

M-469607-02-5

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Cropseience. No part of the document or any information contained therein may be disclosed to any thurd

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a reaction basis of the summaries and evaluation of unpublished proprietant. From Bayer CropScience; or.
 From Bayer CropScience; or.
 From other applicants once the period of data protection has expired. document unless they have received the data on which the summaries and evaluation are based, either:

Table of Contents

	Table of Contents	≽.
) 1
	S Page ^o	
CA 6	RESIDUES IN OR ON TREATED PRODUCTS, FOOD AND FEED	
CA 6.1	Storage stability of residues	
CA 6.2	Metabolism, distribution and expression of residues	
CA 6.2.1	Plants	Ø
CA 6.2.2	Poultry	¥
CA 6.2.3	Lactating ruminants	
CA 6.2.4	Pigs	
CA 6.2.5	Fish	
CA 6.3	Magnitude of residue trialson plants	
CA 6.3.1	Pome fruit	
CA 6.3.5	Grape	
CA 6.3.8	Strawberry	
CA 6.4	Feeding studies	
CA 6.4.1	Poultry	
CA 6.4.2	Ruminants \mathcal{O}	
CA 6.4.3	Pigs	
CA 6.4.4	Fish	
CA 6.5	Effects of processing	
CA 6.5.1	Nature of the residue 131	
CA 6.5.2	Distribution of the residue in peel and pulp	
CA 6.5.3	Magnitude offresidues in processed commodifies	
CA 6.6	Residues in rotational coops	
CA 6.6.1	Metabolism in rotational crops	
CA 6.6.2	Magnitude of vesidues in rotational crops	
CA 6.7	Proposed residue definitions and maximum residue levels	
CA 6.7.1	Proposed residue definitions 144	
CA 6.7.2	Proposed MRE's and justification of the acceptability of the levels proposed 148	
CA 6.7.3	Proposed MRLs and justification of the acceptability of the levels proposed for	
~Q	imported products (import toterance)	
CA 6.8	Proposed safety intervals	
CA 6.9	Estimation of the potential and actual exposure through diet and other sources	
L.		
CA 6.10	Other studies Q	
CA 6.10.1	Effect on the residue level in pollen and bee products	
Ű		
	A NA	
Š		

CA 6 RESIDUES IN OR ON TREATED PRODUCTS, FOOD AND FEED

A dossier on trifloxystrobin (CAS No. 141517-21-7) was submitted in January 1998 by the Novartis Crop Protection UK Ltd to the EU RMS United Kingdom for agricultural use as a fungicide. The substance was subsequently transferred to Bayer CropScience. The RMS evaluated the data in a Monograph / DAR and distributed the DAR to the MSs and the European Commission. A final examination by the SCFCAH with participation of experts from the MSs was established by Standing Committee on April 2003. Finally, trifloxystrobin was included into Annex I of the Council Directive 91/414/EEC by the Commission Directive 2003/68/EC of 11 July 2003 as published in the Official Journal of the EU of 16 July 2003. This decision entered into force by 1 October 2003.

CA 6.1 Storage stability of residues

Plant matrices

 Table 6.1-1
 Summary of storage stability of trifloxystrobin in plant matrices

The storage stability of residues of triffexystrobin and CGA 321113 in plant matrices was already investigated in two plant orage stability studies and evaluated during the peer review under Directive 91/414/EEC. In the Annex II dossier two interim reports were submitted (1997, 1997, 1997, 1997) with up to 18 or 12 month storage stability data. Updates of these studies with 24 respectively 18 month storage stability data (1999, 1999, 1999) were submitted at a later time point and are reported in Appendix III of SANCO/4339/2000-Final, 7 April 2013, as studies which were submitted during the evaluation process but were not cited in the draft assessment report.

For this reason the final reports (including storage data up to 18/24 month) are summarised again below:

Report:	KCA 6.1/01, ; 1999 (already submitted); M-038193-02-1
Title:	Stability of residues of CGA 279202 and its metabolite CGA 321110 in deep
	freeze stored analytical specimens of grapes, cucumber, potatoes and wheat (whole
	plant, grains and straw)
Document No &	M-038193-02-1
Report No:	
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and Annex II, part
	A, section 8 residues in or on treated producto food and feed
GLP	yes Q Y Q O G Q
Report:	KCA 6.1/02,
Title:	Stability of CGA-279202 and CGA-321113 in crops and processed fractions under
	freezer storage conditions
Document No &	M-038204-02-10 4 4 2 2 2 2 2 2
Report No:	

Guidelines:	EU A, s	Counci ection 8	l Direc 8 residi	tive 9 ies in	or on tre	C Ar ated p	mex II roduces	part A	Section	©6 an Î C	d Ánnex	III,	part
GLP	yes	<i>R</i> e	×	, O	Ő,	Ø	Ą	2	×°	Ċ,			

 \bigcirc

Test system

In the first study (1999) samples of grapes cucumbers, potatoes and wheat (whole plant, grain and straw) were homogenised and fortified with about 0.5 mg/kg trifloxystrobin and CGA 321113, each (straw: 1:0 mg/kg). Immediately after fortification, a sample was taken to determine the initial testiques (fortification level). The remaining fortified specimen were deep frozen at below -18°C and analysed after 2, 4, 8, 12, 48 and 24 months.

In the second study (1999), samples of apple fruit, apple wet pomace, peanut nutmeat, peanut oil, peanut bay, porato granules flakes and grape jurce were fortified with 0.5 to 1.0 mg/kg trifloxystrobin and CGA 321113 each Immediately after fortification, a sample from each matrix was taken to determine the initial residues (fortification level). The remaining fortified samples were deep frozen (approx. -20°C) and analysed after nominal storage intervals of 2, 6, 12, and 18 months.

Finding Conclusion

No significant decrease of residues was observed after the tested period of 18 or 24 months. Thus the residues of trifloxystrobid and CGA 32113 are stable under freezer storage conditions for at least 24 months (grapes cucumbers, potatogs and wheat) or 18 months (apple, apple wet pomace, peanut nutmeat, oil and hay, grape and wheat). Hence, the results of the presented storage stability studies validate the results from the residue trials with respect to the stability of trifloxystrobin and CGA 321173 in forzen samples. For details, see Tables 6.1-2 to 6.1-5.

Crop / Matrix		Average recov	ery (%) / Storag	ge time (months)	
	0	2	6	12	18
Apple (fruit)	89	75	112	78	7507 20
Apple (pomace)	108	82	گ ¹⁰⁴	87	× 188
Peanut (nutmeat)	111	71	78	Q 87	, 72°° ×
Peanut (hay)	101	95	y 99 2	§3 Ø	987 . S
Peanut (oil)	84	11	110		Ö [¥] 107 00 0
Potato (granules)	97	\$09	° 102	20 ⁷ 100 ⁷ 10	86%
Grape (juice)	116	114	© 85 Q	× 0107	6 ⁵⁹⁶

A new study was conducted in order to check for stability of trifloxystrolon (CGA 279202), its isomers CGA 357262, CGA 357264, CGA 331409, and metabolite CGA 324 13 and its isomer CGA 373466 in plant matrices:

Report:	KCA 6:1/07, , , , , , , , , , , , , , , , , , ,
Title:	Storage stability of GA 279202, CGA 357262, CGA 357262, CGA 331409, CGA
	321113 and CGA 373460 in plant matrices for 24 months
Document No &	M-468560-01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Report No:	MR-1/075, 96421 0501
Guidelines:	Regulation No. 107/2009 of the European Parliament and of the Council,
ð l	DECD Guidelme 506
GLP 🦃	yes i i i i i i i i i i i i i i i i i i i
<u>i</u>	
Test system	

The stability of CGA 279202 (trifloxystrobil), CGA 357262, CGA 357261, CGA 331409, CGA 321113 and CGA 373466 for 2 years in deep frozen storage was investigated in plant matrices covering the five relevant commodity groups thigh water content, high oil content, high protein content, high starch content, high acid content.

× n

Samples of corn green material, rape seed, bean dry seed, rye grain and orange fruit were fortified with CGA 279202 (triflexystrobin), CGA 357262, CGA 357261, CGA 331409, CGA 321113 and CGA 373466 at 0.10 mg/kg. Immediately after fortification, a sample was taken to determine the initial residues. The remaining fortified samples overe stored deep frozen at -18°C or below until analysis after nominal storage intervals of 1, 3, 6, 2, 18, and 24 months.

For analysis the residue analytical method 01313 was used with a limit of quantitation of 0.01 mg/kg.

Findings / Conclusion

No significant decrease of residues was observed after the tested period of 24 months. Thus the residues of trifloxystrobin (CGA 279202), CGA 357262, CGA 357261, CGA 331409, CGA 321113 and CGA 373466 are stable under freezer storage conditions for at least 24 months. Hence, the results of the presented storage stability study validate the results from the residue trials with respect to the

; 2013)

; 2013)

stability of trifloxystrobin (CGA 279202), CGA 357262, CGA 357261, CGA 331409, CGA 321113 and CGA 373466 in frozen samples. For details, see Tables 6.1-6 to 6.1-11.

5.1-6: Storage	stability o	f trifloxyst	trobin in p	lant matri	ces (, ()	; 2013)	
Crop / Matrix		Avera	ge recovery	(%) * / Stor	age time (m	onths)	S .	
	0	1	3	<u>ک</u> 6	12	18	24	
Bean (dry seed)	100	132	97	116	Q 7	112 @	139	
Corn (green material)	100	95	870	96	95	109	104	
Rye (grain)	100	95	\$89	95 1		₹ ³ 102		
Rape (seed)	100	74 §	85 ¢G	206 20			\$	& ″
Orange (fruit)	100	94	M.	0 ⁰ 92 Q	90	106	\$ ⁷ 93€ ³	<u>ý</u>

Average recovery (%) * (Storage One (menths)	, L
	24 ²⁴
	109
	119
2000 113 0 102 0131 4 147 26	123
10057 3792 107 99 790	114
108 103 103 103 10 1115 119	125
	Average recovery $(\%)$ * Storage One (months) 0 1 3 2 12 100 100 100 100 102 116 412 113 100 100 100 100 100 100 113 100 2 12 100 100 100 100 2 113 100 2 86 95 100 113 02 131 147 926 107 99 90 90 100 108 103 210 111 111 119

Storage stability of CGA 357261 in mant matrices Table 6.1-8:

		9		
Cop / Matrix , , , , , , , , , , , , , , , , , , ,	(%) * / Stor	Øage time (m	onths)	
	6	12	18	24
Bean (dry seed) 2 500 0 97 y 106	S111	113	102	119
Corn (Speen material) 0 100 7 30 5 88	89	95	111	98
Rycograin)	91	88	100	83
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$	81	100	103	95
Orange (fruit) $\sqrt[6]{9}$ 100 $\sqrt[6]{97}$ $\sqrt[6]{97}$ 100	105	109	115	100

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Animal matrices

Table 6.1-12	Summary of storage stability of trifloxystrobin in animal matrices
1	

Analyte	Animal matrix	Stability	Storage conditions	Reference
Trifloxystrobin CGA 321113	Muscle (meat) Liver Milk Eggs	Up to 12 months	≶ ≤ -20°C	Annex II dossie Annex Point CA 6 1903 , M.C. (1999) Report 19, 301-99 Doc. No. M-038213-020

The storage stability of residues of trifloxystrobid and CGA 321113 in animal matrices was already investigated in an animal storage stability study and evaluated during the peer review under Directive 91/414/EEC. In the Annex II dossier an interim report was submitted (1997) with 3 to 4 month storage stability data. An update of this study with 12 month storage stability data (1997) with 3 to 4 month storage stability data. An update of this study with 12 month storage stability data (1997) with 3 to 4 month storage stability data. An update of this study with 12 month storage stability data (1997), 1999) was submitted at a later time point and is reported in Appendix III of SANCO/4339/2000-Final, 7 April 2013 as study which was submitted during the evaluation process but was not cited in the draft assessment report.

For this reason the final report (including storage data ap to 12 month) is summarised again below:

Report:	KCA 6.1.03,
Title:	Stability of OGA-229202 and CGA-321113 in meat, milk, and eggs under freezer
	storage conditions
Document No &	104-038203-02-4 (, , , , , , , , , , , , , , , , , ,
Report No:	301-97, 110932
Guidelines:	EU Council Directive 9/414/EEC Annex IC part & section 6 and Annex III, part
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A, section 8 residues in or or treated products, food and feed
GLP 🖉	yes of A and a a
K∼y [*]	

#### Test system

Samples of muscle, fiver, milk and eggs were homogenised and fortified with 1.0 mg/kg trifloxystrobin and GGA 320113, each mmediately after fortification, a sample was taken to determine the initial residues (fortification level). The remaining fortified specimen were deep frozen at below 20°C and analysed after nonfinal intervals of 3, 6 and 12 months.

### Findings / Conclusion

No significant decrease of residues was observed after the tested period of 12 months. Thus the residues of trifloxystrobin and CGA 321119 are stable under freezer storage conditions for at least 12 months. The ofore, the results of the presented storage stability studies validate the results from the feeding trials with respect to the stability of trifloxystrobin and CGA 321113 in frozen samples. For details, see Tables 6.1-13 to 60-14.





The storage stability of pesticide residues in sample extracts is generally checked during the development of the applicable analytical residue methods.

In analytical method 01313 (M-4)1496-02-1; refer to 4.1.2), all analytes were found to be stable in tested extracts of corn (green material); kidney bean (seed), wheat (grain), rape (seed), orange (fruit) and how cone, kiln dried) for at least 27 days at  $40^{\circ} \pm 3^{\circ}$ .

In analytical method 01300/M@5 (M-453914-02-1, Prefer to 4.2), trifloxystrobin and CGA 321113 were found to be stable in tested extracts of bovine kidney, milk and poultry's eggs for at least seven days. In addition trifloxystrobin was found to be stable in bovine fat and meat for at least 4 days and in bovine liver for at least 1 brays, CGA 32/113 was found to be stable in bovine liver and fat for at least 4 days while it declined about 40% in bovine meat within four days.

Additionally, during residue analyses on regular sample sets, the analytical performance of the methods must be checked with concurrent recoveries on each sample set. Therefore the relevant information on the stability in the final or any intermediate step can be derived from the fortification experiments performed during method validation. Every analytical batch does contain at least one concurrent recovery which is handled and stored in parallel to the residue samples. If the recoveries in the fortified samples are within acceptable ranges, stability is considered to be sufficient.



 $\bigcirc$ 

¹⁴C; abbr. [14C-GP]

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

#### CA 6.2 Metabolism, distribution and expression of residues

#### CA 6.2.1 Plants

#### Summary of plant metabolism in the DAR of April 2000

The original dossier contained plant metabolism studies with trifloxystrobin on wheat apple and cucumber using ¹⁴C-radiolabelled test substance with two differentiable positions. As these studies have been evaluated already by the RMS and respective EU authorities they are not repeated in the supplementary dossier. Only a short concluding automary of the old studies is presented in Section 6.2.1 on "Metabolism, distribution and expression of residues" of this dossier, in addition to the new studies not contained in the original dossier.

Trifloxystrobin (methyl (*E*)-methoxyimine-{(*E*)- $\alpha$ -[1-( $\alpha,\alpha,\alpha$ -trifluoro-*m*-totyl)ethylidene-aminooxy]o-toly}acetate, IUPAC) is a fungicide belonging to the group of strobilurin chemical compounds. The mode of action involves inhibition of mitochondrial respiration in fungi. Technical trifloxystrobin consists of a mixture of four diastercomess with the parent substance (*EE* configuration of the two C=N double bonds) being the dominant isomer. The four isomers in the technical product have a typical composition of parent-*E*(*E*: *E*/Z): *Z/E* (*J*/*Z*=95.8: 1.3: 1.2 < 0.7.

Trifloxystrobin was ¹⁴C-labelled in both of the two phonyl rings of the molecule for investigation of metabolism studies in plans and animals

The radiochemical purity of the test substance in metabolism studies was usually higher than the chemical purity in the technical material

In this part of the dossier additional that metabolism studies are reported that were not included in the original dossier for Annex muchasion. The metabolism of trifloxystrobin in wheat was repeated since the original metabolism studies of trifloxystrobin in wheat revealed very low residues and, therefore, only constricted structure electridation of metabolises could be performed. Therefore, the US EPA required a new wheat metabolism study that was conducted in 2002. An additional metabolism study on sugar beet was conducted in 2000 in order to demonstrate a common metabolic pathway of trifloxystrobin in at least three different crop groups. This study was submitted to the EMS 'The Netherlands' in the framework of establishment of temporary MRLs in root and tuber crops. A further metabolism study in peanues performed in 1997 was submitted to USA for registration, but not to the EU. This study was assessed by JMPR (FAO, 2004)¹. As these studies were not part of the original submission for Annex I inclusion they are now summarised in this dossier.

¹ FAO of the UN, 2004. Trifloxystrobin. In: pesticide residues in Food – 2004. FAO Plant Production and Protection Paper, 178, 240-270.

Bayer CropScience

Ò

#### **Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin**

In their recent "Reasoned opinion on the modification of the existing MRL for trifloxystrobin in beams with pods" EFSA concluded (EFSA Journal 2013;11(4):3199):

"The metabolism of trifloxystrobin after foliar applications in provary crops that been investigated in apples, cucumbers, wheat and sugar beet and the details of the metabolism studies are given in the previously issued EFSA reasoned opinion (EFSA, 2014). A metabolism study in peanuts was assessed by the JMPR (FAO, 2004).

The metabolism of trifloxystrobin (E/E isomer) in primary crops was complex and mainly proceeded via cis/trans isomerisation (Z/E isomer, Z/Z isomer, E/Z isomer) and cleavage of the methyl ester group to form the metabolite (E,E)-methoxyinnino-{Z/1-(3,trifluoromethyl $phenyl)-ethylideneamino-oxymethyl]-planyl}-acetic acid (<math>CCA$  32 M13, Metabolite (M5). Trifloxystrobin was the major component of residues in alk crops, investigated, except peanut kernels³. Metabolites, including CGA 321113, were below the trigger value of 10% of TRR in all samples of wheat, apples, cuembers, peanues and sugar beet leaves and tops, with the exception of sugar beet roots. In sugar, beet root two metabolites wore at leaves and tops, with the trigger value: the metabolite  $M_{19a}^4$  (Metabolite 16) accounted for 20 % of the TRE (at 0 DALA) and 15 % of TRR (at 45 DALA); the metabolite CGA 321112 accounted for 11 % of TRR (at 21 and 45 DALA);

The peer review assessed the metabolism of fruits and fuiting vegetables and cereals. The conclusion was that the metabolism proceeded according to a similar pathway and that the residue definition for monitoring and rick assessment should comprise the parent compound only for these crop groups (United Kingdom 2000). JMPR concluded that the metabolism of trifloxystrobin in peaners was similar to the metabolism observed in wheat. The metabolism study on sugar beel was submitted in the framework of the MRL application, after the conclusion of the peer review under Council Directive 91/414/EEC (EFSA, 2009a)⁶.

Based on the findings from the metabolistic study in root and tuber vegetables and the residue trials on leavy and root vegetables (Brussels sprout), head cabbage, celery, leek, turnip, swedes, salsify, parsnip, parslex root) where the metabolite CGA 321113 [M5] occurred even at higher levels than parent trifloxystrobin, EESA has recommended in previously issued reasoned opinions to consider the possible inclusion of this metabolite in a revised risk assessment residue definition for plant commonties (EFSA, 2009a, 2009b, 2012)⁶.

Since the residue data indicated that the metabolite CGA 321113 is not found in beans with pods, EFSA concludes that the residue definitions for enforcement and risk assessment as agreed in the peer review are provisionally applicable to the crop under consideration. The current residue definition set in Regulation (EC) No 396/2005 is identical to the residue

² EFSA 2011: EFSA Journa 2011; 9(1); 1979, 26 p.

³ Trifloxystrobin Copresented about 2 % of the TER and an extensive formation of composed triglycerides was observed in the esidues (FAQS2004).

⁴ II_{19a}: {2-[1(12,3-djh/drox))-2-hydroxy-ethylideneamino-oxymethyl]-phenyl}-methoxy-imino acetic acid/MetaBolite 16.

⁵ DAR on the active substance trifloxystrobin prepared by the RMS the United Kingdom in the framework of Council Directive 91414/EEC, April 2000.

⁶ EFSA 2699a: EFSA Scientific Report (2009) 273, 1-27

EFSA 2009b: EFSA Scientific Report (2009) 314, 1-27

EFSA 2010: EFSA Journal 2010; 8(6)1648, 28 pp.



definition for enforcement derived in the peer review. EFSA proposes that the inclusion of the metabolite CGA 321113 in the risk assessment residue definition for plant commodities should be further discussed in the framework of Article 12 of Regulation (EC) No 396/2005." A metabolite CGA 321113 in the risk assessment residue definition for plant commodilies should be further discussed in the framework of Article 12 of Regulation (EC) No 396/2005."

toppendie the state of the stat



R/

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin





#### Additional plant metabolism studies with [14C-PG]- and [14C-TP]-trifloxystrobin

#### Wheat

The metabolism of trifloxystrobin in wheat is very complex according to the initial metabolism studies, that were included into the original submission for Annex I inclusion. Using both ¹⁴C-tabels more than 30 metabolic fractions were detected, none of them accounting more than 7% of TRF in mature grain and straw following two spray applications of 250 g as/ha or 500 g as/ha. Additional studies applying whigher efforts on identification and characterization of metabolites tesulted in the identification of the metabolic pathway, but still bott unidentified a huge number of metabolites. Therefore, the metabolism of trifloxystrobin if wheat was re-investigated and the new studies were summarised in the following abridgements.

Report:	KCA 6.2.1/09, <b>1997</b> , <b>1997</b> , <b>2002</b> ; M-030885-01-1
Title:	Metabolism of [triff or one thyl-ppenyl-UL-14Cf Frifloxystrobin in Spring Wheat
Document No:	M-070885-01-1 & & & & & & & & & & & & & & & & & &
Report No:	MR-027/02
Guidelines and	US-EPA OPPTS 860.1300 Nature of Residues Planes
data requirements:	PMRA Ref.: DACO 6.3 – Plant Study
	EU Directive \$1/414/EEC amended by the Commission Birective 96/68/EC
GLP	yes of the way of the

### Executive Summary

The metabolism of [trifluoromethyl phenyl UL-¹⁴C]trifloxystroom was investigated in spring wheat following two spray applications al single use rates of 250 g so ha. The wheat plants were cultivated outdoors and treated at the growth stages BBCH 33 and 69. Wheat hay was sampled three and mature straw and grain 35 days after the last application. The total radioactive residues (TRR) amounted to 5.20 mg equ/kg in hay, 6.13 mg equ/kg in straw and 0.120 mg equ/kg in grain, expressed as parent equivalents.

All samples were multiple explaced with acctonitrile/water (4/1, v/v). From wheat hay 92.3% of TRR was extractable; from straw and grain 74.9% and 66.9% of TRR were extractable. An increase of the released residues was acceved by microway support at enhanced temperature, resulting in a total portion of extracted residues of 97.9% of TRR from hay and 91.0% of TRR from straw. Diastase digestion of grain to hydrolyse the starch increased the total portion of released residues to 88.3% of TRR. In total, 80.7% of TRR (4.19 mg equ/kg) was identified in hay, 67.1% (4.11 mg equ/kg) in straw and 61.4% of TRR (0.074 mg equ/kg) in grain

The metabolism of trifloxy trobin in wheat was very extensive as all four stereoisomers of the parent substance and at least ten free and seven conjugated metabolites could be identified. None of the isomers, except the parent substance, and metabolites exceeded 10% of TRR in each of the wheat commodities.

A significant portion of the parent E/E-isomer was isomerized to the Z/E, E/Z and Z/Z stereoisomers.

A main metabolic reaction revealed to be an ester hydrolysis to form the corresponding carboxylic acid. Furthermore, hydroxylation occurred at the imino-methyl group and at the trifluoromethyl phenyl ring in the *meta*-position. Significant portions of the hydroxylated metabolites were conjugated with glucose. The imino-methyl group was partly oxidised via hydroxylation to a carboxylic acid group.



Two very minor cyano metabolites arising from the elimination of the ester/methoxyimino-group (probably via the carboxylic acid intermediate) were formed only in hay and straw.				
In each wheat commodity the parent substance $E/E$ -trifloxystrobin proved to be the main residue component (>10% of TRR). All other residue components appeared at levels best than 10% of TRR.				
The proposed metabolic pat	hway of [14C-TP]trifloxystrobin in wheat is shown in Figure 6.2.1-2.			
Material and Methods				
Test Material				
Structural formula	$H_3C^{-0}$ $H_3C$			
Chemical name	( <i>E</i> , <i>E</i> )-methox (mino-{2-[1-(3-trifluoromethyl-phenyl)-ethylideneamino- oxymethyl] phenyl acetic acid methyl ester (IVPAC) ( <i>E</i> , <i>E</i> )-o((methoxyimino)-2-[[1]1-[3-(trifluoromethyl))phenyl]ethylidene] aminoloxylmethylbenzene acetic acid methyl ester (CAS)			
Common name	Triffoxystrobin			
CAS RN	1¥151%-21-7 2 5 5			
Empirical formula	$C_{20}H_{19}F_{3}N_{2}O_{4}$			
Company code 🔬	CGA 279202 0 0			
Molar mass (non-labelted)	O $O$ $O$ $O$			
Label 🔬 🦨	[triftporomethyl-phenyl-UL-14CPTrifloxystrobin, abbr. [14C-TP]			
Specific radioactivity	$3$ 2 MB mg $\neq$ 100.6 mCi/g $\Rightarrow$ 41.1 Ci/mole			
Radiochemicalpurity	298% (Tadio HPLC O adio - DLC)			
Identity	Confirmed by HPG C/MSMS and ¹ H-NMR			
Test Plates				
Test plant	Spring wheat O			
Variety	Thases Q			
Study design	Outdoor study in a 1 m ² planting container			
Growth stage at application	Two spray applications at growth stages BBCH 33 and 69, pray interval: 42 days			
Harvested commodifies	[*] Hay, 3 days after the last application.			
	Mature straw and grain at growth stage BBCH 89, 35 days after the last application			



#### Sowing of wheat grain, preparation and application of the test mixture

#### Main experiment

Sandy loam (72.4% sand, 22.6% silt, 5.0% clay, 1.02% organic carbon, pH 6.2[CaCl₂]) was filled in an outdoor planting container with a surface of 1 m². Spring wheat was sown and cultivated outdoors during spring and summer 2001 at **Sector 1** test facility (Germany) of Bayer AG. The pointhly mean temperatures ranged from 8 to 20°C, the mean sunshine periods from 95 to 242 hours month and the natural precipitation from 22.7 to 104.7 mm/month.

#### Supportive experiment

An additional supportive experiment was conducted in a plant container (surface of  $0.5 \text{ m}^2$ ) filled with sandy loam to generate a higher amount of metabolites. The container was located in an open vegetation hall that was surrounded by a net fence and protected against rain by offexible glass roof. Spring wheat was sown into the container with same time as done for the main experiment. The container was watered if required. The results of this supportive experiment are not shown in the Findings' Section.

The wheat plants in both experiments were treated by two foliar spray applications approx. 7 weeks after emergence of the plants (BBCH 33, 3rd node at least 2 cm above 2nd node) and 6 weeks later (BBCH 69, end of flowering). The single application rate was approx. 250 g as/ha. The water volume rate was approx. 800 L/ha and the mean annual use rate approx 500 g as/ha. For both experiments radiolabelled [14C-TP]triflowstrobin was dissolved in EC 125 blank formulation and diluted with water to yield the spray solution. This spray solution was evenly sprayed over the surface of the plant containers using a flat fan nozzle that was moved manually (outdoor main experiment) or by a computer controlled track sprayer (supportive experiment).

The stability of the set substance was confirmed by radio-HPLC before and after each spraying. Both plant containers overe fertilized and treated with different pestoides as required for cultivation of healthy plants

Harvest and processing &

Three days after the second application, wheat plants in the hay growth stage were cut shortly above the soil surface. The complete hay sample was dried at room temperature for four days, cut in pieces and homogenized with found purogenusing a high speed surrer. At maturity, 35 days after the second application, the wheat plants were cut above the soil surface. The seeds were collected by hand yielding the grain sample. The remaining ears and chafts were combined with the straw sample. Straw was cut in pieces. Straw pieces and grain were homogenised with liquid nitrogen using a high-speed stirrer. The pulverized plant material was stored in a freezer at  $\leq -20^{\circ}$ C.

Aliquots of the homogenized plant commodifies were extracted with acetonitrile/water (4/1, v/v, 4x) using a high-speed stirrer. The phases were separated by filtration. The combined extract was radioassayed, concentrated and partitioned against dichloromethane yielding an organic and an aqueous phase. The phases were separated, radioassayed, concentrated and analysed by radio-HPLC.

The remaining solids of hav and straw after the primary extraction were exhaustively extracted with acetomtrile/water (1/1, v/v) at 150°C using a microwave device. Extract and solids after extraction were radioassayed.



#### Enzymatic digestion of grain matrix

The remaining solids of grain after the primary extraction were hydrolysed by the starch-digesting enzyme diastase (10 days at room temperature and addition of little sodium azide to prevent arcrobial degradation). The hydrolysate and the filtered and air-dried solids were radioassayed. An aliquot of the diastase hydrolysate was further hydrolysed with concentrated HCl at 100% after addition of tokuene to extract less polar aglycons that exhibited some volatilization in hydrolysis experiments without toluene. The resulting aqueous and organic phases were radioassayed and analysed by radio-VLC. 

#### Radioassaying and analysis

Radioassaying (measurement of the radioactive) was conducted by liquid scinfillation counting (LSC). Quenching was automatically compensated using an external standard. Solid samples were firstly combusted and the formed 14CO2 algorbed In an alkaling scint Mation Fiquid. The detection limit was set to twice the instrument background (approx 20 cpr).

Radio-TLC was conducted on silica gel plates (Si@ F254). For wing application of the sidue solutions the plates were developed over a distance of 150cm with two Golvert mixtures (1) hexane : diethyl ether : tetrahydrofuran : formic add : water (10:70:10:1:2, v:v:v;v) and (2) chloroform : methanol : formic acid : water (7520:42), v:v: v). Redioactive spot were detected by a Bio-Imaging Analyzer. Co-chromatographed non-active reference standard were visualized by fluorescence extinction following excitation with mercury UV-light.

Radio-HPLC was conducted on a RP18 column (250 x 1 mm, 5 µm particle size) operated with different gradient mixtures of water and actionitible (both containing 1% acetic acid) at 40°C. The HPLC system was equipped with a radiononitor with a glass scintolator (cell volume approx. 400 µL). The column recovery was examined by comparison of injected and eluted radioactivity. The eluted radioactivity amounted to 94,7 - 103 S% of the injected one (with one exemption 91.5%). The limit of quantification (LOQ) was set to a peak size of twice the detector background. The HPLC-LOQ depended on the used separation conditions and ranged between 0.001 – 0.01 mg equ/kg.

LC-MS/and LC-MS/MS analyses for dentification of metabolites were performed with a combination of TQS mass spectrometer connected to FIPLC system with a RP column (250 x 2 mm, particle size 5 µm) and a radiomonitor. The HPLE column was operated with gradient mixture of water and acetonitrile (both solvents containing 0.1% formic acid, fonization was achieved by electrospray ionization. Daughter jon's were generated using argon as collision gas.

Enzymatic hydrolysis of conjugated metabolites, was conducted with cellulose (straw) and ßglucosidese (grain). For H-NMR analysis 300 MHz NMR spectrometer was used.

Findings

Total radioactive residues and their extractability

The total radioactive residues (TRR) were determined by summarizing the radioactivity in the primary extracts and the extracted plant matrix. TRR amounted to 5.20 mg equ/kg in wheat hay, 6.13 mg equ/kg in straw and \$120 mg equ/kg for grain.

The portion of radioactive residues extractable with acetonitrile/water accounted for 92.3% of TRR in wheat bay, 71.9% of TRR in straw and for 66.9% of TRR in grain.

**Bayer CropScience** 

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Partitioning of the extracted residues into methylene chloride resulted in the following distribution between organic/aqueous phases: 53.0/39.3% of TRR for hay, 47.8/24.1% of TRR for strave and 26.2/40.7% of TRR for grain.

An additional portion of radioactive residues could be extracted from hay: 5.6% of TRR by microwave support, from straw: 19.1% of TRR by microwave support, and from grain, 21.4% of TRR by diastase hydrolysis of the starch matrix. The non-extractable residues amounted in Jurn to 2.1% of TRR in have to 9.0% of TRR in straw and to 11.7% of TRR in grain.

The residues released from grain by diastase digestion and were hydrolysed using hydrochlone acides and partitioned between toluene and water. 10.5% of TRR portioned into the organic thase and 10.9% of TRR remained in the aqueous phase.

#### Residues in wheat hay, straw and grain

The composition of the radioactive residues in wheat hay, mature wheat straw and grain following two foliar treatments with [14C-TP]trifloxystrobin is presented in Table 6.2.1. ). All four cist trans-isomers of the parent substance and at least 10 free and 8 conjugated metabolites were observed.

The parent substance *E/E*-trifloxystrobia was the major residue component in all wheat commodities amounting to 31.1% of TRR (161 mg/kg) in Hay, 173% of TRR (0.88 mg/kg) in straw and to 19.6% of TRR (0.024 mg/kg) in grain.

The identified components of the extracted ratioactivity in table 6.2.1- 1 were grouped as isomers of the parent compound and as free and conjugated (gracoside) metabolites. In total 80.7% of TRR (4.19 mg equ/kg) was identified in hay 67.1% (4.11 mg equ/kg) in straw ord 61.4% (0.074 mg equ/kg) in grain.

Significant amounts of the parent EE-isomer were transformed into the other isomers (reaction 1 in the metabolic pathway, Figure 6.2.1-2). The proportion of parent isomers accounted for 43.5% (2.26 mg equ/kg) of the TRR in hav 25.5% (1.56 mg equ/kg) or straw and 39.7% (0.048 mg equ/kg) in grain. As the individual isomers showed similar MS spectra they were differentiated by co-chromatography with the respective reference standards.

Apart from isomerization (reaction 1) the main metabolic reaction in wheat was the hydrolysis of the ester group (reaction 2) of the parent compound Furthermore, the hydroxylation (reaction 3) of the imino-methyl group and also at the meta-position of the 1,3-disubstituted trifluoromethyl ring were important. Significant portions of the hydroxylated metabolites were also detected as glycoside conjugates (reaction 4). The methyl group was partly oxidized (reaction 3) to the carboxylic acid group. A minor reaction was elimination at the methoxymino-group, probably via a carboxylic acid intermediate, to form cyare-metabolites in has and straw (released after microwave support).

The enzymatic starch hydrolesis of the gran matrix with diastase resulted in polar residues and polar matrix components that could not be separated either by chromatography or by partition between organic/aqueous phases. Therefore, an acid hydrolysis step and a simultaneous organic/aqueous partition were produced using hydrochloric acid and toluene. This procedure resulted in tentative identification of cleavage products containing the trifluoromethyl phenyl ring linked to an acetyl group followed by hydroxylation of the phenyl ring and glucoside conjugation.

The proposed metabolic pathway of [trifluoromethyl-phenyl-UL-¹⁴C]trifloxystrobin in wheat is presented in Figure 6.2.1-2.



#### Storage stability of trifloxystrobin and its metabolites in wheat

The extraction of hay, straw and grain samples of wheat was initiated within two weeks after sampling. The radio-HPLC separations for the quantitation of the isomers of part compound and its metabolites were also performed within 1-2 weeks. The extracted solids were kept frozen until further extraction and the corresponding extracts were analysed without delay Repeated extractions and analyses of stored wheat samples were conducted in a parallel metabolism study with story -phenyte radiolabelled trifloxystrobin. These analyses confirmed the storage stability the residues.

For diastase digestion the extracted grain was incubated twice for ten days a room temporature Microbial degradation during this incubation was a dided by admixture of little sodium azide.

#### Conclusion

Following two foliar treatments of spring wheat with [146-TP]tofloxystrobin using migle use rates of approx. 250 g as/ha different wheat commodities were extracted with acetonitrile/water (4/1, v/v) to release radioactive residues. From wheat hay sampled three days after the second treatment 923% of TRR was extractable, from straw and grain sampled 35 days after the second treatment 71.9% and 66.9% of TRR was extractable.

The portion of released residues could be increased by merowage support at conhanged temperature (hay, straw) or diastase digestion of starchin grain. These procedures resulted in an increase of the extractable radioactive residues up to 97.9% of TRR from hay, 91.0% of TRR from straw and up to 88.3% of TRR from grann. In total, 8077% of TRR (4.19 mg equ/kg) was identified in hay, 67.1% (4.11 mg equ/kg) in straw and 61.4% of TRP((0.074) mg equ/kg) in grain.

The metabolism of riflox strobin was very extensive as all four storeoisomers of the parent substance and at least ten free and seven conjugated metabolites could be identified. None of the isomers, except the parent substance, and metabolites exceeded 10% of TRR in each of the wheat commodities.

A significant portion of the parent  $E/E_{\pi}$  somerovas isomerized to the Z/E, E/Z and Z/Z stereoisomers. Besides Comerization the main metabolic reaction revealed to be ester hydrolysis to form the corresponding carboxylic acid. Furthermore, hydroxylation occurred at the imino-methyl group and at the trifluoromethy phenyl ring in the *m*-position. Significant portions of the hydroxylated metabolites were conjugated with gucose. The mino-methyl group was partly oxidised via a hydroxyl to a carboxylic acid group." Two very minor cyan metabolites arising from the elimination of the ester/methoxymino-group@probably via the carboxy/be acid intermediate) were only formed in hay and straw The proposed metabolic pathway of [14GTP]trifloxystrobin in wheat is shown in Figure 6.2.1-2

In each wheat commodify the parent substance E/E-trifloxystrobin proved to be the main residue component (>10% of TRR). All other residue components appeared at levels less than 10% of TRR. Therefore the parent substance may serve as analytical target for monitoring and risk assessment.

The second secon  $\sim$ 

# Bayer CropScience

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

[14C-TP]trifloxystrobin at a use rate of 250 g as/ha								
Wheat commodity		Hay		Straw		🔊 G	rain	Ŷ
TRR [mg equ/kg]		5.	20	6.	13	0	.129	
Parent/Metabolite	No.	[%TRR]	[mg/kg]*	[%TRR]	[mg/kg]*	[%TRR]	[mg@kg]*¿	1 10
Parent isomers		43.5	2.26	25.5	1,56	39.77	<b>\$</b> .048	,
CGA279202, <i>E/E</i>	1	31.1	1.61	14.3	<b>9</b> .88	19.6	Q 0.024	Å
CGA357262, Z/Z	2	2.0	0.11	2.4	°0.14	<b>6.3</b>	0.008 &	
CGA357261, Z/E	3	6.7	0.35	5.3 🗳	₿ 0,32	الاس 8.0 ¢	9.010 C	
CGA331409, <i>E/Z</i>	4	3.8	0.20	3.6	_ ∿ <b>.</b> 9.22	× <u>5</u> ,8	¢ 0.00	
Free metabolites		10.3	<b>0</b> 454	∮ 3,4,Ĩ	2.09	<b>21.7</b> *	0.026	
CGA321113	5	1.6	_∢ 0.08√	4.2	006	⁰ 2.6	0.003 °	
CGA373466	6	0.3 🛒	0.62	N 1.8	AQ.11	1.2	© 0.00	
NOA414412	12	2.1	<b>%</b>	v .7 <b>.9</b>	0 ⁹ 0.43 ⁹	\$5.2	0,006	
NOA443152	10	13	& 0.09¢	<b>\$6.5</b>	0,40	§ 4.60°	ۇ0.006	
BO172741	11	Q0.9	0.04	4.1 ⁵	Ø.25 Č	dîš ,	0.002	
BO172631	40	0-~	<u> </u>	b.OP	0.06	~ ⁰ - «	-	
BO172323	39	× - ×	Q -	0.9 C	v 0 <b>2</b> 05	<u> </u>	-	
BO17372	64	<u> </u>	Û,	0.9	~0.06~~	<u>ġ</u>	-	
NOA413163	×9	<u> </u>	<b>20</b> .19	<u> 5</u> 8° <u>,</u>	[~] 0.35 [°]	2.9°2.9	0.004	
NOA413161	8	r.a.	n.d.	ري 1.8 °	<b>1</b>	0.3	< 0.001	
Conjugated metabelit	es 🏑	<b>∂</b> 26.8~	1:39	ð 7 <b>.6</b>	0.46	3.4	0.004	
NOA414412 com	<u></u> <u> </u>	√ ³ ,5 [∞]	<b>0.18</b>	.0,3	€¥ 0;9€¥	-	-	
NOA414412 20nj. 2	D"12"	<u>5</u> 3 «	0.28	ی 0.7 کی	0.04	-	-	
NOA443152 conj. 10	"10"	\$ 8.1 <u>s</u>	0.42	2.2 ⁰	≪ 0.14	3.4	0.004	
NOA443152 conj.2	<u>م</u> 10"	× 0.20 [°]	0.05	^ ^_ ^ ^	0.04	5.4	0.004	
BO172941 conj. 1 👾	"14"	4.5	$>$ 0.2 $\circ$		0.07	-	-	
BO172741 conj. 25	"IY"	\$3.7 ×	<b>Q</b> ,19		0.07	-	-	
BO172631 conj.	<u>م</u> 40" ﴿	0.35	<u>√</u> 0.02	<u>4</u> .3	0.08	-	-	
ВО172323, сойј. 👸	[»] "39Č	×0.6	D'0,09'	1.1	0.07	-	-	
Characterized fraction	ns 🏷			p*				
Organic fractions	¢ ó	¥ 4.	0.22 ×	4.3	0.26	10.5	0.013	
Aqueous fractions	×	<b>%</b> .7	0,30	6.0	0.37	16.4	0.020	
Microwave fractions	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	مَّ× 3.2 مَ	ð Í 7	13.5	0.83	-	-	
Non-extractabl		~	0.11	9.0	0.55	11.7	0.014	
Total identified 🔿		<b>80.7</b>	¥ <b>4.19</b>	67.1	4.11	61.4	0.074	
Total characterized		‰ 17 <b>.2</b> 9	0.89	23.9	1.46	26.9	0.032	
"n" : conjugated metabolite with number n; * [mg/kg]: mg parent equivalents/kg plant matrix								

# Table 6.2.1.1: Composition of radioactive residues in wheat following two foliar treatments with





#### Figure 6.2.1- 2: Proposed metabolic pathway of [14C-TP]trifloxystrobin in wheat

	<u>Q</u> (	ð
Report:	KCA 6.2.1/10, , , , , 2002 ; M-072024-01-1	Ŷ
Title:	Metabolism of [glyoxyl-phenyl-UL- ¹⁴ C]Trifloxystrobin in pring Wheat	
Document No:	M-072024-01-1	
Report No:	MR-028/02	
Guidelines and	US-EPA OPPTS 860.1300, Nature of Residues – Plants	0
data requirements:	PMRA Ref.: DACO 6.3 – Plant Study	Ş
	EU Directive 91/414/EEC amended by the Commission Directive 9608/EC	)
GLP	yes A Q Q A A C Q	

#### **Executive Summary**

The metabolism of [14C-GP]trifloxystrobin was investigated in spring wheat following two spray applications at single use rates of 250 g as ha. The wheat plants were cultivated outdoors and treated at the growth stages BBCH 33 and 69. Wheat hay was sampled three and mature spraw and grain 5 days after the last application. The total adioactive residues (TRR) amounted to \$98 ms equ/kg in hay, 6.12 mg equ/kg in straw and 0.262 mg equ/kg in grain, expressed as parent equivalents.

All samples were multiple extracted with acetonitrife water (4/1, 5/w). From wheat has 94.1% of TRR was extractable; from straw and grain 76.3% and 66.5% of TRR were extractable. An increase of the released residues was achieved by microwave support at enhanced temperature, resulting in a total portion of extracted residues of 98.6% of TRR from hay and 93.2% of TRR from straw. Diastase digestion of grain to hydrolyse the starch increased the total portion of released residues to 93.5% of TRR. In total, 85.9% of TRR (5.15 mg equ/kg) was identified in hay, 90.4% (4.31 mg equ/kg) in straw and 48.2% of TRR f0.126 mg equ/kg) in grain.

The metabolism of triploxystoobin in wheat was pery extensive as all four stereoisomers of the parent substance and at least 11 free and 8 conjugated metabolites could be identified. None of the isomers except the parent substance and metabolites exceeded 10% of TRR in each of the wheat commodities.

A significant portion of the parent E/E isomer was isomerized to the Z/E, E/Z and Z/Z stereoisomers. Besides isomerization the main metabolic fraction revealed to be ester hydrolysis to form the corresponding carboxybe acid Furthermore hydroxylation occurred at the imino-methyl group and at the trifluoromethyl phenyl ring in the *m*-position Significant portions of the hydroxylated metabolites were conjugated with glacose. The infono-methyl group was partly oxidised via a hydroxyl to a carboxylic acid group. Two very minor evano metabolites arising from the elimination of the ester/methoxyimino-group (probably via the carboxylic acid intermediate) were only formed in hay and straw. The same metabolic reactions were also observed with the alternative trifluoromethyl phenyl radiolabel.

However, additional very polar metabolites were only detected when using the glyoxyl-phenyl label. These metabolites either conventionally extracted or with microwave support or after enzymatic hydrolysis of the starch in grain, were isolated from the aqueous phase following organo-aqueous partitioning. Major polar metabolites released from grain were identified as phthalic acid and its derivatives. other metabolites of this group were characterized by a combination of phase partitioning, radio-HPLC, radio-TLC, HPLC-MS, hydrolysis, methylation and acetylation. Based on these methods the structure of a new metabolite was elucidated with very high probability, i.e. the "cyclic keto alcohol", SA04271. This metabolite was released from grain at similar portion as the parent substance



•••••••••	
CAS RN	€4151521-7
Empirical formula 🖉 🔬	$C_{20}$ $F_3N_{20}$ $F_3N_{20}$ $F_3N_{20}$
Company code	QQA 279202
Molar mass (non-labeled)	408.4g/mole
Label	[glyoxyl-phenyl-UL-14C]Frifloxystrobin, abbr. [14C-GP]
Specific radioactivity	248 MBQ/mg = 67.0 mCi/g $27.4$ G/mole
Radiochemical purity	98% (radio FPLC adio FLC)
Identity 🔊 🗸	Confirmed by HPLC/MSMS and 1H-NMR

Test Plants

Q*	
Test plant	Spring wheat N.
Variety 🗸	Thasos S S
Study design	Outdoor soldy in a 1 m ² planting container
Growth stage at	Two speay applications at growth stages BBCH 33 and 69,
application 🔏 🔍	spray interval 42 days
Harvested commodities	Hay, 3 days after the last application.
	Mature straw and grain at growth stage BBCH 89, 35 days after the last
A PA A	application
	ý



#### Sowing of wheat grain, preparation and application of the test mixture

#### Main experiment

Sandy loam (72.4% sand, 22.6% silt, 5.0% clay, 1.02% organic carbon, pH 6, C[CaCl₂]) way filled in an outdoor planting container with a surface of 1 m². Spring wheat was sown and cultivated outdoors during spring and summer 2001 at **Sector 1** test facility (Germany) of Bayer AG. The pointhly mean temperatures ranged from 8 to 20°C, the mean sunshine periods from 95 to 242 hours month and the natural precipitation from 22.7 to 104.7 mm/month.

#### Supportive experiment

An additional supportive experiment was conducted in a plant container (surface of  $0.5 \text{ m}^2$ ) filled with sandy loam to generate a higher amount of metabolites. The container was located in an open vegetation hall that was surrounded by a net fence and protected against rain by offexible glass roof. Spring wheat was sown into the container with same time as done for the main experiment. The container was watered if required. The results of this supportive experiment are not shown in the Findings' Section.

The wheat plants in both experiments were treated by two foliar spray applications approx. 7 weeks after emergence of the plants (BBCH 33, 3rd node at least 2 cm above 2nd node) and 6 weeks later (BBCH 69, end of flowering). The single application rate was approx. 250 g as/ha. The water volume rate was approx. 800 L/ha and the mean annual use rate approx 500 g as/ha. For both experiments radiolabelled [14C-GP]triflowstrobin was dissolved in EC 125 blank formulation and diluted with water to yield the spray solution. This spray solution was evenly sprayed over the surface of the plant containers using a flat fan nozzle that was moved manually (outdoor main experiment) or by a computer controlled track sprayer (supportive experiment).

The stability of the set substance was confirmed by tadio-HPLC before and after each spraying. Both plant containers overe fertilized and treated with different pestoides as required for cultivation of healthy plants

Harvest and processing 🖉

Three days after the second application, wheat plants in the hay growth stage were cut shortly above the soil surface. The complete hay sample was dried at room temperature for four days, cut in pieces and homogenized with found narogeniusing a high-speed surrer. At maturity, 35 days after the second application, wheat plants were cut above the soil surface. The seeds were collected by hand yielding the grain sample. The remaining cars and chafts were combined with the straw sample. Straw was cut in pieces, straw pieces and grain were homogenized with liquid nitrogen using a high-speed stirrer. The pulserized plant material was stored in a freezer at  $\leq -20^{\circ}$ C.

Aliquots of the homogenized plant commodifies were extracted with acetonitrile/water (4/1, v/v, 4x) using a high-speed stirrer. The phases were separated by filtration. The combined extract was radioassayed, concentrated and partitioned against dichloromethane yielding an organic and an aqueous phase. The phases were separated, radioassayed, concentrated and analysed by radio-HPLC.

The remaining solids of hav and straw after the primary extraction were exhaustively extracted with acetomtrile/water (1/1, v/v) at 150°C using a microwave device. Extract and solids after extraction were radioassayed.



#### Enzymatic digestion of grain matrix

The remaining solids of grain after the primary extraction were hydrolysed by the starch-digesting enzyme diastase (10 days at room temperature and addition of little sodium azide to prevent arcrobial degradation). The hydrolysate and the filtered and air-dried solids were radioassayed. An aliquot of the diastase hydrolysate was further hydrolysed with concentrated HCl at 100°C. The hydrolysate was portioned against ethyl acetate to isolate less polar aglycons. The resulting aqueous and organic phases were radioassayed and the organic phase analysed by radio²TLC.

#### Derivatisation of metabolites

#### *Methylation with diazomethane*

The polar metabolites in the aqueous phase from grain extraction were purified, dued and re-dissolved in methanol and diethylether. For generation of diazomethane (CHON2) amethyl-N-nitroso-ptoluenesulfonamide dissolved in diethyl ether dropped into a solution of 10% KOH in diethylene glycol and diethyl ether in a small flow-through glass apparates that was gently heated in a water bath. The developed diazomethane/ether vapour was directly transferred with a gentle stream of atrogen into a small glass tube with the popur metabolites for some prinute until the solution remained constantly yellow. The resulting solution was concentrated using a stream of hitrogen. Aliquots of the metabolite before and after methylation overe analysed by radio-TLC

#### Acetylation with acetic acid aphydride

In a parallel experiment, the poter metabolites in the aqueous phase from graten extraction were purified, dried and re-dissolved in pyricine and acette acidenhydride in a closed glass vial. After 5hour incubation at room temperature the solution was concentrated to dryness using a rotary evaporator. Small appoints of ethanol were repeatedly added during his concentration procedure to destroy exceeding acetic acid anlydride and to completely condistillate off the pyridine. The remainder was re-dissolved in little water and analysed by radio HPLO.

## Radioassaying and analysis

Radioassaying (measurement of the radioactivity) was fonducted by liquid scintillation counting (LSC). Quenching was automatically compensated using an external standard. Solid samples were firstly combusted and the formed CO2 sosorbed in an alkaline scintillation liquid. The detection limit was set to twice the instrument background (approx, 20 cpm).

Radio-TLC was conducted on silica get plates (Sigo F254). Following application of the residue solutions the plates were developed over a distance of 15 cm with two solvent mixtures (1) hexane : diethyl ether : tetrahydrofuran : formic acter : water (10:70:10:1:2, v:v:v:v) and (2) chloroform : methanol : formic act : water (75:20:4:2, *:v:v:). Radioactive spots were detected by a Bio-Imaging Analyzer. Co-chromatographed non-active reference standards were visualized by fluorescence extinction following excitation with mercury UV-light.

Radio-HPL was conducted on a RP1& column (250 x 4 mm, 5 µm particle size) operated with different gradient mixtures of water and acetonitrile (both containing 1% acetic acid) at 40°C. The HPLC system was equipped with a radiomonitor with a glass scintillator (cell volume approx. 400 µL). The column recovery was examined by comparison of injected and eluted radioactivity. The eluted radioactivit@amounted to 97.5 – 106.0% of the injected one (with one exemption 122.4%). The limit of quantification (LOQ) was set to a peak size of twice the detector background. The HPLC-LOQ depended on the used separation conditions and ranged between 0.001 - 0.01 mg equ/kg.

**Bayer** CropScience

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

LC-MS and LC-MS/MS analyses for identification of metabolites were performed with a combination of TQS mass spectrometer connected to a HPLC system with a RP column (250 x 2 mm, particle size 5 µm) and a radiomonitor. The HPLC column was operated with gradient mixture of water and acetonitrile (both solvents containing 0.1% formic acid). Ionization was achieved by electrospray ionization. Daughter ions were generated using argon as collision gas.

straw) and B Enzymatic hydrolysis of conjugated metabolites was conducted with cellulose for a glucosidase (grain). For ¹H-NMR analysis a 300 MHz NMR spectrometer was used.

#### Findings

Total radioactive residues and their extractability

The total radioactive residues (TRR) were decrimined by stimmarizing the radioactivity in the primary extracts and the extracted plant matrix. TRR amounted to 5.98 mg equ/kg in wheat hay 6.12 mg equ/kg in straw and 0.262 mg equ/kg for grain

The portion of radioactive residues expractable with acetoor trile water accounted for 2.1% of TRR in wheat hay, 76.3% of TRR in straw and for 6.5% of TRR in grain.

Partitioning of the extracted residues into methylene chloride resulted in the following distribution between organic/aqueous phases: 54.1/40.0% of TRR for hay, 50.0/26.3% of TRR for straw and 16.3/60.2% of TRR for grain.

An additional portion of radioactive residues could be extracted from hay: 4.5% of TRR by microwave support resulting in Stal extraction of 98.6% of TRK from Straw 16.9% of TRR by microwave support resulting in total extraction of 93.2% of TRR, and from grain: 17.0% of TRR by diastase hydrolysis of the starch matrix resulting in total extraction of 20.5% of TRR. The non-extractable residues amounded in furn to 1.4% of TRROin has to 68% of TRR in straw and to 6.5% of TRR in grain.

The residues released from grain by diastase digestion were hydrolyzed using hydrochloric acid and partitioned between ethyl acetate and water. 14.0% of TRR portioned into the organic phase and 3.0% of TRR remained in the aqueous phase

Residues in wheat hay straw and

The composition of the radioactive residues in wheat hay mature wheat straw and grain following two foliar treatments with [4C-TR] trifloxystrolon is presented in Table 6.2.1-2. All four cis/trans-isomers of the parent substance and at least 1/1 free and 8 conjugated metabolites were observed.

The parent substance *E/E*-triffoxystrobin was the main residue component in all wheat commodities amounting to 40.3% of TRR 2.41 mg/kg) in hay, 18.6% of TRR (1.44 mg/kg) in straw and to 11.1% of TRR (0.029 mg/kg) in grain.

The identified simponents of the extracted radioactivity shown in Table 6.2.1- 2 were grouped as isomers of the parent comported and as free and conjugated (glucoside) metabolites. In total, 85.9% of TRE 5.13 mg eq@kg) was identified in hay, 70.4% (4.31 mg equ/kg) in straw and 48.2% of TRR (0.126 mg/equ/kg) in grain.

Significant amounts of the parent *E*,*E*-isomer were transformed into the other isomers (reaction 1 in the metabolic pathway, ). The proportion of parent isomers accounted for 53.1% (3.18 mg equ/kg) of



the TRR in hay, 29.3% (1.79 mg equ/kg) in straw and 17.9% (0.047 mg equ/kg) in grain. As the individual isomers showed similar MS spectra they were differentiated by co-chromatography with the respective reference standards.

Apart from isomerization (reaction 1) the main metabolic reaction of trifloxy trobin in wheat was the hydrolysis of the ester group (reaction 2). Furthermore, the hydroxylation (reaction 3) of the infinomethyl group and also at the meta-position of the 1,3-disubstituted triflooromethyl phenyl ring were important. Significant portions of the hydroxylated metabolites were also detected as glycoside conjugates (reaction 4). The methyl group was partly oxidized (reaction 3) to a carboxylic acid, A minor reaction was elimination at the methoxyimino group (reaction 5), probably via a carboxylic acid, intermediate, to form cyano-metabolites in hay and straw (released after microwave support). Following cleavage of the bridge between the phenyl rings, the glyoxyl-phenyl moiety was intensively degraded to different minor label-specific metabolites, such as the cyanobenzoic acid, its oxidation product the phthalic acid and, by further elimination of water, to a *cyclic keto archolic* (SA05271).

The "cyclic keto alcohol" (SA04271) was isolated from the water phase following the first extraction of grain with acetonitrile/water and partition of the extract against dichloromethane. This polar metabolite was investigated by HPIC MS and was tentatively identified as "syclic keto alcohol". It has been demonstrated by TLC that this metabolite is different from methalic acid and its condensation product phthalide. Following methylation with diacomethane, several methylation products were observed that obviously resulted from methylation of different products after opening of the cyclobutane ring. Following acetylation of SA04271, three acetylation products were detected. The main acetylation product was identified as moto-acetylated benzyle alcohol also formed after ring opening of the cyclobutane ring. Acidic hydrolysis of SA04271 (2N HCk 100°C 3 hours) proved the hydrolytic stability of this metabolite and excluded an appearance of a potential conjugate. These investigations indicated the correct identification of the structure of this metabolite with a high probability.

The enzymatic starch hydrolysis of the graft matrix with diastase resulted in polar residues and polar matrix components that could not be sufficiently separated either by chromatograph or by partition between organic/aqueous phases. Therefore, an acid hydrolysis step using hydrochloric acid was involved followed by organic aqueous partition with ethyl acetato. Two aglycons were detected in the organic phase. The main component was phthalic acid accompanied by a small amount of its condensation product phthalide that was obviously formed due to the harsh hydrolysis conditions.

The proposed metabolic pathway of [14C-OP]trifloxystrobin in wheat is presented in Figure 6.2.1-3.

Storage stability of trifloxystrobn and its metabolites in wheat

The extraction of hey, straw and grain samples of wheat was initiated within two weeks after sampling. The radio-HPLC separations for the quantitation of the isomers of parent compound and its metabolites were also performed within 1-2 weeks. The extracted solids were kept frozen until further extraction and the corresponding extracts were analysed without delay.

Repeated extraction and analysis of stored grain samples were conducted five and six months after the initial analysis. The metabolic pattern of the aqueous phase containing the major portion of the extracted residues was virtually identical after all storage periods and thus confirmed the storage stability of incurred trifloxystrobin residues in starch-containing samples for at least six months.

For diastase digestion the extracted grain was incubated twice for ten days at room temperature. Microbial degradation during this incubation was avoided by admixture of little sodium azide.



#### Conclusion

Following two foliar treatments of spring wheat with [14C-GP]trifloxystrobin using single use rates of approx. 250 g as/ha different wheat commodities were extracted with acetonicale/water  $(4/\sqrt[2]{v}/v)$  to release radioactive residues. From wheat hay sampled three days after the second treatment 94.1% of TRR was extractable, from straw and grain sampled 35 days after the second treatment 76.3% and 66.5% of TRR was extractable.

The portion of released residues could be increased by microwave support at enlanced temperature (hay, straw) or diastase digestion of starch in grain These procedures resulted in an increase of the extractable radioactive residues up to 98.6% of TRR from hay, 93.2% of TRR/from straw and up to 93.5% of TRR from grain. In total, 85.9% of TRR (5.13 mg/equ/kg/was identified in hay, 704% (4.31 mg equ/kg) in straw and 48.2% of TRR (0,126 mg equ/kg) in grain.

The metabolism of trifloxystrobin was vergextensive as all four stereoisomers of the parent substance and at least 11 free and 8 conjugated metabolites could be identified. Sone of the isomers and metabolites except the parent substance xceeded 10% of TRR in each of the wheat comprodities.

A significant portion of the parent E/E-isofter was isomerized to the Z/E, E/Z and Z/E stereorsomers. Besides isomerization the main metabolic reaction revealed to be ester hydrolysis to form the corresponding carboxylic acid, Furthermore, hydrox lation Sccured at the imino-methyl group and at the trifluoromethyl phenyl ring in the *m*-position, Significant portions of the hydroxylated metabolites were conjugated with glucose. The impro-metayl group was partly oxidized yill a hydroxyl to a carboxylic acid group. Two very minor crano metabolites arising from the elimination of the ester/methoxyimino-group (probably via the carboxylic and informediate) were only formed in hay and straw. The same metabolic reactions were also observed with the alternative trifluoromethyl phenyl radiolabel (see before).

However, additional very polar metabolite@were only detected when using the glyoxyl-phenyl label. These metabolites other conventionally extracted of with microwave support or after enzymatic hydrolysis of the starch in grain, were isolated from the aqueous phase following organo-aqueous partitioning. Major polar metabolites released from grain were identified as phthalic acid and its derivatives. Other metabolites of this group were characterized by a combination of phase partitioning, radio-HPLC, radio TLC, HPLC-MS, hydrolysis, methylation and acetylation. Based on these methods the structure of a new metabolite was elucidated with very high probability, i.e. the "cyclic keto alcohol", SA04271. This metabolite was repeased from grain at similar portion as the parent substance

In each wheat commodity the parent substance E/P-trifloxystrobin proved to be the main residue component (>10% of TRR). All other residue components appeared at levels less than 10% of TRR.

component (>10% of PKR). All other residue components appeared at levels less than 10% of Therefore the parent substance may serve as analytical target for monitoring and risk assessment.

[14C-GP]trifloxystrobin a use rate of 250 g as/ha							
Wheat commodity		Hav		Str	aw	🐎 G	rain 7
TRR [mg equ/kg]	ng equ/kg]		98	6.12		× 0.262	
Parent/Metabolite	No.	[%TRR]	[mg/kg]*	[%TRR]	[mg/kg]*	[%TRR]	[mg/kg]*
Parent isomers		53.1	3.18	29.3	1.79	17.9%	<b>~0.047</b>
CGA279202, <i>E/E</i>	1	40.3	2.41	<b>%18.6</b>	<i>.</i>	110	0.02 [°]
CGA357262, Z/Z	2	2.2	0.13		0.14	×1.8 ć	0,005 🔬
CGA357261, Z/E	3	7.1	0.42	5.3 🐇	0,33	چ 2.9	Ŷ.008 0
CGA331409, E/Z	4	3.6	0.20	3.1	<u>، %</u> 19	≶્ર.િિ્	\$ 0.00\$°
Free metabolites	1	8.9	<b>9</b> ,53	) 3 <b>3</b> .3	2.05	<b>.</b> 99.2 `~	0.050
CGA321113	5	1.3	0.08	<b>9</b> .8	023	[©] 1.75	0.005 <u>°</u> °
CGA373466	6	0.2 🛒	0.0	> 2.0 [♥]	<u>\$0.12</u>	0.9	\$ 0.00°
NOA414412	12	0.7	<u></u> %%04	<u>6:5</u>	0 ⁹ 0.409	\$Ž.4 关	05006
NOA443152	10	05%	& 0.03 C	<b>\$</b> .9	0,96	<u> </u>	0.005
NOA413163	9	A.0	0.24	5.0	Ø.31 Č	\$\$	^{≪°} 0.005
NOA413161	8	0-3	<u> </u>		× 0.08×	~00.3 <u>k</u>	0.001
FWH0115C	54	× 1.4 [×]	0.09	<u>3.0</u>		<u>3.60</u>	0.009
FWH0115D	53	) 0.7 ූ	0.04	1.2	~~0.07 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>\$01</u>	0.008
BO172741	<b>%</b> 1	<u> </u>	<u> </u>		0.24	~~ -	-
BO172631	40		<u> </u>	<u>~0.7</u>		ý -	-
BO172323	39	<u> </u>		S 0.5	0.03	-	-
Tentatively identified r	netabol	lite					
SA04271** 0	* 57 ₀	Ør «		≥ 1.5 <u></u> *	0.09	9.6	0.025
Conjugated metabolite	es 🛸	©23.7	1.42	<u>~ 6.1</u>	<i>©</i> 0.37	4.9	0.013
NOA4144¥2 conj. 1	<u>«"12" م</u>	2.10	0.13		0.02	-	-
NOA419412 conj. 2		6.8	× 0.40		0.03	-	-
NOA443152 conj	"10"	\$*/.2 ×	0,43	× 2.0	0.12	3.4	0.009
NOA443152 cong.2	<u>510</u>			Q.3	0.02		
BO1/2/41 cong. 1	"110 ••••••••	$\sim$	0.22	* 1.2 *	0.07	-	-
BO1/2/41 conj. 2	@1	$\sim 2.3 \sqrt{3}$			-	-	-
BO172030 conj.	9 40 <u>(</u> "20"	° 0.⊮ ^o₂2 a		0.9	0.06	-	-
BO172323 conj. «§ SΔβ4275**	- <u>5</u> X		* 0.0¥	0.9	0.03	-	- 0.004
Changetonized Exection			LO ^r	-	-	1.5	0.004
Organic fractions		×0 ⁵ 5	©″ [©] 0.03	27	0.16	16.4	0.043
Aqueous frontion		¥.5	0.05	2.7 11 A	0.10	20.4	0.045
Microwave fractions	<del>o</del>	1 5	0.04	87	0.09	<i>23.</i> 0	0.070
Non-extractable	Ş	1.5	0.09	6.7	0.33	6.5	0.017
Total identified	<u>Å</u>	85 Q	5 13	70 <i>A</i>	<u>4</u> 31	48 2	0.017
Total abaracterized	Ĵ,	12.7	0 76	22.8	1 30	45.2	0.120
I Utal estal actel izeu		14.1	0.70	44.0	1.57	<b>ч</b> Ј. <b>Ј</b>	0.117

#### Table ( ) 1 ). C .... -4 fall . falla . . . . • ... • •

"n" : conjugated metabolite with number n

* [mg/kg]: mg parent equivalents/kg plant matrix





#### Figure 6.2.1- 3: Proposed metabolic pathway of [14C-GP]trifloxystrobin in wheat



intermediate

¹⁴C radiolabel

#### Figure 6.2.1- 3: Proposed metabolic pathway of [14C-GP]trifloxystrobin in wheat (contd.) $CF_3$ NOA414412, EE M12 Z ноос HOOC CH₃ NOA41 21113, EE, 🕅 CGA373466, ZE, M6 (2) Ô, 00 Chillie y CGA10700, BØ17372 M64 HOOC CH M6**2** CGA347242, M47 Ø S O × O 6 OF THE OF OH жсоон Ф ĊN Ô OHBN, M5 $H_2O$ Contraction of the second seco Mar. OH COOH s S Ó cyanobenzoro acid C FHW0115C, M54 соон phthalic acid FHW0115D, M53 cyclic keto alcohol SA 04271, M57 and conjugates Metabolic steps

hydrolysis

elimination

5

3

(6)

oxidation

decarboxylation

**Osomerisation** 

conjugation

Õ

1



#### Sugar beet

Ô After submission of the original submission for an Annex I inclusion of trifloxystrobin additional metabolism studies became available on sugar beets. In order to broaden the use spectrum of trifloxystrobin the metabolism was investigated in a crop of the category root and tuber crops, two studies using the [trifluoromethyl phenyl] and the [glyoxyl phenyl]-14C label are summarised in the following abridgments.

Report:	KCA 6.2.1/11, 2000 ; M-069117-01 0 5 5 6
Title:	Behavior and Metabolism of [TufluoromethyPhenyl-(U)-C] CGA-279202 in Field Grown Sugar Beets
Document No:	M-069117-01-1
Report No:	99MK09; 1266-00 O' O' O O O O O O O O O O O O O O O O
Guidelines and	US-EPA OPPTS 860, 1300, Nature & Residues – Plants (\$996)
data requirements:	EU Directive 91/414/EEC amended by the Comprission Directive 96/68/EC
	Agricultural Chemical Laws and Regulations, Japan, Metabolism Study (1985)
GLP	yes 2 2 2 2 2 2 2

#### **Executive Summary**

The metabolism of [14CJP]triffxystrobin was investigated in sogar beet following three spray applications at single use rates of approx. 13(1) as/12/(1x application rate), totaling 395 g as/ha. The plants were cultivated outdoors. The first Peatment was conducted at the growth stage BBCH 39 (leaves covered 90%) of ground). Two@subsequent freatments were performed at 3-week spray intervals. Sugar beers were sampled one day after each treatment and harvested 21 and 45 days after the last treatment. They were separated in tops (foliage) and roots (beets). An additional overdose experiment was conducted to aid in the characterization and identification of metabolites.

The total radioactive residues (TRR) in tops of the 1x application are experiment amounted to 2.28 -4.13 mg parent equivalents/kg matrix (mg equ/kg) hour after oach treatment and decreased to 0.45 mg equ/kg 45 days after the last application. The TRR levels in the beets were generally low ranging from 0.010 to 0.09 mg equ/kg throughout beet sampling.

The predominant portion of TRR could be conventional extracted with acetonitrile/water. From the tops approx. 88 – 97% of PRR were extracted and from the beets approx. 79 – 100% of TRR. Where the extraction yield was lower a significant portion was additionally extractable with use of microwave causing evaluated temperatures. In turn, the non-extractable residues were low, i.e. approx. 1 - 5% of TRR in the tops and approx 5 - 12% of  $\mathcal{R}R$  in the beets. These non-extractable residues in the beets corresponded to 0.0002 _0.0004 mg equilibrium at the two later harvest dates (21 and 45 days after the last application).

The metabolism of riflox strobin in sugar beet was very intensive as approx. 20 metabolites were detected in both tops and roots. Most of these metabolites appeared at very low concentrations (<10% of TRK). Two metabolites revealed to be major in the roots. The carboxylic acid CGA321113 (M5, EE-Isomer) accounted for 9 - 11 % of TRR and its triply hydroxylated derivative (M16, II_{19a}) accounted for 10 215% of TRR. Additional minor metabolites were identified as CGA373466 (M6, ZE carboxylic acid), NOA443152 (M10, hydroxylated ZE carboxylic acid) and NOA414412 (M12, phenyl bydroxylated EE carboxylic acid) and their glycoside conjugates, respectively. The metabolic pattern observed in the 1x application experiment was confirmed by the overdose experiment.



Some of the plant metabolites of trifloxystrobin were also observed in the soil. The carboxylic acid CGA311113 (M5) revealed to be the predominant residue component in soil. The parent substance was very low at the two later sampling dates.

The proposed common metabolic pathway of [trifluoromethyl-phenyl-Up 14C]trifloxystrobing in plants (wheat w, cucumber c, and sugar beet sb) is shown in Figure 6.2.1- 4

Based on the structures identified, the metabolism of triflexystrobin in augar beets appears via different transformations:

- Cis/trans isomerization of trifloxystrobin and/or hydrolysis of the methyl ester
- Methyl ester cleavage to the major metabolite  $\Pi_{24}$  (= M5, C@A321913) and cis/trans isomerization of M5 to metabolite  $II_{24b}$  (= M6, CGA373466), Ô
- Single and double hydroxylation of the toffuoromethyl-pheny ring of M5 resulting in metabolite II22 (= M12, NOA414412) and its stereoisomer II2 with subsequent elycosic conjugation to form metabolites II₁₀ or II_{9b},
- Hydroxylation of the methyl substituent of My at the 2-ethylidereamin oxymethyl group to metabolite II_{23a} (= M10, NOA445152) with subsequent glycoside conjugation to form metabolite II11, and threefold hydroxylation of phenyl and methyl group to form the major pretabolite fraction II_{19a} (M16) that consisted of several isomers with each somer according for < 0.01 mg equ/kg (investigated in the parallel study with the 14C-OP-label, see below).
- Formation of bound residues to a low extent.
- 1 al The parent substance revealed to be the predominant residue component in sugar beet tops and roots and, therefore, is proposed as marker substance in residue analysis.

Material and Methods	
Test Material	
Structural formula	F F F F F F F F
Chemica name	E,E)-methox mine 2-[1-(3-trifluoromethyl-phenyl)-ethylideneamino-
	, oxymethyllophenyl acetic acid methyl ester (IUPAC);
	( <i>E</i> , <i>E</i> )-o (methoxyimino)-2-[[[[1-[3-(trifluoromethyl)phenyl]ethylidene] amino [oxy]methyl]benzene acetic acid methyl ester (CAS)
Common name 🖉 💍	Trifloxystobin
CAS RN O	€¥1517-21-7
Empirical formula	$C_{20}H_{19}F_{3}N_{2}O_{4}$
Company code	CGA 279202
Molar mass (non-labelled)	408.4 g/mole
Label	[trifluoromethyl-phenyl-UL-14C]Trifloxystrobin, abbr. [14C-TP]
Specific radioactivity	1.0 MBq/mg = 27.03 mCi/g (1x dosing experiment)
# BAYER Bayer CropScience

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

	0.9  MBq/mg = 24.32  mCi/g (overdose experiment)
Radiochemical purity	95.8 – 98.7% (radio-HPLC, radio-HPLC)
Identification	LC-MS/MS with ESI ionization
Test Plants	
Test plant	Sugar beet
Variety	Kassandra
Study design	Outdoor study at a 4 m plot in Switzerland .
Growth stage at	Three spray applications beginning at growth stage BBCH 39 (crop
application	cover complete, foliage cover: 90% of ground/epray interval 3 weeks.
	Second and third application at growth stage BBCH 39 - 49.
Harvested commodities	Complete sugar beet plants one how after each treatment and 20 days
	and 45 days after the last application. The planes were divided in tops
	(foliage) and roots (beers).

Sowing and cultivation of sugar best, preparation and application of the test substance

Sugar beet seeds were sown into loam soil (49.6% sand, 30.2% silt, 20.2% clay, 1.45% organic carbon, pH 7.8 [CaCl₂]) of three outdoor plots located at a research station

Switzerland. The plot for the main experiment (1x application rate) had a size of 4 m². Two additional plots were sown for an overdose and a control experiment. The sugar beet plants were cultivated inder usual agricultural conditions in spring and summer 1999. No additional pesticide reatment was performed throughout the study, apart from application of the test substance.

[¹⁴C-TP]trifloxystrobin was mixed with a blank EC129 formulation. The resulting formulation was suspended in water to prepare the spray mixture. The concentration of the test substance in the formulation amounted to approx. 10.2%. Three months after sowing the first of three foliar spray treatments were performed. At the first treatment, the sugar bees reached the growth stage BBCH 39 and their leaves co-ored approx. 90% of the ground. Two subsequent treatments were conducted after spray intervals of 3 weeks. A small plot sprayer with four TEEJET flat-jet nozzles was used for each spray treatment. The use rates were 130 g as ha (1 application), 137 g as/ha (2nd application) and 128 g as/ha (3rd application) resulting in a total use rate of 395 g as/ha (1x application rate). The homogeneity of the spray mixture was confirmed by repeated radioassaying before and after each spray event.

In an extra overdese experiment for generation of a higher amount of radiolabelled metabolites additional plants were sprayed at the same days as the 1x use experiment with a higher-concentrated spray mixture. The use rates of this trial were 692 g as/ha (1st application), 693 g as/ha (2nd application) and 768 g as/ha (3rd application).

Samplingand processing of sugar beet plants

Few sugar beet plants were collected one hour after each application as well as 21 and 45 days after the last application. The plants were divided into tops (leaves) and roots (beets). At each plant sampling soil core samples (0 - 30 cm depth) were additionally taken. The soil cores were separated into three horizons: 0 - 10, 10 - 20 and 20 - 30 cm.

### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

The plants samples (tops and roots) were chopped with plant copper in presence of liquid nitrogen. Fine homogenization was performed using a kitchen mixer. Aliquots of the homogenates were taken of radioassaying. The remaining pulverized samples were stored in frozen condition (at approx. -18°C).

The homogenized plant samples were extracted 6-times with acetonitrile/water (4/1, v/v) for at teast 6 hours using a mechanical shaker. The combined extract was analysed by radio-TLC. Some extracted from the foliage (TOP extracts) were concentrated and partitioned against n-hexane. Both process were analysed by radio-TLC and radio-HPLC. Incompletely extracted samples were subsequently extracted with 1-propanol/water (4/1, v/v) at enhanced temperatures (100 – 150 °C) using a microwave over and the extract analysed by radio-TLC.

Clean-up of crude root extracts was carried out by solid-phase extraction using O18 carridges. The cartridges were washed with acetonitrile an O0.010 HCl before pse. The primary acetonitrile/water extracts were first concentrated to remove the acetonitrile and then were applied to the cartridges. The loaded cartridges were rinsed with water followed by elation with acetonitrile/0.01N HCl. The cluted residues were analysed by radio-TLC using the solvent mixtures 2. Ond 2.2 (see below)

Enzyme cleavage of an aliquot of foliage extracts was performed with  $\beta$ -glocosidase (37%C, shaking overnight) following evaporation to dryness and re-dissolution in 0.4N accurate buffer at pH 4.65. The resulting mixture was extracted with early accurate and analysed by adio-TLC and radis-HPLC.

Soil core samples of the same sampling day and horizon were combined, an dried homogenized in a disk mill and radioassayed. They were then explaced with acctonititle/water (4/4, w/v) in the same was manner as done with plant samples. The combined extracts were also analysed by radio-TLC.

Radioassaying and analysis

Radioassaying measurement of the radioactivity) was conducted by liquid scintillation counting (LSC). Quenching was automatically compensated using an external standard. Solid samples were firstly combusted and the formed ¹⁴CO5 absorbed in an alkeline scintillation liquid. For quantification of the radioactivity of the spots in radio TLC the silve get with the spots were scrapped out, suspended in methanol and radioassayid after addition of scintillation cocktail. The LOQ for radioassaying was 0.015 - 0.018 mg equ/kg for the tops (foliage) and 0.002 - 0.005 mg equ/kg for the roots.

One and two-dimensional TLC was conducted on silica gel plates (Si60 F₂₅₄). For twodimensional TLC used for separation of metabolites the plates they were developed in two rectangular directions with the two solvent mixtures: (1.1) n-hexane/diethyl ether/tetrahydrofuran/formic acid/ water (10/70/10/1/2,  $\sqrt{v/v/v}$ ) and (1.2) officient of the plates they acetate/formic acid (60/30/10, v/v/v) as well as (2.4) chloroform/methanol/formic acid/water (75/20/4/2, v/v/v/v) and (2.2) 1-butanol/acetic acid/ water (40/10/10, v/v/v). One-dimensional TLC plates used for separation of the parent isomers was developed with toluene/eth/ acetate (9/1; w/v). Radioactive spots were detected by a Bio-Imaging Analyzer. Co-chromatographed non-latelled reference standards were visualized by fluorescence extinction following excitation by UV-light. The LOQ for radio-TLC was set to 0.001 mg equ/kg sample.

Radio-HPL was conducted on a RP18 column (250 x 4.6 mm, 5  $\mu$ m particle size) operated with a gradient pixture of aqueous phosphoric acid (0.1%) and acetonitrile. The HPLC system was equipped with a UV detector (254 nm) and a radiomonitor with a glass scintillator.



## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

The final identification of the isomers and metabolites of trifloxystrobin was performed by  $\circ a$  combination of LC-MS/MS (RP18 HPLC, 15 x 2 mm, particle size 5  $\mu$ m, operated with an gradient mixture of water/acetonitrile both acidified with formic acid; electron spray ionization for MS) and ¹H-NMR (solvent D₂O/CH₃CN, ca. 1/1). In addition, non-labelled reference standards were used for chromatographic comparison.

### Findings

#### Total radioactive residues and their extractability

The total radioactive residues (TRR) in tops (foliate) and beets, the extractable and non-extractable residues are presented in Table 6.2.1-3. TRR incops of the 1% application rate experiment amounted to 2.28 – 4.13 mg parent equivalents/kg matrix (mg equ/kg) 1 hour after each to liar treatment and decreased to 0.45 mg equ/kg 45 days after the lase application. The TRR levels in the beets were generally low ranging from 0.010 to 0.097 mg equ/kg throughout beet sampling.

The predominant portion of TRR could be conventionally extracted with actombrile/water. From the tops (foliage), approx. 88 - 97% of TRR and from the beets approx. 79 - 100% of TRR were extracted. In case of a lower extraction yield, a significant portion was additionally extractable by use of microwave. In turn, the non-extractable residues were low, i.e. approx (1 - 5%) of TRR from tops and approx. 5 - 12% of TRR free beets. These non-extractable residues in the beets extracted to 0.0002 - 0.0004 mg equ/kg at the two later barvest dates (21 and 45 days after the last application).

### Residues in sugar beet tops and roots

Sugar beet roots and rops were initially extracted with acetonitrile/water at ambient temperature and subsequently with propanol/water at enhanced temperature using microwave support. The extracts were partly cleaned-up by colid-phase extraction with C18 cartridges and analysed by twodimensional radio-T1C and radio-HPLC. Co-chromatographicd reference standards aided for identification. The resulting composition of the radioactive residues in sugar beet tops and roots of the last two sampling dates 21 and 45 days after three foliar geatments with [14C-TP]trifloxystrobin is presented in Table 6.2 4

The metabolism of trifloxystrobia in sugar best was very intensive as approx. 20 metabolites were detected in both tops and roots. Most of these metabolites appeared at very low concentrations (<<10% of TRB). Two metabolites revealed to be major in the roots. The carboxylic acid CGA321113 (M5, EE-Isomer) accounted for 9-11% of JRR and its triply hydroxylated derivative (M16, one hydroxyl group attached to methyl group of the bridge between the phenyl rings and two hydroxyl groups attached to the diffuoromethyl phenyl ring) accounted for 10-15% of TRR. Additional minor metabolites were identified as CGA3/3466 (M6, ZE carboxylic acid), NOA443152 (M10, hydroxylated ZE carboxylic acid) and NOA44412 (M12, phenyl hydroxylated EE carboxylic acid) and their glycoside conjugates, respectively. The metabolic pattern observed in the 1x application experiment was confirmed by the overdose experiment.

However, the parent substance triflexystrobin (EE-Isomer, M1) accounted generally for the predominant residue components at harvest (21 - 45 days after last application) amounting to 34 - 65% of TRR or tops and to 47 - 48% of TRR in roots. Its EZ-isomer (CGA331409, M4) accounted for 1.2% of TRR in tops and for up to 3.8% of TRR in the roots. The other isomers, i.e. the ZZ-isomer (CGA357262, M2) and the ZE-isomer (CGA 357261, M3) could not be detected.

Ũ



### Residues in soil

In the top soil layer (0 - 10 cm) TRR accounted for 0.032 - 0.103 mg equ/kg one day after eachapplication and for 0.106 and 0.162 mg equ/kg 21 and 45 days after the las Dapplication of the Ax application trial. The top layer contained  $\geq$  79% of the radioactivity found in the total soil core (0  $\leq$  30 cm) at all sampling intervals.

Extraction and radio-TLC of the soil extracts revealed low amounts of the parent substance at the two later sampling dates (21 and 45 days after last application to the pants). The prodominant residue component in soil (top layer) was formed by ester hydrolysis of the parent substance, de. the carboxylic acid M5 (CGA 321113) amounting to 60 - 70% of TRR in the soft samples. Its isometric carboxylic acid M6 (CGA373466) accounted for approx.  $3 \rightarrow 4\%$  of TRR and the hydroxylated carboxylic acids M10 (NOA443152) and M12 (NOA414412) amounted to approx. 1% of TRR. The same metabolites were also detected in sugar beet roots and leaves

### Storage stability

All samples were stored at approx. - S°C. Extracts were stored at 8°C, at maximum. Leaves and roots sampled 21 days after the last application were extracted and chromatographically profiled approx. two months after harvest. The extracts overe reganaly after approx. 8 ponths storage at maximum 8°C. After the same time period other aliquots of tops and voots of the same frozen samples were reextracted and analysed again. Comparing the metabolite pattern, no significant change could be observed regarding the qualitative and quantitative distribution of radioactive peaks?

### Conclusion

[14C-TP]trifloxysterbin metabolized very intensively i were detected in tops (foliage) and roots (beers) 21 and 45 days after the last of three foliar treatment at a total application ate of 395 as as a mathematical another structures identified, the metabolism of trifloxystrobin in sugar beets appears to proceed via different transformations:

- Cis/trans isomerization of trifloxystrobin and/or hydrolysis of the methyl ester,
- Methyl ester cleavage to the major metabolite  $f_{24}$  (=  $M^5$ , CGA321113) and cis/trans isomerization of M5 to metabolite  $II_{24b} = M6 CGA 73466$ Q
- Single and double hydroxylation of the traduoromethyl-phenyl ring of M5 resulting in metabolite  $II_{22}$  (= M12, NOAA14412) and its stereoison or  $II_{24}$  with subsequent glycoside conjugation to form metabolites  $\Omega_{10}$  or  $\Omega_{9b}$ ,
- Hydroxylation of the methy subsortuent of M50at the 2-ethylideneaminooxymethyl group to metabolite II_{23a} (= M10, NOA443752) with subsequent glycoside conjugation to form metabolite  $II_{11}$ , and threefold by droxy ation of physical and methyl group to form the major metabolite fraction  $II_{49a}$  (M16) that consisted of several somers with each isomer accounting for < 0.01 mg equ/kg (investigated in the parallel study with the 4C-GP label).
- Formation of bound residers to a dow extent.
- No cleavage of the ethylidencaminooxymethyl bridge between the phenyl rings and, therefore, formation of label-specific metabolites
- The parent substance revealed to be the predominant residue component in sugar beet tops and roots and, therefore, is proposed as marker substance in residue analysis.

The proposed common metabolic pathway of [trifluoromethyl-phenyl-UL-14C]trifloxystrobin in plants (wheat w, cucumber c, and sugar beet sb) is shown in Figure 6.2.1-4.

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

## Table 6.2.1- 3: Total radioactive residues (TRR) in sugar beet and extractability of the residues of following three foliar treatments with [14C-TP]trifloxystrobin at a total use rate of 395 g as/ha

Sampling	Cron	TRR	Extraction	Microwave	Non-
Samping	Part	The	with ACN/H ₂ O	extraction with	extractable
			[% of TRR]	propanol/H ₂ O	
			ڻ گ	A.	
		[mg equ/kg]	[% of TRR]	[% of QRR]	of TRR [
1 h after	Tops	3.384	969	" n.a.	490 of 49
1 st appl.	Roots	0.097	<b>40</b> 2.4	ng. O	A10.2
1 h after	Tops	2.280	~ 98,2 ×	A n.a	5.3
2 nd appl.	Roots	0.010	\$6.0	Q 13.2	6 ⁴ 5.2 5 4
		s.			×
1 h after	Tops	4.13 <i>3</i>	& 95, 1 ~	JO 1.K	× .0.9
3 rd appl.	Roots	0.091	\$1.0	0 13:2 S	£ 7.9 Ø
		a			No N
21 d after	Tops	@1.51%	V 859 V	Q. 8.6° ~	×3.7
3 rd appl.	Roots 3	0,038	79.1	J. 1924	© _{11.6}
	, Ø	Ŏ ^ĸ źź			
45 d after	Tops	A 0.453	£ 20.0 5	ر 5.3 ⁰ کې	2.2
3 rd appl.	Roots	0,021	\$99.2 ×	0 <u>6</u> /8 ~	10.6
A A					
			4		
		Ý			

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

# Table 6.2.1- 4: Metabolite fractions in the extracts of sugar beet tops and roots 21 and 45 days after the last of three foliar treatments with [14C-TP]trifloxystrobin at a total use rate of 395 g as/ha

Pre-harvest interval		21 I	Days			\$45 I	Days 🎸	
Plant part	Т	op	R	oot	Т	9p	_ <b>⊘</b> Ro	
TRR [mg equ/kg]	1.5	517	0.0	)38	0.4	153	k0 🔨	
<b>Residue composition</b>	%TRR	ppm ¹	%TRR	ppm ¹	%TRR	ppm ¹	Ç%TRR	ppm ¹
II _{0a}	1.6	0.024	0.7	< 0.001	2.4	0.01	ф,	80.00£
II _{0b}	2.7	0.041	0.54	< 0.001	\$5.3 °	0.0 <b>2</b> 4	£1.0 (	× 0.001
II _{1a}	n.d	n.d	Q39	< 0.001	2.D	0.010	O″ 0.6©	< 02001
II _{1b}	n.d	n.d	¢ 0.2 ¢	°< 0.001	stud.	() ^m n.d.()	n.d.	≪n.d.
II _{2a}	2.3	0.035	$0^{*} 0.9^{\circ}$	< 0,001	A3.6~C	0.076	£1.5 £	< 0.001
II3 _a	1.0	0.015	.00	<b>40</b> .001	2.4	<b>Q</b> .011	0′2.3	0,001
II _{3b}	n.d	n d	, ~µ.d. ^	y n.d.O	<b>n.</b> d.	on.d. 🖉	0.9	\$9.001
II _{4a}	2.3	<b>\$</b> \$\$35_\$	× 1.0	< 0.001	i.0 ×	0.005	<b>\$0</b> .1	ok 0.001
II _{5a}	0.7	0.011	1,9	0.001	3,25	0.014	£ 1.3 Ø	< 0.001
II _{6a}	n.d 🖉	n,d	م 1.1 م	< 0.000+	.62	Ø.005	2.5	0.001
II _{7a}	n.d	b, a,	T.d. S	næ.	Ân.d. 🐧	5 n.dO	<u>س</u> n.d.	n.d.
II _{7b}	n,đ	[™] n.d _≫	n.d.	ñ.d.	© [♥] n.d⊘	n.d.	©n.d.	n.d.
II _{7c}	∾ n.d 👋	✓ n.d	m.d.	‴ n.d. ``	n d.	`∽n.d. ¢	n.d.	n.d.
II _{7d}	y n.d	ngd	Sn.d. 🍕	n d	🏼 ¥¥.d. 🦿	n.d.	n.d.	n.d.
II _{7e}	ncel	jôgn.d C	n.đ	s, f₽.d.	🗞 n.d.	n.Q	n.d.	n.d.
II _{8b}	n.d	n.do	n,d.	≫n.d.	n. <b>@</b> .*	≪n.d.	n.d.	n.d.
II _{9b} identified as M12-gly	3.0 V	0,046	0.7 ×Ç	< 0.001	4.8	€ 0.022	1.0	< 0.001
$II_{10}$ identified as M28-gly	0:5/	م0.008 <i>م</i>	0.7	< 60001	£ 1.9	0.009	0.6	< 0.001
II _{10c}	D.d	O`n.dky	J.Y	©0.0013	05	0.002	0.5	< 0.001
II ₁₁ identified as M10 ^o gly	~~3.8 Ø	0.058	_~1.4 ∂	0.001	Q.5	0.034	1.6	< 0.001
II _{15a}	nd	Ør.d	0.4	< 0,001	n.d.	n.d.	n.d.	n.d.
	, m/d	n.d		₹0.001	n.d.	n.d.	n.d.	n.d.
	~0.5 °	0.008		× 0.0 <del>0</del> 4	0.4	0.002	1.0	< 0.001
	n.d	∞n.d ×	0.3	< 00001	0.4	0.002	0.6	< 0.001
$II_{19a}$ charact. as $M16^2$	, <del>606</del> , `, `,	00.009	100	A.004	0.7	0.003	14.9	0.003
II _{21a} identified as M28	0.4	0.006	0.6	< 0.001	1.2	0.005	1.0	< 0.001
$II_{22} = NOA414412, M12$		0.014		< 0.001	3.8	0.017	2.3	0.001
$\Pi_{23a} = NO(4443152, M)$		0.006		< 0.001	n.d.	n.d.	1.2	< 0.001
$\Pi_{24} = CGA321113, M3$	$\mathcal{A}^{2.7}$		****/	0.003	2.5	0.011	10.8	0.002
$\Pi_{24b} = CGA3/3400, M0$		0.9905	$0^{\circ 0.2}$	< 0.001	n.d.	n.d.	0.3	< 0.001
		Qn.d	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Lingesolved		rn.d ∛	n.a.	n.d.	n.d.	n.a.	n.a.	n.a.
	° 4.4€	U.004	0.0	< 0.001	2.8	0.013	2.4	0.001
III9, trifloxystrobor, M1	669	0.085	58.1	0.022	34.3	0.155	47.4	0.010
III ₁₀ , C&A357 <b>26</b> 2, M <b>2</b>	Da.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
III ₁₂ , GGA334409, M4		0.018	n.d.	n.d.	1.2	0.005	3.8	0.001
E2 S	8.6	0.131	7.4	0.001	5.3	0.024	4.4	< 0.001
$W_3(E_2RQ)$	-	-	2.9	0.001	-	-	15.7	0.003
Non extractable	3.7	0.056	11.6	0.004	2.2	0.010	10.6	0.002
Total ³	100.5	1.527	101.0	0.034	104.7	0.474	120.0	0.025





* also found as sugar conjugates

Report:	KCA 6.2.1/12, 2000 ; M-069125-01-1
Title:	Behavior and Metabolism of [Glyoxyl-Phenyl-(U)-14C] CG@-279202 in Beld
	Grown Sugar Beets
Document No:	M-069125-01-1
Report No:	99MK10; 1267-00
Guidelines and	US-EPA OPPTS 860.1300, Nature of Residues – Plants (1996)
data requirements:	EU Directive 91/414/EEC
	Agricultural Chemical Laws and Regulations Dapan, Metabolism Study (1985)
GLP	yes a v v v v v

### **Executive Summary**

The metabolism of [14C-GP]trifloxystrobin was investigated in sugar beet following three spray applications at single use rates of approx. 130 g as/ha (1x application rate), totaling 400 g as/ha. The plants were cultivated outdoors. The first treatment was conducted at the growth stage BBCH 39 (leaves covered 90% of ground) Two subsequent treatments were performed at 3-week spray intervals. Sugar beets were sampled one day after each treatment and havested 1 and 45 days after the last treatment. They were separated in tops (foliage) and roots (beets). An additional overdose experiment was conducted to aid in the characterization and identification of metabolites.

The total radioactive residues (TRR) in tops of the by application rate experiment amounted to 2.29 – 4.08 mg parent equivalents/kg/matrix (mg equ/kg/l hour after each fuliar treatment and decreased to 0.73 mg equ/kg 45 days after the last application. The TRR levels in the beets were generally low ranging from 0.02\$ to 0.13 mg equ/kg throughout beet sampling.

The predominant portion of TRR could be conventionally extracted with acetonitrile/water. From the tops approx, 95 - 100% of TRR were extracted and from the beets approx. 75 - 100% of TRR. In case of a lower extraction yield in roots, an additional portion up to 9% of TRR was extractable by use of microwave at elevated temperatures. In turn, the mn-extractable residues were low, i.e. approx. 0.1 - 5% of TRR from tops and approx 0.3 - 62% of TRR the beets. These non-extractable residues in the beets correspondent to 0.001 - 0.014 mg equ/kg at the two later harvest dates (21 and 45 days after the last application).

The metabolism of trifloxystrobily in spear beet was very intensive as approx. 30 metabolites were detected in both tops and roots. Most of these metabolites appeared at very low concentrations (<10% of TRR). Two metabolites revealed to be major in the roots. The carboxylic acid CGA321113 (M5, EE-Isomer) accounted for 7% - 11% of TRR and its triply hydroxylated derivative (M16, one hydroxyl group attached to methyl group of the bridge between the phenyl rings and two hydroxyl groups attached to the trifluctomethyl phenyl ring) accounted for approx. 9% of TRR. Additional minor metabolites were identified as CGA373466 (M6, ZE carboxylic acid), NOA443152 (M10, hydroxylated ZE carboxylic acid) and OA414412 (M12, phenyl hydroxylated EE carboxylic acid) and their glycoside conjugates, respectively. These metabolites were also identified as glucose conjugates. The metabolic pattern observed in the 1x application experiment was confirmed by the overdose experiment.

Following conventional extraction of the roots further water-soluble residues could be released by extraction with boiling water. These residues proved to be incorporated into saccharose, cellulose, lignin and pectin.

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Some of the plant metabolites of trifloxystrobin were also observed in the soil. The carboxylic acid CGA311113 (M5) revealed to be the predominant residue component in soil. The parent substance was very low at the two later sampling dates.

The proposed common metabolic pathway of [glyoxyl-phenyl-UL-14C] filloxystrobin in plants (wheat w, cucumber c, and sugar beet sb) is shown in Figure 6.2.1-4.

Based on the structures identified, the metabolism of triffexystrobin in sugar beets appears to via different transformations:

- Cis/trans isomerization of trifloxystrobin and/or hydrolysis of the methyl ester,
- Methyl ester cleavage to the major metabolite  $\Pi_{24}$  (= M5, CGA321413) and cis/trans isomerization of M5 to metabolite  $\Pi_{24b}$  (= M6, CGA373466),
- Hydroxylation of the trifluoromethyl-phenyl ring of M5 resulting in merabolite II₂₂ = M12, NOA414412) and its stereoisomer II₂₁ with subsequent glycoside conjugation to form metabolites II₁₀ or II_{9b},
- Hydroxylation of the methyl substituent of MS at the 2-ethylidescaminoxymethyl goup to metabolite II_{23a} (= M10, NOA445452) with subsequent glycoside conjugation to form metabolite II₁₁, and threefold hydroxylation of phenyl and methyl group to form the major thetabolite fraction II_{19a} (M16) that consisted of several isomers with each isomer accounting for 0.01 mg equ/kg.
- Formation of bound residues to a low extent the incorporation into saccharose, cellulose, lignin and pectin.
- No cleavage of the ethylideneaming xymethyl bridge between the phenyl rings and no formation of label-specific metabolites was found. Therefore, no significant differences were observed of the metabolites' pattern in the sugar beet metabolism' studies performed with [14C-GP] and [14C-TP]trifloxystrobal.
- The parent substance reveated to be the predominant residue component in sugar beet tops and roots and, therefore, is proposed as marker substance in residue analysis.

Material and Methods	
Test Material	
Structural formula	
	* denotes the ¹⁴ C label
Chemical name	<ul> <li>(<i>E</i>, <i>E</i>)-methoxyimino-{2-[1-(3-trifluoromethyl-phenyl)-ethylideneamino-oxymethyl]-phenyl}acetic acid methyl ester (IUPAC);</li> <li>(<i>E</i>, <i>E</i>)-α-(methoxyimino)-2-[[[[1-[3-(trifluoromethyl)phenyl]ethylidene] amino]oxy]methyl]benzene acetic acid methyl ester (CAS)</li> </ul>
Common name	Trifloxystrobin
CAS RN	141517-21-7
Empirical formula	$C_{20}H_{19}F_3N_2O_4$
Company code	CGA 279202

Molar mass (non-labelled)	408.4 g/mole						
Label	[glyoxyl-phenyl-UL- ¹⁴ C]Trifloxystrobin, abbr. [14C-GP]						
Specific radioactivity	0.945 MBq/mg = 25.541 mCi/g						
Radiochemical purity	95.5 – 98.2% (radio-HPLC, radio-HPLC)						
Identification	LC-MS/MS with ESI ionization						
<u>Test Plants</u>							
Test plant	Sugar beet $\int_{0}^{0}$ $\int_{0}^{1}$ $\int_{0}^{1}$ $\int_{0}^{1}$ $\int_{0}^{1}$ $\int_{0}^{1}$						
Variety	Kassandra						
Study design	Outdoor study at a plot in Switzerland 2 2 2 2						
Growth stage at application	Three spray applications beginning at growth stage BBCH 39 (ctop cover complete, folinge cover: 90% of ground) spray interval; 2 weeks? Second and third application at growth stage BBCH 39 - 49.						
Harvested commodities	Complete sugar beet plants one hour after each treatment and 21 days and 45 days after the last application. The plants were divided in tops (foliage) and roots (beets).						
Sowing and cultivation of sugar beet, preparation and application of the test substance							

Sugar beet seeds were sown into loap soil (49.6% sand, 30.2% silt, 20.2% silt, 1.45% organic carbon, pH 7.8 [CaCl₂]) of these outdoor plots located at a research station

Switzerland. The plot for the main experiment (1x application rate) had a size of 4 m². Two additional glots were sown for an overlose and a control experiment. The sugar beet plants were cultivated under usual agricultural conditions in the symmer 1999. No additional pesticide treatment was performed throughout the study, apart from application of the test substance.

[14C-GP]trifloxystrobin was mixed with a blank ECP25 formulation. The resulting formulation was suspended in water to prepare the spray mixture. The concentration of the test substance in the formulation amounted to approx. 10.2% Three months after sowing the first of three foliar spray treatments were performed. At the first treatment, the sugar beets reached the growth stage BBCH 39 and their leaves covered approx 90% of the ground. Two subsequent treatments were conducted after spray intervals of 3 weeks. A small plot sprayer with four TEEJET flat-jet nozzles was used for each spray treatment. The use rates were 141 gras/ha (1st application), 132 g as/ha (2nd application) and 127 g as/ha (3st application) resulting in a total use, rate of 400 g as/ha (1x application rate). The homogeneity of the spray moture was confirmed by repeated radioassaying before and after each spray event.

In an extra overdose experiment for generation of a higher amount of radiolabelled metabolites additional plants were sprayed at the same lays as the 1x use experiment with a higher-concentrated spray mixture. The use rates of this grial were 830 g as/ha (1st application), 691 g as/ha (2nd application) and 653 g as/ha (3rd application).

Sampling and processing of sugar beet plants

Few sugar beet plants were collected one hour after each application as well as 21 and 45 days after the last application. The plants were divided into tops (leaves) and roots (beets). At each plant sampling, soil core samples (0 - 30 cm depth) were additionally taken. The soil cores were separated into three horizons: 0 - 10, 10 - 20 and 20 - 30 cm.

### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

The plants samples (tops and roots) were chopped with plant copper in presence of liquid nitrogen. Fine homogenization was performed using a kitchen mixer. Aliquots of the homogenates were taken of radioassaying. The remaining pulverized samples were stored in frozen condition (at approx. -18°C).

The homogenized plant samples were extracted 6-times with acetonitrile/water (4/1, v/v) for at teast 6 hours using a mechanical shaker. The combined extract (extract  $E_1$ ) was analysed by radio-TLC. Some extracts from foliage (TOP extracts) and roots were concentrated and the resulting aqueous phase partitioned against n-hexane and dichloromethane. The remaining water phase was acidified with HCl and partitioned against ethyl acetate. All phases were analysed by radio-TLC and adio()PLC Incompletely extracted samples were subsequently extracted with 1 proparticl/water (4/1, v/v) (at enhanced temperatures (100 – 150°C) using a mecrowave oven and the resulting extract (extract  $E_2$ ) analysed by radio-TLC.

Water-soluble radioactive fractions from the roots were boiled with 0.5N HCl & hydrolyse the diglycoside saccharose into glucose and Pructose. Following extraction of Onpolar reaction products with dichloromethane the glycosides in the remaining water phase were transferred into precipitable osazones by reaction with phenylhydrazine under acid conditions. The precipitated osazones were filtered off, washed with water, recrystallized and radioassayed via combustion.

Clean-up of microwave-supported root extracts (E₂) was carried out by solid-phase extraction (SPE) using cartridges filled with uppolar material. The cartridges were washed with acetomtrile and 0.01N HCl before use. The 1-propanol/water extracts were first concentrated to remove the organic solvent and then were applied to the cartridges. The foaded cartridges were rinsed with water followed by elution with acetonitrile/0.01N HCl, the eluted residues (solution  $O_3E_2$ ) were analysed by radio-TLC using the solvent mixtures 2.4 and 2.2 (see below)

Enzyme cleavage of aliquots of foliage extracts (following evaporation of acetonitrile) was performed with  $\beta$ -glucosidase (3 °C, shaking overnight) following evaporation to dryness and re-dissolution in 0.1N acetate buffer of pH 4.65. The resulting mixture was extracted with ethyl acetate and analysed by radio-TLC and radio-HRLC.

A non-extractable fraction of root residues could be released by boiling with water (16 hours) and hot filtration. The filtrate containing water soluble non-saccharides was hydrolysed with 10% aqueous NaOH (120°C), faltered while hot and the characterized as cellulose containing fraction (filtration residue) and ligain (pecipitated from the fourate after activities of the the fourate after activities with HCl).

Soil core samples of the same sampling day and horizon were combined, air-dried, homogenized in a disk mill and radioassaved. They were then extracted with acetonitrile/water (4/1, v/v) in the same was manner as done with plant samples. The combined extracts were also analysed by radio-TLC.

### Radioassaying and analysis

Radioassaying (measurement of the radioactivity) was conducted by liquid scintillation counting (LSC). Orenching was automatically compensated using an external standard. Solid samples were firstly combusted and the formed ¹⁴CO₂ absorbed in an alkaline scintillation liquid. The total radioactive residues (PRR) of a sample were established by the sum of extracted radioactivity and the radioactivity in the extracted sample. For quantification of the radioactivity of the spots in radio-TLC the silicated with the spots were scrapped out, suspended in methanol and radioassayed after addition of scintillation cocktail. The LOQ for radioassaying was set to 0.017 - 0.031 mg equ/kg for foliage (tops), to 0.003 - 0.006 mg equ/kg for beets (roots) and to 0.001 mg equ/kg for soil.

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

One and two-dimensional radio-TLC was conducted on silica gel plates (Si60 F₂₅₄). For twodimensional TLC used for separation of metabolites the plates they were developed in two rectangular directions with the two solvent mixtures: (1.1) n-hexane/diethyl ether/tetrahydrofuran/formic acid/ water (10/70/10/1/2, v/v/v/v) and (1.2) chloroform/ethyl acetate/formic acid (00/30/10, v/v/00 as well as (2.1) chloroform/methanol/formic acid/water (75/20/4/2, v/v/v/v) and (2.2) 1-butanol/acetic acid/ water (40/10/10, v/v/v). One-dimensional TLC plates used for separation of the parent isomers was developed with toluene/ethyl acetate (9/1, v/v). Radioactive spots were detected by a Bio-finaging Analyzer. Co-chromatographed non-labelled reference standards were visualized by fluorescence extinction following excitation by UV-light. The LOQ for radio-TCC was set to 0.001 mg equ/kg sample.

Radio-HPLC was conducted on a RP18 column  $(250 \times 4.6 \text{ mm})$ , 5 µm particle size operated with a gradient mixture of aqueous phosphoric acid (0.1%) and acetonitrile. The HPLC system was equipped with a UV detector (220, 254 nm) and a radiomorphic with a glass scintillator. Additional columns were used for isolation and purification of metabolities.

LC-MS/MS was performed for identification of parent substance and metabolites Radio HPLC separation was conducted on a reversed phase (CA8) column (150 x 20 mm particle size 5  $\mu$ m), a water/acetonitrile gradient (both activitied with 0.5% formic acid) as biquid phase and a radiomonitor with a solid scintillator. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) were used for ionization.

### Findings

Total radioactive residues and their extractal fity

The total radioactive residues (TRR) in tops (foliage) and beets, the extractable and non-extractable residues are presented in Table 6.2.1-5. TRR in tops of the 1x application rate experiment amounted to 2.29 - 4.08 mg parent equivalents/kg matrix (mg equ/kg). Thou after each foliar treatment and decreased to 0.73 mg equ/kg 45 days after the last application. The TRR levels in the beets were generally low ranging from 0.025 to 0, 13 mg equ/kg throughout beet sampling.

The predominant portion of TRR could be conventionally extracted with acetonitrile/water. From the tops (foliage), approx. 95 - 106% of TRR and from the beets approx. 75 - 100% of TRR were extracted. In case of a four extraction yield in roots, an additional portion up to 9% of TRR was extractable by use of microwave. In turn, the nonextractable residues were low, i.e. approx. 0.1 - 5% of TRR from tops and approx. 0.3 - 12% of TRR the beets. These non-extractable residues in the beets corresponded to 0.001 - 0.014 and equilibrium the two fater harvest dates (21 and 45 days after the last application).

### Residues in sugar beet tops and roots

Sugar beet roots and tops were initially extracted with acetonitrile/water at ambient temperature and subsequently with Toropapol/water at enhanced temperature using microwave support. The extracts were analysed by two dimensional radio-TLC and radio-HPLC. The microwave extracts were cleaned up by solid phase extraction prior to chromatography. Reference standards aided for identification as co chromatography. The resulting composition of the radioactive residues in sugar beet tops and roots of the last two sampling dates, 21 and 45 days after three foliar treatments with [14C-GP] trifloxystrobin is presented in Table 6.2.1- 6.

The metabolism of trifloxystrobin in sugar beet was very intensive as approx. 30 metabolites were detected in both tops and roots. Most of these metabolites appeared at very low concentrations

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

(<<10% of TRR). Two metabolites revealed to be major in the roots. The carboxylic acid CGA321113 (M5, EE-Isomer) accounted for 7.5 - 11 % of TRR and its triply hydroxylated derivative (metabolite fraction M16, one hydroxyl group attached to methyl group of the bridge between the phenyl rings and two hydroxyl groups attached to the trifluoromethyl phenyl ring) accounted for approx. 9% of TRR. Further radio-RP-HPLC analyses revealed that M16 consisted of several isomers with the same molar mass and each individual isomer accounting for < 0.01 mg equ/kg. Additional minor metabolites were identified as CGA373466 (M6, ZE carboxylic acid), NOA443152 (M10, hydroxylated ZE carboxylic acid) and NOA414412 (M12, phenyl hydroxylated EE carboxylic acid) and their glycoside conjugates, respectively. These metabolites were also identified as glucose conjugates. The metabolic pattern observed in the 1x application experiment was confirmed by the overdose experiment.

The water-soluble radioactivity of sugar beet costs was analysed for the content to radioactivity incorporated into saccharose. Approximately 6% of TRR were found to be incorporated in saccharose 21 days after the last application of [14C-GRPriflox strobin. Analysis of the non-extractable residues in roots showed that additional portions of 0.4% of TRR were incorporated into cellulose 2.4% of TRR into lignin and 1.5% of TRR into peetin.

However, the parent substance to boxystrobin (EE-isomer, M1) second generally for the predominant residue components at harves V(21 - 45) days after last application amounting to 21 - 43% of TRR in tops and to approx. 23% of TRR incroots of the sources COA 350262 (2Z-isomer, M2) and CGA 331409 (EZ-isomer, M4) were detected at very low levels O(1 - 0.8%) of TRR (M2) and 0.9 – 3.2% of TRR (M4). The ZE-isomer (CGA 357161 (M3) was not observed in any commodity.

#### Residues in soil

In the top soil layer  $(0 - 10^{\circ} \text{ cm})$  TRR accounted for 0.005 - 0.262 mg equ/kg one day after each application and for 0.098 and 0.927 mg equ/kg 21 and 45 days after the last application of the 1x application trial.

Extraction and radie TLC of the soil extracts revealed fow amounts of the parent substance at the two later sampling dates (24 and 45 days after last application to the plants). The predominant residue component in soil (top layer) was formed by ester hydrolysis of the parent substance, i.e. the carboxylic acid M5 (GA 321113) amounting to 57 , 65% of TRR in the soil samples. Its isomeric carboxylic acid M6 (CGA373466) accounted for approx. 2 - 3% of TRR and the hydroxylated carboxylic acids 10 (NOA449152) and M12 (NOA414442) amounted to less than 1% of TRR. The same metabolitos were also reflected in sugar beet boots and leaves.

### Storage stability

All samples were stored at approx  $> 18^{\circ}$ C Extracts were stored at 8°C, at maximum. Leaves and roots sampled 21 days after the last application were extracted and chromatographically profiled approx. two months after harvest. The extracts were re-analysed after approx. 8 - 9 months storage at maximum 8°C. Further aliquots of tops and roots of the same frozen samples were re-extracted approx. 4 – 6 months after the initial extraction and analysed again. Comparing the metabolite pattern, no significant change could be observed regarding the qualitative and quantitative distribution of radioactive peaks.

E ST ST ST 



### Conclusion

[14C-GP]trifloxystrobin metabolized very intensively in sugar beets as approximately 30 metabolites were detected in tops (foliage) and roots (beets) 21 and 45 days after the last of three foliar greatment at a total application rate of 400 g as/ha. Most of these metabolites appeared ar a very low level ( of TRR in the roots and < 5% of TRR in the leaves at harvest). Based on the structures identified, the metabolism of trifloxystrobin in sugar beets appears to proceed via different transformations:

- Cis/trans isomerization of trifloxystrobin and/or hydrolysis of the methyl ester, @
- Methyl ester cleavage to the major metabolite  $II_2$  = M5, CGA\$21113) and ch' trans some Dization of M5 to metabolite II_{24b} (= M6, CGA373466)
- Hydroxylation of the trifluoromethyl-phen  $\Re$  ring of M5 resulting in metabolite  $II_{2}$  (=  $\Re$ 12, . NOA414412) and its stereoisomer II_{21a} with subsequent gy coside conjugation to form metabolitesŚ Ľ  $II_{10}$  or  $II_{9b}$ ,
- Hydroxylation of the methyl substituent of M5 ale the 2 thylideneaninooxymethyl group to metabolite II_{23a} (= M10, NOA443152) with subsequent glycoside conjugation to form metabolite II₁₁, and threefold hydroxylation of thenyl and methyl group to form the major metabolite fraction II_{19a} (M16) that consisted of several isomers with each someraccoupting for < 0.04 mg equ/kg.
- Formation of bound residues of a low extent via incorporation into saccharose, cellulose, lignin • Ŝ and pectin.
- and pectin. No cleavage of the ethyliceneam mooxymethyl Bridge between the phenyl mass and no formation of label-specific metabolites was found. Therefore, no significant differences were observed of the metabolites' pattern in the sugar beet metabolism studies performed with [J4C-GP] and [14C-Ő TP]trifloxystrobin. Ø1
- The parent substance revealed to be the predominant residue components in sugar beet tops and

The proposed common metabolic pathway of [14C GP]trffloxstrobia in plants (wheat w, cucumber c, and sugar beet sb) is shown Figure 6.2. It 4.

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

## Table 6.2.1- 5: Total radioactive residues (TRR) in sugar beet and extractability of the residues of following three foliar treatments with [14C-GP]trifloxystrobin at a total use rate of 400 g as/ha

	1	1			
Sampling	Crop	TRR	Extraction	Microwave	Non
	Part		with ACN/H ₂ O	extraction with	extractable
			[% of TRR]	1-propanol/H ₂ O	
			Ŭ,		
		[mg equ/kg]	[% of TRŘ]	[%@f TRR]	Mof SRR]
1 h after	Tops	3.204	965	K 0.1	
1 st appl.	Roots	0.055	106.7		~ 0.3
				<u>ơ , v ~ </u> ?	
1 h after	Tops	2.286	95 2	n.a	1.1
2 nd appl.	Roots	0.033	\$8.2	Q 592	0 ⁴ 3.0 ² / ₂ ³
	L			$\rightarrow A$ $\delta^{*} *$	
1 h after	Tops	4.077	299 × ~	0.3 6	A.5 0
3 rd appl.	Roots	0.063	\$70,5	0 63 S	6.90
	10005				
21 d after	Tons	Q1 306	n osa n		
3 rd appl	Poots		× 756	Q II.d.	0 12 2
5 uppi.	KOOIS		× (13.0		12.2 Ø
45.1.0	T X				<u>)</u>
45 d after	Tops	<u>~</u> 0.727		n.a.	4./
3 rd appi.	Roots	6 0. <b>8</b> 25	\$4.5 <u></u>	0 <u>9</u> 4.2 <u>(</u> )	3.5
			Q ^r		

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

# Table 6.2.1- 6: Metabolite fractions in the extracts of sugar beet tops and roots 21 and 45 days after the last of three foliar treatments with [14C-GP]trifloxystrobin at a total use rate of 400 g as/ha

Pre-harvest interval	21 Days			5 45 Days &					
Plant part	То	p	Ro	oot		gp	Re Re	Det of	
TRR [mg equ/kg]	1.3	69	0.1	13	Ø.7	Ž7	)*) Ox	25 🔊	
Residue composition	%TRR	ppm ¹	%TRR	<b>∑ppm</b> ¹	% <b>Ţ</b> ŔŔ	ppm ¹	%TRR	ppm ¹	Ļ
II _{0a}	2.1	0.029	2.2	0.002	2.6	0.019	ŴŹ	80.00£	) (
II _{0b}	2.1	0.029	1.2	0.001	Q*1.6~°	0.612	L 0.6	× 0.001	
II _{1a}	1.2	0.017	Q).4	0.002	2.6	0.019	0″ 0.5©	< 0,0001	
II _{1b}	n.d.	n.d. 🤵	1.0 🍙	0.001	ר.2 🔬	<i>0</i> .00	0,5	≪0.001	
II _{2a}	3.2	0.045 C	° 1,5℃°	0,002	° 3.7 °	0.027	£1.5 £	< 0.001	
II3 _a	1.1	0.015	<b>. 0</b> 76 ~	Ø.001	0,8	<b>0.006</b>	° 1.1°	< 0,001	
II _{3b}	n.d.	n.d.	∽n.d. ∽	n.d	s	90.00 <b>4</b>	0.5	<b>S</b> Ø.001	
II _{4a}	0.7	Ø.010	1.0	0.001	رمنې 5.3 چې	0.039	Q.9	ok 0.001	
II _{5a}	1.8	Þ`0.025⁄	-251	J9.003	2.5	0,0015	§ 1.2 Ø	< 0.001	
II _{6a}	0.5 Q	0,007	_ک ہ 0.6	0.000	6.5	¢0.004~	0,9	< 0.001	
II _{7a}	n.d.	Kn.d. (	¥ 1.7Ç	0,002	∕2.3 °Ò	0.00	<u>%</u> 0.7	< 0.001	
II _{7b}	jnd.	$^{\nearrow}$ n.d	1.0	0.001	[×] 1.45	0.010	©*0.3	< 0.001	
II _{7c}	n.d. 🗡	n.d.	¥.1	♥0.001 [♥]	1,3	<b>~0</b> .011 <i>©</i>	0.3	< 0.001	
II _{7d}	y n.d.	9.d.	§ 0.3~	< 0.001	×1.5 🖑	0.01	n.d.	n.d.	
II _{7e}	n.e.	🖏 n.d. Õ	0.6	s_0.001 %	2,2	0.0)6	0.4	< 0.001	
II _{8b}	0.7	0.010	<b>3</b> 2.5 .	$0.003^{\circ}$	106	AQ.012	1.1	< 0.001	
II _{9b} identified as ML2-gly	√y 3.4°)	Ø.047 ~	1.7.0	0.092	£6.2 Q	0.045	0.7	< 0.001	
$II_{10}$ identified as M28-gly	15,5° (	0.02	0,5	62001	© 1.85°	0.013	0.3	< 0.001	
II _{10c}	on.d. C	n.¢	.9.9	0.00	1,6	0.012	0.8	< 0.001	
II ₁₁ identified as M10 ^o gly	× 5.00	0,070	S 0.9	0.001	≪8.2	0.060	0.6	< 0.001	
II _{15a}	160	<b>@</b> .014	0,6	0,901	0.7	0.005	0.9	< 0.001	
II _{16a}	s,,,	0.008	<u>\$</u> 06	×0.001 C	0.5	0.004	0.6	< 0.001	
II _{17a}	√°0.7√	0.010	چ 0.9 %	0.001	1.2	0.009	1.5	< 0.001	
II _{18a}	0,6	<b>\$0</b> .008	0.6	00001	0.2	0.001	0.9	< 0.001	
II _{19a} charact. as $M16^{2}$	D.4 (	0.020	, <b>8</b> 0	Ø.010	1.6	0.012	9.2	0.002	
II _{21a} identified@s M2®	0.6 V	0,008	j [×] 0.8 ~	0.001	0.9	0.007	1.1	< 0.001	
$II_{22} = NOA414412, M12$		<b>Q</b> 7024	¢° 1.6©	0.002	1.7	0.012	1.3	< 0.001	
$II_{23a} = NQ 443152, M10$	•Q,4	©0.00	0,8	0.001	0.4	0.003	1.0	< 0.001	
$II_{24} = CA32G1113, MS$	5.2	0.073	× <b>)</b> *0.8	0.012	2.8	0.020	7.5	0.002	
II _{24b} ♣ CGA373466, M6	\$* 1 <b>.</b> }	Ø\$015 °	<b>▶</b> 1.1	0.001	0.9	0.007	0.4	< 0.001	
II _{24c}	nd.	© n.d. 🖓	0.2	< 0.001	n.d.	n.d.	n.d.	n.d.	
II _{24d}	🖉 n.d. 🗸	n.d.	0.3	< 0.001	n.d.	n.d.	0.4	< 0.001	
Unresolved S	S 5.6	<b>\$978</b>	7.3	0.008	10.7	0.078	6.3	0.002	
III9, Triflogystrobin, M1	43.2	0.603	22.9	0.026	21.3	0.155	23.3	0.006	
III ₁₀ , CGA357202, M2	×90.8	0.011	0.5	0.001	< 0.1	< 0.001	n.d	n.d.	
III ₁₂ , CGA33¢ĂŎ9, MÁ	ا ∛ي 1.3	0.018	1.9	0.002	0.9	0.007	3.2	0.001	
E ₂	-	-	5.5	0.008	-	-	9.2	0.002	
$W_3(E_2R_1)$	-	-	1.7	-	-	-	3.6	0.001	
Non extractable	3.9	0.054	12.2	0.014	4.7	0.034	3.5	0.001	
Total ³	103.1	1.439	95.8	0.109	102.0	0.745	108.3	0.028	



W3 water phase

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

- ¹ ppm: mg parent equivalents/kg plant material
- ² the trihydroxylated metabolite fraction M16 consisted of several isomers with the same molar mass
- ³ some inconsistencies in the summation as separation of the parent substance and its isomers are conducted separate analysis that was accompanied by some losses of radioactivity
- n.d. not detected

E2 microwave-extracted (included in extracted)

#### Peanuts

In order to show common metabolism of trifloxystrobin in different crop categories an additional metabolism study on peanuts is reported by the collowing summary. This study was originally intended for submission of this use to the US EPA. It is reported in two reports describing the biological and the analytical part.

Report:	KCA 6.2.1/13, 31997; M-139152-61-1
Title:	Uptake and metabolism of CGA-279202 in field grown peanuts after spray
	treatment with phenyl(A) #4C- CGA-279202 and phenyl(B) CGA-279202
Document No:	M-137152-01-1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Report No:	ABR-97084 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guidelines and	US-EPA: 40 CFR 158.240 Pesticide Assessment Guidelines Subdivision O,
data requirements:	Residue Chemistry Series 1712 (a), Nature of the Residues in Plants
GLP	ges i i i i i i i i i i i i i i i i i i i
Report:	KCA 6.2 1/14, 1997; M-038413-01-1
Title:	Biological phase report uptake and metabolism of CGA-279202 in field grown
	peanuts after spraotreatment with phenyl(A) 4C- CGA-279202 and phenyl(B)-
<u> </u>	$CGA-270302$ $\sim$ $O^{\circ}$ $\sqrt{O}$ $O^{\circ}$
Document No:	M-038413-0151 O X & A
Report No:	BIQ4-96024 ~ ~ ~
Guidelines and	US EPA 40 CFR 158 40 Pesticide Assessment Guidelines, Subdivision O,
data requirements:	Residue Chemistry Series 171-4(1) Nature of the Residues in Plants
GLP	yes S & S & S

### Executive Summary

The metabolism of [glyoxy]-phenyl-UL (C)] and [trifluoromethyl-phenyl-UL-¹⁴C]trifloxystrobin ([14C-GP] and [14C-TP]trifloxystrobin) was investigated in peanuts following four spray applications at single use rates of approx. 0.5 lb ai/A (0.56 kg as/ha), totalling 2.02 kg as/ha for the [14C-GP] and 2.13 kg as/ha for the [14C-TP] tabel. The plants were cultivated outdoors. They reached the following growth tages at the respective treatments: bloom, bloom/pegging, nut formation, and nut maturity. Plant samples were taken directly after the first treatment, 14 days after the first treatment (immature vines) and (4 days after the last treatment (mature hay and shelled nuts/nutmeat).

The total radioactive residues (TRR) amounted to 20.7 and 24.9 mg equ/kg in the vines directly after the first application based on the [14C-GP] and the [14C-TP] label. TRR values decreased to 7.7 and 9.1 mg equ/kg in vines during the following 14 days and increased again in mature hay to 26.3 and

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

27.9 mg equ/kg for the two labels 14 days after the last application. Mature nutmeat showed significantly lower residue levels, amounting to 0.305 and 0.184 mg equ/kg.

The extractability with acetonitrile/water was high in vines and hay amounting 68 - 91% of TRR in vines and 68 - 74% of TRR in hay. From nutmeat, only 21 - 27% of TRR was extractable with acetonitrile/water. Partitioning against dichloromethane resulted in organosoluble residues amounting to 56.5 - 66.9% of TRR in immature vines, 42.4 - 55.4% of TRR in mature hay, but to less than 10% of TRR in nutmeat. However, a significant portion could be extracted from nutmeat in a proor extraction with hexane accounting to 25.6 - 30.9% of TRR based on the two radiolabels.

The radio-HPLC and radio-TLC profiles of the organosoluble metabolites extracted from immature vines and mature hay were similar in both radio abels. The major metabolites for both labels vere identified as the parent substance trifloxystrobin (CGA-279292) and its isomers CGA-3572614(M3), CGA-357262 (M2) and CGA-331409 (M4), as well as the Hydrolysed carboxytic acids CGA-321113 (M5) and its isomer CGA-373466 (M6). Parent substance and the carboxytic acid isomers CGA-321113 (M5) and CGA-373466 (M6) were also identified in the diction of nutricat. The hexane fraction from mature nutricat was shown to be composed of the parent substance, its hydrolysed carboxylic acid and the isomers as well as of radiolabeled triglycerides.

The parent substance trifloxystrobin (EE isomer) proved to be the predominant residue component in peanut hay using both radiolabels. In nutmeal, the sum of parent comers was too low (0.009 - 0.011 mg/kg) to achieve a separatice into the individual isomers.

However, the respective radio profiles of the aqueous soluble (por metabolites in vines and hay resulting from the two labels were different indicating the cleavage of the NO bridge between the phenyl rings and the formation of laber specific metabolites. All metabolites in mature hay and nutmeat exceeding % of CRR could be dentified.

The metabolism study on  ${}^{14}C$ -triffoxystrobin in field grown peanuts revealed the following transformations resulting in at least 12 - 13 metabolites.

- Crs/trans isomerization of parent substance trifloxystobin (CGA-279202) to form CGA-357261 (M3), CGA-357262 (M2) and CGA-331409 (M4)
- Methylester cleavage to the carboxylic acids CGA 21113 (M5) and its cis/trans isomer CGA-373466 (M6) The subsequent conjugation with malonyl glucose leads to different malonyl glucoside metabolites (A-9a11, A-9b1, A-9c1 and A9c2).
- Bydroxylation of the aminooxymethyl group on the bridge between the phenyl rings, or hydroxylation of the CF₀ bearing phenyl ring at the meta position, followed by glucose conjugation, leads to metabolites NOA-443152 (M10)- and NOA-414412 (M12)-glucosides (A-7a, A-7a2, A-7c); upon Geavage of the N-O bridge and subsequent glucose conjugation the metabolites CG4-107170 (M62)- and BO-17372 (M64)-glucosides (A-7a, A-7a2, A-7b) are formed

The cleavage of N-O bridge in trifloxystrobin or its carboxylic acid CGA-321113 (M5), followed by oxidation and/or conjugation to form metabolites CGA-328365 (M61, A-4b), CGA 300624 (M59, A-5b); CGA-347242 (M47, F2b2-3a&b (A1))-glucoside, methyl ester of GA-373463 (M46, F2b2-3a&b (A2)); CGA-367619 (M53, phthalic acid, A2b2 (top)); WFX-WX-86 (M51, peak 3,4-1 or 8-1);



- Complete oxidation of the  $CF_3$  bearing phenyl ring resulted in low formation of • trifluoroacetate.
- The parent substance trifloxystrobin (EE-isomer) proved to be the main residue componentin • immature vines and mature hay of peanuts and, therefore, can be used as analytical target in the residue analysis. In nutmeat, no single residue component exceeded 10% of TRR also the residue analysis. In nutment, no single residue component exceeded 10% of TRR, also applying to the parent substance. The major portion of radioactivity represented ¹⁴C triglycerides obviously formed by mineralization of the ¹⁴C-triglocystrobin in soil and uptake of the formed ¹⁴CO₂ via photosynthesis.
   The proposed metabolic pathway of trifloxystrobin in peanuts is presented in Forure 6 2.1-5.
   Material and Methods

**Test Material** 

Structural formula	H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$
	Hero Contraction of the second
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A ST CHY OF A CHY
Chemical name	(E,E)-methoxymino 2-[1, 3-trifluoromethyl-phenyl)-ethylideneamino-
Ô.	oxymethyl] pheny Dicetic acid methyl ester (IUPAC);
J	
	(<i>H</i> , <i>E</i>)- <i>a</i> -meinoxyimno)-2-[[[1-[3-minuoromeinyi)phenyi]einyildene]
Common name	
CAS RN C	491517-21-7
Empirical formula 👋 🦻	$\mathcal{C}_{20}H_{49}F_{3}N_{2}Q_{4}$
Company code	CGA 279292 ~ ~
Molar mass (non-fabelled)	AP8.4 gonole a g
Label 🔊 🖉	[glyðxyl-phenyl-UL-4C]Trifloxystrobin, abbr. [14C-GP]
A S	Label A r the orginal report
	Frifluor@methyl*phenyf-UL-14C]Trifloxystrobin, abbr. [14C-TP]
	Labe B in the original report
Specific radioactivity	[14C-GP]Qabel A: 23.8 mCi/g (880.6 MBq/g)
<u> </u>	[14C-TP], labet B: 26.2 mCi/g (964.4 MBq/g)
Radiochemical purity	\$[14C, GP], label A: 97.9% (> 94.7% in the formulation)
E S S	[14C-TP] Jabel B: 98.5% (>93.8% in the formulation)
Chemical urity C	[44C-GP], label A: 99.8%
S & A	S[14C-1P], label B: 99.6%
Test Plants	
õ	

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Test plant	Peanuts
Variety	Florunner
Cultivator	Montgomery Seed and Supply Comp. Inc., Montgomery, Alabama, USA
Study design	Outdoor study at two plots in Greenville, Mississippi, USA
Growth stage at	Four spray applications at the following growth stages
application	1. Bloom, 57 days after pearut planting (peight: 25 - 36 cm)
	2. Bloom/Pegging, 85 days after planting (height: 30 45 cm)
	3. Nut formation, 120 days after planting (height: 49 – 60 cm)
	4. Nut maturity, 148 days after planting (height: 95 - 66 cm)
Harvested commodities	Complete peanut plants immediately after the 1st treatment and 14 days
	after the 2nd treatment after the 2nd treatment
	Final harvest at maturity, i.e. 962 days after planting and 94 days after ?
	the last treatment: mature plants, separated into hay and peaners (not
	shelled).
	All samples were transferred from the field site to the avalytical
	laboratory, where the peaputs were shelled to get the outmeat

Sowing and cultivation of sugar beet, preparation and application of the test substance

Peanuts were sown into silt loan soil (27.0% sand, 56.0% silt, 17.0% clay, 1.3% organic carbon, pH 7.3 [H₂O]) of two outdoor plots located at the

USA. The plots, one for the [14C OP] and one for the [14C-TP] label, had a size of 6 ft x 12 ft (1.8 m x 3.6 m). The peakers were planted in three rows to each plot and cultivated under usual agricultural conditions during the summer 1995.

Batches of [14C-GP, label A] and [14G-TP; label B] and store in the spray mixtures and the stability of the spray mixtures and stirred for homogenization. The homogeneity of the spray mixture and the stability of the test substance were examined by radioassaying and radio PLC analysis of several small aliquots.

Four spray treatments were conducted using a hand sprayer with four nozzles that were operated with compressed CO₂. At spraying, the period plants had the following growth stages (1) bloom; (2) bloom/perceng, (3) nut formation, and (4) nut maturity. The nominal application rate per treatment was 0.54b ai/A (0.56 kg as/ha). The actual total use rate amounted to 1.8 lb ai/A (2.02 kg as/ha) for the [14C-GP; A] label and 1.9 lb ai/A (2.12 kg as/ha) for the [14C-TP; B] label. The rate of the spray mixture was approx. 300, 350 k/ha.

Sampling and processing of the periods and soil samples

Whole inimitature peanuts plants (vines) were sampled 0 days after the first and 14 days after the 2nd application. At the final harvest, 162 days after planting and 14 days after the last application, mature pods (shelled peanuts) were dug and separated from hay. All samples were stored in plastic bags in a freezer at approx. -20°C until transfer deep-frozen to the analytical laboratories of Novartis Vero Beach, Forida, and Novartis Greensboro, North Carolina, USA.

The peanut pods were shelled manually. Vines, hay and shelled peanuts (nutmeat) were homogenized separately with dry ice in mills fitted with a 2 mm diameter screen. After homogenization, the dry ice

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

was allowed to sublime in a freezer. Aliquots of the resulting plant and soil samples were radioassayed by combustion and liquid scintillation counting.

In addition, soil cores (depth: 0 - 3 inch; 0 - 7.6 cm, 2 cm diameter) were sampled before application, 4 hours after the first application of the test substance and at harvest of mature peanuts? The soil samples were stored in a freezer until shipment to the analytical laboratory.

Extraction of peanut plant, clean-up, hydrolysis and derivalisation of merabolites

The homogenized vines and hay samples were extracted with acetonitrile/water 4/1, v/2, 2x) using a high-speed stirrer. The extracts were radioassayed and cleaned up by flash shromatography (solid phase extraction) using a flash C18 column. The non-extractable residues were radioassayed and stored frozen until further investigation of the non-extractable residues by hydrolytics steps,

Clean-up of the primary plant extracts from rines and hav was performed using Q18 flash chromatography (solid phase extraction). Following application of the crude extract to the top of the C18 column the polar by-products (e.g. chroroph A) were sucked through while the less polar metabolites were retarded. The loaded resin was mased with acctonitrile/water and pure acetonitrile. The acetonitrile eluates were concentrated and partitioned against dichloromethate. The primary acetonitrile/water extracts were also partitioned against dichloromethate and the organosoluble residues analysed by radio-HPCC and radio-FLC. Residues in the aqueous phase were characterized by different derivatisation reactions (see below).

Homogenized nutmeat samples, were first extracted with hexane using a high-speed stirrer. The hexane extract was partitioned against acetonitrile and methanol. In a second step, the nutmeat sample were additionally extracted with acetonitrile/water (41, $\sqrt{2}$, 2x). The combined aqueous extract was partitioned against achievementation. Subsamples of the hexane and the dishloromethane extract were analysed by normal and reversed phase radio-HPLC and two dimensional radio-TLC. The post extraction-solide of hay and nutmeat with the non-extractable extractable residues were radioassayed and subjected to sequential hydrolysis procedures with increasing rigorousness (see below).

A subsample of the hexane fraction from nutmeat was also incubated with the lipase enzyme for at least 12 hours (37°C, H 7.5) to hydrolyse the lipid components (glyceride esters). The hydrolysis was completed by agitation with KOH. Subsequent partitioning with ethyl acetate at acid pH resulted in isolation of the faity acid fraction. This fraction was analysed by radio-HPLC. Other subsamples of the hexane extract were Oteaned-up using flash silica gel columns that were eluted with acetonitrile, methanol and hexane. Fractions were analysed by radio-HPLC.

Subsamples of the aqueous fractions of vines and hay samples were hydrolysed with cellulase as well as with 3N and 6N hydrochloric and (Hy). The resulting mixture was concentrated to dryness and reconstituted in methanol before analyses. The reaction products were analysed by two-dimensional radio-TLC and/or radio-HPLC.

Subsamples of the aqueons fractions following C18 flash chromatography and partitioning against dichloromethane, were concentrated to dryness and then characterized by different derivatising reactions, e.g. acetylated with acetanhydride/pyridine, butylated with 3N HCl in butanol, or methylated with diazomethane. The resulting mixtures were brought to dryness using a stream of nitrogen, regissolved in methanol and analysed by radio-TLC.

North Contraction of the second secon

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Characterization of the radioactivity in the post-extraction solids

Q. Following extraction with acetonitrile/water the remaining solids were subjected to various sequential analytical conditions: (1) reflux with acetonitrile/water (4/1), (2) reflux with 1% aqueou sodium chloride, (3) cellulase enzyme hydrolysis (37°C, pH 4.6, 24 hours), (4) protease enzyme hydrolysis (37°C, pH 7, 24 hours), (5) mild acid hydrolysis at room temperature using 1N HCl, (6) mild base hydrolysis at room temperature using 0.8N NaOH, strong acid hydrolysis with 6N HCT under reflux and strong base hydrolysis with 6N NaOH under reflux.

All fractions were radioassayed.

Extraction of soil samples

Soil samples taken at maturity of the peanutowere extracted with acetomtrile/water (4/1, v/y; 4x) by mechanic shaking for 15 minutes. The extracts and extracted soil were radioassayed. The extracts were combined, concentrated and analysed by radio-HPLC and two-dimensional radio-TLC.

Radioassaying and analysis

Radioassaying (measurement of the radioactivity) was conducted by liquid scintillation counting (LSC). Quenching was automatically compensated using an external standard Solid samples were firstly combusted and the formed $^{14}_{14}CO_2$ appropriate in an alkaling scintillation liquid. The combustion values were corrected for the compustion efficiency. The total radio values (TRR) of a sample were established by the sum of extracted radioactivity and the no-extractable radioactivity in the extracted sample. The limit of quantification (DOQ) depended on the typical aliquot size, the background and the specific radioactivity of the test substance. The following LOQs were used in the study:

[14C-GP], label A: Pant 0.005 mg equ/kg nutmeat 0.020 mg equ/kg; soil 0.0005 mg equ/kg [14C-TP], label Boplant 0.004 mg equ/kg; nutmeat 0.018 mg equ/kg, soil 0.0004 mg equ/kg.

One- and two-dimensional analytical and one-dimensional preparative radio-TLC was conducted on silica gel plates (Si60 F254) of different thickness of the separation layer. The plates were developed with six different solvent systems, four of them comained formic or acetic acid. Radioactive spots were detected bea radioanalysic imaging, system, Co-chromatographed non-radiolabelled reference standards were visual ded by fluoreseence extinction following excitation with UV light.

Radio-HPLC was conducted as a senil-preparative RP18 column (250 x 9.4 mm) operated with different gradient mixtures of aqueous phosphoric acid (0.1%) and acetonitrile. For profiling of hexane soluble fractions of the nutrieat the same column was also operated with different gradient mixtures of acetone and acetonitrike. In addition, organosoluble fractions of the nutmeat were also chromatographed on a semi-preparative straight-phase silica column (250 x 9.4 mm) that was operated with a gradient mix the of p-heptane and methanol. The HPLC systems were equipped with a UV detector (251 m) and a radiomonitor. The flow rate was generally 2 mL/min.

Ô Š Preparative column chromatography was also conducted with a C18 bulk packing (50 µm size). The sample was applied to the diumn and eluted with mixture of acetonitrile and water. For examination of activity of activity of a sector of a s operated with a gradient mixture of water and 1N potassium bromide.

LC-MS/MS was performed for identification of parent substance and metabolites. Radio-HPLC separation was conducted on a reversed phase (C18) column (150 x 2.0 mm, particle size 5 μ m), a

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

water/methanol gradient (both acidified with 0.1% formic acid) as liquid phase and a radiomonitor with a solid scintillator. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) were used for ionization. Authentic reference standards aided for identification.

GC-MS was performed using DB-625 capillary column that was coupled to a mass spectroineter. The GC separation was achieved using a temperature gradient between 70 and 250°C.

¹H-NMR analysis was performed using a 400 MHz NMR spectrometer. Samples were dissolved in deuterated d3-acetonitrile or d4-methanol. Chemical shifts were give Rin ppm relative to the partially

Total radioactive residues and their extractability The total radioactive residues (TRR) in immature vines of peaput plants, mature bay and shelled nuts (nutmeat) are shown in Table 6.2.1-7. Dritial TRR directly after the first application amounted to 20.7 and 24.9 mg parent equivalents/kg matrix (mg equikg) in vines for the Q4C-QP and AC-TP] label. The TRR values decreased to 7.7 and 9.1 mg equility in vines during the following 14 days. Due to three additional applications and withering TRR value increased again to 20.3 and 27.9 mg equ/kg for the two labels in mature hay 14 days after the last application. Mature hulls had radioactivity levels of approx. 1.1 mg equ/kg. Matrice nutmeat had the lowest residue fevels, amounting to 0.305 and 0.184 mg equ/kg for the [14C-GP] and the [14C-TP] label 14 days after the dast application.

The extractability of radioactive residues from vines, hay and normeat is presented in Table 6.2.1-8. From immature vines and mature bay the main portion of radioactive residues was extractable with acetonitrile and water amounting to approx. 86 – 915 of TRR in vines and to approx. 68 – 74% of TRR in hay with both radiolabels. The primary extract was concentrated and partitioned against dichloromethane and water. 56 - 67% of TRR in summature vines and 42 - 55% of TRR in mature hay were organosoluble. The non-extractable residues (post extraction solids) accounted for approx. 10% of TRR in vines and for 24 - 30% of TRR in Kay.

Nutmeat, sampled 14 days after the last treatment, was first extracted with hexane resulting in an organosoluble portion of approx 26 - 31% of TRR for both radiolabels. Subsequent extraction with acetonitrile/wateraeleased 21 27% of TRR with the [14C-TP] and the [14C-GP] label. Partitioning of the aqueous extraçorgainst dichloromethane resulted for another organosoluble fraction of 12.5% of TRR for the P4C-TP and 7.7% of TRP for the [14CGP] label. Approx. 53 – 55% of TRR remained non-extractable by conventional extraction (post-extraction solids, PES).

Ľ

The PES radioactivity remaining non-extractable following acetonitrile/water extraction were released by sequential treatments micluding mild, enzymatic and more drastic hydrolysis steps. The terminal residues remaining after these steps were \$10% of TRR for all samples and both radiolabels. The radioactivity released by the whydrolysis stops were represented by the same metabolites as identified in the extracted organosouble fraction of vines and hay (see Table 6.2.1-9). From nutmeat, significant portions of the PES 53 - 57% of TRR) were released by refluxing with acetonitrile/water (20 - 26% of TRR) and aqueous 1% sodium chloride solution (11% of TRR) as well as by enzymatic hydrolysis with cellulase (9,711% of TRR) as shown in Table 6.2.1-11.

Residues in peanut vines, hay and nutmeat

The organosoluble metabolites were characterized by co-chromatography with authentic reference? standards using reversed phase radio-HPLC and/or normal phase two-dimensional radio-TelC. The organosoluble radioactivity separated into 5 regions by HPLC (designated as 0-1 through 0-5) while the aqueous soluble radioactivity separated into 9 or 10 regions (A-1 to A-10), depending upon the label. The metabolites in each HPLC region of the organic and aqueous fractions were isolated and identified by co-chromatography with the reference standard and/or MS and NMR analysis.

The radio-HPLC and radio-TLC profiles of the organissoluble fractions from both label of inmature vines and mature hay were similar. The main residue components asing both lavels were identified as parent substance trifloxystrobin (CGA-279202) as isomers CGA-35 261 (M3), CGA-35 262 (M2) and CGA-331409 (M4) as well as the hydrolysed carboxylic acids CGA-321113 QM5) and its isomer CGA-373466 (M6) proved to be minor metabolites. Streater than 38% of the organosoluble radioactivity in mature hay was identified. The metabolites in immature vines and mature hay of peanut plants are compiled in Table 6.2.

In nutmeat, the parent substance CGA 279202 and its carboxylic acids CGA-221113 (M5) and CGA-373466 (M6) were also identified in the dichloromethane fraction. The printary hearing fraction from mature nutmeat was shown to be composed of the parent substance, is hydrolysed earboxylic acid and their isomers as well as of radioabeled triglycerides. Due to the two radioactions level in nutmeat a satisfying separation of the radioactive residues, into individual components was not possible. The composition of partly separated residues in nutricat is presented in Table 6.21 - 10.

The radio-HPLC and 2D-radio-TLC profile of the aqueous fractions from [AC-GP] (label A) and [14C-TP] (label B) were different indicating the cleavage of the N-@bond between the phenyl rings and formation of the label-specific metabolites. For each label, the HPLC profiles of the aqueous fractions from mature nutmeat, impature vines and mature had were similar. The major aqueous soluble metabolites, which occurred primatily as malory glucosides and glucoside conjugates, were isolated and identified. No single unidentified metabolite accounted for more than 1% of TRR in either label of mature hay or nutmeat.

The post-extraction solids (PES) with the non-extractable residues following acetonitrile/water extraction were solubilized by following the semential treatments with increasing hydrolytic reactivity: acetomerile/water reflux, aqueous sodium chlorice reflux, cellulase and protease incubation, HCl and NaOH hydrovyses. The terminal residues remaining after these hydrolysis steps were <10% of TRR for an samples. The radioactive residues released by these steps were characterized by radio-HPLC and 2D-radio-TLC. Similar to the organosoluble extractable metabolites, the parent substance trifloxystobin (CGA-2792020 and its isopers CGA-357261 (M3), CGA-357262 (M2) and CGA-331409 (M4) as well as its carboxylic acids CGA-321113 (M5) and CGA-373466 (M6) were identified in non-extractable radioactivity from Both labels.

Residues in soil

In the top soil layer (0 - 7.6 cm) TRR remained at an approximately constant level ranging from 0.2 to 0.4 mg equ/kg for both labels throughout the study period. 60.5 - 70.7% of PRR (0.22 - 0.24 pg)equ/kg) were extractable from the soil samples taken a maturity of the peaners using both radiolabels. The main residue component revealed to by the carboxylic acid CGA-321113 (M5) smounting to 36.8% of TRR (0.136 mg equ/kg) or 52.0% of TRR (0.176 mg equ/kg) using the [146 GP; A) or the [14C-TP; B] label. Other residue components identified in soil were CGA-373466 (Mb), CGA-357776 (M2) and the parent substance trifloxystrobin.

Storage stability

All samples were stored at approx. -20° C. Extracts were stored at FC, at maximum. Initial extractions and analysis of the organic and aqueous fractions from all samples occurred within 6 months of harvest.

Õ

The stability residues in the homogenized samples was shown by comparing the initial HPLC profile for mature hay with that generated over 12 months [14C, GP] or 14 months [14C-TP] storage. The stability of residues in the extracts from hay, nutrie and immature ones of as shown by comparing the initial HPLC profiles to those after 44 - 25 months of frozen storage. The profiles did not change significantly.

Conclusion

[14C-GP] and [14C-TP]trifloxystrobin metabolized intensively in peanuts as approximately 12 - 13 metabolites were detected in immature vises 14 days after the first fobar treatment and in mature hay 14 days after the last of four folial treatments at an application rate of 0.5 lb ai/A (0.56 kg as/ha) each. The majority of radioactive residues were extractable from immature vines and mature hay using acetonitrile/water. The percentage of extractable tradioactivity ranged from 86.25% - 90.89% of TRR in immature vines are 42.42% - 55.35% of TRR in mature hay, but less than 10% of FRR in the numerat. However, a significant portion could be extracted from nutmeat in a prior extraction with hexate accounting to 25.6 - 30.9% of TRR based on the two radiolabels.

The radio-HPIC and radio TLC profiles of the organovaluble metabolites extracted from immature vines and mature hay were similar in both radiolabels. The main residue component using both labels was identified as the parent substance triflox strobin (CGA-279202). Its isomers CGA-357261 (M3), CGA-357262 (M2) and CGA 31409 (M4) as well as the hydrolysed carboxylic acids CGA-321113 (M5) and its isomer CGA 373466 (M6) proved to be minor metabolites. Parent substance and the carboxylic acid isomers CGA-321113 (M5) and CGA-373466 (M6) were also identified in the dichloromethane fraction of numear. The bexane fraction from mature nutmeat was shown to be composed of radiolabeled triflycerides. Due to the very low residue levels in nutmeat the separation of the radioaction in the interval of the radioaction of numear.

However, the respective radio profiles of the aqueous soluble (polar) metabolites in vines and hay resulting from the two labels were different, indicating the cleavage of the N-O bridge between the phenyl rines and the formation of label-specific metabolites. All metabolites in mature hay and nutmeat sceeding 1% of TRR could be identified.

The metabolism study on ¹⁴C-trifloxystrobin in field grown peanuts revealed the following transformations:

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

- Cis/trans isomerization of parent substance trifloxystrobin (CGA-279202) to form CGA-357261 (M3), CGA-357262 (M2) and CGA-331409 (M4)
- Methylester cleavage to the carboxylic acids CGA-321113 (M5) and as cis/trans isomer CGA-373466 (M6). The subsequent conjugation with malonyl glucose leads to different malonyl glucosides metabolites (A-9a11, A-9b1, A-9c1, A9c2).
- Hydroxylation of the aminooxymethyl group on the bridge between the phenyl rings, or hydroxylation of the CF₃ bearing phenyl ring at the meta position, followed by glucose conjugation, leads to metabolites NOA-443452 (M10)- and NOA-444412 (M12)-glucosides (A-7a, A-7a2, A-7c); upon cleavage of the N-O bridge and subsequent glucose conjugation the metabolites CGA-107170 (M62)-and BO 17372 (M64) glucosides (A-7a, A-7a2, A-7b) are formed.
- The cleavage of N-O bridge in trifloxystrobin or us carboxylic acid CGA-321113 (M5), followed by oxidation and/or conjugation to form metabolites CGA-328365 (M61)A-4b), CGA 300624 (M59, A-5b); OGA-347242 (M47, 12b2-3a&b (A1))-glucoside methyl ester of CGA-373463 (M46, F2b2 3a&b (A2)); CGA-367619 (M53, pathalic acid, A2b2 (top)); WFX-IX-86 (M51, peak 3,4-1 or 8-1);
- Complete oxidation of the CFS beating phenyl ting resulted in low formation of trifluoroacetate.
- The parent substance trifloxystrobin (EE isomer) proved to be the main residue component in immature veres and mature hay of peanuts and, therefore, can be used as analytical target in the residue analysis. In nutment, no single residue component exceeded 10% of TRR, also applying to the parent substance. The major portion of radioactivity represented ¹⁴C-trigly crides obviously formed by mineralization of the ¹⁴C-trifloxystrobin in soil and uptake of the formed ¹⁴CO₂ via photosynthesis.

The proposed metabolic pathway of trifloxystrobin in peanuts is presented in Figure 6.2.1-5.

Table 6.2.1- 7: Total radioactive residues (TRR) in peanits treated with [14C-GP; A] and [14C-TP:B] labeled trifloxystrobin using four foliar applications at nominal use rates of 0.5 lb arA (0.56 kg ar/ha) cach

	S N	· ~ ~			
L.	Crop part	Growth stage	Day *)	[14C-GP], label A	[14C-TP], label B
	LON AN			[mg equ/kg]	[mg equ/kg]
	Ving ×	(initial residues)	0 DAFA	20.742	24.899
	Vibres C	, inninature	14 DAFA	7.734	9.114
~	Tay 5 1	mature	14 DALA	26.340	27.922
Ż	Hulb(shell)	🔊 mature	14 DALA	1.148	1.081
E.	Nutmeat	â mature	14 DALA	0.305	0.184

 $\tilde{\bullet}$ DAFA: days after the first application

DALA: days after the last application

Table 6.2.1- 8: Extractability of radioactive residues from peanuts treated with [14C-GP; A] and [14C-TP; B]-labelled trifloxystrobin using four foliar applications at nominal use rates of 0.5 lb ai/A (0.56 kg as/ha) each

					Ò	a s	×,		, () 1)
С	op	Hexane	ACN/H ₂ O	Partitio	ning of	Non-	Recovery	P'~~.	S.
pa	rt			ACN/	H ₂ 0	extractable	o Q		, U
				extr	act				
					H_20		L K		
			C						
[14	4C-GP],	label A	<u> </u>						
Vi	nes,	-	90.89	\sim	-0-		101.54		
1m	mature			> 56,49	26,05			Õ	
Ha	ay,	-	(0 7.68 ×			b <u>30,</u> 40	\$ 98.98 .~~ ×	Ô,	
1116	ature	25.62 a	2. 26 80 /	42.44		A 55 7			
Nı	utmeat	23.03 ©		4.90	32.35				
[14	4C-TPl.	label B	× Õ))		l Ö		
Vi	nes.	°> - 4	86.25	§ -4	Â,	9.91	~~ <u>96.16</u>		
im	mature		ją Ö	6689	7.89	× 4, ×	¢) ³		
На	ıy, 🧊	-	\$ 74. 0 \$	5-5		₽4.32 ∜	98.41		
ma	aturé	, OY in		55.35	16,84				
Na	umeat $\hat{\sim}$	≫ [\] 30.89́ [≫]	\$20.66 °	S.	- 4	\$ 53.₽7	104.72		
	Series States	w j		\$2.53	7.45	<u> </u>			
				<u>у</u> 0		\sim			
R Y	~)`			
	\$°	4		* *	A.				
	Ġ,	5 . S							
~	°, °		$\sim \sim \sim \sim$		O,				
Å	_	ð _s ç	× A,						
ja v	2	ĝ ĝ	U N						
.~	- S	A							
Y .	~~	Nº S							
		s ô							
Č		le .							
, S	Ş		, ~Q						
	S A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
	n Si								
	Ŭ	L.							
õ									

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.2.1- 9: Metabolite fractions in immature vines (14 days after the 1st application) and
mature hay (14 days after the last of four foliar applications) with [14C-GP] and
[14C-TP]trifloxystrobin at nominal use rates of 0.5 lb ai/A (0.56 kg as/ha) each

Label position		14C-GP]	, label A		[140-TP], label 🕸 📿						
Plant part	Immatur	e Vines	Matur	e Hay	Immatu	re Vines	Matur	e Hay			
TRR [mg equ/kg]	7.7	34	26.	340	\$.1	14	مَرْ 🖓 27	922			
	%TRR	ppm ¹	%TRR	∑ppm ¹	%TRR	ppm ¹	%TRR	ppm ¹			
Extractable	90.89	7.030	67.68	17.827	86.25	7.860	74009	20.686			
			A		Q ^v b°	Å	s, [°]				
CGA-373466 (M6)	0.00	0.000	Q665	0.436	0.323	0.030	0.55	0.\$55			
CGA-321113 (M5)	1.35	0.105 <i>«</i>	<u>,</u> 3.14	0.839	<i>Q</i> .04 🔬	<i>0.18</i>	3.87	×1.082			
CGA-357261 (M3)	2.94	0.227 C	°2,2₽°	Ø <i>5</i> 81 (¢2.94¢	0.268	ک 2.66 ک	0.742			
CGA-279202 (parent)	32.40	2.506	29002	Ø.643	38,60	& √518	©43.5₽	122148			
CGA-357262 (M2)	2.48	0,192	∽J1.32	0.3406	2 ,41 ,	<u>0</u> 0.21%	1,77	495			
CGA-331409 (M4)	3.22	8 .249 (2	2.63	0.693	°3.34	0.3695	3 .54	00.989			
OH-CGA-321113	0.00	0.000	Q.¥7	JØ.123 (1,49	Ø 35	1.820	0.510			
CGA-328365-mal-glu ²	- Q	-	~ ~ ~	-21	625	¢0.114^	2:48	0.692			
CGA-300624-mal-glu	ŢŲ .	x- 0	y - Ç	, O	ð 0.40 D	0.0306	0.00 کې	0.000			
CGA-321113-mal-glu	163	×0.899	4.86	1.279	15.19	1.384	Õ1.62	0.453			
CGA-321113-glu ³	j.52 🗡	0.1 9 7	Ø.07 <i>"</i>	∂°0.019́ [%]	Q.75	ר.014©	0.00	0.000			
Phthalic acid (M53)	1.42	ØØ 10 Å	\$1.17	0,307	√×-		-	-			
F2b2-3a&b (A2), (M46)	1,74	©0.088	120	s_@.315 %	V 76.	, O	-	-			
F2b2-3a&b (A1), (M45)	6.36	0.492	چ.72 ي	€0.980 [©]	Θ×	~~-	-	-			
WFX-IX-86 (M51)	√ 1.54 [°]	Ø.#19 🔍	2.48Ô	0.6\$3	<u> </u>	- 1	-	-			
Trifluoro acetate (M66)	Ś 🧳	🔿	, L	ð- "	©0.28	0.025	0.78	0.217			
A-7a/A-7a2 (glucoside)	0 - C		S' a	0° - 2°	0,95	0.087	1.87	0.522			
A-7b (glucoside)	× - Ø	A- 2	× - 8	-	4 .47	0.133	3.00	0.838			
		Ö			100 M						
Post-Extraction-Solid	. 10.65	[∞] 0.823	.30.40	* 8.00 7 ^C	9.91	0.903	24.32	6.790			
29	4 8										
CGA-373466 (M6)	0.24	%0 .019	0.00	00000	0.17	0.015	0.20	0.057			
CGA-321113 (M5)	\$ \$\$42 <u></u>	0.033	<u>, 6</u> 99	Ø.024	0.41	0.037	1.22	0.341			
CGA-373465 (M7) 🔍	0.07	0,005	§ 0.00	0.000	0.06	0.005	0.00	0.000			
CGA-357261 (M3)	0.24	4 018	\$`0.00°	0.000	0.21	0.020	0.50	0.139			
CGA-279202 (parent)	QQ81	0.062	0:30	0.079	0.90	0.082	3.00	0.837			
CGA-357262 (M2)	A0.22	0.017	>0.00	0.000	0.25	0.022	0.41	0.115			
CGA-331409 (M4)	0.27	6Q021	§ 0.00	0.000	0.27	0.024	0.54	0.151			
Phthalic acid (M53)	0014	©0.01	1.51	0.398	-	-	-	-			
F2b2-3a&b (A2), (M46)	9 .14	0.01¥	0.00	0.000	-	-	-	-			
F2b2-3a&b (A1), (M47)	0.40		4.21	1.110	-	-	-	-			
Ú 67 Č											
Terminal residue	8 .61	0.511	3.92	0.357	0.40	0.104	0.47	0.131			
Totalidentified	∀ 68.94	5.332	60.06	15.813	73.11	6.660	73.34	20.483			

¹ ppm: morarent equivalents/kg plant material

"-" not detectable due to missing label

² mal-glu: malonyl glucose conjugate

³ glu: glucose conjugate

⁴ terminal residues after different hydrolysis steps of the post-extraction solids determined by combustion

Conjugated aglycons: CGA-321113 (M5); CGA-328365 (M60); CGA-300624 (M59)

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.2.1- 10: Residue fractions in mature nutmeat of peanuts 14 days after the last of four foliar applications with [14C-GP] and [14C-TP]trifloxystrobin at nominal use rates of 0.5 lb ai/A (0.56 kg as/ha) each

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.2.1- 11: Characterization of the non-extractable residues (post-extraction solids) in mature nutmeat of peanuts 14 days after the last of four foliar applications with [14C, SP] and [14C-TP] trifloxystrobin at nominal use rates of 0.5 lb ai/A (0.56 kg as/ba) each

Label position	[14C-GP], label A	_√л14С-т	P], label B 🖉
TRR [mg equ/kg] of extracted	0.274 🚿		0.165 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
nutmeat sample	0/TDD @mg.acu/kg		
Post extraction solids (PES)	55.36 0 152 ×	3 17 Q	
i ost extraction solids (i ES)			
Sequential releasing steps		7 ~ ~ ~	
Acetonitrile/water (4/1) reflux	25.59 × 0.070	A 19.80 .	0.033
1% aqueous NaCl reflux	9.931 ÷	0.56 S	\$ 0.017 \$
Cellulase hydrolysis			0.019
Protease hydrolysis	Q.37 fr Q.007 fr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	٥.007
Mild acid (1N HCl) treatment		0.74	0.001
Mild base (0.8N NaOH) treatment	~~1.14 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.95	0.002
Terminal resigne		1.89	0.003
Total recovered	51.70 0.442	49.54	0.082
Terminal residue Values after deffere	ent hydrolysis steps of RES wo	ere determined b	by combustion.

Document MCA: Section 6 Residues in or on treated products, food and feed **Trifloxystrobin**

Figure 6.2.1- 5: Metabolic pathway of trifloxystrobin in field grown peanuts

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

From the pattern of metabolites in the different crops as compiled in Table 6.2.1-12 (given as % of TRR) and in Table 6.2.1-13 (given as mg equ/kg) similar metabolic reactions can be deduced. These reactions comprise:

- Cis/trans isomerization at the two C=N double bonds to form the isomers CGA 357261 (M3), CGA 331409 (M4) and CGA 357262 (M2). The amount of the single isomers does not exceed 10% of the TRR, with exemption of the parent substance trifloxystrobin (EE isomer).
- Methyl ester hydrolysis to form the carboxylic acid CGA 321113 (MS) amounting to a maximum portion of 10.8% of TRR (corresponding to 0.602 mg equ/kg) in sugar beer roots and, to a lower portion, its isomer CGA 373466 (M6)
- Hydroxylation of the trifluoromethykphenyloring to form the hydroxylated carboxylic acid NOA 414412 (M12) with subsequent glucoside conjugation (mainly detected in wheat straw).
- Hydroxylation of the aminooxymethyl substituent in the bridge between the phenyl riggs to form the metabolite NOA 449152 (NP10) with subsequent glucoside conjugation of further oxidation to dicarboxylic and NOA 413151 (MS) and its isomer NOA 413163 (M9), also found in wheat straw.
- In sugar beet, a carboxylic acid was hydroxylated three fold, once at the methyl group in the bridge and twice at the trifluoromethyl phenyl ring reaching a maximum amount of 14.9% of TRR (metabolite fraction M16). Further analysis revealed that M16 consisted of several isomers, each of them amounting to less than 0.01 mg equ/kg.
- In wheat and peanuts, some label-specific metabolites were formed after cleavage of the ethylideneaminooxy bridge. Most prominent was the "cyclic ket calcohol" (M57) amounting up to 96% of TRR (0.025 mg equ/kg) in wheat grain, obviously formed from the glyoxyl phenyl moiet, via hydrolysis, oxidation and four-ring formation by elimination of water. In peanuts, a glucoside conjugate of hydroxyland cleavage product CGA 347242 (M47) was found up to an amount of 88% of TRR (0.024 mg equ/kg). Trifluoroacetate, TFA (M66) tormed by complete degradation of the triduoromethyl phenyl ring was detected in non-edible peanut hay as a very minor metabolite (0.8% of TRR 40.217 mg equ/kg).
- Almost all of the metabolite occurred as minor metabolites (< 10% of TRR). Only in sugar beet oots the carboxylic acid CGA 321413 (M5) and the fraction of "trihydroxy metabolites" (M46) consisting of several isomers slightly acceeded the 10% of TRR, but only using one of the two radiolabels. Given the absolute values, both metabolites accounted for < 0.01 mg equ/kg

• In all crops, the parent substance trifloxystrobin, in principle, proved to be the main residue component and, therefore, can be used as marker substance in the residue analysis of trifloxystrobin residues in food of plant origin.

Crop,	Wh	eat	Wh	neat	Ар	ple	Cuc	umber	Wh	ieat	Wł	neat 🧹	Sugar	r beet	Suga	r beet	Pea	nut	Pea	mut
Commodity	Gra	ain	Str	·aw	Fr	uit	Fruit		Grain		Straw		Ro	oot 🦼	T	op	Nut	meat 🔬		
Appl. Rate [kg as/ha]		2 x 0).25		4 x (0.10	3 x	0.31	2 x	0.25	205	0:25		201	Ø.13		<u>_</u> }0"	40	0.56	
Label	GP	TP	GP	TP	GP	TP	GP	TP	GP	TP	G GP	TP	GP	~0ĨP	GP	TP	[™] GP _▲	₹. P	GB	TP
TRR [mg equ/kg]	0.099	0.056	5.48	3.85	1.276	0.883	2.289*	0.586*	0.262	0.1200	6.12	6,13	0.025	0.021*	<i>.</i> 0.73*	045	0.300	0.184	26.34	27.92
							Parent	Substanc	e and M	etabolit	es (‰ ø	Ĩ∕ŤRR)	a Di Ost	\$ OF		¢ ^O	20 Uber	×,C	,B.	
Parent substance an	d its iso	mers							Dell		Ĵ.O.	2 ec	~~		LO V	10 ¹	r C	O ^D	FOLE	
A.S., M1 (parent)	1.3		2.2	0.9	83.0	80.7	87.0	86.6	11.1	\$ 19.6	186	14.3	23.3	47.40	21.3	\$34.3	ŝ	- A	29.3	46.5
M2, CGA 357262	-	2 2	0.4	0.4	1.4	2.2	< 0.1	2.15	1.80	6.3	<u>)</u> 2:3	2.4	- 4) 	<001°	- 🌶		N°"	1.3	2.2
M3, CGA 357261	1.2	5.2	1.0	0.7	3.3	5.2	0.9 🔨	0.5	\$.9	8.0 🎾	5.3	05.3	⁵	- Ő	<u>- 40</u>	a f	- ⁻ U	2	2.2	3.2
M4, CGA 331409	-		0.7	0.6	2.2	3.4	2.0	1.2 🏷	2.1	. 9 .8	3.1	3.6	3 .Ž	3.8	0.9	1.2	8-31	6.0	2.6	4.1
Metabolites with int	act basi	c molec	cular st	ructure	includi	ng both	phenyl 1	rings	1 CD	Ő	00s	og UL	31	C ~	LEIL	St Je	5 J.1			
M5, CGA 321113	-	1.1	1.3	0.8	0.40		203	2.9 \$	1.7	2.6	3.8	4.2	<u>5</u> 7.5	10.8	2.80	2.5	Style.		3.2	5.1
M6, CGA 373466						0.6	"O"	¥.\$	0.90	1.2	@2.0	J.C	0.4	0.3	AN.8	Ĝ			1.7	0.8
M8, NOA 413161	10.1	1.5	0.9	1.4		102	. 3		Ø.3	. 8 3	1.4	1.8	10	aC		LU"				
M9, NOA 413163	10.1	2.6	3.3	_4.2°		21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10°	1.8	0-2.9	500	5.8 🔨	D.	â	£.	/				
M12, NOA 414412	≤2.1	4.6	4.7	₽7.0	Or provide the second s			17 h	2.	5.2	6.5	¢7.0	1.3	2.3	Q.7	3.8				
M10, NOA 443152			C. L.L.			K ^O	Ő	* 1	1.9	406	5.9 🔘	6.5	KØ	1,2,9	0.4	-				
M16, "trihydroxy"			ř.		At	,	Ġ	£ 0+"	ŝ		s C		9.2	A.9	1.6	0.7				
M11, BO 172741					<u> </u>		e a		A CIL	1.5	3 .5	4.1°								
Label specific metab	olites fo	ormed l	by cleav	vagede	the ethy	fidenea	minqoxy	bridg	tween the	ne pheny	l rings	,» ~~```	JC							
M54, cyanobenzoic a	cid				Å	<u>_</u>	Ý	O^{1}	~ <u>3</u> .6		3.0									
M53, phthalic acid		. 1	. V	a0		TO.	10		₽"3.1	10 ⁶	1,2%	<i>v</i>					6.0		2.7	
M57, "cyclic keto alc	ohol"			0	C ¹) ^{8.}			<u>8</u> 6		J.S									
M47, CGA 347242	N/	Ille-			90				0 ³	I.I.							8.8		7.9	
M5-, CGA 321113-g	luc, 🔊			\$ \$	1	0×	20		8										10	1.6
malonyl gluc.			,,,^1	Q. T.	$-0^{\mathcal{V}}$		<u> </u>	\$0°	10)e									ч.)	1.0
M66, TFA			\sim		1	<u> </u>	, <i>Ć</i>	, Pí	.0s.											0.8
References	M-0343	, 1997 668-05-1 1997 (T 053-01-1	GP), ; P) J	DIGICE DIGICE	,199 ∧1-0343 199 - 199	7(GP) 89-04 89-04 8(TP) 23-01-1	M=0344 M=0344 Conall f	,1997 (P) 45:01 (r); () 997 TP 42-01-1 ruit	M-0720 M-0708	,)24-01-1: , 385-01-1	, 2002 , 2002	2 (GP) 2 (TP)	, 20 M-06912 M-06911 * PHI = -	000 (GP) 25-01-1; 000 (TP) 17-01-1 45 days			M-1371	1997 52-01-1	,	

Crop,	rop, Wh		Wheat		Ap	Apple		Cucumber		Wheat		Wheat Straw		Sugar beet 🔍		Sugar beet		nut	_ Per	inut
Commodity	Gra	ain	Straw		Fruit		Fi	Fruit		Grain		10 ¹		ot 🦉	T Y	op	Nuti	neat 🔍 «	Hav	
Appl. [kg as/ha]		2 x	0.25		4 x 0.10		3 x 0.31		2 x	2 x 0.25		2x 0.25		r O¥x	0.13		YO.	NAX	0.56	
Label	GP	TP	GP	TP	GP	ТР	GP	ТР	GP	TP 🕵	ĞP	TP	GP	≠ TP	GP	TO V	GP 🗞	ŞΤΡ	ωP	TP
TRR [mg equ/kg]	0.099	0.056	5.48	3.85	1.276	0.883	2.289*	0.586*	0.262	0.100 2	6.12	° 6.13	0,025*	0.021*	0.73*	0.45*	Q308	0.184	26.34	27.92
]	Parent S	ubstance	and Me	tabolite	s (mgequ	ı/kg) 🚿	0.	e?	- 1°) «C	Uber	K Cr		
Parent substance a	and its is	omers							OCT .		3-° _ \(2°°V	alt t	-*/0	°	or '	Ć CO	L.	OTE	
A.S., M1 (parent)	0.001		0.123	0.033	1.059	0.672	1.991	0.507	0.02%	\$0.024	<i>a</i> , 4	088	0.006	9.010	04.0	0.155	ð	a C	7.722	12.99
M2, CGA 357262	-	0.002	0.023	0.017	0.018	0.018	< 0.002	0.012	0.000	0.008	0.14 、	~0 .14	A	-	Ø.000	Ĩ.	10	D. ^W	0.346	0.610
M3, CGA 357261	0.001	0.002	0.057	0.028	0.042	0.043	0.0XD	0.003	Ş 0.008	0.010	0.33	0.32	03		- ്	Ç -	E.		0.581	0.88
M4, CGA 331409	-		0.037	0.024	0.028	0.028	0.046	0.007	0.005	0.007	0.19	042	0.001	\$0.001	s0.007	0.005	0.000	0.011	0.693	1.140
Metabolites with in	ntact bas	sic moleo	cular stru	icture in	cluding	both ph	enyl rify	25	ch.	9.D	, or , or	J. J. J.	duc.	TRE		The state	0.009	0.011		
M5, CGA 321113	-	0.000	0.071	0.031	- CI	- 0	0.053	0.097	0.00	0.003	0.23	926	0.002	0.002	A BO	0.01	Nº 12		0.851	1.42
M6, CGA 373466	-	-	-	-	JQ.005	0,005		\$ -	\$600 2	0.001	• 0.12	0.11	00090	0.000	0.007	ġ-			0.436	0.212
M8, NOA 413161	0.010	0.001	0.049	03QG	- 1	0 [%] -	J-D-	- (0.001	Ø\$000	0.08	0.11	g -	200	- 1	_ ``_				
M9, NOA 413163	0.010	0.001	0.181	0.162	<u>d</u>	- ~		. 10 ¹⁶	0.0 05 C	0.004	D0.3 1	1 QAS	<i>ĉ</i>	Ű -	£ - *	-				
M12, NOA 414412	≤ 0.002	0.003	0,258	0.270	Org-	a [°]	3	Ч ^и - "	0.006	0,000	0.40	0.43	0.000	0.000	0.012	0.017				
M10, NOA 443152	-		L'LE.			K ^o	Or		0.005	30 :006	035	0.40 %	0.000	0.000	0.003	-				
M16, "trihydroxy"	-				_C ^{\$U}	, Ĝ)	E Or	J.	- Â	C -	0 ⁵	0.002	0.003	0.012	0.003				
M11, BO 172741	-				Ċ	10 ^V	L_A	ľ . c	<u>V-</u>	0.602	0.21	0.25								
Label specific met	abolites f	formed l	oy cleava	ge of the	e ethylid	leneami	nooxy br	idgæet	veen the	phenyl	rings	* De	·							
M54, cyanobenzoic	acid		100	_^^		all a	J.		∿0.009	a.	0.18	<u> </u>								
M53, phthalic acid		aĺ	9	60×	a h		j ju	, j	0.008		0.97						0.016		0.705	-
M57, "cyclic keto a	lcohol"	- 10-7				a Da		ð, V.	Ø.025		0.09						-		-	-
M47, CGA 347242		Par		Ó		Ĵ	j V	(D 12	al 2							0.024		2.090	-
M5-, CGA 321113-	-gluc,			, G	<u>,</u>			an	. à	~							_		1 279	0.45
malonyl gluc,			<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	a dir	~Q [~] ~~				all								_		1.279	0.45.
M66. TFA			v		- A	C.	194	à	0										-	0.21
References	M-034	. 198 136807-1 19997 (T 1053-01-4	r (GP). ; PJJ '	Oller MACT	M-0343	7(GP) 8904-1 998(TP) 23-01-7	M-0344 M-0344 M-0344 *small f	1900GP 43-01-1; TP 42-01-1 ruit	M-072 M-070	2024-01-1 0885-01-1	. 2002 (0 : . 2002	GP) 2 (TP)	. 2 M-0691 . 2 M-0691 * PHI =	000 (GP) 25-01-1; 000 (TP) 17-01-1 45 days			M-1371	1997 52-01-1	r_	

Figure 6.2.1- 6:	Common metabolic	pathway of	trifloxystrobin	in plants
	,			

w: wheat; a: apple; c: cucumber; sb: sugar beet; p: peanut

CA 6.2.2 Poultry Data / information on poultry metabolism studies were reviewed during the peer review onder Directive 91/414/EEC. For further information please refer to the Annex II dossier.

Lactating ruminants Data / information on ruminant metabolism studies were reviewed during the peer review under Directive 91/414/EEC. For further information please refer to the Annex II dossier. Assessment Report (2000) on trifloxystrobin (p. 288). From the summary the following quotations are repeated here to show that the metabolism in goat (ruminant), hen (pothry) and rat tab another used in toxicity studies) are essentially the same and. Therefore a pig metabolism study is not required.

"Goats were given daily doses of [4C-TP] Trifloxystrobin at 103.8mg/kg diet (A) and [14C-GP] Trifloxystrobin at 100.4 mg/kg/diet (39N) for four days. Goats were sacrificed @ hours after the last dose. ... Highest residue levels in milk were 0.121 and 0/153 rug/kg and a plateau was reached after 48 hours. CGA 279202 was the dominant residue. . Identified metabolites comprised up to 93.5% TRR (milk), 84.5% (muscle), 3% (far), 90% (kidney) and 60% (liver). There was some evidence of cleavage of the molecule between to the phenyl rings with the formation of metabolites 11U and 12U (CGA 554876). The goat metabolites were all identified in the rat metabolism studies."

"Hens were given daile doses of [146-TP] Friflox strobin at 1007 mg/kg diet (1060N) and [14C-GP] Trifloxystrobin at 989 mg/kg diet (1041N) for four days and were sagaificed 6 hours following the last dose. ... Parent compound predominated in muscle and fat + skin, accounting for up to 27.8 and 55.3% TRR respectively. Major metabolites were CGA 321113/1U and 6U (egg white), 2F (NOA 405637) (fat + skin. Huscle), 22U (CGA 354870) (muscle) and L13b & L14 (liver). Other identified metabolites did no Qindivirually exceed 8% TRR. Unextracted residues were up to 79% and 35% TRR in liver and gg yolk respectively however residues in poultry products are highly unlikely to be determinable at 1N rate exposure.

The hen metabolites were all identified in the ratemetabolism studies, except for the following: Met EW1, Met L13b Met EW11, Met L24, EGR10a-c, EGR8, EGR1, EX5. These metabolites are not considered to be of toxicological concert at the levels found."

As a conclusion it can be stated, that apart from some metabolites in the hen being of no toxicological concern, the metabolism in goat and hen is principally the same as in the rat. Therefore, a metabolism study in pigs in not required

CA 6.2.5 Fish

Since no guideline on a metabolism study in food fish and its typical feed is currently available a bioconcentration study with bluegill sunfish is summarised in the following. The main objective of this study was the determination of a potential bioaccumulation of a test substance in fish during tong-term exposure in water. However, the nature of residues of radiolabelled trifloxystrobio in fillet and viscera of the fish was also disclosed in this study following a long-term uptake of continuously added trifloxystrobin with the inflowing water in 28-day flow through study. As this study yields the same information as a metabolism study in fish it can be used as surrogate study according to Section 6.2.5 of the official data requirements (EU) No. 283/2013 of 1-March 2013 in accordance with Regulation (EC) No. 1107/2009. This study was submitted with the original Anney II dosper in section IIA 82.3 and evaluated in the DAR under point B.9.2.2 d) Bioaccumulation of the sector for the metabolism of trifloxystrobin in fish.

Report:	KCA 6.2.5/01, 5997; 1097; 100032004-01-10 0
Title:	[Phenyl(A)-U_C-CCA-279202-Flow-Through Bioconcentration and Metabolism
	Study with Bluegill Sunfish (Leponis marrochirus)
Document No:	M-032004-01-1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Report No:	96-8-6608 of Springborn Lab Health and Environmental Sciences. Wareham.
	MA. WSA. now Bayer CropScience
Guidelines and	US EPA Suidelines for Pesticide Registration: 40 CFR 158. Subdivision N.
data requirement:	Section 165-4 Accumulation in Fish . which is comparable to OECD No. 305E
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	guide me (May 1989) ~ . ?
GLP	yêg di ku
- Or	

#### Executive summary

Groups of approximately 250 bluegill surfish (Lepomis macrochirus) were exposed for 28 days under flow-through conditions to nominal concentrations of 0.16  $\mu$ g/L and 1.6  $\mu$ g/L radiolabelled [14C-GP]trifloxystrobin (14C+GA, 27920), label A) for determination of the bioconcentration factors (BCF) and the metabolism in fish (only high dose). The test material was dispensed via syringe pump into dilution water flowing to each test vessel at the rate of approximately 8 volume turnovers per day (initial bioloading ca. 0.6 g/L/day). Some fish and water samples were collected at different exposure intervals. Following a 28-day exposure, the remaining fish were held in untreated control water for 14 days to provide date on the rate of elimination of trifloxystrobin and its residues from fish tissues (deputation period). A concurrent 28 day metabolism study was also conducted using a nominal concentration of 1.6  $\mu$ g/L [14C-GP]trifloxystrobin.

At different intervals of the exposure  $(0 \not\in 28$  days in water with the test substance) and the depuration period  $(0 \not\mid 14$  days in pure water) each five fish and water samples were collected and radioassayed. Five fish were also collected from the metabolism aquarium on days 21 and 28. These fish were dissected into three portions edible, viscera and carcass. On day 28 of exposure, the remaining 238 fish from the metabolism aquarium were harvested for metabolite identification.

Results of water analyses indicate that mean measured concentrations represented 97.4 and 82.0% of the nominal [14C-GP]trifloxystrobin concentration (0.16 and 1.6  $\mu$ g/L trifloxystrobin, respectively). The mean BCFs measured as ratio of the radioactivity levels in fish and water at steady state in fish amounted to 90 - 131 (edible fillet). 530 - 835 (non-edible viscera), and 280 - 431 (whole body) for

**Bayer CropScience** 

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

the high and low exposure level. The steady state of uptake and elimination was reached within 3 days at the low exposure level and within 14 days at the high level.

Within 24 h of being placed in clean water, ¹⁴C-levels in fish had fallen to 69 and 73.4% of final 28 day exposure levels for the high and low exposure concentration, respectively. At the end of the 44day depuration period, greater than 98% of the accumulated radioactive residue was eliginated from the fish tissue. The respective times for 50 and 90% depuration were given as 0.5 to 2.4 days and 1.5 to 7.8 days.

Following 28-day exposure of 1.6  $\mu$ g/L [14C-GP]triffoxystrobin the parent substance proved to be the predominant residue component in edible tissue of tish (total radioactive residues, TRR = 0.107 mg equ/kg) amounting to 0.082 mg/kg (76.6% of DRR). The hydrolysed carboxylic acid CGA 321413 (M5) was detected at a level of 0.012 mg equ/kg (11.2% of TBR). Other identified CGA 331409, M4, Metabolite B) and unknown metabolites (Metabolite A) were below 0.07 mg equ/kg Approximately 96% of TRR in the edible tissue was identified.

In non-edible viscera (TRR = 1.72 m² equ/k²), the parent substance also revealed to be the main residue component amounting to 0.57 m²/k² (3.2% of TRR). The carbox in acta CGA 321113 (M5) could be detected at a level of 0.079 m²/equ/k² (10.4% of TRR). In addition, a cysteine conjugate of the demethylated carboxytic acid (Metabolite B) was detected at viewel of 0.503 mg equ/k² (29.2% of TRR). A glueuronide conjugate of the parent substance (Metabolite C, glueuronic acid linked to the demethylated aminoxi substituent of the glyoxyl-phenyl ring; NOA 405637 (M27)glueuronide) was found at a level of 0.190 m² equ/k² (11.0% of TRR). Minor metabolites in viscera were the *EZ*-isomer of the parent substance, i.g. CGA 331409 (M4. 2.7% of TRR), a *ZE* isomer of the carboxylic acid CGA 373466 (M6. 0.8% of TRR) a cyaro metabolite CGA 97276 (M42. 3.4% of TRR), and a very mitor cyclised derivative CGA 320299 (M49). Approximately 89% of TRR in nonedible viscera tissue was identified. The same metabolites were also detected in the aquarium water.

All main metabolites in fish and water contained the intact basic molecular structure with both phenyl rings. As a consequence, fish metabolism using the second [AC-TP] label would result in the same metabolites and, therefore, deemed not to be needed.

A proposal of the metabolic pathway of trifloxystrobin in this is shown in Figure 6.2.5-1. The metabolic pattern in fish provided the parent substance trifloxystrobin as the dominant residue component in edible and main residue component in non-edible fish tissue. These results suggest using the parent substance in potential residue analysis of trifloxystrobin residues in fish.

Ish.



#### **Materials and Methods**

Materials and Methods	Q° &
Test Material	
Structural formula	
	CH3 F S S S
	$H_3C^{-0}N$ $C^{-0}$
	O _{CH3} definition definition of the state of
	$[GP] \qquad \qquad$
Chemical name	(E.E)-methoxymino 2-[1-C-triftuoromethyl-filenyl)-
	ethylideneamino-oxymethyl]-phonyl aeetic acid methyl ester
	(E.E)-@-(methoxyimino)-2+[[[[14]3- 5 5 2
	(trifhforomethyl)phenyl]ethylidene] mino(\$xy]methyl]benzene
Common name	Prifloxystrohin
CAS RN	141617-2157
Empirical formula	$C_{20}H_{19}F_{3}N_{2}O_{4}$
Company code	ÆGA279202 5 27 0 5 27
Molar mass (non	408 g/mole
labelled)	States at the 140 states in the 140 CDI
	Label A in the original report
Specificatioactivity	<b>\$2</b> mCrg (3034 MBg/g)
Radiochemical purity	98.4% (primary stock solution) 98.0 and 97.5% (diluter stock
<u>_</u>	solution)
Chemical purity	
Test Organism and Test (Or	differs
Test species	Bluegill suffish (Lepomis macrochirus)
Breeder	. USA
Acclimatization	14 days in a 1000 L steel tank using 16 h light/8 h dark
	photoperiods
Mean body weight	S g at test initiation
Test aguaria	Glass aquaria: 75 cm x 39 cm x 30 cm (length width height)
	filled with 73 L water
Number of fish	250 fishes per aquarium at initiation of the exposure
Total biomass	380 g / aquarium

	corresponding to 0.628 g/L of the 24-hour flow-through volume
Feeding	Commercial dry pellet food. approx. 2% of the total biomass;
	uneaten food and fecal matter were removed (by siphon) 300min
	after feeding
Exposure concentration	1.6 and 0.16 μg as/L plus solvent control for BCF determination
	1.6 μg/L for metabolism nvestigation 2 2 2
Exposure period	28 days
Depuration period	14 days $A$ $Q$ $B^{\circ}$ $A$ $A$ $C$
pH of aquarium water	6.8 - 7.1
Temperature	16 - 19°C
Dissolved oxygen	> 60% saturation $2%$
Hardness	32 - 36 mg/L ~ ~ ~ ~ ~ ~ ~ ~ ~
Alkalinity (CaCO ₃ )	22 - 24  frg/L
Photoperiods	16h light / 86 dark Gycles ~ ~ ~ ~ ~ ~
Set-up of the flow-through	system strange was a strange was subscription of the strange w

[14C-GP]trifloxystrobin was dissolved in acetore (primary stock solution) at a concentration of 1.15 mg/mL. This solution was diluted with acetore to prepare the diluter stock solutions, i.e. 30.5 mg/L for the 0.16  $\mu$ g/L exposure and 305 mg/L for the 0.6  $\mu$ g/L exposure. The exact concentrations were measured via radioassaying (LSC). The diluter stock delivery rates were 0.0022 mL/min for the diluter stock solutions and 420 mL/min for the inflowing water. This delivery rate provided a turnover rate equivalent to 8 anarium volumes per 24 hours. The diluter stock solutions were delivered by syringe pumps equipped with 90 mL gas-tight glass syringes. This system produced an acetone concentration in the aquarium of  $\beta \mu$ L/L water for the low exposure level and of 0.1 mL/L water for the high exposure level. Due to the rapid metabolitism obtrifloxystrobin in fish and excretion of metabolites into the water the stock solution and water inflow were increased by approx. 50% on Day 10 of exposure resulting in a turnover rate of 12 aquarium volumes per 24 hours. The exposure concentration in the water was measured by radioassaying (LSC).

## Sampling of figh and aquaritin water as well as tarioassaying

During the study, 5 fish of the BCF experiment were removed from each group for radioassaying of the edible and viscera rissues at days 1, 3, 0, 10, 04, 16, 21 and 28 of exposure, and at 1, 3, 7, 10 and 14 days after the depuration phase was initiated. Five fish were also collected from the metabolism aquarium on days 21 and 28 These fish were dissected into three portions, edible, viscera and carcass. On day 28, the remaining 238 fish from the metabolism aquarium were harvested for metabolite identification.

Together with fish sampling triplicate water samples were also collected (50 mL low exposure or 5 mL high exposure). The radioactivity of 5-mL water samples were directly measured by LSC after mixing with scintillation cocktail (radioassaying). The 50-ml water samples were acidified to pH 2 with phosphoric acid and extracted with ethyl acetate. The organic phase was separated, concentrated to drynes re-dissolved in 5 mL acetonitrile and radioassayed and analysed by radio-HPLC. Fish were dissected into edible (muscle. fillet) and non-edible portion (viscera and carcass). These matrices were weighed (wet weight) and radioassayed after air-drying overnight, combustion and radioactivity determination of the formed ¹⁴CO₂.



Radioassaying was conducted by liquid scintillation counting (LSC) using counters with automatic quench correction. The LOQ of LSC depended on the specific radioactivity the test substance counting efficiency, sample size and acceptable minimum net counts per moute (cpm). For water samples the LOQ was set to 0.00476  $\mu$ g/L. for tissue samples LOQ was set to  $\frac{1}{2}.685\mu$ g/kg.

#### Determination of the lipid content

Eight total fish were weighed and homogenized in chloroform and methanol using biohomogenizer The mixture was filtered and the filtrate partitioned against aqueous sodium chloride. The chloroform phase was separated, dried with anhydrous sodium sulfate and conventrated to dryness. The remaining lipid sample was weighed again and compared to the original wet weight of the fish,

#### Extraction and clean-up of the residues from @sues @

Edible and non-edible tissue samples were separately extracted (2x) with acetonitrife using a biohomogenizer. The extracts were combined, concentrated, centoruged, radioessayed and analysed by radio-TLC and radio-HPLC. The remaining solids were further extracted with acetonitrile/water (1/1). The extract was concentrated and cleaned-up by solut phase extraction (SPE) using C18 columns. The residues absorbed to the C18 phase were sluted with aceton trile. All fractions were radioassayed. The extracts from viscera were analysed by radio-LSC, radio-HPLC and LC/MS.

#### Chromatographic analysis

Radio-HPLC was performed using a RP18 column \$50 x 4.0 mm. particle size 5 µm) that was operated with a gradient mixture of Q1% aqueous forming acid and acetonitrile. The system was equipped with and UV detector (250 mm) and a fraction collector for collection HPLC eluent in 1-min intervals. The fractions were radioassayed for construction of radioastograms of the HPLC eluent. Non-labelled reference standardsowere used for identification.

One- and two-dimensional radio-TLC was performed normal phase silica gel and RP18 F254 coated silica gel plates. Qne dimensional normal phase plates were developed with pure acetonitrile, onedimensional reversed phase places with a mixture of acetonitrile/water/acetic acid (50/50/0.5. v/v/v). Two dimensional silico gel plates were developed in perpendicular directions with the two solvent mixtures (1) chloreform/nethano/formic acid/water (83/13/3/1. v/v/v/v) and (2) toluene/ethyl acetate/acetic acid (90/104. v/v). Radiolabered spots were visualized by a radioanalytic imaging system, non-labelled reference standards by extinction of fluorescence caused be UV excitation (254 nm) of the fluorescence dye added to the since geb separation layer.

LC/MS was performed using a HPLC system with a RP18 column (250 x 4 mm. particle size 5 µm) that was operated with a gradient wixture of acetic acid and acetonitrile and coupled with triple quadruple mass spectrometer. Ionization was achieved by an atmospheric pressure ionization (API) interface fitted with an electrospray ionization (ESI) head.

#### Finding

Throughout the study, no undissolved material was observed in the dilution system or the test aquaria. On Days 13 and 26, one mortality was observed in the 0.16  $\mu$ g/L and 1.6  $\mu$ g/L aquaria, respectively.

**Bayer CropScience** 

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

The mean measured concentrations of [14C-GP]trifloxystrobin in water of the BCF trials represented 97.4% (0.156  $\pm$  0.028 µg/L) and 82.0% (1.31  $\pm$  0.27 µg/L) of the low and high nominal concentrations (measured as total radioactive residues, TRR). In the metabolism trial with a nominal water concentration of 1.6 µg/L, the mean measured concentration amounted to 84.0% (1.36  $\pm$  0.00 µg/L) over the 28-day exposure.

Total radioactive residues (TRR) in fish tissue and derived bioconcentration factors (BC)

For the bluegill exposed to the low concentration of radiolabelled trifloxystrobin, the radioactive residues (TRR) accumulated rapidly and plateaued within one day for the edible tissue, and within  $\frac{1}{3}$  days for non-edible and whole body tissues. For the bluegill exposed to the high concentration, the radioactive residues plateaued within 14 days for edible, non-edible and whole body tissues, respectively. The mean BCFs measured as ratio of the radioactivity levels in fish and water at steady state in fish amounted to 90 - 131 (edible fille). 530⁶ 835 (non-edible viscera), and 280 - 431 (whole body) for the high and low exposure level. The mean TRR in water and fish tissue the plateau period and the derived bioconcentration factor (BCF) are presented in Table 0.2.5-4.

After the exposure the remaining fish were transferred to pure water for examination of the depuration of radioactive residues. 69% (low exposure level) or 73% (high exposure level) of TER in the tissue of the last day of exposure had depurated within 24 hours in clean water. The balf-life of elimination was thus derived as  $DT50_{elim} = 0.6$  days for the low dose and  $DT50_{elim} = 0.7$  days for the high exposure level.

Extractability of residues from fish and identification characterization of extracted residues

A separate trial for investigation of the metabolism of thirlloxystrobin in fish was conducted using the high exposure level (nominal 1.6 µg/L), Following a 28 day exposure fish were collected, radioassayed and extracted with acetonitrile and acetonitrile water Extraotability of radiolabelled residues from fish tissue was very high amounting to 99.6% of TRR in the edible tissue (TRR: 0.107 mg equ/kg) and 91.1% of TRR in the viscera tissue (TRR: 1.72 mg equ/kg).

The residues extracted from piscera were analysed by radio-HPLC. Some of the radiolabelled peaks were eluted with the same retention times as the non-labelled reference standards of parent trifloxystrobin, i.e. CGA 3/3466 (M6); CGA 321113 (M5), CGA 357276 (M42), and CGA 331409 (M4). The identify of these radioactive compounds was finally confirmed by LC/MS. Thus, the ester hydrolysis metabolitec GA 321113 (M5) accounted for 10.4% of TRR (0.179 mg equ/kg), the isomer of the parent substance CGA 373466 (M6) for 0.8% of TRR and an isomer of the hydroxylated carboxylic acid CGA 373466 (M6) for 0.8% of TRR. A cyano derivative CGA 357276 (M42) amounted to 3.4% of TRR. A very minor exclised derivative CGA 320299 (M49) was only found in trace levels.

The residue level of Metabolite A was below 0.05 mg equ/kg; therefore it was not further identified or characterized. Metabolites B and C were isolated from viscera extracts by radio-HPLC with fraction collection and purified by radio-TLC. C/MS of the purified metabolite B resulted in protonated molecule ion at noz of 502 and Natural isotopic abundance of the involved elements and LC/MS/MS investigation including distinct fragmentation) suggested an elemental composition of  $C_{21}H_2/N_3O_6F$ . This formula could be interpreted by a cysteine conjugate of the carboxylic acid NOA 412493 (M29). LC/MS of Metabolite C resulted in a protonated molecule ion at m/z 571 amu. It could be interpreted as glucuronide conjugate of the parent substance following demethylation of methodyamino group. Incubation with glucuronidase released the aglycon that was identified as NOA 405637 (M27) by LC/MS.



The concentration of the residue components extracted from edible tissues (fillet) was significantly lower than those in viscera. Therefore, spectroscopic identification was not possible. However, they could be assigned by comparative chromatographic profiling with the viscera metabolites. The most prominent residue component was the parent substance trifloxystrobin amounting to 76.6% of TER (equivalent of 0.082 mg/kg). The composition of parent and metabolites in fiber and viscera is shown in Table 6.2.5-2.

#### Conclusion

Bluegill sunfish were exposed to [14C-GP]trifloxystrobin via a flow-through tudy design at two exposure levels (nominal 0.16 and 1.6  $\mu$ g/L) for a total exposure period of 28 days. The man objective of this study was the determination of bioconcentration factor (BCF). Nevertheless, if an additional trial also the metabolism of trifloxystrobin in fish was investigated collowing a 28-day exposure of 1.6  $\mu$ g¹⁴C-trifloxystrobin/L wate

The steady state between uptake and elimination of radiolabelled residues was reached after 3 or 14 days of exposure for the low or high exposure level. The BCF values at steady state accounted for 90 - 131 (edible fillet). 530 - 835 (non-equile viscera), and 280 - 43 (whole body) for the high and low level. Following transfer of remaining fish into pure water without test substance the half-life of elimination was less than one day for low and high exposure level.

The metabolites in non-edible viscera (TRR = 1.72 mg equ/kg) were identified by co-chromatography with reference standards and by bC-MS/MS analysis. The metabolites in edible fallet tissue (TRR = 0.107 mg equ/kg) could by identified by comparative profiling with the metabolites identified in viscera. Major metabolites were formed by hydrolytic ester cleavage of triflox strobin resulting in the carboxylic acid CG/x 321113 (MS) and by esteine conjugation of the aminooxy-demethylated carboxylic acid resulting in M29-cysteine (Metabolite B). Glucuronic acid conjugation of the aminooxy-demethylated parent substance resulted in the NOA 406637 (M27) glucuronide (Metabolite C). Minor metabolites were identified as an isoner of the parent substance (CGA 331409, M4), an isomer of the primary carboxylic acid CGA 373466 (M6) as well as a cyano derivative CGA 357276 (M42) and cyclized metabolites in fish and water contained the intact basic molecular structure with both phenyl rings. As a consequence, fish metabolism using the second [14C-TP] label would result in the same metabolites and, therefore, deemed of to be needed.

A proposal of the netabolic pathway of trifloxOstrobia in fish is shown in Figure 6.2.5-1. The metabolic pattern in fish provided the parent substance trifloxystrobin as the dominant residue component in edible and main residue component in non-edible fish tissue. These results suggest using the parent substance as marked substance in residue analysis of trifloxystrobin residues in fish.

A conclusion on a potentially required tash feeding study cannot be drawn as no official feeding table for fish feed is currently available. Therefore, it is not possible to estimate whether the expected residue level in edible fish tissue may exceed the trigger level of 0.01 mg/kg.

## Bayer CropScience

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

# Table 6.2.5- 1: Total radioactive residues (TRR) in water and fish and bioconcentration factors (BCF)

					î. (		
Exposure	Mean TRR in water		Mean TRR in [µg equ/kg	l fish g]	Bioconce	ntration factor (BCF)	
level	[µg equ/L]	Edible	Non-edible	Whole body	Edible	Non-edible Whole body	Ø 1
Low		during the	e plateau periog	15); 4 - 28 days	Ď¥		
Exposure	0.156	20.5	13	r 67.2 🖓	Ø31 Ó	835 430	
			, Q		N W		
High		during the	e plateau perio	14 – 28 days			
Exposure	1.31	118	695	367 .Q	⁰ 90	530 7 289	
			×1° ~	. * ~		· · · ·	

# Table 6.2.5- 2: Residues in fillet and siscer a tissue of fish exposed to [ETC-GE]trifloxy strobin at a nominal concentration of 1.6 µg/L for 28 days (mean of two extractions)

		**
Residue component	Non-ecib	le viscera
TRR [mg equ/kg] $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $0.170$	× × 1.	72
[For TRR] [mg cqu/kg]	[% TRR]	[mg equ/kg]
Parent trifloxystrobia (CG 279202) 766 2 0.082	<b>31.2</b>	0.537
Metabolite A (unknown) $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3.74}$ $\sqrt{2}$ $\sqrt{0.004}$	<i>(</i> 1.45	0.025
Metabolite B ( $429$ -cystein $\sqrt{3.74}$ $3.74$ $\sqrt{0.004}$ $\sqrt{3}$	¥ [*] 29.2	0.503
conjugate) of a conjugate of a conju		
Metabolite (glucuronide of parent) or w	11.0	0.190
hydroxycamine)		
M5, ČGA 3211125 2 2 2 20012	10.4	0.179
M4, CGA 331409 A Q 4.67 0 0.005	2.73	0.047
M6, CGA 373466	0.81	0.014
M42, CGA 357276 2 2 2 -	3.43	0.059
Sum 2 2 2 99.95 0.170	90.22	1.554





Figure 6.2.5-1: Proposed metabolic pathway of trifloxystrobin in Bluegill sunfish



#### CA 6.3 Magnitude of residue trials in plants

Residue data on pomefruit, grape and strawberry is summarised below. Further data (cereals and other or crops) may be found in chapter 6.10.

The detailed tables (Tier 1) of the supplementary trials and the processing trials are submitted in a separate document as additional information for the evaluator:

		C	<u> </u>		i iv o
Report:	KCA 6.3 /02; ;2014;	M-46🔽98-02; A	monded: 2014-	1,₽26 _~ Q″	
Title:	Tier 1 Summary of the residue	s data and proce	ssing studies for	triflogystro	obhní _k O
Report No:	M-467298-02-1	A. Q		á. (	je i
Document No:	M-467298-02-1	" אַ	. <i>6</i> °	Ó ^y Ó	Ū,
Guidelines:	EU Regulation 1107/2009 & E	U Regulation 28	3 <i>372</i> 013, @ ?		Å.
GLP/GEP:	no		ý a S	· · · · · · · · · · · · · · · · · · ·	

### CA 6.3.1 Pome fruit

#### Former Annex II dossier

In the Annex II dossier, the critical GAP for trifloxystrobin supported at the European level (northern and southern Europe) consisted of up to 10 foliar spray applications at rates of 75 g a.s./ha trifloxystrobin and a PHI of 14 days.

### Annex I renewal process frew studies

The critical Good Agricultural Practice (cOAP) supported at the European Devel in the Annex I renewal (AIR) process consists of 5 foliar spray applications at 75 g for the trifloxystrobin in northern Europe and 112.5 g a.s./ha trifloxystrobin in southern Europe, with a minimum spray interval of 10 days and a PHI of 14 days.

		st i	-	Ŷ	, <i>O</i>		$\odot$		
Table 6.3.1-1:	Summarv	of the	critical	GAP for	• the pro	moséd us	` fő a	Trifløxystrobir	WG 50
	Summary				- Pro	pogea as	25 <b>01</b> .		

Crop	Region	PUP F, CF	Maximum Number of Applications	Minimum Application Onterxal (days)	Maximum Rate (g a.s./ha)	Minimum PHI (days)
Pome freiQ	CEU-NO	~F	× 3×	م 10	75	14
Pome Euit	EU-S	S ^F		0 10	112.5	14

* EU-N northern Europe DU-S southern Europe Field; G Greenhouse; I Indoor

Trials available of Support the European GAP relevant for Annex I renewal are summarised in Table 6.3.1-2 and Table 6.3.1-3

0

# **Bayer CropScience**

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Region	Crop	Formu			Number	of Trials			Report-No.	Document N°	Dossier-Ref.
0		lation		Veg	etation pe	eriod		Total		Å	t or
			1999	2003	2004	2006	2011		Č.	ŗ "Ũ	Å –
Supplen	nentary da	nta							<u> </u>	<u> </u>	<u> </u>
			1	-	-	-	-		2003/99	M-02493\$-01-1*	CA 63 1/31
			1	-	-	-	Ğ		2109/99	M-030455-01°4	KCA 6.3.1/32
		WG 50	1	-	-	-	∕₹.		Q 2124/99	M_030187_01-1	KGA 6.3 A 33
	Annla		1	-	-	- 🥡	1 -	L L	2125/99	M-1364Q-01-1	KCA 643.1/34
N-EU	Pear		-	-	-	Ą	4	1%	ey-2117	M-457963-01-1	KCA 6.3.1/39
		WG 75	-	-	-	<i>∞</i> ĭ			RA-2006/06	M-292645-01-1	ACCA 6.3.1/35
		WG 64	-	1	- 🌾		· - ~	ĨĻ	RA-2170/03	M-061863-01-1	KCA 6.3.1/36
		WG	-	-		×,		, O,	RA02044/04	M-250712-01	KCA 6.3.1/37
		68.8	-	-		×- ~	Ŋ- ?		A-2046 04	M-257107-01-1	KCA 6.3.1/38
		WG 50	-	- (	Ũ - Ç	y"Q	4	ĺ "Ô	1142116	M-457857-01-1	KCA 6.3.1/43
S EU	Apple	WG 64	-	105		2°	Ç.		R3-2171/05	M-001855-00-1	KCA 6.3.1/40
S-EU	Pear	WG	-	~Q*	õ Ž	\$ - \$	7 - 6		DRA-2045/04	10-255883-01-1	KCA 6.3.1/41
		68.8	- ~	- ~		- 6	L.		RA-2047/04C	M-257991-01-1	KCA 6.3.1/42

#### Table 6.3.1-2: Residue trials conducted per geographical region and formulation

N-EU northern Europe S-EU southern Europe WG 50: wettable granule formulation containing 50% of floxystrobin WG 75: wettable granule formulation containing 50% tebuc@azole and 25% trifloxystrobin WG 64: wettable granule formulation containing 60% captur and 4% trifloxystrobic WG 68.8: wettable granule formulation containing 62.5% tolylfiftanid and 6.3% tr@oxystrobin

Table 6.3.1- 3: Overall summary of residue data on pome fruit covering the critical GAP for Annex I Genewal Ô Õ Ø

Application Rate	Region	Fortou-	Crop	Sample « Materia	Ø n	Resi	idue level (n trifloxystrol	ng/kg) Din
3 applications at about 75 g/ha	N-EU A	WQ		Fruit	ري 13	Min. <0.02	<b>Max.</b> 0.11	<b>STMR</b> 0.05
3 applications at about 112.5 gA	S-EO	ØVG *	Apple Pear	O Fruit	9	0.02	0.17	0.10

n: number of trials N-EU nonthern Europe

### Field trials - northern

Report: "@`	KCA 6,3 1/31, ; 2000 ; M-024932-01-1
Title:	Residue study with GGA 279202 in or on apples in France (north)
Document No &	M-@4932 01-1 ~
Report No: 0	2007/99
Guidelines:	EU Conncil Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
	A, spection 8 residues in or on treated products, food and feed
GLP O	yes
<u> </u>	

Report:	KCA 6.3.1/32,	; <b>2000</b> ; M-030455-01-1
Title:	Residue study w	vith CGA 279202 in or on apples in Netherlands



	1
Document No &	M-030455-01-1
Report No:	2109/99
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes
Report:	KCA 6.3.1/33, ; 2000 M-030187-0
•	
Title:	Residue study with CGA 279202 in or on apples in Switzerland
Document No &	M-030187-01-1
Report No:	2124/99
Guidelines:	EU Council Directive 91/414/EEC Appex IL part A section 6 and Annex III, part
	A section 8 residues in or on related products foo Qind feed
GLP	
<u>GEI</u>	
Donort	KCA 6 3 1/34
Tida	RCA 0.5.1/54, 2000, 91-150-11-04-1
Title:	Kesidue study with CGA 2/9202 in or on apples in Switzeriand
Document No &	
Report No:	
Guidelines:	EU Council Brective 91/414/EEC/Annex II, part A section b and Annex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes 57 g 0 g in in in in
Report:	KCA 6.3.1.35, 2000; M-292645.01-1 @
Title:	Determination of the residues of trifloxystrobin and tebuconazole in/on apple after
- ¹	spraying of CGA 279202 & HWG 9608 (55 WG) in the field in Germany
Document No &	M-292645704-1 A 67 0 0
Report No:	RA-2006 16 8 8 29 7
Guidelines:	BU Council Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
~	A, section spesidires in or on treated products, food and feed
GLP 🖉	yes & o ~ o
Report:	KCA 6.3.1/36, ; 2004 ; M-061865-01-1
Title:	Determination of residues of infloxystrobin and captan in/on apple after spraying
	and low-volume spraying of trifloxystrobin & Captan (64 WG) in Germany,
Å,	Belgum and Great Britan
Document No & \	$M-061862-01-1_{0}$
Report No:	<b>R</b> A-21 $\frac{1}{20}/03$
Guidelines	EU Council Directore 91/414/EEC Annex II, part A section 6 and Annex III, part
	A. (section 8 residues in or on treated products, food and feed
GLP 2 N	des a
Report.	<b>KCA 6 3 1/37</b> • 2005 · M-256712-01-1
Title:	Determination of the residues of triflowystrohin and tolyiflyanid in/on arrive fter
	spraying of CGA270202 & KUE 12182P (68.8 WG) in the field in Polaium and
	spraying of COA2/9202 & KOE 15105B (00.0 wG) in the field in Belgium and the Notherlands
1	the methemanos



Document No &	M-256712-01-1	
Report No:	RA-2044/04	. 4
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and A	Anneô III, part
	A, section 8 residues in or on treated products, food and feed	
GLP	yes	

Report:	KCA 6.3.1/38, ; 2005 M-257107-0 1
Title:	Determination of the residues of trifloxystrobic and tolylflugnid inton pear after
	spraying of CGA279202 & WUE13183B (68.8 WG) in the field in United
	Kingdom and Germany
Document No &	M-257107-01-1
Report No:	RA-2046/04
Guidelines:	EU Council Directive 91/414 EEC Annex B, part & section 6 and Anaex III part
	A, section 8 residues in or on treated products, food and feed
GLP	yes a way of the second

Test system In 1999 to 2006 nine trials overe performed in northern Europe on apple or pear trees with trifloxystrobin WG formulations according to the use pattern supported within this dossier. The products were applied three times at application rates of about 0.073 (0.062 - 0.079) kg trifloxystrobin/ha. The treatments were performed with intervals of about  $10^{\circ}(7 \text{ to })^2)$  days. Fruits samples were taken on day 14, 13) after the last application in all trials Additional samples of fruit were taken at earther or later time points.  $\bigcirc$ L,  $\cap$ 

Residues of trifloxy stropm and ZGA 321113 were determined according to methods AG-659, 00839, 00839/E001 or 00742 M002. The analytical methods were validated by recovery experiments prior to and during the analysis of the samples by spiking control samples. The limit of quantitation was 0.01 or 0.02 mg/log for both analyte

#### Finding

- Method performance: Overall@mean recoveries at fortification levels between 0.01 and 1.0 mg/kg were within the acceptable range of 70-110%, RSD <20% as shown in Table 6.3.1-4. ~Ő Ô

Å

Report [®] No,	Analyte	Sample, Material	Fortification level [mg/kg]	Single Values [%]	Mean Value [%]	RSD [%]	LOQ [mg/kg]
2007/00	Triflyvetrobin	andle from	<b>\$</b> 0.02	103			0.02
2007799			[≰] 0.2	104			0.02
2007/00		ann fruit	0.02	91			0.02
2007/99	COAG21115		0.2	101			0.02
L.		Same la finit	0.02	81			0.02
2100000	of illoxyshoolin	[°] apple fruit	0.2	90			0.02
2409/99	CCA 221112	annla fruit	0.02	70			0.02
Č	CUA 321113	apple mult	0.2	94			0.02

## Table 6.3.14: Recoveries for trifloxystropen and CGA321113 in/on apple and pear

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value	RSD [%]	LOQ mg/kg
	Triflowstrahin	appla fruit	0.02	90	Î.	4	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2124/00	Trifloxystrobin	apple fruit	0.2	104		Ô	9 ^{0.02}
2124/99	CGA 321113	apple fruit	0.02	87	×	$\gamma \sim$	
	00/1921119	apple fruit	0.2 🔊	113	Ű		
			0.01	97; 92, 130	100	¢\$9.4	
	Trifloxystrobin	apple fruit	0.1	94; 94; 102 °	\$97 á	4.8	0,0
2125/99			Overall Recover	ry (n=6)	*102	14.2	
2120,77				<u>~ 75;</u> 75 ~	Z	×-	×Q
	CGA 321113	apple fruit		<b>92</b> °	~ 91	¥ - Å	° 0,01°
		Š	Overall Recover	ry (n ≟4)	83	1059	<u></u>
		<u> </u>	0:02 0'	93; Ø8; 95, J	<u>J</u>	2.6	
	Trifloxystrobin	apple frait	0.2 5	97;95;94;97; 20,94;92;96	5 ⁹⁵ 95	1.80	0.02
RA-			Overall Recove	r\$n =11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2Ê	°¥.9	
2170/03			0.02 0 2	75;87;86	81	11.0	
	CGA 321113	apple fruit	0.2 0	94, 92; 92, 96; 100; 102, 92; 96;	2 960	4.0	0.02
	· ~	A	Sverall Recove	y (n <i>∈</i> 11) 👋	<b>2</b> 92	9.1	
	Å.		0.02	900; 1 <b>9</b> 9	×100	-	
	Trifloxestrobin	appleOruit	0.2	9 <b>2</b> , 101; 101; 101	100	2.0	0.02
ДΛ			Overall Recove	y (n <b>=6</b> ) ∑	100	1.5	
2044/04*		0 0 4	0.02	498; 1 <b>43</b>	106	-	
*	CGA 321113	apple fruit		109; 109, 104;	106	3.0	0.02
Ê,	, O .		Overal Recove	ry (n ^Q 6)	106	5.1	
			0.02	^ه ُ 97; 94	96	-	
	Trifloxystrobin	pear fruit	102 × 1	92; 91; 87; 91	90	2.5	0.02
RA-			Overal Recove	ry (n =6)	92	3.6	
2046/04*			0.00	89; 94	92	-	
	CGA 321113	pear fruit	<u>~0</u> /2 . ~	94; 89; 90; 97	93	4.0	0.02
			Overall Recove	ry (n =6)	92	3.6	
N.			0:07	92; 92; 100	95	4.9	
	Trifloxystrobin	apple fruit	A.0	86; 88; 89	88	1.7	0.01
RA-	ô A		[©] Overall Recove	ry (n =6)	91	5.4	
2006/06	Ê Z .Ô	<u></u>	0.01	86; 103, 92	94	9.2	
	CG&321113	apple fruit	1.0	86; 91; 89	89	2.8	0.01
L. L. Y			<b>Overall Recove</b>	ry (n =6)	91	6.9	

RSD = relative standard deviation n = number of tests * Single resources are not available in the report, but given in the BCS residue data base and the raw data

- Storage stability: The maximum storage period of deep-frozen samples was up to 272 days for trifloxystrobin and CGA 321113 and is covered by the storage stability studies.



- <u>Residue results</u>: In the northern European field trials the residues in apple and pear fruit at a Perr of Ì -<u>Residue results</u>: In the northern European field trials the residues in appreating pear in the residue in

- No residues above the LOQ of 0.01 mg/kg could be detected in any of the corresponding controls samples. Table 6.3.1-5: Application data and residues of trifloxystrobin and CGA 321113 in/ on apple and peak.

Table 6.3.1-5: Application data and residues o	f trifloxystrobin and	CGA 321113 in	/ on apple a
treated with Trifloxystrobin W	G formulations in th	e field in northe	rnEuropQ

Study					Applica	ation 🔊	, , , ,	Ê Ĉ	Re:	sidues	
Plot No.				Ķ		° "S	s de la companya de l		\$``~~		
GLP	Crop	Country	FL 🚽	N ₈	kg/ha	ko hL	<b>œ</b> S	Bortion O	DALT	Trifloxy °	CGA
Year	Variety		Į,	,	. (205.)	(a.s.)		analysed	(days) ₄	strobay (mg&g)	321113 (mg/kg)
2007/99	Apple	France	\$0 WG	R .	0.075	0.045	89	Fruit		0.10	<0.02 <0.02
GLP: yes	Smothee	Europo		1						0.03	<0.02 <0.02 <0.02
1999		North	Ŝ.	0			Á	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.02	<0.02
2109/99 NIE-2109-99	Apple	Nether-	[≫] 50 ~ War	»3	0.0643 -	0.0299-	281	& fruit	۳ ۲	0.08 0.04	<0.02 <0.02
GLP: yes	sonagored %			Ŕ	Ø.0763	~^^	\$		14 14	0.03	<0.02 <0.02
1999		Europe, North	ð _a	0ġ			F .		° 14	0.04	\$0.02
2124/99 SWZ 2124 00	Appte	Switze Jand	507 ***G	3	0.075	0.0078	84	fruit	$\begin{array}{c} 0\\ 7\end{array}$	0.19	<0.02
GLP: yes	Fouge	Egropo	****	$\mathbb{Z}_{\mathbb{Z}}$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø.	1 de la companya de l	14 14	0.03	<0.02 <0.02 <0.02
1999		North	4	0			×.	ł.	14	0.04	<0.02
2125/99	Apple &	Switzer-	50 ₩G	3C	0.075	0.00075	85	fruit	$\begin{array}{c} 0\\ 7\end{array}$	0.08 0.06	<0.01 <0.01
A	Smoothy		Î Î	•			J		14 14	0.05	<0.01 <0.01
GLP: yes 1999	Q A	Éuropæ, North		\$ \$						0.05	-0.01
RA-2006/06	Apple	Germany	75 O	3	Q.965	0.0050	87	fruit	0*	0.10	<0.01
0124-06	Delicius			2000		y.			3	0.05	<0.01
GLP: yes		Europe,							14	0.06	<0.01 <0.01
RA-2770/03	Apple	Aorth 6	©' '84	3	ُ 0 0625	0.0250	85	fruit	0	0.05	<0.02
R 2003 0079/4		B-	₽WG	Ş	0.0025	0.0250	05	ITuit	14	< 0.02	<0.02
0079-03 GLP: yes		Qurope,		1							
2003		North	~Q								
RA-2044004 R 2004 0182/5	Apple A Monacold	Nether- kands	68.8 WG	3	0.079	0.0063	78	fruit	$0^*$	<0.02 0.06	<0.02 <0.02
0182-94		ŊŇL-							3 7	0.04 0.04	<0.02 <0.02
2004		Europe							<b>14</b> 21	0.03	<0.02 <0.02
		North							<i>2</i> 1	.0.02	0.02



Study					Applic	ation			Re	sidues "°	
Trial No.					**					. 4	Ŭ,
Plot No.	~		FT	<u>ل</u> ـ ـ		1 /1 -	~~	<b>D</b>			Ø ^y
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion Of	DALT (days)	Ton floxy	CGA 221112
i cai	vallety				(a.s.)	(a.s.)		anarysee	(uays)	(mgÅg)	(mg/kg)
RA-2046/04	Pear	United	68.8	3	0.063	0.0063	81	<b>Afr</b> uit	0*~	0.09 ×	<0.02
R 2004 0183/3	Confe-	Kingdom	WG			Ö			æ,	Q.18	<0.02
0183-04 CL Di vias	rence	5HG			.6	¥.	40	Ş.		0.10	<0.02 €0.02
GLP: yes		Cambrid-			Ĩ	\$	Š		13 8	0.00	≪0.02
2004		ge Europe			à là	*	~		200	0.95	< 0.02
		North			<i>\$</i> \$		*		~\X		
RA-2046/04	Pear	Germany	68.8	3	0.06	0.0063	85	iruit 4	× 0* ×	0.06	< 0.02
R 2004 0184/1	Gellerts	D-65366 Geisen-	WG		Ŵ			ð íð		0.43	< 0.02
0184-04 GLP: yes	Butter- birne	heim	Z.	× ,		) N			≪,,7 [°]	0.10	<0.02
2004		Europe,	Ĩ	[°]	, ^y , O		,Õ		× 14 🐇	0.09	< 0.02
		North	Ş (		, Ç		<b>~</b>			0.09	<0.02
FL: Formulation		Nofizi	mber Ø	fapp	lications				No. 1	U ⁴	
GS = growth stage RA-2006/06 0124	e (BBCH code 4-06: It can be	e) at last applic	sation	0 80	ØDALI€ ∛I0*wene	days after la	ist trea and th	itment() * j hat the highers	alues belon	of to the 0	
sample		s ussuing ing		>	a o more		U ^N	ŝ .	O O	g to the o	
			Č,	×,	a de la companya de l	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥ .2	Ô		
	^≽		Ô	k	y k	<u>e</u>	J.		U [°]		
Report:	KÇA	<b>6.3.↓39</b> ,	•			<b>201</b>	<b>3</b> ; M	-457963-05	-1		
Title:	Pete	rmination c	of the	resi	dues of	trifloxyst	robin	m/on appl	e and pea	ar after spr	ay
	appl	cation of tr	ifloxys	stro	bin WŞ	50 in the	field	in German	y, norther	rn France a	nd
	<u> </u>	ed Kringdon	1 <u></u>	$\geq$		<u>~</u>	<u> </u>	<u> </u>			
Document No	<b>% M</b> -4:	57963-01@	Ś	<u> </u>	6		,* @	Dj			
Report No	^{#0} 11-2	<u>117 ģ</u>	1	ð	<u>y` 6</u>	<u>}</u>	- KĴ	-			
Guidelines:	EU	Council Dir	ective	917	414ÆE0	C Annex I	¶√pa	rt A section	6 and A	nnex III, pa	art
¥	A, se	ection 8 resi	dues į	a or	on treat	ed produc	ťs, fo	od and feed			
GLP	<u> </u>	<u> </u>	$\sim$		×_` × } 0	× ~					
	¢ A		$\tilde{v}$	$\approx$	,	Å.					
	a, O ^y	~ . C		)″	$\bigcirc^{v}$	- Or					

### Test system

\$⁰ In 2011 four trials were performed in forthern Europe on apple or pear trees with trifloxystrobin WG 50 according to the use pattern supported within this dossier. The product was applied three times at application rates of 0.075 kg trifloxystrobin/ha. The treatments were performed with intervals of 9-10 days days. õ 1

Fruits samples were taken on day 14 (15) after the last application in all trials. Additional samples of fruit were taken at earlier or ater time points in two trials.

~C L 1 Residues of trifloxystrobin (CGA 279202), its isomers CGA 331409, CGA 357261, CGA 357262, as well as the metabolite CGA 321113 and its isomer CGA 373466 were determined according to method 01313. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spiking control samples. The limit of quantitation was 0.01 mg/kg for all analytes



#### Findings

- <u>Method performance</u>: Overall mean recoveries at fortification levels between 0.01 and 0.5 mg/g per analyte were within the acceptable range of 70-110 %, RSD <20% as shown in Table 6.3.1-6.

# Table 6.3.1-6: Recoveries for trifloxystrobin, CGA321113, CGA 357261, CGA 357262, CGA 331409, CGA373466 in/on apple and pear

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values	Mean Value	R\$D [%6]	LÔQ Qmg/kgÔ
	Trifloxystrobin	apple fruit	0.01 0.1 0 0 \$ 0 0 0 0	× 79 × 79 × 86 × (n =3) ~~	87 79 86 84	- C - Z 	\$0.01
	Trifloxystrobin	pear fruit	0.01 04 0.5 Overall Recover	86; <b>29</b> 96 96 796 796 796 796 796 796	5 88 104 5 96 94,5	4 2- 5 - 85	0.01
	CGA 321113	apple pruit	0.5 7 7 0.5 7 7 0.5 7 7 0.5 7 7	$\frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} $	80 74 81 29	- - 6.0	0.01
	CGA 329113	pear Pait	9.01 0 0.1 0 0.5 0 Overall/Recover	83; 86 94 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85 94 92 89	- - - 5.8	0.01
	CGA 35726	apple fruit	0.01 5 0.9 0.5 5 2 0x4roll Bécove	0 84 0 84 0 84 0 84	84 78 84 82	- - - 4 2	0.01
11-2117	CGA 357961	pear from	<b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	91; 93 103 96 ry (n =4)	92 103 96 96		0.01
L L L	CGA 3572625	apple fruit	0.016 0.5 05 Overall Recove	92 81 86 ry (n =3)	92 81 86 86	- - - 6.4	0.01
	CG 357262	poar fruit	0.01 0.1 0.5 Overall Recove	90; 91 100 102 ry (n =4)	91 100 102 96	- - - 6.4	0.01
	CGA 331409	apple fruit	0.01 0.1 0.5 Overall Recover	88 84 90 ry (n =3)	88 84 90 87	3.5	0.01

# **Bayer CropScience**

#### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value [%]	RSD [%]	IØQ ∫mg/kgk
			0.01	88; 94	<b>29</b> 1	- "Ø	
	CGA 331409	noon finit	0.1	100	À 100	_~	
		pear fruit	0.5	103	103	ô ^r	
			Overall Recove	ry (n =4)	96 🦼	× 6.9 ×	
	CCA 2724((	apple fruit	0.01	73.0	73	S)	
11-2117			0.1	2A T	<i>T</i> ₽¥	Q-	
	CGA 3/3466		0.5	^Q 81 ⊘°	81	- 0	
			Overall Recove	ry (n = 7) ~	76	5.J	
			0.64		I.	×	×,
	CCA 2724((	<b>C</b>	0.1 2 6	<u>104</u> O	904	7 - 2	
	CGA 3/3466	pear fruit	0.5 ~	<u>≫</u> 96– (	§ 96	<u>n</u>	6,01
			Overall Recove	r (n =70) (n =70)	<b>8</b> 8	¥6.0	
RSD = relati	ve standard deviatio	n Ő	n unaber of tests			D B	

RSD = relative standard deviation

- <u>Storage stability</u>: The maximum storage period of deeperiozen samples was up to 368 days for trifloxystrobin and its metabolite / isomers and is covered by the Gorage stability studies.

-<u>Residue results</u>: In the northern European field trials conducted in 2011 the residues at a PHI of 14 (15) days ranged from 0.044 to 0.11 mg/kg for trifloxystrobin and were <0.01 mg/kg for CGA 321113 and CGA 373466 in apple @ pear fruit. Residues of CGA 359261 were between <0.01 and 0.035, - No residues above the LOQ of 0.01 mg/kg calld be detected in any of the corresponding control samples. residues of CGA 35/262 were <0.01 or mg/kg, and residues of CGA 331409 were <0.01 or

B/

Table 6.3.1-7: Application data and residues of trifloxystrobin and CGA 321113 in/ on apple and pear treated with Trifloxystrobin WG 50 in the field in northern Europe       Image: Comparison of the field in northern Europe											
Study Trial No. Plot No.					Applicat	ion			Re	sidues	T D
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Trifloxy- strobin	©CGA 321113 (mgØxg)
11-2117 11-2117-01 11-2117-01-T GLP: yes 2011	Apple Jonagold	Germany Europe, North	50 WG	3		0.015		fruit		<b>3</b> 9.048 0.15 0.072 0.058 0.051 0.050	<001 0.01 0.01 <0.01 <0.01 <0.01
11-2117 11-2117-02 11-2117-02-T GLP: yes 2011	Pear Beurré Hardy	France Europe, North	50 WG 2 %								<0.01 <0.01
11-2117 11-2117-03 11-2117-03-T GLP: yes 2011	Pear Williams Christ	Germany		* 3 © ?	0.075	0.0075 ×			0 0 7 14 21 √8 √8	©061 0.17 0.084 0.057 0.034 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
11-2117 11-2117-04 11-2117-04-T GLP: yes 2011	Apple Cox's & Early &	United Kingdom Europe North	50 2WG				81 / / / /	Fruit	<ul><li>♀ 0</li><li>▶ 14</li></ul>	0.075 0.044	<0.01 <0.01
FL: Formulation GS = growth agg Table 63, 1-8: 1	e (BBCH cod Residue of pear treated	No: nu e) at last appli CG 357261 I with Tritlo	umber of cation , CGA	f appl	i ØALT ⊕d 262) CGA	ays after lat x3314090 the figld i	st frea and ( n not	ری tment CGA 37340 rthern Eur	* prior to las 56 in/ on a •ope	t treatment <b>pple and</b>	
Study Trial No. Plot No.				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Res	idues			
GLP Year	Crop Variety	Counto	Rort Canaly	ion (sed	DALA (days)	CGA 35726 (mg/kg	1	CGA 357262 (mg/kg)	CGA 331409 (mg/kg)	CGA 373466 (mg/kg)	_
11-2117-01 11-2117-01-T GLP: yes 2011	Apple ³ Jonagold (	Eutope, J		iit S		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	< < < <	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
11-2117 11-2117 11-2117 11-2147 -02-T GLA: yes 2011 5	Rear Beurré Hardy	Françe Europe, North	fru	uit	0 14	0.022 0.035	(	<0.01 ).012	<0.01 0.017	<0.01 <0.01	



Study Trial No. Plot No.					Re	esidues		
GLP	Cron	Country	Portion	DALT	CGA	CGA 🖁	CGA	CGA &
Year	Variety	Country	analysed	(days)	357261	357262	331409	~373466
i cui	variety		unurysea	(duys)	(mg/kg)	(mg/kg)	(mg/kg)	$(m_{\varphi}k_{\varphi})$
11 2117	Deen	Gammany	fanit	0*	<0.01	<0.01	<0.01	
11-2117	Pear	Germany	Iruit	0	<0.01	<0.00	< 0.01	
11_2117_03_T	Christ			7 🕅	0.013	<b>a0</b> 1	≈ ¥0.0≻	
GI P: ves	Chilist	Europe,		14 🦾	0.011 (	<b>≫0.01</b>	≤0,01 ~	<0.00
2011		Nortĥ		210	<0.01	< 0.01	<u>6</u> 0.01 🔗	<0.01
2011				28	<0.01 🗞	<0.09	<u>∕0.0</u> k	<0.01
11-2117	Apple	United	fruit	0	<0.01	<b>40</b> .01	<0.01	<b>2</b> 0.01
11-2117-04	Cox's	Kingdom	K.	14 °	<0.09 ×	ر%0.01 روس		<0.01
11-2117-04-1 GLD	Early		0'	<u>v</u>	ë a	Å.	d' L	A
GLP: yes		Europe,	A		v q		0'	
2011		Nortĥ	<i>"</i> "~				×,	
DALT = days aft	er last treatme	nt * prior	ast treating	nent &				, ûg
		Ŕ,		» Å	Ĵ.		a v	2
Field trials –	southern E	urope		- A			\$`&'	
Report:	KC	A.6.3.1/40			: 2	2004 : M-06	51855-01-1	
Title:	Defe	wination of	de rest	ues altri	floxystrobu	h and canta	n in/on an	nle following
1100	spra	v anolication	and Qw	-volume a	anav amalia	ration of T	floyvstrol	vin & Cantan
	364 J	W(n in Soai	n Sønther	n France	Portugal an	Ditaly 🖉	anoxyshot	
Document No		67855-0P-1		~0	20 d			
Report No:	C RA	2171/93 «		Ň	S N	×,		
Guidelines: (	S AU	Council Dire	ctive/91/4	₩¥/EECĈ	Annex II, p	art A section	on 6 and A	nnex III, part
0	A, ş	ection & Pesid	ues in or	on treated	products	bod and fee	ed	
GLP	yeŝ		ŷ.	S	\$. \$.			
	Ň		Â,	°~ /.				
Report:		A 6.3.1/41,	<i>u</i>	; 2005	; M-255883	3-01-1		
Title:	Det.	rmination of	the resid	lues of tr	ifloxystrobi	n and tolyl	fluanid in/	on pear after
	Ø sora	ving of CGA	279902 &	EUE13	83B (68.8	WG) in the	field in Ita	ly and Spain
Document ₄ No	b & M-2	85883-01-1	R .	2 <u>0</u>	(****			- <u>)</u>
Report Nor.	R 🎝	2045/94						
Guidelines:	Į U	Council Dire	ctive 91/4	HQ/EEC	Annex II, p	art A sectio	on 6 and A	nnex III, part
L.	≪∛A, s	ection & resid	ues in or	on treated	products, f	ood and fee	ed	
GLP	ves		· · · · · · · · · · · · · · · · · · ·	,	1 /			
		<u> </u>	, Q					
Report:		46.3.1/42.		: 2005 :	M-257391	-01-1		
Title	Deft	rmination of	the resid	lues of tr	ifloxystrobi	n and tolvl	fluanid in/	on near after
	a) Jora	ving of CGA	279202 &	KUE131	83R (68 8 )	WG) in the	field in Ital	v and Spain
Doctionent Ma		\$7301 01 1	217202 <b>X</b>	KUL131	0.00) น.เ.		neiu III Ital	y and Spann
Report New	D 1 1 1-2	9047/01						
Cuidationa	EU	$\frac{2047/04}{\text{Council Dim}}$	otivo 01/	114/550	Annov II	art A casti-	n 6 and 1	nnov III. mont
Guidennes:		council Dire	uve 91/4	n tractad	nroducta f	an A secul	л о ана А А	mex m, part
	A, S	ection & resid	ues in or	on treated	products, I	oou and ree	u	
GLP	yes							



#### Test system

In 2003 and 2004 five trials were performed in southern Europe on apple or pear trees with trifloxystrobin WG formulations according to the use pattern supported within this dossier. The products were applied three times at application rates of 0.093 to 0.104 kg trifloxystrobin/ha. The treatments were performed with intervals of about 10 (7-11) days. Fruits samples were taken on day 13/14 after the last application in all trials. Additional samples of fruit were taken at earlier or later time points in some trials.

Residues of trifloxystrobin, and CGA 321113 were determined according to method 00742/0002 & 00839/E001. The analytical methods were validated by recovery experiments prior and during the analysis of the samples by spiking control samples. The lipst of quantization was 0.02 mg/kg for trifloxystrobin and CGA 321113.

#### Findings

- <u>Method performance</u>: Overall mean recoveries at fortification levels between  $(3)^2$  and  $0.2 \text{ mgkg per analyte were within the acceptable range of <math>70-110\%$ , RSD <20% as shown in Table 3.1-9.

Report No.	Analyte	Sample 2 Material 3	Fortitication lever [mg/kg]	Single Varues	Mean Value	RSD [%]	LOQ [mg/kg]
	×		0.02	93, 98; 95	<i>گ</i> ر کې ک	2.6	
	Trifloxy	apple Fuit	0.2 5 5	97; 95; 9⊕, 97; ≠ ,∞96, 94; 92; 96	[©] 95	1.8	0.02
RA-		Å 4.	Overall Recove	ÿ (n =∭) _ ∑	95	1.9	
2171/03		o o ų	0.02 0	41; 87; 86	81	11.0	
*	CGA 321113	apple fruit		94; 92, 92; 96; 100; 192; 92; 96	96	4.0	0.02
Ê,		8 × 4	Overal Recover	ry (n [©] 11)	92	9.1	
	^/ ^/		0.02	🔊 100; 100	100	-	
	Triflogystrobin	apple fruit	102 ×	97; 101; 101; 101	100	2.0	0.02
P ۸			Overal Recover	ry (n =6)	100	1.5	
2045/04*				98; 113	106	-	
Ĩ,	CGA 321113	apple fruit	× × × × ×	109; 109, 104; 103	106	3.0	0.02
_ K)			Overall Recover	ry (n =6)	106	5.1	
. A	- North Contraction - Nort		002	97; 94	96	_	
	Trifloxystrobin	gear from	Q0.2	92; 91; 87; 91	90	2.5	0.02
RA-			<b>Overall Recover</b>	ry (n =6)	92	3.6	
2047/04* Å			0.02	89; 94	92	-	
Ś	CGA 321113	pear fruit	0.2	94; 89; 90; 97	93	4.0	0.02
		$\mathcal{Y}$	<b>Overall Recover</b>	ry (n =6)	92	3.6	

Table 6.3.1-9: Recoveries for triflexystrebin and CGA321113 m/on apple and pear.

RSD = relative standard deviation

n = number of tests

* Single recoveries are not available in the report, but given in the BCS residue data base and the raw data



- Storage stability: The maximum storage period of deep-frozen samples was up to 238 days for trifloxystrobin and CGA 321113 and is covered by the storage stability studies.

- Residue results: In the southern European field trials the residues at a PHI of 19/14 days ranged frøm 0.02 to 0.12 mg/kg for trifloxystrobin and were <0.02 mg/kg for CGA 321113

- No residues above the LOQ of 0.02 mg/kg could be detected in any of the corresponding samples.

#### Table 6.3.1-10: Application data and residues of trifloxy strobin and QGA 321113 in fon apple and oran treated with Trifloxystrobin WG formulations in the field in southern Europe

				. @	, 1	<u>~</u>		<u>Q</u> õ	¥	a.Y
Study Trial No. Plot No.				Applic	cation			No.	esid <b>ues</b>	
GLP Year	Crop Variety	Country	FL *	kg/har (a.s.)	kgAnL (a.s.)	6\$ >	Portion anarlysed	DALT C (days)	Triftexy- strobin omg/kg	©CGA 321113 (mg/kg)
RA-2171/03 R 2003 0083/2 0083-03 GLP: yes 2003	Apple Jona- gold	Portugal P- Europe@ South	₩G ₩G	¥ 0.093 © 0.104 ©					0.32 0.12	<0.02 <0.02
RA-2045/04 R 2004 0186/8 0186-04 GLP: yes 2004	Apple Florina	Italy Europe, South	>68.84 ₩ ₩ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			81 0		0*0 7 14 21	0.02 0.09 0.06 0.03 0.02 0.02	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
RA-2045/04 R 2004 0187/6 0187-04 GLP: yes 2004	Apple Golden	Spain & E- Europe South	68.8 WG	3 0.095 0.102	*0.0063* 5 5 5 5 5 5 5 6 7 5 7 5 7 6 7 7 7 7 7 7	85 ( ) 85 ( ) 0 ( )	frait S	0* 0 3 6 14 20	0.07 0.12 0.09 0.10 0.05 0.05	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
RA-2047/04 R 2004 0188/4 0188-04 GLP: yes 2004	Pear Abáite Fétel	Itady I-	×68.8 WG D X Z		(\$0063 £	81	fruit	0* 0 3 7 14 21	0.06 0.15 0.10 0.09 0.07 0.06	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
RA-2047/07 R 2004 0589/2 0189-04 GLP: yes 2004	Pear Confe- rence	Spain S E- Buropec South	WG WG	3°49.0945	¥0.0063	81	fruit	6 <b>13</b> 21	0.11 0.10 0.07	<0.02 <0.02 <0.02

No: numb@ of applications

DALT = days after last treatment

FL: Formulation GS = growth stage (BBCH code) at last application

* prior to last treatment.

Report:	KCA 6.3.1/43,	; 2013 ; M	-457957-01-1	
Title:	Determination of the resident application of trifloxystrol and Spain	dues of trifloxystrobin in bin WG 50 in the field in	n/on apple and pear southern France, Pg	r after spray ortugal thaly
Document No &	M-457957-01-1			
Report No:	11-2116	Č	ý _k v i	
Guidelines:	EU Council Directive 91/4	414/EEC Annex II, part	A section @and A	mex 🖽, part 🗸
	A, section 8 residues in or	on treated products food	l and feed	Ň ×
GLP	yes	4		

#### Test system

In 2011 four trials were performed in southern Europe on apple of pear frees with triffoxystrobin WG 50 according to the use pattern supported within this dossier. The product was applied three times at application rates of 0.1125 kg trifloxystrobin ha (in one trial up to 0.12 kg trifloxystrobin/ha). The treatments were performed with intervals of about 10 (9-11) days. Fruit samples were taken on day 14 after the last application in all traffs. Activitional samples of fruit were taken at earlier or later time points in two trials.

Residues of trifloxystrobin (CGA 279202) its isomers CGA 334409, CGA 357261, OGA 357262, as well as the metabolite CGA 327413 and its isomer CGA 373466 were determined according to method 01313. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spitting control samples. The tonit of quantitation was 0.01 mg/kg for all analytes.

#### Findings

- <u>Method performance</u>. Overall mean recoveries at fortification levels between 0.01 and 0.4 mg/kg were within the acceptable range of 70-110 %, RSD < 20% as shown in Table 6.3.1-11, except for pear and CGA 331409 with an overall mean recovery of 115% which was accepted since the RSD was in line and the values for apple were below 110%.

Table 6.3.1-11:	Recoveries	for trid	loxystrobin,	@A3210	<b>13, GGA</b>	357261,	CGA 357262,	CGA 331409,
	CGA 37340	6 in on	apple and p	ear 🔊	-G			

Report No.	Analyte Sample Material	Fortification level [mg4kg]	Single Values [%]	Mean Value [%]	RSD [%]	LOQ [mg/kg]
		0.010	88; 92; 93	91	2.9	
4	Trifloxystrobil apple fruit	000	102; 103; 104; 105	104	1.2	0.01
		Q0.4	103	103	-	
11-2116		<b>Overall Recove</b>	ry (n =8)	99	6.7	
, O		0.01	103; 105; 106	105	1.5	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Terror finit	0.1	92; 96; 98	95	3.2	0.01
S.		0.4	101	101	-	0.01
A L		Overall Recove	ry (n =7)	100	5.1	

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value	RSD [%]	LOQ mg/kg
			0.01	77; 78; 81	8 79	2.6	
	CGA 321113	apple fruit	0.1	82; 86; 88; 94	88	9 .7	\$0.01 ¢
			Overall Recove	ry (n =7)	84 🛒	7.2 🏷	
			0.01	95; 99; 013	102	9.9	
	CGA 321113	pear fruit	0.1	92; 94; 97	gaµ'	Q.7	
	CGA 521115	pear nun	0.4	~97 @°	\$97 Å	-	
			Overall Recove	ry (n ² =7)	<u>* 98</u>	<i>.</i> ?	Â.
				88; 88; 93	26	3.2	~
	CGA 357261	apple fruit		95; 96; 102;002	~ ⁹⁹	¥ 3.8	0.01°
		× ×	⁹ Overall Recove	ry (n = 7) (^ي 95	6.₽	<u>Ç</u>
				98; D ; 104	190	3.2	
	CGA 357261	pear fruit		95; 95; 98	\$ ⁹⁶	1.8	0.01
			0.4			~~~~	
			Operall Recove	$\mathbf{p}\mathbf{y}(\mathbf{n}=\mathbf{z}) \times \mathbf{r}$		3.3	
		\$ & č	0.01	93; 93; 96	<u>94</u>	1.8	
	CGA 35/262	apple fruit		98; 100; (92; 11)	/ 1032	5.6	0.01
11.0116	¥_	A o	Qverall Recove	(n=7)	\$ 9 9	6.3	
11-2116		pear pruit 2			√111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √111 √11 ✓1 ✓	3.2	
	CGA 257262			0 96; 99; 99 0 -ix	0.01		
					106	-	
	<u> </u>			$\frac{(10^{-7})}{2}$	103	0.5	
°,		and fruit		01; 101; 102; 102	102	0.0	0.01
Ê.S	COA 551408 °		Dyor D Doo	93,94,90,114	101	9.2	0.01
**				(4, -7)	101	6.5	
	B A			99.101.107	101	1.5	
	CGA 331469,"	poar fruit	0.4. 0 0	113	113	-	0.01
			Overall Recove	ry (n =7)	115	13.7	
		20	0.01 . ⁽¹⁾	72: 80: 84	79	7.8	
	CGA 373466	apple fruit	0.1,~9	84; 86; 86; 95	88	5.6	0.01
L.	4. ¹ 4		Overall Recove	ry (n =7)	84	8.3	
"	an [°]	La	\$9.01	94; 96; 115	102	11.4	
	A service of		[≸] 0.1	90; 95; 96	94	3.4	0.01
A	CCA 5/5/400	spear truit	0.4	92	92	-	0.01
			Overall Recove	ry (n =7)	97	8.6	
RSD = telativ	e standard deviation		n = number of tests				

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples was up to 364 days for trifloxystrobin and CGA 321113 and is covered by the storage stability studies.

-<u>Residue results</u>: In the southern European field trials conducted in 2011 the residues at a PHI of 14 days ranged from 0.055 to 0.17 mg/kg for trifloxystrobin and were <0.01 mg/kg for CGA 32111 and CGA 373466 in apple or pear fruit. Residues of CGA 357261 were between 0.010 and 0.068, residues of CGA 357262 were between <0.01 and 0.031 mg/kg, and residues of CGA 31409 were between <0.01 and 0.036 mg/kg at the PHI of 14 days.

- No residues above the LOQ of 0.01 mg/kg could be detected in any of the corresponding control samples.

Table 6.3.1-12: Application data and residues of trifloxystrobin and CGA 321113 in/o	h app l @an	ıd pea
treated with Trifloxystrobin WG 50 in the field in southern Europe	L.	Õ

Study Trial No.				Applica	ation			Resi	dues ~	
GLP Year	Crop Variety	Country	FL N	kg/har (a.s.)	kg4hL ~(a.s.)	GS >	Portion analysed	DAPT (Cays)	strobin (mg/kg)	° CGA 321113 (mg/kg)
11-2116 11-2116-01 11-2116-01-T GLP: yes 2011	Apple Granny smith	France Europe South		0.112\$				0*0 07 014 21 28	0.065 0.14 0.067 0.055 0.028 0.024	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
11-2116 11-2116-02 11-2116-02-T GLP: yes 2011	Apple Royal Gala	Pértugal O Dirope South	50,573 WG Q 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1			76 . 0		≪0 ⊊14	0.26 0.15	<0.01 <0.01
11-2116 11-2116-03 11-2116-03 GLP: yes 2011	Pear Conferrence	Italy Europe South	050 3 WG	0.1125			¢, fruit	0* 0 7 14 22 29	0.12 0.25 0.18 0.12 0.11 0.076	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
11-2116 11-2116-04 11-2116-04-T GLP: yes 2011	Pean Confe- (Ørence ()	Spain Sp	5997 3 990 900 900 900 900 900 900 900 900 90	001125 -0.120 -0.120	0.0075 0.0075 0.00757	85	fruit	0 14	0.28 0.17	<0.01 <0.01

FL: Formulation No: number ob applications GS = prowth stage (BBCH code) at last application * prior to last treatment.

DALT = days after last treatment

Table 6.3.1-13: Residues of CGA 357261, CGA 357262, CGA 331409 and CGA 373466 in/ on apple and o										
	pear trea	ted with Tri	floxystrobin `	WG 50 in	the field in s	outhern Eu	rope	. 4		
Study Trial No. Plot No.					Resi	idues			0 ³ x	
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 (mg/kg)	CGA 331409 (mg/kg)	CGA 375466 × vmg/kg		
11-2116 11-2116-01 11-2116-01-T GLP: yes 2011	Apple Granny smith	France Europe, South	fruit	0* 00 21 28 00°	<0.01 <0.01 0.010 0.010 <0.010 <0.010 <0.010	\$0.01 <0.01 <0.04 \$0.01 \$0.01 \$0.01 \$0.01	<pre></pre>	<0.04 <0.01 <0.01 <0.01 <0.04 <0.04 <0.04 <0.04 <0.04		
11-2116 11-2116-02 11-2116-02-T GLP: yes 2011	Apple Royal Gala	Portugal Europe, South	fruit fruit							
11-2116 11-2116-03 11-2116-03-T GLP: yes 2011	Pear Confe- rence	Italy Europe, South		0* 0 14 29 29	0.023 0.034 0.036 0.036 0.042 0.035	9.014 0.014 0.016 0.017 0.020 0.018	0.697 0.018 0.022 0.021 0.025 0.025 0.020	<pre><0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01</pre>		
11-2116 11-2116-04 11-2116-04-T GLP: yes 2011	Pear Confe- rence	Spain Europe, South	fruit fruit				0.028 0.036	<0.01 <0.01		
DALT = days aft	er last treatr		ior to last treats	gent S		Ø				
Former Annex	<u>Al doss</u> ê	ř _o r ,			D"					

In the Annex II dossier, the critical GAP for tuffloxyspobin supported at the European level (northern and southern Europe) consisted of to to foliar spray applications at rates of 187.5 g a.s./ha trifloxystrobin and a PMI of 35 days.

Ŵ Ø Annex I renewal process New studies

<u>Annex I renewal process New tuidies</u> The critical Good Agricultural Protice (GAP) supported at the European level in the Annex I renewal (AIR) process consists of 3 foliaespray applications at 125 g a.s./ha trifloxystrobin in northern Tenewai (Aug) process consists of 3 toltae spray applications at 125 g a.s./ha trifloxystrobin in Europe and southern Europe, with a minimum spray interval of 10 days and a PHI of 14 days.

Ø)

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.3.5-1: Summary	of the critical GAP	for the proposed u	uses of Trifloxvstrobin	WG 50
		ion the proposed t		

Region*	F, G or I**	Maximum Number of Applications	Minimum Application Interval (days)	Maximum Rate (g a.s./ha)	Minimum PHI (days)	
EU-N	F	3	10	125	14	
EU-S	F	3	T 10	J125	<u>i</u>	
	Region* EU-N EU-S	Region*F, G or I**EU-NFEU-SF	Region*F, G or I**Maximum Number of ApplicationsEU-NF3EU-SF3	Region*F, G or I**Maximum Number of ApplicationsMinimum Application Interval (days)EU-NF3EU-SF3	Region*F, G or I**Maximum Number of ApplicationsMinimum Application Interval (days)Maximum 	Region*F, G or I**Maximum Number of ApplicationsMinimum Application Interval (days)Maximum Maximum (days)Maximum Maximum (days)EU-NF3102314EU-SF31012514

* EU-N northern Europe EU-S southern Europe

F Field; G Greenhouse; I Indoor

Frenewal are mmarised in Pable Trials available to support the European GAPs relevantofor nex 6.3.5-2 and Table 6.3.5-3. Ø

		4			õ	Or of	-
			~~~···	~~ .	× .	4 .	£
Table 6.3.5- 2:	Residue trials conducted	per ge	ographic	alregio	n, and t	<del>or</del> mulat	iøn –

Region	Crop	Formu	Number of Trials Report-No. Document Nº Dossier Ref.	
		lation	Vegetation period Total S S	Ro
				S) J
Supplen	nentary da	ıta		
NEU	Creme	WC 50	4 4 4 5 456337-01-1 C A 6335/32	2
N-EU	Grape	WG 30	⁴ / ₄ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3
S EU	Crono	WC 50	4 - 6 K 11-2114 Mt 354927 91-1 K A 6.3.5/34	4
3-EU	Grape	we so	-57 57 12-2011 \$M-455561-02-1 \$KCA 6.3.5/35	5

N-EU northern Europe SAU southern Europe N-EU northern Europe WG 50: wettable granule formulation containing 50% trifloxy probin

WG 50: wettabl	e granule føi	mulation cont	aining 50% tr	ifloxystrobin &	ñ A	
	Õ al	Ś Ś	. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1. N N	, j	
~	D D		×	Ú »	a start and a start and a start	$\sim$
Table 6 3 5 3.		in the second second second	atab aubia	In another any		oritical CAP
1 abie 0.3.3- 5.	Overall su	inniar ygu i v		on grape cov		CHILLAI GAI
×	26			WL.		

Application	Region	Formu-	Crop	Sample	n°~		idue level (r trifloxystrol	ng/kg) bin
Kate	$\hat{\mathbf{Q}}$		/ <u>`</u> 0* <u>*</u>	material	A'	Min.	Max.	STMR
3 applications at about 125 g/ha	QN-EU	WE	Grape	Bunch or	Ø8	0.14	0.49	0.335
3 applications at about 125 g/ha	s-ÊU	WG S	Grape	Bunch or Berroy	9	0.11	0.51	0.180

U Eutherit Europe N-EU northern Europe

n: number of trials

#### Field trials - northern Durop ,Ø

Report: 🖉 🥆	<b>XCA 6:3.5/32,</b> ; <b>2013</b> ; M-456337-01-1
Title:	Determination of the residues of trifloxystrobin in/on grape after high or low
	volume pray application of Trifloxystrobin WG 50 in the field in northern France
	and Germany
Decument No &	M-456337-01-1
Report No:	11-2115
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes



Report:	KCA 6.3.5/33, ; 2013 (amended) ; M-453336-02-1
Title:	Determination of the residues of trifloxystrobin in/on grape after spray application and low volume spray application of Trifloxystrobin WGS0 in the field in France
	(North) and Germany
Document No &	M-453336-02-1
Report No:	12-2010 O S S S
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section and Aprex II, part
	A, section 8 residues in or on treated products food and feed Q
GLP	yes A Q & A A

#### Test system

In 2011 and 2012 eight trials were performed in the field in northern Europe in on grapes with Trifloxystrobin WG 50 according to the use pattern supported within this dossier. The product was applied three times to grapes at application rates of 0.125 kg trifloxystrobin/ha. The treatments were performed with intervals of 10 days. Berry samples were taken on day 14 and 21 after the last application in all trials, butch samples were taken at day 0, 14 and 21 after last application is all trials and at day 08 and 10 in some of the trials.

Residues of trifloxystrobin (CGA 279202) its isomers CGA 334409, CGA 357261, OGA 357262, as well as the metabolite CGA 32143 and its isomer CGA 373466 were determined according to method 01313 or 01313/M001. The analytical methods were validated by recovery experiments prior to and during the analysis of the samples by spiking concol samples. The limit of quantitation was 0.01 mg/kg for all analytes.

#### Findings

- <u>Method performance</u> Overall mean recoveries at fortification levels of 0.01, 0.05 or 0.1, and 0.5 or 0.8 mg/kg per analyte were within the acceptable range of 70-110 %, RSD <20% as shown in Table 6.3.5-4, except for CGA 331409 with an overall mean recovery of 112% (berry) or 119% (bunch), which was accepted since the RSD was in line (6.5 or 5.9).

Table 6.3.5-4: Recoveries for triflexystropin, CGA321103, CGA 357261, CGA 357262, CGA 331409, CGA 373466 japon grape

Report No.	Analyte	Sample Material	Fortification [level [mg2kg]	Single Values [%]	Mean Value [%]	RSD [%]	LOQ [mg/kg]
₩.			0.01	109	109	-	
L.	Tuiff		0.05	103	103	-	0.01
Ÿ	1 rilloxystroopa	grape, berry	0.8	98; 100	99	-	0.01
11 2115	S A		<b>Overall Recove</b>	ry (n =4)	103	4.7	
11-2115			0.01	116	116	-	
Ő			0.1	104, 106	105	-	0.01
Ś	I rutexystrobin	grape, bunch	0.8	102	102	-	0.01
S.		¥ 1	<b>Overall Recove</b>	ry (n =4)	107	5.8	



Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value	RSD [%]	, ÆOQ Jmg/kg
			0.01	108	\$108	- ~	
			0.05	98 4	98	, C	
	CGA 321113	grape, berry	0.8	96: 98	97 (	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.01
			Overall Recove	rv(n=4)	100	5.4	ê .C
			0.01 .	100	1.01	2	
			0.1	Ø\$* 98 °	197 a	<u> </u>	
	CGA 321113	grape, bunch	0.8	~ 99 0	Q 99, 0	- 60	0:01
			Overall Recove	rx n = 4	200	°~2.1	S
			0.01	<u><u> </u></u>	299	(, - A	. °
			0.05	99	© 99 Ö		ŵ.
	CGA 357261	grape, berry	0.8	0° 97598 °	<u> </u>	×1-	\$0.01
		Q	Overall Recove	ry (n ≝4) Č	<b>3</b> 8	×1.0	D
		s a	0.01 7	109	^{\$109\$}	×?	
			0.12	5 1046,105 2	1,65	<u>N</u>	
	CGA 357261	grape, bunch	0.8 0 2	6,401 e	Q01	× -	0.01
			Overall Recove	ry (n=4)	105	3.2	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.01 2	<u>~</u> ` 1¥¥Ž _^Ş	142	-	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.05	×1110	<b>\$</b> 11	-	0.01
	CGA 357262	grape, berry	0.8 5	101; 102	√ 102	-	0.01
11.0115	\$ . Ó		Qverall Recove	rðy (n =4),	107	5.4	
11-2115		× &	0.01	\$122 V	122	-	
			0.1 0	0 ¹ 109; Ø1	110	-	0.01
°~	CGA 559262	grape bunch	08 0	2 1094	104	-	0.01
je godina na seconda na		8 R .	Overal Recove	ry (n⊖4)	112	6.8	
* V			0.01 %	🔊 116	116	-	
	CC 1921400		Q.95 O	<b>y</b> 120	120	-	0.01
		grape, being	0.8 8 8	104; 108	106	-	0.01
	N N		Overall Recove	ry (n =4)	112	6.5	
AL M		J AT	•Q.91	128	128	-	
Ű,	CGA 33	grane Munch	\$0.1 <u></u>	111; 118	115	-	0.01
L.			0.8	117	117	-	0.01
Ĭ	<u> </u>		Overall Recove	ry (n =4)	119	5.9	
	& A.		QÓ.01	96	96	-	
	CGA \$3466	grande herm	0.05	97	97	-	0.01
, Ĉ			0.8	98; 100	99	-	0.01
Į,	Â.	-çă	<b>Overall Recove</b>	ry (n =4)	98	1.7	
			0.01	102	102	-	
	CGA 373466	grane hunch	0.1	99; 105	102	-	0.01
Ô	CGA 575700	Stape, building	0.8	104	104	-	0.01
			<b>Overall Recove</b>	ry (n =4)	103	2.6	

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value Ø%]	RSD [%]	LOQ mg/kg
			0.01	86; 94; 100; 100; 100; 109	98 O	78	
	Trifloxystrobin	grape, bunch /	0.1	84; 91; 100; 106	95 ្	×10.2	0.01
		berry	0.5	81; 84; 930,94	88	7.67	
			Overall Recove	ry (n =140 ×	94	<u>A</u> M	\$* <u>4</u> 0'
			0.01	74; <b>80</b> , 85; 96;	2 ⁵⁸⁹	ý 15.3 [©]	
	CGA 321113	grape, bunch / berry	0.1	80;91;107;108	~ 97 <u>,</u>	<u>_</u> №3/5	× 0.01
				() 8/; 89, 96; 97, 		, ).4 12 @	e "f."
			Overau Recove	(11 - 13)	92 O		<u> </u>
		Ű			<u>9</u> 9	≪6.8 ©	
	CGA 357261	grape, bunch / berry		86; 33; 91; 91	\$ ⁹³	6.7	0.01
12-2010			0.5 Overall Recove	n =14)	, 88~ 	<u>,</u> 8.1	
12-2011			\$0.01 J	83; <b>®</b> 4; 91; 91; 93; <b>9</b> 3	89 C	5.0	
	CGA 357262	grape, bunch	0,45 ,5	91; 92 <b>;9</b> 3; 115	28	11.8	0.01
	×.	Series and a series of the ser	0.5 <u></u>	84; 87; 98; 100	<u></u>	8.6	
	S.	a sa a	Overall Recove	ry (n =14) 🔿 🗸	<b>§</b> ∕93	8.8	
			0.91	\$1; 74;96; 1017 ¥06	88	22.0	
	CGA 331409	grape, banch /	$\mathcal{O}_{0.1} \swarrow^{\prime} \supset$	90; 90; 107; 116	102	11.3	0.01
				79; 81; 90; 104	89	12.9	
í SO		S &	Overall Recove	ry (n ≏ <b>1</b> 3)	92	16.6	
K~v			0.017	72, 86; 89; 102; 91; 94	89	11.2	
	CGA 373466	grage, bunch/		85; 105; 98; 103	98	9.2	0.01
			0.5 8	95; 95; 99; 115	101	9.4	
		$P \sim \rho^{\prime}$	Overall Recover	ry (n =14)	95	10.9	

RSD = relative standard deviation

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples was up to 426 days for all analytes and is covered by the storage stability studies.

-<u>Residue resolts</u>: In the nothern European field trials the residues in berries or bunch of grapes at a PHI of 14 days ranged from 0.14 to 0.49 mg/kg for trifloxystrobin and were <0.01 to 0.044 mg/kg for CGA 321013. A maximum of CGA 321113 residues was found at up to 0.069 mg/kg at 21 days after last application

last application. Residues of CGA 357261, ranged between <0.01 and 0.066 mg/kg at day 14, and residues of CGA 354262 were between <0.01 and 0.035 mg/kg at day 14 after the last application. Residues of CGA 331409 were between <0.01 and 0.042, residues of CGA 373466 ranged between <0.01 and 0.012 mg/kg at day 14 after the last application.

- No residues above the LOQ of 0.01 mg/kg could be detected in any of the corresponding control samples.

BAY

Table 6.3.5-5:	Applicatio Trifloxyst	n data and r robin WG 5	residue 0 in th	es of e fie	f trifloxy eld in no	strobin an rthern Eu	id CC rope	GA 321113 in/	on grapes	treated wit	h
Study Trial No. Plot No.					Applica	ation		J.	Res	idues of	- OF D
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Trifloxy- strobin (nyg/kg)	©CGA ©321113 (mg@rg)
11-2115 11-2115-01 11-2115-01-T GLP: yes 2011	Grape Sauvig- non; white variety	France F- Europe, North	50 WG	3			85 2 2 2 2 3	Branch of grapes		0.13 0.16 0.16 0.19 0.12 0.12 0.12	<pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre>
11-2115 11-2115-02 11-2115-02-T GLP: yes 2011	Grape Gamay; red variety	France F- Europe North				9.0625 y 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		bunch of grapes berry	0 14 ∅ 24 0 14 ∅ 24 0 14 ∉ 21 0	0.73 0.42 0.36 0.32 0.26	0.020 0.031 0.019 0.021 0.022
11-2115 11-2115-03 11-2115-03-T GLP: yes 2011	Grape Dorn- felder; red variet	Germany By Europe, A North					85 \$ 0	grapes	0 7 10 14 21	0.27 0.51 0.42 0.35 0.38 0.32	0.021 0.014 0.019 0.019 0.025 0.028
11-2115 11-2115-04-T 11-2115-04-T GLP: yes 2011	Grape Müller Thurgay ; white variety	Germany D- Europe, North					85 ( 0)	bunch of grapes berry	0 14 21 14 21	0.22 0.52 0.49 0.34 0.35 0.49	0.021 0.011 0.044 0.049 0.032 0.069
12-2010 12-2010-01 12-2010-01 GLP: yes 2012	Grap Gamay; red variety	France Europe, Notth	> 50 ^ W@? 0			©9625	83	bunch of grapes	0* 0 7 10 <b>14</b> 21	0.22 0.43 0.28 0.22 0.27 0.42	0.018 0.022 <0.01 0.014 0.010 <0.01
			S ^r	2				berry	14 21	0.26 0.22	0.013 <0.01
12-2010 12-2010-02 12-2010-02-T GLP: ses	Grape Souvig- Mon; A white	Erance S Etheope,	509 WG	3	0.125	0.0625	83	bunch of grapes	0 14 21	0.13 0.12 0.072	<0.01 <0.01 <0.01
	variery	kji						berry	<b>14</b> 21	0.14 0.11	<0.01 <0.01



Study				Application					~		
Plot No.											<u>S</u>
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALT	Trittoxy-	CGA
Year	Variety				(a.s.)	(a.s.)		analysed	(days)	strobin C	321113
12-2010	Grape	Germany	50	3	0.125	0.0157	85	hunch of	0*.0	0.18%	())))) ())))))))))))))))))))))))))))))
12-2010-03	Müller-	Germany	WG	5	0.125	0.0137	05	grapes		0.30	0.010
12-2010-03-Т	Thurgau	Furone				- Ar		Q			0.014
GLP: yes	; white variety	North				ź.	*	$\varphi'$	ð 14 🖗	0.280	0.012
2012					A.	y	Ŗ		21	0.29	0.016
					$\mathcal{Q}$	. 4					0.015
				,	×		, ,	s berry	\$21 \$	0.28 «)* 0.24	0.015
12-2010	Grape	Germany	50	3	0.125	0.0157	80.	bunch of		0.26	0.015
12-2010-04	Dorn-	5	WG	5		$\sim$	> >	grapes	14	<b>6</b> 14	0.015
12-2010-04-T	felder; red	-	Ĩ	¢		Ø, Š		par star		0.18	0.011
GLP: yes	variety	Europe,	Õ¥	Ľ						∩ <i>ĝ</i> @7	0.018
2012	-	North	× .	1 Or	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\sum_{i=1}^{n}$	Saciny 2		0.13	0.018
FI · Formulation		General Contraction of the second sec	nыmber	ofa	Picatio		Ó			/	
GS = growth stag	e (BBCH co	ode) at last app	olication	٥٢ u	r	DÂLT =	= days	after past treatm	nent O		
* prior to last trea	atment	à Ô	×	Û	Ĩ	Ø	~~		<i>Q</i>		
Table 6.3.5-6: ]	Residues o	f ČGA <b>3</b> 572	61. ČG	A 3	\$7262.0	GA 3394	09,an		in/ on g	rapes	
	treated 🐝	th Trifloxys	trobin	we	50 in Cl	he field in	nørtl	nern Europe			
Study		L . Õ		U-	Ĵ.	<u>à</u>	Re	sidues			
Trial No.	Å.	O' X'	*©*			7 2	Ő	× ~~			
Plot No.	ç õ		о ^х л (	Ø			A C		00.4	001	
GLP Vear	Variety	Country	Port analy	røn /sed	AQQ (day		оја 1261.	₩ 357262	331409	373466	
	variety					, m	g/kĝ)/	(mg/kg)	(mg/kg)	(mg/kg)	
11-2115	Grape	Françe	bunç	ho	f 0	* 0.01	3	< 0.01	< 0.01	< 0.01	
11-2115-01	Sauvog-	F ₇	grau	)es			<b>S</b> ″ 6	< 0.01	< 0.01	<0.01	
11-2115-01-1 GLP: yes	non; white	Furope	Ź	×	ν μ	0,01	7	< 0.01	0.010	< 0.01	
2011	garietyô	North	Ô	Ő	ĺ () () () () () () () () () () () () ()	0.02	1	0.011	0.013	<0.01	
, c			, Q	Ì	\$ ²¹		5	<0.01	<0.01	<0.01	
A A	Č	, J	- When	rv [°]	2 13		2	<0.01	0.010	< 0.01	
- A				Ĉ	~ <u>2</u> 1	0.01	3	< 0.01	< 0.01	< 0.01	
11-24 15	Grape	Erance .	bune	h of	f 0	0.05	1	0.023	0.028	0.011	
11-21 ⁴ 5-02	Gamay;		graj	pes	$\bigcirc^{v}$ 14	0.06	6	0.035	0.042	0.012	
11-2115-02-1 GLP: yes	varietx ⁽⁾		Ç.	Q,	21	0.00	0	0.028	0.032	<0.01	
2011				, rv	14	0.04	4	0.023	0.027	< 0.01	
a, ^y	S O	North		5	21	0.04	4	0.025	0.028	< 0.01	
	2 A				1	I		<b>I</b>	1		<b>_</b>
i s	Ŭ	C)									
Č											



Study					Res	idues		<i>Q</i>	
Trial No. Plot No.								A L	<u>S</u>
GLP	Crop	Country	Portion	DALT	CGA	CGA	CGA	CGA S	0
Year	Variety		analysed	(days)	357261	357262	331409	*373466 (maller)	
11-2115	Grape	Germany	bunch of	0*	$(\Pi g/Kg)$	< 0.91	$(\Pi g/Kg) < 3$	(11,9,5,9) <0.901 ×	Ê,
11-2115-03	Dorn-	D-	grapes	0 (	<b>9</b> .013	<0.91	<0.010	<b>0</b> .01	Q)
11-2115-03-T	felder; red			10 @	©.016 0.019	8 <b>9</b> .01 ≫0.01		0.01, <0.0₫>	ő
2011	variety	Europe,		14	0.019	< 0.01		<0.01	¥
		North			0.020			<0.01 (°	
			berry 🌾	14 ര <u>്</u> ര°	0.049 🐇	×0.01 @	0011 🛰	<0.00	
			0	210	0K016 😽	<0.0	9.013	< 0.01	
11-2115	Grape	Germany	bunch of	$\sim 14$	0.024 0.044	0.010	0.01 <b>(</b> )	80.01	
11-2115-04-T	Thurgau			¥ 21	0.038	0.019	Q.025 K	0.01	
GLP: yes	; white variety	Europe, North	R. L	2		Ô É		Ó Âse e i	
2011	variety	Ĺ	berry.	°~ <b>,1°4</b> ≪ 21 ∞	0.034	0.016 5° 9.026 0	0.028	©0.01 0.019	
12-2010	Grape	France Ø	bynch of ®		00022	0.010	<b>9</b> .013¢	< 0.01	
12-2010-01	Gamay;		[°] /grapes	Ø	\$.021	0.014	0.014	<0.01	
12-2010-01-T GLP: ves	red varietv	â Ő		\$10 °	0.020	<b>19.</b> 01	0.012	< 0.01	
2012		Burope.		ຳ 14 ລົ	0,020 ×		<b>6</b> ,014	<0.01	
					Y 0 ²³		0.017	\$0.01	
		4	berry	³ 14	0.029	<0.01	0.013	< 0.01	
12 2010				2%	0.023	0.014	0.011	< 0.01	
12-2010	Orape O Sauvio	France	grapes		<0.01 <0.04	<0.01 Ø.0.01	<0.01 <0.01	<0.01 <0.01	
12-2010-02-5	non;	Curon &	Að	y 21 🔊	<0.01 %	×0.01	< 0.01	< 0.01	
GLP: yes	white variety	North		S.		<0.01	<0.01	<0.01	
2012				≫21 &	0.010	< 0.01	< 0.01	< 0.01	
12-2010	Grape	German	bunch of	Q0	0012	< 0.01	< 0.01	< 0.01	
12-2010-03	Müller-	Č.	Ograpes	ô ⁹ 7 (	<b>0</b> .015	<0.01	<0.01	<0.01	
GLP: ves	; white	Europe,		[~] 10 ~	0.026	< 0.01	0.012	< 0.01	
2012	variety	North O			0.024 0.035	<0.01 0.011	0.011 0.017	<0.01 <0.01	
Į.									
L.	<i>S</i>		berry	14	0.022	0.010	0.014	< 0.01	
12 2010	atono	Gampahy	V O'	21	0.022	< 0.01	0.012	< 0.01	
12-2010	Dorn-		grapes	14	0.010	< 0.01	< 0.01	< 0.01	
12-2010-04-7	felder,		~Ş	21	0.012	< 0.01	< 0.01	< 0.01	
GLP: yes $\sqrt[3]{2012}$	whiety,	Europe,	herry	14	0.010	<0.01	<0.01	<0.01	
		Nonth	UCITY	21	< 0.01	< 0.01	< 0.01	< 0.01	
DAT = dars aft	er last treatr	nent * pr	ior to last treatn	nent					
		P							



a.

#### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

#### **Field trials – southern Europe:**

Report:	KCA 6.3.5/34, ; 2013 ;	M-454927-01-1
Title:	Determination of the residues of trifloxystro volume spray application of Trifloxystrobin W	obin in/on grape after high or two- VG 50 in the field in southern France,
	Spain, Italy and Portugal	
Document No &	M-454927-01-1	
Report No:	11-2114	
Guidelines:	EU Council Directive 91/414/FFC Annex II,	part A section 6 and Annex III, part
	A, section 8 residues in or on treated products	food and feed
GLP	yes 🖓	

KCA 6.3.5/35, ; 2003 (amended @M-45561-02-1 4 4
Determination of the residues of trifloxystropin in on grape after spray of
Trifloxystrobin W\$ 50 in the field in Italy, Greece and Spain &
M-455561-02-1 2 2 2 2 2 2 2 2 2
$12-2011 \qquad \swarrow \qquad \heartsuit \qquad \checkmark \qquad \checkmark$
EU Council Directive 91/414/EFC Antex II, part A Section 6 and Annex III, part
A, section 8 residues in or on the ated products food and feed
yes & O & a & A &

#### **Test system**

In 2011 and 2012 ning residue trials were perforted in the field in southern Europe in/on grapes with Trifloxystrobin W& 50 according to the use pattern apported within this dossier. The product was applied three times to grapes at application rates of about 0.125 (kg (up to 0.135) trifloxystrobin/ha. The treatments overe performed with intervals of about 10 days (up to 20 days in one trial).

Berry samples were taken on day 14 (13) and 21 (20) after the last application in all trials, bunch samples were taken at day 0, 14 (13) and 21 after last application in all trials and at day 7 and 10/11 in some of the trials.

Residues of triflox strobin (CGA 279202), its somers CGA 331409, CGA 357261, CGA 357262, as well as the metholite CGA 21112 and its isomer CGA 373466 were determined according to method 01313 pr 013 MOOP. The analytical methods were validated by recovery experiments prior to and during the analysis of the samples by spiking control samples. The limit of quantitation was 0.01 mg/kg/for all analytes.

Findings - <u>Method performance</u>: Werall mean recoveries at fortification levels of 0.01, 0.1, 0.5 or 0.8 mg/kg

- <u>Method pertormance</u>: Weral mean recoveres at fortification levels of 0.01, 0.1, 0.5 or 0.8 mg/kg for each analyte were within the acceptable range of 70-110 %, RSD <20% as shown in Table 6.3.5-7.

BAY

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Palue % [%]	RSD [%∱∕	LOQ [mg/kg]
			0.01	91; 96; 100; 100	97	Å.4	29 , ¢
	Trifloxystrobin	grape, berry	0.1	97; 100; 102; 103; 103	101 🕺	3.0	0,01
			0.8	100	100		S &
			Overal Recovery (n = 60)		2 ⁹⁹	<u>4</u> .0 č	ĭ "O"
				93, 101, 100, 105		5.25	
	Trifloxystrobin	grape, bunch		<u>2 109, 110</u> Q 105	105	- 0	0.01
		L. L.	Oxerall Recove	¹⁰²	5.0	4S	
			Q.01 ×	84; 93 ⁹ 98; 1 <b>97</b>	Ø	×10.1 (	D D
	CGA 321113	grape		93,96;98;500;	98 J	3,3 ⁹	0.01
			0.8		A B	· "	
			Overall Recove	ry (n ∉10)	97 C	) [∞] 6.3	
	Ĵ.			90; 96; 161; 107∧ ∞96; 98; 99; 99;	¥ 99¢⊋ ∧©n	7.3	
	CGA 321143	gape, buittch	Char St	× 4105	<u>, 6</u> 79	5.4	0.01
11-2114	Ô.				Ç″106	-	
	<u> </u>		Qverall Recove	<b>ry (n =1.0)</b> ⊘	100	5.3	
			0.01	93; 99; 100; 100	98	3.4	
	CGA 357261	grapéoberry		106, 104, 105; 106, 107	104	2.6	0.01
				× × 99	99	-	
			Overal Recove	ry (a =10)	101	4.2	
				97; 98; 101; 105	100	3.6	
	C@A 357201	grape, bunch	9.1 S S	100; 101, 104, 106; 107	104	2.9	0.01
				101	101	-	
	<u>,</u>		•Overalk Recovery (n =10)		102	3.3	
				93; 103; 109; 110 102; 102; 105;	104 105	7.5 2.5	-
	CGA 357262®	grape, berry		106; 108	104		0.01
	of A		Overall Recover	104	104	_ 	
		× ~		06.00.105.112	104	т./ 7 3	
	Br 25 AL	Some hunch	0.1	100; 102; 102; 107· 112	105	4.7	0.01
	South SSUZ02	grape, ounch	0.8	107, 112	105	-	0.01
44° _			Overall Recovery (n =10)		104	53	
#### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value [%]	RSD [%]	IØQ ↓mg/kgł
			0.01	100; 104; 105; 105	A104	2.3	
	CGA 331409	grape, berry	0.1	97; 102 103; 108; 110	104	Å.9	\$ 0.01 \$
			0.8	103	103 🕺	/ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ô.
			Overall Recove	ry (n =10)	1040	3,6	ja ja
	CGA 331409		0.01	92; 100, 109, 111	DŽ	<b>*8</b> .5	
		grape, bunch	0.1	97; 101; 101; 109; 100	\$104 Ô	5. <b>4</b>	~(9.01
			0.86	N 108 V	1,68	°∼∕-	st,
11-2114			Overal Recove	ry (n <b>A</b> 0) 💍	904	6.2	e L°
		Į.	⁹ 0.0 ^f ~~~~	81; 95; 100; 106	96 J	118	
	CGA 373466	grape ber	Q.Y L	√88; 92, 99; 99; 99 ↓ 100 ℃	Ø.	\$5.6	0.01
			70.8 X V	→ 96 [∞]	N 96 S	z?	
			Overall Recove	ro(n =10)	26	`?∕.4	
			0.01 0 2	91; 97; 99; 101	097	4.5	
	CGA 373466 (	grape, bunch	0.1 0	93;95;95,101; 107		5.9	0.01
		Å	AR AC C	§ _{&amp; 106} ≪	206	-	
			Overal Recove	ry (n0=10)	99 🔨	5.4	1

RSD = relative standard deviation For 12-2011 see Table 6,3,5-4

 $\bigcirc$ - <u>Storage stability</u>: The maximum storage period of deep-frozen samples was up to 385 days for all ۱۲. پې ۱ analytes and is covered by the storage stability studies. Ż

n ≂ number @ tests &

Ô  $\bigcirc$ - Residue results: In the southern European field trials the residues in berries or bunch of grapes at a PHI of 14 days ranged from 0.05% to 0,5½ mg/kg for tofloxystrobin and were <0.01 to 0.034 mg/kg for Ô CGA 321113.

Residues of COA 350261 ranged between <0.0 Pand 0044 mg/kg at day 14, and residues of CGA 357262 were between <0 and 9.015 mg/kg/at day 4 after the last application. Residues of CGA 331409 were between <0.01 and 0.02 f at day 14 after the last application, residues of CGA 373466



ВA

Table 6.3.5-8: .	Applicatio Trifloxyst	n data and robin WG 5	residue 0 in th	es of e fie	f trifloxy eld in sou	strobin an 1thern Eu	id CC rope	GA 321113 in/	on grapes	treated wit	h
Study Trial No. Plot No.					Applica	ation		S. S	Res	idues of	D D
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Trifloxy- strobin (nyg/kg)	©CGA ©321113 (mg@rg)
11-2114 11-2114-01 11-2114-01-T GLP: yes 2011	Grape Ugni blanc ; C5 - Vines, white variety	France F- Europe, South	50 WG	3	0.125		85	Branch of grapes		0.20 0.31 0.24 0.21 0.22 0.19	0.027 0.023 0.029 0.034 0.034 0.025 0.030
11-2114 11-2114-02 11-2114-02-T GLP: yes 2011	Grape Bobal ; red variety	Spain E- (Requena) Europe South						bunsh of grapes beny	0 14 24 0 14 0 14 24 0 14 21 0 14 21 0	0.088 0.11 0.92 7 0.095 0.083	<0.01 <0.01 <0.01 <0.01 <0.01
11-2114 11-2114-03 11-2114-03-T GLP: yes 2011	Grape Labrus- co Graspa rossa red vaniety	Italy Boolognat (Bolognat) Europes South					85 4 0	Bunch of grapes	0* 0 7 10 14 21 14	0.088 0.30 0.25 0.13 0.14 0.096	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
11-2114 11-2114-04-T GLP: yes 2011	Grape fernão pires white variety	P-					83,	bunch of grapes berry	21 0 14 21 14 21	0.11 0.64 0.32 0.39 0.32 0.25	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
12-2011 12-2021-01 12-2021-01-T GLP: yes 2012	Grape Lame brusco Graspa- rossa; red variety	(Bologna) Europe, *	y SO WG ( Q S G Q Q Q Q			0.0125	85	bunch of grapes berry	0* 0 7 10 14 21 14 21	0.13 0.22 0.25 0.24 0.099 0.13 0.18 0.090	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
	Or and a second	A.									



Study Trial No.					Applica	ation			Res	idues 🖉	, A
Plot No.											. F
GLP Vear	Crop Variety	Country	FL	No	kg/ha	kg/hL (as)	GS	Portion (	DALT	Triffoxy-	CGA 321113
	variety				(u.s.)	(4.3.)			(uuys)	(mg/kg)	(mg/kg)
12-2011 12-2011-02	Grape Lam-	Italy	50 WG	3	0.125	0.0125	85	bunch of grapes		0.89	≪0.01 ≪0.01
12-2011-02-T	brusco di					N N		8	20		<0.0
2012	sorbara;	Europe, South			1	Ű	ģ	beary "		0.50	<b>Ø</b> .016
	variety					~ ~ ~					r<0.01
12-2011	Grape	Greece	50 WG	3	0.125	20.0125	85	bunch of	\$ 0*	0.080	0.010
12-2011-03 12-2011-03-T	; white	GR -	wu	CP.			R'	grapes		617 0071	0.012
GLP: yes 2012	table grape	Europe,		,		g ^y , z	×			0.06	<0.01
-	variety	South	Ŭ [¥]	Q X		2°	Š			0.019	<0.01
								berro	9 <b>4</b> 21 (k)	0.20 0.14	0.021 0.024
12-2011	Grape	Spain	50 ∕WG ≜	Ì	0.125-	0.0156- 0 @ 58	89	bunch of	0 ⁰	0.21	<0.01 <0.01
12-2011-04-T	white		Ŵ	F		S S				0.12	< 0.01
GLP: yes 2012		Europe	Ŝ	( @_			Ő	berry	) 14	0.058	< 0.01
	Ű.	South 6	× S		~) ~		,		20	0.036	< 0.01
12-2011 12-2011-05	Grape Maca- 0	Spain (	50 ₩G	_3≪ ⊘	0.125-~	0.0156	85@	bunch of grapes	0 13	0.18 0.13	<0.01 <0.01
12-2011-05-T (GLP: ves	beo; s white			$\gg$			Ď	L.	21	0.071	<0.01
2012	variety	Europe,		0	o s		$\hat{\circ}$	berry	13	0.15	< 0.01
<u> </u>		South		Ş			×.		21	0.099	<0.01
FL: Formulation GS = growth stag	e (BBCH çe	No: number o de) at last app	f applie	ation		DAGT =	= days	after last treatm	nent		
* prior to last trea	tment		Ŭ Y ^	$\overset{\cdot}{}{}{}{}{}{}{}$		O ³					
, A	Č.		<u></u>	, 97 Q		Ŵ,					
		A.	¥ 6	Ş							
, A	¢`		, Q	2	,0* *						
			y , l	~~ ')							
	Ĵ.		Ŷ								
	S A	, S									
	"0"	N. N									
Č ^{O*}											

BAY

Table 6.3.5-9: 1	Residues o treated wi	f CGA 3572 th Trifloxys	261, CGA 357 trobin WG 50	262, CGA ) in the fie	331409 and ld in southe	CGA 37340 rn Europe	66 in/ on gr	apes 。	ð
Study Trial No. Plot No.					Res	idues	<b>)</b>		Ĩ,
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 (prg/kg)	CGA 331409 (mg/kg)	CGA 3,3466 (mg/kg)	¢, , ©
11-2114 11-2114-01 11-2114-01-T GLP: yes 2011	Grape Ugni blanc ; C5 - Vines, white variety	France F- Europe, South	bunch of grapes	0* 00 14 21 5° 21 4 74 74	0.016 0.015 0.016 0.016 0.015 0.015 0.008 0.008 0.014 0.014 0.028	0.015 0.014 0.012 0.015 0.015 0.018 0.014 0.014 0.014	0,049 0,016 0.016 0.020 0,021 0,025 0,018 0,021	<0.04 <0.01 <0.01 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	
11-2114 11-2114-02 11-2114-02-T GLP: yes 2011	Grape Bobal ; red variety	Spain E- (Requena) Europe South	bunch of grapes berry		\$0.01 0.014 0.019 0.019 0.020	<0.01 <0.01 %0.01 0.01 <0.01 <0.01 <0.01	20.01 <0.01 0.01 0.01 0.01 0.017 0.017 0.017 0.017	<0001 <0.01 <0.01 <0.01 <0.01	
11-2114 11-2114-03 11-2114-03-T GLP: yes 2011	Grape Lam- brusco Graspa rossa red variety	Italy Bologna) Europes South &	bunch of grapes		0.011 0.010 0.019 & 0.0140 0.015 0.811 	\$0.01 \$0.01 \$0.01 \$0.01 \$0.01 \$0.01 \$0.05 \$0.01 \$0.01	<pre>&lt;001 &lt;0.01 &lt;0.01 &lt;0.01 &lt;0.01 &lt;0.01 &lt;0.01 &lt;0.01 &lt;0.01 &lt;0.01 </pre>	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
11-2114 11-211440 11-2114-04-T GLP: yes 2011	Grape fernão pires ž white vagety	P-	konich of Sgrapes berry berry berry	21 37 0 44 3 21 4 21 4 21 4 21 4 21 4 21 4 21 4 21 4	0.019 0.020 0.021 0.035 0.025	<pre>&gt;0.014 &lt;0.01 &lt;0.01 0.011 &lt;0.01 &lt;0.01 &lt;0.01</pre>	0.013 0.013 0.013 0.018 0.013 0.015	<0.01 <0.01 <0.01 <0.01 <0.01	
12-2011 12-2011-01 12-2011-01-T GLP: yes 2012	Grape Lame brusco Graspa- rossa; red variety	Italy (Bologna) Europe, *	bunch of grapes grapes g	<pre> 0* 0 7 10 14 21 14 21</pre>	<0.01 <0.01 <0.01 0.011 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
	Da Car								



Study Trial No.					Res	idues			8
Plot No.				I	1	I &	L.		S.
GLP	Crop	Country	Portion	DALT	CGA 257261	CGA (	CGA	CGA	
1 cai	variety		allalyseu	(uays)	(mg/kg)	(mg/kg)	(mg/kg)	(mg kg)	۵
12-2011 12-2011-02	Grape Lam-	Italy	bunch of grapes	0 14 21	0.032 0.025	0.040	0.011 <0.0¥	<0.01 ×	? 
GLP: yes	di			21 3	0.012			5° (	Ô
2012	sorbara; red variety	Europe, South	berry		0.044 0.018	0.013 <0301	0.016	< 0.01 (C)	×
12 2011	Create	Carrie	harrish a 🖗	i i i i i i i i i i i i i i i i i i i					
12-2011-03	Victoria	Greece GR -	grapes	Å.	×0.01 ×0.01	<0.001	<0.05	~0.01	
12-2011-03-T	; white			$\sim 10^{7} \sim$	<0.01 ♥ <0.01 ♥		<0.01 ▲  <0.01 ↓	€0.01 <0.04	
2012	grape	Europe,		14	<0.01		\$0.01 0.01	<0.01	
	variety	South			S0.01			~0.01	
			borry C		<0.01	<0.010 <0.0₽ ~	\$0.01 \$0.01	<0.01 <0.01	
12-2011	Grape	Spain	bunchof		0.018	<0201	$<0.0^{0}$	<0.01	
12-2011-04 12-2011-04-T	Zalema; white			20	<0.030	×0.014	<b>≪0</b> .01	< 0.01	
GLP: yes	variety 🗶		Q O	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ô [°] &		) )		
2012	<u> </u>	Europe,	berry	320 ×	20.018© 0.0 <b>1</b> 0	$\left[ \begin{array}{c} 0.01 \\ 0.01 \end{array} \right] $	<0.01 <0.01	<0.01 <0.01	
			$\sqrt[n]{2}$						
12-2011	Grape 🖒	Spain	& bunch of	× 2 ~	<0.01	<0.01	<0.01	<0.01	
12-2011-05 12-2011-05-T	DMaca beo;	ŝ	ograpges		0.023 «	0.012	0.011	< 0.01	
GLP: yes	white	Æurope	<i>p</i> o	<u></u>					
2012		South	berry \	<b>013</b> × ≫21 ∧	$(0.01] \odot$ < $0.01\%$	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	
	\$°		<u>`</u> ??		~ ~	0101	0101	0101	
DALT = days aft	er last treat	ent S* pr	ior to last theatn	nem	Ç.				
~	\$ 0		y sy j		0°				
A		° 29'							
CA 6.3.8	Straw	erry 🤅 🍃							
L.	J.			N. N					
<u>Former Annex</u>	<u>: II dossie</u>	<u>r'and Annez</u>	<u>х Щ dossiers</u>						

Strawberry was not a crop supported in the Annex II dossier.

The critical GAP for triflexystrobin supported at the European level (northern and southern Europe, Annex IIF dossiets) relevant for the recent EU MRL (0.5 mg/kg, CR1004/2013) of trifloxystrobin consisted of up to 3 foliar spray applications at rates of up to 150 g a.s./ha trifloxystrobin and a PHI of 1 day.

Annex I renewal process/ New studies

The critical Good Agricultural Practice (cGAP) supported at the European level in the Annex I renewal (AIR) process consists of 2 foliar spray applications at 150 g a.s./ha trifloxystrobin in northern and southern Europe, with a minimum spray interval of 7 days and a PHI of 1 day.

#### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Сгор	Region*	F, G or I**	Maximum Number of Applications	Minimum Application Interval (days)	Maximun Rate (g a.s./Jia)	) Minimum PHI (days)	
Strawberry	EU-N	F	2	₩ 7	Q 150		$\mathcal{G}$
Strawberry	EU-S	F	2	7	C 150	0 1 Q	
Strawberry	EU-N EU-S	G		7			

* EU-N northern Europe EU-S southern Europe

levant for Annex I for ever are summarised in Fable Trials available to support the European GA 6.3.8-2 and Table 6.3.8-3.

Table 6.3.8-2:	Residue trials conducted	per g	eographical	region and	formulation
----------------	--------------------------	-------	-------------	------------	-------------

				¥ (A)	$\langle \rangle$			
Region	Crop	Formu	Nov.	ımbeٍr∕of Tr	ials 🖉 🍐	Report 6.	Bocument No.	Possier, Ref.
		lation	Vegetati	on period 🔎	Total 🖤		i n	° °
			2011	<b>&amp; 2012</b> €				<i>i</i> a
Supplen	nentary da	ıta	, Ô	O' N		¢ \		L.
N-EU	Straw-	WC 50	× 4 A			11-2928	M-457953-01-1	KCA 6.3.8/01
field	berry		Ġ.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12-2012 C	M-453140-0161	KCA 6.3.8/02
S-EU	Straw-	WG 50	of 4 5	\$* -5 ^{\$}		Q11-2129	M-457958-02-1	KCA 6.3.8/03
field	berry			\$5		12-2013	M-460609-01-1	KCA 6.3.8/04
N-EU	Ŭ Quâ	Ø	J.				M-496769-02-1	KCA 6.3.8/05
S-EU green- house	Straw- berry	WG 50			Ŭ Ŝ	12-2014	M-453332-02-1	KCA 6.3.8/06
	а. ў/	<u> </u>		<u>v</u>	<u> </u>	6 .47	51	1

N-EU northern Europe SOU southern Emope Ą WG 50: wettable granule formulation containing 50% Grifloxystrobin

Table 6.3.8-3:	Overall summary of	f residue dation	grape covering	AIR critical GAP
44			0 (// # 0	

Application	Region	Formu-	Crop .	Sample	n	Res	idue level (1 trifloxystro	ng/kg) bin
Rate	s.			<i>y</i> ^{material}		Min.	Max.	STMR
2 applications at about 150 g/ha	N-EU field	wg	&trawberty	Fruit	9	0.038	0.15	0.096
2 applications a about 150 g a	S-EU field	WG	Strageberry	Fruit	9	0.061	0.23	0.150
2 applications at about 30 g/has	S-EU green house		Strawberry	Fruit	8	0.082	0.41	0.125
N-EU forthern	Europe	S-E	U southern Eur	ope	1	1: number o	of trials	



Ø1

#### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

#### **Field trials – northern Europe:**

Report:	KCA 6.3.8/01,	; 2013 ; M-457953-(	01-1 6 0
Title:	Determination of the residues	of trifloxystrobin in/on	strawberry after spray
	application of Trifloxystrobin W	G 50 in the field in Germa	iny, northern France and
	Belgium		
Document No &	M-457953-01-1	Ö Á	
Report No:	11-2128	N Q	
Guidelines:	EU Council Directive 91/414/E	C Annex II, part A section	by 6 and Annex III, part
	A, section 8 residues in or on the	ated products, food and fee	d & J
GLP	yes 🔊		
	4		
Report:	KCA 6.3.8/02,	; 2013 ; No-452540-01-1	

Report:	KCA 6.3.8/02, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Title:	Determination of the residues of trulloxystrobin in/on strawberry after spraying of
	Trifloxystrobin WG 50 in the field in Germany, the Netherlands France (North)
	and Belgium Q V X X X X X Q A
Document No &	M-452140-01 $\mathcal{A}$
Report No:	
Guidelines:	EU Council Directive 91/414/DEC Annex IS part A section 6 and Annex III, part
	A, section 8 residues on or treated products, food and feed
GLP	yes of of of the second s

#### **Test system**

In 2011 and 2012 nine trials were performed in the field in northern Europe in/on strawberries with Trifloxystrobin WG D'according to the use pattern supported within this dossier. The product was applied two times & strawberries at application rates of 0.19 kg.trfloxystrobin/ha. The treatments were performed with intervals of 7 days Õ

Fruit sapples were taken on day 1 and 3 after the last application in all trials. Additional samples of fruit were taken at later time points in some trials. S. L,

Residues of triflox stropin (CGA 279202), its somers CGA 331409, CGA 357261, CGA 357262, as well as the metabolit@CGA\$21119 and its isoprer C\$A 373466 were determined according to method 01313 or 01813/MQ01. The analytical methods were validated by recovery experiments prior to and during the analysis of the samples by spiking control samples. The limit of quantitation was 0.01 mg/kg for all analytes.

#### Findings

- Method performance: Overal mean recoveries at fortification levels of 0.01, 0.1 and 0.5 mg/kg per analyte were within the acceptable range of 0-110 %, RSD <20% as shown in Table 6.3.8-4.

~~

BAY

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value	RSD [%∱∕	DOQ [mg/kg]	
			0.01	88; 95; 103	95	£.9		
	T: fl t 1	strawberry	0.1	94; 108	101 🧹	× - ×		
	Triffoxystrobin	fruit	0.5 📎	93	93			
			Overall Recover	ry (n =6) $^{\bigcirc}$	25	Q.5		
			0.01	60,77; 82°	Å73 A	y 15.8 🤇	, L	
	CGA 321113	strawberry	0.1	85,9	[~] ∛91∖0	?	Sn 01	
	COA 521115	fruit	0.5	N 89 W	<u>8</u> 9	°~	£0.01	
			Overat Recove	ry (n <b>6</b> )	¹ ⁰ 82 ²	15.4		
		, Š	×0.0	88; 91, 93	91 J	2:8	Û,	
	CGA 357261	strawberry	QAY Q'	5 970103 y	100	X-		
	CGA 337201	fruit	9.5 <u> </u>	<u>91</u>	\$91	y - ₍₀ )	0.01	
1 2128			<b>Overall Recove</b>	ry (p=6)	J 94, Š	<u></u> ,5.7 [°]		
1-2120			0781	81; \$5; 106		13.3		
	CGA 357262	strawberry	Q.1	Ø4; 107	, 101 C	) -	0.01	
	Analyte         Sample Material         Fortification level [mg/kg]         Single Values [%]         Mean Falue (%]           Trifloxystrobin         strawberry fruit         0.01         88; 95; 103, 93         95           O.1         94; 108, 101, 0.5         101, 93         93         93           Overall Bicovery (n=6)         92         93         93           CGA 321113         strawberry fruit         0.01         60;97; 82, 91         91           Off         88; 91,493         91, 91         94         93           CGA 357261         strawberry fruit         0.01         88; 91,493         91, 91         91           Overall Recovery (n=6)         94         91, 94         91, 94         91, 94         91, 94         94           Overall Recovery (n=6)         94, 94         94, 94         94         94         94           Overall Recovery (n=6)         94, 94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         94         95         95         95         95         95	-	0.01					
L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>A</u>	Qverall Recove	(n=6)	~ <b>9</b> 6	9.9		
	, Å	\$ \$ ~	0.01	75, 93; 108	°∼y 93	16.7		
	CGA 349409 4	CGA 39409 strawberry 0.1~ 3		<i>(</i> ) 101; 108	[≫] 105	-	0.01	
	CGA 361409	fruit	0.5	<u> </u>	94	-	0.01	
			Overal Recove	ry (n (⊅6)	97	12.1		
			0.01	084; 84, 89	86	3.4		
**		strawberry	0.9	2 <u>8</u> 4, 96	90	-	0.01	
E,		forgit	v0.5 0 × v	× ⁰ 89	89	-	0.01	
	^^ ^ ^		Overall Recove	ry (n =6)	88	5.4		
	\$ A			85; 87; 95; 95;	0.6			
				96; 97; 98; 102;	96	8.0		
	Triflovystrobie	strawberry Q		71: 84: 88: 89:		14.0	0.01	
Ĺ		fruit		102; 107; 109	93	14.8	0.01	
2-2012			0.5 ~ V	64; 79; 81; 84	77	11.6		
2-2013	V Š		Overall Recove	ry (n =20)	91	13.5		
2-2014			ð <b>v</b> .01	70; 71; 72; 72; 73; 78; 86; 90; 97	79	12.5		
	CGA 21113	strawberry fruit	0.1	72; 76; 83; 83; 85; 86; 101	84	10.9	0.01	
ŝ			0.5	75; 77; 77; 79	77	2.1	L	
L.	ŎĂ ŚĂ Ň	С ⁷	<b>Overall Recove</b>	ry (n =20)	80	10.8		

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value 🎾 %]	RSD [%]	LOQ mg/kg
			0.01	75; 78; 79; 82; 82; 84; 85; 89; 92	® 83	£5 ⁵	
	CGA 357261	strawberry fruit	0.1	79; 80; 83; 83; 88; 91; 95	86	7.2	
			0.5 Verall Recove	76; 76; <b>80</b> ; 82	79@ 83	358 6.9	ô ^s sô
12-2012 12-2013	CGA 357262 CGA 331409	strawberry		70; 84; 85; 86; 91; 93; 94; 97; 148 73: 75 79.80	\$91\0 7	14,2 >>	
		fruit	0.1 0.5 QveralkBecově	82,97;108 @7;74;81;84 w (n =29)	86 0 7₹. Ø6	9.9 9.9 ©14.6 (	
12-2014		strawberry fruit	V0.01 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	70:95; 76:377; 78:78; 81:85; 96 73; 75:82; 82; 96:92; 96 72:74; 27:78 s	5 ⁹ 80,5 ⁹ 785 1975,5	93 ² 5 10.4 3.7	0.01
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Overall Recove	ry (n =24)		9.7	
-	L. C.		9.01 5	72; 42; 75; 78; 78; 86; 87; 92; 95	≈~9 ⁸ 2	10.3	
	CGA 5734660	straw Berry		@2; 74; 77; 78; ? 79@79; 85	78	5.3	0.01
			0.5 2	71, 72; 75; 80	75	5.4	
	a o r	<u>Y</u>	Overall Recove	ry (m =20)	79	8.7	

Õ - Storage stability: The maximum storage period of deep-frozen samples was up to 502 days for all analytes and is covered by the storage stability studies?

۲,

 \bigcirc

-<u>Residue results</u>: In the northern European field trials the residues at a PHI of 1 day ranged from 0.024 to 0.15 mg/kg for torloxystrobin and were <0.00 to 0.018 mg/kg for CGA 321113 in strawberry fruit. A maximum of CGA 321013 residues was found at up to 0.027 mg/kg at later sampling dates. Residues of CGA 331409 were always below LQQ (<0.01 mg/kg), the same applies for CGA 373466, except in one trial at day 0 where 0.012 mg/kg were found. Residues of CGA 357261 ranged between <0.01 and 0.029 mg/kg and residues of CGA 357262 were between <0.01 and 0.043 mg/kg at - No residues above the LOO of 0.01 mg/kg could be detected in any of the corresponding control samples if the the LOO of 0.01 mg/kg could be detected in any of the corresponding control

BAY

Table 6.3.8-5: 1	Application treated with	n data and 1 th Trifloxys	residue trobin	s of W(f trifloxy G 50 in tl	strobin an he field in	d CC nortl	GA 321113 in/ hern Europe	on strawb	erries	, Č
Study Trial No. Plot No.					Applica	ation		le la	Resi	idues of) V
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Trifloxy- strobin	©CGA 321113 (mg@rg)
11-2128 11-2128-01 11-2128-01-T GLP: yes 2011	Straw- berry Lamba- da	Germany Europe, North	50 WG	2	0.150	0.030	85 2 2 2 2			9.031 0.10 0.067 0.070 0.047 0.032	<001 0.012 0.016 0.021 0.025
11-2128 11-2128-02 11-2128-02-T GLP: yes 2011	Straw- berry Matis	France Europe, North	50 WG				850 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0.049 0.068 0.049 0.089 0.049 0.049 0.049	<0.01 <0.01 <0.01 0.012 0.013 0.024
11-2128 11-2128-03 11-2128-03-T GLP: yes 2011	Straw- berry Elsanta	Germany C Europe, C North	50 WCP 27		0.150 0 0 0 0 0 0 0		\$7 ~~			0.14 0.13 0.077	0.015 0.015 0.014
11-2128 11-2128-04 11-2128-04-T GLP: yes 2011	Straw- berry Lamba da	Belgium Europe, North	50 WG	2 () *	5.150 5 7 7 7 7				0 1 3	0.12 0.082 0.096	0.010 <0.01 0.012
12-2012 12-2012-01 12-2012-04 GLP: yes 2012	Straw-S berry Elsanta	Germany Europe, X North						©, fruit ∜	0* 0 1 3 7 10	0.029 0.12 0.081 0.076 0.039 0.037	0.012 0.016 0.015 0.013 0.021 0.026
12-2012 12-2012-02 12-2012-02-T GLP: yes 2012	Straw- Gerry Sonata-	Nether lands Europe, « North @		MON "WY		0.035 ©	87	fruit	0 1 1 3	0.042 0.038 0.024 0.015	<0.01 <0.01 <0.01 <0.01
12-2012-03 12-2012-03-T GLP: yes 2012	Straw- berry Mathis	Brope &	50 WG		©150	0.025	87	fruit	0* 0 1 3 7 10	0.040 0.091 0.14 0.095 0.059 0.037	0.013 0.010 0.018 0.026 0.025 0.027
12-2012 12-2012-04 12-2012-04 GLP: yes 2012	Strawb erry Lamba- da	Belgjum Europe, North	50 WG	2	0.150	0.015	87	fruit	0* 0 1 3 7 10	0.039 0.14 0.15 0.080 0.069 0.035	0.014 0.015 0.016 0.017 0.021 0.012

Ô

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Study Trial No. Plot No.					Applica	ation			Res	idues	
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Tridoxy- Strobin (mg/kg)	CGA 321113 (mg/kg)
12-2012 12-2012-05 12-2012-05-T GLP: yes 2012	Straw- berry Elsanta	Germany Europe, North	50 WG	2	0.150	0.030	87			0.15 0.14 0.14 0.15 0.11	0.011 0.016 0.018 0.015
FL: Formulation GS = growth stag	FL: Formulation No: number of applications										

* prior to last treatment

Š Table 6.3.8-6: Residues of CGA 357261, CGA 357262, CGA 331409 and CGA 359466 in/on strawbercies treated with Trifloxystrobin WG 59 in the field in northern Europe

 \bigcirc

Study Trial No.					S Res	idues 5		Ĵ,
Plot No.					. S 2			
GLP	Crop	Country	Portion	DAT	CGA Q'	CGA 🕻	CGA	CGA
Year	Variety	w a	analysed	(days)	357261	\$ \$ \$7262	331409	373466
		à ó		Ů ^Ÿ [®]	(mg/kg) ĸ	(mg/kg)	(nog/kg)	(mg/kg)
11-2128	Straw-	Ö ermany	Pruit S	05	< Q :01	<0.01 v	©0.01	< 0.01
11-2128-01	berry 🔬	,	j Q	ð,	Ø0.01 &	<0.01	×0.01	< 0.01
11-2128-01-T	Lamba			\mathcal{S}^{1}	≈0.01©	80.01 · · · ·	< 0.01	< 0.01
GLP: yes	da 🦉	The second	í "Sí í			≈0.01 °	< 0.01	< 0.01
2011	N.	North &		10	2901	<0.00	< 0.01	<0.01
11 2129	Quere C	Eror	G funding	×/0* >>	<0.01	<0.01	<0.01	<0.01
11-2128-02	berry	Flange			<0.02	$\mathbb{Q}_{0.01}$	< 0.01	< 0.01
11_2128_02	Matis	, în	A		<0.04 <0.01	< 0.01	< 0.01	< 0.01
GI D: yes	Iviatis			de la	.0.01	< 0.01	< 0.01	< 0.01
0L1. yes	. Ű	Europe,		Ö7 ×	×0.01	< 0.01	< 0.01	< 0.01
2011 *		North	, Ô ^y 4	≫10 🄬	<0.@1	< 0.01	< 0.01	< 0.01
	Š		17 0	° O'	~			
11-2128	Straw-	Germany	o fruit	<i>C</i> ⁰	©0.01	< 0.01	< 0.01	< 0.01
11-2128-03	otherry O		0,0,	01 (× 0.01	< 0.01	< 0.01	< 0.01
11-2128-03-T	Elsanta			3	< 0.01	< 0.01	< 0.01	< 0.01
GLP: yes 🕰				Ű "Ű				
2011		North						
11 2128	Strong	D. Alium	f f dist		<0.01	<0.01	<0.01	<0.01
$11-21 \ge 0$ $11-21 \ge 0$ $11-21 \ge 0$	berry	Deisinii 10		1	< 0.01	< 0.01	< 0.01	< 0.01
11_2128_04_T	Lamba-	Europe,		3	< 0.01	< 0.01	< 0.01	< 0.01
GIP: yes	rda ∢∿	North						
2011		Å *	j aj					
12 2012	C+C+		- Quit	0*	<0.01	0.012	<0.01	<0.01
12-2012	Berry	guermany	Iruit	0.	~ 0.01	0.012	<0.01	<0.01
12-2012 01 T	Floanta			1	0.029	0.043	< 0.01	< 0.01
CI Destes	selisaipa "			3	0.024	0.036	< 0.01	< 0.01
OLP yes	"0"	4		7	< 0.01	0.019	< 0.01	< 0.01
20132		Europe,		10	< 0.01	0.011	< 0.01	< 0.01
Ű		North						

Study Trial No. Plot No.					Res	idues		, Mo	
FIOUNO.	G	a i		DATE				۱ <u>م</u> . '	0
GLP	Crop	Country	Portion	DALT	CGA	CGA	CGA	CGA S	
Year	Variety		analysed	(days)	$\frac{35}{261}$	35/264	331409	(mg/126)	
10.0010	<u>a</u> .	37.4		0	(mg/kg)	(mg/kg)	(mg/kg)	(mgakg)	Ĉ <u>o</u>
12-2012	Straw-	Nether-	fruit	0	0.016	0.020	<0.01	0.04/2 «	Į.
12-2012-02 12-2012-02 T	Sonata	lands			₩<0.010	0.0¥0 ≲€01	<0.010 <0.00		
GI D: yes	Soliata,			3	<0.01	0.01	≤0,01	<0.04	Ő¥
OLF. yes				, O	Ś		õ Q		
2012		Europe,			~~				
10 0010	C.	North	<u> </u>						
12-2012	Straw-	France	fruit		<0.09 <0.01	<0.01 °0°	<0501 s	$< 0.01^{\circ}$	
12-2012-03 12-2012-03-T	Mathis		O'		©0.01 .0	<0.01	×0.01 ×0.01	<0.01 ≪0.01 °°	
GLP: ves	Widthis		A	03	×0.01	≨0.01 €	<0.0	0.01	
2012		Г		7^{7}	<0.0	$\approx 0.01 \bigcirc^{\vee}$	<0.01	*<0.01C*	
2012		Europe, North	U X			×10.0>		<0.98°	
12 2012	Ctearry	Dalaium	C for the second	\$0* \$	So of O			Ø0.01	
12-2012	berry				<0.01 <0.00		<0.001 <0.01	<0.01	
12-2012-04-T	Lamba-	Europe,		1	<0.01	<0.0	0.01	< 0.01	
GLP: yes	da	North		Ð	0.01	<0.01	×0.01	< 0.01	
2012		l 🔍 🤇		×10 @	<0.01	< 9201	<0.01 <0≉01	<0.01	
12 2012	Strow	<u>Sermony</u>			<0.01			<0.01	
12-2012	berry	Germany	farun 38			<0.01 × <	30.01	< 0.01	
12-2012-05-T	Elsanta	¢		Å ?	∞0.01	\$9,01 ×	< 0.01	< 0.01	
GLP: yes	<u> </u>			S 3 S	< 0.01	Q0.01 🕎	< 0.01	< 0.01	
2012	S,	Sorth	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
DALT = days aff	l C	\sim	Or to last treatm		7 <u>5</u> 7				
21121	g into install	S B	.1		0 🕺	ý,			
×	le la		A O		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Field trials -	souther	Europe:		. Ô ^y *	Ŭ, O				
<i>v</i>			, Ô ^y 4	N 4	S				
Report:	K	A 6.3.803	,		≫2013 (a	mended);	M-457958	-02-1	
Title:	<u> </u>	termination	of the res	idues of	Trifloxystro	obin in/on	strawberry	after spra	av
~	Gini	nligation of	Triflox vstre	Îbin WaG	50 in the f	ield in sout	thern Franc	e. Spain a	nd
1	Jita	lv ^o o ^y						, .p	
Document No	\mathcal{X}	157950-02		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Report No:		-212/9		~Q″					
Guidelines:		La Council	virective 92	114/FFC	Anney II n	art A sectio	on 6 and A	nnev III. ng	art
Guidennes.		section 8 re	signes in or	on treated	products f	and and fee	n o unu m d	mex m, p	
GLP					i producto, i		,u		
) ~ yv. K)		~~~						
Report:	K	A 6.38/04	, ;		•	; 2013 ; M·	-460009-01	-1	
Title:	≶ j⊅e	termination	of the res	idues of	trifloxystro	obin in/on	strawberry	after spr	ay
ST B	@ ^r apj	plication of	Trifloxystrol	bin WG 5	0 in Spain,	Italy and G	reece		
Document No	0 & M-	460009-01	-1						
Report No:	12-	-2013							
Guidelines:	EU	J Council E	Directive 91/4	414/EEC .	Annex II, p	art A sectio	on 6 and A	nnex III, pa	art
	А.	section 8 re	esidues in or	on treated	products, f	food and fee	ed	~ 1	

yes

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

GLP

Test system

In 2011 and 2012 nine trials were performed in southern Europe in the field in/on strawberries with Trifloxystrobin WG 50 according to the use pattern supported within this dossier. The product was applied two times to strawberries at application rates of about 0.15 kg trifloxystrobin/ba. The treatments were performed with intervals of 7 - 9 days. Fruit samples were taken on day 1 and 3 (2 or 4) after the last application in all trials Additional samples of fruit were taken at later time points in some trials.

Residues of trifloxystrobin (CGA 279202), its isomer CGA 331409, CGA 357261, CGA 357262, as well as the metabolite CGA 321113 and its isomer CGA 373466 were determined according to method 01313 or 01313/M001. The analytical methods were validated by recovery experiments prior to and during the analysis of the samples by spiking control samples. The limit of prantitation was 0.01 mg/kg for all analytes.

Findings

- <u>Method performance</u>: Overall mean recoveries at fortification levels of 0.07, 0.1 and 0.5 mg/kg per analyte were within the acceptable range of 70 \$10 % RSD \$30% as shown in Table 6.3.8-7.

Table 6.3.8-7: Recoveries for	trifloxystrob	in CGA32	1113, CĞA	357261, CG	A 357262,	CGA 331409, CG	A
373466 in/op	strawberry	S Ø	10			Q Í	

Report No.	Analyte	Sample & Material	Fortification C level mg/kg	Single Values	¥tean ≫Value ∮ [%]	RSD [%]	LOQ [mg/kg]
			6.01 , 9	97; 102; 112; 199	108	9.2	
	Thirloxystruchin	strawbenvfruit	$0^{0.1}$	£7101 √°	101	-	0.01
	. Official and a second		0.5 0	<u> </u>	100	-	0.01
\$			Overall Recove	Øy (n =6))∽	105	8.1	
Ê,			0.01	94;06; 97, 100	97	2.6	
- //	CCA 20112 4		0.1 4	ه ^۲ 100	100	-	0.01
	COA SOITIS	strawperrymun	Q.\$ 0	9 1	91	-	0.01
			Overall Recove	ry (n =6)	96	3.6	
			0.0	95; 98; 110; 116	105	9.5	
11 2120			~Q.? ¥	104	104	-	0.01
11-2129 0	CGA 35/200	spawberryaruit	\$0.5 °	98	98	-	0.01
<i>k</i>			Overall Recove	ry (n =6)	104	7.9	
. A	O, O,		0.01	88; 105; 109; 123	106	13.6	
			Q0.1	106	106	-	0.01
	GIA 3217202	strawberryIruit	0.5	99	99	-	0.01
di Qi		? ? わ	Overall Recover	ry (n =6)	105	11.0	
Ş	A A	Ŷ.	0.01	95; 112; 114; 126	112	11.4	
	CCA DIADO	strough orm front	0.1	105	105	-	0.01
Å S	200A 3314093	strawberryIruit	0.5	104	104	-	0.01
Č			Overall Recove	ry (n =6)	109	9.7	

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single Values [%]	Mean Value ¶%]	RSD LOQ [%] [mg/kg]
			0.01	90; 99; 104; 116	گ 102	10.6
11.0100	001 2724((strawberryfruit	0.1	100 🛋	100	St St and
11-2129	CGA 3/3466		0.5	91	91 🦋	
			Overall Recover	ry (n =6)	100	959 L
RSD = relativ	ve standard deviation	1	n = number of tests		, O	

RSD = relative standard deviation For 12-2013 see Table 6.3.8-4

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples was up to 52% days for all analytes and is covered by the storage stability studies.

- <u>Residue results</u>: In the southern European field trials the residues at a PHI of 4 day ranged from 0.054 to 0.23 mg/kg for trifloxystrobin and were <0.01 to 0.059 mg/kg for CGA 321113 in strawberry fruit. A maximum of CGA 321113 residues was found at up to 0.064 mg/kg at fater sampling dates. Residues of CGA 357262 and CGA 331409 were always below LOQ (<0.01 mg/kg). Residues of CGA 373466 were <LOQ, except in two trials with 0.011 and 0.01 mg/kg at day 3 or 1 after the last application. Residues of CGA 57264 were below DOQ except in two trials (0.01 mg/kg at day 1 and 0.012 mg/kg at day 3).

- No residues above the LOQ of 0.01 mg/ker could be detected in any of the corresponding control samples.

Table 6.3.8-8: Application data and residues of trifloxystrobin and CGA 321103 in/ on strawberries treated with Trifloxystrobin WG 50 in the field in southern Europe

Study	ð S	× v	O' (5	Applica	ition (Ő	<u></u>	Res	sidues	
Trial No. 🐧 🧔		4, 4,	A		°S"		a	87			
Plot No.	Č				. "Ç		. 🔊				
GLP 🔊	Crop 🔊	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALT	Trifloxy-	CGA
Year	Variety) ^v	(A.S.)	((a.s.) #	۱.	analysed	(days)	strobin	321113
		S D	Ś	s	Ô	0				(mg/kg)	(mg/kg)
11-2129	Straw-	Franco	¢\$0	2	0.150	0.0138	85	fruit	0*	0.050	< 0.01
11-2129-01	berry	×	_≫ WG _≈	O.	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0	0.13	< 0.01
11-2129-01-T	Dark		, Q	¥	Q,	ð,			1	0.11	< 0.01
GLP: ves	select	Europe		•	Q'	Ŵ			3	0.11	0.019
2011		South	Ø	Ŕ		<i>y</i>			7	0.053	0.013
2011		4 × ~	¥.	Ś	<u>`</u> ?				10	0.041	0.015
11-2429	Straw	Spain 🔊	50	2	QC130	0.0150	87	fruit	0*	0.12	0.029
11-2129-02	berry	1 CY	₩Ĝ [%]	4	0^{\vee}				0	0.24	0.022
11-2129-02-Т	Witney			Â	1				1	0.20	0.025
GLP: yes	Y A		X	Ŵ					3	0.17	0.045
2011		Encope,		1					11	0.079	0.043
2011	l a l	South 🔊	Ŷ						11	0.053	0.025
11-2129	Straw-	Italy O	50	2	0.150	0.0250	87	fruit	0	0.26	0.028
11-2129-03	Berry 🕰		WG						1	0.20	0.026
11-2129-03-7	Carmela								3	0.17	0.038
GLAP: yes	·U	Surope,									
2011 .		South									

Study Trial No.					Applica	ation			Res	sidues	
Plot No. GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Trifløxy- strøbin «	© CGA 7 321113 (mg/kg)
11-2129 11-2129-04 11-2129-04-T GLP: yes 2011	Straw- berry Ventana	Italy Europe, South	50 WG	2	0.150	0.0214	87 ,Č				04020 07020 0.030 0 0 0 0 0 0 0 0 0 0 0 0 0
12-2013 12-2013-01 12-2013-01-T GLP: no 2012	Straw- berry Cama- rosa	Spain Europe, South (altitude 148 m, mediterra- nean climate)	50 WG	2 T. X	0,150- 0,158 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		87 Q			0.29 0.29 0.10 0.070 0.043	0.022 0.026 0.026 0.019 0.027 0.019
12-2013 12-2013-02 12-2013-02-T GLP: no 2012	Straw- berry Halifa	Spain Europe, South (annude 968 m, mountain climate								0.082 0.054 +0.061	<0.01 <0.01 0.014
12-2013 12-2013-03 12-2013-03-T GLP: no 2012	Straw berge Cama- Osa	Spain Europe, South	> 50 WC				87 ((() () () () () () () () (0* 0 1 3 7 11	0.043 0.10 0.082 0.049 0.083 0.051	<0.01 <0.01 <0.01 <0.01 0.014 0.014
12-2013 12-2013-04 12-2013-04-T GLP: no 2012	Straw- berry Selva	Haly Ethrope, C South		2			87 87 7	fruit	0* 0 1 3 6 10	0.045 0.12 0.17 0.16 0.059 0.051	0.054 0.047 0.059 0.064 0.039 0.051
12-2013 12-2013-05 12-2013-05 GLP: no 2012	Straw berry Kama- roze	Greece	y 50 ~ WQQ	N "WZ		0.0188	87	fruit	0 1 4	0.15 0.12 0.13	0.017 0.014 0.016
FL: Formulation GS = growth stag * prior to last tree	e Ø BCH cc prinent, A	No: number o ode) at fast app		ation Q		DALT =	= days	after last treat	ment		

BAY

Table 6.3.8-9: Residues of CGA 357261, CGA 357262, CGA 331409 and CGA 373466 in/ on strawberries treated with Trifloxystrobin WG 50 in the field in southern Europe Image: Comparison of CGA 377261, CGA 357262, CGA 331409 and CGA 373466 in/ on strawberries													
Study Trial No. Plot No.					Re	esidues	ÿ		de la compañía de la				
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 (mg/kg)	CGA 331409 (mg/kg)	CGA 3,73466 (mg/kg)	\$; @				
11-2129 11-2129-01 11-2129-01-T GLP: yes 2011	Straw- berry Dark select	France Europe, South	fruit	0*, 00, 1 3 3 7 10 0, 10 0,	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	\$0.01 <0.01 <0.04 \$0.01 \$0.01 \$0.01 \$0.01 \$0.04	<pre></pre>	<0.01 <0.01 <0.01 <0.01 <0.04 <0.04					
11-2129 11-2129-02 11-2129-02-T GLP: yes 2011	Straw- berry Witney	Spain Europe, South	fruit		©0.01 0 ³ <0.01 0 <0.01 0 <0.01 0 20.01 0 \$0.01 0	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	<0.01 <0.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<pre></pre>					
11-2129 11-2129-03 11-2129-03-T GLP: yes 2011	Straw- berry Carmela	Italy						<0.01 <0.01 0.011					
11-2129 11-2129-04 11-2129-04-T GLP: yes 2011	Straw- berry & Ventage	litaly A Durope N South N			\$0.01 \$0.01 \$<0.01 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		\$0.01 \$0.01 \$0.01	<0.01 <0.01 <0.01					
12-2013 12-2013-01 12-2013-01 GLP: no 2012	Straw-C berry Cama- rosa	Spath Europe South (altitude 148 m mediterra-non Simate)	Buit		*<0.045 ⁸⁰ <0.01 \$0.01 \$0.01 <0.04 <0.04 <0.04	©0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01					
12-2013 12-2013-02 12-2013-02 GLP: no 2012	Straw-O berry Halifa	Spain Surope South (altitude 968 m monitain climate)			\$<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01					
12-20¥3 12-2013-03 12-2013-03-T GLP: no 2012	Straw- benry Cama-	Europe, South	Sfruit S S S S S S S S S S S S S S S S S S S	0* 0 1 3 7 11	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01					
12-2013 12-2013-04 12-2013-04 GLP: no 2012	Straw- berry Selva	Italy Europe, South	fruit	0* 0 1 3 6 10	<0.01 <0.01 0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.01 0.01 <0.01 <0.01					

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Study					Re	esidues		
Trial No.						~		N D
Plot No.							$\sum_{i=1}^{n}$	Ű b
GLP	Crop	Country	Portion	DALT	CGA	CGA	CGA	[™] CGA
Year	Variety	у	analysed	(days)	357261	357262	331409	3730466
				,	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) 🗸
12-2013	Straw-	Greece	fruit		×0.01	<0.01	<0.0	
12-2013-05 12-2012-05 T	berry			1 ° 4 L	<0.01 <0.01	× 0.01	<0001 \$001	
12-2013-03-1 GLP: no	roze	Europe,		⁴ O ²	10.01	0.01	Ő Y	
2012	1020	South		A A A A A A A A A A A A A A A A A A A	~~~			
2012				<i>Q</i> Q [~] .				
DALT = days after the second	er last tre	eatment * prior	to last treating	aent 🖏				×0'
			4	de la		~~~~ (o y	A L'
	• •		S.	\sim		A S	, Contraction of the second se	Š U
Greenhouse t	rials:		á se	Y WY	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Y . NY		A Contraction of the second se
D (o . Ki	K)				<u> </u>
Report:		KCA 6.3.8/05			; 2013 (a	mended	M-426/69-	03-1
Title:		Determination, o	of the res	jdues of	tritloxystr	Join in on	strawbenry	[®] after spray
	;	application of T	rifloxystco	bin 🐺 G	500in thog	reenkouse	in Spain, It	aly, Portugal
	;	and Greece	<u> </u>	<u>.</u>			0	
Document No	. & c	M-456769-02-1	No de	Ů ^Ÿ Ű			, Q	
Report No:		11-2¥20 🔬			S.		Š.	
Guidelines:		EU Council Dir	ctive 91/4	14 EEC	Annex II, p	ant A section	n 6 and A	nnex III, part
	ź	A, section 8 resi	dues In or	on treated	products, f	ood and fee	ed	_
GLP	de la comercia de la	yeso x	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ <u>\$</u>				
					i a	K,		
Report:	5	KCA.6.3.8/06,	; 2	2013 (am	ended); M	4 53332-02	2-1	
Title: 🦃		Determination o	f the resid	ues of tri	floxystroba	n in/on stra	wberry afte	r spraying of
je g		Tufloxystrobin	WG 50 in t	hegreen	ouse in Bel	lgium, Fran	ce (North) a	and Germany
Document No	3 &	M-453332-02-1	<u> </u>	× 4.	A M			
Report No:	, ŝ	12-2014	<u>`</u> ?`.@					
Guidelines:	Q.	Eb Council Dir	ective 91/4	14 EEC	Amnex II, p	art A section	on 6 and A	nnex III, part
	Ø 6	A, section 8 resi	dues in or a	on treated	products, f	food and fee	ed	· •
GLP «	<i>"</i>	yes of a	R R	<u>, ()</u>	• ,			
			<u> z</u>	[°]				

Test system

J. In 2011 and 2012 eight trials were performed in the greenhouse in Europe in/on strawberries with Trifloxystrobin WG 50 according to the use pattern supported within this dossier. The product was applied two times to strawberries at application rates of 0.15 kg trifloxystrobin/ha. The treatments were performed with intervals of 7 days.

Fruits samples were taken on day 1 and 3 after the last application in all trials. Additional samples of fruit were taken at later time points in some trials. Ô

A. Residues of trifloxystrobin (CGA 279202), its isomers CGA 331409, CGA 357261, CGA 357262, as well a the metabolite CGA 321113 and its isomer CGA 373466 were determined according to method 01313 or 01313/M001. The analytical methods were validated by recovery experiments prior

to and during the analysis of the samples by spiking control samples. The limit of quantitation was 0.01 mg/kg for all analytes.

In one trial (12-2014-02) plants were cultivated in the field covered with plastic tube instead of cultivation in a classical greenhouse. Nevertheless, since the plants were covored by plastic during the whole trial period from first application till sampling and since the sampling was done only 1 and 3 days after last application, no differences to strawberries grown in a completely closed system are expected.

Findings

- <u>Method performance</u>: Overall mean recoveries at fortification levels of 0.01 0.1 and 0.5 mg/kg ser analyte were within the acceptable range of 70-140%, RSD <20% as shown in Table 6.3.8 40.

Ô

Table 6.3.8-10: Recoveries for trifloxystrobin,	CGA32	13, ¢ĞA	357261,	60A 35	57262, CGA	331 <u>4</u> 09,	
CGA 373466 in/on strawber	ry v	, O	Q,	Or "C	y O	Q"	Å,

&

		<u>x</u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Report No.	Analyte	Sample Material	Fortification level [mg/kg]	Single alues	Mean Volue	RSD	LOQ [mg/kg]
	Trifloxystrobin	strawberry frant	0.01 03 0.5 Ov@all Recover	x80; 8493 x88; 94, 92; 90 x88; 94 x9 (n =8)	2 862 ³ 0 88 88 7 89 ⁽²⁾	2.1 - 5.1	0.01
	CGA 321573	sprawberny fruit S	0.1 0.1 0.5 0.5 0.5 0 verall Recove	$\begin{array}{c} & 72; 72; 87 \\ \hline 82 \\ 82 \\ 82 \\ \hline 82 $	84 82 81	11.2 2.8 - 7.3	0.01
	¢CGA 357261	strawberry	0.01 () 0.1 () 0.5 () 0.5 () 0.5 () 0.5 ()	\$7; 82; 82 84; 842 \$4; 86 \$6 ry (a 8)	80 85 86 83	3.6 1.2 - 3.5	0.01
11-2120	CGA 35720	strawberry,	0.05 60 0.5, 0 0xerall Becover	² 75; 76; 91 89; 93; 93; 100 91 ry (n =8)	81 94 91 89	11.1 4.9 - 9.8	0.01
2 C D	CGA 33 409	strawberry	0.1. 0.1. 0.5 Overall Recover	72; 84; 90 93; 94; 96; 99 100 ry (n =8)	82 96 100 91	11.2 2.8 - 10.1	0.01
	CGA373466	strateberry front	0.01 0.1 0.5 Overall Recover	68; 74; 75 80; 81; 85; 85 88 ry (n =8)	72 83 88 80	5.2 3.2 - 8.5	0.01
RSD [©] relativ For 12-2054	e standard deviation see Table 6.3.8-4	2 1	n = number of tests	• • /		1	

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples was up to 513 days for all analytes and is covered by the storage stability studies.

-<u>Residue results</u>: In the greenhouse trials the residues at a PHI of 1 day ranged from 0.076 to 9.41 mg/kg for trifloxystrobin in strawberry fruit. Residues of CGA 321113 were between <0.01 and 0.0150 Residues of CGA 357261, CGA 357262, CGA 331409 and CGA 373466 were always below the JOQ of 0.01 mg/kg could be detected in any of the corresponding compoles of the corresponding control samples. And the second state of th mg/kg at day 1 after last application and up to 0.032 at later samplings. Residues of CGA 357261, CGA 357262, CGA 331409 and CGA 373466 were always below the LOQ

ER

B

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.3.8-11:	Applicati treated	on data and with Triflox	l residu ystrob	ies (in V	of triflox VG 50 in	ystrobin a the green	nd C hous	CGA 321113 in e	1/ on straw	vberries	
Study Trial No. Plot No.					Applica	ation		S. S	Res	idues of	N N
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Trifloxy- strobin (nyg/kg)	©CGA ©321113 (mgØrg)
11-2120 11-2120-01 11-2120-01-T GLP: yes 2011	Straw- berry Splen- dor	Spain Europe, South, G	50 WG	2	0.150	0.0188	87 2 0	fruit		0.15 0.35 0.41 0.30 0.28 0.16	0.015 8.013 0.015 0.013 0.032 0.031
11-2120 11-2120-02 11-2120-02-T GLP: yes 2011	Straw- berry Ventana	Italy Europe, South, G	50 WG	2 1 0						0.14 0.96 0.12	<0.01 <0.01 0.015
11-2120 11-2120-03 11-2120-03-T GLP: yes 2011	Straw- berry Cama- rrosa; hanging variety	Portugal Europe, South, G	50 ⁰	2 8		\$.0200 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	85		0 0* 0 4 1 0 2 7 5 10	0.11 0.31 0.27 0.23 0.23 0.14	<0.01 <0.01 <0.01 0.010 0.015 0.017
11-2120 11-2120-04 11-2120-04-T GLP: yes 2011	Straw- berry Carba- rosa	Greese Europe South, G	≪50 ≯WG ≪ ∽				S C	Aruit A	0 1 3	0.14 0.13 0.12	<0.01 0.010 0.016
12-2014 12-2014-01 12-2014-05-T GLP: yes 2012	Straw berry Dar- select? hanguag variety	Belgium Edrope, North,	504 WG	2			87 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≪َ fruit ¢	0* 0 1 3 7 10	$\begin{array}{c} 0.038\\ 0.076\\ 0.076\\ 0.082\\ 0.056\\ 0.053 \end{array}$	<0.01 <0.01 <0.01 0.017 0.029 0.025
12-2014 12-2014-02 12-2014-02-T GLP: yes 2012	Straw- berry Cigaline	Franco Europo, North, (G)	¢\$0 yWG∧			0.0250 0	87	fruit	0 1 3	0.10 0.090 0.096	<0.01 <0.01 0.014
12-2014 12-2014-03 12-2014-03-T GLP: yes 2012	Straw ² berry Ølery	Germanx Earope, Sorth, &	500 WG	2 ~Q	00130 0	0.0300	87	fruit	0* 0 1 3 7 10	0.037 0.067 0.091 0.080 0.045 0.032	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
12-2014 12-2014-04 12-2014-04 GLA: yes 2012	Suraw- Berry A Dar select	Germ@ny Surope, North, G	50 WG	2	0.150	0.0150	87	fruit	0 1 3	0.16 0.12 0.12	<0.01 0.012 0.028

FL: Formulation No: number of applications

GS = growth stage (BBCH code) at last application

* prior to last treatment.

DALT = days after last treatment

B

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.3.8-12:	Residues treated	of CGA 357 with Triflox	7261, CGA 35 ystrobin WG	7262, CGA 50 in the g	A 331409 an greenhouse	d CGA 3734	466 in/ on s	trawberries	
Study Trial No. Plot No.					Res	idues) A		
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 Qmg/kg)	CGA 33 1409 (næz/kg) 🍣	GGA 373466 (mg/kg)	
11-2120 11-2120-01 11-2120-01-T GLP: yes 2011	Straw- berry Splen- dor	Spain Europe, South, G	fruit		<pre><0.01</pre>	<0.01 <0.01 <0.01 <0.01 <0.01 <0.04 <0.04	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<0.01 <0.01 <0.01 <0.04 <0.04 <0.04 <0.01	0 Y
11-2120 11-2120-02 11-2120-02-T GLP: yes 2011	Straw- berry Ventana	Italy Europe, South, G	fruit					(40:01 <0.01 <0.02)	
11-2120 11-2120-03 11-2120-03-T GLP: yes 2011	Straw- berry Cama- rrosa; hanging variety	Portuga Europes South G	Fruit G		(0.01) (0	<0.01 <001 >0.01 <0.04 <0.04 <0.04 <0.04 <0.04	<pre><0.01 <0.01 <0.01 <0.01 \$0.01 \$0.01 >0.01</pre>	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
11-2120 11-2120-04 11-2120-04-T GLP: yes 2011	Straw berg Cama- tosa	Greece GR- Europe, South, Go			<0.01 <0.01 \$9.01 \$9.01	©0.01 <0.00 <020 04 020 04 020 04	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	
12-2014 12-2014 01 12-2014-01-T GLP: yes 2012	Straw- berry Dar- seleer, hanging yariety	Belgium Europe North G			(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
12-2014 12-2014-02 12-2014-02 GLP: yes 2012	Straw berry Cigaline	France France Europe, North, (Q)			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	
12-2014 12-2014-03 12-2014-03-T GLP: yes 2012	Straw- berry Clezy	Germany Europes Nortl©G	, fruit () S	0* 0 1 3 7 10	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
12-2014 12-2014-04 12-2014-04 12-2014-04 GLP: yes 2012	Straw bern Dar- select	Germany Europe, North, G	fruit	0 1 3	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	

DALT = days after last treatment * 1

* prior to last treatment.

CA 6.4 Feeding studies

Data/information on livestock feeding studies were reviewed during the peer review under Directive 91/414/EEC and considered to be acceptable. For further information, please refer to the Annex II, Section 6, Point 6.4.

In addition to the ruminant feeding study formerly submitted, a poultry study is available and summarised below, although it can already be concluded from the poultry metabolism study, that no for residues above LOQ are expected in poultry commodifies.

CA 6.4.1 Poultry

A three-level (1.5 mg/kg, 4.5 mg/kg and 15 mg/kg) pouldy feeding study was conducted with trifloxystrobin in the USA in 1998.

Report:	KCA 6.4.1/01, C.G.; 1999 M-036368-0 -1
Title:	CGA-279202 - Magnitude of the residues in poultry meat and eggs
Document No &	M-036568-01 0 8 8 4 4 4
Report No:	243-98 Q & & & & O & O & ~
Guidelines:	OPPTS 860.1480 Residue Chemistry fest Guidelines - MearMilk Poultry/Eggs
GLP	yes w a fr a a for a o

Materials and methods

A poultry feeding study was conducted with white leghorn laying heres using technical-grade trifloxystrobin (CCA 279202) treated feed. Three treatment groups consisting of 15 animals per group plus the control animals were used. Treatment rates were 1.5 mg/kg (1%), 4.5 mg/kg (3X), and 15.0 mg/kg (10X). Animals were kept on diet for 28 days. Eggs were sampled throughout the treatment period, before dosing (day b) and on dose-days 1.3, 7, 14, 21, and 28. The hens were sacrificed on day 29 (20-24 hours after the last treated feed was removed) and samples of muscle (breast and thigh), skin plus attached fat, peritoreal fat and her were obtained.

Treated feed was sampled and malysed to demonstrate dose conformity and stability. Eggs and poultry tissues were analysed using analytical method AG 659A, which determines CGA 279202 and its acid metabolite CGA 32113 by gas coromatograph/using nitrogen/phosphorus detection (NPD) following an acetomtrile water extraction and solvent partition plus a C18 solid phase extraction cartridge deanup. The screening level employed for all samples analysed was 0.02 mg/kg for each analyte.

Findings / Conclusion

Feed samples taken at each week indicated that the nominal dosages were achieved and that the test substance was stable upon storage at room temperature and under freezer conditions in poultry feed. Mean recoveries from the TOX dosing level were 105% for eggs and 79% for tissues for trifloxystrobin and 90% for eggs and 80% for USS for CGA 321113.

No detectable residues (<0.02 mg/kg) of CGA 279202 or CGA 321113 were found in eggs, skin, muscle, fat and liver samples at the exaggerated 10X feeding level, see Table 6.4.1-1 below. Analyses of agg and dissue samples from hens dosed with 1X and 3X were not performed, since no residues were detected at the highest treatment rate.

Based on results of this study, no residues are anticipated in poultry and it is in principle not necessary to establish tolerances in eggs and poultry tissues.

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.4.1-1:	Residue	es found in layi	ng hens dosed	with CGA 279	202 for 28 days		
]	Maximum Resid	ues Found (mg/k	g)	6 0
				Feeding L	evel (mg/kg)		
	Dose	1.5 mg/	kg (1X)	4.5 mg/	/kg (3X) 🔊	15.0 mg	/kg∘(ĴØX)
Substrate	Day	CGA 279202	CGA 321113	CGA 279202	CGA 321113	CGA 279202	~CGA 320113
Eggs	0	-	-	Ā.		<0:02 >	<0.92
	1	-	-		ŵ	\$0.02	Ø.02 Ø
	3	-	-	×-	- 2 -	Ø×0.02	<0.02
	7	-	-	~ -	L -	~<0.0Q	0.02
	14	-		- 1	<u>R' & </u>	<q.02< th=""><th>0 <0.02</th></q.02<>	0 <0.02
	21	-	- Q0	- 🕎	<u> </u>	0.02	\$0.02
	28	-	- 6	~ - ~~	- <u>0</u>	⊘<0.02	<0.02
Skin plus attached fat	28-29	-	-07			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.02
Peritoneal Fat	28-29	-	\$ - N	À- À	A - , 0 ⁹	<0.02	<0.02
Muscle (breast plus thigh)	28-29	-					© <0.02
Liver	28-29		\$ - B	59 - 0 - 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.02	< 0.02
		Ĵ.		··· ~ ~			

CA 6.4.2 Ruminants

The magnitude of trifferxystration residues in runthants was already provestigated in a feeding study with lactating come evaluated during the peer review under Directive 91/414/EEC. For further information, please refer to the Annex IL Section 4 Point 6.4

CA 6.4.3

0 No specific feeding study has been conducted with pigs as the metabolic pattern in ruminants does not differ significantly from that in the rat. This point is therefore adequately covered by the cattle feeding study, which was already evaluated during the peer review under Directive 91/414/EEC.

CA 6.4.4

So far no official working document wists of fish feeding studies. No feeding study for fish was conducted with trifloxystrobin.

fruit are not considered relevant for the formulation of aquaculture Pomefruit, grape and strawberry diets. Ĩ.

CA 6.5 fects of processing

already submitted in the Annex II dossier for trifloxystrobin. Further data Some processing data w is given below.

Nature of the residue

The parameter which is most likely to affect the nature of the residue during processing operations is hydrolysis, because processes like heating would generally inactivate enzymes present in the substrate, leaving primarily hydrolysis as a degradation mechanism. Hence, a study was conducted to investigate the hydrolytic degradation of trifloxystrobin under representative conditions of processing.

Trifloxystrobin was hydrolytically stable under conditions of pasteurisation (90°C, pH 4 for 20 min) and showed minor degradation of 2.6 % under conditions of baking, brewing and boiling (100°C, pH 5 for 60 min). Only under conditions of sterilisation (120°C, pH 6 for 20 min) a more proponder degradation of 22.5 % was observed. The main degradate observed (2 % at pH 6 and 20.8 % at pH 6) was CGA 321113.

The respective study (**1990**, 2000) was already submitted in the updated Annex II dossier.

Report:	KCA 6.5/01, 2000 (already submitted); M-047519401-1
Title:	Hydrolysis of [Glyoxyl-phenyl-U-14C]-COA 279202 under processing conditions
Document No &	M-047519-01-1
Report No:	
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A sortion 6 and Annex II, part
	A, section 8 residues in or on treated products food and feed a sector and feed and feed and feed a sector a se
GLP	yes 0 4 4 5 5 5 5 5 5

Materials and methods

The study describes the degradation behaviour of radioactive [Myoxyl-phen/d-U-14C]-trifloxystrobin in buffered water. The experiment was carried out under laboratory condutions, which were representative for processing operations of raw agacultural commodities (RAS) like pasteurisation, baking and sterilisation

The test systems were incubated at three representative sets of conditions: 90°C, pH 4 for 20 min. (pasteurisation): 400°C, pH 5 for 60 min. (baking brewing and boiling) and 120°C, pH 6 for 20 min. (sterilisation) The samples were analysed by HPLC and thin ayer chromatography. The content of radioactivity was determined by loguid scintillation counting.

Findings

Trifloxystrobin was hydrolytically stable under conditions of pasteurisation (90°C, pH 4 for 20 min) and showed mine degradation of 2.6 % under conditions of baking, brewing and boiling (100°C, pH 5 for 60 min). Only under conditions of storilisation (120°C, pH 6 for 20 min) a more pronounced degradation of 22.5 % was observed. The main degradate observed (2 % at pH 5 and 20.8 % at pH 6) was CGA 221113.

Conclusion

The results demonstrate that trifloxy probin will be partially hydrolysed to CGA 321113 under conditions representative for sterilisation (pH 6, 120°C). In these cases, the nature of the residue in the processed agricultural commodities may be partly different from that found in raw agricultural commodities. Under conditions representative for pasteurisation, (pH 4, 90°C) and baking, brewing and boiling (pH 5, 100°C) trifloxystrobin was found to be stable and the nature of the residue can be considered as being identical to that in the raw agricultural commodity.

CA 6.5.2

Distribution of the residue in peel and pulp

The distribution of the residue in peel and pulp is not relevant for the supported crops, since the peel is edible and usually the entire fruit is eaten by consumers.

CA 6.5.3 Magnitude of residues in processed commodities

Relevant information on pomefruit and grapes was already given in the Annex II dossiers, Section 6, chapter 6.3 (residues) and 6.5 (processing). Further data are summarised below, including strategierry processing trials.

Pomefruit:

Summary Annex II studies

Apples from some European residue trials were subjected to small scale processing (reported in the residue trial chapter 6.3) No concentration of parent residues was observed from apples having 0.03% 0.44 mg/kg initial residues to dried fruits, purce, faice (<0.02, 0.04 mg/kg) & pomate (0.33 mg/kg). For CGA 321113, the initial residues were low and no transfer of residues from truits to processed commodities was observed.

In an US study (Campbell, 1997) residues found were prodominantly CGA 239202, with CGA 32,013 being detected only in the wet apple porpace. The results show that the residues are not transferred to the juice, but remain in the wet pomace, resulting in a considerable concentration.

Supplementary studies

Report:	KCA 6.5(3/02, ; 2000 (also fifed: KCA 6.3.9/31) M-024932-01-1
Title:	Residue study with CGA 279202 in or on apples in France (north)
Document No &	M-024932-01-1 & & & & & & & & & & & & & & & & & &
Report No:	2007/99 2 6 6 20 0 6
Guidelines:	EU Council Directive 91/419/EEQ Annex II, par A section 6 and Annex III, part
	A, section.80 sidules in or on treated products, food and feed
GLP 🖉	yes i a y i y y
~	

A processing trial was conducted in a poles with trifloxystropin in 1999 in northern France. Trifloxystropin WG 50 was applied three times to apple trees at rates of 0.15 kg/ha active substance trifloxystropin. The treatments were performed at intervals of 10 days with the last application 14 days prior to the expected date of harvest.

Samples were taken 14 days after the fast treatment. Residues were determined in the raw agricultural commodity (fruit), juice and purce.

For processing into juice the fruits were mixed, and the juice filtered and pasteurised. For processing into purce the fruits were cooked and mixed

The results of the trials are summarised in Table 6.5.3-1 as well as in greater detail on the attached Tier I summary forms.

Findings / conclusion:

- <u>Method performance</u>: modified method AG 659 was used to determine residues of trifloxystrobin and CGA 321113 in apple processed matrices.

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples (processed commodities) for trifloxystrobin and its metabolite was 211 days.

- Processing results:

Residues of trifloxystrobin in apple fruit (raw agricultural commodity, RAC) were 0.03 and 0.02 mg/kg, those of CGA 321113 were <0.02 mg/kg. Residues of trifloxystrobin were below LOQ (<0.01

mg/kg) in juice and 0.04 mg/kg in puree. Residues of CGA 321113 were below LOQ (<0.01 mg/kg) in juice and puree.

The transfer factors with respect to trifloxystrobin were <0.4 (calculation <0.0100.025 mg/kg) for juice and 1.6 for puree. No transfer factors were calculated for CGA 321113, as no residues at or above LOQ were found neither in the RAC, nor in the processed commodity. According to this trial, a concentration of trifloxystrobin is seen in puree, while no accumulation and no residues were observed in juice.

Report:	KCA 6.5.3/03, ; 2000 (also filed: KCA 6.3.104); MA 36401-01-
Title:	Residue study with CGA 279202 in or on appres in Switzerland
Document No &	M-136411-01-1
Report No:	2125/99
Guidelines:	EU Council Directive 91/414 EEC Annex J, part & section 6 and Annex III part
	A, section 8 residues in or on treated products, food and reed
GLP	yes of it of the state

Materials and methods

A processing trial was conducted in/on apples with trifloxystrobin in 0999 by Switzerland. Trifloxystrobin WG 50 was applied three times to apple trees at exaggerated rates of 0.375 kg/ha active substance trifloxystrobin. The treatments were performed at intervals of 10-12 days with the last application 14 days prior to the expected date of harvest.

Samples were taken 14 days after the last treatment. Residues were determined in the raw agricultural commodity (fruit), washed fruit, jure, we pomase, dry pomace, and paree.

For processing into juice the fruits were washed, sliced, pressed and the juice pasteurized. For processing into purce the fruits were washed, cooked, filtered and pasteurised.

The results of the treals are summarised in Table 6.5, 3-1 as well as in greater detail on the attached Tier I summary forms.

Findings / Conclusion

- <u>Method performance</u> modified method AG 659 was used to determine residues of trifloxystrobin and CGA 321473 in apple processed matrices.

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples processed commodities for trifloxystrobin and its metabolic was 258 days.

- Processing results

Residues of trifloxystrobin in apple fruit (RAC) were 0.25 and 0.35 mg/kg, those of CGA 321113 were <0.01 mg/kg. Residues of trifloxystrobin ranged from 0.20 to 0.35 mg/kg in fruit washed, were at 0.0088 or 0.0080 mg/kg in pince before pasteurisation and ranged between 0.0026 and 0.0034 in juice after pasteurisation. Trifloxystrobin residues in wet pomace were at 1.18 or 1.28 mg/kg, between 5.0 and 6.1 mg/kg in dry pomace and between 0.036 and 0.056 mg/kg in pasteurised puree. Residues of CGA 321113 were <0.01 mg/kg in washed fruit and puree, <0.002 mg/kg in juice (before and after pasteurisation), 0.046 and 0.052 mg/kg in wet pomace and between 0.94 and 1.5 in dry pomace.

The transfer factors with respect to trifloxystrobin were between 0.63 and 1.24 for washed fruit, between 0.010 and 0.014 for pasteurised juice, between 20 and 24 for dry pomace and between 0.10 and 0.16 for pasteurised puree.

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

No transfer factors were calculated for CGA 321113 in washed fruit and juice, as no residues at or above LOQ were found neither in the RAC, nor in the processed commodity. In wet and dry populate an accumulation of residues of CGA 321113 was observed.

According to this trial, a concentration of trifloxystrobin and CGA 321113 (seen in we and by pomace, while no accumulation was observed in juice or puree.

Portion PHI Residues of trifloxystrobin Residues of CGA 321113	, Report No./
analysed (d) residue values transfer of residue values transfer	Study no &
(mg/kg) factor (mg/kg) factor	
fruit 14 0.03) \$2007/90
0.02 $\mathbf{p}.\mathbf{a}.$ $\mathbf{p}^{\circ} < 0.02$ $\mathbf{p}.\mathbf{a}.$	
mean: 0.25 \bigcirc^{\vee} \bigcirc^{\vee} \bigcirc^{\vee} \bigcirc^{\vee} \bigcirc^{\vee}	S A CO
juice 14 <0.01	
puree 14 0.04 9 4 6 9 0.01 0 10 5	Ô,
fruit 14 0.25 v w ma. S < 001 v o na	
fruit, washed 14 0.30 1.24 0.01	
(0.01)	
juice after 145° 0.0026 0 10° 0.010 0 <0.002	
pasteurisation 0.0032 0.0032 0.013 3 0.002 0.002	
0.0034 0° 0.014° $0.002.8^{\circ}$	
wet pomace 14 1.1% 4.72 4.72 5.2	
1, 1, 28 , 5.12, 0.046 >4.6	
dry pomace 13^{4} 6.1 3^{4} 3^{4} 3^{4} 3^{4} $3^{1.5}$ >150	
>94	
A 0.96 >96	
fruit & 14 0.39 (n.a.) <0.01 n.a.	2125/99
fruit, washed 147 322 7 0 0.01	
$ \sqrt[9]{0.27} $	
puree $\sqrt[3]{4}$ $\sqrt[3]{0.056}$ $\sqrt[6]{0.16}$ <0.01	
0.10 <0.01	
<u>حَمَّ</u> (*0.038 0.11 <0.01	

Table 6.5.3-1: Results from processing studies on apples

n.a.: not applicable n.c.: not calculated (residues <LOQ in RAC and processed commodity)

Grape:

Summary Annex II studies

Grapes from some European trials were processed to make must or wine (reported in the restate trial chapter 6.3). No concentration of parent residues was observed from grapes aving 0.06 - 2.3 ms/kg initial residues to must (2.5 mg/kg) or wine (<0.02 - 0.25 mg/kg). For CGA 321113, the oritical residues were low (0.03 - 0.14 mg/kg) and no transfer of residues from fruits to processed commodities was observed.

Supplementary studies

Report.	KCA 6 5 3/04
	Ren 0.5.5/04,
Title:	Determination of the residues of AE C626948 and Trifloxystrobin up on grape after
	spraying and spraying, low-volume of AEC656948 & CG 279202 SC 500 in the
	field in France (South) and Italy Q Q O O O Q
Document No &	M-357708-02-1
Report No:	$08-2204$ (field part to $08-3204$) $\sqrt{2}$
Guidelines:	EU Council Directive 91/414 EEC Annex II, part A section 6 and Annex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes Q X Q X Q X

Report:	KCA\$.5.3/05, , ;2010, M-384844-01-1
Title:	Determination of the residues of AE 656948 and trifloxy strobin in/on grape and
	the processed tractions (must, pomace, grape; wine at bottling and wine at first
le la	taste test) after spraying of AE 0656948 & CGA279202 SC 500 in the field in
	France (South) and Italy ~ ~ ~ ~
Document No@	NO 384844-01 0 40 5 5 5
Report No:	08-3204 (processing part) S
Guidelines	EU Council Directive 91414/EEC Andrex II, part A section 6 and Annex III, part
	A section 8 residues in or or deated products, food and feed
GLP	yes 4 y 3 0 y 4 4

Materials and methods

In 2008 two processing thats we conducted in on gapes with trifloxystrobin in southern Europe. A trifloxystrobin SC formulation was applied two times to apple trees at rates of 0.05 kg/ha active substance trifloxystrobin. The treatments were performed at intervals of 14-15 days with the last application 14 days prior to the expected date of harvest.

Samples were taken 14 days after the last treatment (21 days in one trial). Residues were determined in the raw agric@tural.commedity (bunch), in must, pomace and wine. In the trial where processing trials were taken at day 21 after last application, while RAC samples were taken at day 14, the results of must were taken as RAC value for calculation of the transfer factors, as in the other trials bunch and must showed the same residues at day 14.

Ô For processing into must the bunches were crushed, for processing into wine the must was treated with flash vacuum-expansion, pressed after fermentation, clarified and filtered.

The results of the trials are summarised in Table 6.5.3-2 as well as in greater detail in the Tier I summary forms.

Findings / Conclusion

- <u>Method performance</u>: method 01013 was used to determine residues of triboxystrobin and CGA 321113 in grape processed matrices.

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples (processed commodities) for trifloxystrobin and its metabolite was 348 days.

- Processing results:

Residues of trifloxystrobin in bunch of grapes (raw agricultural commodity, BAC) were 0.02 mg/kg, those of CGA 321113 were <0.01 mg/kg. Residues of trifloxystrobin were below LOQ (<0.01 mg/kg) in wine, 0.02 mg/kg in must and 0.10 in pomace. Residues of CGA 321113 were below LOQ (<0.01 mg/kg) in wine and must, and at 0.01 mg/kg in pomace.

The transfer factors with respect to trifloxystrobin were 1.0 for must 5.0 and 5.9 for pomace and 0.1 and <0.5 for wine. No transfer factors were calculated for GA 321113, as no residues at or above LOQ were found neither in the RAC nor in the processed commodity, except in one trial in pomace at LOQ. According to these trials, a concentration of trifloxystrobin is seen in pomace, while no accumulation was observed in must and wine.

Report:	KCA 6:5:3/06,, T.P.; 1998; M-104033-02-1
Title:	CGA@7920D- Magnitude of the residue in or of grapes
Document No &	M-104032-01-1
Report No:	10440 × ×
Guidelines:	EPA guideline No. 860.1500, 860 1520
GLP	yes of the

Materials and methods 👋

In 1996 Six processing trials 2 locations) were performed in the USA with Trifloxystrobin 50 WG in/on grapes. Grapes were sprayed with the test substance using three treatment regimes. Treatment 1 (1-fold rate) consisted of six foldar spray applications at a rate of 0.1408 kg a.s./ha. Treatment 2 consisted of six applications at the 3-told rate (0.4225 kg a 2./ha) and treatment 3 of six applications at the 5-fold rate (0.7642 kg a.s./ha). Samples for processing were taken 14 days after the last application.

For juice production the grapes were crushed, the pulp collected and the stems discarded. The pulp was heated, filtered and pasteurised

Raisins were processed in the field by air drying according to normal agricultural practices for 17 or 26 days.

The results of the trials are summarised in Table 6.5.3-2 as well as in greater detail in the Tier I summary forms

Findings / Conclusion

- <u>Method performance</u>: method AG 659 was used to determine residues of trifloxystrobin and CGA 321113 in grape processed matrices.

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples (processed commodities) for trifloxystrobin and its metabolite was 212 days.

-<u>Processing results</u>: Residues of trifloxystrobin in bunch of grapes (RAC) were between 024 and 2.2 mg/kg, those of CGA 321113 were between <0.02 and 0.080 mg/kg. Residues of trifloxystrobin of ranged from 0.034 to 0.34 mg/kg in juice, and were at 0.12, 0.16, 1.5, or 1.2 m raisin. Residues of CGA 321113 were between <0.02 mg/kg in juice and either <0.02 or at 9.16 and 0.23 mg/kg

The transfer factors with respect to trifloxystrobin were between 0.072 and 0.18 for juice, and 0.50, 0.67, 2.5 or 2.0 for raisin.

No transfer factors were calculated for CGA 321/13 in trial USA-OW-FR-475-96 as no residues at or above LOQ were found neither in the BAC, nor in the processed commodity. In trial USA-02-PR-025-96 an accumulation of residues of COA 3211/13 in raisin was observed.

According to these trials, no accumulation was observed in juice while a concentration of trifloxystrobin and CGA 321 13 may be seen in raism.

n

Portion	PHI 🖉	Residues of th	rifloxystrobio	Nesidues of	GA 324 P13	Report No./
analysed	(d)	residue values	transfer	residue values	transfer	Trial no
		\bigcirc^{\vee} (mg/kg)	façtor 🔊	(mg/kg)	factor	(g as/ha)
bunch	014	0.02	n.a.	<0.01	n.a.	08-3204
must 🔊	140	* 0 ?02	1.0 Å	× <0.0P ×	n.c.	08-3204-01
pomace	14	0.10	5.0 5.0 ×	9 .01	>1	
wine at bottling	14 %	<0.01	S ^r Alps	~0.0f~y	n.c.	
wine at 1 st taste	13	3<0.01 ×	× × × 0.5 O	<0.01	n.c.	
test	~~		N S	Š		
bunch / must 🔍	210	 6 ⁶⁷ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∽ n.à⇔	<0.01	n.a.	08-3204
must	21		× , Q(1.0), Ø	< 0.01	n.c.	08-3204-02
pomace 🖑	21 🗞	0.4	£ 58	<0.01	n.c.	
wine at bottling	2₩	\$ 0 01 . O	Ø.1	< 0.01	n.c.	
wine at 1st taste	21		<0.1	<0.01	n.c.	
test	6 A		Q.			
bunch		\$9.24 ₁₀ 24	n.a.	< 0.02	n.a.	110440
raw juice	Ø14	0.03	0.14	< 0.02	n.c.	USA-OW-FR-
juice 🖉	× 14	0.035	0.15	<0.02	n.c.	41J-Y0-A
raisin	14	2 0.12	0.50	< 0.02	n.c.	
		0.16	0.67	< 0.02		

Table 6.5.3-2: Results from processing studies on grapes

						<u> </u>
Portion	PHI	Residues of the	rifloxystrobin	Residues of	CGA 321113	Report No./
analysed	(d)	residue values	transfer	residue values	transfer	Taral no
		(mg/kg)	factor	(mg/kg)	factor	(g as/hat
bunch	14	0.87	n.a.	0.022	n.a.	190440
raw juice	14	0.087	0.10	£ ^{0.02}	ر n.c. 🕺	USA-QW-FR
juice	14	0.16	0.18	×0.02	n.c	
bunch	14	1.1	n.a.	0.023	n.a	R104400 5
raw juice	14	0.14	0.13	<0.02	Qn.c.	USA-OW-FR
juice	14	0.15	رم 0.14 ش	◦ <0.00° ×	or n.	44,5490-0 ×
bunch	14	0.60	Pi.a.	Ø.066 🔗	⊖© n.40 ́	,110440 °
raw juice	14	0.082		√0.023 × A	\$ 0.35	US\$-02-FR
juice	14	0.057	j j 20,095 Ø	<0.92 O	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	923-90-AV V 2
raisin	14	1.5	2.5	Q0.16 0 _	C 2.4 C	, Ø
		1.2 🖉	2.0	0.23	U 3.5	
bunch	14	1.8	F P.a. S	0.080	na 🤅	110440
raw juice	14	0.18 🔬	Q.1	0.029	0.36	USA-02-FR-
juice	14	· 0.13 O	\$ \$ \$ \$ 72 ×	0.023		025-90-Б
bunch	14 🛒		Ôn.a. 🏷	\$.0 ⁹⁰ 78 <i>\$</i>	,n.a	110440
raw juice	14	0.31	© 0014	0.035	0.45	USA-02-FR-
juice	Â.	00.34	× 0.15°	0.038	~~ 0.49	023-90-C
n.a.: not applicat		: not @lculate@(res	siduces < LOQ in RA	Oind processed con	∞ mmodity)	
, Ö	103		1. Š ⁷ Õ			
2ª Z						
Strawberry:	, A					
<u>Supplementai</u>	ry studies	Î Î Î		A A		
	ő Gz			<u>. M 096062 0</u>	1 1	

Report: \sim	KCA@.5.3/07, ; 2003; M-086063-01-1
Title:	Determination of residues of Arifloxystrobin and CGA 321113 in/on strawberry
- Carlor - C	tyuit washed, preserve, washings, jam) following spray application of Flint 50 WG
	in the field in Northern France and Germany
Document No &	M-086063-01-1 ~ O
Report No:	RA-3038/02 ~ Q
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
	A, section & residues in or on treated products, food and feed
GLP N N	xes o

Materials and methods

Two processing trials were conducted in/on strawberry with trifloxystrobin in 2002 in northern France and Germany. Trifloxystrobin WG 50 was applied three times to strawberry plants at a product rate of 0.5 kg/ha and 600 L water per ha, corresponding to a spray concentration of 0.083% and 0.25 kg/ha

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

active substance trifloxystrobin. The treatments were performed at intervals of 7 days with the last application 3 days prior to the expected date of harvest.

Samples were taken 3 days after the last treatment. Residues were determined in the raw apprultural commodity (fruit), washed fruit, washings (wash water), preserve and jam. The processing of washed fruits, washing water and jam simulated household practice. The processing of strawbury preserve simulated industrial practice at laboratory scale. Processed samples were stored deep frozen until analysis.

Washed fruit samples were prepared by washing strawberry fruits in standing water und slow movement. The stalks were removed where necessary.

For the preparation of preserves, washed fruits were filled into preserving cans and sugar solution was added. The strawberry preserves were pasteutised at approx 90 °C

Samples of jam were prepared by washing fruits in standing water under slow movement and removing the stalks where necessary. Part of the fruit@was.minced@ith a.mixer. the other part was cut with a knife into small pieces. Gelly gent was added and the mixture heated to 98 - 100°C for about 3 minutes.

The results of the trials are summarised in Table 5.3-30 as well as in greater detail in the Tier I summary forms.

Findings / Conclusion

- <u>Method performance</u>: Method 007/42/E001 was used to determin residues of trifloxystrobin and CGA 321113 in streambergy processed matrices.

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples for trifloxystrobin and its metabolite was 152 days.

- <u>Processing results</u>: Résidues of trifloxystrobin in strawborry froit (RAC) were 0.12 and 0.15 mg/kg, those of CGA 321115 were 0.02 and 0.03 mg/kg. Residues of trifloxystrobin ranged from 0.07 to 0.14 mg/kg for fruit washed, from 0.02 to 0.05 ng/kg for washings (washing water), from 0.03 to 0.06 mg/kg for preserve and from 0.06 to 0.13 mg/kg for jam. Residues of CGA 321113 ranged from <0.02 to 0.04 mg/kg for fruit washed. They were 0.02 ng/kg for washings and preserve and <0.02 or 0.02 mg/kg in jam.

The transfer factors with respect to trifloxyspobin were between 0.6 and 0.9 for washed fruit, between 0.1 and 0.4 for washings, 0.3 or 0.4 for preserve and between 0.5 and 0.9 for jam. Regarding the metabolite, transfer factors could only to calculated for one trial, where residues above the LOQ were determined. They were 1.0 or 1.3 for washed fruit and 0.7 or <0.7 for all other materials. Thus no accumulation at trifloxystrol or CGA 322113 was observed.

Table 6.5.3-3:	Results fro	om processing stu	udies on strawbe	rries		ø° 🗞
Portion	PHI	Residues of t	rifloxystrobin	Residues of	CGA 321113	Repôrt No./ 🖓
analysed	(d)	residue values	transfer	residue values	transfer	Teral no
		(mg/kg)	factor	(mg/kg)	tactor	
fruit	3	0.15	n.a.	0.03	n.a.	BA-303 02 Q
fruit, washed	3	0.14	0.9	<u>Č</u> 0.04	لم الم	0188 202
		0.12	0.8	¹ 0.03	1.0	
preserve	3	0.06	0.4	< 0.02	<0.7,◯	
		0.05	0.3	< 0.02	\$? <0Q [*] _0 [*]	
jam	3	0.11	0¢7 Ø	° 0.69° 🖉	200.7 Č	
		0.13	Q.9 2°	0.02	0.7° (
washing water	3	0.02	£ 0.1°	\$ 0.02 × A	49 :7	
		0.03	0,27		×0.7 ×	
fruit	3	0.12	& n.a.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C na.	RA-3038/02
fruit, washed	3	0.08 Q	0.7	< 0.02	(H.c.)	019 F-02
		0.07		< 0002	Ôn.co 🦉 🌾	ý í
preserve	3	0.103	³ 0.3 کړ	~0.02 ~ ~ ~	Byc.	
		€0.03 ○	~~ 0.3 ⁰	<u>~ 0.02</u>	n.c.	
jam	3	0.07	6.6	<0.02 k	n. S	
	- A	0.06	0.5		n č.	
washing water	C. C	0.05 × ×	Q.4 ,~9	< 0002	@ n.c.	
	Ô Ô	0.04 %	Ø.3 (⁴)	< 0.02	n.c.	
n.a.: not applicat	le n.c.	.: not ealculated (res	idues <lqq in="" ra<="" td=""><td>and processed for</td><td>mmodity)</td><td></td></lqq>	and processed for	mmodity)	
N.	6					
Departs				<u> </u>	4 4 6 4 9 2 5 0 2 1	
Title:	- Note	A 0.5.3/08	; 2013 Vesiduar of the	(amended); N	/1-464835-02-1 strawberry and	the processed
Title.	fract	ions (fruit, wash	red: washings: p	reserve and iam) after sprav app	lication of
~	J Tri	oxystrobin WG	50 m the field in	n the Netherland	s and Germany	
Report No ₄ :	12-3	018 ~~ 40		ř	-	
Document N	o.: M-4	64835-02-1 🧳				
Guidelines	Rég	alation No. 1107	/2009 of the Eu	ropean Parliama	net and of the C	ouncil,
La construction of the second	SEC 8	guidance docum	end /029/3/1/95 a	and $7035/V1/95$,		
GLP	_@ Yes					

Table 6.5.3-3: Results from processing studies on strawberries

Materials and methods Two processing trials were conducted in/on strawberry with trifloxystrobin in 2012 in the Netherlands and Germany. Triffexystrobin WG 50 was applied two times to strawberry plants at a product rate of 0.3 kg/ha and 500 L water per ha, corresponding to 0.15 kg/ha active substance trifloxystrobin. The treatments were performed at intervals of 7 days with the last application 1 day prior to the expected date of harvest.

Samples were taken 1 day after the last treatment. Residues were determined in the raw agricultural commodity (fruit), washed fruit, washing, preserve and jam. The processing simulated industrial practice at laboratory scale.

For the preparation of preserves, washed fruits were pasteurised at a max. temperature of 86-88 °Cro 15-22 minutes.

Samples of jam were prepared by washing fruits and purceing them, then heating the received pulp for 4 minutes at 100°C.

Samples of jam and preserve were deep frozen until analysis. The results of the trials are summarised in Table 6.5.3-4 as well as in greater detail in the fier I summary form

Findings / Conclusion

- <u>Method performance</u>: Method 01313/M001 was used to determine residues of trifloxystrobin, CGA 321113, CGA 357261, CGA 357262, CGA 331409 and CGA 373466 in Grawberry front and processed matrices.

- <u>Storage stability</u>: The maximum storage period of deep-frozen samples for triflex ystrobin and its isomers / metabolites was 356 days

- <u>Processing results</u>: Residues of triflox strobin in strawberry fruit (RAC) were 9.031 and 0.145 mg/kg, those of CGA 321113 were <0.01 and 0.017 mg/kg. Residues of trifloxystrobin were <0.01 or 0.038 mg/kg in jam, and <0.01 or 0.025 in preserve. Residues of CGA 321163 were below LOQ (<0.01 mg/kg) in jam and preserve.

No residues (i.e. residues LOQ) were detected in the RAC and the processed commodities for CGA 331409 and CGA 373466. Therefore no transfer factors could be acculated for these two analytes. For CGA 357261 and CGA 357262 residues were below LOQ in the processed commodities and at 0.01 or 0.013 in strawberry fruit (RAC) in one of the trials, while below LOQ in the other trial.

The transfer factors with respect to trifloxystrobin were < 0.3 or 0.3 for jam and < 0.3 or 0.2 for preserve. Regarding the metabolite CGA 321113 transfer factors could only be calculated for one trial, where residues above the LOO were determined. They were < 0.6 for jam and preserve. Thus no accumulation of the floxystrobin and its roomers / metabolites was observed.

the LOQ were determined. They accumulation of the floxystrobin and its isomers / metaboli the the transfer the transfer of the transfer the transfer of the transfer the transfer of the transfer of the transfer the transfer of the transfer of the transfer of the transfer the transfer of the transfer of

			cessing stu	fules on strawber	11165			<u> </u>
Portion analysed	PHI (d)	Residues trifloxystr	s of obin	Residues of CGA 321113		Residues of CGA 355261		Réport Nof
		residue values (mg/kg)	transfer factor	residue values (mg/kg)	transfer factor	residue valæs (mg/kg)	transfer factor®	Triat No.
fruit	1	0.031	n.a.	< 0.01	n.a.	0.010	n,ày	12-3012
fruit, washed	1	0.014	0.5	<0.01	♥ n.c.	<0.01		32-301901 12-2012-02
washings	1	< 0.01	< 0.3	<0.01	n.c.	Q<0.04 °	, st	
jam	1	< 0.01	< 0.3	<0.01	, n.c.	<i>≥</i> 6×01		
preserve	1	< 0.01	< 0.3	<0.01 02	hc.	×0.010		A
fruit	1	0.145	n.a.	0 17 .	Øn.a.	<0.01	n.a.	\$2-3012,
fruit, washed	1	0.060	0.4			0.01 ×	n.c.	12-3012-02 12-2012-05
washings	1	0.029	gs2	Q0.01 ×	~0.6	<001 5		la j
jam	1	0.038	0.3 «	² <0.08 ∠	-0.6	ÅØ.01 ℃	Dn.c.	
preserve	1	0.025 🔌	§ 0.2	SQ:01	×0.6	<0.00	n.c.	
Portion analysed	PHI (d)	Resienes CGÂ ⁷ 357	s of \bigcirc^{262}	CGA 3314	of 409 \$	Residues COA 375	₽66	Report No./
		residue walues	transfør færor	residue varues (mg/kg)) fransfetO factor	residue values (mg/kg)	transfer factor	Trial No.
fruit	1	0.013 °	n.a.	<0.01	,nya.	Q×0.01	n.a.	12-3012
fruit, washed	1 2		<003 003		or n.c. 2	<0.01	n.c.	12-3012-01 12-2012-02
washings		<0.01	<0.8€ [™]	<0.01	pr.c.	≫<0.01	n.c.	
jam	× 1	<0.01	≪0,8	\$0.01 × K	n.c	<0.01	n.c.	
preserve	1	\$9.01 A	×0.8 ×		Ъc.	< 0.01	n.c.	
fruit	1	v <0.06 €	p.6	0.01 0 ⁵	Øn.a.	< 0.01	n.a.	12-3012
fruit, washed		<0.01	M.c.		n.c.	<0.01	n.c.	12-3012-02 12-2012-05
washings	\$1	<0.01	∛ n∿ς.	\$0.01, 0	n.c.	< 0.01	n.c.	
jam 🗳	1	<0.01	°∕yn.c. ≮	Q, <0.0	n.c.	< 0.01	n.c.	
preserve	1	Ø<0.01	y n.e.	<0.01	n.c.	< 0.01	n.c.	
n.a.: not			lculated (res	igues <loq in="" ra<="" td=""><td>C and proce</td><td>ssed commodity)</td><td></td><td></td></loq>	C and proce	ssed commodity)		

Table 6.5.3-4: Results from processing studies on strawberries

CA 6.6 Residues in rotational crops

Strawberries may be grown in rotation with other crops, while pomefruit and grape are permanent or crops and therefore not relevant for crop rotation. No supplementary studies are required for this submission. All European studies have previously been

submitted and evaluated. Please refer to the Annex II dossier, Section 6, Point 6.6 (succeeding crops).

CA 6.6.1 Metabolism in rotational crops

Two confined rotational crop studies were conducted in Europe (**1998**; 1998; M-038288-02-1_4 ; 1997; M-038296-01-1_). For details please refer to the Annex II dossier, Section 6, Point 6.6 (succeeding crops).

The occurrence of trifloxystrobin residues in rotational crops was investigated in lettuce, radish and wheat. The data on metabolism and distribution of trifloxystrobin in succeeding crops demonstrate that the metabolism of the active substance in rotational crops is similar to be pathway diserved in primary crops. Thus, the same residue definition applies.

Based on the results from the metabolism studies in rotational crops, which were performed with a higher application rate (0.5 kg a.s. that the intended seasonal application rate of the representative crops under consideration (max 0.375 kg a.s. that season), and application to bar soil (interception of trifloxystrobin by the plants is expected in practice), relevant residue levels are unlikely to occur in rotational crops provided that the compound is used according to the intended GAPs for the representative uses.

CA 6.6.2 Magnitude of residues on rotational crops

Since the results of the metabolism in rotational crop studies did not indicate that significant accumulation of residues occurs through soil uptake into food of feed commodities, field studies in rotational crops are not required.

CA 6.7 Proposed residue definitions and maximum residue levels

CA 6.7.1 Proposed residue definitions

In the peer review under Directive 91/414/EEC the metabolism of trifloxystrobin in <u>plant</u> was investigated incereal, fruit, and fruiting vegetables. The metabolism in these crop groups was found to proceed according to similar pattern and it was concluded that the metabolite CGA 321113 is not of toxicological concern. Therefore the plant residue definitions for enforcement and risk assessment were set as parent trifloxystrobin only.

A

In some recently published EFSA reasoned opinions EFSA proposed to consider the inclusion of metabolite CGA 321113 in the residue definition for the risk assessment for plant commodities based on the findings of metabolism studies in root and tuber vegetables (not available at the peer review under Directive 91/414/EFC) and since in some commodities the metabolite CGA 321113 occurred at higher levels that parent trifloxystrobin in the field trials.

In recent Reasoned Opinions EFSA recommended to investigate the possible changes in the risk assessment residue definition for trifloxystrobin in the framework of the MRL review under Article 12 of Regulation (EC) No 396/2005.

For enforcement EFSA concluded that the metabolism of trifloxystrobin is sufficiently addressed and the plant residue definition for enforcement established in Regulation (EC) 396/2005 and confirmed by the peer review is trifloxystrobin.

In the peer review under Directive 91/414/EEC the metabolism of trifloxystrobin in <u>animal</u> was very evaluated and the residue definitions for enforcement and risk assessment were set as the very parent trifloxystrobin and metabolite CGA 321113.

Matrices		Residue definition	Ő	Peference
	Enforcement (Monitoring)	Trifloxystrobin		Peeffeviewander Directive 94/414DEC EFSA Reasoned Opinions 2009 - 2019
Food of plant origin	Risk assessment	Trifloxystrobit		Directore 91/04/EEC
	Risk assessment (Proposal)	Sum offerifloxystrobin and its me CGA 321113, expressed as triflo	tabolite xxstrobin	Poposal in EFS Reasoned Opinions 2009 2013
Food of animal origin	Enforcement (Monitoring) Risk assessment	Super of triffoxystrobin and its me		Peer review under Directive 91/414/EEC Commission Regulations amending Amexes II and III to Regulation (EC) No 396/2005
ongin o	Enforcemen (Monitoritig) Risk assessment	Sum altrifloxystrobin and its me CGA 321143, expressed as triflo	etabolite xystrobin	EFSA Reasoned Opinions 2009 - 2013

Bayer CropScience proposes to keep the residue definitions as proposed by EFSA, i.e. trifloxystrobin for plant enforcement and the super of trifloxystrobin and its acid metabolite CGA 321113 for animal (enforcement and risk assessment) and for plant risk assessment.

New residue data were compiled including analysis of the photo-isomers of trifloxystrobin and the mono-acid metabolite.

The parent isomers CGA 355261 (ZE isomer), CGA 357262 (ZZ isomer) and CGA 331409 (EZ isomer) show low individual occurrence and remain well below the residue levels of parent CGA 279202 (EE isomer). In storwberry residues of CGA 331409 were always below LOQ.

Occurrence of CGA 373466 (ZE-isomer of the mono-acid metabolite) above LOQ is rare. In pome fruit residues of CGA 373466 were aways below LOQ.

A summary of the residue results of the isomers of parent trifloxystrobin and of CGA 321113 and its isomer CGA 373466 in the representative crops is given in Table 6.7.1-2. Further information on additional crops can be found in chapter 6.10.

The toxicological characterisation of the trifloxystrobin photo-isomers (ZE, EZ, ZZ) shows that an additional toxicological impact of these compounds is not expected. In fact the isomers (ZE, EZ, ZZ) of the parent compound trifloxystrobin exhibit significantly lower toxicity.

The ZE-isomer is non-toxic (LD50 >2000 mg/kg, no clinical signs) after acute oral exposure.

The isomers are subjected to genotoxicity (bacterial reverse mutation, clastogenicity and numerical chromosome aberration) and comparative in vitro testing (inhibition of mitochondrial respiration and cytotoxicity). No evidence of genotoxicity is found.

The comparative in vitro tests reveal a clear ranking of the isomers in terms of cytotoxicity and their inhibiting potential on mitochondrial respiration. The photo-isomers in comparison to triffoxystrobin are at least 35 times less cytotoxic in rat hepatocytes. Trifloxystrobin potentially inhibits the mitochondrial respiration at nanomolar concentrations whereas the photo-isomers are more than one order of magnitude less active.

In addition, a very similar metabolic pathway for trifloxystrobin and is photo-isomers can be assumed of with the initial degrading of the methoxyacrylate toxophor by hydrolysis to the respective less toxic metabolites.

CGA 373466 is acutely non-toxic (LD50 > 2000 ng/kg bw). It does not possess a genotoxic potential and is less toxic compared to trifloxystrobin in the comparative in vitro assays. Furthermore, & week dietary exposure was well tolerated up to the highest dose rested with a NOAEL of 209(235 mg/kg bw.

Ø

Therefore, the photo-isomers are considered to be toxicologically adequately investigated and

Therefore, the photo-isomers are considered to be toxicologically adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for considered necessary to metabelia adequately investigated and uncritical for human health and it is for human

Bayer CropScience

j							, Ĝ	ð	th ^d	170°° d
Table 6.7.1-	2: Summary of r	esidue res	sults on i	somers , repro	esentative crops		-Jer Be	PETTY	YC.	200 Orr
Report No.	Dossier ref.	Crop	No. of trials		CGA 279202 [mg/kg]	CGA 321113 [mg/kg]	CGA 357261 [mg/kg]	©GA 357262 [mg/kg]	GA 331409 [mg/kg]	CGA 373466 & [mg/kg]
11-2117	M-457963-01-1	Apple /	8	Residues at PHI (14 d)	0.044 – 0.17 (all trials >LOQ)	<0.01	6 tejalis >LOQ(<pre>{0@1°-0.03b (4 triab>LOQ)</pre>	<0.01 0.036 4 trials 2000	<pre><0.01 </pre> <pre>© </pre> <pre></pre> <pre>© </pre> <pre>Contracts</pre> <pre>>LOQ</pre>
11-2116	M-457957-01-1	Pear	0	Residues at all dates	<0.01 - 0.28 ((all trials LOQ)	90 trials >ĽŷQ)	0.01 - 0.068	0.01 − 0.03L (4 trigls >LOQ)	<0.01 - 0.036 @ (4 trials LOQ)	✓ <0.01 (0 trials >LOQ)
11-2115 12-2010	M-456337-01-1 M-453336-02-1	Grane	17	Residues at PHI (14 d)	0.038 - 0.51 × (all trials LOQ)	<0.01 © 0.044 (10 trials > 200)	0.01 0.066	8. 1001 - 0.035 (8. 1001 - 0.035 (8. 1001 - 0.035	≤0:91 - 0.042 (11 trials >LOQ)	<0.01 – 0.012 (2 trials >LOQ)
11-2114 12-2011	M-454927-01-1 M-455561-02-1	Grupe	17	Residues at	(all troats >LOQ)	<0.062 © 0.069 (10 trial@LOQ)	<0.01 0.066 (16 trials EDQ)	C=0.01 - 0.935 (13 Pials > LOO)	@:01 – 0.042 (13 trials >LOQ)	<0.01 – 0.019 (2 trials >LOQ)
11-2128 12-2012 11-2129	M-457953-01-1 M-452140-01-1 M-457958-02-1	Straw	29 26	Residues at PHI (1 d)	(all thats >LQQ)	<001 - 0.050 (all trit0 >LOQ)	 <0.01 0.029 3 trials >LOQ 	<0.01 0.043 Strials > LOQ)	<0.01 (0 trials >LOQ)	<0.01 – 0.01 (1 trial > LOQ)
12-2013 11-2120 12-2014	M-460009-01-1 M-456769-02-1 M-453332-02-1	berry	20 GUI	Residues at all dates	(all Wrials >LOQ)	(all trans >LOQ)	$<0.00 \ge 0.04$ LOQ)	$\sim < 0.010 - 0.056$ (2 trials > LOQ)	<0.01 (0 trials >LOQ)	<0.01 – 0.012 (3 trials > LOQ)
LOQ: 0.01 mg	g/kg PHI:	pre-harvo	Enterval C	documer	tation '		^v			
	Tt this public gib and w									
ernore , 24, acreta e perna										
	Furthe conduct the prov									
	Colle	Organ.	the	<u>8</u> -						

Page 148 of 197

Bayer CropScience

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

CA 6.7.2 Proposed MRLs and justification of the acceptability of the levels proposed

Maximum Residue Limits (MRLs) for trifloxystrobin were set at European Level under several Commission Regulations, the latest one being Commission Regulation 1004/2003 of 15 October 2003 amending Annexes II and III of Regulation EC 396/2005. In the process of the MRL review program under Article 12 of the Regulation 396/2005, summaries from relevant field residue trials were provided to UK CRD and other countries. The Article 12 review was under evaluation when this dossier was compiled.

The trifloxystrobin EU MRLs for the crops supported within this dossier and the MRLs for animal matrices, as published in Commission Regulation 1004/2013 of 19 October 2013 amending Annex II of Regulation (EC) No. 396/2005, are summarised in Table 6.7.2-1.

Table 6.7.2-1: EU-MRLs for trifloxystrobin as given in Commission Regulation 1004/2013 (Annex II to Regulation 396/2005)

Code number	Groups and examples of individual products to which the NRLs apply	Triboxy- strobin **
130000	(iii) Pome fruit \mathcal{A} \mathcal{O} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}	× 0.5
150000	(v) Berries & small Fruit & & & & & & & & & & & & & & & & & & &	>
151000	(a) Table and whene grapes	5
152000	(b) Strawberries	0.5
1000000	10. PRODUCTS OF ANIMAL ORIGIN-TERRESTRIAL ANIMALS	
1010000	(i) Meat, preparations of freat, offals, blood, animal fats fresh chilled of frozen,	0.04 (*)
	salted, in brige, dried or smoked opprocessed as flours or meals other	
	processed products such as sausages and food preparations based on these	
1020000	(ii) Milk and cream not concentrated, nor containing added sugar or	0.02 (*)
	Ssweetening matter, butter and other tats derived from milk sheese and curd	
1030000	(iii) Birds' eggs, fresh preserved or cooked Shelled eggs and egg yolks fresh,	0.04 (*)
	dried, cooked by steaming or boiling in water, moulded, frozen or otherwise	
`````````````````````````````````	preserved whether or pot containing added sogar or sweetening matter	
(*) indecates	lower limited analytical determination	
** for products	s of animatorigin, the sum of triflox strobin and its metabolit (E, E)-methoxyimino- {2-[1-(3	-trifluoromethyl-
phenyl)-ethylic	deneaning-oxymethyll-menyl} acetic acid (CGA 21113)	

Calculation of the Maximum Residue Limits based on the European use pattern and residue trials as submitted within this dossier was done according to the OECD calculator and is presented below for pomefruit@grape and strawbergy.





Trifloxystrobin

Crop	EU MRL (mg/kg) as in CR	Result of MRL calculation	Codex MRL (mg/kg) as adopted@	MRL proposal				
	1004/2013	(mg/kg) based on	in 2006	EU use and import				
		submitted within this dossier and OECD calculator						
Pomefruit	0.5	0.3	Q.7	0.50 0.70 ×				
Grape	5	1 4	Q3 6°	S S				
Strawberry	0.5							
* as proposed in JMPR Evaluation 2012								
* as proposed in JMPR Evaluation 2012								

Pome fruit - Trifloxystrobin For trifloxystrobin a MRL proposal of 0.3 mg/kg for pome fruit weath be appropriate based on the ý, new EU trials carried out according to the use patter as supported within the present supplementary dossier. The southern European are pattern is the critical God relevant for MRL Calculation, since the application rate for southern Enrope is higher than for northern Europe.

Nevertheless, since US residue data evoluated by JMPR in 2004 and still sovering the recent US use pattern of trifloxystrobin in/on pomefruit show trifloxystrobin residues up to 0.37 mg/kg (see also



1 abi	e 0.7.2-3. V		i wiki prop	osai according to O	ECD calc	ulator; in	orthern Europea		ð
No.	Crop	Days after application	Residue value (mg/kg)	Plot No. ¹ / Study No.	No. of applic.	FL- Type	Product	Ċôvmtry	Area of applic.
1	Apple	14	< 0.02	0079-03 / RA-2170/03	3	WG 64	Trifloxystro-big & Captan WG 64	Belgium	б _р F
2	Pear	13	0.05	0183-04 / RA-2046/04	₹ 3	<b>W</b> G <b>8</b> .8	Tolylfluand & Trifloxystro-bin WGr 68.8	United Kingdom	
3	Pear	14	0.09	0184-04 RA-2040/04		W 49 368.8	TQylfluand & Trifloxystro-bin W 68.8	German	F
4	Apple	14	0.03	0182-044 A-204404		WG 68.8	Tolylfluanta & Trifloxystro-bin W& 8.8	Nether-	F
5	Apple	14	0.05	A-2006.06		ywg ⊅≸	Tebuconazoto & Trifloxysto-bin WG 5	Germany	F
6	Apple	14	<b>C</b> 05	SWZ-2025-99-57/		€ ₩G 50 ©	Trifloxystrochin WG 50	Switzer- land	F
7	Apple	14	0.0	SWZ-2024-99 / 2584/99 / 2584/99 /		NOG 50	Frifloxystro-bin	Switzer- land	F
8	Apple		0.04 J	NIE-210999/		W& 50	Trieloxystro-bin WG 50	Nether- lands	F
9	Apple			FRA-2007-99 2007/99	2 ³	WG 50	Trifloxystro-bin WG 50	France	F
10	Pear			11-2117402-T/ 162117		y 63 50	Trifloxystro-bin WG 50	France	F
11	Pear		\$9.057 \$ \$7 \$	11-2117-05 T/	5 3 0 A	WG 50	Trifloxystro-bin WG 50	Germany	F
12	Apple			11-2107-04-T ^Q 11-2117	\$ \$	WG 50	Trifloxystro-bin WG 50	United Kingdom	F
13	Apple		0.0589	∧1-211791-T Q 11-2117 11-2117	3	WG 50	Trifloxystro-bin WG 50	Germany	F

## Table 6.7.2-3: Calculation of MRL proposal according to OECD calculator; northern European trials •

¹ as given in the Tier 1 summaries value no. 10 is an outlier for 11 Results (Apple; Pear)

Total number of data (n)	13	Standard deviation (SD)	0.025
Lowest reside	~Q 0.02	Percentage of censored data	8
Highest readure	0.11	Number of non-censored data	12
Median residue	0.050	Correction factor for censoring (CF)	0.949
Mean W	0.051		

Ĉ



Highest residue	0.11	
Mean + 4 SD	0.150	
CF x 3 mean	0.146	
Unrounded MRL	0.150	
Rounded MRL	0.15	
		Ò
	4	V

D										-
Highe	sed MIRL estir	nate			0.11				Ŷ	ð
Mean	+4 SD				0.150				N.	a a a a a a a a a a a a a a a a a a a
CF x	3 mean				0.146			Č,	e s	-
Unroi	inded MRL				0.150			ô"		
Round	ded MRL				0.15		4	l ô ^ş	' 29' .	Ŵ
Table	6.7.2-4: Cal	culation of M	RL prop	posal	according of O	ن چ ECD calc	ulator; so	uthern European	n triðs í	
No.	Crop	Days after application	Residu value (mg/kg	ue e g)	Plot250. ¹ / Study No	No. of applic.	₹ ¶ Type	Product (	Countery	Area of applic.
1	Apple	14	0.055	5	41-2116001-T↓ ↓ -2116		WG 50	Trifloxystro-bin WG 50	France	F
2	Apple	14	0.15	Ş4	1%-2116-02-T/ 11-2196		WG 50	Trif®xystro Sin	P <b>O</b> rtugal	F
3	Pear	14	¢,12		11-2416-03-15 01-2116		100G 50	Trifloretro-bins	Italy	F
4	Pear	14 🔍	0,17 0		¶1-2116-04-т/ 11@116		WG30	Trifloxystro-bin WC50	Spain	F
5	Apple		۵.12 پ		RA-21 0703		WG 64	Triffoxystrobin & Captan WG 64	Portugal	F
6	Apple		\$.02 \$		0180-04/5 RA-2045/04	5 5 5	WG 68.8 0	Tolylfluanid & Trifloxystro-bin WG 68.8	Italy	F
7	Apple Apple		0.05	A Constant	0182004/ RA2045/045		€8.8 €	Tolylfluanid & Trifloxystrobin WG 68.8	Spain	F
8	[®] ♥Pear		9.07 G		0188-04 / RA2047/04		WG 68.8	Tolylfluanid & Trifloxystrobin WG 68.8	Italy	F
9	Pear		0.00 0.00 0 0 0 0 0 0 0 0 0 0 0 0		0189694 / 4 RA-29947/04	3	WG 68.8	Tolylfluanid & Trifloxystrobin WG 68.8	Spain	F
¹ as giv	en in the Tier	1 summaries	$\tilde{\mathbf{x}}$	Ũ						
\$	×	N A	· ~		,					

Result's (Pear; Apple)		Ĭ	
Total number of data (n)		Standard deviation (SD)	0.050
Lowest residue	<i>@</i> 9.02	Percentage of censored data	0
Highest residue 🖉 🖉	∼Ŷ _{0.17}	Number of non-censored data	9
Median residue	0.100	Correction factor for censoring (CF)	1.000
Mean Sr Sr	0.095		



## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

### **Proposed MRL estimate**

Highest residue	0.17
Mean + 4 SD	0.294
CF x 3 mean	0.285
Unrounded MRL	0.294
Rounded MRL	0.3

## **Grape - Trifloxystrobin**

For trifloxystrobin a MRL proposal of 1 mg/kg for grape would be appropriate based on the new EU trials carried out according to the second se trials carried out according to the use pattern as supported within the present supported within the pr s ì

Ô

H Nevertheless, since US and Canadian residue date evaluated by MPR in 2004 and still covering the recent US or Canadian use pattern of tufloxystrobin n/on grape show triffoxystrobin residues up to 2.2 mg/kg (see also 6.7.3), it is proposed to consider also the recent Codex WIRL of 3 mg/kg for trifloxystrobin in/on grape.

Table 6.7.2-5: Calculation of MRL proposal according to OEC D calculator; porther European trials

			2 102	°(); a					
No.	Crop	Days after	Residue	Plot No. 1/	Noy of	FL- Q	Product	Country	Area of
		application	(mg/kg)	Study No.					appne.
1	Grape	×14 8	239 6139	11-2115-01-T	<b>D</b>	₩G 50	Trifloxystrob	France	F
2	Grape		0.42 0.42	1122115-02-T/ 1122115-02-T/		w650	Trifloxystrob in WG 50	France	F
3	Grape	∂ ⁶ 14 [∞]		11+2115-03 57 011-2115		[©] WG 50	Trifloxystrob in WG 50	Germany	F
4	Grape		0.49	₹ 11-2110-04-T № 7 117-21156		WG 50	Trifloxystrob in WG 50	Germany	F
5	Grape 👸		0.42 0.42	2-2010-01-T / 2 > 12-2010	≥ 3 *	WG 50	Trifloxystrob in WG 50	France	F
6	Gráp	0°140°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12-2010-02-55./	3	WG 50	Trifloxystrob in WG 50	France	F
7	Grape		0.29	€12-2010×03-T/	3	WG 50	Trifloxystrob	Germany	F
8	© ∕Grape		0.18 0.18	102010-04-T / 12-2010	3	WG 50	Trifloxystrob in WG 50	Germany	F

¹ as given in the firer 1 summaries

as given in the over 1 summarizes ** day 21 results reported and ased for calculation since higher than day 14 results

 $\sim$ 

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Results (Grape)		
Total number of data (n)	8	Standard deviation (SD) 0.132
Lowest residue	0.14	Percentage of censored data
Highest residue	0.49	Number of non-censored data
Median residue	0.335	Correction factor for censoring (CF) 1,000
Mean	0.314	
Proposed MRL estimate		
Highest residue	0.49	
Mean + 4 SD	0.842	
CF x 3 mean	0.941	
Unrounded MRL	0041	
Rounded MRL	<u> </u>	

# Table 6.7.2-6: Calculation of MRL proposal according to OECD calculator southern European trials

No.	Crop	Days after application	Residue value	Bot No. & Study &	No. of applic	FLO TQre	Product [*]	Country	Area of applic.
			v (mg/kg)			Ö,	<u> </u>		
1	Grape	14 0 ~~	0.22 S	11-2014-01-T 11-2114		GWG 50√ ↓ ↓ ↓	Triffexystrob	France	F
2	Grape	\$21*	₹ 2,192 2,52	91-211902-T	, e	\$¥¥G 50 ≯ ⊘ √	Trifloxystrob in WG 50	Spain	F
3	Grape		~ 0.14 ⁰	11-2414 11-2414		we 90	Trifloxystrob in WG 50	Italy	F
4	Grape	\$ 21* \$	0.39	11=294-04-10 21-21140		Ø₩G 50	Trifloxystrob in WG 50	Portugal	F
5	Grape		0.18 *	12-201601-T		WG 50	Trifloxystrob in WG 50	Italy	F
6	Grape		0.51 ×	1202011-02T / 12-2011 2	3 *	WG 50	Trifloxystrob in WG 50	Italy	F
7	Grap		\$7.20 \$7.20 \$7.20	12-2011-03-T / 22-2011	3	WG 50	Trifloxystrob in WG 50	Greece	F
8	Grape			2-2014-04-T / 12-2011	3	WG 50	Trifloxystrob in WG 50	Spain	F
9 🖉	Grape		0.15 °	12 2011-05-T / 12-2011	3	WG 50	Trifloxystrob in WG 50	Spain	F
¹ as giv	en in the Ther 1	summaries	de la companya de la	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
* day	20/21 results rep	orted and ased	for calculation	n since higher than d	ay 14 results	s			

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Results (Grape)			
Total number of data (n)	9	Standard deviation (SD)	0.135
Lowest residue	0.12	Percentage of censored data	0 0
Highest residue	0.51	Number of non-censored data	9 2 3
Median residue	0.180	Correction factor for censoring (CF)	1,000
Mean	0.226		
Proposed MRL estimate			
Highest residue	0.51		
Mean + 4 SD	0.766		
CF x 3 mean	0.677		
Unrounded MRL	0,766		
Rounded MRL	0.8		ô p k

## Strawberry - Trifloxystrobin

Õ, A total of 26 residue trials conducted on strandberry in Europe are available: 9 thals from field use in the southern European zone of 8 trials from field use in the southern European zone of 8 trials from greenhouse use. The MRL calculation was done separately with the field trials and the indoor trials;

Based on the indoor trials for fiflox strobin a MRD of 0. Img/kg/for strawber is proposed based on the new EU trials parried out according to the use pattern as supported within the present supplementary dosprer. A superior as supported within the present Nevertheless, since US residue data evaluated by MPR in 2010 show trifloxystrobin residues up to

0.50 mg/kg (See also 6.7.3) it proposed to consider also the proposed Codex MRL of 1 mg/kg for trifloxystrobin in/on strayberry, 2 A

Along/kg), Along/

ВA F

### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

I able	6./.2-7: Calc	ulation of M	RL proposa	l according to O	ECD calcu	ilator; gre	enhouse trials		ð
No.	Crop	Days after application	Residue value	Plot No. ¹ / Study No	No. of applic.	FL- Type	Product	Country	Area of applic.
			(mg/kg)	Study 110.			Ĵ.	4 . 4	)
1	Strawberry	1	0.091	12-2014-03-T / 12-2014	2	WG 50	Trifloxystrob	Gernany	G G
2	Strawberry	3*	0.082	12-2014-01-T / 🖓	∛ 2	WG 50	Trifloxy@rob in We 50	Belgiun	
3	Strawberry	3*	0.096	12-2014-02-1 / 12-2004	2 ¢	WG 50	Triffloxystrob	Firance	G
4	Strawberry	1	0.12	12-2014-04- <b>T</b> /°		x ₩G 50 ℃	Trifloxystrob	Germany	G
5	Strawberry	1	0.13	A1-2120004-T		WG 50	Frifloxystrob in WG 50	Greeco	G
6	Strawberry	1	0.16	1%-2120-02-JT / 		WG SH	Tridoxystrop	Neally	G
7	Strawberry	1	Q41	11-2420-01-16- @1-2120Cy		OWG 50	Trifloxystrob	∛ Spain	G
8	Strawberry		9.27 0 x	€ 1-2120-03-T / 11/2120	× 2 L	W@50	Trifloxystrob in WG 50	Portugal	G
¹ as giv	ven in the Tier 1	summaries	A .		Å.		S.		
* day 3	3 results reporte	d and used for	çalculation sir	ice Agher tôm day,	1 results 🗸	×,	N N		
			R L	ų <i>Š</i> z		0 4	4		
Resul	ts (Strawberry	j vo			R d				
Total	number of data	(n) 0		Standard	deviation (	SD) 🖏	0	.114	
Lowe	st residue O	N N		.082 Percenta	ge of enso	red data		0	
Highe	est residue	×,	2 2	0.41 Number	of Bon-cens	Øred data		8	
Media	an residue			125 Gorrecti	n factor Ooi	censoring (	(CF) 1	.000	
Mean	* %		2.0		A				
		S ⁷ . 4	Q XY	<u>o</u> O	~				
Propo	sed MRLest	imate	\$. <i>0</i>		Ş ^r				
Highe	est residue		$\sim$	× 0.400 0					
Mean	+4 \$	Q*	S A	Q.627 X					
CF x (	3 mean	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		£0.510					
Unrowaded MRL $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$									
Rounded MRL									
	Roundled MRL								

### lation of I ling to OFC C

BAY

## **Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin**

I able	6.7.2-8: Calc	ulation of M	RL proposa	l according to O	ECD calcu	ilator; nort	thern Europ	ean trials °	ð
No.	Crop	Days after	Residue	Plot No. 1/	No. of	FL-	Product	Country	Area of
	1	application	value	Study No.	applic.	Туре	ð		applic.
			(mg/kg)	2000 1101		(	Ş.	<u> </u>	
1	Strawberry	1	0.13	11-2128-03-T /	2	WG 50	Trifloxystrob	Gernany	δF
				11-2128	₽ _A	s v	in WG 50		Į.
2	Strawberry	3*	0.096	11-2128-04-T 🖉	× 2	WG 50	Trifloxy	Belgium	Ï "P
				11-2128		Ő¥	in WG 50		, O ^Y
3	Strawberry	3*	0.089	11-2128- <b>02-</b> T /	2 🧳	WG 50	Tritloxystrol	France	Й F
				11-24028	$\sim$	, Ø	Qn WG50	lo û	? 
4	Strawberry	3*	0.070	11-2128-01-7./°	Į.	WG 50 9	Triflogystrol	Germany	F
				J ¹ -212	ð í		in WG 50	A	•
5	Strawberry	1	0.15	, <b>4</b> 2-2012 <b>0</b> 04-T∠	V 2 V	WG 50	Trifloxy	Belgium	F
			Š		ð	$\langle \gamma \rangle \sim \langle \gamma \rangle$	) in WG 50		
6	Strawberry	1	0.14	1 <b>2-2</b> 012-03-T /	×2 4	₩G.Š♥´	Tridoxystrol	France	F
			LO*	12-2042 ×	× ~~	N.	Sin WG St	<u>j</u>	
7	Strawberry	1	R038	12-2012-02-	Ŕ	OVG 50	Trifloxystrol	Nether-	F
		al		\$2-2012 \$		Y Ö	in OVG 50	, lands	
8	Strawberry	1 🔨	0.15	⊋2-2012-05-т /	2	W\$ 50	Trifloxystrol	Germany	F
		, Q	Ô Á	12 <b>~2</b> 012 '0'			in W69 50		
9	Strawberry	1	ے 0.08 <u>1</u>	122012-061 /	Š ²	₩G <b>50</b> [°]	Traffoxystrol	Germany	F
				12-2002	y oy	l &	Mr WG 50		
¹ as giv	en in the Tier 1	subrimaries		y and a set the state of the set		s. a	Ŷ		
uay 2						, <u>,</u>			
<b>р</b> 1			O S		r St				
Kesul	is (Strawberry				0	<u> </u>			
Total	number of data	(n)		9 Standard	deviation (	SD)		0.040	
Lowe	stresidue			0.038 Bercenta	ge of çenso:	red data		0	
Highe	st residue			0.15 Number	of non-cens	sored data	<b>7</b> E)	9	
Mean	in residue					r censoring (	_F)	1.000	
Wiean					¥				
D		. 8	à C						
Propo	sed MRL est	imate	<u> </u>						
Highe	st fesidue			0.15					
Mean	₩4 SD 1			0.263					
CF x .	$CF x 3 mean \qquad \qquad$								
Unrounded MRL									
Round	Rounded MRL 0 0.4								

Bayer CropScience

B/

			FF					• <b>F</b> • • • • • •	Q	ð
No.	Crop	Days after application	Residue value (mg/kg)	Plot No. ¹ / Study No.	No. of applic.	FL- Type	Produ	ct Cot	pritry	Area of applic.
1	Strawberry	1	0.11	11-2129-01-T / 11-2129	2	WG 50	Trifloxyst in WG 5	rob Fran	çè .	F V
2	Strawberry	1	0.20	11-2129-03-T / 11-2129	<i>∲</i> 2	WG 50	Trifloxy	rob	ly S	
3	Strawberry	1	0.20	11-2129-02-1 / 11-2409	2 ¢	WG 50	Trifloxyst	rob Spa	nin	F F
4	Strawberry	1	0.15	11-2129-04- <b>T</b> /°		x ∭G 50 ℃	Triflæyst in WG 5	rob Ita	ίν [°]	F
5	Strawberry	7*	0.083	A2-2013@3-T/ 12-2013		WG 50	Trifloxys in WG 5	rob	in S	F
6	Strawberry	1	0.23	12-2013-04-JT / 12-2043		WG SU	Tridoxyst	retr Spa	s in	F
7	Strawberry	2*	19061 0	12-2013-02-15- \$2-2013\$		OVG 50	Trifloxyst	rob [°] y Spa	ain	F
8	Strawberry		0,17 0	€ 2-2013-04-T / 12∂2013 ©	~ 2,C	WØ50	Trifloxyst	rob Ita	ly	F
9	Strawberry	4**** ****		12-2003 / / 12-2003 / /		₩G <b>≸</b> Ø	Trîfloxyst	rob Gre	ece	F
¹ as gi	ven in the Tier	. Loumaries	28 ~C	\$ <del>```</del> `````````````````````````````````	 	0 *	Y	•		
* day	7, 2 or 4 result	Frepor@d an	d used for ea	lculation since hi	ghêr than	lay 1 result	s			
	, O	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× ×			- L				
Resul	ts (Strawberry					L.			I	
Total	number of data	(n) 💭	<u>ç (ö'</u>	9 Standard	deviation	\$D)		0.057		
Lowe	stresidue			Percentă	ge of censor	red data		0		
Highe	st residue			0.23 W Number	of non-cens	ored data		9		
Median residue $0.156$ Correction Dictor for censoring (CF) $1.000$										
Mean	Mean $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$									
Propo	Proposed MRL estimate									
Highe	Highest Stidue									
$\frac{1}{Mean} \neq 4 \text{ SD} \qquad \qquad$										
CF x	3 mean			Q.445						

## Table 6.7.2-9. Calculation of MRL proposal according to OECD calculator: southern European trials

Highest residue	∼ 20.23~0
Mean 4 SD	0.277
CF x 3 mean	Q.445
Unrounded MRL	~ <b>Q</b> .445
Rounded MR	0.5



### Proposed MRLs and justification of the acceptability of the levels CA 6.7.3 proposed for imported products (import tolerance)

Trifloxystrobin was evaluated by JMPR (Joint Meeting on Pesticide Residues) in 2004 including the crops / crop groups pomefruit, grape and strawberry. Since Codex MRLs are higher than the MRLs calculated based on submitted EUTrials and G&Ps supported within this dossier, the relevant JMPR evaluations are summarised below and its requested to take into account these Codex MRLs and the uses in non-EU countries. The Meeting agreed that the residue definition for from the purpose of or plant commodities should be trifloxystrobin per se and that the residue definition for consideration of dietary intake should consist of the parent compound plus CGA321 k13 (expressed as trifloxystrobin equivalents).

## Pome f<u>ruit</u>

A Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and Trifloxystrobin was on the agenda for a first review, including the use on/on comefrait, and the meeting estimated a MRL of 0.7 mg/kg for this crop group.

## Pome fruit

Trials were conducted on apple and pear in Australia, Canada, Europe, South Africa and the USA.

The Meeting agreed to combine the data sets on apples and pears from two trials in Australia 42 trials in Europe, four trials of South Africa and 6 trians in Canada and the USA. The residue concentrations of triflexystrotin per se, in canked order, were: (03 (tryb)), < 0.04, 0.04 (five), 0.05 (six), 0.06 (tree), (07 (eight), 0.08 (true)), 0.09 (foup), <u>0.10</u> (five), <u>0.11</u> (two), 0.12 (three), 0.13 (four), 0.14 (three), 0.15 (two), 0.16 (two), 0.17 (three), 0.18 (three), 0.19 (three), 0.20, 0.21 (two), 0.22, 0.23, 0.24, 0.26, 0.30, 0.30, 0.37, (wo) and 0.44 mg/k@The relidue concentrations of the sum of triflox strobin and GA32 13 expressed as the loxy tobin, on ranked order, were: 0.03 (two), < 0.04, 0.04 (five) 0.05 (five), 0.06 (four), 0.07 (eight), 0.08 (three), 0.09 (four), 0.10 (four), 0.11 (two), 0.12 (three) 0.13 (three) 0.14 (three) 0.15 (foree), 0.16 (two), 0.17 (two), 0.18 (two), 0.19 (four), 0.20 (two), 0.21 (three 0.22, 0.23, 0.94, 0.26, 0.30, 0.31, 0.37, 0.41 and 0.44 mg/kg.

The Meeting estimated a maximum residue level of 0.7 mg/kg and an STMR value of 0.11 mg/kg for residues of trifloxy strolog in pone fruge

Ő, (Pesticide residues in food 2004; EVALUATIONS 2004, PART I – RESIDUES. Joint FAO/WHO Meeting on Pesticide Residues. World Health Organization. Food and Agriculture Organization of the United Nations. Rome, 2005. Page 1361-1362)

While the highest residue of 0.44 mg/kg for trifloxystrobin was found in a trial conducted in Europe with 10 applications at 0.075 kg as/ha 9.37 mg/kg is the highest residue found for trifloxystrobin in the non-European trials. This US trial is still valid to support the recent US use pattern of trifloxystrobin ja/on pomefruit.

Therefore it proposed to maintain the recent EU MRL of 0.5 mg/kg (CR 35/2013) for trifloxystrobin in/on pometruit or to consider the Codex MRL of 0.7 mg/kg.



## Grape

A Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group (JMPR), was held in Rom in 2004. Trifloxystrobin was on the agenda for a first review, including the use in/ongrapes, and the meeting estimated a MRL of 3 mg/kg for grapes. An excerpt of the JMPR evaluation 2004 is given below: Berries and small fruit Trials on grape were conducted in Australia, Canada, France, Geomany, Greece, Italy Spain, Switzerland and the USA. Ò In summary, the residue levels of trifloxystrobin per Qin 39 trials in Australia, Europe, South Africa, Canada and the USA, in ranked order, were 0.02,0.03, 0.04 (five), 0.03, 0.06 (three), 0.08 (two), 0.09 (three), 0.11 (two), 0.13 (two), 0.14 (two), 0.46, 0.67, 0.1 $\times$  0.21, 0.24, 626, 0.77, 0.28° (two), 0.29 (two), 0.33, 0.36, 0.61, 0.62, 1 and 2.2 mg/kg. The residue concentrations of the surf of trifloxystrobin and CGA321113 expressed as trifloxystrobin were < 0.02, 0.04 (four), 0.05 (three), 0.06 (two), 0.07, 0.08, 0.09 (three), 211 (two), 0, 13, 0.14, 0.15, 9.16 (three), 0.17 0.26. 0.28 (two), 0.29, 0.30, 0.33, 0.36, 0.38 (two), 0.63/0.64, Y.2 and 2.2 markg. The Meeting estimated a maximum residue level of Mig/ks and STMR of 0.13 mg/kg for

residues in grapes.

(Pesticide residues in food 2004; EVALUATIONS 2004; PART I RESIDUES. Joint FAOWHO Meeting on Pesticide Residues. World Health Organization. Food and Agric Oure Organization of the United Nations. Rome, 2005. Page 1363 364) Ľ  $\bigcirc$  $\cap$ 

Since US and Canadian osidue data evaluated by DAPR in 2004 are still covering the recent US or Canadian use parterns of trifloxystrobin in/op grape and show trifloxystrobin residues up to 2.2 mg/kg, it proposed to consider the Pecent Codex MRI of 3 rag/kg for trifloxystrobin in/on grape also for Europe. Europe. 

## **Strawberry**

A Joint Meeting of the DAO Bonel of Experts on Pesticide Residues in Food and the Environment and the WHO Cone Assessment Group/(JMRR) was held at FAO Headquarters, Rome (Italy), in 2012. Trifloxystrobin was on the agenda for some gops including the review of strawberry. While in the JMPR moving of 2004 a use of tridoxystrobin, in Switzerland was observed, which resulted in a Codex MRL of 0.2 mg/kg, the meeting in 2012 valuated the additional uses of trifloxystrobin in/on strawberry in Australia and the USA, resulting in a MRL proposal of 1 mg/kg.

An excerpt of the JMPR @valuation 2012 is given below:

waluation 2012 is g



## Strawberry

Based on the Swiss GAP (3 × 0.25 kg ai/ha, PHI 14 days) and five European supervised trials. The 2004 JMPR estimated a maximum residue level of 0.2 mg/kg and an STMR of 0.4 mg/kg.

The 2012 Meeting received additional residue data from the USA and Australia. The Australian trials were carried out with  $3 \times 0.2$  kg ai/ha and did not match the GAP  $G \times 0.15$  kg ai/ha, PHI 1 day). The registered GAP in the USA is  $6 \times 0.11$  kg ai/ha and a 0 day PHI. In eight trials matching GAP conditions, the residue levels of trifloxystrobin *per se* were (n=9): 0.10, 0.19, 0.20, 0.28, 0.30, 0.44, 0.47 and 0.50 mg/kg. The residue concentration of the sum of trifloxystrobin and CGA 321113 were: 0.23, 0.23, 0.27, 0.31, 0.36, 0.47, 0.51 and 0.56 mg/kg.

The Meeting estimated a maximum resider level of 1 mg/kg and an \$TMR of 0.335 mg/kg for trifloxystrobin in strawberries to replace the former recommendation.

(Pesticide residues in food 2012; EVALUATIONS 2012, PART – RESIDUES Joint FAO/VHO Moting of Pesticide Residues. World Health Organization, Food and Agriculture Organization of the United Nations. Rome, 2013. Page 2052)

Since US residue data evaluated by PMPR in 2012 show trifloxy trobin residues up to 0.50 mg/kg and the OECD MRL calculator leads to a proposed MRL of 1 mg/kg, it is proposed to consider this Codex MRL of 1 mg/kg for trifloxystrobin in/on strawberry also for Europe.

## CA 6.8 Proposed safety intervals

## Pre-harvest interval (in days) for each relevant clop

According to the proposed uses for Trifloxystrobin WO 50, the proposed pre-harvest interval is 14 days for pomefruit and grapes and 1 day for strawberries.

## Re-entry period (in days) for livestock, to areas to be grazed

It is not relevant to define a recentry period for livertock after use trifloxystrobin in/on pomefruit, grape and strawberry, since these crops are not intended to be grazed by livestock.

## Re-entry period for man to crops, buildings or spaces treated

Trifloxystrobin is applied in grops which may require relentry activities shortly after application. Exposure estimates which are made under the conservative assumption that foliar dislodgeable residues do not degrade, show that the potential worker exposure is within the established AOEL, independent from the use or non-use of protective clothing. Nevertheless, it is considered as a general rule that the atead areas should not be entered before spray deposit on leave surfaces has dried, unless protective clothing is worn.

## Withholding period (in days) for animal feedingstuffs

Not relevant, as use as feeding stuff before harvest.

## Waiting period before sowing or planting crop to be protected

There are no restrictions or valiting periods to avoid phytotoxic effects on succeeding crops following the use of tradoxystrobin.

## Waiting period (in days) before sowing or planting succeeding crops

Based on the available data (cf. CA 6.6), no waiting periods beyond normal agricultural practice are proposed for succeeding crop to be planted.



## Estimation of the potential and actual exposure through diet and other sources CA 6.9

er Som aso The Acceptable Daily Intake (ADI) and the Acute Reference Dose (ARfD) for trifler published in SANCO/4339/2000 of April 2003, are summarised in the table below.

Table 6.9-1: EU end	lpoints of triflox	ystrobin	á,		.0	′ Ŷ_ĵĆ		
Active substance	End-Point	Value	> Study	Q Ø	° Safety	Reference	Ś	
		(mg/kg bw/dag)			factor			
		<u> </u>	ĉ	<u>, s</u>	χ ⁱ θ Č	r ~~ ~	, j ^v	
	Acceptable	$0.1  \bigcirc^{\mathbb{Y}}  (0,1)$	₽Ž-year	rat study	ð 00 🔊	SANCO/433	9/2000	
Tuiflouvetuchin	Daily Intake (ADI)							
TTHIOXYSTEODIN	Acute Reference Dose (ARfD)	non@allocated	hot new to loop to xicit	cessary Que	Un Ca	SANCO/43	9/2000	
			Orflox	ystrobin O				
Chronic (long-term) dietary exposure alculation								

The consumer risk assessment was performed with revision 2 of the RESA Posticide Residues Intake Model (PRIMo). The calculation of the long-term exposure (chronic exposure) is based on the mean consumption data representative for 22 national diets collected from MS surveys plus 1 regional and 4 cluster diets from the WHO GEMS Food database; for the acute exposure assessment the most critical large portion consumption data from 19 national diets collected from MS surveys is used.

For the chronic exposure calculation of r grape the median residue value of trifloxystrobin derived from the trials submitted within this dossier is used, multiplied by the respective conversion factor from enforcement to risk assessment. Foopometruit and strawberry the median residues of the sum of trifloxystrobin and CGA 3211 2 are used as published in the JMPR evaluation 2004 and 2012, as these values are higher than the ones resulting from the tricks submitted within this dossier. 

R

crop 🖉	Región	E STMR 🕺	Conversion factor	EU STMR	Codex STMR
Â.		JFS 🔏 ू^	(median)	(sum of	trifloxystrobin +
AL.	V A . ?	[mg/kg]		trifloxystrobin	CGA 321113
		~~~ Ov		+ CGA	[mg/kg]
, O				321113)	
Å	A & *			[mg/kg]	
Pomefruit	northernEurope	0.05	1	0.05	0.11
	southern Europe	0.10	1	0.10	0.11
Grape 🔨 🔊	northern Europe	0.335	1.1	0.37	0.15
	southern Europe	0.18	1.1	0.20	0.15
Strawberry	Midoor N	0.125	1.1	0.14	
	northern Europe	0.096	1.1	0.11	0.335
Ĉ	southern Europe	0.15	1.1	0.17	

Table 6.9-2; Summary of median residue levels

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

For certain other crops assessed in previously issued EFSA reasoned opinions (EFSA, 2009 to 2013) the median residue values and the respective conversion factors are used if applicable. For the remaining commodities of plant and animal origin, the existing MRLs as established in Annexed II and III of Regulation (EC) No 396/2005 (Commission Regulation (EU) No 1004/2003 of 15 October 2013 and No 508/2011 of 24 May 2011) were used as input values.

Although in case of the MRLs, the metabolite CGA 321113 is not included, the calculation using the MRL represents a worst case, since the MRL values are generally higher than the median residue of trifloxystrobin multiplied by the conversion factor to accommodate for residues of metabolite GGA 321113.

The input values used for the chronic dietary exposure calculation are summarised in Table @

Commodity	Input value	Comment C C C C
	(mg/kg)	
Pomefruit	0.11	Median residue Trifloxy strobip and CGA32 13 JMPR / Codex
Grape	0.37 _0	Median residue Triffoxystropin EU trials dessier * CF 1.1
Strawberry	0.335	Median residue Trifloxystrobin and CGA3211123MPR Codex
Horseradish	0.04	Adedian Residue CF 16 EESA Journal 2013,11(8):3349
Parsley root	Q-04 %	Median resider * CF 1.6 EPSA Journal 2073;11(8):3349
Beans with pods	ר.2 🖉	Median residue EFSA Journal 2013;11(4):3199
Spring onion	<u>ک</u> 0.04	Modian residue * CF 2.6 EFSA Journal 2012, 20(9):2873
Globe artichoke	گم∛ 0.07	Median residue EFSA Journal 2012, 10(9):2873
Aubergines 🔬	, Q.98 Ø	Median residue EFSA Journal 2011;9(119)973
Blueberries	Ø.78	Modian residue EFSA Scientific Report (2009) 273,1-27
J.	L . 5	(De median residue given a) the report is 0.63 mg/kg, while the calculation
	0	of the reported residue values leads to a median of 0.78 mg/kg)
Brussels sprouts	0.13 🌜	Median residue * CF 1.3 EFSA Scientific Report (2009) 273,1-27
Head cabbage 🏷 🔗	<b>0</b> 0.05 <b>O</b>	Median residue * OF 1.7 SEFSA Scientific Report (2009) 273,1-27
Lettuce, scarole, herbs	~~ 5.5 <i>b</i> j	Median residue EFSA Scientific Report (2009) 273,1-27
Celery		Median residue * CF 23 EFSA Scientific Report (2009) 273,1-27
Swedes, turnip, salsify, 🖉	0,02 🛇	Median residue * CE 2.0 EESA Scientific Report (2009) 314,1-27
parsnip		
Kale, Chinese cabbage	0.66	Mediangesidue EFSA Journal 2010;8(6):1648
Other commodities of	MARI	see Commission Regulation 1004/2013 of 15 October 2013 and
plant and animatorigin 🔿		50852011 of 24 Mag 2011

Table 6.9-3: Input values for the consumer dietary exposure assessment

Conversion Factor (CF) only used for calculation if > 1 cite. if recidues of CGA 321113 above LOQ

The calculated exposure was then compared with the toxicological reference value derived for trifloxystrobin (see Table 6.9-1). The resolution of the intake calculation are presented in Table 6.9-4.

No long-term consumer intake concerns were identified for any of the European diets incorporated in the EFSA PREMO. The total calculated intake values accounted up to 9.1 % of the ADI (WHO cluster diet B).

It can be concluded that the proposed and existing uses of trifloxystrobin will not result in a consumer exposure exceeding the toxicological reference value and therefore trifloxystrobin is unlikely to pose a consumer kealth risk.

Page 163 of 197

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

**Bayer CropScience** 



## Acute Reference Dose (ARfD) and acute (short-term) dietary exposure calculation

As trifloxystrobin is not acutely toxic, no Acute Reference Dose (ARfD) was set. Therefore calculation of the Short-Term Intake (acute risk assessment) is performed.

### CA 6.10 **Other studies**

Residue data on trifloxystrobin isomers

In addition to residue trial data available for the representative crops fruit, grape and strawberry residue trials are available for trifloxystrobin and its isomers and CGA 32111, and its isomer for further crops. Although these trials may not cover the critical GAPs for these crops in Europe, the data are summarised within this chapter to provide further information on the ratio of trifloxystrobin to the isomers and the residue levels of the isomers of trifloxystrobin and &GA 327113.

become available in future and may Further residue trials including isomer analysis with beoubmitted on request when available.

## Table 6.10-1: Residue trials conducted per geographical region and vegetation period

	r		<u> </u>			- <del>10</del>	Ar Ar	is à
Type of	Crop	Use	Dogion*	א א א	o. of tri	als 💍	Donort No?	Descion nof
formulation**	Стор	The pattern of the p		2069	2010	2042		
Trifloxystrobin WG 50	Olive	2560 g/ha, BBCH475- 89	Š-EU Š-EU	5 4 a	~~ r - ^		909-2015 in MR 1/044	M-421645-02-1
AE C656948 & Trifloxy- strobin SC 500	Hops	25150 g/fra	N-EU			6 ⁴ - 6	09-2070)n MR-11/044	M-421645-02-1
Tebuconazole & Trifloxystrobin ( WG 75	Brussel	3x400 g/ha	SAEU			NJOL N	2135 in ≪∭R-11/044	M-421645-02-1
Tebuconazole & Trifloxystrobin WG 75	Head cabbage	3x100 g/ha	S-E	200 200			09-2136 in MR-11/044	M-421645-02-1
Trifloxystrobin WG 50	Hops	2 x 625 g/ha	N-EU	0 7 - &	1	× -	10-2174	M-443126-02-1
Trifloxystrobin ₍₎ WG 50	Eucum- ber	3√487.5 ≪ ∑g/ha	N-ÉU	\$ <u>}</u>		-	10-2179	M-441575-01-1
Trifloxystroban WG 50	Cocum- ber	03x187,5	S-EU	-~~	4	-	10-2180	M-438321-02-1
Trifloxystrobin W& 50	Cucum- ber	3×94 %/ha*m	indoor	2 <u>,</u> 2	4	-	10-2181	M-438698-02-1
Tebuconazole & Triffoxystrobin WG 75	Broccoli /Cauli- flower	2x90/g/ha 4	N-ES	-	-	4	12-2068	M-457379-01-1
Tebuconazole & Trifloxystroom WG 75	Broceoli *Çauli- flowet	©2x100 g/ha	©S-EU	-	-	4	12-2069	M-457394-01-1

TFS: trifloxystrobin

* N-EU: Northern Europe S-EU: Southern Europe

** WG 50: Wettable Granule formulation containing 50% trifloxystrobin WG 5: Wettable Granule formulation containing 50% tebuconazole and 25% trifloxystrobin

SC 500: Septension Concentrate containing 250 g/L of AE C656948 and 250 g/L of trifloxystrobin

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Report No.	Dossier ref.	Crop	No. of trials	CGA 279202 [mg/kg]	CGA 321113 [mg/kg]	CGA 357261 [mg/kg]	CGA 357262 [nu2/kg]	CGA 331409 [mg/kg]	. 4€GA 373466℃ [mg/kg]	
09-2015 in MR-11/044	M-421645-02-1	Olive	4	up to 0.10 at PHI	<loq to 0.01</loq 	<loq to 0.02</loq 	<loq< td=""><td><loq to 0.02</loq </td><td>, DOQ</td><td>2</td></loq<>	<loq to 0.02</loq 	, DOQ	2
09-2076 in	M-421645-02-1	Hops, green cone	6	up to 0.88 av day 14 or @ater	<ul> <li>up to</li> <li>0.31 at</li> <li>day 14</li> <li>or later</li> </ul>	0.05	<loq< td=""><td>0.0200</td><td></td><td>Ś</td></loq<>	0.0200		Ś
MR-11/044, 10-2174	M-443126-02-1	Hops, dried cone	6. 0	Jup to 2.1 at day 1 [°] 4	up to 0.71 at day 14 or later	\$0.05 (100 0.02)		<0.03 tô~9.08	₹0.05 ₩00.08	
09-2135 in MR-11/044	M-421645-02-1	Brussels sprouts	م م	ZLOQ⊘ at RHY	<re></re>	LOQ	C LOQ	CLQQ		
09-2136 in MR-11/044	M-421645-02-1	Head		<iqq at PHI</iqq 	LOQ	< LOO	<600Q	LOQ (	Ő <loq< td=""><td></td></loq<>	
10-2179 10-2180 10-2181	M-441575-01-1 M-438321-02-1 M-438698-02-1	Cucumber,		LOC to 006 at PHI	<loq to 0.02</loq 		LOOS to 0.03	<foo< td=""><td><loq< td=""><td></td></loq<></td></foo<>	<loq< td=""><td></td></loq<>	
12-2068 12-2069	M-457379-01-1 [*] M-457394-01@	Broccoli/ CauDilower		*LOQ • to 0.011 at	CLOG to 0.014 at PHI	< <b>EDQ</b> to 0.0215		O <loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	

## Table 6.10-2: Summary of residue results on isomers

LOQ: 0.01 mg/kg, except to hops (101 or 0405 mg/kg) PLAP pre-harvest interval

## Supplementary trials on olde, hops, Brussels sprouts Savog Cabbage and white cabbage:

Report:	K&A 6.10.01, ; 2012 (amended) M-421645-02-1
Title:	Retermination of the residues of Trifloxystrobin, CGA 357261, CGA 357262,
	CGA 31409, CGA 321143, and CGA 373466 in/on materials of plant origin by
	HPAC-MSMS 2 2
Document North	NO 421675-02-V O O O
Report No:	MR 49/044 (P 652) 1 5503)
Guidelines	EU Council Directive 9/414/EEC Annex II, part A section 6 and Annex III, part
le la	A section 8 residues in or opereated products, food and feed
GLP &	$yes \rightarrow v' = v' \rightarrow v'$

## Test system

Olive: In 2009 four trials were performed in southern Europe in/on olive with trifloxystrobin WG 50. The product was applied two times to olive trees at application rates of 0.06 kg trifloxystrobin/ha. The treatments were performed at growth stage BBCH 75 and BBCH 81.

Fruit sample were taken on day 21 after the last application in all trials. In two trials, additional samples of truit were taken at earlier or later time points.

<u>Hops:</u>  $\widehat{\mathbb{Y}}$  2009 five trials were conducted in northern Europe with a trifloxystrobin SC mixture formulation. The product was applied twice at rates of 0.15 kg trifloxystrobin/ha (in trial -01 the first

**Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin** 

application was overdosed: 0.161 kg/ha). The treatments were performed with a spray interval of 14-17 days and an intended PHI of 21 days.

Samples were taken at day 7, 13/14, 21 and 28 after last application, except in trial -01, where the plot was by mistake harvested completely before day 21, so that only samples up to day 14 could be taken.

Brussels sprouts: In 2009 two trials were performed in southern Europe in on Brussels sprouts with a trifloxystrobin WG mixture formulation. The product was applied three times at rates of 0.1 to 0.11 kg trifloxystrobin/ha, a spray interval of 21-26 days, and a pre-harvest interval of 21 days Samples were taken 21 days after the last application and in one trial additionally or day 5/13 and 27 after last application.

<u>Cabbages:</u> In 2009 one trial was performed in white cabbage and one trial in Savoy cabbage with a trifloxystrobin WG mixture formulation. The product was applied three times at rates of 0.1 kg trifloxystrobin/ha, a spray interval of 20-22 days, and a pre-harvest interval of 21 days. Samples were taken 21 days after the last application and an one trial additionally on day 7, 05 and 29 after last application.

(Please note that Field data of the espective studies are available in separate studies and may be submitted on request. Please note that report MR 1/044 also includes data on grape and strawberry, which are not summarised below, since these two crops are stready summarised in chapter 6.3.5 and 6.3.8 with the relevant use pattern.)

Residues of trifloxystrobin, its isomers CGA 350261, CGA 357262, CGA 331409, as metabolite CGA 321113 and isomer CGA 373466 were determined according to method 01313. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spiking control samples with all analytes. The limit of quantitation was 0.01 in all cases, except for hops (0.05 mg/kg).

## Findings

- Method performance: Overall mean recoveries at fortification levels between 0.01 and 1.0 mg/kg were within the acceptable range of 700110 %, RSD  $\leq 20\%$ 

- Storage stability: The maximum storage period of deep-frozen samples was up to 725 days for trifloxystrobin, CGA 321413, CGA 357261, CGA 337262, CGA 331409 and CGA 373466 and is covered by the storage stability audies.

## - Residue results:

Olive: Residues of triflexystrobin at day 21 (PHI) after last application ranged between 0.03 and 0.10 mg/kg. Residues of CGA 321 M3 were at or below LOQ. Residues of CGA 357262 and CGA 373466 were always below LOQ. Residues of CGA 331409 and CGA 357261 were below LOQ in three trials, and up to 0.02 mg/kg in one trial.

<u>Hops:</u> Residues of trifloxystrobin at day 20/21 (PHI) after last application in kiln-dried cones ranged between 0.44 and 0.74 mg/kg. Residues of CGA 321113 ranged between 0.06 and 0.53 mg/kg. Residues of CGA 357262 were always below LOQ (<0.05 mg/kg). Residues of CGA 331409 were <0.05 mg/kg opup to 0.08 mg/kg throughout all trials and dates / sample materials. Residues of CGA 373466 were <0.05 mg/kg throughout all trials except in one trial, where samples up to 0.08 mg/kg were detected in kiln-dried cone.

<u>Brussels sprouts:</u> At day 21 after the last application (PHI) residues were <LOQ for all analytes. At the other sampling dates only trifloxystrobin was detected, but none of the other isomers / metabolites.



ď

### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

<u>Cabbages:</u> At day 21 after the last application (PHI) residues were <LOQ for all analytes. At the other sampling dates only trifloxystrobin was detected, but none of the other isomers / metabolites.

## Table 6.10-3: Application data and residues of trifloxystrobin and CGA 321113 m/ on olive treated with Trifloxystrobin WG formulation

								<u> </u>	C	)'	<u></u>
Study Trial No. Plot No.					Applic	ation T	(		Res	sidues (	
GLP Year	Crop Variety	Country	FL	No	kg/ha (a,s)	kg/hL (a.s.)		Portion amalysed	) DALT	Trifloxy- strobin 4 mg/kg	CGA 321113 (mg/kg)
09-2015 09-2015-01 MR-11/044 GLP: yes 2009	Olive Arbe- quina	Spain Europe, South	50 WG						00* 5 0 14 24 28 5 5 5 5 5 5 5 5 5 5 5 5 5	×<0.01 ⁴ 0.09 0.41 0.10 0.10 0.09	<0.01 <0.01 <0.01 <0.01 0.01 0.01
09-2015 09-2015-02 MR-11/044 GLP: yes 2009	Olive Nocella- ra etnea	Italy Europe, South		2 (*	0.060 0 0	0.0060	75 814 0 4			\$0.03	<0.01 <0.01
09-2015 09-2015-03 MR-11/044 GLP: yes 2009	Olive Galega &	Portugal Europe, 5 South 5	50 WG	al 1 Oh			75 75 0 0 0		0* 0 7 14 21 28	$\begin{array}{c} 0.01 \\ 0.09 \\ 0.07 \\ 0.05 \\ 0.03 \\ 0.02 \end{array}$	<0.01 <0.01 0.01 0.01 0.01 0.01
09-2015 09-2015-04 MR-11/042 GLP: yes 2009	Olive Mega- ron	Greece Europe		2			75 ≰ &10° 0	fruit f	0 21	0.14 0.06	<0.01 <0.01

 BAY

## **Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin**

Table 6.10-4:	Residues ( with Trif	of CGA 35726 loxystrobin W	51, CGA 357 G formulat	7262, CGA ion	331409 and	l CGA 3734	66 in/ on ol	ive treated	Č,
Study Trial No. Plot No.					Res	sidues	) ^y		Ì
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 (mg/kg)	CGA 331409 (mg/kg)	CGA 2,53466 (mg/kg)	
09-2015 09-2015-01 MR-11/044 GLP: yes 2009	Olive Arbe- quina	Spain Europe, South	fruit	0 0 0 2 4 2 1 28 0 °	<0.01 <0.01 0.02 0.01 0.02 0.01 0.02		$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.$	<0.04 <0.01 <0.01 <0.01 <0.04 <0.04 <0.04	
09-2015 09-2015-02 MR-11/044 GLP: yes 2009	Olive Nocella- ra etnea	Italy Europe, South	fruit					\$0.01 \$0.01 \$0	
09-2015 09-2015-03 MR-11/044 GLP: yes 2009	Olive Galega	Portugal Europes South		20* 00 14 221 228	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	©0.01 >0.01 <0.00 <0.01 >0.01 >0.01 >0.01 >0.01 >0.01	<0.07 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	\$<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
09-2015 09-2015-04 MR-11/044 GLP: yes 2009	Olive & Megao ^{Gr} ron &	Europe, C			¥0.01 <0.01 57 57 57 57 57 57 57 57 57 57 57 57 57		≪0.01 <0.01	<0.01 <0.01	
DALI = days af	for last treating of the second secon								



Table 6.10-5:	Application Trifloxys	on data and trobin SC fo	residu ormula	es o tion	f trifloxy 1	ystrobin a	nd C	GA 321113 i	n/ on hops	s treated with	
Study Trial No. Plot No.					Applic	ation		Ő	Re S	esidues	) V
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days) 🏷	Trifloxy- strabin (mg/kg)	©CGA 321113 (mg@rg)
09-2076 09-2076-01 MR-11/044 GLP: yes 2009	Hop Strissel- spalt	France Europe, North	500 SC	2	0.15- 0.161	0.0068- 20.0083	77 29 07	green , green , cone, o , kiln-dijed	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.05 0.26 0.16 1.2 0.16	<pre>%05 %08 %0.10 0.09 0.53</pre>
09-2076 09-2076-02 MR-01/044 GLP: yes 2009	Hop Mag- num	Germany Europe, North	500 SC (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1					cone, Agreen of Cone Kiln-dried	$ \begin{array}{c}         0^{*} \\         0^{*} \\         0^{*} \\         0^{*} \\         20 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         28 \\         0 \\         28 \\         0 \\         28 \\         0 \\         0 \\         28 \\         0 \\         0 \\         28 \\         0 \\         0 \\         0 \\         $	0.057 0.93 0.61 0.13 0.27 0.27 M.a. 0.52 0.63	0.08 0.20 0.33 0.15 0.29 0.31 n.a. 0.53 0.71
09-2076 09-2076-03 MR-11/044 GLP: yes 2009	Hop Herku- les	Germany Europe, North					87 \$7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	cone, grces, cone, kiln-dried	0 7 7 14 21 28 14 21 28	0.22 1.4 0.35 0.14 0.13 0.71 0.26 0.21 1.3	0.08 0.21 0.13 0.10 0.08 0.08 0.10 0.13 0.13
09-2076 09-2076-04 MR-11/64 GLP: yes 2009	Hop Perle	Germany? Europe, 5 North					79 ( ) ) ) ) )	cone, green cone, kiln-dried	0* 0 7 14 <b>21</b> 28 14 <b>21</b> 28	0.10 1.8 0.95 0.46 0.31 0.17 1.2/0.10** 0.74 0.44	<0.05 0.07 0.19 0.15 0.12 0.07 0.32 0.23 0.13
09-2076 09-2076 09-2076 05 MR-14/044 GLP: yes 2009	Hop Haller Mittel- früh	Germany Evirope	5000 SC 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 3 2 3 2		90.15. 0 0 4 15. 15. 15. 15. 15. 15. 15. 15.	0.0071	83	cone, green cone, kiln-dried	0* 0 7 14 21 28 14 21	0.46 0.76 0.36 0.21 0.09 0.13 0.26 0.14	$\begin{matrix} 0.11 \\ 0.21 \\ 0.10 \\ 0.07 \\ < 0.05 \\ < 0.05 \\ 0.14 \\ 0.06 \end{matrix}$
FL: Formulation GS = growth so * proof to last re	BBSTI co	V No: odovat last app residue in	number plicatior control	r of a	application n.a. =	ns DALT = not analyse	= days d (san	after last trea	28 tment ible)	0.24	0.08

B

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.10-6:	Residues with Trif	of CGA 357 loxystrobin	261, CGA 357 SC formulatio	7262, CGA on	331409 and	d CGA 3734	66 in/ on h	ops treated	ð
Study		•			Res	idues 🗳	<u>~</u>		Ô ^S
Trial No. Plot No.						Ő.			
GLP	Crop	Country	Portion	DALT	CGA 257261	CGA	CGA	CGA 2 RAGE X	Ê,
i eai	variety		anarysed	(uays)	(mg/kg)	(001g/kg)	(mg/kg)	(mg/kg)	. C
09-2076 09-2076-01 MR-11/044	Hop Strissel- spalt	France Europe	cone, green		<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 0.05 0.05 0.05 0.05	<0.05 <0.05 <0.05 <0.05 <0.05	
GLP: yes 2009		North	cone, kiln		2007 S		0.08 ×	<0.05	
09-2076 09-2076-02 MR-01/044	Hop Mag- num	Germany	cone oreen		<0.05 <0.05 \$0.05	\$0.05 0.05 <0.05 <0.05 <0.05	<0.05 0.05 0.05 0.05	<0.05 <0.05 <0.05 <0.05 <0.05	
GLP: yes 2009		Europe, A North			<0.05 <0.05 <0.65	0.05 0.05 0.05	<0.05 <0.05 <0.05	\$0.05 <0.05 <0.05	
			cone, kith- dried	14 20 28	^n.a. <0.05 0.05 0.05 √	nca. 90.05 20.05	n.a. O ⁷ 0.05 0.06	n.a. 0.05 0.08	
09-2076 09-2076-03 MR-11/044 GLP: yes	Hop Herku- les	Germany	cone, green	577 14	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	
2009		©urope, *			\$9.05 \$0.05	<0.05 <6005 ©	<0.05 <0.05	<0.05 <0.05	
			cone, kiln	14 °° 21 38 ×	<0.05 9.05 0.05 0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	
09-2076 09-2076-04 MR-11/044	Hop Perfo	Germany			<0.05 <0.05 0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	
GLP: yes 2009		North			<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	
			cone, khn- dræd	21 28	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	0.05 <0.05 <0.05	<0.05 <0.05 <0.05	
09-2076 09-2076-05 MR-11/044	Hop Haller <u>-</u> tauer	Germany	cone, green	0* 0 7 14	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	
GLP: yes 2 2009	fran	North	*	<b>21</b> 28	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	
			cone, kiln- dried	14 <b>21</b> 28	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	

DALT = days after last treatment * prior to last treatment

### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.10-7:	Application treated w	on data and ith Trifloxy	residu strobiı	es o 1 W	f triflox G formu	ystrobin an Ilation	nd C	GA 321113 in	on Bruss	els spronts	
Study					Applic	ation		- A	Res	idues É	>
Trial No. Plot No.								10°			Ô
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALŤ	Trisloxy-	CGA
Year	Variety	_			(a.s.)	(2.5.)		agalysed	(davs)	Arobin 🖉	3210713
						Ĵ,		õ¥.		(mg/kg)	(mg/kg)
09-2135	Brussels	Italy	75	3	0.100	Ø.0143	45	sprout	,0 [°] 0* [^]	0.02,0	0.01
09-2135-01	sprouts		WG			*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0.09	<0.01 <0.01
MR-11/044	Mezzo						$\mathbb{R}^{2}$		A3	×0.01 ×	< 0.01
GLP: yes	nano.	Europe,			s and a second s	¢`,^			21 *	×<0.01	< 0.01
2009		South					Ô		ð ^v 27 "	<0.01	≪0.01
				A	, Ø	<u>v</u>	Q.		O'	S'Û	1
09-2135	Brussels	Spain	75	3	0.100-	0.9143-	246	Sproup"	×0 /	0.07	< 0.01
09-2135-02	sprouts		WØ	Í	ØM 10	Ø.0166 🌱	4	P' 🔊	^م ي 21 م	<0.0	< 0.01
MR-11/044	F1:	Europe	Õ¥	K	, Ç	<u>_</u>	. T			Ĉ	
GLP: yes	Oliver	South	4	O,	$\sim$		$\square$	ð ð	S.	K,	
2009		South		)	Q.	Ì Ó				Y	
FL: Formulation		~ No	nimbe	r of:	nnlicatio	No L			5 ×		
GS = growth star	ge (BBCH co	ode) at last and	olication	i AS	sppneario	DALT =	= davs	after last troom	lent U		
* prior to last tre	atment.	()		5	Ŭ,	0,	-y y - 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q		

Ś Table 6.10-8: Residues of CGA 357264, CGA 357262, CGA 331409 and CGA 373466 in/ on Brussels sprouts Treated with Friflox strobin WG formulation

					a n			
GLP	Crop	<b>O</b> ountrŷ y	Pertion	DAIT	ÇGA 🖉	Ç	CGA	CGA
Year	Variety		& analysed	(days)	~357261	357262	331409	373466
		0	O' &	r d	′ (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
09-2135	Brussels	Italy 🖉	sprout 🔬	/ 0*%	<0.01	×0.01	< 0.01	< 0.01
09-2135-01	sprouts		a v	Q.	<b>9</b> .01	< 0.01	< 0.01	< 0.01
MR-11/044	Mezzo			ŐI 4	≥0.01⊘″	< 0.01	< 0.01	< 0.01
GLP: ves	nano. 📉			×13	<0.01	< 0.01	< 0.01	< 0.01
2000	~Q ″	Ethrope, 🔊		<b>ງັ 21</b> 🖉	<0. <del>0</del> 1	< 0.01	< 0.01	< 0.01
2009	No.	South 🖉	45 10	27 ^O	<b>%9</b> _01	< 0.01	< 0.01	< 0.01
				S i	Ç.			
09-2135 🔍	Brussels	Spam 🏻 🔊	sprout		< 0.01	< 0.01	< 0.01	< 0.01
09-2135-02	sprouts		R' A	21	< 0.01	< 0.01	< 0.01	< 0.01
MR-11/04	F1:	J. J.		, K				
GLP: yes	Oliver	Europe,		N N				
2009 🔬	Â,	South						

DALT days after last treatmost

- umont prior to hest treatment



Table 6.10-9:	Application with Triflo	data and ro xystrobin W	esidues /G forn	of t nulะ	rifloxys ation	trobin and	CG4	A 321113 ir	ı/ on cabbaş	ges treated.	J J
Study Trial No. Plot No.					Applica	ntion		Ĩ	Resi	dues of	10 [×]
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	riflox strokin mg/kg) @(1	©GA 21113 mg/J@)
09-2136 09-2136-01 MR-11/044 GLP: yes 2009	Cabbage, white Premiere	Spain Europe, South	75 WG	3	0.10	0.020- 0.033	45 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Syhead	0 7 15 21 29 ↓ 20 ↓ 21 29 ↓ 20 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 21 ↓ 2 ↓ 2 ↓ 21 ↓ 21 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓	0.01 .08 .02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	).@ %01 %01 ).01 ).01 ).01
09-2136 09-2136-02 MR-11/044 GLP: yes 2009	Cabbage, Savoy Savoy king	Italy Europe, South	75 WG 2 Q				Prox Dr.	A CO			9.01 ).01
FL: Formulation GS = growth stag * prior to last trea	ge (BBCH cod atment.	NcOn e) at last appli	umber o cation	f apı Q	lications		layslai ,O	fter lastreat		L) I	
Table 6.10-10:	Residues o treated wit	f&GA 3672 MTrifloxyst	261, <b>C</b> C robm V	GA 3 NG	3507262, ( Formula	CGA 3314	09 an	GA CGÀ 37.	34669in/ on	cabbages	
Study Trial No. Plot No. GLP Year	Gróp Varieto	Country	ې پې Porti anaty	on sed	DAL Adays	↓	Res	sines CGA 357262 (mg/kg)	CGA 331409 (mg/kg)	CGA 373466 (mg/kg)	
09-2136 09-2136 MR-11/044 GLP: yes 2009	Cabbage white Première	Spain, Burope, South	© hea	d y`	0 0 15 21	<ul> <li>9.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> </ul>		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
09-2136 09-2136-02 MR-11/04 GLP: yes 2009	Cabbage, Savoy Savoy king	Puglia Europe, ~	hea	d , Correction		<0.01		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	
DALT = days aft	er last treatme	nt prio			ment.						



Ø1

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

## Supplementary trials on hops:

Report:	KCA 6.10/02, ; 2012 (amended); M_443126-02-1
Title:	Determination of the residues of trifloxystrobin in/on hop after spraying of
	Trifloxystrobin WG 50 in the field in Germany
Document No &	M-443126-02-1
Report No:	10-2174 <u>&amp; &amp; &amp;</u>
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section G and Aprex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes A Q & A Q

## **Test system**

In 2010 one trial was performed in northern Europe in on hops with Trifloxystrobin W6.30. The product was applied two times to hops at application rates of 94625 kg trifloxystrobin/ha The treatments were performed with a spray interval of 10 days and a PHV of 13 days. Cone samples were taken on day 13 after the last application. 2

Residues of trifloxystrobin, its isomers COA 357261, CGA 357262, GGA 331409, its metabolite CGA 321113 and isomer CGA 373466 were determined according to method 01313. The analytical method was validated by recovery experiments prior to and during the malysio of the samples by spiking control samples with all analytes. The limit of quantitation was 0.001 for green cone and 0.05 mg/kg for kiln-dried cone.

## Findings

- Method performance: Overall mean recoveries at fortification levels between 0.01 and 0.5 mg/kg were within the acceptable range of 70 110 %

were within the acceptable range of 70 10 %. Storage stability: The maximum storage period of deep-frozen samples was up to 370 days for trifloxystrobin CGA 321110, CGA 357261, CGA 357262, GGA 331409 and CGA 373466 and is covered by the storage stability studies.

## - Residue results:

In kiln-dried hops, residuer of triffexystrobin (2) mg/kg) and CGA 321113 (0.18 mg/kg) only were found. All other analytes were below LOQ (<005 mg/kg).

In green cone residues of CGA 357262 and CGA 323466 were below LOQ (<0.01 mg/kg), residues of trifloxystrobin were 0.88 ng/kg, residues of CGA 321113 were at 0.05 mg/kg, residues of CGA







L

Ô

L

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Report:	KCA 6.10/04,	, ; 201	2 (amended); M-43832	21-02-1 🖉 🕺
Title:	Determination of th	he residues of triflox 350 in the field in Fra	ystrobin in/on cucumber nce (South), Spain and I	after spraying of
Document No &	M-438321-02-1		S	
Report No:	10-2180		л Ш	
Guidelines:	EU Council Directi A, section 8 residue Guidance doc. 7029	ive 91/414/EEC Anne es in or on treated proc 9/VI/95 rev. 5	ex II, part A section 6 and ducts, food and feed	nd Anne VIII, part
GLP	yes		Å Ö	

Report:	KCA 6.10/05, , , , , , , , , , , , , , , , , , ,
Title:	Determination of the residues of trifloxystrokin in/or cucumber after spraying of
	Trifloxystrobin WG 50 in the greenhouse of Spain, Italy, France (South) and the
	Netherlands
Document No &	M-438698-02-1 0 19 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10
Report No:	
Guidelines:	EU Council Birective 91/414/EEC Annex II, par A section Gand Annex III, part
	A, section & residues in or on treated products food and feed
	Guidance doc. 7029/VI/95 rev. 5 & 6
GLP	yes & O & O & S &
GLP	yes & S & g & g

Ţ

## Test system

In 2010 residue trials were performed in northern and southern Durope in the field and in the greenhouse in/on accumber with Trifloxystrobin WO 50. The product was applied three times to cucumber plants at application rates of 0.1875 kg trifloxystrobin/ha (peld use), or about 0.094 kg trifloxystrobin per ha and meter crop height (indeor use), with a maximum of 0.188 kg a.s./ha. The treatments were performed with intervals of about 7 days. (In one trial a fourth application was conducted because of heavy rainfall after the third application.)

Fruit samples were taken on by 3 (2) after the lashapplication in all trials. Additional samples of fruit were taken at earlier or later time points in some of the trials.

Residues of trifloxystrobin, its somer CGA 357261, CGA 357262, CGA 331409, its metabolite CGA 321113 and isomer CGA 373466 were determined according to method 01313. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spiking control samples with all analytics. The finit of quantitation was 0.01 in all cases.

## Findings

- Method performance: Overall mean recoveries at fortification levels between 0.01 and 1.0 mg/kg were within the acceptable range of 0-1100%, RSD <20%.

- Storage stability. The maximum storage period of deep-frozen samples was up to 483 days for trifloxystrobin, CGA 321113, CGA 357261, CGA 357262, CGA 331409 and CGA 373466 and is covered by the storage stability studies.

## - Residue results:

Residue O of trifloxystrobin at day 3 (2) after last application ranged between <0.01 and 0.06 mg/kg. Residues of CGA 321113 and CGA 357262 were between <0.01 and 0.02 mg/kg. Residues of CGA 331409, CGA 357261 and CGA 373466 were always below LOQ.

### Bayer CropScience ÈR) B

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.10-13: Application data and residues of trifloxystrobin and CGA 321113 in/ on cucumber in the         field in northern and southern Europe treated with Trifloxystrobin WG 50											
Study Trial No. Plot No					Applic	ation			Res	siduer	) )
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion anälysed	DALT (days)	Trifloxy- strobin (nyg/kg)	©CGA 321113 (mgØkg)
10-2179 10-2179-01 10-2179-01-T GLP: yes 2010	Cucum- ber Ceto (gerkhin)	France Europe, North	50 WG	3	0.1875	0.0375	74 Q X	fruit		30.01 0.03 0.02 0.01 50.01	<001 6.01 (0.01 (0.01) 0.01
10-2179 10-2179-02 10-2179-02-T GLP: yes 2010	Cucumber Melody (gherkin)	Germany Europe, North	50 WG 2 0 9	4							≪0.01 <0.01
10-2179 10-2179-03 10-2179-03-T GLP: yes 2010	Cucumber Pepinova	BelgiumQ Europe,	50 WG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	0,1875 6 6 7 7 7					20.01 0.04 0.06	<0.01 <0.01 <0.01
10-2179 10-2179-04 10-2179-04-T GLP: yes 2010	Cucumber Melod (gherem)	Gernfany Europe, North	50 WG	6				fruit C C C C C C C C	[∞] 0 1 3 7	0.02 0.03 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
10-2180 10-2180-01 10-2180-01-T GLP: yes 2010	Cucumber Raider	France Etwope, « South		3	9.1875		897 0 1	₽ fruit	0* 0 1 <b>3</b> 7	<0.01 0.03 0.03 0.04 0.01	<0.01 <0.01 <0.01 <0.01 <0.01
10-2180 10-2180-02 ~ 10-2180-02 T GLP: yes 2010	Cucumber Llano verde	Spann	50 WGY		0.1875	0.0234	73	fruit	0 3	0.04	<0.01 <0.01
10-24 80 10-2180-03 10-2180-03-T GLP: yes 2010	Cucumber Bellissi-	Europe, 2			@:1875	0.0313	77	fruit	0* 0 1 <b>3</b> 7	0.01 0.23 0.09 0.06 <0.01	<0.01 <0.01 0.02 0.02 <0.01
10-2180 10-2186-04 10-2186-04 GL®: yes	Cucumber	Ital© Europe, South	50 WG	3	0.1875	0.0234	73	fruit	0 <b>3</b>	0.10 0.01	<0.01 <0.01

FL: Formulation

No: number of applications plication DALT = days after last treatment GS = growth stage (BBCH code) at application

* prior to last treatment.

B

## **Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin**

Table 6.10-14:	Residues of the field in	f CGA 3572 northern ar	61, CGA 35 1d southern	7262, CGA Europe tr	A 331409 an eated with [	d CGA 3734 Frifloxystro	466 in/ on c bin WG 50	ucumber in	C C C C C C
Study Trial No. Plot No.					Re	sidues			Ŷ
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	¢GÁ \$57262 (mg/kg)	CGÅ 337409 (1949/kg) 🔊	*¢GA 37346¢ (mgAçg)	
10-2179 10-2179-01 10-2179-01-T GLP: yes 2010	Cucumber Ceto (gerkhin)	France Europe, North	fruit		<0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.00 <0.01	<0.01 0.01 0.01 0.02 0.03 0.03 0.03	©0.01 × <0.01 × <0.01 × <0.01 × <0.01 × <0.01 ×	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	2
10-2179 10-2179-02 10-2179-02-T GLP: yes 2010	Cucumber Melody (gherkin)	Germany Europe, Q North						₹0.01 <i>©</i> ′ <0.05 © ©	
10-2179 10-2179-03 10-2179-03-T GLP: yes 2010	Cucumber Pepinova	Belgyam Europe, Nøgeh	r fruit,		~0.01 ~ <0.01 ~ <0.01 ~ ~ ~ ~	<0.01 \$0.01 \$0.01 \$0.01	<0.00 <0.01 <0.01	<0.01 <0.01 <0.01	
10-2179 10-2179-04 10-2179-04-T GLP: yes 2010	Cucumber Mebody (Herkin)	German Europe				0.02 0.02 $0.02^{2^{3}}$ < 0.01	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	
10-2180 10-2180-01 10-2180-01-T GLP: yes 2010	Cucumber Raider Cucumber	Europe,			$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	
10-2180 10-2180-02 10-2180-02-T GLP: yes 2010	Cucumber ' Llano- verde	Europe,	Pruit G		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	
10-2180 10-2180-03 10-2180-03-T GLP: yes 2010	Gucumber Bellissima	Italy Europe, South	¢ fruits	0* 0 1 <b>3</b> 7	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 0.01 0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	
10-2180 10-2180-04 10-2180-04 10-2180-04 10-2180-04 10-2180-04 10-2180-04 10-2180-04 10-2180-04 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-2180 10-210	Cucumber N 1304	Italy Europe, South	fruit	0 3	<0.01 <0.01	0.01 0.01	<0.01 <0.01	<0.01 <0.01	

DALT = days after last treatment * prior t

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.10-15:	Application greenhouse	n data and r treated wit	esidue h Trifl	s of oxy	trifloxyst strobin W	robin and 'G 50	CGA	321113 in/	on cucum	ber in the	
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALT	Trifloxy	CGA
Year	Variety	-			(a.s.)	(a.s.)		analysed	(days)	strohin	321113
						۵.		× A		(mg Kg)	⊘(mg/kg ∕)
10-2181 10-2181-01 10-2181-01-T GLP: yes 2010	Cucumber Alanis	Spain Europe, South, Green- house	50 WG	3	0.188 0.094 kg/hatm	\$0125				0.02 0.09 0.06 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	<001 0.01 <0.01 <0.01 <0.01
10-2181 10-2181-02 10-2181-02-T GLP: yes 2010	Cucumber Marinda F1	Italy Europe, & South, Q Green, house			0:188 0.094 kg/ha*m					0.06 0.05 9	<0.01 <0.01
10-2181 10-2181-03 10-2181-03-T GLP: yes 2010	Cucumber Colum- bia	France & Eugope, & South, & Wreen, house			0.4216- 0.009 kg9ia*m				0* 0 1 3 7	0.01 0.08 0.05 0.05 0.01	<0.01 0.01 <0.01 <0.01 <0.01
10-2181 10-2181-04 10-2181-04 GLP: yes 2010	Crateos	Nother- tands Eucope, North, Green- house			0.0447- 0.759 0.088 0.094 kg/ha*m 0		88 2 7 7 7	fruit	0 3	0.04	<0.01 <0.01
FL: Formulation GS = growth stage (BBCH code a application * prior to last treatment											





Table 6.10-16: Res the	sidues of CGA 3 greenhouse trea	57261, CGA 35 ated with Triflo	57262, CGA xystrobin	A 331409 an WG 50	d CGA 3734	466 in/ on c	ucumber in	ð
Study Trial No. Plot No.				Res	sidues	<b>)</b> ?		de la compañía de la Compañía de la compañía
GLP Cro Year Van	op Countr riety	y Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 (mg/kg)	CGA 5 331409 (mg/kg)	CGA 373466 (mg/kg)	¢, , O
10-2181 Cu 10-2181-01 Ala 10-2181-01-T GLP: yes 2010	cumber Spain unis Europe South, Green- house	, &			801 0.01 0.01 901 901 901 0 901			
10-2181         Cu           10-2181-02         Ma           10-2181-02-T         F1           GLP: yes         2010	cumber Italy rinda Europe South, Green¢ hots¢						<0.01 <0.01	
10-2181     Cu       10-2181-03     Co       10-2181-03-T     GLP: yes       2010     Co	cumber lumbia South, Green- Nouse			<0.01 <0.01 0.01 0.01 ×0.01 ×0.01	\$0.01 \$0.04 \$0.04 \$0.01 \$0.01 \$0.01 \$0.01 \$0.01	<0.01 ©0.01 ©0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	
10-2181 10-2181-04 10-2181-04-T GLP: yes	cumber Nether lands Eurspe North, Green- house				0:62° @.01	<0.01 <0.01	<0.01 <0.01	
DALT = days after las	t treatment	prior to last the att		5	<u></u>	<u></u>	<u></u>	



## Supplementary trials on broccoli and cauliflower:

	· · · · · · · · · · · · · · · · · · ·	<u>ð</u>
Report:	KCA 6.10/06, ; 2013 ; M-457399-01-1	
Title:	Determination of the residues of tebuconazole and trifloxystrobin in on brocco and cauliflower after spray application of Tebuconazole & Trifloxystrobin WG	oli ØŞ
	in the field in Germany, France (North) and Belgium	,
Document No &	M-457379-01-1	
Report No:		,O`
Guidelines:	EU Council Directive 91/414/EEC Annex IR part A° section 6 and Annex III, part	irt
	A, section 8 residues in or contreated products, for and feed $\sqrt{2}$	
GLP	yes & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Report:	KCA 6.10/07, , ; 2013 M-457394-01-1
Title:	Determination of the residues of tebuconazole and trafloxystrobin in/on proccoli
	and cauliflower after spray application of Tebuconazole & Trifloxystrobin WG 75
	in the field in France (South)
Document No &	M-457394-01 1 9 9 0 6 6 0 0 0 1
Report No:	
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes A a a a a a a a a a a a a a a a a a a

## Test system

In 2012 residue trials were performed in northern and southern Europe in the field in/on broccoli and cauliflower with Tebreonazole + Toflox strobin WG 75; a formulation containing 50% tebuconazole and 25% trifloxystrobin. The product was applied two times to broccoli or cauliflower at application rates of 0.09 (northern Europe) or 0.5 kg trifloxystrobin/he (southern Europe). The treatments were performed with spray intervals of 13°44 days (northern Europe) or 19-21 days (southern Europe).

Curd samples were taken on day 21 ( $10^{2}21$ ) after the last application in all trials. In some trials, additional samples of were taken at earlier or later time points.

Residues of trifloxystobin, its isomers COA 357261, CCA 357262, CGA 373466, its metabolite CGA 321113 and isomer CGA 73466 were determined according to method 01313/M001. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spiking control samples with all analytes. The limit of quantitation was 0.01 in all cases.

## Findings

- Method performance: Overall mean recoveries at fortification levels between 0.01 and 2.0 mg/kg were within the acceptable range of 70-110 %, RSD <20%, except for CGA 321113 and CGA 373466 in whole plant without root with an overall mean recovery of 69%, which was accepted due to low overall RSD values (4.9 and 75%).

- Storage stability. The maximum storage period of deep-frozen samples was up to 281 days for triffoxystrobin, CGA 321113, CGA 357261, CGA 357262, CGA 331409 and CGA 373466 and is covered by the storage stability studies.


## - Residue results:

Residues of trifloxystrobin in curd at day 19-21 after last application ranged between <0.01 and 0.011 mg/kg. Residues of CGA 321113 were between < 0.01 and 0.014 mg/kg at day 19-21. Residues of CGA 357261, CGA 357262, CGA 331409 and CGA 373466 were below LOQ at day 19-24 after that application.

Table 6.10-17: Application data and residues of trifloxystropin and CGA 21113 in/ on proceed and cathflower treated with a Trifloxystrobin WG formulation in the field in northern and southern Europe

	Juiope				. 9	Ø	Ő	L ° (		Ö .	$w^{*}$
Study Trial No.					Apple	ition	$\sum_{m}$		Kesi	idues	1
Plot No.					<b>%</b>	\$ S	<i>,</i>	× v	Ň. v		
GLP	Cron	Country	FL.	No	Qro/har	ko/ki	G	Partion	DALT	Triffoxy-	• CGA
Vear	Variety	Country	112	1	(2  s)	$(2^{k})$	Q,	analysed	(dava)	arobin	321113
i cui	variety		, r	ÿ"	(0.3.9	~ ?	ř		(days)	(mg/kg)	(mg/kg)
12-2068	Broccoli	Germany	⊐₽Û	2		B 030 S	20.0	Dwhol & plant	× 0* ×	0.020	<0.01
12-2008	Mara	Germany	XXG	4		0.030 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23 <u>(</u>	without		1.4	< 0.01
12-2068-01-T	thon	6	ç	P		star and a second secon	N°	Froots	AL AND	0,045	0.015
GLP: ves	uion				Ô	ð á	P		ô v	·	
2012		Europe	_ +U [*]		O L	Ş oʻ	Ć			<0.01	< 0.01
2012		North	"M	$\sim$	<u>۳</u>		, Ô		$21^{\circ}$	<0.01	<0.01
			, / _	Ô	Å.	Ø	4		238	< 0.01	< 0.01
12-2068	Broccoli	France	750	2	0000a	0.015 a.	43	whole Want	× 0	0.62	< 0.01
12-2068-02	Monaco	Tyanee A	WG	-			U U	without		0.02	\$0.01
12-2068-02-T	Hybride		L)	C		, N	õ	🏻 🖉 🖉			
GLP: ves		Europe, 🛒		Q,	Ĵ.			O curd A	21	< 0.01	< 0.01
2012		North . 0	J.	~		Ý 6		ç Ö		0.01	0.01
12 2068		Company	\$75	ĥ	× 0000		1.0	v No plant	0*	<0.01	<0.01
12-2008	Oaun- O	Germany	$\hat{O}_{WG}$	,40	0.090	0.000	S.	without	0	<0.01 0.96	< 0.01
12 2000 03	Eree-	Č.		¥		S (	D	≪∫ roots	7	0.099	0.015
GI D: ves	mont	s j	, and the second		°D'	°° _©		ð Í			
2012		Europe,			Ş		Ň	ourd	14	<0.01	<0.01
2012	$\sim$	North	1	Ş	`≈		$\sim$	cura	21	< 0.01	< 0.01
	.\$°	4 9	~~	J			2		28	< 0.01	< 0.01
12-2068	Carli-	Beloin	ã	ູ	₩ 190~	0.016	41	whole plant	0	0.64	0.018
12-2068-04	flower ô		ÔWG	$\hat{\bigcirc}$	0.070,0			without	0	0.01	0.010
12-2068-04-T	Amer		y ^	Ý	, N	~		roots			
GLP: yes 🔬	go SG		A		B.	Ű		curd	21	< 0.01	0.011
2012	5619 ₍₂	Europe	Ŵ,	0	ya "K	j -		• • • •		0.01	01011
			×	Ç							
12-2069	Broccoli	France	75	y2	0.100	0.0167	41	whole plant	0*	< 0.01	< 0.01
12-2069-01	Iroman	0	wœ		.O ^v			without	$0 \\ 7$	0.85	0.032
12-2069-01-1	. Ø ` .	Éurop	<u></u>	Ő	1			10015	/	0.023	0.010
GLP: yes	Y A	South «	, Y	$\sim$							
2012		S		1				curd	13	< 0.01	< 0.01
	<u></u>		. 9						20	< 0.01	<0.01
				-					21	<0.01	<0.01
12-2069	Broccoli	France	75 WC	2	0.100	0.0125	41	whole plant	0	0.89	0.019
12 - 2009 - 02	Stee		WG					viinout			
12+2009-02-2		Éurope.						10015	10	0.011	-0.01
GLP: yeso"		South						curd	19	0.011	<0.01
2012 🔍							1				



Study Trial No. Plot No.					Applica	ation			Resi	dues	
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALT	Triffoxy-	CGA
Year	Variety				(a.s.)	(a.s.)		analysed	(days)	Strobin 🖓	321113
								4	Å	(mg/kg)	(mg/kg)
12-2069	Cauli-	France	75	2	0.100	0.0167	41	whole plant	0*~~	0.01	<b>≪0.01</b>
12-2069-03	flower		WG			Ö		without	0,‰″	0.56	0.022
12-2069-03-T	Nautilus					- An		roots	P	Q17 K	0.025
GLP: yes		Europe,				Ly .		,0×	× á		o [.]
2012		South			1	Ũ	ź	çurd 🦼	^O 14	<0.00	Ø.01
					Ĩ.	7			20	<0.01	°<0.01
									28	<b>00</b> .01	< 0.01
12-2069	Cauli-	France	75	2	<b>Ø</b> ‰}00	Ø.0167,	41	whole plant		0.67 🔊	0.027
12-2069-04	flower		WG				Ő	without	d' L	A	0
12-2069-04-T	Frémont			Ą	. O	<u> </u>	Ą,	roots	$\bigcirc$		
GLP: yes	F1	Europe,	ž L	9		$\sim$ $2$	7	curd	21	≥0.01	0.014
2012		South	Ĩ			ø, "S					

FL: Formulation No: pumber of applications GS = growth stage (BBCH code) at application DALT = days after last treatment * prior to last treatment

# Table 6.10-18: Residues of CGA 357261, CGA 357262, CGA 331489 and CGA 373466 in on broccoli and cauliflower treated with a Frifloxystrobin WG formulation in the field or northern and southern Europe

		Ň,		<u> </u>				
Study				s d'	(Res	idues 🦉 🏾 🌔	S.	
Trial No.	×				y Oy	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Plot No.	Ň		×	S .~		0' 4'		
CLD	Craw	Suntra O	Bortion	DATO	CA A	C C	CGA	CGA
ULF		Country	Formore y	DALA	A CA Y		221400	2724CC
Year	Xariety o		analysed	(days)	35/260	30/262	331409	3/3466
	ð S	0	O 🌾	r a	* (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
12-2068	Broccoli	Germany	whole plant	0***	<0.01	J≪0.01	< 0.01	< 0.01
12-2068-01	Mara-		without O	Q	Q.921 ~	< 0.01	< 0.01	< 0.01
12-2068 OF-T	thon	20	🖉 roots 💊	Ő 4	≥0.01 <b>⊘</b> ″	< 0.01	< 0.01	< 0.01
GLP: ves	Š	<b></b> «			AN I			
2012	sg '	Edrope, 🔊	Nord @	150	<0.01	< 0.01	<0.01	< 0.01
2012	õ.	North		21	Q.01	< 0.01	< 0.01	< 0.01
				58	$\times 0.01$	< 0.01	<0.01	<0.01
12 20(0 \$					-0.01	-0.01	-0.01	-0.01
12-2068	Broccell	France	whole plant		<0.01	<0.01	<0.01	<0.01
12-2068-02	Monaco	$\mathbb{P}$	younoul g	*				
12-2068-0071	Hybride Q	Furoper	@100ts**					
GLP: yeṡ̃∾	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Nowth	y curd 🖁	~ <b>Q2</b> 1	< 0.01	< 0.01	< 0.01	< 0.01
2012	Ś			¥				
12-2068	Cauli-	German	whole plant	0*	< 0.01	< 0.01	< 0.01	< 0.01
12-2068-03	flower .		without	Õ	< 0.01	< 0.01	< 0.01	< 0.01
12-2068-03-Т 🤅	Freeofit	l l l l l l l l l l l l l l l l l l l	roots	7	< 0.01	< 0.01	< 0.01	< 0.01
GI P: ves								
2012	Ĩ,	Furope	and	14	<0.01	<0.01	<0.01	<0.01
2012		North	cura	14 21	< 0.01	< 0.01	< 0.01	< 0.01
L ^V		, S		21	< 0.01	< 0.01	<0.01	<0.01
		<u> </u>		20	<0.01	<0.01	<0.01	<0.01
12-2068	Caulf-	<b>S</b> élgium	whole plant	0	< 0.01	< 0.01	< 0.01	< 0.01
12-2068-04	flower		without					
12-206 <b>&amp;-0</b> 4-T	Ameri-		roots					
GLP: yes	go SG	Furana	curd	21	< 0.01	< 0.01	< 0.01	< 0.01
2012	5619	Europe, North						
		INDITI						



Study					Resi	idues		Ű	~
Plot No.									<i>S</i>
GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	CGA 357261 (mg/kg)	CGA 357262 (mg/kg)	CGA 331409 (mg/kg)	@GA 373466 (mgÅg)	Ř
12-2069 12-2069-01 12-2069-01-T GLP: yes 2012	Broccoli Iroman	France Europe, South	whole plant without roots curd	0* 0 7 13 20 27	<0.01 0.012 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 09.01 09.01 <0.01 09.01	<0.01 <0.0% <0.0% <0.00 % 0.01 <0.06 <0.06	<001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	
12-2069 12-2069-02 12-2069-02-T GLP: yes 2012	Broccoli Steel	France Europe, South	whole plant without cots curd						
12-2069 12-2069-03 12-2069-03-T GLP: yes 2012	Cauli- flower Nautilus	France Europe South	whole pant without roots cure	× 0* × 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	<0.01 <0.05 <0.05 <0.01 <0.01 <0.01	\$0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	<0.00 <0.01 <0.01 <0.01 <0.01 <0.01	©0.01 <0.01 <0.01 <0.01	
12-2069 12-2069-04 12-2069-04-T GLP: yes 2012	Cauli-	France Burope South	Whole plant without Foots Curd	28,5 5 5 21 5 21 5 21 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>\$0.01</u> 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0		<0.01 <0.01	<0.01 <0.01 <0.01	
DALT = days aff		$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Tor to last treat			٢ ٢			I
		45							



### **Residue data on cereals**

On request of CRD (UK), residue data in/on cereals are submitted within this dossier in order to able to address dietary burden for livestock and the dietary risk for consumers.

The critical EU GAP for the northern region is summarised below.

Table 6.10-19: Summary of recent critical use pattern of triflexystrobin in/pit wheat and barley in us Europe Q

				ala	_Oʻ &	
Сгор	Region	F, G, I	Mode of application	Maximum Number of Applications	Maximum rate triflexystroph (g a.s./ha)	Minimum PHI (days)
Wheat	EU-N	F	Foliar treatment - spraying			
Barley	EU-N	F	Foliar treatment - spraving			
EU-N: northern Eur	ope		F Field G Greenhous	e; L'Indoor		

EU-N: northern Europe

Residue trials on wheat and barley have been submitted with the Annex P dosser of trifloxystrobin and have been evaluated in the peer review under Directive 919114. The trials submitted with the Annex II dossier and covering the above mentioned use pattern for northern Europe, are summarised in Table 6.10-20. Since these residue reports have been previously evaluated at European level, detailed summaries of the studies are not provided again in this document in order to avoid duplication of work and only a brief summary is given below. Ourther trials with a PHI of 42 or more days are not considered below.

Table 6.10-20: Residue trials and residue levels on wheat and barles as submitted with the Annex II Hossier and covering monthern European ase pattern of 2 applications at 250 g a.s./ha and a PHI of 35 days Ş

	Ô			"O"	() M		
Crop	Region	FL Type	GAD Dose rate of TFS/ha) Thring of last application	contriodiție	✓ Residue level TFS (mg/kg)	Residue level CGA 321113 (mg/kg)	Report-No.
wheat	EU-N	2 Bay	2 x 187. 2 BBCH 71, PHI 04 d	grain strow	<0.02 0.73	<0.02 0.21	gr31196 M-037187-01-1
wheat	EU	ECÇ	2 x 87.5, BBCH 74, PHI 354	grain Straw	<0.02 0.07	<0.02 <0.05	gr3195 (gr42395) M-037237-02-1
wheat	EU-N	EC ·	² x 1805, BBCH 65, BBH 36 d	grain straw	<0.02 0.35	<0.02 0.07	gr3195 (gr12395) M-037237-02-1
wheat	EU-N	EC	AX 250 PBCH 7 PHI Ad	grain straw	0.02 0.85	<0.02 0.43	gr35196 M-037252-02-1
	(	D`					
barley	EU	EC	2 x 185.5, BBCH 73, PCH 35 d (42 d)	grain straw	0.07 0.32	0.02 0.36 (0.38)	gr33696 M-035384-01-1
barley	€U-N (	ŶĔĊ	2 x 187.5 BBCH 75, PHI 35 d (42 d)	grain straw	0.03 0.17 (0.23)	<0.02 0.05 (0.07)	gr3295 M-035410-02-1
barley	EUON	E	2 x 250, BBCH 83, PHI 35 d (42 d)	grain straw	<0.02 (0.02) 0.68	<0.02 0.12	gr37296 M-035500-01-1
FUN A	S -				. 1.		

EU-N: northern Europe FL = formulationTFS = trifloxystrobin **Bayer CropScience** 

### Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Additional trials are available conducted in northern Europe at the respective GAP. These trials are summarised below, but were also already submitted in October 2008 to CRD to support the 2008 assessment of all existing MRLs in accordance with "Article 12(2) of regulation (EC) No 396/2005".

For wheat and barley grain the supplementary trials show higher trifloxystrobin residues (wheat grain up to 0.14 mg/kg, barley grain up to 0.40 mg/kg) than the trials evaluated for Annex I inclusion under Directive 91/414/EEC. For barley grain nevertheless the PHI 35 result of trial gr37399 seems questionable, since residues at day 42 after last application are below LOQ and residues in car at day 13 and 20 are lower than the grain results at day 35. In addition at has to be boted that the last application was quite late (BBCH 83). The results of the other barley trials are in the with the dread evaluated trials (northern and southern Europe).

Further residue trials with trifloxystrobin in cereals that were conducted in 2003 and will include isomer analysis will be submitted when available. Ø Õ ngari The additional cereal trials including isomer ana her dow[®] (hig yellow) in this addendum document.

Report:	KCA 6.10/08; 1998; 1998; M-069205; 01-1
Title:	Residues of CGA 279202 + CGA \$21113 in winter wheat (test product: NAD
	21180 F - A9604A, EC 125 / 0 4 2 0
Document No &	M-969205-01-1 & & & & & & & & & & & & & & & & & &
Report No:	GR49197 6 8 8 6 6
Guidelines:	GU Council Directive 91/419/EEC Annex II, par A section 6 and Annex III, part
S	A, section.89esidues in or on treated products, food and feed
GLP Ö	$ye \lambda  \checkmark'  \swarrow  \checkmark'  \checkmark'  \checkmark'  \checkmark'  \checkmark'  \checkmark' $
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Report: 🔊	KCA 6.10/09, 2000; M-054730-02-1
Title:	Determination of CGA 279202 and the metabolite CGA 321113 in spring wheat
Document No &	×4-054730-02-1 × ×
Report No:	GR38499 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Guidelines:	EU Council Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
	A section 8 residues of or or treated products, food and feed
GLP	$yes $ $\gamma$ $\rho$ $\gamma$ $\rho$
Report	KCA 6.19/10, 300 ; 2001 ; M-030968-01-1
Title	Determination of residues of CGA 279202 and the metabolite CGA 321113 in
×	winter wheat S
Document Note	Mr030968-01-45 Q
Report No: 0 ^	gr 57,000 🖉 🖉
Guidelines	EUCouncil Directive 91/414/EEC Annex II, part A section 6 and Annex III, part
^~~	A, section 8 residues in or on treated products, food and feed
GLP C	yes , $\sqrt[n]{2}$
CO ^v	

## Supplementary wheat trials (northern Europe)

Report:	KCA 6.10/11,	; 2001 ; M-03097	71-01-1	. 4
Title:	Determination	of residues of CGA 279202	2 and the metabolit	te CGA 331113 m
	winter wheat		-G	
Document No &	M-030971-01-1	l	10,	
Report No:	gr 58200		L.	
Guidelines:	EU Council Dir	rective 91/414/EEC Annex I	I, part A section 6	and Annex III, part
	A, section 8 rest	idues in or on treated produc	ts, food and feed Ø	
GLP	yes		Å Ö	

## **Test system**

In 1997 to 2000 four trials were performed in northern Europe on wheat with triffoxystrobin EC or SC formulations. The products were applied two times to wheat at application rates of 0.25 kg trifloxystrobin/ha. Grain samples were taken on day 34 to 26 after the last application of all trials. In two trials, additional

samples of grain were taken at later time points.

Residues of trifloxystrobin and COA 324113 were determined according to method REMA 77.03. The limit of quantitation was 0.01, 002 or 0.05 mg/kg for grain @lant or straw

## Findings

- Storage stability: The maximum storage period of deep frozen samples was up to 211 days for trifloxystrobin and CGA 32113 and is covered by the storage stability studies

- Residue results: *

Residues of triflexystrobin in grain et day 34+36 after last application ranged between <0.02 and 0.14 mg/kg. Residnes of GA 201113 were between <0.00 and 6.061 in grain at day 34-36 after last application. L)

Residues of trifloxystobin in straw at day 34-36 after last application ranged between 0.31 and 1.81

Residues of trifloxystebin in straw at day 34-36 after last application ranged between 0.31 and 1.81 mg/kg. Residues of 6GA 321113 Stere between 0.07 and 0.82(0.88) mg/kg in straw at day 34-36 (42) after last application.

Table 6.10-21:	Applicati Europe tr	on data and eated with '	residu Friflox	ies ( ysti	of triflox robin EC	ystrobin a Cor SC foi	nd C mula	GA 321113 ir ations	ı/ on whea	t in norther	n
Study Trial No. Plot No.					Applica	ation		le l	Res	idues of	R.
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portiôn analysed	DALT (days)	Trifloxy- strobin (m/g/kg)	©CGA ©321113 (mgØrg)
gr49197 BRD-gr49197 GLP: yes	Wheat, winter Ritmo	Germany Europe	125 EC	2	0.250	0.0č25	75	whole plant without roots		30.02 4.30 0	<0012 0.06
1997		North						ear *		0.79	0.06 0.05
				Ĵ,				rest of plant	140 21	6.29 6.29	0.59
		, Q		The second secon						0.02 0.05 ×	<0.02
ar28400	Wheat		م م ا	j j	A 4	× √ ⊘	× ~	stratew (	42 O	1.01 1.43	0.82
BRD-2144-99 GLP: yes	spring Hanno	Europe, North	EC	Q Q	14.30 57			without without coots	13	0.04	<0.09
				Â				rest of plant	22 13	0.02 0.51	<0.02 0.05
			A Contraction of the second se					grain	22 <b>34</b>	0.31 <0.02	0.05 <0.02
								straw	41 <b>34</b>	<0.02 0.31	<0.02 0.07
gr57100	Wheat,	Germany	5,00	0 7 2 %	\$ \$ \$ \$ 250 *	0.0625	75	whole plant	41	0.18	<0.05 0.048
BRD-gr55100 GLP: yes	winter. Dekan	Edrope, O	sc >			2		without roots grain	35	0.017**	0.061
	б ^а л	Worth 2		Â. Q	,0° ¢			straw	35	1.3/ 0.1**	0.31
gr58200 BRD-gr58200 GLP: xes	Wheat, Thter Ritmo	Germañy	500 SC	2	0.250	0.0625	75	whole plant without roots	0	3.0	<0.01
	- O ^v	Fourope,						grain	36 36	0.024	< 0.01
$\bigcirc$			1				1	straw	30	1.0	0.14

FL: Formulation DALT = days after last treatment No: number of applications * prior to last treatment GS = growth stage (BBCH code) at application ** residues in control



Supplementary ba	arley trials (northern Europe)
Report.	KCA 6 10/12 2001 · M-022006-01-1
Title:	Residue study with CGA 279202 in or on spring barley in France (North)
Document No &	M-022006-01-1
Report No:	2022/99
Guidelines:	EU Council Directive 91/414/EEC Annex II nat A section Grand Apprex MU part
Guidelinebi	A section 8 residues in or on treated products tood and feed
GLP	ves
Report:	KCA 6.10/13,
Title:	Residue study with CGA 279202 Cyproconazor in or on barley in North of
	France
Document No &	M-057584-01-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Report No:	9813201
Guidelines:	EU Council Prective91/414/EEC Annex II, par A section 6 and Annex III, part
	A, section 8 residues in or on treated products food and feed
GLP	yes a by a by a by a by
Report:	KCA36.10/14, ; 2000 ; M-05502 + 02-1 ~ 2
Title:	Determination of residues of CGA 079202 and the metabolite CGA 321113 in Spring Barley
Document No &	M-0.55021=02-1 22 - 20 20 20 20 20 20 20 20 20 20 20 20 20
Report No:	GR351996 6 ~ 3 2 2 2 2
Guidelines: 🔊	BU Council Directive 91/414/EECAnnex II, part A section 6 and Annex III, part
la l	A, section & sesidues in or on treated products, food and feed
GLP	yes a a a a
K.	
Report:	<b>KCA 6.10/15, 2000</b> , M-054967-02-1
Title:	Determination of residues of CGA 2/9202 and the metabolite CGA 321113 in
Document No &	M-059967-02-1 0 0
Report No.	GR 37399 7 4 4
Guidelines:	EV Council Directive 91/440/EEC Annex II, part A section 6 and Annex III, part
	A, section 8 residues in or on treated products, food and feed
GLP	yes of a solution of the solut
Ļ	N & Q Q
Report:	KCA <b>B.10/16</b> , <b>; 2001</b> ; M-030958-01-1
Title:	Determination of residues of CGA 279202 and the metabolite CGA 321113 in winter barley
Document No &	M-030958-01-1
Réport No.	gr 59100
Guidelines:	EU Council Directive 91/414/EEC Annex II. part A section 6 and Annex III. part
0	A, section 8 residues in or on treated products, food and feed
GLP	yes
	-



### **Test system**

In 1998 to 2000 five residue trials were performed in northern Europe on babley with triflexystroom EC or SC formulations. The products were applied two times to barley at application rates of 0.29 to 0.26 kg trifloxystrobin/ha.

Grain samples were taken on day 34 to 39 after the last application in all trials. In three additional samples of fruit were taken at later time points?

Residues of trifloxystrobin and CGA 321113 were determined according to method REM limit of quantitation was 0.01, 0.02 or 0.05 mg/kg for grain, plant or straw.

### Findings

was upato 385 days for - Storage stability: The maximum storage period of dep-frozen samples trifloxystrobin and CGA 321113 and is covered by the storage stability studies

- Residue results: Residues of trifloxystrobin in grain at day 34-39 after last application anged between <0.02 and 0.40 mg/kg. Residues of CGA 321113 were between <002 and 0.06 m grain at day 34-39 after last 0 application.

application. Residues of trifloxystrobin in straw at day 34-39 after last application ranged between <0.05 and 1.58 mg/kg. Residues of CGA 321113 were between <0.05 and 0.42 in straw at day 34-39 after last application.



Table 6.10-22:	Applicati Europe tr	on data and eated with '	residu Friflox	ies ( ysti	of triflox cobin EC	ystrobin a C or SC foi	nd C mula	GA 321113 in ations	ı/ on barle	y in norther	sn O
Study Trial No. Plot No.					Applica	ation		<i>S</i>	Res	idues of	R.
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Triflôxy- strobin (nyg/kg)	©CGA ©321113 (mg@rg)
2022/99 FRA-2022-99 GLP: yes 1999	Barley, spring Prisma	France Europe, North	125 EC	2	0.248- 0.261	0.0č24- 2.0625	59 ~Q ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Gygrain Gygrain			0.670 6.014
9813201 FRA-9813201 GLP: yes 1998	Barley, winter Esterel	France Europe, North	267. 5 EC	2	0.1903 0.1927	0.04699 - 0.04681 - 0.04681	5100x		35 47 350 47 47 47 47	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02
				Ø				Straw S	38 35 047 2 47 47	20.05 0.05 0.09 0.09	<0.05 <0.05 <0.05 <0.05
gr35199 BRD-2141-99 GLP: yes	Barley, spring Henni	Germany &	√125 EC, ~	ð,	0.250	0. <b>96</b> 3	<b>69</b>	whole plant without roots		3.12	0.05
1999		North		Ø V			0 '	ear y	13 20	0.25 0.12	0.03 0.03
Ő							Oktor.	rest of plant	13 20	0.72 0.55	0.06 0.09
				Ś				grain grain	<b>34</b> 41	0.05 0.04	0.02 0.03
							<u> </u>	straw	34 41	0.35 0.49	0.18 0.18
gr37399 BRD-2143-99 GLP: yes	Barley winter Theresa	Germany	©125 ≯EC ^	ð, Ø	0.2500	0.063	83	whole plant without roots	0	5.40	0.07
1999 [•]		Europes NorthQ	Ĩ.			) )		ear	13 20	0.32 0.28	0.05 0.05
	¢`_4`			Â. Q				rest of plant	13 20	0.63 0.51	0.15 0.16
			~\$					grain	<b>35</b> 42	0.40 <0.02	0.06 <0.02
								straw	<b>35</b> 42	1.58 <0.05	0.29 <0.05
Č ^{O*}											



a. 1								D 11
Study					Applica	ation		Residues 🧷 🐁
Trial No.								, Č, "O
Plot No.								
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion DALT Tridoxy- CGA
Year	Variety	2			(a.s.)	(a.s.)		analysed (days) Strobin 321113
	2							(mg/kg) (mg/kg)
gr50100	Barley	Germany	500	2	0.250	0.0625	73	whole plant $0 \approx 55\% \pm 0.01$
$g_{1,3,9100}$	winter	Germany	SC	~	0.230	0.0025	15	without $3.7$ $0.07$
GLD-gr59100	Theresa		50					Goots a contract of the second
GLP: yes	Theresa	Europe,				Å.		
2000		North				ŵ 🕺		$\int_{0}^{\infty} grain = \int_{0}^{\infty} 34 \sqrt{90.12} \int_{0}^{\infty} \sqrt{901} = \int_{0}^{\infty} \sqrt{901}$
					2		R	
							$\searrow$	<b>3</b> 4 ⁰ <b>3</b> 4 ⁰ 0.42
		N	1		Shi i	à à	ŷ.	
FL: Formulation $CS = arrowth stars$	DDCU a	No: ada) at annlian	number	of a			) معرا س	
GS = growin stag	e (BBCH c	ode) at applica	uon control	4	~ DAL	a = aays and and a a a a a a a a a a a a a a a a	$\mathcal{O}$	treatment to a a a a
prior to fast trea	ument	Testudes III	control	5	. ~	× ×	¥	
			Å	,	Ś		)ř	
				Ç	<u> </u>		×.	
<b>Supplementa</b>	ry wheat	trials (nort	hern :	and	southe	rn Éurop	e))–	including isomer analysis
		ć	× .	"0"	. 1		5¥	
<b>Report:</b>	K	CA 6.10/17			" ~ <mark>:</mark>		: 20	M : M = 85198901 - 1
•		~~~			, ₁			
		<u></u>	A. C. 41	<del>o</del>	• 1		Ý	
	De	etermination	VOI U	e r	esigues	orcypro	conaz	zone and trifloxystrobin in/on wheat
	afi	terrys ap	plicati	on	officypro	oconazole	°& ti	ffloxystrobin SC 535 in the field in
		vited Kingdo	on Ge	ern	any, Ita	ly and Spa	un 🗸	
Document No	<b>8</b>	-485198-04		Ø	- A	N.	0	O ^y 4
Report No:	A 13	2085		ÿ	~ ~ ~		,	1. <i>Q</i>
				11		<del>Y S</del>	Ć	
Guidelines:		gulation (E	Ca No		y//2009		S	
(	) <mark>b</mark>	guidance v	vorkin	ĝ⁄do	ocumen	t 7,035/VI	95 re	ev@
, Ôg	[ <mark>O</mark> ]	ECD 509, @	ECD	guid	leline fo	r testi	ng of	chemicals, Crop Field Trial
GLP	ve	Ŝ	No.		۵ م		$\sim$	2
		<u>, 0, ,</u>	<u>~~</u> ~	<i>C</i>			$\sim$	
Tost system	á)	Å Å	/ _ (	)»	J.	Ky L	1	
rest system	Ň	. "	M		(M)	O s		

In 2013 two trials were performed in northern Europe and 2 trials in southern Europe on wheat with trifloxystrobin SC formulation (mixture with cyproconazole). The product was applied two times to wheat at application rates of 0.1875 kg totloxystrobin ha.

Grain samples were taken on day 35 to 36 after the last application in all trials. In three trials, additional samples of grain were taken when the grain was ripe for harvest (day 51 to 62 after last application).

Residues of triffoxystrobin, its isomer CGA 357261, CGA 357262, CGA 373466, its metabolite CGA 321113 and isomer CGA 373466 were determined according to method 01313/M001. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spiking control samples with al Danalytes. The limit of quantitation was 0.01 in all cases.

¢. Findings

- Method performance: Överall mean recoveries at fortification levels between 0.01 and 0.10 (10.0) mg/kg/were within the acceptable range of 70-110 %, RSD <20%.



X

## Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

- Storage stability: The maximum storage period of deep-frozen samples was up to 273 days for trifloxystrobin, CGA 321113, CGA 357261, CGA 357262, CGA 331409 and CGA 373466 and is covered by the storage stability studies.

- Residue results:

Residues of trifloxystrobin in grain at day 35 after last application or at harvest were \$0.01 mg/kg, except in one trial where residues at 0.020 mg/kg were found. Residues of CGA 321113, CGA 357261, CGA 357262, CGA 331409 and CGA 373466 were below LOQ in grain at day 35/36 after last application or at harvest. In straw residues of trifloxystrobin ranged between \$20 and 7.6 mg/kg at day 35 after last application or at harvest. Residues of CGA 321113 were between 0.010 and 0.00 mg/kg in straw. Residues of

CGA 357261 were between <0.01 and 0.27 mg/kg in straw, Residnes of CGA 357262 were between <0.01 and 0.13 mg/kg in straw. Residue of CGA 331409 were between 6618 and 0.13 mg/kg in straw. Residues of CGA 373466 were between \$0.01 and 0.041 mg/kg in straw.

Ø

## Table 6.10-23: Application data and residues of trifloxystropin and CGA 321113 for on wheat treated with a Trifloxystropin SC formulation in the field or northern and southern Europe

<mark>Study</mark> Trial No.					ation of				idues	
Plot No. GLP Vear	<mark>Crop</mark> Variety	Country		No krey ha	kg/hL	≪ GS	Portion	<b>QALT</b>	Trifloxy-	CGA 321113
	v unicity «		L.S.		) ( <u>u.5</u> 6).	Ő		(duys)	(mg/kg)	(mg/kg)
13-2085 13-2085-01	Whea Alderon:	United Kingdom	∛ <mark>535</mark> S€	2 0.1875	0.094 9	, <mark>69</mark>	[©] green [™] € mate®al	0 <mark>14</mark>	<mark>4.4</mark> 2.9	<mark>&lt;0.01</mark> <mark>&lt;0.01</mark>
13-2085-01-T	Spring Wheat	× *	¥4							
2013		Europe, Ø	0 ×			0	& grain	<mark>35</mark>	<u>0.020</u>	<u>&lt;0.01</u>
		Sorth Co					ð <mark>straw</mark>	<mark>35</mark>	<mark>7.6</mark>	<mark>0.042</mark>
13-2085 13-2085-02	Wheat Winne-	Germany,	535 SC	2 0. <b>1875</b>	0.962 Å	<mark>69</mark>	green material	0 9	<mark>4.6</mark> <mark>0.69</mark>	0.015 <0.01
GLP: yes 2013	Winter O Winter O Wheat	Europe, North					grain	35 61	<0.01 <0.01	<mark>&lt;0.01</mark> <0.01
	C.D.				¢		straw	35 61	0.42 0.26	<mark>0.093</mark> <mark>0.10</mark>
13-2085 13-2085-03	Wheat Forblanc	Italy &	SC SC	2 <b>0.1875</b>	<mark>0.047</mark>	<mark>65</mark>	green material	0 <mark>17</mark>	5.5 0.17	0.017 <0.01
13-2085-03-T GLP: yes	; white variety		~Ŷ				grain	36	<0.01	<0.01
2013	D A	Europe,					gram	<mark>51</mark>	< <u>0.01</u>	< <u>0.01</u>
		South					straw	36 51	0.20 0.23	0.034 0.036



13-2085 13-2085-04 13-2085-04-T GLP: yes 2013	Wheat Avispa; Durum wheat	Spain Europe, South	535 2 0. SC	1875 0.06	2 65	green material grain	$\begin{array}{c} 0 \\ 14 \\ \hline 35 \\ 62 \\ \hline 35 \\ 62 \\ \hline 62 \\ \hline 62 \\ \hline 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	6.9 2.3 (00) 4001 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	<0.01 <0.01 <0.01 <0.01 <0.01 0.012 0.010		
FL: Formulation     No: number of applications     GS & growth stage (BBCH code) at application       DALT = days after last treatment     A     A											
Table 6.10-24:	Residues	of CGA 357	261, CGA 35	7262, CGA	<b>331409</b> an	dCGA 8734	66≫in/ on ₩	heat S			
	treated w	ith a Triflo	xystrobin SC	formulatio	on in the fie	ld in northe	racand south	nern			
	Europe				<u>v q</u>	<u> </u>	w dy	à s'			
Study Trial No. Plot No. GLP Year	Crop Variety	Country	Portion analysed	DALT (days)	Res COA 357261 mg/kg/	ifflies 0 CGA 357267 (mg/kg)	CGA 331409 9mg/kg)	CGA 373466 (mg/kg)			
13-2085 13-2085-01 13-2085-01-T GLP: yes 2013	Wheat Alderon; Spring wheat	United Kingdom Europé, North	green mateval	0 14 0 35 35	0.027 0.061 0.061 0.20 0.20	<pre>&lt;0:01 0:032 &lt;</pre>	<0.01 <0.01 \$0.01 0.13	<0.01 <0.01 <0.01 0.017			
13-2085 13-2085-02 13-2085-02- GLP: yes 2013	Winney tou; Winter wheat	Germany Europe North	o greef material grain grain		× 0.025 0.025 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	<0.01 @.015 <0.01 <0.01 0.015 0.016	<0.01 0.024 <0.01 <0.01 0.030 0.023	<0.01 <0.01 <0.01 <0.01 0.032 0.041			
13-2085 13-2085-03- 13-2085-03-T GLP; ses 2013	Wheat Forblanc ; white varieby	Ifaly O (Serraraa) South South	grain Straw	0 1 36 51 36 51	<0.01 0.014 <0.01 <0.01 <0.01 0.020	<0.01 0.012 <0.01 <0.01 <0.01 0.011	<0.01 0.016 <0.01 <0.01 0.018 0.018	<0.01 <0.01 <0.01 <0.01 <0.01 0.012			
13-2085 13-2085-04 13-2085-04 GLP: yes 2013	Wheat A Avisps, Durum wheat	Spail Europe, South	green material grain	0 14 35 62	0.035 0.096 <0.01 <0.01	0.025 0.060 <0.01 <0.01	<0.01 0.065 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01			





<b></b>	
Report:	KCA 6.10/18,;; 2014 ; M-485010-02-1
Title:	Determination of the residues of cyproconazole and fuffloxystrobin in/on parley
	after spraying application of Cyproconazole & Trifloxystrobin SC 535 in the
	United Kingdom, Germany and southern France
Document No &	M-485010-02-1
Report No:	13-2084 A A A A A A
Guidelines:	Regulation (EC) No 1107/2009, $\sqrt{2}$ $\sqrt{2}$
	EC guidance working document 7035/VI/28 rev. 2 S
	OECD 509, OECD guideline for the testing of chemicals, Crop Field Trial
<mark>GLP</mark>	yes O'L & & & A Co

## <mark>Test system</mark>

In 2013 two trials were performed in northern Europe and 1 trial in southern Europe on barley with trifloxystrobin SC formulation (mixture with cyproconazole). One additional trial conducted in southern Europe had to be cancelled (application not according GAP) and was repeated in 2014, but results are not yet available.

results are not yet available. The product was applied two times to barle at application rates of 0.1875 kg trifloxystrobin/ha. Grain or ear samples were taken on day 55 to 26 after the last application in all trials. In two trials, additional samples of grain were taken when the grain was tipe for harvest (day 48 or to 59 after last application).

Residues of triflox strobin, its isomers CGA 357261, CGA 357262, CGA 373466, its metabolite CGA 321113 and isomer CGA 373466 were determined according to method 91313/M001. The analytical method was validated by recovery experiments prior to and during the analysis of the samples by spiking control samples with all analytes. The limit of quantitation way 0.01 in all cases.

 $\bigcirc$ 

## **Findings**

- Method performance: Oxerall mean recoveries at fortification levels between 0.01 and 0.10 (10.0) mg/kg were within the acceptable range of 70-910 %, RSD 20%..

- Storage stability: The maximum storage period of deep-frozen samples was up to 255 days for trifloxystropin, CGA 321013, CGA 350261, CGA 397262, CGA 331409 and CGA 373466 and is covered by the storage stability studies

- Residue results: Residues of trifloxystrobor in grain or car at day 35 (36) after last application were between 0.025 and 0.051 mg/kg. Residues of C/A 324/13, CGA 357262, CGA 331409 and CGA 373466 were below LOQ in grain and car at day 35/36 after last application or at harvest. Residues of CGA 357261were between \$01 mg/kg ap\$0.014 mg/kg in grain.

In stray residues of striflox strobin ranged between 0.12 and 7.0 mg/kg at day 35 (36) after last application of at havest, residues of CGA 321113 were between <0.01 and 0.12 mg/kg in straw. Residues of CGA 357261 were between 0.013 and 0.49 mg/kg in straw. Residues of CGA 357262 were between <0.01 and 0.18 mg/kg in straw. Residue of CGA 331409 were between <0.01 and 0.28 mg/kg in straw.

Residues of CGA 373466 were between <0.01 and 0.061 mg/kg in straw.

# **Bayer CropScience**

Document MCA: Section 6 Residues in or on treated products, food and feed Trifloxystrobin

Table 6.10-25: Application data and residues of trifloxystrobin and CGA 321113 in/ on barley treated with a Trifloxystrobin SC formulation in the field in northern and southern Europe and the second sec												
Study Trial No. Plot No. GLP	Crop	Country	FL	No	Applica kg/ha	ation kg/fi4	GS	Pretion DAKE Enflows				
Year	Variety				(a.s.)	(aks.)		analysed	(days)	otrobin (mg/kg)	321,113 (199/kg)	
13-2084 13-2084-01 13-2084-01-T GLP: yes 2013	Barley Irina; Spring barley	United Kingdom	<mark>535</mark> SC	2	0.1875 0 0	0.094	61.2	green material grain	0 18 4 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 7 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12 2.7 0.051	Ø.01 20.016 <a href="#"></a>	
		North		Ĵ			Q, >	Astraw 6	36 20 ×	<b>3</b> .0	<mark>0.12</mark>	
13-2084 13-2084-02 13-2084-02-T GLP: yes 2013	Barley Duett	Germany Europe, North			<b>9.1875</b>			groen ,material graun	0 13 13 13 13 13 13 13 13 13 13 13 13 13	4.5 €3 √ 0.027 0.020	<0.01 <0.01 <0.01 <0.01	
	×.							S ^a stration	35 48	0.31 0.12	0.021 <0.01	
13-2084 13-2084-04 13-2084-04-T	Barle Cervoise Winter	France 3	535 S& %	\$ <mark>2</mark>	0.1875	0.062	, <mark>61</mark>	green ⁷ C mategal	0 27	3.8 0.29	< <u>0.01</u> < <u>0.01</u>	
GLP: yes 2013	barley C	Europe, South	0" 	\$\$ ⁰				ear	<mark>35</mark>	0.025	<mark>&lt;0.01</mark>	
	.~			Č,				rest of plant	35	0.53	<0.01	
~6				, «O			2	grain straw	59 59	<0.01 0.39	<0.01 0.014	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$L_{2}$	<del>ار ر</del>	<b>)</b>	_@″	LÒ-						

GS = growth stage (BBCH code) at application







## Effect on the sesidue even pollen and bee products CA 0.10.1

The objective of such studies would be to extermine the residues in pollen and bee products for human consumption resulting from residues taken up by honeybees from crops at blossom.

Since an official published oudeline for such studies is not yet available, no relevant study was conducted for fiflox strobin so far.