trials: Trials 11-2074-03 and -04. Thich yielded beak residues on day 14, showed minor increases in residues over time, 0.13 and 0.12 mg/kg on (kg, 10 to 0.16 mg/kg, and 0.14 mg/kg on day 14, respectively, the difference per sample interval being only 0.03 0.04 mg/kg. They are also within the scope of variability caused by sampling, biological, and/or analytical aspects. The peak residue value in trial 11-2074-02, 0.25 mg/kg, as also determined on day 14, the final day of sampling; this sample also reflects the highest relation to any trial. However, from day 7 on, this trial also seems to exhibit plateau behavious, evident in residue of 0.24, 0.24, and 0.25 mg/kg on days 7, 10, and 14, respectively. The residue of the plateau behaviour, there is little reason to believe that the residues in this trial would increase appreciably at any further interval.

When re-examining the previously mentioned trial nos. 11-2074-03 and -04 within a larger context, even if residues were to continue to increase after day 14, there is little indication that they would likely reach levels higher than the current HR value, and thus they will have little effect on the critical data used to evaluate and establish MRLs. Therefore, taken in the context of all of the trials, the trials can also be seen as yielding representative results.

Thus the trials as presented are considered to be valid and representative of the use described.

III. Conclusions (watermelon, southern European residue region)

In order to support the use in the EU of BYI 02960 in watermoon, 9 which trisls were conducted to the southern European residue region in the years 2010-2011 (40n meton and 5 on yearermelon). BYI 02960 was applied twice as an SL 200 formulation at an active substance rate of 25 g/km per treatment in 2010 and at an a.s. rate of 112.5 g/km n 2017, both of which support two intended use rate (112.5 g/km). The application intervals were 12 days. All applications were at the required rate, and all trials were conducted according 10 GLP.

Samples were taken immediate after the 2nd application and at several intervals thereafter, including the envisaged PHI of 3 days. They were applying for the relevant residues of BYI 02960, comprising the parent compound and its metabolites DFA and DFEAF. The residues of all three analytes were summed to yield a calculated "that a residue of BYI 02960". The results of the trans presented above demonstrate that:

- total residues of BY N2960 remained fairly constant in Sielon Vaterril on fruit between the final application and the nomical PHIO rom (evels of 0.05 o.21 new kg on day 0 after the final treatment to 0.04-0.22 mg/kg on day 3. The respective medical values were \$0.10 mg/kg and 0.09 mg/kg.
- analytical results evealed that total resource levels often had not yet reached their highest levels at the nominal PHR
- peak reside level at an relevant sampling interval (≥3 days post-application) ranged from 0.05 0.25 mg/kg (median 0.93 mg/g).
- despite the delay of attainment of the maximum residue levels, the trials reported here are considered to yield representative results so table for MRL evaluation.
- residue le@is in the edible portion of this commodity (pulp) were slightly lower than those in the whole wiit; over 19 pevant amples, an average "peeling factor" of 0.76 was elucidated.

Table 6.3.1.8-3a: Application scenario in residue trials conducted in/on **melon/watermelon**, after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

	ayıng witii biri	1	1	·		1	·	^ .
Study No. (Trial No.)				Application	l 			
Country								D'
Location	Crop	FL		kg/ha	kg/b	GS 4	O PHI	
Location	Variety	112	No.	(a.s.)	kg/hk (a.s.)		PHIO (days)	
Region					4	S S		ð
Year			,	₽ _A	0.0139			7
10-2185	melon,	200 SL	2 🔻	0.125	© 0.0139	Ö87	30	. C
(10-2185-01)	Seda			اً م	₩ .	, y		, O
Spain			"Č ^y	5		~~		1
				~~				
EU-S								
2010		\$				\$ **	w'	
10-2185	melon,	200 SL	V	0.10	07,0200	*	3 4	
(10-2185-02)	Mambo	200 SL			90.0208	000		
Italy								
							0	
	~ (°	D* %'	Z ()	
EU-S	Q,	200 SL		0.125	0.0208			
2010	<i>On</i>							
10-2185	melon Felin	~√200 SL	<i>'O'</i>	0.12	0.0208	8	3	
(10-2185-03) France	Feling (typical of region)		\$ 0	, 4 %	Y . Q	Ò		
Trance	region)					Ų [*]		
EU-S			Q" .			ľ		
2010 10-2185 (10-2185-04) Portugal	ragion)			Ø.125	0.0208			
10-2185	mellon.	280 SL	200	Ø.125 e	0,0208	85	3	
(10-2185-04)	Lusitano							
Portugal	white				₩ '			
4(())*	melow)	, ×						
		A 8		l w . ~				
ELL C			S ;					
2010								
EL Company				W.125				
FL = formulation			in stage (BB	code) at las	st treatment			
EU-S = southern European	of idue region			7				
Q C					Con	tinued on no	ext page	
			, «					
		Q S	*					
		O S						
		, Y						
EU-S 2010 10-2185 (10-2185-04) Portugal EU-S 2010 FL = formulation EU-S = southern European		~O						
		A						
	,							
\bigcirc								

Table 6.3.1.8-3a (cont'd.): Application scenario in residue trials conducted in/on melon/watermelon after spraying with BYI 02960 SL 200 in field (southern EU residue region)

Study No.				Application	ı 		
(Trial No.)							
Country Location	Crop	FL	No.	kg/ha	lra/h	GS 4	© PHI
Location	Variety	FL	NO.	(a.s.)	(2 S	US &	(days)
Region				(a.s.)	kg/hk (a.s.)		PHI (dass)
Year				> _A		i N	
11-2074	watermelon	200 SL	2	0.113	0.0225	Cn25	
(11-2074-01)					₩		Q (
Portugal	Crinson-		4 W	4	(0		
	sweet;			, *\forall \tag{\pi}			
EU-S	Striped		\bar{\bar{\bar{\bar{\bar{\bar{\bar{	~ ~			
2011		<u> </u>	ِ <u>۾</u>				& '
11-2074	watermelon	200 SI	<u> </u>	0 140	00000	-\$6	3 4
(11-2074-02)	watermeron	200 SL			90.0223		
Italy	Caravan;	200 SL			, O'		
)	Typical	O' L'Y	(O
,		24 1			0.0161-0 0.0161-0) D
EU-S	Region	109					1
2011		∑			L 20 . (
11-2074	watermion	~200 SL	Ø,	C 0.11	0.0161-0	7 2	3
(11-2074-03)	&" &		4 °	· 4 %	0.0188		
Spain	Azabache O	7200 SL					
	hybrid, dark		~ Ø			7	
EU-S	bark with						
2011	seeds0			@u112	0.0188	0.1	3
(11-20/4	wavermeloo	ZWO SL	,20	Ø.113	0,0150	81	3
(11-20/4-04)	Vanity: Red				Z"		
		(%)			No.		
	, Q	\$ \(\text{\(\text{\) \exiting \			1		
EU-S 😂 👡 👢			, O _A , *	J"			
2011		, O, ×	7 &	Š			
11-2074	watermeton	200 SL, O	20	>0.113	0.0150	85	3
(11-2074-05)			\$	Ş			
Spain	Huelva			J.			
4							
FILS O			`%				
2011							
I - formulation	The state of the s	CIOnda) SE	Yout treatme	at .			
II S = southern Europeen re		oc rescoure) and	sast irealine	iit			
	sidue region						
		7 Y					
		Ą į					
EU-S 2011 11-2074 (11-2074-04) Italy EU-S 2011 11-2074 (11-2074-05) Spain EU-S 2011 L = Cormulation GS = g CU-S = southern European ro		•					
J Z A	<i>J</i> Ţ						
	Ž.						

Table 6.3.1.8-3b: Results of residue trials conducted in/on melon/watermelon after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.			Re	esidues (mg/kg) exp	pressed as BYI 029	60
(Trial No.)	Portion	DALT			BYI 02960-	
Country	analyzed	(days)	BYI 02960	difluoroacetic	difluor	total residue of BYI (C960 case)
GLP		• •		acid	ethylamino- furanone	BY1 02960 cat
10-2185	fruit	0*	< 0.01	0.02	.01	, 0 0,0
(10-2185-01)		0	0.02	2 02	€0.01	\$\times \times
Spain		1	< 0.01	3.02	©" <0.01	0.04 Ø'
		3 4	0.01 <0.01	<0.02 0.03	 <0.01 <0.01 	0.04
GLP: yes		7	0.01	0.03	<0.01 ₂	1. * 0005 01
	peel	3	0.02	<0.02	<0.00	0.05
	pulp	3	0.01	0 0 0 0 0	70.01	0.04
10-2185	fruit	0*	0.04	0 × 4 06 Q	4 <0.Q*	0.08
(10-2185-02)	nuit	0	0.07	0.050		0.12
Italy		1	Ø.07 (~~)	0.04 (Ø.01 S	
		3	Q.0.05		Ö<0.01	0.15
GLP: yes		5 7	0.05	9.13	<0.05	©0.18
,			Q* 0.02	0.13		0.17
	peel	3	y 3.07 6		Ø .01 O	0.15
	pulp	3	\$\langle \langle 0.00 \text{\$\infty}	⊘ 0.10 ♦		0.12
10-2185	fruit	**************************************	0.02 0.05 0.06		Ø.01	0.07
(10-2185-03)	*		© 0.050 © 0.06	~ .0 ⁹ / ₅ &	<0.010)	0.11
France	S	100	0.06	7.05 O'		0.12
		\$\frac{3}{5}\$		0.06	<0.01 L	0.09 0.12
GLP: yes		0°7 4	0.02		×0.01	0.12
	peel		0.06	9.06	<0.01	0.13
	pulp	3 4	0.01		< 0.01	0.07
10-2185	fruit	2	<0.00	0.02	< 0.01	0.04
(10-2185-04)	fruit	₹Õ,	,0 <u>9</u> 2 &	0.02	< 0.01	0.06
Portugal			y.02 0°		<0.01 <0.01	0.05 0.05
				S	<0.01	0.05
GLP: yes 🛛 🚜			~ <0.9/1 · ~	0.03	< 0.01	0.05
	peel	3 3	2.03	0.02	<0.01	0.06
	pulp	3~	<0.0	0.03	<0.01	0.05
DALT = days aff * prior to last tre	ter last treatmationt				Continued o	n next page

Table 6.3.1.8-3b (cont'd): Results of residue trials conducted in/on **melon/watermelon** after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.			Re	esidues (mg/kg) exp	oressed as BYI 029	60 0
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- difluor ethylargno- furanone	total residue of BYI (2960 case)
11-2074 (11-2074-01) Portugal GLP: yes	fruit	0 3 7 10 14	0.030 0.022 0.010 0.010 0.011	0.057 0.068 0.073 0.10 0.11	0.01 0.01 0.01 0.01 0.01 0.01	0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0
	peel	3 7 10	0.040 0.017 0.027	0.095 0.096 0.120	0.01% 0 <0.01% <0.01	0.15 0.12 0.16 0.16
	pulp	3 7 10	<0.01 <0.01 <0.01	0,450 0,050 0,069	0.01 <0.01 <0.00	0.070 0.070 0.0890
11-2074 (11-2074-02) Italy GLP: yes	fruit	0 3 7 10 14	0.067 0.069 0.044 0.066 0.039	0.13 0.18 0.18 0.21	01 01 00 00 00 00 00 00 00 00 00 00 00 0	0.25 0.24 0.24 0.25
GLF. yes	peel	3 7 10	\$\frac{16}{7} 0.16 \\ \frac{9}{0} 0.006 \\ \frac{4}{0} \\ \frac{1}{0} 0.006 \\ \frac{1}{0}	0.00 0.22 00.21	©0.01 © <0.01 >0.01	0.34 0.33 0.29
	pulp	7 7 10 9	0.016 0.016 0.019	0.10	©.01 ©.01 © <0.04	0.13 0.16 0.18
11-2074 (11-2074-03) Spain GLP: yes	fru	0 3 6 10	0.027 0.027 0.027 0.084	0.039 0.0589 0.10 0.14	<0.01	0.076 0.090 0.13 0.13 0.16
GET: yes	peel	3 6 100	0.049 0.053 0.021	0.069	<0.01 <0.01 <0.01	0.13 0.18 0.14
v	pulo	6 10	0010 J	0.04	<0.01 <0.01 <0.01	0.063 0.081 0.11
DALT = days aft * prior to last tre	Plast tream	nent O			Continued o	n next page

Table 6.3.1.8-3b (cont'd): Results of residue trials conducted in/on **melon/watermelon** after spraying with BYI 02960 SL 200 in the field (southern EU residue region)

Study No.			R	esidues (mg/kg) exp	oressed as BYI 029	60
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- difluor ethylargno- furanone	total residue of BYI 02960 cm
11-2074 (11-2074-04) Italy	fruit	0 3 7 10 14	0.031 0.021 0.011 0.010 <0.01	0.062 0.871 0.86 0.096	(0.01 (0.01 (0.01 (0.01 (0.01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GLP: yes	peel	3 7 10	0.042 0.015 0.022	0.080 0.092 0.11	0.01 0.01 0 < 0.01	0.12
	pulp	3 7 10	<0.01 <0.01 <0.01	0.049 0.005 0.005 0.005	01 0.01 <0.01	0.069 0.085 0.077
11-2074 (11-2074-05) Spain GLP: yes	fruit	0 3 7 10 14	0.01 1 -(0.01) -(0.01) -(0.01) -(0.01)	0.058 0.059 0.079 0.074	\$\begin{align*} \begin{align*} \begi	0.08 0.066 0.079 0.11 0.094
GLI. yes	peel	3 7 10	\$\frac{\\$01}{\\$0.01}\$ \$\langle \\$<0.01\$ \$\langle \\$<0.01\$	0.083 0.083 0.099	<0.01 <0.01 <0.00 <0.00 <0.00	0.075 0.10 0.12
	pulp	3 3 7 7 100	<0.01 <0.01 <0.01 <0.00 <0.00	0.037	<0.01 <0.01 <0.0X	0.057 0.069 0.083

DALT = days after last reatment
* prior to last treatment

The prior treatment

Table 6.3.1.8-4: Recovery data for BYI 02960 in melon/watermelon

Study No. Trial No.		Portion	a.s./		Fortifi- cation		Recov	ery (%	o)	o °	
GLP Year	Crop	analysed	metabolite	n	level (mg/kg)	Individual recoveries	Min	Max	Mean	RSD	Ĉ
10-2185	melon	fruit*	BYI 02960	6	0.01	93; 94; 95; 95; 98; 99	93	99	96	274 274	Ö
10-2185-01 to 10-2185-04				4	W.	92; 92; 96; 102	92	102 🗶	96	4.95	,
GLP: yes				10	overall	O	92	40 2		§3.4 ⟨⟨	
2010			DFA	6	20.02 0	94; 96; Q 7; 98; 1 08; 114	° 94 🍕		101	7.9,0	y
				4 10	0,50 oærall	89@1; 92; \$8	% 789	3 14	93 98	7.9	
			BYI 02960- DFEAR	6	0.01	86; 80, 92; 92, 96; 102	86	102©	93	6.5	
				A 10	Øveral)	97;97;1 © ;107	93 86 8	907 107 - Ø	96 &	6.0 6.7	
	melon	peel	SYI 02960	5	0.01	87.50; 93.0°	80	25	925	3.6	_
		Z,	1 10 10	3	Ø.50 A	94; 97 900	94	100 0	97	3.1	
		, Q	DFA &	8 Å	overall 0002	00002:05	\$7Q ~@n	100	94 98	4.3 8.0	_
				N. C.		02; 109		S S			
				3 (8)	0.50 v ovædl	89; 9 0; 94	89	94 109	92 95	2.7 7.1	
			BYI 02960 DEAF	¥5 «/	7 .01	\$7; 89 3 9; \$92; 92; 92;	87	97	91	4.3	_
Ö				.300	0.50	93,05; 10,0	93	101	96	4.3	
*also cover melo	on pulp			P8 (overall		87	101	93	5.0	
*also cover melo			BYI 02960 DEVAF						Contii	nued on i	n
	Ç Û ,										
	Ş										
, y) _a							
Š											

Table 6.3.1.8-4 (cont'd.): Recovery data for BYI 02960 in melon/watermelon

Study No.					Fortifi-		Reco	very (%	o)	Qı° >
Trial No. GLP	Crop	Portion	a.s./	n	cation	Individual	Min	Max	Mean	RS
GLI	СТОР	analysed	metabolite		level (mg/kg)	recoveries	ð	WIAX		A
Year									4	
11-2074	water- melon	fruit	BYI 02960	3	0.01	91; 99; 107	91	107	99	7 8.1 7 V
11-2074-01- to	meion			7	0.10	105; 94; 105, 108; 102; 56; 117	^y 94		104	
11-2074-05 GLP: yes				1	2 .0	105	105	√105 ¢		
2011				11=	overall	Y S	914	117	103	3.7 - 4.6
			DFA		0.02	97, 102, 404	97 V 7	104		3.0
				7	© .20	0104; 193; 4 101, 004; 0	j 98 Š	104 ^	102 ≈	2.1
					48	100, 98; 104	\(\tilde{\O}_3 \)	0" (103		%
				11	Sverall.		97	104~	102	2.3
			BY002960	35	0.05	91091; 995			96	4.9
		<i>@</i>		7	0,10	004; 105, 93; 113; 101;	\$3 \$93	\$13 % &	503	5.7
		Z ^Q		l r	2.0	160	1230	100		
		, Ø			everall		× 1 /) 13	100	6.5
	water-	peel	BYL02960	3	0.010	100; 101; 109	100	109	103	4.8
	melon			F	0/18	100; 101; 109 94, 106; 77; 108; 94	, Q4	108	102	7.0
	Ĵ			1 3	91.0 S	103	103	103		
					ovesall		94	109	102	5.5
<i>*</i>	Ů (DFA S	3	02	P02; 124, 98	98	104	101	3.0
	Į		DFA A BY 02960 A DIFEAR	5	0.20	96; 1 9 0; 101; 98 9 5	95	101	98	2.6
			£ . 69 . 4	Y	Q,0	\$2	92	92		
	J.			9	Queral (,	92	104	98	3.8
	<i>a</i> ,		BY 02960	35	0.0	100; 102; 93	93	102	98	4.8
4	~ (INTEAR OF THE PROPERTY OF THE	8	0,10	101; 106; 105; 111; 109	101	111	106	3.6
	,			100	1.0	95	95	95		
	~			Į į	overall		93	111	102	5.9
			BY 02960 DIFEAR	7				(Continue	ed on next

Table 6.3.1.8-4 (cont'd.): Recovery data for BYI 02960 in melon/watermelon

Trial No. GLP					Fortifi- cation		Reco	very (%	o)	<u>"</u>
GLI	Crop	Portion analysed	a.s./ metabolite	n	level (mg/kg	Individual recoveries	Min	Max	Mean	
Year)	recoveries	Ş		4	
11-2074	water-	pulp	BYI 02960	3	0.01	96; 111; 94	24	111		
11-2074-01-	melon			3	0.10	101; 104; 98	1 9 8	104	01	3.0
to 11-2074-05				1	0.50	99	99	99 8		3.0
GLP: yes				1 8	1.0c oxCrall	95	95 。94	P11	100	
2011			DFA			91:400:96	2T	N/ AI	١.	5.6 2 4 3 7.6
			2111	<i>i3</i>	0.20°	91;400; 96 10, 100, 101 44 93	150 150 994 93.	105	96 Ø	27.6
				OI	0.20°	34 S	©94 1	105 94		13
			4	1	©2.0	93 &	93	93 🔘		
				8	overali		~ <u>Q</u>	216 216 1112 105 97	28	.9
			BYI 6960- 9 DFIOXF	3	2 001	716; 108; 111	\$\frac{108}{104}	Ø16	107	© 3.6
				3 7	0.10	111, 106; 10	1043	1115	107	3.4
				O'			\$ 7 %	97 9		
		S		8 4	overall		978	116 C	107	5.3
	ı	, Ö			6 105			<u> </u>		ı
								5		
	(, •		
				~						
				,						
	Ď			8						
	<i>?</i>			````\ ```\						
Ğ										
						91; A00; 96 (1) 100; 101 109 100; 100 101 100; 100 101 100; 100 100; 100 100				

Greenhouse

Report:	KIIA 6.3.1.8/03, 2012	
Title:	Determination of the residues of BYI 02960 in/on melon after spray application of BYI 02960 SL 200 in the greenhouse in the Netherlands, Italy and Chain	Ô
Report No. & Document No.:	10-2188, dated February 23, 2012 M-425792-01-1	Ž,
Guidelines:	Directive 91/414/EEC, residues in or on treated products, food and feed EC Guidance working document 7029/VI rev. 5	Ŋ,
GLP:	yes (certified laboratory); Deviations: none	<i>[</i> , (

Report:	KIIA 6.3.1.8/04, 2012 ° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5
Title:	Determination of the residues of BY1 2960 from wher melon after praying application of o
	BYI 02960 SL 200 in the gacenhouse in Span and Qaly
Report No. &	11-2075, dated September 4, 2013
Document No.:	M-437681-01-1 Q V V V V V V V V V V V V V V V V V V
Guidelines:	Directive 91/414/EIO, residues in Con treated products, food and Seed EC Guidance working document 7029/VI/95 rev
	TEC Guidance working document 7029/ v 1/93 leves
	US EPA OCSPP Guide the No. 360.15 9. SUPO applies only 9 11-24 5)
GLP:	yes (certified boratozy); Deviations on one &

3. Ma@rials and M@hods

Nine residue trials were conducted in the greenhouse of follows:

In 2010, 3 trials were conducted in melons in the green class (in the Northerlands, Italy, Spain) to support the use of BYI 02960 SL 200 (2012, Kill A 63.1.8/03). Two applications were made at interval of 10 days at chomical rates 0.625 L/(ha/m), corresponding to 125 g/(ha/m) BYI 02960 a.s.; the water rate way 750 L/(ha/m), refecting local gractice of the trial regions. All treatments were made at the scheduled rates with the exception of the second application in one trial, which was underdosed by 7.7% (cominal rate: 1.95 L/(b/m) (0.55 L/(ha/m)), corresponding to 115 g/[ha/m] BYI 02960 a.g.), but well wothin the EUS randar acceptance criteria allowing a deviation of 25%.. In addition the higher application are used in 2000 was \$1\% higher than the rate to be registered, thus well within the EU's acceptance criteria for see pattern comparability.

Six further trials were carried on in 2017 in the greenhouse in watermelons (in Italy [4] and Spain [2]), to complete the data partiage (2012, KIIA 6.3.1.8/04). The basic application parameters were similar to hose, in 2010 two applications were made at intervals of 13-14 days at a nominal rate of (363 L0a, corresponding to 112.5 g/ha BYI 02960 a.s. (watermelon plants are not commonly cultivated into high plants in greenhouses, thus height adjustment was not considered to be necessary); we want rate was 500-900 L/ha, reflecting local practice in the trial regions. All treatment were made at the scheduled rates.

Samples of melon/watermelon fruit were taken immediately prior and subsequent to the second application, and at several intervals thereafter (up to 7 days after treatment in 2010 and up to 14 days

in 2011 trials). In addition, samples of pulp and peel were taken 3 days after the second application in 2010, and up to 9-10 days after the second application in 2011.

The envisaged PHI was 3 days.

The samples were analyzed for the parent compound and its metabolites DF Adind DFEAF using methods 01212 (cf. KIIA 4.3/05). The respective LOQs for the 3 analytes were 0.01 mg/gg, 0.02 mg/kg, and 0.01 mg/kg (all in parent equivalents).

II. Findings

Validation of melon fruit was done within study 10-2/85 (cf. KIIA 6.3.1 2011) using moth 10-10-10 and within study 10-2074 (cf. KIII 10-2074).

and within study 10-2074 (cf. KIIA 6.3.1.8/02) using method 01.0.2. During the condect of dec complete set of melon studies, concurrent recoveries of BYI (2960 and its motabolites DFA and C DFEAF were obtained from samples of melon fruit weel and pulp. The chosen winple waterial are representative of all sample material Ocollected in these trials

The recovery samples for parent and DEAF in melor fruit were so ked affevel of 0.00, mg/kg, 0.1 mg/kg and 1 mg/kg (expressed in BYI 0296) equivalents). Mean re-coveries were all within acceptable ranges (85-100%, RSIO of the larger Validations sets [n > 10.3 8.1%, n=1-5).

The recovery samples for pagent and DFEAF in polon per wer spike that levers of 0.01 mg/kg, 0.1 mg/kg and 1 mg/kg expressed in YI (\$\sqrt{9}60\) equivalents) for 2010 trials and at levels of 0.01 mg/kg, 0.1 mg/kg and 2 mg/kg (expressed in BYI 02960 equivalents) for 2011 tiplis. Overall mean re-coveries we all within acceptable ranges (87 403% overal RSDs 4.9-8.7%, n=3-2).

The recovery samples for parcox and FEAF in meton purpowere spiked at levels of 0.01 mg/kg, 0.10 mg/kg, 1.0 mg/kg (expressed in BYJ 02960 equivalents). Overall mean re-coveries were all within

vere 0.02 mg/kg, and 0.20 mg/kg and 2.0 mg/kg DFA h melon fruit (expressed in BYI 02960 Quiva Onts). Eweral mean re-coveries were all within acceptable ranges (89-94% Everall RSDs 7.9-12)

Fortilication levels for Doll in pelon pelo wer or 0.02 mg/kg, 0.20 mg/kg and 2.0 mg/kg (2010 trial), and were or 0.00 mg/kg, 0.2 mg/kg, and 4 mg/kg (expressed in BYI 02960 equivalents) for 2011 trials. coveries were all within acceptable ranges (89-95%, overall RSDs 8.9-10.0%, n=3-Overall mear O'é 5).

amples for DYA in melon pulp were spiked at levels of 0.02 mg/kg, 0.20 mg/kg, and 2. Comg/kg expressed in YI 02960 equivalents). Overall mean re-coveries were all within accepta Per ranges (90-97%, overall RSDs 7.1-15.5%, n=4-6).

Details of recovery data are shown in table 6.3.1.8-6. All trial data are summarised below in table 6.3.1.8-5a & b and in greater detail in the Tier 1 summary forms. (Residues of parent BYI 02960 as well as its metabolites DFA and DFEAF are expressed in BYI 02960 equivalents. From these individual values, the "total residue of BYI 02960" was calculated as the sum of these three analyses, expressed in parent equivalents.)

On day 0, immediately following the 2nd and final treatment, residue levels in melon/wa@rmelov fruit were between 0.085 and 0.23 mg/kg (median 0.10 mg/kg) On day 3—The envisaged HI—The levels were 0.069-0.21 mg/kg, with a median value of 0.16 mg/kg.

The analytical results revealed that total residue levels often had not yet cached their cak levels at the nominal PHI (3 days). This was already evident in the 2010 trials, in which peak residue values were seen on the final day of sampling, day 7 in 2 tries. In order to capture the paximum relevant residue levels, additional sampling was conducted 10 and 14 days after treatment in the 2010 program; in those trials, the highest residue levels were seen to day 14 in all 0 ix of the trials.

Maximum residue levels at any relevent sampling interval >3 days possapplication wer the complete set of trials ranged from 210-0.30 mg/kg (mg/lian).7 mg/gg).

Residues were also determined in the edible portion of the fruit. In 2019, residues in pulp were somewhat lower than those in the whole buit; it pulp, they ranged from 0.050.15 org/kg (median 0.11 mg/kg, mean peeling factor) 0.64, n=3). Sopposed to 16-0.17 mg/kg (median 0.17 mg/kg) in the corresponding fruit samples. Again in 2011, residues in the pulp were lower than in the fruit. Appropriate samples were analysed on flays 3, 7, and 39, the dean peeling factors ranged from 0.75-0.82 at each interval (n=6 per interval). Across all camples measured, the mean peeling factor was determined to 6.77.

Evaluation of representativity.

As highest residue evels were son at the final amplog interval of eight trials (10-2188-02 and -03, day 7; and 11-2075, allorals, by 14 othe entire second trials was re-evaluated for its representativity.

In the 2010 package, peak residues were determined to the scheduled PHI (3 days) in trial 10-2188-01. In trials 10-2188-02 and 03, residue levels increased slowly from the PHI to the final sampling event (day 7). In 2011, the strend was also evident, with fairly "flat" yet slowly increasing levels up to the final sampling interval (day 14), in all trials.

Given these conditions, the highest measured residues – generally the final sampling interval – will be chosen from each trial for MRL calculation. Further evaluation of the effects of the increasing residues on the calculations will be made in the appropriate chapter (KIIA 6.7.2).

III. Conclusions (watermelon, greenhouses)

In order to support the use in the EU of BYI 02960 in watermelon/melon, 9 trials were conducted as the greenhouse in the years 2010-2011. BYI 02960 was applied twice as an SL 200 formulation at an analysis of the greenhouse in the years 2010-2011. active substance rate of 125 g/(ha×m) and 112.5 g/ha per treatment in 2010 and 2011, respect vely both of which support the intended use rate (112.5 g/ha). The application intervals were 2010 and 13-14 days in 2011. All applications were at the required rates, and all trials were according to GLP.

Samples were taken immediately after the 2nd application and at several interval other earlier, in Our the envisaged PHI of 3 days. They were analyzed the relevant residues of by I 0250, comprise the parent compound and its metabolites DFA and DFEAF. The residues of all three analytics summed to yield a calculated "total residue of YI 02/60" The results of the tries presented above demonstrate that:

- total residues of BYI 02960 remain a quite constant, even incre Sing stightly of watermelor melon fruit between the final application and the nominal Phil from eve after the final treatment to 0.06\(\mathbb{Q}' 0.21\) mg/kg on da 3. modian values were 0.10 and 0.16 mg/kg, respectivel
- analytical results revealed that that the first due levels generally had not yet reached their highest levels at the nominal PHI. In most trials, total residues contine to increase over the sampling period, with the final samping in rival selding the highest residues.
- residue levels in the dible fortion of this commodity (wilp) were slightly lower than those in the whole fruit; over a relevant samples, as average "peeling factor" of 0.77 was elucidated. peak residue lovels at any relevant samphing -apprication) ranged from 0.10-

Table 6.3.1.8-5a: Application scenario in residue trials conducted in/on **melon/watermelon**, after spraying with BYI 02960 SL 200 in the greenhouse

spr	aying with B	YI 02960 S	SL 200 in	the greenhouse				
Study No. (Trial No.)				Application				
Country Location	Crop Variety	FL	No.	kg/ha (a.s.)	kg/G/	GS &	PHIO	O'
Region Year				۵.		© 81 g		Q
10-2188 (10-2188-01)	melon, Haon	200 SL	2	0.00 (0.125 kg/[ha×xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.0167	81		
Netherlands						4		¥
			Q					
Greenhouse 2010		Ē.						
10-2188 (10-2188-02)	melon, Talento	200 \$		0.250 g/[ha h]) 0.1250 g/[ha h]) 0.251-0.250 (0.115 - 0.125 kg/[ha×m])	0.0067	81		
Italy	(Clause)							
Greenhouse 2010	A Q1	¥ Ø						
10-2188 (10-2188-03)	melon. Jucar	200 SI		0.23\(\frac{1}{2}\)-0.25\(\frac{1}{2}\)	0.0167	Ŏ <u></u> 89	3	
Spain	y a			0.125 kg/[ha×fh]				
Greenhouse			<i>J</i>					
FL = formulation		$\langle GS = \hat{g} \rangle$	Wwth stage	(BBCH-code at last)	reatment			
		0' 4'0) 4			Conti	nued on ne	ryt naoe	
				(BBCH-code at last	Conti		puso	

GS = grwwth stage (BBCH-code) at 1

Table 6.3.1.8-5a (cont'd.): Application scenario in residue trials conducted in/on **melon/watermelon** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.				Application			O)	1 ৯
(Trial No.)				Application	 		., 🖓	2
Country								D'
Location	Crop	FL		kg/ha	lra/bl	GS &	© PHI	
Location	Variety	FL	No.	(a.s.)	kg/hk (a.s.)	ds 4	(days)	
Region					(a.s.)	Ş		r Ta
Year							PHIO	1
11-2075	watermelon	200 SL	2	0.113	© 0.0125	\$ \$88 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Q.
(11-2075-01)	watermeron			0.113	0.0123	©88 \$		4
Spain	Fashion;		\$					
Spain	Black		4	\mathbb{Q}^{r}	~ ~		(ľ
			00°	~ ·	W Z	NO ^y &		
Greenhouse				\ \@'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. O		19	
2011							, W	
11-2075	watermelon	200.81	3	0.103	0 0141	Å o	3 4	
(11-2075-02)		200 SL		0.10	0.0141 0.0141 7.0.0141		3 4	
Italy	Melania;		y"					
	Typical of						Õ	
	41			9 . 0 .			0	
	the region	1 "0" .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			[\$. V		
Greenhouse	~				~			
2011			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
11-2075	watermelor	2000 SL	£, 2 @	0.113	0.012	». 81	3	
(11-2075-03)	b O			0.173	0.0125		3	
Spain	Motril;		*			7		
	White			0, %				
		¥ @;	\$ 1					
Greenhouse								
2011				\$. T				
Greenhouse 2011 11-2075 (11-2075-04) Italy	watermelon	200 SL	«J ² 2 »	0.133	0.0141	72	3	
(11-2075-04)		*						
Italy 💸	Sentinel;		*					
	Typica Cof							
•	the region		0' *	Y .~				
		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		A "				
Greenhouse	1 Q			8				
2011	Sentinel; ypical of the region watermelon		\$	0.113				
11-2075	watermelon	260 SL	2 ~	0.113	0.0226	87	3	
(11-2075-05)								
Italy	top gun Fate variety		, V					
I	variety							
			Ž					
Greenhouse		Q = 5	ľ					
2011		200 SL						
11-2075	waternelon	200°SL	2	0.113	0.0161	83	3	
(11-2075-06)	Omson Sweet Red	. O						
Italy &	©imson 🗸	~Q						
I	Sweet Red							
Green House =								
2011								

FL formulation GS = growth stage (BBCH-code) at last treatment

Table 6.3.1.8-5b: Results of residue trials conducted in/on **melon/watermelon** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			R	esidues (mg/kg) ex	1	260
(Trial No.) Country GLP	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- difluor ethylangio- furanone	total residue of BYI 00960 cas
10-2188	fruit	0*	0.07	0.02	101 01	0 10
(10-2188-01)	Hart	Ö	0.14	0.02	€0.01	0.20
Netherlands		1	0.09	4	© <0.01	
		3 5	0.09 0.06	0.07 0.06	<0.01 <0.01	0.17
GLP: yes		7	0.06	0.08	<0.01.2	0.6
	peel	3	0.27	0.08	<0.01	0.12
			4 .			
	pulp	3	0.03	\$ 0.05°	©0.01	0.11
10-2188	fruit	0*	0.03	06	4 <0.40°	0.10
(10-2188-02)		0	0.66	0.04 O		0.10
Italy		3	Q.10 (V		0.01	0.18
GLP: yes		5	00.13	y w3 ~0	\$\sqrt{0.0}	N 2//2()
GET: yes		7	\mathbb{Q}^{y} 0.12	0.17		0.30
	peel	3		0.155.03**	(00) (00) (00) (00) (00) (00)	0.58/0.05**
	pulp	3	0.020	\$\frac{1}{2}\frac{1}{2		0.15
10-2188	fruit	× 0* .4	0.06	0.02	Ø.01	0.09
(10-2188-03)	≪	0 \$	©0.10 O		<0.010) <0.010)	0.13
Spain	Ş			0,02	0 <0 0 1 v	0.14 0.16
CLD		\$\frac{1}{5}\$		0.05	@ 01	0.16
GLP: yes		7 4	0.12	0.05 0.05	20.01	0.19
	peel \$	<i>2</i> 0	0.2		<0.01	0.27
. Q	nuln	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0.04	<0.01	0.06
DALT = days af	ter last træstr	nent \			\(\sigma_0.01\)	0.00
* prior to last tre ** residue in con	atment trol	1 ×				
		\bar{\bar{\sigma}} \sigma \bar{\sigma}				
~		, O		/ %	Continued o	on next page
کے	v		9 49 8	, Ø		rem p 4.8e
Q [*]	. (*		
2		. ×		,		
	$\mathscr{O}_{\mathtt{A}}$,		
4		"O" (C				
	/ L Z	· Ž	ŢŢ Q'			
			,			
Ş			X ~~~			
	₩ . A					
	~ ~ <i>\</i>	. 1 7				
		~ * ·				
DALT = days aff * prior to last tre ** residue in con						

Table 6.3.1.8-5b (cont'd): Results of residue trials conducted in/on **melon/watermelon** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			Re	esidues (mg/kg) exi	pressed as BYI 029	060 Ø 8
(Trial No.)	Portion	DALT			BYI 02960-	
Country	analyzed	(days)	BYI 02960	difluoroacetic	difluor	total residue of BYI © 960 cm
GLP				acid	ethylantino- furanone	BYI 02960 c
11-2075	fruit	0*	<0.01	0.044	<# style="background-color: blue;">1017anone	
(11-2075-01)	Hult	0	0.052	0.044	£0.01	
Spain		3	0.012	47	0.01	3069 0
		5 7	0.014 0.012	0.047 \$0.087	<0.01 <0.01	0.11
GLP: yes		9	< 0.01	0.082	<0.01 °C	0.10
		14	<0.01	0.11	20.01 Q	0.13
	peel	3	0.033	0.072	<0.0	\$\int_0.12 \
		7 9	0.028 4 0.020 0	0.13	<0.01 <0.01 0.01	0.25
	pulp	3	<0.01	0 ×0\(\text{\$Q\$}\)	<0.01	9046 ay
	Pulp	7	<0.01	~0.058 ₀	<0.00	0.078
		9	<0001	@°0.068\/	y <0,71 °C	0.085
11-2075 (11-2075-02)	fruit	0* 0	0.028	0,049	0.01	© 0.087
(11-2073-02) Italy		3	0.040	20.051 20.051	0.00 <0.00 0.00 0.00 0.00 0.00 0.00 0.0	×0.094
		5 7.~	, 0.529 °	0.0500 0.000		0.097 0.11
GLP: yes		10/	2.025 0.02 \$ \$	0.081	\$\langle 0.01 \\ \&\langle 0.01 \\ \\ \&\langle 0.01 \\ \\ \&\langle 0.01 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0.11
		14	0.02	© :11	(0.01°) (Q	0.14
	peel	×3 4	0.087	0.050		0.15
	L	7 5	> ≥0.049 0° ≪20.061 4	0.00	<0.01 0)	0.15 0.18
		e 2		\$0.040@r	0 < 0.01	0.060
	Poles .	0 7 %	<0.40 <0.40 <0.41 <0.41	0.07	V 20 1	0.091
		10 প	©0.01 ×	0.056	×30.01	0.076
11-2075	fruit		0<0.01	0024	<0.01	0.044
(11-2075-03) Spain		√ 3 ×	\$\frac{0.050}{27}\$	0.030	<0.01 <0.01	0.089 0.071
Spani		55	3.014	\$ 0,004	< 0.01	0.068
GLP: yes			0.016	0.057 \$0.045 \(\text{D} \)	<0.01 <0.01	0.078 0.065
		14 (\$\frac{1}{2}\text{.01}	0 0.081	<0.01	0.10
	peel	3.\$	∑00.061×√	Q 0. Q 0	< 0.01	0.12
all	peel		0.020	D* 0.0074	< 0.01	0.11
4				30.065	<0.01	0.10
	pulp	3 S		0.035	<0.01 <0.01	0.055 0.069
			<0.01	0.054	<0.01	0.074
DATA 1				1	1	

DAIA = days after last treatment
* prior to last treatment

Table 6.3.1.8-5b (cont'd.): Results of residue trials conducted in/on **melon/watermelon** after spraying with BYI 02960 SL 200 in the greenhouse

Study No.			R4		pressed as BYI 029	60 ° >
(Trial No.) Country	Portion analyzed	DALT (days)	BYI 02960	difluoroacetic acid	BYI 02960- difluor ethylaryno-	total residue of BYI 62960 cas
	2	0.1	0.010	0.10	furanone	
11-2075 (11-2075-04) Italy	fruit	0* 0 3 5 7	0.019 0.073 0.044 0.049	0.12 0 & 1 0 & 2 0.11	(0.01 (0.01 (0.01 (0.01) (0.01)	0.15 7 0.17 3.17 9.17
GLP: yes		10 14	0.034 0.024 0.022	0.16 0.21 0.24	<0.01 <0.01 0.01 0.01 0.01	Q 0.20 0.20 0.27 0.27
	peel	3 7 10	0.076 0.066 0.042	0.13 0.22 0.28	\$\frac{0.0}{\$0.01}\$	\$\int 0.22 \\ \gamma 0.29 \\ \gamma 0.34 \\ \gamma
	pulp	3 7 10	0.014 0.014 0.012	0 0 2 0 14 0 0 0.15 4	<0.01 <0.00 <0.00	0.16 0.17
11-2075 (11-2075-05) Italy	fruit	0* 0 3 5	0.04@ 0.033 0.033 0.033	9 0.16 9 0.16 9 0.19 9 0.21	\$0.01 \$\frac{1}{2}\$ <0.0\$ \$\frac{1}{2}\$ \$\fr	0.18 0.23 0.21 0.23
GLP: yes	peel	7 16 14	0.024 0.026 0.015 0.078	0.24 0.24 0.28 0.18	<0.01 O <0.01 <0.01	0.23 0.24 0.26 0.30 0.27
	peer 4	100	9.044 9.044 90.029	0.10	<0.01 <0.01 <0.01 <0.01	0.30 0.33 0.19
11 2075		077	0.012 0.012	0.192	0.01 0.01	0.21 0.22
11-2075 (11-2075-06) Italy	fruit	3 4 5 \$	0.01% 0.041 0.021 0.037	0.060 0.060 0.067	<0.01 <0.01 <0.01 <0.01	0.059 0.085 0.098 0.12
GLP: yes	peel 2	10 14 14	0.025 0.00 0.025	0.71	<0.01 <0.01 <0.01	0.15 0.14 0.16
~ ~ <u>~</u>	pulp		0.0350	0.456 0.093 0.11 0.055	<0.01 <0.01 <0.01 <0.01	0.095 0.14 0.16 0.075
	Purh	7.0	0.01	0.093 0.084	<0.01 <0.01 <0.01	0.073 0.11 0.10

DAIN = days after last treatment
* prior to last treatment

Table 6.3.1.8-6: Recovery data for BYI 02960 in melon/watermelon

Study No.					Fortifi-		Reco	very (%)	Ø,
Trial No.	Crop	Portion	a.s./	n	cation					
GLP Year	Стор	analysed	metabolite		level (mg/kg)	Individual recoveries	- Q	Max	Mean	RSD
10-2188	Melon	fruit	BYI 02960	1	0.01	81	387	81	S	
(10-2188-				1	0.1	110	√J¹10	110 %	}	
01- to 10-2188- 03)				1 3	overall	982	82 81	825 190		8.1
GLP: yes			DFA	1	2.02	78	。 78	.○ 78 %		
2010					0.20		1010	1010	Z,	
			(\$\frac{1}{3}	2.0 o@rall	890"	₹ 78 °	39 301	89	12.9
			BYI 02960-ADFEAF		0.01@	72 Q 100 A	72	72© \$02		
				3 %	VI.0 Sverak		9 82 72 \$	82	85Q	17.9
		peel	BYQ.02960	ø Vi	001 5.1	94° 0 ©04 Q	94 9104 7	904		
		, Q			l overall	103	103	103 ^C	100	5.5
				1 4	0.20	100 0	1000	84		
				√3 У3	overall.		101 © 84	101 101	95	10.0
			BYI 2960 DFEAF	1 8	0.0%	102	102	102		
		0' W	Drear		0,50	102 S	108 98	108 98		
Ş	7			3	Overall		98	108	103	4.9
• "	Ž,	pulp	DFA BOT 02900 DFA WYI 0290- DFEAF	*	004	10 4 , 98; 99;	98	104	101	2.6
	Q An			1	5 ⁶ 0.1 €	ÿ96	96	96		
	4					97	97	97		
2	>		3 4 %		ov Fall		96	104	99	3
4.	4		DFA	4	0.02	76; 89; 119; 90	76	119	94	19.4
Ÿ	*			\$	0.20	105	105	105		
	(C)			1	2.0	101	101	101		
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	overall		76	119	97	15.5
A O n			₩YI 02% ØFEAF	4	0.01	88; 96; 90; 74	74	96	87	10.7
		A		1	0.10	92	92	92		
				1	1.0	91	91 74	91 96	89	8.6



Table 6.3.1.8-6 (cont'd.): Recovery data for BYI 02960 in melon/watermelon

Study No.					Fortifi-		Reco	very (%	)	On° .
Trial No. GLP	Crop	Portion	a.s./	n	cation	Individual	Min	Max	Mean	S SD
		analysed	metabolite		level (mg/kg)	recoveries	(	)*		
Year		C:4	DVI 02060	2		104.02	02	104	000	
11-2075	water- melon	fruit	BYI 02960	2 5	0.01	104; 93 101; 105;	23 4 177	104 109 %	90	
(11-2075- 01- to						101, 103, 109; 106; 77	1			
11-2075- 06)				1 8	l oværall	98	98 77	9 <b>©</b>		Q0.3 (V
GLP: yes 2011			DFA	2	<b>6</b> 0.02	104: 94	94 🇳	104	199	Ŵ
2011				5 ~ (%) ()	0.2	95@5; 93; 95,78 96 @ ~	78°		99 9 <b>%</b> 9	
				1 8%	overally		789°	0°96 0	94	7. S
			BYI 02967-	2	001	90, 105		104	<b>%</b> 01	
			DFEAR	<b>7</b> 5	<b>3</b> .1	108; 104; 96;	78	113	\$\frac{\psi_01}{100}\$	13.7
				<b>B</b>	1 0		10			
		N		®	o rall		9 ₇₈ 6		₹100	10.6
	water- melon	peel	BY 02960	2	0.01	94; 🔊	800	94	87	
	meron	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				80;91		\$0 \$0	86	
				5 &	overall)		800	94	87	7.4
			DOX 3	2		7.094	<del>26</del>	94	85	
				×2	0.2	<b>3</b> 5; 86€″	86	95	91	
					4 0	92	92 76	92 95	89	8.9
°×	Ĉ		₩VI 020%0-		over 11	\$01.95	97	101	99	8.9
ĘĢ [†]			DFEAT	2 %	0.1	109,92	92	109	101	
	Ŝ	)' \%'		K)	20	114	114	114		
	Ŕ			) 15	everall		92	114	103	8.7
	~© <del>↑</del>		YYI 02960- DFEAR						Contii	nued on ne
					Ş					
4	*				,					
	L \			1						
,										
Q Q										
-										



Table 6.3.1.8-6 (cont'd.): Recovery data for BYI 02960 in melon/watermelon

Study No. Trial No.					Fortifi-		Recov	very (%	o)	ÄSD Å
GLP	Crop	Portion analysed	a.s./ metabolite	n	cation level	Individual	Min	Max	Mean	RSD &
Year		anaryscu	metabolite		(mg/kg)	recoveries		<b>&gt;</b>	Mean	
11-2075	water-	pulp	BYI 02960	1	0.01	90	90	90		
	melon	PwiP	B11 0 <b>2</b> ) 00	2	0.1		90 092	95	94	
(11-2075- 01- to				1	1	103	103	103		
11-2075- 06)				4	overall	64	90	103	95	\$.0 \$\times\$
			DFA	1	<b>49.</b> 02	95; 92 103 80	.80	95	* 6	
2011				2 2	00.2	93;02	92 😽	930	93	
				Ø4 Ø4	overall		&) O80 1	\$93 	90 4	7.1
			BYI 02960-ADFEAF	1 🔩	00.01 C	80 Q 93; 92; 93; 92; 93; 93; 94; 95; 91; 91; 91; 91; 91; 91; 91; 91; 91; 91	91	91 0	90 3	
			DFEAF	2		92096	20°		24	Š
						<b>*</b> 03	¥03	Ø/03		) 
				4	overal V		913	103	96	5.7
				W.			8 2	Ç (	, 	
		~ ~		,				~ C	) "	
					,					
		41 4 . 7	A o c							
		Š, O		~			4			
	Ş			~						
				, ,	J'		Ĵ			
	Č		L Ø.							
% &C	Y			O ^r	\$ 3					
Ky v				` ~						
	Ž	7 4			O	8				
	Q)			,	Ŝ Ĝ	N. C.				
	~Q~									
Ű	<u>-</u>			Ž Ž						
				%	, y					
	*									
		a \		1						
Ø.										
Ş		4 7	)							
Š,	A									
Ű			BYI 02960-ADFEAF							

### **IIA 6.3.2** Residue trials from the Global Joint Review partner countries Australia, Brazil, Canada, and the USA to support import tolerances

BYI 02960 is to be registered in USA and Canada for use as a soil or forar treatment in/on curus. The use pattern in North America is summarized in Table 6.3.2.1-1.

A total of thirty-four trials were conducted in citus orange, 6 trials in grapefruit trials in oranges (with foliar spray) were conducted to support the import folerance trials in Brazil The use patterns - corresponding to the intended GAPs are described below.

Table 6.3.2.1-1: Target Use Patterns for the Application of BY 102960 on Entrus

				arget R	te/Application	on (±5%		D D			Spray V	Volume
				rulate@	Active			Target		**		
			Produ	ict (fp)	Active	ibstanee	(a.s.Q,"	App.	Target	Adjuvant		
Application	Test	No. of			Name of	lb ^v		Materval	PHI	⊮Additive		
Type	Substance	Apps	mL/A	fl oz/A	<b>305</b>	æs./A	g a.s./ha	y (Days)	(Days)	(% v/v)	GPA	LPHA
Foliar, Dilute	BYI 02960 200 SL	2	4174.8	<b>4</b> 4.0		0,10	205		<b>3</b> 1	0.25	200– 300	1870– 2805
Spray	200 SL		414.8	kl n°	~		0"		7		300	2803
Foliar, Ultra-Low Volume Spray	BYI 02950 200 STL		414.8 0	14.0 (14.0	BY1 02968	0.1 <b>8</b>	20 <b>3</b>		1	0.25 + 33.33	2.5–3	23–28
Soil	BYI 02960 200 SL		829.6	28-1,	B 1 02960	0.366	410	NA ¹	30	0.25	1 qt/ tree	0.95 L/ tree

NA = Not applicable.

Report:	KRA 6.3.2.1/01; Egind La ; 2012
Title:	BYI 02960 200 SL Magnitude of the Residue in/on Citrus (Crop Group 10)
Report No	RARVY012 rated June 27, 2012
Document No	M_33259401-1
Guidelines:	S: EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: PMRA DACO 7.4 Supervised Residue Trial Study
	PMRA DACO 7.4.2, Residue Decline
	GECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
(a)	PMRA DACO 7-2, Residue Decline QECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial, adopted Sep 7, 2009.
GLP S	Yes S

Twenty-six field tries were conducted to measure the magnitude of BYI 02960 residues in/on grapefruit (six trials), lemon (eight trials), and orange (12 trials) (representative test systems for NAFTA Frop Group 10; Citrus Fruits) following either two airblast applications (diluted or concentrated spray) or one soil drench application of BYI 02960 200 SL. BYI 02960 200 SL is a



soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.1-2).

Table 6.3.2.1-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Citrus Fruits

		<b>^</b>	(0)
NAFTA Growing Region	Submitted ^a	Requested 12	
1			
1A	Ö		
2		Q Q	
3	403 203	12	
4		Q* . 12	
5			
5A			
5B			
6			
/A			
8 9 9			
9 4 5			
100			
12 4		J J	
		,	
To (a)	26	23	

Ten of the 26 trials were decline trials tive in Region and five in Region 10). The additional decline trials were performed to meet 2U import tolerance requirements.

# Material and Methods

Three use patterns/application forms were tested: either 2 dilute or 2 concentrated foliar airblast applications, or single soil dench. Endividual application rates ranged from 0.179 to 0.193 lb BYI 02960/A application (0.200 to 0.216 kg BYI 02960/ha/application) for plots with dilute airblast applications. For plots with ultra-low volume (concentrated) applications, individual application rates ranged from 0.157 to 0.200 lb BYI 02960/A/application (0.175 to 0.224 kg BYI 02960/A/application). The application rate ranged from 0.355 to 0.381 lb BYI 02960/A/application (0.398 to 0.327 kg BYI 02960/ha/application) for plots with a soil drench application. Seasonal application rates for all plots ranged from 0.344 to 0.381 lb BYI 02960/A (0.386 to 0.427 kg BYI 02960/ha).

All applications were made at growth stages ranging from BBCH 79 to 89 (BBCH 79: fruits about 90% of final size; BBCH 89: fruit ripe for consumption; fruit has typical taste and firmness; beginning of senescence and fruit abscission). The interval between the airblast applications was 700 12 days. For plots with dilute airblast applications, spray volumes ranged from 199 to 301 GPA (1867) to 2821 L/ha). For plots with ultra-low volume applications, spray volumes ranged from 2.2 (203.1) GPA (21 to 29 L/ha). For plots with soil drench applications, the applications were made in a volume of 1 qt (950 mL) per tree or in spray volumes ranging from 29 to 38 GPA (273 to 354 L/ha).

All applications were made using ground-based equipment. The adjugant Dyne-Amec, a typical non-ionic surfactant, was used in all of the applications. Applications to the "TRTDU" plots (New your applications) also included the adjuvant 435 Citrus Oil.

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2 7-3. Study use patterns are summarized in Table 6.3.2.1-4

Table 6.3.2.1-3: Trial Site Conditions for BYk 02960 on Citrus

	T					, Š U	
T*-1	Trial Location	K & Soil		téristic		Meteorolo	giçal Datab
Trial Identification; Crop	(City, Country/State Year)	Type O	<b>QM</b> <b>Q%</b> )	SH A	CEC Omeq/100g soil)	Total Bainfall (in)	Temp. Range (°F)
RV152-10DA Orange	, FL (2010 )	Pavares	Q W	4,7	\$1.8 J	\$2.26	27–91
RV153-10DA Orange	2011	Candler Sand	1.5	7.9 **	<b>6</b> 3	10.36	30–90
RV154-10DA Orange	, FL , V , V , V , V , V , V , V , V , V ,	& Sand	Ž1.1 Č	\$7.4	4.45	2.74	40–78
RV155-10HA Orange	, FL &	Sand S	196	<b>6</b> ,9	6.7	2.62	40–78
RV156,10HA Orange	2014	Sand 3	<b>2</b>	6.8	6.6	2.62	40–78
RV157-10HA Orange	\$2010	Sand	\$\bigsiz 2	\$7.5	10.2	3.22	41–77
RV158-10HA Orange	2011 P	Sand O		7.1	4.4	10.36	30–90
RV15910HA	FL 2010	St. Lucie Sand	1	5.5	0.1-1.8	12.90	71–95
RV160-10HA Orange	TX 2010		0.7	8.2	24.4	0.00	52-80
RV161-100A Orange	, CA 2011	Loam	1.5	8.1	17	1.38	45–72
RV 162-10HO	2010 2010	Loam	0.9	6.9	16.7	4.35	50–74
RV16390HA Orange	CA 2010	Clay Loam	2.7	8.2	33.6	0.06	53-80

Table 6.3.2.1-3 (cont'd): Trial Site Conditions for BYI 02960 on Citrus

m · ·	Trial Location	Soil (	Charac	teristics	a I	Meteorole	ogical Databo
Trial Identification; Crop	(City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Kange
RV164-10DA Lemon	, FL 2010	Candler fine sand	1.5	5	0.1–1.8	0.77	61 04
RV165-10HA Lemon	, FL 2010	Candler sand	1.4	[™] 7.6	45	0.04	56-87
RV166-10DA Lemon	, CA 2011	Loam	<u>4</u> 3.5	7.7	Q 11.6 °	\$5.89 \$\infty\( \)	D 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
RV167-10DA Lemon	, CA 2011	Hesperia Fine Sandy Login	0.205		7.5	7	46-73
RV168-10DA Lemon	, CA 2011	Sandx Loam	0.64	7.4		3,28	36-6
RV169-10HA Lemon	, CA 2010	Loam	\$1.5 £	7.7 N	20.5	\$\frac{1}{2}.17\frac{1}{2}	53-78
RV170-10HA Lemon	, CA ²	Hesperia Figo Sandy Loam	0.95		7.5	3.78 ⁽⁴⁾	46–73
RV171-10HA Lemon	CA, (0 2010	Clay Loam	2.7 [©]	8.2	\$3.6 \$3.6	0.05	50–72
RV172-10DA Grapefruit	, PC	Candler sand	1.2	© ^y \$ 6.8 (	4.6	10.36	30–90
RV173-10HA Grapefruit	, FL 2010	Sand		<b>3</b> 6.2	4.85	2.38	40–78
RV174-10HA Grapefruit	2010 Z	Candler sand	0	6.2	¥3.8	1.88	41–79
RV172-70HA Grapefruit	TX 2016	Clay	0.7	8.4	26.5	0.00	52–80
RV176-10DA Grapefruit	© CAC	[ ⊜ Loama	© ©0.75	<b>7</b>	7.5	3.78	46–73
RV177-10HA Grapefrait	2010 2010	Santay Loggy	085	7.7	3.7	7.75	40–64
a Abbreviati b Data is for Meteorolo	ions used: %QM = per the interval of the and gical data were obtain	IOMIL OF Earth III allow	CLC -	cation ex gh the m weather	schange capacit nonth of last san stations.	y. npling.	



Table 6.3.2.1-4: Study Use Pattern for BYI 02960 200 SL on Citrus

		(u			Ap	plicatio	n			a,°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	(Lethod	Timing/Conth Stage (BBCH)	Spray Volume GPA		(daG).	Oxatal Rafe (B. a.S.) (kg 265/ha)	C.A. Tank Wix Adjukants Vine
Orange RV152-	EI	BYI 02960	TRTDD T	Airb@ct	° S	211/2		No	0.270	
10DA	Region 3, 2010	200 SL			\$ 3 S	2006 (1929)	0.187 (0.209) 0.184 0.206)		0.370 (0.415)	Dyne- O.25% v/v  Dyne- Amic, 0.25% v/v
RV152- 10DA	Region 3, 2010	BYI 02960 200 SL	TRODU	Airblast	∂°83	2.8 (26)	©.187 (0.200)		0.373	Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v
L.					\$83 ( \$\int \text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\text{2}\t	2.9	©0.186 (0.209)	8		Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v
RV152- 10DA	2010					29 (273)	0.373 (0.418)	NA	0.373 (0.418)	Dyne- Amic, 0.25% v/v
RV153- 10DA	Region 3,	BYI 02960 200 SL	TRTDE	Airblast (dilute appl.)	89	243 (2269)	0.181 (0.202)	NA	0.365 (0.409)	Dyne- Amic, 0.25% v/v
	FL, FL, FRegion 3, 2011				89	247 (2307)	0.184 (0.206)	9		Dyne- Amic, 0.25% v/v

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	5.2.1 <del>-4</del> (cont a).	Study	Ose Patte	JIII TOT D	1102)	00 200	OL OII V	orti us			_
	_	(uc		ſ	Ap	plicatio	n	1	1	w°	4
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Kethod	Timing/Govth Stage (BBCH)	Spray Volume GPA (Entra)		Betreatment Interval _© (da©).	Datal Rafe Ba.S./A (kg 35/ha)	Tank Wix Adjukapits	
RV153- 10DA	Region 3, 2011	BYI 02960 200 SL		artpl.)	896	2.5 (24)	0.184 (0.266) 0.186 (0.268)	NA S	0.3694	Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435/ Citrus Oil, 33% v/v	
RV153- 10DA	Region 3,	BYI 02960 200 SL	TRATOS	Soil dreman	81		0.360 (0.4 <b>%</b> 4)	♥NA	0.360 (0.404)	Dyne- Amic, 0.25% v/v	
RV154- 10DA	Region 3, 2010	BY 92960 200 SL	TRTDB	Airblast (ditate Appl.)		218 (2035) 219 (2051)	0.180 (0.202) 0.181 (0.203)	10	0.361 (0.405)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 3, b 2010, c							— Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	5.2.1 <b>-4</b> (cont a).	Study	Ose Patte	JIII 101 D	1102)	00 200	DL OII (	Citius			<b>-</b> 1
	_	(uc		ſ	Ap	plicatio	n	1	1	w°	4
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Govth Stage (BBCH)	Spray Volume GPA (Entr)	Rate Ib a.S.M (kg a.s./ha)	Betreatment Interval _© (वैबक्की)	Dotal Rafe B a.S./A (kg 35/ha)	Tank Wix Adjukapits	
RV154- 10DA	Region 3, 2010	BYI 02960 200 SL			83 6	7 2.7 (26) (26)	0.187 (0.240) 0.181 (0.263)	NA TO		Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV154- 10DA	Region 3,	BYI <b>029</b> 60 200 SL	TRATOS	Soil S drefts	81	1.0°	0.366 (0.4 <b>%</b> 0)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
RV155- 10HA	Region 3 C 2010	BY 02960 200 SL	TRTDO	Airblast (dute appl.)		286 (2632) 266 (2487)	0.186 (0.209) 0.184 (0.206)	10	0.370 (0.415)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 3 D 2010 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <b>-4</b> (cont a).	Study	Ose Patte	7111 TOT D	1102)	00 200	OL OII V	Jiuus			_
	_	(uc		ſ	Ap	plicatio	n		1	w°	4
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	(Lethod	Timing/Govth Stage (BBCH)	Spray Volume GPA		<b>Betreatment Inter^{Nat}ित्र</b> (daGk	Dotal Rake B. S./A (kg 38/ha)	Tank Wix Adjukapts	
RV155- 10HA	Region 3, 2010	BYI 02960 200 SL			89 6	2.8 C26 V	0.185 (0.267) 0.183 (0.265)	NA TO		Dyne- Amic, 0-55% v/v + 435 Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV155- 10HA	Region 3,	BYI 02960 200 SL	TRIDS	Soil drenge	81	N. S.	0.365 (0.4 <b>%</b> )	NA	0.365 (0.409)	Dyne- Amic, 0.25% v/v	
RV156- 10HA	Region 3, 2010	BY 92960 200 SL	TRTDE	Airblast (ditate appl.)		276 (2612) 266 (2489)	0.185 (0.207) 0.184 (0.206)	10	0.369 (0.413)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 3, b 2010							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 6.	3.2.1-4 (cont'd):	Study	Use Patte	ern for B	Y I U29	60 200	SL on C	ıtrus			
	4	(m)			Ap	plicatio	n			Q)°	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	<b>Met</b> hod	Timing/Govth Stage (BBCH)	Spray Volume GPA (EAm)	Rate lb a.S./ha)	<b>Bet</b> reatment Inter <b>Val</b> O (da <b>B</b> )	Operal Rafe (b. a. S./A (kg & la)	Tank Wix Adjukants	,0
RV156- 10HA	Region 3, 2010	BYI 02960 200 SL			896	2.8 C	(0.766) 0.185 (0.268)	NATO TO THE PROPERTY OF THE PR		Amic, 0-25% y/v 	
RV156- 10HA	Region 3, O	BYI \$2960 200 SL	TETDS	Soil Control	81 0	1.0°	0.381 (0.4 <b>2</b> 7)	NA	0.381 (0.427)	Dyne- Amic, 0.25% v/v	
RV157- 10HA	Region 3. PL	BY 92960 200 SI	ARTDO	Airblast (dute appl.)		220 (2055) 221 (2067)	0.180 (0.202) 0.181 (0.203)	10	0.361 (0.404)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 3 D 2010 A A A A A A A A A A A A A A A A A A							Contin	nued on i	next page	

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 6.	3.2.1-4 (cont'd):	Study	Use Patte	ern for B	Y I U29	60 200	SL on C	ıtrus			<u>.</u>
	4	(uı			Ap	plicatio	n			Q)°	<b>\</b>
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	poupage	Timing/Gowth Stage (BBCH)	Spray Volume GPA (Edw)	Rate 1b a.S.A. (kg a.s./ha)	<b>Bet</b> reatment Inter <b>Val</b> (da <b>B</b> )	Opatal Rafe(fb. a. S./A (kg & lha)	Tank Wix Adjukants	,0"
RV157- 10HA	Region 3, 2010				83	2.7 (26)	0.180 (0.762) 0.181 (0.263)			Dyne- Amic, 0-5% y/v + 435/ Citrus Oil, 30% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV157- 10HA	Region 3,	BYI <b>939</b> 60 260 SL	TTTDS	Soil and Soi			0.366 (0.490)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
RV158- 10HA	Region 3.	BYJ92960 200 SL	ARTDB	Airblast (ditate appl.)		248 (2321) 250 (2338)	0.185 (0.208) 0.187 (0.209)	9	0.372 (0.417)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 3, 0 2011							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

	3.2.1-4 (cont a).	-	Osc I atte			plicatio	ın.				1
	<u> Y</u>	tion)			Ap	рисацо	·11			, v	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Rethod	Timing/Ganth Stage (BBCH)	Spray Volume GPA	Rate Ib a: M (kg a.s./ha)	Betreatment Intervat _ि (daG),	Operal Rate (h. a.S./A (kg (8)/ha) O	Tank Wix Adjukants	
RV158- 10HA	FL, Region 3, 2011	BYI 02960 200 SL			89 6	2.5 (23)	0.184 (0.296) 0.184 (0.296)	NA TO		Dyne- Amic, 0-55% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435/ Citrus Oil, 33% v/v	
RV158- 10HA	Region 3,	BY1 63960 269 SL 3	FRIDS	Soil S drengn	89 _@		0.369 (0.4 <b>9</b> 3)	NA	0.369 (0.413)	Dyne- Amic, 0.025% v/v	
RV159- 10HA	Region 3. 2010	BY 92960 200 SL	TRTDB	Airblast (ditute appl.)	88	203 (1905) 199 (1864)	0.186 (0.209) 0.191 (0.215)	10	0.377 (0.423)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 3, D 2010							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

	3.2.1-4 (cont a).	-	Osc I atte			plicatio				_	1
	<u> Y</u>	tion)			Ap	рисацо	·11			, v	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Set hod	Timing/Ganth Stage (BBCH)	Spray Volume GPA	Rate lb a.S./A (kg a.s./ha)	Øgtreatment Inter∾क्री _© (da©)	Qotal Rake B. a.S./A (kg 35/ha) O	Tank Wix Adjukants	
RV159- 10HA	FL, Region 3, 2010	BYI 02960 200 SL			83	3.1.0	0.187 (0.209) 0.185 (0.207)	NA TO		Dyne- Amic, 0-55% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435/ Citrus Oil, 33% v/v	
RV159- 10HA	Region 3, O	BYI \$3960 269 SL	TTTDS	Soil S drengh	79 Q		0.371 (0.4%)	NA	0.371 (0.416)	Dyne- Amic, 0.25% v/v	
RV160- 10HA	Region 6. 0 2010 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	BY 92960 200 SI	ARTDO	Airblast (duate appl.)		250 (2364) 251 (2345)	0.186 (0.208) 0.184 (0.207)	9	0.370 (0.415)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 6 2010 A							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1-4 (Cont a).		Ose Palle		1102)	00 200		Jiii us			-
		(uc			Ap	plicatio	n				~
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Conth Stage (BBCH)	Spray Volume GPA	Rate 1b a.S.A. (kg a.s./ha)	Betreatment Inter भेबी (daG)	Opatal Rafe for a.S./A (kg & lha)	Tank Wix Ad	
RV160- 10HA	, TX, Region 6, 2010						0.184 (0.266) 0.184 (0.214)	NA NA OF STATE OF STA	0.375% (0.420)	Dyne- Amic, 9-25% y/v + 435	
RV160- 10HA	Region 6, 2010	BM 02960 200 SD	TRIDS	Soil Arench	<b>8</b> 1	\$326) \$326)	© 0.369 (0.414)	NA	0.369 (0.414)	Dyne- Amic, 0.25% v/v	
RV161 10DA	Region 0, 4	871 02960 200 SL	TREDD	Arblast (dilute appl.)	81	276 (2580) 276 (2580)	0.187 (0.209) 0.187 (0.209)	11	0.373 (0.418)	Dyne- Amic, 0.56% v/v Dyne- Amic, 0.56% v/v	
	Region 6, 2010 A Company of the comp			**************************************			(	 Contir	nued on i	next page	I

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.		-				plicatio	n				1
	ľA	tion)			Ap	рисацо	111				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Cethod	Timing/Ganth Stage (BBCH)	Spray Volume GPA	Rate lb a.S./A (kg a.s./ha)	<b>Bet</b> reatment Inter <b>val</b> (da©)	Optal Rate Bas.A (kg 35/ha)	Tankwix Ad	
RV161- 10DA	, CA, Region 10, 2011	BYI 02960 200 SL			83	7 2.9 C	0.182 (0.264) 0.182 (0.264)	NA TO		Dyne- Amic, 0.56% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.56% v/v + 435/ Citrus Oil, 33% v/v	
RV161- 10DA	Region 10, O	BYI 03960 209 SL 3	TRATOS	Soil S drengh	81		0.365 (0.4 <b>69</b> )	NA	0.365 (0.409)	Dyne- Amic, 0.56% v/v	
RV162- 10HA	Region 10 0 2010	BY 92960 200 SI	ARTDO	Airblast (duate appl.)		249 (2324) 249 (2325)	0.183 (0.205) 0.183 (0.205)	7	0.365 (0.410)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 C 2010							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 6.	3.2.1-4 (cont'd):	Study	Use Patte	ern for B	Y I U29	60 200	SL on C	ıtrus			_
		(uı)			Ap	plicatio	n			Q)°	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	<b>Method</b>	Timing/Govth Stage (BBCH)	Spray Volume GPA (EAm)	Rate lb a.S./ha)	<b>Bet</b> reatment Inter ^R की _ं (da <b>छ</b> ).	Opatal Rafe (b. a. S./A (kg & lha)	Tank Wix Adjukants	O
RV162- 10HA	, CA, Region 10, 2010	BYI 02960 200 SL		Ž	83 5	2.6 (24)	0.179 (0.290) 0.183 (0.205)			Dyne- Amic, 0-25% y/v + 435/ Citrus Oil, 30% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV162- 10HA	Region 10,	BYI 62960 200 SL 3	TOS S	Soil drenger	79 Q		0.366 (0.440)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
RV163- 10HA	Region 10 CA, 2010	BY 92960 200 SI	ARTDO	Airblast (dunte appl.)	86 5 7	30% (2817) 288 (2694)	0.193 (0.216) 0.183 (0.205)	10	0.376 (0.421)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 Page							Contir	nued on i	next page	

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.1-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Citrus

1 autc 0.	3.2.1-4 (Cont a).	Study	Ose Palle		1102)			J111 U.S			
		(uc			Ap	plicatio	n		T		~
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	potpath	Timing/Gowth Stage (BBCH)	Spray Volume GPA (Edm)	Rate 1b a.S./A (kg a.s./ha)	Øetreatment Inter™ado (da©)	Qutal Rafe@a.S./A (kg &&/ha) *\@	Tank Wix Adjukants	O
RV163- 10HA	CA, Region 10, 2010				89 6	2.2 (2.14)	0.157 (0.155) 0.188 (0.251)	NACO	0.344	Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV163- 10HA		BYI \$2960	FRTDS	Soil &	83 _@	1.0°	0.366 (0.490)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
Lemon		Ž Ç			Ž,						
RV164- 10DA	Region 3,	BYI 02960 200 SL	TATOD	Airblast (dilu@ appl.)	, 79 <u>\$</u>	7210 (1968)	0.184 (0.207)	NA	0.368 (0.413)	Dyne- Amic, 0.25% v/v	
					83	208 (1943)	0.184 (0.206)	12		Dyne- Amic, 0.25% v/v	
	Region 10 2010 DL, Region 3, 2010						(	Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

rabie 6.	3.2.1-4 (cont'd):	Study	Use Patte	ern for B	Y I U29	00 200	SL on C	ıtrus		
		(uo		ı	Ap	plicatio	n	1	1	w°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	podpet	Timing/Govth Stage (BBCH)	Spray Volume GPA	Rate lb a.S./ha)	<b>De</b> treatment Inter ^{ra} d _© (da©)	Qatal Rakeka a.S./A (kg & /ha)	TankWix Ad
RV164- 10DA	Region 3, 2010			appl.)	83.5	7 2.7 C (25)	0.184	NA TO		Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v
RV164- 10DA	Region 3, O	BYI <b>(32</b> 960 200 SL 3	TTTDS	Soil S drengn	79 _@	1.0°	0.355 (0.3 <b>9</b> 8)	NA	0.355 (0.398)	Dyne- Amic, 0.25% v/v
RV165- 10HA	Region 3 C 2010	BY 92960 200 SI	ARTDO	Airblast (dunte appl.)		247 (2309)	0.179 (0.200) 0.180 (0.202)	9	0.358 (0.402)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v
	Region 3 0 2010 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							Contir	nued on i	next page

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <del>-4</del> (Colli a).	Study	Ose Palle	711 TOL D	1102)	00 200	SL OII (	Jiuus			_
		(uo			Ap	plicatio	n		ı	w °	~
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	pothetic	Timing/Gowth Stage (BBCH)	Spray Volume GPA (Edm)	Rate 1b a RA (kg a.s./ha)	<b>Bet</b> reatment Inter <b>ेक्री</b> ्र (da <b>®</b> )	Opatal Rafe fib a.S./A (kg abylna)	Tank Wix Adjurants	
RV165- 10HA	Region 3, 2010	BYI 02960 200 SL					0.184 (0.766) 0.185 (0.267)			Dyne- Amic, 9-25% v/v + 435 Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV165- 10HA	Region 3, O	BY1 63960 269 SL	FRIDS	Soil drenger	83 ₀	1.0°	0.364 (0.4 <b>9</b> 8)	NA	0.364 (0.408)	Dyne- Amic, 0.25% v/v	
RV166- 10DA	Region 10 2011	BY 92960 200 SI	TRTDO	Airblast (dinte appl.)	880 5 6	289 (2701)	0.183 (0.205) 0.183 (0.205)	10	0.366 (0.410)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 2011 2011 2011 2011 2011 2011 2011							Contir	nued on 1	next page	

Bayer CropScience

Table 6.3.2.1-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Citrus

	3.2.1-4 (cont u).		Osc I all								1
	¥	(uo			Ap	plicatio	n			, w	ô
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	pot pot	Timing/Canth Stage (BBCH)	Spray Volume GPA (EAm)	Rate Ib a.S./A (kg a.s./ha)	<b>Betreatment Interval</b> (da <b>®)</b> ,	Qotal Rate for a.S./A (kg & for final of the for final of	Mix Ad	
RV166- 10DA	Region 10, 2011						0.1916	NA S		Dyne- Amic, 0-35% y/v + One	
RV166- 10DA	CA, Region 70, 2011	BM 02960 200 SD	TRTDS	Soil French	81 81 5		Ø 366 (0.410)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	-
RV167- 10DA	Region 40, 2011	BYI 62960 200 SL	TRTDD	Airblast (dilute appl.)	89 6	248 (2316) 250 (2335)	0.181 (0.203) 0.183 (0.205)	11	0.364 (0.408)	Dyne-Amic, 0.25% v/v  Dyne-Amic, 0.25% v/v	



Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <b>-</b> 4 (cont a).	Study	Ose Patte	JIII 101 D	1102)		DL on v	Jiti us		1	1
	<b>∢</b>	(uo		<u> </u>	Ap	plicatio	n		T	w °	<b> </b>
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Conth Stage (BBCH)	Spray Volume GPA	Rate lb a.S./ha) (kg a.s./ha)	<b>Betreatment Interval</b> ्र (da <b>छ</b> ).	Dotal Rafe B. a.S./A (kg 35/ha) (O)	Tank Wax Adjukapits	
RV167- 10DA	, CA, Region 10, 2011	BYI 02960 200 SL			89 6	2.7 C	0.185 (0.207) 0.183 (0.208)	NA TO THE TOTAL	0.3674	Amic, 0-25% y/v + 435	-
RV167- 10DA	Region 10,	BYI 63960 260 SL	FRIDS	Soil S drengn	Ž,		0.365 (0.4 <b>6</b> 9)	NA	0.365 (0.409)	Dyne- Amic, 0.25% v/v	
RV168- 10DA	Region 10, 2011	BYI 92960 200 SL	TRTDB	Airblast (ditate appl.)	85 5	227 (2126) 250 (2337)	0.183 (0.205) 0.183 (0.205)	10	0.365 (0.409)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2							Contir	nued on i	next page	

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

	3.2.1-4 (cont a).					plicatio	n			0	1
	IA	tion)			Ар	piicatio	11				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Cethod	Timing/Ganth Stage (BBCH)	Spray Volume GPA	Rate lb a.S./A (kg a.s./ha)	<b>Bet</b> reatment Inter <b>va</b> t _© (da©)	Operal Rave (h. a.S./A (kg (5)/ha) O	Tank Wix Adjukants	
RV168- 10DA	, CA, Region 10, 2011	BYI 02960 200 SL			89 6	2.6 (24)	0.185 (0.267) 0.185 (0.284)	- 87		Dyne- Amic, 0-55% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435/ Citrus Oil, 33% v/v	
RV168- 10DA	Region 10, 0°	BYI \$3960 269 SL	TTTDS	Soil S drengn	83		0.366 (0.490)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
RV169- 10HA	Region 10 0 2010	BY 62960 200 SL	ARTDO	Airblast (dunte appl.)	85 5 5	256 (2391) 262 (2451)	0.189 (0.212) 0.191 (0.214)	10	0.380 (0.426)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 0 2010 A							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 6.	3.2.1-4 (cont'd):	Study	Use Patte	ern for B	Y I U29	60 200	SL on C	ıtrus			<u>-</u> -,
	4	(uı			Ap	plicatio	n			Q)°	~
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	<b>Method</b>	Timing/Govth Stage (BBCH)	Spray Volume GPA (Edin)	Rate 1b a.S./A. (kg a.s./ha)	<b>Bet</b> reatment Inter <b>Val</b> O	Opatal Rafe (fb. a. S./A (kg & Jha)	Tank Wix Adjukants	O
RV169- 10HA	, CA, Region 10, 2010	BYI 02960 200 SL			89 6	2.9 C	(0.766) 0.184 (0.266)	NA TO		Amic, 0.25% y/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435/ Citrus Oil, 33% v/v	
RV169- 10HA	Region 10,	BYI 03960 260 SL	TICTOS	Soil & drenger	79 ₀		0.366 (0.490)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
RV170- 10HA	Region 10 0 2011	BY 92960 200 SI	ARTDO	Airblast (duate appl.)		248 (2323) 250 (2335)	0.182 (0.204) 0.183 (0.205)	11	0.365 (0.409)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 C 2011							Contir	nued on i	next page	

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <b>-</b> 4 (cont a).	Study	Ose Patte	7111 TOT D	1102)	00 200	DL OII (	ortius		ı	-
	<b>∢</b>	(u0			Ap	plicatio	n		T	w °	\$ (C
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Attethod	Timing/Govth Stage (BBCH)	Spray Volume GPA (Elim)	Rate Ib a.S./A (kg a.s./ha) €	Betreatment Interval)्र (da©).	Dotal Rafe B a.S./A (kg 35/ha)	Tank Wix Adjukapits	
RV170- 10HA	, CA, Region 10, 2011	BYI 02960 200 SL			89 6	7 2.7 C (25)	0.184	NA TO		Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435/ Citrus Oil, 33% v/v	
RV170- 10HA	Region 10, O	BYI (3960 260 SL	FRIDS	Soil S drenga	Z Z	K.	0.364 (0.469)	NA	0.364 (0.409)	Dyne- Amic, 0.25% v/v	
RV171- 10HA	Region 10.0 2010	BY 62960 200 SL	ARTDO	Airblast (dunte appl.)	880 29 29	286 (2674) 295 (2763)	0.182 (0.204) 0.184 (0.206)	10	0.365 (0.410)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 2010							Contii	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <del>-4</del> (cont a).	Study	Use Palle	7111 TOL D	11029	00 200	SL OII (	Jiuus			
		(uo			Ap	plicatio	n		_	_@ °	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	poup	Timing/Gowth Stage (BBCH)	Spray Volume GPA	Rate 1b a RA (kg a.s./ha)	Øgtreatment Interval _{्र} (da©).	Oxotal Rake (B. a. S./A (kg &S./ha)	Tank Wix Ad	
RV171- 10HA	Region 10, 2010						0.185		0.366 (0.410)	Dyne- Amic, 0-25% y/v + 435	
RV171- 10HA	Region 10,	BYI \$2960	FRIDS	Soil and Soi	79 _@	1.0°	0.366 (0.490)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v	
Grapefr	uit, 🛴 🛴		j d	," "O" 			,				
RV172- 10DA	Region 3, 2001	BY 1 02980 200 SL	TRTDD	Amblast Vdilute applo	\$9 \$9 \$7	Q43 (2270)	0.181 (0.202)	NA	0.367 (0.411)	Dyne- Amic, 0.25% v/v	-
4					, 89 89	250 (2334)	0.186 (0.209)	9		Dyne- Amic, 0.25% v/v	
	Region 10, 0			***			(	Contir	nued on i	next page	

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1-4 (cont'd):	Study	Use Patte	ern for B	11029	00 200	SL on C	lirus		
	4	(uc		T	Ap	plicatio	n		1	w°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Coowth Stage (BBCH)	Spray Volume GPA (EHm)	((// )	Øgtreatment Intervap (daG)	Quatal Rafe(fb, a.S./A (kg &&/ha)	Tank Wix Ad
RV172- 10DA	Region 3, 2011	BYI 02960 200 SL		arsipi.)	89 E	7 2.5 C (24)	0.184 (0.266) 0.185 (0.268)	NA S		Dyne- Amic, 9.25% y/v + 435 Citrus Oil, 30% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v
RV172- 10DA	Region 3,	BYI <b>(29</b> 60 200 SL 3	TXTDS	Soil and Soi		36 (33 ⁴ )	0.360 (0.4 <b>9</b> 3)	NA	0.360 (0.403)	Dyne- Amic, 0.25% v/v
RV173- 10HA	Region 3. D	BY 92960 200 SL	TRTD	Airblast (ditate appl.)	85 5 2	212 (2012) 212 (1982)	0.182 (0.204) 0.185 (0.207)	9	0.367 (0.411)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v
	Region 3. C 2010							Contir	nued on i	next page

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1-4 (cont'd):	Study	Use Patte	2111 101 B	11029	00 200	SL on C	Juus		
	4	(uc		T	Ap	plicatio	n		T	w °
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	pod	Timing/Conth Stage (BBCH)	Spray Volume GPA (EAm)	(// 1	Detreatment Interval) (daG)	Opatal Rafe(fb. a.S./A (kg. &S./ha)	TankWix Ad
RV173- 10HA	, FL, Region 3, 2010	BYI 02960 200 SL		arapi.)	89 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 2.6 (24)	0.180 (0.262) 0.183 (0.268)	NA S		Dyne- Amic, 9.25% y/v + 435 Citrus Oil, 30% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v
RV173- 10HA	Region 3,	BYI <b>(32</b> 960 200 SL 3	TTTDS	Soil and Soi		1.0°	0.369 (0.4 <b>9</b> 4)	NA	0.369 (0.414)	Dyne- Amic, 0.25% v/v
RV174- 10HA	Region 3. C 2010	BY 92960 200 SL	TRTD	Airblast (ditate appl.)	85 5 2	275 (2569) 268 (2509)	0.182 (0.204) 0.183 (0.205)	9	0.364 (0.408)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v
	FL Region 3. C 2010							Contir	nued on i	next page

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <b>-4</b> (cont a).	Study	Ose Patte		1102)	200	SL OII V	Citius			1
	<del></del>	(uc		T	Ap	plicatio	n	Γ		w °	8
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Cethod	Timing/Govth Stage (BBCH)	Spray Volume GPA (Elika)		Betreatment Inter भेंकी ्र (dags.	Opatal Rafe for a.S./A (kg 36 / ha)	Tank Wix Ad	
RV174- 10HA	, FL, Region 3, 2010	BYI 02960 200 SL			89 6	7 3.1 (29) (29)	0.184	NA CONTRACTOR OF THE CONTRACTO	0.3814 (0.427)	Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 30% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV174- 10HA	Region 3,	BYI (\$2960 260 SL	FRIDS	Soil drengen	S S		ar,	NA )	0.368 (0.412)	Dyne- Amic, 0.25% v/v	
RV175- 10HA	Region 6. 2010	BY192960 200 SL	TRTDO	Airblast (ditate appl.)		250 (2339)	0.186 (0.209) 0.184 (0.206)	9	0.370 (0.415)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 6. 2010 A A A A A A A A A A A A A A A A A A							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

1 4010 0.	3.2.1 <b>-4</b> (cont a).	Study	Ose Patte	JIII 101 D	1102)	00 200	DL OII (	ortrus		T	-1
		(uc			Ap	plicatio	n				\$
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Govth Stage (BBCH)	Spray Volume GPA (E/th)	Rate Ib a.S.M (kg a.s./ha)	<b>Betreatment Inter^{Nat}्रि</b> (da <b>S</b> )	Dotal Rafe fb, a.S./A (kg 36./ha)	Tank Wix Adjukants	
RV175- 10HA	Region 6, 2010	BYI 02960 200 SL			83	7 2.6 (24)	0.185 (0.267) 0.190 (0.253)	NA TO		Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 30% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV175- 10HA	Region 6, O	BYI (\$2960 260 SL	FRIDS	Soil S drengh	Ž,	K.	0.369 (0.474)	NA	0.369 (0.414)	Dyne- Amic, 0.25% v/v	
RV176- 10DA	Region 10.0 2011	BY 02960 200 SL	TRTDO	Airblast (dunte appl.)	80	248 (2321) 250 (2336)	0.182 (0.204) 0.183 (0.205)	11	0.364 (0.408)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 C 2011							Contir	nued on i	next page	

Study Use Pattern for BYI 02960 200 SL on Citrus Table 6.3.2.1-4 (cont'd):

Table 0.	3.2.1 <b>-4</b> (cont a).	Study	Ose Patte	7111 TOT D	1102)	00 200	SL OII V	Jiuus		1	-1
	<del>-</del>	(uc		T	Ap	plicatio	n		1	w °	9
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	(Tet/hod	Timing/Gowth Stage (BBCH)	Spray Volume GPA (Elim)		Betreatment Inter भिष्के (daG)	Dotal Rafe for a.S./A (kg 35./ha)	Tank Mix Adjukapits	
RV176- 10DA	, CA, Region 10, 2011	BYI 02960 200 SL			89 6	2.7 C25V	0.182 (0.293) 0.183 (0.294)	NA TO		Dyne- Amic, 0-25% v/v + 435/ Citrus Oil, 35% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v	
RV176- 10DA	Region 10,	BYI (\$2960 260 SL	FRIDS	Soil drengen	Z Z	K.	0.364 (0.4 <b>68</b> )	NA NA	0.364 (0.408)	Dyne- Amic, 0.25% v/v	
RV177- 10HA	Region 10 CA	BV102960 200 SL	TRTDO	Airblast (dute appl.)	84 J	255 (2385) 221 (2068)	0.186 (0.208) 0.182 (0.204)	11	0.368 (0.412)	Dyne- Amic, 0.25% v/v Dyne- Amic, 0.25% v/v	
	Region 10 C 2010							Contii	nued on i	next page	



Table 6.3.2.1-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Citrus

					A ==	mliaatia				
	4	(uc			Ap	plicatio	n			w°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Arethod Arethod	Timing/Conth Stage (BBCH)	Spray Volume GPA (E/th)	Rate Ib a.S./A (kg a.s./ha)	Betreatment Interval)्र (daG)	Notal Rafe n a.S. (kg 363/ha) 20	Tank Wix Ad
RV177- 10HA	. G						0.182	NA _Q	0.363%	Dyne- Amic, 0-25% v/v + 435 Citry Oil, 36% v/v Dyne- Amic, 0.25% v/v + 435 Citrus Oil, 33% v/v
RV177- 10HA	Region 10,		TATOS	Soil S drenga	810	1.0°	0.366 (0.490)	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v

a NA = Norapplicable

Single composite samples of grape fruits, lemons, or oranges were collected at a 1-day pre-harvest interval (PHI) from each of the TRTLD (dilute spray volume) and TRTDU (concentrated spray volume) plots except for lemon Trial RV1/08-10DA, which did not collect a sample from the TRTDU plot. Duplicate composite samples of grape fruits, lemons, or oranges were collected at a PHI of 30 days from the TRTDS plots. The ten decline trials, single composite grape fruit, lemon, and orange samples were collected from both the TRTDD and the TRTDU plots at 0, 1, 3, 10, and 21 days after the last treatment. Single composite samples of grape fruits, lemons, and oranges were collected from the control plots on the same day the larget day samples were collected from the treated plots.

From four trials, additional grape fruit, lemon, or orange samples were collected at a 1-day PHI and were processed to evaluate potential residue reduction resulting from the common practice of peeling citrus.

In addition, single composite samples of grapefruits, lemons, or oranges were collected from plots TRTDD and TRTDU immediately before the second application (after only one application of BYI 02960); however, as these do not reflect the proposed use rate, the residue data from these samples were collected for informational purposes only.

b Value represents volume applied per tree grat [equivalent to 0.95 L]



The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

### **Findings**

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were  $\leq 20\%$  (Table 6.3.2.1-5)

Table 6.3.2.1-5: Summary of Recoveries of BYI 02960 from Citrus

Crop Matrix  Analyte  Spike Level (ppm)				<u> </u>	y . W	- Q	$\sim$	0, 10,	à.Y
Crop Matrix  Analyte (ppm) (n) Recoveries (v) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%			Spike	& Sample >		8 A		Mean	Std
Matrix Analyte (ppm) (h) Recoveries (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Crop		Level 💣	Size,"	. O"			Recovery	Dev
95, 104, 80, 93, 91, 104, 138, 115, 116, 116, 106, 119, 92, 107, 105 11  8Y1 02960 95, 117, 83, 108, 87, 103, 96, 76, 97, 107, 107, 119, 100, 113, 109, 94, 115, 94, 85, 340, 198, 104, 18, 86, 403, 95, 93, 85, 102, 107, 93  999 12  86, 403, 95, 93, 85, 102, 107, 93  900 2 86, 97, 91 92 5  0.029 9 71, 74, 88, 78, 98, 86, 70, 74, 88 80 10  86, 95, 64, 96, 73, 85, 84, 78, 88, 84 10  108, 80, 78, 93, 92  109, 100, 36, 100, 113, 100, 113, 100, 113, 100, 110, 11	Matrix	Analyte	(ppm)Q	((h))		Recoveries (%		(%) a	(%)
BYI 02960 95, T17, 83, 108, 87, 103, 96, 76, 97, 107, 119, 100, 113, 709, 94, 99 12  86, 403, 95, 93, 85, 102, 102, 93  1,300 3 86, 97, 91 92 5  0.029 9 71, 74, 88, 58, 98, 86, 70, 74, 88 80 10  86, 95, 64, 96, 74, 85, 84, 78, 88, 84 10  DEA 10 30 30 10, 13, 106, 90, 107, 93, 92  10 10 30 107, 93, 92  10 10 10 107, 119, 100, 113, 100, 94, 95  11 10 115, 94, 85, 140, 108, 104, 106, 103, 96, 96, 97, 93, 92  10 10 10 10 10 10 10 10 10 10 10 10 10 1					∛ 95 <b>%</b> √04	4, 80, 93, 93	104, 108,		
BYI 02960 95, T17, 83, 108, 87, 103, 96, 76, 97, 107, 119, 100, 113, 709, 94, 99 12  86, 403, 95, 93, 85, 102, 102, 93  1,300 3 86, 97, 91 92 5  0.029 9 71, 74, 88, 58, 98, 86, 70, 74, 88 80 10  86, 95, 64, 96, 74, 85, 84, 78, 88, 84 10  DEA 10 30 30 10, 13, 106, 90, 107, 93, 92  10 10 30 107, 93, 92  10 10 10 107, 119, 100, 113, 100, 94, 95  11 10 115, 94, 85, 140, 108, 104, 106, 103, 96, 96, 97, 93, 92  10 10 10 10 10 10 10 10 10 10 10 10 10 1			0: <b>Q</b> l'0	16	145, 116	<b>,</b> ₽6, 10 <b>5</b> 11	9, <b>%</b> , 107	105	11
BYI 02960 95, T17, 83, 108, 87, 103, 96, 76, 97, 107, 119, 100, 113, 709, 94, 99 12  86, 403, 95, 93, 85, 102, 102, 93  1,300 3 86, 97, 91 92 5  0.029 9 71, 74, 88, 58, 98, 86, 70, 74, 88 80 10  86, 95, 64, 96, 74, 85, 84, 78, 88, 84 10  DEA 10 30 30 10, 13, 106, 90, 107, 93, 92  10 10 30 107, 93, 92  10 10 10 107, 119, 100, 113, 100, 94, 95  11 10 115, 94, 85, 140, 108, 104, 106, 103, 96, 96, 97, 93, 92  10 10 10 10 10 10 10 10 10 10 10 10 10 1			01 ×		Z (	107 112		<b>&amp;</b> .	
BYI 02960 95, 117, 83, 108, 87, 103, 96, 76, 99, 115, 94, 85, 410, 108, 104, 48, 86, 403, 95, 93, 85, 102, 107, 93  0.020 79, 71, 74, 88, 78, 98, 86, 70, 74, 88 80 10  86, 95, 64, 96, 76, 85, 84, 78, 88, 84 10  Physical Physics of State			² 0 020 ²	≈\^1	10, 2	108.8 102	70	O 01	17
Fruit    Style="block-align: left;">   Style="block-align: left;">		**************************************	5 0.020	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100, 03, 1023	70 Q	- )1	1 /
First    0.100		BYI 02960	0 ,		95, 117,	83, 108, 87, 1	03,96,76,		
86, 403, 95, 93, 85, 702, 102, 93  86, 97, 91  92  5  0.020  71, 74, 88, 38, 98, 86, 70, 74, 88  80  10  86, 95, 64, 96, 78, 85, 84, 78, 88, 84  10  71, 82, 97, 82, 79, 78, 106, 90, 107, 83, 85, 74, 75, 86, 104, 106, 103, 96, 95, 92, 75, 89, 84, 85, 89  10  15,00  30  10  91, 94, 95  93  2		~	<b>4</b> 0 100₅ [®]	36	L <i>3</i> 997. 1070	S#19.100°.113	3∠ 1°09. 94€>	99	12
Fruit Dicks 19.050 13 86, 95, 64, 96, 75, 85, 84, 78, 88, 84 10  71, 82, 97, 82, 79, 78, 106, 90, 10, 83, 85, 74, 75, 86, 104, 106, 103, 95, 92, 75, 89, 84, 85, 89 10  15,00 3 91, 94, 95 93 2		₩	S		115,94	, 85, 410, 108	, 104, 790,		
Fruit Dicks 19.050 13 86, 95, 64, 96, 75, 85, 84, 78, 88, 84 10  71, 82, 97, 82, 79, 78, 106, 90, 10, 83, 85, 74, 75, 86, 104, 106, 103, 95, 92, 75, 89, 84, 85, 89 10  15,00 3 91, 94, 95 93 2					86,403,		02, 1.02°, 93		
Fruit Dicks 19.050 13 86, 95, 64, 96, 75, 85, 84, 78, 88, 84 10  71, 82, 97, 82, 79, 78, 106, 90, 10, 83, 85, 74, 75, 86, 104, 106, 103, 95, 92, 75, 89, 84, 85, 89 10  15,00 3 91, 94, 95 93 2			~1 ⁹ 00 ~	3	l. 🔷 🗸	86, <b>97</b> , 91	Ø)	92	5
Fruit Dicks 19.050 13 86, 95, 64, 96, 75, 85, 84, 78, 88, 84 10  71, 82, 97, 82, 79, 78, 106, 90, 10, 83, 85, 74, 75, 86, 104, 106, 103, 95, 92, 75, 89, 84, 85, 89 10  15,00 3 91, 94, 95 93 2			Af .*	- A- //		·	<del>\</del>		
Fruit Dicks 19.050 13 86, 95, 64, 96, 75, 85, 84, 78, 88, 84 10  71, 82, 97, 82, 79, 78, 106, 90, 10, 83, 85, 74, 75, 86, 104, 106, 103, 95, 92, 75, 89, 84, 85, 89 10  15,00 3 91, 94, 95 93 2			0.026	600 ×	71, <b>74</b> , 8	38, <b>2</b> 8, 98, 86.	70, 74, 88	80	10
Fruit Dicks 19.050 13 86, 95, 64, 96, 75, 85, 84, 78, 88, 84 10  71, 82, 97, 82, 79, 78, 106, 90, 10, 83, 85, 74, 75, 86, 104, 106, 103, 95, 92, 75, 89, 84, 85, 89 10  15,00 3 91, 94, 95 93 2	(			Y Q	Æ.	0 ,0			
91, 94, 95 93 2	, Ø	A 1	₩a`050 €	10	80, 95, 6	<b>4</b> , 96, <b>7</b> , 85,	84, 78, 88,	0.1	10
91, 94, 95 93 2		Õ	\$ 0.030 10			້ 80, <b>ຊື່≶</b> , 93, 9	2	04	10
91, 94, 95 93 2	Fauit	DÆÅb %		Q ·	71, 82,	97, 82, 79, 78	, 106, 90,		
91, 94, 95 93 2		,			101, 83,	85, 74, 75, 86	, 104, 106,	0.0	1.0
91, 94, 95 93 2			\$100 J	7 3000 √2 1	103, 91	×95, 92, 75, 8	9, 84, 85,	89	10
91, 94, 95 93 2		ĹŸŻ"			S 85.				
			1 500	2 %	**************************************			0.2	2
95, 114, 93, 120, 109, 73, 110, 96 19 95, 71, 118, 71, 73, 78, 118 103 15  0.000 6 101, 83, 108, 89, 118, 118 103 15  79, 89, 115, 97, 84, 105, 112, 94, 107, 87, 118, 115, 102, 95, 105, 108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103  1.500 3 86, 85, 86 86 1	<b>₽</b>		13,000 A		Ö			93	
0.000 6 101, 83, 108, 89, 118, 118 103 15  0.000 79, 89, 115, 97, 84, 105, 112, 94, 107, 87, 118, 115, 102, 95, 105, 108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103  0.100 3 86, 85, 86 86 1		<i>i</i>	\$ 0100F	'	<b>₹</b> 95, 114	, 93, 120, 109	, 73, 110,	06	10
0.000 3 101, 83, 108, 89, 118, 118 103 15  79, 89, 115, 97, 84, 105, 112, 94, 107, 87, 118, 115, 102, 95, 105, 108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103  1.500 3 86, 85, 86 86 1			Q 0.010					90	19
79, 89, 115, 97, 84, 105, 112, 94, 107, 87, 118, 115, 102, 95, 105, 108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103 1.500 3 86, 85, 86 86 1	<b>%</b> 1	K A	0000		101	02 100 00 1	10 110	102	1.5
DFEAF ⁶ 0.400 30 79, 89, 115, 97, 84, 105, 112, 94, 107, 87, 118, 115, 102, 95, 105, 108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103  1.500 3 86, 85, 86 1			Q. <b>9</b> 20					103	13
0.100 30 107, 87, 118, 115, 102, 95, 105, 108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103 10 10 10 10 10 10 10 10 10 10 10 10 10		@ DFEAF							
108, 118, 95, 108, 93, 105, 97, 103, 89, 99, 104, 98, 95, 108, 103 1.500 3 86, 85, 86 86 1			2 0 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\mathbb{Q}_{30}$				101	10
103, 89, 99, 104, 98, 95, 108, 103 0 1.500 3 86, 85, 86 86 1	Q		0.*00	<i>w</i>				101	10
3 86, 85, 86 86 1	L Z		\$ \qquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	)	103, 89,	99, 104, 98, 9	5, 108, 103		
			Õ 1 500	3		86 85 86		86	1
			ÿ 1.500	5				- 50	-



Table 6.3.2.1-5 (cont'd): Summary of Recoveries of BYI 02960 from Citrus

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries (%)	Mean Recovery (%) a	Std Dev (*)					
		0.030	3	96, 108, 89	98	(A)					
	BYI 02960	0.100	1	81		NAO NAO					
		1.000	3	92, 83, 80	Ö 87	Ø5 1					
		0.020	2	2 84 86 ° 5	\$5 O						
	DFA	0.030	3 🗬	85, 83; 82 V		<b>7</b> 1					
Peel		0.100			71 7	NA					
		1.000	3	94, 82, 92	89	§ 7					
		0.01		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ü 77	11					
	DFEAF	9.030	300	905, 149, 108	110	8					
	DI LAI	DI LIM	, Q	Q Q	, Ø	, Ø	0.100		0 4 99 H	99	NA
	<b>₹</b>	(A) .000 (C)		© 100, 88, 89 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	92	6					
		0.000	<b>Q</b> 3 \$	117, 103088	103	15					
	B 1 0200	Ø.030	37	\$\frac{1}{2}\tag{101,\frac{1}{2}\tag{9}}\tag{114}\tag{9}	105	8					
7		0.199	\$\tag{0}1_0	820	82	NA					
	2	<b>40</b> .020	» 30°	© 72,90°, 102	88	15					
Parp	DYA >	0.030	\$\frac{1}{3} \tag{3}	96,100, 103	99	3					
		<b>1</b> 00 3	10	83	83	NA					
		0.010		118, 118, 83	106	20					
	DFEAF	6030		99, 94, 103	98	5					
		© 0.100		88	88	NA					
A .		~ "	101-4								

^a Mean Recovery ₹ mathematical average of all recoveries.

Freezer storage trability data for BYI 02960, DFA, and DFEAF in orange fruit (high acid content representative) spin or leaves and tomato fruit (high water content representative), wheat grain (high stared content representative), navy bean seed (high protein content representative), coffee and soybean seed (high oil content representatives), and sugar cane are being generated through 24 months and will be reported separately. Preliminary data (18-month storage interval) from the freezer storage

Recoveries of BYI 02960, DF and DFAF from orange fruit were conducted at 2.20 ppm for each analyte in Bayer CropScience Study (FARVY 055 (IIA 6.5.4.6)), Recoveries ranged from 88 to 112%.

stability study suggest BYI 02960 residues were stable (<30% decomposition) in all matrices during the storage period.

As described above, the freezer storage stability study indicates that BYI 02960 residues were stable in orange during frozen storage for at least 18 months (556 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 352 days. A summary of the storage conditions are shown in Table 6.3.2.1-6.

Table 6.3.2.1-6: Summary of Storage Conditions for Citru®

		·		
Residue Component(s)	Matrix (RAC)	Maximum  Average  Storage  Temperature  (°C) ^a	Actual Storage  Puration  Months (days)	
	Fruit		N 12	18 (55%)
BYI 02960	Peel	-17 -17 -17	(351) (351) (351) (352)	18 (556) (556) 18 (556) 18 (556)
	Peel Pulp	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	12 (32)	18 (5 <b>5</b> 6)
	Froit ,	Q < -15 Q	12 (351)	18 (556)
DFA	Peel	\$\frac{17}{2} -17	(351) ~ (351)	18 (556)
å	Z Rulp S		(352)	18 (556)
	Fray S	< -179	12 (351)	18 (556)
DFEAR &	Peel	\$\frac{17}{9}  \text{3}  \text{4}	12	18 (556)
	E Polp		12 (352)	18 (556)

The maximum average storage temperature from the time of sample receipt at BRP until sample extraction. While preparing for sample analysis, the sample were maintained in a laboratory freezer.

The total BYI 02960 residue data for citrus following a single soil drench, or two foliar applications (diluted or a concentrated) of BYI 02960 200 SL are shown in Tables 6.3.2.1-7. The results from samples taken just prior to the final foliar application are shown in Table and 6.3.2.1-8. These latter results do not reflect the proposed use pattern, and the residue data from these samples were collected for informational purposes only.

The effect of common food preparation practices (peeling) on the total BYI 02960 residue in/on citrus is sumparized in Table 6.3.2.1-9.

The storage duration is the time from field sampling through the part sample extraction.

difluoroethyl-amino-furanore in plant matrices. Bayer Cropscience Report No. RARVP046, amended version including 18-month data (KIIA 67.1/01)



Table 6.3.2.1-7: Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

State, , and Year) //ha al (days lent) a	S S S S S S S S S S S S S S S S S S S	esidak
Trial Identification Location (City, State, NAFTA Region, and Year) Crop Variety  Commodity  Plot Name Total Rate Ib a.s./A(Rg a.s./ha) Sampling interval (days after last treatment) a	BY1 #2960 Residue (mg/kg) BFA Residue (mg/a, s. equiv./kg)	DIRAF Residue (mg & sequiv./kg) Toka BYI 02960/Residu
Orange fruit		) <i>i</i>
RV152- 10DA Region 3, 2010 Orange fruit TR10D 6370 0 0. 1 0 0 0. 2 1 0 0. 2 1 0 0. 3 1 0 0. 4 0 0 0. 2 1 0 0. 3 1 0 0. 4 0 0 0 0 0. 4 0 0 0 0 0 0. 4 0 0 0 0 0 0 0. 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	191	<ul> <li>&lt;0.000</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.010</li> <li>&lt;0.83</li> <li>&lt;0.010</li> <li>&lt;0.81</li> <li>&lt;0.010</li> <li>&lt;0.57</li> <li>&lt;0.010</li> <li>&lt;0.41</li> <li>&lt;0.040</li> <li>&lt;0.040</li> <li>&lt;0.040</li> <li>&lt;0.040</li> <li>&lt;0.040</li> <li>&lt;0.040</li> </ul>
10DA Region 3, 2011	0.274	<0.010

Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

		1 110	топат Арр	nounon(	9) 01 2 1 1	02700	<u> </u>			
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Tokal Rate Ib a.s./A.fl.g a.s./ha)	Sampling interval (days after last treatment) a	VI (12060) esidue (merkg	DFA Residue (A) (mg/hs. equiv./kg	DEAF Residue (mg %& equiv. Rg)	Toka BY1 02960 Residue
RV154- 10DA	FL, Region 3, 2010	Navel		A A A A A A A A A A A A A A A A A A A	0.361 (0.405)	1 0 3 7 10 7 10 7 10 7 10 7 10 7 10 7 10	0.268 0.268 0.258 0.202 0.203 0.203	<0.020 <0.020 <0.020 <0.020 0.034	\$0.010 \$0.010 \$0.016 \$0.010 \$0.010 \$0.010	0.20 0.30 0.20 0.25 0.32
				TENDS	0.368 (0.413) 0.366 (0.410)	30 10 10 21 30	0.080 <0.010 <0.010	0.026 0.028 20.041 0.052 <0.020	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0.64 0.92 0.22 0.15 <0.040 <0.040 Avg: <0.040
RV155- 10HA	Region & 2010		Grange fruit	TRADU	0.370 (0.415) 0.365 (0.409)	30	0.020 0.020 0.020 0.026	<0.020 <0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010	0.13 0.24 0.050 0.056 Avg: 0.053
	FL, ORegion 3, 2,510		Orange fruit	TRIDS	0.369 (0.413) 0.369 (0.414) 0.381	1 1 30	0.286 0.232 <0.010 <0.010	<0.020 <0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010	0.32 0.26 <0.040 <0.040
RV157- 10HA	7010 2010	Handin S	Orange Oit	TRTDD TRTDU	0.361 (0.404) 0.362 (0.405)	1	0.251	<0.020	<0.010	Avg: <0.040 0.28
\ \tag{\alpha}		~		TRTDS	0.366 (0.410)	30	<0.010 <0.010	<0.020 <0.020	<0.010 <0.010	<0.040 <0.040 Avg: <0.040



Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

Trial Identification Location (City, State, NAFTA Region, and Year) Crop Variety Commodity Plot Name	Total Rate  Ib a.s./A (Rea.s./ha)  Sampling interval (days after last treatment) a  BYI 02966  Residue (mg/kg)  OFA Residue  (mg a.s. equiv./kg)  Total RY 102960 Residue  Total RY 102960 Residue
RV158- 10HA Region 3, Early Gold Orange fruit TRTDD	0.372 01 07.179 0<0.020 <0.010 0.21
2011	
tridi	0.368   1
TRIDS (	369 30 30 000 000 000 000 0000
	0.413
Q g	
RV159- 10HA Region 3,	0.377 0 1 0.6970 <0.020 <0.010 0.73 0.423\( \)
[2010]	
TRIDE OF TRIDE	0.372 1 0.228 < 0.020 < 0.010 0.26 (0.416)
TRIDS OF	
	0.374 30 0014 00020 00010 0.044 0.040 0.020 0.010 0.044 0.040 0.020 0.010 0.044
RV160- 10HA OX O Orange fruit TRTDD	0.042 0.370 0.135 <0.020 <0.010 0.17
Region 6, TRADU	Ø375
2040 2040	0.420
	0.360 30 0.029 <0.020 <0.010 0.059 0.414) 0.013 <0.020 <0.010 0.043 Avg:
	Avg: 0.051
RV161- CA, Spencia Orange fruit (KTDD)	0.37 0 0.426 0.016 <0.010 0.45
10DA Region 10, 0 0 0 0 0 0 0 0	0.418)
RV161- 10DA  Region 10, 2011  TRTDD  TRTDS	1 0.753 <0.020 <0.010 0.78
	3 1.46 0.053 <0.010 1.5
	10 0.410 0.041 <0.010 0.46
	21 0.488 0.079 <0.010 0.58
	0.365         0         0.490         0.015         <0.010
	1 0.577 <0.020 <0.010 0.61
	3 0.225 <0.020 <0.010 0.26
	10         2.08         0.097         <0.010         2.2           21         0.310         0.080         <0.010
TRTDS	0.365 30 <0.010 <0.020 <0.010 <0.040
	0.409) 0.015   0.020   0.010   0.045
	Avg: 0.043



Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

		1 WO	Foliar App	meanon(	5) 01 D 1 1	02900	SL			. Ö ,
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (kgas/ha)	Sampling interval (days afterdast treatment) a	Ary 02960 Residue (mg/kgr	DPP Residue (20)	DFEARResidur	A total BY 102960 Residue (Mea.s. equal Kg) b Co
RV162- 10HA	, CA, Region 10, 2010	Mandarin- Satsuma	Orange fruit	TRTQÛ	0.365 (0.410) 0.362 (0.406) 0.366 (0.440)		<0.000 Q-012	الإيم ال	<0.010 <0.010 <0.010 0.010	0.040 0.049 Avg:
RV163- 10HA	CA, Region 10, 2010		7	TRTDO	0.376 (0.421) 0.344 (0.386) (0.410)	1 3 %	0.067 0.067 0.020 0.010 0.010 0.010	<0.020 <0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010	0.045 0.097 0.050 <0.040 <0.040 Avg: <0.040
RV164- 10DA	Fruit  Region 3, 2010	MA O	Lemon fruit	ARTDO	0.368		Ø366	0.056	<0.010	0.43
	fruit  Region 3, 2010  FL,			PRTDL	0.369	10° 21° 0	0.349 0.440 0.192 0.073 0.171	0.073 0.098 0.103 0.128 <0.020	<0.010 <0.010 <0.010 <0.010 <0.010	0.43 0.55 0.31 0.21 0.20
4					(Ö¥13)	1 3 10 21	0.214 0.100 0.042 0.018	<0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010	0.24 0.13 0.072 0.048
RV165-	FL,	Myer &	Lemon fruit	TR/TDS	0.355 (0.398) 0.358	30	<0.010 <0.010 0.230 ^j	<0.020 <0.020 <0.020	<0.010 <0.010 <0.010	<0.040 <0.040 Avg: <0.040 0.26
10HA	Region, 2016	Myer of		TRTDU	0.369 (0.414)	1	0.052 ^j	<0.020 ^j	<0.010 ^j	0.082
				TRTDS	0.364 (0.408)	30	<0.010 ^j <0.010 ^j	<0.020 ^j <0.020 ^j	<0.010 ^j <0.010 ^j	<0.040 <0.040 Avg: <0.040



Continued on next page...

Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Table 6.3.2.1-7 (cont'd): Two Foliar Application(s) of BYI 02960 SL

	T	1 WO	Foliar App	Tication(	5) OI D I I	02700	J	Т	T	
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (Mga,s./ha)	Sampling interval (days after last treatment) a	BYI 02960 Residue (mg/kg)	Oto Residue (1907) (mg a Egquiv./kg	DFEAF Residue (mg a.s. coniv./kg)	Total RVI 02960 Residue
RV166- 10DA	CA, Region 10, 2011	Lisbon	Lemon fruit	TRTDD	0 366 0 410)		7.124 T	7<0.020	<0:010	\$.95 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				K, " 4		3 (1)	0.11%	<0.02 (C) <0.02	<0.010 <0.010 0.010	0:45
			. "	0, , ,		_^%/I	0.089	¥0.02 <b>0</b>	<0.016	0.12
RV166- 10DA	CA, Region 10,	Lisbon	Lemon truit	TRTOU	375 0.420x		0.038	<0.030 &	₹0.010 ©	0.068
	2011		Ŏ Ş		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\ 1 8	0.054	<0.020	<0.010	0.084
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			ê ô	3 %	0,025	<0.020 <0.020	<0.010	0.084
						10	Ø3011 a	\$0.020	< 0.010	0.041
		ľ L .				©21	0.016	<0.020	< 0.010	0.046
		. ( ))	1 %	TRIDS	°0.366 €		<0.010	<0.020	< 0.010	< 0.040
					(0.410)	30 0	<0.010	<0.020	<0.010	<0.040 Avg: <0.040
RV167- 10DA 🌋	, CA, Région 10, 2011	Lisbon \$	Lemon Truit	TRIDD	0.364		0.785	<0.020	<0.010	0.82
	2				0 ~	1	0.255	< 0.020	< 0.010	0.29
	Į į					3	0.325	< 0.020	< 0.010	0.36
				p″ "Ö		10	0.183	< 0.020	< 0.010	0.21
						21	0.194	0.021	< 0.010	0.23
				TRYDU	(0.412)	0	0.290	< 0.020	< 0.010	0.32
Á				, 9	(0.112)	1	0.713	< 0.020	< 0.010	0.74
	<b>\</b>					3	0.437	< 0.020	< 0.010	0.47
*	<i>@</i> , \	"O" ()		<b>L</b>		10	0.541	< 0.020	< 0.010	0.57
			49 ·	Q`		21	0.320	0.033	< 0.010	0.36
A				TRTDS	0.365 (0.409)	30	<0.010 <0.010	<0.020 <0.020	<0.010 <0.010	<0.040 <0.040 Avg: <0.040
	, CA, Région 10, 2011			l	l			l Continue	l ed on nex	•



Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

		1,,,0	топаг Арр		3) 01 13 11	02700	OL .			0_	
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Tokal Rate Ib a.s./A (kg a.s./ha)	Sampling interval (days after last treatment) a	YI 62960 esidue (me/kg	DFA Residue CAC (mg/hs. equiv./kg	DEFAF Residue (mg %& equiv.Rg)	Toko BYI 02980 Residne	
RV168- 10DA	, CA, Region 10, 2011	Lisbon		RTDUS TRIDS	0.367	10 34 214 40 40 40 40 40 21 40 21 40	(0.010 (0.010	<0.020 <0.020 <0.020 <0.020 <0.020	\$\frac{9.010}{<0.010}\$ \$\left\{0.010}{\left\{0.010}}\$ \$\left\{0.010}{\left\{0.010}}\$ \$\left\{0.010}{\left\{0.010}}\$ \$\left\{0.010}{\left\{0.010}}\$ \$\left\{0.010}{\left\{0.010}}\$ \$\left\{0.010}{\left\{0.010}}\$	0.20 0.31 0.32 0.17 0.12 0.12 0.13 0.080 <0.040 <0.040 Avg: <0.040	
RV169- 10HA		Eureka (	Lemon fruit	TRIDD TRADU	0.380 (0.426) 0.368 (0.412) (0.410)		0.28\$\text{0.352}\tag{0.352}\tag{0.010}\tag{0.010}	<0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010	0.31 0.38 <0.040 <0.040 Avg: <0.040	
4	Region 10, 2011	Esbon S	Lemon fruit	TRIDU TRIDU TRIDS TRIDS	0.365 (0.410) 0.367 (0.412) 0.365 (0.409)	1 30	0.233 0.669 <0.010 <0.010 0.183	<0.020 <0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010 <0.010	0.26 0.70 <0.040 <0.040 Avg: <0.040 0.21	
	CAZ Region 10 2010			TRTDU TRTDS	0.366 (0.410) 0.366 (0.410)	30	0.037 <0.010 <0.010	<0.020 <0.020 <0.020	<0.010 <0.010 <0.010	0.067 <0.040 <0.040 Avg: <0.040	



Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Table 6.3.2.1-7 (cont'd): Two Foliar Application(s) of BYI 02960 SL

1		I	T Ondi 7 ipp		1				1	0
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Rotal Rate Ib a.s. A. (kg a.s./ha)	Sampling interval (days after last treatment) a	BY (mg/kg)	DFA Residue	DFEAF Regidue (mg. &s. equiv./kg)	Total BYI Ozben Residum
Grapefru				Ź	2	. Q	ذ	Ź,	\$ ,	
RV172- 10DA		Flame	Grapefruit fruit	TRTDD	0.367 (©411)		Q.126	0.000	<0.010	0.16
						210	0.151	<0.020 <0.020 <0.020	<0.010 \$.010 \$0.010 \$0.000	0.16 0.12
		Ş		TRTOU	©69 (Ø.413) @		· · · · · · · · · · · · · · · · · · ·	<0.020	<0.010 <0.010	0.51 0.22 0.18
			Q Table 1		Ø ô	**10	0.053	<0.000	<0.010	0.08
	, a			TRTDS		25	0046 <0.010	<b>₹9</b> .020 ₹0.020	<0.010	0.08 <0.040
					0.360	30	0.010@.	<0.020	<0.010	<0.040 <0.040 Avg: <0.040
RV173- 10HA	Reson 3	White	Grapefruit ®	TRTD	0. <b>36</b> 7 ( <b>0</b> .411)		<b>%</b> !185	<0.020	<0.010	0.22
[	Region 3, 2010	White S		TRTDU	0.363 (0.407)	10	0.165	<0.020	<0.010	0.20
				TRT	0.414) 2	30	0.047 0.029	<0.020	< 0.010	0.077 0.059
				TRT\$8		)*	0.029	<0.020	<0.010	Avg: 0.068
RV174- 10HA	Kegwii 3,	White	Grapefruio Fruit	TRTO	( <b>©</b> 64 ( <b>6</b> .408)	1	0.160	<0.020	<0.010	0.19
4,1	<b>20</b> 10			TOTOU N	7 0.381 (0.427)	1	0.287	<0.020	<0.010	0.32
		Rio & d		TR <b>TO</b> S	0.368 (0.412)	30	<0.010 0.015	<0.020 <0.020	<0.010 <0.010	<0.040 0.045 Avg: 0.043
RV175- 10HA	, TX	Rio	Grapefred fruit	TRTDD	0.370 (0.415)	1	0.116	<0.020	<0.010	0.15
	Region 5; 2010 5			TRTDU	0.374 (0.420)	1	0.158	<0.020	<0.010	0.19
	TX	Š		TRTDS	0.369 (0.414)	30	0.014 0.014	<0.020 <0.020	<0.010 <0.010	0.044 0.044 Avg: 0.044

Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

		1 00	топаг Арр	mounon(.	3) 01 2 11	02700	OL			0	
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (kg a.s./ha)	Sampling interval (days after last treatment) ^a	YI OZOGO Sidue (merke	DFA Residue (A) (mg/h,s. equiv./kg	DEFAF Residue (mg % equiv. Rg)	Toka BVI 02860 Residnem Hing a.stequiv./kg/th	
	, CA, Region 10, 2011	Oro Blanco		TRITOUS	0.366 (0.410) 0.364 (0.408)	1 0 3 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.056 0.056 0.041	<0.020 <0.020 <0.020 <0.020 <0.020	<ul> <li>0.010</li> </ul>	0.16 0.16 0.16 0.18 0.086 0.071 Avg: 0.079	
	Region 16, 2010		Grapefruit fruit	TRTDS (	0.368 (0.412) (0.407) 0.366 (0.410)	¸3 <b>©</b> ″	0.185 0.062 0.011 <0.010	<0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010	0.22 0.092 0.041 <0.040 Avg: 0.041	
Fruit (ad	lditionæl samr	tor resi	due <b>Ĉe</b> ducti	and determine	ninatian)	c					
RV159- 10HA	FL, Region 3, 2010	Valencia (	Orange frait	TRTO	0.344 (0.386)	1	0.076 0.102 0.076 0.055 0.045 0.045	<0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 ed on nex	0.11 0.13 0.11 Avg: 0.11 0.085 0.075 0.075 Avg: 0.078	
E, C											

Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

		1 110	Foliar App	110411011(.	3) 01 11 1	02700	OL			0
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Tokal Rate Ib a.s./A&& a.s./ha)	Sampling interval (days after last treatment) a	BYI 192960 Residue (m&/kg)	DFA Residue AQ (Mg∑as. equiv./kg	DELAF Residue (mg kesequiv./kg)	Tokh BYI 02960-Residue//
RV166- 10DA	CA, Region 10, 2011	Lisbon	Lemon fruit	TRTDLA	0.375 (0.420)		00017 0017 0.012 0.012	<0.020 <0.020 <0.000	0.010 <0.010 <0.010	0.007 0.047 0.042 Avg: 0.045
	, FL, Region 3, 2010	White	Grapefruit fruit	TRIDIT	0381 (0,427),		0.360 0.360 0.360	0.020 <0.000 <0.000 <0.000	<0.010 <0.010 <0.010	0.39 0.39 Avg: 0.38
Fruit Pee	el (for residue	reduction	determinat	ion)	\$ . Q		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~0	C .	
RV159- 10HA	FL, Region 3, 2010	Valencia S	Orange peel		0.372 (0.4 <del>16</del> 6)		0.450 0.310 0.279	<0.020 20.020 <0.020 <0.030	©0.010 <0.010 <0.010	0.48 0.34 0.31 Avg: 0.38
RV163- 10HA	CA, Region 10, 2010	Ölinda Valensia	Orange peck		0.344		©121	©0.020 <0.020 <0.020	<0.010 <0.010 <0.010	0.15 0.14 0.15 Avg: 0.15
RV166- 10DA	CA, Region 10, 2011	Lisbon	Femon pecl	TRADU	02375 (0.420) (0.420)		0.043 0.043 0.041	<0.020 <0.020 <0.020	<0.010 0.014 <0.010	0.073 0.077 0.071 Avg: 0.074
			Grape@oit peel		0.381 (0.429)	1	0.607 0.540 0.642	<0.020 <0.020 <0.020	<0.010 <0.010 <0.010	0.64 0.57 0.67 Avg: 0.63
Fruit Pul	p (for resid	reduction	determina	ion)c						
RV159- 10HA	, FL, Region 3	Valencia	Orange pup	TRÊÐU Ç	0.372 (0.416)	1	<0.010 <0.010 <0.010	<0.020 <0.020 <0.020	<0.010 <0.010 <0.010	<0.040 <0.040 <0.040 Avg: <0.040
RV163- 10HA	CA Region 10,	Olmda Ö Valencia	Orange pulp	TRTDU	0.344 (0.386)	1	<0.010 <0.010 <0.010	<0.020 <0.020 <0.020	<0.010 <0.010 <0.010	<0.040 <0.040 <0.040 Avg: <0.040

Table 6.3.2.1-7 (cont'd): Total BYI 02960 Residue Data from Citrus after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

										0
Trial Identification	Location (City, State, NAFTA Region, and Year)	Crop Variety	Commodity	Plot Name	Tokal Rate Ib a.i./Alkg a.s./ha)	Sampling interval (days after last treatment) a	BYI (P2060) Besidue (mg/kg)	DFA Residue (神変元) (開変元s. equiv./kg	DECAF Residue (mg %sequiv./kg)	Toka BY1 02960-Residue
RV166- 10DA	CA, Region 10, 2011	Lisbon	Lemon pulp	TRTDL	0.375 (0.420)		<0.010 ×	C (	0.0100 <0.010 <0.010	<0.000 <0.040 <0.040 Avg: <0.040
RV174- 10HA	, FL, Region 3, 2010	White	Grapefruit pulp	)' 'Y	0.3/81 (0.427)		<0.016 <0.016 <0.046	<0.026 <0.620 <0.020	<0.010 <0.010 0.010	<0.040 <0.040 <0.040 Avg: <0.040

- days after last treatment = interval between last application and sarupling
- Total BYI 02960 residue is the sum of BYI 02060, DFA, and DFEAF residues in parent conivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue legots might be.
- Each trial conducting a residue colluction determination coated a single sample each of whole fruit, pulp, and peel, and each sample was analyzed in furplicate for residues of BVI 02960, DFA, and DFEAF.

TRTDU = treated plot seceiving two concentrate (altra-low volume) airblest applications

TRTDS = treated plot receiving two didute airblast applications

Maximum residue values for the different application scenarios and crops are printed in bold.

Total BYI 02960 Residue Data on Citrus Collected Immediately Prior to the Final Table 6.3.2.1-8: Foliar Application of BYI BYI 02960

1		· · · FF	ication of i							
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Rate ^a Ib a.i./Alfig a.s./ha)	Sampling Interval (days after first treatment) ^b	BY1 42260 Residue (mc/kg)	DFA Residue (Mg/kg) (mg/ks. equiv./kg	DELAF Residue (mg % equiv. Rg)	Toka BYI 02860 Residik -(mg a.s/24µiv./kg/2)
RV152- 10DA	, FL,	Hamilins	Orange fruit	TRTDD	0.187 (0.209)	8 <b>DA</b> A1	<b>000</b> 37	90.02Q	0.010	0.087
IUDA	Region 3, 2010			<b>&amp;</b>		~ Y			`~\\	
				TRTDU	(0.20 <b>9</b> )	8 DA O	0.287	<0.020	\$0.010 \$0.010	0.32°
RV153-	, FL,	Valencia	Orange fruit	TRAND	0.181	9DAA1	(0.108)	<0.020	< 0.010	<b>20</b> 14
10DA	Region 3, 2011				(V.202)					0
				ĎŤRTĎÔ⁄	0.184 ( <b>?.</b> 306)	9 <b>D</b> *A1	<b>3</b> 105	0.020	<0.040	0.14
RV154-	, FL,	Navel	Orange Fruit	TKOTDD	\$ 180 C	10	0.16P	< <b>99</b> 20	<b>\$0.010</b>	0.19
10DA	Region 3, 2010		<u>_</u> %	9 4	(0.202)	4		Ö	O	
				TRADU	0.187 (9.210)	√10 ×	0.261	0.022	<0.010	0.29
RV155-	, FL,	Navel \$	Orange fruit	PRTDD	0.186	10 V DAA1	<b>@</b> 091	×9.020	< 0.010	0.12
10HA	Region 3, 2010		\$ 7		(0.209)	©		₩		
		~ 4	¥ ~	TRYDU	°>0.185	10 Ø DAA	0.HQ	<0.020	<0.010	0.16
RV156-	, FL	Hamler	Orange fruit	/TRŢDD	0,185 (6,207)	₩	<b>2</b> 0.104	< 0.020	< 0.010	0.13
10HA	Region 3, 2010		S À		, .	DAA1				
Į Ž	1 7 1 2			TRTDUĆ	0.184) (0.206)	100″ DAA1	0.076	<0.020	<0.010	0.11
RV157- 10HA	, F	Hamilin	Grange Front	TRADD	<b>2</b>	1	0.103	< 0.020	<0.010	0.13
IOHA	2010		Prange man		(0.202)					
				TRTDY	0.180 (\$\hat{9},202)	10 DAA1	0.237	<0.020	<0.010	0.27
RV158- 10HA &	FL,	Farly Gold	Orang <b>e f</b> ruit	TRETDD	©0.185 (0.208)	9 DAA1	0.071	<0.020	< 0.010	0.10
	Region 3, 2011									
				TRADU	0.184 (0.206)	9 DAA1	0.246	<0.020	<0.010	0.28
RV159-	, FL ₂	Valenda	Orange fruit	RTDD	0.186	10	0.119	< 0.020	< 0.010	0.15
10HA	Region 3, 2010				(0.209)	DAA1				
all a			F	TRTDU	0.187 (0.209)	10 DAA1	0.031	<0.020	<0.010	0.061
			1		(0.20)	~	I	Continu	ed on nex	t page.
Æ,										1 .6
Ĉ	Ĩ									

Table 6.3.2.1-8 (cont'd): Total BYI 02960 Residue Data on Citrus Collected Immediately Prior to the Final Foliar Application of BYI BYI 02960

1			топат Арј							0
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Rate" Ib a.i./*(leg a.s./ha)	Sampling Interval (days after first treatment) ^b	BY1 42460 Residue (mg/kg)	DFA Residue (Mg/kg) (mg/ks. equiv./kg	DEFAF Residue (mg %& equiv./kg)	Tord BYI 02900 Residies
RV160- 10HA	TX, Region 6, 2010	N-33	Orange fruit	TRTD	0.186 (0.208) (0.308) (0.306)	9 ÞAA1 9 DAA1	0.083	© .020 © .020 © .020	0.010 0.010 0.010	0.0
RV161- 10DA	, CA, Region 10, 2011	Valencia	Orange Whit	TŘIVĎD K TRTDU	Ø.187 × (0.209) × (0.82	DAAY DAAY VII	0.937	0.0 <b>5</b> 4 5 <0.0 <b>20</b>	<0.010 <0.010	0.33
RV162- 10HA	, CA, Region 10, 2010	Mandarin Satsuma	Orange/fruit	TRTDD	0.204) 0.183 (0.295)	7 DAAI	0.041	<0.020 <0.020 \$\frac{4}{2}\$ <0.020	<0.010	0.071
RV163- 10HA	CA Region 10 201	Volinda Valencia	Orange fruit		0.193 (0.216)	IV DAA1	Ø 089	© 0.020	<0.010	0.12
		y Ki	0 ×	TRTD	0.1 <b>9</b> ( <b>6</b> .775)	DAA1	Ø.042	<0.020	<0.010	0.072
RV164- 10DA	FL, Region 3, 7 2010		Lemon		0.184	DAOI	0.274	0.063	<0.010	0.35
	<u> </u>			TRIDU	0.184 ( (0.207)	7 12 DAA1	<0.010	<0.020	<0.010	0.040
RV165- 10HA	FL, Region 3, 2010		Lengton frent		0 179 (\$\frac{179}{200})	9 DAA1	0.190e	0.024 ^e	<0.010e	0.22
	Ÿ Ų			TRTAI	0.184 (0.206)	9 DAA1	0.056e	<0.020e	<0.010e	0.086
RV166- 10DA	Regin 10	Lisbon	Lemon fruit	TRIDD	0.183 (0.205)	10 DAA1	0.030	<0.020	<0.010	0.060
~					0.191 (0.214)	10 DAA1	<0.010	<0.020	<0.010	0.040
RV167- 1010A	Region 100 2011	Liston Liston	Lemon fruit		0.181 (0.203)	11 DAA1	0.093	<0.020	<0.010	0.12
				TRTDU	0.185 (0.207)	11 DAA1	0.138	<0.020	<0.010	0.17



Table 6.3.2.1-8 (cont'd): Total BYI 02960 Residue Data on Citrus Collected Immediately Prior to the Final Foliar Application of BYI BYI 02960

	1	ı	T Onar 7 ipj	1	1	1	ı	П	1	0
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Rate a Ib a.i./Alag a.s./ha)	Sampling Interval (days after first treatment) ^b	BYI 62960 Residue (mg/kg)	DFA Residue Mais. (mg. s. equiv./kg	Dige AF Residue (mg k& equiv.Rg)	Toka BY1 02960-Residue//
RV168- 10DA	, CA, Region 10, 2011	Lisbon	Lemon fruit	TRTDD	0.183 (0.205)	DONA1	<b>(6</b> )52	Ø.020	0.01 <b>0</b>	0.188°
RV169- 10HA	, CA, Region 10, 2010	Eureka	Lemon fruit	TRTDD:	0.189 (0.218) (0.184)	1000 DAQI >> 1000	0.295	<0.020 <0.020 <0.020	\$0.010 \$0.010 \$0.010	0.23 °
RV170- 10HA	, CA, Region 10, 2011	Lisbon	Lerhon fruit	PTRTDD	0.2060 0.182 (0.304)	DAAY DAA1	767 767	\$0.020\$	(V) (V) (V) (V)	0.20
		Ş	% (	TRTDU	0.184 (0.297)	110 DAA1	0.349	<0.020	0.010	0.38
RV171- 10HA	CA, Region 10, 2010	Ęu <b>lė</b> ka	Lomon figur	TRTOD	0.182 (9.204)	DAA1	· ~	<0.026 2 2 2	<0.010	0.10
			Ñ I	TRTDU	0.207)	Ø10 ØDAAL	0.018	<0.020	<0.010	0.048
RV172- 10DA	Region 3, 2011	Flame	Grasefruit Puit &		(0.181 (0.2 <b>0</b> 2)	9 DAON	0: <b>67</b> 0	<0.020	<0.010	0.10
RV173-			Chanafauit	TRÝDU S TRTĎÐ	0.184 (0.206) 0,182	DAAL	0.069	<0.020	<0.010	0.099
10HA	FL, Region 2010	White	Grapefruit		(4) 204)	9 <b>B</b> XA1	0.127	<0.020	<0.010	0.10
				TRTING	0 180 (202)	9 DAA1	0.085	<0.020	<0.010	0.12
RV174- 10HA	Region 3, 2010	White	Grape Fuit fruit	TRÎ DD	♥0.182 ♥ (0.204)	9 DAA1	0.108	<0.020	<0.010	0.14
**	***	\\ \Phi' \( \( \) \( \)		TRODU	0.181 (0.203)	9 DAA1	0.187	<0.020	<0.010	0.22
RV175- 10HA	TX, TX, Zgion 62	Rio Red	Groefruit Fruit	Q,RTDD	0.186 (0.209)	9 DAA1	0.065	<0.020	<0.010	0.095
				TRTDU	0.185 (0.207)	9 DAA1	0.106	<0.020	<0.010	0.14
RV406- 1010A	Region 10, 2011	OrcePlanco	Grapefruit fruit	TRTDD	0.182 (0.204)	11 DAA1	0.116	<0.020	<0.010	0.15
				TRTDU	0.183 (0.205)	11 DAA1	0.074	<0.020	<0.010	0.10



Continued on next page...

Table 6.3.2.1-8 (cont'd): Total BYI 02960 Residue Data on Citrus Collected Immediately Prior to the Final Foliar Application of BYI BYI 02960

Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Rate & Li./A (************************************	Sampling Interval (days after first treatment) b	BYI 029600 Residue (mg/kg)	Den Residue (20)	DřEzy Residue (mg a.s. eduiv./kg)	Total BX 102960 Residue	
RV177- 10HA	, CA, Region 10, 2010	White	Grapefruit fruit	TRTDD	0.186 69.208) 0.489 (0.204)	OAAL DAAL IIV DAAL	0.079 0.056	\$\int <0.020 \\ \times \\ \times 0.020 \\ \times \\ \tim	<0.010 0<0.010	<b>3</b> 1	

- The residue data in this table are after a ongle application of BY, 02960 and target oute of \$83 lb Q/A (205 g a.s./ha). A single application does not represent the proposed use pattern of two applications of BØ 02960 total rate of 0.183 lb a.s./A/application (205 g a.s./ha/application). Therefore, the lata in this table are provided for information only and should not be used for the setting of tolerance or risk assessment.

  Sampling Interval: DAA1 = days after first treatment (application)
- Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFEAF residues in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BXI 02960 residue with analyte LOQ value. These totals represent.

  d NA = Not available.

  e Sample analyzed twice; average value reported here.

  TRTDU = treated plot receiving two concentrate (ultra-low volume) airbitst applications.

  TRTDU = treated flot receiving two dilute airbitst applications. These totals represent the upper that of what the stidue levels might be after only one application of BYI 02960.

Table 6.3.2.1-9: Effect of Processing on Total BXI 02960 Residue

Plot Name	©Commodity	PHI (Ére-Harvest O Interval)	Processing Factor	Average Processing Factor
	Grapefruit RAC	Interval)	NA NA	
TRTE	Peel		1.7	
	Pulp 🔊		0.10	
y	Lemon RAC		NA	D 1 21W
TRTDU	Leel Q		1.6	Peel = 2.1X $Pulp = 0.46X$
	Pulp &	4) ~ ©	0.89	1 uip 0.402
TDANS	Fange RAC		NA	
TRTOU	S Peel S	1	3.3, 1.9 (average 2.6)	
(2 frials)	©Pulp 🔊		0.33, 0.51 (average 0.42)	

TRTDU eated plot receiving two concentrate (ultra-low volume) airblast applications

Results in this table are based on "additional samples" as shown above in Table 6.3.2.1-7





#### Conclusion

Twenty-six field trials were conducted to measure the magnitude of total BYI 02960 residues in/on the fruit of grapefruit (six trials), lemon (eight trials), and orange (12 trials) (representative commodities for NAFTA Crop Group 10; Citrus Fruits) following either two airblast applications (diluted or concentrated spray) or one soil drench application of BYI 02960 200 SL. Tendecline trials were conducted after foliar application; 4 in orange, 4 in lemon and 2 in grapefruit.

Table 6.3.2.1-10: Summary of Residue Data for Total By I 02960 from Citrus

					¥ <del>Š</del>	×2,1	<u> </u>		N. S.	<u> </u>	
_	_	<b>∀</b>		.4	~// ~	Total B	YJ Ø2960	Residu	e Levels	(ppm)	y L°
Commodity	Use Pattern description	Total Appl. Rate lb a.s./ (kg a.s./ha)	PRD(days)		Min at 2		Mak after PKN	HAFF	Wedian (*)	W gueôNg	Standard Deviation
	2 foliar (dil.)	0.364 to 0.370 (0.408 to 0.405)		6	90.15 9	0.22		<b>XQ</b> ⁴	©21 §	0.20	0.034
Grapefruit	2 foliar (con	0.363 to \$381 (0.407 to 0.427)		ĈÉ		©0.32	\$ `\\	NA D	0.20	0.20	0.075
	soil drench	0.360 to 0.369 (0.403 to 0.414)	30	13	<0.040	0.686	& ⁶	y %	<b>3</b> .044	0.052	0.017
	2 foliar (dil.)	0.402 6 0.426		₹ 8 ~	0.15	0.430	0.55© (30 ⁵	NA	0.28	0.28	0.082
Lemon	2 follor (con	( <b>Q</b> 410 to <b>Q</b> .420)			0.067	©0.74	\$ ()	NA	0.18	0.30	0.28
	soil drench	0.355 to 0.3662 (0.358 to 0.400)	30	18Ĉ	0.040°	<0.0240		<0.040	<0.040	<0.040	0.0
	2 foliar (dil.) ≈	9561 to 0.377 (0.404 th 0.423)		§12	0×097 &	0.78	1.5 (3) ⁵	NA	0.25	0.31	0.22
Orange	2 folia	(0 <b>3</b> % to 0 <b>4</b> 20)	O S	12) O	0.050	<b>608</b> 1	$2.2 (10)^5$	NA	0.26	0.37	0.25
	Soil drench	0.404 to 0.429)	300	24 _©	20.04g	0.071	6	0.061	<0.040	0.045	0.008

¹ Data from the decline to a samples collected at intervals other than a 1- or 30-day PHI are not included in this table.

The change in the total BYI 02960 residue with time in the grapefruit, lemon, and orange samples was variable depending on the trial. In general, the total BYI 02960 residue either declined or leveled off

² HAFY = Highest Average Figure Trial

³ calculated on the basis of the residue values at the PHO

⁴ NA = Not Applicable. Only one sample was collected from each plot with dilute airblast applications and one sample from each plot with low volume applications. See the maximum residue for the highest residue observed from a given

⁵ sampling day after PHI which showed the highest residue

by the end of the sampling interval. The highest residue was always detected before the last sampling event (21 days after the last treatment).

The effect of the common food preparation practice of peeling citrus on the total BYI 02960 residue is as follows: peeling the fruit reduced the total BYI 02960 residue in citrus pulp by an average processing factor of 0.46X. The total BYI 02960 residue in citrus peel increased when compared to the whole fruit by an average processing factor of 2.1X.

The total BYI 02960 residues in the representative commodities for NAFTA Crop Group 10 Citrus Fruits; grapefruit, lemon, and orange) were within a factor of 5 of each other and therefore, within the EPA guidelines for the establishment of a group to each other crop Group 10.

To address EU requirements for residue trials on small citrus truits eight additional field trials were conducted to measure the magnitude of BYI 0296 pesidues in/on mandarin oranges.

Report:	KIIA 6.3.2.1/02c
Title:	BYI 02960 200 St Magnitude of the Residue In/on Mandarin Orange (CG 19)
Report No &	RARVP064 Cated June 5, 2012 2 2 2 2
Document No	M-43218401-2
<b>Guidelines:</b>	US: EPA Residue Cherustry Test Guidelines OPPTS 600.1500, Crop Field Trials
	Canada. PMRA DACO 7.4. Supervised Residue Trial Study
	DATE DATE A DATE OF A DESTRUCTION OF A STATE
	GCD: Gridelines for the Testing of Chemicals, 509, Cop Field Trial, Adopted Sept. 7,
GLP Ĉ	Yes Y S Q S

Following either two airblast spray applications of BY102960 200 SL (diluted spray), two ultra-low volume applications of BY102960 200 SL (concentrated spray) or one soil drench application of BY102960 200 SL, refevant esidues were determined in mandarin oranges. BY102960 200 SL is a soluble concentrate formulation ontaining 200 g BY102960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3 2.1-11).

Table 6.3.2.1-11: Trial Numbers and Geographical Locations for BYI 02960 on Mandarin Orange

NAFTA Growing Region	Submitted ^a	Requested 0
1		Requested
1A		
2	Ŷ,	
3	3	
4	3	
5	Y OY	N Q S
5A		
5B		
6		ON R
5B 6 7		
7 7A 0 4 4 5 8 9 4 4 4 5 5		
8 0 0 5		
1000		
100 7	4 64 6	
11		Ö
12 4 5 0		5
Total		, v
Total Total	\$ 8 W	
Total O	8 2 8	8

a Eight mandarin orange trials were conducted in citrus prowing egions in the United States to address citrus crop residue requirements from Europe.

# Material and Methods

Three use patterns/application forms were tested: either 2 dilute or 2 concentrated foliar airblast applications, or a single-soil depich. For plots receiving two airblast applications – either dilute or concentrated – , individual application rates, ranged from 0.173 to 0.190 lb BYI 02960/A/application (0.194 to 0.214 kg BYI 02960/ha/application) and total seasonal application rates ranged from 0.357 to 0.380 lb BYI 02960/A (0.400 to 0.426 kg/BYI 02960/ha). The interval between the applications was 8 to 10 days.

For plots receiving a single soft drench application, application rates ranged from 0.364 to 0.366 lb BYI 02960/A₀₀.408 to 0.410 kg BYI 02960/ha), except for 2 plots, RV224 and RV228. These plots each madventently received too high applications of 0.904 lb BYI 02960/A/application (1.013 kg BYI 02960/ha).

All applications were made at growth stages ranging from BBCH 72 to 89 (BBCH 72: Green fruit surrounded by sepal crown; BBCH 89: Fruit ripe for consumption; fruit has typical taste and firmness; beginning of senescence and fruit abscission).

All applications were made using ground-based equipment. An adjuvant (Dyne Amic, or other NIS) was used in all of the applications. In plots receiving a concentrated spray, Corus Oil was used as an additional adjuvant.

Table 6.3.2.1-12: Trial Site Conditions for BYI 02960 on Mandom Orange

Trial Site Conditions for BYI 02960 on Mandain Orange

		Soil Q	Paracteristics	× / / / / / / / / / / / / / / / / / / /	Meteorolo	gical Data
Trial Identification	Trial Location (City, State/ Country, Year)	Type	OM pho	CEC (meq/100go soil)	Total Rainfall (in)	Temp Range
RV221-11DA	, FL USA 2011	Sand .	7.4	4.4	9.64	55-80
RV222-11DA	, FL USA 2011	Sand	J.5 7.3	6.4	7.85 C	©2-82
RV223-11DA	, CA USA 2011	n° Loam	24 7.9	<b>9</b> 3.9	451	♥ 32-77
RV224-11DA	USA 201	LOSMA	2.09 Ç7	13.3	01.41	33-61
RV225-11DA	USA 2011		0.6 6.6	\$3.7 \$\frac{1}{3}	0°87	54-80
RV226-11DA	, T U.S.A. 2015	Sandy Gay Loam	0.6	7.8	0.25	66-100
RV227-11DA	, CA USA 2011	y Soam	\$\$ 894	17.0	4.51	32-77
RV228-11DA	CAGUSA 2011	Sandy Clay  Lisam	7.4	21.8	0.83	33-60

Abbreviations used: %OM = percent organic matter &EC = caron exchange capacity.

Trial site conditions, including soil characteristics are summarized in Table 6.3.2.1-12. Study use patterns are summarized in Table 6.3.2.1-10.

Data is for the interval of the most of first application through the soonth of tast sampling.

Study Use Pattern for BYI 02960 200 SL on Mandarin Orange Table 6.3.2.1-13:

	,	- Te	Applicat	ion						0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wethod	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A	Retreatment Interval	Total Rate Abas. A Con (kg #3.4ha)	Tank Wing Adjuvants
RV221- 11DA	FL Region 3 2011	BYI 02960 SL 200	TRTDD	And last (dilute) appla	BBCA	220 (2)10)	0.182 0.204) 0.182 0.182 0.204			NIS NIS
RV221- 11DA	FL Region 3 2011	BYI 02960 SL 200	TRTDO	Últra QLow Volume	BBCij	28 (26) (26)	0.204 0.204 0.184 0.206	NA.	© 0.365 (0.410)	Citrus Oil + NIS Citrus Oil + NIS
RV221- 11DA	FL Region 3 2011	BYI 029665 SL 2067	TRIDS	Soil Soil		, W	©0.364 (0.408)	NA	0.364 (0.408)	NIS
RV222- 11DA	FL Region 3	BYI 02960 SL 2000	TRADD	Airblase (dilate appl.)	BBCH 81 SBCH 83	225 (2100) 225 (2100)	0.181 (0.203) 0.181 (0.203)	NA 10	0.363 (0.406)	NIS NIS
RV222- 4 11DA &	FL Region 3 2011	SL 280		Ultra Low Volume	BBCH 81	2.8 (26)	0.184 (0.207)	NA	0.357 (0.400)	Citrus Oil + NIS
				<b>,</b>	BBCH 83	2.6 (24)	0.173 (0.194)	10		Citrus Oil + NIS
RV222 11DA	FIOR egion	DAZI OMOČO	TRTDS	Soil drench	BBCH 79	NA	0.365 (0.409)	NA	0.365 (0.409)	NIS



Table 6.3.2.1-13 (cont'd): Study Use Pattern for BYI 02960 200 SL on Mandarin Orange

		(i)	Applicat	ion						0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	pour last	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A	Retreatment Interval		Tank Wix Adjuvants
RV223- 11DA	, CA Region	BYI 02960 SL	TRTDD	🎉 (dilute🔊 🖰	BBCH	24 <b>9</b> ( <b>23</b> 30)	0.183	NA NA	(0.4K)	NIS
	10 2011	200		appl® O	"BBCDI - 834 - S	250 (2330) ₈	©.183 < (0.206)	) 10 (5)	Tey (	NIS
RV223- 11DA	, CA Region	BYI 02960 SL	STRTDO	Últra	BBCA 78	3.6	(C) 205) (C)	NA.	( 0.365 ( (0.410)	Citrus Oil +
	10 2011	200 @	. <b>W</b>	&Low & Volume			, %		, ,	NIS
					BBCH 83	3.0 (28)	% 183 @	<b>)</b> 10		Citrus Oil +
	*				BBCH		J. 10.200			NIS
RV223- 11DA	Pagior 0	BYI 02960 ST	TRADS	Soil Soil	BB@H	NA V	0.366 (0.410)	NA	0.366 (0.410)	NIS
IIDA	Region 10	200		y drenkan			(0.410)		(0.410)	
RV224- 11DA	, CA	BYI ©	TRTDD	Axirblas (dilute	BBCH	199 (9860)	0.175 (0.196)	NA	0.358 (0.401)	NIS
Ş	Region 10 @	. %		apol.)		₽,	(0.170)		(0.101)	
					<b>B</b> CH 85	212 (1980)	0.183 (0.205)	8		NIS
RV224- 11DA		BYIS	TRTDU.	Ultra	BBCH 83	3.0 (28)	0.191 (0.214)	NA	0.375 (0.420)	Citrus Oil +
TIDA &	Region 1007	02960SL 200		Ultra L'ow Volume	63	(28)	(0.214)		(0.420)	NIS
				,	BBCH 85	2.7 (26)	0.184 (0.206)	8		Citrus Oil + NIS
RV224-0 11DA	CA A Region to 2011	02969 SL 200	TRTDS	Soil drench	BBCH 81	NA	0.904 (1.013)	NA	0.904 (1.013)	NIS
Ĺ	2011	7								



Table 6.3.2.1-13 (cont'd): Study Use Pattern for BYI 02960 200 SL on Mandarin Orange

1 aut 0.5.	2.1-13 (cont'd	i). Sii		ttern for B	1102900	200 SL (	on manda	illi Ola	ngc	° &
		(uc	Applicat	ion		T	<b>r</b>	ı		Ş
	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)			əā	May Volume GPA		<b>T</b>		
cation	ty, Stat Year)	luct (Fe			Marth Stage	Volun		Merval		Juvant
dentifi	on (Cii	se Proc	ame	- ()	« g/Grov [)		a.s./A	tment	Eate II	Mix
Trial Identification	Location (City, Sta Region, and Year)	End-us	Plot Name	Meeting	Timing/Growth	Actual (Langa)	Rate lb a.s./A	Refresatment (days) 🖉	Total Rate Ib	Tank Mix
RV224- 11DA	, CA	BYI 02960 SL	TRTDD	Airblasi (dikute appl.)	BBCH ©83	(199 (1860)	0.175 (0.196)	NA S	0.358	NIS
	Region 10 2011	200								
		Ç			BBCH (85)	212 (19 <b>89</b> )	0.1 <b>§3</b> ( <b>§</b> 205)			NIS
RV224- 11DA	, CA	BYI 02960 SL	TRTDU	Ultra Low Volume	BBCH 83	Q3.0 (28)Q	0.190	NAX O	0.375 (0.420)	Citrus Oil +
	Region 10 2011	029 <b>60</b> SL (		Volume "						NIS
				\$ \$	BBCH ^C	2.7	0; 184 (0.206)	8		Citrus Oil +
DV224			OTRTBS		Spr City		0.904	NA	0.904	NIS NIS
RV224- 11DA	⊘, CA	B∳YI 02960 SIØ \$\times 200\$	TRIBS	Soil	BBCH 81	No.	(1.013)	NA	(1.013)	MIS
	*Region 10 2011 . @					)"		2.7.	0.05	1770
RV225- 11DA	L, FL Region 3	BYI @* 02960\$\$L 200	TRĴ/DD	Airblase (dikoste .asol.)	BBCH ©89	259 (2420)	0.184 (0.206)	NA	0.367 (0.411)	NIS
	2011				-					
		BYI 0 0 2960 St. 2000			BBCH 89	259 (2420)	0.183 (0.205)	10		NIS
RV225- 11DA	FL A	BY 02960 SL 2	PRTDU	Ultra Low Volume	BBCH 89	2.7 (26)	0.182 (0.204)	NA	0.365 (0.409)	Citrus Oil + NIS
	FLA Region 3				BBCH 89	2.8 (26)	0.183 (0.205)	10		Citrus Oil + NIS



Table 6.3.2.1-13 (cont'd): Study Use Pattern for BYI 02960 200 SL on Mandarin Orange

		<u>.</u>	Applicat	ion						0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wethod	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A	Retreatment Interval	Total Rate Apas./A Co., (kg & Lun)	Tank Wix Adjuvants
RV225- 11DA	, FL Region 3 2011	BYI 02960 SL 200	TRTDS	Soil drench	BBCffy 8.5 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3		0.366	O O	(0.430)	NIS °
RV226- 11DA	TX Region 6 2011	BYI 02960 SL 200	TRADD	Airblast (dilite appl.)	BBCH	\$51 \(\alpha\)2350\(\bar{\chi}\)	70.190 (0.23)		0.380 (0.426)	NIS
					BBCH 83	©251 ©(23400)	0.196	<b>%</b> O		NIS
RV226- 11DA	TX Region & 6 2011	**BYI 02960*\$L 2000		Ultra Low Volume	BRCH 81  BRCH 83	2.5 (24) (22.6 (25)	0.188 (0.2 <b>0</b> ) (0.189 (0.211)	NA 8	0.376 (0.422)	Citrus Oil + NIS Citrus Oil +
RV226- 11DA	TX Region 6 2014	BYC 02960SL 200	SKIDS	Soily dreach	**************************************	NA	0.366 (0.410)	NA	0.366 (0.410)	NIS
RV227- 11DA	Cas Region 10 2011	D.″B <b>Y</b> \$₹`	FORTDD	Air Mast (drute Cappl.)	<b>B</b> BCH 79	249 (2330)	0.183 (0.205)	NA	0.366 (0.411)	NIS
\$ \$\frac{1}{2}\$					BBCH 83	250 (2330)	0.183 (0.205)	10		NIS
RV227- 11DA	, CA Region 10 201	B <b>y</b> y 02960 SL 200	FRTDIO	Ultra Low Volume	BBCH 79	3.0 (28)	0.183 (0.205)	NA	0.366 (0.410)	Citrus Oil + NIS
	, CA Region 10 ⁴				BBCH 83	3.0 (28)	0.183 (0.205)	10		Citrus Oil + NIS



Table 6.3.2.1-13 (cont'd): Study Use Pattern for BYI 02960 200 SL on Mandarin Orange

	_	(ii	Applicat	ion					a.	0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	lio	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A And	Retreatment Interval (dax)	Total Rate Apas. A Con (kg as Ana)	Tank Wing Adjuvants
RV227-	,	BYI	TRTDS	Soil	BBCH	NA	0.366 (9.410)	NA »	©0.366	NIS
11DA	CA Region 10 2011	02960 SL 200		drench		5 S			(0.440)	, o
RV228- 11DA	CA	BYI 02960 SL	TRTDD	Airblast (dilut@	² 8€	2 <del>08</del> , (±940) _s	©183 <	NΔ	0.366 (0.411)	NIS
	, CA Region 10 2011	200		apply	BECH 85	Ž13 Ž19900			G Y	NIS
RV228- 11DA	, CA	%BYI 02960€¶L	TRĄDU	Ultrar	BBCH	×3.0 (28)	©0.189 (0.2123)	NA	0.374 (0.419)	Citrus Oil +
IIDA	Region 10, 2011	265		Volume	~ C				(0.419)	NIS
					85	\ \@~\	0.184 (0.207)	8		Citrus Oil + NIS
RV228 11DA	Region 0	BB 02 60 SL 200	\$RTDS \	Sold divench	®BCH ( 81,3√	) NA	0.904 (1.013)	NA	0.904 (1.013)	NIS

a NA = Not applicable

Composite samples of mandarin orange were collected from the plot receiving two airblast applications, at sampling intervals of 0, 1, 3, 0, 20 to 21, and for some trials 29 to 30 days after the second application. The intended pre-harvest interval (PHI) after foliar application is 1 day. Composite samples were collected from the plot receiving one soil drench application at a 28 to 30-day PHI. Single composite samples of mandarin oranges were collected from the control plots on the same day the target to day samples were collected from the treated plots.

Samples were also collected immediately before the second foliar application of BYI 02960 200 SL. Residue data from these samples are provided for information only, and should not be used for risk assessment, or for the setting of tolerance levels.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

### **Findings**

Concurrent recoveries of BYI 02960, DFA, and DFEAFwere measured with each set of samples to verify method performance. verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries at each fortification level was within the acceptable range of 70 to 110%, and the standard deviation (SD) ya tues were below 20% (Table 6.3.20-14)

Table 6.3.2.1-14: Summary of Recoveries of BYJ \$2960 from Mandarin Oranges

		102.	
Crop Matrix		Mean % Recovery ^a	Stan. % Dev.
	BYI 02960 3 95, 88 97, 103, 98, 90 94, 105, 113 94, 105, 113 96, 99, 98	100%	8.6%
	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\f	98%	1.7%
Mandarin fruit	93,94,94,04,95,76, 102,92,89,94,90,91, 106,106,178	96%	9.8%
<u></u>		93%	0.9%
	9 84, 95 97, 87, 111, 90, 96, 90, 88, 106, 98, 87, 94, 111	95%	8.4%
, Q	1000 0 3 0 97, 97, 98	98%	0.6%

Mean Recovery = mathematical average of all recoveres.

The freezer storage stability study indicates that BYI 02960 residues were stable in orange fruits as representative crops of the respective compodity (high add content) during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 199 days. A sommar of the storage conditions are shown in the Table 6.3.2.1-15.



Summary of Storage Conditions for Mandarin Oranges Table 6.3.2.1-15:

Residue Component(s)	Matrix (RAC)	Average Storage Temperature (°C) ^a	Actual Storage Duration months (days) b,c
BYI 02960	Mandarin oranges	-22.4	6.5 months (199 days)
DFEAF	Mandarin oranges	-22 A	6.5 Coonths
DFA	Mandarin oranges	<b>2</b> 2.4	6.5 months (199 days)

lysis and is the din raw do The average storage temperature is from the time of sample receipt at BRD until the final sample analysis and is the maximum of all three freezers that the samples were stored in Actual temperature values can be found in Taw data notebook RARVP064.

The storage duration is the time from field sampling through the last sample extraction.

The total BYI 02960 residue data for citrus following a single soil drench, or two foliar application(s) of BYI 02960 200 SL are shown in Tables 6.3.2.16.16. The results from samples taken just prior to the final application are shown in Table 6.32.1-17. The samples collected after a single foliar application do not reflect the proposed use tate, and the residue data from these samples were collected for informational purposes only.

Total BYI 02960 Residue Data from Mandaris Oranges after a Single Soil Drench Table 6.3.2.1-16© Two Goliar Opplication(s) of BY 102960 SL

ll Number	Location (City, State, NAFTA Region, and Year)	Plot Name Programme Progra	Murchtts (A)		Total Rate Ib a.S./A	PHI (Preharvest ^A Z ² Interval)	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFResidue (mg a.s. equiv./kg)	Total BYI 02960 Residue (mg a.s. equiv./kg) ^b
RV221-	Region 3, 2911	TRTDD	W Murchts	Fîrnt	0.364 (0.408)	0	0.144	< 0.050	< 0.010	0.204
				<i>)</i> '		1	0.160	< 0.050	< 0.010	0.220
						3	0.053	< 0.050	< 0.010	0.113
			, 🍣			10	0.070	< 0.050	< 0.010	0.130
						21	0.071	0.054	< 0.010	0.135
<b>X</b>		Ş								< 0.070
						30	< 0.010	< 0.050	< 0.010	< 0.070
<i>*</i> \$ .		P					< 0.010	< 0.050	< 0.010	Avg:
	) T									< 0.070

^{2012.} Storage stability of BVI 02960 diffusionacetic acid, and and A. difluoroethyl-amino-furanone in plant matrices. Bayer Crop Science Report No Whended Version Including 18-month data (KIIA 6.1.1/01).



Table 6.3.2.1-16 (cont'd): Total BYI 02960 Residue Data from Mandarin Oranges after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

		Diene	n or 1 wo Fo	nai 7 tpp	incation(,	3) 01 1	711 0270	OBL		
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg ai/ha)	PHI (Preharvest a Øterval)	BYI (1990) Residue (mg/kg)	DFA Residue (12) (Mga.s. equiv./kg)	DFEAFResidue (mg & cquiv: Rg)	Total BYI 02960 Residue
RV221-	, FL,	TRTDU	W. Murcotts	Facant	0.365		.0925	<0.050	Q _{0.01}	0.08
11DA	Region 3, 2011			<b>Y</b>	30.410)* ***********************************	7			°~	<b>*</b> U'
			4		0.365	10	0.02	<0/050	<b>≰</b> 0.010 <i>a</i>	\$0.085 ************************************
						- A	≤0.010	\$0.050	<0.010	4/ 3/
					v .4		\$0.01 <i>5</i>	<0.050	<0.010	0.075
						21	0.007	<0.050	Ø.010	0.077
RV221-	, FL,	TRTDS	W Murcotts	Frunt	0.364 <b>0</b> .408)	<b>3</b> 70	<b>30.010</b>	0.050	<0.0 <b>1</b> 0 <0.0 <b>1</b> 0	<0.070 <0.070
11DA	Region 3, 2011	(D)			(W).408 E		\$ 0.010C	<0.050	<0.0¥0	Avg:
		Z		-0	\$		, Ø	O*	0	< 0.070
RV222-	, FL,	TRTDD	Sunburst	Four it	09363	ő	©.289 V	×0.050	< 0.010	0.349
11DA	Region 3, 2011	Υ _Α ."			(40.40 ₀ )	8				
	XX				(0.406)	ď	06253	<b>≤0</b> .050	< 0.010	0.413
	Ũ	2		J.	~ \	<b>あ</b> コ	P.240	<b>₹</b> 0.050	< 0.010	0.300
				y %		10	√ 0.234°	< 0.050	< 0.010	0.294
						Z V	0.197	0.069	< 0.010	0.276
			2		Ğ	$\bigcirc_{30}$	<b>%</b> .012	< 0.050	< 0.010	0.072
					* .5		<0.010	< 0.050	< 0.010	<0.070
<i>\&amp;</i>					<b>₩</b>					Avg: 0.071
RV222-	FL.	TRTDU	l ^y Siinbigrst	Fruit	ŌŐ 35ℤ	0	0.056	< 0.050	< 0.010	0.116
11DA	Region 3, 2011			j" "Ç	(0.400)					
			Sunborst		<i>"0</i> "	1	0.056	< 0.050	< 0.010	0.116
	4		Y Q'.			3	0.044	< 0.050	< 0.010	0.104
		Q,	o i			10	0.052	< 0.050	< 0.010	0.112
<b>4</b>						21	0.053	< 0.050	< 0.010	0.113
RV222-	, FL,	RTDS	Sunberst	Fruit	0.365	30	0.012	< 0.050	< 0.010	0.072
11DA	Region 3, 2011	a Y			(0.409)		< 0.010	< 0.050	< 0.010	<0.070
										Avg: 0.071
			<del>) •©</del>			1	I	Continu	ad an ma	
	, FL, Region 3, 2011							Сопппи	ed on ne.	хı page



Table 6.3.2.1-16 (cont'd): Total BYI 02960 Residue Data from Mandarin Oranges after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

1		T	1		incution(		1	1	1	(7)	2 1
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s.A (kg a.s./ha)	PHI (Preharvest ^a _{%Interval} )	BV02960 Residue (mg/kg) &	DFA Residue Roge Rag a.s. equiv./kg)	DFEAFResidue (mga.s. equiv./kg)	Total Brenzoso Recidue (mg as. equivakg)	
RV223- 11DA	, CA,	TRTDD	Satsuma	Fruit	0.366 (0.411)	02	0.129	<8.050	\$0.010	©.189.	7
IIDA	Region 10, 2011			U)	(0.411)	0 1	√0.10 <u>8</u> €	<0.030	0° & 60° (0°)	0°.¥68	
			(			30	0.108	<0.050	\$0.010	9.164	
						10	<u>A</u> 156	©0.050	<0.010	0.2	2
					, 4	21 @	0.132	<0.069	<0.010	<b>9</b> 2	
RV223-	, CA,	TRTDU	Sarsuma V	Fruit	0.363		0.065	<b>₹</b> 050	Ø.010	0.125	
11DA	Region 10, 2011			D Y	(A)			O .~	¥		
		~@	, V			) 1 269	0.165	<0.056 <0.050	<0.010	0.225	
				4	<b>&amp;</b>	70	0.502 0197 %	©0.050 ©0.050	<0.010	0.222	
						§ 21 §	0.210	<0.050	<0.010	0.270	
RV223-	, CA,≪	TRTOS	Sasuma Ĉ	Fruit	0.366	36/	<0.010	<0.0050	< 0.010	< 0.070	
11DA	Region 10, 2011			Ĵ	(6410)	7)	<b>₹0.</b> 010	<b>√</b> \$0.050	< 0.010	<0.070 Avg:	
				y %		, W				< 0.070	
RV224-		TRTDD	Tango	Frank	0358 (0.401)		0.268 .@	< 0.050	< 0.010	0.328	
11DA	CA, Region 0,				0,401)		h-				
							0.328	< 0.050	< 0.010	0.388	
«						\$3	0.277	< 0.050	< 0.010	0.337	
					9	10	0.361	< 0.050	< 0.010	0.421	
	W S				Ö	21	0.175	< 0.050	< 0.010	0.235	
RV224- 11DA	CA Region 10	IY RAIDO	Tango	Fruit	©9.375 (0.420)	0	0.287	< 0.050	<0.010	0.347	
	CA Region 10, 2011	Q,			(0.120)	1	0.398	< 0.050	< 0.010	0.458	
		<b>4</b> .				3	0.546	< 0.050	< 0.010	0.606	İ
				<b>5</b>		10	0.357	< 0.050	< 0.010	0.417	
	Q J	Ž.				21	0.249	< 0.050	< 0.010	0.309	
RV224-	, , , , , , , , , , , , , , , , , , ,	ŢŔŤDS	Tango	Fruit	0.904	29	<0.010	<0.050	<0.010	<0.070	
11DA	CANA, Keggovň 10, ∂   2000 l		y		(1.013)		<0.010	< 0.050	< 0.010	<0.070 Avg:	
, X										< 0.070	
	CA, Region 10,							Continu	ed on ne.	xt page	



Table 6.3.2.1-16 (cont'd): Total BYI 02960 Residue Data from Mandarin Oranges after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

			II OI TWO I O								2
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s.A (kg a.s./ha)	PHI (Preharvest ^a <u>I</u> nterval)	BV 02960 Residue (mg/kg) Z	DFA Residue Ran Jangas. equiv./kg)	DFEAFRegidue (mgg.s. equiv./kg)	Ootal Brouggo Reconne (mg as. equivagg)	
RV225-	, FL,	TRTDD	Sunburst	Fruit	0.367	0~	0.232	< 9.050	\$9.010	©.272	
11DA	Region 3, 2011				(0.411)	<del>0</del>	**************************************		0′ &		
			(			7 1	<0.15 k√ 0.18 €	<0.050 <0.050	<0.010 \$9.010	0.193 €	
				~~	Q .	30°	0.1 ₀ 3	<0.950 \$0.050	<0.010	0.193	ľ
						№10	0.069	<0.0690	<0.010	0.129	
RV225-	, FL,	TRTDU	Sanbursk	Fruit	0.363	A P	0.590	<b>40.050</b>	©0.010	0.570	
11DA	Region 3, 2011			Fruit	0. <b>363</b> (0.409)					,,	
		(P)				1 /	0.36%	0.06		0.446	
		Ş					0.512	<0.050	<b>©</b> 0.010	0.572	
					<i>~</i>	10	<b>0</b> ,492 %	\$0.05 <b>0</b>	< 0.010	0.552	
		7	Q			21	0.375	<0.050	< 0.010	0.435	
RV225- 11DA	Region 3, 2001	TRTOS	Synburst	Fruit	0.366 (\$.410)	8	< 0.010	<b>≈0.0</b> 50	< 0.010	< 0.070	
IIDA	Region 3, 2001	4 .		\\ \tag{\pi} \\ \&				<b>₹</b> 0.050	<0.010	<0.070 Avg:	
						Ű				< 0.070	
RV226-	Region 6, 2011	TRODD	Dancy	Fant	0380 39.426)		<b>9</b> ,233	< 0.050	< 0.010	0.293	
11DA	Region 6, 2011	TRYDU	Dancy		<b>A</b> 9.426)		¥				
				Frequit			0.236	< 0.050	0.047	0.333	
						<u> </u>	0.329	< 0.050	0.045	0.424	
				<i>~</i>	o' 🎘	10	0.177	0.053	<0.010	0.240	
DIVIDA				- O	0, 2	21	0.148	0.063	<0.010	0.221	
RV226- 11DA	Pagion 6 2011			Fryant	0.376 (0.422)	0	0.858	< 0.050	<0.010	0.918	
	Region 6, 2011	TRETOS	Dancy		(	1	0.486	< 0.050	< 0.010	0.546	
,		4				3	0.228	< 0.050	< 0.010	0.288	I
	<b>4</b>					10	0.898	0.094	<0.010	1.002	
	(O)					21	0.414	0.092	<0.010	0.516 ^g	
RV226-	,,,,,,	TETDS	Dancy	Fruit	0.366	29	< 0.010	< 0.050	< 0.010	< 0.070	
11DA	Region 6, 2011				(0.410)		< 0.010	< 0.050	< 0.010	< 0.070	
	Region 6:2011									Avg:	
										< 0.070	İ



Table 6.3.2.1-16 (cont'd): Total BYI 02960 Residue Data from Mandarin Oranges after a Single Soil Drench or Two Foliar Application(s) of BYI 02960 SL

				11						0
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s.A (kg a.s./ha)	PHI (Preharvest ^a _{%_Interval} )	BV02960 Residue (mg/kg) &	DFA Residue Range Range Range A.S. equiv./kg)	DFEAFRegidue (mg.n.s. equiv./kg)	Cotal BY D2960 Recidue (mg 28. equit 18g) b
RV227-	, CA,	TRTDD	Satsuma	Fruit	0.366	0%	0.252	<0.050	\$0.010	6.312
11DA	Region 10, 2011			Q)	(0.411)		\ <u>\</u>			
			,	<b>4</b>	©0.366 ~	1	الـ0.142 الــــــــــــــــــــــــــــــــــــ	<0.050	<0.0010	0.202
			4		\$0.366 \$\(\dagge(0.41)\)		/ 500 m	0	Q 01d	* 246°
						<b>~</b>	0.280	0.050	Q _{0.01}	0.346
					v . 4	² 10	0.177	<0.050	<0.010	0.237
					0.366	21	0.249	<0.050	<b>6</b> .010	<b>8</b> .309
RV227- 11DA	, CA,	TRTDU	Satsum	Fruit	0.366	<b>S</b>	<b>9</b> 3748	Ö.050	≥0.010 ≥	0.208
IIDA	Region 10, 2011	<i>@1</i>			769.410) 769.410)		Y . 1.50	<00050		0.010
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0		120	0.152		<b>%</b> 010	0.212
				W.	<b>~</b>		N 77 *	©0.050	<0.010	0.249
						\ 10	J0.27∤Ç	<0.050	< 0.010	0.331
	<u> </u>		<b>à</b> 0				0,393	<00050	< 0.010	0.453
RV227-	, C	TRPDS	Satsung	Facilit	\$366 60.410)	30	<b>©</b> .010	<b>\$</b> 0.050	< 0.010	< 0.070
11DA	Region 10,0011			Y %	0.410) \$		<0.010	< 0.050	< 0.010	<0.070 Avg:
	Region 10,0011	~~			<b>^</b>	Ţ,	Ø,			<0.070
RV228-		T**TDD	> Owari	Fruit	9.366 (0.4119)	$\circ_0$	Ø.192	< 0.050	< 0.010	0.252
11DA	CA, Region 10,		× ~ `	<b>)</b> "	(0.4119/		7			
	2011	, Š				, P	0.186	< 0.050	< 0.010	0.246
		4				₫"3	0.159	< 0.050	< 0.010	0.219
	CA, Region 10, 2011			0	·~	10	0.144	< 0.050	< 0.010	0.204
	<i>∅₁</i> .0 [¥]				Ť	21	0.124	< 0.050	< 0.010	0.184
RV228- 11DA	Region 10	FR TDI	Owari Sarsuma	<b>P</b> ruit	(0.419)	0	0.331	< 0.050	< 0.010	0.391
] .	2011	, Q				1	0.091	< 0.050	< 0.010	0.151
	Z,	4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3	0.610	< 0.050	< 0.010	0.670
~~	. •	کی کی		D _A .		10	0.080	< 0.050	< 0.010	0.140
		Ž.				21	0.035	< 0.050	< 0.010	0.095
RV228-		<b>TR</b> TDS	Oward	Fruit	0.904	29	< 0.010	< 0.050	< 0.010	< 0.070
11DA	CM, Region 10,		Satsuma		(1.013)		< 0.010	< 0.050	< 0.010	< 0.070
	2041									Avg:
		, W .								< 0.070

a Pre-Harrest Interval (PHI) is the interval between last application and Sample Date.

Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.

Maximum residue values for the different application scenarios and crops are printed in **bold.** 

Table 6.3.2.1-17: Total BYI 02960 Residue Data from Mandarin Oranges taken immediately priorto the second foliar application of BYI 02960

Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rates Lb a.s./A (kg a.s./ha)	Days Before Application	KRVI 02960 Residue (mg/kg)	DD Residue (A)	DFEAFResidne	Total BY 0.2960 Residue
RV221- 11DA	, FL, Region 3, 2011	TRTDD	W. Murcotts	Fruit	\$\display 0.364\$\display (0.46\$)		0.1195	CO.059	<0.010 0	Ø.4.79 ↑
RV221- 11DA	, FL, Region 3, 2011	TRTDU	W. Mutcotts	Fruit	0.365 (0.410)			₹0.0 <b>50</b>		0,071 0,071
RV222- 11DA	, FL, Region 3, 2011	TRTDD			0.363 0.4060		©.129 ©.	\$0.05 <b>0</b>	(%) (%) (%)	0.189
RV222- 11DA	, FL, Region 3, 2011 ₈	TŘÝDU	Q N	Fayit	0.357 (0.400)	%0 √ . «.	0,048. ₁	©0.050	<0.010	0.108
RV223- 11DA	Region 10 2011	TRÆDD	Satsuma	France	0.366 (0.411)		Ø\$\$\02 ,	<b>\$9</b> .050	<0.010	0.162
RV223- 11DA	Region 10, 2011	TRTĎU	Satsuma 4	Friedly	0.365 (00410)		0.445 ©	<0.050	<0.010	0.205
RV224- 11DA	CA, Region 6,	TRIDD	Ango S	Fruit	0.3 <b>5</b> 8 (0.401)		0.106	<0.050	<0.010	0.166
RV224- 11DA	CA, Region 100	TRTD	Tkango (	Fruit	0.375	0	0.460	<0.050	<0.010	0.520
RV225- 11DA	©FL, Region 3© 2011	TRTEO	Sudbarst	Fruit	0.367 (0.411)	0	0.131	<0.050	<0.010	0.191
RV225- 11DA	Region 3, 2011	TRATOL O	Sunburst	Fruit	0.365 (0.409)	0	0.471	<0.050	<0.010	0.531
RV226- 11DA	, TX, Region & 2011	TOTOD S	Dancy	Fruit	0.380 (0.426)	0	0.178	<0.050	<0.010	0.238
RV226 ² 11DA	TX, Region 602011	TRÍDU Ý	Dancy	Fruit	0.376 (0.422)	0	0.484	<0.050	<0.010	0.544 ^{c,d}
RV227 11DA	, CA, Region 10, 2011	TRTDD	Satsuma	Fruit	0.366 (0.411)	0	0.176	<0.050	<0.010	0.236



Continued on next page...

Table 6.3.2.1-17 (cont'd): Total BYI 02960 Residue Data from Mandarin Oranges taken immediately prior to the second foliar application of BYI 02960

Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	Bays Before Application a	BYI 62/60 Resic (mg/kg)	DFA Residue	DFEAFResidue (mg des equivakg)	Total BY1 02 Wan Residue	
RV227- 11DA	, CA, Region 10, 2011	TRTDU	Satsuma	) , ((	0.366	<b>~</b> 0 0 2	, <b>004</b> 04	<b>20</b> .050	0.016	0.464	
RV228- 11DA	CA, Region 10, 2011	TRTDD	Owari Satsukwa	Front	0.266 (0.411)		0.084	Q.050 Q	30.0100 2	0.144	
RV228- 11DA	CA, Region 10, 2011	TRTDU	Swari ( ) Satsuma	Fruit	0.3Q4 (0.419)		0.064	10 (//	<b>3</b> 0.010	0.124	

- a Samples were collected immediately prior to the second foliar application and do not reflect the proposed use rate.

  Therefore, the residue data from these samples were collected for informational proposes only, are provided for information only, and should not be used for jobs assessment, or for the setting of tolerance levels.
- b Total BYI 02960 residue is the sum of BYI 02960 BYA, and DFEAF residue in parent equivalents. Residue measurements below the analyte EOQ were summed into the total BYI 02060 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be
- c Maximum residue bund in mandarin orange at IBAQ (immediately before application 29)
- d Highest average Feld trial HAFT residue found in mandatin orange at IBA

## Conclusion

Eight field trials were conducted to measure the magnitude of total BYI 02960 residue in/on mandarin oranges following either two speay applications of BYI 02960 200 SL (diluted or concentrated spray) or one soil drench approvation of BYI 02960 200 SD. Allorials with foliar spray application were designed as decline trials

The total BYI 02960 residue data for mandarin oranges following a soil drench or foliar application(s) are summarized in Table 63.2.1.18.

Table 6.3.2.1-18:. Summary of Residue Data for Total BYI 02960 from Mandarin Oranges

						Total BY	I 02960 I	Residue L	evels (p	om) ¹
Commodity	Plot Name ²	Total Appli- cation Rate lb a.s./A (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max after PHI	HAF	Median 4	Mean And
Mandarin oranges	TRTDD	0.358 to 0.380 (0.406 to 0.426)	1	8	0.118		0.424	0.3630	°. O.	
Mandarin oranges	TRTDU	0.357 to 0.376 (0.400 to 0.422)	1	8	<b>0</b> ,035	0.496	1.002 (1 <b>©</b> ) ⁵	0.4955	0:1685 O Q	©2350 ©.1829
Mandarin oranges	TRTDS	0.364 to 0.366 (0.408 to 0.410) & 0.904 (1.013)*		% 58	<0.070 %	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.05	<0.070	§0.070 0.0004

- Plot TRTDS for trials RV224 and RV228 had soil drength applications made at higher rates.

* Plot TRTDS for trials RV224 and RV228 had soil drench applications made at higher rate.

1 Data from the decline trial samples collected at intervals other than the 1 or 30 day PHL are not included in this table.

2 TRTDD = Treated plot receiving two air low volume applications;
TRTDU = Treated plot receiving two air low volume applications;
TRTDS = Treated plot receiving one soil drench application.

3 HAFT = Highest Average Field Trial.

4 calculated on the basis of the residue values at the PHI
5 sampling day after PHI which showe the highest residue
6 no decline samples were collected

Spray application uses were clearly more critical in respect to possible residues in mandarin oranges compared to the soil drench use. Samples collected from decline trials after spray application indicates. compared to the soil drench use. Samples collected from decline trials after spray application indicated that the total BYI 02060 residue in edible mandarm oranges declined witially with a subsequence increase in total residue with either a leveling of a continued increase in total BYI 02960 residue until approx to days after the last application. The highest residue yaue detected in all trials was in a sample collected 10 days after the last application. Only one trial showed the highest residue value at the last sampling Vent (21 days after the last application), wall other trials the peak residue was detected prior to that. Therefore it can be assumed that the peak data provided in this report are solutions of regulatory purposes. detected prior to that. Therefore it can be assumed that the peak maximum is reached and the residue

An additional study was conducted to compare residues from citrus trials following the use patterns for BYI 02960 200 SL from Brazil and North America.

Damant	KIIA 6.3.2.1/03; 2012	1
Report:	( )	
Title:	BYI 02960 200 SL - Magnitude of the Residue in/on Citrus (including Bridging Thals to	٥
	Brazil Import Tolerance).	"
Report No &	RARVP076, dated June 15, 2012 M-432687-01-1	٦,
Document No	M-432687-01-1	Ä,
Guidelines:	US: EPA Residue Chemistry Test Guide trees OPPTS 86 (1500, Crop Field Tries) Canada: PMRA DACO 7.4.1. Supervised Residue Tries Study	7
	[	Q.
	PMRA DACO 7.4.2, Residue Decline	Q.
	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Frial,	Ş
	adopted Sept. 7, 2009.	
GLP	Yes	

Four field trials were conducted to measure the magnitude of BY 02960 residues in/on orange following either one soil drench application followed by two broadcast foliar spra@applications of BYI 02960 200 SL (simulating the potential use pattern for Brazil), or two foliar broadcast foliar spray applications of BYI 0296 200 SL (Simulating the worst-case use pattern from North America) (Table 6.3.2.1-19).

Target Use Patterns for the Application of BYI 02960 on Table 6.3.2.1-19: (comparative trials)

				Targe	Kate/Appli	cation		O	KŽ.			ray ume
	Test		©Form Produ	in ated to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta	Active St	stance	(a.s.)	Target App.		Adjuvan		
Plot ID ¹	Test Substance	No of Apps	«∭ ∡mL/A.	√fi‱Z/A≥	Name of	lk© a.\$#A	k@ a-s./ha	Interval Days)		t/Additiv	GPA	LPHA
UTC	ÇNA 3	NA _O	NA	NAS	NA (	SNA 🔏		NA	NA	NA	NA	NA
TRTSF	BYI 02960,	Soil	<b>36</b> /87	(C)" 4	PYI 02960	1339	(1) (1)	90	106	0.25	NA	500 ⁴
IKISF	200 SL	2.Q foliar	414.8	^ Y	y/ _ ^ //	0.1829	0.205	15	10	0.25	200	1877
TRTDF	BYL02960 200 SL	2 foliar	414.8	94.03	BYI 02960	Q.J.829	0.205	30	10	0.25	200	1877

UTC = Untreated control plot TRTSF Treated plot receiving one soil drench application followed by two foliar applications; TRTDF = Tresped plot receiving two foliar applications. Samples were to be collected at target PHIs of 0, 31, 10, 21, and 28 days.

field trials are shown in Table 6.3.2.1-20.

Soil drench applications were to be made at approximately 500 mL spray solution per plant.

Table 6.3.2.1-20: Trial Numbers and Geographical Locations for BYI 02960 on Orange (comparative trials)

NAFTA Growing Region	Submitted
10	4
Total	4

#### Material and Methods

For plots receiving a single soil drench application followed by two foliar applications, soil drench application rates ranged from 0.921 to 1.339 lb BYL 02960/A (1.09 to 1.501 kg/BYI 02960/ha); foliate application rates ranged from 0.178 to 0.184 lb B\( 0.2960/A/application (0.199 to 0.206 kg BYI 02960/ha/application) and total seasonal application rates ranged from 2.281 1.706/lb BYI 02960/A (1.438 to 1.912 kg BYI 02960/ha). Soil dreguen applications were made 90-91 days before the first foliar application.

For plots receiving two foliar applications, individual application rates ranged from 0, 29 to 0.184 lb BYI 02960/A/application (0.200 to 0.207 kg BYI 02960/ha/application) and total seasonal application rates ranged from 0.362 to 0.369 lb BYL 02960 A (0.496 to 9.413 kg/BYI 02960/lba).

The interval between the foliar applications was to 13 days. Soil drench applications were made at growth stages ranging from BBCH 73 to 79 (BBCH 39: some fruits slightly yellow, beginning of physiological fruit drop, BBCN 79: Fruits about 90% of final size). Foliar applications were made at growth stages ranging from BBC 181 to 9 (BBCH 81) Beginning of fruit colouring; BBCH 89: Fruit ripe for consumption).

All applications were made using ground-based equipment. An adjuvant (non-ionic surfactant [for the plot receiving two foliar applications or methylated seed oil for the plot receiving one soil drench Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.1-21. Study use patterns are summarized in Table 6.3.2.1-20.

# Bayer CropScience

Table 6.3.2.1-21: Trial Site Conditions for BYI 02960 on Oranges (comparative trials)

		Soil (	Charact	teristics	a	Meteorolo	ogical Datab
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Range
RV239-11DA	, CA, 2011	Loam	1.5	8.1	17	10.20	32 82
RV240-11DB	, CA, 2011	Sandy Loam	0.95 (	<b>∌</b> 7.1	104	3.92	79 - 935
RV241-11DA	CA, 2011	Clay Loam	2G	8.2	<b>3</b> 33	279 Q	5 5 5 77 J
RV242-11DA	, CA, 2011	Sandy Loam	0.82	7.6	1.032	5.39	29 - 86

- a Abbreviations used: %OM = percent organic matter CEC = caron exchange capacity
  b Data is for the interval of the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first application through the month of first appli

		L. L.			( ( )	Applicati	on	8	<b>&amp;</b>	
Trial Identification	Location City, State, NAFTA Region, and Vent	And-use Product (Fermulation	t Nitime		Timing/Growth Stage & ARBCH)	me GPA	Rate lb afs./A Off (1/2) (kg a.s./ha)	Retreatment Inter D. C. (days)	Total Rate lb a.s./A (kg a.s./ha)	Tank Mix Adjuvants
RV239	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S YI	TRTSF	SØil ************************************	*3	NQa S	1.34	NA	1.71	MSO,
11DA	Region 16 2012	© YI © 2960 St. 200		Drench	<b>1</b>	201 (1875)	(1.50) 0.183 (0.205)	90	(1.91)	0.25% v/v MSO, 0.25%
				Airblast	85	201 (1876)	0.183 (0.205)	18		v/v MSO, 0.25% v/v
RV239- 11DA	Region 0 2019	BYI 02969'SL 200	TROTDF	Airblast	81	200 (1872)	0.182 (0.204)	NA	0.365 (0.409)	NIS, 0.25% v/v
		<b>Y</b>		Airblast	85	200 (1874)	0.183 (0.205)	13		NIS, 0.25% v/v



Table 6.3.2.1-22 (cont'd): Study Use Pattern for BYI 02960 200 SL on Oranges (comparative trials)

	.1-22 (cont u).	<u> </u>	T attern to			Applicati			раганус	,	] _
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Soil	Timing/@rowth Stage BBCH)	Actual Spray Volume GPA	Bate Ib a AA (kg a.s./ha)	Retreatment Interval्र (days)	Total Rate 16 a.s./A	Tank MacAdjuvates	
RV240- 11DB	, CA Region 10 2011	BYI 02960 SL 200		Airblast Airblast	85 85 85 85 80	212 (1978)	1.34 (1.50)		1.70 (1.9)	MSO, 0.25% v/v MSO, 0.25% v/v	
		4 4			) J	2 ½5 (20) 4) (20) 4) (1992) (1992)	0.183 (0/205) (0/205) (0/203)	9	0.364 (0.408)	NIS, 0.25% v/v NIS, 0.25% v/v	
RV241- 11DA	CA Region 10 2011	02960 SL 02960 SL	TIOSF	Soil Sorter Soil Sold Soil Soil Soil Soil Soil Soil Soil Soil	83	ÃΝ̈́A	1.34 (1.50) 0.184 (0.206)	NA 89	1.71 (1.91)	MSO, 0.25% v/v MSO, 0.25% v/v	
	CA Region 10 2011 Q			Anolast	03	(2565)	(0.205)		ed on ne:	0.25% v/v xt page	

Table 6.3.2.1-22 (cont'd): Study Use Pattern for BYI 02960 200 SL on Oranges (comparative trials)

						Applicati	ion			
	IA	tion								
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Aethod	iming of powth Stage	Actual Spray Volume GPA (இத்த)	Bate lb askA (kg a.s./ha)	Retreatment Interval	L Rate 46 A.S./A	K Masadjuvants
Iria	Loca	End.	Plot				Rate lb (kg a.s./	day	Fota kg	
RV241- 11DA	CA Region 10 2011	BYI 02960 SL 200	TRTDF	A Polast	83	283	(0.200)	NA	0.369	Jank \$25% \$V/V
					w w					%25% \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
				Airplast	85) J	(25/8) (25/8)	00.84		O1.28 (1.44)	NIS, 0.25% v/v
RV242- 11DA	, CA Region 10 2011	02960 St	TRISE	Soil Dench	7 <b>5</b> / V	NW X	Ø921 (1.03)	NA	Ol.28 (1.44)	MSO, 0.25% v/v
		298YI 02960 \$1 200		Soil Brench Afgelast	, Ô	291 Ø1881)	Ø.184 ×	91		MSO,
					, 5 2	(244 ×	(0.206)			0.25% v/v
Ž,		BY		r>/ ⊘≫	789 789	244 2 (22797)	©0.178 (0.199)	14		MSO, 0.25% v/v
						~~~				
RV242- 11DA	CA Region 10 201	BY 02960 SL 200	THE TOP	Airbla®	89	251 (2347)	0.183 (0.205)	NA	0.362 (0.406)	NIS, 0.25% v/v
				Airblast	89	245 (2289)	0.179 (0.200)	9		NIS, 0.25% v/v
4										v/v

TRTSF = Treated plot receiving the soil drench application followed by two foliar applications

TRTDF = Treated plot receiving two foliar applications

Duplicate composite samples of oranges were collected from the all plots, at intervals of 0, 1, 3, 8 to 10 and 21 days after the second foliar application. An additional duplicate sample was collected from the plot seceiving an additional soil drench application at 28 days after the final treatment. Single composite samples of oranges were collected from the control plots on the same day the target-PHI 1day samples were collected from the treated plots.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries at each tortification level was within the acceptable range of 70 to 110%, and the standard deviation (SD) values were below 20% (Table 8.3

Summary of Recoveries & BYI \$2960 from Orange Table 6.3.2.1-23: (comparative trials)

			. / //			<i>(()</i>
Crop Matrix	Analyte	Spike Level (ppm)	Sample Size	Recoveries (%)	Kecovery	Std O Dev (%)
	BYI 02960	0.0	\$ 15 \$	" 75, 77, 72, 68, 77, 69, 64, 69, 22, 78, 98, 70, 64, 64, 64	717	6.2
		\$1.0 °	3	© 4,76,76,76 ©	7 6	0.93
Oranges	DFA 🚀	0.05	\$12 ¢	86,92,74,18,73,73,69,74, 68,77,72,72	\$ 76	6.9
	<i>.</i>	₽ 0 €	30	2° 579, 79, 76	78	1.9
	DELAF	0.0	Ø15 🖔	93, 75, 86, 60, 55, 73, 56, 86, 7 104, 71, 71, 67, 69, 72, 66	74	13
		(1.0	3	\$3,89,79	84	5.1

....at BVI 02960 residues were stable in orange during proof to analysis. The maximum storage period of frozen samples was 210 days. A summary of the storage conditions is shown in the Table

Table 6.3.2.1-24: Summary of Storage Conditions for Orange

Residue Component(s)	Matrix (RAC)	Maximum Average Storage Temperature (°C) ^a	Actual Storage Duration months (days) b,c
BYI 02960	Oranges	< -20	7 (210)
DFEAF	Oranges	< -20 ≥	7 (2)0)
DFA	Oranges	< -20%	© (210)

a The maximum average storage temperature is from the time of sample receipt at BRP until sample extraction and the maximum of all average freezer temperatures at BRP and Payant. While preparing for sample analysis, the samples were maintained in a laboratory freezer.

b The storage duration is the time from field sampling through the last sample extraction.

and A. 2012. Storage rability of BYI 02960, diffuoroacetic acid, and difluoroethyl-amino-furanone in plant matrices. Bayer Crap Science Report No. RARVP046, amended version including 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data for oranges following either two following applications, or afternatively a single soil drench and two foliar applications of BYI 02960 200 SL are how on Table 6.3.2.1-25.

Table 6.3.2.1-25: Total BYI 02960 Residue Data from Citrus after Two Foriar Applications of BYI 02960 SL

Trial Trial NAFT	ot Nache	Wariety Ch	minogity (2)	Lotal Rades Stras.S./A (kgas.s.)	Sampling Anterval	BYI 02960 Besidu (mg/kg)		DFEAF Residue (mg a.s. equiv./kg)	Total Residue (mg a.s. equiv./kg) ^b
RV239 -11DA CA Region 10,	TRADF	Valencia	F řtu řt	(0.409)	1 0	0.016 0.010	<0.050 <0.050	<0.010 <0.010	0.076 <0.070 Avg: <0.070
					1	0.018 0.023	<0.050 <0.050	<0.010 <0.010	0.078 0.083 Avg: 0.08
					3	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
		♥ • ♥			10	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
					21	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070

Table 6.3.2.1-25 (cont'd): Total BYI 02960 Residue Data from Citrus after Two Foliar Applications of BYI 02960 SL

			02900 SL							0
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lba.s./A (kg a.s.ha)	Sampling Interval (days) ^a	BYL 02960 Residue (mg/kg)	DFA (mg	DFEAD Residue	Fortal Residue (Mg/as, equitokig) ^b (Mg/as, equitokig) ^b
RV239 -11DA	CA, Region 10, 2012	TRTSF				100	0.034	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	\$0.010 0.010 0.010 0.010 0.010 0.010	Avæ;
RV240 -11DB	CA, Region 10, 2011	TWIDE S	Washing-ton Navel	Fruit	0.364	1 3 8	0.108 0.109 0.108 0.207 0.141 0.155 0.136 0.103	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0.168 0.169 Avg: 0.17 0.168 0.267° Avg: 0.22d 0.534 0.548 Avg: 0.54 0.196 0.163 Avg: 0.18 0.094 0.120 Avg: 0.11

Table 6.3.2.1-25 (cont'd): Total BYI 02960 Residue Data from Citrus after Two Foliar Applications of BYI 02960 SL

Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Tatal Rate Lba.s./A (kg a.s.ha)	Sampling Interval (days) ^a	BOL 02960 Residue (mg/kg)	DFA Residue	DFEM Residue	Ental Residue
RV240 -11DB	CA, Region 10, 2011	\ \ \ \ \					0.156 0.08 0.106 0.106 0.107 0.147 0.147 0.147 0.152 0.067	0.368 0.4021 0.267 0.267 0.431 0.923 0.923 0.923 0.329 0.364	\$0.010 \$0.010 \$0.010 \$0.010 \$0.010	0.494 0.578 0.494 0.433 0.579°° Avg: 0.166 0.182 Avg: 0.17 0.48 0.596 Avg: 0.54 0.429 0.441 Avg: 0.43 0.476 0.525° Avg: 0.476
RV241 -11DA	CA,Q Region 10,	TRIBE	Olinda Walencia	Fruits	0.369 (0.413)	1	0.102 0.083	<0.050 <0.050	<0.010 <0.010	0.162 0.143 Avg: 0.15
						3	0.061 0.034 0.041	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	0.121 Avg: 0.12 0.094 0.101
				\$		10	0.041 0.068 0.0916	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	0.101 Avg: 0.10 0.128 0.152
	CA, Region 10, Quit 1					21	0.094 0.081	<0.050 <0.050	<0.010 <0.010	Avg: 0.14 0.154 0.141 Avg: 0.15

Table 6.3.2.1-25 (cont'd): Total BYI 02960 Residue Data from Citrus after Two Foliar Applications of BYI 02960 SL

			02900 SL							0	_
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate LbG.s./A (kg a.s.ha)	Sampling Interval (days) ^a	By 1.02960 Residue (mg/kg)	DFA Residuê (mg a.s. equiv./kg)	DFEAD Residue	Fotal Rekitine (mgas. equitokg)	
RV241 -11DA	CA, Region 10, 2011						0.053 0.067 0.067 0.039 0.039 0.069 0.092	<0.050 \$0.050 <0.050 \$0.013 \$0.067 \$0.050	\$0.010 \$0.010 \$0.010 \$0.010 \$0.010	0.188 Ave: 923 0.118 0.199 ° A@:	
RV242 -11DA	CA, Region 0,	TRTDF	Naval 5	Fruit	9.362 (6.406)	1	0.1 0.107 0.091 0.089	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	0.16 0.167 Avg: 0.16 0.151 0.149 Avg: 0.15	-
	CA, S Region 10, 2011					10	0.090 0.076 0.12 0.113 0.035 0.035	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010	0.150 0.136 Avg: 0.14 0.18 0.173 Avg: 0.18 0.095 0.095 Avg: 0.10	

Table 6.3.2.1-25 (cont'd): Total BYI 02960 Residue Data from Citrus after Two Foliar Applications of BYI 02960 SL

										0	
Trial Number	Location (City, State, NAFTA Region, and Year)	Plot Name	Crop Variety	Commodity	Tatal Rate Lba.s./A (kg a.s.ha)	PHI (Preharvest Interval) ^a	By 1,02960 Residue (mg/kg)	DFA Residue	DFEACRESIQUE	Constant Residue (Article Article Arti	
RV242	,	TRTSF	Naval	Fruit	7.25 (1.41)	0 4	0.4-0	<0.050 <0.050 Q	<0010 <0.010	3 .232 §	Ć
-11DA	CA,				(1.41)	Q,	0.188	<00050	0.010	0.248	
	Region 10, 2011			2		7	0.172			AV2.4	
	2011						0.12 7 0.059	<0.050 <0.050 <0.050	<0.010	0.187	
			4				0.09	<0.050	0.010	0.21 0 , °	
						"	A . (<0.050 50.050		0.187 0.219 ° A@r.	
						3% /	0.124 0.124 001	<0.050	Ø 010	$O_{0.184}$	
						35 5	(D) 1	.050	Ø.010 0.010 0.010	0.17	
								<0.050		Avg: 0.18	
		Ç		"0"		16	0.141	<0950	0.010	0.201	•
		W.	&, ĉ		<i>~</i>	~Y	0.141	<i>₿</i> 60.050	<0.010	0.222	
					4, ~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1	Avg: 0.21	
		4				S)	₩ *	≈0.050 ≈0.050	<0.010		
	Į. O.			Ş		Ol*	Q 11 Q .072	\$\square\$0.050	< 0.010	0.17 0.132	
							<i></i>			Avg: 0.15	
								0.050	0.010		
						2 2 8	0.058 Ø.053	<0.050 <0.050	<0.010 <0.010	0.118 0.113	
		√ 1			F S	, °	Y	0.020	0.010	Avg: 0.12	
				<u> </u>						0.12	

- Sampling interval is the interval between last oplication and sampling date at harvest.

 Total BYI 02960 residue is the sum of BYI 02960, DOA, and DFEAF residue in parent equivalents. Residue measurements below the gralyte SOQ were summed into the total SYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.
- Maximum residue found in oranges, sampled at 1 day.

 Highest verage field trial (HAFT) residue found in oranges, sampled at 1 day.

 Maximum residue found in oranges, sampled at May.
- Highest average field rial (HAFT) residue found in oranges, sampled at 1 day.
- Maximum residue found in Franges, Famplet et 28 days.

TRTSF = Treated plot receiving two airblast applications subsequent to a soil drench application TRTDF = Treated plot receiving two foliar (dilta) airblast) applications

Conclusion

Four decline field trials were conducted to measure the magnitude of total BYI 02960 residue in/on_ o oranges following one soil drench application of BYI 02960 200 SL followed by two foliar applications, as well as the magnitude of total BYI 02960 residue following two foliar applications thus comparing the planned NAFTA use pattern with the worst-case GAP for Frazil.

Table 6.3.2.1-26:

Summary of Residue Data for Total BYI 02966 from Oranges (comparative trials)

		q	Total BVI 02969 Residue Levels (ppm)	
Commodity	Plot Name ¹	Total Appli- cation Rate I a.s./A (kg a.s./ha)	PHY (days) Nigg at Max, free PHI 40	Deviation
Orange	TRTDF	0.362-0.369 (0.406-0.413Q)		19
Orange	TRTSF	(1.438-1,3912)	1 8 0085 0.57% - 0.506 0.170 0.236 0.17	75
Orange	TRTSF	1.281-1.706 (1.438-1.912)	0.504 0.091 0.185 0.19	96

- 1 TRTDF = Treated plot is ceiving two district airblast applications: TRTSF = Treated plearer ing one sor drenet application followed by two foliar applications.
- 2 HAFT = Highest Werage Deld Trax.
- calculated on the basis of residue values at the PLA
- Sampling da howing highest residue

The decline trials showed that the total BXY 02960 residues remained generally flat, or decreased slightly by the end of the study. In general, the plot receiving a soil drench application followed by two foliar applications pased pon the proposed Brazilian GAP) had slightly higher residues than the plot receiving only two foliar applications. However, the highest residue found in the plot using the proposed Brazilian GAP is significantly Tower than the proposed MRL for the citrus crop group (which is calculated from the residue data from the definitive residue study (RARVY012; KIIA 6.3.2.1/01) and from the following from this bridging study. In all trials, the highest residue was always detected before the dast sampling event (28 days after the last application).

Residue Data from **BRAZIL**

BYI 02960 is to be registered in Brazil for soil and/or foliar treatment use in/on citrus. The use pattern in Brazil is summarized in Table 6.3.2.1-27.

A total of ten trials (5 trials covering the worst case use of a soil treatment followed by two follows: spray applications and 5 trials covering the two foliar spray applications, only) were condicted orange. The studies are described below.

Target Use Patterns for the Application of By 02960 on Strus in Table 6.3.2.1-27:

				41 -	(I)	- n	_ (/)	W///
			Target A	ite 😞		Ŷ,		
				Active Substance (48.)	Aarget Ö Äpp.Ö	Target		<i>,</i> °
			Form.	Journal Control	App.O	Target	Adjuvant	Spray
Test		Mode of	Product	(a.s.)	Interval	₽HI_	Additive	Spray
Substance	Appl. No.	Appl.	(fp)	ga.s./ha	(Days)a	(Days)	(% ₀ ,v/v) ^b &	Volume
BYI	1	Soil Drench (Directed Je© at the base of the plants)	5 ml /moter trees height	yar.	NAC 10 10 10 10 10 10 10 10 10 10 10 10 10		None None	50 mL/plant
02960 200 SL	2	Foliar 🛴	1.04L/Ha	200		. 4) ,	© 0.25	2000 L/Ha
	3	Foliar	©1.0 LANA	200	\$\frac{1}{415} \tag{7}		0.25	2000 L/Ha
BYI 02960 200	1 5	Foliation	1/0 L/Ha	200	O NO	£75	0.25	2000 L/Ha
SL		Foliate)	1.0% Ha	200	© 15 Z	0	0.25	2000 L/Ha

- A single soil drench application applied at 90 days before the first foliar application.
- Adjuvant Methylated Soybean Oik

 Var wariable. Application rate or formulated product is ml/metor tree leight. Active substance rate per hectare depends on tree density and height.

Report:	KIIA 6.3.2.1/04; 2012
Title:	Determination of residues of BYI 02960 and its metabolites, in citrus after drench
	application at the base of the plants, followed by foliar spray application of BYI 02960
, &	200 SL) in field trials in Brazif
Report No. &	I11-022, dated March 06, 2012
Document No.:	M-427041-62-3
Guidelines:	Resolution of Collegiate Board of Directors
	RDC No. 216 of December 2006, 15th
T S	Non-coli i a Nor and a doth
Suitemes.	National Health Surveillance Agency – ANVISA, from the Ministry of Health
GLP	Ses &

Five trials were conducted to measure the magnitude of BYI 02960 residues in/on citrus, following a single soil drench application followed by two broadcast foliar spray applications of BYI 02960

200 SL. BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The location of field trials are presented in Table 6.3.2.1-28.

Table 6.3.2.1-28: Trial Numbers and Geographical Locations for BYI 02960 in/on Citrus in Braz

Identification of Field trial	Site of the Field trial (municipality / state, country)	Name and address of the property
I11-022-01	/ SP, Brazil	
I11-022-02	/ SP, Brazil	
I11-022-03	/ SP, Brazil 《	
I11-022-04	/ PR, Brazil	
I11-022-05	/ SPOBrazil	

Material and Methods &

BYI 2960 200 SL was applied as soil drench at a cate of 5 mL formulated product/meter plant height (1 g a.s./meter plant height). Individual foliar application rates ranged from 0.181 to 0.210 kg BYI 02960/ha/application. The interval between the drench and the first foliar application was 90 - 91 days and the interval between the foliar applications was 15 days.

A typical non-ionic adjuvant bash HE (mix of metryl estors, aromatic hydrocarbons, unsaturated fatty acids and surfactant) was used in all of the foliar applications at 0.25% (v/v).

In all trials, drench applications were performed using directed jet. The following foliar spray applications were carried out using a pully rization speak with one nozzle.

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.1-29. Study use patterns are summarized in Table 6.3.2.1-20.

Table 6.3.2.1-29: Trial Site Conditions for BYI 02960 on Citrus

Identification of Field Trials	I11-022-01	I11-022-02	I11-022-03	I11-022-04	I11-022-05°
Principal Investigator	Junior	Junior	7		
Size of the Plots Control / Treated (m ²)	200 / 120	180 / 144	© 126 / 126	144/144	349
Number of Plots	2	2 4	2 🖏	6° 24, 4	
Spacing between the lines (m)	5	6	g. 3 ×		
Type of Soil	Clayey	Clayey	Red Yellow Clayer	Clayey	Sayey (
pH value of Soil in CaCl ₂	5.4			6.1	
pH value of Soil in Water	- Ş				4.7
Content of organic (%)	3.5		\$1.8 E	2.1	2.8
Soil Topography	Decovity O	Declivity < 500	Declivity \$\int 5\%	Declivity < 5%	Declivity < 5%
Test System	Çitrus (Taŭits)	Citrus (fruits)	Citrus (fruits)	Citrus (fruits)	Citrus (fruits)
Variety	Pêba Rio	Pêra Rio	Valencia	% alência	Valência
Date of planting/seeding or age of the plant	11/2006	\$\frac{1}{2}002\frac{1}{2}	011/2000 7	11 years	09/1998
	Ö May Ç	May	\sqrt{une}	July	May
Date of commercial harvest	to via		1. 10%	to	to
	August	August	O October	August	August
harvest	August 5	August			

Table 6.3.2.1-30: Study Use Pattern for BYI 02960 200 SL on Citrus

Identification of the Field trial	Type of Application	Dates of application (mm/dd/yy)	Culture stage (BBCH)	Effective spray volume (L)	Effective applied dose (L/ha)	Height MFPlant (m)
	Directed jet	03/30/2011	75	4.0 F	5 mL / meter of height of the plant	\$1.8 \$7.8
I11-022-01	Foliar Pulverization	06/29/2011	© 85	Ø5.0	1004	
	Foliar Pulverization	07/14/2011	86	5 ^Q 25.0	1.008	0 1.8,0
	Directed jet	04/01/201	77~	Q4.0 Q	5 mJc/meter of Deight of the plant	3 .0
I11-022-02	Foliar Pulverization	06/3002011	86	30 .0 <i>ć</i>	1,014	3.0
	Foliar Pulverization	00 15/201x1	X 86	30.0	1.007	3.0
	Directed jet	03/22/2011	\$\frac{7}{73} \tilde{\pi})	5 ml. meter of Weight of the plant	3.0
I11-022-03	Foliar 😽 Pulverizati@n	\$6/20\delta 11		360	0.952	3.7
	Foliar Pulverization	0705/2010	® 87 %	30.0 %	1.051	3.7
	Directed it	03/24 2011	\$\tag{71} \tag{*}	4.0	mL / meter of height of the plant	3.5
I11-022-04	Foliar Pulverization	06/22/2011	\$ 80	39.0	0.904	3.5
	Foliar V	07/07/2011	89 5	39.0	0.975	3.5
	Directed jets	03/250011	Ø5 0	4.0	5 mL / meter of height of the plant	3.0
I11 - 022 - 05	Folkar Pulvesization	06723/20J1 Q	895	75.0	0.962	3.0
	Foliar Poverization	07/08/2011	89	75.0	1.022	3.5

Duplicate emposite samples of Sitrus were collected from the treated plot at sampling intervals of 0, 7, 14, 21, and 28 days. The intended pre-harvest interval is 0 days. A single control sample was collected at each sampling event.

The residue(s) of BYI 02960 DFA and DIC AF were quantitated by HPLC-MS/MS using stable isotopically abelled internal standards. Whe individual analyte residues were summed to give a total BYI 02960 residue. For the purpose of this summary document and to provide residue data for calculation of ARLs residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to o verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 0 to 110%, and the standard deviation values were \leq 20% (Table 6.3.2.1-31).

Summary of Recoveries of BYI 02960 from Citrus Table 6.3.2.1-31:

verify method	performanc	e. All recoveri	ies were co	rrected for ar	ny interferen	ices in cor	responding®	
controls The	overall mea	n of the recove	eries for eac	ch matrix was	within the	accentable	e range 📆 0 t	0 ®
verify method controls. The of 110%, and the	standard de	eviation values	were < 200	% (Table 6.3	2 1-31)			(h)
11070, and the	standard de	viation values	were ≤ 20	70 (Table 0.5.	2.1-31).	OF THE STATE OF TH		7 "
					4			Ö
Table 6.3.2.1-3	1: Sumi	mary of Recove	eries of BY	I 02960 from	Citrus 🞺 '	,		
		Fortification				Č		
Crop Matrix	Analyte	Level	Sample	Recoveries	Mean %	CY Ø	JOQ N	, O
Стор мисти	Timulyte	(mg/kg) ^a	Size (n)	₄ © [™] (%)	Recovery	(%)	Ang/kg)	
		(8 8/	a	102; 112;	A O	0.	Y	Ş
		0.01	7	07: 104: 6	7 V V V V V V V V V V V V V V V V V V V	15		9
		0.01	W	90. 80:279				
	BYI		0,	(g, 5, 50)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C A	, 0
	02960	0.1	A 7 0	~ 107@F11; ↓	R do	\$ 16		¥
		0.1		2, 79, 95 2105: 86		16		
				(J. 03, 84)	0' 4'			
		l ő¥	<u> </u>	y 95;©12	940	\$ - B		
		, O	"O"	83; 79;				
Citrus/Fruits		0.1505	70	¥01; 92©)	\$93		()	
	DFA			@£04; 9 <u>8</u> €97		Ö	0.05	
	DIA		. S	77; \$3; 90;			0.03	
	٥,	👰 1. 59 5 👸	7,4	98; 97; 🐧	90	9.4		
				© 100; \$ \$		Z,		
		\$ 0174J		87; 85 ; 91; (×27		
				82, 85; 83,	85 ″	∜ °3.7	0.01	
	DEEAF			291: 86: 95:	\$ ®		0.01	
		₩ .177 _€		87; 90; 86	\$ 86.75°	6.6		
		' 	16.0 X		<u>, </u>	1	1	

a Expressed as parent BYI 02960 equivalents

The freezer storage stability saidy indicates that BYI 02960 residues were stable in orange fruits during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BYI 93960 was 110 days. A summary of the storage conditions are shown in Table 6.3.2 4-32.

Table 6.3.2.1-32: Summary of Storage Conditions for Citrus Fruits

Identification of the Field trial	Scheduled DAT (days) ^a	Crop date (mm/dd/yy)	Date of last extraction (mm/dd/yy)	Storage Temperature ^b (°C)	Storage Period (days) ^c	Period covered by the yevaluation of Stability (days) 4
	0	07/14/2011		<-20	№ 83	
	7	07/21/2011		<-20	76 ×	
I11-022-01	14	07/27/2011	10/05/201	<-200	70 J	\$56 \$
	21	08/03/2011		<-10	62	
	28	08/11/2011		2 0 &°	3 5 6	
	0	07/15/2011	16005/2011	~-20 _~	82	
	7	07/22/2011	√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) 96 , 69 ,	
I11-022-02	14	07/30/2011	10/05/2011			\$ 5 56 }, , , °
	21	08/06/2017	10/26/2011	~-20_4	\$81	
	28	08/12/2011	10/11/2011	~ <-20 × ×	y 60 ×	
	0	07/05/2011		7 <u>\$2</u> 0 5		
	7	074)2/20146	10 [™] /√1/201 [™]	~-20~	≥ 91 ≥	
I11-022-03	14	0 % 19/2 ⊘ 11	\$0/26/2 0 11	S <-20 s	990	[™] 556
	21	©07/26\2011	010/1162011 <u>(</u>	Q 0		
	28 ≪	08/02/201	10(11/2011	√√-20°√	<i>₾</i> 70	
	0 , 🔯	Ø/07/20₽1		<-200	7 104	
	7	07/14/2011		Ş —20 ₩		
I11-022-04	A O	07/21/2011	10/09/2011	Ø-20 ∜	₹ 90	556
	21	07/28/2011		@ <-20	, 83	
	28,0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			76	
7		07/08/2011/0°	10/26/2014	-20	110	
_		07/15/2011	•16921/2001	O <-20°	98	
I11-022-05	14	<07/22/2011	010/21/2011	@ <- 20 0	91	556
	2	07/29/2011	10/2011	©-20	84	
·	2028	08/05/2011	10/21/2011	△°><-20	77	

a DAT – Days after ast Treatment: Sata for each sampling is equivalent to control and treated sample of corresponding scheduled DAT.

The total EVI 02960 residue data for citrus fruits following a single soil drench and two foliar applications of EVI 02960 200 SL are shown in Table 6.3.2.1-33.

scheduled DAT.

b Samples were stored with dry ce during transportation to UPA and from UPA to the Laborato and at <-20 °C during storage at UPA and the Laboratory.

c Period to tween processing and sample extraction of corresponding sampling (DAT). For samples extracted more than once, the date of the last extraction of treated sample was a way as the consideration for the calculation of storage period.

d difluoroethyl-amino-furanone in point matrices. Bayer CropScience Report No. RARVP046, amended version including 18-month data (KIIA 6, k 1/01)

Total BYI 02960 Residue Data from Citrus Fruits after a Single Soil drench and Table 6.3.2.1-33: Two Foliar Applications of BYI 02960 SL

						D	aid ((a/lra)	W A
ole		æ	pl.			K	`		
dwı		(h :	de .			ı	BYI 029	60	
f S2		rene	per				Ş	4	
n o		- G	ha)	p		4	ĺ		Exage of
atio		ha) Ljet	.s./	(s)	93		%	<u>♥ 8</u>	L Gra
ific		(L/) :ted	(g a	P)29(Ű 🕽		. 35 SZ	® Xa €
lent	уре	ate irec	ate olia	AT.		FE.	₹	X	otal (
			R J					V	* F. 3
					<0.01		₹ 0.05 ₹		<i>9</i>
			<i>4</i>			<0.01	<0.05	(A)_//	Ş -
				8 4 1		<0.00)°	AL V		9 -
		4				W. JF			~· Ø-
		n y	YA.		V .	~			K.>y
		*) (/////			0.30
	all a		***	25		<i>/</i> ≥	(C)	₩ -	
	4	13	(8)	7	<i>**</i> **********************************	~	127		0.49
I11-022-01-008C-01L	_ ¥	, ©15) 14 C	0.32		0.0 6	0.39	0.24
I11-022-01-009C-01L	T	15	2000	14	0,2	<0.01	©0.05	√ 0.29	0.34
I11-022-01-011C-01L	E	15	200	21	ï.23 %	×0.01 Q	0.22	0.46	0.47
I11-022-01-012C-01©		(//)		21	0.26	<0.01	. •	0.47	0.47
	,¥ <i>C</i> n	//							0.37
			200		9	N 0	·		0.57
43 44		~ \$ -	₩ -			_			-
		» /	y %	7 %	<0.54				-
	C 😽		ZŽ	14	. 64				-
U	C	-28/	~ Q-	200	* <i>/</i>				-
	9		<i>''</i> '	~ •	A 0				-
									0.53
	T ₁	(())	·	(<u>V</u>	o \\				
	W/// ~~	, ,	100	D 7					0.35
	×. (~	- 68						
111-022-02-000-01L	~1 ~T	aix	\$2 W						0.41
I4-022-02-011C-011	9 T 4	15.	© 200 4						
#11-022-02-012@01L @	T	15	200%						0.35
I11-022-02-00 AC-01L	Ť	<i>\$</i> \$	200			< 0.01	0.38	0.66	0.52
I11-022-02-015C-05E	T	Q15	\$200	28	0.17	< 0.01	0.21	0.39	0.53
						C	'ontinued	on next p	oage
	111-022-01-009C-01L 111-022-01-011C-01L 111-022-01-014C-01L 111-022-01-014C-01L 111-022-02-001C-01L 111-022-02-001C-01L 111-022-02-01C-01L 111-022-02-01C-01L 111-022-02-01C-01L 111-022-02-01C-01L 111-022-02-01C-01L 111-022-02-005C-01L 111-022-02-005C-01L	I11-022-01-001C-01L C I11-022-01-004C-01L C I11-022-01-007C-01L C I11-022-01-010C-01L C I11-022-01-013C-01L C I11-022-01-003C-01L T I11-022-01-005C-01L T I11-022-01-006C-01L T I11-022-01-006C-01L T I11-022-01-009C-01L T I11-022-01-011C-01L T I11-022-01-012C-01 T I11-022-01-012C-01 T I11-022-01-012C-01 T I11-022-01-014C-01L T I11-022-01-014C-01L T I11-022-02-004C-01L T I11-022-02-004C-01L C I11-022-02-005C-01L C I11-022-02-005C-01L T I11-022-02-02-005C-01L T I11-022-02-02-00	111-022-01-001C-01L C	Til-022-01-001C-01L C C Til-022-01-004C-01L C C Til-022-01-007C-01L C Til-022-01-013C-01L C Til-022-01-013C-01L C Til-022-01-003C-01L T Til-022-01-003C-01L T Til-022-01-005C-01L T Til-022-01-005C-01L T Til-022-01-006C-01L T Til-022-01-006C-01L T Til-022-01-008C-01L T Til-022-01-008C-01L T Til-022-01-01C-01L T Til-022-01-01C-01L Til-022-01C-01L Til-022-02-00C-01L Til-0	111-022-01-001C-01L	111-022-01-001C-01L C 0 <0.01 111-022-01-004C-01L C 7 <0.01 111-022-01-007C-01L C 14 <0.01 111-022-01-010C-01L C 2 0 0 111-022-01-013C-01L T 15 200 0 0.25 111-022-01-003C-01L T 15 200 7 0.25 111-022-01-005C-01L T 15 200 7 0.25 111-022-01-006C-01L T 15 200 14 0.32 111-022-01-008C-01L T 15 200 14 0.32 111-022-01-009C-01L T 15 200 21 0.26 111-022-01-011C-01L T 15 200 28 0.13 111-022-01-014C-01L T 15 200 28 0.13 111-022-01-015C-01L T 15 200 28 0.13 111-022-01-015C-01L T 15 200 28 0.13 111-022-02-004C-01L T 15 200 28 0.13 111-022-02-004C-01L T 15 200 28 0.22 111-022-02-004C-01L T 15 200 28 0.33 111-022-02-004C-01L T 15 200 3 0.01 111-022-02-005C-01L T 15 200 7 0.01 111-022-02-005C-01L T 15 200 7 0.18 111-022-02-006C-01L T 15 200 7 0.18 111-022-02-006C-01L T 15 200 7 0.25 111-022-02-006C-01L T 15 200 7 0.25 111-022-02-006C-01L T 15 200 7 0.18 111-022-02-006C-01L T 15 200 7 0.25 111-022-02-006C-01L T 15 200 7 0.25 111-022-02-006C-01L T 15 200 7 0.18 111-022-02-006C-01L T 15 200 7 0.25 111-022-02-006C-01L T 15 200 7 0.25	The part of the	Heat Heat	111-022-01-001C-01L C 0 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.01 <0.05 <0.07 <0.07 <0.01 <0.05 <0.07 <0.07 <0.01 <0.05 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07 <0

Table 6.3.2.1-33 (cont'd): Total BYI 02960 Residue Data from Citrus Fruits after a Single Soil drench and Two Foliar Applications of BYI 02960 SL

							Re	esidues (m	ıg/kg)	
	əle		æ					BYI 029		
Field trial / Location	Identification of Sample	Type	Rate (L/ha) (directed jet- drench) ^a	Rate (g a.i./ha) (foliar)	DAT (AP)	B <u>V</u> 1 02960	DFEAF	DFACE STATES	Totake sal	Total Archage of Scale BYI 02960
	I11-022-03-001C-01L	С		@) 0	≈0.01 (© 0.01 °	Q,<0.Q50°	<0,097	% -
	I11-022-03-004C-01L	C		*	7	% (0.01)	<0.046	<0,03	° €0.07	y -
	I11-022-03-007C-01L	C		- 6 ³	©14 🖒	<0.01	<0.01	9 .05	₹0.07	-
	I11-022-03-010C-01L	C		4	× 2101	≨ 6 .01	© 0.01	~0.03 ₀	\U.1976"	J.
	I11-022-03-013C-01L	С	15	2008	28/	<0.01 <u>4</u> 0.20	<0.01	<0.05 0.09	< 0.7	~ -
	I11-022-03-002C-01L	T T	15	200 200 200		0.26	<0.0x	Ø.11 <i>(</i>	₹ 0.3 €	0.33
I11-022-	I11-022-03-003C-01L	T	120°	© 200 %		0.20 s	©0.01	0.08	0.33 0.29	
03	I11-022-03-005C-01L I11-022-03-006C-01L	T	Q 15		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.20	<0.01	0.0	9.32 %9.32	0.31
	I11-022-03-008C-01L	T. Ø	•	2005 2000	\$ 14.0	0.20	<0.00	9.15 ¢	0.35	
	I11-022-03-008C-01L		15	200	14	Ø24	©90.01	0.12	0.37	0.36
	I11-022-03-009C-01E	T	15	200	200	0.13	<0.01	0.12	0.26	
	I11-022-03-011C-01E	T	15	200	\$\tag{21}	0.13	<0.02	0.12) 2017	0.26	0.31
	I11-022-03-012C-01L	T	15 4	200	28,0	Ø.13-	, <0.01	00.19	0.37	
	I11-022-03-015@TL	\(\hat{Q}^{\dagger'}\)	~~\display	7, 200 S	7 28	9.13	₹0.01	0.12	0.26	0.32
	I11-022-04-000 -01L	C C	5 S	/		© <0.01	<0,01	< 0.05	< 0.07	-
	I11-022-04-004C-01	C		~_Y	7 7 5	<0001	≈0 ,01	< 0.05	< 0.07	-
	I11-022-0@007C-@L	C	Z.	, O «	/ 1 ₂	\$0.01	0.01	< 0.05	< 0.07	-
	I11-022-04-0100-01L	Ų°C	,		Q.	0<0.01,		< 0.05	< 0.07	-
	I11-022-04-013C-01k	C %	? -	- D	**************************************	<0.00	< 0.01	< 0.05	< 0.07	-
	IAC 022-04-002C-0 L	J.S	15	200	\$ 025°	Ø)16	< 0.01	< 0.05	0.22	0.21
111 000	111-022-04-003@-01L	`≯¶	€ 15	\$ 200	₀ 0	×0.13	< 0.01	< 0.05	0.19	0.21
I11-022- 04	I11-022-04-005C-01L	Y T	§ 15,°	200	07	0.13	< 0.01	< 0.05	0.19	0.19
04	I11-022-04-006C-01	ŢĊ	1/5	\$ 20 0	~ 7 S	0.12	< 0.01	< 0.05	0.18	0.19
	I11-022- Ø 4-008Ç Ø ĬL	ð	1/5 1/5 \$\$\text{\$\ext{\$\text{\$\exiting{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititit{\$\text{\$\texitit{\$\texititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitit{\$\text{\$\e	© 200 _s C	140	0.05	< 0.01	< 0.05	0.11	0.12
	I11-022-04-009C-01L	O T	y 15 🔊	7 20 6	∂\4	0.07	< 0.01	< 0.05	0.13	0.12
	I114022-04-011C-01L	T	15	·200	Z 21	0.06	< 0.01	< 0.05	0.12	0.12
	LEG-022-04-012C-01L	Ą,	15	2 00	≫ 21	0.06	< 0.01	< 0.05	0.12	0.12
	J11-022-04-014©01L	∆ T	⁷ 15	200	28	0.04	< 0.01	< 0.05	0.1	0.11
	I11-022-04-015C-01L	T	15 🦞	200	28	0.05	< 0.01	< 0.05	0.11	0.11
	111-022-04-006C-011 111-022-04-008C-011 111-022-04-009C-011 111-022-04-011C-01L 111-022-04-012C-01L 111-022-04-015C-01L			Q [*]			C	'ontinued	on next p	age

Table 6.3.2.1-33 (cont'd): Total BYI 02960 Residue Data from Citrus Fruits after a Single Soil drench and Two Foliar Applications of BYI 02960 SL

			1		1	1				<u> </u>
	le		_				R	esidues (1	ng/kg)	
uo	dwr		ch) a					BYI 029		
Field trial / Location	Identification of Sample	Type	Rate (L/ha) (directed jet- drench) ^a	Rate (g a.i./ha) (foliar)	DAF (Agys) b	BYI 02960	ZOS DFEAF	DVFA	Optal of Cal	Total Nerage of
	I11-022-05-001C-01L	C		کے	, 0	<0.60	<0.09	√ 0.05 √ 0.05	€ 0.07	, -Z
	I11-022-05-004C-01L	C			7	≈ 9⁄201 °	Ø .01	- "	O.0 %	
	I11-022-05-007C-01L	C		%	↑4	√Q0.01×	×0.01,	<0.00°	<0.07	₹°-
	I11-022-05-010C-01L	C		0 /	D 21 🕺	<0.01	<0.00	<905	<0.07	- 0
	I11-022-05-013C-01L	C	🔏		280	< Q)1	<0.01	≪0.05	0.070	5 0.34
	I11-022-05-002C-01L	T	15	200	~JO	% 0.33	→ 0.01 (0.05	0.39	\$ 34
111 022	I11-022-05-003C-01L	T	13	~ \$ 00	@ 0 <u>~</u>	90.22	<0.01	< 0.03	0.28	0.34
I11-022- 05	I11-022-05-005C-01L	T	6 €5 €	200	7.9"	0.36	<0\$\$\text{\$\ext{\$\exitt{\$\exititt{\$\exititt{\$\exitit{\$\exititt{\$\exitit{\$\exitit{\$\exitit{\$\exititt{\$\exitit{\$\exititit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exititt{\$\exitit{\$\exititit{\$\exitit{\$\exitit{\$\exititit{\$\exitit{\$\exititit{\$\exitit{\$\exitit{\$\exititit{\$\exit	Q 05	© 0.42	0.41
0.5	I11-022-05-006C-01L	T	√ 15 °C	200 ·	**	0233	3 0.01	20.05	0.32	0.41
	I11-022-05-008C-01L	T ~	150	20 00	© 14	50.29)<0.Q1Q	0.08	0.38	0.40
	I11-022-05-009C-01L		%)3	200 @) 14 J	0.330,	<0.01	(E)F	% 0.42	0.40
	I11-022-05-011C-01L	Ų"T ∢	15	200	21 21	g 21	°,≤Ø.01	©0.09	0.31	0.32
	I11-022-05-012C-01	T C	15 15	200	2	\ \ \ \\ \ \ \\	×0.01	7 0.08 P		0.52
	I11-022-05-014C-011	<u> </u>		2 00	ÿ 28 ≤	00	<0.01	0,07	0.28	0.34
	I11-022-05-015@-01L	Ç1 ^y	2 915	O 200	28	029	€ 0.01	× 0.09	0.39	0.5.

- Drench Application of mL meter of heights the plant. Height of the plants of the Study = 3 meters
- DAT: Days after last Treatment
- DAT: Days after that Treatment

 All residues found below the Limit of Quantitation (LOQ) of the method (both higher than the respective LOD values) are reported as <0.01 mg/g for BPI 02960 and DFEAF, and < 0.05 mg/kg for DFA Total BYI 02960 residue is the sum of BYI 0296@ DFA, and DFEAF resider in parent equivalents.
 - Residue measurements below the malyte LOO were summed into the total BVI 02960 residue value as the analyte LOO Residue measurements below the manalyte LOO were summed into the total By value. These totals represent the opper limit of what the residue levels might be.

Conclusion

Five field trials were conducted to measure the magnitude of total BYI 02960 residues in/on citrus fruits (orange) following a single soil drench and two foliar spray applications of BYI 02960 200 C. The residues found in the fruits are summarized in Table 6.3.2.1-34.

Table 6.3.2.1-34a: Summary of Residue Data for Total BYI 02960 from Citrus after a Single Soil Drench followed by Two Foliar Spray Applications of BYI 02960 200 SL

		1		© p :1 a		
				Residues	Vimg/kg)	
			4	Expressed in By	12960 Equivatents	
			4	BYI 02960 ²	, , , , , , , , , , , , , , , , , , ,	
Identification		Scheduled		difluoroethyl-		~
of the Field		DAT	(V	aminonaranone	dimoroaceric	Cal Total of BY 02960b
trial/Place	Crop	(days) ^a	BYI 929 60	(DFEAF)	acid (DOFA)	"BYI 02960"
111 022 01		0	0.24	©<0.0.0	<0.05	0.30 L°
I11-022-01 Ribeirão	Citrus	7	Ø.28 ♥	< 0.01	Ő0.20.√	0.49
Preto-SP	fruits	14	© 0,2% _	U . \$9.01 O	0.06	2 3 4
11000 21		21	\$ \Q\24 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~\$\sqrt{0.01}	Ç 0 2 1 <i>Q</i>	0.47
		28	0.18	<0.01	Ø.19 \$	3 0.37
		0, 🔻	0.3	9 20 .01 4	0.18	0.53
I11-022-02	Citrus		0,22	₹<0.01¢	0.42	0.35
SP -	fruits	14 📞	€0.24 €	© <0.0¥	9 .16	0.41
51	٩	21	\$\tag{6} 0.16\tag{7} \tag{1}		0.18	0.35
	× 1	28 0		0.01k	030	0.53
		00	@0.22 \S	<0.0P	40 .10	0.33
I11-022-03	Carus	4 7 5	2 0.20 ×	S ≥ 9 .01 €	0.10	0.31
-SP	Truits	AA (0.22	\sim \sim 0.01 \sim \sim	0.14	0.36
2		© 21 O	& Ø.16	\$\sqrt{0.0}\rightarrow \qquad \qq \qu	0.15	0.31
	<i>©</i> '	28%	<u>1</u> 0.137	<0.01	0.16	0.32
	×		0.15	0.01	0.05	0.21
	Citrus	, 0)7 / °	0.13 ° 0	~ <0 <u>:</u> Q	0.05	0.19
I11-022-04 -PR	frots	4 14	~	<0.01	0.05	0.12
-1 K		20 3	0.06 0.06	3 0.01	0.05	0.12
	, ° 8	28 D	07.05	© <0.01	0.05	0.11
~ Q	Ü	0 0	0.28	<0.01	0.05	0.34
I11-022- 95	Citrus .		0.98	< 0.01	0.05	0.41
Paulínia SP	Citrus fruits	Q 4	31	< 0.01	0.08	0.40
. 4.)		21 0	0.22	< 0.01	0.09	0.32
		28	0.5	< 0.01	0.08	0.34
	Q1.				1	1

a DAT: Days after last Treatment

Residue most represent the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.

b The results were reported as the average of 2 (two) results obtained in each sampling. All residues found below the Limit of Quantifation (LOQ) of the method (but higher than the respective LOD values) are reported as < 0.01 mg/kg for BYI 02960 and FEAF, and < 0.05 mg/kg for DFA. Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFFAF residue in parent equivalents.

Table 6.3.2.1-34b: Summary of Residue Data for Total BYI 02960 from Citrus after a Single Soil Drench followed by Two Foliar Spray Applications of BYI 02960 200 SL (considering single values from a sampling event)

	_	1	3			Total I	3YI 0296	0 Residu	e Levels	(ppm)
Commodity	Plot Name	Total Appli cation Rate	PHI (days)	u	Min at PHI	Max at PHI	Max After PHI	HAFT Ž	Modian 3	Mean 3 Mean 3 Standard Deviation
Orange	TRTSF	1 g a.s. / m plant height plus 0.376-0.404 kg a.s. /ha	0	5	0.19	0.55 Q	© 66 (28) ⁴ © °	0.53	0.33	0.54 0.916

- 1 TRTSF = Treated plot receiving one soil drench application followed by two foliar applications.
- 2 HAFT = Highest Average Field Trial.
- 3 calculated on the basis of residue values at the PHI
- 4 Sampling day showing highest residue

Table 6.3.2.1-34c: Summary of Residue Data for Total BVI 02960 from Citrus after a Single Soil Drench followed by Two Foliar Spray Applications of BVI 02960 200 SI (considering average value from a sampling event)

Commodity	Plot Name 1	Total Áppli- cathon Rate	HI (daya)	Wiii W	otal Bydr	02960 Re	sidue Le	Mean 7	Standard (u
Orange	TR\$SF			0 5 I √(∩`^ 1 `	0.53	\ -\S	0.33	0.34	0.117

- 1 TRTSF Treated plot receiving our soil dench application followed by two foliar applications.
- 2 calculated on the basis of residuo values at the PHI

The change in the total BYI 02960 residue with time in the citrus samples was variable depending on the trial. In general, the total BYI 02960 residue either declined or leveled off by the end of the sampling interval. The peak residue was reached at day 14 at latest, when considering the average values of two samplings per sampling event. The overall highest residue detected was detected at the PHI of 6 days and accounted for 0.53 mg/kg when considering the average residue values. Considering the single values, the highest residue (0.66 mg/kg) was detected in one trial at the last sampling event, 28 days after the last application.

Report:	KIIA 6.3.2.1/02; ; 2012
Title:	Determination of residues of BYI 02960 and its metabolites, in citrus after foliar spragapplication of BYI 02960 (200 SL) in field trials in Brazil.
Report No. &	I11-006, dated March 09, 2012
Document No.:	M-427468-02-3
Guidelines:	Resolution of Collegiate Board of Directors RDC No. 216 of December 2006, 15 th
	RDC 140. 210 of December 2000, 15
	RDC No. 4 of January 2012, 18th
	National Health Surveillance Agency ANVISA, from the Ministry of Health
GLP:	Yes

Five trials were conducted to measure the magnitude of BYI 02960 residues in/on curus (orange), following two broadcast foliar spray applications of BYI 02960 200 SL. BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The location of field orials are presented in Table 6.3.2.1-35.

Table 6.3.2.1-35: Trial Number and Geographical Cocations for Boll 02960 Foliar Application Trials in/on Citrus in Brazili

Identification of Field trial	Test Unit (municipality / state, Name and address of the property country)
I11-006-03	SP, Brozil
I11-006-04	
I11-006-05	SP, Brazal
I11-006-06	SP, Brazil
I11-006-07	/ SR Brazil

Material and Methods

Two foliar applications were prade to citrustrees at rates ranging from 0.194 to 0.204 kg BYI 02960/hoper application. Total seasonal rates ranged from 0.388 to 0.408 kg a.s./ha. The interval between the applications was 19 days.

A typical non-lonic adjuvant, Dash HC (mix of methyl esters, aromatic hydrocarbons, unsaturated fatty acids and surfactant) was used in all of the foliar applications at 0.25% (v/v).

Trial site conditions, including soil characteristics are summarized in Table 6.3.2.1-36.

Table Table 6.3.2.1-36: Trial Site Conditions for Foliar Application Trials of BYI 02960 on Citrus

Identification of Field Trials	I11-006-03	I11-006-04	I11-006-05	I11-006-06	I11-096-07
Principal Investigator				Junior	Junior O
Plots Size (m ²) Untreated/Treated	343 / 343	144 / 144	\$26 / 126	200 / 120 E	180 / 1440
Number of Plots	2	2	V 2	2 0	\$ \$ W
Spacing between the lines (m)	7	6			
Type of Soil	Clayey	Clayey	Red Yellow V	Clayey	Chayey
pH-value of soil (in CaCl ₂)	-	6.1		5.4	£ 6.0°
pH-value of soil (in H ₂ O)	4.7		J-7		,
Content of organic (%)	2.8	2.1	F 4.8	3.50	3.1
Soil Topography	Declivity 💍	Declivity < 5%	Declivity 5	Devivity Q	Declivity < 5%
Test System	Curus (faurts)	Citrus (fruits)	Çitivus (frants)	Citrus (Pruits)	Citrus (fruits)
Variety	Valencia, 🖔	Valencia	Valencia 🛴	Bêra Rio	Pêra Rio
Date of the planting	09/1998	🛴 11 years 🎉	17/2004	11/2006	02/2002
Date of commercial harvest	May May August	July to S	June June October	May to August	May to August

Duplicate composite samples of citrus were collected from the treated plot at sampling intervals of 0, 7, 14, 21, and 88 days. The intended pre-harvest interval is 0 days. A single control sample was collected at each sampling event.

The residue(s) of BY 02960, DFA and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled interpal standards. The individual analyte residues were summed to give a total BYI 02960 residue. For the purpose of this summary document and to provide residue data for calculation of MRLs residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding

controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were \leq 20% (Table 6.3.2.1-37).

Table 6.3.2.1-37: Summary of Recoveries of BYI 02960 from Citrus

Table 6.3.2.1 Crop Matrix	37: Sum	nmary of Recov Fortification Level (mg/kg) a	Sample Size (n)	Recoveries	Citrus Mean % Recovers	CV (%)	LOQ Jong/kg)
		0.01	5	90; %; 79;	8 9/	7.3	0.01
	BYI 02960	0.1	5	100; 84; 87; 99; 82 ×	90 0	\$'.4 \(0.01
Citrus/Fruits		1	5%	96; 95; 106; 92; 99	\$98 £	5.4	
	DFA	0.05		99, 103; 115, 99; 89		9.3	7 0.01 O
		0.5	\$\frac{4}{5} \frac{5}{5}	103;102; ^ 105; 94; 89		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	DFEAF	\$ 0.01 \text{\$\frac{1}{2}\$}		85; 93; 85; 87; 90 86; 93; 93;	880	3.9	0.05
		0.1	5.57	© 91; 85°	90 5		

Expressed as parent BOT 0296@equivalents

The freezer storage stability study indicates that BYI 02960 residues were stable in citrus fruits commodities wring to zen storage for at least 18 month prior to analysis. The maximum storage period of frozen samples in this stady for BYL 02960 was 127 days. A summary of the storage conditions are shown in able Table 3

Summary of Storage Conditions for Citrus Fruits

Identification of the Field trial	sampling (days) a	Harvest date Jamm/ddfyy)	Pate of Jast Extraoron (mm/dd/yy)	Storage Temperature (°C) ^b	Storage Period (days) ^c	Period covered by Evaluation of Stability (days) ^d
W.		. 09/08/1 /		<-20	122	
V	7 0	[07/15/11]	, O ′	<-20	115	
I11-006-03	44 2	07/Q2 /11 <i>Q</i>	11/07/11	<-20	108	556
	<u>~</u> 21 ~	07/29/10		<-20	101	
Ÿ	28	\$08/05/T1		<-20	94	
		07/14/11		<-20	118	
		07/21/11		<-20	111	
1/21-006-04	14 🕏 "	07/28/11	11/09/11	<-20	104	556
14:7-006-04	21	08/04/11		<-20	97	
	28	08/11/11		<-20	90	

Table 6.3.2.1-38 (cont'd): Summary of Storage Conditions for Citrus Fruits

Identification of the Field trial	Scheduled DAT sampling (days) ^a	Harvest date (mm/dd/yy)	Date of last extraction (mm/dd/yy)	Storage Temperature (°C) ^b	Storage Period (days) ^c	Period covered by the evaluation of stability (days)
	0	07/05/11	۵.	<-20	127 %	
	7	07/12/11		<-20@	120	555
I11-006-05	14	07/19/11	11/09/11	<-20/	1,13	J 556 ,
	21	07/26/11	, Ö	\$20	_006 '	
	28	08/02/11		₹-20 <i>\</i>	Ö 99 A	
	0	07/15/11	. 20	~ <-20 ~	IJ)	
111 007 07	7	07/22/11		2 20	Q12	
I11-006-06	14	07/30/11	11 /44 /11 💍	€-20 °	104	€356 €°
	21	08/06/11	11/H/11 E	<-20,	97,	
	28	08/12/1		\$ 620 x	39 1 3	
	0	07/15/1 (Y . Q . Q	-20 0	2125 Ø	
	7	07/22/11		~ <-20°	118	
I11-006-07	14	07/30/19	\$1/17\P	5 x20 °	J\$0 _	556
	21 4	© 08/06/11		Q-20 C	0103	
	28	08/12/11		\$\left\{ \left\{ \text{-20}}	97	

- a DAT Days after last Treatment; Data for each sampling is equivalent to control and treated sample of corresponding
- scheduled DAT.

 Samples were stored with dry in during transportation to UPA and from UPA to the Laboratory and at <-20 °C during storage at UPA and the Laberatory.
- Period between processing and sample extraction of corresponding sampling (DAT) for samples extracted more than once, the date of the last extraction of treated sample was taken into consideration for the calculation of storage period.
- . 2012. Storage stabion of B 2 02960, difluoroacetic acid, and The total BYI 02960 residue data for citrus fruits following two foliar applications of BYI 02960 200 SL are shown in Table 6.32.1-39 difluoroethel-amino-furanone in plant matrices. Bayor CropScience Report No RARVP046, amended version including

Total BYI 02960 Residue Data from Citrus Fruits after Two Foliar Applications of Table 6.3.2.1-39: BYI 02960 SL

							Residue	s (mg/kg)	<u> V</u>
						•			
	ple		£.	в (3			Від	02900	
Field trial / Site	ication of Sam		; a.s./ha) (folia	led DAT (days	0967			ited Tetal of 960 b 22	Maked Lings of Average of Second
Field tr	Identifi	Type	Dose (g	Athedu	BYI 02	DFEA	DFA		Calcul
	I11-006-03-001C-01L	С		Q 0	<0.01		< 0.05	<0.07	~~ -
	I11-006-03-004C-01L	С	&	7 0	<0:01	₹0 401	*0 .05	<0.07/	W -
	I11-006-03-007C-01L	С	<u> </u>	14	0.01	ð [₹] 0.01?	₹ 0.05 €	Ø_07 △	۰ آ.
	I11-006-03-010C-01L	С	-4	<u></u>	©<0.01	° <0.Q1	<0.05	0.07	Ű,
	I11-006-03-013C-01L	С	√G , '	28	<0,00	<0.01	≤0,05	≈ <0.07,	\$ -
	I11-006-03-002C-01L	T	©200 &		°0,18	\$0.01 <i>,</i>	4 0.05 €	D 0.034 C	0.24
I11-006-03	I11-006-03-003C-01L	T C	200	·	0.17 °C	°<0.01	<0.0	7 (0/)<u>1</u>-	0.24
/	I11-006-03-005C-01L	70°,	200	7	0.22	<0.07	<0.005	16 300	0.20
SP	I11-006-03-006C-01L	T	200 g	7.	0,24	49 .01	3 0.05 $_{\odot}$	0,30	0.29
	I11-006-03-008C-01L	Ç T °	> 200	120	√9.16 @	0.01	<0.05	6 22	0.24
	I11-006-03-009C-01L	TK,	200	\$14 <i>(</i>	» 0.19 [©]	<0.0%	<0.69	0.25	0.24
	I11-006-03-011C-092	P	200	21	0.14	€0,01	ũ205	3 0.20	0.21
	I11-006-03-012C-01L	A,T	200	2.0°	6 .16 4	< 0.01	ر م 0.05 م	0.22	0.21
	I11-006-03-014C-01L		0.25						
	I11-006-03-015C-01L	Î,	~200	ॐ28 🔊	0.19,	<0.01	0.07	0.27	0.25
	I11-006-09-001C@1L		W, \		≤© 01	Ø.01 _{&}	\$ 0.05	< 0.07	-
	I11-00-04-004C-01L	°∀ C _ &			<0.01	×<0.01×	< 0.05	< 0.07	-
	I11-006-04-007C-01L	C O	<u> </u>	6 14	O.06	<0.03	< 0.05	< 0.07	-
	I&-006-04-010C-01L	, Q	4 >	💝 21 🐨	< 0.01	0 .01	< 0.05	< 0.07	-
	711-006-04-013€-01L ×	C C	g"	28>		% 0.01	< 0.05	< 0.07	-
	111-006-04-002/C-014	T,	200		0.08	< 0.01	< 0.05	0.14	0.16
I11-006-04	I11-006-04Q03C-0112	Æ,	s 200	~ 0 S		< 0.01	< 0.05	0.17	0.16
/	I11-006@4-005C401L	Øτ	√ 200 √ 3	7	0004	< 0.01	< 0.05	0.10	0.00
- DD	I11-006-04-00€€-01L≪	T		F		< 0.01	< 0.05	0.07	0.09
PR	114Q06-04-008C-01	J.	1 (())	~ 14 ~	,				
	1-006-04-009C-97L	~QT	£200 à	140)		< 0.01			0.09
	Ø11-006-04-011Ø-01L	T	Ž 200	27	0.03	< 0.01		0.09	0.00
*		T~	260	. 2 1				0.08	0.09
4	I11-006-04-014C-001	~_{0"	200 ≈	28				0.08	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I11-006-Q4-015C-01L	, OT	200 C	17/					0.08
							Сон	ntinued on next	page

Table 6.3.2.1-39 (cont'd): Total BYI 02960 Residue Data from Citrus Fruits after Two Foliar Applications of BYI 02960 SL

						Re	sidues (mg/kg)	
ite	of Sample		ıa) (foliar)	eduled DAT (days) a		Æ.	BYL02	A	
Field trial / Site	Identification of Sample	Type	Dose (g a.s./ha) (foliar)	Kinguled D.	BYI 02960	BFEAF CL	HA O	Calculated Total of BYR 42960 b	Calculated T Average of BM 029602
	I11-006-05-001C-01L	$\frac{\Gamma}{C}$			<0,0	*Q.01	<u></u>	<0.07	
	I11-006-05-004C-01L	C	&	7_0	.≪ 0 .01	₹0.01 ×	0.05	<0.07%	<u> </u>
	I11-006-05-007C-01L	С	Oʻ	, LIA	€0.01 ®	×<0.0	<0.030	< 0.07	4 - 00
	I11-006-05-010C-01L	С		©21 ~	Ø <0.01♥	< 0.01	≤0 ,05	90.07	
	I11-006-05-013C-01L	С	\$^	28	≤ Ø1	√0 .01 ≥	0.05	<0.07 ₁	
	I11-006-05-002C-01L	T	200%	y 28/y' 20/	×0.2 ×	~ 0.01	(<0.0 %)	0.26	0.27
I11-006-05	I11-006-05-003C-01L	T_O	200/	~\$0 2) 0.22 °	<0.0F	<0.05	Ø.28 Ø	0.27
	I11-006-05-005C-01L	Đ,	200	7	0,24	P .01	© 0.05	№ 0.27 ,	0.28
- SP	I11-006-05-006C-01L	Ť	\$200 B	70	92 2	√ 0.01 €	J<0.050	0,28	0.20
	I11-006-05-008C-014C	T 🦠	200	1 24	√y 0.18 💮	<0.01	<0.05	<u>6</u> 24	0.24
	I11-006-05-009C-01L	Ø.	2000	😽 14 👦		<0.901	_s < © 205	0.24	0.21
	I11-006-05-011C01L	G,	©200 C	21	0,2	3 0.01 ≈	¥0.05 ×		0.25
	I11-006-05-012C-01L	T	200	20/	0.18	<0.01	<0.05	0.24	
	I11-006-05-014C-04	TK)	200	28	> 0.18○"	<0.64	<0.05	0.24	0.21
	I11-006-09-015C-01L		200	28	0/1,2	<0.01	<0.05	0.18	
	I11-006-06-001@-01L	Y C	~ ~	200	\$0.01	×0.01		<0.07	-
	I11 066-06-004C-01L	C C			<0.01	<0.64\(\nu^{\nu}\)	<0.05	<0.07	-
	110-006-06-007C-09L		\$\frac{1}{4}	210°	<061	₹ 01	<0.05	< 0.07	-
%	Ø11-006-06-010C-01L	ÇC			§0.01	0.01	<0.05	<0.07	-
į G	111-006-06-06-0	C	200	28	0.01	<0.01	<0.05	<0.07	-
I11-006-06	I11-006-06-002C-019	Ţ	200° 200°		0.14	<0.01	<0.05	0.20	0.23
111 000 00	111-006-05-003C-01L			, ()	0.19	<0.01	< 0.05	0.25	
a D	I11-005-06-00\$C-01L	T T	√ 200 √ 200 √ 200 ✓	7°	©9.13	<0.01	0.07	0.21	0.19
- SP	111-006-06-06-06C-01D		(_))		0.11	<0.01	<0.05	0.17	
	111-006-06-009©01L ≈	O T	200	140	0.07	<0.01	0.06	0.14	0.16
	111-006-06-009@01L	. 32	200 S	140	0.1	<0.01	0.06	0.17	
	I11-006-06-061C-015		200	\$\frac{1}{\pi}\$21	0.04	<0.01	0.07 <0.05	0.12 0.12	0.12
,W	I11-006-96-014C01L	F	200	28	0.06	<0.01	0.06	0.12	
	111-006-06-014C-01L	T	200	28	0.06	<0.01	< 0.05	0.13	0.13
	111-006-06-014C0/L		Q Q				Conti	nued on ne	ext page

Table 6.3.2.1-39 (cont'd): Total BYI 02960 Residue Data from Citrus Fruits after Two Foliar Applications of BYI 02960 SL

						Residues	(ma/ka)		7%
	ole .			в (BYI)2960		9
	dwn		liar	ays			of		
	f Sa		[fo]	p) ,		*	\sim		2
Site	n o		ha)	ΑŢ			stal O		7
1	ıtio		.s./	d b	S	l Ø			
Field trial / Site	ldentification of Sample		Dose (g a.s./ha) (foliar)	Kieduled DAT (days) a	05960		Ralculated	Caledrated TAVerage (A)	Ó
ple	enti	Type	se (BFEAT PFEAT		era	,
Fic	Ide	$\mathbf{T}_{\mathbf{y}}$	D ₀	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BYI				
	I11-006-07-001C-01L	C		Ø 0	<0,01	\$0.01 \$0.05 \$\frac{1}{2}\cdot 0.05\$	<0.07		
	I11-006-07-004C-01L	C	&	, 7 Š	© .01		<0.07/	₩ <u>`</u>	
	I11-006-07-007C-01L	C	O	7 Q	© 0.01 ©	<0.08		4	
	I11-006-07-010C-01L	C		<u>~</u> 21 ~	₽ <0.0 1	< 0.01 < 0.05			
	I11-006-07-013C-01L	C	\$ \^	y 28 y 0	<001	€ 0.01 € 0.05			
	I11-006-07-002C-01L	T	200%		>Ø.24 _≪	O.01 0.20		0.40	
I11-006-07	I11-006-07-003C-01L	T.O	200/	~\$0 {	y 0.2 0°	<0.01 0.14	3.35	2	_
CD	I11-006-07-005C-01L	Q"	200	7 7	0.15	9.01 60.05	// n /	0.21	
- SP	I11-006-07-006C-01L	Ţ,	J ² 200	7,5	<i>9</i> 214	<0.05	0.20	***	4
	I11-006-07-008C-014C	T [®]	200	PA	√ 0.09 ©			0.17	
	I11-006-07-009C-01L	ØT.	200	\$ 14 @		<0.05	- (/)		4
	I11-006-07-011C01L	O _T	200	21	0.07		0.15	0.14	
	I11-006-07-012C-01L		200	200 °	0.06 (<0.01 0.06	,		4
	I11-006-07-014C-015	TZ)	200 200	\$28 \$20 \$30	7 0.070°	<0.01 0.05	0.15	0.13	
	I11-006-0-015G-01L		× 200	₹ 28 \$ \$	0,95	<0.01 0.05	0.11		╛

- DAT: Days after ast Treatment
- All residues found below the Limit of Quantitation (LOQ) of the spethod (but higher than the respective LOD values) are reported as < 0.01 mg/kg for BYI 02960 and DFEAF, and < 0.05 mg/kg for DFA Total BYI 02960 residue is the sum of BYI 02960 DFA, and DEEAF residue in partent equivalents.
 - Residue measurements below the shalyte DOQ were summed into the total BYI 02960 residue value as the analyte LOQ per limit of what the residue levels might be.

Conclusion

Five field trials were conducted to measure the magnitude of total BYI 02960 residues in/on citrus Five field trials were conducted to measure the magnitude of total BYI 02960 residues in/on citrus fruits following two foldar spray applications of BYI 02960 200 SL. The residues found in the fruits are summarized in Table 6.3.2.1-40

Table 6.3.2.1-40a: Summary of Residue Data for Total BYI 02960 from Citrus after Two Foliar Spray Applications of BYI 02960 200 SL

						0
				Residues		
				Expressed in BYI 0	2960 Equivalents	Š (
				BYI 02960-	Z.	
Identification of		Scheduled		difluoroethyl-	"	Cal Total
the Field		DAT		aminofuranone	aifluoroacetic (
trial/Place	Crop	(days) ^a	BYI 02960	(DFEAF)	acid (DFA)	BYV 02960
		0	0.18	▼ <0.01 _Q	< 0.05	© 0.24
I11-006-03	Citrus	7	0.23	<0.01	< 0.05	0.29 (
111-006-03	fruits	14	0.18	<0.010	° < 40 ,05	9.24 گ
		21	0.15	<0.001 . O	Ø _{0.05\} ©*	© 0.21°
		28	048	° \$9.01 ×	(C) 0.060° %	0:25
		0	Qio 🔏	~\d0.01\right\rangle \gamma	© < 6 705 L	_0.16
111 006 04	Citrus	7	A 0.03 0°	<0.0Q √ 4	№ 0.05 ©	© 0.09
I11-006-04	fruits	14	0.03/	0 .01	~ < 0.0\$J	0.09
		21	/ (Q,0 3 &	~~0.01 ₀	<u></u> < 00 005	Q 09
		28	0.02	√ <0.09° √	\$0.05	Ø 0.08
		04	0.21	× \$0.01	0.06	0.27
111 006 05	Citrus	Ø ,*	v 0022 S	@0.01 ₀	O < 12,995 (L)	0.28
I11-006-05	fruits	V14	\$\$0.18 _{\$}	<0,0	0.05 °	0.24
		© 210°	S 0.100	<0.01	0.050	0.25
	%	¥ <u>\$</u> 8	QQ 55	×0.01	√ < 900 5	0.21
	2	\$0 49	9.17	~ <0.0 × «	×0.05	0.23
111 007 07	Çærus	, 7,5	© 0.125	\$\text{\$\infty}\$ \$\langle 0.01 \text{\$\infty}\$	∜ 0.06	0.19
I11-006-06	Fruits C	y jag «	7 6.0 9 . S	Ø0.01 &	2 0.06	0.16
		2 1 🖔	Ø.05 /\$	<0.00	0.06	0.12
8	Ş	© 28 °	V 0.060	<601 @	0.06	0.13
, Q		, 200	032	₹ 0.01 @	0.17	0.40
111 08 00	Citrus	2 7 &	0.15	<0.01	< 0.05	0.21
I11-006-07	frins	~ 14 _~	\$ 0.11	<0.01	0.06	0.17
		26	y 0497 C	<0.01	0.07	0.14
		Ž8 . ®	×0.06	<0.01	0.06	0.13
On				· //		

a DAT: Days Oter last Treatment.

The results were reported at the average of 2 (two) results obtained in each sampling. All residues found below the Limit of Quantitation (LOQ) of the method (but Gigher than the respective LOD values) are reported as < 0.01 mg/kg for DFFAF residue in parent equivalents.

Residue measurements below the malyte LOO were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the opper limit of what the residue levels might be. BYI 02960 and DFFAF7 and \leq 0.05 mg/kg for DFA. Too BYI 02960 residue is the sum of BYI 02960, DFA, and DFFAF residue in parent equivalents \circ

Table 6.3.2.1-40b: Summary of Residue Data for Total BYI 02960 from Citrus after Two Foliar Spray Applications of BYI 02960 200 SL (considering single values from a sampling event)

	_	1	3			Total l	BYI 02960) Residu	ıe Levels (ppm)
Commodity	Plot Name	Total Appli cation Rate lb a.s./A (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max acter PHI	HAFT AÇÎ	Median 3 Median 3 Median 3 Standard Deviation
Orange	TRTDF	0.388-0.408	0	5	0.14	0.45	03(7)4	0.40	0.25

- 1 TRTDF = Treated plot receiving two foliar applications (diluge spray).
- 2 HAFT = Highest Average Field Trial.
- 3 calculated on the basis of residue values at the PHI
- 4 Sampling day showing highest residue

Table 6.3.2.1-40c: Summary of Residue Data for Total BYI (2960 from Citous after Two Foliar Spray Applications of BY) 02960/200 SV (considering average values from a sampling event)

	_	, <u>,</u> , Q , Q	Total BYI 02960 Residue Levels (ppm)
Commodity	Plot Name	I Appli ur Rate S. Mass (days)	Min at PHB Max at PHI PHI PHI Max at
Orange	TRTSF	0.388-6.408 0 0 5	0.16 0.40 0.20 (7)3 0.24 0.26 0.088

- 1 TRTDF = Treated part receiving two obliar applications (dilute spray)
- 2 calculated on the basis of residue values at the PHA
- 3 Sampling day Dowing Dighest residue

In general, the total By 02960 residue either declared or eveled off by the end of the sampling interval.

Overall Conclusion – Citrus

Supervised residue trials were conducted in citrus in the US and in Brazil to achieve a national registration in the NAFTA countries and in Brazil.

The NAFTA countries support two different GAPs: Either two foliar spray applications or one soil drench application of BYL 2960 200 SLC Twenty-six to thirty field trials were conducted according to each GAP to measure the magnitude of BYI 02960 residues in/on grapefruit (six trials), lemon (eight trials), and orange (12 trials plus 4 comparative foliar spray trials to support the import tolerance of citrus fruits in Brazil) as representative test systems for NAFTA Crop Group 10; Citrus Fruits. In addition eight field trials in mandarins were conducted to support the import tolerance of small citrus fruits in Europe.

Brazil supports two different GAPs, as well – either a soil drench application followed by two foliar spray applications or two foliar spray applications. Five supervised residue trials were conducted each according to the different GAPs.

A summary of the use patterns tested and the corresponding residue levels are sown in Table 6.3.24-41.

Table 6.3.2.1-41: Summary of Residue Data for Total RVI 02960 from Citrus

				~~					
Crop	Formulation	Use pattern	Method & Company of the Company of t	PHI THAT	No. Applic	NGAFrials Cor	Total Residue of Resid	Peak residue	Day of peak residue
NAFTA				\$		\$\frac{\times}{2} +4			
	SL 200	2 x 0.205 kg a.s. 💫	Foliar spray (diluted)	1 2	2	2 2+4	5 0.072-0.78	1.5	3
Orange	SL 200	2 x 0.205 kg a %/ha **	Foliar spray (con		20	12 \$	0,050-0.81	2.2	10
	SL 200	1 x 0.410 kg a.s./ha	Soil dench	30 '		Q	<0.04-0.071	0.07	30
	SL 200	2 x 0.205 kg a.s./ha	Foliar spray (diluted)	. j	2 🗞	6	0.15-0.23	0.23	1
Grape- fruit	SL 200	2 x 0 205 kg Q.s./ha	Coliar spray (con)	\mathbb{N}_1	a y	6 L	0.09-0.32	0.32	1
11 411	SL 200	1 x 0.410 kg a.s. ha	Soil Grench &	30	1 ,		<0.04-0.086	0.09	30
	SL 200	2 x 0,205 kg 23./ha @	Foliar spiray (diluted)	Q [*]	2 🖇	8	0.15-0.43	0.55	3
Lemon	SL 200	2 x 0.205 kg a.s./ha	Foliar spray (con)	1 ~	Q	8	0.07-0.74	0.74	1
	SI 200	Ox 0.440 kg a. ha & O	Soul drench	30	1	8	<0.04		30
	_© SL 200 [©]	2 x 0.205 kga.s./ha	Voliar Tray (diluted)	¥1	2	8	0.118-0.363	0.42	3
Mandarin	SL 200	2 0.205 kg a.s. (ba	Foliar spray Con	1	2	8	0.035-0.496	1.0	10
~ ~ ~	SL 200	1 x 0,4 Y0 kg \$-\$./ha	Soil drench	30	1	8	0.018 -0.043	0.04	30
Brazil	Q Z								
Orange	® © 200 €	Px 1 gas. x m CH/plant 2 x 9 200 kg æs./ha	Son drech followed	0	3	5	0.19-0.55	0.66	28
	SL 200	.20x 0.20x xg a.s. Ma	Foliar spray	0	2	5	0.14-0.45	0.45	0

Highest residue levels were observed in the NAFTA trials after two foliar spray application of BYI 02960 SL 2000. In general, low column spraying resulted in slightly higher residues. However, the residue volues corresponding to You volume spray and normal spray were from similar populations (Whitney-Mann-Wilcoxxx test) as well as the residues from the different crops of the crop group.

The total residue levels of BYI 02960 did not always peak at the intended PHI, however the total residue either declined of eveled off by the end of the sampling period, which covered in maximum 21 days in the NAFTA trials or 28 days in the Brazilian trials.

The residue data provided for citrus are suitable for regulatory purposes.

IIA 6.3.2.2 Tree nuts

Residue data from NORTH AMERICA (Crop Group 14)

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on tree nuts. The use pattern in North America is summarized in Table 6.3.2.2-1.

Report:	KIIA 6.3.2.2/01; and 4, 2012; 2012
Title:	BYI 02960 200 SL - Magnitude of the Residue in Tree Suts (Crop Group 14)
Report No &	RARVY016, dated June 27, 2012
Document No	M-433350-01-1
Guidelines:	US: EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Fold Trids Canada: PMRA DACO 7.4.1, Supervised Residue Trid Study
	Canada: PMRA DACO 7.4.1, Supervised Residue Trial Studio PMRA DACO 7.4.2 Residue Declare
	PMRA DACO 7.4.2 Residue Deckine OECD: Guidelines for the Testing of Chemicals 509, Crop Field Trial, Adopted Sept. 2009.
	OECD: Guidelines for the Testing of Chemicals 609, Crop Field Trial,
	Adopted Sept. 2009: A STATE OF THE SECOND SE
GLP	Yes O Y Y Y Y Y Y

A total of ten trials were conducted in tree nuts for the intended GAPs (5 trials in amond and 5 trials in pecan). The use pattern - corresponding to the intended GAP as described below.

Table 6.3.2.2-1: Target Use Patterns for the Application of BYI 62960 on Tree Nuts

				Rate/Appli	cation			0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	ray ume
	_(Produ	wlated ≽ ct (FP)√	Active Su	fbstance		Sarget App Interval	, Target	Adju- vant/Ad		
	No	Ž		Nama) lb ≪	, do	Interval	PHI			
Substance	Apps	m46/A	fľøz/A	a.s.,	a.s.A	a.s:Ara	(Days)	(Pays)	(%)	GPA	LPHA
BYI 02960 200 SI	<i></i>	1025	√14.Q	BYI @ 960		4//18	© 14~	, 7	0.25	10–50	93–467
		. 0			\)	√			200	1070
BYI 02960	2	1023	14.0	BVI 02960	0.183	205	Ž	7	0.25	200-	1870–
200 SL		\$	₹.0	D 1 02 9 0 9	0.10,	284	23 T	,	0.23	300	2805

Ten field trials were conducted to measure the magnitude of BYI 02960 residues in/on almond hulls and almond and pecan number (representative test systems for NAFTA crop group 14; Tree nuts) following two airblast applications of BYI 02960 209 SL. Since almond hulls (as feed item) are not imported into Europe, this dossier will focus on the food items almond and pecan nutmeat. Complete information on the study including the data or almond hulls has been submitted in the Global Joint Review Submission in October 2012

BYI 02960 200 SK is a soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.2-2).

Table 6.3.2.2-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Tree Nuts

NAFTA Growing Region	Submitted ^a	Requested	*
1		Requested •	TO TO
1A			0
2	2		
3			ÖQ J
4	1 0		d
5			4
5 A			1
5B			
5B 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	E OF ST	(1 .4)	
7			
7 7A 8 9			
8 0 0 7			
9 0 0 0			
100		5	
11 2 2 67	\$ 08 0 \$ 29 29	Q Q	
12			
12 A D D D D D D D D D D D D D D D D D D			
5 19 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Total O	10	10	
	~ ~~ ~~		

a Four of the ten trials were decline trials (two in Region) and two in Region 10). The additional decline trials were performed to meet EU region remember.

Material and Methods

Two application forms were tested, two drute or two concentrated foliar airblast applications. Individual application rates ranged from 0.179 to 0.188 lb BYI 02960/A/application (0.201 to 0.211 kg BYI 02960/ha/application). Seasonal application of the ranged from 0.360 to 0.375 lb BYI 02960/A (0.403 to 0.421 kg BYI 02960/ha/All applications were made at growth stages ranging from BBCH 78 to 97 (BBCH 78: 80% of fruits have reached final size; BBCH 97: plant resting or dormant). The interval between the applications was 13 to 15 days. For sites with concentrated spray applications, spray volumes ranged from 10 to 52 GPA (1791 to 2391 L/ha).

All applications were made using ground-based equipment. The adjuvant Dyne-Amic, a typical non-ionic surfactant, was used in all of the applications at 0.25% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.2-3. Study use patterns are summarized in Table 6.3.2.2-4.

Table 6.3.2.2-3: Trial Site Conditions for BYI 02960 on Tree Nuts

		Soil (Charac	teristics	a	Meteorolo	ogical Data ^b	ð
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	рH	CEC (meq/100g soil)	% Total	Temp. Range	
RV204-10DA Almond	, CA, 2010	Sandy Loam	1.01	5.9	7.3	0	\$3-96 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
RV205-10DA Almond	, CA, 2010	Loam	2:4 20	7.9	3 3.9		57090	
RV206-10HA Almond	, CA, 2010	Sandy Loam	0.9	6.8			\$ 59-8 8	
RV207-10HA Almond	, CA,	Sandy Loam	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$8.3 \$1.3	3130		5 7–93	
RV208-10HA Almond	, CA, 2010	Sandy Loam	078	6.0	7.5		55001	
RV209-10DA Pecan	, GA, 2010	Sandy Boam	2.4	6.2		3.85	31-70	
RV210-10DA Pecan	, GA, 20 (9)	Sandy Loam	% :27	(C) (C) (C)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.52 ×	31–70	
RV211-10HA Pecan	2010, LA,	Dam J	2.2	5.9	\$8.4 \$\tag{3}	2 30	47–85	
RV212-10HA Pecan	72010 72010	Clay Loam	2.2	8.2 C	38.7	0.07	57–84	
RV213-10HA Pecan	OK 2010	Sandy keam		\$7 _\$7	7. \$ \$	2.73	38–77	

Abbreviations used: WOM = percent organic matter; CFC = cation exchange capacity.

Table 6.3.2.2-4: Study Use Pattern for BYI 02960 200 SL on Tree Nuts

1 able 0.3.2.2-	1. 5.44	y 030 1 allo	111 101 1	0 1 1 0 2 9 0 0 2	.00 SL	7 011 110	Civats			,
		(uo		I	Ap	plicatio	n	ı	ı	w°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/@rowth Stage (BBCH)	Spray Volume GPA (L/ha)	Bate lb a AAA (kg a.s./ha)	Astreatment Interval (days)	Cotal Race lb a.s./A	Tank Wax Adjurants
Almond					0			<i>D</i> '		
RV204-10DA	CA, Region 10, 2010	BYI 02960 200 SL		Concentrate Airblast		45 4 (42-7) (42-7) (42-7) (42-7)	0.183 (0.204) 0.183 (0.205)	NAS	0.365	Dyne-Amic Dyne-Amic 0.25% v/v
RV204-10DA	CA, Region 10, 2010			Dilute Airblast	7.84		, @	NÃO	0.375	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV205-10DA			TRIC	Concentrate Airthorst	89		0.184 (0.206)	NA 14	0.366 (0.410)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV205-10DA			TRTD	Dilme Airiblast	89	200 (1869) 200 (1871)	0.182 (0.204) 0.182 (0.204)	NA 14	0.365 (0.409)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV206-10HA	, , , , , , , , , , , , , , , , , , ,	B 1 02960 200 & L	TRTC	Concentrate Airblast	85 89	41 (379) 41 (382)	0.181 (0.203) 0.183 (0.205)	NA 14	0.364 (0.408)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v

Table 6.3.2.2-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Tree Nuts

Table 0.3.2.2-4 (Coll)			111 101 15 11 0			on 1100	11465		,
	(uo		T	Aŗ	plicati	on	ı	T	, v
	NAFLA Neglou, and Tear) End-use Product (Formulation)	Plot Name	Method	Timing Qrowth Stage (BBCH)	Spray Volume GPA (L/ha)	Bate lb a AAA (kg a.s./ha)	Refreatment Interval (days)	Total Race lb a.s./A (kg a.s./ha) 🗟 💍	Tank Mix Adjukants
RV206-10HA CA, Region 2010	10,	TRTD	Dillete Acirblast		(2185)	(0.201) (0.183) (0.205)	514	0.362 × (0.406)	Dyne Amic 0.25% v/v Dyne Amic 0.25% v/v
RV207-10HA CA, Region 2010			Concentrate Afriblast Didite	85 % % 85	38 (353) 38 (353)	\$7183 \$(0.20 5) \$7183 \$(0.20 5)	714 714	0.411)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
Pecan RV208-10HA CA Region 2010 RV208-10HA CA Region 2010		TRT	Airblast	\$85 \$85 \$85	()	©184 (0.2063) ©184 (0.206)	NA 14	0.367 (0.411)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
Pecan				\ \ ^	<u> </u>		1		
RV208-10HA CA, Region 2010	BYI 02960 200 SL	TRITC	Coffcentrate Airblest	79\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	45 (417)	0.179 (0.201)	NA	0.360 (0.403)	Dyne-Amic 0.25% v/v
				85	45 (420)	0.181 (0.202)	14		Dyne-Amic 0.25% v/v
RV208-10HA CASE		RTD	Ö Dilute Airblast	79	253 (2364)		NA	0.371 (0.415)	Dyne-Amic 0.25% v/v
				85	256 (2391)	0.186 (0.209)	14		Dyne-Amic 0.25% v/v

Study Use Pattern for BYI 02960 200 SL on Tree Nuts Table 6.3.2.2-4 (cont'd):

1 4010 0.3.2.2	(======)	Diddy Ost								
		ion)		T	Ap	plication	on	ı	Τ	w°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Qrowth Stage (BBCH)	Spray Volume GPA (L/ha)	Search and the search	Retreatment Interval (days)	Total Rate b a.s./A (kg a.s./ha) ~	Tank Mix Adjuxants
RV209-10DA	, GA, Region 2, 2010	BYI 02960 200 SL	TRTC	Concentrate Kirblast	7 89 J	22 (202) (21 (197)	(0.2054) (0.183 (0.205)	14		Dyne Amic 0.23% v/v
RV209-10DA	GA, Region 2, 2010				~ ~	~	0.186 (0.208) 0.189 (0.205)	NA O	©0.369° (0.443)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV210-10DA	Š	BYI 02960 200 SL			795 5 7 89	(202)	0.183 (0.205) 0.183 (0.205)	NA 14	0.366 (0.410)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV210-10DA	Region 2, 2010		ORTD	Airbast	79 7 89	249 (2324) 247 (2308)	0.186 (0.208) 0.183 (0.205)	NA 14	0.369 (0.413)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV211-10HA	Region 4. (2010	BY 02960 200 SL	TRTC	©oncentrate Airblast	95 97	27 (248) 32 (301)	0.187 (0.210) 0.185 (0.207)	NA 14	0.372 (0.417)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Study Use Pattern for BYI 02960 200 SL on Tree Nuts Table 6.3.2.2-4 (cont'd):

	+ (cont a).			11101 1110		T				
		ion)			Ap	plication	on	_		<u>"</u>
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/@rowth Stage (BBCH)	Spray Volume GPA (L/ha)	Bate lb as A. (kg a.s./ha)	Retreatment Interval (days)	Total Rate lb a.s./A	Tank Mix Adjukants
RV211-10HA	, LA, Region 4, 2010		TRTD	Diffete Activation of the second of the seco	95 97 97	219 (2048) (192 (1791)	186 (0.209) 187 (0.210)	NA NA M4	0.374 × (0.419)	Dyne Smic 0.25% v/v Dyne Smic 0.25% v/v
RV212-10HA	TX, Region 6, 2010	BYI 02966 200 SI		Concentrate Amblast	**************************************	381) (419)	\$186 \$0.208 \$182 \$1.204	NA NA NA NA NA NA NA NA NA NA NA NA NA N	\$367 \$0.412} \$	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV212-10HA	TXC Region 6. (2010		FRTD		87 \$7	108 (1851) 248 (2041)		13	0.362 (0.406)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV213-FOTA	Region 8,	200 SI		Concentrate Airolast	^	50 (478) 52 (489)	0.188 (0.211) 0.187 (0.209)	NA 15	0.375 (0.421)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV213-10HA	, OK, @ 2014		TRED	Dirite Dirblast	85	228 (2133)	0.183 (0.205)	NA	0.366 (0.410)	Dyne-Amic 0.25% v/v
					89	238 (2225)	0.183 (0.205)	15		Dyne-Amic 0.25% v/v

In the harvest trials, duplicate composite samples of almonds and pecans were collected from the treated plots at a pre-harvest interval (PHI) of 7 days. In the four decline trials, duplicate composite samples of almonds and pecans were collected from the treated plots at 0, 3, 7, 14, and 21 days after the last treatment. Single composite samples of almonds and pecans were also collected from the control plots on the same day the target 7-day samples were collected from the ceated plots. The almonds and pecans were shelled to produce the commodity of nutmeat (without shells).

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to see a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interference of corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were \$20\% Pable 63.2.25).

Table 6.3.2.2-5: Summary of Recoveries of BYI 02960 from Tree Nuts

Crop Matrix	Anafvte Spike Size Recoveries (%)	Mean Recovery (%) a	Std Dev (%)
	BYI 9960 (0.010) (1.07, 89, 36, 105, 88, 72, 73, 113, 80, 74, 81, 75, 84, 81, 75, 84, 81, 75, 84, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81	86	15
	0,100 12 7 87,81,09,93,84,85,84,91,	88	7
Nutroeat without	12 70, 72, 87, 82, 71, 77, 81, 76, 71, 84, 71, 73	75	5
shell	76, 96, 73, 74, 74, 78, 76, 72, 80, 71, 79, 81	77	7
	DFEAF 0.000 12 90,016, 88, 111, 104, 83, 107, 86, 85, 83, 92, 85 90, 111, 82, 101, 94, 103, 93, 79.	94	12
	0.100 90, 111, 82, 101, 94, 103, 93, 79, 99, 97, 94, 100	95	9

a Mean Recovery = mathematical average of athrecoveries.

The freezer storage stability study indicates that BYI 02960 residues were stable in coffee beans and soybean seeds, as topresentative crops of the commodity group (high oil content), during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 497 days. A summary of the storage conditions are shown in Table 6.3.2.2-

Table 6.3.2.2-6: Summary of Storage Conditions for Tree Nuts

Residue Component(s)	Matrix (RAC)	Maximum Average Storage Temperature (°C) ^a	Actual Storage Duration Months (days)	Interval of Demonstrated Storage Stability of month adays)
BYI 02960	Almond Nutmeat	< -17	16 (491)	18 7
B 11 02900	Pecan Nutmeat	< -17	(\$2 (\$364)	\$558) \$
DFA	Almond Nutmeat	2 -17	16 C	\$\frac{180}{558}\]
DrA	Pecan Nutmeat		(364)	(558)
DEFAE	Almond Nutmeat	,	\$\frac{1}{4}\text{491}\text{1}	(558) (558)
DFEAF	Pecan Nutmea	\$\frac{17}{2}\frac	0 12 0 0 (364) \$	186 (\$58)

The maximum average storage temperature is from the time of ample extraction. While preparing for sample analysis, the complex were maintained in a laboratory freezer.

The storage duration is the time from field sampling through the last sample extraction.

²⁰¹² Storage Rability of BYL 2960, Aufuoroacotic acid, and The total BYI 02960 residue data for tree nuts following two foliar applications of BYI 02960 200 SL are shown in Table 6.3.2.2-7. difluoroethyl-amino-furance in plant matrices. Bayer Crop Science Report No RARY 10046, amended version including

Table 6.3.2.2-7: Total BYI 02960 Residue Data from Tree Nuts after Two Foliar Application(s) of BYI 02960 SL

	Г	3Y1 02960 S	L							•	
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Toral Rate Ib a.s./A@g a.s./ha)	Sampling Interval	8YI 42460 Resi ang/kg) * &	DFA Residue (mg/kg, equiv./kg)		Total BYI 02960 Residue?	
Almond N	Nutmeat			F P	, .		N N			2	
RV204- 10DA	, CA, Region 10, 2010				\$365 \$0.409 \$7 \$7 \$7 \$7 \$7	14 21 0	0.010 0.010 0.010 0.010 0.010 0.010 0.010	<0.050 <0.050 <0.050	<0.010 0.010	0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.093 ^d 0.075 Avg: 0.084 ^e 0.12 0.11 Avg: 0.12 <0.070 <0.070 Avg: <0.070 Avg: <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070	
								Continue	d on next	t page	

Table 6.3.2.2-7 (cont'd) Total BYI 02960 Residue Data from Tree Nuts after Two Foliar Application(s) of BYI 02960 SL

										0
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A@g a.s./ha)	Sampling Interval	BY1 62960 Residue	DEA Residue (Mg.) (mg. 28. equiv./kg)	DIOAF Residue (mg assequiv./kg)	Total BYI 02960 Residue?
RV205- 10DA	, CA, Region 10, 2010			TRAID	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.010 0.010 0.010 0.010 0.010 0.010	\$0.050 \$0.050 \$0.050 \$0.050 \$0.050 \$0.050 \$0.050	<0.0010 <0.000 <0.010	<pre><0.070 Avg: <0.070 Avg: <0.070 Avg: <0.070 <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070</pre>
4	CA, Recon 10,0	Stonora Control of the Control of th	Nutment wout Shell	JRTC JRTC TRTD	0.364 (0.468) 0.362 (0.406)	7	<0.010 0.015 0.015 0.014	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	<0.070 0.075 Avg: 0.072 0.075 ^f 0.074 Avg: 0.075 ^g
RV207- 10HA	CA, Vegion 0, 200	Monterey	Almond Nutment w/out Shell	TRTC	0.366 (0.411)	7	<0.010 <0.010	<0.050 <0.050 Continue	<0.010 <0.010 d on next	<0.070 <0.070 Avg: <0.070

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.2-7 (cont'd) Total BYI 02960 Residue Data from Tree Nuts after Two Foliar Application(s) of BYI 02960 SL

		rr -	ation(s) or							<u> </u>
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Toral Rate Ib a.s./M@g a.s./ha)	Sampling Interval	BYI 42460 Resi	DFA Residue (mg/ks, equiv./kg)	DABAF Residue (mg atoequiv./kg)	Total BY1 02960 Residue
RV207- 10HA (cont'd)	CA, Region 10, 2010	Monterey	Almond Nutmeat w/out Shell	TRAN	0.367 (0.411)		<0010 >0.0100	© .050° 7 < 0.050°	<0.040 <0.910	<0.070 \$0.070 Avg: <0.070
RV208- 10HA	, CA, Region 10, 2010	Padre	Almond Nutmeat w/cht/Shell	TRÎC	\$360 \$\text{\$0.403}\$	\$7 7 7 8	20.010 (20.010 (20.010 (<0.030 J	<0.010	Q:070 0.070 Avg: <0.070
					9.371 (0.41 5)	7 7	<0.010 <0.010	<0.050 <0.050 \$0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
Pecan Nu	tmeat		, Ø (<i>₹</i>		' &	Cr.	~ Q		
RV209- 10DA	Region 2	Summer .	Pecan	TRIC	0.366 (0.411)	8	©011 <0.010 ©	<0.050 <0.050	<0.010 <0.010	0.071 <0.070 Avg: 0.071
Ž,	Region 2018 2018 2018 2018 2018 2018 2018 2018					**************************************	\$0.010 \$<0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
						7	<0.010	<0.050 <0.050	<0.010	<0.070 <0.070 Avg: <0.070
					S S	21	<0.010 <0.010 <0.010	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	<0.070 <0.070 Avg: <0.070 <0.070
				,©′ ≱/ 	0.260	21	<0.010	<0.050	<0.010	<0.070 Avg: <0.070
			v	IKID	(0.413)	7	0.013 <0.010	<0.050 <0.050	<0.010 <0.010	0.073 ^h <0.070 Avg: 0.071 ⁱ

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.2-7 (cont'd) Total BYI 02960 Residue Data from Tree Nuts after Two Foliar Application(s) of BYI 02960 SL

-		търте									_
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Tokal Rate Ib a.s./A@g a.s./ha)	Sampling Interval (days after last treatment) a	BYI 62960 Residue	DEA Residue (mgas. equiv./kg)	DIOAF Residue (mg a Soquiv./kg)	Total BVI 02% Residui	
RV210-	, GA,	Sumner	Pecan	TRAC	0.366 (0.410)	~0,	00048	©0.050	Y	0. Ø 1	
10DA	Region 2,		Nutmeat	& , [*]	(0.410)		JØ.015 7	r <0.0 50	<0.00±0 <0.0010		
	2010		w/out Shell	O 4				F	(A	Avg: 0.091°	
				. 0		. 3	0.010 0.010 0.010 0.010	©0.050	<0.000	<0.03/1	
							\$0.01Q	© 0.050 < 0.050	<0.000 <0.010	<0 20 70 20 .070	
										D Avg:	
			L 0				20010 d	0.050	<0.6010	<0.070 <0.070	
			q' _b				Q10.010 (<0.050 <0.050 <0.050	<0.010	< 0.070	
		Ş		10	Ş (Ö		¥ 10.010		&y	Avg:	
		J'				مال	~ ~~	A-		< 0.070	
		Ò		w"		14	0.010 0.010	<0.050	<0.010	<0.070	
					ř S	y	~0.01g	<0.050	<0.010	<0.070 Avg:	
	d d						&			<0.070	
				S,		@21	, <0.010	< 0.050	< 0.010	< 0.070	
			, W	> 3	y "N	(Q	<0.010 <0.010 <0.010	< 0.050	< 0.010	< 0.070	
						A C	~ ·			Avg: <0.070	
		Creek		TRAD	(0.413) (0.413) (0.417)	7	₩ ₩0.010 ><0.010	< 0.050	< 0.010	< 0.070	
				O'VID	(0.413)		< 0.010	< 0.050	< 0.010	< 0.070	
	,					~ O				Avg:	
DVO11		Créek	Pecan Numeat, wout Shell	TOTAL	\$\frac{\(\lambda \)}{\(\alpha \) \(\alpha \) \(\alpha \)		<0.010	-0.050	<0.010	<0.070	
RV211- 10HA	LA,Q	Creek	Pecan Numeat	TRTC	©.372 (0.412)	7	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070	
101111	Region 4.	, S	wout Shell		(0.417)		-0.010	10.030	-0.010	Avg:	
	Region 4,				^					< 0.070	
	4			T RTD	20 .374	7	< 0.010	< 0.050	< 0.010	< 0.070	
					^J (0.419)		< 0.010	< 0.050	< 0.010	<0.070	
	~~~	* 4								Avg: <0.070	
RV212-	,	Choeyenne,	Pecan Numeat	, ØŘTC	0.367	7	< 0.010	< 0.050	< 0.010	< 0.070	
10HA	T.W.		Normeat 6	¥	(0.412)		< 0.010	< 0.050	< 0.010	< 0.070	
	Region 6		w Shell							Avg:	
	TW, Región 6	Cheyenne,	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TRTD	0.362	7	< 0.010	< 0.050	< 0.010	<0.070 <0.070	
~(				INID	(0.406)	,	< 0.010	< 0.050	< 0.010	< 0.070	
										Avg:	
										< 0.070	
~~~	T.	~						<i>a</i>	1		

Table 6.3.2.2-7 (cont'd) Total BYI 02960 Residue Data from Tree Nuts after Two Foliar Application(s) of BYI 02960 SL

Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (Rg a.s./ha)	Sampling Interval	g (C)	DEA Residue (mg bs. equiv./kg)	DKOAF Residue (mg a Sequiv./kg)	71 02% R	
RV213- 10HA	, OK, Region 8, 2010	Kiowa and Washita	Pecan Nutmeat w/out Shell	TRAD	0.375 (0.421) 0.366 0.410)		\$0.010° \$0.010° \$0.010° \$0.010°	\$0.050°	<0.640°	<0.070 Avg: <0.070 Q70 Q70 0.070 Avg: <0.070	

- Sampling interval is the interval between last application and the sampling date.
- Total BYI 02960 residue is the sun of BYF 02960, DFA, and DFEA/Cresidues in parent equivalents. Residue measurements below the analyte TOQ were summed into the total BYI 02900 resides value as the analyte LOQ value. These totals represent the upper limit of what the residue levels fought be.
- Sample analyzed twice; average value reported here
- d Maximum residue found in almond nutment from the TRTC flot.
- Maximum residue found in almond normeat from the TRTD plot.

 HAFT residue found in almond nurificat from the TRTD plot. f
- HAFT residue formed in almond nutmeat from the TRYD plots
- TRTC = treated plot receiving a concentrate airbit at application
 TRTD = treated plot receiving a dilute airbit as tapping and the treated plot receiving a dilute airbit are the treated plot receiving a dilute airbit and the treated plot receiving a dilute airbit are the treated plot receiving a dilute airbit are the treated plot receiving a dilute airbit are the treated plot receiving a dilute airbit are the treated plot receiving a dilute airbit are the treated plot are the treated plot airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated airbit are the treated Maximum residue found in pecan nutment from the TRTD plot.

Conclusion

Ten field trials were conducted to measure the magnitude of total BYI 02960 residues in/on almond The total BYI 02960 residue data for tree nuts following foliar applications are summarized in Table 6.3.2.2-8.

Table 6.3.2.2-8: Summary of Residue Data for Total BYI 02960 from Tree Nuts

		4			-	Fotal BY	I 02960 R	esidue L	evels (pp	
Commodity	Plot Name	Total Application Rate lb a.s., (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max after PHI	HAOT 2	Median ³	Mean Wh
Almond Nutmeat	TRTC	0.360 to 0.366 (0.403 to 0.411)	7	5	<0.070	0.093	0.12	0.084	<0.070	
Almond Nutmeat	TRTD	0.362 to 0.375 (0.406 to 0.421)	7	5	<0.070	0.075	NA5	0.075		
Pecan Nutmeat	TRTC	0.366 to 0.375 (0.410 to 0.421)	7	5	2 0.070	<0.076	a i	<0.070	₹0 .070	
Pecan Nutmeat	TRTD	0.362 to 0.374 (0.406 to 0.419)	7	(5 ₁	/ <0. 9 ,70	3 73	NA ⁵	0.07	<0.1970	<0.00095

Data from the decline trial samples collected at intervals other than 7-day PHI are not included in this table

HAFT = Highest Average Field Trial.

calculated on the basis of residue values at the PHI.

Sampling day showing highest residue

Not applicable, no decline trials were conducted.

TRTC = treated plot receiving a concentrate airplast application.

TRTD = treated plot receiving a dilute airblast application.

Total BYI 02960 residues in almond and pecan nutrical were generally below the LOQ. Samples collected from the form decline trial indicated an incline of residues in put ment in only one trial in collected from the form decline trials indicated an orcline of residues in futment in only one trial in almonds where the highest residue was detected 14 days after the last application. However, the residues decline to < 0.07 mg/kg within the pext seven days.

The total BXI 02960 residues in the representative commodities for Crop Group 14 (Tree Nuts; almond and pecan) were within a factor of 5 of each other and therefore, within the EPA guidelines The residue data provided for see nuce are suitable for regulatory purposes. for the establishment of a group tolerance for Crop Group 14.

IIA 6.3.2.3 Pome fruit

Residue data from NORTH AMERICA (Crop Group 11)

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on pome fruits. The use patterns in North America are summarized in Table 6.3.2.3-1.

A total of twenty-three trials were conducted in apple for each of the intended GAPs. The studies are described below.

Table 6.3.2.3-1: Target Use Patterns for the Application of BY 202960 on Poine Fruits

		Form	Target nulated	t Rate/Appli	cation	Ø			Spray	Volutorie 4
		-	ict (FP)	Active Su	. "//	es(a.s)	Target App.	Target		
Test	No. of			Name of⊌	" IP _S	kg	Interval	#RHI		I all
Substance	Apps	mL/ha	fl oz/A	a.s	as/A	a s/ ha	(Days)	(Days)	y GPA	APHA
BYI 02960 200 SL	2	1025	14.0	BY 202960	0.183	0.205	100		3 0-50	94-469
BYI 02960 200 SL	2	1025	14.0	BYĮ 02960	00 / 83	©205	©10 €	140	150-900	1408-2816

GPA = gallons per acre LPHA = liter per hectar

Report	KIIA (3.3.2.3.91; V.; 2022 & J
Title	BY 202960 200 SI Magnifude of the Residue in On Ponte Fruits (Crop Group 11)
Report No &	RARVY013, dated June 18, 2010
Document No	
Guidelines	US: PA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: FMRA DACQ 7.4.1 Supervised Residue Trial Study
	PMRO DACO 7.4.2 Residue Decline
Š	OECD: Guideline for the Testing of Chemicals, 509, Crop Field Trial,
	Radopted Sept. 72009 F
GLP 🎺	Yes O Y Y W

Twenty-three field trial were conducted to measure the magnitude of BYI 02960 residues in/on apple (14 trials) and pear 19 trials following two broadcast foliar spray applications (either diluted or concentrated spray) of BYI 02960 200 St. Apple and pear were chosen as the representative test systems for NAVTA Crop Group 11 Fome fruits. BYI 02960 200 St. is a soluble concentrate formulation containing 200 BYI 02960 L. The number and location of field trials conform to the guidance given by the EFA (Table 6.3.2.3-2).

Table 6.3.2.3-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Pome Fruits

NAEGA C. D.	Appl	e	Pe	
NAFTA Growing Region	Submitted	Requested	Submitted	Requested
1	3	3	1 &	l 1 🧠 🖈
2	1	1		
3				
4		Ö		
5	4	<u>4</u>	© 3 ×	
5A		A.	\$\frac{1}{2}\frac{1}{2	
5B			~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
6	\{\(\)			
7				
7A		. % . // //		
8				
9		l , à l'a		
10				2
11	\$\\ 4\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			O 3
12				
13			₩. (JN	
Total 5				
Total S	5 714 D	, , , , , , , , , , , , , , , , , , , ,	\$ 90 m	9

Material and Methods

Two application forms were restect 2 diluted or 2 concentrated foliar airblast applications. Individual application rates ranged from 0.078 to 0.793 lb BYI 02960/A/application (0.199 to 0.216 kg BYI 02960/ha/application) and total seasonal application rates ranged from 0.359 to 0.383 lb BYI 02960/A/0.403 to 0.430 kg BYI 02960/ha). The interval between the applications was 10 to 11 days. All applications were made at growth stages ranging from BBCH 75 to 87 (BBCH 75: Fruit about half final size; BBCH 8% Fruit ripe for harvest).

All applications were made using ground-based equipment. A typical non-ionic adjuvant (MSO, NIS, COC) was used in all of the applications at $\sqrt{2}$ to 1% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.3-3. Study use patterns are summarized in Table 6.3.2.3-4.

Table 6.3.2.3-3: Trial Site Conditions for BYI 02960 on Pome Fruits

Trial	Trial Location	Soil (Charac	Meteorological Datab			
Identification; Crop	(City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Range
RV050-11HA Apple	, NY	Sandy Loam	5.5	6.6	11.3	3.56	> 56-72 5 42
RV051-11DA Apple	, PA	Loam	2.0	⁹ 5.9	1 0 /5	21.	38-78
RV052-11HA Apple	, GA	Loam	<u>4</u> 2.4	6.9	5.5	94.95	63-89
RV053-11HA Apple	, MI	Fine Sand	1,25	6.50	\$\int_{\int}^{\infty} \text{0.0} \times	1	53-84
RV054-11DA Apple	, IL	Silt Loam	2.2	6.8	11.5	6.70	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
RV055-11HA Apple	, UT	Sandy Loam	¥9.4	\$.2 \$.2	30.9	\$\frac{7}{2}.19\frac{7}{5}	©1-91
RV056-11HA Apple	, CA	Clay Loam	38	7.40	26.1 E		59-95
RV057-11HA Apple	, LÕ	Silt Koam	2.04	6.5		1.56	39-88
RV058-11HA Apple	, QR	Loam	3 .8	Ö . è	11.80	5 0.50	53-81
RV059-11DA Apple	, ID	Sandy Loam	1.4	7.5,	P2.7	0.36	50-94
RV060-11HA Apple	NY	Silt Loam	4.6	5.4	3.5	10.97	55-78
RV061-11MA Apple	M	koam	2.5	Ø.6	Ø 9.4	6.84	52-78
RV062211DA Apple	, Will	Sand J	069,	5.4	6.3	6.12	41-70
RV063-11HA Apple	OR.	Login	₹ 7.4 ₍	\$ 6.0	7.8	1.97	46-78
RV064-11DA Pear	NYS	Sandy Loam	3 .1	6.3	8.4	12.46	56-82
RV065-11HA ✓ Pear	MI	Jayam 7	2.1	6.8	8.2	4.44	61-78
RV066-11HA Pear	/ SA	Sandy Joan	3.5	7.0	16.9	0.79	56-90
RV067-11EA	CA L	Sandy Loam	1.0	6.5	7.2	1.79	40-79
RV068 11HA	NA NA	Sandy Loam	1.1	7.2	12.6	0.05	48-87
RW069-DDA Pen	, ID	Fine Sandy Loam	0.75	7.9	7.0	0.36	50-94

Table 6.3.2.3-3 (cont'd): Trial Site Conditions for BYI 02960 on Pome Fruits

Trial	Trial Location	Soil (Charac	teristics	_S a	Meteorological Data		
Identification; Crop	(City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Range	
RV070-11HA Pear	, MI	Sand	2.3	5.6	7.1	12.99	45-83	
RV071-11DA Pear	, MI	Loam	2.5	[©] 6.8		16. Þ	7 49-8®	
RV072-11HA Pear	BC, Canada	Sandy Loam	3 .6	7.3	Q 9.1 °	7.10	40-85	

Pear BC, Canada Sandy Loam 8.6 7.3 29.1 27.10 30-85 Canada Abbreviations used: %OM = percent organic matter; CEC = cation exchange captury.

Data is for the interval of the month of first application through the region of list sampling. Methorological data were obtained from nearby government weather stations. A were to the state of the stat

Table 6.3.2.3-4: Study Use Pattern for BYI 02960 200 SL on Pome Fruits

	Ą		Application							
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate lb ASM (kg a.s./ha)	Retreatment Interval (day®	Total Rate ha.s.A (kg kesha)	Tank Manadjuvatos
Apple				Q				\$ (
RV050-11HA	Region 1 2011	BYI 02960 200 SL		Airblago (concentr. agol.)	765 0 780 780	40.09 (3\$5) Q 240.39 (37\$9	0.18\$\text{0.18\$}\text{0.18\$}\text{0.208}		0.369 (Q.414)	Induce 0.2%v/v Induce 0.2%v/v
RV050-11HA	Region 1	BY6 200 200 XL		w .	78 78	160	0.188 (0.205) (0.1840) (0.206)	NAO 10	0.369 (0.411)	Induce @0.2%v/v Induce @0.2%v/v
RV051-11DA		#XI 02960 200 SIC	TRTD	Airblast (concentr.	879	46.91 (\$39) 46.8* (\$38)	0.182 40.204 0.282 (0.203)	11	0.363 (0.407)	MSO@0.25 %v/v MSO@0.25 %v/v
RV051-11DA	Region 1 2010	BYI 029662200		Aprblast (dilute) apply)	85	165 (1543) (164 (1533)	0.190 (0.213) 0.189 (0.212)	NA 11	0.379 (0.425)	MSO@0.25 %v/v MSO@0.25 %v/v
RV052-11HA	Region 2	# YI 05960 200 SL	PRTDE	Airblast (conventr.	87	39.28 (367) 45.67 (427)	0.183 (0.205) 0.183 (0.205)	NA 10	0.366 (0.411)	COC@ 1% v/v COC@ 1% v/v
RV052-11HA	Region 2	BY/1 02960 200 SL	TRTDD	Airblast (dilute appl.)	81	174 (1627) 171 (1599)	0.183 (0.205) 0.183 (0.205)	NA 10	0.365 (0.410)	COC@ 1% v/v COC@ 1% v/v
RV053-THA	, MI , MI , 2011	BYI Ø2960 200 SL	TRTDC	Airblast (concentr. appl.)	81	47.09 (440)	0.183 (0.205)	NA	0.364 (0.407)	NIS@ 0.2% v/v
					85	46.67 (436)	0.181 (0.203)	10		NIS@ 0.2% v/v

Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits

1 able 0.3.2.3-4	Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits									
	ΓA				A	pplication	n			
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	NPethod (NPethod	Timing/Growth Stage (BBCH)	Spray Volume GPA	S.O. Rafe lb a.s./A	Retreatment Interval	Total Bate lb & A	Tank Mix Adpayants &
RV053-11HA	, MI Region 5 2011	BYI 02960 200 SL			812	7 189 ((17 6 0)	0.189	160		NS@ 0.2% V/v
RV054-11DA	Region 5	BY,57 02960 200 SL &			85 87 87	27.12 2 (254) \$	0.183© (0.203)	NAO		v/v
RV054-11DA		9 960 240 SI		Airblast (hite appl.)	879 879	\$75 (\$636) 189 (\$767)	0.183 (0.205) 0.233 (0.205)	10	0.366 (0.410)	COC@ 1% v/v COC@ 1% v/v
RV055-11H	Region S	B 9 02960 2006 S SL		Airblast (concentr. appl.)	780 5 81	51.46 (484) 46.42 (434)	0.181 (0.202) 0.182 (0.204)	NA 10	0.363 (0.406)	Pierce MSO@0.25 %v/v Pierce MSO@0.25 %v/v
RV055-11HA	Region 9 0		TRYDD	Airblast (dilute appl.)	78	206 (1926) 207 (1935)	0.179 (0.201) 0.180 (0.202)	NA 10	0.359 (0.403)	Pierce MSO@0.25 %v/v Pierce MSO@0.25 %v/v
RV056-11HA	Region 10	©BYI ©2960 200	TRTDC	Airblast (concentr. appl.)	77	50.01 (468)	0.181 (0.203)	NA	0.364 (0.408)	R-11 NIS@ 0.2% v/v
					79	49.37 (462)	0.183 (0.205)	10		R-11 NIS@ 0.2% v/v

Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits

	-	Application On the Process of the Pr								
	JFT.				A	ppncauc	711			
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate Ib ASM (kg a.s./ha)	Retreatment Interval (days)	Total Rate ha.s.A (kg keha)	Tank White Adjuvator
RV056-11HA	Region 10 2011	BYI 02960 200 SL	TRTDD	Air Plast (dilute appl)	77	224 (2094) 23 (2085)	0.178 (0.200) 0.187 (0.210)	NA NA 10	0.36 8 (0.469)	R-1 NIS@ R-1 NIS@ 0 % v/v
RV057-11HA	Region 11 2011	BYI 0 02960 200 SL	TRTE	Air Stast (concentr.		45:78 (428) 45:35 45:35	0.186 0.209	NA DO	\$\\ \(\) (0.419) \\ \(\) (0.419) \\ \(\)	Pierce MSO@0.25 %v/v Pierce MSO@0.25 %v/v
RV057-11HA	Region UI 201	BYI 02960 206 SL	TRTDE	Airbland (dicte appl.)	75 27 8187 8187 80		0.1285 (0.207) 0.1285 (0.207)	10	0.369 (0.414)	Pierce MSO@0.25 %v/v Pierce MSO@0.25 %v/v
RV058-11H49	OR OR Region 11 .	B 9 02000 2006 5 SL	TAXTDC	Airblast (concentr. appl.)	780 15 80 7	31.00 (290) 30.15 (291)	0.180 (0.202) 0.182 (0.204)	NA 10	0.364 (0.407)	Mor-Act COC@ 0.25% v/v Mor-Act COC@ 0.25% v/v
RV058-11HA	OR Region 11 2001	1 1 0	TQTDD	Airblast (dilate appl.)	78 81	175 (1636) 169 (1580)	0.182 (0.204) 0.183 (0.205)	NA 10	0.365 (0.409)	Mor-Act COC@ 0.25% v/v Mor-Act COC@ 0.25% v/v
RV059-11DA	, 115 Region 10 2014	BXI 02900 200 SL	T TDC	Airblast (concentr. appl.)	79 81	41.47 (388) 41.48 (388)	0.181 (0.203) 0.181 (0.203)	NA 10	0.363 (0.407)	Dyne- Amic@ 0.2% v/v Dyne- Amic@ 0.2% v/v

Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits

	+ (cont a).	Study Ose Lattern for B 11 02500 200 SE on Lone Littles								
	FTA			I	A	pplicatio	on	ı		<i>&</i> &
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate lb ASAA (kg a.s./ha)	Retreatment Interval (days)	Total Rate Bas.A (kg kana)	Tank Max Adjuvatos
RV059-11DA	Region 11 2011	BYI 02960 200 SL	TRTDD	Air Plast (dilute appl	79	201 (1879) (1842)	(0.206)	NA NA 10	0.366 (0.440)	Devne- Amic@ 0.2% v/v Decae- Amic@ 0.2% v/v
RV060-11HA	NY Region 1 2011	BYI 02960 200 SIQ	TRTDE	Airbast (concentr. appl.)	\$\frac{1}{2}\frac{1}{2	56(23 (970) 56(66 (474)	0.185 0.207 0.186 0.2090	SA SO O10	57.371 (0.4155) (4,	MSO@ 0.25% v/v MSO@ 0.25% v/v
RV060-11HA		BYI 02900 200 FSL &	TRTDD	Airblast (didde appl.)	81/2 27 85/2 0	226 (2413) (245) (2404)	0,184 (0.207) (0.207) (0.206)	10	0.368 (0.413)	MSO@ 0.25% v/v MSO@ 0.25% v/v
RV061-11H4	Region 5	B A 02060 200 SL	TRTDC	Airblast (concentr.	78 \$1 2	45.93 (42A) 45.68 (427)	0.183 (0.205) 0.184 (0.206)	NA 10	0.367 (0.412)	Agri-Dex@ 1% v/v Agri-Dex@ 1% v/v
RV061-11HA	Region 5 (2011	BYI 0 02960-200	TRIOD	Air last Wilute appl W	81	179 (1673) 183 (1711)	0.181 (0.203) 0.182 (0.204)	NA 10	0.364 (0.408)	Agri-Dex@ 1% v/v Agri-Dex@ 1% v/v
RV062-11DA	, MI Region 5 20 1	BY1 02960 2000 SES	TRTDC	Airblast (concentr. appl.)	77 81	34.56 (323) 36.50 (341)	0.183 (0.206) 0.183 (0.206)	NA 10	0.367 (0.411)	Induce @0.2%v/v Induce @0.2%v/v

Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits

	+ (cont a).	T Study OSC		01 11 102						
	TA			T	A	pplicatio	n	ı	L	<i>&</i> ~
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate lb ASM (kg a.s./ha)	Retreatment Interval (day®	Total Rate B. a.s.A (kg kksha)	Tank Markadiuvados
RV062-11DA	, MI Region 5 2011	BYI 02960 200 SL	TRTDD	Applast (dilute appl	77	198 (1851) 202 (1888)	(0.206		0.36% (0.412)	Induce 20.2%v/v Induce QQ2%v/v
RV063-11HA	OR Region 11 2011	BYI 02960 200 SL	TRIDE	Airblast (concentr. appl.)	رُ ۾	33,60 (3)4) 39,51 (\$69)	0.283 (0.205) 0.985 (9.207)		0.468 0.412)	Aero Dyne- Amic@0.25 %v/v Aero Dyne- Amic@0.25 %v/v
RV063-11HA	OR Region 1 2004	BYI 02960 200 SL	TOTOD	Airblast (didde appl.)	817	169 (1580) (170) (1589)	0.785 (0.207) (0.207) (0.207) (0.204)	10	0.367 (0.411)	Aero Dyne- Amic@0.25 %v/v Aero Dyne- Amic@0.25 %v/v
Pear 📡 🖏	*O*	W.	4	J. P	r Os	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
RV064-100A	Region 1	B 02966 200 SL		Airblast (concentr. Appl.)	J8	49.00 (374) 39.88 (373)	0.183 (0.206) 0.183 (0.205)	NA 10	0.366 (0.411)	Induce NIS@ 0.2% v/v Induce NIS@ 0.2%
RV064-1100Å	No Region 1 20 1	¥ ~@"	TRTD	Airblast (Wute Cappl.)	75 76	160 (1496) 165 (1543)	0.183 (0.205) 0.189 (0.212)	NA 10	0.372 (0.417)	v/v Induce NIS@ 0.2% v/v Induce NIS@ 0.2%
RV065-11HA	J)	BYI 62 960 260 SL	TRTDC	Airblast (concentr. appl.)	77 78	46.56 (435) 45.84	0.183 (0.205) 0.183	NA 10	0.366 (0.410)	V/V Hasten@ 0.25% v/v Hasten@
	35					(429)	(0.205)			0.25% v/v

Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits

	Ą		Application						0 4	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate Ib ASAA (kg a.s./ha)	Retreatment Interval (days)	Total Rate ha.s.A	Tank NH&Adjuvatos
RV065-11HA	Region 5 2011	BYI 02960 200 SL	TRTDD	Air last (dilute appl	77	186 (1739), 586 (1739)	0.183 (0.205) 0.184 (0.206)	NA NA NA NA NA NA NA NA NA NA NA NA NA N	0.367 (0.41)	Hasten@ 0.25% v/v Hasten@ 0.25% v/v
RV066-11HA	CA Region 10 2011	BYI 02960 200 SL	RTPC	Airblast (concentr.	78 76	48.04 (449) 48.39 (452)	©183 (0.205) (0.205) (0.206)	0 11	Ø:367 (0.411) (0.411)	COC- Moract@ 1% v/v COC- Moract@ 1% v/v
RV066-11HA	CA Region 10	BY (2960)		Airblest (thute appl.)	76 P	2216)	0.182 (0.204) (0.183 (0.205)	11	0.364 (0.408)	COC- Moract@ 1% v/v COC- Moract@ 1% v/v
RV067-1110A	Region@0	BYC02960 900 SL	FRTDC	Airldast (concentr. «appl.) «	Z.	40.57 (379)	0.182 (0.204) 0.183 (0.205)	NA 10	0.364 (0.408)	Dyne-Amic NIS@0.2 %v/v Dyne-Amic NIS@0.2 %v/v
RV067-11DA	Region 10	BYI-03960 200 SL	TRIDD	Airblast (diffue appl.)	85 85	162 (1515) 161 (1505)	0.189 (0.212) 0.182 (0.204)	NA 10	0.371 (0.416)	Dyne-Amic NIS@0.2 %v/v Dyne-Amic NIS@0.2 %v/v
RV068-11HA	WA Region 14	FYI 02960 200-8L	TROFDC	Airblast (concentr. appl.)	81	40.27 (376) 39.99	0.185 (0.207) 0.183	NA 10	0.368 (0.413)	Super Spread MSO@ 0.25%v/v
	.O.	,				(374)	(0.206)			MSO@ 0.25%v/v

Study Use Pattern for BYI 02960 200 SL on Pome Fruits Table 6.3.2.3-4 (cont'd):

1 able 0.3.2.3-2	+ (cont a).	Study Use	1 attern 1	01 D 11 02	700 20		I I OIIIC I	luits		
	TA				A	pplicatio	on			 &
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate lb #S#A (kg a.s./ha)	Retreatment Interval (days)	Total Rate B a.s.A (kg n.s.h)	Tank Mk& Adjuvatos
RV068-11HA	, WA Region 11 2011	BYI 02960 200 SL	TRTDD	Aighlast (dilute appl	81	201 (1879), 200 (1870)	©0.186 (0.20%) ©.186 (0.20%)		0.37 2 (0.447)	SuperSpread VSO@ 0.25%v/v SuperSpread VSO@ 25%v/v
RV069-11DA	Region 11 2011	BYI 02960, 200 SL	RTDC	Airblast (concentr. appl.)	78, 7 79, 5	48.65 (\$55) 245.24 (\$23)	0 × 3 (0.205) 2 0 × 7 (0.210)		\$370 \$0.4150 \$4	Herbimax@ 1%v/v
RV069-11DA	Region 1	BYI 02960 200 SL	TRTDD	Airblast (drufte appl.)	787 27 27 787	202 (1888) (1838) (1834)	0.178 (0.199) (0.82 (0.204)	10	0.360 (0.403)	Herbimax@ 1%v/v Herbimax@ 1%v/v
RV070-11HA	Region 5	BYI 02960 200 SL	TRTDC	Arrblast Concentr. apply)	78 81	38.84 (36%) 37.60 (352)	0.183 (0.205) 0.183 (0.205)	NA 10	0.366 (0.411)	Induce@ 0.2% v/v Induce@ 0.2% v/v
RV070-11HA		R\$1 02969 200/SI	TRIOD	Aidolast Gallute appl.	©78 81	216 (2019) 190 (1776)	0.184 (0.206) 0.183 (0.206)	NA 10	0.367 (0.412)	Induce@ 0.2% v/v Induce@ 0.2% v/v
RV071-11DA	Region \$	BYI 19960 200 SL	TRTDC	Airblast (concentr. appl.)	75 77	46.62 (436) 47.37 (443)	0.183 (0.205) 0.183 (0.205)	NA 10	0.366 (0.410)	Hasten@ 0.25% v/v Hasten@ 0.25% v/v
		7				1	Co	ontinu	ed on nex	:t page

Table 6.3.2.3-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Pome Fruits

	TA				A	pplication	n			0,° %
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Spray Volume GPA	Rate Ib ASMA (kg a.s./ha)	Retreatment Interval (day®	Total Rate bas.A (kg kksha)	Tank Markdinvator
RV071-11DA	, MI Region 5 2011	BYI 02960 200 SL	TRTDD	Airolast	75 \$\int_{\infty}^{\infty} \frac{1}{2}	186 (1739) 190 (1776)	(0.20%)	NA O	0.366 (0.449)	Hasten@ 0.25% v/v Hasten@ 4.25% v/v
RV072-11HA	, BC, Canada Region 11 2011	BYI 02960 200 SL		Airbust (concentr. appl.)	\$ 85	44,41 (415) 43.16 (404)	© 191 30.214 0.193 (0.246)	10 2	Ø:383 \$(0.430€) \$(0.430€) \$(0.430€)	Merge@ 1% v/v Merge@ 1% v/v
RV072-11HA	Falls, BC, Cardia Region 11	BY 102960 (2000)	TRTD	Airbest (ditute appl.)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$62 (\$\tilde{0}\$515) \$\tilde{0}\$ \$164 \$(1533)	0.186 0.209 0.190 (0.213)	10	0.376 (0.421)	Merge@ 1% v/v Merge@ 1% v/v

TRTDD Treated plot receiving two valued an olast applications.

TRTDC Treated plot receiving two concentrated an olast applications.

In the harvest trials, single composite samples of apples and pears were collected at a pre-harvest interval (PHI) of 14 days from all treated plots; in the decime trials (TRTDD plots), samples were collected 0, 7,14, 21,28, and 35 days after the second application.

In addition, apple samples were collected in mediately before the second application (IBA2), 10 to 11 days after the first application. And these samplings do not reflect the proposed use rate, the residue data from these samples were collected for informational purposes only.

The residues of By 102960, DFA, and FFEAF were quantitated by HPLC-MS/MS using stable isotopically labeled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. With the exception of one recovery sample, the overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were $\leq 20\%$ (Table 6.3.2.3-5).

Table 6.3.2.3-5: Summary of Recoveries of BYI 0296 from Apple and Pears

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)		Mearo Recoverya	Std W Dev.
		0.010	8 🗬	82, 69 87, 86, 95, 86, 93, 118	\ \\$9%_\\$	14%
Apple		0.100	8		105%	NA
	BYI 02960	0.500	<u> </u>		7 20% <i>(</i>	∲ NA
Pear		0.010	5	70,103,87,96,195	93%	13%
1 Cui		0.800		5 5 2103 5 0 0	\$\text{103}\$\text{\$\text{\$\text{\$\gamma\$}}}	3%
Apple		0.010			£9%	18%
прріс		0.100		\$4 \$7 \$2,586, 96, 79	× 84%	NA
	DFEAF	~\$0.010°	4	92586, 96, 79 °	88%	7%
Pear	Ö	0.500			101%	NA
	**	0.800		7 95 0	95%	NA
		© 0.050°	8	68,70 ^b , 86,103, 50, 87 ^b , 87 ^b , 97	86%	12%
Apple	SDE ALO	, 0. 59 0 ~	1	87 7 5 77 5	87%	NA
	DFA	~\ ∠ .300/.			77%	NA
Pear		0.05 0	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75, 97 ^b , 97 ^b , 106, 106	93%	14%
1 car	"U" ~ ``	0.300 1		24	124% ^a	NA

a Mean Recovery = mathematical Ferage Fall recoveries

The freezer storage stability study indicates that BYL 02960 residues were stable in spinach leaves and tomato fruits as representative crops of the respective commodity groups (high water content and high acid content) during frozen storage for at least 18 months (558 days) prior to analysis. The maximum storage period of frozen samples in this study for BY1 02960 was 211 days. A summary of the storage conditions are shown in Table 6.3 2.3-6.

b Outside of criteria range (70-120%)

Table 6.3.2.3-6: Summary of Storage Conditions for Pome Fruits

Residue Component(s)	Matrix (RAC)	Maximum Average Storage Temperature (°C) ^a	Actual Storage Duration months (days) b,c
BYI 02960	Apples and Pears	<-20	6 (211)
DFEAF	Apples and Pears	< -20	6 211)
DFA	Apples and Pears	< -20	Q 6 (210) S

- a The maximum average storage temperature is from the time of sample receiped BRP until sample extraction and is the maximum of all average freezer temperatures at BRP and BC Laboratories. White preparing for sample analysis, the samples were maintained in a laboratory freezer.
- b The storage duration is the time from field sampling through the last sample extraction.
- and A. 2012 Storage stability of BYI 02960, diffuoroasetic acid, and diffuoroethyl-amino-furanone in plant matrices. Bayer Copycience Report No. PARVP056, amended version including 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data for pome fruits following two foliar application(s) of BYI 02960 200 SL are shown in Table 6.3.2,3-7 (apple) and Table 6.3.2,3-8 (pear). Results from samples taken 200 3L are shown in Table 0.3.2.3-7 (appie) and Table 0.3.2.3-9. Results from sample just prior to the final foliar application are shown for apple in Table 0.3.2.3-9. These latter is not reflect the proposed use rate, and the residue data from these samples were collected for informational purposes only. just prior to the final foliar application are shown for apple in Table 6.3.2.3-9. These latter results do

Table 6.3.2.3-7: Total BYI 02960 Residue Data from Apple Fruits after Two Foliar Application(s) of BYI 02960 SL

-				1	Т	Т		1		0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total≪ate Ib a.s/A (kg a.s./ha)	Sampling interval (days aftoglast treatment) a	BYI 02966 D Residue (mg/kgg/	DFAResidue (mg a.s. &quiv./kg)	DFEARResidue & Ogg a.s. equiv.kg)	Agan BY 102960 Residue (mgy.s. equry./kg) b
RV050- 11HA	, NY, Region 1, 2011	TRTDC	Jonagold	Fresh Fruit	0.369 (0.414)	14	₹0.25 © ;	<0.030	≨9.010 √ ×	©0.31
RV050- 11HA	, NY, Region 1, 2011	TRTDD	Jonagold	Fresh Fruit	0.360 (0.441)	14	M11	\$0.050	<0.010	0.17
RV051- 11DA	, PA Region 1, 2011	TRTDC	Rome	Fruit Fresh Fruit	0.4070		0.338	≤0.050 ≤0.050	<0.010	0.40
						74 7 21 0	0.12	<0.0 3 0 <0.050	<0.010	0.17 0.19
						284 285 2	0.102	<0.050	<0.010	0.17 0.16
RV051- 11DA	, PA Region 1, 2011	TRTDD	Rome	Fruit &	@		0.289	<© 050	< 0.010	0.35
11211	1, 2011 &			Fruit A		⁶ √14 ¢	0.107	<0.050	<0.010	0.23
) }		21 0	0.108 - 081	<0.050 <0.050	<0.010 <0.010	0.17 0.14
RV052-	O O O	TRADC	Rome Beauty	» Fresh	©.366 ©	\$35 14,00	0.080 0.050	<0.050 <0.050	<0.010 <0.010	0.14
11HA RV052	Region 2, 2011, Region 2, 2011	TRT D	Rome Beauty	Fruit " Fresh Fspiit	0.41 <u>4)</u> 0.385 (0.410) 3	014	0.084	<0.050	<0.010	0.14
RV053-	MI Region 9, 201	TRTDC	Red Delicious	Fresh (Fruit	0.364	14	0.016	<0.050	<0.010	0.08
RV053-	MO	TRÆDD	。♥Red O″	Fresh	69.363 (0.406)	14	0.060	0.050	<0.010	0.12
RV054-	Region 5, 2011 Region 5, 201	TRTDO	Golden	Fresh Fruit	0.367	0	0.447	< 0.050	< 0.010	0.51
11DA	Region 5, 20	4	Delicious	Fruit	(0.411)	7	0.322	< 0.050	< 0.010	0.38
4	\mathcal{L}_{λ}			S. J.		14	0.296	0.088	< 0.010	0.39°
	*					21	0.245	0.164	<0.010	0.42
						28	0.194	0.160	<0.010	0.36
RV054- @		TRTDA	Golden	Fresh	0.366	35	0.241	0.270 <0.050	<0.010	0.52 0.46
11DAS	Region 5, 2011		Delicious	Fruit	(0.410)	7	0.370	0.030	<0.010	0.40
	Region 5, 2011					14	0.209	0.146	< 0.010	0.37
						21	0.181	0.193	< 0.010	0.38
l S).					28	0.260	0.362	< 0.010	0.63 d
						35	0.195	0.297	< 0.010	0.50

Table 6.3.2.3-7 (cont'd): Total BYI 02960 Residue Data from Apple Fruits after Two Foliar Application(s) of BYI 02960 SL

		Арри	cation(s) of B	110290	O SL					0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total A ate Ib a.s/A (kg a.s./ha)	Sampling interval (days after last treatment) a	BYI 02960 B Residue (mg/kgg/2)	DFAResidue (mg a.s. Equiv./kg)	DFEARResidue & Ogg. 3.5. cqop./kg)	Total BY 02960 Residue (mg), s. equa./kg) b and
RV055- 11HA	, UT Region 9, 2011	TRTDC	Gala	Fresh Fruit	0.363 ₄ (0.406)	14	(P 0.07#Q; ************************************	<0.630	≶9.010 √ ∕\$	© 0.14
RV055- 11HA	, UT Region 9, 2011	TRTDD	Gala (Fresh Fruit	0.359 (0.493)	14	Ø118	©0.050	<0.010	0.18
RV056- 11HA	CA Region 10, 2011	TRTDC	Summertald	Fresh	0.364 0.4080	14.4	0.068	<0.050	© * 0.010	0.13
RV056- 11HA	CA Region 10, 2011	TRTDD		Fruit	0.365 (0.400)		0.205	0 .079 ²	×0.010	0.29
RV057- 11HA	Region 11, 2011	TRITOC	Early Spur' & Some	Fresh Fron	(0.374) (0.499)	14 ×	.0788 7	0.050	<0.010	0.25
RV057- 11HA	Region 11, \ 2011	TRTDD (Early Spur' Rome	Fresh Fruit	0.369 (0.414)	14	0,224	<0.050	<0.010	0.28
RV058- 11HA	OR Region 11, 2011	TRADC		Fresh Fruit	(0.405)	140	0.060	<0.050	<0.010	0.12
RV058- 11HA	OR Region 110	TRTDD		Fresh (Fruit	0.365 (0.469)	14	0.094	<0.050	<0.010	0.15
RV059-	, ID	TRTD	Jogathan	Fresh	0.363	0	0.198	< 0.050	< 0.010	0.26
11DA	Region 11 2011] 	Josathan Q	LIUM	(0.407)	7	0.153	<0.050	<0.010	0.21
4	2011	\$\frac{1}{2}\frac{1}{2		Zy		14	0.175	<0.050	<0.010	0.23
				y		21	0.082	<0.050	<0.010	0.14
						28	0.132	0.057	<0.010	0.20
RV059-		POTON	Jonathan	Eroch	0.366	35	0.070	0.069 <0.050	<0.010	0.15
11046	Region 114	TRTDD	Jonathan	Fresh Fruit	(0.410)	7	0.092	<0.050	<0.010	0.15
	Region 11,					14	0.108	< 0.050	<0.010	0.17
		Ž ^y				21	0.118	0.050	<0.010	0.18
	*					28	0.069	0.052	<0.010	0.13
						35	0.063	0.056	<0.010	0.13
		l			l		0.005	0.000	0.010	0.13

Total BYI 02960 Residue Data from Apple Fruits after Two Foliar Table 6.3.2.3-7 (cont'd): Application(s) of BYI 02960 SL

			cation(s) of B	110=>0	OBL					0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total-Cate Ib a.s/A (kg a.s./ha)	Sampling interval (days affic) ast treatment) a	BYI 02960 L Residue (mg/kgg)	DFAResidue (mg a.s. @quiv./kg)	DFEARResidue & Oga a.s. equiv.kg)	Agtal BY 102960 Residue (mga.s. equr./kg) b 220
RV060- 11HA	NY Region 1, 2011	TRTDC	Greening Perennial	Fresh Fruit	0.371 (0.415)			<0.630 >>		0.12
RV060- 11HA	NY Region 1, 2011	TRTDD	Greening Perennial	Fresh Frait	0,568	Q14	0.097		<0010	\$9.16
RV061- 11HA	, MI Region 5, 2011		Golden () Delicio ()	Fresh Front	0.667 (6.412) <i>/</i>	744	0.219	0.00	<0.010 \(\sigma\)	0.29
RV061- 11HA	, MI Region 5, 2011	TRTD	Golden Delicions	Fresh Fruit		Q4 	0.153	7 0.06 6 7	<0.010	0.22
RV062- 11DA	Region 5, 2011	PRTDG	Yellow & Delicious	Fresh Frio	(0,411)	0 7 % 14 0	0.154 0.148	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	0.40 0.21 0.21
						<u>.</u> \$₹28	0.151	<0.050	<0.010	0.17
RV062- 11DA	Region 5,	TRTDE	Yollow Delicious	Fresh Frank	0.368 (0.412)	35,0	0.132 0.248 0.133	0.100 <0.050 <0.050	<0.010 <0.010 <0.010	0.24 0.31 0.19
						14 21 28	0.109 0.128 0.090	<0.050 <0.050 0.056	<0.010 <0.010 <0.010	0.17 0.19 0.16
					Ď .	35	0.077	0.064	< 0.010	0.15
	Region 5, 2011						Con	tinued or	n next pa	ge

Table 6.3.2.3-7 (cont'd): Total BYI 02960 Residue Data from Apple Fruits after Two Foliar Application(s) of BYI 02960 SL

										0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total gate Ib a.s/A (kg a.s./ha)	Sampling interval (days after last treatment) a	BYI 02960 Residue (mg/kg%)	DFARE (mg a.S.	DFEARResidue	Total BY 92960 Residue (mg), s. equal./kg)
RV063-	2	TRTDC	Jonagold	Fresh Fruit	0.368 /	, Ĭ4 <i>@</i>	0.104Q	<0.030	9 .010	Ø.16
11HA	OR			Fruit	(0.412)@	14	. ~		Ki ≪C	
	Region 11,								<i>a</i>	
	2011		4				\(\)		©.010	L°
RV063-	,	TRTDD	Jonagald	Fresh	©.367 _≈	14,4	0.142	<0.050	©0.010	0.20
11HA	OR		Jonagela	F ruit	(0.4110	14.4	0.142	Ž 4	30.010	
	Region 11,							<0.050 <0.050		
	2011						ľ Š		, Q	

- Sampling interval is the interval between last application and sampling state.
- Total BYI 02960 residue is the surf of BYI 02960, DFA, and DFEAF residue on parent equivarents. Residue measurements below the analyte LOQ were surfixed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the unper limit of what the residual evels much to the surface of These totals represent the upper limit of what the residue levels might be.

 c The maximum total BY1 02960 residue found at the proposed 14-day BHI.

 d The maximum total BY2 02960 gesidue found at the proposed 14-day BHI.

 TRTDD = Treated plot receiving two diluted airblest applications.

 TRTDC = Treated plot receiving two concentrated airblast applications.

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Total BYI 02960 Residue Data from Pear Fruits after Two Foliar Application(s) of Table 6.3.2.3-8: BYI 02960 SL

		1 02900 8								0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total & ate Ib a.s./A (kg a.s./ha)	Sampling interval (days aff@last treatment) a	BYI 02960 D Residue (mg/kgg/	DFAResidue (mg a.s. Equiv./kg)	DFEARResidue & (Og a.s. coor, kg)	Total BY 92960 Residue (mga.s. equiv./kg)
RV064- 11DA	, NY Region 1, 2011	TRTDC	Bartlett	Fresh Fruit		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.39Q 0.398 0.216 0.174 0.166	0.61 0.164 0.151 0.166 0.200 0.186	<0.010 <0.010 <0.010 <0.010 <0.010 <0.000	0.50 0.51 0.38 0.34 0.38 0.29
RV064- 11DA	, NY Region 1, 2011	TRTDD				28 35	0.446 0.37 0.203 0.174 0.162	0.252 0.252 0.271	0.0100.0100.0100.0100.0100.010	0.63 0.58 0.50 0.44 0.40 0.44
RV065- 11HA RV065- 11HA	Region 5, 2011 Region 5, 201	TRÆ C	Bartlett Bartlett	Fresh Fruit Fresh Fryft	0.366 0.410 0.369 (0.411)	0 14 0	0.213	0.225 0.154	<0.010	0.45
	Region 10, 2011	TRPDC	Bartlett	Fruit		140	0.059	<0.050	<0.010	0.12
RV066 11HA	Region 10, 2011 Region 10, 2011 CA Region 10, 2011 CA Region 10, 2011	TRIPOD	Bartlett	Fresh Eruit	0.364 ° (0.408)	√ 14	0.197	0.097	<0.010	0.30
RV067-	, CA	TRTOC	Shinko 😽	Fresh	0364	0	0.194	< 0.050	< 0.010	0.25
IIDA	2011			Q a	(0.408)	7	0.209	<0.050	< 0.010	0.27
					V	14	0.166	<0.050	<0.010	0.23
		~\\ .a				21	0.144	0.070	<0.010	0.22
				Q ³		28	0.069	0.081	<0.010	0.16
RV067	CA	TRTA	Shinko	Frech	0.371	35	0.055	0.093	<0.010	0.16
11DA	Region 10,			Fruit	(0.416)	7	0.275	<0.050 <0.050	<0.010	0.34
	2014					14	0.239	<0.050	<0.010	0.30
~						21	0.174	< 0.050	<0.010	0.24
						28	0.174	0.066	<0.010	0.21
						35	0.118	0.087	< 0.010	0.21
	1							1.50,	1 2.010	

Table 6.3.2.3-8 (cont'd): Total BYI 02960 Residue Data from Pear Fruits after Two Foliar Application(s) of BYI 02960 SL

_		rr				1	I	I		<i>m,</i> ~
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total-Cate Ib a.s./A (kg a.s./ha)	Sampling interval (days affer last treatment) a	BYI 02966 D Residue (mg/kgg	DFAResidue (mg a.S. @quiv./kg)	DFEARRESIDUE & ON ON ON ON ON ON ON ON ON ON ON ON ON	Fotal BY 92960 Residue (mgy.s. equiv./kg)
RV068- 11HA	Region 11, 2011	TRTDC	Concorde	Fresh Fruit	0.368 (0.413)	14 0	? 0.25£ 	0.61	9.010 5	Ø.43
RV068- 11HA	, WA Region 11, 2011	TRTDD	Concorde	Fresh Front	0.3 6 52 (0.417)	Qr4	8.225 C	0.216 W	<0.010	0.44
RV069- 11DA	Region 11, 2011	TRTDC	Bardett (Fresh	0.370	V 7	0.254	<0.050	<0.000 <0.010	0.31
	2011					140°	04 [©] 9 0.192 %	©0.050°2	<0.010	0.20
					8	28 35 S	0.175 0.184	0.107	<0.010	0.29
RV069- 11DA	Region 11 2011	TRTDD	Bartlett	Fresh Fruit	(0.360° (0.403)	0 0 7 0	√0.295 € √ 0.167%	<0.050 <0.050	<0.010 <0.010	0.35
						14	0.158 0.125	0.056 0.072	<0.010 <0.010	0.22
						35	0.106 0.125	0.081	<0.010 <0.010	0.20
RV070-	Region 11.0 2011	TRTDE	Bootlett	Fresh	0.366 (0.411)	~j4 0	0.319	0.261	<0.010	0.59
RV070- 11HA	Region 11, 5	TRTDD	Barftett Bartlett Bartlett	Fresh (Fruit,	0.367	14	0.155	0.194	<0.010	0.36
RV071-		TOTOC	Bartlett	Fresh	0.366	0	0.648	0.068	< 0.010	0.73
11DA	, IVII			Fruit	(0.410)	7	0.508	0.105	< 0.010	0.62
	Region 11, 2011	4				14	0.467	0.167	< 0.010	0.64
4				S.		21	0.386	0.206	< 0.010	0.60
) [*]		28	0.264	0.270	< 0.010	0.54
	\$ 1		S Q'			35	0.275	0.326	< 0.010	0.61
RV071-	,	TO TOD	Bartett			0	0.361	< 0.050	< 0.010	0.42
IIDA	Region 11		ν	Fruit	(0.410)	7	0.314	0.086	< 0.010	0.41
	\$011 \$\langle\$	Ž				14	0.208	0.102	< 0.010	0.32
						21	0.169	0.161	< 0.010	0.34
, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		7				28	0.138	0.149	< 0.010	0.30
L C						35	0.107	0.144	< 0.010	0.26

Table 6.3.2.3-8 (cont'd): Total BYI 02960 Residue Data from Pear Fruits after Two Foliar Application(s) of BYI 02960 SL

		Аррис	anon(s) or b	110290	USL					
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total date Ib a.s./A (kg a.s./ha)	Sampling interval (days after last treatment)	BYI 02966 L Residue (mg/kgg)		DFEARResidue & Oggas.s. eq@p/kg)	Agtal BY 82960 Residue (mga.s. equil/kg) b 220
RV072- 11HA	, BC, Canada Region 11, 2011		Anju	Fresh Fruit Fruit Fresh Fruit	0.383	14	0.39\$\$\$ \$0.39\$\$\$ \$0.39\$\$\$ \$0.39\$\$\$	\(\infty\) \%		0.70
RV072- 11HA	, BC, Canada Region 11, 2011	TRTDD		. « .	10.421				3 .010	
a samplin b Total B measure These to TRTDD = T TRTDC = T	g interval is the in YI 02960 residue is ements below the abtals represent the Greated plot receive freated plot received and the state of the state	terval betwise the sum of the sum	and last application of BY102960, In Discourse Summed of what the rest of the control of the con	tion and so A, and Sinto the into the i	appling da SFEAR Se otal BY 1 02 s might be.	ře. jdue hypar 2960 residy	en oquival te value a	ots. Residente analyte	lue LOQ value	ē.

Total BYI 02960 Residue Data on Apple Fruits Collected Immediately Prior to the Table 6.3.2.3-9: Final Foliar Application of BYI BYI 02960

	1 111		Application o	15115						0
Lrial Identification NO50- 11HA	Location (City, State, XX, Region, and Year)	Plot Name	Crop Variety	Commodity	Total atc 100 Total	(days after Jast treatment)	BYI 02966 & Residue (mg/kgg)	DFAResidue (mg a.S. @quiv./kg)	DFEAR Residue & Office of One	Gardia BV 2000 Residue (mga.s. equiv./kg) b
RV050- 11HA	, NY, Region 1, 2011	TRTDD	Jonagold	Fresh Front	0.367	-0(0BA2)	\$0.062 T	(2) \(\frac{1}{2} \)	<0.000 <0.000 0.00	0°12
RV051- 11DA	, PA Region 1, 2011	TRTDC	Rome (Fresh Frûnt	0.368	-0(1BA2)	50.072 50.072	0.050	<0.090	0.13
RV051- 11DA	, PA Region 1, 2011	TRTD	Rome (Fresh Fruit	0.3 9 (0.425)	-0(A)(A2)	9.081	0.050	<0.010	0.14
RV052- 11HA	GA Region 34	TRTDC	Rome Beauty	Fruit	(0.491)	-0(IBA2)	-0,041 °	×0.050	<0.010	0.10
RV052- 11HA	GA Region 2.		Rome Beauty	Fruit >	%	-0(IBA2)	Q 950	<0.050	<0.010	0.11
RV053- 11HA RV053-	PMI Region 5, 2011	TRADC	Red Delicious	F 01	(0.407)	20(IBA2) → (IBA2)	0.018	<0.050	<0.010	0.08
11HA			Delicious	Pruit ((0.406)	-0(IBA2)		<0.050	<0.010	0.12
11DA RV054-	Region 5, 2011	TRTDD		From (0.366 0.366	-0(IBA2)	0.176	<0.050	<0.010	0.24
	Region 5, 2011	ŘŘTD É ,	Delicions	Fresh Fresh Fresh	(0.410)	-0(IBA2)	0.088	<0.050	<0.010	0.15
11HA RV055-	Region 9, 2011			Fruit	0.406)	-0(IBA2)	0.079	<0.050	<0.010	0.14
11HA	Region 2011		* *	Fruit	(0.403)		Con	tinued or	n next pa _z	ge

Total BYI 02960 Residue Data on Apple Fruits Collected Immediately Prior to the Final Foliar Application of BYI BYI 02960 Table 6.3.2.3-9 (cont'd):

			Tillal Tollal F	-P P						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Ante P. C. Dass./A (kg a.s./ha)	Sampling interval (days after last treatment)	BYI 02960 BY Residue (mg/kgg 200)	DFAResidue	DFEARRESIDUE & DFEARRESIDUE & ON ON ON ON ON ON ON ON ON ON ON ON ON	Gagal BY \$2960 Residue
11HA	, CA Region 10, 2011				(0.408)			0.030		
RV056- 11HA	CA Region 10, 2011	TRTDD	Summerteld	Fresh	0.365					2 0.24
RV057- 11HA	Region 11, 2011	TRTDC	°~	Fresh Fruit	0.374	Ø(IBAQ)	0.075	50 050,	ॐ 0.010 У	0.13
RV057- 11HA	, ID, Region 11, 2011	TR¥DDD	Early Spar Rome	Fresh Pruit	0.369	O(IBA2)	0.132	<0.030	<0.010	0.19
RV058- 11HA	OR Region A,	TRTIO	Hopey Crisp	Freeh Ewit	0,382 (0,405)	-OH/BA2)	0.042	<0.050	<0.010	0.10
RV058- 11HA	OR 7	TRTDĎ	Herrey Crisp	Fresh Fruit	9,365 (9,409)((IBA2)	0.049	<0.050	<0.010	0.11
RV059-7 11DA	2042	TRABC	Jonathan		0.363	(IBA2)	0.072	<0.050	<0.010	0.13
RV059- 11DA	, IB	TRTĐĎ	Monathan	Fresh Fruit	0566 (0.410)	-0(IBA2)	0.085	<0.050	0.010	0.14
RV060- 11HA	,¢	TRTAC	Greening Perennia	Fresh FOIt	0.371 (0.415)	-0(IBA2)		<0.050	<0.010	0.13
RV060- 11HA	NY Region 12011	TRTOD	Ferennial	Fresh Fruit	0.368 (0.413)	-0(IBA2)	0.067	<0.050	<0.010	0.13
	Region K2011						Con	tinued or	ı next paş	ge

Table 6.3.2.3-9 (cont'd): Total BYI 02960 Residue Data on Apple Fruits Collected Immediately Prior to the Final Foliar Application of BYI BYI 02960

										0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total ∰ate Lb a.s./Å (kg a.s./ha)	Sampling interval (days after last treatment) a	BYI 02960 BRY Residue (mg/kgg)	OK DFACResidue (mg a.s. Equiv./kg)	DFEACResidue & ODFEACRESIAN (2)	Aotal BY 02960 Residue (mgr.s. equil./kg) bala
RV061-	, MI	TRTDC	Golden	Fresh	0.367	-0(IBA2)	0.14 Q	<0.630	\$0.010	Ø.20
11HA	Region 5, 2011		Delicious	Fresh Fruit	(0.412))	~ ×			
					Ď ĮŽ		W.		√ . [™]	
RV061-	, MI	TRTDD	Golden	Fresh	0.864	-0@BA2)	6 .107	<0.050	<0:010	0:17
11HA	Region 5, 2011		Delicions,	Front	0. 36 4 (0.408)	Q .4		0.	<0.010	Ũ
					S, Č		~O`			*
RV062-	, MI	TRTDC	Yellow &	Fresb	0.367	-0(JPÅ2)	20 .086	×0.050	<0.000	0.15
11DA	Region 5,		Delicious	Fruit	(0.471)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Ö	
	2011			· ·	*		الله الله	Ţ,	S.	
RV062-	, MI	TRTDD	Yellow Delicious	@resh_	0.3685 (0.412)	-0(IBA2)	QQ12	©0.050	[≫] 0.010	0.17
11DA	Region 5,		Delicious	[©] Frui t ∂	(0.412)					
7770 64	2011	W ^y			(A) 2 (C)		0 0	A	0.010	0.10
RV063-	,	TRTDC	Jonagold	Presh	9 .368	-0(IBA2)	0.072	20 .050	< 0.010	0.13
11HA	OR	'Y A		Struit &	(0.412)					
	Region 11,				`~\	0 4				
DV/062	2011		VI. and VI.	Sark.	₩' ₩ 2 <i>67</i> @		0.050	<0.050	<0.010	0.11
RV063- 11HA	, and the second	TRTDD	Jonagold	Fresh	0.367@ (0.449)	-0(IBA2)	0,050	< 0.050	< 0.010	0.11
ППА	OR 11	\ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		riuity L	(U.483)					
	Region 11,5	\$					_			
		W		, W	(X)					

- a Pre-Harvest Interval (PHIX is the interval between law application and ampling date.
- b Total BY 02960 residue is the sum of BY 02960, DFA, and DFE is residue in parent equivalents. Residue measurements below the analyte LOQ yere summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.

TRTDD = Treated plot recoving two diluted airblas opplica ons

TRTDC = Treated plot receiving two concentrated airblast applications

IBA2 = Immediately before the second application (= application 2)

Conclusion

Twenty-three field trials were conducted to measure the magnitude of total BYI 02960 residue in/on apples and pears following two foliar spray applications of BYI 02960 200 SL following two airblast applications, either with a concentrated or a diluted spray solution. In total eight decline trials were conducted, four in apple and four in pear .

The total FYI 02960 residue data for pome fruits are summarized in Table 6.3.2.3-10.

Table 6.3.2.3-10: Summary of Residue Data for Total BYI 02960 from Pome Fruits

	2	A			Total BYI 02960 Residue Levels (ppm) ¹						· .
Commodity	Plot Name ²	Total Application Rate lb a.s./ (kg a.s./ha)	PHI (days)³	u	Min at PHI	Max at PHI	Max after PHI	AAQT 3	Median 4	Mean Un	Standach Deviation
Apples	TRTDC	0.362 to 0.374 (0.405 to 0.419)	14	14	0.076	0.395	0.52	» NA ⁶	~~~	1 // /(9 .092
Apples	TRTDD	0.359 to 0.379 (0.403 to 0.425)	14	14	0.120	0.366	0 6 3 28) ⁵	NA @	0.1739	0.290	0. 66 9
Pears	TRTDC	0.364 to 0.383 (0.408 to 0.430)	14	9	1 119	0.701		NA Q	Q ,426	Ø.414	0.205
Pears	TRTDD	0.360 to 0.376 (0.403 to 0.421)	14	\$	0.234 Ø	0502		NAO	0.320	0:335	0.090

1 Data from the decline trial samples collected at intervals other that the 14-day PHI are not included this table.

2 TRTDC = Treated plot receiving two concentrate airblast applications;
TRTDD = Treated plot receiving two dilute orblast applications;

3 HAFT = Highest Average Field Trial.

4 calculated on the basis of residue values at the PMI

5 Sampling day showing highest residue

6 NA = Not applicable. A single sample was collected from such treated plot.

Most trials showed a general slow decline in total BYI 02960 residues throughout the sampling intervals. Other trials showed a decrease in table BYI 02960 residues throughout the sampling intervals. intervals. Other trials showed a decrease in total BY 02960 residue with either Develing of the total residue or a slight increase in total residue at the end of the decline intervals. One trial in apple showed the highest residue a day 35, the last sampling day of the decline trials. However the overall highest residue level (0.70 mg/kg) was detected at the PHI of 14 days.

The total BYI 02960 residues in the representative commodities for Crop Group 11 (Pome Fruits; apples and pears) were within a factor of 5 of each other and, therefore, within the EPA guidelines for

IIA 6.3.2.4 Berries and small fruit - grapes

Residue data from NORTH AMERICA (Crop Subgroup 13-07F)

BYI 02960 is to be registered in USA and Canada for use as a foliar or soil treatment in/on small fruit vine climbing subgroup, except fuzzy kixifruit (crop subgroup 13-07F). The use patterns in North Control of the control of the America are summarized in Table 6.3.2.4-1.

A total of sixteen trials were conducted in grapes as representative test Wstem. The studies described below.

Target Use Patterns for the Application of BYI 02960 in/on Small Fruit Vine Table 6.3.2.4-1: Climbing Subgroup (Crop Subgroup 13-0 F) in North America

						(7/1)	× // //		~ 3//		,	
				Formulated Product (FP) Active Substant				Farget.				V ol ůme
App-			rrouu	ici (FF)	Active Si	instance	(a,s,)	OApp.	Target	Adjuvænt/ Adestive		
lication	Test	No. of		Q		∜lb ~	∜kg ≾	/Interval	PH	Additive		
Type	Substance	Apps	mL/A	fl oz/A	Name of ass	🌣 a.s./A📞	a.s./ha	(Days)	(Days)	(%)	GPA	LPHA
TRTDF	BYI 02960 200 SL	2	415	14.0	BYI 02980	0.083	905 2005	\$ ⁰ 10 \$		0.25	200- 300	1870- 2806
TRTDS	BYI 02960 200 SL	1	83%	28.1	B) 02960	0.366	0.414)/	3 0	0.25	NA ¹	NA ¹

¹ NA = Not applicable

TRTDF = Treated plot receiving two proadcast foliar spray applications
TRTDS = Treated plot receiving a single soil applications

Report	KMA 6,32.4/01, 2012
Title:	BYI 02960: Magnitude of the Residue in/on Small Front Vine Climbing Subgroup (except
	Fuzzy Kiwitait), Cop Subgroup 13-07F)
Report No &	RARVY007, dated June 4,2012
Document No	Q1-432 18v1-01-25
Guidelines 🖏	US: PA Residue Chemistre Test Guidelines OPPTS 860.1500, Crop Field Trials
Q1	Canada: PMRA DO CO 7 1.1, Supervised Residue Trial Study
Q	□ □ □ MRA DACO 4.2. Résidue Decline
4	OECD GuidQines for the Tosting of Chemicals, 509, Crop Field Trial,
CID C	Taypica Sept. 7, 2007.
GLP	

Sixteen field trials were conducted to measure the magnitude of BYI 02960 residues in/on grapes as a representative frop for NALIA small fruit vine climbing subgroup following two broadcast foliar spray applications or a single soil application of BYI 02960 200 SL. BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.4-2).

Table 6.3.2.4-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Grapes

NAFTA Growing Region	Submitted ^a	Requested
1	2	2
5A	4	4
10	8	8
11	2	2
Total	16	6 16

Material and Methods

Two use patterns/application forms were tested: either two two broadcast foliar spear applications or a single soil application of BYI 02960 200 SL. For plots receiving two airbrest applications, individual application rates ranged from 0.168 to 0.189 lb BY 02960/A/application (0.188 to 0.211 kg BYI 02960/A (0.388 to 0.417 kg BYI 02960/ha). The interval between the applications was 9 to 11 days. For plots receiving a single collection of the control of the collection BYI 02960/ha/application) and total seasonal application rate anged from 0.346 to 0.372 lb days. For plots receiving a single soft drength application application rates ranged from 0.364 to 0.380 lb BYI 02960/A (0.408 to 0.426 kg/BYI/02960/ba). All applications were made at growth stages ranging from BBCH 75 to 89 (BBCH 75: berries per sized Gunches hanging; BBCH 89: berries ripe for harvest). All applications were made using ground-based equipment. A typical non-ionic surfactant (Dyne-Amic or Agral 90) was used as adjuvant in all of the applications at 0.25% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 63.2.4-3. Study use patterns are summarized in Table 0.3

Trial Site Condition for BY 1 02950 on @apes

Trial		Soil		cteristi	cs ^a		ological ta ^b
Identification Crop	Trial Location (City, Sountry State Year)	John O	OM (%)	рН	CEC (meq/100g soil)	Total Rainfall (in)	Temp. Range (°F)
RV092-10DA Grape	NYO (P %	1.4	4.3	7.8	13.29	42-80
RV093-10HA Grape	Q'A A	Loam	2.8	5.9	10.7	10.19	63-95
RV094©0HA Grape	, and	kom kom	1.8	7.2	11.4	6.58	49-80
RV095-10DA Grape	ON	Loam	1.8	7.2	11.4	10.86	39-80
RV096-10HA		Loam	1.8	7.2	11.4	6.58	49-80
RV097-10FA Grap®	Ç, ON O	Loam	1.8	7.2	11.4	6.58	49-80
RV98-10DA	, CA	Loam	1.5	8.1	17	0.01	52-93
R\$7099-100A Grape	, CA	Loamy sand	0.5	8.2	6.9	0.00	51-96
RV100/10HA Grape	, CA	Loamy Sand	0.5	8.2	6.9	0.00	55-96

Table 6.3.2.4-3 (cont'd): Trial Site Conditions for BYI 02960 on Grapes

Trial		Soil	Chara	cteristi	cs ^a	Meteorological Data ^b D		
Identification Crop	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp, Range	
RV101-10HA Grape	, CA	Sandy Loam	0.7	7.6	9.3	0.00	59-92	
RV102-10HA Grape	, CA	Clay Loam (∂ 2.3	3.7	36.4	×1.15	45-87	
RV103-10HA Grape	, CA	Clay loans	1.8	7.80	19.1	0,00	\$2-93	
RV104-10HA Grape	, CA	Loams	0.4_	6.5	\$ 5Q \	0.00	55 3	
RV105-10HA Grape	, CA	Sandy Loan	1.21	6.9	38.7	0.00	60-96	
RV106-10HA Grape	, WA	Sandy Loam	3.2	Q7.6	13.9	01.35	40-84	
RV107-10HA Grape	, OR	Loam	~2% ************************************		\$\frac{1}{2}\text{9.8} \text{9}	0/2/5	41-73	

- Abbreviations used: %OM = percent organic matter; CEC = cation exchange capacity.

 Data is for the interval of the month of first application through the month of last campling. Meteopological data were obtained from nearby government weather stations.

 NA = Not Available.

 ble 6.3.2.4-4: Study Use Pattern for BYI 02/60 200 SL on Grapes.
- c NA = Not Available.

Table 6.3.2.4-4:

			. <i>Q</i>	<i>X X X</i>	JI .	- (
						pplicatio	on _©			
Identification	Location (City State, NAFTA Cing	Control of the contro	ot Name:		age/(RBCH)	Spray Volume GPA (Wha)	Rate lb a.s./A (kg a.s./ha)	Retreatment Interval (days)	Total Rate 1b a.s./A (kg a.s./ha)	Tank Mix Adjuvants
RV092-10DA	NY Region 2010	BYI 02960 200 SL	TRODF	Arblast	85	51 (476)	0.186 (0.209)	NA	0.371 (0.416)	Dyne-Amic @0.25%v/v
					89	50 (472)	0.185 (0.207)	10		Dyne-Amic @0.25%v/v
RV092-40DA	IN Y	B 9 02960 200 SL	TRTDS	Chemi- gation	83	NA	0.366 (0.410)	NA	0.366 (0.410)	Dyne-Amic @0.25%v/v

Study Use Pattern for BYI 02960 200 SL on Grapes Table 6.3.2.4-4 (cont'd):

	3.2.4-4 (cont.d). Study Ose Fattern for B 11 02900 200 SL on Grapes								
				A	pplicatio	n	ı		<i>Q</i> ° %
Trial Identification Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wether Services	Timing/Growth Stage (BBCH)	SprayVolume GPA (L/ha)	*Rate IB a.s./A (kg*is./ha)	Betreatment Interval (days)	Less Constitution of the c	Tank Mix Adjugants 29
RV093-10HA Region 1 2010	200 SL	TRTDE	Airt Cast	899 T	2 (v (40)67) 20(5) (1953)	(₩.207)		0.369 0.4130 0.366 (0.410)	Dyne-Amic @0.35%v/v Syne-Amic @0.25%v/v
RV093-10HA Region 1 2010	BYI 02960 2008L		Drip				NÓ	0.3%6 (0.410)	Dyne-Amic @0.25%v/v
RV094-10HA Region 5	BYL02960 200 SL	TRTDES	Airbast	\$35 \$35	267 (\$314)	0×168 ((0.188) (0.188) (0.188) (0.188) (0.199)	9	0.346 (0.388)	Agral 90 @ 0.25 % Agral 90 @ 0.25 %
RV094-101A Region 5	B\$\$\02966\$\$\\200 SL		Drivine .		ĐĂ	0.364 (0.408)	NA	0.364 (0.408)	Agral 90 @ 0.25 %
RV095-10DA Region 2010	BYI 02960 2008L	TRADE	Airblag	83	42 (392) 38	0.175 (0.197) 0.185	NA 9	0.361 (0.404)	Agral 90 @ 0.25 % Agral 90 @
			,	0,	(353)	(0.207)			0.25 %
RV095-10DA gegion 5 2010	\$YI 02960 200 SL	TRTĎS ũ	Dripline irrigation	75	NA	0.364 (0.408)	NA	0.364 (0.408)	Agral 90 @ 0.25 %

Study Use Pattern for BYI 02960 200 SL on Grapes Table 6.3.2.4-4 (cont'd):

Table 6.3.2.4-2	(cont a).	Study Use Pattern for B 11 02900 200 SL on Grapes									
					A	pplicatio	n	Π	T	o° >	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methode S	Timing/Growth Stage (BBCH)	SprayOglume GPA (L/ha)	* O.S. ** O.S. ** O.S. ** S.A. (kg*** S.A.ha)	ا کھے ا	Les Constitutions (1984) And Constitutions (19	Color Color	
RV096-10HA	Region 5 2010	BYI 02960 200 SL	TRTDE			145 (4591) 252 (2359)	0783 (0.205) 07188 0.2113		0.371		
RV096-10HA	Region 5	200 SL	TRTDS				0.364	ON A	%/364 (0.408)	Agral 90 @ 0.25 %	
RV097-10HA	Region 5	BYI 92960 200 SL 4	*DRTDF	Airbīast	850		0 89 (0.211)	NA	0.372 (0.417)	Agral 90 @ 0.25 %	
						(©34)	0.184 (0.206)	9		Agral 90 @ 0.25 %	
RV097-10HA	Region 5 2010	256 SL				NA	0.364 (0.408)	NA	0.364 (0.408)	Agral 90 @ 0.25 %	
A STATE OF THE STA	Regien 10 2 2010	77 27 70 27 70 27	TREDF	Arblast	83	246 (2296) 246 (2304)	0.184 (0.206) 0.185 (0.207)	NA 11	0.369 (0.413)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v	
RV098-40DA	CA Region 10.	BY 02960 200 SL	TRTDS	Drench	77	NA	0.366 (0.410)	NA	0.366 (0.410)	Dyne-Amic @0.25%v/v	

Table 6.3.2.4-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Grapes

					A	pplicatio	n			Qı° 🗞
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methode S	Timing/Growth Stage (BBCH)	Sprawyglume GPA (L/ha)	* Co *Rate 1B a.s./A (kg*n\s\na)	Betreatment Interval (days)	O. C. C. C. C. C. C. C.	Ch Che Ching Ching Taink Mix Adhivants 199
RV099-10DA	, CA Region 10 2010	BYI 02960 200 SL	TRTDE		85 X	220 (2062) 220 (2076)	0284 (0.207) 0484 (0.206)		0.368	Syne-Amic
RV099-10DA	, CA Region 10 2010	BYI @2960 200 SL			76		0.366 (9.410)		Ø.366 (Ø.410)	EXP8089- 2A 0.25% v/v
RV100-10HA	Region 10	BY 7029602 2000 SI	TRTIO	Alegrast		2083) (2083) (2085)	0.186 0.209 0.209 0.280 (0.202)	10	0.366 (0.410)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v
RV100-10H	, CA Region 10 2010	BYI 02960 206 SL	TRTDS	Drench	75 V	NAS NAS	0.366 (0.410)	NA	0.366 (0.410)	EXP8089- 2A 0.25% v/v
RV101-10HA	CA Region	BYL@2960	TRTDF	Airblast	89	240 (2244) 235	0.188 (0.211) 0.184	NA 10	0.372 (0.417)	Dyne-Amic @0.25%v/v
		1			09	(2196)	(0.206)	10		@0.25%v/v
RV19)-10HA	CA\Region 10 2010	BYI 02960 200 SL	TOS	Chemi- gation	77	NA	0.367 (0.411)	NA	0.367 (0.411)	Dyne-Amic @0.25%v/v
RV102-104A	A Region	BY 02960 200 SL	TRTDF	Airblast	85	45 (418)	0.184 (0.206)	NA	0.369 (0.414)	Dyne-Amic @0.25%v/v
					89	46 (430)	0.185 (0.208)	10		Dyne-Amic @0.25%v/v

Table 6.3.2.4-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Grapes

Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name ○※	Method	Kiming/Growth Stage (BBCH)	Spray Volume GPA (L/ha)	Rate Ib a.s./A (kg a.s./ha)	Retreatment Interval (days)	Total Rate (Mass./A (Rgra.s./ha)	Tank Mar Adjuvados
RV102-10HA	CA Region 10 2010	BYI 02960 200 SL	TRTOS	Soil	0 85	Q A	0.366	NA ZZ	0.3660 (0.410)	Dyng-Amic 0025%v/v
RV103-10HA	, CA Region 10 2010			Arblast 7	89	245 (2294) 246 (2300)	0.183 (0.205)		0.360 (0.472) (0.472)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v
RV103-10HA	Region 10			Deinch	**************************************	NA (© 0.366 × 0.41	NA	0.366 (0.410)	Dyne-Amic @0.25%v/v
RV104-10H&	Region 16 2010				85 7 85 *	25% (23%7) 253 (2361)	0.183 (0.205) 0.184 (0.207)	NA 11	0.367 (0.411)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v
RV104-10HA		BYI 02980 20955L		Drip Irrigation	85	NA	0.366 (0.410)	NA	0.366 (0.410)	Dyne-Amic @0.25%v/v
4 × ×	, CA Region 10 2010		TRTDE	Airblast	85 89	201 (1881) 212 (1980)	0.173 (0.194) 0.187 (0.209)	NA 10	0.360 (0.403)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v
RV105-10HA	Region 10\$\hat{\sh}	BYI 02960 200 SL	TRTDS	Chemi- gation	81	NA	0.366 (0.410)	NA	0.366 (0.410)	Dyne-Amic @0.25%v/v

Table 6.3.2.4-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Grapes

	T	Γ	I							0, 0
					A	pplicatio	n			
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name ○※	Wethod Land	Kiming/Growth Stage (BBCH)	Spray Vedume GPA (L/ha)	Rate Ib a.S./A (kg a.S./ha)	Retecatment Interval (days)	Total Rate (Ba.s./A (Rga.s./ha)	Tank Moddiuvados
RV106-10HA	WA Region 11 2010	BYI 02960 200 SL	TRTOF	Anyblast	S 9	(465) (465) 50 (468)	9.184 0.2067	NA V V V V V V V V V V V V V V V V V V	0.366 (0.416) (0.380 (0.426)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v
RV106-10HA	WA Region 11 2010	BYI 02960 200 SL %		Chemo gatasn	850 V	NAC	0.300 (0.426)		0	Dyne-Amic @0.25%v/v
RV107-10HA	OR Region 11 20 10	BY1 02960, 290 SI				(928)	0.477 (0.198) 0.49 (0.201)	10	0.356 (0.399)	Dyne-Amic @0.25%v/v Dyne-Amic @0.25%v/v
RV107-10HA	OR Region	BYI 02960 200 SL	TRTDS	Drip emitters	83	NAJ	0.366 (0.410)	NA	0.366 (0.410)	Dyne-Amic @0.25%v/v

a Values for spray foliume and total thate have been rounded.

TRTDF = Treated plot receiving two broadcast fother spras applications

TRTDS = Treated plot receiving a single soil applications

Duplicate composite samples of grapes were collected from the plot receiving two airblast applications, at campling intervals of @, 3 and 5 to 7 days after the second application. The intended pre-harvest interval was 0 days. In four decline trials, duplicate composite grape samples were collected from the treated plots at day 6 3, 5 to 7, 14, and 20 to 21 days after the second application. In addition, samples were collected just prior to the final foliar application. These samples were collected for informational purposes, only.

Duplicate composite samples were also collected from the plot receiving one soil drench application at a 28 to 30-day PHI. Single composite samples of grapes were collected from the control plots on the same day the target 0-day samples were collected from the treated plots.

b NA = Not applicable.

The residues of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings C

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70% 110%, and the standard deviation values were below 20% (Table 6.3.7.4-5).

Table 6.3.2.4-5: Summary of Recoveries of BVI 02969 from Grapes

Crop Matrix	Analyte		Sample Size (17)	Receiveries (1/6)	Wean Secovery (%)	Std Dev (%)
	Ş		311 7 31	88, 105, 89, 99, 105, 96, 103, 99, 75, 99, 93, 00, 97, 115, 117, 145, 105, 104, 107, 94, 1122, 99, 81, 100, 99, 103, 105, 123, 107	© 103	13
	BYI 02960	9 0480		3 7, 91, 97	95	4
		0.200	7 ,	86,84, 103,95, 98,94, 103	95	7
`		0.400 (7		94, 109, 5, 78, 703, 93, 117,	98	13
, Q	[~~~	©2.50 <u>4</u>		92, 99	94	4
Grapes		0.050 0.500 0.500		99, 95, 02, 90, 96, 110, 102, 108, 110, 105, 90, 110, 105, 112, 104, 96, 103, 103, 107, 105, 104, 97, 102, 105, 86, 91, 87, 111, 84, 100, 78	100	9
*	DIFA C	0.500		112, 107, 108	109	3
			77	102, 111, 108, 109, 104, 101, 105	106	4
		2.00 °		106, 106, 100, 101, 103, 102, 105	103	2
	DFFAF	6-010 0-010	31	88, 84, 92, 106, 108, 94, 97, 87, 95, 90, 99, 98, 106, 105, 100, 89, 101, 97, 100, 103, 104, 95, 96, 106, 92, 92, 93, 102, 107, 113, 99	98	7
	Drear	0.100	3	95, 88, 90	91	4
		0.200	7	89, 97, 91, 92, 89, 92, 86	91	3
		0.400	7	89, 89, 80, 88, 88, 92, 98	89	5

water

The sar The freezer storage stability study indicates that BYI 02960 residues were stable in spinach leaves, tomato fruits and orange fruits as representative crops for the respective crop commodities (high water and high acid content) during frozen storage for at least 18 months (558 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 271 days.

A summary of the storage conditions are shown in the Table 6.3.2.4-6 below.

Summary of Storage Conditions for Grapes Table 6.3.2.4-6:

Residue
Component(s)
BYI 02960
DFEAF
DFA
The maximum a maximum of all maintained in a land the storage dura difluoroethyl-am 18-month data (Isapplication are slapplication are sla

Table 6.3.2.4-7: Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960

-	ı	1	1	1	1			1	1	0	,
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total-Rate Lb a.s./A (kg a.s./ha)	Sampling interval (days	BYFOZOGO BYFOZO	DFA Residue (mg. s.s. equiv./kg)			
RV092- 10DA					0.371 (0.416) (0.416) (0.416)		0.388 0.343 0.177 0.247 0.246 0.206 0.164	\$0.050 \$0.050 \$0.050 \$0.050 \$0.050	0.010 0.000 0.010 0.010 0.011 0.011 0.013 0.011	0.50 Avg: 0.51 ° 0.42 0.42 0.23 0.29 Avg: 0.26 0.28 0.31 Avg: 0.30 0.29 0.29 0.29 0.25	
RV093- 10HA	Region 1, 2010 PA, Region 2, 2010		Concord Concord	Fresh Fruit	0.369 (0.49)	3	0.394 0.382 0.332 0.375 0.233 0.221	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 <0.07 <0.07 Avg: <0.07 0.45 0.44 Avg: 0.44 0.39 0.43 Avg: 0.41 0.29 0.28 Avg: 0.28 	
RV093- 10HA	, PA, (Region 1, 2010	JIRTDS	Concord	Fresh Fruit	0.366 (0.410)	28	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07	

Table 6.3.2.4-7 (cont'd): Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960

	T	1			T		1	1	1	0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total-Rate Lb a.s./A (kg a.s./ha)	Sampling interval (days	BYF 02960 Residue (m2/kg)	DFA Residue (mg.a.s. equiv./kg)	DOLAFRESQUE (mg na rquiv./kg)	Total BY1 02960 Residich
RV094- 10HA	Region 5, 2010	TRTDF			0.346 (0.388)	75 75	(0.170 C) (0.190 C) (0.166)	0.050 0.050 0.050 0.050	<0.010 <0.000 <0.000 <0.010 <0.010 <0.010	0.44 Avg: 0.48 • 0.22 Avg: 0.22 0.25 0.22 Avg: 0.22 Avg: 0.23
RV094- 10HA	Region 5, 2010	TRTDS	Sebrevois Q	ĬŎ,	@364 (0.408)	30 ,	\$0.010 \$<0.010	<0.059 <0.630	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV095- 10DA	Region 9, 2010		O' &'0'	Fruit	30.361 (0.404)		0.326	<0.050 <0.050	<0.010 <0.010	0.39 0.37 Avg: 0.38
			Concord		T J	3 *	0.289 0.263 0.193	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	0.34 0.32 Avg: 0.33 0.25
						14	0.175	<0.050	<0.010	0.23 Avg: 0.24 0.23
							0.167	<0.050	<0.010	0.22 Avg: 0.22
¥				D "		21	0.121 0.162	<0.050 <0.050	<0.010 <0.010	0.18 0.20 Avg: 0.18
RV095- 10DA	Region 5, 2010		Concord	Fresh Fruit	0.364 (0.408)	30	<0.010 <0.010	0.058 0.053	<0.010 <0.010	<0.07 0.07 Avg: 0.07

Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Table 6.3.2.4-7 (cont'd): Soil, Application(s) of BYI 02960

		5011, 7			1	1		1	1	· · ·
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	(0) Total Rate (1) 12 Total Rate (1) 12 Lb a.s./A (kg a.s./ha)	Sampling interval (days	BYY O'D' () Residue (mag/kg)	DFA Residue (mg. s.s. equiv./kg)	DECAFRESQUE (mg no rquiv./kg)	Total BY 102969 Residice
RV096-	,	TRTDF	Frontenac	Fresh	0.371	\sim_0	0.581	20.050	<0.010	0.6
10HA	, Region			Fi¥úit ⊈ "	(0.416) B	ď "	(A).465	(0.050) , <0.050	<0.010	Avg:
	5, 2010		(7 7	981 9.465 0.114		کے `	0.67 0.52 Avg: 0.58 •
				~~	~ .	4	0.114 0.152 0.133 0.100	Ç≸0.050 [©]	<0.010 <0.010	0.57
							€0.152 C	<0.050	<0.010	0.7 0.20 Avg:
										0.19
			~ "O"	* */		1 >>/5	% .133 /	0.056	<0.00	0.19
			Q* _&)) L	0.1010	0.056 <0.050	<0.0000 <0.0010	0.15
				10		30 2	O *		%_y D	Avg: 0.17
RV096-		TRTDS	Frontense	Feesh Fruit	© .364	30	<u></u> Ø ≈0.010⊾	2<0.050	< 0.010	<0.17
10HA	,			Fruit	(0.408)	1	©0.010 <0.010	<0.0 50 <0.0 5 0	< 0.010	< 0.07
	Region 5, 2010						W W	. Š		Avg:
RV097-		TRTDF	Warada 1	Fresh	× 272	Λ	8 .311	*** *<0.050	< 0.010	<0.07
10HA	, Rogion 5 Julio	× 1Dr	Marechal Foch	k "Hriiit i	9.372 (0.417)		0.311	< 0.050	<0.010	0.37
	5,2010				(`					Avg:
	5,5010	%					<i>®</i> 244	.0.050	.0.010	0.37
	<i>P</i> 6	(3 *	0.244 0.194	<0.050 <0.050	<0.010 <0.010	0.30 0.25
			@ 9		o' J		0.174	10.050	\0.010	Avg:
~~~					&, £	7				0.27
	Į Ž	( ) (		Õ (		7	0.196	<0.050	<0.010	0.25
							0.206	< 0.050	< 0.010	0.26 Avg:
					~~					0.25
RV097-	,	PRTDS	Marcchal	Fresh (	0.364	30	< 0.010	0.072	< 0.010	0.09
10HA	, Region		<b>K</b> ốch	Fruit	(0.408)		< 0.010	< 0.050	< 0.010	<0.07
. ~	5, 2010	4								Avg: 0.08
	,	6 6	¥ (		I	I		Continu	d on nexi	
	, Region 5, 2010 5		Marechal Roch	,				<i>-</i>	u on nexi	. puge

Table 6.3.2.4-7 (cont'd): Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960

		5011, 1	Application(s	, 01 11 1	02700					o
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	Sampling interval (days after last application) a	BYT (22960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFFAFREidue (mga.s. equiv. lsg)	Form BYI 0.2960 Residing (mg A.2. equiv. 14g) b
RV098-	, CA,	TRTDF	Rubired	Fresh	0.369	0Q	2,28 @.52	©.050 20.050	C.0.013	2.35 16 2.0d
10DA				Fresh Fruit	(0.413)		<b>2</b> .52	©0.0500	<0.030	166
	Region 10, 2010			,	a° S	ď _*	7 70	~		Ævg:
			(				200 40 777	<0.050	. 4	2.0 ^d
			.4	. ~		<b>Ž</b>	2010 20.777 £	<0.050 \$<0.050	0.013 <0.00	2.2¢° 0\$3 2vg: 1.5f
								\$<0.050°	-0. <b>e</b> Q#0	Avg:
						« C		- O		1.5f
					4 G	7	1.04 1.38	0.050	<b>¥&lt;0.0</b> ₺ <b>9</b>	1.1
			Q	~ Y		1 7		<0.050	0.04/1	1.4 ^g
		(P)	1 X 1	0		1		20	(4 .	Avg: 1.3 ^h
		Ž			4	Q 4 ,	· 0.686	0°	<0.010	
				<i>a</i> .	<b>~</b>	~y-	~0.000 ~0.407~	<0.050 <0.050	<0.010	0.74 0.46
						< ≪		~~~	\0.010	Avg:
	<b>%</b>					% 91	la 20	. Š		0.60
		W.		Ş		$Q_1$	<b>⊕</b> .870 ≥	₹0.050	< 0.010	0.91
		4 .	Š ,7		h~ "«	e e	0.697	<0.050	< 0.010	0.74
							2 G			Avg:
RV098-		TRPDS	Rubired	Erech	\$366 \$6.410)	\$30 \$30	<b>2</b>	0.067	< 0.010	0.83 0.13 ⁱ
10DA	Region 10, 2010	TELDS	Kubileu/	F <b>c</b> sh Fruit	7 410)	D 30	₩.049 √ 0.031	<0.050	<0.010	0.13
TODA	2010 2010			O' Tunt	Q0.114g		0.031	10.030	-0.010	Avg:
	, 2010				Z,					0.10 ^j
RV099-	ρCA,	TRIDF	#hompson	Fresh	<b>%</b> 0.368 ∠	0	0.621	< 0.050	< 0.010	0.68
10DA	Region 10,	ي ک	🎤 Seedless 🦼	ØFruit (	0.413)		0.512	< 0.050	< 0.010	0.55
	2010	, Ş			Ş					Avg:
					~	3	0.499	< 0.050	< 0.010	0.61
	<u></u>	0 4				3	0.499	< 0.050	<0.010	0.54
			o j				0.020	10.030	\0.010	Avg:
, 43		4		,~Q"						0.60
	€"	\$\frac{1}{2}\rightarrow \frac{1}{2}\rightarrow			7	0.480	0.091	< 0.010	0.58	
	@.\	ro d		<b>)</b>			0.431	0.084	< 0.010	0.52
		Į į								Avg:
			~ ~			1 /	0.512	0.121	<0.010	0.55
1			y ~~			14	0.513 0.412	0.121 0.147	<0.010 <0.010	0.64 0.56
							0.412	0.14/	~0.010	Avg:
										0.60
	Region 10, 2010  Region 10, 2010  A Region 10, 2010	Ž,				21	0.375	0.202	< 0.010	0.58
Ďą 🔻 📗	)						0.505	0.177	< 0.010	0.69
										Avg:
										0.63



Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960 Table 6.3.2.4-7 (cont'd):

		3011, F	Application(s	) 01 15 1 1	1 02900					
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	Sampling interval (days after last application)	Ryl 02960 Residue (mg/kg)	DFN Residue (mg aksequiv./kg)	DFK&FResidue OFK&FResidue (mg a.s. eqpiv./kg)	Total BYI 02960 Residue
RV099- 10DA	, CA, Region 10, 2010	TRTDS	Thompson Seedless	Fresh Fruit	0.366	\$30 Q	30.005 <0.0 <b>40</b>	<0.650	<0.010 <0.010	©09 0.07 Avg: ° <007
RV100- 10HA	, CA, Region 10, 2010	TRTDF	Thompson Seedless	Fresh Fruit	0.366 C (0.410)				<0.010 0.010	0.65 0.45 Avg: 0.55
							0.396		<0.010 \$\$0.010	0.37 0.42 Avg: 0.39
						7 4	0.275 0.274 0	<0.050 0.050	<0.010 <0.010	0.30 0.33 Avg: 0.32
RV100- 10HA	Region 10,	ØŘTD\$	Thompson Seedless	Fresh, Fruit	0.3660	30	<0.0 \$6 <6.010	<0.050 0.094	<0.010 <0.010	<0.07 0.11 Avg: 0.09
RV101- 10HA	CA. Region 10. 2010	TRTDE	Thompson Sedless	Fresh Fruit	0.37% (0.4)77)		0.896 0.706	<0.050 <0.050	<0.010 <0.010	0.93 0.75 Avg: 0.84
						3	0.569 0.637	0.063 0.068	<0.010 <0.010	0.64 0.71 Avg: 0.68
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$						7	0.606 0.544	0.093 0.091	0.010 <0.010	0.71 0.64 Avg: 0.68
RV101- 10HA	CA, Region 10	TRTOS	Thompson Seedless	Fresh Fruit	0.367 (0.411)	29	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
	CA, Region 16 2014						(	Continue	d on next	

Table 6.3.2.4-7 (cont'd): Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960

		5011, 1	Application(s	, 01 11 1	02000					0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity		Sampling interval (days	BY (2960) Residue (mg/kg)	DFA Residue (1) (mg a.s. equiv./kg)	OFFAFResidue (mga.s. equiv./kg)	Form BYI 12260 Residing (mg 1823 equiv./189)
RV102-	,	TRTDF	Syrah Noir	Fresh	0.369	0Q,	0.242 0.382	<b>40</b> .050	<0.010 <0.040	0.30
10HA	CA, Region 10,			Frust	(0.414)	Y	<b>Ø</b> 382	<b>₹0.050</b> C	<0.000	0. <b>Q</b> A
	2010				ð Í	(S)			**************************************	Avg: 0.37
			(			<b>2</b>	0 1 3	<0.050	\$0.01€	
				~ O	Į Į į	Q,	ر 0.295	\$\times 0.050 \$\times 0.050	×0.01¢ <0.0€0	0.17° 085
									<b>&amp;</b>	Avg:
						<b>6</b>		Į į	Ş (	0.26
						<b>6</b>	0.052	\$0.050 <0.050	<0.010	0.15
						Pr e	9.052	~0.0 <b>30</b> *	<0.1640	0.11 Avg:
		TRÝĐS				\$0 \$0			<b>&amp;</b>	0.13
RV102-	,	TRTDS	Syrah Now	Fresh	0.366 (0.410)	Z30	<0.010	≈<0.050 °	< 0.010	< 0.07
10HA	CA, Region 10,	Ö		Fresh Fruit	1 (0.410)		<b>©</b> 0.01 <b>0</b>	<0.050	< 0.010	< 0.07
	2010		Q	M 37 ~				Ţ		Avg:
RV103-	2010 Region 10, 2010	TRTØDF	Ø 1.	E a Ch	<i>a</i> 767	<b>Q</b>	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹0.050	< 0.010	<0.07
10HA	Region &	1 K 19DF	Syrah	Fresh Fruit	Ø367 70.412)Ø		0.477	<0.050	<0.010	0.27 0.53
101111	2010			Y %				0.000	0.010	Avg:
					~	S.	≪y"			0.40
		<b>2</b>	»- ·				<b>29</b> .365	< 0.050	< 0.010	0.42
	Co				oʻ	\ \ \ \ \ \ \ \ \	0.504	< 0.050	< 0.010	0.56
<u> </u>				S	F J					Avg: 0.49
~ ~ ~					Q, £	7	0.215	< 0.050	< 0.010	0.27
		4		~~ (			0.177	< 0.050	< 0.010	0.24
										Avg:
DIMAG		TOTOS			109	2.0	0.015	0.050	0.010	0.25
RV103- 10HA	, CA,	TRIDS	Syrah	1 (Mediesii	©0.366 (0.410)	30	0.015 0.032	<0.050 <0.050	<0.010 <0.010	0.07 <0.07
TOTIA	Region 10, 2010		Ů Ž	*TTUIL	(0.410)		0.032	<0.030	<0.010	Avg:
	2010	.1								0.07
RV404-	2010 , CA, Region 10, 2010	<b>Æ</b> TDF∞	Thompson	Fresh	0.367	0	0.654	< 0.050	< 0.010	0.71
10HA	Region 10,		Seedless	Fruit	(0.411)		0.543	< 0.050	< 0.010	0.60
	2010	Į Į								Avg:
			Seedless			3	0.926	< 0.050	0.010	0.65
						)	0.826 0.552	<0.050	0.010	0.89
, S							0.332	30.050	0.010	Avg:
										0.75
		3				7	0.392	< 0.050	< 0.010	0.45
ľ "Ć							0.332	< 0.050	< 0.010	0.39
										Avg:
										0.42

Table 6.3.2.4-7 (cont'd): Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960

1		1		1	ı	1	ı	ı	1	0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./Å (kg a.s./ha)	Sampling interval (days	BY Orogo Residue (mg/kg)	DFA Residue (ng a.s. equiv./kg)	Der Afresche (mg 26. equiv./kg)	Totale BY1 02968 Residie
RV104- 10HA	, CA, Region 10, 2010	TRTDS	Thompson Seedless	Fresh	0.366	30	90.010	ő		<0.07 <0.07 Avg: <0.07
RV105- 10HA	, CA, Region 10, 2010	TRTDF	Thompson, Seedless	Eresh Eruit	0.960 (0.403) (0.403)	73	( 0.92) ©	0.050 0.050 0.075 0.073 0.104 0.160		0.95 0.96 Avg: 0.96 0.96 1.4
RV105- 10HA	Region 10,	TRTDS	Thompson Seedless	Fresh Fruit	30.366 0.4100	, 30	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.083 0.079	<0.010 <0.010	Avg: 1.2 0.10 0.10
RV106- 10HA	, WA, Region 11,	IKIDF	White Riesling	Tyresh	0.366 (0.410)		J 1.31	<0.050 <0.050	<0.010 <0.010	Avg: 0.10 1.4 1.0 Avg:
						3	1.07 1.04	<0.050 <0.050	<0.010 <0.010	1.2 1.1 1.1 Avg: 1.1
						7	0.830 0.957	0.088 0.090	<0.010 <0.010	0.92 1.1 Avg: 1.0
RV106- 10HA	, WA, Region 11, 2010	TRTDS		⊅Fresh Fruit	0.380 (0.426)	30	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
	Region 11, 2010		•				(	Continue	d on nexi	t page

Table 6.3.2.4-7 (cont'd): Total BYI 02960 Residue Data from Grapes after Two Foliar or a Single Soil, Application(s) of BYI 02960

										0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	Sampling interval (days After last application) ^a	BYFOZOGO Residue (mg/kg)	DFA Residue (mg. s. equiv./kg)	DOLAFRESIQUE (mg no. rquiv./kg)	Total BYI 02969 Residue
RV107-	, , , , , , , , , , , , , , , , , , ,	TRTDF	Chardonnay	Fresh Frait	0.356	\ \ \ \ \ \ \	Q. <del>4</del> 59	©0.050 <0.050	<0.010 <0.010 ×	0.57 0.62 Avg:
10HA	OR, Region 11, 2010			Frait	(V.399)	d'	· . "(()	<0.05¢	~0x040	Avo:
	2010			Frant	0.336		~ ©		کے یہ	0.5%
				. 0	~ .	<b>Z</b>	0.680	© 0.050 0.0 <b>5</b> 0	<0.040	0.74
							0.680	(0.0 <b>5</b> 0	<0.000 <0.010	<b>10</b> .54
								Ü		Avg: 0.64
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.462 0.179	0.050 <0.050	<0.010	0.52
			Y 6				6.462 0.1790	<0.050	<0.4000 <0.0010	0.24
				S S		Q			<b>&amp;</b>	Avg:
D. 110 -		TRTDS		e	<b>*</b>			A-	2	0.38
RV107-	OD Dagion 11	TRTDS	Chardon ay	lijesh	<b>©</b> :366	28	\$0.010 <0.0 <b>10</b>	<0.0 <b>59</b> <0.0 <b>5</b> 9 <0.0 <b>5</b> 90	<0.010 <0.010	<0.07
10HA	OR, Region 11, 2010		Q	Fruit	(0.410)	. *	~0.010°	0.090	<b>\0.010</b>	<0.07 Avg:
	2010				<b>0</b> :366 (0.410)		<b>&amp;</b>			<0.07

- a Pre-Harvest Interval (PHI) is the interval between last application and Sample Pate.
- b Total BYI 02960 residue is the sum of BYI 02960 DFA, and DFEAD residue in parent equivalents. Residue measurements below the analyte LOQ were sumfined into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the
- c Maximum residue found in grapes sampled at 0 days
- d Highest overage field trial (HAFT) residue found in grapes Cample at 0 days.
- e Maximum residue forma in grapes, sampled at Arays. 🤝
- f Highest average field trial (HAFT) residue found in grapes, sampled at 3 days.
- g Maximum residue found in grape Campled at 7 days.
- h Highest average field tright (HAFP) residue found in grapes sampled at 7 days.
- i Maximum residue found in gropes, sampled at 30 days
- j Highest average field trial (PAFT) osidue found in grapes, sompled at 30 days.

# Conclusion

Sixteen field trials were conducted to measure the magnitude of total BYI 02960 residue in/on grapes following two foliar spray applications of a single soil application of BYI 02960 200 SL.

The residue data provided in this report are suitable for regulatory purposes and are summarized in Table 6.3.2.48.



Table 6.3.2.4-8: Summary of Residue Data for Total BYI 02960

				Total BYI 02960 Residue Levels (ppm) ¹							
Commodity	Plot Name ²	Total Application Rate lb ai/A (kg ai/ha)	PHI (days) ³	u	Min at PHI	Max at PHI	Max after PHI	AAFR3	Median 4	(. N. )	Deviation
Grapes	TRTDF	0.346 to 0.372 (0.388 to 0.417)	0*	16	0.267	2.342	1.4(9)5	1.961		.684 × 0.42	27 D
Grapes	TRTDF	0.346 to 0.372 (0.388 to 0.417)	3	16	73	2.167	(C)	1.499		575 0.39	<del>)</del> 5
Grapes	TRTDF	0.346 to 0.372 (0.388 to 0.417)	7-9	16	0.112	1 <b>9</b> 439 ,	J J	7 1.26	0.289 0	0.36	55
Grapes	TRTDS	0.364 to 0.380 (0.408 to 0.426)	3.0 ⁴	16	\$\int \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)	0.123	\$ \$	©.100 ©.100	0.070	0.01	14

- Data from the decline trial samples collected at intervals offer than the 14-day PHI are not included in this table.

  TRTDF = Treated plot receiving two concentrates arblast applications: cations;
- TRTDF = Treated plot receiving two concentrate arblast applications; TRTDD = Treated plot receiving two Quute airblast applications.
- 3 HAFT = Highest Average Field Trial.
- calculated on the basis of residue values at the PLH.
- Sampling day showing highest residue

* The intended pre-harvest interval (PHI) is 0 days.

Comparing the different use patterns tested, it is obvious that the total BYI 02960 residues are generally higher when applying the GAP with the two foliar spray applications.

Total BYI 02900 residues in samples collected from the grape declinearials generally decreased with time. With an intended PHI of a days, the highest residue level is a ways at the PHI, with the exception of only one trial whose the highest residue level (1.4 mg/kg) was detected at the last sampling day (day 9). However the overall highest residue level (2.3 mg/kg) was detected at the PHI of 0 days. exception of only one tral whose the nighest residue level 1.4 ng/kg) was detected at the last



### IIA 6.3.2.5 Berries and small fruit - blueberries

Residue data from <u>NORTH AMERICA</u> and other regions with significant blueberry production (SOUTH AMERICA, AUSTRALIA, NEW ZEALAND AND EUROPE)

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment on bushberty subgroup (Crop Subgroup 10-07B). The use pattern in North America is summarized in Table 6.3.2.5-1.

Table 6.3.2.15-1 Target Use Patterns for the Application of BYI 02960 on Bushberry Sebgroup (Crop Subgroup 13-07B)

			Target	Rate/Application				Spray Wolume
		_	nulated ict (FP)	Active Substance (a.s.)	Target App	Tar©et	Adjuvan	
Test	No. of			Name of lb g	interval		<b>W</b> aunuv	
Substance	Apps	mL/A	fl oz/A	a.s. a.s. A a.s. ha	(Pays)	(Days)	e (%)	GPA LPNÁ
BYI 02960 200 SL	2	1025	14.0	BY602960 0.183 \$ 205	7 70		@" <b>Q</b> \$25	<b>3 3 3 467</b>

GPA = gallons per acre LPHA = liter per hectare

Since blueberries are heavily traded, an R-4 program (Inter-Regional Research Project Number 4) was initiated to establish a globally harmonized tolerance (maximum residue level). Therefore 26 trials in 5 different regions were conducted, all according to the NAFPA use pattern.

Report:	KNA 6.3.2.5/01
Title:	BV1 02969: Magnitude of the Rosidue of Blueberry @
Report No &	IR-4 PR No. 16637; Bayer Crop Science Report No. RARVY024, dated
Document No	111-130-170-20-1
Guidelines:	U.S. EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Qanada: PMRA DACO 7.4.2, Residue Decime
Ô	A PMKA DACO 7.47, Residue Decome
	OFD: Guidelines for the Vesting of Chapticals, 509, Crop Field Trial, Adopted Sept. 7,
	1 4009.
GLP	Yes S S S S

To establish the U.S. colerance and provide for international maximum residue levels (MRLs) in all countries with significant plueberry production 26 filed trials were conducted on low bush, high bush, and rabbit eye bineberries in North America, South America, Australia, New Zealand, and Europe during the 20th growing season. The North American trials were conducted in Maine (ME01), New Jersey (NJO) and NJO2), Dichigan (MIO), MIO2, and MIO3), North Carolina (NCO1 and NCO2), Oregon (NRO1) Nova Scotia (NSO1, NSO2, and NSO3), and Quebec (QC16). The South American trials were conducted in Chile (CL01, CL02, and CL03). The Australian trials were conducted in Victoria (ACO1 and AUC) and New South Wales (AUO4) and the New Zealand trials were conducted on the North Island (NZO1) and the South Island (NZO2). The European trials were conducted in the United Kingdom (UKO1 and UKO2), Italy (ITO1), Spain (SPO1), and Denmark (DKO1)



### **Material and Methods**

Low bush blueberries were grown in ME01, NS01, NS02, and NS03; rabbit eye blueberries in AZ04; and high bush blueberries in the 21 remaining trials. The high bush blueberries in UK01 and SPO were grown in the field under plastic-covered tunnels to protect the plants from environmental extremes. Blueberries in all other trials were grown under standard field conditions.

In each trial, the test substance was applied in two foliar applications of approximately 205 (0.183 lb a.s./A) each, for a total of approximately 0.410 a.s./ha (0.366 lb a.s./A). A non-joric surfactant, crop oil concentrate, or another adjuvant was included in Seh tank mix except in NZO and SP01. The two applications were made 6 to 8 days apart.

The location of the field trials as well as the trial site conditions, including soil characteristics are summarized in Table 6.3.2.5-2. Study use patterns are summarized in Table 6.3.2.5-3.

Samples of marketable blueberries were collected 2.5 to 3 days after each application. Additional samples for decline determination were collected from one low both trial (NSO) and six high bush trials (MI01, CL01, UK01, UK02, 1001, and SP01) at 0, 1, 7 or 8, and 4 or 15 days after the second application.

Location of Fife d Trials and Frial Site Conditions for BY 102960 on Blueberry Table 6.3.2.5-2:

V 4 4	
eristics	
PH pH	CEC (meq/100 g)
4.8	2.8
4.9	6.6
4.6	6.8
4.5	8.6
Continued o	n next page
	4.8 4.9 4.6 4.5

Table 6.3.2.5-2 (cont'd): Location of File d Trials and Trial Site Conditions for BYI 02960 on Blueberry

Total ID	Trial		Soil Chara	cteristics	
Trial ID (City, State, Country)	Start Year	Туре	%OM	фH	ØDC (meq/100 🕏
High Bush Blueberry				۵ ک	
NJ01 (United States)	2011	Sandy clay loam	2.3	4.5	76.5 T
NJ02 (Martin NJ, United States)	2011	Sandy Aay			\$\tilde{\psi}\)1.6
MI01 (MI), MI, United States)	2011	Sandy Joan			\$9.3 °
MI02 (MI, MI, United States)	2011.0	Sandy Idem			9.1
MI03 (MI, MI, United States)	©2011 V	Sandy lowin			7.5
NC01 ( NC01 United States)	2011	Framy sand			13.6
NC02 (NC02 Violeted States)	2011			4.0	12.4
OR01 OR, OR, United States	2011		1.0 2.0	5.6–6.0	10–15
QC16 QCQ (Canada) QCQ	2011	Loam	6.1	7.10	12
Australia)	2011	Red volcaric	~ 1	Acidic	Not available
AU02 (Australia), VIC,	2011	Red volcanic soil	~ 1	Acidic	Not available
Z01 Z Z01 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	\$2011 [©]	Sandy loam	15	5.5	20
New Zealand)	2011	Sandy loam/clay loam	Not reported	Not reported	Not reported



Location of File d Trials and Trial Site Conditions for BYI 02960 on Table 6.3.2.5-2 (cont'd): Blueberry

T					
Trial ID	Trial		Soil Chara	(( ))	
(City, State, Country)	Start Year	Туре	%OM	[©] рН	CEC (Comeq/190 g)
High Bush Blueberry		Č	)		
CL01	2011	Silt loam	13 Q	5.11	Pot reported
Chile)			Ž &		
CL02	2011	Sift@oam	13	5.11	Not reported
Chile)			13		
CL03	2011	Sitt Joan	13	\$5.11	Not reported
Chile)					
UK01a	2011	Sandy chay loam	Not reported	Not reported	Not reported
United Kingdom)				rade reported	
UK02	2 <del>9</del> 11 6	Sandy law loam	Not reported	Not reported	Not reported
		Sandy clay loam	S	Not reported	Not reported
United Kingdon	6¥. ≪			~	
IT01 , C	2011	Loain		5.7	10.67
Spain)	2011			7	Not reported
DK01	2011	Sand	Not reported	5.1	Not reported
Demoark)	2011		or tot reported	5.1	rvot reported
Rahhit Eve Rlueherry	9 4°				
AU04	2011	ClayOoam	2	4.9	4
a Blueberries were grown under	Protective tunn	nély			
i, NSW Australia)  a Blueberries were grown under					



Table 6.3.2.5-3: Study Use Pattern for BYI 02960 200 SL on Blueberry

1 able 0.3.2.3								
					Applicati	on 	Total	
	Trial				Rate		Rate %	
Trial ID	Start			L/ha	(g a.s./ha)	RTI _b	(g a.s./ha)	TankMix
(Location)	Year	EPa	Method/Timing	[GPA]	[lb a.s./A]	(Days)	[lb a.s./A]	<b>Adj</b> avants
Low Bush B	lueberry					To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th		
ME01			Foliar	230.62	201.7	<b>&gt;</b>		
			broadcast/Fruiting/	Ö				Dyne-
, ME,		BYI	3 days prior to	[24,65]	[0.1799]	. @		Amic Amic
United	2011	02960	harvest Foliar	7 7)			<del>Q</del> C	× × -
States)		200SL	broadcast/Fruiting	, 226.99	\$ 8.5 g		400.2	Dyne-
2 1111 (2)			2.5 days prior to	[24.27]	© [0.1 <i>77</i> 1]	**************************************	0 % # 01	Amic
			harvest	[24.27]	0 [0.1 <del>7)</del> 1]		[0.3570]	J ^v
NS01			Foliar	2350.42°	<b>2</b> 07 8		l e .4	۵.
(			broadcast Berries			Ş		
,		BYI	/5%/8\ue/3\abys	J37.46]	[0.1846]		<b>4</b>	Agral 90
NS, Canada)	2011	02960	prior to harvest					
Canada)		200SL	Foldrar Foldrar	352.28	2087		\$ 415.5	
			Proadeast/Fruiting/	D' Á	P ,0 .	70	**************************************	A aro 1 00
			0 days price to harvest	\$[37.6 <b>@</b> ]	[00] 856]	7,0	(0,3703]	Agral 90
21002			harvest		W S	(h)	O ·	
NS02		Ď	O Foliar C	3∰.03	209 47			
		** 4	broadcast/Fraiting/					Agral 90
, NS,	\$	BY	39 days prior to	[37.85]	[ <b>9</b> %186 <b>&amp;</b> ]			Agiai 90
Canada)	2011	02960	hagyest S		) ?,	4		
Cunada)	2011	02960 √200SL≯	Foliar >	354.65	209.7		419.1	
		<b>N *</b>	broadcast/Fruiting/	. **		7		Agral 90
			3 days prior to	[30.91]	0.1871]	,	[0.3738]	Agiai 90
NIGO2 %	)	4, 4	harvest	25478	2 <b>9</b> 4.5			
NS03			broadcast/Fruiting	, 334, 4	₹94.5			
			✓3 days prior to	£36.961 .	0.1824]			Agral 90
, NS,	204)	BXI     *02060 @	% harvest		7 [ ]			
Canada)	2019	02960 ©	Foliar	349,09	206.4		410.8	
		2005	broadcast/Fruiting	67	FO 10413	7	FO 2 ( ( 51	Agral 90
2	9 0		3 days/prior to	<b>13.</b> 7.31]	[0.1841]		[0.3665]	Č
			U Sy . *	IV I			_	
	% 	7 24				Contini	ied on next p	oage
	D'	\$\ \tag{\pi} \cdots						
¥	- 0	<i>"</i> 'S						
	L .1							
£	Q' ,\T							
			) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
			harvest broadcast/Fruiting and alays prior to harvest broadcast/Fruiting and alays prior to harvest					
© T								

Study Use Pattern for BYI 02960 200 SL on Blueberry Table 6.3.2.5-3 (cont'd):

			Application						
Trial ID (Location)	Trial Start Year	EP ^a	Method/Timing	L/ha [GPA]	Rate (g a.s./ha) [lb a.s./A]	RTI ^b (Days)	Total Rate 🌤 (g a.s./ha♥) [lb a.s./A]	Tank Miz	
High Bush			Witchiou, Timing	[0171]	[10 4.5./11]				
NJ01		BYI	Foliar directed/Fruiting/ 3 days prior to harvest	31938	210.2	- Q		Z Attach	
, NJ, United States)	2011	02960 200SL	Foliar directed/Fruiting/ 3 days prior to harvest	\$24.13 \$24.13 \$34.65]	2/14.8 ×		2422 (0.3764)	Attach	
NJ02	2011	BYI ozoco **	directed/Fixitings  directed/Fixitings  days prior to  harvest	294057	[0]1879]		, [0.3764] , [0.3764] , [0.3764]	Attach	
United States)	2011	2011 02960 2 200SL	Forar directed/Fruiting/  3 days prior to harvest	313.65 [39.53]	242.5		423.1	Attach	
MI01		BYI	Folian  directed Fonting  3 days prior to  harvest	748.57	207.72 [03852]	<i></i>		Prime O	
United States)	2011	\$2960 \$\frac{1}{2}\$200SI_{\frac{1}{2}}\$	Fotar directed/Fruiting/ 0 days prictito harvest	34.28	206	7	413.7	Prime O	
MI02			Foliar, directed/Fonting/	310.02	205.1	_	LJ	Super Spread 7000	
MI, United States)	2911	P 1 02960 4 200SI	Foliar directed/Fruiting/ 3 days prior to	[33.14] 292.55	[0.1830]	7	411.3	Super Spread	
			harvest	[31.27]	[0.1839]		[0.3669]	7000	
				1	,	Contini	ued on next p	age	

Study Use Pattern for BYI 02960 200 SL on Blueberry Table 6.3.2.5-3 (cont'd):

			Application					
Trial ID (Location)	Trial Start Year	EP ^a	Method/Timing	L/ha [GPA]	Rate (g a.s./ha) [lb a.s./A]	RM ^b (Days)	Total Rate (g a.s./ha) [lb a.s:[A]	Tank Mix
High Bush l	Blueberry	7			گے			
MI03			Foliar directed/Fruiting/ 3 days prior to harvest	524,35 2[56.05]	206.7			Primeoil
MI,	2011	BYI 02960	narvest	7 [30.03]	[0,1844] .	5	<b>^</b> ^	\$
United States)	2011	200SL	Foliar directed/Fruiting/ 3 days prior to harvest	\$23.0f) \$5.921	207.3 Q [0.1849]		414 0 (0.3693) &	Prime Oil
NC01			Foliar  Foliar  Foliar  Green and  June Gruit/3 days	299.59	2022			Induce
NC,	2011	BYI 2000	prior to harvest	[32,03]	[0.180 <b>5</b> ]		O W	
United States)		200 ŠL	Folial Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the	7 5 2 <b>9</b> 7.86 5 6	2010	6	403.6	Induce
				[3] 84]	<b>3</b> [0.1795]		[0.3600]	
NCQ2\$			directed/Green and blue fruit/3 days	44904	© 201.3	_		Silicone
NC,	<b>2</b> 911	ØYI Ø296Ø		[48,00]	[0.1796]			
United States		2008	Foliar &	450.91	202.1	6	403.5	Silicone
	<i>@</i>	"O" L		[48.20]	[0.1803]		[0.3599]	
States						Continu	ed on next po	ige

Study Use Pattern for BYI 02960 200 SL on Blueberry Table 6.3.2.5-3 (cont'd):

			Application					
Trial ID	Trial Start			L/ha	Rate (g a.s./ha)	RTI ^b	Total Rate (g a.s./la)	Tank Mix Adjuvant
(Location)	Year	EP ^a	Method/Timing	[GPA]	[lb a.s./A]	(Days)	[lb acs.A]	() s
High Bush B	lueberry		E 1'		4			
OR01			Foliar directed/Fruiting/	467.39	205	9		Q'.
OR,	2011	BYI 02960	3 days prior to harvest	[49.96]	[0.1829]			Prime@il
United States)		200SL	Foliar directed/Ripe fruit/3 days prio	490.26	² 215 & °	\$7 \C	420.	Prime Oil
			harvest 🛴	[52.41]	[0.1918]		[6.3747]	
QC16	2011	BYI 02960	Foliar directed/Fauiting, of 70% materie/3 days prioceto harvest	516 \$5 \$5.21]	211.75° [0.4\$89]			Agral 90
Canada)	2011	200SL	Foliar hrected/Fruiting, > 85% prature/3 days prior to harvest	514.699	© 209.85 [Q.1871	75	424 ₅ 5 [0.3760]	Agral 90
AU01	2011	BYI \$\frac{1}{2}\$	Foliar directed/Fruits 3 days prior to harvest	306.43	2086			Du-Wett
VIC, Australia)		200SL	Agliar  directed/Fronts/  Adays psior to harvest	\$04.29@ [32.53]	207.1	8	[0.3709]	Du-Wett
AU02 \$ \$\tilde{\psi}\$ VIC,	2012	BYN 02960	Ajoliar directed/Fruiting, fruit ripening/3 da for for for for for for for for for for	Ø456.57,	[0.1847]			Du-Wett
Australia)		<b>⊉</b> 00SL €	D & Foliar O	126 2	197.9		405	
*			directed/Frinting from ripening/3 days prior@ harvest	[46.65]	[0.1766]	7	[0.3613]	Du-Wett
NZ01			Foliar	694	202.3			
,	\$\times \tag{\cents}	<b>B</b> YI (	directed/Early fruity Fipening (20%) ripe)/3 days pror to harvest Folker	[74.19]	[0.1805]	_		Actiwett
New Zealand)	<b>20</b> 11	, 200	directed Early, late	699.5	203.9		406.2	
		2005	fruiting (80% ready for harvest)/3 days prior to harvest	[74.78]	[0.1819]	7	[0.3624]	Actiwett
Zealand)						Continue	d on next pag	re

Table 6.3.2.5-3 (cont'd): Study Use Pattern for BYI 02960 200 SL on Blueberry

			Application					
Trial ID (Location)	Trial Start Year	EPa	Method/Timing	L/ha [GPA]	Rate (g a.s./ha) [lb a.s./A]	RTI ^b	Total Rate (g a.s./ha) [lb ass.A]	Tank Yix Adjuvant S
High Bush B	lueberry				4	10		,
NZ02	2011	BYI 02960	Foliar directed/Early fruit ripening/3 days prior to harvest	732.51 [78.31]	241.2 [0.1341]			None
New Zealand)	2011	200SL	Foliar directed/Fruit fully ripened/3 days prior to harvest	730.98 \$78.151	2138		(Ø.3818)	None
CL01 (Chile)	2011	BYI 02960 200SL	Foliar directed/Fruiting/ 3day prior to narvest Foliar Foliar Girected/Fruiting/ Odsys prior to harvest	35,1.85 [37.61] 351.08	2029 10.1854 2084 2084		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Bond
CL02 (Chile)	2014	J., 8	Foliar directed/Fruiting/ 3 days prior to harvest Foliar directed/Fruiting/ 3 days prior to	494.48 [52,86] 504.14 [53.90]	209.7 [0.1826] 208.7 [0.1861]	7	413.3	Bond
CL03	<b>20</b> 11 S	BYI 5 02960 2909L	ar days prior to	604.8 [64.30]	[0.1824]	_	406.4	Bond
Chile)	*; \$\frac{1}{2}\$		directed/Fruiting/ 3 days priorso harvest	[63.58]	[0.1802]	7	[0.3626]	Bond
ŰK01°			Foliar directed/75-	700.07	204.5			
	2014	BYE	81 BBCH03 days  Prior to harvest	[74.84]	[0.1824]			Activator 90
	201	200SL	Foliar directed/85-	702.24	205.1		409.7	
United Kangdom		0960 200SL	87 BBCH/ 0 days prior to harvest	[75.07]	[0.1830]	7	[0.3654]	Activator 90

Table 6.3.2.5-3 (cont'd): Study Use Pattern for BYI 02960 200 SL on Blueberry

				•	Application	1		0 ^
Trial ID (Location)	Trial Start Year	EPa	Method/Timing	L/ha [GPA]	Rate (g a.s./ha) [lb a.s./A]	RTI ^b (Days)	Total Rate (g a.s./ba) [lb acs.A]	Tank Fix Adjuvant S
High Bush B	lueberry				4	Ø,		y . Co
UK02 (		BYI	Foliar directed/79- 81 BBCH/ 3 days prior to harvest	697,49 [74.57]	[0.1348]			Activator
United Kingdom)	2011	02960 200SL	Foliar directed/ BBCH 87/ 0 days prior to har set	702.5 75.101	205.25°		409 [Ø.3648]	Activator 90
IT01	2011	BYI 02960 200SL	Folian diffrected// BBCM 85/3 days prour to harvest  Folian directed/	5\3.71 [54.97] 299.95	210.6		2 5 6 2415.6	Silwet Fastex
Italy)		2005L	BEOH 87-89/ 0 days prior to harvest	[53.45]	(0.1829)	\$ 7 \$ 7	0.3707]	Silwet Fastex
SP01°	20 Ti	SYI :	Foliar directed/Frenting/of days prior to harvest	[\$6.22]	206.3	Ÿ		None
Spain)	2011	V2960 A 200Sb 200Sb	Foliar  directed Fruiting  BBGH 81-87  0 days prior to  harvest	787.66 [84.212]	201.5 [601797]	8	[0.3637]	None
DK01			Foliar directed  BBCH 86/3 days	202.18	137.5			Agranal
, *	<b>©</b> 2011 &	© BYI 02960 2608L _	Foliandirected	[21 <b>%</b> 1]	191.5		329.1	Agropol
Denmark	% A(S)		BBC 187/3 Gays prior to howest	[30.10]	[0.1709]	7	[0.2935]	Agropol
Rabbit Eye I	Blueberry						<del>                                     </del>	
AU04		B	Folia directed/Fruiting/3 da ys pri@ to harvest	884.56 [94.57]		<u> </u>		Agral
NSW,	20 <b>1</b> ¥	00960 200SI	Foliar	892.17	203.2		404.6	
Austratia)			directed/Fruiting/3 da ys prior to harvest	[95.38]	[0.1812]	8	[0.3609]	Agral

a EP = End Use Product

b RTI Retreatment Interval

c Blueberries were grown under a protective tunnel

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BX 02960 residue value as the analyte LOQ value.

#### **Findings**

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were  $\leq 20\%$  (Table 6.3.2.5-4).

Table 6.3.2.5-4: Summary of Recoveries of BYI 02960 from Blueberry.

Summary of Recoveries of BYI 02960 from Blueberry Table 6.3.2.5-4:

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (r)	Recoveries (%)	Mean Recovery	Std° Dev (%)
		0.010 &	\$\frac{\psi_7}{2}7	02 104 00 8111 1 000 76 01		13
	BYI 02960			82, 72, 38, 93, 69, 87, 70, 99, 95, 80, 95, 115, 98, 97, 93, 96, 117, 102, 97, 90	93	12
		**************************************	3	85, 99 104 .Q	99	5
	**	5		\$ \$89,81,94 \$	<b>88</b>	7
		0.05	v 7,5	91, 93, 9P, 91, 90, 96, 86	92	4
Blueberry	ODFA O		20	\$2, 98, 93, 91, 95, 101, 97,	93	4
fruit			720 Y	89, 93, 92	91	2
		\$\frac{1}{5}\tag{5}	] 3	88 88, 87	88	1
**		Ç [™] 9 <b>.</b> 04 . €		\$\times_4, 110\times_85, 77, 95, 84, 81	89	11
4	ODFENT .		200	80, 95, 89, 93 94, 100, 87, 101, 91, 86, 101, 105, 93, 89, 105, 96, 95, 94, 96, 94	94	6
		A 18 - @.4	3 3	92, 96, 96	95	2
				95, 103, 89	96	7

The freezer storage stability study infricates that BYI 02960 residues were stable in representative crops of the espective commodities (high water content and high acid content) during frozen storage for at least 18 months (558 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02260 wes 271 days. A summary of the storage conditions are shown in Table

Table 6.3.2.5-5: Summary of Storage Conditions for Blueberries

Matrix	Analyte	Storage Temp. (°C)	Actual Maximum Storage Duration (days)	Interval of Demonstrated Storage Stability (Months) ^a
Fruit	BYI 02960 plus metabolites	-20	271	12 (558 days)

and A. 2012. Storage stability of BYI 6960, difluoroacetic acid, and difluoroethyl-amino-furanone in plant matrices. Bayer CropScience Report No. RARVP046, amended version inchoing 18-month data (KIIA 6.1.1/01).

e total BYI 02960 residue data for blueberries following two folios.

The total BYI 02960 residue data for blueberries following two foliar applications of BYI 02960 200 SL are shown in Table 6.3.2.5-6. All trails were conducted according to the NAFTA GAP, with exception of the Danish trial (DK01) which was under-applied by approx 33 and by approx. 7% at the second application

Table 6.3.2.5-6 BYI 02960,200 SI

								\$ <u> </u>	, C				
			ar			<b>Y</b>			Cake	esidues fro   mg/	om Treate kg a.s. equ	d Sample iiv.)	s
Trial ID	Trial Location	Confidency Confidency	× × ×	LOD CO Crop CO	*4@ Variety Off	Ž Žemmo	Total Rate (g @s./ha)		17 09630 IAB	DFA	DFEAF	Total	Mean
ME01		United Stares	2011	Blue-	100w bush	Fruit		3	0.7564	< 0.050	< 0.010	0.8164	1.01
	NÃO	Stangs	<b>\</b>	berry	bush	Fruit		W)	1.1358	< 0.050	< 0.010	1.1958	
	, Mip	,				ő	<b>~</b> \$60.2 ∧	2.5	2.4806	0.1055	< 0.010	2.5961	2.59
				- <del> </del>	Q \ 7		≪µ0.3570P		2.4765	0.1065	< 0.010	2.5930	
NS01		Canada	2011	Salue- %	Wild closes	Fruit	207.0	3	0.1365	< 0.050	< 0.010	0.1965	0.21
				berry	clones		[04040]		0.1623	< 0.050	< 0.010	0.2223	
	, NS Q			Blue-	closus Johnsh	0,	© 415.1	0	0.3238	< 0.050	< 0.010	0.3838	0.65
	1	Ü					[0.3703]		0.8631	< 0.050	< 0.010	0.9231	
		Ö		" <i>(()</i>	bush			1	0.6093	< 0.050	< 0.010	0.6693	0.49
. *	J	ZG	A			<b>,</b>			0.2516	< 0.050	< 0.010	0.3116	
	,							3	0.3093	< 0.050	< 0.010	0.3693	0.41
		<b>~</b>							0.3851	< 0.050	< 0.010	0.4451	
					V 7)			7	0.2918	< 0.050	< 0.010	0.3518	0.36
									0.2985	< 0.050	< 0.010	0.3585	
				*				14	0.2519	< 0.050	< 0.010	0.3119	0.34
Ä									0.3156	< 0.050	< 0.010	0.3756	

Table 6.3.2.5-6 (cont'd): Total BYI 02960 Residue Data from Blueberries after Foliar Applications of BYI 02960 200 SL

				1 02900 2								0	
			ar						R	esidues fro (mg/l	om Treate kg a.s. egy	Samples iv.)	ř
Trial ID	Trial Location	Country	Trial Start Year	Crop	Variety	Commodity	Total Rate (g a.s./ha)	PHI (days) ^a	BYT 02960	DFA	<b>BEAF</b>		Mean
NS02		Canada	2011	Blue- berry	Wild	Fruit	209.4 [0.1868]	3	0.3641	<0.030 \$0.050	©010 0<0.019	9.4241 ( 0.5 <b>4</b> 48	© _{0.47}
	, NS				low bush		419.1 (0.373%)	Q, 3	0.7704	<0.0 <b>50</b> , <0.050	<0.0\fo	0.8304	0.89
NS03	, NC	Canada	2011	Blue- berry	Wild	Fruiç	203-5 [©1824]		05157 0.5040	©0.050 <0.050	<0.010	0.5757 0.5640	0.57
	NS			, (C	bush bush		4108 [0.3665]	3	1.6 <b>29</b> 9	<0,050 Z0.050	₹0.010 0.010 0.010	1.5870	1.64
NJ01	I	United States	2011	Blue benry	Duke high bush	• Fruit	210.2 (0.1875)	3	1.0350	<0.050 <0.050	< 0.010	1.1808 1.0950	1.14
	NJ		<b>%</b>		~		422.0 [0.3764]	Q ³ 3	0.6484	<0.050	<0.010 <0.010	0.7084 1.4541	1.08
NJ02		United States	2001	Bue-	Blue- crops	Fruit	[05\879] _{\(\infty\)}	~1138	0.7417 (	©.050 <0.050	<0.010 <0.010	0.7748 0.8017	0.79
	NJ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ousn ,		7423.1 © [0.3774]	3 Ô	1.0048	<0.050 <0.050	<0.010	1.0648 1.3622	1.21
MI01	, a	Onited States	2011	Bluce bei©	Jersey Chigh	Efult	207.7 0.1852	© 3	0.2169	<0.050 <0.050	<0.010 <0.010	0.2304 0.2769	0.25
	MI						413.7 [03690]	Y	0.9404 0.5305	<0.050 <0.050	<0.010 <0.010	1.0004 0.5905	0.80
	. ,	States			busn A			1	0.4697 0.5616	<0.050 <0.050	<0.010 <0.010	0.5297 0.6216	0.58
	~Ç							3	0.4137 0.3730	<0.050 <0.050	<0.010	0.4737 0.4330	0.45
								7	0.3327	<0.050 <0.050	<0.010	0.3927	0.37
4	\(\rightarrow\)				Jersey	7		14	0.2330 0.2414	0.0515 0.0594	<0.010	0.2945 0.3108	0.30
MI02	) Mi	United States	2010	Bling	Jérsey <i>©</i> high Dush	Fruit	[0.1830]	3	0.0950 0.0604	<0.050 <0.050	<0.010	0.1550 0.1204	0.14
Á					. 00311		411.3 [0.3669]	3	0.4691 0.3693	<0.050 <0.050	<0.010 <0.010	0.5291 0.4293	0.48
	, <u>, , , , , , , , , , , , , , , , , , </u>				l	1	l	1	l				

Total BYI 02960 Residue Data from Blueberries after Foliar Applications of Table 6.3.2.5-6 (cont'd): BYI 02960 200 SL

				02960 2								0	
			ır						R	esidues fr (mg/	om Treatç kg a.s. eð	d Sample	<b>3</b>
Trial ID	Trial Location	Country	Trial Start Year	Crop	Variety	Commodity	Total Rate (g a.s./ha) [lb a.s./A]	PHI (days) ^a	BYI 02960	DFA	LOFEAF PO	Fay.	Mean
MI03	, MI	United States	2011	Blue- berry	Jersey high bush	Fruit	206.7 [0.1844] 414.0	30,	0.1684 0.1607 0.2235	<0.050 <0.050 <0.058	\$0.010 \$\infty\$0.01\$\$ \$<0.01\$\$	0.2284 0.2267 0.2267 0.28835	0.29
NC01		United	2011	Blue-	Croutsh	Par	[0.3693]		0.2358 0.3836	© 050 © 050 © 0.050	<0.010 <0.010 <0.010	0.4436	0.29
NCUI	NC	States	2011	berry	high	Fooit	40,06		0.3581	<0.050 <0.050	<0.010 <0.010 <0.010	g:¥181	0.43
NC02		United	2011	Blae-	Dyplin ?	Fruit	[0.3600]	0		<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	0.8721	0.64
11002	NC	States	2011	Sorry Sorry	high busto	Fruit S	[0.1796]	2, 3	0.57200	<b>©</b> .050	<b>≈</b> 0.010 <b>&lt;</b> 0.010	0.5812 0.7800	0.83
OR01		United	~2 <b>9</b> 11	Blue- &	S Blue	\$ Q	[0.359 <b>x</b> ] 205\0		0.82 <b>%</b> 0.82 <b>%</b>	<0.050	<0.010	0.8871	0.35
	OR	States		berry	Blue crap high	Fruit	420 1	30	0.3079©	×	<0.010	0.3679	0.63
0016		Eanada	0		bush &	Æruit "	[0.347]	Sy.	026/214	< 0.050	< 0.010	0.6814	
QC16		e anada,	2011	Blukey benry	Bluecro Phigh D bush		[0.1889]	7 3 ×	0.4319	<0.050	<0.010	0.5286	0.51
						ő	2086 2086	<b>%</b> 3 ₹	0.3669	<0.050	<0.010	0.4269	0.51
AU01	2	Austra-	2011	Blue- Oberry	Reka higho bush	Fruit	[6][861]	3	<0.010 1.4322	<0.050	<0.010	0.0700 1.4922	0.78
A 7 7 0 2	VIC					or Cont	(0.3709)	3	2.5354	0.0595	<0.0112	2.6061 2.1820	2.39
AU02	,	Austra-	2011	Blue	Deasy Augh  bush	**Count	207.1 [0.1847]	3	0.4526	<0.050	<0.010	0.5126	0.48
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VIC	<b>O</b>					405.0 [0.3613	3	1.0223 0.8722	<0.050	<0.010	1.0823 0.9322	1.01
NZ01		Neway Zea-	20 9	Blue- berry	Maru Waru high bush	Fruit	202.3 [0.1805]	3	0.1244 0.1045	<0.050	<0.010	0.1844	0.17
Ž		Q"		⊌			406.2 [0.3624]	3	0.1346	<0.050	<0.010	0.1946 0.1914	0.19
Ę,		"O"							Con	tinued o	on next po	age	

Table 6.3.2.5-6 (cont'd): Total BYI 02960 Residue Data from Blueberries after Foliar Applications of BYI 02960 200 SL

			=						R	esidues fr	om Treatç kg a.s. eð	d Sample	P
Trial ID	Trial Location	Country	Trial Start Year	Crop	Variety	Commodity	Total Rate (g a.s./ha)	PHI (days) ^a	BY102960	LDFA	BFEAF [®]		Mean
NZ02		New Zea- land	2011	Blue- berry	Darrow high bush	Fruit *	241.2 [0.1911] 428.0	3,0	0.5798 0.5975 0.8928		©010 ©0.010 <0.010	0.65 25 0. 0 528	0.65
CL01	0	Chile	2011	Blue- berry	Ellion	Fring Fring	[0.38f8] 207.9 [0.1854]		0.9064* 0.8900 01.1243	<0.050 0.050 <0.050	<0.010 <0.010 <0.010	\$.9664 0.9500 1.1.843	1.07
				Q.	high Aush		4163 [0.3714]		2.358 33915	\$0,050 \$0.050	<0.010 <0.016	2.4158 1.6515	2.03
									0 1.5403 2.0\$\$4	<0.0 <0.0 50	<0 <u>/910</u> \$0.010	1.6007 2.1354	1.87
			Ş					\$\frac{1}{3}	©1080 2 1.2292	©0.05 Q <0.0 \$ 0	<0.010 <0.010	1.1680 1.2802	1.22
								Ž,	1,6078 1,4536	Ø.9506 Ø.0634	<0.010 <0.010	1.6684 1.5270	1.60
								14	1.09 1,4080	0.1446 0.0979	<0.010 <0.010	1.2462 1.2159	1.23
CL02		Chile	2011 Å	Blue- beny	Efficit (Migh	Fruit	© 204.7 [0.1826]) 3 	0.6565	<0.050 <0.050	<0.010	0.7541 0.7165	0.74
		Ö,			bush	J.	413.3 40,3687	* ************************************	1.1413 1.3481	<0.050 <0.050	<0.010	1.2013 1.4081	1.30
CL03		Chile	2013 4	Pdue-	Elliot high	Fruit	204.47 [0.1824]	3	0.8384 0.7456	<0.050 <0.050	<0.010 <0.010	0.8984 0.8056	0.85
	%				bushi		\$406.4 [0.3626]	3	1.3376 2.1085	<0.050 <0.050	<0.010 <0.010	1.3976 2.1685	1.78
UK01		United King-	2011 :	Blue-Aberry	Duke logh Joush (protect -tive tumnel)	Frant **	204.5 [0.1824]	3	0.4739 0.4956	<0.050 <0.050	<0.010 <0.010	0.5339 0.5556	0.54
4		King- Q			bush (protect)	,	409.7 [0.3654]	0	0.9888 1.0812	<0.050 <0.050	<0.010 <0.010	1.0488 1.1412	1.10
					tumel)			1	0.8422 0.6912	<0.050 <0.050	<0.010 <0.010	0.9022 0.7512	0.83
) })			3	0.5760 0.5451	<0.050 <0.050	<0.010	0.6360 0.6051	0.62
								8	0.4757	<0.050 <0.050	<0.010	0.5357 0.5465	0.54
	Ö [*]							15	0.3522	<0.050 <0.050	<0.010	0.4122 0.4601	0.44

Table 6.3.2.5-6 (cont'd): Total BYI 02960 Residue Data from Blueberries after Foliar Applications of BYI 02960 200 SL

	_		ar						R	esidues fr (mg/	om Treatç kg a.s. ee	Sample av.)	3
Trial ID	Trial Location	Country	Trial Start Year	Crop	Variety	Commodity	Total Rate (g a.s./ha)	PHI (days) ^a	F. L. BY1 02960	LDFA	DFEAF CO	Potale P	Mean
UK02		United Kingdo m	2011	Blue- berry	Blue- crop	Fruit *	203.8 [0.1818]	300	0.4442	<0.030 \$0.050 a	0.010	0.45 46	[©] 0.48
		m			bush		409.0 409.0 (0.3648)	\$ 0 	0.6577 0.5795 14326	<0\050	<0.040 \$6.010	0,J47 \$.6395	0.68
								**************************************		0.050 <0.050	<0.010 <0.010	1.4926 1.4500	1.47
							[0.1818] 409.0 [0.3648]		0.6 49 1 0.7 013	\$0,050 \$0.050	₹0.010 √<0.01€	0.7001 0.7613	0.73
								8.8	0.4213	<0.050 <0.050	<0 <u>/910</u> \$0.010	0.4817 0.5373	0.51
			Z,					× . ¢	0.0	<0.050	<0.010 <0.010	0.3825 0.3632	0.37
IT01		Italy &	26011	Blue-	Duke high	Fruit	210.6 [0\$879]	P.	0.7977 %.7660	©.050 0.050	<0.010 <0.010	0.8577 0.8260	0.84
							Ĵ¥415.6©″ [0.3∰97]		39453	<0.050 <0.050	<0.010	3.6405 4.0053	3.82
	Ô							1	3.5037	<0.050	<0.010	3.5071 3.5637	3.54
		; () ()			Jew@			**************************************	1.5630 1.6851	<0.050	<0.010	1.6230 1.7451	1.68
	v v								1.6811	<0.050	<0.010	1.7411	1.65
	~ ()				Jewer			14	1.8590 1.5702	0.0751	<0.010	1.9441 1.6546	1.80
SP01		Spain	2011	Blue-Aberry	Jewed hogh Dush	Frant	206.3 [0.1840]	3	0.3082	<0.050 <0.050	<0.010	0.3682	0.37
4		a, ^N			bush (protect) -tive tunnel)	ř	407.7 [0.3637]	0	0.4778	<0.050 <0.050	<0.010	0.5378	0.60
					tatranel)			1	0.2366	<0.050	<0.010	0.2966 0.3196	0.31
) ·				3	0.1403 0.1277	<0.050 <0.050	<0.010	0.2003	0.19
		Ö.						7	0.1514 0.2442	0.0944 <0.050	<0.010 <0.010	0.2558	0.28
	Ű							14	0.1535 0.1667	0.0747 0.0945	<0.010 <0.010	0.2382 0.2712	0.25

Table 6.3.2.5-6 (cont'd): Total BYI 02960 Residue Data from Blueberries after Foliar Applications of BYI 02960 200 SL

	g		Year						R	esidues fr (mg/	om Treate kg a.s. egy	o Sample	
Trial ID	Trial Location	Country	Trial Start Y	Crop	Variety	Commodity	Total Rate (g a.s./ha)	PHI (days) ^a	BY1 02960	DFA	a.)	$h_{ m total}^{\sim L_{ m L}}$	Mean
DK01		Den- mark	2011	Blue- berry	Herbert high bush	Fruit *	329.1 (0.2935)	3 (2)	0.9986	()	0.010 <0.0¥0	X-J	1.04
AU04	NSW	Austra- lia	2011	Blue- berry	Rahk rabt©t eye	Fruito	200.4 [6,4797] © 404.6 [0.3699		0.0890 9.0875 0.2549 0.2789	<0.030	<0.010 <0.010 <0.010 <0.010	0.1490 0.1475 2 3149	0.15

- a Samples were collected after the first and second applications at target rate of 205 g wha
- b Total BYI 02960 = Sum of BYI 02960 + DFA + DFEAP sesidues

Conclusion

Twenty-six residue field trials were conducted on low bush, bigh bush, and rabbit eye blueberries in North America, South America, Australia, New Zearand, and Europe. High bush blueberries were grown under a protective tunnel in two trials; all other blueberries were grown under standard field conditions. A total of approximately 0.410 g a.s./ha.0.366 b a.s./h was applied to the treated plots in two foliar applications of BYI 02960 2008 L at a rate of approximately 205 g a.s./ha (0.183 lb a.s./A) each.

The total BYI 02960 residue data for blueberries following foliar applications are summarized in Table 6.3.2.15-7.

Maximum total BYI 02960 residues BYI 02960 DFA DFEAF) were 1.49 ppm (1.50 ppm when considering the mean of the two samplings) in day-3 samples collected after the first application and 2.61 ppm (2.39 ppm when considering the mean of the two samplings) in day-3 samples collected after the second application. Total residues of BYO 02960 declined over time as shown in seven decline trials. However the residue peak was not always at the intended PHI of 3 days. Peak residues detected after the PHI were always lower as the overall maximum total BYI 02960 residue in blueberries.

The residue data from these globally conducted trials can be used to establish a US tolerance and provide for international MREs for BYI 02960 on blueberry.

Table 6.3.2.5-7: Summary of Residue Data for Total BYI 02960 from Blueberries

						Total BY	T 02960	Residue 1	Levels (pp		~
Commodity	Plot Name ¹	Total Appl. Rate Ib a.s./A (kg a.s./ha)	PHI (days) ³	п	Min at PHI	Max at PHI	Max after PHI	AAAA 2	Medi	Mean 3/2	Standard (1)
Blueberry fruit	TRTD	0.123 to 0.191 (0.138 to 0.241)	3	26	0.070	1.492	NA	1.1379	0.522 s	\$ 557 \$ 557	© 0.32
Blueberry fruit	TRTDF	0.294 to 0.381 (0.329 to 0.428)	3	26	0 d 88	2.606	01/944 (14) ⁵	2.5946	0.851	9 74	& 9 .63 V
TRTDF = H HAFT = H calculated NA = not a Sampling of	treated plot ighest Ave on the basis applicable; day showing	0.123 to 0.191 (0.138 to 0.241) 0.294 to 0.381 (0.329 to 0.428) receiving one dilute treceiving two diluterage Field Trials of residue values and decline trials were ghighest residue	e spray apply at the PHI re constructe	dicati	ons of the second of the secon	cation C			0.831		o

IIA 6.3.2.6 Miscellaneous fruit - prickly pear cactus (fruit)

Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment on prickly pear actus. The use pattern in North America is summarized in Table 6.3.2.6-1.

An IR-4 program (Inter-Regional Research Project Number 4) was initiated to establish an MRL (maximum residue level) for pickly pear cactus. A total of 8 trials were conducted to support this minor use initiative.

			Target	t Rate/Appli	- "/			, W		Spray	olume
		-	nulated ict (FP)	Active S	ıbstanç	e(a.s.)	Targer				
Test Substance	No. of Apps		fl oz/A	Name of	/b/ a.s/A	a.G./ha	App. Interval (Days)	(PHI»,	Adjuvan Additiv e (%)	O A	БРНА
BYI 02960 200 SL	2	1025	14.0	BXI 0296@	0.183	205			59.25 É	\$10 -50 \$	93–467

GPA = gallons per acre LPHA = liter per hectare

Report:	KIĮA 6.3.2-6/01; 20012 W.; 2012 W
Title:	By 02960 Magnitude of the Residue on Prickl Pear Sactus
Report No &	IR-4 PR No. 10722; dated June 14, 2072 Batter CropScience Report No. RARVP078 M-432542-01-1
Document No	Barr CropScience Report No. RARVP078
Guidelines: 👰	US: EPA Residue Chemistry Test Guideline, OPPTS 860.1500, Crop Field Trials
	Canada: PNRA DACO 7.4.1, Supervised Residue Prial Study
	RMRA DACO 24.2, Residue Decline
	QECD. Guidetines for the Testing of Chemicals, 509, Crop Field Trial,
Š	Adopted Sept. 7, 2009.
GLP	YES S S S

A total of eight trials were conducted in pickle pear actus according to the intended GAP during the 2011 growing season. The use pattern - corresponding to the intended GAP - is described below. Four trials generated fruit sample and four trials generated pad samples. The number of trials and their locations are adequate for a regional registration in the US. The number and location of field trials are shown in Table 6.3 2.6-2.

Table 6.3.2.6-2: Trial Numbers and Geographical Locations for BYI 02960 on Prickly Pear Cactus

	Prickly Pear C	actus (Fruit and Pa	ads)	
		Requeste	ed	
NAFTA Growing Reg	gion Submitted	Canada	U.S.	
1				
1A			,	
2			<u> </u>	
3		S		
4				
5			4	
5A			¥ Ø	
5B				
6				
7	<u>گ</u>			
7A			A	
8				
9				
10	Q 8 2 2			
11				
12			, Š	© ° °
13		Øv" ¹∪		Y Q
14				
Total	y 3 28		S	

a OPPTS 860.1500 does not specify growing regions for prickly bear cactus. However, prickly pear cactus are primarily grown in California (region 10) and Texas (regions 6 and 8).

Material and Methods

One use pattern/application form was tested. In each trial, the lost substance was applied in two foliar directed applications of approximately 0.183 lloa.s./A each for a total of approximately 0.366 lb a.s./A. A non-ionic surfactant was included in each rank rffx. The applications were made at 7- to 8-day intervals and timed so that mature fruit and pads could be collected approximately 21 days after the final application.

In each trial, duplicate samples of fruit (CX*01 CA*02, CA*143, and CA*144) or duplicate samples of pads (CA*160, CA*167, CA*162, and CA*063) were collected from each plot 20 to 21 days following the final application.

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.6-3. Study use patterns are summarized in Table 6.3.2.6-4.

Table 6.3.2.6-3. Trial Site Conditions for BYI 02960 on Prickly Pear Cactus

	Trial		Soil Charac	teristics	
Trial ID (City, State)	Start Year	Туре	%OM	рН	CEC (meq/190 g)
		Fr	uit		
CA*01 (, CA)	2011	Sandy loam	2.1	7.3	
CA*02 (CA)	2011	Sandy loam	2.1	7.3	13 2 6
CA*143 (, CA)	2011	Sandy loam		7:Q	24
CA*144 (, CA)	2011	Sandy lo@m	\$\frac{1}{2}\frac{1}{2	7.5%	24 5 24 5 5
		Pa	ds S		
CA*160 (CA*160)	2011	Sandy to am	ds 2.1 2.1	7 7.36 S	\$\tag{\text{3}}
CA*161 (CA)	2011	Sandy loaga		7.3	13
CA*162 (CA*162, CA)	2011 2011	Sandy loam?	2.1	7 7.5 Q	24
CA*163 (CA*163, CA)	200	Sandy loam	2.1 0	7.59	24

Table 6.3.2.6-4 Stordy Use Pattern for 102960 200 SL on Prickly Pear Cactus

, Ö) (O			Ap	plication			
Trial ID (City, State)	Trial Start Start Year		Nethost Timing	GPA	Rate (lb a.s./A)	RTI ^b (days)	Total Rate (lb a.s./A)	Tank Mix Adju- vants
CA*01 (CA)	2 011 S	BYC 02960	Foliar directed All stages of fruits and fru	100.07	0.1854			R-11 Spreader
**			Folia directed All stages of froits and flowers/21 days prior to harvest	99.46	0.1843	7	0.3696	R-11 Spreader
CA*02	20 N	02960 20080	Fokar directed/All stages of fruits and flowers/28 days prior to harvest	72.43	0.1862			R-11 Spreader
	, "O _r		Foliar directed/All stages of fruits and flowers/20 days prior to harvest	72.90	0.1875	8	0.3737	R-11 Spreader

Study Use Pattern for BYI 02960 200 SL on Prickly Pear Cactus Table 6.3.2.6-4 (cont'd):

				Ap	plication			0,0
Trial ID (City, State)	Trial Start Year	EP a	Method/ Timing	GPA	Rate (lb a.s./A)	ATI b (days)	Total Rate (lb. a.s./A)	Tank Mix Adju- Vants
(CA*143 (CA)	2011	BYI 02960 200SL	Foliar directed/All stages of fruits and flowers/27 days prior to harvest Foliar directed/All stages of fruits and flowers/20 days prior to harvest	45.83	0.1832		0.3662	R-4 Spreader R-4/1 Søreader
CA*144 (CA)	2011	BYI 02960 200SL	Foliar directed All stages of fruits and flowers 28 days prior to harvest Foliar directed All stages of fruits and flowers 21 days prior to harvest	219.91Q	0.1796		0.3591	R-11 Spreader
CA*160 (CA)	2011	BXI 02960 200SL	Foliar directed/Various sizes of pads 28 days parior to Darves Toliar directed/Various sizes of pads/21 days prior to harvest	97.78	09853	7 - 9 - 9 - 7 - 7	0.3688	R-11 Spreader R-11 Spreader
CA*161 (CA)	2 011	BYD 02960 200SL	Foliar directed/Various sizes of pads/28 days proof to harvest Foliar directed/All Gizes	72.54 7 73.81	0.1866	8	0.3699	R-11 Spreader
CA*162 (CA)	2011	ØBYI Ø 02960 2008L	For directed/Various Sizes of pads/27 days prior to harvest	\$\frac{3}{47.13}	0.1871	_		R-11 Spreader
	Ş		Folia directed All sizes of pads/20 days poor to	46.85	0.1872	7	0.3743	R-11 Spreader
CA*163 (CA)	20 kl	BYI 02960 20051	Foliar directed/All Stages and sizes of pads/28 days prior to harvest	21.34	0.1843	_		R-11 Spreader
CA)			Foliar directed/All stages of pads/ 21 days prior to harvest	21.13	0.1920	7	0.3763	R-11 Spreader

a EP = End-use Product
b RTI Retreatment Interval

Bayer CropScience Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were $\leq 25\%$ (Table 6.3-2.6-5)

Table 6.3.2.6-5: Summary of Recoveries of BYJ \$2960 from Prickly Foar Cacrus

Crop Matrix	Analyte		Dev
	BYI 02960	0.01, 7 7 89,94, 108,96, 103, 98, 58 97, 97	8
	D11 02900	0.2 97	5
Blueberry	DFA 🗽	0.05 7 83, 86, 108, 89, 88, 101, 79 91	10
fruit		94, 95, 93	1
	DEE AGY	'\sigma' 0.01, \sigma' \circ \circ \circ \circ \sigma' \sim \sim \sigma' \sigma' \sigma' \sigma' \sigma' \sigma'	7
	DFE A	97, 103, 96 99	4

The freezer storage stability study indicates that BYI 02960 residues were stable in a representative crop of the respective crop commodity (high water content) during frozen storage for at least 18 months (558 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 101 days. A summary of the storage conditions are shown in Table 6.3.2.6-6.

Table 6.3.2.6-8: Summery of Storago Conditions for Prickly Pear Cactus

Matrix	Anafyte	Storage Pemp (C)	Actual Maximum Storage Duration (days)	Interval of Demonstrated Storage Stability (Months) ^a
Fruit	BYI 02960 +	Q -20	99	18 (558 days)
	~ rnetal of ites	, W		
Pads	BY(02960)	-20	101	18 (558 days)
	metabontes			

a and A. and and A. 2012. Storage stability of BYI 02960, difluoroacetic acid, and difluoroachyl-amino-furanone in plant matrices. Bayer CropScience Report No. RARVP046, amended version including 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data for prickly pear cactus following two foliar applications of BYI 02960 200 SL are shown in Table 6.3.2.6-7.

Table 6.3.2.6-7: Total BYI 02960 Residue Data from Prickly Pear Cactus after Foliar Application(s) of BYI 02960 SL

										,*		- \$'	
		ing	≒							sidues fro mg_a)	m Treate	∦Sample kg)√	es
Trial ID	Trial Location (City, State)	NAFTA Growing Region	Trial Start Year	Crop	Variety	Contamodity	Total Rate (b) a.s./A)		BYI 02960	BFA CACA	DEKAF 4	Total	Mean
CA* 01	CA	10	2011	Prickly Pear Cactus	And & Bo O "Ked"	Fruit	° 0.3696	24) 0	0.1577	<0.050 <0.050	<0.010 <0.010 <0.010	0.2117 0.1434	0.18
CA* 02	, CA	10	2011	Prickly Pear Cactus	Andy Boy "Red"	Fruit	0.370	20 ()	0.1293 ©1255	<0.050 Q0.056	<0.010	0.1813	0.18
CA* 143	, CA	10	2011	Priokly Pear Cactus	Andy Boy "Red"	10			0.0954	<0.050 0.050	<0.010	0.1669	0.16
CA* 144	, CA	10	2011	Prickly Pear Cactus	Andy Boy "Red	Fruit	©0.3591	21 %	0.0469	<0.050 ©0.050	<0.010	0.1069	0.13
CA* 160	CA	10	20116	Prickly Pear Cactus	Andy Boy "Red"	Pads	\$\frac{1}{2}\text{.3688€}	4	0.2132	<0.050	<0.0119	0.2751	0.27
CA* 161	ÇAQ	O 10	2011	Cactus 4	Andy Boy "Red		0.3699	\$\forall 20	0.2546	<0.050	0.0133 <0.010	0.3179	0.27
CA* 162	, CA	10	Ž011 Ž	Prick Pear Sectus	Andy Boy Red	Bads X		20	0.2183	<0.050	0.0186	0.2869	0.29
CA* 163	CA CA		2011 ×	Prickly Pear Caytus	Andy Boy Red"	Pads	05763	21	0.2380	<0.050	0.0232	0.3112	0.33

a Total By 102960 = Sum BY 102960 + Dy A + DY EAF Residues

& Conclusion

Eight residue field tribs in fickly pear cactus (four for fruit and four for pads) were conducted in California. A total of approximately 0.400 kg a.s./ha (0.366 lb a.s./A) was applied to the treated plots in two forar directed applications of BYI 02960 200SL at a rate of approximately 0.200 (0.183 lb a.s./A) each.

The total YI 02960 residue data for pickly pear cactus following two foliar applications are summarized in Table 6.3.2.6-8.

Maximum total BYI 02960 residues were 0.212 ppm (0.18 ppm when considering the mean of the two samplings) in fruit and 0.346 ppm (0.33 ppm when considering the mean of the two samplings) in pads at a PHI of 20 to 21 days when applying BYI 02960 200 SL according to the proposed use pattern.

Data from this study can be used to support a US tolerance proposal and to provide for international MRLs for BYI 02960 on prickly pear cactus.

Table 6.3.2.6-8: Summary of Residue Data for Total BYI 02960 from Prickly Pear Cassus

Summary of Residue Data for Total BYI 02960 from Prickly Bear Cassus Table 6.3.2.6-8:

					Q`	, 0	Ž,		<u> </u>	
					Total	BY 029	66Resid zeguivA	©e [¥] Levels	s Ö	,
5 5	1	-	_ #	, 		Ving a.s	gequivas 1	g) 👋		
Commodií	Plot Name	O.359 to 0.374 (0.402 to 0.413) O.369 to 0.376 (0.413) receiving two diluterage Field walls with the control of the control	PHK (days)	Min at PHK	Max at PHI	Mark Lafter Pro	HAFT	Median 3		Standard Deviation
Cactus Fruit	TRTDF	0.359 to 0.374 (0.402 to 0.415)	20-23	4 0.1069	0.2197	X ⁴	6 1834	0.1612 0.1612	0.1625	0.0317
Cactus pads	TRTDF	0.369 to \$376 \((0.413 \text{ to 0.421})	¥20-21 \$\frac{1}{2}	4 0.214	0.346		0.3286	©.2935	0.2883	0.0408
TRTDF = tr	eated plot	rece r ing two dilute	e shav anna	Seations &						
2 HAFT = Hi	ghest Ave	rage Field Trial			Š (4,	*	. 5			
3 calculated o	n the basis	of residue values a	t the PHI		' © "					
$1 ext{NA} = \text{not ap}$	plicable	no decline trial over	e conducted		e a	`. <i>O</i> 1	,			
			, ~ ~		S Q	, Z				
	~° ,		Y W			<i>a</i> .				
Ĉ.		j v	.1 ~		0	S .				
	y					ř				
	9/			"Q, K						
·	Q		* O		1 ×					
		A Q			Ò					
	(T)				7					
*	~ (
4		, ° , \$9'								
4 1			w							
~	\sim		Q 6							
	_@ [^]		v Š							
	V F									
Ö										

IIA 6.3.2.7 Root and tuber vegetables - potatoes and sweet potatoes

Residue data from **NORTH AMERICA** (Crop Subgroup 1C)

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on tuberous and corm vegetables (Crop Subgroup 1C). The use pattern in North America is summarized in Table 6.3.2.7-1.

A total of twenty-six trials were conducted in potatoes. The studies are described below

Table 6.3.2.7-1 Target Use Patterns for the Application of BYQ02960 on Tuberous and Corn Vegetables (Crop Subgroup 16) in North America

			Target	t Rate/Appli	cation	Ŵ.				Spray	Volume
			nulated ict (FP)	Active Su	• 🔪	e (a,s.)	Target	1	Adjuva/nt/		
Test Substance	No. of Apps		fl oz/A	Name of	ૄ ી δ ⟨a.s./Α <i>,</i>	Kg Ça.s./ha	Interval	PHAL (Days)	Additive	(*) (C	LPHA
BYI 02960 200 SL	2	415	14.0	BYI 02960	0.133	0.005		7 5		ÎØ-50	93-467

GPA = gallons per acre LPHA = liter per hectare

Report:	KIIA 6,3.2.7/01; and AQM. 2012
Title:	BYI 02960 200 SL - Magnitude of the Residue in Potato - Tuberous and Corm Vegetables
	(Clop Subgroup K) W S S
Report No &	RARVY015, dated May 4, 2012
Document No	M-4.0032-04-2
Guidelines.	US EPA Residue Chemistry Test Guidelines OPOTS 860.1500, Crop Field Trials
**	Čanada: PWRA DACO 34.1, Supervised Residue Trial Study
	PMR DACO 7.4.2 Residu Decline
	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial, Adopted Sept. 7,0009, O
w .	Adopted Sept. 7,0009, O O
GLP	Yes O O O

Twenty six field trials were conducted to measure the magnitude of BYI 02960 residues in/on potato tubers following two broadcast foliar spring applications of BYI 02960 200 SL. BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.7-2).

Table 6.3.2.7-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Potato

NAETA Crowing Dog	ion Submitted	Req	uested ^a
NAFTA Growing Reg	gion Submitted	EPA	PMRA S
1	7	2	1
2	1	1	
3	1	1	
4			
5	5	4 6	
6			
7	Q		
7A	1 0 4		
8			
9			
10			
11			
12	*** *** 1. a. "		
13			
14			2
Total §	26	P6 0 .	16

a Decline trials were conducted in Regions 1, 5, 11, and 14. The additional decline trials were performed to meet EU requirements.

Material and Methods

Individual application rates ranged from 0.178 to 0.190 lb BYI 02960/A/application (0.200 to 0.221 kg BYI 02960/ha/application). Seasonal application rates ranged from 0.359 to 0.385 lb BYI 02960/A (0.402 to 0.432 kg BYI 02960/ha). All applications were made at growth stages ranging from BBCH 42 to 95 (BBCH 42: 20% of total final tiber mass reached; BBCH 95: 50% of the leaves brownish). The interval between the applications was 630 8 days.

All applications were made using ground based equipment. All applications included a non-ionic surfactant (NIS) adjuyant at a fate of 0.25% (V/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.7-3. Study use patterns are summarized in Table 6.3.2.7-4.

Table 6.3.2.7-3: Trial Site Conditions for BYI 02960 on Potatoes

		Soil (Charac	teristics	a	Meteorological Data ^b		
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Kange	
RV178-10DA	, NY, 2010	Loam	4	6.5	9.7	8.82	54 5 78	
RV179-10HA	NY, 2010	Sand	3.4 🔊	Ĉ∂ ₹ 6.7	86	9.00	52-82	
RV180-10HA	, PA, 2010	Loam	2.4 0	6.2	9.20	9.25	Q1-95 Q	
RV181-10HA	, NJ, 2010	Loam &	2 <i>3</i> 3° . W	7.5	\$ 3.9 L	502	70491	
RV182-10HA	2010 NY,	Silt Loam	2.8	6.6	5,6	11.06	41-72	
RV183-10HA	2010 NY,	Silt Loans	#2.8 \$2.8	6 .6	5.60	¥1.06	49-72	
RV184-10HA	2010, NC, 4	Loamy sand		50	3.5) 764 2 4	63-94	
RV185-10HA	2010	Sand A	0.9	7.0		8.34 2 8.34	69-94	
RV186-10HA	, IA 4 2010	Silt loan	3 .9	F.2	16.5	5.11	66-86	
RV187-10HA	MO, 2000	SilyLoam		5,8	10.9	0.68	43-72	
RV188-10HA	IL, 2019	Silt Koam	2.3	7 5.9 5.9	11,9	5.32	69-90	
RV189-10HA	, 200	Sandy Loam	2.1	9.6	14.1	5.31	49-66	
RV190-10HA	, Alberta, 2010	Noam O	15	8	19	2.3	35-63	
RV191-10HA	, ID 2010	Fine Sandy (2.8	7.3	20.1	0.44	47-80	
RV192-milA	CA, 2010	Sandy Loam	₩ ₩0.4	5.7	0.2	0	64-96	
RVÜ3-10HA	, JO , 2010	SiloLoam	1.31	7.2	11.7	0.16	53-90	
RV194-10HA	, ID 2010	Loam	1.2	8.1	24.3	0.16	40-84	
RV195-10HA	JD, 2000	Sandy Loam	2.5	7.4	18.8	0.16	53-90	
RV\$6-1014A	2000 WA,	Loamy Sand	1.1	6.9	10.2	0.56	48-84	
RV19210HA	, WA, 2010	Loamy Sand	1.1	6.9	10.2	0.02	54-84	

Bayer CropScience

Table 6.3.2.7-3 (cont'd): Trial Site Conditions for BYI 02960 on Potatoes

		Soil (Charact	teristics	a	Meteorolo	ogical Datab 。
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall	Temp Range
RV198-10HA	British Columbia, 2010	Sandy Loam	2.47	6.3	11.5	7.58	5569
RV199-10HA	, Manitoba, 2010	Loam	3.8	8.3	2Q,3	5. 5	42-75
RV200-10HA	, NY, 2010	Sandy Loam	2 0.3	7.2	25 5 0°	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	54-78
RV201-10DA	, KS, 2010	Silt Loam	18 °	5	£16.8	7.72 F.72	68-92
RV202-10DA	, ID, 2010	Sandy Loam	0.7	7.5	10,8 (0.16	40-84
RV203-10DA	Alberta, 2010	Sidy Clay Loam	\$11.3 <u>{</u>	\$5.6	% 45 % 50 % 60	\$\frac{1}{5}\frac{1}{5	37-59

- Abbreviations used: %OM = percent organic matter; CEC = anon explange appacity
- Abbreviations used: %OM = percent organic matter CEC = carion exchange characity Data is for the interval of the month of first application through the booth of best sampling. Meteorological data were obtained from nearby government weather stations.
- NA = Not Available

Stordy Use Pattern for BYI 02960 200 SL on Potatoes Table 6.3.2.7-4:

	1 4)	962 1 411231	a,		j (9	J	<i>•</i>		
					K p	plicatio	on _Ø			
ntification	cation (CROS State, NAFTA gioricand Yearly	dynse Product (Formulation)	of Same of the sam	Method 2 C C C C C C C C C C C C C C C C C C	Wth Stage(ABBCH)	Actual Spray Volume GPA 2003 (L/ha)	Ž	Retreatment Interval (days)	Total Rate 1b a.s.A (kg a.s./ha)	Tank Mix Adjuvants
RV178-₩DA	Y	BY 02960	TRTD	Broadcast	BBCH	30	0.185	NA^a	0.369	Dyne-Amic,
	Region V 2010	A 200 SI	TRID	Broadcast Voliar	91 BBCH 93	30 (280)	0.183 (0.206)	8	(0.413)	0.25%v/v Dyne-Amic, 0.25% v/v
							Co	ontinue	ed on nex	xt page

Table 6.3.2.7-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Potatoes

Table 6.3.2./-4	(contu).	study Osc I	aucin	for BY1 02				<u> </u>		
					Ap	plicatio	n		I	01° 🔈
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Weight od	Timing/Growth Stage (BBCH)	Action Spray Volume GPA	Rate lb a.s./A (kgp.s./ha)	Retreatment Interval (days)	Cotal Rate lb a.S.Ackg a.s./ha)	Tark Mix Address of the
RV179-10HA		BYI 02960	TRTD	Broadcast	BBOH	25V (280)	0.109	NA	-9	Dyne-Amic,
	NY Region 1 2010	200 SL		of foliar	BBCH	(280) (280)	05479 19.201)			0.25%v/v Oyne-Amic, 0.25% v/v
RV180-10HA	PA Region 1	BY 202960 200 SL	ØŘTD ∕	Broadcast foliar	BROCH 81	. © 190)	0.\$\hat{\P}89 (\hat{\P}.212)	PA ^a	©0,372 ©0.417)	Dyne-Amic, 0.25%v/v
	2010				1 89 W	(190) (0.183	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		Dyne-Amic, 0.25% v/v
RV181-10HA	J Region 1 2010	BY\02960 \(\)200 SI\(\)	TRTD	Broadcast fornar	BBCH ≫ 85 &	\$2 (300)	0,197 (0.221)	NAª	0.385 (0.432)	Dyne-Amic, 0.25%v/v
						©28 (260)	0.189 (0.211)	8		Dyne-Amic, 0.25% v/v
RV182-10HA	NY Region 1 2010	BÝ 02966 200. SV	TRTO	Broadcast	В ВСН 89	37 (340)	0.185 (0.207)	NAa	0.370 (0.414)	Dyne-Amic, 0.25%v/v
) ^v		(350)	0.185 (0.208)	7		Dyne-Amic, 0.25% v/v
RV183-10HA	NY Region 16	102960 200 SL	TRT®	Broadcast foliar	BBCH 89	36 (340) 37	0.183 (0.205)	NAa 7	0.369 (0.414)	Dyne-Amic, 0.25%v/v
		y			BBCH 91	(350)	0.186 (0.209)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.7-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Potatoes

1 able 6.3.2./-4 (cor			for BY1 02						
				Ap	plicatio	n		l	01° %
Trial Identification		Plot Name	Weethod	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate Ib a.s./A (Red. s./ha)	Retreatment Interval (days)	Total Rate Ib a.S.A. (kg a.s./ha)	Cor Language Cor. Cor. Cor. Cor. Cor. Cor. Cor. Cor.
RV184-10HA Regio	NC BYI 0296 n 2 2010 200 SL	0 TRTD	Broadcast foliaf	BBOH	25 (260)	0.179 (Q 200)	NA	0°.363 (9.406)	Dyne-Amic,
ikegio.				BBCH	(280) (280)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			©yne-Amic, 0.25% v/v
RV185-10HA	FL BY 296 n 3 2010 SL	0∜₽ŔTD	Broadgast foliar	BISOCH 91	30 (28 0)	0.\$\P\$3 \$\phi\$0.205)	A ^a	© 367 © 0.411)	Dyne-Amic, 0.25%v/v
				y" 93 "@	(280) (0.184 × (0.206)	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		Dyne-Amic, 0.25% v/v
RV186-10HA	NA BY¥0296 n	0 TRTD	Broadcast foliar	BBCH ≥ 93 &	¥9 (180)	(0.206)	NAa	0.366 (0.410)	Dyne-Amic, 0.25%v/v
	n.5 2010 0200 Sto			PBCH	~20 ~20 ~190)	0.182 (0.204)	7	(0.110)	Dyne-Amic, 0.25% v/v
	BY10296 Region 5 040	OKTRTD	Broadcast folkar	B 6 €H \$45	20 (190)	0.182 (0.204)	NAa	0.363 (0.407)	Dyne-Amic, 0.25%v/v
				BBCH 45	20 (190)	0.182 (0.204)	7		Dyne-Amic, 0.25% v/v
RV188-10HA	BYC0296 egion 5 200 SI	TRTD	Broadcast foliar	BBCH 93	22 (210)	0.178 (0.200)	NAa	0.364 (0.408)	Dyne-Amic, 0.25%v/v
RV188-10HA				BBCH 95	25 (240)	0.186 (0.209)	8		Dyne-Amic, 0.25% v/v

Table 6.3.2.7-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Potatoes

	+ (conta).	Study Ose I				plicatio		-		
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wethod	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Ratelb a.s./A (Rega.s./ha)	Retreatment Interval (days)	Total Rate Ib a.S. (kg a.s./ha)	Collaboration Co
	Region 5 2010	BYI 02960 200 SL		4	BBCH	.0	0 × 84 0 · 207 ×		0°.368 (0.413)	Dyńe-Amic, 0.25%/v 0.25%/v Oyne-Amic, 0.25% v/v
V190-10HA I	, Alberta Region 7 2010	BY 100 29600 200 SL		Broadcast foliar	BBCH 39	(140) (140) (140)	(3 9.211)	A A A A A A A A A A A A A A A A A A A	© 369 © 414)	Agsurf, 0.25% v/v Agsurf, 0.25% v/v
RV191-10HA	Region N	BYI (0) 600 200 SL	POTD (Broadcast / foliar	BBCH	22 (2)(0) (2)(0) 200)	0.184 (0.206) 0.180 (0.201)	NAa 7	0.364 (0.408)	Dyne-Amic, 0.25%v/v Dyne-Amic, 0.25% v/v
RV192-10HA	Rogion 10, 2016	**************************************	TRITO	Froadcast foliar	BBCH BBCH	39	0.180 (0.202) 0.180	NAa	0.360 (0.403)	Dyne-Amic,
RV 193-10HA	ID S	BY182960	ACR TD	Broadcast foliar	91 BBCH 91	30 (280)	0.184 (0.206)	NAa	0.372 (0.417)	0.25% v/v Dyne-Amic, 0.25%v/v
	Region 11		\$		BBCH 91	31 (290)	0.189 (0.211)	6		Dyne-Amic, 0.25% v/v

Table 6.3.2.7-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Potatoes

Table 6.3.2.7-	4 (cont a):	Study Use	Pattern	for BYI 02	960 20	0 SL 0	n Potato	es		1
					Ap	plicatio	n		ı	<i>@</i> ,°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wethod	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A (kgp.s./ha)	*& & & & & & & & & & & & & & & & & & &	Total Rate lb a.s. KKg a.s./ha)	CO2 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4
RV194-10HA	, ID	BYI 02960 200 SL	TRTD	Broadcast	BB©H	1.760) (4.60)	0. 1 86 (Q2 09)		0.375	Dyne-Amic,
	Region 11 2010	Q,			BBCH	(1)7 (0)160)	(\$\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			0.25%v/v Dyne-Amic, 0.25% v/v
RV195-10HA	, ID Region 11	BY1002960 200 SL	©RTD	Broadcast foliar	BROCH 591	. © 80)	0.\$\tilde{\Psi}84 (\phi).206)	A ^a	(0,369 (0,414)	Dyne-Amic, 0.25%v/v
DVIOC 1911	2010				BBCH 95	(280) L	0.185		0.370	Dyne-Amic, 0.25% v/v
RV196-10HA	Region 11	BYW02960 200 SI	TRID	Broadcast fornar	BBCH 3 48	25 (230)	0,182 (0.204)	NAª	0.368 (0.412)	Dyne-Amic, 0.25%v/v
E. C. C. C. C. C. C. C. C. C. C. C. C. C.	\$ * 4					© ₂₅ (240)	0.186 (0.209)	7		Dyne-Amic, 0.25% v/v
RV197-10HA	Region 11 2010	B\$1 02968 200 \$1	TRTO	Soliar	₿ ВСН 47	20 (190)	0.185 (0.208)	NAª	0.367 (0.412)	Dyne-Amic, 0.25%v/v
Z			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		BBCH 48	20 (190)	0.182 (0.204)	7		Dyne-Amic, 0.25% v/v
RV194-10HA	Region 115	SYI 02900 200 SL	TRTD	Broadcast foliar	BBCH 93	(160)	0.186 (0.209)	NAª	0.375 (0.421)	Dyne-Amic, 0.25%v/v
					BBCH 95	17 (160)	0.189 (0.212)	8		Dyne-Amic, 0.25% v/v

Table 6.3.2.7-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Potatoes

Table 6.3.2.7-	4 (cont'd):	Study Use l	Pattern	for BY1 02	960 20	0 SL 0	n Potato	es		
					Ap	plicatio	n		1	@.°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Weeklood	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate Ib a.s./A (RgB.s./ha)	Retreating Interval (days)	Total Rate lb a.s. (kg a.s./ha)	Tath Mix Adjuxants 29
RV195-10HA	Region 11 2010	BYI 02960 200 SL		Broadcast foliation			(1) 185 (1) 207)			Dyne-Amic, 0.25%v/v 0.25%v/v Oyne-Amic, 0.25% v/v
RV196-10HA	, WA Region 11 2010	BY 29600 2900 SL			BBCH 48	25 (240)	0.\$\P\$2 \$\phi\$0.204) \$\phi\$0.186 \$\phi\$0.209\$	PA ^a	(0,368 (0,412)	Dyne-Amic, 0.25%v/v Dyne-Amic, 0.25% v/v
1 2	Region 11 2000	BYW02960 200 SI	TRTD	Broadcast for a fo	BBCH 7 47 2 0	20 (190) (20 (190)		NA ^a	0.367 (0.412)	Dyne-Amic, 0.25%v/v Dyne-Amic, 0.25% v/v
RV198-10HA	British Columbia Region \$2 2010	BN 02968 200 SV	TRES	Broadcast Soliar	BBCH	22 (200) 21	0.190 (0.213)	NA ^a	0.374 (0.419)	Agral 90, 0.25% v/v Agral 90,
RV198-10HA			Q		43	(200)	(0.206)	ontinue	ed on nex	0.25% v/v

Table 6.3.2.7-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Potatoes

1 able 6.3.2.7-		Ciddy Osc I	attern	101 11 11 02		plication				
	FTA	lation)						(sá	.s./ha)	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Weethood	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A (Rgb.s./ha)	Retreating Interval (days)	Total Rate lb a.s. K(kg a.s./ha)	Tagk Mix Advivants 29
RV199-10HA	Manitoba Region 14 2010	BYI 02960 200 SL	TRTD	Broadcast of foliar	BBCH	150 (660) Q (180)	05489 05489 05.212)			Agsurf, 0.25% a/v Agsurf, 0.25% v/v
RV200-10HA	, NY Region 1 2010				ВВСН 7 93	\$30 \$280)	0.083 (9.205) 0.183 (0.205)	Ö	20,366 (0.410)	Dyne-Amic, 0.25%v/v Dyne-Amic, 0.25% v/v
RV201-10DA	KS Brgion 2010		TRTD	Broadcast foliar	BBCH	©16 ©16 (150)	0.188 (0.211)	NA ^a	0.375 (0.420)	Dyne-Amic, 0.25%v/v Dyne-Amic, 0.25% v/v
RV202-10DA	Region 11 2010	1 02969 200 St		Broadcast Foliar		(110)	0.183 (0.205) 0.184 (0.206)	NA ^a	0.366 (0.411)	Dyne-Amic, 0.25%v/v Dyne-Amic, 0.25% v/v
RV203-10DA	Alberta Region 12 2010	841 02980 200 SL	TRŤĐ	Broadcast foliar	BBCH 49 BBCH	11 (100)	0.186 (0.209)	NA ^a	0.371 (0.416)	Agral 90, 0.25% v/v Agral 90,
					49	(100)	(0.207)			0.25% v/v

Duplicate composite samples of potato tubers were collected at the intended pre-harvest interval (PHI) of 7 days. The actual samplings ranged from 6 to 8-days. In four decline trials, duplicate composite potato tuber samples were collected from the treated plots 0, 3, 7, 13 to 14, and 19 to 21 days after the last treatment. Single composite samples of potato tuber were collected from the control plot on the same day the target 7-day samples were collected from the treated plots.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOC were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAT were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were below 20%. (Table 6.3.2.7-50)

Table 6.3.2.7-5: Summary of Recoveries of BVI 02960 from Potato

Crop Matrix	Analyte Level Size Recoveries (%), (ppm) (n)	Mean Recovery (%) a	Std Dev (%)
	112, 96, 72, 92, 76, 78, 83, 85, 78, 103, 38, 120, 22, 93, 38	88	15
	3 4 5 102 9, 86	92	9
Potato Tuber	82, 80, 72, 94, 69, 73, 66, 90, 110, 95, 109, 102, 102, 102, 96	89	15
I uber	$ (0.2 \times 30^{\circ}) \times 90.81,87$	86	5
	DEEAF 0.01 92, 95, 101, 109, 110, 100, 100, 92, 103, 75, 113, 112, 96, 100	100	10
	©.2 2 81, 95, 103	93	11

a Mean Recovery = mathematical average of all recoveries

The freezer storage stability study indicates that BYI 02960 residues were stable in a representative crop of the respective crop commodity (high starch content) during frozen storage for at least 18 months (557 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 31% days. A symmary of the storage conditions are shown in the Table 6.3.2.7-6.

Table 6.3.2.2-6. Summary of Storage Conditions for Potatoes

Residue Component(s)	Matrix (RAC)	Maximum Average Storage Temperature (°C) ^a	Actual Storage Duration months (days)	Interval of ° Demonstrated Storage Stability months (days) °
BYI 02960	Potato Tuber	< -20	9 (31 4)	18 7
DFEAF	Potato Tuber	< -20	(318)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
DFA	Potato Tuber	2 -20	Q (318) X	1857 4

- The maximum average storage temperature is from the time of sample receipt at REP until sample extraction and is the maximum of all average freezer temperatures at BRI and Pyxint. While preparing for cample analysis, the samples were maintained in a laboratory freezer.
- The storage duration is the time from field sampling through the last sample extraction.
- The storage duration is the time from field sampling through the last sample extraction.

 | and A | 2013, Storage stabilities of BM 02960, fiftuoroacetic agid, and diffuoroethyl-amino-furanone in plant matrices. Bayer Crops ciences, eport No. RARK P046 general extractions are shown in Table 6.3.2.7-7. . 2012, Storage stability of BY102960, Affluoroseetic acid, and and A.

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Total BYI 02960 Residue Data from Potato Tubers after Two Foliar Applications Table 6.3.2.7-7: of BYI 02960 SL

-			ı		T			T	1			<i>®</i>
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Day Matter	Sampling interval (days)	Residae (mg/kg)	DFA Residue	DFEKRESidue Ang a.s. & quiv./kg)	- 10	
RV178- 10DA	, NY, Region 1, 2010					20 *	© 2721	<0.018 0.047 <0.010 0.015 <0.010 0.010 0.010 0.011	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 \$0.010 \$0.010 \$0.010 <0.010	<0.070 20.073 Avg 0.072 0.070 0.075 Avg 0.073	
RV179-4 10HA	NY, Region Q 2010	PRTD.	Carola Dork Pad	Tuber		28 28		<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	
RV180- 10HA	PA Region 1, 2010	TRIBO	Dark Red	Taber 2	50.417)	²²	8	<0.010 <0.010	0.087 0.085	<0.010 <0.010	0.11 0.10 Avg: 0.11 b	
RV189/- 10HA	NJ, Region 1,	TRAD		Tuber	0.385 (0.432)	14	7	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	
RV182- 10HA	NY, Region 1,	T ® TD	NorDonna	Tuber	0.370 (0.414)	23	7	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	

Table 6.3.2.7-7 (cont'd): Total BYI 02960 Residue Data from Potato Tubers after Two Foliar Applications of BYI 02960 SL

			тррпсанона									. 0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Den Matter	Sampling interval (days)	Residue (mg/kg)	DFA Residue	DFERRESIDUE fing a.s. & quiv./kg)	Total By 102966 Residue	
RV183- 10HA	NY, Region 1, 2010	TRTD	NY-129	Tuber	0.369 (0.4)(4)	17	7	\$\frac{1}{2}\text{0.016}\text{0}\text{0}\text{0.016}\text{0}\t		<0.010 0.010 	<0.070 0.070 Avg <0.070	
RV184- 10HA	, NC, Region 2, 2010	TRTD	Snowden	Turber	0.303		7 ~	<0.010 <0.010 <0.010	\$2083 \$0.057\$ \$	Ø0.010	0.10 0.07 Avg. 0.090	
RV185- 10HA	Region 3, 2010	TRTD				~		0.021 0.018		Ö Ö	0.078 Avg: 0.079	
RV186- 10HA	Region 5, 2010	TRAJO	Kennebec		(0.44 6)	, 13		<0.010 <0.010 <0.010	~0.050 <0.050 ~	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	
RV187- 10HA	Region 5, 2010	T R ŤD	Kennebec	Tuber,	0.363	25 *		©0.010 <0.010 ©	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	
RV188-« 10HA	IL, Region 5	ØRTD \$	Opennebec 1	Tuber		160 (%)		<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	
RV189- 10HA	Région 5, 2010	TRTO	burbank s	Tuber	0:368 0:413)	23	7	<0.010 0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: 0.070	
RV190- 10HA	, Region 7, 2010	TRAD	Russet burbank	Quber Quber	0.369 (0.414)	23	7	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	
RV191- 10HA	Region 11,	TRID	Ranger Russet	Tuber	0.364 (0.408)	29	7	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	

Table 6.3.2.7-7 (cont'd): Total BYI 02960 Residue Data from Potato Tubers after Two Foliar Applications of BYI 02960 SL

			тррпсанона		102700							. 0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Den Matter	Sampling interval (days)	Residue (mg/kg)	DFA Residue	DFERRESIDUE fung a.s. & quiv./kg)	Total By 102960 Residue	
RV192- 10HA	, CA, Region 10,	TRTD	Red La Soda	Tuber	0.36 0) (0 21 03)	18	7	0.010° 0.034	<0.050 <0.050	<0.010 <0.010	<0.070 \$0.094	
	2010			(Þ°			y Ş) ' '^ '	0.082	
RV193-	ID,	TRTD	Dark Red	Tuber	0.392 (0.417)	2	7	<0.010	<0,050 √0,050 √0.050 √0.050	< 0.010	Ø.070@	y
10HA	Region 11, 2010		N		(4 417)	V .	4		0.050	30.010	<0.070 Avg.	
			S S								<i>§</i> 0.070	
RV194- 10HA	, ID, Region 11,	TRTD	Russet Burbank	Tuber	0.375 0.421)	1 9		< 0010 < 0010 < 0.010	€0.050 €0.050	₹0.01 0 <0.010	<0.070	
1011/1	2010				00.4210 0	1	.@ ` }(, 10.00	0.010	Avg:	
		Ò		Ž	W W	0	~			Č)	<0.070	
RV195- 10HA	ID,	TRAD	Russet Norkotab	←	©.369 (0.444)	19		₹0 .010,~ ₹. <0.010	₹0.050 <0.050	<0.010 <0.010	<0.070 <0.070	
IUIIA	Region 11, 2010	4	Sur Kolday	0	(0.484)			0.010		<0.010	Avg:	
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\mathbb{Q}	W Es	L	V U		< 0.070	
RV196-	, NA,	TRTD		Tuber	0.368	31 *		©0.010	<0.050	<0.010	<0.070	
10HA	Regio 11, 2010			l uber,	(0,40/2)			<0.010	< 0.050	< 0.010	<0.070 Avg:	
) (8 ⁴ 3¥√	W ,	O O			< 0.070	
RV197-	, WA,	T RTD	Norkotah	Tuber	0.3 6 7 (0.412)	34	7.	0.057	< 0.050	< 0.010	0.12 °	
10HA	Region 11, 2010)		0' *y	(10,412)		<u>, a</u>	0.016	< 0.050	< 0.010	0.076 Avg:	
	2010		Š Š	/ <u>*</u>			7				0.097	
RV198-		TRTD	Russet	Tuber	Ø:374	23	7	0.046	< 0.050	< 0.010	0.11	
10HA	British	0	Burbank		(0.419)	ÿ		0.027	< 0.050	< 0.010	0.087 Avg:	
	Region 12,										0.097	
RV199-	2010	TRÆD)	Vuber	0.375	29	7	< 0.010	< 0.050	< 0.010	< 0.070	
10HA	Mani t @a,	IROND		r ubel	(0.421)	_ <u></u>	/	<0.010	< 0.050	< 0.010	<0.070	
	Region 14,) <u>(</u>		_@;							Avg: <0.070	
DV200	₩010 ₩, ₩,	TRTD	% ~) T-1	0.266	21	7	<0.010	<0.050	<0.010		
RV200- 10HA &	Region 1.	<u> </u>	Reba	Tuber	0.366 (0.410)	21	7	<0.010 0.014	<0.050 <0.050	<0.010 <0.010	<0.070 0.074	
	Region 1,		ľ								Avg:	
LE, "	Lø	12°									0.072]

Table 6.3.2.7-7 (cont'd): Total BYI 02960 Residue Data from Potato Tubers after Two Foliar Applications of BYI 02960 SL

					1 02960							. 0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Dow Matter	Sampling interval (days)	Resida (mg/kg)	DFA Residue	DFBAKResidue Ang a.s. Equiv./kg)	Total-Byl 029	
RV201- 10DA	, KS, Region 5, 2010					16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	0.046 0.021 0.012 0.012 0.016 0.010 0.016 0.016	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	< 0 0010 \$\frac{0}{2}0.010	0.081 Avg 0.091 0.072 0.076 Avg 0.074	
RV202- 10DA	J. J. J. J. J. J. J. J. J. J. J. J. J. J	TRID SA SA SA SA SA SA SA SA SA SA SA SA SA	Ranger Ra	Tuber of the state	3.366 (0.41d)	23 28 24 24 25	7	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.102	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.070 <0.070 Avg: <0.070 <0.070 Avg: <0.070 <0.070 <0.070 Avg: <0.070 0.093 0.12 Avg: 0.11 <0.070 0.13 Avg: 0.098	

Table 6.3.2.7-7 (cont'd): Total BYI 02960 Residue Data from Potato Tubers after Two Foliar Applications of BYI 02960 SL

			11									. 0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Den Matter	Sampling interval (days)	By 102960 Residue (mg/kg)	DFA Residue	DFERRESidue ong a.s. equiv./kg)	D 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
RV203-		TRTD	Russet	Tuber	0.37	30	Λ	\$0.0166°	<0.050	<0.010	<0.070	
10DA	,		Nacota		0.37 1 (0 2)16)			<0.040	<0.050	√ 0.010	1 30.0 VA	D ^y
	Region 14,					°	2) ````\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Avg() <0.070	
	2010			. (© 0.0169° < 0.0240°		4	<0.070	. 0
					~	20	3	<0,010	<0,050	< 0.010	6 0.070	
				Ş,	Y (<0.010	₹ 0.050	≠ 0.01 <u>0</u>	<0.070	1
			Q			~		Y Ö			0.070 <0.070 A@: <0.070	
				~~		\$			Ş	Ţ,	\$0.070 €j	
				Ò	D S	23		<0.010 <0.010 <0.010 <0.010	0.050 0.050 0.050	© 0.010	< 0.070	
				<i>y</i>	o ô	, "	.W "	©0.010 C)*<0.0 5 @	<0.010	<0.070 Avg:	
					4	_	1 2	Ø.010 <u>.</u>	, Ö	O	<0.070	
		~ ©	0"			. 24	@18	* O 1 0 *	× 0.50	Q		-
						7 24 ((₹0.0102 	<0.0500 <0.0500	<0.010 <0.010	<0.070 <0.070	
				0,			^	<0.010		10.010	Avg:	
				Ş,			w Z	4	V V 1		Avg: <0.070	
						21 *	19	\$0.010°	< 0.050	< 0.010	< 0.070	1
		Ď, i		K O		ð		<0.010	< 0.050	< 0.010	< 0.070	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			3 /		Ţ					Avg:	
) V		~		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			< 0.070	

- a Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper liquit of what the residue levels might be.
- b Highest average field to W(HAFF) residue found in potato tubers.
- c Maximum residue found in polato tubers

TRTD = treated plot receiving two foliar spray applications

Conclusion

Twenty-six field trials were conducted to measure the magnitude of total BYI 02960 residues in/on potato tubers following two soliar spray applications of BYI 02960 200 SL. The total BYI 02960 residue data are shown in Table 6.3.2.7.8.

Table 6.3.2.7-8: Summary of Residue Data for Total BYI 02960 from Potato Tubers

	_			Total BYI 02960 Residue Levels (ppm)							
Commodity	Plot Name	Total Appl. Rate Ib a.s./A (kg a.s./ha)	PHI (days)³	n	Min at PHI	Max at PHI	Max after PHI	HÅRT 2	Median 3		
Potato Tuber	TRTD	0.359 to 0.385 (0.402 to 0.432)	7	26	<0.070	0.12	0.13	0.11	\$0.012 \$0.012		

- 1 TRTD = treated plot receiving two foliar spray application
- 2 HAFT = Highest Average Field Trial
- 3 calculated on the basis of residue values at the PHI
- 4 Sampling day showing highest residue

Total BYI 02960 residues were generally low in potatoes; the maximum esidue detected at the PHL of 7 days was 0.12 mg/kg. The four decline trials indicated that the residues placeaued in three trials at a time interval of approximately 7 to 14 days. The overall highest total BYL 02960 residue was detected in a sample collected 21 days after the fast application. The residue was hightly higher than the highest residue detected at the PHD however it was in the same range as the sample collected at the PHI. Therefore it was concluded that the residue data provided in this report are suitable for regulatory purposes.

Residue data from AUSTRALIA

BYI 02960 is to be registered in Australia for use as a coliar treatment in of potato and sweet potato. The use pattern on Australia is summarized in Table 6.3.2.7-9.

A total of eight trials was conducted in potaces sweet potatoes. The tudies are described below.

Table 6.3.2.7-9: Critical aspects of thouse pattern for application of BYI 02960 200 SL to potatoes and sweet potatoes

Situation	Maximum no of applications	Maximum application rate Per treatment Per season	Minimum Spray interval	WHP
Field	3,9	150 g a.s./ha 450 g a.s./ha	7 days	7 days

Residues trials supporting this use pattern are Presented in 2 study reports.

Report	KIIA 63.2.7/02; 2011
Title Report No &	Amodment no. 1 - Determination of residues of BYI 02960 in potatoes and sweet potatoes following two or three applications of BYI 02960 200 SL at rates of 100, 150 or 200 g in has seven days apart
Report No &	BCS-052.02 including sites C516, C517, C518 and C519, dated September 23, 2011 M-415292-02-1
Guidelines	Australian Pesticides and Veterinary Medicines Authority, Manual of Requirements and Guidelines, Edition 3
GLP	Yes

Report	KIIA 6.3.2.7/03; 2012
Title	Amendment no. 1 - Determination of residues of BYI 02960 in potatoes and sweet potatoes following two or three applications of BYI 02960 200 SL at rates of 100, 150 or 200
	a.i./ha seven days apart
Report No &	BCS-0358.02 including sites C538, C539, C632 and C541, dated February 27, 2012
Document No	M-426841-02-1
Guidelines	Australian Pesticides and Veterinary Medicines Authority, Manual of Requirement and
	Guidelines, Edition 3
GLP	Yes V Q Q Q X

Material and methods

Eight trials were conducted in Australia to measure the magnitude of residues of BYI 02960 and its metabolites following application of BYI 02960 200 SI, to potate and sweet potato crops. These included 6 trials in potatoes and 2 trials in sweet potato. Trials were conducted over two seasons with 4 trials in 2010, and 4 trials in 2011.

Trials were conducted in the field for both potatoes and sweet potatoes. Treatment were applied by hand held boom sprayer applying spray volumes of \$13-644 L/ha Potatoes) and \$92-669 L/ha (sweet potatoes).

For potatoes and sweet potatoes, BYL02960 000 SL was applied at target rates equivalent to 100 g a.s./ha (i.e. 0.67 x maximum proposed rate), 150 g a.s./ha (1.0 x proposed rate) and 200 g a.s./ha (1.34 x proposed rate) in M trials.

In the first year of trials (2019) for both potatoes and sweet potatoes application of each treatment was made either or 3 times, at approximately 7 day intervals. Samples were collected at approximately 7, 10 14 and 21 days after the econd application, and at approximately 0, 1, 3, 7, 10, 14 days after the third application.

For the second year of trials (2011) for both potatoes and sweet potatoes application of each treatment was again made either 2 or 5 times, at approximately 7 day intervals, however it was necessary to extend the sampling times. For both petatoes and sweet potatoes samples were collected at approximately 7, 14, 21, 28 and 35 days after the second application and at 0, 7, 14, 21, 28 and 35 days after the third application. Trial details including location, year, application rate, application timing, application no. and sampling times are summarised in Table 6.3.2.7-10 for potatoes and 6.3.2.7-11 for sweet potatoes.

Trial details for residue trials with BYI 02960 200 SL in potatoes Table 6.3.2.7-10:

Study No.	Crop		Ap	plication		ذ å
Test Site	Variety	R	ate	Application	No. of	Sampling
Location Year Annex Pt	Situation	Product (mL/ha)	Active Substance (g a.s./ha)	Timing	Applications Siming of applications)	Timing .
BCS-0352 C516 2010 KIIA 6.3.2.7/01	Potatoes Russet Burbank Field	500 750 1000	100 150 200	B=7 DBFH C=0 DBFH	2 (A and B) 3 (A, B and C)	7 DAAB 10 DAAB 14 DAAB 21 DAAB 0 DAAC 3 DAAC 7 DAAC 7 DAAC
BCS-0352 C517 WA 2010 KIIA 6.3.2.7/01	Potatoes Nadine Field	500 750 1000 Q		A=V4 DBCH B=6 DBFH C=0 DBFH	2 (A arka B) 3 (A B and C)	6 PAAB 9 DAAB 9 DAAB 22 DAAB 0 DAAC 1 DAAC 3 DAAC 7 DAAC 11 DAAC 16 DAAC
KIIA 6.3.2.7/04	Potatoles Sebago		Y 17 4.		2 (A and B) 3 (A, B and C)	8 DAAB 11 DAAB 15 DAAB 22 DAAB 0 DAAC 1 DAAC 3 DAAC 7 DAAC 11 DAAC 14 DAAC
BCS-0358 C539 WA 2011 KIIA 6.3.2.7/02	Cotatoe Nadine Field	7500 × 75	150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A=15 DBFH B=6 DBFH C=0 DBFH	2 (A and B) 3 (A, B and C)	6 DAAB 13 DAAB 20 DAAB 27 DAAB 34 DAAB 0 DAAC 7 DAAC 14 DAAC 21 DAAC 28 DAAC 35 DAAC
		\$	1		Continued on i	next page

Table 6.3.2.7-10 (cont'd): Trial details for residue trials with BYI 02960 200 SL in potatoes

Study No.	Crop		Ap		Ø)°	
Test Site Location	Variety	R	late	Application	No. of	Sampling
Year Annex Pt	Situation	Product (mL/ha)	Active Substance (g a.s./ha)	Timing	Applications Fiming of applications)	
BCS-0358 C632	Potatoes Nicola	500 750	100 150	A=14 DBFH B=7 DBFH €	2 (A and B) 3 (A, B and C)	PAAB PADAB PADABB
2011 KIIA 6.3.2.7/02	Field	1000		C=0 DBFH	TA, Bange ()	721 DÃAB 28 DÃAB 35 DAAB 20 DAAC 7 DÃAC 14 DAAC 21 DAAC
BCS-0358 C541	Potatoes Sebago Field	500 750 1000 500	200 G	A=14 DBFH DB=7 19 BFH C=0 DBFH DBFH DBFH DBFH DBFH DBFH DBFH DBFH	2 (A and B) 3 3 (A, B and C)	28 DAAC 35 BAAC 7 DAAB 23 DAAB 21 DAAB 6 DAAC 14 DAAC
KIIA 6.3.2.7/02	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 X 1				23 DAAC

DBFH = days before first harvest

DAAB = Days after application B of A and B
DAAC = Days after application of A
DAAC = Days after application of A

Trial details for residue trials with BY1 02960 200 SL in sweet potatoes

Study No. Test Site Location Year Annex Pt	(ml/ha)	Active Timing Substance (g.g.s/ha)	No. of Applications (Timing of applications)	Sampling Timing
BCS-0352 C519 2010 KIIA 6.3.2.7/01		A=14 DBFH 0 B=7 DBFH 0 C=0 DBFH	2 (A and B) 3 (A, B and C)	7 DAAB 10 DAAB 14 DAAB 21 DAAB 0 DAAC 1 DAAC 3 DAAC 7 DAAC 11 DAAC 14 DAAC

Table 6.3.2.7-11 (cont'd): Trial details for residue trials with BYI 02960 200 SL in sweet potatoes

Study No.	Crop			, Ç		
Test Site Location	Variety	R	ate	Application	No. of	Sampling
Year Annex Pt	Situation	Product (mL/ha)	Active Substance (g a.s/ha)	Timing	Applications Fiming of applications	Oliming
BCS-0358 C538 2011 KIIA 6.3.2.7/02	Sweet potatoes Beauregard Field	500 750 1000	100 150 200	A=14 DBFH B=7 DBFH C=0 DBFH	2 (A and B) 3 (A, B and C) 3	7 DAAB 21 BAAB 22 DAAB 35 DAAB 70 DAAC 7 DAAC 14 DAAC 21 DAAC 28 DAAC 35 BAAC

DBFH = days before first harvest

DAAB = Days after application B of A and B

DAAC = Days after application C of $A_{\mathcal{P}}B$ and \mathcal{Q}

The analytical test method ATM-0048 "Determination of residues of EVI 02960 and its metabolites 6-chloronicotinic acid, diffurroethyl-amino-furatione and diflurroacetic acid in or or plant material by LC MS/MS" was used to analyse the fest samples.

Residues of BYI 92960 and the metabornes 6 CNA. DFEAF and DFA in rest samples were extracted with 20:80 water acetomitrile with 0.32 mL/b formic acid. The extract was filtered using a 0.45 µm syringe filter. For the analysis of DFA an aliquot was taken at this point and diluted with acetonitrile. For the analysis of BYI 92960, CNA and DFEAF an aliquot of the extract was reduced to its aqueous remainder another partitioned against ethal acetate on 2 Chem Elut column. The ethal acetate was then reduced to dryngs and the sample was reconstituted in acetonitrile.

Chromatography was performed by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer using MRM for analytical etection. Quantitation was achieved with matrix matched analytical standards for all analytes and stable labelled internal standards for 6-CNA and DFEAF.

By this method the single analytes (BX102960 and its metabolites 6-CNA, DFEAF and DFA) were determined. The limit of quadritation (LOQ) of BYI 02960, DFEAF and 6-CNA was 0.01 mg/kg for each component and 0.02 mg/kg for DFA. The total residue of BYI02960 was calculated by summing up the values determined for parent compound BYI 02960, DFEAF and DFA, expressed as parent equivalent. Metabolity 6-CNA is not included in the proposed residue definition for risk assessment and was measured for additional information, only. The total LOQ for the three analytes of interest was 0.085 mg/kg (rounded to 0.09 mg/kg) when expressed as BYI 02960. Considerin all four analytes, the total LOQ expressed as BYI 02960 was 0.1061 mg/kg (rounded to 0.11 mg/kg).

A full description of the method can be found as an appendix to each of the study reports cited above.

The analytical test method was validated by analysing fortified samples concurrently with the analysis of the test samples. Mean concurrent recoveries for BYI02960 and its metabolites at fortification levels of 0.01 (0.02 DFA) and 1.0 mg/kg of each analyte are shown in Table 6.3.2.7-12 and 6.3.2.7-13 abelow.

Table 6.3.2.7-12: Recovery results for BYI02960 and its metabolites in study BCS-0352

Analyte	Test Samples	Fortification Levels	Individual Revoveries	Becovery Means Wind RSD (Percent)
Amaryte	rest Samples	(mg/kg)	(Percent)	and RSD (Percent)
BYI 02960	Potatoes	0.01	81,81	81 ± 0 × ~
		1.0	81, 87, 88	80±5 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
6-CNA		0.01	78,79	093 ± 14 V
		0.01	78579 67 6	78.≇.0 △ .
DFEAF				84 ± 9
		1.0	72,82,86	₹80± %
DFA			88,91,10,7 111,1,1,7,112	9449
			111, 112, 112	D12 ± 0
BYI 02960	Sweet potatoes	0.01	78, 75, 75	75 ± 3
		1.0"	79,783	81 ^Q 3
6-CNA		an 01 №	86, 86, 110	94 ± 15
		1.0	84 \$2, 71	79 ± 9
DFEAF		60 1	£27,91,90 × 27	92 ± 0
).0	81,8270	80 ± 11
DFA		0.02	85, 82, 94 ° S	87 ± 7
		Po Co	905, 196 ³ , 111 ₀	107 ± 3

Table 6.3.2.7-13: Recovery results for W102960 and its metabolites in study BCS-0358

Analyte	Test Samples	Kørtification Gevels (mg/kg)	Individual Recoveries (Percent)	Recovery Means and RSD (Percent)
BYI 02960	Potatoes 2	Ø.01 8	71, 78, 78, 90, 74	78 ± 9
		1.0	78, 79, 82, 85, 92	83 ± 7
6-CNA		Q,01 \$\tilde{\pi} \qquad \tilde{\pi}	75, 89, 80, 107, 96	89 ± 14
4		01.0	81, 74, 73, 98, 115	88 ± 20
DFEAF		0.04	82, 83, 93, 83, 71, 76	81 ± 9
		10	81, 84, 84, 81, 96, 92	87 ± 7
DFA		0.02	77, 84, 114, 118, 115	101 ± 19
DFA OF		1.0	105, 105, 98, 100, 97, 97	100 ± 3

Table 6.3.2.7-13 (cont'd): Recovery results for BYI02960 and its metabolites in study BCS-0358

Analyte	Test Samples	Fortification Levels (mg/kg)	Individual Recoveries (Percent)	Recovery Meanso and RSD (Percent)
BYI 02960	Sweet potatoes	0.01	92, 91, 100	94 ± 5
		1.0	88, 95, 93	92 ± 4
6-CNA		0.01	98, 117, 103	106 ± 9
		1.0	78, 74, 70	74 ± 50° 00° 4
DFEAF		0.01	89,393,96	93,44
		1.0	89, 93, 89	99 ± 3 🔊 🗸
DFA		0.02	\$93, 85	89 ± 60 6 4
		1.0	85, 90, 103°Q° ° °	93 £ 10 °

Findings

Residues determined for BYI02960 and its metabolites in potatoes and sweet obtatoes are given in Table 6.3.2.7-14 and Table 6.3.2.7-15 respectively.

Only data relating to the target rate of 150 g a.s./ha, and one result (6 for 8 DAAB) from the treatments receiving just two applications is presented here. Complete data including results following applications at 100 and 200 g a.i./ha can be found in the study report.

Results for BYI02960 and the three metabolities, 6-CNA, DEFAF and DFA, along with the total residue expressed as total BYI02960 parent equivalent are shown in the tables below. Since the proposed residue definition, excludes 6-CNA, the total residue excluding 6-CNA is also shown.

Table 6.3.2.7-10: Results of residue trial conducted in potators where BYI 02960 200 SL was applied three times at the target rate of 150g a.s./fa

	Ö			Concent	rations (mg/	kg)	
Study no. Trial no. Location Year Situation	DAOT (days)	Detected as HVI 02960	Detected as 6-CNA	Detected as &	Detected as DFA	Total expressed as BYI 02960 Equivalent	Total expressed as BYI 02960 Equivalent (excluding 6-CNA)
BCS-0352 C516	7 DAAB	<0.00	7/n~U.U 1/	≈ 0.01	< 0.02	< 0.11	< 0.09
C516	0 DAAC	<0.04	<0.00)°<0.01	< 0.02	< 0.11	< 0.09
T. A	1 DAAC	3 0.01 0	< @ 01	< 0.01	< 0.02	< 0.11	< 0.09
Tas 🆴	3 DAAC	×<0.0}	9.01	< 0.01	< 0.02	< 0.11	< 0.09
2010 Field	7 DAAC	<0.61	/<0.0 6 /	< 0.01	< 0.02	< 0.11	< 0.09
1 iciu	JY DAA	30 .01 💖	<0.01	< 0.01	< 0.02	< 0.11	< 0.09
		€0.01 <u></u>	≈ ©0.01	< 0.01	< 0.02	< 0.11	< 0.09
BCS-03520	6 DAAB	<0.00	< 0.01	< 0.01	< 0.02	< 0.11	< 0.09
C517	DAAC	\$0 01	< 0.01	< 0.01	< 0.02	< 0.11	< 0.09
	DI DAAC	~ 0.01	< 0.01	< 0.01	< 0.02	< 0.11	< 0.09
WAS 2010 Field	3 DAAC	<0.01	< 0.01	< 0.01	< 0.02	< 0.11	< 0.09
Field C	7 DAAC	< 0.01	< 0.01	< 0.01	0.03	< 0.11	< 0.09
l loid	11 DAAC	< 0.01	< 0.01	< 0.01	0.02	< 0.11	< 0.09
	16 DAAC	< 0.01	< 0.01	< 0.01	0.05	0.20	0.16

Table 6.3.2.7- 14 (cont'd): Results of residue trials conducted in potatoes where BYI 02960 200 SL was applied three times at the target rate of 150 g a.s./ha

				Concent	rations (mg/	kg)	
Study no. Trial no. Location Year Situation	DALT (days)	Detected as BYI 02960	Detected as 6-CNA	Detected as DFEAF	Detected as DFA	Total expressed as BYI 02960 Equivalent	Optal expressed as BYI 02960 Equivalent (excluding
BCS-0352	8 DAAB	< 0.01	< 0.01	<0.01	<0.02	<0.11	J<0.09
C518	0 DAAC	< 0.01	< 0.01	© .01	<9502	<0.10	× <0:99 0
, Vic	1 DAAC	< 0.01	<0.01	⊘ <0.01	<0.02	<0Q1 0	€0.09 Ø
2010	3 DAAC	< 0.01	<0.01	<0.01	0.02	©0.11 °	<0.00
Field	7 DAAC	< 0.01	<0.01	Ø .01 💢	<0.92	× <0.15	< 0.09
	11 DAAC	< 0.01	<0.01	~0.Q1©	Q0.02 4	<0,11 O	©0.09 J
	14 DAAC	< 0.01	<0.01	<0.01	×<0.02	<u></u> 20.11≾√	<0.00
BCS-0358	6 DAAB	<0.01	©0.01	\$0.01	≤0 02 €	J <0.10 J	<0.09
C539	0 DAAC	<0.01	<0.00	× <0.0 ×	0.02	\$ 9 .11 \$	£0.09
	7 DAAC	<0.01	49 .01	<0001	<0.00	©0.11	№ <0.09
2011	14 DAAC	<0.0H %	×0.01	©0.01 L	S 02	<0.0	< 0.09
Field	21 DAAC	₹ 6 .01 📞	<0.0)	<0.01	₹ 0.02 %	√ 0.11	< 0.09
	28 DAAC 🕏	©<0.01 [©]	60 .01	<0.01	<0.902	Ç 0.11 V	< 0.09
	35 DAAC	<0.00 k	5 < 0.01 C	\$0.01 O	\$0 .02	<0.0	< 0.09
BCS-0358	7 DAAB	40 .01	0001	× <0.60	Q _{0.02}	≈0 .11	< 0.09
C632	0 DA	\$<0.01 ⁰	©.01	.≪ 0 001 €	0,03	© 0.11	0.09
, Tas	7 DOAC	<0:\frac{1}{2} &	0.02	₹0.01 °	Ø.04 🔊	0.15	0.11
Field	DAAC	3 0.01 O	0.03	J <0.00°	0.05 ₀	0.20	0.15
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	21 DAAC	<0.010	△0.02 ×	<0001	0,05	0.20	0.16
	28 DAAC ්	<0001	0.02	3 0.01	0.04	0.16	0.12
	35 DA 🍇	°≈0.01 «	0.01	<0.01	≫ 0.04	0.15	0.13
BCS-0358	0 DAAC	~<0.0 J	\$9.01 \$\tilde{y}\$ <0.01\$\tilde{y}\$	<001	< 0.02	< 0.11	<0.09
C541	6 DAAC	<0.001)°<0.01	₹ 0.01 ₹	< 0.02	< 0.11	< 0.09
,	JA DAAG	0.01	<0.01	<0.01	< 0.02	< 0.11	< 0.09
2011	23 DAAC	~0.00°	0.01	4 ,01	<0.02	< 0.11	< 0.09
Field O				*			

DALT days after last treatment

DAAB — Days After Application B of applications A and B

DAAC = Days After Application C of applications A B and C

Note

The above results might not match the aw data because of rounding adjustments.

All values for BYL 2960, 6-CNA and DFEAF below the LOQ of 0.01 mg/kg are expressed as <0.01 mg/kg.

All values for DOA below the LQQ of 0.02 mg/kg are expressed as <0.02 mg/kg.

All values for the BYI @2960 parent equivalent below the LOQ of 0.1061 mg/kg are expressed as <0.11 mg/kg.

All values to the BYI 02960 parent equivalent excluding 6-CNA below the LOQ of 0.088 mg/kg are expressed as <0.09 mg/kg.

Table 6.3.2.7-15: Results of residue trials conducted in sweet potatoes where BYI 02960 200 SL was applied three times at the target rate of 150 g a.s./ha

				Concen	trations (mg/	(kg)	
Study no. Trial no. Location Year Situation	DALT (days)	Detected as BYI 02960	Detected as 6-CNA	Detected as DFEAF	Detected as DFA	Total expressed as BYI 02960 Equivalent	Optal expressed as BYI 02960 Fequivalent (excluding)
BCS-0352	7 DAAB	< 0.01	0.09	<0.01	0.03	0.25, 0	\$0.09
C519	0 DAAC	< 0.01	0.05	20 .01	0.02	0.15	\$\int_{0.09} \times \ti
	1 DAAC	< 0.01	0.07	∂ 0.01	0.03	20 21	0.08
2010	3 DAAC	< 0.01	0.05	<0.01	0.03	@ 0.17	€0.08
Field	7 DAAC	< 0.01	0.07	6 0.01	1 0.903 <i>a</i>	0.2	0.11
	9 DAAC	< 0.01	0.07	~ 0.01 ~ 0.01	0.05	0.28 ⊙″	1 5 5
	14 DAAC	< 0.01	Ø:07 ~	<0.0,1	0.06	0.32	0.19
BCS-0358	7 DAAB	0.09	0.014 7 0.45 7	Ø.01	9 93 ×		0.0
C538	0 DAAC	<0.01	0.10	\$\frac{1}{2}\cdot 0.0 \right\r	~~0.08~°	0.40	© .23
>	7 DAAC	<0.01%	B.11 B	<0091	0.90	0.400	°>√ 0.20
2011	14 DAAC	Q. Ø	©0.08 °	3 0.01	100 05	r uan 🖔	0.16
Field	21 DAAC	₹9 .01 🕵	0,000	<0.01	L, 0.07	Ø0.33	0.22
	28 DAAC	©<0.010	6 09	< 0.01	0,13	0.54	0.38
	35 DAAC	<0.04	0.08	Ø.01 O	&0.20	,	0.61

DALT = days after last treatment

DAAB = Days After Application B of applications A and B

DAAC = Days After pplication C of applications A, B and C

Note:

Note:

The above resoluts might not match the raw data because of rounding adjustments.

All values for BYI 02960, 6 CNA and DFEAF Gelow the LOQ of 0.01 mg/kg are expressed as <0.01 mg/kg.

All values for DFA below the LOQ of 0.02 mg/kg are expressed as <0.02 mg/kg.

All values for the BYI 00060 parent equipment below the LOQ of \$1061 ntg kg are expressed as <0.11 mg/kg. All values for the BY 102960 parent equivalent excluding 6-CNA below the LOQ of 0.088 mg/kg are expressed as <0.09 mg/kg.

Results from all trials in potato and sweet potato are sommarised in Table 6.3.2.7-16. This shows the highest residue (expressed as total BYV02960 parent equivalent for the sum of BYI02960, DFEAF and DFA, i.e. excluding 6-QNA) from east site and indicates the sampling time (days after last and DFA, i.e. excluding o-QNA) from each site application) when this occurred

Table 6.3.2.7-16: Summary of results of residue trials conducted in potatoes and sweet potatoes where BYI 02960 200 SL was applied three times at the target rate of 150 g a.s./ha

Crop (proposed WHP)	Situation	Trial no.	Final sampling timing DALT	Sampling timing where highest residue recorded DALT	Maximum residue at or beyond proposed WHP* (mg/kg)
Potato	Field	C516	14	7	≤0.09
(7 days)	Field	C517	14	14	70.16**
	Field	C518	14	7 ©	<0.09
	Field	C539	35	7, \$	<0.09
	Field	C632	35	QY L	0.16
	Field	C541	23	6 3	<0.00
Sweet potato	Field	C519	14		
(7 days)	Field	C538	35		9.61

DALT = Days after last treatment

- * Maximum residue concentration expressed as You'al BY 102960 parent equivalent (BY102960, DFEAF and DFA i.e. excluding 6-CNA)
- ** Site C517 had product applied at late sene cence cather than during tuber formation, it was the case for all other sites

Conclusion

Six field trials were conducted to measure the magnitude of total BYL02960 residues in/on potato tubers following three foliar spray applications of BYV02960 200 SL. The total BYI 02960 residue data are shown in Table 6.3.25-17.

Table 6.3.2.7-17: Summary of Residue Data/for Total BY 02966 from Potato Tubers

_			0, 6,0		tal Bari 029	960 Resid	lue Level	s (ppm)	
Commodity	Plot Name	Fotal App Rå@? kg a.s./kå	E (di	n A	Max at PHI	Max after PHI	Median ³	Mean ³	Standard Deviation
Potato Tuber	TRTD		7.07 7.4	6 < < 0.09	0.11	0.16 (21) ⁴	<0.09	0.093	0.008
Sweet Potato Tuber	TRTD	0.452 to 0.45	7 7 7	2 9.11	0.20	0.61 (35) ⁴			

- 1 TRAD = treated plot receiving three to ar spray application
- 2 HAFT = Highest Average Field Trial
- 3 calculated on the basis of residue values at the PH1
- 4 Sampling day howing highest residue

In five of the six decline trial BYI 02960 residues were below the LOQ in potato tubers at the PHI of 7 days, only one trial showed residues at the PHI (0.11 mg/kg). However, two trials showed maximum total residues after the PHI, both accounting for 0.16 mg/kg, either at day 14 or day 21. Additional sampling intervals in one trial (days 28 and 35) indicated that the residues plateaued after 21 days; both levels were lower than the one detected at day 21. Therefore it can be concluded that the total residue levels will not further increase with the time.

Total BYI 02960 residues in sweet potatoes were significantly higher and did not reach the maximum slightly after the PHI. Residues up to 0.61 mg/kg were detected at the last sampling event (35 day after the last application) indicating that the residue plateau was still not reached.

On the basis of the available residue data, it was concluded that the residue behaviour of BYI 02960 is different for potatoes and sweet potatoes. Whereas the potato results indicated that the residues plateaued at a maximum of approx. 0.16 mg/kg within 7 to 14 days, no plateau could to established for sweet potatoes.

Overall Conclusion - Potatoes

Supervised residue trials in potatoes were conducted in the US and in Australia to achieve a national registration in the NAFTA countries and in Australia.

The NAFTA countries support a use with two folian spray applications of BYL 2960 500 Slowith a total application rate of 410 g a.s./Na. Twenty-six trials were conducted according to the GAP to measure the magnitude of BYL 2960 residues in/on joitato tabers of epresentative test system for NAFTA Crop Group 1C; Tuberous and Coon Vegetables). The intended pre-harvest interval is 7 day.

Australia supports a use with three foliar spray applications of BYI 02960 200 St with a total application rate of 450 g a.s. Dia and a pre-harvest interval (withholding period) of also 7 days. Six trials were conducted in potatoes and typin sweet potatoes.

A summary of the use patterns tested and the corresponding residue levels is shown in Table 6.3.2.7-18.

Table 6.3.2.7-18: Summary of Residue Pata for Total BYI 0.2960 from Potatoes

Formulation St.	Mighod St. of Color	PHI	No. Application	No. Trials	Total Residue of BYI 02960 (mg a.s./kg) at PHI	Peak residue (mg a.s./kg)	Day of peak residue
NAFTA V V) ^b		1	ī			
Potato St. 2004 2 x 0.205 kg 38./ha Australia	Foliar spray	7	2	26	<0.07-0.12	0.13	21
Potato			_	4	<0.09-0.11	0.16	21
Potato Sweet potato 3 x 9 50 kg a.s./ha	Foliar spray	7	3	2	0.11-0.20	0.61	35

Total BYI 02960 residues in potato tubers were comparable in the <u>NAFTA</u> and the <u>Australian</u> trials with slightly higher residues in potato tubers harvested in Australia after applying the slightly higher

total application rate of 450 g a.s./ha. NAFTA and Australian decline trials suggest that the residues leveled off by the end of the sampling interval for potatoes.

Sweet potatoes showed generally higher residues than potatoes and did not reach a residue plateau around the PHI. Residues up to 0.61 mg/kg were detected at the distribution. around the PHI. Residues up to 0.61 mg/kg were detected at the last sampling event, i.e. 35 days after the last application. The limited number of residue trials does not allow further conclusions.

Thus the data cleary shows that the residue behaviour in potatoes and sweet potatoes is different. Potaoes show a conclusive residue behaviour which allows the calculation of a maximum residue value on the basis of the NAFTA and Australian results, whereas this is not the case for sweet potatoes.

Fruiting vegetables - solanace **IIA 6.3.2.8**

Residue data from NORTH AMERICA

Residue data from NORTH AMERICA (Crop Group 8)

BYI 02960 is to be registered in USA and Canada for use as a Johan of soil treatment in/ondruiting vegetables (Crop Group 8). The use patterns in North America are summarized in Table 6.3.2.8-1.

A total of thirty-three trials were conducted in frusting vegetables. The studies are described below.

Target Use Patterns for the Application of BW 02960 on Fracting Vegetables (Crop Table 6.3.2.8-1 Froup 89 in North America

		, (et Rate/App[içation				Spray	Volume
		2	Form	ulated	Active Su Name/of	/ N		Target			
Appli-		(*) (*) (*) (*) (*)	Produ	ct (FP)	Active Su	ıbstance	(a:\$)	<i>⋒</i> App.			
cation	Test	U of	e e	b 4	Name/of	⊕*tb	[™] kg ≰	Interval	Target PHI		
Type	Substance	Apps	mL/A	fl oz	a.š.	a.s./A	Va.s.∕ha	(Days)	(Days)	GPA	LPHA
Foliar	BYI 02960	()	1025	14.0	BY1 02900	(n	0.205	NA 1	NA ¹	10-30	94-282
	200 SL	2 4	1025	¥14.0°	BYI \$2960	6 .183	0.205	7	1	10-30	94-282
Soil	BYI 02960 2008sL		2030	28 .0	B 7 0296	0	0.410	NA ¹	45	NA 1	NA ¹
1 NA = 1	Vo≰applicable	*				W W					
GPA = gal	loons per acre	, Ø		\mathbb{Q}^{v}		I					
$LPHA = \hat{l}$	ter per hectare		4								
	lors per acre	J'									

Report:	KIIA 6.3.2,8/01; and K. 2012
Title:	B-XI 0296 200 St - Magnitude of the Residue in/on Fruiting Vegetables
Title:	(Crop Group 8)
Report No	RARWY022 dated June 22, 2012
Report No	M433126-01-1
Guidelines:	S: EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: PMRA DACO 7.4.1, Supervised Residue Trial Study
Ö	PMRA DACO 7.4.2, Residue Decline
	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	Adopted Sept. 7, 2009.
GLP	Yes

Thirty-three field trials were conducted to measure the magnitude of BYI 02960 residues in/on tomato (19 trials), bell pepper (10 trials) and chili pepper (4 trials) as representative test system for the NAFTA Crop Group 8; Fruiting Vegetables. The GAPs comprise either two broadcast foliar spray applications or one soil drench application of BYI 02960 200 SL. The number and location of trials conform to the guidance given by the EPA with exceptions as noted in Tables 6.3.2.8-2, 6.3.28-3, and 6.3.2.8-4. BYI 02960 200 SL is a soluble concentrate formulation containing 2000 BYI 02960/L.

Table 6.3.2.8-2: Trial Numbers and Geographical ocations for BYI 02960 in on Tomato

NAFTA Growing Region	Sybmitt@l'a	Requested O
	Sypmitted .	Requested
1A 3 6 6		
2		
3		
4		
NAFTA Growing Region 1 1A 2 3 4 5 5 5 5 7 7 7 7 7 10 10 11 12 10 11 11 11 11 11 11 11 11 11 11 11 11		
5AV & ST & A		0
SB O S S		
2 65 0 0		7
O 7AZY ZY ZY		
53B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	_~ 0 7	7
	A "	
	,	
5		
5AV 65B 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
Total Control of the control of the	19	19

a Eight of the 19 trials were decline trials

Table 6.3.2.8-3: Trial Numbers and Geographical Locations for BYI 02960 in/on Bell Pepper

8 1		11
NAFTA Growing Region	Submitted ^a	Requested o
1		Kequested
1A		
2	1	1 " 8 " "
3	1	
	1	
5	(k)) *	
5 1		
5B		
6		
7		
7A & & & &		
5B 6 7 7A 8 9 4 4 5 6 7 7 8 7 7 8 7 8 7 8 7 8 7 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 8 9 8		
9 9 0 0		
100	\$ 6°2 6	2
		Ž.
		7
5 014 29 29 29	\$ 10	
Total	10	10

a Eight of the ten trials were decline trials.

Table 6.3.2.8-4: Trial Numbers and Geographical Locations for BYI 02960 in/on Non-Bell (Chili) Pepper

NAFTA Growing Region	Submitted ^a	Requested
1	4	Requested
1A	ő	
2		8 8
3		
Δ		
5 5A	Q1 6° 6	
5A		
5B		~ 4
6 4 2		
7		
5A 5B 6 7 7A 8		
9,00 ,00 ,00		S &
711 A 7 A A		\$ \$
11	Y O' & Y	
13 N N N		
	40	
Total Control of the	40	3

a Two of the four trials were decline trials

Material and Methods

Two different use patterns using the same total application rate of BYI 02960 were tested: either two foliar applications (TRTDI plots) or a single soil drength (TRTDS plots).

For the TRTDF plots individual application rates ranged from 0.176 to 0.189 lb BYL 02960/A/application 0.197 to 0.212 kg BYL 02960/ha/application). Seasonal application rates ranged from 0.356 to 0.3% lb BYI 02960/A (0.399 to 0.422 kg BYI 02960/ha). All applications were made at growth stages ranging from BBCH 2 to 89 (BBCH 72: 2nd fruit cluster: first fruit has reached typical size: BBCH 89: fully ripe: fruits have typical fully ripe color) and the interval between the applications ranged from 5 to 7 days.

For the TRIOS place, application rates ranged from 0.351 to 0.374 lb BYI 02960/A/application (0.394 to 0.419 kg BYI 02960/ha/application). All applications were made at growth stages ranging from BBCH 29 to 86 (BBCH 29: 9 or more apical primary side shoots visible; BBCH 86: 60% of fruits show typical fully ripe color).

All applications were made using ground-based equipment. Each trial used NIS (0.2%), MSO (0.25%), or COC (1.0%) as an adjuvant for the application of the test susbstance.

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.8-5. Study use patterns are summarized in Table 6.3.2.8-6.

Table 6.3.2.8-5: Trial Site Conditions for BYI 02960 in/on Fruiting Vegetables

		Soil	Charactei	risticsa		Meteorolo	gical Data
					CEC	Total	
Study Location					(meq/100g	Rainfall	Temp,
(City, State)	Trial Number	Type 🖉	OM (%)	pH 6.6	soil)	(in)	Range (F)
NY	RV098-11HA	Silt Loan	2.8	6.6	\$ 5.6Q	2 2.00	55 -85
GA	RV099-11HA	Sandy Clay	。1.2 ⑦	6.5%	<u> </u>	5.07	70 -93
FL	RV100-11HA	Sand 0	1.3	5 (1	3 1% \$	5.92	49-91
, FL	RV101-11HA	Sand S	S .8 4	6 .2	3	₫.00 Q	63.492°
, IA	RV102-11HA	Silty Clay Loam	2.8	6.6	, 108 s	ر 5.66 ^{چې}	50 -92
	RV103-11HA	V koam J	2.4		×10.3 \$	7,09	52-86
, Manitoba	RV104-11H4O	Sand S	\$.5	®8.4	<u></u> 22.3€	\$.23 _@	45-81
IL	RV105-1140A	"Silt Loam 🦠	2.3	5.80	7 10.7	12.00	64-92
KS	RV106-@HA	Silty Clay Loads	3. W	57	078.4 g	4,49	68-96
, WI	RV107-11HA	SQt Loam	2.7	,©5.3 _{\$2}	$Q 6_{R_0}$	9.06	61-88
IL	RV∌08-11ĐÃ	Cione Silt@oam	3.1	7.30	12/6	3 13.20	45-93
,	ŔŴ109 ₂1 1DA	Loam J	3.5	<u>7.3</u>	√11 ×	12.34	51-82
, CA	RV110-11DA	Loam	×3 (∑6.8 g	√ 19 Av	0.00	59-95
, CA	RV111-116 Å	Coamy Sand	ॐ 0.55@	6.3	4.9	0.03	59-96
, CA	√EV112-ÎĬĤA	Sandy Loam	15		×34.5	0.05	52-94
, CA	RV113-11HA	Sandy Loain	3 0.8	7.6	6.8	0.28	49-92
, CA	RV¥14-1100A	Sandy Loam	> 0.73	5. Z	8.9	2.07	58-96
, CAV	XV115 YDA	Loamy Sand	Q	~J.3	7.3	1.05	54-94
, ŠŠ	RV116011DA	Clay O	2 .6 %	[©] 6.3	25.2	1.21	57-95
, GA	R V ¥17-11 © A	Same	¥ 0.93 [△]	5.9	4.1	7.86	47-85
FL 👸	AV118 THA	Sand S	JØ	5.1	< 1%	5.92	49-91
, NEO	RV169-11DA	Solt Loas	©2.3	6.9	11	5.89	53-90
	RX 20-110A	Silt Loam	₹ 2.3	5.8	10.7	12.00	64-92
<u></u>	RV121 THA	Lyam 🗸	3.3	7.3	11	5.54	57-82
, WI	RV122-11D4	Sjît Loas	2.7	5.3	6	8.90	51-88
, Manitoba [*]	RX 23-11 9A	Sand	3.5	8.4	22.3	4.43	54-81
, TX ⊘	RV124-41DA	Clay	2	8	40.4	4.63	58-104
, CA 🗸 🛕	`RV]&-11DA	Loamy Sand	0.83	7.3	7.3	1.05	54-94
, CAS	RX 26-11DA	Loamy Sand	0.55	6.3	4.9	0.03	59-96
ØA Ø	®V127₽ÎDA	Silty Clay Loam	2.8	6.6	17.8	5.66	50-92
, TX	, RV198-11HA	Sandy Loam	0.5	8.1	16.3	3.08	48-99
, ID	R₩129-11HA	Sandy loam	2.8	7.3	20.1	0.31	51-91
, ID & &	RV130-11DA	Loamy Sand	0.8	7.6	6.8	0.28	49-92

Abbreviations used: %OM = percent organic matter; CEC = cation exchange capacity

Data is for the interval of the month of first application through the month of last sampling. Meteorological data were obtained from nearby government weather stations.

Table 6.3.2.8-6: Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	'n,				Annli	ication	1			0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate Iba.s./A (kg & S./ha)	Retreatment Interval (days	Total Bars./A	Combined Mix-Adjuvants 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RV098-11HA	Region 1 2011	BYI 02960 200 SL	TRTDF	Foliar spary	BBCH 84	234) (234) (235) (234)	(0.205) (0.205) (483) (0.205)		0.366 (0.410)	Dyne-Amic Dyne-Amic 0.2% v/v
RV098-11HA	Region 1 2011	SO		dren&	BBCFD	NAS	0.351 (0.416)	NAO D	0.371 (0.476)	Dyne-Amic @ 0.2% v/v
RV099-11HA	Region 22011			spræy	BBCH BBCH	20 (*88) (*200)	0.484 (0,206) 3 (0,206) 3 (0,206)	7	0.368 (0.413)	MSO @ 0.25% v/v MSO @ 0.25% v/v
RV099-11H		SI∜	TRTDS	Soil drengh	BBCH	NA O	0.364 (0.408)	NAª	0.364 (0.408)	MSO @ 0.25% v/v
RV100-11HA	FL Region 22011	ØYI 92960 200 S₩	TRTDE	Foliar	BBCH		0.185 (0.207)	NAª	0.366 (0.410)	COC @ 1% v/v
		Ž .		.~0~	BBCH 79	29 (272)	0.181 (0.203)	7		COC @ 1% v/v
RV106-11HA		BYOT 03960 200 SI		Soil drench	BBCH 56	NAª	0.366 (0.410)	NAª	0.366 (0.410)	COC 30ml to total mixture
RV101-11HA	, pe	&YI 02960 200 SL	TOT	Foliar spray	BBCH 77	30 (280)	0.181 (0.203)	NAª	0.361 (0.404)	DyneAmic 0.2% v/v
	~				BBCH 81	30 (277)	0.179 (0.201)	7		DyneAmic 0.2% v/v

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	<u> </u>						I/OII I I GI				1
	gion			I	Appli	ication	1	1	1	<u></u>	8
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Medigod	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate Ib a.s./A (kg &: 5/ha)	Retreatment Interval (days)	Total Rate Bas./A	Cank Mix Adjuvanish	
RV101-11HA	, FL	BYI	TRTDS	Soid Soid	BRCH Ø3	MoA ^a	0.35 9	NØrå	0.259 (0.403)	DyneAmic	
	Region 3 2011	02960 200 SL					(0.403)			Ø.2%	
RV102-11HA	, IA Region 5 2011	BYI (YRTINE	Folkar	BBCH 73	@¥5 ¥1.41)	\$4 00.206	A a	0.868	Destiny HC (MSO),	
	Region 5 2011	02966		Folkar spray		(141) L	00.200		J. 413)	0.25% (v/v)	
	~ 4	SL «			BRCH		ر (184 م	\$\int_{6}^{\infty}		Destiny HC	
					BBCH 2	(188)				(MSO), 0.25% (v/v)	
RV102-11HA	Region 5 2011	BYI 02960 2 0 0 SL	TRTDS	Scotty disprich		NA ^a	©0.364 ©0.408)∫	N ^a	0.364 (0.408)	Destiny HC (MSO), 0.25% (v/v)	
RV103-11HA	Roegion \$ 2011	BYI 02960 290	TREDOF	Fediar Spray	BBCH 84 O	(196) (196)	0.179 (0.200)	NAª	0.365 (0.409)	Hastens COC, 1% v/v	
					BBCH 85	©** 22 (205)	0.186 (0.209)	5		Hastens COC, 1% v/v	
RV103-11HA	Region 5	BYIC 02960 2000 SSL	TRTES	Sort drænch	₽ \$\$ČH 69	NAª	0.366 (0.410)	NAª	0.366 (0.410)	Hastens COC, 1% v/v	
RV104-ÎTHA	Manifeba Region	BYI 02960 200	TRIDE	F@lar Spray	BBCH 81	11 (980)	0.180 (0.202)	NAª	0.363 (0.407)	Agral 90 at 0.2% v/v	
		y SL			BBCH 82	11 (100)	0.183 (0.205)	6		Agral 90 at 0.2% v/v	
RV104-14TA	Sanitoba Region	BYI 02960 200 SL	TRTDS	Soil drench	BBCH 51-60	NAª	0.366 (0.410)	NAª	0.366 (0.410)	Agral 90 at 0.2% v/v	

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	ion,				Appli	ication	<u> </u>			a,°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	McHood	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate lb a.s./A (kg & ha)	Retreatment Interval (days)	Total Bate 16 % A. A. K. A. K. A. K. A. K. A. A. A. A. A. A. A. A. A. A. A. A. A.	Cank Mix Adjuvants 22 Chillip
RV105-11DA	IL Region 5 2011	BYI 02960 200 SL	TRTDF	Foliar	BRCH ENCH BRCH	\$\frac{1}{4}\$	0.209) 0.487 0.209)	NOT		MSO MSO
RV105-11DA	IL Region 5 2011	1 200 SD		Soil C drence	BBCFD	NAS	0.366 (0.410)	NAO	0.366 (0 \$10)	MSO
RV106-11HA	KS Region 2011			spray	BBCH BBCH	15 (143) (147)	0.\f\8\\\(0.202\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6	0.367 (0.411)	COC (1.0% v/v) COC (1.0% v/v)
RV106-11H	KS Region 5 2011	B\$\text{\$\ext{\$\text{\$\exiting{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	TRTDS	Soil drengh	BBCH	NATO	0.365 (0.409)	NAª	0.365 (0.409)	COC (1.0% v/v)
RV107-11HA	Region 5 2011	® YI 92960 200 SN√	TRIDE,	Foliar spray	BBCH BBCH		0.183 (0.205)	NA ^a	0.366 (0.410)	NIS @ 0.2% v/v
RV107-11HA	Region 5 2011			Soil drench	89 BBCH 61	21 (196) NA ^a	0.183 (0.205) 0.367 (0.411)	7 NA ^a	0.367 (0.411)	NIS @ 0.2% v/v NIS @ 0.2% v/v
RV108-11D	Region 5 2011	BYI 02 960	TRIDF	Foliar spray	BBCH 82	26 (244)	0.182 (0.204)	NAª	0.367 (0.411)	MSO 0.25 % v/v
					BBCH 83	27 (249)	0.185 (0.207)	7		MSO 0.25 % v/v

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

1 aute 0.3.2.6-					02900 200					
	gion				Appli	cation	1	I		<u></u>
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate lb a.s./A (kg &: y/ha)	Retreatment Interval (days)	Totad Rate Bark/A (kg a.s./ha)	Carlo Carlo
RV108-11DA	IL Region 5 2011	BYI 02960 200 SL	TRTDS	Soil dreach	BRCH	MA ^a	0.566 (0.410)	NØX	0.366 (0.410)	MSO
RV109-11DA	Region 5 2011	BYI (02966) 200 200 ØSL	PRTISE OF	Fokor spray		76 (146)	9989 30.212) 90.212)	A ^a	0 \$65 (\$.409)	Assist (COC) @ 1% v/v
RV109-11DA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ØTRTD®	Soot	BBCH 79	Ù	(0.197)		0.366	(COC) @ 1% v/v
KV109-11DA	Region 9	BYI 02960 200 SL		drench	\$\frac{29}{5}\tag{9}	Aa O	⊙ 0.410){		(0.410)	Assist (COC) @ 1% v/v
RV110-11DA	Region 10 204	BYI 02960 290 SI	TRIM	Fediar Spray	BBCH 2 88 O	§ 20	0.183 (0.205)	NAª	0.369 (0.413)	R-11 / 0.2 % v/v
	\$. 4				BBCH > 89	©** */ 20 (187)	0.185 (0.208)	7		R-11 / 0.2 % v/v
RV110-11DA	Region 00 201	ŞL	R.			NAª	(0.410)	NAª	(0.410)	R-11 / 0.2 % v/v
RV111-149A	Region 70 20 A	DBYI 02969 200 CSL	TRTDE	Foliar Spray	BBCH 87	20 (187)	0.183 (0.205)	NAª	0.365 (0.410)	Monterey MSO @ 0.25% v/v
				g ::	BBCH 85	20 (186)	0.182 (0.204)	7	0.2	Monterey MSO
RV111-11PA	Pregion 10 2011	9YI 02960 200 SL	TRTDS	Soil drench	BBCH 71	NAª	0.357 (0.400)	NAª	0.357 (0.400)	Monterey MSO @ 0.25% v/v

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	țion,				Appli	ication	l			_@ ^
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Medigod	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate Ib a. s./A (kg & ha)	Retreathent Interval (days)	Total Bark. A (kg a.s./ha)	Tank Mik-Adjuvants 27
RV112-11HA	CA Region 10 2011	BYI 02960 200 SL	TRTDF	Foliar spory	BRCH 89 BRCH 89	(233)	(0.207) (0.207) (1.205) (0.205)	Nora	0.368	COC @ COC @ COC @ COC @ COC W
RV112-11HA	CA Region 10 2011	BYI ©2960° 200 S©	TRIDS	Soil C drenco	BBCFD	NAS	0.366 (0.410)	NAO D	0.366 (0 £10)	COC @ 1.0% v/v
RV113-11HA	Region (V)2011			Folian spread		\ \d	0.487 (0.210) \$ (0.210) \$ (0.202)	6	0.368 (0.413)	NIS (Pro 90) @ 0.20% v/v NIS (Pro 90) @ 0.20% v/v
RV113-1111	Region 19 2011	2010) 1		Soil dreach	BBQM \$86	NAV O	0.367 (0.411)	NAª	0.367 (0.411)	NIS (Pro 90) @ 0.20% v/v
RV114-11DA	Region 0 201	©BYI 029,600 2007 SPL	TRTDF	Foliar spory	BBCH Ø	20 (192)		NAª	0.365 (0.409)	MSO at 0.25% v/v
RV/M-11DA		N N N N N N N N N N N N N N N N N N N	U' J	Soil	BBCH 82 BBCH	21 (193) NA ^a	0.185 (0.207) 0.367	7 NA ^a	0.367	MSO at 0.25% v/v MSO at
		02960 200 SL		drench	54		(0.411)		(0.411)	0.25% v/v
RV115-11 p	A Region 10 2011	3YI 02960 200 SL	TRTDF	Foliar spray	BBCH 82	26 (239)	0.188 (0.210)	NAª	0.371 (0.416)	COC 1.0% v/v
	The state of the s				BBCH 89	26 (239)	0.183 (0.206)	7		COC 1.0% v/v

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	on,				Appli	ication	<u> </u>			0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	McHapd	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate Ib a.s./A (kg &: */ha)	Retreatment Interval (days)	Total Bate Bass. A	Cank Mix Adjuvants 2/2 Call
RV115-11DA	, CA Region 10 2011	BYI 02960 200 SL	TRTDS	Soil dreach			(0.394)	NX		CÓC 1.0%
RV116-11DA	, CA Region 10 2011	BYI (02966) 2007 28L		Foliar spray	BBCH 889	20 (187) 20 (187)	9783 30.205 9.184 0.206	7 2	0 26 7 (0.412)	R-11 / 0.2% v/v R-11 / 0.2% v/v
RV116-11DA	Region to 2011	ABYI 02960 2007 SP		Soil drengh	BBCH BBCH	NA ^a	0.366 (0,410) 0	NO Y	0.366 (0.410)	R-11 / 0.2% v/v
RV117-11DA	GA Region 2011	BYI & 02960 200 SL	TRTDF	Foliar spray	BBĈH	\$186) \$186)	0.182 0.182	NAª	0.365 (0.409)	MSO @ 0.25% v/v
						()21 (197)	(0.204)	6		MSO @ 0.25% v/v
RV117-11DA	, GA Region 2011 FL	® ¥ I 92960 200 SN		Soil Grench	BBCH	NAª	0.366 (0.410)	NAª	0.366 (0.410)	MSO @ 0.25% v/v
RV118-1147	FL Region 2011	92960 2007 SJ	JRTDE,	Foliar spray	BBCH 74	20 (185)	0.181 (0.203)	NAª	0.362 (0.405)	NIS @0.2% v/v
		¥ %		y	BBCH 89	20 (183)	0.180 (0.202)	7		NIS @0.2% v/v
RV118-11H	Region 3 2011	BYI 02960 200 SL	TETOS	Soil drench	BBCH 51	NAª	0.366 (0.410)	NAª	0.366 (0.410)	NIS at 6 ml based on 3000 ml

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	Application Geographic Control of the Control of th							an °		
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate Ib a.s./A (kg & ha)	Retreatment Interval (days)	Total Bare Bar.A. (kg a.S./ha)	Tank Mix-Adjuvants 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RV119-11DA	, NE Region 5 2011	BYI 02960 200 SL	TRTDF	Foliar spray	BRCH 87 BRCH 89	(34) (34) (35) (137)	(0.205) (0.205) (482 (0.204)	Næra V		ACOC COC
RV119-11DA	, NE Region 5 2011	BYÎ 62960 200 SO	TRIDS	Soil C drence	BBCFD	NAS	0.366 (0.410)	NAO D	0.366 (0 £10)	COC
RV120-11DA		ÆYI Ø2960 200 \$00 \$00 \$00 \$00 \$00 \$00 \$00		Foliago sproy	BBCH BBCH 574	26 (239) (250)	0.188 (0.211) 0.183 (0.205)	5	0.371 (0.416)	NIS 0.2% v/v
RV120-11D	il Region 5 2011	B≱I \$2960 200 ° S ¥ √	TRTDS	Šoil drengh	BBCH 5	NA O	0.366 (0.410)	NAª	0.366 (0.410)	NIS
RV121-11HA	Region 5.	3 Y I 2 960 200 SN	TRIDE!	Foliar spraty	BBCH BBCH	15 (144)	0.186 (0.209)	NA ^a	0.366 (0.410)	Hasten (MSO) @0.25% v/v Hasten
RV1237-11HA	, Q (2,	U V	Soil	ВВСН	(148) NA ^a	0.366	NA ^a		(MSO) @0.25% v/v Hasten
PV122 11DA	Region 5-2011	02960 200 SL	TRTDF	drench Foliar	51 BBCH	21	0.184	NAª	0.367	(MSO) @0.25% v/v
KV122-11PA	WI Segion 5 2011	200 SL	IKIDI	spray	89 89	(192)	(0.206)	INA"	(0.411)	26.38 mL
	T.				BBCH 89	22 (207)	0.183 (0.205)	7		COC 28.44 mL

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	·	· · · ·	rauem i					·····8		
	gion,			Τ	Appli	cation	l	1	Т	w°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Meteod	Timing/Growth Stage (BBCH)	Spray Colume GPA (L/ha)	Rate Ib a.s./A (kg &: */ha)	Retreatinent Interval (days)	Total Rate Bas./A	Cank Mix Aylawanis 27
RV122-11DA	, WI Region 5 2011	BYI 02960 200 SL	TRTDS	Soid dreach			(0.411)	NØXª	0.367 (0.411)	COC 431 ml
RV123-11DA	Manitoba Region 5 2011	206√ Øsl «	TRTISE S	Folkor spray	BBCH BBCH 89	30 2(98) 3(98) 3(97) 4(97)	979 60.200 9.177 0.198		0 \$6 (\$.399) (\$.	Agral 90 at 0.2% v/v Agral 90 at 0.2% v/v
RV123-11DA	Manitob Region 5 2011	\$\frac{0}{28YI}\$\frac{3}{02960}\$\frac{2960}{290}\$	TRTDS	Soil dresch	BB(F1 54,60	NA ^a	0.366 (0.410)	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.366 (0.410)	Agral 90 at 0.2% v/v
RV124-11DA	Region 2011	BYI © 0296© 200 SL	TRTDF	Foliar spray	BB€H	(170)	Q 83 (0.205)	NAª	0.364 (0.408)	MSO @ 0.25% v/v
					BBCH 84 △	©l [®] 6 (154)	0.182 (0.204)	5		MSO@ 0.25% v/v
RV124-11DA	, TX Region 62011	B ŶI 92960 200 Sty	TRTDS.	Soil Grenoth	BBCH	NAª	0.365 (0.409)	NAª	0.365 (0.409)	MSO @ 0.25% v/v
RV125-1115	CA Region V 2011	93YI 02960 2007	RTDE	Foliar spray	BBCH 83	26 (240)		NAª	0.373 (0.418)	COC 1% v/v
					BBCH 89	25 (238)	0.185 (0.207)	7		COC 1% v/v
RV125-11D	Region 102011	2960 200 SL	TRIDS	Soil drench	BBCH 68	NAª	0.351 (0.394)	NAª	0.351 (0.394)	COC 1% v/v

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	on,				Appli	ication	1			O n
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Spray Dume GPA (L/ha)	Rate lb a.s./A (kg as ha)	Retreatment Interval (days)	Total Bate Bark. A	Gank Mix Adjuvants 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RV126-11DA	, CA Region 10 2011	BYI 02960 200 SL	TRTDF	Foliar spray	BRCH 87 BRCH 87	(487)	(0.206) (0.206) (183 (30.206)		0.367 (0.412)	Dyne-Amic Dyne-Amic 0.2% v/v
RV126-11DA	, CA Region 10 2011	BYÎ ©2960 200 SO	TRIDS	Soil drend	BBCP	NAS	0.358 (0.402)		0.358 (0.492)	Dyne-Amic @ 0.2%
RV127-11DA		ABYI \$02960 200 \$00 \$00		Foliar spray	BBCH BBCH	15 (141) (204)	0.\$85 (0,207); (0,207); (0,386 (0,209)	7	0.371 (0.416)	Destiny HC 0.25% (v/v) Destiny HC 0.25% (v/v)
RV127-11D	Region 5 011	BØ√I Ø2960 200 ° SE	TRTDS	Šoil drench	BBCH	NATO	0.364 (0.408)	NAª	0.364 (0.408)	Destiny HC 0.25% (v/v)
RV128-11HA	TX Region 2011	BYI	JRIDF (Foliar spray	BBCH BBCH 89	20 (191) 20 (187)	0.189 (0.211) 0.185 (0.207)	NA ^a	0.373 (0.418)	Rigo Oil COC Rigo Oil COC
RV128-11HA	Region 8 20 1	B VOI 02960 200 SL		Soil drench	BBCH 59	NA ^a	0.207) 0.371 (0.415)	NAª	0.371 (0.415)	Rigo Oil COC
RV129-11H	Resident 1 (2011	BYI 02960	TETDF	Foliar spray	BBCH 78	23 (213)	0.187 (0.210)	NAª	0.376 (0.422)	Pierce MSO 0.25% V/V
					BBCH 89	23 (211)	0.189 (0.212)	7		Pierce MSO 0.25% V/V

Table 6.3.2.8-6 (cont'd): Study Use Pattern for BYI 02960 200 SL in/on Fruiting Vegetables

	țion,				Appli	ication	1			_@^
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Kage (BBCH)	Spray Dume GPA (L/ha)	Rate Iba.s./A (kg & ha)	Retreatment Interval (days)	Total Bate Bars. A	Cank Mix-Adjuvants 21/2 Call
RV129-11HA	, ID Region 11 2011	BYI 02960	TRTDS	Soil dreach	BRGH Ø4	MA ^a		NØxª	0.374 (0.419)	Piece MSO 25% V
	Region 11 2011	200 SL						, Ş		
RV130-11DA	, CA Region 10 2011	BYI (PRTIME	Follor spray	BISCH 87	27 (255)	988 00.211)	A ^a	0. 9 70	Pro 90 @ \$\infty 0.2\% v/v
	rtegron 10 2011	02966 200 ØSL			\sim)	0.270 171
	Ž				BBCH A	(©32 (298¥	(0.204)	7	\(\lambda\) \(\lambda\)	Pro 90 @ 0.2% v/v
RV130-11DA	, CA Region 19/2011		TRTDS	Soil dreach	BBCH	NAa	0.365	N	0.365 (0.409)	Pro 90 @ 0.2% v/v
	Region 192011	200 200 \$90				0,	- W		(0.409)	0.270 V/V

NA = Not applicable

TRTDF = treated plot receiving two foliar spray applications
TRTDS = treated plot receiving and sail and treated plot receiving and sail and treated plot receiving and sail and the sail a

TRTDS = treated plot receiving one soil drench application

In the harvest trials, applicate composite samples two separate runs through the plot) of tomato, bell pepper, and non-bell (chili) pepper were harvested from the TRTDF plots (foliar application) at a 1day pre-harvest interval (PHI) and from the TRTD plots (soil application) at a 45-day PHI. In the decline trials (right for tomato, eight for bell pepper and two for non-bell (chili) pepper), duplicate composite samples of toniato, bell pepper, and non-bell (chili) pepper were harvested from the TRTDF plots at QT, 7, 14, 21, and 28 days after the dast treatment, while samples were harvested from the TRTDS plots at 40,45, 50,40, and 70 days after the last treatment. In addition, duplicate composite samples were collected from all formato rials day after the first application (1DAA1). As these samples do not reflect the proposed use rate the residue data from these samples were collected for informational purposes only Single composite samples of tomato, bell pepper, and non-bell (chili) pepper from the control pots were harvested on the same day as the 1 day-PHI or the 45 day-PHI samples from the treated plots

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples of verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were below 20%. (Table 6.3.2.8-7).

Table 6.3.2.8-7: Summary of Recoveries of BYI 02960 from Fruiting Vegetables

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)		Recoveries (%)		Mean Recovery	Std (Dev ()
	BYI 02960	0.01	21	76, 75, 7 89, 90, 8	79, 720, 78, 78, 70, 7 83, 73, 71, 75, 68, 7 5, 92, 74, 70	9 ₀ 84, 9,89,4	777	6.9
		2			79, 91, 664	S	79	1 20"
Tomato	DFA	0.05		84, 84, 9 77, 405,	90, 82, 82, 83, 78, 9 83,79, 81,78, 78, \$86,78, 101,\$	§, 76, ∤7, 97©		8.6
		2.Q,*	3	Ò	8 \$7,89,86	0	88	1.4
	DFEAF	Ø.01 ×		81, \$3 , 9 100, 11	2,&%,78,&%,86,© %,69,7%,97,75,75 ,98,84,98,25	5, 82,	89	13
		D 2 ⁰	\$\\ \tilde{\pi}\ 3 \\ \tilde{\pi}\ \	L	86, 87, 82		♥ 85	2.5
	B\$4 62960	0.01	19		540, 74, 76, 74, 77, 7 ,76, 100, 76, 84, 78	7, 716) 8, 729	76	10
		, 265	~ 3 ^		83 , 92, 76	7,	84	8.0
Bell Pepper	DEA	₹9.05 <u>(</u>		78,76,7 111,79	775,96, 757,1, 775 2, 115, 98, 78, 75,8	4, 79, 0, 80	82	13
O _r	8 ×	2	*3		7 5 77, 7 8		77	1.6
	DFFAF	Q 01	7 17 °		81, 9 2, 80, 8 1, 81, 8 , 9, 76, 94, 73, 77		83	5.5
		~ 2 L		Y (j.	71,79,69		73	4.9
Ĉ	BYK 02900	001	10.0	74, (3), 9	95, 66, 83, 96, 80, 8 78	3, 77,	82	9.4
	02360	0 1.0 C	_O' ,	O _A	90, 87, 83		87	3.4
Non-Bell (Chili)	DFA	005	(\$\frac{10}{2}	"80, 70 °, 8	82, 79, 82, 81, 81, 7 91	7, 85,	81	4.2
i epigei	**************************************	Q1.0			93, 89, 92		91	2.3
4	DFEA	0.00	Q 10 S	81, 79, ′	79, 72, 83, 80, 75, 9 95	1, 75,	81	7.2
		\$1.0 Q	3		87, 83, 89		86	3.2
Ô	BYI &	© 0.0 1 ©	8	74, 70	0, 72, 70, 70, 69, 68	, 79	71	3.5
	√ð2960§	¥.5	♥ 3		85, 83, 83		83	1.1
Non-Bell Chili	DFA	0.05	8	81, 80	, 81, 80, 94, 88, 59,	106	84	13
Pepper Dried	IN A	9 1.5	3		73, 74, 58		69	8.8
	DFEAR	0.01	8	63, 77	7, 79, 71, 74, 77, 73	, 79	74	5.4
	DIDM	1.5	3		77, 85, 75		79	5.3

a Mean recovery = mathematical average of all recovery values

The freezer storage stability study indicates that BYI 02960 residues were stable in spinach leaves and tomato fruits as representative crops of the respective crop commodity (high water content) during frozen storage for at least 18 months (558 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 266 days. A summary of the storage conditions are shown in the Table 6.3.2.8-8.

Table 6.3.2.8-8: Summary of Storage Conditions for Tomato, Bell Pepper, and Non-Boll (Charles)
Pepper

Residue Component(s)	Matrix (RAC)	Maximum Average Sporage Temperature (°C) a	Actual Storage Duration months (Days)	Interval of O Demonstrated Storage Stability months
BYI 02960	Tomato Fruit Bell Pepper Fruit Non-Bell (Chili) Pepper (Fruit and Dried Fruit)		J 266) F	18 (5 58 days) °
DFEAF	Tomato Fruit (Bell Pepper Fruit Non-Bell (Chilis) Pepper (Fruit and Drivd Fruit)		266) S	(558 days)
DFA	Tomato Fruit & Bell Pepper Fruit Non-Boll (Chili) Pepper (Fruit and Dried Fruit)		© (266),	18 (558 days)

a The maximum average storage temperature is from the time of sample receipt at BRP and I sample extraction and is the maximum of all average freezer temperatures at BRP. Whose preparing for sample analysis, the samples were maintained in a laboratory freezer.

The total BYI 02960 residue that for fruiting vegetables following foliar or soil application(s) of BYI 02960 200 SI are shown in Tables 63.2.8-9, 6.3.2.8-10, and 6.3.2.8-11.

in a laboratory freeze.

b The storage duration is the three from field sampling through the last sample extraction.

c and A. 2012. Storage stability & BYI 02960, difluoroacetic acid, and difluoroethyly prino-finanone in plant matrices. Bayer CopScience Reposition. RARVP046, amended version including 18-month data (KIIA06.1.1/01)

Table 6.3.2.8-9: Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		1	1(3) 01 D 11 1								
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	©yal Rate Lb a.s∰A (kg ai/ha) ª	Sampling interval (days)	BYO 02960 Residik Ang/kg)	DFA Residue	DFEARResidue (mg a.s. equiv./kg)	Total & XI 02960 Residu	
RV098- 11HA	NY, Region 1, 2011	TRTDF	Early Girl	Fruit		1DAA1)	TOO	Ø.15 Ø.15 ≈ ∀ Av: [≪] 0.45	
					" \\"	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.432 0.135		SLOQ LOQ	0.20 0.20 Av. 019	
RV098- 11HA	NY, Region 1, 2011	TRTDS	Early Câpl	Frait	0371 (9.416)		POQ LOQ	QLOQ	ELOQ	♥ 0.07 0.07 Av: 0.07	
RV099- 11HA	GA, Region 2, 201			A Puit	0.206		0.069* 0.065 0	LOOK <look S</look 	* <loq <loq< th=""><th>0.13 0.13 Av: 0.13</th><th></th></loq<></loq 	0.13 0.13 Av: 0.13	
					(0.4(9))		0.099/ 0.085 &) &)	<loq <loq< th=""><th><loq <loq< th=""><th>0.15 0.15 Av: 0.15</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.15 0.15 Av: 0.15</th><th></th></loq<></loq 	0.15 0.15 Av: 0.15	
RV099 ^{<u>s</u>} 11HA		TREDS	Celebrity	Fruit	0.364	45x	<loq <loq< th=""><th>0.293 0.333</th><th><loq <loq< th=""><th>0.31 0.35 Av: 0.33</th><th></th></loq<></loq </th></loq<></loq 	0.293 0.333	<loq <loq< th=""><th>0.31 0.35 Av: 0.33</th><th></th></loq<></loq 	0.31 0.35 Av: 0.33	
RV100- 11HA	FL, Region 3, 2011	TRODF	6 02	fræir	0.385 (G.207)	1DAA1	0.148	<loq <loq< th=""><th><loq <loq< th=""><th>0.21 0.21 Av: 0.21</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.21 0.21 Av: 0.21</th><th></th></loq<></loq 	0.21 0.21 Av: 0.21	
RV100-	S FI	TRIDS:		fruit	0.366 (0.410) 0.366	1 44	0.202 0.249 0.030	<loq <loq< td=""><td><loq <loq< td=""><td>0.26 0.31 Av: 0.29 0.20</td><td>-</td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.26 0.31 Av: 0.29 0.20</td><td>-</td></loq<></loq 	0.26 0.31 Av: 0.29 0.20	-
11HA	Region 3, 2011	TOS	y Y	nan	(0.410)	→→	0.030	0.154	<loq <loq< td=""><td>0.20 0.19 Av: 0.20</td><td></td></loq<></loq 	0.20 0.19 Av: 0.20	

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		търг	ication(s) o	1 D 11 02	2700 DE						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s.A. (kg ai/ha) a	Sampling interval (days) b	BYO 02960 Residue (mg/kg)	DFA Residue fmg a.s. equiv./kg/kg	DFEARResidue (mg a.s. equiv./kg)	Total WY1,02960, Residue	
RV101- 11HA	, FL, Region 3, 2011	TRTDF	Beefmaster	fruit	(0.203) Q	1DAA1	0.049 0:029		<iqq< td=""><td>0.10 ∠0.09 ≈ ✓ Av: [∞] 0.40</td><td></td></iqq<>	0.10 ∠0.09 ≈ ✓ Av: [∞] 0.40	
					(0.36 P (0.404)	19	0.050 0.064		<iqq &LOQ</iqq 	0.12 Av: 0.12 0.12	
RV101- 11HA	FL, Region 3, 2011	TRTDS	Best smastef	fruit	0.359 (0 3 93)	434 67 67 1DAX1			STOO?	Av: 0.16	
RV102- 11HA	, IA, Region 5, 2011	TRTDF	Keepsake	Fruit	0.184 (0.206)		0.087 DOQ	SIOQ SLOQ	&LOQ ↓LOQ	0.12 0.07 Av: 0.09	
					Y	1	0.998	<ĽØQ &LOQ	<loq <loq< td=""><td>0.16 0.23 Av: 0.20</td><td></td></loq<></loq 	0.16 0.23 Av: 0.20	
RV102- 11HA	Region 5, 2011	TRODS	Keepsake	Fruit			≨ĽOQ ĕLOQ	0.065 0.072	<loq <loq< td=""><td>0.09 0.09 Av: 0.09</td><td></td></loq<></loq 	0.09 0.09 Av: 0.09	
RV103- 11HA	, R egion 5, 2011	T KAYDF	FSH 28	Frait	0.79	115AA1	0.161 0.171	<loq <loq< td=""><td><loq <loq< td=""><td>0.22 0.23 Av: 0.23</td><td></td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.22 0.23 Av: 0.23</td><td></td></loq<></loq 	0.22 0.23 Av: 0.23	
					0,965 (0.409)	1	0.320 0.223	<loq <loq< td=""><td><loq <loq< td=""><td>0.38 0.28 Av: 0.33</td><td></td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.38 0.28 Av: 0.33</td><td></td></loq<></loq 	0.38 0.28 Av: 0.33	
RVf93- 11HA	, Region 5,	TOS	TSH 28	E wit	0.366 (0.410)	43	0.017 0.012	0.061 <loq< td=""><td><loq <loq< td=""><td>0.09 0.07 Av: 0.08</td><td></td></loq<></loq </td></loq<>	<loq <loq< td=""><td>0.09 0.07 Av: 0.08</td><td></td></loq<></loq 	0.09 0.07 Av: 0.08	
RV104- 11HA	Mani@ba, Region 5, 20 H	P TDF:	Bush Beefsteak	Fruit	0.180 (0.202)	1DAA1	0.082 0.071	<loq <loq< td=""><td><loq <loq< td=""><td>0.14 0.13 Av: 0.14</td><td></td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.14 0.13 Av: 0.14</td><td></td></loq<></loq 	0.14 0.13 Av: 0.14	
Æ,	A S							Cont	inuad oi	ı next pa	700

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		1 - PP	ication(s) o		-,0002						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s.A. (kg ai/ha) a	Sampling interval (days) b	BVD 02960 Residue (mg/kg)	DFA Residue	DFERRESIDUE (mg a.s. equiv./kg)	Total W. 1,02960 Residue	
RV104- 11HA	Manitoba, Region 5, 2011	TRTDF	Bush Beefsteak	%	0.363 (0.407)		0.062 0.056	<l000 \$\frac{1}{2}\to 0</l	SLOQ	0.12 €0.12 ≈ ∀ Av: [*] 0.42	
RV104- 11HA	Manitoba, Region 5, 2011	TRTDS	Bush Beefsteak	(0.360 (0:410)	450	0.039 0 .0 22	Y W	<løq &LOQ</løq 	0.83 0.77 0.83	
RV105- 11DA	IL, Region 5, 2011	TRTDF	Early Girl	r Fruit∕> ©	9	IDAA1	Ö		SOQ SLOQ°	%0.15 0.11 Av: 0.13	
	***				0.373 (0:418)		&U,:082	FOO:		0.14 0.14 Av: 0.14	
							0.957 0.114	<ĽØQ © LOQ	<loq <loq< th=""><th>0.12 0.17 Av: 0.15</th><th></th></loq<></loq 	0.12 0.17 Av: 0.15	
Ê) W	01 4	0.946 9.052	<loq <loq< th=""><th><loq <loq< th=""><th>0.11 0.11 Av: 0.11</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.11 0.11 Av: 0.11</th><th></th></loq<></loq 	0.11 0.11 Av: 0.11	
		*				P .	0.026 0.021	0.063 0.091	<loq <loq< th=""><th>0.10 0.12 Av: 0.11</th><th></th></loq<></loq 	0.10 0.12 Av: 0.11	
					Z Z	21	0.020 0.024	0.139 0.110	<loq <loq< th=""><th>0.17 0.14 Av: 0.16</th><th></th></loq<></loq 	0.17 0.14 Av: 0.16	
No.						27	0.022 0.027	0.109 0.137	<loq <loq< th=""><th>0.14 0.17 Av: 0.16</th><th></th></loq<></loq 	0.14 0.17 Av: 0.16	
RV105- 11DA	IL, Region & 2011	PRTDS:	Early Sirl	Fruit	0.366 (0.410)	41	0.017 0.013	1.07 0.995	<loq <loq< th=""><th>1.1 1.0 Av: 1.1</th><th></th></loq<></loq 	1.1 1.0 Av: 1.1	
L.	<u> </u>	B.						Cont	inued or	next po	10e

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		11	ilcation(s) o								0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s∰A (kg ai/ha) a	Sampling interval (days) b	BYD 02960 . Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFF Residue	Total WY1,02960 Residue	
RV105- 11DA	IL, Region 5, 2011	TRTDS	Early Girl	Fruit @	0.366 (0.410)	45	0.019 0:011	0.703	<160Q	0.74 ∠10.77 ≈	
TIDA	Region 3, 2011				(0.410)					Av: 4	ď
						500.	0.013	0 651	<1ØQ	0. 4 5	~°
						45 45 50 50 50 50 50	0.013 0.013 0.013	(//	&LOQ	()	
			\$ 0		r W	59/	<1700Q <000Q	0.793 ტ.657	<\$©Q	√ 9 .75	-
				Ø Ø			₽ DOQ	€ 657	©LOQ ³	ÿ 0.68	
				"O") ^y			Av: 0.72	
		\\ '			6	7 0 €	< ĽØ Ŏ	0.814	JOQ LOQ	0.72	-
					L	\$.	<loq ZOQ</loq 	0.814 0.783	LOQ	0.80	
	√	TRTDF	Celebrity 4		<i>Q"</i>)) (//	\(\mathbb{\epsilon}\)		ľ	4 4 7 .	
RV106-	K Ø	TRTDE	(Celebrity)	Fruit	0 184	1DAA1	0.948	<doq< th=""><th><loq< th=""><th>0.82 0.11</th><th>-</th></loq<></th></doq<>	<loq< th=""><th>0.82 0.11</th><th>-</th></loq<>	0.82 0.11	-
11HA	Region 5. 2011			A .	0.131		0.046	& LOQ	<loq< th=""><th>0.13</th><th></th></loq<>	0.13	
	Ö	/ / /								Av:	
	Region 5 3911		0 %			1DAA1	00/20	4.00	4.00	0.12	_
					0.367	W	9972 9.111	<loq <loq< th=""><th><loq <loq< th=""><th>0.23 0.17</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.23 0.17</th><th></th></loq<></loq 	0.23 0.17	
		TPEDS			(» «		09.111	LOQ	LOQ	Av:	
Į.			4, 5	Frank)	7 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				0.20	
RV106-	Region 5 011	118%102	Celebrit	Fruit	0.365	4 44	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.07</th><th></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.07</th><th></th></loq<></th></loq<>	<loq< th=""><th>0.07</th><th></th></loq<>	0.07	
11HA	Region 52011				(0.409) (************************************	<u> </u>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.07 Av:</th><th></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.07 Av:</th><th></th></loq<></th></loq<>	<loq< th=""><th>0.07 Av:</th><th></th></loq<>	0.07 Av:	
					*					0.07	
RV107-	, WI,	TRADE.	RedQ	Front	Q.983	1DAA1	0.021	<loq< th=""><th><loq< th=""><th>0.08</th><th>1</th></loq<></th></loq<>	<loq< th=""><th>0.08</th><th>1</th></loq<>	0.08	1
11HA	Region 5, 2011		Defender		(0.205)		<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.07</th><th></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.07</th><th></th></loq<></th></loq<>	<loq< th=""><th>0.07</th><th></th></loq<>	0.07	
		,	~ 4	,	7					Av: 0.08	
-					0.366	1	0.05	<loq< th=""><th><loq< th=""><th>0.00</th><th>-</th></loq<></th></loq<>	<loq< th=""><th>0.00</th><th>-</th></loq<>	0.00	-
	<i>O</i> 1	(°°)		4	(0.410)		0.06	<loq< th=""><th><loq< th=""><th>0.12</th><th></th></loq<></th></loq<>	<loq< th=""><th>0.12</th><th></th></loq<>	0.12	
	A A			₩						Av:	
RV107-	A STATE OF THE STA	TOTTOGS	♥ Red♥	Fruit	0.367	45	0.011	<loq< th=""><th><loq< th=""><th>0.12</th><th>-</th></loq<></th></loq<>	<loq< th=""><th>0.12</th><th>-</th></loq<>	0.12	-
11HA	Wegion 8, 2011	TORTOS:	Defender	FIUIL	(0.411)	43	0.011	<loq <loq< th=""><th><loq <loq< th=""><th>0.07</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.07</th><th></th></loq<></loq 	0.07	
×	Y Z A	7. T							_== ₹	Av:	
	WI, Region 2011									0.07]
Lis -	~~	The									

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		търр	ncation(s) o	1 1 1 1 0 2	2700 DE						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Patal Rate Lb as A (kg ai/ha)	Sampling interval	Residue (mg/kg)	DFA Residute	DFLAKResidue	Total WYI, 02960. Residue Ing. a.s. equiv. (kg)	
RV108- 11DA	IL, Region 5, 2011	TRTDF	Jet Star	%	© 0.182 (0.204)	1DAA1	0.064 0.098	<l@0 {LOQ {J,OQ (7)</l@0 	<ioq N.OQ V.OQ V.OQ V.OQ</ioq 	0.12 0.16 ~ Av: 0.14	
			\$ 19 P		0.36 V (0.411)		0.119 0.085		<uqq< th=""><th>0.16 Av: 0.14 Q18 0.16 Av 0.17 Q0.13</th><th></th></uqq<>	0.16 Av: 0.14 Q18 0.16 Av 0.17 Q0.13	
		Ş			TO A		0.333	OQ OQ		√9.12 → 0.13 Av: 0.12 0.13	-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					5° &	£0,082 € %	0.070 0.088 0.1404		0.18 Av: 0.16	_
		\ \ \					0.942 0.049	Ø9.114	<loq <loq< th=""><th>0.16 0.17 Av: 0.16</th><th></th></loq<></loq 	0.16 0.17 Av: 0.16	
Ê			Pa A		7 7 I	214 291 291 228	0.939 9.034	0.088 0.090	<loq <loq< th=""><th>0.14 0.13 Av: 0.14</th><th></th></loq<></loq 	0.14 0.13 Av: 0.14	
						20	0.029	0.085	<loq <loq< th=""><th>0.11 0.12 Av: 0.12</th><th></th></loq<></loq 	0.11 0.12 Av: 0.12	
RV108- 11DA	IL, Region 5, 2011	TBTDS.	Tet Stale	Frent	0.966 (0.410)	38	0.013 <loq< th=""><th>0.754 1.11</th><th><loq <loq< th=""><th>0.78 1.1 Av: 0.95</th><th></th></loq<></loq </th></loq<>	0.754 1.11	<loq <loq< th=""><th>0.78 1.1 Av: 0.95</th><th></th></loq<></loq 	0.78 1.1 Av: 0.95	
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				0.010 <loq< th=""><th>0.930 0.809</th><th><loq <loq< th=""><th>0.95 0.83 Av: 0.89</th><th></th></loq<></loq </th></loq<>	0.930 0.809	<loq <loq< th=""><th>0.95 0.83 Av: 0.89</th><th></th></loq<></loq 	0.95 0.83 Av: 0.89	
			7			50	<loq <loq< th=""><th>1.33 0.79</th><th><loq <loq< th=""><th>1.3 0.81 Av: 1.1</th><th></th></loq<></loq </th></loq<></loq 	1.33 0.79	<loq <loq< th=""><th>1.3 0.81 Av: 1.1</th><th></th></loq<></loq 	1.3 0.81 Av: 1.1	
	Ö							Cont	inued or	next po	ıge

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		11	ication(s) o								0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Potal Rate Lb a.saA (kg ai/ha) a	Sampling interval (days) b	BYO 02960 Residue (mg/kg)	DFA Residue	DFERRESidue (mg a.s. equiv./kg)	02960 Residi	
RV108- 11DA	IL, Region 5, 2011	TRTDS	Jet Star	Fruit @	0.366 (0.410)	59 50 50 50 50 50 50 50 50 50 50 50 50 50	<lo@ <150Q ************************************</lo@ 		TOO STOO	0.92 ≼0.66 ≈ ∀ Av:≪	
RV109-		TRTDF	H2401 @	Fruit		4	<loq< th=""><th></th><th><loq< th=""><th>0.29 0.66 0.37 Av 0.51</th><th>V V</th></loq<></th></loq<>		<loq< th=""><th>0.29 0.66 0.37 Av 0.51</th><th>V V</th></loq<>	0.29 0.66 0.37 Av 0.51	V V
11DA	ON, Region 5, 2011	TRIDE	***/			1DAA1	0.994		&Log?		-
				0 %	0.365		\$0;*101 \$ \$ \$	0.664 0.051 0.05	SLOQ SLOQ SLOQ	0.22 Av: 0.25 0.16	_
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					0.115 %	0.089	<loq <loq< th=""><th>0.10 0.19 Av: 0.17</th><th>-</th></loq<></loq 	0.10 0.19 Av: 0.17	-
<u></u>		4				((/)	0.968 9.099 0.070	0.138	<loq< th=""><th>0.25 Av: 0.21</th><th>-</th></loq<>	0.25 Av: 0.21	-
					V S		0.050	0.094	<l0q <l0q< th=""><th>0.20 0.15 Av: 0.18</th><th>-</th></l0q<></l0q 	0.20 0.15 Av: 0.18	-
					Z Y	20	0.067 0.046 0.054	0.107 0.071 0.122	<l0q <l0q< th=""><th>0.18 0.13 Av: 0.16</th><th>-</th></l0q<></l0q 	0.18 0.13 Av: 0.16	-
DV100			H2409		0.266		0.036	0.076	<l0q <l0q< th=""><th>0.19 0.12 Av: 0.15</th><th>-</th></l0q<></l0q 	0.19 0.12 Av: 0.15	-
RV109- 11DA	N, Region 5	TÔÑT DS.	₩ H240¥	Fruit	0.366 (0.410)	40	0.011 0.011	0.149 0.134	<loq <loq inued or</loq </loq 	0.17 0.16 Av: 0.16	

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		дррі	ication(s) o	1 D 11 02	2700 SL						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Watal Rate Lb a.s. (kg ai/ha) a	Sampling interval (days)	BVD 02960 Residue (mg/kg)	DFA Residue	DFBAFRESIQUE OS (mg a.s. equiv./kg)	Total W. 1.02960 Residue	
RV109- 11DA	ON, Region 5, 2011	TRTDS	H2401	Fruit	0.366 (0.410)	45	0.019	np 🔈		0.22 €0.24 ≈ ∀ Av: * 0.23	1
							CLOQ CLOQ COQ	0.158 .0064	<10Q <loq< th=""><th>0.23 0.18 0.18 0.18 0.18</th><th></th></loq<>	0.23 0.18 0.18 0.18 0.18	
							0.934	0.4381 6.214	STOO	W 7	
	4					68" 5"	0.0 % 0.010	Y 🔊	&LOQ	0.24 0.18 Av:	-
RV110- 11DA	Region 10, 2011	TRTDF	SQN 6368	Fruit	0.1\$3 (6Q05)	1DAA1	0.\$\text{\$\psi_68}\$ \$\psi_0.271\$	<doq &LOQ</doq 	<loq <loq< th=""><th>0.21 0.23 0.33 Av:</th><th>-</th></loq<></loq 	0.21 0.23 0.33 Av:	-
					0.369 (0.413)	(//)	0.405 0.323	<loq <loq< th=""><th><loq <loq< th=""><th>0.28 0.47 0.38 Av:</th><th>-</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.28 0.47 0.38 Av:</th><th>-</th></loq<></loq 	0.28 0.47 0.38 Av:	-
< €						4	0.413 0.492	<loq <loq< th=""><th><loq <loq< th=""><th>0.42 0.49 0.55 Av:</th><th>-</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.42 0.49 0.55 Av:</th><th>-</th></loq<></loq 	0.42 0.49 0.55 Av:	-
						7	0.351 0.284	0.147 0.084	0.010 <loq< th=""><th>0.52 0.51 0.38 Av:</th><th>_</th></loq<>	0.52 0.51 0.38 Av:	_
4						14	0.225 0.399	0.212 0.179	0.012 0.020	0.44 0.45 0.60 Av:	-
*				A		21	0.238 0.251	0.182 0.205	0.012 0.013	0.52 0.43 0.47	-
RVII0-	, ČA, Pegion 10, 2011	ARTDF	SUN 6366	Fruit	0.369 (0.413)	28	0.149 0.294	0.204 0.348	<loq 0.017</loq 	Av: 0.45 0.36 0.66	 -
	ر 									Av: 0.51	

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		Appi	ication(s) o	1 D 11 02	2900 SL						o
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Patal Rate Lb as A (kg ai/ha)	Sampling interval (days) ^b	BYD 02960 Residue (mg/kg)	DFA Residue	DFEARResidue	Total WYI 02960 Residue Total WYI 02960 Residue Total WYI 02960 Residue	
RV110- 11DA	, CA, Region 10, 2011	TRTDS	SUN 6366	%	0.366 (0.410)		0.049 0.487	p o		0.15 €0.26 ≈ ∀ Av: 0.20	
				d		45%	0.050 0.0587	0.206	<løq ‰LOO</løq 	027 0.25 A	
				40			0.021 0.043			Av: 0.24	
	×			0 %		60°	0,0¥0 ,0,020 ,⊗	0.535 0.436	&LOQ	0.38 0.47 Av: 0.42	
		\	y	~ ·		70 \$70 \$5 1D\(\text{A}\)1	0.916	0.549 Ø1.01	<loq <loq< th=""><th>0.58 1.0 Av: 0.81</th><th></th></loq<></loq 	0.58 1.0 Av: 0.81	
RV111- 11DA	Region 10, 2011		AB3	Fruit	0.483 (0.205)		9,¥57 99.148	<loq <loq< th=""><th><loq <loq< th=""><th>0.22 0.21 Av: 0.21</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.22 0.21 Av: 0.21</th><th></th></loq<></loq 	0.22 0.21 Av: 0.21	
					0.365	4 0	0.419 0.325	<loq <loq< th=""><th><loq <loq< th=""><th>0.48 0.39 Av: 0.43</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.48 0.39 Av: 0.43</th><th></th></loq<></loq 	0.48 0.39 Av: 0.43	
4 n					A A	1	0.330 0.261	<loq <loq< th=""><th><loq <loq< th=""><th>0.39 0.32 Av: 0.36</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.39 0.32 Av: 0.36</th><th></th></loq<></loq 	0.39 0.32 Av: 0.36	
~~~						7	0.396 0.215	<loq <loq< th=""><th><loq <loq< th=""><th>0.46 0.28 Av: 0.37</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.46 0.28 Av: 0.37</th><th></th></loq<></loq 	0.46 0.28 Av: 0.37	
			<b>V</b> • • • • • • • • • • • • • • • • • • •					Cont	inued or	next po	- 1ge

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		търг	ication(s) o	1 D 11 02	2700 BL						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Patal Rate Lb asse (kg ai/ha) "	Sampling interval (days)	BYO 02960 Residu (mg/kg)	DFA Residue	DFFARResidue (mg a.s. equiv./kg)		
RV111- 11DA	, CA, Region 10, 2011	TRTDF	AB3	<b>%</b>	7 0.365 (0.410)	14	0.299 0.218	0.0 <b>0</b> \$ {LOQ }	Zroó Zroó Zroó	0.36 0.28 ≪	
						210	0.334	0.148 0.085 0.486 0.167 0.058	0.916 <0.011 0.912 0.010 2	0.32 0.50 0.31 Av 0.41	
		Ş		"()"		28/ 0	0.355 00132	0.186 6.167	0.011 0.012 0.010	y 0.31 Av: 0.35	
RV111- 11DA		TRTDS	*	0 %	0.3567 (0.400)					0.07 0.08 Av: 0.07	
								0.7959 &LOQ	<loq <loq< td=""><td>0.08 0.07 Av: 0.07</td><td></td></loq<></loq 	0.08 0.07 Av: 0.07	
Ê						\$0 \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(	<u> </u>	0.077	200	0.07 0.10 Av: 0.08	
						<b>0</b> ************************************	<loq <loq< td=""><td>0.085 0.085</td><td><loq <loq< td=""><td>0.11 0.11 Av: 0.11</td><td></td></loq<></loq </td></loq<></loq 	0.085 0.085	<loq <loq< td=""><td>0.11 0.11 Av: 0.11</td><td></td></loq<></loq 	0.11 0.11 Av: 0.11	
					Z Z	70	<loq <loq< th=""><th>0.113</th><th><loq <loq< th=""><th>0.14 0.13 Av: 0.14</th><th></th></loq<></loq </th></loq<></loq 	0.113	<loq <loq< th=""><th>0.14 0.13 Av: 0.14</th><th></th></loq<></loq 	0.14 0.13 Av: 0.14	
RV112- 11HA	CA, Region 10,		Washington Choury	Evit	0.185 (0.207)	1DAA1	0.366 0.295	<loq <loq< th=""><th><loq <loq< th=""><th>0.43^d 0.36 Av: 0.39^e</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.43^d 0.36 Av: 0.39^e</th><th></th></loq<></loq 	0.43 ^d 0.36 Av: 0.39 ^e	
Ž	CA, Region 10, 2011		<b>V</b> * <b>9</b>		0.368 (0.413)	1	0.601 0.538	<loq <loq< td=""><td><loq <loq< td=""><td>0.66^f 0.60 Av: 0.63^g</td><td></td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.66^f 0.60 Av: 0.63^g</td><td></td></loq<></loq 	0.66 ^f 0.60 Av: 0.63 ^g	
Æ,		<b>B</b>						Cont	inued or	next pa	ıge

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		PP-	ication(s) o		-, 00 52						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	©yal Rate Lb a.s∰A (kg ai/ha) ª	Sampling interval (days) b	BYO 02960 Residik Ang/kg)	DFA Residue	DFERRESidue (mg a.s. equiv./kg)	Total & Y1,02960 Residue	
RV112- 11HA	CA, Region 10, 2011	TRTDS	Washington Cherry		0.366 (0.410)	44	0.019 <150Q		<100 VOO	0.20 0.19 ≈ Av: × 0.20	
RV113- 11HA	CA, Region 10, 2011	TRTDF	Roma AB2	Fruit	(0.18°V (0.210)		b &,	Y _@		Av. 0.18	Î
		Ş		* · ·	0.368 (0\d)3)	(c -	l b		SEOQ ELOQ*	%0.30 %0.39 Av: 0.34	
	, CA, Region 10, 2011	TRTDS	Roma AB\$		0.367 (0.411)		&EOQ.	0. \$34 \$0.132	∌LOQ ⊮LOQ	0.17 0.15 Av: 0.16	
RV114- 11DA	Region 10, 2011	TRTDF	Quali T-24		0.150	IIDAAI	0.415	<ÊØQ <b>&amp;</b> LOQ	<loq <loq< td=""><td>0.18 0.14 Av: 0.16</td><td></td></loq<></loq 	0.18 0.14 Av: 0.16	
Ê							<b>9</b> 9.217	<loq <loq< td=""><td><loq <loq< td=""><td>0.29 0.28 Av: 0.28</td><td></td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.29 0.28 Av: 0.28</td><td></td></loq<></loq 	0.29 0.28 Av: 0.28	
			<b>1</b> //// // //			P .	0.166 0.142	<loq <loq< td=""><td><loq <loq< td=""><td>0.23 0.20 Av: 0.21</td><td></td></loq<></loq </td></loq<></loq 	<loq <loq< td=""><td>0.23 0.20 Av: 0.21</td><td></td></loq<></loq 	0.23 0.20 Av: 0.21	
					# W W	7	0.099 0.070	0.072 0.064	<loq <loq< td=""><td>0.18 0.14 Av: 0.16</td><td></td></loq<></loq 	0.18 0.14 Av: 0.16	
No.						14	0.074 0.085	0.121 0.161	<loq <loq< td=""><td>0.21 0.26 Av: 0.23</td><td></td></loq<></loq 	0.21 0.26 Av: 0.23	
	S S S					21	0.106 0.062	0.322 0.262	<loq <loq< td=""><td>0.44 0.33 Av: 0.39</td><td></td></loq<></loq 	0.44 0.33 Av: 0.39	
Æ,								Cont	inued oi	ı next po	ag _e

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

Application(s) of BYI 02960 SL												
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Patal Rate Lb a.s∰A (kg ai/ha) a	Sampling interval (days) b	BYD 02960 Residue (mg/kg)	DFA Residue	DFEAFRESIDE	Total & YI 02960 Residue		
RV114- 11DA	, CA, Region 10, 2011	TRTDF	Quali T-27		0.365 (0.409)	28	0.079 0:096		, ·	√ Av·≪	ľ	
RV114- 11DA	, CA, Region 10, 2011	TRTDS	Quali T-27	Fruit	(0.411)	40%	0.029		<iqq< th=""><th>0.43 0.38 0.38 0.51 0.51 0.59 0.61</th><th>V Y</th></iqq<>	0.43 0.38 0.38 0.51 0.51 0.59 0.61	V Y	
						45,4 (45,4) (40,4)	0.939 00033	0.549 0.562	\$\frac{1}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}\text{000}{2}	√ 0.59 → 0.61 Av: 0.60		
	*			0 6			20,029 × × √2 2	9.560 9.583	&LOQ ≯LOQ	0.61 0.62 Av: 0.61		
		) ~		Ĵ	2	60	0.024 0.028	0.543 Ø.475	<loq <loq< th=""><th>0.58 0.51 Av: 0.55</th><th></th></loq<></loq 	0.58 0.51 Av: 0.55		
£.	, Ø		9 4		7	IDAA1	9. <b>9</b> 27 9.025	0.594 0.593	<loq <loq< th=""><th>0.63 0.63 Av: 0.63</th><th></th></loq<></loq 	0.63 0.63 Av: 0.63		
RV115- 11DA	Region 10, 2011	TRYDF	Quality 7	Frait	0 188 (0.210)	1DAA1	0.052 0.072	<loq <loq< th=""><th><loq <loq< th=""><th>0.11 0.13 Av: 0.12</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.11 0.13 Av: 0.12</th><th></th></loq<></loq 	0.11 0.13 Av: 0.12		
. //					0.971 (0.416)	0	0.122 0.080	<loq <loq< th=""><th><loq <loq< th=""><th>0.18 0.14 Av: 0.16</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.18 0.14 Av: 0.16</th><th></th></loq<></loq 	0.18 0.14 Av: 0.16		
<b>Y</b>			Quality 7			1	0.116 0.101	<loq <loq< th=""><th><loq <loq< th=""><th>0.18 0.16 Av: 0.17</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.18 0.16 Av: 0.17</th><th></th></loq<></loq 	0.18 0.16 Av: 0.17		
, L						7	0.187 0.088	<loq 0.067</loq 	<loq <loq< th=""><th>0.25 0.16 Av: 0.21</th><th></th></loq<></loq 	0.25 0.16 Av: 0.21		
	<del> </del>	<u> </u>			1			1		1	1	

Continued on next page...

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		11	ication(s) o								
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	©gal Rate Lb a.s∰ (kg ai/ha) ª	Sampling interval (days) ^b	BYO 02960 Residik (mg/kg)	0.00 DFA Residite 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DFEMEResidue (mg a.s. equiv./kg)	Total WY1 02960 Residue A C C C C C C C C C C C C C C C C C C C	
RV115- 11DA	, CA, Region 10, 2011	TRTDF	Quality 27	Fruit (	0.371 (0.416)	14	0.1947 0×1000	0.0 <b>0</b> 7 9,077		0.19 √0.19 ≪ √ Av: [≪] 0.49	
					0.371 (0.416)	219	0.148 0.127	0.150 00.26 0.430 6.160	<iøq &amp;LOQ ∦</iøq 	0.29 0.26 0.29 0.29	Ĉ
						28y 28y 28y 40	0.997 00064	0.430 @160	STOO	√ 9.26 → 0.23 Av: 0.25	
RV115- 11DA	A	TRTDS	Obality 27	0 6	01 /	V 1	×		FLOQ LOQ	0.10 0.11 Av: 0.10	
						45	<iøq <iøq \$LOQ</iøq </iøq 	0.059 Ø.073	<loq <loq< th=""><th>0.08 0.09 Av: 0.09</th><th></th></loq<></loq 	0.08 0.09 Av: 0.09	
\$					7 B F	\$90 \$\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\inttileftinteta\int_{\int_{\inttileftittalleftileftinteta\int_{\inttileftileftileftileftileftileftileftile	≨ľ⁄ÓQ ≽LOQ	0.085 0.082	<loq <loq< th=""><th>0.11 0.10 Av: 0.10</th><th></th></loq<></loq 	0.11 0.10 Av: 0.10	
					<b>%</b>	<b>6</b> 0	<loq <loq< th=""><th>0.078 0.095</th><th><loq <loq< th=""><th>0.10 0.12 Av: 0.11</th><th></th></loq<></loq </th></loq<></loq 	0.078 0.095	<loq <loq< th=""><th>0.10 0.12 Av: 0.11</th><th></th></loq<></loq 	0.10 0.12 Av: 0.11	
			\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7 V	70	<loq <loq< th=""><th><loq <loq< th=""><th><loq <loq< th=""><th>0.07 0.07 Av: 0.07</th><th></th></loq<></loq </th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th><loq <loq< th=""><th>0.07 0.07 Av: 0.07</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.07 0.07 Av: 0.07</th><th></th></loq<></loq 	0.07 0.07 Av: 0.07	
RVf\6- 11DA	, CA, Region 10, 2011	TOTOF.	SUN 6366	E wit	0.183 (0.205)	1DAA1	0.180 0.205	<loq <loq< th=""><th><loq <loq< th=""><th>0.24 0.27 Av:</th><th></th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.24 0.27 Av:</th><th></th></loq<></loq 	0.24 0.27 Av:	
Ž,	, CA, Region 10, 2011		<u> </u>		0.367 (0.412)	0	0.438 0.683	<loq 0.055</loq 	<loq <loq< th=""><th>0.25 0.50 0.75 Av: 0.62</th><th></th></loq<></loq 	0.25 0.50 0.75 Av: 0.62	
		4 N		1	l		<u>I</u>	<u>I</u>		0.02	J

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		Appi	ication(s) o	IBYIU	2960 SL						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Potal Rate Lb a.s∰A (kg ai/ha) ª	Sampling interval (days)	BYD 02960 Residue (mg/kg)	DFA Residue	DFEMEResidue (mg a.s. equiv./kg)	Total W. 1,02960 Residue	
RV116- 11DA	, CA, Region 10, 2011	TRTDF	SUN 6366	Fruit	7 0.367 (0.412)	1 '	0.276	<l@00 \$LOQ \$\frac{1}{2}</l@00 	<ioq 0.013</ioq 	0.34 ∠0.50 ≪ Av: √ 0.42	
					0.367	72	0.882 0.575 0.575	0.157 0.738 0.571 0.571	0.920	0.73 0.73 Av 0.90	
		2					10326 10326	6205	0.013 %	90.54 Av: 0.86	
	*				Yor i	217	0.463 0.301 «	0.295 9.227 0.309 0.309	0.018 0.013	0.78 0.54 Av: 0.66	
						28	0.933	0.309 Ø.595	0.019 0.017	0.86 0.82 Av: 0.84	
	CA, Region 10, 2011							Cont	inued or	next pa	ige

Table 6.3.2.8-9 (cont'd): Total BYI 02960 Residue Data from Tomato after Two Foliar or a Soil Application(s) of BYI 02960 SL

		11									0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Patal Rate Lb a.s.A. (kg ai/ha) a	Sampling interval (days) ^b	BYD 02960 Residue (mg/kg)	DFA Residue	DFERRESidue (mg a.s. equiv./kg)	Total BY 1.02960 Residue	
RV116-	, CA,	TRTDS	SUN 6366	Fruit	70.366 (0.410)	40	0.176	0.400	0.611	0.69	
11DA	Region 10, 2011			\(\lambda_1\)	(0.410)	Ď	0.176 0.234	0,848 2	\$roo	⊘'l.l ∾ √ Av [.] ∜	7
				O,				r ô	, Y	0.29	e °
			<i>↓</i>	\		45Q	0.115	0.683	<løq< th=""><th><b>9</b>81</th><th>O</th></løq<>	<b>9</b> 81	O
					0.366 (0.410)	45%	0.115 0.357	0.683 .0015 0.623 0.523	20.010 \$\frac{1}{2}	1.1 ⁿ Av	7
			\$\tag{\alpha}{\alpha}\tag{\alpha}	<b>*</b>		50 ₇	0.986	0,923	<\$OO	<b>√</b> .7.0	-
			Q'	Ö	ð	(Ö)	_ <b>@</b> 0275	5.53	Ø.016°	1.8	
				<i>\@</i>		60		P &		Av:	
				<b>№</b> .r				∘1 <i>9</i> 3	<b>₽</b> 017	2.0	-
					L	~^	W/184	1.93 1.46	0.021	1.7	
		<i>(</i> =				70	\ \(\lambda_{n}\)	Y . 8	© 8,017 © 0.021	Av:	
				-\$			0. <b>P</b> 05	1.13	0.012	1.9 1.2	-
			F Z		. 0		0.103	@1.48	0.012	1.6	
		\ \						*		Av:	
				r L			L.,			1.4	]

- Total Rate for the 1DAA1 sample is the rate following the first application only. In plots with two applications, the Total Rate is the sum of the two application rates Application rates were rounded to three significant figures following calculations.
- Pre-Harvest Interval (PHI) is the interval between last application and sample harvest date. 1DAA1 is one day after the
- first application.

  Total BYI 02960 residue the sup of BYD 02960 DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue level might be.
- Maximum residue found in tomaton 1DAN PHI
- Highes average field trial (HAFR) residue found tomato at 1DAA1 PHI.
- Maximum residue found in tomato at day PHA
- Highest average field trial JAFT residue found in mato at 1 day PHI.
- Maximum residue found in tomato at 45 day PHI following soil drench application.
- Highest average field trial (HACT) residue found in tomato at 45 day PHI following soil drench application.

  Highest average field trial (HACT) residue found in tomato at 45 day PHI following soil drench application.

Table 6.3.2.8-10: Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

	FF	(-)	01 11 102							0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha) ^a	Sampling interval	. BVI 02960 Residue (mg/kg)	De Residue (mg & gquiv./kg)	BPP AFResidae (mg a A equiv./kg)	Tokar Byl 02940 Residing
RV117- 11DA	, GA, Region 2, 2011	TRTDF	Aristotle	Front	0.365		0.0914 0.123	<lqq< td=""><td><lqq <kqq &gt;~y</kqq </lqq </td><td>0 18 0 18 Av: 0.17 •</td></lqq<>	<lqq <kqq &gt;~y</kqq </lqq 	0 18 0 18 Av: 0.17 •
							0.083	<loq< td=""><td>V .</td><td></td></loq<>	V .	
	\$				0"		0.082 0.066 0.038		<ĽOQ ≰∠LOQ	0.14 0.13 Av: 0.13
							0.052 0.052 2 0.042	0.132	<loq <loq< td=""><td>0.12 0.14 Av: 0.13</td></loq<></loq 	0.12 0.14 Av: 0.13
						©11 ©21 ©21 ©21 ©21	0.033	0.130	<loq <loq< td=""><td>0.17 Av: 0.18 0.14</td></loq<></loq 	0.17 Av: 0.18 0.14
						<b>X</b>	0.024	0.120 ontinuea	<loq l="" next<="" on="" td=""><td>0.15 Av: 0.15</td></loq>	0.15 Av: 0.15
£ L n					9					
4										
	<i>V</i>									

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

			он Арриса	(3)						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity		Sampling interval	BYI 02960 Residue (mg/kg)	DEA Residue (mg Residue)	BPEAFRESHIRE (mg #: Reguiv./kg)	Tokk BY1 02960 Residue
RV117- 11DA	, GA, Region 2, 2011	TRIDS	Aristotle	Frant	0.366	40 Q	∠LQQ <lqq< th=""><th>0.063</th><th><lqq <kgq< th=""><th>0.12 Av: 0.10 o</th></kgq<></lqq </th></lqq<>	0.063	<lqq <kgq< th=""><th>0.12 Av: 0.10 o</th></kgq<></lqq 	0.12 Av: 0.10 o
						¥ 43 A	<loq <loq< th=""><th>0.096</th><th><l@0 <loq< th=""><th>0.12 0.10 Av: 0.11</th></loq<></l@0 </th></loq<></loq 	0.096	<l@0 <loq< th=""><th>0.12 0.10 Av: 0.11</th></loq<></l@0 	0.12 0.10 Av: 0.11
						49%	<log< th=""><th>CLO© 0.063</th><th>0.0\2 ≈LOQ</th><th>0.07 0.08 Av: 0.08</th></log<>	CLO© 0.063	0.0\2 ≈LOQ	0.07 0.08 Av: 0.08
RV117- 11DA	, GA, Region 2, 2011	TRTDS	Aristotle	Fruit	© 0.366 (0.410)	59°7	<lq0 <l00< th=""><th>0.067 0.085</th><th><loq <loq< th=""><th>0.09 0.11 Av: 0.10</th></loq<></loq </th></l00<></lq0 	0.067 0.085	<loq <loq< th=""><th>0.09 0.11 Av: 0.10</th></loq<></loq 	0.09 0.11 Av: 0.10
						70 [©]	<loq &lt;100Q</loq 	0.079 <loq< th=""><th><loq <loq< th=""><th>0.10 0.07 Av: 0.09</th></loq<></loq </th></loq<>	<loq <loq< th=""><th>0.10 0.07 Av: 0.09</th></loq<></loq 	0.10 0.07 Av: 0.09
RV118- 11HA	FL, Region 3, 2011	TRTDF	Aristotle	ruit \$	0.362 (0.405)		0.109 0.123	<loq <loq< th=""><th><loq <loq< th=""><th>0.17 0.18 Av: 0.18</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.17 0.18 Av: 0.18</th></loq<></loq 	0.17 0.18 Av: 0.18
RV118- 11HA	Region, 2011	TRTDS	Aristotle	Öfruit Ö	0.366 (0.310)	44	0.033 0.020	0.146 0.067	<loq <loq< th=""><th>0.19 0.10 Av: 0.14</th></loq<></loq 	0.19 0.10 Av: 0.14
	FL, Region 3, 2011						Co	ontinued	l on next	

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

		Siligic S	oil Applica	111011(8) 01	D11029	00 SL				0	
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rac Lb a.s./A (kg a.s./ha) a	Sampling interval	BYI 02960 Residue (mg/kg)	DEA Residue (mgA&, equiv./kg)	BPLAFResidae (mg a Lequiv./kg)	Total BY1 02960 Residue	
RV119- 11DA	, NE, Region 5, 2011	TRTDF	California Wonder	Front	0.365		90.0444 0.061 2	Z-LOG - LOQ	<lqq <køq ≈ ≫</køq </lqq 	0 12 0 12 Av: 0.11 .	
							0.030		<loq <loq< th=""><th>0.11 ° 0.12 0.11 Av: 0.11</th><th></th></loq<></loq 	0.11 ° 0.12 0.11 Av: 0.11	
			~				0.024	<loo< th=""><th><loq <loq <loq< th=""><th>0.08 0.08 Av: 0.08</th><th></th></loq<></loq </loq </th></loo<>	<loq <loq <loq< th=""><th>0.08 0.08 Av: 0.08</th><th></th></loq<></loq </loq 	0.08 0.08 Av: 0.08	
	~ ~					137	0.036		<loq <loq< th=""><th>0.10 0.10 Av: 0.10</th><th></th></loq<></loq 	0.10 0.10 Av: 0.10	
						200	0.017/	0.098 0.084	<loq <loq< th=""><th>0.13 0.11 Av: 0.12</th><th></th></loq<></loq 	0.13 0.11 Av: 0.12	
					~		0.048 0.033	0.174 0.144	<loq <loq< th=""><th>0.23 0.19 Av: 0.21</th><th></th></loq<></loq 	0.23 0.19 Av: 0.21	
RV119- 11DA	Region 7, 2011		Calitornia Wonder	Fruit	0.366	40	<loq 0.012</loq 	0.107 0.076	<loq <loq< th=""><th>0.13 0.10 Av: 0.11</th><th></th></loq<></loq 	0.13 0.10 Av: 0.11	
é						44	<loq <loq< th=""><th>0.112 0.097</th><th><loq <loq< th=""><th>0.13 0.12 Av: 0.13</th><th></th></loq<></loq </th></loq<></loq 	0.112 0.097	<loq <loq< th=""><th>0.13 0.12 Av: 0.13</th><th></th></loq<></loq 	0.13 0.12 Av: 0.13	
<b>S</b>			California Wonder			48	<loq 0.012</loq 	0.112 0.131	<loq <loq< th=""><th>0.13 0.15 Av: 0.14</th><th></th></loq<></loq 	0.13 0.15 Av: 0.14	
						59	<loq 0.010</loq 	0.128 0.134	<loq <loq< th=""><th>0.15 0.15 Av: 0.15</th><th></th></loq<></loq 	0.15 0.15 Av: 0.15	
C C		9				68	<loq <loq< th=""><th>0.153 0.148</th><th><loq <loq< th=""><th>0.13 0.17 0.17 Av: 0.17</th><th></th></loq<></loq </th></loq<></loq 	0.153 0.148	<loq <loq< th=""><th>0.13 0.17 0.17 Av: 0.17</th><th></th></loq<></loq 	0.13 0.17 0.17 Av: 0.17	
				l .		L	<u> </u>		<u> </u>	U.1/	1

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

		_	он түрнс		1		1	1	1	0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha) a	Sampling interval	BYI 02960 Residue (mg/kg)	De Residue (mg & equiv./kg)	BPLAFResidae (mg 4:2 equiv./kg)	Tokar BY1 02960 Residing
RV120- 11DA	IL, Region 5, 2011	TRTDF	Better Bell	Front	0.371		0.1112 0.089	Z-LOG - LOQ - LOQ	<lqq <kgq &gt;&gt; &gt;</kgq </lqq 	0 7 Q 15 Av: 0.16 •
							0.117	<lo@ <lqq< th=""><th>1/ .</th><th>0.18 0.19 Av: 0.18</th></lqq<></lo@ 	1/ .	0.18 0.19 Av: 0.18
			· * *				0.094 0.0 <del>8</del> 5	0.085	<lqq ALOQ</lqq 	0.19 0.19 Av: 0.19
	~ *\					147	0.035	0.169 0.220	<loq <loq< th=""><th>0.21 0.28 Av: 0.25</th></loq<></loq 	0.21 0.28 Av: 0.25
						210	0.032/	0.255 0.233	<loq <loq< th=""><th>0.26 0.28 Av: 0.28</th></loq<></loq 	0.26 0.28 Av: 0.28
RV120- 11DA	Fegion 5, 2011	TRTDF	Better Bell	Fruit	(0.00,0)	280	<loq 0.018</loq 	0.201 0.296	<loq <loq< th=""><th>0.22 0.33 Av: 0.27</th></loq<></loq 	0.22 0.33 Av: 0.27
RV120- 11DA	IL, A	TRTDS	Better Bell	Fruit	0.366 (0)10)	41	0.033 0.037	0.253 0.192	<loq <loq< th=""><th>0.30 0.24 Av: 0.27</th></loq<></loq 	0.30 0.24 Av: 0.27
						45	0.041 0.028	0.251 0.343	<loq <loq< th=""><th>0.30 0.38 Av: 0.34</th></loq<></loq 	0.30 0.38 Av: 0.34
N						50	0.029 0.025	0.546 0.440	<loq <loq< th=""><th>0.59 0.47 Av: 0.53</th></loq<></loq 	0.59 0.47 Av: 0.53
			~~~			59	0.012 0.017	0.328 0.294	<loq <loq< th=""><th>0.35 0.32 Av: 0.34</th></loq<></loq 	0.35 0.32 Av: 0.34
E, C	IL, Region 5, 2011					70	0.016 <loq< th=""><th>0.205 0.292</th><th><loq <loq< th=""><th>0.23 0.31 Av: 0.27</th></loq<></loq </th></loq<>	0.205 0.292	<loq <loq< th=""><th>0.23 0.31 Av: 0.27</th></loq<></loq 	0.23 0.31 Av: 0.27

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

		2111814 2	он Арриса		2 11 027					0	
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity		Sampling interval	BYI 02960 Residue (mg/kg)	DEA Residue (mg & equiv./kg)	BPLAFResidae (mg a.k.equiv./kg)	Total BYI 02960 Residue	
RV121- 11HA	, Region 5, 2011	TRTDF	California Wonder	Frank	0.366		0.0884 0.085 0.085	Z-LOG - LOQ	<lqq ≤kØQ ≫</lqq 	0 5 0 15 Av: 0.15 •	
RV121- 11HA	, Region 5, 2011	TRTDS	California Wonder	Forit	Ø.366 (0.410)	Q 45	0.011	0.07 <i>5</i> 0 0. 1 04		0 0 0 0.13 Av: 0.11	
RV122- 11DA	, WI, Region 5, 2011	TRTDF		Fruit	0.367 (0.415)		0.028	<lqq< td=""><td><løq ∛LØQ ∜</løq </td><td>0.09 0.08 Av: 0.08</td><td></td></lqq<>	<løq ∛LØQ ∜</løq 	0.09 0.08 Av: 0.08	
	4			Druit			0.045	<lqq <køq< td=""><td><loq <loq< td=""><td>0.10 0.08 Av: 0.09</td><td></td></loq<></loq </td></køq<></lqq 	<loq <loq< td=""><td>0.10 0.08 Av: 0.09</td><td></td></loq<></loq 	0.10 0.08 Av: 0.09	
RV122- 11DA	Region 52011	TRTD	California Worder	Pruit ?	0.367 (0.491)	7 ⁰	0.02 5 / 0. Ø /19	0.070 0.069	<loq <loq< td=""><td>0.10 0.10 Av: 0.10</td><td></td></loq<></loq 	0.10 0.10 Av: 0.10	
Å							0.023 0.018	0.087 0.085	<loq <loq< td=""><td>0.12 0.11 Av: 0.12</td><td></td></loq<></loq 	0.12 0.11 Av: 0.12	
						21	0.012 0.020	0.103 0.073	<loq <loq< td=""><td>0.13 0.10 Av: 0.11</td><td></td></loq<></loq 	0.13 0.10 Av: 0.11	
£						28	0.016 0.013	0.085 0.065	<loq <loq< td=""><td>0.11 0.09 Av: 0.10</td><td></td></loq<></loq 	0.11 0.09 Av: 0.10	
			S S				Co	ontinuea	on next	page	

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

		_	он түрнс		1		1	1	1	0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha) a	Sampling interval	- BYI 02960C Residue (mg/kg)	DRA Residue (mgAs, equiv./kg)	BPLAFReshipe (mg 3:2, equiv./kg)	Tokk BY1 02960 Residive
RV122- 11DA	, WI, Region 5, 2011	TRTDS	California Wonder	Front	0.367	40		0.084	<lqq <kgq >> ></kgq </lqq 	0 12 0 12 Av: 0.11 •
						Q 45	0.012 <l@0< th=""><th>0.0869 0.967</th><th>1/ .</th><th>0.09 0.09 Av: 0.10</th></l@0<>	0.0869 0.967	1/ .	0.09 0.09 Av: 0.10
			· * *			50%	<lo6< th=""><th>0.096</th><th><lqq ALOQ</lqq </th><th>0.12 0.14 Av: 0.13</th></lo6<>	0.096	<lqq ALOQ</lqq 	0.12 0.14 Av: 0.13
	7					60 7 2 7	<lqq <lqq< th=""><th>0.131 0.416</th><th><loq <loq< th=""><th>0.15 0.14 Av: 0.14</th></loq<></loq </th></lqq<></lqq 	0.131 0.416	<loq <loq< th=""><th>0.15 0.14 Av: 0.14</th></loq<></loq 	0.15 0.14 Av: 0.14
						70 [©]	<loq <iqoq< th=""><th>0.110 0.107</th><th><loq <loq< th=""><th>0.13 0.13 Av: 0.13</th></loq<></loq </th></iqoq<></loq 	0.110 0.107	<loq <loq< th=""><th>0.13 0.13 Av: 0.13</th></loq<></loq 	0.13 0.13 Av: 0.13
RV123- 11DA	Manitoba, Region 5, 2011	TRTDF	Unknown	Fruit &	0.356		0.365 0.215	<loq <loq< th=""><th><loq <loq< th=""><th>0.13 0.43 0.28 Av: 0.35</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.13 0.43 0.28 Av: 0.35</th></loq<></loq 	0.13 0.43 0.28 Av: 0.35
RV123- 11DA		· * * * * * * * * * * * * * * * * * * *	Unknown	Fruit	0.356	1	0.199 0.340	<loq <loq< th=""><th><loq <loq< th=""><th>0.26 0.40 Av: 0.33</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.26 0.40 Av: 0.33</th></loq<></loq 	0.26 0.40 Av: 0.33
						7	0.345 0.259	0.053 0.052	0.017 0.013	0.42 0.32 Av: 0.37
Ŋ						13	0.148 0.168	0.078 0.066	0.013 0.012	0.24 0.25 Av: 0.24
			Ş			20	0.165 0.125	0.101 0.090	0.015 0.011	0.28 0.23 Av: 0.25
E, S	Manitoba Region, 5 2011					28	0.115 0.095	0.113 0.118	0.013 <loq< th=""><th>0.24 0.22 Av: 0.23</th></loq<>	0.24 0.22 Av: 0.23

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

50 0.069 0.679 0.014 0.167 1.32 0.921 59 0.077 0.789 0.014 0.075 0.862 0.014	S. C. Tokal'BYI 02960, Residing C. C. Magas. S. Capuiv. 1kg/C.
5, 2011 45, 0.176, 1.490 0.030 0.180 1.27 0.034 50, 0.069 0.678 0.034 0.017 1.32 0.021 59, 0.07 0.789 0.014 0.075 0.852 0.014	Av:
\$\frac{43}{0.180}\$\frac{1.49}{1.27}\$\frac{0.034}{0.034}\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.7 .
50 0.069 0.678 0.014 0.167 1.32 0.021 59 0.077 0.789 0.014 0.075 0.852 0.014	10" V.6 Av: 1.6°
59 0.07 0.789 0.014 0.075 0.852 0.014	0.76 1.6 Av: 1.2
	0.88 0.94 Av: 0.91
69 0.056 0.711 <loq 0.0046="" 0.610="" <loq<="" th=""><th>0.78 0.67 Av: 0.72</th></loq>	0.78 0.67 Av: 0.72
	0.72 0.21 0.17 Av: 0.19
1 0.083 <loq 0.057="" <loq="" <loq<="" th=""><th>0.14 0.12 Av: 0.13</th></loq>	0.14 0.12 Av: 0.13
7 0.061 <loq <loq="" <loq<="" th=""><th>0.13 0.12 0.12 Av: 0.12</th></loq>	0.13 0.12 0.12 Av: 0.12
14 0.029 0.091 <loq <loq="" <loq<="" th=""><th>0.13 0.11 Av:</th></loq>	0.13 0.11 Av:
21 0.011 0.102 <loq 0.018 0.125 <loq< th=""><th>0.12 0.12 0.15 Av:</th></loq<></loq 	0.12 0.12 0.15 Av:
1 0.083 < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LO	0.14

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

		_		1	1	OOBL	1	1	1	0
Trial Identification	Location (City, State, XT, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rafe Ub a.s./A (kg a.s./ha) a	Odalys b (days)	SBYI 02960C Residue (mg/kg)	Dr Residue (mg & quiv./kg)	BPEAFReshine (mg #: Requiv./kg)	Tokk BY1 02960 Residue
11DA	6, 2011	TKIDS	Taurus (Froit &	(0.400)			0.3236	<lqq <kgq ></kgq </lqq 	0.34 0.36 Av: 0.35 •
						Q 45	<loq <loq *** ****</loq </loq 	0.120 0.434	<loq< th=""><th>0.15 0.15 Av: 0.15</th></loq<>	0.15 0.15 Av: 0.15
			·*			49%	<l00< th=""><th>0.10\$</th><th><loq <aloq< th=""><th>0.12 0.15 Av: 0.14</th></aloq<></loq </th></l00<>	0.10\$	<loq <aloq< th=""><th>0.12 0.15 Av: 0.14</th></aloq<></loq 	0.12 0.15 Av: 0.14
	~~ ~~					63	<lqqq <lqqq< th=""><th>0.145 0.069</th><th><loq <loq< th=""><th>0.14 0.09 Av: 0.11</th></loq<></loq </th></lqqq<></lqqq 	0.145 0.069	<loq <loq< th=""><th>0.14 0.09 Av: 0.11</th></loq<></loq 	0.14 0.09 Av: 0.11
RV124- 11DA	, TX, Region 6, 2001		7 Taurus		0.365	70°	<loq 100q<="" <="" q="" th=""><th>0.064 0.081</th><th><loq <loq< th=""><th>0.08 0.10 Av: 0.09</th></loq<></loq </th></loq>	0.064 0.081	<loq <loq< th=""><th>0.08 0.10 Av: 0.09</th></loq<></loq 	0.08 0.10 Av: 0.09
RV125- 11DA	, ØA, Region 10, 2011	TRTDF	Cyprus	Fruit	(0.00,0)		0.206 0.242	0.083 0.088	<loq <loq< th=""><th>0.30 0.34 Av: 0.32</th></loq<></loq 	0.30 0.34 Av: 0.32
						1	0.180 0.243	<loq <loq< th=""><th><loq <loq< th=""><th>0.24 0.30 Av: 0.27</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.24 0.30 Av: 0.27</th></loq<></loq 	0.24 0.30 Av: 0.27
£						7	0.323 0.261	<loq <loq< th=""><th>0.021 0.015</th><th>0.39 0.33 Av: 0.36</th></loq<></loq 	0.021 0.015	0.39 0.33 Av: 0.36
Ŋ						14	0.121 0.120	<loq <loq< th=""><th>0.010 <loq< th=""><th>0.18 0.18 Av: 0.18</th></loq<></th></loq<></loq 	0.010 <loq< th=""><th>0.18 0.18 Av: 0.18</th></loq<>	0.18 0.18 Av: 0.18
			Ą			21	0.117 0.138	0.084 0.264	0.013 0.015	0.21 0.41 Av: 0.32
L. C						28	0.096 0.112	0.332 0.344	0.010 0.013	0.44 0.47 Av: 0.45

Table 6.3.2.8-10 (cont'd): Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

			· rr	,	,					0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity		Sampling interval	BYI 02960 Residue (mg/kg)	DFA Residue (mg/Res, equiv./kg)	BPEAFRESHIRE (mg #2.equiv./kg)	Total BY 102960, Residing and Second
RV125- 11DA	, CA, Region 10, 2011	TRTDS	Cyprus	Fanit	0.351	40	90.0114 <lqq< th=""><th>0.127 0.136</th><th><lqq <kgq ≈y L</kgq </lqq </th><th>0.15 0.15</th></lqq<>	0.127 0.136	<lqq <kgq ≈y L</kgq </lqq 	0.15 0.15
						45	<loq 0,0Q</loq 	0.108 0.135	<loq< th=""><th>0.3 0.16 Av: 0.14</th></loq<>	0.3 0.16 Av: 0.14
DVIIOS		S S			6	O'Y			1	0.14 0.09 Av: 0.12
RV125- 11DA	, CA, Region 10, 2011	TRTDS	Cyprus C	Fruit	0.351 (0.394)	D" 🧏	<lqq< th=""><th>0.065</th><th><loq <loq< th=""><th>0.09 0.10 Av: 0.09</th></loq<></loq </th></lqq<>	0.065	<loq <loq< th=""><th>0.09 0.10 Av: 0.09</th></loq<></loq 	0.09 0.10 Av: 0.09
						70 [©]	<loq 100="" <="" q="" q<="" th=""><th>0.086 0.086</th><th><loq <loq< th=""><th>0.10 0.10 Av: 0.10</th></loq<></loq </th></loq>	0.086 0.086	<loq <loq< th=""><th>0.10 0.10 Av: 0.10</th></loq<></loq 	0.10 0.10 Av: 0.10
RV126- 11DA	I*	`~\" . 1	Red	Fruit &			0.553 0.481	<loq <loq< th=""><th><loq <loq< th=""><th>0.61 0.54 Av: 0.58</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.61 0.54 Av: 0.58</th></loq<></loq 	0.61 0.54 Av: 0.58
RV126- 11DA	Region (5), 2014	TRTDE	Red X	Fruit	0.367 (0)12)	1	0.546 0.402	<loq <loq< th=""><th><loq <loq< th=""><th>0.61^f 0.46 Av: 0.53^g</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.61^f 0.46 Av: 0.53^g</th></loq<></loq 	0.61 ^f 0.46 Av: 0.53 ^g
£ 1						7	0.291 0.333	<loq <loq< th=""><th>0.011 0.012</th><th>0.35 0.40 Av: 0.37</th></loq<></loq 	0.011 0.012	0.35 0.40 Av: 0.37
N. C. C. C. C. C. C. C. C. C. C. C. C. C.						14	0.348 0.240	0.085 0.085	0.017 0.013	0.45 0.34 Av: 0.39
7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.			Q			21	0.237 0.183	0.258 0.198	0.018 0.015	0.51 0.40 Av: 0.46
E, C	Region 60, 201A					28	0.051 0.069	0.317 0.256	<loq <loq< td=""><td>0.38 0.34 Av: 0.36</td></loq<></loq 	0.38 0.34 Av: 0.36

Total BYI 02960 Residue Data from Bell Pepper after Two Foliar or a Table 6.3.2.8-10 (cont'd): Single Soil Application(s) of BYI 02960 SL

										0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha) ^a	Sampling interval	3YI 02960 Residue (mg/kg)	De Residue (mgaa, equiv./kg)	BPLAFReshine (mg #: Acquiv./kg)	Total BYI 02960 Residue
RV126-	, CA,	TRTDS	Red	Froit	0.358	, 40 _@	&LOQ(_r\o	<lqq< th=""><th>0.5</th></lqq<>	0.5
11DA	Region 10, 2011			u m	(0.402)		<lqq< th=""><th>< LOQ</th><th><lqq <kqq **/</kqq </lqq </th><th>%07 %Av:</th></lqq<>	< LOQ	<lqq <kqq **/</kqq </lqq 	% 07 % Av:
					(0.402)	40			.1	0.07 a
			A	. 6		Q 45 ,	<loq< th=""><th><lo®< th=""><th><lqq< th=""><th>0,07</th></lqq<></th></lo®<></th></loq<>	<lo®< th=""><th><lqq< th=""><th>0,07</th></lqq<></th></lo®<>	<lqq< th=""><th>0,07</th></lqq<>	0,07
							<loq <loq< th=""><th>0.269</th><th><löq< th=""><th>Q:09</th></löq<></th></loq<></loq 	0.269	<löq< th=""><th>Q:09</th></löq<>	Q :09
				Frait		\O'		<lo© 0.969</lo© 	<lqq <loq< th=""><th>0.07 0.09 0.09 Av: 0.08</th></loq<></lqq 	0.07 0.09 0.09 Av: 0.08
RV126-	, CA,	TRTDS	Red®	For it	0.358	50%	<l00< th=""><th>0.066</th><th></th><th>0.08</th></l00<>	0.066		0.08
11DA	Region 10, 2011	- Ribs	y reas		(0.402)	50%	<l00< th=""><th>0.060 <1.00 0</th><th><<u>L</u>QQ *LOQ</th><th>0.07</th></l00<>	0.060 <1.00 0	< <u>L</u> QQ *LOQ	0.07
	8,				· "W	DY				Av:
			7		*	$\mathbb{Q}^{\mathbb{V}}$	b .	\sim)"	0.08
	l d	h O			1/ii/ ·	60	<lq@< th=""><th><l@q <køq< th=""><th><loq< th=""><th>0.07</th></loq<></th></køq<></l@q </th></lq@<>	<l@q <køq< th=""><th><loq< th=""><th>0.07</th></loq<></th></køq<></l@q 	<loq< th=""><th>0.07</th></loq<>	0.07
		.4	ا کي م			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	< L OQQ	< NO C	<loq< th=""><th>0.07 Av:</th></loq<>	0.07 Av:
						Y	, °×	(O))'		0.07
				\$ 2	V a.	70 [©]	<loq< th=""><th>0.072</th><th><loq< th=""><th>0.09</th></loq<></th></loq<>	0.072	<loq< th=""><th>0.09</th></loq<>	0.09
			V ,	, ,		4	<100Q <100Q	<loq< th=""><th><loq< th=""><th>0.07</th></loq<></th></loq<>	<loq< th=""><th>0.07</th></loq<>	0.07
		\$								Av:
					ð á	A "				0.08

- In plots with two applications, Total Cate is the sum of the two application rates. The Total Rate was rounded to three significant figures following calculations.
- Pre-Warvest Interval (PW) is the interval between last application and sample harvest date.
- Total BYI 02960 residue is the sum of BYI 02960, DEA, and INFEAF residue in parent equivalents. Residue measurements below the analyte Low were summed into the otal BYL 02960 residue value as the analyte LOQ value. These totals represent the upper wiit of what the residue levels might be.
- Maximum residue found in bell pepper at 45 das PHI following soil drench application.
- Highest average field trial (NAFT) revidue found in hell pepperat 45 day PHI following soil drench application.

 Maximum residue found in bell papper at 1 day PHI.

 Highest average field rial (HAFT) residue found in bell papper at 1 day PHI.

Total BYI 02960 Residue Data from Non-Bell (Chili) Pepper after Two Foliar or a Table 6.3.2.8-11: Single Soil Application(s) of BYI 02960 SL

			F (-	5) 01 11 11 0							,
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg ai.s./ha) ^a	Sampling interval	BYI 02960 Residue (mg/kg)	DFA Residue (mga.s. equiv./kg)	DEEAFRESIGUE (mg'ecs. equivalleg)	Heral BYI Welgo Residuic (mg a Requiv. Mc)	
RV127- 11DA	, IA, Region 5, 2011	TRTDF	Early Jalapeno	Fr@t	(0.416)		9.084 0.187	ELOQ LQQ	~LOQ	0.14,7 0.Q5	0
							0.095 0.078	<loq <loq< th=""><th><loq< th=""><th>0, 16 0.14 0Av: 0.15</th><th></th></loq<></th></loq<></loq 	<loq< th=""><th>0, 16 0.14 0Av: 0.15</th><th></th></loq<>	0, 16 0.14 0Av: 0.15	
	0.					7,0	0.00	0.0 § 3 0.0 § 3 0.57	<l@q &LOQ O</l@q 	0.12 0.15 Av: 0.13	
						\$14 0	0.424 0.118		<loq <loq< th=""><th>0.28 0.22 Av: 0.25</th><th></th></loq<></loq 	0.28 0.22 Av: 0.25	
				. ~			0.905 0.085	0.246 0.255	<loq <loq< th=""><th>0.36 0.35 Av: 0.36</th><th></th></loq<></loq 	0.36 0.35 Av: 0.36	
RV127-						39	0.059 0.071 0.023	0.343 0.305	<l0q <l0q< th=""><th>0.41 0.39 Av: 0.40 0.30</th><th>_</th></l0q<></l0q 	0.41 0.39 Av: 0.40 0.30	_
1104	, 1	T DS		Fredr	(0.408)	45	0.023	0.268 0.156 0.361	<loq <loq< th=""><th>0.30 0.19 Av: 0.24 0.40</th><th></th></loq<></loq 	0.30 0.19 Av: 0.24 0.40	
4						13	0.021	0.459	<loq< th=""><th>0.49 d Av: 0.44 e</th><th></th></loq<>	0.49 d Av: 0.44 e	
	Region 5, 2011							Continue	ed on nes	xt page.	

Table 6.3.2.8-11 (cont'd): Total BYI 02960 Residue Data from Non-Bell (Chili) Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

			,	rr ·	,					0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Ree Lb a.s./A (kg ai.s./ha) ^a	Sampling interval (dos) b	BYI 02960 Residue (mg/kg)	DFA Residue (mgas. equiv./kg)	DEEAFREGURE (mg no. equiv./kg)	Total BYI Ozoko Residuk (mg a Sequiv. Kg)
RV127- 11DA	, IA, Region 5, 2011	TRTDS	Early Jalapeno	Fraîrit"	0.364		0.019	0.445	<pre></pre>	0.47 0.49 Av: 0.48
						760 70 %	0.023 <loq 0.021</loq 	0.661 0.300 0.804	<loo <loo <loo </loo <th>0.60 22 Av: 0.51 0.83</th></loo </loo 	0.60 22 Av: 0.51 0.83
RV128-	, TX,	TRTDF		Died	@0 373 °	70 70	0.811	0.801	0.046	0.98 Av: 0.91 0.94
11HA RV128-	Ž Ž	TRTD S	Ö Ö V "MÜ	Pruit Dried	(1) 371	43	0.80	0.089 0. ¥0 0 0.981	0.045	1.0 Av: 0.99
11HA RV128-	Region 2011	VIRTOR		Fruit	(0.445) (0.373°		0.164	1.00 <loq< th=""><th>0.019</th><th>1.2 Av: 1.2 0.42</th></loq<>	0.019	1.2 Av: 1.2 0.42
11HA	Region 8, 2011	TRTDF						<loq< th=""><th><loq< th=""><th>0.44 Av: 0.43</th></loq<></th></loq<>	<loq< th=""><th>0.44 Av: 0.43</th></loq<>	0.44 Av: 0.43
RV128- 11HA	Regions, 2011	~ ^		Fruit	(0. 0 5)	43	0.048 0.046	0.303 0.325	<loq <loq< th=""><th>0.36 0.38 Av: 0.37</th></loq<></loq 	0.36 0.38 Av: 0.37
RV129- 11HA	Region 11, 2011	TRID	Jalapenos		(0.422)	1	0.439 0.843	0.172 0.162	0.014 0.030	0.63 1.0 Av: 0.83
RV139- 11HA	, ID, Regind		Jalapenos	Dried Fruit	0.374 (0.419)	44	<loq <loq< th=""><th>1.14 1.06</th><th><loq <loq< th=""><th>1.2 1.1 Av: 1.1</th></loq<></loq </th></loq<></loq 	1.14 1.06	<loq <loq< th=""><th>1.2 1.1 Av: 1.1</th></loq<></loq 	1.2 1.1 Av: 1.1
RV129- 11HA		TRIDE	Jalapenos	Fruit	0.376 (0.422)	1	0.083 0.063	<loq <loq< th=""><th><loq <loq< th=""><th>0.14 0.12 Av: 0.13</th></loq<></loq </th></loq<></loq 	<loq <loq< th=""><th>0.14 0.12 Av: 0.13</th></loq<></loq 	0.14 0.12 Av: 0.13
RV 29- 11HA	, ID, Region 11, 2011	TRTDS	Jalapenos	Fruit	0.374 (0.419)	44	<loq <loq< th=""><th>0.174 0.143</th><th><loq <loq< th=""><th>0.19 0.16 Av: 0.18</th></loq<></loq </th></loq<></loq 	0.174 0.143	<loq <loq< th=""><th>0.19 0.16 Av: 0.18</th></loq<></loq 	0.19 0.16 Av: 0.18

Table 6.3.2.8-11 (cont'd): Total BYI 02960 Residue Data from Non-Bell (Chili) Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

		1 Onar o	i a single	Son Appin	oution(5)	OLDII	02700	OL.		0	_
Lrial Identification	Location (City, State, Region, and Year)	Flot Name	Crop Variety	Commodity	0.370	Sampling interval	BYI 02%60 5 29 Residue (mg/kg)	Property Bra Residue (mgas, equiv./kg)		Para BYI Ozogo Res mg a. Sequiv. Kg	
IIDA	Region 10, 2011		Chili		(0.415)	Q 1	0.369,	LING		%V:	
			.4		Ö,	(D) 1	0.481		0	1 1 1 2	-
							0.481 0.57©	<lqq< td=""><td>0.012</td><td>0.50 0.54 0.64^f 0.59^g</td><td></td></lqq<>	0.012	0.50 0.54 0.64 ^f 0.59 ^g	
			\$ 0°		***	7 7	0.233	0.056	0.01	0.30	
						7 7	0.17	0.056 <løq< td=""><td>0.644</td><td>0.23 Av:</td><td></td></løq<>	0.644	0.23 Av:	
					4		Ö.	1 ,	\forall	0.27	
			4 2 C		107	14 14	0.220 0.235	0.139	0.031 0.039	0.39 0.58	
	*						U.200	0.304	0.039	Av:	
		(//	(62)		2 11	\circ	0.126	1 %	0.040	0.49	
						21	0.139	0.674	0.040 0.046	0.85 0.58	
		4	\$.		S,		0.12/2			Av:	
		O				28. C	0.138	0.297	0.036	0.72 0.47	
							0.086	0.383	0.033	0.50	
	ÇA,	. 5		Fruit		O				Av: 0.49	
RV130-	ÇCA,	TRTD		Fruit	√ 0.365	40	<loq< td=""><td>0.263</td><td><loq< td=""><td>0.28</td><td></td></loq<></td></loq<>	0.263	<loq< td=""><td>0.28</td><td></td></loq<>	0.28	
11DA	Region 30, 2011		Chili ,		(0.365) (0.409)		<loq< td=""><td>0.366</td><td><loq< td=""><td>0.39 Av:</td><td></td></loq<></td></loq<>	0.366	<loq< td=""><td>0.39 Av:</td><td></td></loq<>	0.39 Av:	
		TRTDS			O ^x					0.33	
	S &		Q.		ř	44	<loq< td=""><td>0.389</td><td><loq< td=""><td>0.41</td><td></td></loq<></td></loq<>	0.389	<loq< td=""><td>0.41</td><td></td></loq<>	0.41	
á		Q,	l V				<loq< td=""><td>0.358</td><td><loq< td=""><td>0.38 Av:</td><td></td></loq<></td></loq<>	0.358	<loq< td=""><td>0.38 Av:</td><td></td></loq<>	0.38 Av:	
		4.0								0.39	
	Ô		~ 4			49	<loq <loq< td=""><td>0.437 0.533</td><td><loq <loq< td=""><td>0.46 0.55</td><td></td></loq<></loq </td></loq<></loq 	0.437 0.533	<loq <loq< td=""><td>0.46 0.55</td><td></td></loq<></loq 	0.46 0.55	
			Ç Q				Log	0.555	Log	Av:	
										0.51]
	Region 39, 2011		¥				C	Continue	d on nex	t page	

Table 6.3.2.8-11 (cont'd): Total BYI 02960 Residue Data from Non-Bell (Chili) Pepper after Two Foliar or a Single Soil Application(s) of BYI 02960 SL

Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rote Lb a.s./A (kg ai.s./ha) ^a	Sampling interval	0	DFA Residue (mga.s. equiv./kg)	DOEAFRAGUE (mg*O. rquiv.:kg)	Ko Resi	
RV130- 11DA	, CA, Region 10, 2011	TRTDS	Chili	Froit (0.365	60	LOQ <loq ~</loq 	0.856 0.563	<pre>LOQ <pre>LOQ </pre></pre>	0.859 659 Av: 0.73	
					Y ~	Q70	<loq <loq< th=""><th>_≫0.792[©]</th><th><loo <loo LOO LOO LOO LOO LOO LOO</loo </loo </th><th>0.837 9.32 Av: 0.67</th><th></th></loq<></loq 	_≫ 0.792 [©]	<loo <loo LOO LOO LOO LOO LOO LOO</loo </loo 	0.837 9.32 Av: 0.67	

- a Total rate is the sum of the two application rates in plots with two applications. The Total Rate was founded to three significant figures following calculations.
- b Pre-Harvest Interval (PHI) is the interval between last application and sample parvest date.
- c Total BYI 02960 residue is the sum of BYI 02960, DFA and DFFAF residue in parent equivalents. Residue measurements below the analyte LOQ were sommed just the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.
- d Maximum residue found in non-bell (chill pepper at 45 dw PHI following soil drench application.
- e Highest average field rival (HAFT) restoue found in non-bell (chip) pepper at 45 day PHI following soil drench application.
- f Maximum residue found in non-bell (chili) pepper at 1 days HI.
- g Highest average field mal (HABT) reside found in non-bell (chin) pepper at 1 day PHI

ConQusion

Thirty-three field treals were conflicted to measure the magnitude of total BYI 02960 residue in/on fruiting vegetables (Crop Group 8) following two foliar spray applications or one soil drench application of SYI 02960 200 SL

The total BYI 02960 residue data for the representative commodities of tomato, bell peppers and non-bell peppers following folian applications are summarized in Table 6.3.2.8-12.

Table 6.3.2.8-12: Summary of Residue Data for Total BYI 02960 in Tomato, Bell Pepper, and Non-Bell Pepper

										0/1	
		_ &			Total BYI 02960 Residue Levels (ppm)						
Commodity	Plot Name	Total Application Rate lb a.s/. (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max gitter PHI	Æ HAFT©	Median ³		Standard Deviation
Tomato fruit	TRTDF	0.404 to 0.418	1	18	0.11	0.66	1.2 (14)4	0.63).19 ().19	×0.25 5	0.15
	TRTDS	0.394 to 0.416	45	18	0.07	1.1	$(60)^4$	0.94	0.19	0,32	€ 3 1
Bell Pepper	TRTDF	0.399 to 0.418	1	10	△ 0.08	0.61	0.47 (28)4	Ø 53	Q0.16	©0.21	0.14
fruit	TRTDS	0.394 to 0.411	45	, 10 , 10	0.07		J.89 (50)P	1.60	0.13	039	0.47
Non-bell	TRTDF	0.415 to 0.422	1	4	©0.12 0.12	0.64	0.85 (21)4	0.58	SØ.29	0.33	° 0.21
Pepper fruit	TRTDS	0.408 to 0.419	45 W		00100	© .49	0,98 (70)		0,38	055	0.11
Non-bell Pepper fruit,	TRTDF	0.418 to 0.422	1 1	2	\$\frac{1}{2}\text{0.63}\text{5}	, M		3 9.99	© .99	0.91	0.19
dried	TRTDS	0.415 to 0.419	9 45	© 2	108	65.19 0	O _{NA}	1.19	1.17	1.15	0.05

- tions; 1 TRTDF = Treated plot receiving two foliar spray opplications; TRTDS = Treated plot receiving one will application.
- 3 calculated on the basis of residue values at the PHO
 4 Sampling day showing the control of the sampling day showing the control of the sampling day showing the control of the sampling day showing the control of the sampling day showing the control of the sampling day showing the control of the sampling day showing day showing day showing the sampling day showing day sho
- 5 NA = not applicable no decline trial overe conducted

Comparing the different use patterns tested, slightly higher residue levels were observed in the NAFTA thats after one soil drench application of BVI 02900 SL 200. However, the residue values corresponding to folial spray and soil drench application were from similar populations (Whitney-Mann-Wilcoxon test), as well as the residues from the different crops of the crop group.

The total resider levels of BOI 02960 did not always peak at the intended PHI. Nevertheless, after foliar application, the total residue either declined or leveled off by the end of the sampling interval, which covered in maximum 28 days. After soil application, a residue plateau was less distinct – in tomato, the highest total BM 02960 residues occurred at the last sampling event (69 to 70 days after the application) in seven but of eight decline trials and in pepper in one of eight decline trials. However, the operall maximum residue for fruiting crops (2.0 mg/kg) was detected before the last sampling event (60 days after the application).

Residue data from <u>AUSTRALIA</u>

BYI 02960 is to be registered in Australia for use as a foliar treatment in/on fruiting vegetables (excluding cucurbits). The critical aspects of the proposed use pattern are summarized in Table 6.3.2.8-13.

A total of twelve trialswere conducted in fruiting vegetables. The studies are described below.

Table 6.3.2.8-13: Critical aspects of the use pattern for application of BYI 02960 200 SL 10 fruiting vegetables (tomatoes, peppers, eggplant)

Application	Maximum no.	Maximum app	bication rate	Minimom .	NOT SWHP OF
type	of applications	Per treatment	Ber season	Spray intérva	
Foliar	3	150 g a.s./ha or A 15 g a.s./100 L*	450 g a.s./ha	7 days	Of Cay of

Residues trials supporting this use pattern are presented in study reports

Report:	KIIA 6.3.2.8/02; 201
Title:	Amendmeter no. 1 - Detectionation of residues of BYI 02960 following three foliar
	applications of BYI 02960 200 BL to trian and bush to matoes at rates of 100, 150 or 200 g
	a.i./hā/seven days apart, and jū glass kouse to matoes at rates of 10, 15 and 20 g a.i./100 L
	seven days apart 6 0 % .0 % .0
Report No &	BCS-0348002 including sites C504, C508 and C506, dated July 20, 2011
Document No	
Guidelines:	Australian Pésticides and Veterinary Medicines Authority, Manual of Requirements and
20	Gudelines Edition 3
GLP	

Report	KINA 6,30,8/03; 2011
Title:	Amendabent no 7 - Deformination of residues of BYI 02960 following three foliar
Ö	applications &BYI 02960 200 SL to Capsicans at rates of 100, 150 or 200 g a.i./ha seven
	dayspapart
Report No &	BCS-0349-02 including sites C507, C629 and C509, dated August 11, 2011
Document No	M-430274-02-77 Q' Q' Q'
Guideline	Australian Pesticide and Vererinary Medicines Authority, Manual of Requirements and
	Guidenies, Editor 5
GLP 🔑	Ses S S S

Report:	KIFA 6,32.8/03 ; 2011
Title:	Determination of residues of BYI 02960 following three foliar applications of BYI 02960
	200 SP to transland bush tomatoes at rates of 100, 150 or 200 g a.i./ha seven days apart,
	and in glaschouse tomatoes at rates of 10, 15 and 20 g a.i./100 L seven days apart –
	Amendment no. 1 to the report BCS-0354
Report No &	ØCS-0384.02 including sites C683, C525 and C526, dated May 31, 2011
Document So	M-433790-02-1
Guidelines:	Australian Pesticides and Veterinary Medicines Authority, Manual of Requirements and
	Guidelines, Edition 3
GLP	Yes

Report:	KIIA 6.3.2.8/05; 2011
Title:	Determination of residues of BYI 02960 following three foliar applications of BYI 02960 200 SL to capsicum at rates of 100, 150 or 200 g a.i./ha seven days apart - Amendment no. 1 to the report BCS-0355
Report No & Document No	BCS-0355.02 including sites C527, C528 and C529, dated May 13, 2011 M-432144-02-1
Guidelines:	Australian Pesticides and Veterinary Medicines Authority, Manual of Requirement and Guidelines, Edition 3
GLP	Yes Q Q Q

Materials and methods

12 trials were conducted in Australia to measure the well of residues of By I 02960 and its metabolites following application of BYI 02960 200 SI to fruiting vegetables (excluding encurbit) crops. These included 6 trials in tomatoes and 6 trials in capscicum (repper). Trials were conducted over two seasons, with 6 trials in 2010, and 6 trials in 2011.

Trials were conducted in the field (romatoes and capscium), and in protected cropping environments (tomatoes). Treatments were applied by hand held boom surfayer applying spray columes of 500 -700 L/ha (tomatoes), 496-729 L/ha (capsicum) and as a high volume application of 929-2851 L/ha in glasshouse tomatoes. Product was applied on a per ha basis for field trials 500, 750 or 1000 mL/ha (100, 150 or 200 g a.i./ha). However for tomatoes in a protected cropping situation, which are grown "vertically" on a transfer or string, product was applied on a concentration or "dilute" basis; 50, 75 or 100 mL/100 L (10 55 or 20 g as 1000 L) with application volumes to the "point of run-off" but no more than 1000 L/ha. The target rates applied represented 0.67, 10 and 15 times the maximum proposed rate (Note; in studies BCS-0348, site \$555, and BCS-0354, site C683 application volumes substantially exceeded 1000 L/ha with applied in some instances).

In the first year of trials (2010) for both to natoes and capsicums, application of each treatment was made 3 times, at approximately o'day intervals. Samples were collected 1 and 7 days after the second application, and at approximately 0, 3, 7, 10, 14 days after the third application.

For the second year of trials (2007) for both capsicums and tomatoes application of each treatment was again made 3 times, at approximately 7 day intervals, however it was necessary to extend the sampling times. Samples were collected at approximately 7, 7, 14, 21, 28 and 35 days after the third application. Trial details including location, year, application rate, application timing, application no. and sampling times are summarised in Table 6.3.2.8-14 for tomatoes and Table 6.3.2.8-15 for capsicum respectively.

Trial details for residue trials with BYI 02960 200 SL in tomatoes (field and Table 6.3.2.8-14: glasshouse)

			Ap	plication		
Study No. Test Site	Crop Variety	Rate		Application	No. of	Sampling Diming
Location Year Annex Pt	Situation	Product (mL/ha or mL/100L)	Active Substance (g a.s./ha or g a.s./100 L)	Timing (Spray volume)	Applications (Timing of applications)	Piming "
BCS-0348 C504 , Vic 2010 KIIA 6.3.2.8/02	Tomatoes Roma Field	500 750 1000	100 150 200	A=14 DBFF B=7 DBFF C=0 DBFH	3 (A.B. and C.C.)	1 DAAB 7 DAAB 9 DAAC 1 DAAC 3 DAAC 10 DAAC 14 DAAC
BCS-0348 C505 , Tas 2010 KIIA 6.3.2.8/02 BCS-0348 C506 2010 KIIA 6.3.2.8/02	Tomatoes Cheamy Glasshouse Tomatoes Trifecta Field Tomatoes Cheramy	500 500 730 71000 74 74 74 75 75 75 75 75 75 75 75 75 75	200 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A=14 DBFH C=0 DBFH A=14 DBFH (929-750 L/ha) B=6 DBFH	3 (A, B and C)	7 DAAC 10 DAAC 14 DAAC 1 DAAB 7 DAAB 0 DAAC 1 DAAC 3 DAAC 6 DAAC 9 DAAC 13 DAAC 1 DAAC 1 DAAC
BCS-03540 C525 WA 2011 KIIA 6.3.2.8/04	Glasshouse Tomatoes Roma Field	500 750 1000 2	100 ×	(2107-2429 L/ha) C=0 DBFH (2679-2857 L/ha) A=15 DBFH B=8 DBFH C=0 DBFH	3 (A, B and C) ontinued on nex	21 DAAC 29 DAAC 37 DAAC 1 DAAC 8 DAAC 15 DAAC 22 DAAC 29 DAAC 36 DAAC
		ý				

Table 6.3.2.8-14 (cont'd): Trial details for residue trials with BYI 02960 200 SL in tomatoes (field and glasshouse)

G. I.N			Application				
Study No. Test Site	Crop Variety	Rate	Rate		No of	Sampling Viming	
Location Year Annex Pt	Situation	Product (mL/ha or mL/100L)	Active Substance (g a.s./ha or g a.s./100 L)	Timing (Spray volume)	Timing of applications	Piming 5	
BCS-0354	Tomatoes	500	100		3 (A, Band C)	1 DAAC	
C526	Guardian	750	150	B=7 DBF∰		7DAACO"	
,		1000	150 200	C=0 DEVH		₽4 DAAC	
2011	Field					21 DAAC	
KIIA						28 JAAC	
6.3.2.8/04			W, B°			33 DAAC	

DBFH = days before first harvest

DAAB = Days after application B of A and B

DAAC = Days after application C of A, B, C

t harvest lication B of A and B lication C of A, B, C Trial details for residue trials with BX 02960 200 St in capsicum. Table 6.3.2.8-15:

		15.0	. (1)	Ø	
Crop	Wate S	10 - 37	plication S		Sampling
Variety *	Mate &		Appareauon		Timing
Ĉ	Durant S	Active "O"	Timrng N	Applications	
Situation 🤝	(AsI /ha ass	Substance	(Spray Volume)	(Timing of	
~// .		(va.s./haror		applications)	
	mL/100L)	g a.s./000 L)			
Capsicums 4	500	100	A€14 DBFH	3 (A, B and C)	3 DAAB
Warrock VO	750	£1500 °>	<u> </u>		7 DAAB
	1000	200 /	C=040BFH		0 DAAC
Field S					1 DAAC
10,	O A				3 DAAC
Ø					7 DAAC
			,		10 DAAC
			Š		14 DAAC
Capsicums	560 4	100	%=14 DBFH	3 (A, B and C)	3 DAAB
Plato Q"	₹ 50 ₽	≯ 50 \$ \$	B=7 DBFH		7 DAAB
	1000	200~	C=0 DBFH		0 DAAC
Field					1 DAAC
20	J at				3 DAAC
	Q . " ,				6 DAAC
~ ~ A					11 DAAC
T .					13 DAAC
Pancicumo	1&500 W/	1 000	A=14 DBFH	3 (A, B and C)	3 DAAB
	750×5″ _ ″	150	B=7 DBFH		7 DAAB
	1000	200	C=0 DBFH		0 DAAC
Fiede P					1 DAAC
A 6	o Š				3 DAAC
	*				7 DAAC
					10 DAAC
					14 DAAC
	Capsicums Wallock Field Capsicums Plato Field Fi	Variety Situation Capseums Wallock Tield Capsicums Plato Tield Capsicums Plato Tield Capsicums Plato Tield	Variety Situation Product (mL/ha or mL/1961) Capsicums Plato Pield Capsicums Plato Field Variety Situation Product (mL/ha or mL/100L) Capsums Variock Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums Plato Pield Capsicums	No. of Application No. of Application Applicatio	

Table 6.3.2.8-15 (cont'd): Trial details for residue trials with BYI 02960 200 SL in capsicum

			Ap	plication		
Study No. Test Site	Crop Variety	Rate		Application	No. of	Sampling Timing
Location Year Annex Pt	Situation	Product (mL/ha or mL/100L)	Active Substance (g a.s./ha or g a.s./100 L)	Timing (Spray volume)	Applications Climing of Applications)	
BCS-0355 C527	Capsicums Aires	500 750 1000	100 150 200	A=14 DBFH B=7 DBFH C=0 DBFH	3 (A, B and C)	71 DAOC 7 DVAC 14 DAAO
Vic 2011 KIIA 6.3.3.2/04	Field		200			PÍ DAÁC 28 DÁÁC 34 PÁAC
BCS-0355 C528	Capsicums Warlock	500 750 1000	100 150 200 200	A=14 BFH B=7 QBFH C=0 DBFH	3 (A, B and C)	1 DAAC 7 DAAC 14 DAAC
2011 KIIA 6.3.3.2/04	Field			(%=14/08FH		DAAC 28 DAAC 33 DAAC
BCS-0355 C529	Capsicums Plato	500 × 500 ×	100 \$ \$150 200\$	B=7 BBFH © C=0 DBFH	3 (A, B and C)	1 DAAC 7 DAAC 14 DAAC
2011 KIIA 6.3.3.2/04	Field \$\frac{2}{9}\$					22 DAAC 28 DAAC 35 DAAC

DBFH = days before first har est

DAAB = Days after application B of A and B

DAAC = Days after application Cof A, B, and C

The analytical test method ADVI-0048 "Determination of residues of BYI 02960 and its metabolites 6-chloronicotinic acid diffuor oethyl amino uranove and diffuor oacetic acid in or on plant material by HPLC-MS/MS" was used to analyse the test samples.

Residues of BYI 02960 and the metabolites 6-CNA, DEEAF and DFA in test samples were extracted with 20:80 water:acetonitrile with 0.22 mL/L formic acid. The extract was filtered using a 0.45 μ m syringe filter. For the analysis of DFA an abduot was taken at this point and diluted with acetonitrile. For the analysis of BYI 02960, 6-CNA and DEEAF an aliquot of the extract was reduced to its aqueous remainder and then parationed against ethyl acetate on a Chem Elut column. The ethyl acetate was then reduced to dayness and the sample was reconstituted in acetonitrile.

Chromatography was performed by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer using MRM for analyte detection. Quantitation was achieved with matrix matched analytical standards for all analytes and stable labelled internal standards for 6-CNA and DFFAF.

By this method the single analytes (BYI02960 and its metabolites 6-CNA, DFEAF and DFA) were determined. The limit of quantitation (LOQ) of BYI 02960, DFEAF and 6-CNA was 0.01 mg/kg for

each component and 0.02 mg/kg for DFA. The total residue of BYI02960 was calculated by summing up the values determined for the individual analytes expressed as parent equivalent. The total LOQ expressed as BYI 02960 was 0.1061 mg/kg (rounded to 0.11 mg/kg) considering all four analytes. However, the residue definition for risk assessment is proposed to comprise only the analytes BYI 02960, DFA and DFEAF. The total LOQ for theses three compounds is 0.088 mg/kg (rounded 0.09 mg/kg).

A full description of the method can be found as an appendix to each of the study reports cited above

The analytical test method was validated by analysing fortified samples concurrently with the analysis of the test samples. Mean concurrent recoveries for BYI02960 and its metabolites at fortification levels of 0.01 mg/kg (0.02 mg/kg DFA) and 1.0 mg/kg of each analyte are shown in Table 6.3.2.8 16 to 6.3.2.8-19 below.

Table 6.3.2.8-16: Recovery results for PYI02960 and its metabolites in study BCS-0348

Analyte	Test Samples	Fortification Levels	Undividual Recoveries (Percent)	Recovery Means
-		(mg/kg) ×	Undividual Recoveries (Percent)	and RSD (Percent)
BYI 02960	Tomatoes	0.01%	8981, 96, 88, 91, 81	987 ± 6 %
			® 1, 86, 94, 82, 90, 76	85 8
6-CNA		0.01 \$	86, 104, 90, 77, 91	8 5 ± 13
	~ ©	1.0	7 \$, 79, 7 7, 78, 84, 76	$\sqrt{78 \pm 5}$
DFEAF	₩		90, 89,73, 85,78 (83 ± 9
		1.0 \$ \$ \$		84 ± 4
DFA		0,02	29, 89, 29, 91, 3	93 ± 4
			110, 104, 109, 110, 110, 111	109 ± 2

Table 6.3 2.8-17: Recovery results for BYI02960 and its metabolites in study BCS-0349

Analyte	Test Samples		Individual Recoveries	Recovery Means
		((Percent)	and RSD (Percent)
BYI 02960	Capsicum	(mg/kg) (mg/kg	118, 🕍 , 85, 87, 96	99 ± 15
		1.0	91, 96, 96, 87, 81, 86	89 ± 7
6-CNA		1.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 , 93, 87, 99, 93, 78	88 ± 9
6-CNA	A(\infty) A	• 100	79, 106, 70, 77, 71, 79	80 ± 16
DFEAF		0.010	75, 83, 94, 81, 87, 87	85 ± 7
ľ	0'		77, 100, 74, 89, 73, 80	82 ± 13
DFA		Z0.02, S	73, 81, 74, 84, 86, 87	81 ± 7
		1.2	99, 95, 102, 111, 112, 114	105 ± 7

Table 6.3.2.8-18: Recovery results for BYI02960 and its metabolites in study BCS-0354

Analyte	Test Samples	Fortification Levels (mg/kg)	Individual Recoveries (%)	Recovery Means and RSD (%)
BYI 02960	Tomatoes	0.01	104, 90, 112, 83, 116	101 ± 140
		1.0	89, 88, 72, 85, 86, 71	82 ± 10 ×
6-CNA		0.01	97, 81, 77, 73	82 13
		1.0	78, 7\$370, 80	## ± 6
DFEAF		0.01	93, 81, 74, 78	81 ± 30
		1.0	Ø1, 91, 72, 79, 74, 82	82 ¥10 °
DFA		0.02	87, 97, 92, 103, 107 99 Q	97 ± 760
		1.0	98, 106, 102, 114, 712, 1,10	107. \$6

Table 6.3.2.8-19: Recovery results for BY102960 and its metabolites in study BCS-038

Analyte	Test Samples	Founfication Levels	Individual Recoveries	Recovery Vleans
		mg/kg/		and RSD (%)
BYI 02960	Capsicums	0.01	105, 96, 85, 89, 86, 84	91 ± 9
		1.60 0 5	84, 82, 83, 73, DZ, 71	7 <u>8</u> ± 8
6-CNA		0.01	84, 75, 81, 79, 94, 76	9 ± 9
			84, 75, 92 82, 79 79	82 ± 7
DFEAF	A_\	0.01	5 ⁷ 4, 73, 79, 78 ²	76 ± 4
		\$1.0 Q \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	89, %, 90, 87, 72, 13	81 ± 10
DFA		0.025	8 , 84, 8 5, 115, 3 03, 103	96 ± 13
		4.0	98, 95, 93, 100, 74, 77	89 ± 12

Findings

Residues determined for BY102960 and its metabolites in tomatoes and capsicums are given in Table 6.3.2.8-20 and Table 6.3.2.8-210 respectively.

Only data relating to the target rate of 150 g a.j. ha (or 15 g a.i./100 L in glasshouse tomatoes) is presented here. Complete data including results following applications at 100 and 200 g a.s./ha (and 10 or 20 g a.s./100 L in glasshouse tomatoes) can be found in the study report.

Results for BY102960 and the three metabolites, 6-CNA, DFEAF and DFA, along with the total residue expressed as total BY102960 parent equivalent are shown in the tables below. Since the proposed residue definition excludes 6-ENA, the total residue excluding 6-CNA is also shown.

Results of residue trials conducted in tomates where BYI 02960 200 SL was Table 6.3.2.8-20: applied three times at the target rate of 150 g a.i./ha (field tomatoes) or 15 g a.s./100 L (glasshouse tomatoes)

Study no.	DALT	Concentratio	ns (mg/kg)				
Trial no.	(days)		Detected	Detected	Detected	Total	© Fotal
Location			and	and	and 🧳	Expressed	Expressed a
Year		Detected as	expressed	expressed	expressed	as 🕾	B YI 02960
Situation		BYI 02960	as 6-CAN	as DFEAF	as DFA	BYI 02900	Équixalent
				Ö	A CONTRACTOR OF THE PROPERTY O	Equivalent ~	(excanding
				V	W .		6-CNAL
BCS-0348	1 DAAB	0.09	< 0.01	≪ 0.01	©0.02	40 11	\$0.09, O
C504	7 DAAB	0.06	<0.01	© <0.01	⊙.<0.02 °	20.11 ₆	© <0. 0 €
,	0 DAAC	0.06	<0.01	<0.01	<0.52	D″<0 1æ5√ .	<0.09
Vic	1 DAAC	0.08	< 0.01	\$0.01 @	≥0°.02 ∞	<0.10	~0 .09
2010	3 DAAC	0.08	<0.04/	Q<0.01 ²	₹0.02 ₹0.02 ₹0.02	Ø.11 ×	0.09
Field	7 DAAC	0.08	<0.01	<0.01	O.OZ,	Ø0.11√y	<0,09
	10 DAAC	0.08	0.01	€ 0.01 . ~	Q.02 _C	v 0.19	6 15
	14 DAAC	0.10	<0.01	≫ 0.01, ©	(0.03 °C)	Q 20	\$0.20
3CS-0348	1 DAAB	0.10	V <0.0Y	©<0.01,	0.02	3 0.11	©<0.09
C505	7 DAAB	0.12	40 ,01 \\$	<9:01	<0.02	© 0.120	0.12
	0 DAAC	0.21	©0.01 ×	<0.01	< 002	0.21	0.21
, Tas	1 DAAC	0.17	© <0.0₽	©0.016	Q.02.0 Q.<0.02	Ø.17 ×	0.17
2010	3 DAAC	0.22	0.09	> <0.0°	Q*<0.02 [©]	0.24	0.22
Glasshouse	7 DAAC	×0.18 (9 0.01	<0.01	<0.62	0.18	0.18
	10 DAAC	0.18	\$0.01	20 .01	6 0.02	00/218	0.18
	14 DAAC %	y 0.41	∅ <0.0€	<0.0 , <0.0 , \	₹0.02°	3 0.11	0.11
BCS-0348	1 DAAB	Q-\$76 B	<@1 >	/ <0.00° %	t/	% 0.11	< 0.11
C506	7 DAAR	10 7.04	≤ 0.01	<u>≈0</u> .01 ○	<0.002	[⊮] <0.11	< 0.11
,	0 DA	0.06	<0.01	№ 0.01 @	<0.02	< 0.11	< 0.11
2010	1 DAAC	0.03	<0.03	<0.0	Ø×0.02	< 0.11	< 0.11
2010	3 AAC	0.09 🖔	50.01	<0.01	× <0.62°	< 0.11	< 0.11
Field	© DAAC	©0.04	₩0.01 Ø	9 .01	<0.02	< 0.11	< 0.11
Ď	9 DAAC	0.040	<0.01	©~0.01	0.03	0.13	0.13
	13 DAAC	Q	0.01	, <0.0	0.03	0.12	0.12
3CS-03	1 DAA@	\$ 0 \$50	©0:01 °°	< 6.0 1	<0.02	0.50	0.50
C683	8 DAAC	£ 0.39 €	0.01 <u></u>	\$ \$0.01 ∆ *	< 0.02	0.39	0.39
	14 DXAC	0.36	<0.00	O<0.04	< 0.02	0.35	0.35
, Tas	21 DAAG	0\$2	<0.01		< 0.02	0.22	0.22
2011	Ø9 DAA®	00.13	©0.01 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	<0.01	0.02	0.22	0.22
Glasshouse	37 DAAC	0.06	0.016)"	0 .01	0.03	0.14	0.14
3CS-0354 A C525	1 DAAC	0.00	0,00	<0.01	< 0.02	< 0.11	< 0.09
C525	8 DAAC	Q 02	©:02 ×	< 0.01	0.03	0.14	0.10
,	15 DA&C	<0.01	Ø0.01°	< 0.01	0.03	< 0.11	< 0.09
VA~	22 DAAC	0.01	Q <0.0C	< 0.01	0.03	0.11	0.11
2011	29 NAAC	<0.91	<0.01	< 0.01	0.03	<0.11	<0.09
field - tr	DAAG	20 :01	% .01	< 0.01	0.04	0.13	0.13
		002 <0.01 0.04 <0.01 0.01 0.01	\$		C	ontinued on ne	ext page

Table 6.3.2.8-20 (cont'd): Results of residue trials conducted in tomates where BYI 02960 200 SL was applied three times at the target rate of 150 g a.i./ha (field tomatoes) or 15 g a.s./100 L (glasshouse tomatoes)

Study no.	DALT	Concentration	ns (mg/kg)			^	
Trial no. Location Year Situation	(days)	Detected as BYI 02960	Detected and expressed as 6-CAN	Detected and expressed as DFEAF	Detected and expressed as DEA	Total Expressed as BYI 02960 Equivalent	BYI 02960 Equivalent
BCS-0354	1 DAAC	0.04	< 0.01	£<0.01	© .02	≪0.11	\$0.09, O
C526	7 DAAC	0.02	< 0.01	♥ <0.01	o [™] <0.02 °	©0.11	<0.00
2	14 DAAC	0.04	<0.01	⁷ <0.01	<0. 9 2	0.14	<0,09
2011	21 DAAC	0.02	<0.01	<0.01	< Q 02	° <0.\\ 1	₹ 0.09
Field - Bush	28 DAAC	0.01		©<0.01\$	√0.02 √	Ø.11 ×	0.09
	33 DAAC	< 0.01	<0.91	<0.0)	~<0.0 2 °	Ø₹0.11↓C	△ <0,09

Note:

The above results might not match the saw data-because of rounding adjustments.

All values for DFA below the LOQ of 0.02 mg/kg are expressed as \$40.01 mg/kg.

All values for the BYI 02960 parent equivalent below the DOQ of 0.1061 mg/kg are expressed as <0.11 mg/kg. All values for the BYI 02960 parent equivalent excluding 6-CNQ below the LOQ of 0.088 mg/kg are expressed as <0.09 mg/kg.

Results of residue trials conducted in capsicum where BYI 02960 200 SL was Table 6.3.2.8-2 applied three times at the target rate of 150 a.s./ha

	- U		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 			
Study no.	DALT	Concentration	ns (mgÆkg)	Detected O	~		
Trial no	(days)	i S	Detected	Detected O	Detected	Total	Total
Location		Detected as BYL 02960	and y	👢 and 🔊	and	Expressed	Expressed as
Year		Detected as	y exprased	(expressed	expressed	as	BYI 02960
Situation		BY 02960	as 6-CAN	as DEEAF	as DFA	BYI 02960	Equivalent
				F		Equivalent	(excluding
*	Ç Ü		**O.015	>			6-CNA)
BCS-0349		90.11 ₂ 9 4	×0.0₺°	& 0.01	< 0.02	0.11	0.11
C507	7 DAAB 🧔	0.15	<0.01	[√] <0.01	< 0.02	0.15	0.15
≫	0 DAAC	0.09	≤0 .01 °♥″	< 0.01	< 0.02	< 0.11	< 0.09
2010	1 DAÆØ	0 20 . O	©0.01	< 0.01	< 0.02	0.20	0.20
2010	3 DAAC	1 0.18 € 1	[™] <0.0©″	< 0.01	< 0.02	0.18	0.18
Field	7 DAAC	0.42	<0.01	< 0.01	< 0.02	0.42	0.42
	TO DAAG	Q 30 V	<0.01	0.01	< 0.02	0.32	0.32
	14 DAÅC	9 .27 ₄ , ~	<0.01	< 0.01	0.03	0.35	0.35
Field			v		C	ontinued on ne	xt page

Table 6.3.2.8-21 (cont'd): Results of residue trials conducted in capsicum where BYI 02960 200 SL was applied three times at the target rate of 150 g a.s./ha

Study no.	DALT	Concentration	ns (mg/kg)				
Trial no.	(days)		Detected	Detected	Detected	Total	Total
Location			and	and	and	Expressed	Expressed as
Year		Detected as	expressed	expressed	expressed 6		BX 02960
Situation		BYI 02960	as 6-CAN	as DFEAF	as DFA	BYI 02960	Equivalent
						Equivalent	(excluding
				Ö	4		9 6-CNA)
BCS-0349	3 DAAB	0.09	< 0.01	<0.01	0.03	0.170	0.17
C629	7 DAAB	0.12	< 0.01	© 0.01	0,05	0.28	0. 23
	0 DAAC	0.10	<0.01	℃ 0.01	ð ∕.04		(0),-1
,	1 DAAC	0.08	<0.01	⁷ <0.01	0.04	0.21	0.21
2010	3 DAAC	0.15	<0.01	<0.01	0.05	0.31	0.34
Field	6 DAAC	0.12	<0.01%	\$0.01 ₽	Ø:09 J	0,490 ~	0.40
	11 DAAC	0.11	<0.00	O.0.	Ø.12 🔎	% 46 %	2 0.46 .
	13 DAAC	0.09	<0.01	< 0.60 1 ~ Q	0.10	, 0.40 Oʻ	0.40
BCS-0349	3 DAAB	0.24	€ 0.01~	~0 .01 &	0,02 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.30	0.30
<u>C5</u> 09	7 DAAB	0.20	/<0. Q }>/	©0.01 \$	© 03	0.30	Ø 2 9
	0 DAAC	0.25	<0 <u>/</u> 01	<0.00	0.03 0 0.03 0 0.02 0	K 40.54 _ W	0.32
,	1 DAAC	0.12	∞ 0.01 ×	<0.091	<0202	0.12\$	0.12
Vic	3 DAAC	0.10	%<0.01 <i>\&</i>	3 9.01		<0001 ~	< 0.09
2010	7 DAAC	0.13 @ . ~	<0.010	×0.010 .	Ø.04 °	19 26 (L)	0.26
Field	10 DAAC	0.09	<0.091		/0.11 <i>©</i>	0.44 0	0.44
	14 DAAC	0.08	\$\frac{1}{206}\$\frac{1}{2}\$\fr	< 0001	0,06	0.3%	0.26
BCS-0355	1 DAAC %	Ø.09	5<0.01©	€ 0.01 , \	40 .02	< 0 41	< 0.09
C527	7 DAAC	0.13	<0.0	(4.0.0°) (4		<u>6</u> 22	0.22
	14 DAAG	0.00	≤0.01	<0.01	0.03	70ॅ.14	0.14
Vic	21 DASČ	0.05	€ 0.01 🍣	39 .01	0.02	0.11	0.11
2011			√<0.0°N _y %	Q0.01	0 204	0.14	0.14
Field	34 PAAC	<0.0Y &	<0.01	A A	₹0.04 <i>≪</i> ₹	0.13	0.13
BCS-0355	DAAC	0.08	\$0. 01	<0001	<0,02	0.18	0.18
C528 @	ູ 7 DAA€	0.19 🗞 💃	<0.01	Ø.01 €	≪0 .02	0.19	0.19
, ,	14 DAAC 🕺	/ 0.15 0	×(0.0)	, <0.01	9.02	0.22	0.22
2011	21 DAA	0.10	<0.01	0.04D C	0.04	0.31	0.31
2011	28 DAAO	Ø. 2 3 👟	0.01	Q.01	0.09	0.51	0.51
Field	33 DAAC	0.23	><0.01	①.02 ×	0.12	0.61	0.61
BCS-0355	1 DRAC	0.13	<0.04	<0.01	< 0.02	0.13	0.13
C529	7@DAAÇÖ [®]	0d3 . U	< 0 001 , ○°	<0.01	0.03	0.24	0.24
	94 DAAC 2	©.20 ~ y	0.01	0,02	0.05	0.38	0.38
	, 22 DAAC	0.142	0.40 1.4	₹ 0.01	0.06	0.31	0.31
2011 Field	28 DAAÇ	0.13	<0.001	<0.01	0.07	0.34	0.34
Field	35 DAAC	0.07	\$9.01	< 0.01	0.07	0.27	0.27

DALT Days after last treatment DAAB = Day After Application B of applications A and B

DAAC = Days After Application C Applications A Ar and C

Note

The above results might not parch the aw data because of rounding adjustments.

All values for BYL 2960, 6-CNA and DFEAF below the LOQ of 0.01 mg/kg are expressed as <0.01 mg/kg.

All values for DOx below the LOQ of 0.02 mg/kg are expressed as <0.02 mg/kg.

All values for the BYI \$2960 parent equivalent below the LOQ of 0.1061 mg/kg are expressed as <0.11 mg/kg.

All values for the BYI 02960 parent equivalent excluding 6-CNA below the LOQ of 0.088 mg/kg are expressed as <0.09 mg/kg.

Results from all trials in tomato and capsicum are summarised in Table 6.3.2.8-22. This shows the highest residue (expressed as total BYI 02960 parent equivalent for the sum of BYI02960, DFEAF and DFA, i.e. excluding 6-CNA) from each site, and indicates the sampling time (days after last application) when this occurred.

Table 6.3.2.8-22: Summary of results of residue trials conducted in tomatoes and capsicum where BYI 02960 200 SL was applied three times at the target rate of 150 g as./ha of 15 g a.s./100 L (glasshouse tomatoes)

		1			
Crop	Situation	Trial	Final	Sampling timing	Maximum residue
(proposed WHP)		no.	sampling g	where highest	at or beyond Q
			timing 🔏	residue recorded	proposed WHP* O _ @
			DALT	DALT	(mg/kg)
Tomato	Field	C504	14	14 0	0020
(1 day)	Glasshouse	C505	140°.0	13 % 1 ~ ~ 1	0.22**
	Field	C506	13	90 0	1 0.13
	Glasshouse	C683	(37 ×)	T & A	000***
	Field	C525	36, Sy		0.00**
	Field	C526	36		<0.00
Capsicum	Field	C507	1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1		
(1 day)	Field	Ĉ629 🎉	13 0	D11 & (0	©46 U 'Y
	Field	C509	14 0		0.44
	Field 🗳	C527			0.23
	Field 🗞	© 28)33 Q	33	Q61 Q
	Field	C529	35.2	14 5	0.38

DALT = Days after last treatment @

- * Maximum residue concentration expressed as total BYT 02960 parent equivalent (BY102960, DFEAF and DFA i.e. excluding 6-QNA)
- ** Product applied based in rate per 100 L. and application spray volume exceeded 1000 L/ha as required by GAP, hence product application rate excessive.

Overall Conclusion - Fruiting vegetables

Supervised residue trials in fracting vegetables were conducted in the US and in Australia to achieve a national registration in the NAFTA countries and in Australia.

The NAFTA countries support two different GAPs. Either two foliar spray applications or one soil drench application of BYI 02960 200 SL with a total application rate of 410 g a.s./ha. Thirty-three trials were conducted according to each GAP to measure the magnitude of BYI 02960 residues in/on tomato (19 trials), bell pepper 10 trials), and non-bell (chili) pepper (4 trials) (representative test systems for NAFTA trop Group 8, Fruiting Vegetables). The intended pre-harvest interval was 1 day.

Australia supports only one GAP: Three foliar spray applications of BYI 02960 200 SL with a total application rate of 450 g a.s./ha and a pre-harvest interval (withholding period) of 1 day. Product was applied on a per ha basis for field trials or on a concentration or "dilute" basis for tomatoes grown in a protected cropping situation (greenhouse). 75 mL product/100 L (corresponding to 15 g a.s./100 L)

was applied to "vertically" grown crops with application volumes to the "point of run-off" but no more than 1000 L/ha.

A summary of the use patterns tested and the corresponding residue levels is shown in Table 6.38.2- 23.

Table 6.3.2.8-23: Summary of Residue Data for Total BYI 02960 from Fruiting Vegetables

	n	_		ation	Besidue of 2500 2500 2500 2500 2500 2500 2500 250		CO
Crop	Formulation	Use pattern	Method	No. Application	Total Bylo (mga	Peakresidue (mg as kg)	Day resid
NAFTA			.,0 .0 . 9		0 8		
Tomato	SL 200	2 x 0.205 kg a.s./ha	Poliar pray 1	72 Jap	£11-0.66	2.2	14
(Field)	SL 200	1 x 0.410 kg a na 🐇	Soil arench 4	1 19	0.07-0.1	2.0	60
Bell Pepper	SL 200	2 x 0.205 kga.s./ha	Foliar spray		0.68-0.61	0.61	1
(Field)	SL 200	1 x 0.41 © kg a,ş:₩a	Soil french 45	1 P10	9.07- 4 .7	1.7	45
Non-bell	SL 200	2 x 0.205 kg/a.s./ha	Foliar spray	2 4 6	0.12-0.64	0.85	21
Pepper (Field)	SL 200	1×x 0.410 kg a.s./ba	Soil drench 45	5 2 1	0.12-0.64 0.16-0.49-	0.98	70
Australia	, s		Soil drench 45	Y (L) 2%	D. C. C. C. C. C. C. C. C. C. C. C. C. C.		
Tomato (Field)	SL 2000 SL 2000	3 x 0.150 kg a.s./ha	Polior gorov @ 1		<0.09-0.17	0.20	14
Tomato (Protected)	SJ 200	x 0.013 kg d/s/100 j	Foliar spray	3 2 2	0.22*-0.50*	0.50	1
Pepper (Field)	SL 200	3 x 0.150 kg a.s./ha	Voliar Stray 1	₹ 3 6	<0.09-0.21	0.61	33

^{*} Product applied based for rate position L, and application pray volume exceeded 1000 L/ha as required by GAP, hence product application rate excessive

Highest residue levels were observed in the <u>NALVA</u> trials after soil drench spray application of BYI 02960 SL 200. After soil application, highest total residue levels occurred generally after the PHI of 45 days, but before the last sampling even indicating that the residue leveled off by the end of the sampling interval, which covered in maximum 70 days.

The maximum residue level accounted for 20 mg/kg and was detected in tomatoes cultivated according to the NAFTA use pattern comprising one soil application. Total BYI 02960 residues in bell pepper and chili were in approx the same residue range and therefore within the EPA guidelines for the establishment of agroup tolerance for Crop Group 8 (Fruiting Vegetables). The group tolerance will also cover total BYI 02960 residues in fruiting crops cultivated according to the Australian use patterns.

The residue data provided for fruiting vegetables are suitable for regulatory purposes.

IIA 6.3.2.9 Stem vegetables - celery

Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on leafy vegetables (Crop Group 4). Celery is one of the representative test systems of the crop group – besides leaf lettuce, head lettuce and spinach. Generally, leafy vegetables from NAFTA countries will not be imported into Europe, the only exception could be celery. Therefore only data on celery will be presented in this dossier. Information on the other crops have been presented in the Global from Review Submission in October 2012.

The use pattern for celery in North America is summarized in Table 6. 22.9-1

Table 6.3.2.9-1 Target Use Patterns for the Application of By 02966 on Celery (representative crop of Leafy Vegetables (Crop Group 4)) in North America

		1	arget Ra	ite/Applicat	ioň (±5°	/ % /			- F	Spray	Volume
		-	nulated act (FP)	Netive St	ibstance	(a,s.)	Target	Target	S Adjurant		
Test Substance	No. of Apps	mL fp/A	fl oz @ fp/A				Interval	PHO (Days)	/Additive	GPA	LPHA
BYI 02960 200 SL	2	415	4 4.0	150¥ I 02960	ľ	205	7 2		9.2, 0.25, or V	10–30	94–282

GPA = gallons per acre LPHA = liter per hectare

Report:	KDA 6.3.2.9/01 and L. M. ; 2012
Title:	BYI 02960 200 SL - Magnitude of the Residue On/on Leafy Vegetables (Crop Group 4)
Report No &	RARVY005 ditted June 27, 2012
DocumentNo	M-493317201-1 & S
Guidelines:	US: EPA Residue Chemistry Test Guidelines QPPTS 860.1500, Crop Field Trials
	Scanada: PMR DACO 7.4.1 Supervised Residue Trial Study
Q	PMRA DACO 7.4.2, Residue Decline
	QCCD: Girdelines for the Testing of Chemicals, 509, Crop Field Trial,
~Q	Adopted Sept 7, 2009
GLP	Yes V V V

Ten field trials were conducted to measure the magnitude of BYI 02960 residues in/on celery following two broadcast foliar spray applications of BYI 02960 200 SL. BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.9-2).

Table 6.3.2.9-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Leafy Vegetables

NAFTA Growing Region	Submitted ^a	Requested (NAFTA)
1	2	Requested (NAFTA)
1A		
2	2	2 b 2 b
3	3 (1 celery)	3,0
4		
5	11 (Scelery)	
5A		
5B	(. &° X \	
6		~′°°
7		
7A 8 9		
8		
9	14(4 celeby)	
10	14(4 celevy)	
11 6		
12		₩ 2 2
		36
Total	36	36

- a Sixteen of the thirty-fix trials were dealine trials (one in Region 1, two in Region 2, six in Region 5, and seven in Region 10); four of the decline trials were conducted in celery. The additional decline trials were performed to meet EU requirements.
- b For head lettuce and for leaf lettuce, one trial soch was requested for either NAFTA Region 1 or 2.

Material and Methods

Individual application rates ranged from 0.177 to 0.187 lb BYI 02960/A/application (0.198 to 0.210 kg BYI 02960/ha/application). Seasonal application rates ranged from 0.358 to 0.371 lb BYI 02960/A (0.402 to 0.415 kg BYI 02960/ha). All applications were made at growth stages ranging from BBCH 43 to 49 (BBCH 43: 30% of the final size typical for the variety reached; BBCH 49: 90% of the final size typical for the variety reached. The interval between the applications was 5 to 8 days. The spray volumes ranged from 10 to 33 GPA (956 311 L/ha).

All applications were made using ground-based equipment. The adjuvant NIS (Non-ionic Surfactant) was to be used in one third of the applications at 0.2% (v/v); the adjuvant MSO (Methylated Seed Oil) was to be used in one third of the applications at 0.25% (v/v); the adjuvant COC (Crop Oil Concentrate) was to be used in one third of the applications at 1% (v/v).

Bayer CropScience

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.9-3. Study use patterns are summarized in Table 6.3.2.9-4.

Table 6.3.2.4-3. Trial Site Conditions for BYI 02960 on Celery

		Soil (Charac	teristics	a	Meteorolo	ogical Data
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	рH	CEC (meq/1400g soil)	Total Rainfall (in)	Temp Range
RV027-11DA	2011	Sandy Loam	\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\	6.3	5 13.5 °	07.68	9 -72 W
RV028-11DA	, MI 2011	Sandy Loam	24.1	7.00	25.3 °C	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}	5985
RV029-11DA	, CA 2011	Sandy Cay Loam	© 1.2 €	0 7.6 4	25.3 <u>©</u> 325.3 <u>©</u> 32.3	1.00	\$26-6 5 \(\dot\)
RV030-11DB	, CA 2011	Sandy Loam	\$7.6	₹.4	28.6	\$3.48 \$	©7-65
RV031-11HA	, FL 2011	Sand	7 Z	62		© 1 2 °≈	47–73
RV032-11HA	2011 ×	` *\ '\'	3.5	8.4	223 223	0.59	55–80
RV033-11HC	, MI [©]	Mucks	\$2.5	3 .3	1900	\$5.06	53–72
RV034-11HA	2011 Ô	Silty Clay	113	7 (5)	34.4	1.50	50–71
RV035-11HA	, CAC	Loanysand	0.83	7.3	7.3	0.67	49–79
RV036-MA	, CA @	Loam	3	Ø.8 .	19.4	1.34	46–71

a Abbreviations used: %M = percent organic matter; CEC = cation exchange capacity.

Abbreviations used: MM = percent organic matter; CEQ = cation exchange capacity.

Data is for the interval of the month of first application through the month of last sampling. Meteorological data were obtained from nearby government scatter stations.

Table 6.3.2.9-4: Study Use Pattern for BYI 02960 200 SL on Celery

	-		Application					o l		
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name		Timing/Growth Stage (BBCH)	Sprag Volume GPA (L/ha)	Rate ib a.i./A trg a.s./ha)	Refresatment Interval (dec)	Total Rate Ibas./A (kg a.s./ha)	Ank Ma Adjuvana
RV027-11DA	, MI, Region 5,	BYI 02960 200 SL	TRÍÐ	Folder	45°) ©	30 (280)	0.184	NAC	0.367	COC,
	2011					28 (266)	0.184			OC, Q1% v/v
RV028-11DA	Region 5, 2011	BYI 02960 200 SL	TRYD	Føjrar S	49	19Q (176)	0.183	NA	0.\$70 (0.414)	NIS, 0.2% v/v
					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(175)	© 184 © 207)		J	NIS, 0.2% v/v
RV029-11DA	CA, Region 10,	BYI ©2 960 200 SL [©]	TR'TD	Føliar	45 *	30° (1)	0.484	NAª	0.366 (0.410)	MSO, 0.25% (v/v)
						263)	0.182 (0.204)	7		MSO, 0.25% (v/v)
RV030-11DB	Region 100 2011	BY192960 200 SL	ORTO O	O oliar	0 45	20 (187)	0.184 (0.206)	NAª	0.370 (0.415)	COC, 1% v/v
4					47	20 (190)	0.186 (0.209)	7		COC, 1% v/v
RV031-11HA	Region 5	B¥¥02969, ∠200 SIÇ	TRTD	Foliar	49	29 (275)	0.180 (0.202)	NAª	0.361 (0.405)	NIS, 0.2% v/v
	Region 5				49	30 (277)	0.181 (0.203)	7		NIS, 0.2% v/v

Table 6.3.2.9-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Celery

Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methods.	Timing/Growth Stage (BBCH)	Spray Volume GPA (L/ha)	Ratesh a.i./A (kg.a.s./ha)	Refresement Interval (dagg)	Total Rate Ib 4.2/A (kg a.s./ha)	Fank Mr. Adjuvants 2
RV032-11HA	, MB, Region 5, 2011	BYI 02960 200 SL	TROD	Fotoar V	47) 0	105	0.17 7 (0. 09 8)	NAS S	0.358	MSO, 0,28% (x(y))
RV033-11HC	, MPS	8YI 02960	TRTD	Foliar	\$ 15 A	13 (399) 26 (212)	0 \$2 (6 204) 0 182 (9 203)	NA NA	0369	MSO, MSO, 9.25% (v/v)
	Region 5, 2011,	2000 SL			* \(\tilde{\psi} \)	(2) 2) (2) 2) (2) 3 (2) 17)		Ş	(0.414)	1% v/v COC, 1% v/v
RV034-11HA	Region 5,	BY 02960 200 SL	PRTD		. 40	(175).	0.183 Ø.205)	NAª	0.369 (0.414)	NIS, 0.2% v/v
					49 .	₫19 (178)	0.186 (0.209)	5		NIS, 0.2% v/v
RV035-11HA	Region 10,	BY 1/02960 200 St	TRTI	Foliar	49	25 (238)	0.185 (0.208)	NAª	0.371 (0.415)	MSO, 0.25% (v/v)
		7.	Q,		49	25 (238)	0.185 (0.207)	6	0.5==	MSO, 0.25% (v/v)
RV036-11HA	Region 00, 2012	BYI 02960 200 SĽ	TRTD	Foliar	45	20 (187)	0.185 (0.208)	NAª	0.370 (0.414)	COC, 1% v/v
	.A. 3				47	20 (188)	0.184 (0.207)	8		COC , 1% v/v

In the harvest trials, duplicate composite samples of celery (untrimmed) were collected at the preharvest interval (PHI) of 1 day. In the four decline trials, duplicate composite samples of celery were collected from the treated plots at 0, 1, 7, 14, 21, and 28 days after application. Single composite samples of celery were collected from the control plots on the same day the target 1 day PHI samples were collected from the treated plots.

Additional samples of trimmed celery were collected. In addition, duplicate composite samples of celery were collected from plots 1 day after application 1 (b DAA1); however, as these do not reflect the proposed use rate, the residue data from these samples were collected for informational purposes only.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by TPLC MS/M susing stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BY102960, DFA, and DFDAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for celery ranged between 74 to 102%, and the standard deviation values were below 20%. (Table 6.02.9-5)

T 11 6222			2 D T T P P C C C	~ V	TT @- 11
Table 6.3.2.9-5:	Summary Summary	of Recoveries	© £BYL02960	tcom Leatv	Vegetables

Crop (An Anyalyte	Mbhin) =	Sample Size Size	R@overi&(%)	Mean Recovery (%) a	Std Dev (%)
		♂0.01 ©	7 . 6	92,73, 114,87, 81, 83, 74	86	13.9
,	B ¾ 002960√	0. 100 · .	7 7	\$1, 111, 109, 90, 77, 87, 95	93	13.3
		\$8.000		§ § 105, 100, 101	102	2.6
\$		0.030	7 7	307, 91, 73, 97, 102, 96, 102	95	11.2
Celer	DFA	0.100		73, 66, 71, 71, 69, 92	74	9.3%
		8,000	\$\frac{3}{2}\frac{2}{2}	104, 92, 101	99	6.2
, i	, O	(O.010)		100, 80, 103, 90, 94, 94, 102	95	8.1
<u> </u>	DELAF &	0.100	©, 6	89, 101, 97, 86, 79, 97	92	8.3
		£.000 €	3	95, 88, 93	92	3.7

a Mean Recovery = mathematical average of all recoveries

The free of storage stability study indicates that BYI 02960 residues were stable in representative crops of the respective crop group (spinach leaves and tomato fruit, high water content representatives) during frozen storage for at least 18 months (557 days) prior to analysis. The

maximum storage period of frozen samples in this study for BYI 02960 was 238 days. Additional freezer storage stability data for BYI 02960, DFA, and DFEAF in representative crops are being generated through 24 months and will be reported separately. A summary of the current storage conditions are shown in the Table 6.3.2.9-6.

Summary of Storage Conditions for Celery Table 6.3.2.9-6:

conditions are she	own in the Table 6.3.2.9-6		\$	
Table 6.3.2.9-6:	Summary of Storage C	onditions for Celer	y	
		Maximum Average Storage	Actual Storage	Interval of O
Residue	Matrix	Temperature (Deration	Storage Stability 5
Component(s)	(RAC)	°C	nyonths b	months co
BYI 02960	Untrimmed Celery Stalk	₹7	→ 8 © ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	18 (557 days) (1)
B11 02900	Trimmed Celery Stalk	<-1 6 ° 25°	(% 2,78 %) (\$238 days)	(557 days)
DFA	Untrimmed Celery Stalk	\$ \$\int_{\inttileftinteta\int_{\inttileftittetallettileftileftileftileftileftileftileft	8 © (23 & days) ©	(557 Gays)
DIA	Trimmed Celery Stalk		238 days)	\$\times \Q18 \&\times \qquad \qquad \qquad \qquad \qquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
DFEAF	Untrimmed Celer Stalk	×-17	(23 days)	18© (557 days)
Drear	Trimmed Celery Stalk	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	8	18 557 days)

The maximum average storage temperature is from the time of sample receipt at EXP until sample extraction and is the maximum of all average freezer temperature at BRP While preparing for sample analysis, the samples were maintained in a laboratory freezer.

The storage duration is the time from first sampling through the last samp@extraction.

The total BYI 02960 residue data for celery following foliar applications of BYI 02960 200 SL are The total BYI 02960 residue data for celery following folias applications of BYI 02960 200 SL are shown in Table 6.3.2.9-7. The effect of common rood preparation practices on the total BYI 02960 residue in/on celery is summarized in the Table 6.3.2.9-8.

^{2012.} Storage stability of BYI 02960, difluoroacetic acid, and and A. difluoroethyl-amino-furanone in plant matrices. Bayer Cropscience Report 1997 RARN P046, amended version including 18-month data (KIIA 6 1/01)

Table 6.3.2.9-7: Total BYI 02960 Residue Data from Celery after Two Foliar Applications of BYI 02960 SL

										0
. Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Pot Name	Total Rafe Ib a.s./A (kg a.s./ha)	Sampling Interval	BYI 02960 B Residue (mg/kg	Dr. Residue	DFRAFResidue (mg a.s: kgqiiv./kg)	Total BY 1 02960 Residue
	ed Celery Stalk			Q	· · ·		·	-	Q	
RV027- 11DA			Untrimmed celery stalk			7 14 14 27 28	0:100 0:100 0:100 0:485 0:320 0:330 0:157	0.050 0.050 0.050 0.059 0.059 0.078 0.066 0.115 0.140	, V	1.3 0.16 Avg: 0.73 0.68 0.54 Avg: 0.61 0.39 0.39 0.25 0.26 Avg: 0.25 0.16 0.31 Avg: 0.24 0.21 0.19 Avg:
RV028- 11DA	MI, Q Region 5 2011	Green Bay	Ontrimped celery stalk	TRATO	©370 (0.414)	7	1.70 2.20 0.272 0.170 0.065 0.059	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	1.8 2.2 Avg: 2.0 0.33 0.23 Avg: 0.28 0.12 0.12 Avg: 0.12 0.089 0.070 Avg: 0.079
V	1						Cor	ntinued (on next i	nage

Table 6.3.2.9-7 (cont'd): Total BYI 02960 Residue Data from Celery after Two Foliar Applications of BYI 02960 SL

		BY1 0296	UBL							0
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Pot Name	Total Rafe Ib a.s./A (kg a.s./ha)	Sampling Interval	BYI 02960 Residue (mg/kgg	DRA Residue (mg a.S. equiv./kg)	DF KAF Residue (mg a.s: eguiv./kg)	Total By 1029 () Residue
Untrimm	ed Celery Stalk					y	, Q	·	J Q	
RV028- 11DA (cont'd)	, MI, Region 5, 2011	Green Bay	Untrimmed celery stalk	TRTA	0.370		0.010 0.010 50.010 50.010	9.050 0.050 9.050 20.050	© 0.010 <0.010	0.070 0.070
		\$								Avg: 0.070
RV029- 11DA	, CA, Region 10, 2011	Command	Unfrimme	***	0.266 (6.410)		i Ca	©0.050 <0.056	0.023	3.8 2.5
			Celery static				2.31	\$0.050 \$0.050	0.021 0.020	Avg: 3.2 2.4 2.5
				J 7			\$\frac{2.43\tilde{3}}{\tilde{3}}	<0.050	0.020	Avg: 2.4
			4				1.57	<0.050	0.019	1.6 Avg: 1.3
		Congnistade				↑14 ○	0.675 0.673	<0.050 <0.050	0.012 0.011	0.74 0.73 Avg:
						21	0.545 0.596	<0.050 <0.050	0.010 <0.010	0.74 0.60 0.66
						28	0.455	<0.050	<0.010	Avg: 0.63
4						26	0.367	<0.050	<0.010	0.43 Avg: 0.47
RV030- 11DB	, CA, Region 40, 2011	Conginistado r	Untriponed celery	TRTD	0.370 (0.415)	0	4.25 3.20	<0.050 <0.050	0.025 0.020	4.3 3.3 Avg:
			Somm			1	3.15 3.17	<0.050 <0.050	0.024 0.024	3.8 3.2 3.2
	54									Avg: 3.2

Table 6.3.2.9-7 (cont'd): Total BYI 02960 Residue Data from Celery after Two Foliar Applications of BYI 02960 SL

		D110290								0 .
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rak Ib a.s./A (kg a.s./ha)	Sampling Interval	BYI 02960 Residue (mg/kg)	Dra Residue (mg a.S. equiv./kg)	DFKAFResidue Amg a.s: <quiv. kg)<="" th=""><th>Total BVI 02960 Residue</th></quiv.>	Total BVI 02960 Residue
Untrimm	ed Celery Stalk			2		y `	, Q			
RV030- 11DB (cont'd)	CA, Region 10, 2011	Conquistado r	Untrimmed celery stalk	TRTD		# A A A A A A A A A A A A A A A A A A A	0.366 0.366	0.050 0.050 0.050 0.050 0.050 0.050	, V	1.6 1.9 Avg: 0.74 1.2 Avg: 0.99 0.64 0.43 Avg: 0.53
RV031-	FL	Tango (Untrimmed	F 5) (0.2935 \$ \$1.67	<0.050 <0.050	<0.010	0.35 Avg: 0.34 1.7
11HA RV032-	Region 3, 9		celeov stark Antrimmed	TREFD	O" &	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.56 1.79	<0.050	0.016	2.6 Avg: 2.2
11HA	Region 5, 2011		celerý Salk «	~ ~			2.11	<0.050	0.016	2.2 Avg: 2.0
RV033- 11HC	Region 5,		Ontrimmed celery stalk		©369 ©.414)	1	0.974 1.20	<0.050 <0.050		1.0 1.3 Avg: 1.1
RV034-	MB, Region 5, 2011	UtaQ Salt Lake	Untringued celoty Stalk Untringued celery	ŤŖŤD	0.369 (0.414)	1	3.65 3.37	<0.050 <0.050	0.027 0.022	3.7 3.4 Avg: 3.6
RV035- 11HA	Region 10,		≪©stalk		0.371 (0.415)	1	6.68 5.29	0.064 0.058	0.054 0.046	6.8° 5.4 Avg: 6.1°
RV036-	, CA, Region 10, 2012	Sonora	Untrimmed celery stalk	TRTD	0.370 (0.414)	1	2.15 2.19	<0.050 <0.050	0.038 0.029	2.2 2.3 Avg: 2.2

Total BYI 02960 Residue Data from Celery after Two Foliar Applications of Table 6.3.2.9-7 (cont'd): BYI 02960 SL

		BY10296	UBL							0
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rafe Ib a.s./A (kg a.s./ha)	Sampling Interval	BYI 02960 Residue (mg/kgg)	DR Residue (mg a.S. gquiv./kg)	DFKAFResidue (mg a.s:keguiv./kg) &	Total By 1 02% Residue
Trimmed	Celery Stalk			Q0"		y ` @				
RV027-	, MI,	Tall Utah	Trimmed	TRTD	0.36	**L)	Q.J.06	20.050	×0.010°	0.17
11DA	Region 5, 2011		celery stak		(0.3412) (0.3412)		1 07.109	0.050	<0.010	0.17 A g:
RV028-	, MI,	Green Bay	Trimmed	TRTD	0.300		0.138	3 0.050	⊗ 0.010≥	0.20
11DA	Region 5,	(Olery stalk	TRTD	(0.414)		0.133	₹ 0.05 €	<0.010	
	2011	Ţ,	\(\text{\text{\$\sigma}}\)	. ~						Avg: 0.20
RV029- 11DA	, CA,	Command	Trimmed	TRIO	0.366 (6.410)		0.280	©0.050 <0.056	<0.010 <0.010	0.38 0.34
IIDA	Region 10, 2011		celery stalk	٦.	(0 8410)		0.280 \ \ \ \ \ \	0.0.20	<0.010	Avg:
	2011									0.36
RV030-		Conquistado	Trimmed	TRÆÐ	0.370 (0.415)		×0.582 g	\$0.050	< 0.010	0.64
11DB	CA,	Conquistado	elery stalk	TRADO	(0.415)	X &	0.841	0.050	0.010	0.90
	Region 10			Š ž	Y "	f o'	\$			Avg:
DV/021	2011	(V) (V) (V) (V)	Time	TDASA	0827.1		@ @ 0(2	<0.050	<0.010	0.77
RV031- 11HA	, FL,	Tango (Trimmed Celery	TRAD	0361 (0.405)		0.862 0.541	<0.050 <0.050	<0.010 <0.010	0.92 0.60
111174	Region 3, ©		celery@eaf		0.403	*	0.541	<0.030	<0.010	Avg:
	<u> </u>		4 %	'	0.					0.76
RV032-	Š,	h ƙNUÆV	Frimmed	TRFD	1003 58	≫1	0.066	< 0.050	< 0.010	0.13
11HA	MB,		čelery stalk	·	(0.402) S	*	0.035	< 0.050	< 0.010	0.095
	Region (5)	4 5			ه ۱					Avg: 0.11
RV033-		Talkotah	Or rimmed	TANTD	Q 369	1	0.045	< 0.050	< 0.010	0.11
11HC	Region 5, 2011	Tall Stah	celery@talk	. Oʻ	(0.414)	1	0.101	< 0.050		0.16
	2011									Avg:
				~ ~						0.13
KV034-		Utaby Salt	Trimmed	TR.TD	0.369	1	0.742	<0.050	<0.010	0.80
IIHA	MB,	Lake	ceierystalk	N N	(0.414)		0.743	< 0.050	< 0.010	0.80 Avg:
	2014 (1						0.80
RV035-	, CA, \	Sonora «C	Trimmed	TRTD	0.371	1	0.749	< 0.050	0.011	0.81
11HA	Region 10		celery štalk		(0.415)		0.828	< 0.050	< 0.010	0.89
	MB, Region 5, 2014 Region 40, 2017		Ą							Avg: 0.85
4.1	y S A						Con	ntinued	on next	<u>—</u> па о е
							COI	Cu (on near j	ouge
		B.								
) ·									

Table 6.3.2.9-7 (cont'd): Total BYI 02960 Residue Data from Celery after Two Foliar Applications of BYI 02960 SL

Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (kg a.s./ha)	Sampling Interval (day D	BYI 02960 Residue (mg/kg)	Dr. Residue (mg a. Cequiv./kg)	DFKAFResidue Amg a.s: eguiv./kg)	Total BYI 02960 Residue?
Trimmed	Celery Stalk			QQ" '		y	? Q	\O'	J Ö	
RV036-	, CA,	Sonora	Trimmed	TRTD	0.3.70	**L**	Q.526	20.050	×0.010°	3 .59
11HA	Region 10,		celery stalk		(0.414)		1 0.386 a	₹ 0.05 Q	<0.010	0.45 。
	2012				Õ ,	Ŗ "A				Avg:

- a Sampling interval is the interval between la Capplication and Carvest date.
- b Total BYI 02960 residue is the sum of BY 02960 DFA, and DFFQ residues in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the malyte LOQ value. These totals represent the upper limit of what the residue level Unight to
- c Maximum residue found in untripured colery stalks at PHI
- d HAFT residue found in untrimmed celery stalks PHI

Table 6.3.2.9-8: Effect of Processing on Total BV 02967 Residue in/on Celes

Plot Name		PHI	e-Harvest Processing Factor a Average Process
TDTD	Untommed Celery Stalk (AAC) Trimmed Celery Stalk	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NA NA Trimmed Celery St 0.270.70, 0.15, 0.24, 0.35, 0.06, 0.12, 0.22,

- a The processing factor for total BYI 02960 was calculated by comparing the total BYI 02960 residue in the residue reduction sample with the total BXI 02960 residue to the raw agricultural commodity (RAC) matrices.
- b NA = Not applicable

Conclusion

Ten field trials were conducted to measure the fragnitude of total BYI 02960 residues in/on celery following two broadcast foliar spray applications of BYI 02960 200 SL. The total BYI 02960 residue data are sumparized in Table 6.3.29-9.

Total BY 02960 residue in unfrimmed celery generally declined with time; the peak residue was always detected at the PHI of 1 day. Trimming celery decreased the total BYI 02960 residue by an average processing factor of 0.25X.

The residue data provided for celery are suitable for regulatory purposes.

Table 6.3.2.9-9: Summary of Residue Data for Total BYI 02960 from Celery

						Total BY	T 02960 F	Residue 1	Levels (p	pm)	>
Commodity	Plot Name ¹	Total Application Rate lb a.s/A (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max after PHI	HART 2	Median 3	Mean Man	Standard Deviation
Celery untrimmed	TRTD	0.358 to 0.371 (0.402 to 0.415)	1	10	0.23	6.8		6.1		3 2.3	[©] 1.7
1 TRTI 2 HAF 3 calcu	D = treated Γ = Highes lated on th	no.358 to 0.371 (0.402 to 0.415) plot receiving two first Average Field Trize e basis of residue value of the state of th	Toliar spray all lives at the	PHI A A A A A A A A A A A A A A A A A A A							1.7

IIA 6.3.2.10 Pulses, dry - beans and peas

Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on legume vestables (except soybean); (Crop Subgroups 6C). The use pattern in North America is summarized in Table 6.3.2.10-1.

A total of twenty trials were conducted in dry pulses. The studies are described below

Table 6.3.2.10-1: Target Use Patterns for the Application of BYQ02960 on Legume Vegetables (Except Soybean) in North Application of BYQ02960 on Legume Vegetables

			Rat	e/Application Spray Vol	lume
Test Subs.	No. of Apps.		ulated uct (fp)	Active Substance (a.s.) Active Substance (a.s.) App. PHI Additive GPA FE) PHA
Subsi	търрог	fl oz/A	mL/ha	Name Days Days Days Days Days Days Days Days	тпа
BYI 02960 SL 200	2	14.0	1025	BYI 0.183 205 10 7 0 055 10-30 94	-282

GPA = gallonsper acre LPHA = liter per hectare

Report:	KOTA 6.32.10/01/; E.L., and D. L., 2012
Title:	BYI 02960 200 L - Magnitude of the Residue In/on Dried, Shelled Pea and Bean (Except
	Soybean), Foliage of Legume Vegetables (Except Soybean), (CG 6C and 7A).
Report No &	RARVY028, dated June 20, 2012 2012
Document No	₩-4332 60 -01-1
Guidelines	US: RPA Residue Chemistry Test Guideline OPPT 860.1500, Crop Field Trials
EG"	Capada: PORA DACO 7.41, Supervised ResiduO Trial Study
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PMR DACOO.4.2, Residue Decline
	OECD: Guidelines for the Testing of Chemocals, 509, Crop Field Trial,
Q _j	Adopted Sept. 7, 2009. F
GLP ©	Yes O N O

Twenty field trials were conducted to measure the magnitude of BYI 02960 residues in/on dried, shelled pea and bean (except soybean), and foliage of legume vegetables (except soybean) following two broadcast foliar spray applications of BY 02960 200 SL. BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.10-2). Since foliage of legume vegetables is not imported into Europe, this dessier will focus on dried, shelled pea and bean, only. Complete information on the study, including the data on foliage of legume vegetables, was submitted in the Global Joint Review Subtrassion in October 2012.

Table 6.3.2.10-2: Trial Numbers and Geographical Locations for BYI 02960 in/on dried, shelled pea and bean (except soybean)

		D I D.			D.: 1 D	(D° 7
NAFTA		Dried Peas			Dried Beans		
Growing	Submitted	Requ	ested	Submitted	Requ	iested 5	
Region	Submitted	EPA	PMRA	Submitted	EPA	PMRA	
1					4		7
2				<i>≥</i> 0			
3					Ü ,		
4			4	, Ő			
5	1		1 4	4 🗳	& 4 L	40	LO"
6			Q Q	~ ·			D'
7			W Ö				
7A							K°
8		×					
9							
10				J 10 .			
11	5	Q b					
12					9, 9	&	
13			8 4				
14	4						
TOTAL	10 🔬	\$ 5 6	5 5	, O 10 kg	,	5	

a Eight trials (4 pea and 4 bean) were decline trials. The additional frials were performed to freet EU guidelines. The suggested regional distributions for ten pea and ten dried beautiful are shown. The required number of trials for Crop Subgroup 6C and A and the actual placement and number of trials in this study are provided.

Material and Methods

Individual foliar application rates ranged from 0.4.79 to 0.188 lb BYI 02960/A/application (0.200 to 0.211 kg BYI 02960/ha/application). Seasonal total application rates ranged from 0.361 to 0.375 lb BYI 02960/A (0.404 to 0.420 kg BYI 02960/ha). Reliar applications to plot TRTP2 for the collection of seed from peas were made at BBCH 72 to 88 CBCH 72; 20% of pods have reached typical length; juice exudes if pressed, BBCH 88, 80% of pods ripe, seeds final colour, dry and hard). The interval between the foliar application was 8 to 10 days. Foliar applications to plot TRTB2 for the collection of hav and seed from bean darget 7 day PHI) were made at BBCH 70 to 89 (BBCH 70; first pods visible, BBCH 89; Fully ope: pods ripe (bean hard). The interval between the foliar applications was 8 to 10 days.

All foliar applications were made using ground-based equipment. One adjuvant used was used in all of the applications and was either NIS (non-ionic surfactant) at a target of 0.2% (v/v), MSO (methylated seed 0.2% at a target of 0.25% (v/v) or COC (crop oil concentrate) at a target of 1.0% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.10-3. Study use patterns are summarized in Table 6.3.2.10-4.

Table 6.3.2.10-3. Trial Site Conditions for BYI 02960 on dried, shelled pea and bean (except soybean)

Trial	Trial Location	Soil Cha	racteristi	csa		Meteorolog	ical Data
I riai Identification	(City, Country/State, Year)	Туре	ОМ	pН	CE	Total (Total (Tin)	Temp. Range (°F)
RV180-11HA	, ON	Loam	3.3	7.3	11	, 5 ⁹ 54 , &	57 5 82
RV181-11HA	, ID	Sandy Loam	\bigcirc 0.8	72	11.9	0.64	\$3-90@
RV182-11HA	, ID	Loam	2.1	<u>8</u> .1	21.8 😸	0,40	¥ 47- 90
RV183-11HA	ID	Sandy Loang	1.8	Ž 7.5 °	25C	ر 0.89	48-97
RV184-11HA	, SK	Loam	4.51	<i>5.</i> 9 2	15.5	\ [©] 7.07\$	2 49-77
RV185-11HA	SK	L9am J	#.86 @	7.53°	20.	3.35	گر 49-77
RV186-11DA	, WA	Sandy Loam	1,1	A 2	2 .6	0.73	2 48-87
RV187-11DA	, OR	Sandy Loam O	, 5 <u>,</u> 2	6 5.7 L	¥14.2.Ç	* 44 0 &	45-82
RV188-11DA	, SK	SAL loam	\$ 5.6 ®	6.43	1505	\$3.55 ₆	42-77
RV189-11DA	, SK Q	Loam	4.90	835	\$1.2 (3:55	42-77
RV190-11HA	, O	Silt Loam S	Q .3	Q 5.7	16%	4 .1.79	41-84
RV191-11HA	K\$ [©] &	Silty Clay Loam	3.74	5	₽8.4	9.08	66-96
RV192-11HA	ØN [○]	Sandy Clay Loam	4.2	£6.5 ×	21.2	ຶ້ 11.50	49-84
RV193-11HA	, AB	i Kam Si .	Ž.27 &		.100	3.25	34-81
RV194-11HA	TX	San Cy Clay Doam	0,2	©7	40	0.01	71-101
RV195-11HA		Lown 2	3 2.1	8.1	21.8	0.31	51-91
RV196-11DAO	, IA	Silty Clay Loam	4.1	6.6	22.1	19.50	40-90
RV197-11DA	, ND Ø	Clay Loam	3.3	J.7	18.3	11.54	39-83
RV198-CYDA	, CAÇ	Sandy Loan	~ Ø.55 ^	% 6.3	4.9	1.69	40-93
RV199-11DA	, ID/	Sandy Lean	0.8	7.2	11.9	1.15	46-90

Abbreviations used %OM = percent organic matter; CEC = cation exphange capacity.

Study Use Pattern for BYI 02960 200 SL on dried, shelled pea and bean (except Table 6.3.2.10-4: soybean)

			Application									
	'ear)				Ap	piication	*					
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA (Da)	Rate Ib a.s./A (kg & A	Retreathent Interval	KAPC Ib a.S./A	Tank Mix Adjuyants		
Peas, dried							, O (<i>></i> /		Ž		
RV180-11HA	, ON, Region 5, 2011	BYI 02960 200 SL	TRTP2	Broad- cast		~~ "			0.365	NIS, 0.20 % v/v		
					85 N	16 (146)	0.180	90		0.20 % v/v		
RV181-11HA	ID, So Region 1 1, 2014	BYI 02969 200 SL	TRTE	Broad- Ocast Foliar	BBCHC 77	17. (162)	0.184 (0.206)	NA S	0.367 (0.412)	NIS, 0.20 % v/v		
			~~~		BBCH 8	(451)	(0.1883 (0.205)	10		NIS, 0.20 % v/v		
RV182-11HA	(201) Region kl, 2010	BYI © 02960 200	TREF2	Bread- Cast foliar	BBCH 86	22 (202)	0.183 (0.205)	NA	0.370 (0.415)	MSO, 0.25 % v/v		
	\$' 4			I . Oʻ	100	23 (212)	0.187 (0.210)	9		MSO, 0.25 % v/v		
RV183-11HA	ID Region 11,	BXV 02960 200 SL	TRIP2	Broad çastı falfar	BBCH 80	25 (235)	0.184 (0.207)	NA	0.368 (0.413)	COC, 1% v/v		
, y					BBCH 84	25 (234)	0.184 (0.206)	10		COC, 1% v/v		
							Conti	nued (	on next po	ige		

Table 6.3.2.10-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on dried, shelled pea and bean (except soybean)

		ехсері sc	,							· · · · · · · · · · · · · · · · · · ·
	ar)				Ap	plication	l			
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Actual Spray Volume CPA (Du)	Rate lb a.s./A (kg & A.s./ha)	Retreatment Interval	Total Rate ib a.s./2 (1898./ha) 28,	Tank Mix Adjuyants
Peas, dried		Г				°~,				Ÿ
RV184-11HA	SK, Region 14, 2011	BYI 02960 200 SL	TRTP2		JSBCH 4	A. 7		NA O	(0.369 (0.454)	NIS,
						12 5				0.20 % v/v
RV185-11HA	SK, Region 14,	BYIN 02960 2000 SL	TROZ	foliar	BBCH 79	(108) V (4)	0. \$2 (\$204) \$	NA	0.366 (0.410)	COC, 1% v/v
Ö						\$\frac{12}{(109)}\bigg\{}	Ø.183 (0.206)	9		COC, 1% v/v
RV186-LDĎA	Region 114	©YI ©2960 200 200	FRTP2	Afoliar (4	<b>^</b>		0.185 (0.207)	NA	0.368 (0.413)	NIS, 0.25 % v/v
	2011				<b>₿</b> ВСН 82	20 (187)	0.184 (0.206)	10		NIS, 0.25 % v/v
RV187-11DA	Region 19,	BYI 02960 200 SL	TRJP2	Broad- cast foliar	BBCH 79	20 (188)	0.184 (0.206)	NA	0.370 (0.414)	COC, 1% v/v
			Q Q		BBCH 81	21 (192)	0.186 (0.208)	10		COC, 1% v/v
							Conti	nued	on next po	nge

Continued on next page...

Table 6.3.2.10-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on dried, shelled pea and bean (except soybean)

										<i>0</i> ,
	ar)				Ap	plication				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA (Pus)	Rate lb a.s./A (kg A.s./ha)	Retreatment Interval	Total Racylly a.s./A	TankMix Adjuyants
Peas, dried							· · · · · ·			Ÿ
RV188-11DA	SK, Region 14, 2011	BYI 02960 200 SL	TRTP2	Broad- cast Soliar					0.366 (0.450)	MSO, Q.25 % v/v
						12 (114)	0.18	1000 5		0.25 % v/v
RV189-11DA	SK, SRegion 124, 2014	BYI, 02960 200 201	TRIPE	Broad- Ocast Foliar	BBCHC 79	12 (108) (108) 12 (111)	$\sim$ $^{\times}$	NA S	0.366 (0.410)	COC, 1% v/v COC, 1% v/v
						y K				V/V
Beans, dried	O .	, Q	4 %		<del>y</del> 0	<b>4</b>		•		
RV190 LIJIA	Q. (4), , , , , , , , , , , , , , , , , , ,	©2960 206 206	FRTB2	Bræd- Gast Goliar	BBCH 80	20 (185)	0.183 (0.205)	NA	0.366 (0.411)	NIS, 0.20 % v/v
Ą					BBCH 86	19 (179)	0.183 (0.206)	10		NIS, 0.20 % v/v
RV191-Ĭ1HA	KS, Region S, 2014	BY( 02960 200 SL	TRJB2	Broad- cast foliar	BBCH 70	16 (147)	0.185 (0.207)	NA	0.365 (0.409)	MSO, 0.25 % v/v
RV191-11HA			<b>Q</b>		BBCH 75	15 (143)	0.180 (0.202)	9		MSO, 0.25 % v/v

Table 6.3.2.10-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on dried, shelled pea and bean (except soybean)

									6	<u>v</u>
	ar)				Ap	plication		1		
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	potpog	Timing/Growth Stage (BBCH)	Actual Spray Volume (CPA (PMs)	Rate lb a.s./A (kg All)	Retreaspont Interval	Total Rate lb a.s./A.	TankMix Adjuyants
Beans, dried					· Ø		, O *	<i>&gt;</i>		A A
RV192-11HA	MN, Region 5, 2011	BYI 02960 200 SL	TRTB2		BBCH BBCH BBCH 82	20 (190) 21 (195)	0.184 (0.206) 0.186 (0.208)	NA 9	0.370 (0.453)	COC, \$1\% \$\vert \vert
RV193-11HA	AB, Region 7	8YI 02968 200 2U	TRTPS	Broad- Fast Foliar	BBCH (8) 81		(0.206) S	NO G	0.368 (0.413)	NIS, 0.20 % v/v
						(/) ~		10		NIS, 0.20 % v/v
RV195-11HA	ID, Region V,	○ BYI ○ 029 <b>6</b> 0 2 <b>9</b> 0 5 SL	TR*B2	Broad- y cast of foliar		22/ ( <b>20</b> 6)	0.184 (0.206)	NA	0.369 (0.414)	MSO, 0.25 % v/v
					<b>8</b> 8	22 (206)	0.185 (0.208)	8		MSO, 0.25 % v/v
RV196-11DA	IA, Region 5,	BYV 03960 2200 SL	TANTB2	Broad Cast	BBCH 83	21 (196)	0.184 (0.206)		0.370 (0.414)	NIS, 0.20 % v/v
, , , , , , , , , , , , , , , , , , ,				7	BBCH 87	23 (212)	0.186 (0.208)			NIS, 0.20 % v/v
RV197-110A	ND, Region 7,	BYI 02960 ₹ 200 SL	TRTB2	Broad- cast foliar	BBCH 80	15 (144)	0.188 (0.211)	NA	0.374 (0.419)	MSO, 0.25 % v/v
					BBCH 87	15 (144)	0.185 (0.208)	9		MSO, 0.25 % v/v



Continued on next page...

Table 6.3.2.10-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on dried, shelled pea and bean (except soybean)

		1	1							
	ar)				Ap	plication				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wedley Wedley	Timing/Growth Stage	Actual Spray Volume	Rate lb a.s./A (kg	Refreatment Interval	Rate Opa, S./A & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Galler & Gall	Tank Mar Adjukants
Beans, dried			Q		w w			\$ <b></b>	*\\ 4	i [*]
RV198-11DA	CA, Region 10, 2011	BYI 02960 200 SL		Broad-	BBCH. 73 8BBCM. 89	26 (187) Q			0.363 (6.409)	© 0°C, 0° 1% v/v COC, 1% v/v
RV199-11DA	ID, A Region 11, 2601	2000 SL &	TROB2	Broad- casty fother	BBCH BBCH	17 (148) (148) (17 (159)	9.181 (0.202)	¶A 10	0.361 (0.405)	NIS, 0.20 % v/v NIS, 0.20 % v/v

a NA = Not applicable.

From the treated plots, duplicate composite samples were cut at pre-harvest intervals (PHIs) ranging from 5 to 7 days (intended PHIs 1 days). In four pea decline trials, duplicate composite seed samples were collected from the treated plots at 0. For 7, 12 or 14, 20 or 21, 28, and 35 days after the last treatment. In four bean decline trials, seed samples were cut at 0, 7, 12 to 14, 21, 27 or 28, and 33 or 35 days after the last sampling

Single composite seed samples were cut in the control plots on the same day that the target 7-day PHI samples were cut in the treated plots.

The residue of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal sandards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYF 02960 residue value as the analyte LOQ value.



### **Findings**

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 0 to 110%, and the standard deviation values were below 20%. (Table 6.3.2.10-5).

Table 6.3.2.10-5: Summary of Recoveries of BYI 02960 from Pea and Rean

					<u> </u>	~~~
Crop Matrix	Analyte	Spike Level	Sample Size (n)	Recoveries (%)	Mean Recovery	₩d Dev (%)
		(ppm)	(11)		(/0)*	(/000)
	BYI 02960	0.010	16	70, 77, 96, 85, 79, 95, 83, 81, 5 107, 78, 93, 108, 99, 66, 74, 60	84 6	aA
		2.0	3	205, 92,80	92"	13
G 1	DFA	0.050	15	80, 81972, 679, 66, 72, 64, 74, 70, 89, 80, 77, 65, 76	73	7
Seed		10.0		\$7,9\Q3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		7
		0.010	) 0'   017 0		897	16
		<u>2</u> .0 <u>k</u>	<b>E</b> 7	102, 89, 104	98	8

a Mean Recovery = mathematical average of an recoveries.

The freezer storage stability study indicates that BYI 02960 residues were stable in navy bean seeds, a representative of the respective coop commodity (high protein content) during frozen storage for at least 18 months 558 days) prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 259 days. A summary of the storage conditions are shown in the Table 6 3 2 10-6.

Table 6.3.2.10-6: Summary of Storage Conditions for Pea and Bean

Residue Component(s)  Natrix Storage Temperature (°C) a	Actual Storage Duration months (days) ^b	Interval of Demonstrated Storage Stability months (days) ^c
BY \$02960;  Pea Seed \$\sigma < -17\$	8	18
	(259)	(558)
BYI 02960; Bean Seed V <-17	7	18
DFEAF; DFA Beato Seed <-17	(243)	(558)

a The maximum of all average storge temperature is from the time of sample receipt at BRP until sample extraction and is the maximum of all average (reezer temperatures at BRP and ABC Laboratories. While preparing for sample analysis, the sample were maintained in a laboratory freezer.

b The storage Hiration is the Jongest interval from field sampling to completion of the first extraction.

and A. 2012. Storage stability of BYI 02960, difluoroacetic acid, and difluoroethyl-amino-furanone in plant matrices. Bayer CropScience Report No. RARVP046, amended version including 18-menth data (KIIA 6.1.1/01).

The total BYI 02960 residue data for legume vegetables (except soybean); (crop subgroups 6C) following foliar applications of BYI 02960 200 SL are shown in Table 6.3.2.10-7.

Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); Table 6.3.2.10-7: Subgroups 6C) after Two Foliar Applications of BYI 02960 L

						1	1	4/2			
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Ommodity  Market Commodity	Total Rate & Lb a.s./A (kg a.s./A)	% Dry Matter "	Samping Internal Alays)	BYT \$2960 Besidue (Pag/kg)	DFA Residue Control (Ing. ja.s. equiv./kg)	DFEARResidue	Total BX+02960 Residue (mg a.s. equiv kg)
Peas, dri	ed		* 1			Q,	1	Q.	0		Ũ ^Y
RV180- 11HA	, Region 5, 2011	TRTP2	Meadow	Seed	0.365 0.4091	\$1.44		9.578 0.75 0	0.251	<0.010 <0.090	0.839 1.08 Avg: 0.962
RV181- 11HA	, ID, Region 11, 2011	TRTP	Progress No. 9	Seed (	0.367 (0.412)	88.70	J (	0.510	0.220 0.123	<0.010 <0.010	0.741 0.516 Avg: 0.629
RV182- 11HA	Region 1 201	TRT	FMK 888-	Seed	0.378 (0.315)	92009		0.0195 0.0138	<0.050 <0.050	<0.010 <0.010	0.0795 0.0738 Avg: 0.0767
RV183- 11HA	Region 11, 2011	TKTP2	Austrian Winter Pea	Seed	0.413) (0.413)	99.58 .	L F	1.47 0.860	0.635 0.489	0.0130 < 0.010	2.12 1.36 Avg: 1.74
RV184- 11HA	Saskatchewan Resion 14 2011		Admiral	Z Seed	0.369 (0.41-0)	» 85.85	7	0.132 0.134	0.116 0.112	<0.010 <0.010	0.258 0.256 Avg: 0.257
RV185-	Saskatcheway, Region 14, 2011	TRTIQ	Admiral	Seed	0.366 (0.410)	85.31	7	0.528 0.411	0.123 0.102	0.0185 0.0142	0.669 0.527 Avg: 0.598
	Saskatcheway, Region 14, 2011			7				Cont	inued oi	n next po	ige

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		( F	Subgroups	0 0 )		·	· F · · · ·				0
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A(Ng a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAGRESIQUE	Total B. 102960 (m. 2.s. equiyak
Peas, dr	ied				•		, Ø	~~	, \O'		
RV186- 11DA	, WA, Region 11, 2011	TRTP2		Ö	\$368 \$0.4135	90.34	7 2		3.15		2.32 2.73 2.73 2.53 4.53 d 3.41 Avg: 3.97 e
						Ø1.09	21 21	1.20 ©1.17		<0.010 <0.010	4.90 5.71 Avg: 5.31 3.56 3.55 Avg: 3.56
						92.45	35	1.05 0.982 1.21 0.949	3.40 2.92 2.66 2.45	<0.010 <0.010 <0.010 <0.010	4.46 3.91 Avg: 4.19 3.88 3.41 Avg: 3.64
								Cont	inued o	n next po	Ige

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		(I	Subgroups	0 0 )		·	· F · · · ·				0
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A(kg a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)		Total B. 102960 Residue (n.g. a.s. equivakg)
Peas, dr	ied						\Q'	~~	,\ ⁰ '		Q"
RV187- 11DA	OR, Region 11, 2010	TRTP2		Ö	\$370 \$0.4145		1 (		0.25%	0.0255 0.0293 0.0295 0.0295 0.0463	0.791 0.784 vg: 0.787 1.08 1.28 Avg: 1.18
						88.06	21 21	0.978 0.894 0.894 1.04 0.934		0.0392 0.0443 0.0608 0.0551	1.32 1.40 Avg: 1.36 1.63 1.48 Avg: 1.56
						87.36	35	1.15 0.928 0.985 0.818	0.494 0.412 0.475 0.444	0.0510 0.0445 0.551 0.434	1.70 1.38 Avg: 1.54 1.52 1.31 Avg: 1.41
								Cont	inued o	n next po	

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		(Clop	Subgroups	oc) and	1 1 WO 1	onai Aj	ppiicati	10113 01 1	J11 02)	00 BL	0
Trial Identification "	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s.Ackg a.s./ha)	% Dry Matter a	Sampling Interval g(days) here	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEARRSjdue (Ang. 1.8) (Ang. 1.8)	Total B. 102960 Residue (M. 2. equix kg)
Peas, dr	ied			Q0"		~	01	Q,	\O'		
RV188- 11DA	Saskatchewan, Region 14, 2011	TRTP2	Meadow	Seed O	\$366 \$0.410 \$	\$2.36 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		(0.683 (0.617)	0.118	×0.016 <0. <u>0</u> 10	0.811 0.743 Awg: 0.777
RV188- 11DA	Saskatchewan, Region 14, 2011	TRTP2	Meadow (	Seed *	0.366 (0.440)			0.202	0.0740 0.0548	<0.090 <0.010 >0.010	0.287 0.305 Avg: 0.296
RV188- 11DA	Saskatchewan, Region 14, 2011	TRTPŽ	Meadow		0.366 (0.410)	86(78		0.349 0.409	0.101 ©144	<0.010 <0.010	0.460 0.563 Avg: 0.512
RV188- 11DA	Saskatch Wan, Region 14,	TRTP2	Meadow			<b>89</b> .45	21 / 3 / 3	0.367 Ø.390	0.109 0.117	<0.010 <0.010	0.486 0.517 Avg: 0.502
RV188- 11DA	Saskatchewan Region 14 2011	JRTP2	Meastow 5	Seed	0.366 (0.410)	289.41		0.265 0.257	0.0640 0.0681	<0.010 <0.010	0.339 0.335 Avg: 0.337
RV188- 11DA	Saskarchewan, Region 14, 2011	TRTP	Mendow	Seed S	0.366 (0.410)	87.88	33	0.208 0.180	0.0604 0.0522	<0.010 <0.010	0.278 0.242 Avg: 0.260
	Saskatchewan, Region 14, 2011 Saskatchewan, Region 14, 2011							Cont	inued o	n next po	!ge

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		( I	Subgroups	)		· · ·	Τ				0
Trial Identification "	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./ACkg a.s./ha)	% Dry Matter ^a ©>	Sampling Interval (days)	BYI 02960 PESIGUE (mg/kg) PA	DFA Residue (mg a.s. equiv./kg)	DFEACHESIQUE & Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangaran Cangar	Total B. 192960 Residue (m. 23.8. equiy kg)
Peas, dr	ied			Q)	. •		~ W	Q.	, /O,		
RV189- 11DA	Saskatchewan, Region 14, 2011	TRTP2	Meadow	&eed	\$366 \$0.410 \$\infty\$	\$ 9.74 \$		\$\int_0.841 \$\int_0.917\$	9.174* 0.181 0.18	×0.018 0.0101	1.03 1.1,1 2 vg: 1.07
RV189- 11DA	Saskatchewan, Region 14, 2011	TRTP2	Meadow &	Seed *	0.366 (0.410)	75.1%		0.570	0.248	<0.090 <0010 ********************************	0.828 0.879 Avg: 0.854
RV189- 11DA	Saskatchewan, Region 14, 2011	TRTADŽ	Meadow 5	Seed	0.366	86Q7		0.712 9662	0.300 ©2331	<0.010 <0.010	1.02 1.00 Avg: 1.01
RV189- 11DA	Saskatchewan, Region 14,	TRTP2	Meadow	Seed	0366 (9.410)	<b>&amp;</b> 7.86	21 / J	0.746 ©0.843	0.341 0.414	<0.010 <0.010	1.10 1.27 Avg: 1.18
RV189- 11DA	Saskatchewan, Region 14 2011	TRTP2	Meatow 5	` ,*\	0.366 ( (0.4.10)	287.170		0.704 0.763	0.330 0.363	<0.010 <0.010	1.04 1.14 Avg: 1.09
RV189- 11DA	Saskatcheway, Region 14, 2011	ŤRTP	Mendow		0.366 (0.410)	87.69	33	0.807 0.812	0.457 0.441	0.0116 0.0105	1.28 1.26 Avg: 1.27
Beans, d	ried 🔊	4									
RV190- 11HA	OH, Region 3,	FRTB2	Vista	Seed	0.366 (0.411)	81.70	7	<0.010 <0.010		<0.010 <0.010	0.070 0.070 Avg: 0.070
RV 191-	Region 5, 2011	TRTP	Pink Eye Purplehull	Seed	0.365 (0.409)	84.04	6	0.0297 0.0426	<0.050 <0.050	0.402 0.474	0.482 <b>0.567</b> f Avg: <b>0.524</b> g

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		` .	buogroups				•				0
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Tokan Rate Lb a.s./A(kg a.s./ha)	% Dry Matter ^a &	Sampling Interval	BYI 02960 PResidue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEARRSjdue	Total Bon 12960 Residue (mga.s. equiyekg)
Beans, d	ried				1			~~ <u>~</u>	~_	<u> </u>	Q [°]
RV192- 11HA	, MN, Region 5, 2011	TRTB2	Great northern	Seed	\$370 \$0.415 \$\int \text{2}	\$1.33 Q	4	0,0193 0.0194	<i>J</i> ,	0.0124 0.0103	0.0817 0.0797 Avg: 0.0807
RV193- 11HA	Region 7A, 2011	TRTB2	Redbond	Seed *	0.368 (0.41)	86.48)	7 2	0.0638 0.0733	<0.050 <0.050 \(\sqrt{0}\)	0.0194 0.0190 >>	0.126 0.146 Avg: 0.136
RV195- 11HA	, ID, Region 11, 2011	TRTADŽ	Othello &	0 0	0.369 (0.414)	87\$8		0.0117	<0.050 \$0.050	0.0116 0.0135	0.0733 0.0736 Avg: 0.0734
RV196- 11DA		TRTB2	Brick Tursle	. "	W 1 - 1	<b>&amp;</b> 4.16		0.0784 Ø.0537	<0.050 <0.050	<0.010 <0.010	0.138 0.114 Avg: 0.126
Į.						782.22°	₹ 7	0.0685 0.0593	<0.050 <0.050	<0.010 <0.010	0.129 0.119 Avg: 0.124
r.						82.26	14	0.0919 0.0853	<0.050 <0.050	<0.010 <0.010	0.152 0.145 Avg: 0.149
4						84.02	21	0.190 0.206	<0.050 <0.050	<0.010 <0.010	0.250 0.266 Avg: 0.258
						88.62	28	0.249 0.238	<0.050 <0.050	<0.010 <0.010	0.309 0.298 Avg: 0.304
						88.65	35	0.213 0.262	<0.050 <0.050	<0.010 <0.010	0.273 0.322 Avg: 0.298

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		(Clop	Subgroups	00) 4110	11,1101	01141 1 1	opv		, , , , , , , , , , , , , , , , , , ,	00 52	0
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./Ackg a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 PResidue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEÆRRSJUNE & ODE ALS. EQUIV./kg)	Total B. 102960 Regidue (m. 2 equiy. kg)
Beans, d	ried						~ Ø	~~	~/ _O ,		<b>&amp;</b> "
RV197- 11DA	, ND, Region 7, 2011	TRTB2	Navigator	Seed O	0,374 0.419 0.374 (0.419)	78.80	7 Ž	Ő	<0.050		0.187 0.262 4wg: 0.225
					(0.449)				<0.050 <0.050 \$\frac{1}{2}\$\$\$<0.050 \$\frac{1}{2}\$\$\$0.050	y	0.167 Avg: 0.165
	G.				0.374 (0.419) (0.374 (0.419) (0.374 (0.419)	&6.48		,"	<b>*</b>	0.0516	0.0967 Avg: 0.102
					(9.419) 9.374	86.48 2 2 2 2 88.11	Ø 27	0.0284 9.0311 0.0171	< 0.050	0.0622	0.143 Avg: 0.137
					(0.419)	78.40	33	0.0365	<0.050	0.0416	0.128 Avg: 0.125
					(0.419)					0.0526	0.129 Avg: 0.129
								Cont	inued oi	n next po	ıge



Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		(F	Subgroups	0 0 )		<u>-</u>	- F				0
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A(kg a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEARRSjdue & Grigs Rg) Og g	Total BO 12960 Residue (Mg a.s. equity/kg)
Beans, d	lried			Q) (O)	•		, Ø	<b></b>	, \0'		
RV198- 11DA						83.06 83.06	140 21		<0.050 <0.050 <0.050 0.050	0.0322 0.0482 0.0549 0.0435 0.0746 0.0463 0.0474	0.155 0.171 Avg: 0.163 0.196 0.242 Avg: 0.219 0.215 0.198 Avg: 0.206 0.144 0.214 Avg: 0.179
						69.57	35	0.0184 0.0184 0.0380	<0.050 <0.050 <0.050 <0.050	0.0123 0.0187 0.0560 0.0464	0.0807 0.0871 Avg: 0.0839
					1	ı		Cont	inued oi	n next po	лgе

Table 6.3.2.10-7 (cont'd): Total BYI 02960 Residue Data from Legume Vegetables (Except Soybean); (Crop Subgroups 6C) after Two Foliar Applications of BYI 02960 SL

		` -	- 1	<u> </u>		Ondi 7 ij					0
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Totál Rate Lb a.s./A(Jkg a.s./ha)	% Dry Matter ^a	Sampling Interval ((days)	BYI 02960 Residue (mg/kg) R	DFA Residue (mg a.s. equiv./kg)	DFEACHESIQUE & CONS. (Ang. a.s. equis. (kg)	Total BON 12960 Residue (MEA.S. equingle)
Beans, d	lried			Q0"	V	~	~_ @`	Q.	\O'		Ŵ
RV199- 11DA	, ID, Region 11, 2011	TRTB2	Bill Z	Con	© 361 V0.405 V	\$9.16 Q	7.8	0.0960 0.09545 40.029©	W ,	0.0465 0.0502	0.413 Avg: 0.399
							Õ	0.029 0.029 0.039 0.0485 0.0485	0.266	0.0596 0.0492 0.0409	0.328
						<b>9</b> 0.08		0.0287 0.0287 Ø.0249	<b>V</b>	0.0423 0.0453 0.0380	0.278 Avg: 0.278 0.330 0.347
						80.08	an.	0.0202	0.244	0.0414	Avg: 0.339
								0.0332	0.290	0.0451	0.368 Avg: 0.337
		80 4				90.96	35	0.0367 0.0356	0.337 0.319	0.0536 0.0516	0.427 0.407 Avg: 0.417

- a Where a single value appears % dry matter was determined from one of the duplicate samples. Where two values appear, % dry matter was determined for each duplicate sample.
- b Sampling interval is the interval between last application and sample cut date.
- c Total BYI 02960 residue is the sam of BYI 02960 DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were sammed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.
- d Maximum residue found in pea Seds at the target PHI of 7 days.
- e HATY reside found papea scods at the target PHI of 7 days.
- f Maximum residue found in Dean seeds at the target PHI of 7 days.
- g MAFT residue found in bean seeds at the target PHI of 7 days.



#### Conclusion

Twenty field trials were conducted to measure the magnitude of total BYI 02960 residue in/on dried, shelled pea and bean (except Soybean); (CG 6C) following two foliar spray applications of BYI 02960 200 SL. The total BYI 02960 residue data are summarized in Table 6.3.2.10-8.

Summary of Residue Data for Total BYI 02960 from Dried, Shelled Pea and Table 6.3.2.10-8: (except Soybean)

Ommodity	lot Name ¹	Total Application Rate lb a.s/A (kg a.s./ha)	PHI (days)	fin ac			lean 3 22
Pea Seed	TRTP2	0.365 to 0.370 (0.409 to 0.414)		1 1‰ ((		3.07 0.785	1.06 1.13
Bean Seed	TRTB2	0.361 to 0.374 (0.405 to 0.419)	6-7	10 0.0700	0567 (35)(5)(0	0.524 0.138	0.100 0.147

- 1 TRTP2 = treated pea plot receiving two form spray application; TRTB2 = treated bean plot receiving two foliar spray application

1 TRTP2 = treated pea plot receiving two foliar spray application;
TRTB2 = treated bean plot receiving two foliar spray application
2 HAFT = Highest Average Field Trial
3 calculated on the basis of residue adues at the PHI
4 Sampling day showing highest residue.

Total BYI 02960 residues were considerably higher in dried peas compared to dried beans when treated according to the intended are notices. The total societies for the intended are notices. treated according to the intended one pattern. The total residue levels of BYI 02960 did not always peak at the intended PHI of 7 days. For dried peas maximum residues were detected 12 to 21 days; only one trial showed the residue maximum at the last sampling event. However, this residue level was far below the peak level in peas.

The residue behaviour in dried beans was less distinct: two trials showed the maximum residue at the PHI and two at the end of the sampling period. The overall highest residue in beans (0.43 mg/kg) was detected at the last sampling interval (35 days after the last application). However this value was by a The residue data provided for regume vegetables are suitable for regulatory purposes. factor of approx. 10 lower than the highest Pesidue in peas.



## IIA 6.3.2.11 Oilseeds – peanuts

## Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment on peanuts. The ase pattern in North America is summarized in Table 6.3.2.11-1.

A total of twelve trials were conducted in peanuts. The studies are described below.

Table 6.3.2.11-1: Target Use Patterns for the Application of BYI 0260 on Peanut in North Apprica

			Targe	t Rate/Application				Q 0	Spray	olumbe
		_	ulated ct (FP)	Active Substar	Target Tax		Adjuvant		C.D.	
Test Substance	No. of Apps	mL/A	fl oz/A	Name of a.s. a.s.	kg [©] A a.s./ha	Interval (Days)_2	<b>D</b> HI	/Additive	a \\	LPMA
BYI 02960 200 SL	2	415	14.0	BYL 92960 0.18	3 0.20 <b>5</b>	1,00		<b>5</b> 7.25	¥10-50¢	93-467

¹ Dyne-Amic or any non-ionic surfactant

Report:	KIIA 6,3.2.11/01; and A. M. 2012
Title:	BYI 02960 200 SL - Magnitude of the Residue in Peanut
Report No &	RARVY019, dated January 30, 2002.
Document No	₩ ² 424313-01-20
Guidelines:	US: EAA Resigne Chemistry Test Gindeline OPPT\$ 860,1500, Crop Field Trials
(~n	Canada: PMRA DACO 7.4 x, Supervised Residue Frial Study  PMRA DACO 7.4.2, Residue Decline
	PMRA DACO (4.2, Residue Decline
, Q	GECD: Guidenes for the Lessing of Themicals, 50%—Crop Field Trial,
	Adopted Sept. 7, 2009.
GLP	

Twelve field trials were conducted to measure the magnitude of BYI 02960 residues in/on peanut nutmeat and peanut hay following two broadcast tonar spray applications of BYI 02960 200 SL. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.11-2). Since pearut hay (as feed item) is not imported into Europe, this dossier will focus on peanut nutmeat, only. Complete information on the study, including the data on peanut hay, was submitted in the Global Joint Review Submission (if October 2012).



Table 6.3.2.11-1: Trial Numbers and Geographical Locations for BYI 02960 on Peanuts

NAFTA Growing Region	Submitted ^a	Requested @
1		Requested
1A		
2	8	8 2
3	1	
4	1	
5	7 0 0	N Q S
5A		
5B		
5B 6 7		@ ~ ? \
7		
7A Q 47 20		
7 7A 0 4 4 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
100		
100 7		Ö*
11		
	9 4 5 T	\$ \$7
Total O	12	12

a Four of the twelve trials were decline trials (two in Region 2, and one in Region 8). The additional decline trials were performed to preet EU requirements.

### Material and Methods

Individual application rates ranged from 0.176 to 0.188 lb BYI 02960/A/application (0.198 to 0.211 kg BYI 02960/ha/application). Seasonal application of the ranged from 0.354 to 0.376 lb BYI 02960/A (0.327 to 0.421 kg BYI 02960/ha/ All applications were made at growth stages ranging from BBCH 79 to 89 (BBCH 79: pearluts have attained final size and fill the cavity of pods; BBCH 89: fully ripe). The interval between the applications was 7 to 11 days.

All applications were made using ground-based equipment. All applications included a non-ionic surfactor (NJS) adjugant at  $\sqrt{100}$  rate of 0.25% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.11-3. Study use patterns are summarized in Table 6.3.2.11-4.

Table 6.3.2.11-3: Trial Site Conditions for BYI 02960 on Peanuts

		Soil (	Charact	eristics	a	Meteorolo	ogical Datab
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Range
RV120-10HA	SC, 2010	Sand	0.5	6.1	2.4	3.68	5088 Q
RV121-10HA	GA, 2010	Sandy Loam	0.8	ි 6.6	\$\hat{\partial}{\partial}\$	8.80 °	9 49-9 V
RV122-10HA	, VA, 2010	Sandy Loam	\$\text{1.5}	5.7		8.96	Ø6-75, Ø
RV123-10HA	AL, 2010	Sandy Loam	N≱, [€]		ŽŇA ° "O	©.23 ×	560-82
RV124-10HA	NC, 2010	Sandyloam	0.9		6.8	1.26	50-76
RV125-10HA	, GA, 2010	Joanny, Sand	\$\frac{1}{2}\ldots	7.2	5.5	\$\frac{1}{2}.32\$\frac{1}{2}\$	\$3-94
RV126-10HA	FL, 4	Sand	jòz		⁰ 4.1 ⁰	9.65 ×	♥ 67-90
RV127-10HA	, OK, 2010	Sandy Eoam	0.9	6.6		5.46	49-86
RV128-10DA	NO, 2010	Loamy Sand	©0.7 ×	6.4 §	6.5	\$ 2.04	38-76
RV129-10DA	, Gh, 2010 ⁰	Sandy Loam			7.1	4.08	54-89
RV130-10D	, OK 2010	One Sasay Loan	0.80	5.6	<b>8</b> .1	5.03	53-86
RV131 JODA	To, 2010	~ ~. \ ()	\$0.5 \times	\$7.9 \$7.9	6.6	4.03	51-90
Abbreviations us Data is for the in obtained from no NA = Not Agaila	sed OM fercento was val of the month of the month of the month of the month we all the control of the month of the control of the month of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	rganic matter; CDC = first application thro ther station	e cation bugh the	exchang	e capacity . f last sampling.	Meteorologica	l data were



Study Use Pattern for BYI 02960 200 SL on Peanuts Table 6.3.2.11-4:

	<	ou)			A	pplicat	ion			an °	<u>~</u>
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Exowth Stage (BBCH)	Spray Volume GPA (L/ha)	Rate lb & A (kg a.i./ha)	Retreatment Interval	Kafe lb a.s. s./ha)	Tank Klix Adjukants	Ş
RV120-10HA	SC Region 2 2010	BYI 02960 200 SL				15 (140)	©183 (0.205) (0.184) (0.206)		9366 (0.4 kl)	Done-Amic, 0.25% v/v	
RV121-10HA	GA Region 2 2010	BYI@2960 290 SL				29 (270) (270) (270) 90 (280)		NAG Q Z Z Z Z Z	0.365 (0.310)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	
RV122-10HA	Region 2 2010	BY 1 029 60 200 SL	TRADO		<b>8</b> 7	(A) 20) *	0.188	NA ^a	0.376 (0.421)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	
RV123-10HA		BVI 900	TOTO I	Proadcast Foliar	89	25 (230) 20 (190)	0.182 (0.204) 0.184 (0.206)	NA ^a	0.366 (0.410)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	
		7					,	Contii	nued on r	next page	



Table 6.3.2.11-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Peanuts

1 4010 0.3.2.11	r (cont a).			101 111 02			On i cand			1
	$\mathbf{T}\mathbf{A}$	tion	Application							
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	) L	Spray Volume GPA (L/ha)	Rate Ib & K.A. (kg a.i./ha)	Retreatment Interval	Lotal Rafe, ib a.s./A (kgdys./ha)	Tank Olix Adjuvants
RV124-10HA	, NC Region 2 2010	BYI 02960 200 SL	TRTD		85	21 C (200)	0.183 (0.295)		0.406	Doie-Amic, 0.25% v/v
RV125-10HA	GA Region 2 2010	BY1@2960 .290 SL			880 \$\frac{1}{2} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag{5} \tag	23 (230) (200)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NAGO CATO	0.365 (0.309)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
RV126-10HA	FE Region 3 2010	BYI 02960 200 SL		Brodcast Foliar	ASS CL	(190)	0.183 (0.205)	NA ^a	0.369 (0.413)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
RV127-10H4	OK, S Region 6 2610	BYI 02960 200 SL	ARTD Q Q	Paroadcast Fortiar	84	19 (180) 21 (200)	0.176 (0.198) 0.177 (0.199)	NA ^a	0.354 (0.397)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
		J Y						Contii	nued on r	next page

Table 6.3.2.11-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Peanuts

	Ą.	ion)	Application								
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing ( sowth Stage (BBCH)	Spray Volume GPA (L/ha)	Rate Ib & (kg a.i./ha)	Retreatment Interval	Kotal Raje ib a.s./A (kgdys./ha)	Tank Olix Adjuvants	5
RV128-10DA	, NC Region 2 2010	BYI 02960 200 SL			88	(200)	0.183 (0.208) 0.183 (0.265)	105		Dyne Amic, 0.25% v/v Done-Amic, 0.25% v/v	
RV129-10DA	GA Region 2 2010	BY102960 200 SL	ACRITO SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF SOLUTION OF		880 0 5 5 88	Ø230)	(0.205)	NAO Ç10	0.867 (0.311)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	
RV130-10DA		BYI 02960 200 SL	TRAD	Broadcast Foliar	**************************************		0.183 (0.205) 0.184 (0.206)	NA ^a	0.367 (0.412)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	
RV131-10D	TX, Region 8 2010	BYI 02960 200 SL	ARTD.	Broadcast Fohar	85 89	20 (180) 20 (180)	0.184 (0.207) 0.185 (0.208)	NA ^a	0.370 (0.414)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	

From the harvest trials, duplicate composite samples of peanuts were collected at the envisaged preharvest interval (PHI) of 7 days. In four decline trials, duplicate composite peanut samples were collected from the treated plots at 0, 3, 7 to 8, 14, and 21 days after the last application. Single



composite samples of peanuts were collected from the control plots on the same day the target 7-day samples were collected from the treated plots. The peanuts were allowed to dry in the field or under covered storage for 4 to 17 days prior to collecting the samples according to regional agricultural practices. The peanuts were shelled to produce the commodity of peanut nutmeat.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a stal BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

# Findings

Concurrent recoveries of BYI 02960, DFA, and DEFAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of to 110%, and the standard deviation values were below 20% (Table 6.3.2.16-5).

Table 6.3.2.11-5: Summary of Recoveries of BYI 0.2960 from Peanuts

Crop Matrix	Analyte	Spike Level	Sample Size (n)	Recoveries (%)	○ Mean Recovery (%) a	Std Dev (%)
	Ž,	\$\frac{1}{2}0.01@	a, S	Ø2, 840100, 04, 97, 66, 117, 99,	91	14
	BX 02960	.0 <b>.0</b> 50 ,2	<b>3</b>	©96, 97, 94 ©	96	2
		0.16		9 <b>6</b> 81,87	88	8
Peanut	DFA [©]	<b>©</b> 050 <u>1</u>		96, 98, 90, 92, 98, 92, 100, 81, Ø97, 85088, 83	92	7
Nutmeat	DFA ^S	0.10	\$\sqrt{3} \times\$	\$\int_{\infty}\$\tag{9},70,81	73	7
	3',4	<b>®</b> .010 %		89, 81, 82, 89, 83, 90, 84, 84, 80	85	4
	DFEAT	0.056	© 3 , ©	97, 84, 89	90	7
, ***		<b>3</b> 9.10		88, 80, 117	95	19

a Mean Recovery = mathematical average of all recoveries

The freezer storage stability study indicates that BYI 02960 residues were stable in coffee beans and soybean seeds, as representative commodities with a high oil content - during frozen storage for at least 18 mooths (558 days prior to analysis. The maximum storage period of frozen peanut samples in this study for FYI 02960 was 217 days. A summary of the storage conditions are shown in Table 6 3 2 14 6

Table 6.3.2.11-6: Summary of Storage Conditions for Peanut Nutmeat

Residue Component(s)	Matrix (RAC)	Maximum Average Storage Temperature (°C) ^a	Actual Storage Duration months (days) b	Interval of o  Demonstrated  Storage Stability  months days) c
BYI 02960	Peanut Nutmeat	<-17	7 (21 <b>4</b> )	(55 <b>%</b> )
DFEAF	Peanut Nutmeat	< -17	(217)	(558) (558)
DFA	Peanut Nutmeat	<b>4</b> 7	7 Q (317)	Q 185 % (558) X

a The maximum average storage temperature is from the time of sample receipt at BRP until sample extraction and is the maximum of all average freezer temperatures at BRP and Pyyant. White preparing for sample analysis, the samples were maintained in a laboratory freezer.

The total BYI 02960 residue data for peanut not meat following folior applications of BYI 02960 200 SL are shown in Table 63.2.11-7.

Table 6.3.2.11-7: Total BYI 02960 Residue Data from Peanuts (Nutmeat) after I wo Foliar Applications of BYI 02960 SI

Trial Identification	Location (City, State, Region, and Year)	Pot Name	CropNariety S L	Commedity (2)	Total Rate Ebas./A (Raa.s./ha) 🔧	Z Dry Mather a Line		BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFResidue (mg a.s. equiv./kg)	Total BYI 02960 Residue (mg a.s. equiv./kg) ^b
RV120-	, SC, &	TRTD		Peanut	%0,366 _%	ŇA	6	0.034	< 0.050	< 0.010	0.094 ^d
10HA	Region 2,			Nutmeat	0.411	)r		0.020	< 0.050	< 0.010	0.080
	* 2010			Peanut Nutmoat							Avg: <b>0.087</b> ^e
RVAŽÝ-	GA,"	TRAD	Georgia-	Peanut (	0.366	NA	7	0.018	< 0.050	< 0.010	0.078
10HA   F		10	O6G	Nutmeat	(0.411)			< 0.010	< 0.050	< 0.010	< 0.070
	20 <b>°</b> 0		,	W .							Avg: 0.074
RV122-	,	TR TD	Çhamps	Peanut	0.376	NA	7	< 0.010	< 0.050	< 0.010	< 0.070
10HA	A, Region	\ ~C	0>	Nutmeat	(0.421)			< 0.010	< 0.050	< 0.010	< 0.070
	2010 T		?								Avg: <0.070
RV123-		TRTD	Georgia	Peanut	0.366	NA	7	< 0.010	< 0.050	< 0.010	< 0.070
10HA	AL,		Greener	Nutmeat	(0.410)			< 0.010	< 0.050	< 0.010	< 0.070
F	Region 2,										Avg: <0.070
	2010										<b>\0.070</b>

b The storage duration is the time from field sampling through the last sample extraction.

and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. and A. an

Table 6.3.2.11-7 (cont'd): Total BYI 02960 Residue Data from Peanuts after Two Foliar Applications of BYI 02960 SL

	0.	1 11 11 023	OUBL							0
	region, and real) Plot Name	Crop Variety	Commodity	Total Rate b a.s./A (kg a.s./ha)	% Dry @atter a	Sampling interval	BYT (2960 . Residue (418/kg)	DFA Residue	DFEAFRESidue	Poral BY142960 Residue (mg 4 equiv./kg) b
10HA AL Region 201	12,	Georgia Greener	Peanut Nutmeat	0.566 (62410)	NA °	7	8	©.050 <0.050	\$\text{0.010}\$	₩vg:
Regio	0	Ő	Peanut Natmeat		NA Y		¥0.016 _y			<0.070 <0.070 OAvg: ><0.070
RV125- 10HA GA Region 201	12,		Nutmed 0	Š,	Y NA E	~	Q0.0100 (<0.010)	<0.050 <0.030	<0.000 <0.010	<0.070 <0.070 Avg: <0.070
RV126- 10HA FL Regio 201			Peanut® Nutmeat	(0. <b>1</b> 3)	NAS		<0.040 <0.010	<0.030 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
10HA OK, 06, 201	STRTD	Tamnuk OLOO	Peanut Numeat	0,354 (8,397) 7 7	NA O		<0.010 \$0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
10HA OK, 36, 6, 201  RV128-10DA Regio: 201	TRTD	Champs	Pearut Nurmeat	*0.368 \$40.412\$	ÑA	3	<0.010 <0.010 <0.010	<0.050 <0.050 <0.050	<0.010 <0.010 <0.010	<0.070 <0.070 Avg: <0.070 <0.070
					NA NA	7	<0.010	<0.050	<0.010	<0.070 <0.070 Avg: <0.070 <0.070
				¥ *	NA	14	<0.010	<0.050 0.066	<0.010	<0.070 Avg: <0.070 0.086
					NA	21	<0.010 <0.010 <0.010	0.077 0.054 0.052	<0.010 <0.010 <0.010	0.097 Avg: 0.092 0.074 0.072
							~0.010	0.032	<b>~0.010</b>	Avg: 0.073

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.11-7 (cont'd): Total BYI 02960 Residue Data from Peanuts after Two Foliar Applications of BYI 02960 SL

	,			1	•			1	1	1	0	- ^
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate	% Dry Gatter a	Sampling interval	Y 02960 YY 02960 esidue (mg/k	DFA Residue AQQ Ang a.s. equiv./kg)	DFEAFResidue	Pokal B (mg'ar	
RV129- 10DA	, GA, Region 2, 2010	TRTD	\$ . `			√ √ ≈N:Λ		<0.010 0.010 0.010 0.010 0.010	© ©0.050	©0.0100 <0.0100 ©0.01000 ©0.01000 ©0.01000	Avg: <0.070 . <0.070 <0.070 Avg: <0.070	
RV130- 10DA	OK, Region 6, 2010	TRTD	Tamprun  G G G G G G G G G G G G G G G G G G G	Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Authorized Peanut Autho	9.367 1 (0.412)	NA NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>&lt;0.010 &lt;0.010 &lt;0.010 &lt;0.010 &lt;0.010 &lt;0.010  0.019 0.011  0.023 0.011</pre>	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.070 <0.070 Avg: <0.070 <0.070 <0.070 Avg: <0.070 <0.070 <0.070 Avg: <0.070 0.070 Avg: <0.070 0.071 Avg: 0.075 0.083 0.071 Avg: 0.077	

Table 6.3.2.11-7 (cont'd): Total BYI 02960 Residue Data from Peanuts after Two Foliar Applications of BYI 02960 SL

Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate  Total A (kg a.s./ha)	% DryMatter a	Sampling interval	BYT 02960 Residue (mg/kg)	DFA Residue	DFEAFResidue	Form BYTOZ960 Residue (mg a sequiv./kg),	
RV131- 10DA	TX, Region 8, 2010	TRTD	Florida 07	Peanut Nutmeat	1	NA  O  NA  O  NA  O  NA  O  NA  O  NA  O  NA  O  NA  O  NA  O  NA  O  NA  O  NA  NA		×0.010	0.050 0.050 0.050 0.050	©0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.070 <0.070 %Vvg:	
							\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$0.010 \$0.010 \$0.010 \$0.010 \$0.010	©0.050 <0.050 ©0.050 <0.050 <0.050		<0.070 <0.070 Avg: <0.070	_
						NA Ž	21	©.010 ,<0.010	©0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070	

- NA = Not Applicable. Dry matter was only determined for the bay matrix.

  Sampling interval is the interval between last application and sampling date.

  Total By I 02960 residue is the com of BY 02960 DFA, and DFKAF residue in parent equivalents. Residue measurements below the analyte LOO were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue leve@might be.





#### Conclusion

Twelve field trials were conducted to measure the magnitude of total BYI 02960 residue in/on peanut nutmeat following two foliar spray applications of BYI 02960 200 SL. The total BYI 02960 residue data are shown in Table 6.3.2.11-8.

Summary of Residue Data for Total BYI 02960 from Peanut Nutmea Table 6.3.2.11-8:

				Total BYI (2960 Residue Cevels (ppm), O
Commodity	Plot Name ¹	Total Application Rate lb a.s/⊄ (kg a.s./ha)	PHI (days)	Min at & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI & PHI
Peanut Nutmeat	TRTD	0.354 to 0.376 (0.397 to 0.421)	3 - 8	12 0.070 0.090 0.090 0.087 0.072 0.072 0.006

1 TRTD = treated plot receiving two foliar spray application;
2 HAFT = Highest Average Field Trial
3 calculated on the basis of residue values at the PHI
4 Sampling day showing highest residue.

Total BYI 02960 residues in peanut nutment were very low, most of the trials showed even total residues below the LOO when and the low that the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when and the loop when a loop when and the loop when and the loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loop when a loo residues below the LOQ when analysed an the intended PHI of 7 days. However, samples collected from decline trials indicated that the total BY 102960 residue in peanut nutrieat and not always peak at the PHI. Three of the four decline trials showed maximum residue levels at 14 to 21 days after the last application, but declined thereafter. The overall maximum residue value amounted to 0.097 mg/kg The residue data provided for peanuts are suitable for regulatory purposes. and was detected 14 days after the last treatment.

#### IIA 6.3.2.12 Oilseeds – soybean

Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a seed treatment or foliar treatment in/on soybean. The different use patterns in North America are summarized in Table 6.3.2.12-1.

A total of twenty trials were conducted in soybean. The studies are described below.

				Target Rate/Application						Sp Vol	ray lume	
				nulated ◎ uct (FR)	\(\lambda_1\)		W				c.°	
			mL	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		Suystan	g A	Table	& O	Adjuvant/ Additive	,	
			ml .	fl_oz fp/A or fl_oz/		ib a.s.A or Ib	a.s.Apa	App.	arget	Adjuvant/		
Application	Test	No. of	fp/100	fp/100/1b	Name	as/100/	a.s./100	Interval	PH	A <b>cc</b> ditive	CD.	I DII A
Type	Substance	Apps	kg sæga	seed	01 a.s.	ib seed	kg seed	(Days)	(Days)	<b>%</b> (%)	GPA	LPHA
Foliar	BYI 02960 200 SL	2	<b>%</b> 15 ₂	14.0	BYI 029 <b>6</b> 0	0.183	<b>20</b> 5	90 (	21 %	0.25	10-50	93-467
Seed Treatment	BYI 02960 480 FS		188		ØYI 0296@	0.090	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		₽ <b>©</b> H²	NA ¹	NA ¹	NA ¹

NA = Not applicable.

ECH = Earliest compercial harvest.

Report	KNA 6.3.2.12/01; 2012; 2012;
Title	BY 1 02960 200 SL and BY 1 02960 480 S - Magnitud@of the Residue in/on Soybeans
Report No &	RARVY011, dated May 16, 2012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Document	M-46121449-2
Guidelines	TS EPA Residue Chemistry Test Guidelines QPPTS 860.1500, Crop Field Trials
	Canada: PMR DACO 7.4.1 Supervised Residue Trial Study
Q	A, PMAA DACO 7,40, Residue Declare
	OF D: Guideline for the Testing of Chamicals, 509, Crop Field Trial,
~Q	Adopted Sept 7, 2009 2
GLP	Yes O O O

Twenty field trials were conducted to measure the magnitude of BYI 02960 residues in/on soybean seed, soybean forage and soybear hay following two broadcast foliar spray applications of BYI 02960 200 SL or seed weatment with BYLO 960 480 FS. Since soybean forage and soybean hay (as feed items) are no Comported into Europe, this clossier will focus on soybean seeds, only. Complete information on the study including the data on soybean forage and hay, has been submitted in the Global Joint Review Submission in October 2012.

BY 02960200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L and BYI 02960 480 FS a flowable concentrate formulation containing 480 g BYI 02960/L nominal.

The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.12-2).



Table 6.3.2.12-2: Trial Numbers and Geographical Locations for BYI 02960 in/on Soybean

NAFTA Growing Region	Submitted ^a	Requested of
1		Requested
1A		
2	2	
3		
4	3 0	
5	3 0 4	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2
5A		
5B		
5B 6 0 0 0 7		
7	A S	
7 7A 8 9		
8 0 4		
196		
. 11		29
11 7 7 7		
12 A D D D D D D D D D D D D D D D D D D		
Total O	20	20

a Four of the twenty trials were decline trials (one in Region 2, we in Region 4, and two in Region 5). The additional decline that were performed to meet EU additional

# Material and Methods

Single foliar pray application rates ranged from 0.177 to 0.197 lb BYI 02960/A/application (0.198 to 0.221 kg BYI 02960/ha/application) for the plots designed for the collection of soybean seed samples. Total seasonal foliar spray application rates ranged from 0.359 to 0.382 lb BYI 02960/A (0.403 to 0.428 kg BYI 02960/ha). All foliar spray applications were made at growth stages ranging from BBC/I 11 to 96 (BBCH b): First pair of true leaves unfolded, unifoliolate leaves on the first node; BBCH 96: About 60% of leaves discolored of fallen). The interval between the foliar spray applications was 7 to 70 days. Treated plot receiving two foliar applications of BYI 02960 200 SL for the collection of seed samples were abbreviated as TFTS plots.

All foliar spray applications were made using ground-based equipment. The adjuvant Dyne-Amic was used in all of the applications at 0.25% (v/v) with the exception of trial RV137-10HB, which used Agral 90 at 0.25%, and trial RV139-10HA, which used Unity at 0.25%.

Application rates for the seed treatment plots ranged from 0.028 to 0.045 lb BYI 02960/A (0.032 to 0.051 kg BYI 02960/ha). Treated plot receiving soybean seeds treated with BYI 02960 480 FS for the collection of seed samples were abbreviated as TFTST plots.

a all a ation of a a a	ollection of seed samples were abbreviated as TFTST plots.  Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.12-3. Study ase atterns are summarized in Table 6.3.2.12-4.										
Trial Site condit patterns are sum	ions, including soil charized in Table 6.3.	naracteristics are 2.12-4.	summa	arized	in Table	6.3 2.12-3. Study	Dase O				
Table 6.3.2.12-3		ons for BYI 029	60 🐞 S	oybea	<b>4</b> )						
Trial Number	Study Location (City, State)	Soil Characteristics ^a Type OM PH			CEO	Meteororog Total Rainfall (in)	Temp. Range				
RV132-10DA	, NC	Sandy Yoam	0.9 ₄ °	5°6	6.8	20.05	38-94				
RV133-10HA	AL	Sandy Loam	N.P	6,20	NÃO	15.13	<b>5</b> 0°-95				
RV134-10DA	, AR	Silt loam	Ň	4.9	<b>4</b> ,2	\$\int_{10,99}\$	48-96				
RV135-10HA	, MO	Sand S	1.3	6.6	93.1	£ 2.68	<b>41-97</b>				
RV136-10HA	, AR	Sit loam	k.J	~60°	121	\$ 6.75 \Q	44-95				
RV137-10DB	, ON $\mathbb{Q}^{r}$	& Loans	<b>)</b> 1.8	<b>%</b> .9	Q2.8	D D .06	39-82				
RV138-10HA	JE %	Silt Loam	2. <b>2</b>	7.3	10.5	29.32	43-86				
RV139-10HA	NE O	Silt Loam	<b>%</b> .1	6.3	J ¹⁸ .	1937	53-87				
RV140-10HA	ON	Sand Loan	2.10	7.6	14.1	15.64	39-80				
RV141-10HA	MNC	Cay Loan	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	6.3	<b>1</b> 24.3	\$ 15.31	47-83				
RV142-10HA	, MO	Silt Clay Loan	1.2	6.1	§ 13.8	23.70	43-89				
RV143-10HA	,ON	/ Sandy Loam	2.9	7.6	16.Y	13.61	38-82				
RV144-10HA	, IA	Silty clay Isam	<b>4</b> .35	<b>©</b> .7	£4.82	26.41	42-86				
RV145-10HA	ON A	Sandy Loam	1.8	7.5	14.6	10.61	49-82				
RV146-10DA	, NB		<u>4.3</u>	<u>.</u> 0 27.7	28.2	14.69	37-87				
RV147-10HA		Sandy Clay		7.1	12	3.71	52-104				
RV148-10HA	, NO	Silt Logm	2.3	6.9	11	6.71	45-90				
RV149-16HA	KS (	Silt Voam	3.2	7.2	19.2	5.90	45-96				
RV150-10HA	JE O	Stry Clay Loan	3	6.5	18.4	12.64	41-89				
RV151-10HA	Z MA	Silty Clay Roam	3.6	6.3	21.9	18.85	38-87				

Abbreviations used OM percent organic natter; CEC = cation exchange capacity.

Data is the interval of the month of first application through the month of last sampling. Meteorological data were obtained from Dearby government weather stations.



Table 6.3.2.12-4: Study Use Pattern for BYI 02960 200 SL on Soybean

			Application								
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Rming/Growth Stage (BBCH)	Actual Spray Volume GPA	Rate lb a.s./A (kg a.s.Am)	Retreatment faterval (days)	Score (kg acs./ha)	Tank Mix Adjuvants	
10HA	Region 2 2010	480 SC	0	Soed Teatment	3 00 Q	× 5	(0.03 <b>2</b> )	S.	(0.033)	Y°	
RV135- 10HA	, MO Region 4 2010	BYI 02960 480 SC	VRTST	Seed Treytment	\ \ \@0		(10.051)	NA ^a	0.045 (40.051)	NA ^a	
RV138- 10HA	Region 5 2010	BYI 02060 48000	TOP TST	Seed Treatment		NATO O	0.04		0. <b>6</b> 44 (0.049)	NAª	
RV132- 10DA	NC Region 2 2010	15 1 029 60 V SL 2000	TRTS	Broadcast foliar	800	20 (192)	0.180	NAO D	0.362 (0.405)	Dyne-Amic 0.25% v/v	
					& () ()	(1 <del>9</del> 8)	0.182 (0.204)	10		Dyne-Amic 0.25% v/v	
RV133- 10HA	Region 2010	BŸI 02980 , O SL 200	TRAS	Proadcast foliar	770	18% (167) &	0.184 (0.207)	NAª	0.367 (0.411)	Dyne-Amic 0.25% v/v	
Ş					.80 Ž	25 (230)	0.183 (0.205)	10		Dyne-Amic 0.25% v/v	
RV134- 10DA	Region 4	BYI 02960 SE-200	ØRTS.	Broadcast  Broadcast	79	20 (188)	0.183 (0.205)	NAª	0.365 (0.409)	Dyne-Amic 0.25% v/v	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				<b>,</b>	85	20 (188)	0.182 (0.204)	10		Dyne-Amic 0.25% v/v	
RV135- 10HA	MO Region	7 YI 02900 SL 290	RTS	Broadcast foliar	92	20 (187)	0.182 (0.204)	NAª	0.364 (0.408)	Dyne-Amic 0.25% v/v	
					96	20 (186)	0.182 (0.204)	8		Dyne-Amic 0.25% v/v	

Table 6.3.2.12-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Soybean

	2.12-4 (cont u).	Application							C	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	Mining/Growth Stage (BBCH)	Actual Spray Volume GPA	RAGE ID a.S./A (kg a.s.Ma)	Regreatment Interval (days)	Rotal Rate Ova.s./A (kg as./ha)	Tank My Adjurants
RV136- 10HA	Region 4 2010	BYI 02960 SL 200		Bréadcast Goliar	791 Q 781	20 (188) (188)	0.184 0.0.2066 0.183 0.205	NA ^a		Dyne-Amic 0.25% v/v 0.25% v/v Dyne-Amic 0.25% v/v
RV137- 10DB	Region 5 2010	BYI 02960 (St. 200, 1)	TRTS	Br@dcast	\$\frac{1}{77} \langle \frac{1}{9} \rangle \text{88} \langle \frac{9}{9}	©2 (296) (336) (336)	①.185 (0.20%) (0.197 (0.220)	ČŇA ^a & © Ø 9	<b>*19</b> .382	Agral 90 0.25 % v/v Agral 90 0.25 % v/v
RV138- 10HA	Region 5	BY102960.	TRTS	Brodcast Foliar	79	16 (149) 16 (148)	0.188 (0.211) 0.182 (0.204)	NA ^a	0.370 (0.415)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV139- 10HA	, McRegion 2010	BYL02960 \$200 BYL02960	TRTS	Broadcast Broadcast	75 89	18 (172) 20 (191)	0.177 (0.198) 0.183 (0.205)	NA ^a	0.359 (0.403)	Unity 0.25% v/v Unity 0.25% v/v
RV1400 10HA	Region 5	BYI <b>@</b> 960 \$1,200	ØTRTS V	Broadcast foliar	83	14 (130) 14 (132)	0.183 (0.206) 0.186 (0.209)	NA ^a	0.370 (0.415)	Dyne-Amic 0.25% v/v  Dyne-Amic 0.25% v/v
		1					Conti	inued o	on next p	oage

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.12-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Soybean

			Application							0 0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method 20	Rming/Growth Stage (BBCH)	Actual Spray Volume GPA	Range Ib a.s./A (kg a.s.An)	Retgeatment faterval (days)	Lightal Rafte Chya.s./A (kg 453./ha)	Tank Mix Adjuvants
RV141- 10HA	, MN Region 5 2010		TRIS	Bræðdcast Goliar	779 Q 792	20 (188) 520 (187)				Dyne-Amic 0.25% v/v 0.25% v/v Dyne-Amic 0.25% v/v
RV142- 10HA	Region 5 2010	BY 02960 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	TR®		, 79, , , , , , , , , , , , , , , , , ,	21 * (195)	0.186 (0.202) 0.185 (0.207)	NAQ O Q 10	0.365 (0.409)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV143- 10HA				\$ \$	80		0.185 (0.207) 0.182 (0.204)	NA ^a	0.367 (0.411)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV144- 10HA	Region 2010	BY1 02960 SL 200 SL 200 SL 200 SL 200	TRYTS	Broadcast foliar	79 88	17 (163) 17 (154)	0.181 (0.203) 0.184 (0.206)	NA ^a	0.365 (0.409)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV145- 10HA	Con A Region vs 2000	BX 1 02966 SL 2067	THATS	Broadcast foliar		14 (129)	0.183 (0.205)	NA ^a	0.365 (0.409)	Dyne-Amic 0.25% v/v
					85	14 (131)	0.182 (0.204)	7		Dyne-Amic 0.25% v/v

Table 6.3.2.12-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Soybean

	, ,	Application								
	<b>A</b>	ion)				, iicatio			· *	
	NAFT	mulat			(BBC	GPA		(days)		
tion	State, ar)	t (For			Stage	Volume GPA	Ç g a.s.	ţerval		* * * * * * * * * * * * * * * * * * *
ıtifica	(City,	roduc	a	T T	rowth	A CO	``````````````````````````````  b a.s./A (kg a.s.∰  ∩«	ent Fr	(COD)	Adju
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	thod	Riming/Growth Stage (BBCH)	ual Sp	e lb a.	Religeatment Paterval (days)	Egtal Rafe kg æs./ha)	
				Metho		Act Act	RAGE			Tank
RV146- 10DA	Region 5 2010	BYI 02960 SL 200	TRTS	Broadcast A	¥79	720 (183) (183)	(0.203)	PNAª	0.366 (0.41 <u>1)</u>	Ďyne-Amic 0.25% v/v
	2010	, s			~~~ ~~79	\$\frac{1}{20}	\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\int\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\ext{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\in\text{\$\exitin\text{\$\in\text{\$\in\text{\$\in\text{\$\exitin\text{\$\in\text{\$\in\tex	₩ ₩ 10 °		Dyne-Amic
						ے (190) گ	(0.208)			0.25% v/v
RV147-	, KS	© 8 <b>Y</b> ₹/02960%	TR7®	Broadcast (2)	2 17 P	20	0 00 182 C	D NA&	0.368	Dyne-Amic
10HA	Region 5 2011	BY 02960 SL 200		Broadcast@ foliar		(184)	0.182 (0.204)		(0.412)	0.25% v/v
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				79	21	9 0.18 <b>5</b> 9	<i>y</i> 9		Dyne-Amic
					a,	O	(0.203)			0.25% v/v
RV148- 10HA	Region 5	BY 102960 SL 200	TRAS	Broadcast of foliar	77	(134) (134)	©0.186 (0.208)	NAª	0.370 (0.414)	Dyne-Amic 0.25% v/v
	\$2011\$\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\$\f					W W				
						© 14 (133)	0.184 (0.206)	8		Dyne-Amic 0.25% v/v
RV149-	KS	BY 92960	TRIM	Br@adcast	77	16	0.186	NAª	0.367	Dyne-Amic
10HA	KS a Region 5	\$1. 200 °		Br@adcast foliar		(148)	(0.209)		(0.411)	0.25% v/v
					79	16	0.181	10		Dyne-Amic
						(147)	(0.202)			0.25% v/v
RV150 10HA	, NE Region	F BYN92960 € \$\L200	TRTS	Broadcast foliar	80	20 (186)	0.183 (0.205)	NAª	0.367 (0.411)	Dyne-Amic 0.25% v/v
	2011		W W		02	20	0.104	o		Duma Ai-
	NE Regions		Y		93	20 (191)	0.184 (0.206)	8		Dyne-Amic 0.25% v/v
		/ /	<u> </u>			l .	Conti	nued o	on next p	page
	F. Company								1	-



Table 6.3.2.12-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Soybean

					Appl	icatio	n			0. ~
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	Aming	Actual Speay Volume GPA (Elga)	RAME II	Relegatment Interval (days)	Lotal Ratechas.s./A kg acs./ha)	ijuvæts
RV151- 10HA	, IA Region 5	BYI 02960 SL 200	TRTS	Broadcast	<b>7</b> 79	&3 €305}√	(0.208)	NA ^a	≫0.363 [≪] (0.40 <u>₹</u> )	Dyne-Amic
TOTAL	2011	3L 200		Broadcast of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\fraca		6 70.178 70.199	$\psi_{10}$		0.25% v/v  Dyne-Amic 0.25% v/v

a NA = Not applicable

In the 16 harvest trials that received foliar spray applications, duplicate composite samples of soybean seeds were collected at pre-harvest intervals (LPHIs) ranging from 19 to 22 days. The intended pre-harvest interval is 21 days. In four decline trials, duplicate composite soybean seed samples were collected from the treated plots at \$10.000 to 10.0000  to 10.0000  to 10.0000 to

The residue(s) of BVI 02960, DEA, and DEEAT were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurement below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ alue.

## **F**indings

Concurrent recoveries of BYL 2960 DFA and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the sandard deviation values were below 20%. (Table 6.3.2.12-5).



Table 6.3.2.12-5: Summary of Recoveries of BYI 02960 from Soybeans

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries (%)		Stan. De�				
		0.010	12	93, 91, 112, 109, 96, 93, 86, 93, 97, 108, 87, 94		9%				
	BYI 02960	0.050	3	83, 83, 97	<b>₹88%</b>	8%				
		0.100	2	80, 82		∠NA				
	D11 02900	0.500	7	<b>3</b> 7, 90, 89, 91 <b>3</b> 9, 84, 96	91%	*4% _{@1}				
		1.000	2	106,007	\$07%	NA /				
		2.000	3	86,400, 103	Ç 96% 🔊	<b>9</b> %				
		4.000	3	193,98,96		<i>9</i> 4%				
		0.050	15	80, 94, 79, 82, 76, 80, 94, 83, 92, 78, 80, ° , 83, 78, 75, 88, °	\$3%,\text{\$\sigma\$}	6%				
	DFA	DFA	DFA			0.100	0	( ) 5,740 0 L	75%	οNA
Soybean Seed				0.500	A7 . @	©84, 83,©1, 79, 75, 75, 71 O	<i>1</i> 9% %	5%		
									1.000	2~
		2.000	( 3) ×	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	× 84%	4%				
		4.000	<u>\$3</u>	§ \$\frac{1}{2},75\frac{1}{2}6  \text{\$\frac{1}{2}\$}	74%	2%				
		0.600	120	93, 95, 100, 86, 100, 99, 101, 94, 405,	≈ 98%	10%				
		~~0.050~y	3	84, 102	93%	9%				
	DFEAF	[™] 0.1 <b>%</b> 0	\$\text{2} \tag{4}	0 4 90 8 0 0	88%	NA				
	Drear		7,0	95, 95, 93, 98, 98, 91, 91	94%	3%				
	-	A.000	3	0 6 (101, 10i)	101%	NA				
		2.000	<u>3</u>	088, 98, 99	95%	6%				
		40000 ~	y 3 ×y	© 106, 99, 95	100%	6%				

a Mean Recovery mathematical average of all recoveries

The freezer storage stability study indicates that BYL02960 sesidues were stable in soybean matrices during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BVI 02960 was 266 days. A summary of the storage conditions are shown in the Table 6.3.202-6.

Table 6.3.2, 12-6: Summary of Storage Conditions for Soybeans

Residue Component(s)			Actual Storage Duration months (days) ^b	Interval of Demonstrated Storage Stability months (days) c
BYI 02960 🔎		<b>% %</b> -20	9 (266)	18 (558)
DFEAF	Soyber Seed "	<b>♥</b> < -20	9 (266)	18 (558)
DF &	SoyGean Seed	< -20	9 (266)	18 (558)

a The maximum average storage temperature is from the time of sample receipt at BRP until sample extraction and is the maximum of all average freezer temperatures at BRP. While preparing for sample analysis, the samples were maintained in a laboratory freezer.

NA not applicable (data set too small)

b The Grage duration is the time from field sampling through the last sample extraction.

and A. . 2012. Storage stability of BYI 02960, difluoroacetic acid, and difluoroethyl-amino-furanone in plant matrices. Bayer CropScience Report No. RARVP046, amended version including 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data of soybean seeds following foliar applications of BYI 02960 260 SL or seed treatment with BYI 02960 480 FS are shown in Table 6.3.2.12-7.

Total BYI 02960 Residue Data from Soybeans after Two Foliar Applications of Table 6.3.2.12-7: BYI 02960 SL or a Seed Treatment Application with BYI 02960 480 FS

							- ~				
Trial Number	Location (City, State, Region, and Year)	Plot Name	Cop Variety Crop Variety	Kenmodika J	Total Rafe Lb & A (kg a.s./ha)	% Dry Matter &	6 9		DOA Residu@ (mg'a.s. pquiv./kg)	O O DRAFRESIQUE (mg a.s. &quiv./kg)	Tokal BYI Ozyko Residue (mg a.s. 🛴 equiv.kg) b
RV132-	NG	TRTS	AG5695	Seed	7,0.362 (0.403)	85	* 9 ×	>0.02 0.02 €	<0.05 <0.05	0.01	0.08
10DA	, NC,		AGS BY	/\(\hat{\pi}	(0.403)			0.020	<0.03	0.02	0.09 Avg:
	Region 2, 2010			~		$\sum_{\lambda}$	O'				0.09
						880	14 (	O.01	<0.05	0.01	0.07
		Q	<i>y</i>	٠(ر		L OF	, Ø	<0.01 <0.01	<0.05 <0.05	0.02	0.08
					-			~ Q	Ö		Avg:
					y _c'	*	J* .*	Ş' <u></u>	¥		0.07
			D & O			<b>\$</b> 8,	21	0.06) <0.01	<0.05 <0.05	0.02 0.02	0.08 0.08
	Ü		W. W.		~~			\$.01	<0.03	0.02	Avg:
	l S			× %				W *			0.08
							28	0.01	< 0.05	0.02	0.08
							. W	0.01	< 0.05	0.02	0.08
	, Q	% n 8			~ <i>Q</i> )	. 0					Avg:
	Ç,			Ş			2.5	0.01	0.05	0.02	0.08
					4. 4	<b>89</b>	35	0.01 0.01	<0.05 <0.05	0.02 0.02	0.08 0.08
		4	Š ,~ .	W				0.01	<0.03	0.02	Avg:
	Q				4						0.08
RV133-		TRIS	Stine 4782,4	Seed	0.367 0.411)	90	21	0.24	0.07	0.08	0.38
10HA	AL, Region 2, 2010		Q" Q"		<b>%</b> (411)			0.27	0.07	0.10	0.43
	2, 2010				1						Avg:
D 1 1 20% a		2 4		~~()		0.1	121	.0.01	0.75	0.01	0.41
RV133	J. A.I. Region	TRAT	Some 47-82-4	Seed	0.028 (0.032)	91	131	<0.01 <0.01	0.75 0.88	0.01 0.01	0.76 0.88
IOIIA	2, 2010	4			(0.032)			<0.01	0.00	0.01	Avg:
											0.82
L				1	ı			Cont	inued on	nevt na	σρ
~			<b>)</b> *					Comi	тиви от	нем ра	ge
	AL, Region 2, 200 0	)									
Æ,											
*	Ŏ [*]										
	<i>II</i>										

Table 6.3.2.12-7 (cont'd): Total BYI 02960 Residue Data from Soybeans after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application with BYI 02960 480 FS

			11 02900 SL (	1		1	1			ı	rs M
Trial Number	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Tegal Rate Lb a.s./A (kg a.s./ha)	% Dry Matter	Sampling interval (davs)≉	BYI 02960 (See See See See See See See See See Se	DEA Residue (mg as Aguiv./kg)	DFKAFResidue Jmg a.Svejujv./kg/2	Total BYI 02960 Residuke (mg a.s. 2)
RV134- 10DA	AD Pagion	TRTS	Armor 47G7	Seed	0.365 (0.409)	89 K	10	0.56	0.29	0.18	18
TODA	AR, Region 4, 2010							0.56	0.27		Avg:
			(			94	15.0	0.77 0.85	0.38 0 <b>3</b> 6	0.21	1,4 4.4 Avg.
						<b>*</b>	A				Avg: 1.4
						25°	)* 210	0.62	0,80	Q.18	1.4
							210	0.00	0.80	0.18	1.2
			2 /N	Ö Ö					0.26	/	Avg: 1.2
		₩.			Q.	\$3 °	.280	0,37 29,37	0.26	0.10 0.11	0.73 0.75
						(n	J' {	Y «C		,,,,	Avg: 0.74
						%y 94	<u>()</u>	0(48	0.26	0.12	0.74
				\ \ \ \	~ W			©,0.40	0.22	0.10	0.72 Avg:
						48	W				Avg: 0.79
RV135- 10HA	MO Megion 4,	TRUS	Stine 4782-4	Seed	0.364 0.408	93	<b>Z</b> 0	<0.01 0.02	<0.05 <0.05	<0.01 <0.01	0.07 0.08
	2010	TRIST	Stine 4782-4  Stine 4782-4  Pioneer  946/80								Avg: 0.08
RV135-	, MQ	TRIST	Stine 4782-4	Seed	$0^{0.045}$	92	138	<0.01	0.48 0.47	<0.01 <0.01	0.50 0.49
10HA	Region A,				- (())			<0.01	0.47	<0.01	Avg:
DV126	4	79/TC *	Diorfort	Seed 1	© 0.367	94	20	0.09	0.19	0.10	0.50
10HA	XR, Region		944/180	) Seed	(0.411)	74	20	0.09	0.19	0.10	0.37
	* 4, 2010		Pioneer 944/180								Avg: 0.38
<del></del>	(V) 4			,				Conti	nued on	next pa	ge
			Pioneer 944/180								
Č											

Table 6.3.2.12-7 (cont'd): Total BYI 02960 Residue Data from Soybeans after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application with BYI 02960 480 FS

	T	1	1102900 SL 0					ı	ı	ı	0
Trial Number	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Togal Rate Lb a.s./A (kg a.s./ha)	% Dry Matter	Sampling interval (days)		DEN Residue (mg as eguiv./kg)	DFKAFResidue Img a.Sogiųiv./kg/2/	Total BY1 02960
RV137- 10DB	ON Pasian	TRTS	Secan RCAT	Seed	0.382 (0.428)	52 Å	8	0.20	0.30	0.10 0.40	0.61
1000	ON, Region 5, 2010		Matrix	Sect of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section o	(0.420)	^		0.16	0.20		Ãvg: 0.58
				<b>y</b> .		0° 75%	ر 1400	\$ 0.216	0.46	0.45	0.00
			4.			750 V	14.0	0.21 0.22	0.46 051	0.45 <b>©</b> 16	0.82 9.89 Avg.
						<b>)</b>			2 1		Avg: 0.85
						80	210	0.28 0.25	0.64	0.18 2.17	0.95
								0.25	<b>4</b> 9	Ø.17	0.91 Avg:
			17 i 📞 '	O Ó			<b>*</b>			V	0.93
		, D			<i>O</i> ,	\$3 \$\$	.280	0,38	0.91 Ø0.65	0.21 0.24	1.1 1.2
					Y S	, «		7 ~C		0.21	Avg:
						%y <b>8</b> 5	ŠŠ	031	0.20	0.20	1.2
		P				, 03		$\mathbb{Z}^{0.26}$	0.17	0.17	0.83
			NC+3051R	, Speed		(N)	S	ď			Avg: 0.94
RV138-		TRUS	NC+3051R	∘Seed	©:370 (0.415)	D91 _s	JY9	0.07	0.09	0.10	0.26
10HA	N®, Region 5, 2010			Ö' Ç	(0.415)		ø	0.07	0.08	0.09	0.24 Avg:
	<b>X</b>	TRIST			<i>(a)</i>	<b>\</b>					Avg: 0.25
RV138- 10HA	, <b>N</b> Ø,	TRTST	© XC+3051R	Seed	$0^{0.044}$	91	134	<0.01 <0.01	0.12 0.11	<0.01 <0.01	0.14 0.13
	Region 5,	\$*	<b>N</b> C+3051R								Avg:
RV139-	<b>∞</b> Ø10 ℃ , NE,	TRTS 2	NC + 2731R	Seed S	© 0.359	91	20	0.03	0.10	0.05	0.13
10HA	Region 5,				(0.403)			0.04	0.11	0.05	0.20
	2010										Avg: 0.19
RV140-	, , , , , , , , , , , , , , , , , , , ,	TRTS	90M01	Seed	0.370	85	20	<0.01	<0.05	<0.01	0.07
10HA	ON, Region 502010				(0.415)			<0.01	<0.05	<0.01	0.07 Avg:
											0.07
RV141- 10HA:	, MN Region	TRTS	AG 0808	Seed	0.367 (0.411)	87	22	0.16 0.15	0.49 0.52	0.07 0.07	0.72 0.74
	\$4,2010\$				(						Avg:
~~ <u>~</u>	Q ^a										0.73

Table 6.3.2.12-7 (cont'd): Total BYI 02960 Residue Data from Soybeans after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application with BYI 02960 480 FS

		1			Ī		- I		1	1	0
Trial Number	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Toga, Rate Lb a.s./A (kg a.s./ha)	% Dry Matter	Sampling interval (days)≉	BYI 02960 (Residue (mg/kg))	DE Residue (mg as Aquiv./kg)	DFKAFResidue Jmg a.Steguiv./kg/	Total BY1 02960 Residue (smg a.s.
RV142-	2	TRTS	Asgrow3803	Seed	© 0.365	914	ž 21	0.19	90.11	0.0€	0.35
10HA	MO, Region 5, 2010				(0.409) © . S			0.24	0X0	0.64	039 Avg: 0.37
RV143-	,	TRTS	DKBOO-99 (	Seed 🤅	0.366	82	20_0	r 0.0 <b>2</b>	<0.05 <005	<0301	0.08
10HA	ON, Region 5, 2010				(0. <b>4)</b> 71)	8257 Q		0.02		<0.01 .01	9.08 Avg: 0.08
RV144-	,	TRTS	Pioseer & 92Y80 ®	Seed	0.365 (0.409)	N. S. S. S. S. S. S. S. S. S. S. S. S. S.	210	0.02	<0.005	0.01 0.01	0.08
10HA	IA, Region		Ø2Y80 Ø		(0.409)		<b>O</b>	0:91	<b>3</b> 0.05	<b>9</b> .01	0.08
RV145-	5, 2010	TDTa	2 2						<0.05	× 0.01	Avg: 0.08
		TRT&	90M40	Seed	0.365 (0.409)	DO.	.200	<0.01 ×0.01		< 0.01	0.07
10HA	, ON,	, Q	90M40		(0.40)	<i>J</i>	Ş',	<b>*9</b> :01	<b>\$</b> 0.05	< 0.01	0.07
	Region 5, 2010					% 91	<u></u>				Avg: 0.07
RV146-	, i	TRTS	Asgrow	Seed	366	91	<b>@</b> 0	<0,01	< 0.05	< 0.01	0.07
10DA	ND, Region 5, 2010		(%) (%) (%)		Ø366 Ø.411)Ø			©.01	<0.05	<0.01	0.07 Avg: 0.07
			, w	, Q		92	, <b>G</b> 15	< 0.01	< 0.05	< 0.01	0.07
	, Q	√ n 8				~	$\mathcal{S}$	< 0.01	< 0.05	< 0.01	0.07
											Avg: 0.07
	<b>.</b> \$	4				92	21	< 0.01	< 0.05	< 0.01	0.07
		4	y yʻ.	)				< 0.01	< 0.05	< 0.01	0.07
											Avg: 0.07
	4		9' 45		Į į	93	28	< 0.01	< 0.05	< 0.01	0.07
e e					1			< 0.01	< 0.05	< 0.01	0.07
			Pioneer 93Y70								Avg: 0.07
	@.\	) 'U'		J		77	35	< 0.01	< 0.05	< 0.01	0.07
	A A							< 0.01	< 0.05	< 0.01	0.07
											Avg: 0.07
RV147-	, <u>,</u>	TRTS	Pioneer	Seed	0.368	84	20	1.10	1.71	1.02	3.8 °
10HA	KS Region		93Y70		(0.412)			0.94	1.52	0.90	3.4
	KS Region 2011										Avg: 3.6 d
	· )) · — — — — — — — — — — — — — — — — —										

Table 6.3.2.12-7 (cont'd): Total BYI 02960 Residue Data from Soybeans after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application with BYI 02960 480 FS

						1					0
Trial Number	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Togal Rate Lb a.s./A (kg a.s./ha)	% Dry Matter	Sampling interval (days)	BYI 02960 Residue (mg/kg)	DE Residue (mg an Gguiv./kg)	DFLAFResidue Img a.Skiquiv./kgl	Total BYI 02960 "C Residite and a.s. A. A.
RV148-	2	TRTS	S28-B4	Seed .	0.370	91 &	, 19	0.08	0.38	0.00	0.54
10HA	NE, Region			4	(0.414)	Q,	l &	0.06	0.36	0.85	0,48
	5, 2011			Q0"		Y		~	\O'		<b>Q</b> Avg: 0.50
				¥.,	a° S	, D					0.50
RV149-		TRTS	Willcross (	Seed (	0.367	85	19.0	0.28	0.25 0.27	0.40	0.63
10HA	KS, Region		RR2428N		(0.471)	Q,		0.27	0027	0.40 0012	<b>9</b> .66
	5, 2011				~ ?	·			K)		Avg:
			Ű ú	~ J	Q" ,\Y	Ĺ	<b>Y</b>			<0.01 <0.01	0.64
RV150-	, NE,	TRTS	16501 RR	Seed	0.367	90	210	<0.01 <0.01	<0.005	<b>≤</b> 0.01	0.07
10HA	Region 5,				(0.4/11)		<b>8</b>	<0.001	50.05	<b>30</b> .01	0.07
	2011							Õ (		7	Avg:
				4(1)		Q	(				0.07
RV151-		TRT	Stine 2862	Seed	0.363	188 ×	.290	0.05	0.09	0.12	0.26
10HA	,			Seed	(09407)	,,,,	Ş"	<b>~9</b> ,706	Ø0.09	0.13	0.28
	IA, Region					, *	لا	)	7		Avg:
	5, 2011						Q.				0.27

- Sampling interval is the interval between last application and sampling date
- Total BYI 02960 residue is the sum of BYI 02960, DEA, and DFEAF residue is parent equivalents. Residue measurements below the analyte LOQ were summer into the total BYI 02960 residue value as the analyte LOQ value. These totals present the upper limit of what the residue levels mught be
- Maximum residue found in soybean seed from foliar treated plan samples collected at a target 21-day PHI.
- seed from what treated plot samples collected at a target 21-day PHI.

## Conclusion 3

Twenty field trials were conducted to measure the magnitude of BYI 02960 residues in/on soybean seed following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast following two broadcast f The total BYI 02960 residue data are summarized in Table 6.3.2.12-8. BYI 02960 480 FS

Table 6.3.2.12-8: Summary of Residue Data for Total BYI 02960 from Soybeans

		_		Total BYI 02960 Residue Levels (ppm)									
Commodity	Plot Name ¹	Total Application Rate Ib a.s/ (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max after PHI	AART 2	Median ³	Mean King			
Soybean Seed	TRTS	0.359 to 0.382 (0.403 to 0.428)	19 – 22	20	<lod< td=""><td>3.8</td><td>1.2 (28)</td><td>3.6</td><td>20²6</td><td>0.48 0.80</td></lod<>	3.8	1.2 (28)	3.6	20 ² 6	0.48 0.80			
Soybean Seed	TRTST	0.028 to 0.045 (0.032 to 0.051)	131 – 138	3	0.11	0.89	NA ⁵	0.82	0.48	0 37 832			

- TRTS = Treated plot receiving two foliar applications of By 02960 200 SL for the collection of seed samples; TRTST = Treated plot receiving soybean seeds treated with BYI 02960 480 FS for the collection of seed samples
- HAFT = Highest Average Field Trial
- calculated on the basis of residue values at the PHI ( 3
- Sampling day showing highest residue

  Not applicable, since no decline trials were conducted after seed freetment

Not applicable, since no decline trials were constituted after send treetment.

Residues in samples collected from for ar treatment plots, were imapprox the same range as the residues in samples collected from seed treatment plots. However the overall maximum residue was detected in a soybean seed sample collected after foliar treatment the total residue in this plot was by a factor of approx. 10 higher compared to the average residue level indicating that the use pattern with the foliar treatment can be more concal in respect to residues.

Samples collected from decline trials indicated that the total BY 00296 residue in soybean seeds decrease with the time. Even if the maximum residue level was detected after the PHI, the residues declined until the final sampling event. The overall maximum residue value was detected at the PHI of 21 days and was significantly higher than the residue value detected after the PHI.

The residue data provided for soybean seeds are suitable for regulatory purposes.



#### IIA 6.3.2.13 Oilseeds - cotton seed

#### Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in conton see subgroup (Crop Subgroup 20C). The use pattern in North America is summarized in Table 6.3 1.

Target Use Patterns for the Application of BYI 02960 in/on Cotton seed Table 6.3.2.13-1a: (Crop Subgroup 20C) in North America

			Form	Targe	t Rate Appli	0 .4		V V Tar <b>s</b> ot			Sp Øol	ray ume
Application	Test	No. of		ct (FP)	Active St Name of	bstance	e (a.s.)	Target App. Interval	Target	Adjuvant Additive	e o	
* *	Substance			fl oz/A	as	<b>6</b>  ≈a,s./A _≈		(Days)		(%)		LPHA
Foliar	BYI 02960 200 SL	2	415	~~~ (	BYN 02960	0.183	D L.	» . O	<b>%</b> 4	Ø.25 1	10-50	93-467

1 Adjuvant/Additive = Dyne-Amic or any non-ion surfaction

A total of twelve trials were conducted in cotton after foliar spray appliaction. The studies are described below. In parallel, three residue trials were conducted with BYI 02960 480 FS following a seed treatment application. The seed treatment are presented below

Target Use Patterns for the Application of BYI 02000 in/on Cotton seed Subgroup Table 6.3.2.13-1b: (Crop(Subgroop 2009) in North America @

				∜, ○ Tar <b>g</b> e	Rate Appli	ic@fion						ray ume
° &	2/	₩.	Pro/du	ulated ct (FP)		bstance	e (a.s.)	Target				
Application	Test	No. of	mail/ 100 kg	<b>©</b> fl ,oz/10€	Noma of.	lb <a.s. <br="">.100 lb</a.s.>	kga.s./ 100 kg	App. Interval	Target PHI	Adjuvant /Additive	~ <del>~</del> .	
Type	Substance	Apps	seeu	ID SORU		Secu	seeu	(Days)	(Days)	(%)	GPA	LPHA
Seed Treatment	BYI 02060 480 FS		<b>3</b> 042	Ø6.0	PYI 02960	0.5004	$0.500^4$	$NA^1$	ECH ²	NA ¹	NA ¹	NA ¹

- 2 ECH = Conflict commercial harvest

Report:	KIIA 6.3.2 43/01 and A. M. ; 2012
Title:	BY 10296 200 St and BM 480 FS - Magnitude of the Residue in/on Cotton (Crop
Title.	Subgroup 20C)
Report No	RARY Y009, Lated June 1, 2012.
Report No S	M ₂ 431910-01-2
Guidelines:	S. EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada. PMRA DACO 7.4.1, Supervised Residue Trial Study
	PMRA DACO 7.4.2, Residue Decline
C	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	Adopted Sept. 7, 2009.
GLP	Yes



Twelve field trials were conducted to measure the magnitude of BYI 02960 residues in/on cotton (undelinted cotton seed and gin trash) following two foliar spray applications of BYI 02960 200 SIC. Three of these field trials also included plots to measure the magnitude of BYI 02960 residues in the same matrices following the planting of seed treated with BYI 02960 480 FS. Since cotton gin trash (as feed item) is not imported into Europe, this dossier will focus on cotton seeds, only. Complete information on the study, including the data on cotton gin trash, has been submitted in the Global Joint Review Submission in October 2012.

BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L and BYO 2960 480 FS is a flowable concentrate containing 480 g FYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.13-2).

Table 6.3.2.13-2: Trial Numbers and Geographical Locations for BYI 02960 in/of Cotton

NAFTA Growing Region	Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submitted.  Submit	Requested
1		
1A		
2		
3		4 7 9 9
4		
5		
5 5A 5B 6		
5B		
6 0		
77A		
⁷ 7A		A Property of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con
8	A 0 24 0 0 0	4
9		
10		3
(D)		
12		
13		
13 14 Total		
Total &	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12

a Four decline trials were performed to meet EU requirements.



#### **Material and Methods**

Individual foliar application rates ranged from 0.180 to 0.191 lb BYI 02960/A/application (0.202 to o 0.215 kg BYI 02960/ha/application). Seasonal foliar application rates ranged from 0.361 to 0.379 b BYI 02960/A (0.404 to 0.425 kg BYI 02960/ha). All applications were made at growth stages on ging from BBCH 82 to 89 (BBCH 82: about 20% of bolls open; BBCH 89: about 90% of bolls open). The interval between the applications was 7 to 10 days. For plots receiving treated seed, application ranged from 0.042 to 0.055 lb BYI 02960/A (0.047 to 0.061 kg BYI 02960/ha).

All foliar applications were made using ground-based equipment. The adjuvant Dy in all of the spray applications at 0.25% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 9.3.2 patterns are summarized in Table 6.3.2.13-4.

Trial Site Conditions for BY 02969 on Cotton Table 6.3.2.13-3:

			<i>∞</i> . <i>™</i>	(O) .	<del></del>		
		Soil Cha	uraeteristi	cs a		Metorologi	cal Data b
Study Location	Trial Number				OEC N	Total &	Temp.
(City, State)	Triai Number	jo Type 💸	% @Ni	p	ODEC	(Rainfált	Range
		Type O	\@'	Q ^y	O* 8	(in)	(°F)
, CA	RV108-4ØHA _{&amp;}	Sandy Loam	0.7	7.7	7.8	0.65	53-90
, CA	RV109-10HAQ"	Sandy Loam	1.7	.85°	<b>3</b> 4.5	پي 9.93	42-63
, LA	RV110-16TA	Silo Loan	. <b>0</b> .83	√7.0 _©	9.66 Ô	1.91	68-92
, VA	RV111-10HA	Sandy Loam	1.8	6.40	<b>6</b> √	16.99	48-88
, TX	RV 62-10 PA	Clay Clay	0.58	<b>%</b> 2	<b>\$</b> 0.4	6.16	51-93
, CA	113-10НА	Sandy Loany	0.58	₹5.7°	© [®] 5.1	0.81	49-96
, TX	∂ŘV114J10HA	Clay	2.60	<b>&amp;</b>	42.7	15.97	58-103
TX	RYM5-10HÅ	Sandy Clay Loam	<b>J</b> \$1	<b>9</b> .9	12.84	11.99	48-94
MS	, <b>K</b> W116, <b>P</b> ODA	Siil Loam	0.9	6.3	10.1	5.54	44-93
, AR	PRV117-10D	Char O	1.6	6	21.2	9.36	41-79
, TX	RXT118-1000A	Tay S	2.6	8	42.7	3.86	57-103
, OKÇ	0RV118-10DA	Sandy Loam	0.8	6.4	7.9	4.37	36-76

Abbreviations used: %OM = percent organic matter; CEC * oation exchange capacity .

natter to tirst application ment weather stations. Data is or the interval of the month of first application through the month of last sampling. Meteorological data were



Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Cotton Table 6.3.2.13-4:

	4				App	licatio	n			0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Gowth Stage (BBCH)	Actual Spray Volume GPA	Rate Ib a:S:]A (kg a.s./ha)	Retreatment Interval (dais)	Fotal Rafe 10 a.s./A (kgas./ha) 🚓	CO L'S COL Tank Mix Adjustints L'M
RV108- 10HA	, CA Region 10 2010	BYI 02960 200 SL	TRTD	Brook ast foliar	BBCH 83 83 BBCH 85 85 85 85 85 85 85 85	30 (283) 31 (289)	© 0.188 (0.210) 0.191 (0.215)		@.379 @ (0.425)	Dyne-Onic 0.25% v/v Dyne-Omic 0.25% v/v
RV109- 10HA	CA Region 10 2010	BYI 02960 200 SQ	TRTE	Broadcast foliar	BBCH 83	(285) (285) (29) (272)	(0.20 <b>1</b> )		(2) 367 (0.412)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV110- 10HA	Region 42010	BX 702960 200 St	TRTD	Broad ast	BBCH 85 85 BBCH 87	2 17 (161)	0.183 0.205 0.186 (0.209)	NA ^a	0.369 (0.414)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV111-	Region 2	BY502960°		Broad ast	BBCH 87 87 BBCH	②0 (186) 20	0.183 (0.205)	NA ^a	0.367 (0.411)	Dyne-Amic 0.25% v/v  Dyne-Amic
RV112- 2 10HA	Region 82010	BYQ02960 200 St	TRTD	Broaite ast to trans		(188) 15 (143) 15	(0.206) 0.184 (0.206) 0.184	NA ^a	0.368 (0.412)	0.25% v/v  Dyne-Amic 0.25% v/v  Dyne-Amic
			, Q		88	(142)	(0.207)		ued on n	0.25% v/v  ext page



Table 6.3.2.13-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Cotton

	A				App	licatio	n			@.°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Cowth Stage (BBCH)	Actual Spray Volume GPA	Rate Ib a.S./A (kg a.s./ha)	Retreatment Interval	Potal Rake th a.s./A (kgaz, ha)	
RV113- 10HA	, CA Region 10 2010	BYI 02960 200 SL	TRTD	Broadcast foliar	BBCH 82 C BBCH 87 C	33 (308) 33 (308)	©0.181 (0.2020) 0.182 (0.204)	NA*\		Dyne-Emic 0.25% v/v Dyne-Amic 0.25% v/v
RV113- 10HA	, CA Region 10 2010	BYI 02960 480 FS	TRTSOT	Seed Togatment	BBCH,	NA C	0.042	NAª	\$0.042 (0.04%)	NA ^a
RV114- 10HA		BYI 02%0 200 SL	TRED	Br@adcast Froliar	BBCH 84 S BBCH 87 87	18 (172) (172) 20 (183)	0.1827 (0.204) 0.1845 (0.206)	NA S 7	0.366 (0.410)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV114- 10HA	Region 82010	BMI 02960 480 FS	TRTSP	Seed Treatment	BBCH 2	NA ^a	0.055 (0.061)	NAª	0.055 (0.061)	NAª
RV115-25 10HA	Region 8 2010	BY002960 200 Sk	TRTD.	Broadcast foriar &	BBCH 84 BBCH 087	②20 (187) 20 (183)	0.185 (0.207) 0.181 (0.203)	NA ^a	0.366 (0.410)	Dyne-Amic 0.25% v/v Dyne-Amic 0.25% v/v
RV115- 7	Region 8 20,0	BYI.02960 480 FS	<b>FR</b> TST:	Seed Treament	BBCH 00	NA	0.054 (0.060)	NAª	0.054 (0.060)	NA ^a
RV116- 10DA	Region 4 2010	BYI 02960 260 SL	TRID	Broadcast foliar	BBCH 88 BBCH	12 (112)	0.184 (0.206) 0.184	NA ^a	0.368 (0.412)	Dyne-Amic 0.25% v/v  Dyne-Amic
RV114 10102A	AR Region 4 2010	BYI 02960 200 SL	TRTD	Broadcast foliar	89 BBCH 88	10 (95)	(0.206) 0.183 (0.205)	NAª	0.366 (0.410)	0.25% v/v  Dyne-Amic 0.25% v/v
					BBCH 89	10 (95)	0.183 (0.205)	10		Dyne-Amic 0.25% v/v



Table 6.3.2.13-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Cotton

	•				App	licatio	n			a,°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Cowth Stage (BBCH)	Actual Spray Volume GPA	Rate Ib a: A (kg a.s./ha)	Retreatment Interval (dass)	Cake to a.s (ha) OD	CO KY
RV118-	, TX	BYI 02960	TRTD	Broadcast	BBCH≈	√18 °	Ø.180 ^	$NA^a$	@.361 @	Dyne-Amic 0.25% v/v
10DA	Region 6 2010	200 SL		foliar o	( L)	20 (184)	0.180 (0.202)			0.25% v/v  Oyne-Amic 0.25% v/v
RV119-	, OK	BYI 02960		Broadeast foliar	BBCH	30	0.204)	Aa	\$67 \$0.412 <u>)</u>	Dyne-Amic
10DA	Region 6 2010	200 SL	~ ~~	fởhár	<b>1</b> €89 ^	(283)	0.204	<b>Y</b>	730	©0.25% v/v
					B₽€H 89-99	<b>20</b> , (286).	0.185			Dyne-Amic 0.25% v/v

a NA = Not applicable

TRTST = Treated plot receiving cotton sacras treated with BYI 02969 480 FS (no subsequent foliar treatment)

In the harvest trials after two foliar applications (TRTD plots), displicate composite samples of seed cotton were collected at pre-harvest intervals (PLFIs) ranging from 13 to 14 days with the exception of trial RV11 10HA, which received 16 in of rainfall the week prior to harvest, thus due to wet soil the cotton could not be picked intil a 19-day PHI. The intended pre-harvest interval is 14 days. In the four decline trials, displicate composite seed cotton samples were collected at 0, 6 to 7, 13 to 14, 19 to 21, and 27 to 28 days after the last foliar application, with the exception of trial RV119-10DA, where the 21-day sample condition to be collected due to wer soil. For the TRTST plots, harvest occurred at earliest commercial harvest (ECH 136 to 179 days following planting). Single composite samples of seed cotton were collected from the control plots on the same day the target 7-day samples were collected from the treated plots.

All seed cotton samples were girned to generate cotton seed samples (undelinted seed) for analysis.

The residues of BY102960, DFA, and FEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BY102960 residue. Residue measurements below the analyte LOQ were summed into the total BY102960 residue value as the analyte LOQ value.

TRTD = Treated plot receiving two bliar applications of BY 2960, 200 SL



#### **Findings**

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to o verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 0 to 110%, and the standard deviation values were below 20% (cf. Table 6.3.2.13-5)

Summary of Recoveries of BYI 02960 from Cotton Table 6.3.2.13-5:

				Cs do	√ .°	. 7 2(8
Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries (%)	Mean %	Standard  Deviation
		0.010	10	85, 89, 94, 83, 83, 75, 78, 6 115, 117, 98, 6		
	BYI 02960	0.500	P,	76 × 76 × 76	\$76%	ŇA
		1.00	<u> </u>	r	7300	O NA
		2.00	2	Ø8, 80 🗸 🔊	<b>\$9</b> %	
		0.056		\$\frac{1}{2}1, 70 \text{\$\frac{1}{2}6}, 77 \text{\$\frac{1}{2}5}, 69 \text{\$\frac{1}{2}9}, \\ 84 \text{\$\frac{1}{2}90}, 92 \text{\$\frac{1}{2}\$}	79% 79% 79%	9
Undelinted Seed	DFA	0.900	16	\$\frac{7}{2} \tag{70} \tag{0} \tag{0}	₩ ×	NA
Seed	*	$\sqrt[\infty]{1.00}$	P	74,76	°71%√	NA
	<b>*</b>	2000	\$\tilde{\infty}2  \tilde{\infty}	74\\ 76 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	75%	NA
		0.010	100.		\$91%	11
	DFCAF (	0.500			75%	NA
	DFCAF O	, ØØ0 2	1	77 V 780, 88 V 79	77%	NA
		√2.0 <b>0</b>		Z Z 80, W Z	84%	NA

Mean recovery = mathematical average of all recovery values

The freezer storage stability study indicates that BVI 02960 residues were stable in crops with high oil content during frozen storage for at least 18 months (558 days) prior to analysis as shown for soybean seeds and coffee beans as representative crops. The maximum storage period of frozen samples in this A summary of the storage conditions are shown in the Table 6.3.2.13-6 below.

Standard Eviation not calculated if \$3 fortingation

# Bayer CropScience

Table 6.3.2.13-6: Summary of Storage Conditions for Cotton

Residue Components	Matrix (RAC)	Maximum Average Storage Temperature (°C) a	Actual Storage Duration months (days) b	Interval of ° Demonstrated Storage Stability months days °
BYI 02960	Cotton Undelinted Seed	< -21	15 (444)	18 7
DFEAF	Cotton Undelinted Seed	< -2017	Ø15 Q(444)	\$\tag{558}\tag{558}\tag{558}\tag{558}
DFA	Cotton Undelinted Seed	-21	15 0	(558)

- The maximum average storage temperature is from the time of sample receipt at OLP Tem until sample extraction at BRP and is the maximum of all average freezer temperature of BRP and GLP Tech. While preparing for sample analysis, the samples were maintained in a laboratory freezer.
- The storage duration is the time from field sampling through the last sample extraction.
- 2012. Storage stability of BM 02960 difluoroacetic acid, and difluoroethyl-amino-furanone in plant matrices. Bayer Crop science Repor 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data for cotton undelinted seed following foliar or coed treatment application(s) are shown in Table 6.3 2 13.57 application(s) are shown in Table 6.3.2.13

Total BY102960 Residue Data from Cotton offer Two Folian Applications of Table 6.3.2.13-7: BY I 02960 SL of a Seed Treatment Application of BY I 02960 480 FS

Trial Identification	Location (Ci	Plot Name	Cop Variety Ch		tal Rate		Percent Dry Matte	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFResidue (mg a.s. equiv./kg)	Total BYI 02960 Residue (mg a.s. equiv./kg) ^b
RV108- 10HA	, CA, Region 10,	TROD	RHY755 WRF Acata	Underinted	0.379 (0.425)	14	96	<0.010 0.018	<0.050 <0.050	<0.010 <0.010	<0.070 0.078
	2010										Avg: 0.074
RV109- 10HA	CA Megion	1000 TD	DP353*	Undelinted Seed	0.367 (0.412)	14	89	0.102 0.164	<0.050 <0.050	<0.010 <0.010	0.16 0.22
	CA Region (5), 2010			<b>3000</b>	(0.112)			0.101	0.020	0.010	Avg: 0.19
RV110-5	I & Region	TRAD	Phytogen 485 WRF	Undelinted Seed	0.369 (0.414)	14	95	0.049 0.112	<0.050 <0.050	<0.010 <0.010	0.11 0.17
RV110-5 10HA	La Region 4,		100 WICI	Beed	(0.414)			0.112	·0.030	-0.010	Avg: 0.14

Table 6.3.2.13-7 (cont'd): Total BYI 02960 Residue Data from Cotton after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application of BYI 02960 480 FS

	ı	1		ı	1						0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total-gate Lb a.s./A (kg a.s./ha)	Sampling Interval	Perdon Dry Matter	BYI 02960 P. Residue (mg/kg)	DFAResidue (mg a.s. coniy./kg)	DFEAFAgsidue Color (mg. 1972)	Ogtal BY (12960 Residue (mSQs, equiv./kg)
RV111- 10HA	Region 2, 2010	TRTD	PHY375 WRF	Undelined Seed	0.367	79 6, 100 100 100 100 100 100 100 100 100 100	940		<00050 <0.050 0.050 0.050	60.010 20.019	0.087 0.099 Avg: 0:093
RV112- 10HA	, TX, Region 8, 2010	TRTD	FM 1740 B2F	Underinted Seed	\$0.368 (0.412) \$	) 13		9.962 9.632	© 0.050 0.050 0.050	<0.010 <0.010	0.22 <b>0.69</b> b Avg: <b>0.46</b> c
RV113- 10HA	, CA, Region 10, 2010		Acala Daytona RF		0.369 (0.406)	140		0.016 0.019	<0.050 <0.050	<0.010 <0.010	0.076 0.079 Avg: 0.077
Division		TRTSor	Aeala Destona Ro		Ø.042 Ø.047)			<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
RV114- 10HA	Region 8,	TRTD	6M1740 B26	Under inted	0.366	13	<b>9</b> 5	0.053 0.024	0.093 <0.050	<0.010	0.16 0.084 Avg: 0.12
		TRTST	FM1340 182F		0.055		95	<0.010 <0.010	0.057 0.076	<0.010 <0.010	0.077 0.096 Avg: 0.087
RV115-	TX, Region 8, 2010	TRAD	FM/9180 B2 FQ	Undefinted		14	96	0.080 0.067	<0.050 <0.050	<0.010 <0.010	0.14 0.13 Avg: 0.13
	17, Region 8, 2010	TATST	✓ FM 9180 B2 F	Undelinted Seed	0.054 (0.060)	158	97	<0.010 <0.010	0.388 0.293	<0.010 <0.010	0.41 d 0.31 Avg: 0.36 e

Table 6.3.2.13-7 (cont'd): Total BYI 02960 Residue Data from Cotton after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application of BYI 02960 480 FS

<u> </u>				1							0
-6-116 Trial Identification	Location (City, State, Region, and Year)	DIOT Name	Crop Variety S252 TS	Commodity	Total-Mate Lb a.s./A (kg a.s./ha)	Sampling Interval	Percent Dry Matter	BYI 02960 BY Residue (mg/kg)	DFAResidue (mg a.s. equiv./kg)	DFEAFRESIDUE CO (HEEA.S. equivalle)	© Total BY 02960 Residue © (mgas, equiv./kg) b 20
	MS, Region 4,	IKID	BIIRF	Seed	(0.368)	O O	920	0.444	~ (C))30	<b>1</b> 0.010	ر ا
	MS, Region 4, 2010			Undelined Seed	(0.412)	14	√ √01	0.232	<0.080	<b>50.</b> 910	0.23
					Ş			0.192	<0.030 	<0.010	0.25 Avg:
								(/ N		<b>)</b>	Avg: 0.24
					<b>~</b>	200	930	0.058	<0.050	<0.010	0.12
	4			Underrited		27 °	<b>₹</b> 9	\$080 \$	0.050	< 0.010	0.14
RV117- 10DA	Region 7,	TRTD	PynaGro© 2400RF	Undefinited Seed	X0.41 <b>0</b>		e	0.448	<0.050	<0.010	0.48
							94 ***	0.064	<0.050	< 0.010	0.12
						137	95	0.060 0.082	<0.050 <0.050	<0.010 <0.010	0.12 0.14 Avg: 0.13
					<b>7</b>	21	92	0.121	< 0.050	<0.010	0.18
						28	94	0.020	0.060	<0.010	0.090
				Ç.				Cont	inued on	next pag	ţе
			J								

Table 6.3.2.13-7 (cont'd): Total BYI 02960 Residue Data from Cotton after Two Foliar Applications of BYI 02960 SL or a Seed Treatment Application of BYI 02960 480 FS

h	ı							1	1		<del>0</del>
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Kate Lb a.s./A (kg a.s./ha)	Sampling Interval	Percent Dry Matter	BYI 02960 P. Residue (mg/kg)	DFAResidue (mg a.s. equiy./kg)	DFEARResidue Co. (Reg. 4.8. equiville)	Optal BY (\$2960 Residue (ms. equiv./kg)
RV118-	, TX,	TRTD	Stoneville	Undelinaed	0.361	<b>0</b>	85%	0.56	<00050	60.010	© 0.63
10DA	Region 6, 2010		5458	Undelifüed Seed	(0.404)	Or"					,
	2010					- <del>0</del>	/	1'0' m		4	600-
			4. n		Į,	Q,	89 [©]	0.814	<0.050	<b>49.</b> 010	\$0.87
						14 (	Ø88	₹ <b>9</b> .257 <i>6</i>	\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.00TO	0.32
			Q.			14	88	0.40	<0.050 <0.050	\$0.010	0.32
			///	D				0.257 0.40	<0.050 <0.050 <0.050		Avg: 0.39
						ے ک	8	8			0.39
		2				18	940	0.494	<0.950 \$\tilde{\phi}\$	< 0.010	0.55
					0	, ,	940				
		`~\``				28	93	×0.338	<0.050	< 0.010	0.40
	Ş					O	0	, ~ .			
RV119-	ΣK,	TAYTD	%¥M90€3	Undelinted	0.36%	0	Ç,92	Ø ₂ 362	< 0.050	< 0.010	0.42
10DA	Region 6,	N 💚	B2F &	Seed	0.367						
	Region 6,		<i>V</i>				×91	0.219	<0.050	< 0.010	0.28
		L ,					) ()	0.219	<0.030	<0.010	0.28
	, 0			,							
, ,						<u>3</u> 73	92	0.166 0.236	<0.050 <0.050	<0.010 <0.010	0.23 0.30
		4						0.230	~0.030	~0.010	Avg:
											0.26
		80				28	89	0.182	<0.050	< 0.010	0.24
								0.102	0.020	0.010	J.2.
	L	<u> </u>	r 🔍 , í	<u>~</u> ~		l					

- a Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper finit of what the residue levels might be.
- b Maximum residue found in cotton undunted seed from plants receiving foliar spray applications of BYI 02960 200 SL (TRTD) and harvested at a H-day PHI.
- c Highest Verage beld trial HAFT Vesidue found in found in cotton undelinted seed from plants receiving foliar spray applications CBYI 02960 200 SL (TRTD) and harvested at a 14-day PHI.
- d Maximum pridue found in corton undelinted seed from plants receiving a seed treatment application of BYI 02960 (\$200 FS (\$200 FS)) and harvested at a 14-day PHI.
- e HAFT sidue found in cotton undelinted seed from plants receiving a seed treatment application of BYI 02960 480 8 (TRTST)

TRTD = Treated plot receiving two foliar applications of BYI 02960 200 SL

TRTST = Treated plot receiving cotton seeds treated with BYI 02960 480 FS (no subsequent foliar treatment)



#### Conclusion

Twelve field trials were conducted to measure the magnitude of total BYI 02960 residue in/on coron following two foliar spray applications. In parallel, four seed treatment trials were conducted with BYI 02960 480 FS. The total BYI 02960 residue data for cotton undelinted seed following foliar or seed treatment application(s) are shown in Table 6.3.2.13-8.

Summary of Residue Data for Total 1971 02960 from Cotton Table 6.3.2.13-8:

Commodity	Plot Name ¹	Total Application Rate lb a.s/A (kg a.s./ha)	PHI (days)  Min at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max at Max
Cotton Undelinted Seed	TRTD	$ 0.361 - 0.379 \\ (0.404 - 0.425) $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cotton Undelinted Seed	TRTST	0.042 - 0.055 (0.047 - 0.000)	

- 1 TRTD = Treated plot receiving foliar applications of BVI 0296 200 SV TRTST = Treated plot receiving cotton seeds treated with BYI 02960 480 VS
- 2 HAFT = Highest Average Field Trial
- calculated on the basis of residue values at the PHL
- Sampling day showing bighest sidue &
- Not applicable, since do decline trials were conducted after seed reetment

Total BYI 02960 residues in the cotton underinted seed from plots receiving treated seeds were similar to plots receiving forbar applications. The overall maximum residue was detected in a cotton undelinted seed sample collected after foliar treatment and amount of to 0.69 mg/kg at the respective PHI of D days. The four decome trials conducted ofter foliar application showed that the total BYI 02960 residue in cotton seed experienced a general decline over the course of the study. The The residual data provided for cotton seeds are suitable for regulatory purposes. residues did not adways peak at the PHV of 14 days, but not later than 21 days. The overall maximum



#### IIA 6.3.2.14 Cereals - barley

#### Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on cereal graph, except rice (crop group 15). Representative crops tested were <u>barley</u>, field and sweet corn, sorghum and wheat. The use pattern for barley in North America is summarized in Table 6.3.2.14

A total of twenty field trials were conducted in barley. The studies are described below.

Table 6.3.2.14-1a: Target Use Pattern for the Application of BYIQ2960 on Barley (to gain Grains)

				Target	Ø Rate/Appli	cation		Z (O'			Sp Vol	ray ume
				nulated ict (FP)₄	Actine Su	ıb&anc	e ( <b>As.</b> )	Target App.	Target	Adjuvan	t &	
Application	Test	No. of			Name of ~	Jlb [	kg 🧷	Intercal	PHI	/Additive		
Type	Substance	Apps	mL/A	fl oz/A	"̇̀×⁄a.s. "®	a.s./A	a.s./ma	(Days)	(Days)	<b>%</b> (%) &	GPA	<b>LPHA</b>
	BYI 02960 200 SL				BYI 92960	0.183	_0 <b>2</b> 05	\$ 7 \hat{5}	21	0.25	10-50	93-467

In parallel, residue trials were conducted with BYI 02960 480 FS following a second treatment application. The seed treatment rates for the cereal grain crops are presented below.

Table 6.3.2.14-1b: Target Use Pattern for the Application of BYI 02960 on Barley (to gain Grains)

	Q			Target Rate Application							_	ray ume
			Produ	ulated et (FP)	Active Su	) ibstance	e (a.C)	Target				
Application	Test	O No se	ԾmL/ ։ Հ100 kg	oz/100	Name of	lba.s./ №00 lb	ki a.s./	App.	Target	Adjuvant /Additive		
Type 🗞	gubstance	TAKES	seed	lb seed	Tane or	see	see@	(Days)	(Days)	(%)	GPA	LPHA
Seed treatment	BYI 02960 480 FS	© 0 1 °,	\$\frac{1}{2}1	8.0	BYI 02960	0.250	· 0250	NA ³	ECH ⁴	NA ³	NA ³	NA ³

¹ NA = Not applicable.

² ECH = Earliest commercial harves

Report:	KIIA 6.3.2.74/01; 2012
Title:	BX 02960 00 SL and BX 02960 480 FS - Magnitude of the Residue in/on Barley
Report No &	RARVY 01, dans April 19, 2012
Document No	M-43/905-01-2
Guidelines:	US: EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: AMRA OACO 7.4.1, Supervised Residue Trial Study
	PMRA DACO 7.4.2, Residue Decline
	OECO: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	Apopted Sept. 7, 2009.
GLP &	Ves v

Twenty Feld trials were conducted to measure the magnitude of BYI 02960 residues in/on barley grain, barley hay and barley straw following two broadcast foliar spray applications of BYI 02960 200 SL, or by planting barley seeds treated with BYI 02960 480 FS. Since barley hay and straw (as

feed items) are not imported into Europe, this dossier will focus on barley grain, only. Complete information on the study, including the data on barley hay and straw, has been submitted in the Global Joint Review Submission in October 2012.

BYI 02960 200 SL is a soluble concentr	rate formulation contain	ning 200 g BYI 💯 60/	L. BYL <b>©</b> 2960
480 FS is a flowable concentrate contain trials conform to the guidance given by	ning 480 g BYI 02960	)/L. The number and le	agation of first
trials conform to the guidance given by	the EPA (Table 6.3.2.1	4-2).	
	Ö		
Table 6.3.2.14-2: Trial Numbers and	Geographical Location	s for BXQ 02960 in/on	Barley & S
NAFTA Growing Region	Submitted ^a	Requested	Barley 4
1			
1A			
2		Q 4	
3			
4			
5	3		
5A			© O
5B 🖏 📞			
6			
7 5 5		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
58 7 4 4			
10 2 2 6		1	
		2	
		<b>4</b> )	
13 \$ \$ 5			
13 0 5		8	
Total O	20	20	

Four of the twenty trials were decline trials (one in Region 5, one in Region 7, and two in Region 14). Four decline trials were performed to meet EQ requirements.

Material and Methods

Individual foliar application rates ranged from 0.174 to 0.228 lb BYI 02960/A/application (0.195 to 0.256 kg BYI 0.2960/ha/application). Seasonal total application rates ranged from 0.355 to 0.412 lb BYI 02960/4, 0.398 to 0.462 kg BYI 02960/ha). Foliar applications to plots for the collection of strew and grain were made at BBCH 58 to 87 (BBCH 58; 80% florecscence emerged, BBCH 87; hard dough): The interval between the foliar applications was 5 to 8 days. All foliar applications were made using ground-based equipment. The adjuvants Dyne-Amic, Agral 90 or Ag Surf were used in all of the applications at a rate of 0.25% (v/v).



Soil loading/application rates for plots into which treated barley seed was planted (TRTST plots) ranged from 0.111 to 0.180 lb BYI 02960/A (0.124 to 0.202 kg BYI 02960/ha), depending upon planting density. Barley seed was treated by Bayer CropScience, RTP, North Carolina at a nominal rate of 0.250 kg BYI 02960/100 kg seed.

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.14-3. Study use patterns are summarized in Table 6.3.2.14-4.

Table 6.3.2.14-3: Trial Site Conditions for BYI 02960 on Barley

Trial	Soil Characteristics Detro									
Identification	Country/State, Year)	Type	ØM ▷ (	pH S	CEC	√ Total Raintal I (in)	Temp. Bange (°F)			
RV001-10HA	, PA 011 &	Koam 🔊	2,40	<b>5</b> 2	<b>Ø</b> .2	\$9.25 O	61-95			
RV002-10HA	, NE 2011 0	Silt Loann	<b>2</b> .2	7.3	10.5	24,92	46-84			
RV003-10DA	IĹ, 2011©	🗘 Silt 🕼 am 💍	2.5	7.00	1303	24.50	49-93			
RV004-10HA	(2011)	Sandy Loana	200	<i>6</i> 7.6 €	94.1	6.59	58-80			
RV005-10HA	, ¥£, 201, Ç	Silt Lown	2.7 ~	$\sqrt[3]{6.8}$	17.0g	20.78	41-89			
RV006-10DA	ND, 2091	I bam 💸	§ 3.9 [©]	I.	<b>27</b> .2	4.34	57-88			
RV007-10HA	, ND 2011	Loam	3.8		√30.8	3.52	55-87			
RV008-10HA	, 80, 200	Clay Fram	y 3.6		19.9	6.11	57-81			
RV009-10HA	(jb, 2011 )	Þám Š	2.00	<b>3</b> 51	21.8	1.09	49-88			
RV010-10H	, CA, 2011 &	Sandy Loam	<b>3</b> .54	ر آگا 5.7	7.3	4.21	43-76			
RV011-100JA	, WA, 2011	LoamoSand	1.1	6.9	10.2	1.22	49-86			
RV01200HA	ID, 2,671	SAT Loam	137	7.2	11.7	4.48	35-93			
RV013-10DA	Alberta, 2011	Silty Clay Logm	Ŝ11.3	5.6	45	6.89	37-73			
RV014-10DA	Saskatchewan, 2014	<b>\$</b> oam \$	4.3	6.8	17	4.80	66-100			
RV015-10HA	Saskatchewan,	Logn	8	7.5	24.8	2.43	52-71			
RV016F0HA	, Manitoba, 2011	Noam	4.4	7.5	25.8	5.51	53-76			
RY@17-10HA	, Marintoba, 2011	Loam	5.3	7.5	24.4	8.78	53-76			
RV018-10HA	, Manitoba, 2011	Sand Loam	2.32	5.5	NAc	5.91	52-77			
RV019-10H	Alberta,	Loam	3.4	6.4	21	6.89	37-73			
RV020-40HA	Saskatchewan,	Loam	NAc	7.1	NAc	5.18	41-72			

Appreviations used OM percent organic matter; CEC = cation exchange capacity.

Pata is to the interval of the month of first application through the month of last sampling. Meteorological data were obtain from nearby government weather stations.

NA = Not Available.



Table 6.3.2.14-4: Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Barley

		<del>,</del>					2700 400			
				ı	App	o s				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage	Actual Spray Volume GPA	Rate lb a.s./A (kggs./ha)	Retreatment Interval	ς Θ	Taink Mix Adjunants
RV001-	,	BYI 02960	TRTSG	Broadcast	BBCH	19	Ø.185 4	NAª	0.370	Dyne-Amic,
10HA	PA Region 1 2010	SL 200		Broadcast foliar	BBCH Ø7 Ø BBCH 85	0,75)	(0.207)	** ***	90.414) 5	0.25% v/v Done-Amic, 0.25% v/v
RV002-	, NE	BYI 02960	TRTS	Broodcast	®BCH 71.°	15	0.186	NA	0.3760	Dyne-Amic,
10HA	Region 5 2010	SL 2000		foliar		(137)	(0.208)		(0.4,14)	0.25% v/v
	2010	Z W			BBCH 83	0 014 (134)	0.184	5 (		Dyne-Amic, 0.25% v/v
RV002-	, NE %	ØYI 02960	TROTST :	Seedy	BBCH	NA	20×110	MA ^a	0.110	NA
10HA	Region 5	SI 700		Treathen	<b>0</b> 00		(0.1236)	<i>y</i> 11 2	(0.123)	1,12
RV003-	AL (	BYI 02960	TR TSG~	Broadcast	BBCH	27	<b>2</b> /186	NAª		Dyne-Amic
10DA	Region 5	SL-2000 (		foliar	BBCH	26) 4(248) O	0.209) 0.186 (0.208)	7	(0.417)	0.25% v/v  Dyne-Amic 0.25% v/v
RV004- 10HA		BYM 02960 SL 2007	TRASG	Broadcast foliar	BBCH	12 (109)	0.180 (0.202)	NAª	0.364 (0.408)	Dyne-Amic, 0.25% v/v
1011/4	Region 5			/ Norman	83		,		(0.700)	
	Region 5				<b>В</b> ВСН 85	12 (114)	0.184 (0.206)	7		Dyne-Amic, 0.25% v/v
RV005-	, NO	BYJ 2960	TRTS6	Broadcast	BBCH	20	0.185	NAª		Dyne-Amic,
10HA	Region 7	SL 200	TRTS C	, Aoliar	75	(190)	(0.207)		(0.413)	0.25% (v/v)
TOTA S	(7		Q (	Ş"	ВВСН	20	0.183	7		Dyne-Amic,
					85	(190)	(0.205)			0.25% (v/v)
RV005-		102960	TRØST	Seed	ВВСН	NAª	0.180	NAª	0.180	NAa
10HA	NE Region 7	\$\frac{1}{2}\$ 02960 480\$\frac{1}{2}\$	TRØST	Treatmen t	00	1,71	(0.202)	1111	(0.202)	1,11

Table 6.3.2.14-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Barley

Tuble 0.	3.2.14 <del>-4</del> (cont u).	Diddy Ost		01 6 1 1 0 2	200	on and	D11 0270	70 10	015011	Buricy
				Application						
	, NAFTA	rmulation)			9	e GPA	To the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	_	(kg a.s./ha)	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	po O	Timing/Growth Stage	Actus Spray Volume GPA	Rate lb a.s./A (kggs./ha)	Retreatment Interval	Cotal Rale B a.s./A	OZE PA
Trial	Loca Regid	End-	Plot 1	Week	•	Actus (C/ha)		Retres (days)	, Ægtal	Tank
RV006- 10DA	, ND Region 7	BYI 02960 SL 200	TRTSG	Broadcast foklar	BBCH O7	<b>2</b> 0 <b>0</b> 787) 1	0.182 0.204)	NAª	0.364 (0.408)	Dyne-Amic, 0.25% v/v
	2010				BBCD	200	0.982 (0.204)	<b>45</b>		Dene-Amic, 50.25% v/v
RV007-	, ND	BYI 02960	TRT®G	Broadcast	BBCH	20%	0.182	N.O	0.368	Dyne-Amic,
10HA	Region 7 2010	SL 206♥′		ofoliar	83	(18D)			(0:4/12)	0.25% v/v
					<b>BB</b> CH	© 20 (190)	0.186			Dyne-Amic, 0.25% v/v
RV008- 10HA	Region 7 📞	BYI 02960 SK 200	TŘTSG	Broade as t forar	BBCH	20 (189) <u>(</u>	(0.208)	NA a	0.372 (0.417)	Dyne-Amic 0.25% (v/v)
	2010 J				BBC#	20 (\$\sqrt{1})	0.186	5		Dyne-Amic 0.25% (v/v)
RV009- 10HA	Region P	B © 0296© \$L 209	TRÝSG	Broadcast Foliar	r 83 €	20 ₀ (188)	0.185 (0.207)	NAª	0.372 (0.417)	Dyne-Amic, 0.25% v/v
Å.					87 87	21 (192)	0.187 (0.210)	7		Dyne-Amic, 0.25% v/v
RV010- 10HA	Region 10 \$	BYI 0.960 Si 200	PRTŞG	Broadcast forvar	B <b>KC</b> H 85	31 (289)	0.182 (0.204)	NAª	0.367 (0.411)	Dyne-Amic, 0.25% v/v
	~Q2011 () .4				ВВСН	32	0.184	7		Dyne-Amic,
DAYO11		<b>N N N N N N N N N N</b>			87	(300)	(0.207)	374	0.265	0.25% v/v
10HA	Region 1	BYI 02960 SL 2000	TRTSG	Proadcas Foliar	BBCH 85	30 (280)	0.183 (0.205)	NAª	0.367 (0.412)	Dyne-Amic, 0.25% v/v
				Ø	BBCH 87	30 (282)	0.184 (0.207)	7		Dyne-Amic, 0.25% v/v
	Region 1) 2010						Cont	inuec	d on next	page
K,		8								



Table 6.3.2.14-4: Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Barley

			Application								
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Fiming/Growth Stage BBCH)	Actual Spray Volume GPA	Rate lb a.s./A (kggs.s./ha)	Retreatinent Interval (dos)	Gotal Kale b a.s./Akg a.s./ha)	Tankedix Adjunants & Phy	
RV012- 10HA	Region 11 2010	BYI 02960 SL 200		t foliar	BBCH D3 BBCH	25 (233) ( 25 (238)		NA ^a	0.369 (0.414)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v	
RV012- 10HA	Region 11 2010	BYI 02960 480 SC	TRT <b>S</b> T	Seed Oreatment t	4	NAO Q	D'		(0.¥95)	NA	
RV013- 10DA	Alberta Region 14	BYT02960 \$\times \text{SL 200}\$	TRISG	Broadcas	73 \ BBCH \$ 85	(99) L	0.184 (0.206) 0.183 (0.206)	NA ^a	0.367 (0.412)	Agral 90, 0.25% v/v Agral 90, 0.25% v/v	
RV014- 10DA	Saskachewar Region 17	BYI 62960 SH. 200 C		Broadeas t Koliar	BBCH	(22 (207) (192)	0.188 (0.211) 0.174 (0.195)	NA ^a	0.362 (0.406)	Ag Surf, 0.25% v/v Ag Surf, 0.25% v/v	
RV015- 10HA	Saskatchewan Region 14			Broadcas Ot folia	BBCAS SS OBCH 64	21 (198) 21 (197)	0.180 (0.201) 0.179 (0.201)	NA ^a	0.359 (0.402)	Ag Surf, 0.25% v/v Ag Surf, 0.25% v/v	
RV016-10HA	Region 140 2010	BY402960 SL 200		Broadcas Doliar	BBCH 87	17 (158) 17 (158)	0.182 (0.204) 0.182 (0.204)	NA ^a	0.364 (0.407)	Ag Surf, 0.25% v/v Ag Surf, 0.25% v/v	
RV017- 10HA	Manitob Region	YI 02960 SL 200	TETSG	Broadcast foliar	BBCH 77 BBCH 83	17 (159) 17 (162)	0.182 (0.204) 0.186 (0.209)	NA ^a	0.369 (0.413)	Ag Surf, 0.25% v/v Ag Surf, 0.25% v/v	



Table 6.3.2.14-4: Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Barley

					Appl	lication				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage	Actual Spray Volume GPA	Rate lb a.s./A (kgas.s./ha)	Retreatment Interva	~ ~	Tank Mix Adjugants & Land
RV018- 10HA	Manitoba Region 14 2010	BYI 02960 SL 200	TRTSG	Broadcast foliar	BECH C65 BBCH	21 (198) 21 (53)	0.181 0.203 0.077 0.198)	NA ^a	0.358 40.401	Agsurf,
RV019- 10HA	Alberta Region 14 2010	BYI 02960 SL 200		Broadcas t foliar	BBCH 77.5 BBCH 885	11 ~ (100) 540 (98)	0.18\$ (0.204) 07.178 (0.199)	NAU NAU NAU NAU NAU NAU NAU NAU NAU NAU		Agral 90, 0.25% v/v Agral 90, 0.25% v/v
RV020- 10HA	Saskatchewan Region 14 20 10	BYI 02960 Y SL 200	TROSG	Froadcas t folia	BBCH	(201)	40.207 0.f87	A ^a 7	0.372 (0.417)	Ag Surf, 0.25% v/v Ag Surf,
					BBCH	(204) V	(210)			0.25% v/v

a NA = Not Available.

In the harvest trials after foliar applications, duplicate composite samples of barley grain were harvested at PHIs ranging from 16 to 22 days (intended PHI = 21 days). In the four decline trials, duplicate composite barley grain samples were collected from the treated plots at 10, 15, 21, 28 and 35 days after the last application. Single composite samples of barley grain were collected from the control plots on the same day the target 21 day PHI samples were collected from the treated plots.

Duplicate samples of required commodities were collected from plots into which BYI 02960 treated seed was planted.

The residue(s) WBYI 02960 FA and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.



## **Findings**

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 0 to 110%, and the standard deviation values were  $\leq 20\%$  (Table 6.3.2.14-5).

Table 6.3.2.14-5: Summary of Recoveries of BYI 02960 from Barley

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries %	Mean Recovery	Sid Dev ( (%)
	DVI 02000	0.01	9 🐇	\$11, 82, 129, 107, 87, \$16, 112, \$6, 100,	104	\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
	BYI 02960	0.5	5 °	105,96,89,85,850	F 22 A	8.5 。
		50	3	79, 81, 75	078	28
Barley	DFA	0.05	Q 9 3			5.7
Grain		0.5	46	79, 80, 70, 75	\$76 \$	4.4
		50	\$3 \$\langle \tilde{\pi}\$	<b>75</b> , 79, 76	76	3.2
	DFEAF	<b>25</b> 1	95	100, 97, 4, 13, 99, 31, 100, 116, 98, 82	<b>9</b> 9	12
	9	© 0.5 O	64	92, 93, 87, 87	<b>ॐ</b> 90	3.2

a Mean Recovery = mathematical verage, Pall recoveries

The freezer storage stability study indicates that BYI 2960 residues were stable in crops with high starch content during frozen storage for at least 18 months prior to analysis as shown for wheat grain as representative crops. The maximum storage period of rozer samples in this study for BYI 02960 was 401 days. A summary of the storage conditions are shown in Table 6.3.2.14-6.

Table 6.3.2.14-6: Summary of Storage Conditions for Barles

Residue Component(s) (RAV)	Maximum Average Storage Temporature (	Actual Storage Duration months (days) ^b	Interval of Demonstrated Storage Stability months (days) ^c
BYI 02960 Barley Grain	< -16	13 (401)	18 (557)
DFEAF © Baffley Gran	<-16	13 (401)	18 (557)
DFA Barley Grain	< -16	13 (401)	18 (557)

The maximum average storage remperature is from the time of sample receipt at BRP until sample extraction and is the maximum of all average freezer temperatures at BRP and Pyxant. While preparing for sample analysis, the samples were maintained in a laboratory freezer.

b The storage duration is the time from field sampling through the last sample extraction.

and A. 2012. Storage stability of BYI 02960, difluoroacetic acid, and difluoroethyl-amino-furanone in plant matrices. Bayer CropScience Report No. RARVP046, amended version including 18-month data (KIIA 6.1.1/01).



The total BYI 02960 residue data for barley following seed treatment application with BYI 02960 480 FS or two foliar applications of BYI 02960 200 SL are shown in Table 6.3.2.14-7.

Total BYI 02960 Residue Data from Barley after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL Table 6.3.2.14-7:

	***	im D110	2900 <del>4</del> 80 F	5 01 1 W	o i onai	тррп	Cutions	~	9 7		<u></u>
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate & Lb a.s./A (kg a.s./An)	% Ben Matter	Sampling Paterval (days)	BM 02960 Residue (mg/kg)	DROResidue	DFK KEResidue	Total AVI 02960 Residue
RV001- 10HA	, PA Region 1 2010	TRTSG	AC Minoa	Grain	0.370 (0.344)	89 °	16.4	0.854 0:773	0.342 0.397	0.257 0.160	©33 1.33 Avg: 1.33
RV002- 10HA	NE Region 5 2010	TRTSG	& Obust	S L	0370 (6.414)		190		130 0.19 0	0.0345 0.0341	1.21 1.28 Avg: 1.24
RV002- 10HA	NE Region 5 2010	TRY ST		Gram	0:111 (0:124)	\$2 5 2 2		<0.010 <0.010 /	5472 50.524	<0.010 <0.010	0.492 0.544 Avg: 0.518
RV003- 10DA	Region 5	TRTSG(	r «	Grain	(0.417)	990 90 0		3.72 4.62	0.137 0.127	0.0959 0.102	3.96 4.85 Avg: 4.40
					0.37 <b>2</b> (0.417)	83	D″15	2.19 1.83	0.0747 0.0628	0.0277 0.0293	2.29 1.92 Avg: 2.11
					0.372 (0.417)	85	20	1.33 1.05	0.0837 0.0783	0.0249 0.0250	1.44 1.16 Avg: 1.30
Ÿ					0.372 (0.417)	90	28	0.945 0.990	0.0569 0.0709	0.0107 0.0165	1.01 1.08 Avg: 1.04
					0.372 (0.417)	85	35	0.568 0.694	0.0669 0.0802	0.0156 0.0161	0.651 0.790 Avg: 0.721

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.14-7 (cont'd): Total BYI 02960 Residue Data from Barley after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SI

		BYI	02960 200	SL							L L
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (Ag a.s./ha)	% Dry Matter	Sachhing Interval (days)	BY 02960 C Residue (mg/kg)	DFAResidue Ong a.s. equiv./kg)	DFEARRSidue	Total BKL 02960 Residue (mga.s. equis/Ag)
RV004- 10HA	Region 5 2010	TRTSG	Dignity	Grain	0,364			2,18 336	0.0824 \$0893		2.27 2.49° Axg: 238 ^d
RV005- 10HA	NE Region 7 2010	TRTSG		di in	02368 10.413)	Ž				*0.0232 *0.0254	0.716 0.734 Avg: 0.725
RV005- 10HA	NE Region 7 2010	TRTS	Robert ,	Grain	©.180 (0.292)	81		0.010	0.692 0.690	<0.010 <0.010	0.712 ^e 0.710 Avg: 0.711 ^f
RV006- 10DA	ND Region 7	TRTSG	Rimneacle	Grain	0.364	90		0.504/ 0.505	0.426 0.409	0.136 0.145	1.07 1.06 Avg: 1.06
Ĺ					0364 (0.408)	83	h"	0.519 0.590	0.456 0.440	0.105 0.133	1.08 1.16 Avg: 1.12
	A A				0.364	<b>88</b>	21	0.340 0.354	0.297 0.315	0.129 0.144	0.767 0.813 Avg: 0.790
4	Region 7				© 0.364 (0.408)	86	29	0.437 0.490	0.313 0.329	0.149 0.134	0.899 0.953 Avg: 0.926
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					0.364 (0.408)	73	35	0.276 0.221	0.215 0.197	0.0830 0.0667	0.574 0.485 Avg: 0.529

Table 6.3.2.14-7 (cont'd): Total BYI 02960 Residue Data from Barley after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		ВИ	02960 200	SL							
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (Ag a.s./ha)	% Dry Matter	Sampling Interval	BY 02960 C Residue (mg/kg)	DFA Residue Ong a.s. Oquiv./kg)	DFEATORSidue	Total BKL 92960 Residue (Megas, equin 14g)
RV007- 10HA	Region 7 2010	TRTSG	Pinneacle	Grain O	0,368			0.482 0.470	0068 9:187 &	0.113	9.750 0.771 Axg: 0761
RV008- 10HA	ND Region 7 2010	TRTSG	Tradition	Grain	Ø.372 \$0.41 <b>7</b> \$	<b>3</b> 0		\$588 \$0.764 \$	60844 0.112 0.2	0.0378 0.0467	0.710 0.922 Avg: 0.816
RV009- 10HA	Region 11 2010	TRTSO	Harrington	Grain	0.372 (0.448)	92		0.756	<0.05© <0.050 <0.050	0.0351 0.0313	0.841 1.01 Avg: 0.925
RV010- 10HA	Region 2010	TRTSG	10€937 @		0.367	90	21 O	1.8% 1 <b>4</b> 9	0.0818 0.0734	0.0507 0.0430	2.00 1.61 Avg: 1.81
RV011- 10HA	Region 11 2010	TRTSG	ACA Metcarfe	Grain C	0067 (9.412) (%	91 7 3		0.798 0.627	<0.050 <0.050	0.0483 0.0547	0.896 0.732 Avg: 0.814
RV012- 10HA	Region 11 C	~ O		Stain C		92	21	0.205 0.205	0.339 0.274	0.0684 0.0583	0.612 0.537 Avg: 0.575
RV012-	Region 13	TRIST	Champion	Grain G	0.174 (0.195)	92	101	<0.010 <0.010	0.230 0.224	<0.010 <0.010	0.250 0.244 Avg: 0.247
	Region La 2010							Со	ntinued	on next j	nage

Table 6.3.2.14-7 (cont'd): Total BYI 02960 Residue Data from Barley after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		BYI	02960 200	SL							W	2
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (Rg.a.s./ha)	% Dry Matter	Sachhing Interval (days) © &	BY 02960 C Residue (mg/kg)	DFA Residue Ong a.s. equiv./kg)	DFEATREsidue (2) (mg.a.s. equiy./kg)	960 Kesi	
RV013- 10DA	Alberta Region 14 2010				0.367	57 57 57 57 57 57 57 57 57	270 270	0.465 0.383 0.277 0.240 0.290 0.294 0.315 0.301	0.69° 0.69° 0.661 0.663 0.847 0.786	(0.07130)	1.13 1.05 Avg: 0.09 0.982 0.958 Avg: 0.970 1.05 1.03 Avg: 1.04 1.02 Avg: 1.03 1.04 1.02 Avg: 1.03	
					F &			Co	ntinued	on next j	nage	

Table 6.3.2.14-7 (cont'd): Total BYI 02960 Residue Data from Barley after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		DII	02960 200	SL							Q,	
Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (Mg a.s./ha)	% Dry Matter	Sachhing Interval (days)	BY 02960 C Residue (mg/kg)	DFAResidue Ong a.s. equiv./kg)	DFEXERSidue	Total B.M. 192960 Residue (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878) (M. 1878)	
RV014- 10DA	Saskatchewan Region 14 2010				0.362 0.362 0.406) 0.362 0.262 0.262 0.262	71 71 71 71 75	20 20 20 34 34 34	0.349 0.349 0.349 0.222 0.313 0.141 0.126 0.130	0.392 0.392 0.393 0.394 0.407 0.596 0.430 0.510	401774	0.829 0.801 A.g: 0.815 0.957 0.946 Avg: 0.952 0.690 0.865 Avg: 0.778 0.574 0.494 Avg: 0.534 0.553 0.560 Avg: 0.556	
RV015- 10HA	Saskatchewan Region 14			Gran	0.359 (0.402)	48	21	0.0425 0.0327	0.537 0.514	0.0170 <0.010	0.596 0.557 Avg: 0.576	
RV016- 10HA	Manitoba Region 14 2010	To a	Copeland		&9.364 (0.407)	85	21	0.262 0.335	0.500 0.580	0.103 0.105	0.865 1.02 Avg: 0.942	
RV017- 10HA	Maintoba	TRTS	Met calle	(Srain	0.369 (0.413)	76	21	0.0835 0.109	0.969 1.22	0.0411 0.0552	1.09 1.38 Avg: 1.24	
RV0187, 10HA	Manitoba Region 14 2010	TRESO	Tradition	Grain	0.358 (0.401)	81	21	0.254 0.231	0.425 0.372	0.0617 0.0625	0.741 0.665 Avg: 0.703	

Table 6.3.2.14-7 (cont'd): Total BYI 02960 Residue Data from Barley after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

Trial Identification ^a	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (Rg.a.s./ha)	% Dry Matter	Sachhing Interval (days)	BY 02960 C Residue (mg/kg)	DFA Residue Ong a.s. equiv./kg)	DFEARRSidue	Total B.C. 42960 Residue (Megas. equin/41g)
RV019-		TRTSG	Coalition	Grain	0,360 (0,403)	Z	197	0.788	0326	•0. <del>0</del> 921 •	<b>7</b> 1.18
10HA	A lh arta			O ,	<b>(%</b> 403)		W	<b>6</b> 06	<b>9</b> .339	0.0747	1.02
	Alberta Region 14		.,,				Q .4		0'		Axg: Q10
	2010		Ž								
RV020-	2	TRTSG	Meteralf	& Grain &	0.372	62	20	9.230 d	0.237	0.0282	0.496
10HA	Saskatchewan		l 🔊 .	10° '>	(0.417)			0.266	0.244	0.0282	0.535
	Region 14		V .V	Ö.			4			<b>"</b>	Avg: 0.515
	2010	, S			Q, Y					1	0.313

- a sampling interval is the interval between last application and the date of sampling
- b Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte GOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue evels regist be.
- c Maximum residue found in Marley gran after Miar application of the tagget PHI of 21 days.
- d Highest average food trial PIAFT) residue found in Darley grain after foliar application at the target PHI of 21 days.
- e Maximum residue found in mature barley prain after seed treatment
- f Highest average field that (HAP) residue found in mature barley grain after seed to atment

## **Conclusion**

Twenty field trials were conducted to measure the magnitude of total BYI 02960 residue in/on barley grain following two foliat spragapplications of BYI 02960 200 SL, or seed treatment application of BYI 02960 480FS.

The total BYI 02960 residue data for barley toliar applications or seed treatment are summarized in Table 6.3.2.14-8.

Table 6.3.2.14-8: Summary of Residue Data for Total BYI 02960 from Barley

		-		Tota	al BYI 02	2960 Res	idue Lev	els (ppn	1)	<i>a</i> .	,
Commodity	Plot Name ¹	Total Application Rate lb a.s/ (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	Max after PHI	AART 2	Median 3	Mean My	Standard
Barley Grain	TRTSG	0.358 to 0.372 (0.401 to 0.417)	21 (16 – 22)	20	0.496	2.49	1.28	2.38	<b>10,9</b> 09	9.02	© © 0.45
Barley Grain	TRTST	0.111 to 0.180 (0.124 to 0.202)	92 - 110	3	0.244	0.712	SNA ⁵	0.714	0.548	~	©21

- 1 TRTSG = Treated plot receiving two foliar applications of TVI 02960 200 SL for collection of straw and grain samples TRTST = Treated plot receiving cotton seeds treated with BYI 02960 480 FS for collection of grain samples
- 2 HAFT = Highest Average Field Trial
- calculated on the basis of residue values at the PHI
- Sampling day showing highest residue
- Sampling day showing highest residue

  Not applicable, since no decline trials were conducted after seed treetment

Total BYI 02960 residues in the barley grain from plots receiving two toniar sprays were generally slightly higher compared to barley grain from plots after seed treatment. The overall maximum residue was detected in a barley grain sample collected after colliar treatment and amounted to 0.24 mg/kg at the respective PHI of 21 days. The four decline that conducted after foliar application showed that the total BYI 02960 residue in barley grain experienced a general decline over the course of the study. The residues did not always peak at the HI of 21 days; one trial showed the maximum total residue at the last sampling interval (34 days after the last application), however this residue value was by far lower that the overall maximum level detected in a sample collected at the PHI.





#### IIA 6.3.2.15 Cereals - corn

## Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on cereal grains, except rice (crop group 15). Representative crops tested were barley, <u>field and sweet corn</u>, sorghum and wheat. The use pattern for field and sweet corn in North America is summarized in Table 6.3.2.15-1.

A total of thirty-three field trials were conducted in cosp. The studies are described below.

Table 6.3.2.14-1a: Target Use Pattern for the Application of BVI 02960 on Corn (to gain grains and kernels plus cob with husks removed)

				Targe	Rate/Appli	ication,		8	<i>o</i> ć		Sp Vol	ray lume
				ulated ct (PP)	& Active &	sbstance	e (a.s.P -	Target	Färget	A diuvant		
Application	Test	No. of			\\Name@f		<b>∂</b>	Interval	PHI	Additive (%)		
Type	Substance	Apps	mL/A	√fl oz/A©	a.s.	a.s./A	a/s./ha	(Days)	(Days)	(%)	<b>GPA</b>	LPHA
Foliar	BYI 02960 200 SL	2	415	, 14,0	BX 02960			)	<b>Q</b> 1	0.25	10 - 50	93 - 467

In parallel, six residue trials were conducted with BYI 02960 480 FS following a seed treatment application. The seed treatment rates for cornaire presented below.

Table 6.3.2.14-1b: Target Use Pattern for the Application of BY 02960 on Corn (to gain grains and kernels plus cob with husks removed)

				∜ ⊝Tar <b>g</b> e	Rate/Appli	icarion		J.			_	ray lume
°,	Q Q		Produ	ulated ´ct (\$P)	Active Su	) ibstake	e (a,s.))	Target				
	,	Ü.	mL/	<b>©fl</b>	Name of	lb@s.s./	kga.s./	App.	Target	Adjuvant		
Application Type	Test Substance	No. of	¥00 kg	,0Z/1U0≫ Ib seed	Name of gals.	, 100 lb ⁸ seed ²	1000 kg seed	Interval (Days)	PHI (Dave)	/Additive (%)	CPA	LPHA
Seed	Dubstance	ripps	3 C Car	10 3000	(()	Becau	sceu	(Days)	(Days)	( / 0 )	UIA	LIIIA
treatment	BYI 02960 480 FS	Ql ^y	0-03	©10 ⁻⁰⁴	BYI 02960	5.299X	1.5	NA ¹	ECH ²	NA ¹	NA ¹	NA ¹

- 1 NA = Not applicable.
- 2 ECH = Famiest commercial harvest

Report	KIIA 6.3.2.15/01; 2012
Title	BYI 02960 200 SLand BYI 02960 480 FS - Magnitude of the Residue in/on Corn
Report No &	RARVYQQ2, dated June 18, 2012
Document Ng	M-432754-01-1
Guidelines	US: PA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: PARA DACO 7.4.1, Supervised Residue Trial Study
	MRA DACO 7.4.2, Residue Decline
	OECD Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	Adopted Sept. 7, 2009.
GLP O	Yes

Thirty-three field trials were conducted to measure the magnitude of BYI 02960 residues in/on field corn forage, field corn stover, field corn grain, sweet corn forage, sweet corn stover, and sweet corn kernels plus cob (= ear) with husks removed (K+CWHR) following two broadcast foliar spray applications of BYI 02960 200 SL. Six of these field trials also included plots to measure the magnitude of BYI 02960 residues in these same matrices following the planting of seed treat with BYI 02960 480 FS. Since corn forage and corn stover (as feed items) are not imported into Europe this dossier will focus on field and sweet corn kernels, only. Complete information on the study including the data on the feed items, has been submitted in the Global Johnt Review Submission in October 2012.

BYI 02960 200 SL is a soluble concentrate formulation containing 200 BYI \$2960/\$\text{Sand BYI} 480 FS is a flowable concentrate containing 480 g BYI 02960/6. trials conform to the guidance given by the EPA (Tables 6.32.15-2 and 6.3.2.15

Trial Numbers and Geographical Locations for BY 02960 in/on Field Corn Table 6.3.2.15-2:

Table 6.3.2.15-2:	Trial Numb	ers and Geographi	cal Locati	ones for BY	I 029@	∛in/oan _e F	ield Ĉo	rn
NAFTA Growin	g Region	pers and Geographi		Requested				(
1			Y N					?
1A							<b>&amp;</b>	
2	W.						0	
3	. Ø				S			
5 5 5A		\$ 547 S						
5		<del>5</del> 57 5		0 17 C	) Qj	¥		
5AC)					, Š			
<b>Ğ</b> B			Y D		7			
<b>2</b> 6				Ų ĮÕ				
6				, O'				
7A ै				<i>~</i>				
8			5 5					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	۵_ ۵							
11			?"					
1 9 12								
14 Total								
Togal		20		20				

Four of the wenty field corn trials were decline trials (four trials in Region 5). The additional decline trials were performed meet EU requirements.

Table 6.3.2.15-3: Trial Numbers and Geographical Locations for BYI 02960 in/on Sweet Corn

NAFTA Growing Region	Submitteda	Requested	
1	2	2	
1A		*	
2	1	1	
3	1	1 4	
4	Ĉ	¥.	
5	5	5	
5A	, É		
5B			
6			
7			
7A		Q P	
8 9 10 11			
9			
10			
11			
12 %			
1 3			
14		(13)	•
Total 🗸 💢		(13)	

a Two of the thirteen weet corn trials were decome trials (one trial each to Regions 1 and 5)

Material and Methods

For the ptots receiving toliar applications, individud application are ranged from 0.178 to 0.200 lb BYI 02960/A/application (0.199 to 0.224 kg BYI 02960/ha/application). Seasonal application rates ranged from 0.361 to 0.380 lb ByI 02960/A (0.005 to 0.426 kg BYI 02960/ha) for the plots receiving foliar applications. Foliar applications were made to the TRTF plots (= treated plots receiving two foliar applications of BYI 02960 200 SL for the collection of forage samples from field corn trials and forage and kernel plus cob without husi samples from sweet corn trials at a target 7-day PHI) at growth stages ranging from BBCH 63 to 85 BBCH 63: male: pollen shedding; female: tips of stigmata visible; BBCH 85 dough stages and to the TRTSG plots (= treated plots receiving two foliar applications of BYI 02960 200 SL for the collection of grain and stover samples from field corn trials and stover samples from sweet corn trials and stover samples from sweet corn trials and target 21-day PHI) at growth stages ranging from BBCH 71 to 99 (BBCH 71) beginning of grain development; BBCH 89: fully ripe). The interval between the applications ranged from 5 to 8 days and the spray volumes ranged from 10 to 41 GPA (94 to 380 L/ha).

Altifoliar opplications were made using ground-based equipment. An adjuvant (Dyne-Amic, Agral 90, Unity, of Ag Surf) was used in all of the foliar applications at a rate of 0.25% (v/v).

Corn seeds were treated at the Bayer CropScience Seed Technology Center with BYI 02960 480 FS at a target rate of 1.5 mg BYI 02960/seed using procedures typical of commercial seed treatment operations. Following treatment and shipment to the field sites, the treated seeds were planted into the TRTST plots (= seed treatment plots) at seeding rates ranging from 21,876 to 32,000 seeds/A (\$4.057 to 79,074 seeds/ha). The resulting soil application rates ranged from 0.048 to 0.006 lb BYI 02060/A (0.054 to 0.119 kg BYI 02960/ha).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.15-4. Study use patterns are summarized in Table 6.3.2.15-5.

Table 6.3.2.15-4: Trial Site Conditions for BYI \$2060 on Corn

14010 0.5.2.15 1. 111	eur Bric Condition	Do Contraction		, ŌŠ	~	√O. Ø	d C'
		Soil Char	acterist	ics	<i>~</i> (Meteorolo	gical Datab
Study Location (City, State)	Trial Number	Type V	OM OM	pH	CEC	Total Rainfall (in)	Temp.° Rang (°F)
, NY	RV021-10HA	Sandy Loam	y 3.2 (6.6	11.5	4.70	3 4-71
, SC	RV022-10HA	Loamysand	1.0	£38		3 3.68	∂ 65-91
, IA	RV023-10HA	Solt loan	$\sqrt[3]{2}$	06.8	14.8	Ĵ 44.6 8 %	52-86
, KS	RV02410HA	Silt Loom	" 3. 2 %	7,2	190	28.84	54-92
, ND	RV025-10HA	Silty Clay Loaga	4/3	74.7	28 .2	9.55	37-86
, ON	%V026-10HA	Sit Loafp	»3.19 ×	¥7.5	26.6	^J 11.20	36-82
, KS	√ RV027-10HA	O Salat S	0.6	6.2	43	16.58	51-93
, MO	RV028-10 1A	SikiLoam	@1.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 3.8	9.74	43-89
, ON	RV020-10HA	Loain	2.5@	7,5	12.1	11.20	36-82
, NE	RV⊕30-101⊕X	Silt Lom	207	6.3	18	3.62	53-87
, IA	_ RV031- © 0HA _	M arion a	2	∜7.8	15.5	9.91	39-84
, ON	RV0 3 2-10HA	Sandy Doam	$2\sqrt{3}$	7.6	14.1	5.31	39-66
, KS	RX 033-100 A	Silt Loam	3 .2	7.2	19.2	8.70	59-92
, ON	RV034000HA	Sandy Loam	, 2.9	7.6	16.1	7.43	38-68
, KS Q	₹RVØ\$5-10HCA	Særði of	0.3	6.5	5.7	6.67	59-93
, IA 🔷 U	RQ036-19DA	Silty Clay Lorm	3.9	6.2	21	7.00	41-78
ON	RV033710DA	Silty clayJoam	4.1	7.7	25.8	10.86	39-80
, NE	RY038-10DA	Siltooam	2.2	7.3	10.5	13.32	56-86
, MN	₹ ₹003940DA 4	Say loam	5.7	7.3	24.4	22.38	38-83
	RV040-10H&	Sandy Clay Loam	1.1	8.1	30.2	15.35	77-97
QA A	R\$041-1011A	🕡 Loam	2.4	6.2	9.2	22.57	53-95
NY	RV042 10DA	Sand	2.5	6.9	6.6	14.44	41-82
, GAQ A	R V 043-10HA	Loamy Sand	0.75	5.3	3	4.95	33-82
FL O	&V044-10HA	sandy loam	1.5	5.9	8.7	9.32	69-94
DYA	RV045-10HA	Silt Loam	3.9	6.87	12.9	44.68	52-86
IL IL	RV046-10HA	Silt Loam	2.3	5.9	11.9	11.46	56-90
, ON	RV047-10HA	Sandy Loam	2.1	7.6	14.1	15.64	39-80

, NE RV048-10HA	Loamy Sand 1	.3 7.4	7.2	20.76	47-94
-----------------	--------------	--------	-----	-------	-------

Table 6.3.2.15-4 (cont'd): Trial Site Conditions for BYI 02960 on Corn

		Soil Char	acterist	tics ^a		Meteorolo	gical Data
Study Location (City, State)	Trial Number	Туре	% OM	pН	ØEC	Total Rainfall	Tentr. Range (°F)
, NE	RV049-10DA	Silty Clay Loan	3	6.5	18.4	8 ,76 ~	53-88
, SK	RV050-10HA	Loam	4	\$ 6	NA ^c	© 4.41 \$	42,62
, CA	RV051-10HA	Sandy Lam	0.58	5.7 °	5.10	0.64	\$3-92°
, ID	RV052-10HA	Fine sandy loam	2,8	~ & 3	20°/1	Q.69 Q	41-87
, OR	RV053-10HA	Clay Loagy	5°3.4 €	€ 5.5 ×	915.3°	7.75	47 -73

- a Abbreviations used: %OM = percent organic matter; CEC cation & change capacio
- b Data is for the interval of the month of first application through the month of last sampling Meteorological data were obtained from nearby government weather stations.
- c NA = Not Available.

Table 6.3.2.15-5: Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

3	* **	~ ~ ~	- F	Applic	ation	0	0		
Frial Identification	End-use Product (Hormulation)	Plot Name and of the state of t	[*] O∑ ∴Metho© (∑∑			Rate lb a.s./A Programme (kg a.s./ha)	Retreatment Interval (days)	Total Rate lb a.s./A (kg a.s./ha)	Tank Mix Adjuvants
Foliar Application/Feld Corn				A)					
RV021-10HA (Region) (N) (Region) (N) (Region) (N) (Region) (N) (Region) (N) (Region) (R) (R) (R) (R) (R) (R) (R) (R) (R) (SYI 2960 200 SL	TRAF	Broadcast Ofoliar	ВВСН 79	30 (280)	0.184 (0.206)	NAª	0.366 (0.411)	Dyne-Amic, 0.25% v/v
				ВВСН 83	30 (280)	0.183 (0.205)	5		Dyne-Amic, 0.25% v/v
RV027-10HA Region 1	BX/ 29600 200 SJ	Z/ TRTS©	Broadcast foliar	BBCH 79	30 (280)	0.183 (0.205)	NA	0.365 (0.409)	Dyne-Amic, 0.25% v/v
		V D		ВВСН 83	30 (280)	0.182 (0.204)	6		Dyne-Amic, 0.25% v/v
RV02240HA (Region 2 2010)	BYI 2960 200 SL	TRTF	Broadcast foliar	BBCH 75	15 (140)	0.183 (0.205)	NA	0.366 (0.410)	Dyne-Amic, 0.25% v/v
				BBCH 83	15 (140)	0.183 (0.205)	6		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

					Annlie	ation				
Frial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method Ag	Liming/Growth Stage (BRCH)	Rual Spray Volume GPA	Rate lb a.s./A Page lb a.s./A Rate la la la la la la la la la la la la la	Refreatment Interval days)	Rotal Rate Oba.s./A Reg (Cha) Log (Cha)	Tank Mix Adjurants
	tion/Field Corn		<u> </u>							J.
RV022-10HA	, SC Region 2 2010	BYI 2960 200 SL	TRTSG	Broadcast foliar	BBC089	(130)	0.f81 (0.203) (0.203) (0.203)		0.364	Dyne-Amic, ©25% v/v Dyne-Amic,
RV023-10HA	, IA Region 5	\$\frac{1}{\infty}\$\frac	TRTF	Broadcast		0130) 16 (150)	0.183 (\$205)	NA NA	0.365 (0.410)	0.25% v/v Dyne-Amic, 0.25% v/v
	2010				BBGT 85	\$16 \$150)	0 83 (9.205)	6		Dyne-Amic, 0.25% v/v
RV023-10HA	NIA Begion & O 2010	BYI 2960 200©L	TRTSG	Broadcast folia		(160)	0.185 (0.207)	NA	0.368 (0.412)	Dyne-Amic, 0.25% v/v
					BBCO 87	18 (170)	0.183 (0.205)	7		Dyne-Amic, 0.25% v/v
RV024-10HA	Region 2010	\$\frac{1}{2}\frac{1}{2	TRITE	Broadcast of foliar	BBCH 83	(140)	0.186 (0.208) 0.182	NA 7	0.368 (0.412)	Dyne-Amic, 0.25% v/v Dyne-Amic,
*						(150)	(0.204)		0.262	0.25% v/v
RV024-10HA	Region 5	BYI 2960 200 SL	TRASG	Broadcast foliar	BBCH 85		0.182 (0.204) 0.180 (0.201)	NA 5	0.362 (0.405)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

					Applic	ation				o
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method &	Uming/Growth Stage (BBCH)	Kanal Spray Volume GPA (L/ha)	Rate lb a.s./A A	Refreatment Interval	Total Rate Obsa.s./A (kg .C./ha)	Tank Mix Adjuvants 220
	tion/Field Corn					4		r ,	~ ×) ·
RV025-10HA	ND Region 5 2010	BYI 2960 200 SL	TRTF	Baradcast Tofoliar		(190)	0.186 (0.208) (0.208) (0.208)		0.369	Dyne-Amic, ©25% v/v Dyne-Amic,
			TO TO			(190)	0583 (0.205))	*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.25% v/v
	Region 5	3 YI 2960 200 SL	TRTSG	Broadcast, foliar		20 (190) (190)	0.183	NAV	0.367 (0.412)	Dyne-Amic, 0.25% v/v
	2010				BBCH 85	©20 ©190) ©	0 984 (0.206)	6		Dyne-Amic, 0.25% v/v
RV026-10HA	Region 5	BYI 2960 200 SL	TRIF	Broadcast foliar	BBCF 75	(300)	0.183 (0.205)	NA	0.366 (0.410)	Agral 90 @ 0.25 % v/v
					BBCH 83	32 (300)	0.183 (0.205)	5		Agral 90 @ 0.25 % v/v
RV026-10HA	ON Region 50	8Y1 2950 200 SI	TRTSG	Broadcast foliar	ВВСН 85	33 (310)	0.185 (0.207)	NA	0.371 (0.416)	Agral 90 @ 0.25 % v/v
				Broadcast	ВВСН 85	33 (310)	0.186 (0.209)	7		Agral 90 @ 0.25 % v/v
RV027-10HA	, KS Region 5 \ 2010	SYI 2960 200 SL	TRAF	Broadcast foliar	ВВСН 73	20 (190)	0.185 (0.207)	NA	0.365 (0.410)	Dyne-Amic, 0.25% v/v
	Region 5		Į)		ВВСН 75	20 (180)	0.181 (0.202)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

					Applic	ation				
					Applic	auuli				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methods AR	Timing/Growth Stage (BBCH)	Achaal Sprag Volume GPA (L/ha)	Refer the a.s./A Can the same of the same	Refreatment Interval (davs)	Total RatkObsa.s./A & (kg and ha)	Tank Mix Adjurants
	tion/Field Corn		4		ŢŢ	4		r 9		J [*]
RV027-10HA	, KS Region 5 2010	BYI 2960 200 SL	TRTSG	Broadcast Foliar	BBC 085		0.183 (0.205)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.3 6 1 (0.305)	Dyne-Amic, Ø25% v/v
					BBCH 87		0\$78 (0.199)			Dyne-Amic, 0.25% v/v
RV028-10HA	, MO Region 5	SÝI 2960 200 SL	TRTF	Broadcast, foliar	BBC	19 (770)	0.1 9 8 (6)199)	NAV	0.364 (0.409)	Dyne-Amic, 0.25% v/v
					, O	&20 5190)	0 P 87 (0 .210)	7		Dyne-Amic, 0.25% v/v
RV028-10HA	Region 5	2 4	TRASG	Broadcast folia	BBCP85	26 (180) U	0.180 (0.202)	NA	0.366 (0.410)	Dyne-Amic, 0.25% v/v
					BBCH 87	20 (190)	0.186 (0.209)	7		Dyne-Amic, 0.25% v/v
RV029-10HA	ON Region 5	\$\frac{1}{2}\frac{1}\frac{1}{2}\f	TRAF	Broadcast	ВВСН 75	32 (300)	0.187 (0.209)	NA	0.370 (0.414)	Agral 90, 0.25 % v/v
	J'A	<i>✓</i> ✓ <i>✓</i>					0.183 (0.205)	5		Agral 90, 0.25 % v/v
RV029-10HA	, ON O	\$\frac{1}{2}\text{12960} \$\frac{1}{2}\text{200}\text{5}\text{1}	TRTSG	Broadcast foliar	BBCH 87	33 (310)	0.183 (0.205)	NA	0.367 (0.411)	Agral 90, 0.25 % v/v
	Region 5 2010				BBCH 87	32 (300)	0.184 (0.206)	7		Agral 90, 0.25 % v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

					Applic	ation				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	Uming/Growth Stage (BBCH)	Actual Sprag Volume GPA (L/ha)	Race lb a.s./A A	Refreatment Interval	Total RateOba.s./A (kg as./ha)	Tank Mix Adjurants
	tion/Field Corn	1							~	J
	, NE Region 5 2010	BYI 2960 200 SL	TRIF	Broadcast Tofoliar	BBCD 83	Ô	_0_		0.36%	Unity, 25% v/v Unity, 0.25% v/v
	, NE Region 5 2010			Breadcast, foliar	BBG# 87	20 (190) (20 (20 (20) (20)	0.182 (\$204) (\$204) \$2 (\$204)	N	0.365 (0.409)	Unity, 0.25% v/v Unity, 0.25% v/v
ĘĠ"	, IA Region 2010		TRYF	Broadcast Folian		(170) 19 (180)	0.184 (0.206) 0.184 (0.206)	NA 8	0.368 (0.412)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
. A	, IA Region	8 Y I 2960 200 GI	TRTSG	Broadcast			0.179 (0.201) 0.183 (0.205)	NA 7	(0.406)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
RV032-10HA	Region 5 2010	EVI 2960 2005 5	TRIF	Broadcast foliar	BBCH 83	(120)	0.183	NA 6	0.366 (0.411)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

					Annlie	ation				
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	ше		Aming/Growth Stage BRCH)	Sprag Yolume GPA to the sprage of the sprage	a.s./A The state of the state o	reatment Interval	are Obass./A	Adjurants
ial Id	ocatio)	əsn-pı	Plot Name	Method	Žming/ BB(CH)	Ana)	Race lb a.s kg å.©ha)	great avs) "	Stal Rafe Kg & ha)	Tank
		된				A F	<u>සී</u> ජ	∤≱ ತ	Ĭ~₽¥	Ç ï
	tion/Field Corn		<u> </u>			'		, . I e	~	J
	, ON Region 5 2010	BYI 2960 200 SL	TRTSG	ofoliar	BBCf085	(130)	0.184 (0.206)		0.3 6 (0.13)	Dyne-Amic, Ø25% v/v
				F F	BRCPI 87	(O)*	\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}			Dyne-Amic, 0.25% v/v
	, KS Region 5	BYI 2960 206 SL		Broadcast	BBCO 83	3 6	0.185	NA b	0.367 (0.412)	Dyne-Amic, 0.25% v/v
					BB©1 83	\$\frac{1}{\sqrt{150}}\$	(9) 82 (0.204)	7		Dyne-Amic, 0.25% v/v
RV033-10HA	Begion S 2010	n 4 =	TRTSG	Broadcast folia	BBCO 85	46 (150)	0.184 (0.206)	NA	0.369 (0.414)	Dyne-Amic, 0.25% v/v
Ğ					BBCH 85	16 (150)	0.185 (0.207)	5		Dyne-Amic, 0.25% v/v
RV034-10HA	Region 2010	BYI 2960 200 SL	TRIF	Rioadcast foliar	ВВСН 83	16 (150)	0.189 (0.212)	NA	0.376 (0.421)	Dyne-Amic, 0.25% v/v
					BBCH 85	16 (150)	0.187 (0.210)	6		Dyne-Amic, 0.25% v/v
RV034-10HA	Region 5	BYI 2560 2000 SL	TROSSG	Broadcast foliar	BBCH 87	21 (200)	0.180 (0.202)	NA	0.362 (0.405)	Dyne-Amic, 0.25% v/v
	Region 3				BBCH 87	21 (200)	0.182 (0.204)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

Table 0.5.2.15-5 (cont.d). Study Ose Fattern for B 11 02900 200 SL and B 11 02900 480 FS on Com										
			1		Applic	ation				Q° 🛼
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methode A	Timing/Growth Stage (BRCH)	Actual Sprag Volume GPA (L/ha)	Race ib a.s./A Cha	Refreatment Interval (days)	Total RateObya.s./A (kg & In)	Tank My Adjurants
Foliar Applicat						~ <u>~</u>		R	~	J
RV035-10HA I	, KS Region 5 2010		TRIF		BBC 73	(190) (190) (180)	0.188 (0.210) (0.279 (0.200)		0.366	Dyne-Amic, 0/25% v/v Dyne-Amic, 0.25% v/v
RV035-10HA	, KS Region 5 2010		TRTSG		BBCH 87	20 (390) (20 (3190)	0.185 (207) (207) (209)	7	0.371 (0.416)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
RV036-10DA	JA Segion 5 2010 V	\$\frac{1}{2}\text{12860}{200.5\text{Y}}	TRIF	Broadcast folia	BBCH 85	(290) (290) 32 (300)	0.184 (0.206) 0.186 (0.208)	NA 7	0.370 (0.414)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
				Broadcast	ВВСН 85	32 (300)	0.189 (0.211) 0.187 (0.210)	NA 7	(0.421)	Dyne-Amic, 0.25% v/v
RV037-10DA	, ON Region 5 2010	\$\frac{1}{2960}\$\frac{1}{200.5}\$\frac{1}{2}\$	TRAP	Broadcast foliar	BBCH 83	(290)	0.200	NA 6	0.380 (0.426)	Agral 90, 0.25 % v/v Agral 90, 0.25 % v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

		Application								
Frial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methode 20	Liming/Growth Stage BB(CH)	Rual Sprag Volume GPA (L/ha)	Rate lb a.s./A A A A	Refreatment Interval	kotal Ratechba.s./A kg ao./ha)	Tank Mix Adjurants
	tion/Field Corn			<u> </u>		× ~ ~				
RV037-10DA	, ON Region 5 2010	BYI 2960 200 SL	TRTSG	Broadcast foliar	BBC 85	(280)	0.182		0.359	Agral 90,
				\$		0'	(0.199) (0.199)	Ş" (4.		Agral 90, 0.25 % v/v
RV038-10DA	Region 5 2010	WYI 2960 206 SL	TRTF	Broadcast folian	BBCH 85	24 (220) (220) (220) (220) (190)	0.181 (\$2203) \$3.84 (\$0.206)	NON 6	0.365 (0.409)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
RV038-10DA	NE Begion Q		TRISG	Broadcast foliat		(180)	0.182 (0.204)	NA	0.362 (0.406)	Dyne-Amic, 0.25% v/v
					BBCO 87	18 (170)	0.180 (0.202)	6		Dyne-Amic, 0.25% v/v
RV039-10DA	Kegions 2010	\$\frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}{\	TRTF	Broadcast foliar	BBCH 83	20 (190)	0.184 (0.206)	NA	0.367 (0.411)	
¥			n ~(~)				0.183 (0.205)	7		Dyne-Amic, 0.25% v/v
RV039-10DA	Region 5	BYI 2960 2005 L	TRESG	Broadcast foliar	BBCH 85	20 (190)	0.183 (0.205)	NA 7	0.365 (0.410)	Dyne-Amic, 0.25% v/v
		<i>y</i>			BBCH 85	20 (190)	0.183 (0.205)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

			Application							
	TA	tion)			Аррис					
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	Çîming/Gı BB(CH)	**************************************	Rate lb a.s./A Cha)	Refreatment Interval	Total RateOba.s./A (kg @ha)	Tank May Adjurants
	tion/Field Corn		%		Š Ž	4)`
	TX Region 6 2010	BYI 2960 200 SL	TRTF	Bitoadcast Offoliar	BBC 075	(94)	0.184 (0.207)		0.3 7 () (0.315)	Dyne-Amic, ©25% v/v
DV040 10114					BBCPI 79		0.208) 0.188		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Dyne-Amic, 0.25% v/v
	TX Region 6 2010	PSYI 2960 206 SL	TRUSG	Broadcast folian	4	496) . (496) . (5)	(© .211)	NOA ^v	0.377 (0.423)	Dyne-Amic, 0.25% v/v
	tion/Sweet Corp				BBCH 87	%10 0(96) ~~	0.189 (0.212)	7		Dyne-Amic, 0.25% v/v
Foliar Applica	tion/Sweet Corn		40			~ ~ ·				
RV041-10HA	PA Region 1 2010	BYI 2960 200 SL	TRTF.		BSCH 71	② 28 (260)	0.185 (0.208)	NA	0.371 (0.416)	Dyne-Amic, 0.25% v/v
DV041 1011 A					BBCH 73	,	0.186 (0.208)		0.271	Dyne-Amic, 0.25% v/v
RV041-10HA	PA Region 1	BY 2960,	TRTSO	foliar	BBCH 85	33 (310)	0.184 (0.206)	NA	0.371 (0.416)	Dyne-Amic, 0.25% v/v
, and the second					BBCH 87	33 (310)			0.0=0	Dyne-Amic, 0.25% v/v
RV042-10D	NY Region 2	BYI 2960 200 SL	TRTF	Broadcast foliar		36 (330)			0.370 (0.414)	Dyne-Amic, 0.25% v/v
	O' Ŝ				BBCH 75	36 (330)	0.185 (0.207)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

			Application							
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	Liming/Growth Stage	Actual Sprag Volume GPA (L/ha)	Rate lb a.s./A A A	Refreatment Interval	Total RateOba.s./A (kg & In)	Tank Mr. Adjuvants
	tion/ Sweet Corn							,	~	J
	NY Region 1 2010	BYI 2960 200 SL	TRTSG	Baradcast Toliar	BBC (0 71	(330)	0.182 (0:204)		0.3 6 4 (9.408)	Dyne-Amic, ©25% v/v
					BBCON 75					Dyne-Amic, 0.25% v/v
	Region 2 2010	PYI 2960 200 SL	TRTF	Broadcast		20 (190) (190)	0.186 (\$208) ************************************	NAT	0.370 (0.415)	Dyne-Amic, 0.25% v/v
RV043-10HA		BYI 2960		Disadage in		©21 ©190) ©	0.179	7 NA	0.366	Dyne-Amic, 0.25% v/v
	GA Begion 200 2010	200 S L	TRISG	Broadcast foliar		(200)	(0.201)	NA	(0.411)	Dyne-Amic, 0.25% v/v
					BB(0) 85	25 (240)	0.187 (0.210)	7		Dyne-Amic, 0.25% v/v
RV044-10HA	FL. Region 2010	9YI 2960 200 SL		Broadcast	ввсн 65	26 (240)	0.179 (0.201)	NA	0.361 (0.405)	Dyne-Amic, 0.25% v/v
					BBCH 73	25 (240)	0.182 (0.204)	7	0.265	Dyne-Amic, 0.25% v/v
RV044-10HA	PL Region 3 2010	ys Y 1 2960 200 SL	TRASG	Broadcast foliar		(240)	0.186 (0.208)		0.365 (0.409)	
					BBCH 89	24 (230)	0.179 (0.201)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

	Application									
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	(Timing/Growth Stage (BBCH)	Actual Sprag Volume GPA (L/ha)	Refre lb a.s./A Cha	Regreatment Interval	Total RateOba.s./A (kg @./na)	Tank Mix Adjurants
	tion/ Sweet Corn		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q V ×					~ ×	J.
	, IA Region 5 2010			Broadcast Foliar Foliar		(180) (160)	0.184 (Q:207) (Q:305) (Q:205)		0.368	Dyne-Amic, Ø25% v/v Dyne-Amic, 0.25% v/v
	, IA Region 5	3 YI 2960 200 SL	TRISG	Bradcast, foliar,	BBC 83	17 (160)	0.185 (207) (3)207) (3)86 (9).208)	7	0.371 (0.415)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
				, , , ,		(Q	7			
RV046-10HA	Region 5	BYI 2960 2000 L	TRYF	Broadcast		(310)	0.184 (0.206)	NA	0.363 (0.407)	Dyne-Amic, 0.25% v/v
EG .					BBCH 71	34 (320)	0.179 (0.201)	7		Dyne-Amic, 0.25% v/v
RV046-10HA	Region 50 D	EYI 2960 200 SI	TRÍSG	Broadcast O foliar	BBCH 75	36 (330)	0.188 (0.210)	NA	0.374 (0.419)	Dyne-Amic, 0.25% v/v
						(330)	0.186 (0.209)	7		Dyne-Amic, 0.25% v/v
RV047-10HA	Region 5 D	BYI 2960 7 200 St.	TROF	Broadcast foliar	BBCH 79	12 (110)	0.180 (0.202)	NA	0.364 (0.408)	Dyne-Amic, 0.25% v/v
		Ď			BBCH 79	12 (110)	0.183 (0.205)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

	Application									
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methods A	Zming/Growth Stage BBCH)	Actual Sprag Volume GPA	Refee lb a.s./A Cha	Retreatment Interval (days)	Total Rate Oba.s./A (kg and ha)	Tank Mix Adjuvants
	tion/ Sweet Corn							,	~	J
	, ON Region 5 2010	BYI 2960 200 SL	TRTSG	Broadcast Foliar	BBC 9 85	11 - 2 - 2)	0.184 (0.206)		0.368	Dyne-Amic, 025% v/v Dyne-Amic,
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Ö		(130)	© 207)	J ^r	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.25% v/v
	, NE Region 5	BYI 2960 206 SL	TRTF	Broadcast		30 (490).	0.185	NOA D	0.369 (0.414)	Dyne-Amic, 0.25% v/v
						(190) ©	(%).84 (%).206)	6		Dyne-Amic, 0.25% v/v
RV048-10HA		BYI 2960 200©L	TRŢSG	Broadcast		1	0.180 (0.202)	NA	0.366 (0.411)	Dyne-Amic, 0.25% v/v
					BBCOI 85	20 (190)	0.186 (0.209)	7		Dyne-Amic, 0.25% v/v
RV049-10DA	, NEdegion 2010	SYI 2960 200 SL	TRTF	Broadcast of foliar	ВВСН 63	20 (190)	0.184 (0.207)	NA	0.367 (0.412)	Dyne-Amic, 0.25% v/v
Z Y							,	7		Dyne-Amic, 0.25% v/v
RV049-10DA	, NE Region	BYI 2960 200 SL	TRÆSG	Broadcast foliar	BBCH 85		0.188 (0.210)	NA	0.371 (0.416)	Dyne-Amic, 0.25% v/v
	NE Region				ВВСН 87	20 (190)	0.184 (0.206)	7		Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

		Application								
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Methode A	Uming/Growth Stage (BBCH)	Actual Sprag Volume GPA (L/ha)	Rate lb a.s./A Cha	Regreatment Interval	Total RateCha.s./A (kg @.//	Tank Mix Adjuvants
	tion/ Sweet Corn		Q			'		· · · ·	~	
	, SK Region 7A 2010	BYI 2960 200 SL	TRIF	Paradcast of foliary	BBCM 71	(200)	0.182 (0.205) (0.205) (0.207) (0.207)		0.367	Ag°Surf, Ø25% v/v Ag Surf, 0.25% v/v
	, SK Z Region 7A 2010	BYI 2980 206 SL		Broadcast foliato		②1 ②200)。 ②22 (200)	0.183 (6.205) (0.185 (0.208)	NO 7	0.368 (0.412)	Ag Surf, 0.25% v/v Ag Surf, 0.25% v/v
				Broadcast foliar	BB(14 71	39 (360) 29 (270)	0.184 (0.206) 0.187 (0.209)	NA 6	0.370 (0.415)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
	Region 00 2010	7BY1 2960 200 SL		Broadcast foliar	ВВСН 85	(380) 37 (350)	0.184 (0.206)	NA 7	0.367 (0.411)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
RV052-10HA	IID (Region 1) 2010	BY1.2950 206-SL	TATF	Broadcast foliar	BBCH 71 BBCH 75	20 (190) 20 (180)	0.186 (0.208) 0.185 (0.207)	NA 7	0.371 (0.415)	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

	<u> </u>									
				L	Applic	ation		ı	ı	o° ৯
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method A	Timing/Growth Stage (BRCH)	Actual Spray Volume GPA (L/ha)	Refer the a.s./A Change the action of the ac	Refreatment Interval	Total RatkOba.s./A (kg @./na)	Tank Mix Adjurants
	tion/ Sweet Corn								~	
	, ID Region 11 2010	BYI 2960 200 SL	TRTSG	Broadcast Foliar Foliar	BBC 883 BBC 85	(200)	0.184 (0.206) (0.208) (0.202)		0.364	Dyne-Amic, 0.25% v/v Dyne-Amic, 0.25% v/v
	, OR Region 12	18 Y I 2960 200 SL	TRTF	Broadcast, foliar	BBCIC 3	22 (200)	0.198		0.374 (0.419)	Dyne-Amic, 0.25% v/v
						€20 ¶190)	0 P86 (0.208)	7		Dyne-Amic, 0.25% v/v
RV053-10HA	Region 10 2010	\$YI 2960 200 \$L	TRISG	Broadcast foliat	BBCH 73	(200)	0.183 (0.205)	NA	0.366 (0.410)	Dyne-Amic, 0.25% v/v
G G				5 J	BBCP75	20 (180)	0.183 (0.205)	7		Dyne-Amic, 0.25% v/v
Seed Treatmen	nt/Field Cern		, X))"			•		
RV023-10HA	Region 5 2010	BY9 02960 \$80 SC	TQTST.	Seed Treatment	BBCH 00		0.106 (0.119)	NAb	(0.119)	NA ^b
	Region 5	18971 102960 480 SØ	Q,	Seed Treatment	BBCH 00	NA	0.048 (0.054)	NAb	0.048 (0.054)	NA ^b
RV027-10HA	Region 5 0 2010	∠BYI ⊘02960 9480 SC	TRTST	Seed Treatment	BBCH 00	NA	0.105 (0.118)	NAb	0.105 (0.118)	NA ^b

Table 6.3.2.15-5 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Corn

					4 70	4.				
					Applic	ation		1		01° %.
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method?	Timing/Growth Stage (BRCH)	Kanal Sprag Yolume GPA (L/ha)	Rade lb a.s./A Programme (kg å.©ha)	Refreatment Interval	Motal Rate Oha, s./A & S./ha) (kg & S./ha)	<i>∞</i> /
Seed Treatmen	nt/Sweet Corn		W.			L		ř ?	~	J
	PA Region 1 2010	Q	TRIST	Seed C Freatment	BBCOOO		0.102 (0:115)			NA ^b
	, IA Region 5 2010	BYP 02960 480 SC	TRAST	" O A) } &	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	0. 0 83 (0.093)	NA ^b
RV048-10HA	Region 5	BV1 02960 \$180 SC		See® Treatment	DDWI UU	NA S	\$0.076 @ (0.085) })NA ^b	0.076 (0.085)	NA ^b

- a NA = Not applicable
- TRTF = Treate plot recoving two foliar applications of B 1 02960 200 St. For collection of K+CWHR samples from sweet corn trials at a target PHI of 7 day
- TRTSG = Treated plot receiving two forar applications of BYI 62960 200 SL for the collection of grain samples from field
- TRTST Seed treatment trials with BYI 02960 480 FS for collection of grain (field corn) and K+CWHR (sweet corn) samples

Duplicate composite samples of kernels plus cobsolith hasks removed (K+CWHR; sweet corn) were collected from the TRTF pluts of the harvest trials at pur-harvest intervals (PHIs) of 5 to 7 days. The intended PHI is 7 days. Duplicate composite samples of grain (field corn) were collected from the TRTSG plots of the harvest trials at PHIs of 19 to 22 days.

In the decline trials, duplicate composites of K+CWHR and grain were harvested at five intervals of 0, 3, 7, 14, and 24 days, or of 16, 13 to 15, 19 to 22, 26 to 28, and 33 to 35 days, respectively. Single composite samples of K+WHR were collected from the control plots on the same day the target 7-day samples were collected from the treated plots. Single composite samples of grain were collected from the control plots on the same day the target 21-day samples were collected from the treated plots.

For K+CVHR and grain from the TRTST plots, sampling occurred at earliest commercial harvest (ECH)

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

Findings

Concurrent recoveries of BYI 02960, DFA, and DFEAF were measured with each sec of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were $\leq 26\%$ (Table 6.3.2.15-60)

Table 6.3.2.15-6: Summary of Recoveries FBYJ \$2960 from Corn

			A 0		0. 4	77" ~\ <u>\</u>
Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries (%)	Mean Recovery (%)a	Standard Deviation (%)
	BYI 02960	0.01	© 13 ×	95, 10, 94, 97, 95, 104, 115, 105, 105, 105, 107,	Mean Recovery (%) ^a	10
Corn Grain	DFA	\$\tilde{\pi}\text{\text{\$\line{\pi}\text	13	83, 79, 84, 83, 80, 80, 85, 88, 89, 88, 95, 84, 84	850	4
	. 0		3. Q'	84, 86, 79	83	4
	DFE	\$0.01\$	013 2	3 4, 89, 7, 80, 88, 90, 92, 88, 92, 96, 03, 91, 89	91	5
			© 3 5 €	\$ @ ,88,79	84	5
	DFE 45	0.01%	All A	87, 88, 100, 97, 95, 190, 97, 96, 147, 95, 98	97	8
Corn K+CWTR	DFA 👟	9		76, 104, 99, 108, 86, 121, 91, 90, 104, 85, 95	96	12
K+CWHŘ	DFA 📞	10	3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	86,8Q,89	86	3
	DFEAF A	9 31		\$4, 83, 98, 94, 72, 104, 100, \$8, 91, 75, 97	90	10
	<i>a,</i> * .5 ⁹	100		89, 74, 86	83	8

a Mean Recovery = mathematical average of altrecoverges

The freezer storage stability study indicates that BVI 02960 residues were stable in crops with high starch content during frozen storage for of least 18 months prior to analysis as shown for wheat grain as representative crop. The maximum storage period of frozen samples in this study for BYI 02960 was 325 days a summary of the storage conditions are shown in Table 6.3.2.15-7.

Residue Component(s)	Matrix (RAC)	Maximum Average Storage Temperature (°C) ^a	Actual Storage Duration Months (Days)	Interval of Demonstrated Storage Stability Months (Pays) c
BYI 02960	Corn Grain	< -20	9 (269)	18 (\$57), 🗬
BYI 02960	Corn K+CWHR	< -20	11 (325)	8 (557)
DFEAF	Corn Grain	< -20	9,(269)	18 (55/1)
DFEAF	Corn K+CWHR	< -20%	(325)	D 139557)
DFA	Corn Grain	2 0	9 (269)	Q8 (550)
DFA	Corn K+CWHR	₹ -20	110(325)	\$\ 18\(557\)

- The maximum average storage temperature is from the time of sample receipt at BRP unit sample extraction and is the maximum of all average freezer temperatures at BRP and Pyrant. While preparing for sample avalysis, the samples were maintained in a laboratory freezer.
- maintained in a laboratory freezer.

 The storage duration is the time from field sampling through the last sample extraction.
- 2012. Storage stability of B 102960 diffuoroacetic scid, and and A. difluoroethyl-amino-furanone in plant matthes. Bayer Crop science Repo 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data for field and sweet corn commodities following seed treatment application with BYI 02960 480 IS or two folial applications of BYI 02960 200 St are shown in Table 6.3.2.15-8.

Total BYI 02960 Residue Data from Fiel Cand Sweet Corn after a Seed Treatment Table 6.3.2.15-8: Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960

		.,, 0			~		<i>Q</i>				
Trial Identification	Locathan (City, State, Region, aud Year)		10/15° -> //	Commodity Co	Total Rate C C Lb a.s./A (Rg a.s./ha)	% Dry Matter	Sampling Interval	BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFResidue (mg a.s. equiv./kg)	Total BYI 02960 Residue (mg a.s. equiv./kg) ^b
Corn G	rain/Foliar Appl	icat <u>io</u> n/F	ield Corn	, , , , , , , , , , , , , , , , , , ,							
RV621-	, NY,	TXTSG.	Hylan	Frain	0.365	59	20	< 0.010	< 0.050	< 0.010	< 0.07
10HA	Region 1,		Seeds HL		(0.409)			< 0.010	0.195	< 0.010	0.21 ^d
	2010			₩							Avg: 0.14 ^e
RV022-	,	TORTSG:	ØKC69972	Grain	0.364	86	21	< 0.010	< 0.050	< 0.010	< 0.07
10HA &	SC, Region 2,		J		(0.408)			< 0.010	< 0.050	< 0.010	< 0.07
*											Avg:
RV023-	107	₹ TSG	09HYBK11	Grain	0.368	80	21	< 0.010	< 0.050	< 0.010	<0.07 <0.07
10HA	Region 5,	UC 17%F	0HOER	Grain	(0.412)	80	21	< 0.010	< 0.050	< 0.010	<0.07
	2010		OHOLK		(0.712)			·0.010	~0.050	·0.010	Avg:
	2010										< 0.07

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications' of BYI 02960 200 SL

Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate	🦠 🍆 Dry Matter a	Sampling Interval	BY102960 E Residue (mg/kg)	DFA REGNIC (mga.s. equiv./kg)	The Action of th	Total BYI Orma Residue (mg a.s. Oquiv./kg) b
Corn Gi	rain/Foliar Appl	ication/F	ield Corn			P 	Ç_		~	y W	
RV024- 10HA	, KS, Region 5, 2010		09HYBK11 0HOER	Grain	0.362		21	© 0.010° < 0.00° © 0.00°	<0.050	<0.010 0.010	©.07 ©.007 Avg: <0.07
RV025- 10HA	ND, Region 5, 2010	TRTSG	Doalb DKC35-19	Grains	0,367 (0.412)		20 \$	0.016 <0.010	<0.050 <0.050	<0.010 ★0 .010	<0.07 <0.07 Avg: <0.07
RV026- 10HA	ON, Region 5, 2010	TRT	Dekalb 3832 Non BT	Grain	0.371	Z.	22 Q	0.010 <0.010 \$7	<0.030 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV027- 10HA	Region 5	TRTS	A:09HYB1	Grade	9,361 10.405)		2] ⁽⁴	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV028- 10HA	Region 5, 2010		MFA & Trophy		©366 (0.410)		21 */>	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV029 [*] - 10HA	Region 5	TRŢSG	Dekalb 4660		0.367	7 78	22	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
	Region 5, 2010	TRASG	Channel V 207-03451	Grain (0.365 (0.409)	83	21	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV034≠ 10HA	Region 5,	TRISG		Grain S	0.362 (0.406)	87	21	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV032- 10HA		TKTSG		Grain	0.368 (0.413)	80	21	<0.010 0.011	<0.050 <0.050	<0.010 <0.010	<0.07 0.07 Avg: 0.07
RV033- 1614A	Region 5, 2010	TATSG	83R38- 3000GT	Grain	0.369 (0.414)	82	21	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		012	110290020	70 52						Ň	
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate (Lb a.s./A (kg a.s./ha)	o Dry Matter a	Sampling Interval	BYI 02960 E Residue (mg/kg)	ADFA RESOLUE (mgra.s. equiv./kg)	The Art of the Art of	Total BYI Oroga Residue (mg a.s. Oquiv./kg) b
	rain/Foliar Appl				* «/ n	2	<u> </u>	\$0.010 [©]	\		
RV034- 10HA	, ON, Region 5, 2010	TRTSG	20T16	Grain	0.362 (0,405)	8 3 0		<0.000	<0.050 & &	<0.010 \$0.010	0.07 0.07 Avg: <0.07
RV035- 10HA	, KS, Region 5, 2010	TRTSG	Pi@eer 22B34	Grain G	0,371 (0.416)		21	<0.016 <0.016 <0.010	<0,000 <0.050 0.050	<0.010 ★0.010	<0.07 <0.07 Avg: <0.07
RV040- 10HA	, TX, Region 6, 2010	TRTSG	Dyna-Gro H6284162	1 4 1	0.377	8 9	20°	0.010 0.010 0.010	<0.0 9 0 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
RV036- 10DA	Region 5	TRT	\$5R08 \$3000\$3		9.376 19.421)		105	<0.010 <0.010 <0.010 <0.010	<0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	<0.07 <0.07 Avg: <0.07 <0.07 <0.07 Avg:
£						\$\frac{1}{8}\frac{1}{8}\frac{1}{2}	22	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 <0.07 Avg: <0.07
						84	28	<0.010 <0.010	<0.050 <0.050		<0.07 <0.07 Avg: <0.07
Y						85	34	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.07 <0.07 Avg: <0.07
								Con	tinued or	n next pa	ge

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

			110290020								
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rake Lb a.s./A (kg a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 PResidue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFRESidue	102960 quiv9kg
L .	rain/Foliar Appl		ield Corn	<u>~~</u>		<u>~</u> "					Ĭ
RV037- 10DA	Region 5, 2010	TRTSG			, w	72 ,	914 014	<u></u>	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.000 <0.000 <0.010	<0.07 0.07 0.07 0.07 <0.07 <0.07 Avg: <0.07
						77. 0	27 0	0.010 0.010 0.010 0.010 0.010 0.010	<0.030	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.07 <0.07 Avg: <0.07 <0.07 <0.07 Avg: <0.07 <0.07 Avg: <0.07 Avg: <0.07
RV038- 10DA	NE, Region 3, 2010 3	TRTS	N38B4	Grain	0.362	84	13	<0.010 <0.010 <0.010 0.010	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	<0.07 <0.07 Avg: <0.07 <0.07 0.07 Avg:
N. S. S. S. S. S. S. S. S. S. S. S. S. S.						85 85	19	<0.010 <0.010 <0.010 <0.010	<0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	0.07 <0.07 <0.07 Avg: <0.07 <0.07
			Y Ş			84	33	<0.010 <0.010 <0.010	<0.050 <0.050	<0.010 <0.010 <0.010	<pre><0.07 Avg: <0.07 <0.07 <0.07 Avg: <0.07 Avg: <0.07</pre>

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		OI D	110290020	JO SL						2	<u>v</u>
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate, Lb a.s./A (kg a.s./ha)	∠ Dry Matter a	sampling Interval © (days)®.	BYI 02960 D Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFRESidue & Chagas. equisake	(mg Os. equivakg) b
	am/ronar Appi	1		V V	b 0 2 C S	%′ ₹ 70		<i>──</i>	0.050	× 0 010	, ^v
RV039- 10DA	MN, Region 5, 2010	N	Dekalb 38-89			70 70 70 70 70 70 70 70 70 70 70 70 70 7	28	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	\$\frac{1}{\infty} \frac{1}{\infty} 0.056 \frac{1}{\infty} < 0.080	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<pre><0.07</pre>
Corn G	rain/Seed Treat	nent/Fiel	d Corn	~~~	Z,	(O	,				
RV023- 10HA	Region S,	TRUST	OHYBKO OHOEK	Grafin S	(0.116) (0.119)	\$79	ЕСН	<0.010 <0.010	0.118 0.105	<0.010 <0.010	0.14 0.13 Avg: 0.13
RV024- 10HA	Region 5, 2010		OWYBKJI OHOFR		©0.048 ((0.054)	78	ЕСН	<0.010 <0.010	0.055 0.089	<0.010 <0.010	0.08 0.11 Avg: 0.09
RV027- 10HA	Region 5, 2040	TRIST	A 09H VO 1 05HOER	Grain	0.105 (0.118)	85	ECH	<0.010 <0.010	0.174 0.168	<0.010 <0.010	0.19 ^f 0.19 ^f Avg: 0.19 ^g
Ž,	Region 5, 2040							Con	tinued oi	n next pa _z	ge

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		01.5	110290020								
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 PResidue (mg/kg)	DFA Residue Amg a.s. equiv./kg)		Total BYPD2960 Residue (mg Os. equivAkg) b
Corn K-	+CWHR/Foliar	Applicati	on/Sweet Co	orn 🔊	0 .	0°	`~\	<i>\(\text{O}\)</i>			
RV041-	2	TRTF	Extra-	K#@WHB	0.371	"NA,	5 6	Ø <u>.</u> 017 4	©0.209 [®]	<0.010	0.24
10HA	PA,		Tender		(0.406)	Q,		\$0.019°	0.235	<0.010 <0.010 <0.010	0.27 ^h
	Region 1,		Ş			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	A	Ő			⊘ Avg: 0.25 ⁱ
RV043-	2010 , GA,	TRTF	Bi-color	K+CWHR	0.370	NĄ,	07	0.010	\$0.14 3	<0.000	0.25
10HA	Region 2,	TIXII	DI COMO		(0;4Q25)		,	0.010	0.0	< 0.010	0.10
	2010		L C		`&' '				\$\tilde{s}\tilde{s}\tilde{.}	Z,	Avg:
			4 6		Ď) 	O	<u> </u>		7	0.13
RV044-		TRTF	Obsession	KPCWHR	0.364 (0.405)	NAC	7	Ø.010€	0.109	< 0.010	0.13
10HA	FL,	W [*]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(0.405)	NAC S		<0.010	0.194	< 0.010	0.13
	Region 3, 2010	, Ø			-						Avg: 0.13
RV045-	. IA. a	TRTF	Augusta	K CWHA	0.368	NA	7	₹0.0106	0.106	< 0.010	0.13
10HA	Region 5,				(0.412)	0	_^>	~0.010 ~ <0.010	0.118	< 0.010	0.14
	2010	A.				<i>?</i>	0	~			Avg:
		O _A				0	¥				0.13
RV046-		NTRTF"	XTRA-	K+CWHIR	0.363	NA	1 7 ≰	0.010	0.167	<0.010	0.19
10HA	IL, Region 5		tender & 274A		(0 407)	0	%	< 0.010	0.167	<0.010	0.19 Avg:
	2010	% n %	5 2147)* @)	. 4	7				0.19
RV047-		TRTA	Brocade	K+CWFR	0.364	NA	7	< 0.010	0.089	< 0.010	0.11
10HA [≪]	ON,		∢ŢSW ≲ [©]		(0.408)			< 0.010	0.088	< 0.010	0.11
	Region 5	~				7)					Avg:
D17040	201 %	D TD TA		M. CHARD	O S	DT A	7	0.047	0.120	<0.010	0.11
RV048- 10HA	, NEÔ	∜ ŤRŢ₽	Avigusta	K+CWHR	0 369	NA	7	0.047 0.028	0.138 0.083	<0.010 <0.010	0.20 0.12
1011/4	Region 5, ©				(0.414)			0.020	0.003	~0.010	Avg:
											0.16
RV050-	, SK	TRTF	Jackpot (K+CWHR	0.367	NA	7	< 0.010	< 0.050	< 0.010	< 0.07
10НА√	Region 🥾		, ø' _Ø'		(0.412)			< 0.010	< 0.050	< 0.010	< 0.07
	2010			"O _x							Avg:
RV051-	, CAA	TRA	© Ødden	K+CWHR	0.370	NA	5	< 0.010	< 0.050	< 0.010	<0.07 <0.07
10HA	Region 10	INST	Queen	K⊤CWΠK	(0.415)	INA)	< 0.010	<0.050	<0.010	<0.07
	Region 10 2010				(0.110)			0.010	3.050	3.010	Avg:
A	~		y ⁻								< 0.07
RV0524) IDA	TRIF	Jackpot	K+CWHR	0.371	NA	7	< 0.010	< 0.050	< 0.010	< 0.07
10H2	Region 1				(0.415)			< 0.010	< 0.050	< 0.010	< 0.07
	2010	3									Avg:
	, 🗡										< 0.07

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

	of B	YI 02960 20	00 SL					<u>e</u>	© °
Trial Identification Location (City, State, Region, and Year)		Crop Variety	Commodity	Total Rak Lb a.s./A (kg a.s./ha)	% Dry Matter a	Gdays Sold BYI 02960 CA	DFA Residue Amg a.s. equiv./kg)	DFEAFREsidue & (mga.s. equisikg)	Agtal BY Kaz960 (mg @s. equiv Rg
	oliar Applicati	•	7. 3						
RV053- 10HA Region 2010	OR, TRTF	Serendipity	KF@WHR	(0.409)	NA,	4 5	0.051	<0.010 <0.010 <0.010	0.07 0:08 Avg: 0.08
RV042- 10DA NY, Region 2010	1,	Serend Wity	K+CWHR	•		3 9.016° 3 0.017	0.128	<0.000 <0.010 <0.010 <0.010	0.11 0.11 Avg: 0.11 0.15 0.16
					NØ.	7 0.030 0.023	0.141 0.148	<0.010 <0.010	Avg 0.15 0.18 0.18 Avg 0.18
						0.017 0.020 21 0.016	0.187 0.168	<0.010 <0.010	0.21 0.20 Avg 0.21 0.23
<u> </u>				(, _2		0.010	0.159	<0.010 n next pa	0.18 Avg: 0.21
									· · · ·

Table 6.3.2.15-8 (cont'd): Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

	of BYI 02960	0 200 SL					© 7
Trial Identification Location (City, State, Region, and Year)	Plot Name Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	Sampling Interval (days) & BYI 02960	DFA Residue (mg a.s. equiv./kg)	DFEAFERSIGUE (Mga.s. equisikg)	(mg ans. equivage)
Corn K+CWHR/Folis RV049- 10DA Region 5, 2010	TRTF Xtra-Tende 278A	K-EWHRS		7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	2 0.051 9 0.054 4 0.107 4 0.107 7 0.192 4 0.167 10 0.232 7 0.247	<0.010 <0.000 <0.010 <0.010 <0.010 <0.010 <0.010	0.08 0.09 0.08 0.12 0.12 0.12 0.22 0.19 Avg: 0.21 0.25 0.26 0.26 0.26 0.26 0.26

Total BYI 02960 Residue Data from Field and Sweet Corn after a Seed Table 6.3.2.15-8 (cont'd): Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate Lb a.s./A (kg a.s./ha)	% Dry Matter a	Sampling Interval	BYI 02960 Exp. Residue (mg/kg)	DFA Residue Amg a.s. equiv./kg)	DFEAFRESidue (mga.s. equisikg)	(mg Os. equivakg)
Corn K-	+CWHR/Seed T	reatment	/Sweet Corr		4	W	.*\	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Ž,
RV041- 10HA	PA,	TRTST	Extra- Tender	K-CWHR	0.102	NA,	ЕСН	\$9.010 \$0.010	©0.109 [®]	<0.010 <0.010 <0.010	0.13 e0:12
	Region 1, 2010					\Q }	4				Ävg: 7 0.13 ^k
RV045-	, IA,	TRTST	Augusta	K+CWHR	0.083	NA	₽ČH	≈ Ø.010∂	0.060	<0.000	0.08
10HA	Region 5,				(0,0)3)	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		€<0.01 ©	0.00	< 0.010	0.09
	2010			, b))					*	Avg: 0.08
RV048-	, NE,	TRTST	D Augusta	K [©] CWH	0.07 % (0.085)	NAC	ĚСН	9.012°	0.099	< 0.010	0.12
10HA	Region 5,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					0.013	0.148	< 0.010	0.14 ^j
	2010	~ ©	Ö			,			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Avg: 0.13 ^k

- Sampling interval is the interval between the last application and the sampling date
- Total BYI 02960 residue is the sum of BYI 02960, DFA and DFEAF residue in parent equivalents. Residue measurements below the analyte LOO were swimmed into the total BYI 02960 residue value as the analyte LOO value. These totals represent the upper limit of what the residue levers might be.
- NA = Not applicable. Dry matter was not determined for the K+CWHR matrix.
- Maximum residue formid in freed corn grain receiving a Goodcast foliar spray application of BYI 02960 200 SL.
- HAFT residue found in field corn grain recepting a troadcast foliar spray application of BYI 02960 200 SL.
- Maximum residue found in field form grant following the punting of seed treated with BYI 02960 480 FS. f
- HAFT residue found in field court grain following the planting of seed treated with BYI 02960 480 FS.
- Maximum residue found in sweet cost K+CWHR receiving a broadcast foliar spray application of BYI 02960 200 SL. HAFT residue found in sweet correct CWHR receiving a broadcast foliar spray application of BYI 02960 200 SL.
- Maximum residue four of an sweet corn KCWHR following the proving of seed treated with BYI 02960 480 FS.
- k HAFT residue found for sweet forn K-CWHR for lowing the planting of seed treated with BYI 02960 480 FS.

ECH = Earliest commercial harvest

- TRTF = Treated plot receiving two foliar applications of 102960 200 SL for the collection of K+CWHR samples from sweet corn trans at a target PHL of 7 days.
- TRTSO = Treated plot receiving two toliar applications of BYI 02960 200 SL for the collection of grain samples from field corn trials at a target PHIOT 21 dags
- C+CWHR = kernels thus cobe ear) with husks removed TRTST = Seed treatment trials for the collection of grain samples from field corn trials and K+CWHR samples from sweet

Conclusion

Thirty-three field trials were conducted to measure the magnitude of total BYI 02960 residues in/on ocorn matrices following two foliar spray applications of BYI 02960 200 SL. Six of these field trials also included plots to measure the magnitude of BYI 02960 residues in these same matrices following the planting of seed treated with BYI 02960 480 FS.

The total BYI 02960 residue data for corn following seed treatment or foliar application are summarized in Table 6.3.2.15-9.

Table 6.3.2.15-9: Summary of Residue Data for Total BYI 02960 from Corn following Police Applications of BYI 02960 200 SL or Seed Treatment with BYI 02960 480 FS

		_	Total BYI 02960 Residue Levels (ppm)	
Commodity	Plot Name ¹	Total Application Rate Ib a.s/ (kg a.s./ha)	PHI (days) Nim at Nim a	Štandard Deviation
Foliar Applic	cation/Fi	@ V		
Grain	TRTSG	0.359 to 0.377 (0.403 to (423))	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.023
Foliar Applic	cation/Sw	veet Corn 🖔		
K+CWHR	TRTF	0.361 to 0.374 (0,405 to 0.419)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.058
Seed Treatm	ent/Field	´		
Grain	TRÆST	0.048 to 0.1106 0.054 to 0.119%		0.042
Seed Treatm	ent/Swe	T Corn		
K+CWI	TRTST	0.076 to 1.102 6.085 to 0.115)	ECH 3 0.08 0.14 NA ⁵ 0.13 0.12 0.11	0.022

- TRTF = Treated proceeding two topiar applications of BYL 22960 200 SL for collection of K+CWHR samples from sweet corn trials and targed PHI of Cday
 - TRTSG = Treated plot receiving two foliar applications of BYI 02950 200 SL for the collection of grain samples from field corn trials at a target PHH of 21 days
 - TRTST = Seed treatment trons with VI 02000 48000 for collection of grain (field corn) and K+CWHR (sweet corn) samples of the control of the control of the corn of
- 3 calculated on the basis of regardie values at the HI
- 4 Sampling day showing highest residue
- 5 Not applicable. Ince no decline that's were conducted after seed treetment

ECH = Earliest commercial harvest

K+CWHR Sernels ous cob ear) with husks removed

Total BYI 02960 residues for grains from field corn plots receiving two foliar sprays were generally below the LOQ at the PHI of 21 days; only one of the twenty trials showed residues amounting to 0.21 mg/kg in maximum. The decline trials indicated that total residues do not increase at sampling intervals after the PHI of 21 days.

Total BYI 02960 residues in kernels plus cob with husk removed (K+CWHR samples) from sweet corn plots receiving two foliar sprays were generally higher; ten of thirteen trials showed residues at the intended PHI of 7 days. The maximum residue at the PHI amounted to 0.27 mg/kg. Decline trans indicated that the residues did not always peak at the PHI, however the residue levels suggest that a

residue plateau was reached around

0.27 mg/kg.

Total BYI 02960 residues in grains (field corn) and in K+CWHR (sweet corn) after seed treatment of the same residues at harvest. The highest residue was detected in grains of field corn, Considering the results of all trials it becomes obvious that the use pattern with the two foliar spray applications in sweet corn is most critical in respect to possible residues on food items.

The residue data provided for field and sweet corn.

applications in sweet corn is most critical in respect to possible residues on food froms.

The residue data provided for field and sweet corn are suntable for regulators purposes.

IIA 6.3.2.16 Cereals - sorghum

Residue data from **NORTH AMERICA**

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on cereal grains, except rice (crop group 15). Representative crops tested were barley, field and sweet corn, sorghum and wheat. The use pattern for sorghum in North America is summarized in Table 6.3.2.16-1.

A total of nine field trials were conducted in sorghum. The studies are described below.

Table 6.3.2.16-1a: Target Use Pattern for the Application of BYIQ2960 on Sorghum (to gain Grains)

				Target	- Ø : Rate/Appli	cation					Sp Vol	ray ume
				ulated ict (FP)∡	0. 2				ેં Targe	Adjusant	Ž.	
Application	Test	No. of			Name of ~	Jlb ?	y kg إُرُّ	Intercal	PHI	/Additive	Ø	
Type	Substance	Apps	mL/A	fl øz/A	"°≽⁄a.s. "©	a.s./A	a.s./ma	(Days)	(Days)	% (%) &	GPA	LPHA

In parallel, three residue trials were conducted with BYI 0260 480FS following a seed treatment application. The seed treatment rates for the cereal grain crops are presented below and in the respective summaries.

Table 6.3.2.16-1b: Target Use Pattern for the Application of BY 02960 on Sorghum (to gain Grains)

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	& Targe	Rate/Appli	ication		Z				ray ume
	Target kate/Application  Formulated  Product (FP) Active Substance (a.s.)  Target  May By 102960 4 520 3 By 102960 0 250 250 NA 3 ECH 3 NA 3 NA 3											
9%	<i>Q</i> ) ∤ _	~	mU	(II)		lb a.V/	kg_a.s./	App.	Target	Adjuvant		
Application	Test	No. of	1400 kg	<b>©z</b> /100	Name of	1001b	1#W kg	Interval	PHI	/Additive		
Type	Substance	`Appş⊁	∛seed∡	∫lb seed√	ans.	seed	<b>Seed</b>	(Days)	(Days)	(%)	<b>GPA</b>	LPHA
Seed treatment	BYI 029€0 200 <i>©</i> L		520		B <b>9</b> 0296	0.250	250	NA ³	ECH ³	NA ³	NA ³	NA ³

- 1 NA = Not applicable
- 2 ECH = Earliest commercial parvest

Report:	<b>KATA 6.3.2.16701</b> ; and K. A. ; 2012
Title.	BYI 02960 200 SL and BYI 02960 480 FS - Magnitude of the Residue in/on Sorghum
Report No &	RARVY004, dated March 14, 2012
Document No	M-42704-01-2
Guidelines:	JS: EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: PMRA DACO 7.4.1, Supervised Residue Trial Study
	RA DACO 7.4.2, Residue Decline
	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	Adopted Sept. 7, 2009.
GLP	Yes

Nine field trials were conducted to measure the magnitude of BYI 02960 residues in/on sorghum forage, sorghum grain and sorghum stover following two broadcast foliar spray applications of

BYI 02960 200 SL. Three for these field trials also included plots to measure the magnitude of BYI 02960 residues in these same matricies following the planting of seed treated with BYI 02960 480 FS. Since sorghum forage and stover (as feed items) are not imported into Europe, this dossign will focus on sorghum grain, only. Complete information on the study, including the data on the feed items, has been submitted in the Global Joint Review Submission in October 2002.

BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L and BY 480 FS is a flowable concentrate containing 480 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table 6.3.2.16-2).

Table 6.3.2.16-2:

trials conform to the guidance give	ven by the EPA (Table	6°.3.2.16-2).		
Table 6.3.2.16-2: Trial Nur	wen by the EPA (Table mbers and Geographica	al Locations for RXI 02	960 in/gh/Sorghu	im 🖐
NAFTA Growing Region	Submitted a	l. (2) 🖎 🙈		
1	Submitted a	« Requested O		» _& °
1A				
2				Š
3				
4				
5				
5A 📡 🕏				
5B			Š	
6			y Y	
7.5				
9 0 5				
10 0 10 10 10 10 10 10 10 10 10 10 10 10				
16 7		O Q		
		2		
13				
14				
Total Total		9		

One of the nine trials was a decline trial (the in Region 5). The total number of trials meets the required number of trials

#### **Material and Methods**

Individual foliar spray application rates ranged from 0.181 to 0.193 lb BYI 02960/A/application (0.202 0.216 kg BYI 02960/ha/application). Seasonal application rates ranged from 0.362 to 0.382 lb BYI 02960/A (0.406 to 0.428 kg BYI 02960/ha). All applications were made at growth stages ranging from BBCH 55 to 87 (BBCH 55: half of inflorescence emerged; BBCH 87: fruit begins

to soften). The interval between the applications was 5 to 7 days. All applications were made using ground-based equipment. An adjuvant (Dyne-Amic) was used in all of the foliar applications at 0.25% (v/v).

For plots receiving treated seed, application rates ranged from 0.012 to 0.024 lb YI 02960/A@0.0146 to 0.026 kg BYI 02960/ha).

6-3 Study use Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.16 patterns are summarized in Table 6.3.2.16-4.

Trial Site Conditions for BYI \$2960 on Sorghum Table 6.3.2.16-3:

C4 - l- I 4'	m.t.l	Soil Characteristics Mereorological Datab
Study Location (City, State)	Trial Number	Type % ph CEO Rainfall (n) Range F)
, AR	RV083-10HA	Clay 7.1 (6.3 (17.4 ) 8.54 (6.5 96
, KS	RV084-10HA	Silt Lowm 3 2 7.2 19.2 88.84 5 34 - 92
, MO	RV085-10HA	Sil@oam 7 1.8 2# 89 2.65 57 - 100
, NE	RV086-10DA	Filt Loads \$2.2 7.3 \$10.5 763 56 - 86
, TX	RV087-101A	Claydoam 2.1 8 1 40% 12.69 58 - 103
TX	RV08890HA	Qay Loam 1 7.8 18 128 77 - 93
NE	R\$089-10HA	Sill Loam 27 6.8 17.1 39 - 81
, TX	RVQQ-10HA	Sandy Clay Loam 0.81 7.9 12.84 10.14 48 - 94
, TX O	R 9091-19HA	Cay 50.4 6.33 73 - 102

Abbreviations used: %OM = percent organic matter CEC = coron exchange capacity.

e Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Sorghum

			1 2	. O	7					
Trial Identification	Location City, State	End-use Broduce Control of Communication	Applica Plot Name	Method	Timing/Growth Stage (BBCH)	Actual Spray Volume GPA (L/ha)	Rate lb a.s./A (kg a.s./ha)	Retreatment Interval (days)	Total Rate 1b a.s./A (kg a.s./ha)	Tank Mix Adjuvants
RV083- 10HA	, AR Region 4 2010	B T T 2960 SL 200	ΓRTSG	Broadcast foliar	BBCH 85	10 (96)	0.185 (0.208)	NA	0.369 (0.414)	Dyne- Amic 0.25% v/v
Č					BBCH 85	10 (95)	0.184 (0.206)	7		Dyne- Amic 0.25% v/v

Data is for the interval of the mouth of first application through the month of hast sampling. Meteorological data were

	ır)		Applica	tion						
Trial Identification	Location (City, State, NAFTA Region, and Year	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Actual Spray Volume	Rate lb & A	Refrestment Interval   (daysk)	Total Total	ank Mix Adjuvants
				×		L.Q.	@	Ž Š		~~~

Table 6.3.2.16-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 F8 on Sorghum

	5		Applica	ition 0			- <del>'</del>	Ô		
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	WeName Of The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control	OF LO LAZA Acthobal Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaborat	Timing/Gbowth Stage	Actival Spracy olume Copy (GPA/L/hg)	Rate lb a.s./A Ving	Retreatment Interval (days)	Total Rate lb a.s. And (kg a.s./ha)	Tank Mix Adjuvants
RV084- 10HA	, KS Region 5 2010	BY4 02960 SL 200	TŘTSC	F Broadcast folder	BBCH 85 0	16 (149)	0.185 (0:207)	NA	0.370 (0.415)	Dyne- Amic 0.25% v/v
					BBCN 850	16 (\$\frac{1}{3}\)	0.186 (0.208)	5		Dyne- Amic 0.25% v/v
RV084- 10HA	Region 2010	\$BYI 029 <b>6</b> 0 40 <b>0</b> FS	TROST	Seed Treatment	BBCH	NA	0.024 (0.026)	NA	0.024 (0.026)	NA
RV085- 10HA	Region 5 2010	BY 02560 SL 200	ESTSG &	Broadcast foliar	BBCH 75	20 (188)	0.183 (0.205)	NA	0.364 (0.408)	Dyne- Amic 0.25% v/v
				V	BBCH 85	20 (184)	0.181 (0.202)	7		Dyne- Amic 0.25% v/v
RV0867 10D	A Region 5	19YI 202960 SL 200	TRTSG	Broadcast foliar	BBCH 87	20 (184)	0.182 (0.204)	NA	0.363 (0.407)	Dyne- Amic 0.25% v/v
					BBCH 87	19 (174)	0.181 (0.203)	6		Dyne- Amic

	E)		Applica	tion						
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	A 70	Timing/Growth Stage (BBCH)	Actual Spray Volume	Rate lb & DA (kg a.s./ha)	Represent Interval	Torsky Rate 1828, A Kg a.s. Ma	Ç© ¶ank Mix
				Broadcast		, P	<b>4</b>			Ø25% V/V
RV087-	, TX	BYI	TRTSG	Broadcast	BBCH©	) [*] 20 🔊 °	0.182 (0.204) \	ŊA	<b>©</b> .364	Dyne-
10HA	Region 6 2010	02960		foliar	85	(186)	(0.204)	0 .	(0.408)	Amic
		SL 200	(	k. Ö	~~~					0.25%
			Č	)					4	v/v
			4	. ~~ ~ @	BBCR	17	<b>.</b> Ø≥183	ر 7 `©ا		Dyne-
					850	(T00) a	Ø.205 <b></b> €			Amic
				y' Q'		p″ "(			O	0.25%
		(		folder	BBCHC 85 BBCHC 85		0 183 0 .205×		<b>(</b> \$)	v/v

Table 6.3.2.16-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on

	r)		🖏 Appl@a	tion	O' &		, O)'			
Trial Identification	Location (City, State,	oduck on)	Port Name (2)	Method	Timing/ (BBCH)	る Actual Spr級 Volume O ( GPA (L/ha)	Rate lb a.s./A (kg a.s./ha)	Retreatment Interval (days)	Total Rate lb a.s./A (kg a.s./ha)	Tank Mix Adjuvants
RV087-	, TX	BXV	TRTST_	Deed U	₿ВСН	NA	0.012	NA	0.012	NA
10HA	Region 6 20 Q	02\$60 400 FS		Treament	00		(0.014)		(0.014)	
RV088-		BY 5 02960	JATTS G	Broadcast	BBCH	10	0.188	NA	0.375	Dyne-
10HA &	, TX Region 6, 9710	02960 SL 200		Broadcast foliar	85	(96)	(0.211)		(0.420)	Amic 0.25% v/v
					ВВСН	10	0.186	7		Dyne-
			(Q)		85	(95)	(0.209)			Amic
		5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							0.25% v/v
RV089-	,	ABY I	TRTSG	Broadcast	BBCH 85	20	0.183	NA	0.367	Dyne-
10HA,	Ne Region 7	Ø2960 SL 200		foliar	0.3	(188)	(0.206)		(0.412)	Amic 0.25%
	A	SE 200								v/v
					ВВСН	20	0.184	7		Dyne-
					85	(191)	(0.206)			Amic
										0.25%

	ır)		Applica	tion						
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Actual Spray Volume	Rate Ib 8.87A (kg a.s./ha)	Represament Interval	Torn Rate 1825, A	Sank Mix Adjuvants
RV090- 10HA	, TX Region 8 2010	BYI 02960 SL 200	TRTSG	Broad St foliat	BBCHO	20 %			0370 (0:415)	
RV090- 10HA	, TX Region 8 2010	BYI 02960 400&S	TRT®Ť	Seed Sreatment	BBCH 085		0.0200	NA &	© 0.018 (0.020)	NA

Ontained on next page ...

Contained on next page ...

A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Table 6.3.2.16-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Sorghum

			A 1'	4:						
	ar.		Applica	tion	1	1	ı		~	
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Jimii BBC	Actual Spray Volume GPA (Lina)	Rate lb a.s./A 220	Retreatment Interval	Total Rate Brass/A Principal (kg asana)	Adju
RV091-	, TX	BYI	TRTSG	Broadeast	BBCH	19 👰	0.0181	ấMA	0 362	Dyne-
10HA	Region 8 2010	02960		Broadeast folkar	85	(181)	(0.203)		(0.406)	Amic
		SL		L Q°	. D	, V			W [*]	0.25%
		200		Broadeast forear		19 0 (181)	(0.203)	0 ,		, v/v
					BECH	19,	Ø.181 _€			Dyne-
				~"	.84	O(179)	(0.20 <b>35</b> )			Amic
								Ü	r Ta	0.2370
		Ó	Ç Oʻ		BBCH 84		0.181 7(0.2035)		I T	v/v
	l	· **	<u> </u>					- ~		l

a NA = Not applicable

TRTSG = Treated plot receiving two foliar applications of BYI 02 sorghum trials at a tagget PHIOf 21 days

collection of grain samples Seed treatment trials with BYI 02960 480 Fastor

Duplicate composite samples of grain were collected from the TRTSG plots at pre-harvest intervals (PHIs) ranging from 20 to 21-days (intended PHI = 21 days). In one decline trial, duplicate composite grain samples were collected from the TRTSG plot at 10 13, 19, 26, and 33 days after the last application. Grain from the TRAST plots was campled at the date of earliest commercial harvest (ECH).

Single composite samples of grain were collected from the control plots on the same day the target 21day samples were collected from the freated plots

The residue(s) of BYI 02960, DEA, and DFF AF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ Value.

Findings

Concurrent recoveries of BXT 02960, DFA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were  $\leq$  20% (Table 6.3.2.16-5).

# Bayer CropScience

Table 6.3.2.16-5: Summary of Recoveries of BYI 02960 from Sorghum

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries (%)	Mean % Stan Recovery % Dev.
		0.010	7	106, 95, 104, 113, 100, 11789	104% 2.7%
	BYI 02960	0.100	3	104, 96, 119	106% \$ \$11.9%
	B1102900	1.000	2	97, 101	99% NAb
		2.000	3	95, 103, 88	J 95% J-4%
		0.050	7	89, 81, 84, 88089, 85, 83 ©	3.4%
Grain	DFA	0.100	3	99, 86, 99	Q95% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Grain	DrA	1.000	2	108,940	101% NAb
		2.000	3,	· \$\tilde{\phi}\)97, 90788 \$\tilde{\phi}\	\$92% \$\tag{4.4%}
		0.010		© 102, \$7, 92, \$20, 111 103, 194	103% 11.1%
	DFEAF	0.100	A 3 . C	1 <del>9</del> 3, 92, 111	102% 79.8%
	DEAF	1.000	2 2	118/103	110% NAb
		2.000		104, 96, 96	98% 2.5%

- a Mean Recovery = mathematical average of all recoveries
- b NA = Not applicable, as a Standard Deviation is not calculated for less than three value

The freezer storage stability study indicates that BYI 02960 residues were stable in crops with high starch content during frozen storage for at least 18 months prior to analysis as shown for wheat grain as representative crop. The maximum storage period of frozen samples in this study for BYI 02960 was 196 days. A summary of the storage conditions are shown in Table 6.3.2.16-6.

Table 6.3.2.16 Summary of Storage Conditions for Sorghum

Residue Component(s)	Watrix (RAC)		Marrimum Average Storage Temperature	Actual Storage Duration months (days) b	Interval of Demonstrated Storage Stability months (days) ^c
BYI 02960	Grain		\$<-20°	6.5 (196)	18 (557)
DFEAF	Grain	Q o	\$ <b>€</b> \$00°C	6.5 (196)	18 (557)
D A	Grain		~~-20°C	6.5 (196)	18 (557)

- The maximum average storage temperature is from the time of sample receipt at BRP until sample extraction and is the maximum of all average freezer temperatures at BRP. While preparing for sample analysis, the samples were maintained in a laboratory freezer.
- b The storage diration is the time from field sampling through the last sample extraction.
- c diffuor withyl-armo-furanone in matrices. Bayer CropScience Report No. RARVP046, amended version including 18-romth data (KII 46, 1.1/0).

The total BYI 02960 residue data for sorghum commodities following seed treatment application with BYI 02960 480 FS or two foliar applications of BYI 02960 200 SL are shown in Table 6.3.2.16-7.



Total BYI 02960 Residue Data from Sorghum after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL  $\,$ Table 6.3.2.16-7:

	***************************************	BY1 0290		, 01 1 ,, 0 .				21102			o
Trial Number	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	% Dry Matter	Total Rate Lb a.s./A (kg a.s./ha)	Sampling Interval (days)	BYI 02960 BYI 02960 BYI 02960	DFA Begique (mg a.s. equiv./kg)	DFEARResidue & DFEARResidue & Que a.s. equiv. kg)	Tatal BW02960 Residue (m@a.s. equiv./kg)
RV083- 10HA	, AR, Region 4, 2010	TRTSG	Pioneer 85Y40	Grain	86 V	0.369			2	i J	1.3 1.5° Avg: 1.4°
RV084- 10HA	, KS, Region 5, 2010	TRTSG	B-7B47	Grain	) ~	0.376 (0.15)	21	Y Q'	<0.050 \$0.050 \$	0.019 0.014 0	0.93
		TRTST	. 3//		ľ,	0.934		, Ø	Ž6	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
RV085- 10HA	Region 5, 2010		» <i>(</i>	Ţ		0.364 (9.408)		9.386 × 0.530 ×	0.137 0.124	0.062 0.065	0.58 0.72 Avg: 0.65
RV086- 10DA	Region 5, 2010	TRTS	NC#371	Grain 5	979 100 100	©.363 (0.407)	¥ 10 V V	1.68 1.34	<0.050 <0.050	0.022 0.015	1.7 1.4 Avg: 1.6
Ş					83 × « « «	© 363 (0.409)	13	1.28 1.38	<0.050 <0.050	0.018 0.019	1.3 1.4 Avg: 1.4
54					86 ₀	0.363 (0.407)	19	0.777 0.830	<0.050 <0.050	0.015 0.015	0.84 0.89 Avg: 0.87
4					80	0.363 (0.407)	26	1.26 1.80	<0.050 0.052	0.014 0.016	1.3 1.9 Avg: 1.6
\$	Region 5, 2010			r ·	83	0.363 (0.407)	33	0.825 0.811	<0.050 0.053	0.017 0.020	0.89 0.88 Avg: 0.89
	G G							Conti	nued on	next paş	ge

Table 6.3.2.16-7 (cont'd): Total BYI 02960 Residue Data from Sorghum after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

										2	
Trial Number	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	% Dry Matter	Total Rate Lb a.s./A (kg a.s./ha)	Sampling Interval (dlays) ^a	BYI 02960 Residue (mg/kg)	DFA REGidue (mg.a.s. equivedeg)	DEEAFRESidue (mg. cquivake)	Foral BY 102960 Residue (mg 103, equiv. Rg)
RV087-	, TX,	TRTSG	Asgrow	Gra	87	0.364 (0.408)	~2¶	0.559 29.457	Q.138 _*	9.051	0.75
10HA	Region 6, 2010		A571						0.119		0.63 Avg: \$0.69
		TRTST	Asgrow	Grain	788 (1)	0.012 (0.014),	ÆCH.	.≪9.010° .×0.01 <b>6</b> }	<0.050 <0.050	<0.010 <0.00	<0.070 <0.070
		.C								Ö Ü	Avg: <0.070
RV088- 10HA	TV Davies (	TRTSG	Dekarb;	Grain	\$5	9375 (0.420)	§ 20 °	0.866 0.72 <b>0</b>	0.061 0.0 <b>5</b> 2	0.044 0.036	0.97 0.81
	TX, Region 6, 2010	Q C	3707		~			0.72 <b>9</b>	Ö,		Avg: 0.89
RV089- 10HA	NE, Region ,	TRTSG	7B47	Frain (	783 D	©.367 (0.412) ©	21 %	9 0.323 0.352 0.3	0.053 0.055	0.039 0.034	0.41 0.44 Avg: 0.43
RV090-	TX\	TRTSG	~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	88	0.370	21	0.488	< 0.050	< 0.010	0.55
10HA	Region 8, 2010			Grain		(0.448)	<i>W</i>	0.505	< 0.050	< 0.010	0.56
					Ť,		7 7				Avg: 0.56
Ş		TROST	F-270F	Grain	89** ©	0.018 (0.020)	ЕСН	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg:
		J.S.		y S	Ű	F					< 0.070
RV091- 10HA	Region 8, 2010	TRTSG	Garst. 5549	Grain	89 V	0.362 (0.406)	21	0.391 0.525	<0.050 <0.050	<0.010 <0.010	0.45 0.58
					r						Avg: 0.52

- a Sampling interval is the interval between last application and sampling date.
- b Total BYL 02960 residue is the sum of BYL 02960, DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what the residue levels might be.
- c Maximum cosidue found in sorghum grain after foliar application.
- d AFT residue found in southum grain after foliar application.

TRTS Treated plot receiving two foliar applications of BYI 02960 200 SL for the collection of grain samples from sometimes at a starget PHI of 21 days

TRTST = Seed treatment trials with BYI 02960 480 FS for collection of grain samples

ECH = Earliest Commercial Harvest.



#### Conclusion

Nine field trials were conducted to measure the magnitude of total BYI 02960 residues in/on sorghim grain following two foliar spray applications of BYI 02960 200 SL. Three of these field trials also included plots to measure the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues following the magnitude of BYI 02960 residues follow with BYI 02960 480 FS.

The total BYI 02960 residue data for sorghum following seed treatment or foliar applications are summarized in Table 6.3.2.16-8.

Summary of Residue Data for Total BYI 02960 from Sorglom following Folian Table 6.3.2.16-8: Applications of BYI 02960 200 SL or Seed Treatment with BYI 02960 480

Commodity	Plot Name ¹	_ F & % & _ (	(day)		Max at 60667	⊈ Zer		dian 3 dian 3	O Mean D	Standard Deviation
Sorghum Grain	TRTSG	(0.406 - 0.420)	©21 © 18	<b>9</b> .404	523	1.9		0.687	0.758	0.307
Sorghum Grain	TRTST	0.012 0.024 (0.014 - 0.025)	ECH %	<0.070	<0.070	NA ⁵	\$0.07Q	<0.070	<0.070	0

- 1 TRTSG = Treated plot receiving two foliar applications of 100 1029 200 SL for the collection of grain samples at a target PHI of 21 days
  - TRTST = Seed treatment trials with 1801 02960480 FS For
- 2 HAFT = Highest Average Feld Trial
- calculated on the basis of residue values at the PHI
- Sampling day howing highest residue
- Not applicable, since no decline trials were conducted after sens treetment

  H = Earthest commercial barvest

ECH = Earliest commercial farves

Total BYI 02960 residues in sorghum grain samples from seed treatment plots were always below the LOQ of 0.07 mg/kg, whereas grain samples from plots receiving rather late spray applications showed considerable BYI 02000 residues. The maximum total BYI 02960 residue at the PHI of 21 days amounted to 1.5 mg/kg. The only decline trial available indicated that the residue peak might be some days after the PHI: a maximum residue of 1,0 mg/kg was detected 26 days after the last application in the decline trial. However a subsequent decrease of the residues suggested a further decline of the residues or at least a residue plateau at later time points.

Therefore it was concluded that the residue data provided for sorghum are suitable for regulatory purposes.



#### IIA 6.3.2.17 Cereals - wheat

# Residue data from NORTH AMERICA

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment in on cereal grajus, except rice (crop group 15). Representative crops tested were barley, field and sweet corn, sorghuro and wheat. The use pattern for wheat in North America is summarized in Table 6.3.2.17-

A total of twenty-nine field trials were conducted in wheat. The studies are described below.

Target Use Pattern for the Application of BYFQ2960 on Wheat (to gain Grams) Table 6.3.2.17-1a:

				Target	Rate/Appl	cation					Sp Vol	ray ume
			_	ulated ct (FP <u>) </u>	Açtine Sı	ıb <b>%</b> anc	e ( <b>A</b> s.)	App. _∞	(Targe	Adjuvant	t of	
Application	Test	No. of		S.	Name of ∧ _`~a.s ©	Jlb [	kg 🎢	Interval	PHI	/Additive		
Type	Substance	Apps	mL/A	fl øz/A	"°≽⁄a.s. "©	a.s./A	a.s./ha	(Days)	(Days)	<b>%</b> (%) &	GPA	<b>LPHA</b>
	BYI 02960 200 SL				BYI 02960	Q. 83	<b>2005</b>	Ž 7 Š			1	93–467

In parallel, three residue trials were conducted with \$\text{NYI 02960 480 FS following a seed treatment} application. The seed treatment rates for wreat grain is presented below.

Target Use Pattern for the Application of BY 02960 on Whost (to gain Grains) Table 6.3.2.17-1b:

		Targe	t Rate/Appt	cation!					_	ray ume
	For		Active Su	obstance	e (a.s.)	Target				
	∦ ≰√imL/	′ l f1 "		(100 Hs	Rg a.s.	App.	Target	Adjuvant		
Type Substance	Apps seed	Lb seed	0.0	6000	6000	(1)0376)	(Days)	(%)	GPA	LPHA
Seed BYI 02960 treatment 200 St	1 219	3.40	BYI 02960	0.105 ₄	105	NA ¹	ECH ²	$NA^1$	NA ¹	NA ¹

¹ NA = Not applicable.

1 NA = Not applicat	ole. The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of
2 ECH = Earlie Con	mmercial harvest
	Ble. The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of
Report:	451A 63.2.17201; and L. M. 2012
Title.	BYI 0.960 200 SL and BYI 0.960 480 FS - Magnitude of the Residue in/on Wheat
Report No &	RARVY003, dated @nne 27/2012
Document No 👋	M43325 01-1
Guidelines:	JS: EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
	Canada: PMRA DACO 7.4.1, Supervised Residue Trial Study
	PMRA DACO 7.4.2, Residue Decline
	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	Adopted Sept. 7, 2009.
GLP S	Yes



Twenty-nine field trials were conducted to measure the magnitude of BYI 02960 residues in/on wheat forage, grain, hay, and straw following two broadcast foliar spray applications of BYI 02960 200 SL. Three of these field trials also included plots to measure the magnitude of BYI 02960 residues in these same matrices following the planting of seed treated with BYI 02960 480 FS. Since wheat forage, hay and straw (as feed items) are not imported into Europe, this dossier will focus of wheat grain only. Complete information on the study, including the data on the feed items, has been submitted in Global Joint Review Submission in October 2012.

BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960 L and 480 FS is a flowable concentrate containing 480 g BY 02960/L. The number and location of trials conform to the guidance given by the EPA (Table 6.3.2.1

Trial Numbers and Geographical Cocations for B Table 6.3.2.17-2:

trials conform to the guidance given b	y the EPA (Table 6.3.2	2.17-2).	
Table 6.3.2.17-2: Trial Numbers an	d Geographical Cocati	ons for PYI 02960 in on Wheat  Requested	
NAFTA Growing Region	Submitted a	Requested	
1			
1A			
2			
3			
4			
5		5 27 37	
5A 💸 😽			
6 0			
76 4		O 25	
7A 2 3		1	
		<u> </u>	
11 8		1	
12 9			
135 4			
14 0 0	7 ° 8	8	
Total	29	29	
a Four of the twenty-rine trips were decline	thals (one in Region 5, one	e in Region 7, one in Region 8, and one in Region ments.	
14). The additional decline trial overe per	formed to meet EU require	ments.	
14). Life additional decline trials were per			

Four of the twents line trips were decline trials (one in Region 5, one in Region 7, one in Region 8, and one in Region



#### **Material and Methods**

Individual foliar application rates ranged from 0.175 to 0.190 lb BYI 02960/A/application (0.196 to 0.213 kg BYI 02960/ha/application). Seasonal foliar application rates ranged from 0.353 to 0.378 b BYI 02960/A (0.396 to 0.423 kg BYI 02960/ha).

All foliar applications were made at growth stages ranging from BBCH 12 to 99 (BBCH 12: two leaves unfolded; BBCH 99: harvested product). The interval between the applications was 4 to days. For sites with two foliar applications, spray volume, ranged from 10 to 31 GPA (93 to 290 L/ha).

All foliar applications were made using ground-based equipment. The djuvan Dyn Amic was used in all of the foliar applications at 0.25% (v/v).

Wheat seeds were treated at the Bayer Crop Science Seed Technology Center with BYT 02969 480 pS at a target rate of 0.105 lb BYI 02960/100 lb seed (105 g BYI 02960/100 kg seed) using procedures typical of commercial seed treatment operations. Following treatment and shipment to the field sites, the treated seeds were planted into the TRTST plots at seeding rates ranging from 869 to 109 lb seed/A (97.3 to 122 kg seed/ha). The resulting soil application rates range from 9.091 to 0.114 lb BYI 02960/A (0.102 to 0.128 kg BYI 92960/ha).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.17-3. Study use patterns are summarized in Table 6.2.2.1744.

Table 6.3.2.17-3 Total Site Conditions for BYI 02960 on When

<i>P</i> a		Soil Characteristics ^a				Meteorolo	ogical Data ^b
Trial Identification	Trial Location (City, State, Year)	Type ^{\(\)}	OM (%)	рЫ	CEC (meq/100g soil)	Total Rainfall (in)	Temp. Range (°F)
RV054-10HA	( 20 <u>10</u> )	Sandy Loam	\$0.9 \$	<b>8</b> 6	6.8	4.55	50–93
RV055-10HA	LA, 2011	SilvLoand		5.3	4.2	8.16	41–86
RV056-10HA	, K.S., 2010	Sood *	0.6	6.4	3.5	9.17	16–98
RV057-10HA	, KS, 2010	Silt Login	1.8	5.8	16.8	17.83	47–87
RV058-101A	Canada, 2010	San y Loam	2.1	7.6	14.1	15.99	55–80
RV059-10H	9MN,	Clay Loam	5.4	6	23.4	11.42	57–83
RV06050DA	, MO, 2011	Silt Loam	1.7	5.7	8.7	29.68	40–95

Table 6.3.2.17-3 (cont'd): Trial Site Conditions for BYI 02960 on Wheat

		Soi	l Characte	eristics	a	Meteorolo	ogical Datab
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temp Range
RV061-10HA	TX, 2011	Sandy Loam	0.9	6.6	10	1.37	550,87
RV062-10HA	NE, 2010	Silt Loam	2.7∜	6.8	19.1	20 🕏	41-89
RV063-10HA	, ND,	Loam	<u> </u>	7	Q 27.2 °	(10.82)	© 43-88, ©
RV064-10HA	, ND, 2010	Clay Loang	♥ 3 <b>%</b> • <b>©</b>		\$19.9 T	©.85 ° \( \)	5581
RV065-10HA	, ND, 2010	Loan	© 3.8~	7.6	30.8	7 10.48 × 10.48	42- <b>8</b> 7
RV066-10DA	, NE, 2011	Solt Loans	2.7	%6.8 %6.8	17.6	15.53	38-91
RV067-10HA	, AB, AC Canada, 2010	I Koam	15		19	©.00 ×	¥ 42–78
RV068-10HA	2011	Fine Sandy Loam	\$ 0.75 ₀	7.4		0,61	38–101
RV069-10HA	OK, 2010	Sandy Læm		\$5.9 Q	7.7	55.06	50–93
RV070-10HA	, TX, &	Sandy Loam		<b>J</b> .6	12.3	1.17	23–101
RV071-10H	TX, 2011	Silty Clay	2.20	8.1	\$\frac{1}{2}6.3	1.21	35–93
RV072-10HA	TX, 2011	Clay	\$ 2 \$	Ø 8 (	40.4	2.88	41–94
RV073-10DA	TX, 2011	Clay C		8.2 8.2	50.4	2.35	29–103
RV074-10H	2010 ×	Loam	7.2 F	6.3	15.5	4.46	40–81
RV075-00HA	Canada, 20Q	ØLoam V	4.3	6.8	17	10.08	75–100
R\\0/6-10HA	Canado, 2010-	Loam V	4.4	7.5	25.8	9.57	51–76
RV077-10H	MB,	Loam	5.3	7.5	24.4	18.13	42–76
RV078-ØHA		Sand Loam	2.32	5.5	NA°	8.76	49–77
RV079-1014A	SK, Canada, 2010	Loam	8	7.5	24.75	12.92	50–74

Table 6.3.2.17-3 (cont'd): Trial Site Conditions for BYI 02960 on Wheat

		Soi	l Characte	eristics	Sa	Meteorolo	ogical Datab
Trial Identification	Trial Location (City, Country/State, Year)	Туре	OM (%)	pН	CEC (meq/100g soil)	Total Rainfall (in)	Temps Range
RV080-10HA	, SK, Canada, 2010	Loam	Not Reported	7.1	Not Reported	13.64	41774
RV081-10HA	AB, Canada, 2010	Loam	3.4	6.2	<b>Q</b> 1	8652 \$\infty\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infta\to\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infta\ta\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\infty\text{\$\endot\text{\$\infty\text{\$\infty\text{\$\infta\ta\to\text{\$\infta\text{\$\infta\ta\text{\$\infta\ta\text{\$\infta\ta\to\text{\$\infta\to\text{\$\infta\ta\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\endot\text{\$\infta\ta\to\text{\$\infta\to\text{\$\infta\to\text{\$\endot\text{\$\infta\ta\to\text{\$\infta\to\text{\$\infta\ta\to\text{\$\infta\to\text{\$\infta\to\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\infta\to\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\infta\ta\to\text{\$\infta\to\text{\$\infta\to\to\text{\$\infta\to\text{\$\in\	37-73
RV082-10DA	AB, Canada, 2010	Silty Clay Loam &	<b>1</b> 1.3	5.6		Q 8.85 1	37-73
a Abbreviations us b Data is for the ir obtained from no c NA = Not Avail	AB, Canada, 2010 sed: %OM = percent of the month of earby government weal able.	rganic matter E first application t ther stations.	C = stion e	wchang donth o	e supacity Past sandpling.	Meteorologica	al detriwere ( °

- Study Use Pattern for BYI 02960 200 SL and BY 02960
- c NA = Not Available.

Table 6.3.2.17-4:

					J) [			<u> </u>	
	<i>≈</i>			App	plication	n &			
Trial Identification		Pot Name	Methode Charles	(tage	J.P.		Retreatment Intervacions)	Total Rate lb a.s./A (kg a.s./ha)	Tank Mix Adjuvants
Foliar Å									
RV054- 10HA	NØ, 029 Ræion 2, 000 2010	YI TRISG	Broadcast	75	31 (290)	0.186 (0.209)	NA	0.370 (0.415)	DyneAmic 0.25% v/v
4				83	31 (290)	0.184 (0.206)	6		DyneAmic 0.25% v/v
RV055- 10HA	LA, B	TWTSG	Froadcast foliar	77	19 (180)	0.185 (0.207)	NA	0.369 (0.414)	DyneAmic 0.25% v/v
	LA, Begion 4, 2011			85	19 (180)	0.184 (0.206)	7		DyneAmic 0.25% v/v



Table 6.3.2.17-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Wheat

		(ii)			Ap	plicatio	n			Q ₁
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Cowth Stage (BBCH)	Spray Volume GPA (LA)	Rate lbas/A (kg a.s./ha)	Retreatment Interval Cays)	Cyctal Rafe th a.s./A (kg abs./ha) Loz	Tank Wis Adjukants
<u> </u>	pplication				à°.	Ţ,				
RV056- 10HA	, KS, Region 5, 2010	BYI 02960 200 SL	TRTSG	Broadcast foliar	692	20 (1967) 20 (190)	0.187 (0.209) 0.186 (0.209)	NAS	0.373	DyneAmic DyneAmic 0.25% v/v
RV057- 10HA	, KS, Region 5, 2010	BX960 300 SL	TRTSG	Broadcast foliar	77,0	15Q (140) (150)	0.180 (0.201) (0.184 (0.206)		0.364 (0.408)	DyneAmic 0.25% v/v  DyneAmic 0.25% v/v
RV058- 10HA	Region 5.	BYM @960 200 SI	TRTSG	Proadcast foliar	83 ³ 5 5 83	(470)	0.176 (0,197) 0.183	NA 7	0.359 (0.402)	DyneAmic 0.25% v/v
RV059- 10HA	Region 50 2010	2960 200 Sb	ERTSG	Broaderst		A(N 10)	0.183 (0.205) 0.183	NA	0.366 (0.410)	Dyne- Amic, 0.25% v/v
RV060- 10DA	Region 5, C	BYI 02969 200 SL	TRTS6	Broadcast foliar	77	20 (190) 20 (190)	0.183 (0.205) 0.184 (0.206)	NA	0.367 (0.412)	Dyne- Amic, 0.25% v/v DyneAmic 0.25% v/v
		A A			83	20 (190)	0.184 (0.206)	6		DyneAmic 0.25% v/v



Table 6.3.2.17-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Wheat

		<u>(</u>			Ap	plicatio	n			Q,°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Chowth Stage (BBCH)	Spray Volume GPA	Rate lbas/A (kg a.s./ha)	Referent Interval days)	Crotal Rafe th a.s./A (kg 285./ha)	Tank Wis Adjurants Line
Foliar A	pplication				à°.	Ţ,		) (		
RV061- 10HA	TX, Region 6, 2011	BYI 02960 200 SL	TRTSG	Broadca & folial	85% 85% 85% 85% 85% 85% 85% 85%	29 (276) 276 (270)	0.18% (0.207)	9	0.366	DyneAmic DyneAmic 0.25% v/v
RV062- 10HA	Region 7, 2010	B.M. 02960 @ 2300 SLC		Broadcast foliar	'U'	205 (190)	0.184	NØ	0.368 (0.413)	DyneAmic 0.25% v/v
		e &		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		1 (190)	%1,85 (@.207)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		DyneAmic 0.25% v/v
RV063- 10HA	Region 7	BYI (2960 200 SV				20 (190)	0.182 (0.204) 0.183 (0.205)	NA 5	0.365 (0.409)	DyneAmic 0.25% v/v DyneAmic 0.25% v/v
RV064- 10HA	<u> </u>	®YI • @2960 200 \$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\etitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\etitt{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\etitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\e	FRTSCC	Broadcast folfar	- 3 191 )	20 (190)	0.183 (0.205)	NA	0.368 (0.412)	DyneAmic 0.25% v/v
*					83	19 (180)	0.185 (0.207)	6		DyneAmic 0.25% v/v
RV065- 10HA	Regions, 6	BYI * 02960 200 SL	TRTSG	Broadcast foliar	73	19 (180)	0.176 (0.197)	NA	0.360 (0.403)	Dyne- Amic, 0.25% v/v
		** *			77	20 (190)	0.184 (0.206)	5		Dyne- Amic, 0.25% v/v



Table 6.3.2.17-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Wheat

		~			Ap	plicatio	n			
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Wethod	Timing/Growth Stage (BBCH)	Spray Volume GPA (L/hab)	Reach a Share (kg a.s./ha)	Refresament Interval (day)	Total Rate B.A.s./A (Kg a.s./Ba)	
Foliar A	pplication	•	•			)		Ş	A SA	4
RV066- 10DA	Region 7, 2011	BYI 02960 200 SL	TRTSG		83	Ž 220	0.183 (0,205) (0,183 (0.205)	NA D		DyneAmic 0.25% v/v
RV067- 10HA	, AB, Region 7, 2010	BYI (202960C) 200 SL		Broadcast foliar	7 5 587 5 5	(140) (140) (140) (140) (130)	0.781 0.204) 0.176 (0.194)	(2) A (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0.358 0.401)	Agsurf, 0.25% v/v Agsurf, 0.25% v/v
RV068- 10HA	Region 8, 2011	Ĉi` •		Broadcast Foliar	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20 (190) 20 (190)	©.186 (0.208) 0.186 (0.208)	NA 6	0.371 (0.416)	Dyne Amic 0.25% Dyne Amic 0.25%
RV069- 10HA	Region 8,	©BYI 02969 20@SL	TRTSG	Broadcast Foliar	83	19 (180)	0.179 (0.201)	NA	0.364 (0.408)	DyneAmic 0.25% v/v
				2,		19 (180)	0.185 (0.207)	7		DyneAmic 0.25% v/v
RV070- 10HA	Region 8,	BY\ 02900 260 SL	TRIÇ	Broadcast foliar	71	20 (190)	0.183 (0.205)	NA	0.366 (0.411)	DyneAmic 0.25% v/v
~Z,					83	20 (190)	0.184 (0.206)	8		DyneAmic 0.25% v/v





Table 6.3.2.17-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Wheat

		<u> </u>			Ap	plicatio	n			a n
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Qrowth Stage (BBCH)	Spray Volume GPA	Rate Ilbass/A (kg a.s./ha)	Retreatment Interval Chays)	Optal Rake 4b a.s./A	Tank Wis Adjukants
Foliar A	pplication			(1) (1)	· ·	Ţ,		7 (		
RV071- 10HA	Region 8, 2011	BYI 02960 200 SL	TRTSG	Broadca C folia	855	185	0.180 68201)	NAG	0.362	DyneAmic DyneAmic 0.25% v/v
RV072- 10HA	Region 8, 2011	200 SI		Broadcast foliar	\$7	(190)		NOV	0.359 (0.402)	DyneAmic 0.25% v/v  DyneAmic 0.25% v/v
RV073- 10DA		BY1 92960 200 St	TRTSG	Broadcast fother	85 85 87 885 885	(180)	0.180 (0.201)	NA 7	0.359 (0.402)	DyneAmic 0.25% v/v  DyneAmic 0.25% v/v
RV074- 10HA	Region 1 V, 2010	<b>B</b> ¥I Ø2960 200 <b>S</b> Ø	TRTSQ	Broadcast	77	21 (200) 20	0.187 (0.209) 0.183	NA 7	0.369 (0.414)	DyneAmic 0.25% v/v
RV075- 10HA	Region 14,	\$YI \$02960 200.\$L	Ø ØRTSG *Q	Broadcast foliar	51	21 (200)	0.182 (0.204)	NA	0.371 (0.416)	0.25% v/v  Agsurf, 0.25% v/v
		Ž 7			59	22 (210)	0.189 (0.212)	5		Agsurf, 0.25% v/v



Table 6.3.2.17-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Wheat

		(u			Ap	plicatio	n			Q)°
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Coowth Stage (BBCH)	Spray Volume GPA	Rate 1bA&/A (kg a.s./ha)	Retreatment Interval days)	Cotal Rake (b. 2.8./A (kg 288./ha)	Tank Wix Adjukants
	pplication				<i>°</i>	Ø',				, ,
RV076- 10HA	, MB, Region 14, 2010	BYI 02960 200 SL	TRTSG	Broadcast foliar	85°	17 (166) (166) 17 (160)	0.185 (0.205) 0.499 (6.200)	NAS S	0.361	Ag-Surf Ag-Surf Ag-Surf 70.25%v/v
RV077- 10HA	, MB, Region 14, 2010	BAS 02960 ( 200 SIC	TRTSG	Broadcast foliar	75, 75,	17,9 (16,0)	0.185	NAY O	0.414)	Agsurf, 0.25% v/v
					\$ <b>3</b>			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Agsurf, 0.25% v/v
RV078- 10HA	2010 7	92960 200 ŞE	A SC			(200)	0.177 (Ø.199) (0.179 (0.201)	NA 5	0.356 (0.399)	Agral 90, 0.25% v/v Agral 90, 0.25% v/v
RV079- 10HA	, SKO Region 14, 2010	₩YI - @2960 200 \$9	PRTSOC	BroadCast	<b>9</b>	22 (200)	0.184 (0.206)	NA	0.372 (0.417)	Agsurf, 0.25% v/v
*		<i>&gt;</i> ."	*			22 (210)	0.188 (0.211)	5		Agsurf, 0.25% v/v
RV080- 10HA	ANK, Region(14, 2000)	\$YI \$ 02960 200\$L	TRTSG	Broadcast foliar	65	21 (200)	0.184 (0.206)	NA	0.371 (0.415)	Agsurf, 0.25% v/v
		7			73	22 (200)	0.187 (0.210)	7		Agsurf, 0.25% v/v



Table 6.3.2.17-4 (cont'd): Study Use Pattern for BYI 02960 200 SL and BYI 02960 480 FS on Wheat

	<u> </u>				Ap	plicatio	n			0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Qrowth Stage (BBCH)	Spray Volume GPA	Rate Ibas/A (kg a.s./ha)	Retreatment Interval days)	Cotal Rate th a.s./A	Tank Wix Adjukants
	pplication	200	mp.ma ~	- <del> </del>	<u> </u>	<b>9</b> '				
RV081- 10HA	AB, Region 14, 2010	BYI 02960 200 SL	TRTSG	Booadca Conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of the conformation of th		11 (95) (95)	0.180 (0.201) (0.201) (0.202) (0.202)	NAS	0.366	Agral 90, 25% vv Agral 90, 0.25% v/v
RV082- 10DA		02960 200 SL		fogrår	83' ( 50 \$83	(100)	0.990 (0.213) (0.218) (0.2110)	NA S S S T 7	0.378 (0.423)	Agral 90, 0.25% v/v Agral 90, 0.25% v/v
Seed Tr	eatment S				Ž,	0	. W			
RV056- 10HA	Region 5, 2010	BY19 02960 4800SC	TRIST	Treatment		27	0.114 (0.128)	NA	0.114 (0.128)	None
RV062- 10HA	Region 7,	By 60 02960 60 SC	TRYST	Seed Treatment		' NA	0.101 (0.113)	NA	0.101 (0.113)	None
RV070- 10HA	Region & 2010	POT 02960 * 480 SC	TKTST	Seed Treathent	00	NA	0.091 (0.102)	NA	0.091 (0.102)	None

a NA = Not applicable

TRTSG = Treated plott receiving two foliar applications of BYI 02960 200 SL for the collection of grain samples from wheat trials at a target PHF of 21 days

TRTST = Seed to atment trials with BYI 02960 480 FS for collection of grain samples

Duplicate composite samples of wheat grain were collected at the pre-harvest interval (PHI) of 21 days in the plots receiving two foliar spray applications (TRTSGplots). In the four decline trials, duplicate composite samples of of grain were collected from the treated plots at 10, 15, 21, 28, and 35 days after the last application. For grain from the plots receiving treated seeds (TRTST), harvest occurred at earliest commercial harvest (ECH).

Single composite samples of grain were collected from the control plots on the same day one target 21 day samples were collected from the treated plots.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were sommed to give a total BYI 02960 residue. Residue measurements below the analyte OQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

# Findings

Concurrent recoveries of BYI 02960, DFA and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were  $\leq 20\%$  (Table 6.3.2.17-5).

	~ = ~	· 60
Table 6.3.2.17-5:	Summary of Recover	ies of BY 602960 From Wheat
1 4010 0.5.2.1 / 5.		

Crop Matrix	Aparyte O	Spilæ Lævei (pøm) &	Sample * Size  (n)	Recoveries (%)	Mean Recovery (%) a	Std Dev (%)
		0.010°	(48 ⁰	105, 90, 91, 98, 85, 75, 112, 119	97	14
	BYI 02966	6,10 6,10	21	74, 92, 92, 112, 86, 97, 95, 70, 82, 75, 97, 81, 89, 90, 82, 97, 91, 72, 102, 98, 91	88	10
	\$ ° 4	3.00	$^{\circ}$ 3	9 <del>0</del> , 100, 86	92	7
		<b>99</b> 50	~ 8.~	70, 71, 74, 80, 84, 116, 84, 70	81	15
Grain	DFX	0.10	21	92, 73, 96, 93, 76, 85, 80, 72, 82, 77, 86, 79, 96, 73, 75, 77, 76, 71, 80, 99, 83	80	8
		\$.00 _~		80, 82, 71	78	5
4		0.010	Ø8 &	72, 78, 85, 96, 90, 112, 95, 82	89	12
y A	Breaf (	Ø.10 \$	2Q,	75, 105, 86, 115, 78, 93, 100, 76, 83, 89, 99, 96, 109, 87, 86, 94, 112, 88, 99, 82, 87	92	12
Ŷ		Z, C	<b>♥</b> 3	94, 91, 91	92	2

a Mean Recovery = mathematics (average of all recoveries.

b NA Not applicable as a Standard Deviation is not calculated for less than three values.

The freezer storage stability study indicates that BYI 02960 residues were stable in crops with high starch content during frozen storage for at least 18 months prior to analysis as shown for wheat grain as representative crop. The maximum storage period of frozen samples in this study for BYI 0296 was 390 days. Only one untreated wheat grain samples was held in frozen storage for up to 644 days (21 months) prior to extraction (21 months) prior to extraction. 

A summary of the storage conditions are shown in Table 6.3.2.17-6.

Summary of Storage Conditions for Wheat Table 6.3.2.17-6:

Residue Component(s)	Matrix (RAC)	Maxiavum Ayerage Storage Temperature	Actual Storage Control Duration months (days)	memonsa ateu
BYI 02960	Grain	-17	2 13 (390)d (590)d	0 180 V
DFA	Grain &	\$17	(390)	
DFEAF	Grain	\$ < -1\$ E	(390)	(557)

- The maximum average storage temperature is from the time of sample receipt at BRP until cample extraction. While preparing for sample analysic the samples were maintained in a laboratory freezer.
- The storage duration is the time from field sampling through the last sample extraction
- 2012 Storage Mability of BY 102960, My uoroacetic acid, and difluoroethyl-amino wranone in plant matrices. Bayer Orop Science Report No. RARVP046, amended version including 18-month data (KAA 6.1.701).
- One control grafe/samples was analyzed after 644 days of treezer storage. All samples from treated plots were analysed within 13 months

The total PYI 02960 residue data for wheat grain following seed treatment application with The total BYI 02960 residue data for wheat grain following seed treatment application with BYI 02960 480 FS or wo to lar applications of BYI 02960 200 SL are shown in Table 6.3.2.17-7.



Table 6.3.2.17-7: Total BYI 02960 Residue Data from Wheat after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

	WI	tn BY1 029	00 400 1	S OI I W	o Foliai	Applic	anons c	прис	12900 2	00 SL	0	
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Detal Rate Ib a.s./A (kg a.s./ha)	% Dry Matter	Sampling Interval, (days)	BYI 02960 E Residue (mg/kgR	DRA Residue (mg a.S. gquiv./kg)	DPLAFResidae (mg a.S.equiv./kg)	Total BY1 02966 Residie	
Grain/F	oliar Application	1		D	O "		. W	" Q	, O,	Ö		
RV054- 10HA	NC, Region 2, 2010	Pioneer 26R15	Grain	TRTSG		84 <b>©</b> 4		0. <b>88</b> 5 0.626	© 03 © 161	0.010 0.010	0.70 0.80 Avg: ° 0.73	
RV055- 10HA	LA, Region 4, 2011	Terral Brand LA821		TRTSG	0:369 (0214) . S	8 <b>7</b> 3 3		0. <b>Q</b> 7 0.125	6CJ15 67.118	<0.010 0.010	0.29 0.25 Avg: 0.27	
RV056- 10HA	, KS, Region 5, 2010	Found. A Juniper	Grain	TRTSG	100	92.374 V		0.688 36.118	6357 6.282 0	<0.010 <0.010	0.35 0.41 Avg: 0.38	
RV057- 10HA	Region 5, 2010	Winter Chawk	Grain G		0.364 (0(408)	87.98 \$^\$ \$		0°33°1 0°342 0°3	0.413	<0.010 <0.010	0.78 0.77 Avg: 0.77	
RV058- 10HA	Region 5	r 🥏	Grain		0.359	76,64		0.586 Ø583	0.278 0.288	<0.010 <0.010	0.87 0.88 Avg: 0.88	
RV059- 10HA	Qegion 5,	<b>*CB</b> 07	Grain	TRTS	0.3 <b>6</b> 5 (0. <b>0</b> 10)	88 <b>©</b> 2	2°	0.078 0.101	0.943 1.03	<0.010 <0.010	1.0 1.1 Avg: 1.1	
RV060- 10DA	Region 5	Refetta	Grain O	TRTSG	0.\$67 (0(3)12) .	6, <b>5</b> 11 ³	10	0.186 0.196	1.19 1.13	<0.010< 0.010	1.4 1.3 Avg: 1.4	
					Y	90.56	15	0.119 0.082	1.56 1.51	<0.010 <0.010	1.7 1.6 Avg: 1.6	
4					,	89.09	21	0.169 0.153	1.52 1.35	<0.010 <0.010	1.7 1.5 Avg: 1.6	
	Region 5, 2010  Region 5, 2010			**		89	28	0.136 <0.010	1.31 1.11	<0.010 <0.010	1.5 1.1 Avg: 1.3	
						86.72	35	0.157 0.172	1.60 1.72	<0.010 <0.010	1.8 1.9 Avg: 1.8	

Continued on next page...

Tier 2, IIA, Sec. 4, Point 6: Flupyradifurone (BYI 02960)

Table 6.3.2.17-7 (cont'd): Total BYI 02960 Residue Data from Wheat after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		D1102	960 200	SL							
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Toton Rate Ib a.s./A (Ag a.s./ha)	% Dry Matter	Sampling Interval,	BYI 02960 CL Residue (mg/kg)	DFA Regidue Ong a.s. equiv./kg)	DFEARBesidue	Total By 102960 Residue A
	oliar Application		ı	. 4.	· · ·			<b>*</b>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
RV061- 10HA	TX, Region 6, 2011	Fannin	Grain	TROSG	0.4101	89.65	\$21 \$21		₩.079 <0.050 ₩	<0.010 <0.010	0.35 0.26° A@g:
RV062- 10HA	NE, Region 7, 2010	Traverse	Graffin G	TRÎSG	0,368 0.413) 0	8¥.27	S21 F S7	0.038 0.030 0.030	71.37 1.47 2	~0.010 (<0.010 ~~	1.4 1.5 Avg: 1.5
RV063- 10HA	, ND, Region 7, 2010	Faller	Grain	TR <b>O</b> SG	(0.409)	&6.36	Ž ²¹	Ø.058 0.060	9.8114 0.863	<0.010 <0.010	0.88 0.93 Avg: 0.91
RV064- 10HA	, ND, Region 7, 2010	VOkleen J J	Grain	TRASG	5368 50.412)	\$6.74 ©	21	0.171 ° 0.158	©0.446 0.517	<0.010 <0.010	0.63 0.68 Avg: 0.66
RV065- 10HA	Region 7,	OFaller V	Gram & O &	TRVSG	*0,360 \$(0.403)		¥	Ø.074 7 0.074	0.596 0.604	<0.010 <0.010	0.68 0.69 Avg: 0.68
RV066- 10DA	NE, Region 7, 2011	Overland HRX	Grain	TROSG	0.366 0.410)	<b>6</b> 6.83	<b>©</b> 10	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
					5 8	<b>%</b> 3.51	15	<0.010 <0.010	<0.050 <0.050	<0.010 <0.010	<0.070 <0.070 Avg: <0.070
					Y Y	88.2	21	0.118 0.174	0.330 0.332	<0.010 <0.010	0.46 0.52 Avg: 0.49
**						87.73	28	0.138 0.152	0.485 0.522	<0.010 <0.010	0.63 0.68 Avg: 0.66
, 4 4	NE, Region 7, 2011		~\$			87.33	35	0.099 0.089	0.375 0.397	<0.010 <0.010	0.48 0.50 Avg: 0.49

Table 6.3.2.17-7 (cont'd): Total BYI 02960 Residue Data from Wheat after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		BYI 02	960 200	SL							Q .
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (kg a.s./ha)	% Dry Matter	Sampling Interval,	BÝI 02960 ČÞ Besidue (mg/kg) V	DFA Besidue Ong a.s. equiv./kg)	DFEAREsidue (2) (mg.a.s. equiv./kg) (2)	Total By 102960 Residue (1)
Grain/F	oliar Application	1		· · · · · · · · · · · · · · · · · · ·	<i>*</i>	- TO -		, O	3		4 P
RV067- 10HA	, AB, Region 7, 2010	Supurb	Grain	TRASG	\$358 \$0.401)	<b>Z</b> J7.55	Ž21	0.018 0.019	\$0.050 <0.050 &	<0.010 <0.010	0.078 0.079° A@g:
RV068- 10HA	TX, Region 8, 2011	Hatcher	Graffer C	TR18G	0371 00.416)	\$5.25		0.050 0.051	0.050 <0.05 <b>0</b>	\$0.010 <0.010	0.11 0.11 Avg: 0.11
RV069- 10HA	, OK, Region 8, 2010	Jagger	Gratin		©364 (0.408)	<b>&amp;</b> ∏.02 √	\$21 \$\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\int_{\inttile\int_{\int_{\int_{\int_{\inttileftint{\int_{\inttileftintetileftint{\inttileftintetileftileftileftileftileftileftileftil	0.232	@.314 _{\(\phi\)} 0.345	<0.010 0.010	0.56 0.64 Avg: 0.60
RV070- 10HA	Region 8, 2	TAM 111	Grain	TRÍSG	9366 96.411) 1	<b>95</b> .71 \$ \$ \$ \$	<b>1 1 1 1 1 1 1 1 1 1</b>	0.026 0.026 5	©0.050 >0.050	<0.010 <0.010	0.10 0.086 Avg: 0.093
RV071- 10HA	Regio©8,	Oronado	Grand © &	TRISG	\$0.406) *	\$3.64 0	21 7 7	9.048 0.033	<0.050 <0.050	<0.010 <0.010	0.11 0.093 Avg: 0.100
RV072- 10HA	Region 8,	TAM 203	Grafin	TROSG	0.959 Q0.402} %	89.35 7	<b>2</b> 1	0.163 0.205	0.051 0.053	<0.010 <0.010	0.22 0.27 Avg: 0.25
RV073- 10DA	Regions, 2011	Doans	Graily	TR¶8G	0959 (0.402) (0.402)	93.47	10	0.105 0.102	<0.050 <0.050	<0.010 <0.010	0.16 0.16 Avg: 0.16
. 4					Y Y	94.16	15	0.106 0.075	<0.050 <0.050	<0.010 <0.010	0.17 0.13 Avg: 0.15
			Q Z Z			94.21	21	0.069 0.083	<0.050 <0.050	<0.010 <0.010	0.13 0.14 Avg: 0.14
, , , , , , , , , , , , , , , , , , ,			Ş			93.45	28	0.066 0.078	<0.050 <0.050	<0.010 <0.010	0.13 0.14 Avg: 0.13
	Region 8, 2011 Region 8, 2011					95.06	35	0.344 0.074	1.03 <0.050	<0.010 <0.010	1.4 0.13 Avg: 0.76

Table 6.3.2.17-7 (cont'd): Total BYI 02960 Residue Data from Wheat after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of

		BYI 02	960 200	SL							Q° "
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (kg a.s./ha)	% Dry Matter	Sampling Interval, Saays) De	BÝI 02960 🖐 Besidue (mg/kg) 🚓	DFA Besidue Ong a.s. equiv./kg)	DFEARRESidue (2) Img.a.s. eqqiy./kg) /	Total BM 02960 Résidue 4, ting a.s. equiy (kg) 49
Grain/F	oliar Application	1		l a	**************************************			, ®	8		4
RV074- 10HA	Region 11, 2010	Penawawa	Grain	TRASG	\$369 \$(0.414) \$	88.88 , , , ,		0.012 0.021	Ø.541 0.547 **	<0.010 <0.010 0	0.56 0.58° A@g: Q:57
RV075- 10HA	, SK, Region 14, 2010	Infinity	Grafter	TRTSG	9371 30.416) 30.416)	\$2.03		20.749 20.708	2.03 1.88 2	0.029 0.026	2.8 ^d 2.6 Avg: 2.7 ^e
RV076- 10HA	, MB, Region 14, 2010	Infinity	Gratin	TRASG	<b>93</b> 61 <b>9</b> .405)	Ş	21 7 7 7	0.255	©.075 ₄ 0.894	0.079 <0.010	0.24 1.2 Avg: 0.70
RV077- 10HA	, MB, Region 14, 2010	Ğlenn	Grain	TRASG	9369 9.414) 5.414)	76.9 \$ \$ \$	Z ₁	0.020 0.020 4	©.264 0.264	<0.010 <0.010	0.30 0.29 Avg: 0.30
RV078- 10HA	Region 14,	Glenn	Gränd	TKTSG	~0,856 ,((0.399) *	<b>63</b> .89		9.032 0.030	0.179 0.175	<0.010 <0.010	0.22 0.21 Avg: 0.22
RV079- 10HA	Region 14, 2010		Graff	TR®G	0.972 (0.417)	A	<b>2</b> 1	0.361 0.375	2.07 2.27	0.026 0.029	2.5 2.7 Avg: 2.6
RV080- 10HA	Region 4, 2010	Infinity	Grain	TR 108G	0971 (0.415) (0.405)		21	0.251 0.196	1.00 0.958	0.019 0.015	1.3 1.2 Avg: 1.2
RV081- 10HA	AB, Region 14, 2010	Superby (	Grafin	TRASG	©366 40.410)	59.17	21	0.102 0.099	0.695 0.649	<0.010 0.011	0.81 0.76 Avg: 0.78
	Region 44, 2010 AB, Region 14, 2010 AB, Region 14, 2010 AB, Region 14, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010 AB, 2010							Сог	ntinued	on next	page

Table 6.3.2.17-7 (cont'd): Total BYI 02960 Residue Data from Wheat after a Seed Treatment Application with BYI 02960 480 FS or Two Foliar Applications of BYI 02960 200 SL

		B1102	960-200	SL							
Trial Identification	Location (City, State, Region, and Year)	Crop Variety	Commodity	Plot Name	Total Rate Ib a.s./A (kg a.s./ha)	% Dry Matter	Sampling Interval, Saays) 200	BÝI 02960 CE Besidue (mg/kg)	DFA Besidue Ong a.s. equiv./kg)	DFEARRESidue	Total By 102960 Residue
Grain/F	oliar Application	1		<i>.</i>	۰			, ®	2	~ <b>* * *</b>	
RV082- 10DA	AB, Region 14, 2010	Superb	Grain			\$9.3 \$9.3 \$6.76	515 100 121 128 128 128 128 128 128 128	0.425° 0.0.285° 0.097° 0.061°	©.792° 0.675° 0.759° 0.720° 0.686°	0.017° 0.014° 0.010° <0.010° <0.010° <0.010° <0.010° <0.010°	0.95 0.86 ° 0.91 1.2 0.83 Avg: 1.0 0.77 0.87 Avg: 0.82 0.78 0.79 Avg: 0.78 0.79 Avg: 0.76 Avg:
	eed Preatment		Gain	8	10	Q1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
RV056- 10HA	Region 5, 2010	Found: Juniper		TRTST	(0.128)	<u>.</u>		<0.010 <0.010	0.538 0.641	<0.010 <0.010	0.56 <b>0.66^f</b> Avg: <b>0.61^g</b>
RV062- 10HA	Region 7,	0, 2,	(Scain	TRATST	(0.1139	71.14	0	<0.010 <0.010	0.276 0.266	<0.010 <0.010	0.30 0.29 Avg: 0.29
RV070- 10HA	Region 8, 2010	TAMOI1	Grain V	TEXTST'S	0.091 (0.102)	95.15	0	<0.010 <0.010	0.069 0.069	<0.010 <0.010	0.089 0.089 Avg: 0.089

- Sampling interval is the interval between ast appocation and the sampling date.
- Total BYI 00060 residue is the sum of BYI 02960, DFA, and DFEAF residues in parent equivalents. Residue measurements below the accityte Low were summed into the total BYI 02960 residue value as the analyte LOQ value. These totals reposent the apper limit of what the residue levels might be.
- c Sample analyzed twice average value reported here.
  d Maximum soldue found in grain from the TRTSG plot.
  e HAFT residue found in grain from the TRTSG plot.
- Maximum residue found in grain from the TRTST plot.
- HAFT residue found in grain from the TRTST plot.
- TRTSG = Treated plot receiving two foliar applications of BYI 02960 200 SL
- TRTST = Seed treatment trials with BYI 02960 480 FS



#### Conclusion

Twenty-nine field trials were conducted to measure the magnitude of total BYI 02960 residues in/on o wheat grain following two foliar spray applications of BYI 02960 200 SL. In parallel, three of these field trials also included plots to measure the magnitude of BYI 02960 residues in grains following the planting of seed treated with BYI 02960 480 FS.

Table 6.3.2.17-8: Summary of Residue Data for Total BYI 02960 from Wheat

Summary of Residue Data for Total BYI 02966 from Wheat Table 6.3.2.17-8:

Commodity	Plot Name ¹	Total Application Rate lb a.s/A (kg a.s./ha)	PHI Cotal BAI 0500 Kesidne Tevels (bbm)  Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat Maxat M
Wheat Grain	TRTSG	0.356 to 0.378 (0.399 to 0.423)	2 0.64 0.74 0.67
Wheat Grain	TRTST	0.091 to 0.114 (0.102 to \$\mathcal{P}\$128)	ECH 6 6 0.089 0.66 NAS 0.60 0.33 0.24

- 1 TRTSG = Treated plot receiving two faljar applications of BYI 02960 200 SL for the collection of grain samples at a target PHI of 21 days TRTST = Seed treatment trials with BYI 02960 480 s for Wilection of grain samples
- 2 HAFT = Highest Average Field Frial
- calculated on the base of residue values at the HI
- Sampling day showing highest residue
- Not applicable, since no decline trials were conducted after

ECH = Earliest commercial harves

Samples collected from plots following two foliar opplications had generally higher total BYI 02960 residues than samples collected from see of treatment plots.

The maximum total By 02960 residue detected in grains amounted to 2.8 mg/kg at the PHI of 21 day. Samples collected from decone trials indicated that the total BYI 02960 residues did not always peak at the PHL-in three of four decline trials, maximum residues appeared after the PHI; in one trials at 28 days after the last treatment and in two trials at the last sampling event (35 days after the last treatment). However the residue concentrations were in the same range as those at the PHI indicating that a residue plateau was reached at the end of the study. Moreover, the residue levels detected after the PHI were all below the overall righest residue concentration detected at the PHI.

The residue data provided for wheat are suitable for regulatory purposes.



#### **IIA 6.3.2.18** Coffee

#### Residue data from CENTRAL AND SOUTH AMERICA

BYI 02960 is to be registered in North, Central, and South America for use as a soil drench application followed by three foliar spray applications on coffee. All countries support the same worst-case use pattern as summarized in Table 6.3.2.18-1, except for Brazil. Additional coffee trials conducted in Brazil are reported separately in this section, subsequent to the data presented for the trials in Mexico. and Guatemala. The Brazilian use pattern is slightly different, but shows the same application rates.

A total of eleven trials were conducted in coffee. The studies are described below.

Table 6.2.2.18.1. Torget Use Potterns for the Application of PVI (2006) on Coffee.

Target Use Patterns for the Application of BYI \$2960 and Table 6.3.2.18-1

		Target 1 Formulated Product (fp)		Rate / App	lication	Ø ^		A			
		Form	ulated	Active Su	ıbştanc	e (aks.)	Target App.	Target		Appl Solution	ication Volume
Test Substance	App. No.	fl oz /A	mL/ha	Name of	a.s./	kg a.s./ha	Interval (Days)	Pari Pays)	munity of	mk/j plant	L/ha
	Drenc	h Applica	ation ~	Ų 💥	W		(V)	Š, O		<b>%</b>	
	1	41.1	3,000	«BYI ⊕2960.≈	0.535	<b>\$</b> 0.600∉	» NA ¹		None	45-55	75-500
BYI	Foliar	Applicat	iồns 🙎	i W		a.Y				GPA	L/ha
02960 SL 200	2	13.4	1,000	By71 202960	0.178	©.200 ₂	90 0		0.25%	32-53	300-500
	3	\$3.7 \$3.7	Q,000,	BYI 02960	0.178	0.200	J94 (	J 14 J	0.25%	32-53	300-500
	40	135	1,000	<b>®</b> ¥I ⟨	0.1780	0.200	140	<b>®</b>	0.25%	32-53	300-500

<i>&gt;</i>	
1 NA = Novapplicab	
Report:	KIIA 6:3.2.18/01; 26/2
Title:	BYJ 02960 290 SL Magnitude of the Residue in/on Coffee; U.S., Canada and
<u> </u>	E.O. Import Tolerances O O
Report No &	RARVE 974, dated Juno 27, 2002
Document No.	M-433257-01-1
Guidelines:	US EPA Residue Chemistry Test Guidelines OPPTS 860.1500, Crop Field Trials
4	Zanada PMRA DACO 7.4.1, Supervised Residue Trial Study
	PMRX DAC 7.4.2 Residue Decline
	OECD: Guideline For the Festing of Chemicals, 509, Crop Field Trial,
\$	A Monted Sept. 7, 2009.
GLP	Yes & 4, &
	y

Severatield that's located in Colombia, Guatemala and Mexico, are included in this study. Four trials performed in Guatemala and Mexico are reported in this interim report with three trials yet to be conducted in Colombia.

BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. Four additional coffee trials conducted in Brazil are reported separately (cf. KIIA 6.3.2.18/02).

Table 6.3.2.18-2:	Trial Numbers and	10 1 1	T	C DITT	0.00	C CC

The number and lo	cation of field trials cor	nform to the guid	dance given by the EP	PA (Table 6.3.2.18-2).
Table 6.3.2.18-2:			ntions for BYI 0296	.v .d.,
	Growing Region	í	Submitted	Requested
	Colombia			
	Guatemala	, C	4	Q2 0 V
	Mexico			
	Total	L O°	S D S	

- a All of the four trials are decline trials and were performed to meet Horizonte requirements.
- Based upon the NAFTA Guidance Document of Pata Reguirements for Tolerances on Imported Commodities in the United States and Canada, December, 2005. The number and location of field trials was determined as a result of analyzing trade flow data as detailed in the Fuidance Document

# Material and Methods

Soil drench applications ranged from 0.535 to 0.543 lb BYI 02960/Application (0,600 to 0.609 kg BYI 02960/ha/application). Individual foliar application rates ranged from 0.17 to 0.181 lb BYI 02960/A/application (0.195 to 0.203 kg BYI 02960/ha/application) Seasonal total application rates ranged from 1.668 to 1.074 b BY 102960/A (1.120 to 1.204 kg BY 1.02960/ha). The drench applications were made at 114 to 118 days before hanvest approve stages ranging from BBCH 72 to 78 (BBCH 72, 20% of fruit have reached that size, to BBCH 78, 80% of fruits have reached final size). Foliar applications were made at BBCH 77 to 88 BBCH 77; 70% of fruit have reached final size, BBCH 88; nearly all fruit are fully ripe). The interval between the drench and foliar applications was 86 to 91 days and interval between the foliar applications was 12 to 14 days.

The volume of the soil drench applications ranged from 130 to 24.6 GPA (126 to 230 L/ha) and the foliar application spray voluties ranged from 39.2 to 44.3 GPA (367 to 414 L/ha). All foliar applications were made using ground based equipment. Methylated seed oil (MSO) or Dyne-Appe were used a adjugent in all of the foliar applications at a rate of 0.25% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2.18-3. Study use patterns are summarized in Table 6.3.2.18-45



Trial Site Conditions for BYI 02960 on Coffee Table 6.3.2.18-3:

Trial	Trial Location (City,	Soil C	Characte	eristics ^a		Meteorological Data		
Identification	Country/State, Year)	Туре	ОМ	pН	CEC (meq/ 100g)	Total Rainfall in. (mm)	Temp. Range F (°C)	
RV232-11DA	, Guatemala, Guatemala	Sandy Clay	3.7	5.2	17	6.8 (C) (1,728)	50-95 (\$9-35)	
RV233-11DA	, Guatemala, Guatemala	Sand Clay Loam	4.04	5.7 Q	O C	Q6.8 (1,730)	57/91 (14/33)	
RV234-11DA	De Mexico,	Say 2	7.74 7.74 Q	54		×1.3 ×1.3 × (331)	59-84 (15-29)	
RV246-11DA	. DoMexico	Logary Sand			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.2 O (551)	57-88 (14-31)	

- a Abbreviations used: %OM = percent organic matter & EC = Cation exchange capacity. Data are for the interval of the proof of first application through the month of last sampling. Meteorological data were obtained from nearby government weather stations.

Study Use Partern for BYI 0 960 209 SL on Coffee

	ite, Ond Year R.		, W		$\sim$	2/ N		al		Ş
Trial Identification	(City, Sta	°≈,75	Take Water		Growth's	Actual Spray Volume GPA (L/ha) a	<b>\</b>	Retreatment Interval (days)	Rate 1b a.s./A s./ha) ^a	Tank Mix Adjuvants
Trial 1			ر کانی	, <b>©</b>	Thang. (BBCH)	Actual Spra GPA (L/ha)	Rate lb a.s. (kg a.s./ha)	Retrea (days)	Total Rate (kg a.s./ha)	
RV232-		93YI 9 <b>29</b> 60 SI 200	TR TD	Soil @	BBCH	24	0.535	NAb	1.071	NA ^b
11DA	Guatemal	SI 200		drench	78	(227)	(0.600)		(1.201)	
4	2011			Soil of drened	ВВСН	42	0.178	91		MSO 0.25%
			9) ×	@roadcast	79	(394)	(0.199)			V/V
			v Q		ВВСН	44	0.179	13		MSO 0.25%
					80	(412)	(0.201)			v/v
~ ~					ввсн	39	0.179	12		MSO 0.25%
		W ^v			88	(367)	(0.201)			v/v



Table 6.3.2.18-4 (cont'd): Study Use Pattern for BYI 02960 200 SL on Coffee

	(.)				App	lication	1			0 0
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing Growth Stage (BBCH)	Actual Spray Volume	Rate Ib ass./A (kg a.s./ha)	Retreatment Interval	otal Rafe Ib a	TankaMix Adjugants Re
RV233- 11DA	Guatemala 2011	BYI 02960 SL 200	TRTD	Soil dreach	BBCH BBCH BBCH BBCH BBCH	435 (406)	0.535 0.600) 0.78 0.199) 0.188 (0.178) 0.178 (0.178) (0.178)	A A b	1,068 Q1.197)	MSO 0.25% V/V MSO 0.25% V/V
RV234- 11DA	Mexico 2011	BY192960 SL 200	TRTD O	Soil drench Foths	₽₿ĈΉ	(370) (370) (126) (126) (42) (394)	Ø9.540	NAb	©.070 (1.200)	NAb  Dyne-Amic 0.25%
	2011	( ) ( )			BBCH 79 BBCH	45 (295)	0.178 (0.199)	14 14		Dyne-Amic 0.25%  Dyne-Amic 0.25%
RV246- 11DA	<b>*</b>	BYØ02960° SL 200	TRTD	SOÎ drench &	1848°CH. , 72 ⊴	©21 (195)	0.543 (0.609) 0.176	NA ^b	1.074 (1.204)	NA ^b
				broadcast	BBCH 81		0.176 (0.197) 0.174 (0.195)	12		Dyne-Amic 0.25%  Dyne-Amic 0.25%
*					BBCH 85	44 (414)	0.181 (0.203)	13		Dyne-Amic 0.25%

a NA = Not applicable \( \square\)

TRTD = Treated plot receiving one soil drench application followed by three foliar applications of BYI 02960 200 SL

Duplicate composite samples of coffee cherries were collected from the treated plots at 0, 7, 14, 21 and 28 days after the last application. The target pre-harvest interval was 0 days.

Single composite samples of coffee cherries were collected on the same day that the target 0-day PHI samples were collected from the treated plots.

Immediately after harvest the coffee cherries were processed using the wet processing method typical for the region in which the trials were conducted. Using readily available hand operated equipment, the outer husk of the coffee cherries was removed and the remaining coffee beans were washed and allowed to ferment overnight in water to allow the mucilage (thin protective membrane surrounding the coffee beans) to loosen and be removed the next day by washing. For trial RV234-11DA coffee cherries were not completely ripe and additional time was required to remove all of the husks, therefore not all husks were removed on the day of harvest. The coffee beans were spread out and allowed to air-dry in a protected area to avoid contamination. The coffee beans were turned regularly to promote drying. After the coffee beans, were allowed to dry to compercial dryness (8-13 days) the parchment (third layer of protective coating) was removed using hand operated equipment to yield the commodity, dried coffee bean, green. The dried coffee beans were placed into property labelled residue sample bags for shipment to the laboratory.

The residue(s) of BYI 02960, DFA, and DFEAF were quantitated by HPEC-MS/MS using stable isotopically labelled internal standards. The individual analytic residues were summed to give a total BYI 02960 residue. Residue measurements below the analytic LOQ were summed into the total BYI 02960 residue value as the analytic LOQ value.

#### **Findings**

Concurrent recoveries of BYI 02960, DDA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall mean of the occupies at each fortification level was within the acceptable range of 70 to 110%, and the standard deviation (SD) values were below 30% (Luble 6.3.2.18-5).

Table 6.3.2.185: Summary of Recoveries of EVI 02950 from Coffee

Crop Matrix	Analyte	Spile Lovel (ppm)	Sample Size	Recoveries (%)	Mean Recovery	Std Dev (%)
		0.0%	~ 7 J	85,®1, 84, 109, 90, 93,	92	10
	B <b>®</b> I 0296€	0.5		92, 90	91	NAb
	, 	1.08	2 3 × 5 4	86, 84, 86	85	1
Coffee.	Z,	<b>40.050</b>		95 95 95	92	5
bean, green	DFA (	0.560		83, 82	82	$NA^b$
green		\$.000 ×	3 ³	81, 82, 84	82	1
	DFEAG.	0.01	7	103, 89, 74, 97, 76, 77, 91	87	11
	ØFEAG	0.5	2	89, 87	88	$NA^b$
	) a	1.000	3	89, 90, 89	89	1

- a Mean Recovery = mathematical average of all recoveries.
- b No standard deviation where  $n \le 2$ .

The freezer storage stability study indicates that BYI 02960 residues were stable in coffee bean during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 115 days. A summary of the storage conditions are shown in Table 6.3.2.18-6.

Table 6.3.2.18-6: Summary of Storage Conditions for Coffee

Residue Component(s)	Matrix (RAC)	Maximum Averaĝe Storaĝe Temperature (PC) ^a	Actual Storage Ouration months (days)	Anterval of Demonstrat@ Storage Stability months (days)
BYI 02960	Coffee bean, green		(115)	18 (560)

- a The maximum average storage temperature is from the time of sample receipt at BRP thitil sample extraction and is the maximum of all average freezer temperatures at BRP and yxant. While preparing for sample analysis, the samples were maintained in a laboratory freezer.
- b The storage duration is the time from field sampling through the last sample expaction.
- and and State 2010. Storage stability of BY 02960 diffluor accepting acid, and diffluoroethyl-amino-furanone in plant matrices. Bayer CropScience Report No. 1878 VP000, amended version including 18-month data (KIIA 6.1.1/01).

The total BYI 02960 residue data for coffee beans following a single soil drench and three subsequent foliar application(s) of BY 02960 200 St. are shown in Table 6.3.248-7.

Table 6.3.2.18-7: Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Application(s) of BYI 02960 SL

Trial Identification	Location (City, State, Region, and Year)	Rot Name & C.	Cropogri	Som33 modity	Eptal Rate Lb a.s./A (kg ai/ha)	% Dry Matter " O.		BYI 02960 Residue (mg/kg)	DFA Residue (mg a.s. equiv./kg)	DFEAFResidue (mg a.s. equiv./kg)	Total BYI 02960 Residue (mg a.s. equiv./kg) ^b
RV232- &		PRTD C		Coffee bean,	1.071 (1.201)	ND	0	0.0853 0.0787	0.132 0.230	<0.010 <0.010	0.228 0.318
	Guatemala	WRIDA		Coffee Sean, green							Avg. 0.273
	2011			7		ND	7	0.0976 0.109	0.140 0.0940	0.0128 0.0146	0.251 0.218
											Avg. 0.234
	Region Guatemala, 2011					ND	14	0.114 0.131	0.0528 0.0627	0.0148 0.0152	0.181 0.209
									,		Avg. 0.195



Table 6.3.2.18-7 (cont'd): Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Application(s) of BYI 02960 SL

		una	Timee Fon	иг түрт	oution(5)	01 D 1	1 02 > 0	UDL			0	_
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Com33modity	Cotal Rate Lb a A/A (kg a.s./ha)	% Dry Matter ^a	Sampling Intervall	BYI 02960 Residue (mg/kg)	ŶFA Residue (mg®, equiv./kg)	DEEA FRESIQUE (mg ass. equiv./kg)	Total BY 1 029 60 Residuk F 5 (mg a. S. equiv./kg) b	
RV232- 11DA (cont'd)	Region Guatemala , 2011	TRTD	Catuaí	green	### (1.201)	ND ND ND ND ND ND ND ND ND ND ND ND ND N	28.3	0.143	0.100 0.0008 0.121 0.6894	0.623	≪Avg. 0.228	-
RV233- 11DA	Region Guatemala, 2011					Õ	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	0x0451 0x0451 0x0399	0.018 0.018 0.0974	<0.010 <0.010 <0.010 <0.010 <0.010	0.158 0.185 Avg. 0.171 0.163 0.147 Avg. 0.155 0.189 0.136 Avg. 0.163	
						NE ND	28	0.0628 0.0674 0.0524 0.0502	0.135 0.127 0.119 0.104	<0.010 <0.010 <0.010 <0.010	0.208 0.205 Avg. 0.206 0.181 0.164 Avg. 0.171	
								Co	ontinued	on next	page	



Table 6.3.2.18-7 (cont'd): Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Application(s) of BYI 02960 SL

Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Com33modity	Cotal Rate Lb a / A (kg a.s./ha)	% Dry Matter ^a	Sampling Intervall	BYI 029@\ Residue (mg/kg)	MFA Residue (mg@keguiv./kg)	DEEAFRESIQUE (mg ass. equiv./kg)	VARION TOTAL BY 1 029 60 Residue is 0.5 (400 a.s. equiv./kg) by
RV234- 11DA	Region Mexico, 2011	TRTD	Costa Rica	greets				0.188 0.163 0.359 0.459 0.402	'o' \(\frac{7}{2}\)		0.720 6.833 0.925 Avg. 0.879 0.341 0.538
						ND.	& 21 D	0.144 \$0.13\$	0.330 0.514	<0.010 0.0185 0.0151 0.0187	Avg. 0.400 0.662 0.575 Avg. 0.619 0.468 0.644 Avg. 0.556
								Co	ontinued	on next	page



Table 6.3.2.18-7 (cont'd): Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Application(s) of BYI 02960 SL

											0
Trial Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Com33modity	Cotal Rate Lb a A/A (kg a.s./ha)	% Dry Matter ^a	Sampling Intervall (days) b	BYI 02960 Residue (mg/kg)	OFA Residue (mg & equiv./kg)	DEEA FResidue (mg ass. equiv./kg)	Total BY 1 029 (b) Residues 25 20 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c)
RV246-		TRTD	Caturra	Coffee		ND		B 4	0.120 0.N4	0.0142	0.257
11DA				bean, Q green	) A			0.117	0.114	0.01/35	
	Region								\$ 1		Avg. 0.251
	Mexico, 2011		\$			ND	7.4	0.246	0.126 0.133	0.6284	
						ND		0.242	03733	<b>√</b> 0,0304∠	9.400 0.405 Avg.
				10° ×					0 13 0 100 %		0.403
			~~ »-					0.499 0.362	0913	0.0547	0.607
		\$		~ · · · ·			, P	0:362 ©	Ø.100% ○	<b>√</b> 0.0432	0.506 Avg.
		, Q						- 7	Š		0.556
						ÑD	© 20	0.462	\$0.115 0.123	0.0644	0.642
	Q)	~ ~		v Š					0.123	0.0600	0.624 Avg
							\$\frac{1}{26}				Avg. 0.633
					j d	ND	<b>2</b> 6	0.588	0.306	0.0898	0.984 ^d
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		ک ک		F		26 20 20	0.516	0.284	0.0948	0.895 Avg.
						,					0.939e
	¥	- Y		W. "	,		<del>y</del>				

- a Dry Matter not determined (ND).
- b Sampling interval is the interval between last application and the sampling date.
- c Total BYI 02960 residue is the sum of BY 02960 DFA and DFF residue in parent equivalents. Residue measurements below the analyte LOO were summed into the total BYI 02960 residue value as the analyte LOO value. These totals represent the upper limit of what the residue levels might be.
- d Maximum residue found on coffee bean, goen occurred at a PHI of 26 days.
- e Highest average field total (HAFT) residue found in coffee bean, green occurred at a PHI of 26 days.

### **Q**Conclusion

Four field decline trials were conducted to measure the magnitude of total BYI 02960 residue in/on coffee bear, green, following a single soil drench and three subsequent foliar spray applications of BYI 02960 200 SL. The total BYI 02960 residue data for coffee beans are summarized in Table 6.3.2 18-8.

Table 6.3.2.18-8:	Summary of Residue Data for Total BYI 02960 from Co	offee
1 4010 0.5.2.10 0.	summary of residue but for rotal Bir object from co	,1100

	, A				Total	BYI 029	60 Resid	ue Levels	s (ppm) ¹	e c
Commodity	Plot Name	Total Application Rate lb a.s./ (kg a.s./ha)	PHI (days)	u	Min	Max	HAFT ²	A Kapan Meman	Mean	Standard
			0	4	0.158	0.870	0.720	, 0.342	0.354	0244
Coffee bean,			7	4	0.147	[®] 0.925	0.879	0.326	9.418 £	0.302
green	TRTD	1.068 to 1.074 (1.197 to 1.204)	13-14	4	0.136	0.607	<b>©</b> .556	0.275	0.358	0487
			20-21	4	<b>2</b> 05	0.662	0.633	0360	<b>6</b> 411	0.213
			26-28	4	0.164	0,984	Ø.939 ₄	00.37	0.482	0.225

The data of the four decline trials showed tather similar total BYI 02960 residues independent from the sampling time. The overall maximum residue was detected in a sample colleged 26 days after the last application which amounted to 058 mg/kg. However, the residue maximum was reached in each trials at a different day, no conclusive residue pattern was observed

### Residue data from BRA

BYI 02960 is to be registered in Brazo for soil and foliar treatment use in/on coffee. The most critical use pattern for Brazil is summarized in Table 6.32.18-9. This use pattern is nearly identical with the worst-case use pattern in office tested in Mexico, Columbia and Gybremals (cf. KIIA 6.3.2.18/01).

Most critical Use Patterns for the Application of JEVI 02960 on Coffee in Brazil Table 6.3.2.18²⁹

ES .	Y Y	Formulated Broduct (fp)	Active St	) ıbsta <b>n</b> c	¥ (1)	Target				ication n Volume
Test Substance	App.	fl og A mL	Name of		<b>€</b> Kg	Opp. Jaterval (Days) ^a	Target PHI (Days)	Adjuvant /Additive (%) ^b	mL/ plant	L/ha
	Drencl	n Application		(Continue)	(U)					
	1	41.1 3,000	B\V\\\ \text{\$\partial}\chi BV\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	535	<b>6</b> 600	NAc	118	None	50	NA ^c
B <b>Y</b> I	Foliar	Applications			1				GPA	L/ha
02960 SL	2 @	[ 4 \	)   UXX9/00	Ø¥78	0.200	90	30	0.25%	43	400
		13/.7	₩ 02900	0.178	0.200	15	15	0.25%	43	400
	4,3	13.7 1,00	'W DVI	0.178	0.200	15	1	0.25%	43	400

Single will drenc@application (Application No. 1) made at 90 days before the first foliar application (Application No. 2).

Adjivant: Methylated Soybean Oil.

NA = Not Applicable

Report:	KIIA 6.3.2.18/02; 2012
Title:	Determination of residues of BYI 02960 and its metabolites, in coffee after drench application at the base of the plants, followed by foliar application of BYI 02960 (200 %) in field trials in Brazil
Report No &	I11-008, dated March 12, 2012
Document No	M-427469-03-2
Guidelines:	Resolution of Collegiate Board of Directors  RDC No. 216 of December 2006,15 th RDC No. 4 of January 2012,18 th National Health Surveillance Agency – ANVISA, from the Ministry of Fealth
GLP	Yes & O & O &

Four trials were conducted to measure the magnitude of BYI 02960 residues in on coffee bean, following a single soil drench application followed by three broadcast foliar spray applications of BYI 02960 200 SL.

BYI 02960 200 SL is a soluble concentrate formulation containing 200 g BYI 02960/L. The location of field trials are presented in Table (\$2.2.18-70). Additional coffee trials conducted in Mexico, Colombia, and Guatemala are reported separately (Bayer Crop Science Report No. RARVP0/4 (KIIA 6.3.2.18/01).

Table 6.3.2.18-10: Trial Numbers and Geographical Locations for BXX 02960 in/on Coffee

Identification of Field trial	Yest Unit of the Field trial Name and address of the location
I11-008-01	Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Grazil Gr
I11- <b>008</b> -02	, Brazil
I11-008-04	, Braživ
I11-008 <b>-0</b> 5	, Brezil

#### **Material** and Methods

Drench application was carried out using a pulverization spear nozzle in Trials II1-008-01, II1-008-02, and II1-008-05. In Trial III-008-04, the test substance was applied directly at the base of the plants, using a graduated beater.

Soft drengt applications ranged from 0.596 to 0.606 kg BYI 02960/ha/application. Individual foliar application rates ranged from 0.170 to 0.214 kg BYI 02960/ha/application. Seasonal total application rates ranged from 1.188 to 1.22 kg BYI 02960/ha. The interval between the drench and first foliar application was 90 days and the interval between the foliar applications was 13 to 15 days.



Methylated soybean oil wa	s used as adjuvent	in all of the folia	r applications at 0.	25% (v/v).
Trial Site conditions, inclu-	ding soil character	istics are summar	ized in Table 6.3.2	
patterns are summarized in	Table 6.3.2.18-12			7 Study Use
Table 6.3.2.18-11: Trial 5	Site Conditions for	BYI 02960 on Co	offee	
Identification of the Field Trial	I11-008-01	I11-008-02	I11-008-04	H1-00805
Principal Investigator	Junior			Junior
Plots Size (m²) Untreated/Treated	140 / 140	226. 236.	30/30	90 790
Number of Plots	2	27 27 7	A 59	2 8
Spacing between the lines (m)	3.50	7 24 3		
Type of Soil	Quyey 6	Clayey	Payey	Average
pH-value of soil (in CaCl ₂ )	5. Py 5.			5.8
pH-value of soil (in H ₂ O)		W 4.4 W W 5	J-J	\$\frac{Q}{Z} - \frac{1}{Z}
Content of organic (%)	30	1.8		2.2
Soil Topography	Dos livity	Declivity Q	Declivity        Of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of	Declivity < 5%
Test System	CoffeeQgrains)	Coffee (grains)	Coffee (grains)	Coffee (grains)
Variety 🛇	Catuai	Gatuaí-Vermelho	Catuaí	Mundo Novo
Date of the planting	8 years	. 59/200k	2001	9 years
Date of	May W	May 2	August	May
commercial harvest	October O	Augus C	to September	to October
Variety  Date of the planting  Date of commercial harvest				

Table 6.3.2.18-12: Study Use Pattern for BYI 02960 200 SL on Coffee

Identification of the Field trial	Type of Application	Dates of application (mm/dd/yy)	Crop stage (BBCH)	Effective volume of spray (L)	Effective applied dose (L/ha)	Effective applied dose
	Drench	03/29/2011	81	2.80	3.00	L 600
111 000 01	Foliar Pulverization	06/27/2011	85	5.62	1.01	\$\frac{7}{202} \tilde{\pi}
I11-008-01	Foliar Pulverization	07/12/2011	88	5.80	1.0	268 Q
	Foliar Pulverization	07/27/2011	\$9 2	5,22	₹93 Q	186 %
	Drench	03/25/2011	75	3.67	2.98°	5 <b>9</b> 6
111 000 02	Foliar Pulverization	06/23/2011(4)	<b>88</b> 8	\$\tag{40.0}	06	212
I11-008-02	Foliar Pulverization	07/08/2011	88 0	9.48	1.00	260°
	Foliar Pulverization	07/22/2011		SY1 V	<b>9</b> .96 &	192
	Drench	00008/201M	73	©0.926°	£ 2.99	598
111 000 04	Foliar Pulverization	907/07b2011		1.23	03	206
I11-008-04	Foliar Pulverization	07/22/2001	Z 88 Z	1.020	0.85	170
	Foliar© Pulverization 🔬	08/05/2011	89	N 128 5	¥.07	214
	Drench	QG/24/2011	85,7	0 1.90%	3.03	606
	Foliar Balverization	09/22/2011		Z 3.80 W	1.06	212
I11-008-05	Folkar Y Pulverization	10/07/2007	J 88	3.60	1.00	200
	OFoliar Pulverigation	10/20/2011		85	1.01	202

Duplicate composites amples of coffee beans were coffeeted from the treated plot at 0, 7, 14, 21, and





Table 6.3.2.18-13: Field processing

dentification of Field trial	Sample Identification	Start Date (mm/dd/yyyy)	Final Date (mm/dd/yyyy)	Processing Type
	I11-008-01-001C I11-008-01-002C I11-008-01-003C	07/27/2011	\$ 5 P	
	I11-008-01-004C I11-008-01-005C I11-008-01-006C	08/03/2011	08/09/2011	Orying after pulping
I11-008-01	I11-008-01-007C I11-008-01-008C I11-008-01-009C	08/10/2011	08/9/2011	Orying ofter pulphg
	I11-008-01-010C I11-008-01-011C I11-008-01-012C	(08/17/2 <b>0</b> ) 1		
	I11-008-01-013C I11-008-01-014C I11-008-01-015C	08/24/2017	98/30/2001 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	111-008-02-001 111-008-02-002 111-008-02-003C 111-008-02-004C	07/22/2011 5	0729/2010	
	111-008-02-004C 111-008-02-006C 111-008-02-007C	07/29/2011	08/05/2011	Drying after
I11-008-02	111-008-02-009C 111-008-02-009C 111-008-02-009C		08/15/2011	pulping and removal of parchment
	11 6008-02-011C 1N-008-02-012C 	98/12/2911	08/19/2011	
	I \$4.008-\$2.015C	(%)/19/2651 (%)	08/25/2011	
TY S	1111-008-04-002C 111-008-04-003C 111-008-04-0046	08/05/2011	08/09/2011	
Ą	111-008-04-008C 111-008-04-006C 111-008-04-006C	08/105/2011	08/16/2011	Draing and
111 <b>-00</b> 8-04	I116008-04-010C	U ŠY	08/23/2011	Drying and manual pulping
	110-008-03-011C 111-008-04-012C 1111-008-04-043C	08/26/2011 - 09/2011	08/31/2011	
	115608-04-014C 101-008-04-015C	09/02/2011	09/06/2011  Continu	ued on next page
			23.000	puge

Table 6.3.2.18-13 (cont'd): Field processing

Identification of Field trial	Sample Identification	Start Date (mm/dd/yyyy)	Final Date (mm/dd/yyyy)	Processing Type
	I11-008-05-001C		<b>♦</b>	
	I11-008-05-002C	10/20/2011		
	I11-008-05-003C		11/03/2011	
	I11-008-05-004C		11/03/2011	
	I11-008-05-005C	10/27/2011 🙈		
	I11-008-05-006C		Q'	
	I11-008-05-007C	L	.04	
I11-008-05	I11-008-05-008C	11/03 <b>/2</b> 011		Aprying arter
	I11-008-05-009C			pulsing
	I11-008-05-010C			
	I11-008-05-011C	(4,1/10/2 <b>0</b> ) 1 S	V 0. 4	
	I11-008-05-012C		F \$V1/21/2011 \$	d A o
	I11-008-05-013C	A		
	I11-008-05-014C	~ 1/747/2011 ?		
	I11-008-05-015C			

The residue(s) of BYI 02960, DFA and DFEAF were quantitated by DFLC-MS/Ms using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. For the purpose of this summary document and to provide residue data for calculation of MRLs, residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte POQ value.

Concurrent recoveries of BYO 02960 DFA, and DFEAF over eneasured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The overall moan of the recoveries for each matrix was within the acceptable range of 70 to 110%, and the standard deviation values were  $\leq$  20% (Table 6.3.2.18-14).

Table 6.3.2.18-14? Summary of Recoveries of BY102960 from Coffee

A.

Crop Matrix	Analyte	Factification Levels (mg/kg)	Sample Size (n.)	Recoveries (%)	Mean % Recovery	CV (%)	LOQ (mg/kg)
. 🕊	BYI 02960	20.01		80; 84; 76; 87; 85	82	5.4	0.01
4	D11 0290₩	0.1	Q 4 6	84; 87; 85; 84	85	1.8	0.01
Coffee,	© DFA		(7)	76; 72; 77; 77; 73; 71	74	3.6	0.01
Beans		0.5	~♥ 5	84; 70; 82; 83; 82	80	7,2	
	DÆAF	Q.P1	5	86; 90; 82; 81; 85	85	4.2	0.05
		0.1	4	89; 90; 80; 83	86	5.6	0.03

The freezer storage stability study indicates that BYI 02960 residues were stable in coffee bean commodities during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 145 days. A summary of the storage conditions are shown in Table 6.3.2.18-15.

Summary of Storage Conditions for Coffee Table 6.3.2.18-15:

Identification of Field trial  Oute of the end of field last Storage Period of States of Field trial  Date of the end of field last Storage Period of States of Field trial  Oute of the end of field last Storage Period of States of Field trial  Oute of the end of field last Storage Period of States of Field trial  Oute of the end of field last Storage Period of States of Field trial  Oute of the end of field last Storage Storage Period of States of Field trial  Oute of the end of field last Storage Storage Period of States of Field trial  Oute of the end of field last Storage Storage Period of States of Field trial  Oute of the end of field last Storage Storage Period of States of Field trial  Oute of Field trial Storage Storage Period of States of Field trial  Oute of Field trial Storage Storage Period of States of Field trial  Oute of Field trial Storage Storage Period of States of Field trial  Oute of Field trial Storage Storage Period of States of Field trial Storage Period of States of Field trial Storage Period of States of Field trial Storage Storage Period of States of Field trial Storage Storage Period of States of Field trial Storage Storage Period of States of Field trial Storage Storage Period of States of Field trial Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Stora	action Fility
Identification of Field trial  Oute of the end of field last Storage Temperature of Storage (ays)a (mm/dd/yy) (com/dd/yy) (°C) (°C) (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (d	iod & ed by action & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility &
Identification of Field trial  Date of the end of field last Storage Period of Start (days)a (mm/dd/yy) (nm/dd/yy) (°C) (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)	iod & ed by action & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility &
Identification of Field trial  Date of the end of field last Storage Period of Start (days)a (mm/dd/yy) (nm/dd/yy) (°C) (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)f (days)	iod & ed by action & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility &
Identification of Field trial  Date of the end of field last Storage Temperature of Storage (mm/dd/yy)  Object of the end of field last Storage Storage Temperature of Storage (mm/dd/yy)  Object of the end of field last Storage Storage Temperature of Storage (mm/dd/yy)  Object of the end of field last Storage Storage Storage Temperature of Storage (mm/dd/yy)  Object of the end of field last Storage Storage Storage Storage (mm/dd/yy)  Object of the end of field last Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage S	iod & ed by action & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility & Fility &
Identification of Field trial     Date of the end of field processing of Field trial     Date of the end of field last processing extraction (days)a     Date of the end of field last processing extraction (mm/dd/yy)     Date of the end of field last processing extraction (days)a     Storage value for ideas     Storage processing (days)for ideas       0     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     08/09/11     0	ed Sy action Fility
Identification of Field trialScheduled DAT processing of Field trialIdentification (days)aOmm/dd/yy) (mm/dd/yy)Storage extraction (mm/dd/yy)Storage extraction (mm/dd/yy)Storage (priod of States)008/09/1108/09/1112/21/11134708/09/1112/21/1134	action Fility
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~ N
0 08/09/11 212/21/11 13P 234 7	\ J @ \ \ '
7 08/09/11 & 12/21/11 5	/S) ^a 💚
	<b>V</b>
111 000 01 14 00/10/11 0 00/10/19 27	<i>]</i>
	0 0
21 08/19/17 012/21/11	, Ö
28 08/36/11 12/21/11	\$
0 0729/11/2 22/21/17 2 6 145/7	
7	
111-008-02 14 08/16/11 0 12/01/11 0 -20 0 928 56	0
21 08/19/11 02/21/10 07 124/5	
28 408/25/20 12/24/11 4 4 18	
0 08/08/11 0 12/19/11 0 27 07 4/32	
92/19/10 12/27/Y1 133	
111 000 04	
I11-008-04 $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.08/23$ $0.0$	.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
28 0 09/06/Q 2 12/27/11 2 112	
0 0 11/03/11 2 12/09/11 46	
11.003/11 12/19/10 46	
111-008-05	0
27 21 V 27 11/22 P1 27 12 19/11 27	
28 11,22/11 27 27	

DAT – Days ofter last Treatment.

The total FYI 02060 residue data for coffee beans following a single soil drench and three foliar applications applications of BYI (2000 SL are shown in Table 6.3.2.18-16.

Samples were stored with do ice during transportation of UPA and from UPA to the Laboratory and at <-20 °C during storage PA and the Laborator

Period between processing and sample extraction of corresponding sampling (DAT). For samples extracted more than once, the date of the last extraction of preated sample was taken into consideration for the calculation of storage period.

^{2012.} Storage stability of BYI 02960, difluoroacetic acid, and difluoroethyl-anino-furanone in Mant matrices. Bayer CropScience Report No. RARVP046, amended version including 18-month data (KIIA-6) 1.1/01

Table 6.3.2.18-16: Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Applications of BYI 02960 SL

							Residue	s (mg a.s.	equiv./kg	
Field	Identification		Rate (L/ha) (directed jet-	Rate (g a.s./ha)	DAT	BYI			of B	Averag of Tota cal
trial	of Sample	Type	drench)	(foliar)	(days)a	02960	<b>D</b> FEAF	DEA	02960ь	<b>© 02960</b>
	I11-008-01-	С			8	<0.01	<b>(</b>	Ø.05 ,	9<0.07	/ _{}
	001C-01L				S.	_()	<i>*</i>		J* 10.00	ζO'
	I11-008-01-	С		<u> </u>	7	<0.01	<b>€</b> 0.01 €	<0.05	<6.07	(©) _
	004C-01L I11-008-01-			200	7	_	<i>(/)</i>	-\O	i i	<b>*</b>
	007C-01L	C		~×	o14	Ø<0.01\^	<0.901	<b>30.05</b>	<0.07	-
	I11-008-01-	- C		0 ,/		-60A1	<b>2</b> 0.01	F -0 d/2	<b>20</b> .07	0
	010C-01L	С		A	210	<b>Q</b> 901	Ø0.01	<0.05		· >
	I11-008-01-	С	&		~28 £	><0.04\(\sigma\)	> <0 0 °	<b>≈</b> 0.05 _€	<0.0	_
	013C-01L		<u></u>		Q' 20, Y	(O).			O	
	I11-008-01-	T		<b>200</b>	,0°	<b>6</b> 003	0.015	<0.85	Ø.09	
	002C-01L I11-008-01-		- ~ · · · ·	,	Ů	<b>*</b>			$\sim$	0.1
	003C-01L	T		<b>200</b> 0		0.04	< <b>9</b> 01	0.05	0.1	
I11-	I11-008-01-	T		- 0	7	Ø.03 _{s,}	(	. %	0.00	
008-	005C-01L	T&	& ³	\$\frac{200}{200}	7	4 <b>0</b> .03	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.05	0.09	0.00
01	I11-008-01-	»jT	3 0	<b>2</b> 00	e -	\ <0.04	£ <b>0</b> .01 ~	<b>0.05</b>	< 0.07	0.08
	006C-01L	<u>~</u>	<u> </u>	200		(0.01	29.01 à	\$ \0.03 \$	<b>\0.07</b>	
	I11-008-01-	TÖ	<b>43</b>	200	√1.A√	©.01	<0.01	< 0.05	< 0.07	
	008C-01L				~~		<u> </u>			< 0.07
	009C-01L	ŢŐŢ	3 💜	<b>200</b>	9 14 S	<0.01	<b>6</b> .01	< 0.05	< 0.07	
	I11-Q@-01-	) TO	03 4			0.01	<b>V</b>	0.05	0.07	
	011&-011	TO	<i>□</i> 3 ×	200		O.01	<0.01	< 0.05	< 0.07	< 0.07
	J19-008-01-	. <b>У</b> Т .	S 3€	\$\displays{6}{0}0	21.0	<0.07	< 0.01	< 0.05	< 0.07	<b>\0.07</b>
	Ø12C-01L			200	21	. 0	10.01	10.03	١٥.07	
4	111-008-01	Ì	₩3 8	200		§¥0.01	< 0.01	< 0.05	< 0.07	
	014C-01kQ " I11-008-01-	4		~~~	Ö »					< 0.07
	015C-01L	J T √S	200°	200 _C	28	< 0.01	< 0.01	< 0.05	< 0.07	
	111-008-01- 015C-01L				<del>' ''''</del>		<i>C</i>	/* 1		_
	.4		Õ L				Con	iinuea on	next page	<i>2</i>
		ر آم ھ			Ĭ					
		, 4	~ 4	~~.~9"						
	) W									
v		"O" (C	")	<b>L</b> O						
	4 4	\		Q,						
Ĭ,		~~, ~~, ~~,								
Li,										
*/	, Ö'									
((	$\cup$									

Table 6.3.2.18-16 (cont'd): Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Applications of BYI 02960 SL

							Residue	s (mg a.s.	equiv./kg	
Field	Identification		Rate (L/ha) (directed jet-	Rate (g a.s./ha)	DAT	BYI		, , , ,	God Fotal of B	Averag of Tota cal BYI
trial	of Sample	Type	drench)	(foliar)	(days)a	02960	<b>Ø</b> FEAF	DEA	02960ь	<b>© 02960</b>
	I11-008-02-	С			8	<0.01	<b>2</b> <0.01	<b>30</b> .05	\$<0.0 <b>2</b>	
	001C-01L	C			Į,		§ \0.01	<b>3</b> .03	J* 10.00	ψ ^O
	I11-008-02- 004C-01L	C		گے	7	<0.01	<b>€</b> 0.01 €	<0.05	< <b>©</b> .07	, © * -
	I11-008-02-			20	<u> </u>		V// h 12-0			*
	007C-01L	C		<b>₹</b>	o14 €	0<0.01°	<0.001	<b>8</b> 0.05 €	<0.07	-
	I11-008-02-	С		×	210	<b>50</b> 01	<b>2</b> 0.01	<0.05	<b>£0</b> 207 ,	° -
	010C-01L I11-008-02-		\$ \( \)		* * *					¥
	013C-01L	C	🖇	, <u>~</u>	© 28 . L	)<0.0 <b>4</b>	<0.01	<b>₹</b> 0.05 _€	<0.0	-
	I11-008-02-		Q,	, X		<b>2</b> 0004	C.			
	002C-01L	T	S ^o	200	.00	<b>№</b> 004 %	0.01	<0.85	<b>0.1</b>	0.1
	I11-008-02-	Т	Q' 3 B	<b>29</b> 0	\$ 0 6	0.04	<q01< td=""><td>چ د م م</td><td>0.1</td><td>0.1</td></q01<>	چ د م م	0.1	0.1
I11-	003C-01L	(	2 3 Q	60	$\mathcal{S} = 0$		- (	0.05	0.1	
008-	I11-008-02- 005C-01L	T	3 8	\$ 200 _C	7	Ø.04 s	©<0.01	$\left(\begin{array}{c} < 0 \text{ Ps} \end{array}\right)$	0.1	
02	I11-008-02-	<b>©</b>		1 @.V		~A		0.05		0.1
	006C-01L	»T	3 🕏	<b>200</b>	7 3	0.03	<b>£0</b> .01	<b>≈</b> <0.05	0.09	
	I11-008-02-	T	*		jā.	<b>9</b> .03	<0.04	<0.05	0.09	
	008C-01L			2000	ZIH	₩.03 ₍	~ < 0.Qu,	<0.03	0.09	0.1
	111-008-02 009C-01L	TO	3	<b>200</b>	9 14 \$	0.0	<b>6</b> .01	< 0.05	0.1	0.1
	I11-008-02-	TO	03 4	2005	(A)		<0.01	< 0.05	0.08	
	011C-01L& J19-008-02-		ث ک		<b>1</b>	0.02	/			0.08
	012C-01L	T S	30	200	21	0.09	< 0.01	< 0.05	0.08	
4	A No.		4.4	7 200A	. 20	% 0.7	0.01	0.00	0.17	
	014C-01kQ	Ž)		200	& 28 A	<b>€</b> 0.07	0.01	0.09	0.17	0.19
	014C-014Q 111-008-02- 015C-01L	AT &		200	28	0.08	0.01	0.1	0.19	0.19
	015C-01L									
		~°					Con	tinued on	next page	2
					W J					
		7 . Q	~							
1 L										
**	•			¹ O ₂						
	\$	\		Q,						
			W.	•						
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							
			9							
X.										
**	*O									
(										

Table 6.3.2.18-16 (cont'd): Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Applications of BYI 02960 SL

							Residue	s (mg a.s.	equiv./kg	
Field	T1		Rate (L/ha) (directed	Rate (g a.s./ha)	DAT	BYI	Š	7	Gotal Fotal of BX	Average of Tota cal
trial	Identification of Sample	Туре	jet- drench)	(foliar)	(dars) ^a	02960	<b>Ø</b> FEAF	DEA	02960b	© 02960
	I11-008-04-		urenciij	(IUIIaI)			W EAT	DEG.	A . (	
	001C-01L	C			\$ T	<0.01	<0.01	<b>30</b> .05	<b>5</b> <0.0 <b>7</b>	/.O¥
	I11-008-04-			a	Ů,	<0.01	~0.01 €	0 00	< <u>0.07</u>	0,1
	004C-01L	С		2	7	<0.001	<0.01	<0.05	< 9.0 /	Ş -
	I11-008-04-	С		Q	<u>,</u> ∘14	0<0.01 ²	<0.40ml	20 05 °	( < 0.07)	
	007C-01L	C		<u> </u>			<b>%</b> 1	<b>30</b> .05	, 0.0//,	-
	I11-008-04-	С		. O «	210	<0001	<b>3</b> 0.01	<0.05	<b>20</b> 207	- ° -
	010C-01L	_		<b>A O</b>		Q.	<b>S</b>			8
	I11-008-04- 013C-01L	C	K	,^=>/ ^{''}	28	><0.04 -	<0.01	<b>≈</b> 0.05 _€	<0.0	-
	I11-008-04-					<b>X</b>	≪/ n'		0	
	002C-01L	T		\$\tag{200}	0,7	<b>2</b> 0002	\$\ 0.01\$	<0.05	Ø.08	
	I11-008-04-		Q 2 20	/		5 ⁷		0.05	<b>~</b>	0.08
T1 1	003C-01L	Т	2 3 Q	<b>20</b> 0		0.02	<b>40</b> 01	$\bigcirc$ $0.05$	0.08	
I11- 008-	I11-008-04-	T	3 \$	_ "(	7	Ø.01 ₂	\$<0.0 <b>}</b>	<0.05	< 0.07	
04	005C-01L			S 200	<b>~</b>	\$0.01 %	· · · · · · · · · · · · · · · · · · ·	Ĉ	<0.07	< 0.07
04	I11-008-04-	ST.	3 🗳	<b>20</b> 0	L 7 ∼	<0.0¥	<b>50</b> .01 ₂	0.05	< 0.07	١٥.٥/
	006C-01L	<i>△</i> =	<u> </u>					)	0.07	
	I11-008-04-	TÔ		, 2000	~1 <del>/</del> A	Q0.01	<0.01	< 0.05	< 0.07	
	008C-01L					0				0.07
	009C-01L	TO T	3 💝	<b>200</b>	9 14 S	0.05	<b>3</b> .01	< 0.05	0.07	
	I11-Q@-04-	<b>)</b>			<b>*</b>	0.05 Q	**************************************	.0.05	0.11	
	011&-01L	TO	$\mathbb{O}_3$ &	200		Õ ^{30.05}	<0.01	< 0.05	0.11	0.11
	J19-008-04-			200	21. W	0.09	< 0.01	< 0.05	0.11	0.11
	Ø12C-01L	Q ' Z		200	21		<b>\0.01</b>	\0.03	0.11	
4	¥I11-008-04-	i iv	€3	200		0.03	< 0.01	< 0.05	0.09	
	014C-014Q	7					-			0.09
	111-008-94-	A T √S		Ž00 🧥	28	0.03	< 0.01	< 0.05	0.09	
	013C-01L				<b>*</b>					
	, Q				ð		Con	tinued on	next page	2
					W I					
		? Q								
.*										
	•		`\\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
	A .A			<b>*</b>						
			)"							
*	J Ž A									
S	012C-01L 111-008-04- 014C-0140 111-008-04- 015C-01L									
4	[≽] Ô _A									
(										

Table 6.3.2.18-16 (cont'd): Total BYI 02960 Residue Data from Coffee Beans after a Single Soil Drench and Three Foliar Applications of BYI 02960 SL

							Residu	es (mg a.s.	equiv./kg/	
Field trial	Identification of Sample	Туре	Rate (L/ha) (directed jet-drench)	Rate (g a.i./ha) (foliar)	DAT (days) ^a	BYI 2960	DITAF	DFA Ö	Cal Sotal of BY 1.	Anverage of Total
	I11-008-05- 001C-01L	С				<0.01	© [₹] 0.01	<0.05	0.07 ©	
	I11-008-05- 004C-01L	С			Ž 7	<0.00	<0.01	0.05Q	<0.07	\$\frac{\pi}{2}-
	I11-008-05- 007C-01L	С			14	$\sim 0.01$	Q<0.01Q	A \ 8	Ø<0.07 Ø	-
	I11-008-05- 010C-01L	С		%(	21	<0.01	<b>20.01</b>	\$<0.05	<0.07	- 0
	I11-008-05- 013C-01L	С	🐇	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<b>3</b> 0.01	<0.04	<0.05	©0.07©	-
	I11-008-05- 002C-01L	T	30	\$\frac{1}{2}00 \times		0.02		\$\frac{1}{2} < 0.05\$	008	0.08
	I11-008-05- 003C-01L	T		200	<b>7</b>	0.02	~0.00°	<b>20</b> .05	© 0.08	0.08
I11- 008-05	I11-008-05- 005C-01L	T		200 d	7,0	0.02	. O.01 (	0.0 <b>\$</b>	0.08	0.08
	I11-008-05- 006C-01L	, L	⁶ √3 ⁷ √3	200	<i>®</i> 7	0.01	<0.04	<b>©</b> 0.05	0.07	0.08
	I11-008-05- 008C-01L	T	<b>)</b>	Ö200 S	140	<b>40</b> ,01	( <0.01 C	<b>0.05</b>	< 0.07	< 0.07
	I11-008-05 009C-01	J.	\$\frac{1}{3} \tag{2}	200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-0.01	<0.01	< 0.05	< 0.07	<b>~0.07</b>
	I11-008-05- 011 ©01L	T		Z200 /	21	©.01	\$0.01	< 0.05	< 0.07	< 0.07
	I11-008-05	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			\$\frac{1}{\tilde{\pi}} 21 \$\tilde{\pi}\$	<0.01	<0.01	< 0.05	< 0.07	\0.0 <i>1</i>
4	11-008-05- 014C-01L	ŢŚ		. 2006 [©]	288	<b>. . . . .</b> 0.01	< 0.01	< 0.05	< 0.07	< 0.07
	111-008-050 015C-050			200	© 28 °	<0.01	< 0.01	< 0.05	< 0.07	·0.07

a DAT: Days after last To atment

Conclusion

wals were conflucted to measure the magnitude of total BYI 02960 residues in/on coffee single soil drench and three foliar spray applications of BYI 02960 200 SL.

02960 restaue data for coffee beans are summarized in Table 6.3.2.18-17.

DAT: Days after last Treatment.

For the purpose of this summary document, aftersidues found below the Limit of Quantitation (LOQ) of the method are reported as < 0.01 mg/kg for BYI 02960 and BFEAF, and < 0.95 mg/kg for DFA. Total BYI 02960 residue is the sum of BYI 02960, DFA, and DFEAF residue in parent equivalents. Residue measurements below the analyte LOQ were summer into the total BYI 02960 residue value as the analyte LOQ value. These totals represent the upper limit of what



Table 6.3.2.18-17: Summary of Residue Data for Total BYI 02960 from Coffee Trials in Brazil

		_			Tota	1 BYI 029	960 Resid	lue Level	s (ppm)	a.c
Commodity	Plot Name	Total Application Rate (kg a.s./ha)	PHI (days)	u	Min	Max	HAFT ²	Median	Mean	Stangard Stangard Deviation
			0	4	0.08	0.10	0.10	0.09	0.0	001
Coffee bean,			7	4	<0.07	0.10	020	0.08	J.08_	90.01
green	TRTD	1.19 to 1.22	14	4	<0.07	0.10	<b>0</b> .10	0.07	0.08	0.02
			21	4	<b>3</b> 0.07	0.11	0. <b>©</b>	<b>D</b> 08	Ø.08	0.02
			28	4	<0.07	£99	Ø.19	0.08	0.4	0.08

TRTD = Treated plot receiving a soil drench application followed by three foliar applications of BYI 02960 200 SL

The data of the four decline trials showed rather similar total BYL02960 residues independent com the sampling time The overall maximum residue was detected in a sample collected as day cafter the last application which amounted to 0.19 mg/kg. The residue maximum was reached in two trials at the day of the last application, in one trials 21 days after the last application and in another trial at 28 days uay of the last application, in one trials 21 days after the last application and in and after the last application. Thus, no conclusive decline behaviour was defected in coa kind of residue plateau seemed to be reached after the third foliar application. after the last application. Thus, no conclusive decline behaviour was defected in coffee beans, however



#### **Overall conclusion - Coffee**

Supervised residue trials were conducted in coffee in the Guatemala, Mexico and in Brazil to achieve national registrations and global import tolerances.

Globally one worst-case GAP was supported and tested: one soil drench application followed by three foliar spray applications of BYI 02960 200 SL. Eight field trials were conducted according to the GAP to measure the magnitude of BYI 02960 residues in/on green coffee beans. In addition three field trials will be conducted in Columbia.

A summary of the use pattern tested and the corresponding residuo evels detected in the field camples are shown in Table 6.3.2.18-18.

Table 6.3.2.18-18: Summary of Residue Data for Total BY 02960 from Coffee

Crop	Formulation	Use pattern  Wethod  No. Application  No. Triato  BYI 02960 at PHI (ppm)  Day of peak	due
Mexico, Gua	temala		
Coffee	SL 200	x 200 xg a.s. ga	6
Brazil	(7/1)		
Coffee	SL200	3 x 200 kg a.s./ha Soil dreinsh followed 60 4 4 0.08-0.10 0.19 2:	8

Highest residue levels were observed in the coffee trials in Gatemala and Mexico although all trials were conducted according to very silifar use patterns. Overall, total residue levels of BYI 029630 did not always peak at the intended Phil, two trials showed the maximum residue level at the last sampling event. However the residues were in the same range than the residues at the intended PHI of 0 days and it can be concluded that generally the total residue leveled off after the third application.

The residue data provided for coffee are suitable for regulatory purposes.



#### **IIA 6.3.2.19** Hops

BYI 02960 is to be registered in USA and Canada for use as a foliar treatment on hops. The use pattern in North America is summarized in Table 6.3.2.19-1.

Three field trials were conducted in hops. The studies are described below.

Table 6.3.2.19-1: Target Use Patterns for the Application of BYI 02960 on Hops

Target Rate/Application

			Targe	t Rate/Application			Q	Ŵ,	Q (	Spray	Volume
		_	Formulated Product (FP) Ac		Active Substance (3/3.)		Target &	``≯ U Target	Adjuvant		
Test	No. of			Name of	lb [	Kg @	Interval	PIO	Adjuvant /Additive		
Substance	Apps	mL/A	fl oz/A	a.s. 🛴	a.s./A	a.s./ha	(Days)	(Lays)	<b>%</b> (%)`	GPA	LPHA
BYI 02960 SL 200	1	311.7	10.54	BYI 0 60	<b>0</b> .]374	0454 2		~		10+50	Ø4-468
BYI 02960 SL 200	1	311.7	10.54	PO 1 02960	0.1374	0.454		21.	\$25 - 150°	50-4 <i>5</i> 0	468-1410

1 NA = Not applicable.

Report:	KIIÅ 6.3.2.49/01; 2012 2012
Title:	BY 102960 SL 200 Magnitude of the Residue in Mongs
Report No &	RANY008, dated June 92, 2019
Document No	\$1VI-43E\\93-0\frac{1}{2}\\ \tag{\tag{\tag{\tag{\tag{\tag{\tag{
Guidelines:	US EPA Residue Chemistry Test Guidelines OPPS 8600500, Crop Field Trials
8	Canada: PMRA DACO 7.4.1, Supervise Residue Trial Study
8	
	OECD: Guidelines for the Testing of Chemicals, 509, Crop Field Trial,
	, Admipted Sept. 7, 2009, O' V , O
GLP	

Three field trials were conducted to measure the magnitude of BYI 02960 residues in/on hops following a single broadcast foliar spray application (either as a diluted or a concentrated spray) of BYI 02960 200 SL

BYI 62960 200 SLAS a soluble concentrate formulation containing 200 g BYI 02960/L. The number and location of field trials conform to the guidance given by the EPA (Table Table 6.3.2.19-2).

Trial Tumbers and Geographical Locations for BYI 02960 on Hops

NAFTA Growing Region	Submitted ^a	Requested
	2	
12	1	
Total	3	3ª

There is no specified guidance on distribution of trials for hops, although virtually all of the production is in EPA region 11.



#### **Material and Methods**

Individual application rates ranged from 0.137 to 0.139 lb BYI 02960/A (0.154 to 0.156 kg BYI 02960/ha) for the concentrated plot and from 0.136 to 0.138 lb BYI 02960/A (0.152 to 0.155 kg BYI 02960/ha) for the dilute plot. Spray volumes ranged from 33.6 GPA to 45 L GPA for the concentrated plot and from 63.6 GPA to 126 GPA for the dilute plot. All applications were made at BBCH growth stage 85 (advanced ripening).

All applications were made using ground-based equipment. Trial RV047-11HA used a non-princ surfactant (NIS) in applications to both plots at 0.2% (v/v), trial RV048-11HA used a crop oil concentrate (COC) in applications to both plots at 1.0% (v/v), and trial RV048-11HA used methylated seed oil (MSO) in applications to both plots at 0.2% (v/v).

Trial Site conditions, including soil characteristics are summarized in Table 6.3.2 19-3. Study use patterns are summarized in Table 6.3.2.19-4.

Table 6.3.2.19-3: Trial Site Conditions for BYI 02960 on Hops:

	A	Soil Cha	racteristics 0	Meteorol	gical Datab
Trial Identification	Trial Location (City, S Country/State, Year)		pH (meq@000g	Totak Rainfall (in)	Temp. Range (°F)
RV047-11HA	2011 Z	Loam VI	.2 8 33.7	\$ 0.10	50 - 92
RV048-11HA	, WA Ô	Loamy Sand	2 54 2 11.70	0.05	48-82
RV049-11H	, QR	Silt Loam 3	.10 5.25 46.1	0.27	50 - 81

- a Abbreviations used: %OM = percent organic matter; CEC = cation Change vapacity.
- b Datas for the interval of the month of first application, through the month of last sampling. Meteorological data were obtained from nearby government weather stations.



Table 6.3.2.19-4: Study Use Pattern for BYI 02960 200 SL on Hops

					Ap	plication	1			Qi° >>
Trial Identification	Location (City, State, NAFTA Region, and Year)	End-use Product (Formulation)	Plot Name	Method	Timing/Growth Stage (BBCH)	Spray Volume GPA	Rate lb K3./A (kg a.s./ha) R2Q	े Retreatment Interval (daisी)ू	Voigi Rate Ilpa.s./A (kg askla)	Cank Mik Adjuvanik
RV047- 11HA	ID Region 11 2011	BYI 02960 200 SL	TRTDC TRTDD	Airblast Airblast	85 85	126 (1,15/8)	0.139 0.156 0.138 (0.155)	NA a	0.139 (0.156) (0.155) (0.155)	RJYNIS, Q.2% v/v
RV048- 11HA	WA Region 11 2011	BYI 02960 200 SL	TRTDE	Air blast	J*85	Q 45 (421)	0.138 (0.55) 0.138 (0.138 (0.153)	NA ^a	0.038 (6.155) 0.138 (0.954)	MOR-ACT COC, 1% v/v MOR-ACT COC, 1% v/v
RV049- 11HA	, OR Region 12 2011	BYI 02960 200 SL &	TKTDC TRTDD	Airblast  Airblast	85	\$4 (5,15) (64°) (5,05°)	0.137 (0.154) 0.136 (0.752)	NA &	0.137 (0.154) 0.136 (0.152)	MSO, 0.25% v/v MSO, 0.25% v/v

Single composite samples of fresh hop cones from both the concentrated and dilute spray plots, along with an untreated control sample, were collected at the pre-harvest interval (PHI) of 21 days. The fresh hops were kiln fried on the day of harvest to generate the RAC of dried hop cones.

The residue(s) of BYI 2960 DFA, and DFEAF were quantitated by HPLC-MS/MS using stable isotopically labelled internal standards. The individual analyte residues were summed to give a total BYI 02960 residue. Residue measurements below the analyte LOQ were summed into the total BYI 02960 residue value as the analyte LOQ value.

## Findings

Concurrent recoveries of SYI 02960, DDA, and DFEAF were measured with each set of samples to verify method performance. All recoveries were corrected for any interferences in corresponding controls. The werall mean of the recoveries at each fortification level was within the acceptable range of 70 to 116%, and the standard deviation (SD) values were below 20% (Table 6.3.2.19-5).



Table 6.3.2.19-5: Summary of Recoveries of BYI 02960 from Hops

Crop Matrix	Analyte	Spike Level (ppm)	Sample Size (n)	Recoveries (%)	Mean % Recovery	Stan. % © Dev.
		0.010	7	88, 91, 93, 97, 101, 96, 85	<b>9</b> 3	50
	BYI 02960	2.400	3	99, 97, 97	98	O 1.4 S
		4.800	3	💍 89, 89, 87 🎝	88 🌂	J 137
Hop Cone,	22.	0.050	7	86, 88, 90, <b>89</b> , 93, 95, <b>99</b>	90,	\$2.9 \$2.9 \$
kiln-dried	DFA	2.400	3	87, 85,82 👸	\$5	2.3 [©]
		4.800	80	89,91,89	90	<i>9</i> .1
	DEFAE	0.010	7 7	107, 94, 94, 97, 3 0 92, 90, 79		8.24
	DFEAF	2.400		99, 101, 10 <b>3</b>	6 ⁵ 101, €	<b>₹</b> .8
		4.800		\$4, 92, <b>6</b> 0	925	× 1.9

a Mean Recovery = mathematical average of all recoveries

The freezer storage stability study indicates that BYL 2960 residues were stable in coffee beans and soybeans - as high oil content representatives - during frozen storage for at least 18 months prior to analysis. The maximum storage period of frozen samples in this study for BYI 02960 was 226 days. A summary of the storage conditions are shown in Table 6 32.19-6.

Table 6.3.2.19-6: Summary of Gorage Conditions for Hops

Components)	Matrix (RA©)	Maximum Average Storage Temperature	Actual Storage Duration months (days) b,c,d
BYI 02960	Hops Dried Cones		8 (226)
DFEAF 🗳	Hops Dired Cones	<-19	8 (226)
DFA 🎺	Hop Dried Cones	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	8 (226)

a The magnium average storage temperature is from the time of sample receipt at BRP until sample extraction. While preparing for sample analysis, the samples were maintained in a laboratory freezer.

The total BYI02960 residue data for hops following one foliar application of BYI 02960 200 SL are shown in Table 6.32.19-32

b The storage duration is the time from field sampling through the last sample extraction.

c diffuoroethyl-andino-furanone in Mant matrices. Bayer CropScience Report No. RARVP046, amended version including 18-month data (KIIA) 1.1/100.

Table 6.3.2.19-7: Total BYI 02960 Residue Data from Hops after One Foliar Application of BYI 02960 SL

Deirid Identification	Location (City, State, Region, and Year)	Plot Name	Crop Variety	Commodity	Total Rate	% Dry Matter	Pre-harvest interval	BPO2960 Residue	DFA Residue	O. DFEAREsidue (Dym)	Optal BYk02960 Resting
Dried Co	nes	I		ı	- <del>(</del> 0" ·	l		<u> </u>	~∜ .	<u>O</u> "	
RV047-		TRTDC	Apollo	Hops, dried cones	0.1309 (0.136)		216 Q	2.4%	0.905	4	33.32
11HA Region 11 2011	2011	TRTDD	Apollo	Hops dried cones	0.438 (0.455)		70°		0.362	\$\tag{\frac{\pi}{\pi}} \tag{\frac{\pi}{\pi}} \tag{\frac{\pi}{\pi}} \tag{\frac{\pi}{\pi}} \tag{\frac{\pi}{\pi}} \tag{\frac{\pi}{\pi}} \tag{\frac{\pi}{\pi}} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \tag{\pi} \	© 3.14
RV048-	, WA,	TRTDC	Cascade	30110	138 (0.155)	770 \$70	Ž1		\$.32 \$.32	© 0.037	7.98°
11HA	Region 11, 2011	TRTED	Caseade	Hops, dried cones	0.138 (0.154)		©* 21	4.72	Z 2.97	0.070	7.76 ^d
RV049-	OR,	TRADC	Magget (	Hops, dried cones	0.137			<b>₩</b> 2.26	0.804	0.004	3.07
11HA	Region 125 20116	TRIDD	Nugget	Hops dried cones	0.136 (0.752)		21	2.70	0.642	0.008	3.35

- a Pre-Hargest Interval (PH) is the merval lower last application and sampling date at harvest
- b Total BYI 02960 residue is the sum of BYI 02960, DFA and DFEAF residue in parent equivalents. These totals represent the upper funit of what the festione wells might be.
- c Maximum residue found in dried hops cones from a Concentrated spray treatment.
- d Maximum residure found in dried hops codes from a dilute spray treatment.

#### Conclusion

Three field to als were conducted to measure the magnitude of total BYI 02960 residue in/on dried hops cone following one foliar spray application of BYI 02960 200 SL. The total BYI 02960 residue data for hops are summarized in Table 6.3.2.19-8.



Table 6.3.2.19-8: Summary of Residue Data for Total BYI 02960 from Hops

				Total BYI 02960 Residue Levels (ppm)						
Commodity	Plot Name ¹	Total Application Rate lb a.s/2 (kg a.s./ha)	PHI (days)	u	Min at PHI	Max at PHI	HAFT ²	A Median	Mean	Standard
Dried Hops	TRTDC	0.137 to 0.139 (0.154 to 0.156)	21	3	3.07	7.98	7.98	3.32	·499	<b>2</b> .77
Cones	TRTDD	0.135 to 0.138 (0.152 to 0.155)	21	3	3.14	7.76	%7.76	3.35	4.75	
1 TRTDC = Treated plot receiving one concentrated airblast application TRTDC = Treated plot receiving one diluted airblast application 2 HAFT = Highest Average Field Trial; As single samples were collected from each plot the HAFO is set equal to the										
maximum residue measured.  Total BYI 02960 residues were in the same range independent from application of a diluted or a										
concentrated spray. The highest residue in kiln-dried hops comes amounted to 7.98 mg/kg and was significant higher than the residues of the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence residue to the flurence r										

Total BYI 02960 residues were in the same range independent from application of tadiluted or a concentrated spray. The highest residue in kin-dried hops cones amounted to 7,88 mg/sg and was significant higher than the residues detected in the European residue trials with an application rate of 0.12 kga.s./ha.

The residue data provided for hops are suitable for regulatory purposes.