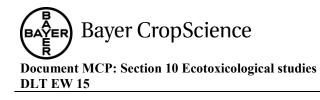


OWNERSHIP STATEMENT

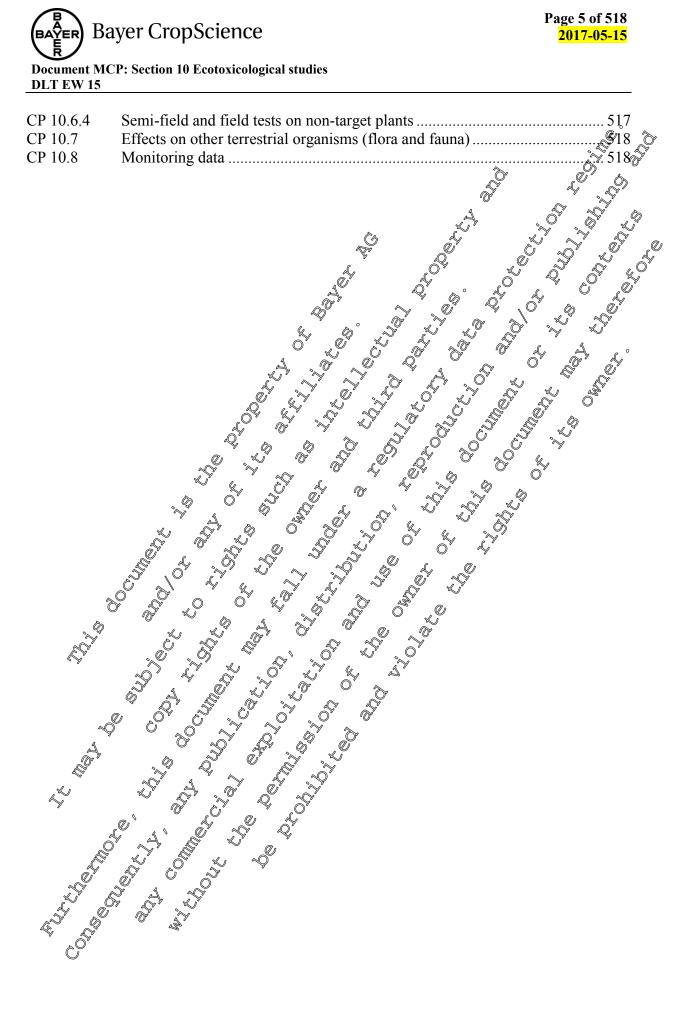
This document, the data contained in it and copyright therein are owned by Bayer CropScience No part of the document or any information contained therein may be disclosed to any third

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken beaution authority. Other registration on the summaries and evaluation of the assessment undertaken beaution beautions and the summaries are based on the summaries And summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amond, or renew a registration basis of the summaries and evaluation of unpublished authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data convinced to the document unless they have



Version history

	Version history	
Date	Data points containing amendments or additions ¹ and brief description	Document identifier and
<mark>2015-11-04</mark>	Update of Point CP 10.3.1.5 and author list	<u>M-480040-02-1</u> ~ ~ ~
<mark>2016-05-20</mark>	Update of Point CP 10.3.2.4 inclusion of study M- 408272-01-1 and the summary	
<mark>2017-05-15</mark>	Update of Point CP 10.3.2 with docuemnts <u>M-5575880</u> 01-1 and <u>M-588250-01-1</u>	<u>M-48004004-1</u> 59 57 57
2017-05-15	Update fo Point CP 10.2 inclusion of document MQ	<u>M-486040-05-1</u> Q Q Q


¹ It is suggested that applicants adopt a similar approach to showing evisions and yersion fortory as outlined in

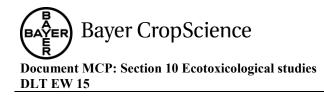

It is suggested that applicants adopt a similar approach to showing the single and yes ion for or us outlined in SANCO/10180/2013 Chapter 4 How to revise an escessment Report Additions to the document after the Completeness Checkare highlighted in yellow. Content of the completeness Checkare highlighted highlighted in yellow. Content of the completeness Checkare h

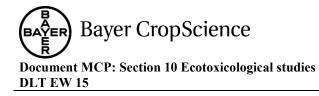
Table of Contents

	Table of Contents	0
		ê de
		Page
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION	\$
	PRODUCT	<u>.</u>
CP 10.1	Effects on birds and other terrestrial vertebrates	ž9&
CP 10.1.1	Effects on birds	Þ
CP 10.1.1.1	Effects on birds	Q5 0
CP 10.1.1.2	Higher tier data on birds	215.0
CP 10.1.2	Effects on terrestrial vertebrates other than birds	
CP 10.1.2.1	Acute oral toxicity to mammals	
CP 10.1.2.2	Higher tier data on mammals	20
CP 10.1.3	Higher tier data on mammals	20
CP 10.2	Effects on aquatic organisms	
CP 10.2.1	Acute toxicity to fish avaiatic pyestebrates or effects on acuatic algae and	×
01 10.211	macrophytes	× 54
CP 10.2.2	Additional long-term and chronic toxicity studies of fish aquatic invertebr and sediment dwelling organisms.	ates
01 10.2.2	and sediment dwelling organisms	61
CP 10.2.3	Further testing on aquatic organisms	61
CP 10.2	Effects on arthropods	
CP 10.3.1	Effects on bees 4.	
CP 10.3.1.1	Acute toxicity to bees a final first and final first and	111
CP 10 3 1 1 1	A cute or all to the provide the provided a set of the	111
CP 10 3 1 1 2	Acute contact toxicity to bees 5	133
CP 10.3.1.2	Chronic toxicity to bees	
CP 10 3 1 3	Effects on hopey bee development and other baney bee life stages	142
CP 10 3 1 4 &	Effects on honey bee development and other koney bee life stages Sub-lethal effects A	143
CP 10 3 1 5	Cade and Minnel tests	. 143 147
CP 10.3 % 6	Field tests with honestees \mathcal{O} \mathcal{O}	366
CP 10.3.150	Effects on non-target arthropods other than bees	. 500 //16
CP 10.3.2.1	Standard laboratory testing for non-target arthropods	. 410 122
CP 10.3.2.1 CP 10.3.2.2		
CF 10.3.2.2	Extended laboratory testing, aged residue studies with non-target arthropod	15 1/17
CP 10 3 2 3	Semi2field studies with non-target arthropods	. 44 / . 183
CP 10.3.2.4	Field studies with non-target arthropods	. 403
CP 10.3.2.4 CP 10.3.2.5	Other Autos of explanator per forget arthropods	. 403 511
CP 10.5 2.5 CP 10.4	Other routes of exposure for non-target arthropods Effects on non-target soft meso- and macrofauna	. J I I 511
CP 10.4 CP 10.4.1	Energy of the source of the source and macrorauna	. J I I 51 I
CP 10.4.1.1 CP 10.4.1.1	Earthworms & sub-lethal effects	. J I I 512
CP 10.4.1.1	Earthworms - field studies	. 313 512
CP 10.4.1.2	Early wornes - new studies.	. 313
CP 10.4.2	Effects of non-target fil meso- and macrofauna (other than earthworms)	. 313
CP 10.4.2.1	Species Level Stating.	. 313
CP 10/4.2.2	Higher tier testing	. 313
CP k0.5	Effects on soil nitrogen transformation	. 515
CP\$10.6	Effects on terrestrial non-target higher plants	
CP 10 6.1	Summary of screening data	
CP 10.6.2	Testing on non-target plants	
CP 10.6.3	Extended laboratory studies on non-target plants	. 31/

CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **PRODUCT**

Use pattern considered in this risk assessment

Table10-1:	Intended application pattern
------------	------------------------------


CP 10	ECOTOXI PRODUCT		AL STUDIE	S ON THE	PLANT PROTECTION
J <mark>se pattern c</mark>	considered in t	his risk asses	sment		
able10- 1:	Intended app	lication patter	n		A . 67 89 .9
Сгор	Timing of application (range)	Number of applications	Application interval [days]	Maximum Vlabel rate (range) [L/ha]	Maximum application rate individual treatment (range)
Sugarbeet	BBCH 10-49	1		0.55	
Cauliflower	BBCH 10-49	2	0 ⁴ 14	20.5 ×	\$ 7.5 A
Wheat	BBCH 10-83	2 %		y 0,42 4	A 6.25 6

Ô

Definition of the residue for risk assessment Justification for the residue definition for risk assessment is provided in MCA Sec.7, Point 7.4.1 (anvironmental matrices) and MCA Sec.6 Point 6,7.1.

Table 10- 2:	Definition of	the residue f	or rist as	ses@nent 🔗
	0		(())	

8	
Compartment	Besidue Definition
6	Deltamethrin (AE F032640) Br ₂ CA (AE F108565, cis), f
Soil Ô	B_{12} CA (AEF108565, cis) (2) (2) (2) (2)
~~	Besidue Definition A Deltamethrin (AE E032640) A Br2CA (AE F108565, cis) A meBacid (AE F009036) A Deltamethrin (AE F032640) B Br2CA (AE F108565, cis) B meBacid (AE F009036) B Deltamethrin (AE F032640) B Br2CA (AE F108565, cis) B meBacid (AE F108565, cis) B meBacid (AE F109036) B Deltamethrin (AE F032640) A MeBacid (AE F109036) B MeBacid (AE F109036) B MeBacid (AE F108565, cis) B
Å	Deltamethring AE F032640
Groundwater	Br_2 (AE 108565 , cis)
Groundwater	mpBacid $\mathcal{O}_{XE} F109036$ $\mathcal{O}_{Y} = \mathcal{O}_{Y} = \mathcal{O}_{Y}$
w w	meBacid (AE F 09036) Deltamethrin (AE F 032640) Br ₂ CA (AE 108565, <i>cis</i>) mPBacid (AE F 109036) Deltamethrin (AE F 032640) Deltamethrin (AE F 032640)
	Alpha-Ř-isomér of deltamentrin (RÉ F 198569)
- V	Transeisonner of dottamethrin (ASE 0035073)
Surface water	4 OH-Deltamethrin (AE 0035082)
and	$Br_2CACAE F 08565 (cis)$
sediment	Trans ² isomer of deltametarin (AE 0035073) 4 OH-Deltametarin (AE 0035082) Br ₂ CA (AE F 08565 <i>cis</i>) BrCA isomer 1 (code not given)
L. C.	BrçA isomer 2 (code not given)
	Seriny BrCA BCS-QW 57835)
	BrCA isomer 2 (code nor given) Serinyl-BrCA BCS-OW 57835) mPBaeid (AL F109036)
Air @	D_{o} Doltomonthering (AT $E O 22640$)
Plant	Deltamethrin (AE F032640)
	Deltametrin (AE F032640)
, O ^Y , O ^Y	
N R	A X
A Q	

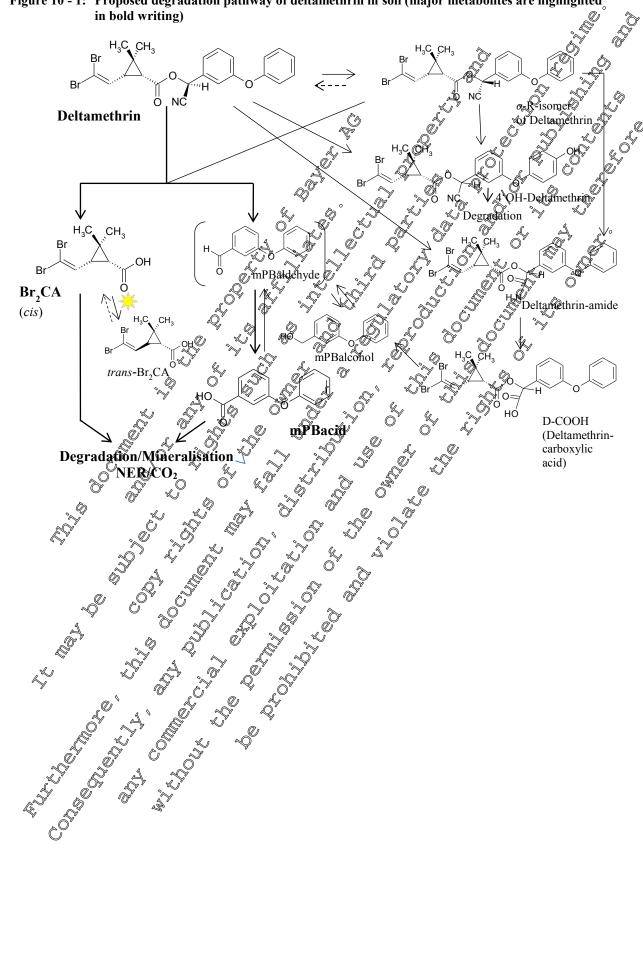
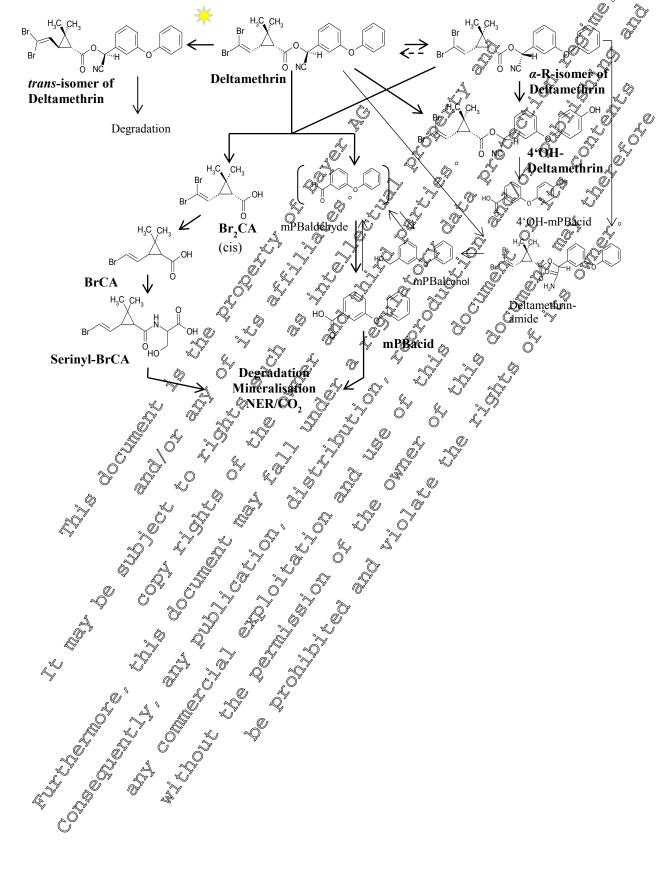
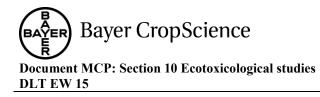
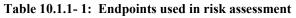




Figure 10 - 1: Proposed degradation pathway of deltamethrin in soil (major metabolites are highlighted in bold writing)

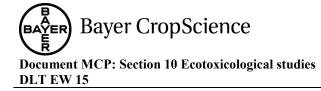
BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15


Figure 10 - 2: Proposed degradation pathway of deltamethrin in water and sediment

CP 10.1 Effects on birds and other terrestrial vertebrates

EFSA Journal 2009; The risk assessment has been performed according to "European Food Safety Authority; Guidance" Document on Risk Assessment for Birds & Mammals on request from EFSA" (EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438).

CP 10.1.1 Effects on birds



			e	Ň	
Test substance		Specie s	Endpoint	EU(agreed endpoint° (Review Report 6304/VJ/99-finat)	References of the second secon
Deltamethrin	Acute risk assessment	Canary	LD ₅₀ A mg, 45/kg by		(2013) M <u>-444452-061</u> KGX 8.1.k.J/03
	Long-term risk assessment	Bobwhite quail	NOEL 55 mg as/kg bw/d ^A	Trest E	(1991) <u>M-142997-0129</u> KCA8.1.1.201
A as reported in the	he original stu	idy report			

Metabolites of deltamethrin

From toxicological studies performed in mampals there is no indication that the metabolites are more toxic than the active substance deltamethrin. For this reason and also considering animal welfare, no Ş

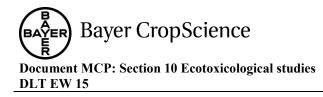

r rom toxicological studies performed in mammals there is no indication that toxic than the active substance deltamethrin. For this reason and also consider toxicity studies in birds with the metabolites were deemed necessary.

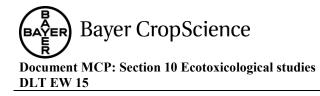

Table 10.1.1-2: Relevant generic avian focal species for Tier 1 risk assessme	ent (example)
---	---------------

				Shorte	it vatue
Сгор	Scenario	Generic focal species	Representative spectos	Long- term RA based of RUD	acute RA
	Late (summer/autumn)	Small granivorous bird "finch" 🖉	Linnet(Cardivelis cannabina)	177.4 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Early (spring) BBCH 10 - 19	Small omnivorous bird "lark"	Woodlark (<i>Lulluba arborea</i>) 🐇	¢ 10.90	ž¥.0 (
Sugarbeet	BBCH 10 - 19	Small insectivorous bird "wagtaid"	YQlow wagtail &	\$.9 \$	0 10.9 10.9
	BBCH 20 – 49	Small insectivorous bird "wagtail"	Yellow wagton (Motacilla Java) S	2.87	\$ 4 1.7
	BBCH 20 – 49	Small insectivorous	Nellow wagtail	09.7 ×	252
	BBCH 10 - 49	Sinall granivorous	Serin, Y (Serinus serinus)	12.6	0 27.4
	BBCH 10 - 49	Small@mnivorous bird 6 "læk" 6	Voodlark X Xulluba arborea)	\$10.9°	24.0
Cauliflower (Leafy vegetables)	Leaf development BBCH 10 - 49 &	Medium Herbiy prous //granivorous bird //pigeon" @	Wood Pigeon (Columba ~ paluntous) ~	Q2.7	55.6
	BBCH 10 - 19	Sinall insectivorous	Yellow wagtail	9.1	23.8
	B (B) CH ≥ 20	Small grantyorous of the standard of the stand	Golfinch (Carduelis)	11.4	24.6
	Late post emergence (May-June) BBCH 71-89	Small insectivorous	Fan tailed warbler	22.4	57.6
	Early (shoots) autume-winter BBCH 10-29	Darge herbivorous bira "goose"	Pink-foot goose (Anser brachyrhynchus)	16.2	30.5
Wheat (Cereals)	ВВСН 10-29	Small omnivorou Ooird	Woodlark (Lulluba arborea)	10.9	24.0
(Cereals)	BBCH 30,99	Small@mniy@bus bir@ ''lagk?' `>	Woodlark (<i>Lulluba arborea</i>)	5.4	12.0
A Contraction		Small ompivorous bird	Yellowhammer (Emberiza citronella)	3.3	7.2
	Late season Seed &	Small granivorous/ insectivorous bird "funting"	Yellowhammer (Emberiza citronella)	12.5	27.0

BOLD: Scenario considered in tisk as essment only worst case for each species)

ACUTE DIETARY RISK ASSESSMENT

The TER_A values calculated in the Tier. 19 sk assessment for birds exceed the a-priori-acceptability trigger of 10 for all evaluated scenarios. Thus, the acute risk to birds can be considered as low and acceptable without need for further, more realistic 5 sk assessment.


Acute risk assessment for birds drinking contaminated water from pools in leaf whorls Table 10.1.1-4: Tief Vacute DDD and TER calculation for birds drinking contaminated water from pools in leaf whorls

Crop DWR ECdvo LAkg bw.ce [mg/L]	DDD [mg/kg bw/d]	LD ₅₀ [mg/kg bw]	TERA	Trigger
Deltamethon a start and a				
Cauliflower 0.46 7.5	3.45	> 2000	> 580	10

This valuation cooffirms that the acute risk for birds from drinking water in leaf whorl puddles in cabbage that may contain residues from deltamethrin is acceptable.

Ũ

_@°

LONG-TERM REPRODUCTIVE RISK ASSESSMENT

Compound /			DDD)	-		NO(A)EL		<u>ا</u>
Compound / Crop	Generic focal species	Appl. rate [kg/ha	SVm	MAFm	ftwa		y mg kg/bw/d	TERLT	Trigger
Deltamethrin				8		J.	.~		
	Small granivorous bird "finch"		11.4 🔦	OF.	20.	0.05		~000	
Sugarbeet	Small omnivorous bird "lark"	0.0075	1009	1	Ŕ	0,04		₹ <u>1375</u>	50
	Small insectivorous bird "wagtail"	1	\$9.7	Ő		0.04	¢ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	1 375	
	Small granivorous bird "finch"		12%			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Î S	78 <u>6</u>	s <u> </u>
	Small omnivorous bird "lark"		710.9		× A	, 0 <u>,0</u> 0		920	
Cauliflower	Medium herbivorous/granivorous	0.0075	, \$ 2.7	ب 1.4 _		ي چ.0.13 يۈ		4 <u>2</u> 3	5
	bird "pigeon"		947	, S	0.53	<u>* č</u> (č) *5	65	1100	
	"wagtail" ? Small granivorous bird		6 5/11.4 q	4		0.0¢	ð _o r	917	
	"finch" of Small insectivorous bird				Z,				
	"passering"	ð Ö	2024			۴ 0 .1	6) V	550	
1171	Large berbivolous bird	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۶×16.2) [*] 0.08 [©]		688	
Wheat	Small on revorous bird	0.00625	10.9	134 N 13	Ç,	× 9.05		1100	5
(Small granivorous/ insectivorous bird "bunting"		12.5	r Ö Ø	Å Å	0.06		917	

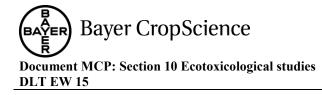

The TER_{LT} values calculated in the Tier Orisk assessment for birds exceed the a-priori-acceptability trigger of 10 for all evaluated scharios. Thus, the long-ternorisk to birds can be considered as low and acceptable without need for further, more realistic risk assessment.

Table 10.1 7 6 Evaluation of potential concern for exposure of birds from drinking water (escape clause)

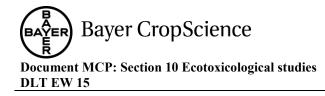
^K ^C rop		Application Fate * MAF [g a@ha]	NO(A)EL pmg as/ kg bw/d]	Ratio (Application rate * MAF) / NO(A)EL	"Escape clause" No concern if ratio	Conclusion
Sugarbee	¥10 240 00	*9.5 × 1 ₀₁		0.14		No concern
Cauliflower	¥10 24 6000	,≪7.5×°4Q81	55	0.25	\leq 3000	No concern
Wheat 🖉		6.25×1.8^{1}		0.20		No concern

¹ MAF based of 3 DT fin soil of 54.8 days (geometric mean as used for PEC_{sw})

This evaluation confirms that the risk for birds from drinking water that may contain residues from deltamethrin is acceptable.

RISK ASSESSMENT OF SECONDARY POISONING

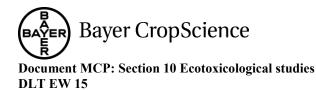
Table 10.1.1-7 Log Pow values


Substance	log Pow	Reference
Deltamethrin	6.4 (pH 6.8)	MCA 2.7/02
x-R isomer of deltamethrin	6.4 (pH 6.8)	KCA 2.14 /16
	6.3 (pH 6.8)	M-435781-61-1
rans-isomer of deltamethrin	6.3 (pH 6.9)	<u>M-435781-0)-1</u> <u>KCA 2.14/19</u> <u>M-43665-01-1</u> <u>KCA 2.14/22</u>
Br ₂ CA*	3.1 (pt 5) 1.4 (pH 7) -0.6 (pH 9)	
mPBacid*	2.8 (pH 5) 0.8 (pH 7) -0.4 (pH 9)	M-435852-00-1 KOA 2.44/29
Serinyl-BrCA*	-042 (pH 54) -147 (pH 54) -2.1 (pH 9)	CM-454850-001 KGX 2.1444
4'OH-Deltamethrin	4.5-4.60(pH 529)	edog Pow [®] 3 at ecologically relevant pH

* No risk assessment of secondary poisoning will be performed as the tog $P_{OV} \ll 3$ at ecologically relevant pH n N N values. Ô Ø)

Calculations in this section are performed for all compounds of the residue definition for soil and surface water (see Table 10- 2) with $\log P_{OW}$ 3, employing poxicity values and BCF fish as determined for the active substance ý deltamethrin, in order to dependent regligible overall risto \sim

Table 10.1.1- & Avian generic focal species for the Fier 1 risk assessment of secondary poisoning


Earthworm eater \sim 2 2 100 \sim Thrush \sim 1.05
Fish eater 0 0 0 0 4 Heron 0.159
AT A RANGE
⊳O ^v
\bigcirc

DLT EW 15					
ong-term DDD and TER	R calculation for (earthworm-eating	y birds		
able 10.1.1-9 Tier 1 long-		-	erthworm_eating	hirde	L' D
adie 10.1.1-7 1101 110115-	-		Wheat &		
Deltamethrin	Sugarbeet	Cauliflower	w near	ž "O"	Ď
Kow	1	2511887			
Kow Koc [mL/g]	+	10 240 000			Ĭ, Q
foc	+	0.02			Â,
BCFworm	+	0.02	Q		L A
DCFworm PECsoil (twa, 21 d) [mg/kg]	0.00775	0,147 ØØ1424	0.00985	A & 6	
PEC _{soil} (twa, 21 d) [mg/kg] PEC _{worm} [mg/kg]	0.00775	0.002	1 (0 ,00,705) (0 ,001)		L.
FIR/bw	1.05	1.05	× °× 1.05∞		"Q"
DDD [mg/kg bw/d]	0.001			<u> </u>	J ^Y
NO(A)EL [mg/kg bw/d]		× 55 Û		× A	۰ ۱
	55000		<u> </u>		Ĩ
Triggor	5 000	× 4000			A A
TERLT Trigger Long-term DDD and TER Fable 10.1.1- 10 Tier 1 long- Substance	-tern DDD and TE	R calculation for fi	sleeating birds	birds	
Č	<u>సై 0 స</u> ౌ Sr	ıgarbeet		L.	I
Substance	Deltamethrin	deltamethrin	rans-isomer of	4'OH- Deltamethrin	I
BCF _{fish}		<u>گُالم00</u>			ı
PECsw (twa, 21 d) [mg/L]		$\sim < 0.06001$	0,00001	< 0.00001	ı
PEC _{fish} [mg/kg]	0.014 0 0.159 %		© 0.014 × © 0.159	< 0.014 0.159	ı
FIR/bw DDD [mg/kg bw/d] [®] NO(A)EL [mg/kg bw/d] ^{\$%}	< <u>0</u> - 0.109 < <u>0</u> <0 - 0.109 < <u>0</u> - 0.109 <0	× 0.000 C	Q.902	< 0.002	1
NO(A)EL mg/kg bw/d]		0 55 Ø	A O	0.00	ı
TERLI	27060	>27000	0 27000	> 27000	ı
Trigger	<u>Y &</u> Å	× 5 4 1	5	5	ı
	<u> </u>	<u>, 0 0, 0, 0</u>			
		uliflower S			
Substance	Deltamethrin	steltamethrin	trans-isomer of deltamethrin	4'OH- Deltamethrin	
Substance	Deltamethrin 0.00001	a-R-isomer of t steltamethrin 3 1400 5 00001	deltamethrin		

			<u> </u>	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	
	<u></u>	O A	Sugarbeet		<u> </u>
Substance		Deltamethrin	deltamethrin	trans-isomer of	4'OH- Deltamethrin
BCFfish			N1400		
PECsw (twa, 21 d)	ĵåg/L] ∱	<2,00001	<0.00001 Ø	QQ00001@	< 0.00001
PECfish [mg/kg] _ ()		<i>∛</i> ⊈ 0.014	<u>~ <0014</u> ~		< 0.014
FIR/bw	Q.) 0.1 59 ° ((9.159	<u>م</u> لاً 0.159	0.159
DDD [mg/kg_bw/d]	6 2	<0,002	م ^م < 0.000	Q.902	< 0.002
NO(A)EL/mg/kg b	w/d] 🕵		୦° <u>55</u> ୁହ	Z Ø	
TERLT		A 270 60		∑ ⊘″27000	> 27000
Trigger			گ≫ّ 5 <u>«</u>	5	5
~			~~ <u>`</u> ¥ .	-	

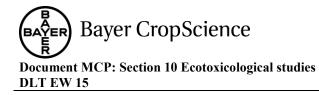
<u> </u>			,	
		suliflower S		
Substance	Deltamethrin	α-R/isomer of	trans-isomer of deltamethrin	4'OH- Deltamethrin
BCFfish	NO V	× ، ب 14	00	
PECsw (twa, 21 d)[mg/[2]	Q.00001	Š ≤0.00001	0.00002	< 0.00001
PEC _{ffsb} /[mg/kg]	$\approx < 00014$	0.014	0.028	< 0.014
FIR/Bw	20.159 ×	0.159	0.159	0.159
DDD [mg/kg by@d]	× 0.00	< 0.002	0.004	< 0.002
NO(A)EL [mg/kg bw/d		§ 5	5	
TERLT &	\$ ≥27500	> 27500	13750	> 27500
Trigger 🌮 🔗 Ö	j _ 🏷 5 í	5	5	5
Trigger of F				

Wheat								
Substance	Deltamethrin	α-R isomer of deltamethrin	trans-isomer of deltamethrin	4'OH- Deltamethrin				
BCFfish								
PECsw (twa, 21 d)[mg/L]	< 0.00001	< 0.00001	0.00002	S ² < 0.00001 [∞]				
PEC _{fish} [mg/kg]	< 0.014	< 0.014	0.028	< 0.014				
FIR/bw	0.159	0.159	0.159	0.150				
DDD [mg/kg bw/d]	< 0.002	< 0.002 0	0.004	< 0,4002				
NO(A)EL [mg/kg bw/d]		\$ 55	5 Q		× 4			
TER _{LT}	> 27500	> 27500	13750	≥ 2750 0	$b^{*} \ll$			
Trigger	5	5	~Q*5	5 J. (
				Q, Q' &	- Ø			

The TER values for deltamethrin, the α -R isomer and the transfisomer of deftamethrin as well as for 4'OH-Deltamethrin are above the trigger of concern of 5, indicating no risk from secondary poisoning CP 10.1.1.1 Acute oral toxicity No new studies were required. CP 10.1.1.2 Higher tier data on birds In view of the results presented above, no turther studies were necessary.

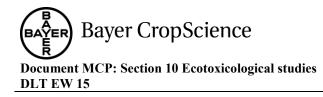
Table 10.1.2-1 Entropoints used in thisk assessment

Test of substance				EV agreed Cendpoint Review Report 6504/VI/99-final)	Reference
Daltamathri	cute 5	Rat	م الأكان الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأكار الأمار الأمار الأمار الأمار المام الممار الممام الممارما الممار ممار	Yes	<u>M-139700-01-1</u> KCA 5.2.1/04
Deltamethri n	Long-term risk assessment	Kango	NOTA)ED mgas/kg		<u>M-149348-01-1</u> KCA 5.6.1/01


¢,

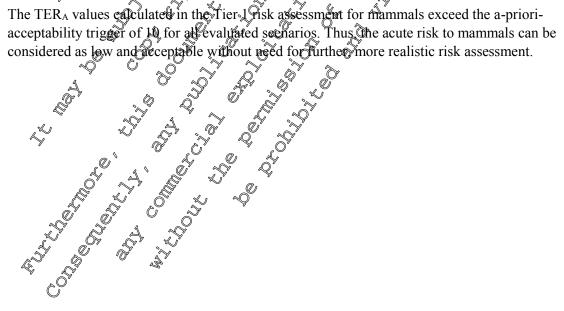
^A The justification for the use of this endpoint is presented under MCA 8.1.1.2

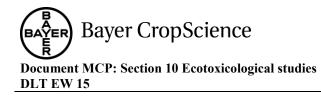
Metabolites of deltamethrin


For mammals, one study for acute oral exicity in rats was performed to evaluate toxic effects of the deltamethrin metabolite Br₂CA, The metabolite Br₂CA exhibited no toxicity to rats by using plant oil as carrier, and thus, the study is comparable to that conducted with deltamethrin by (1996; M-139700-00-1), which revealed the lowest acute endpoints for deltamethrin.

Since the metabolite proofed to be less toxic than the parent compound, explicit TER values for Br₂CA were not calculated as the rist assessment is considered to be covered by that of the parent compound.

able 10.1.2-	2 Relevant generic f	ocal species for Tier 1 r	isk assessment		
Сгор	Scenario	Generic focal species	Representative species	Long-	ut value acuto RA based on RUDay
	BBCH 10 - 19	Small insectivorous	Common shrew	4.2°	
		mammal "shrew"	<u>(Sorex araneus)</u>		
	$BBCH \ge 20$	Small insectivorous mammal "shrew"	Common Shrew (Sorex (Paneus)	Q1.9	¥ 5.4
	BBCH≥40	Small herbivorous mammal "volo"	Common vole (Microtus arvalis)	184	34.1
Sugarbeet	BBCH 10 - 39	Large herbivorous mammal	Rabbit & (Ocyctolagus cunicalus)	14.3	35.4
	$BBCH \ge 40$	Large herbivorous mammel "lagomorph"	Cryctolagus Suniculus	3.8	8.8 °
	BBCH 10 - 39	Small omnivorous mammal "mouse"	Woomnouse y Apodemus sylvaticus)	2 7.8 S	10.2
	$BBCH \ge 40$	Small omnivorous Omni maguse"	(Appdemus@lvatiess)	5 ³⁹ ,	4.3
	BBCH 10 - 19	Small insectivorous mammal "shrew"	Common shrew (Sorex arangus)	° 4.2∽	7.6
Cauliflower	BBCH≥200	main main and the	Common shrew Sorex araneus S	× 1.9	5.4
(Leafy vegetables)	BBCH 40 - 49	Somall herbivorous	م [©] Common yole م [©] ک (<i>MicPotus arvalis)</i> ک	72.3	136.4
(egetaeles)	All season	Large herbivorous mammal	Rabbit Qryctolagyls cuntculus)	14.3	35.1
	BBC(10 - 49	Small omnivorous mammal "mease" 2	(Apodemus Avaticus)	7.8	17.2
	BBCH 19 - 19	Smath insectivorous mammal "shrew"	Common shrew	4.2	7.6
47	BBCH≥20	Small mšectivorous manomal "sprew"	Common shrew (Sorex araneus)	1.9	5.4
	BBCAQ≥40 5	Small herbivorous	Common vole (Microtus arvalis)	21.7	40.9
Wheat (Cereals)	Early (showts)	Large herbivorous Amammal	Rabbit (Oryctolagus cuniculus)	22.3	42.1
4.) ''O'''	BBC # 10 - 29	Small opinivorous mammal "mouse"	Woodmouse (Apodemus sylvaticus)	7.8	17.2
	BBCH 30 39	Small omfivorous	Woodmouse (Apodemus sylvaticus)	3.9	8.6
Æ	BB€H≥40	Small omnivorous man@nal "mouse"	Woodmouse (Apodemus sylvaticus)	2.3	5.2


BOLD: considered in risk essessment (only worst case for each species)


ACUTE DIETARY RISK ASSESSMENT

			DDD	•		L2Q.50		
Crop	Generic focal species	Appl. rate [kg/ha]	SV90	MAF90	DDD	[40)g/kg Øbw]	TER	Trigger
eltamethrii	n		8		Ś	ÿ		
	Small insectivorous mammal "shrew"		₹.6	Č	9 .06		1450	
Sugarbeet -	Small herbivorous mammal "vole"	0.00	34.1		0.26		335 C	
	Large herbivorous mammal "lagomorph		35.1		0.26 J		3 35	S.
	"mouse"		17.02	Q	003		of 669 of the second s	, [°]
	Small insectivorous mammat		7.6 J		0.07		¥243	
Cauliflower	Small herbivorous manmal ("vole"	0,0075 č	136.4	212	0 ²³	10 87 Å	\$ 7 <u>1</u> \$	10
aunnower	Large herbivorous mammat "lagomorph"	° P	35.1		0.3	87 6 60	د 272 ۲2	10
	Small omnivorous mammal E		O 7.2		Ø.15 ·	in the second	580	
			7.0		0.06		1450	
Wheat	Small/herbivorous mammal	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	940.9	0 1.20	0.31	· *	281	
	Garge herbivoroùs masanal		42.1	Š.	0.32		272	
	Small omnivorous mammal	ST C	17.2		0.13		669	

The TERA values coculated in the Tier Pisk assessment for mammals exceed the a-priori-

Ů

LONG-TERM REPRODUCTIVE ASSESSMENT

			DDD				NO(A)EL		
Crop	Generic focal species	Appl. rate [kg/ha	SVm	MAFm	ftwa	DDD	, mg Kg/bw/d	TERC	Trigger
eltamethrin				A		Ś	•		
	Small insectivorous mammal "shrew"		4.2	¢,	Č	9 .02		240	
Sugarbeet	Small herbivorous mammal "vole"	0.0075	18.1	1	Q,	0.02		210 0	
Sugarbeet	Large herbivorous mammal "lagomorph	0.0073	©14.3			0.06		1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	J.
	Small omnivorous mammal "mouse"	0'	\$28 \$7			003		140	
	Small insectivorous mammal "shrew"		× ∼			0.02~		~210 ©	
Cauliflower	Small herbivorous mammal "vole"	0,0075	×72.3			6040			5
caunnower	Large herbivorous mammal "lagomorph"		14.5			0.0		53	5
	mammal <i>(g</i> nouse')		7.8	ð Í	\$ *	Ø.04		105	
	Small insectivorous mampal "show"					0.02		210	
Wheat	Small herbivorous	0.00625	21.7				~~ /	42	5
ĉ	CLarge herbivorous (mammal "lagonorph")		22.3			0.¥0		42	-
	Snall omnivorous mammal/"mouse"	A S	7.80			0.04		105	

The TER_{LT} values calculated in the Tier brisk assessment for mammals exceed the a-prioriacceptability trigger of 5 for all evaluated scenarios. Thus, the long-term risk to mammals can be considered as low and acceptable without need for further more realistic risk assessment.

Long-term risk assessment for mammals drinking ontaminated water The puddle scenario is celevant for the long form risk assessment.

Table 10.1.2-5 Evaluation of potential concern for exposure of mammals from drinking water

Crop Crop	Application rate MAF	NO(A)EL [mg as/ kg bw/d]	Ratio (Application rate * MAF) / NO(A)EL	"Escape clause" No concern if ratio	Conclusion
Sugarbeet 2	7.5 × 1		1.8		No concern
Cathiflow 14 240 000	7.5×1.8^{1}	4.2	3.2	≤ 3000	No concern
Wheat of the	6.25×1.8^{1}		2.7		No concern

¹ MAF based on a DT_{50} in soil of 54.8 days (geometric mean as used for PEC_{sw})

This evaluation confirms that the risk for mammals from drinking water that may contain residues from deltamethrin is acceptable.

RISK ASSESSMENT OF SECONDARY POISONING

T 11 10 1 0 (Mammalian generic focal s	• • • • • • • • • •			\sim \sim	Ì
Table 10.1.2-6	Mammalian generic focal s	pecies for the liter litis	c assessment of	secondar	NODOISORNÍ	19
				800000		- 2

Generic focal species	Body weight [g	Example (⊳FIR/þŵ∕ _√_
Earthworm eater	10 🕎	Common shrew	1.28
Fish eater	3000《	6° Otter 🔊	Ø142 O

Table 10.1.2-7	Tier 1 long-term ETE	and TER	calculation	for earthworn	1 eating	mammals

As outlined in Point 10.1.	1 a risk assessment of secondary poisoning has be performed for all $\mathcal{Q}^{(n)}$
	definition for soil and surface water (see Table 10- 2) with log P _{QW} > 3
employing toxicity values	and BCF _{fish} as determined for the active substance, deltamethric in order to generall risk.
demonstrate negligible ov	erall risk.
Table 10.1.2- 6 Mammalia	an generic focal species for the Tier 1 risk assessment of secondary poisoning <u>es Body weight [g] Example FIR/by</u> 10 Common shrew 1,28
Generic focal specie	es Body weight [g] Example of FIR/by
Earthworm eater	10 \bigcirc Common shrew 1.28 \bigcirc \bigcirc
Fish eater	3000 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
Long-term DDD and TE	R calculation for carthworm cating mammals
- Table 10 1 2- 7 Tier 1 long	g-term ETE and TER calculation for earthy orm eating mammals
1 abic 10.1.2-7 11ci 1 iong	
	Sugarbeet Cathiflower Wheat S
<u> </u>	
Substance	
PEC _{worm} [mg/kg]	
FIR/bw	1.28 J 4.28 J 1.28 J
DDD [mg/kg bw/d] 🗞	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
NO(A)EL [mg/kg bw/d]	
TER LT	0 4200 0 4200 ×
Trigger 🖉	

Long-term toxicity xposture ratio for fish-eating mammals Table 10.1.2-8 Tier 1 long-term ETE and TER calculation for fish eating mammals

	in the second	ugarbeet 🔬	Å Y	
Substance	Dettamethrin	CR isomer of deltamethric	<i>trans</i> -isomer of deltamethrin	4'OH- Deltamethrin
PEC _{fish} [mg/kg	0.04 0.04	0°	0.014	< 0.014
FIR/bw	\$ £¥42 Q	Ø 0.14D	0.142	0.142
DDD [mg/kg bw/d]	\$0.002 [*]	 < Q₂002 	0.002	< 0.002
NO(A)E mg/kg bw/d		S X 4.2	2	
TERLE,	2100 (7)	× 2100	2100	> 2100
Trigger	\$*\$~\$	5	5	5

		\$Y						
Cauliflower								
Substance	Deltamethrin	α-R isomer of deltamethrin	<i>trans</i> -isomer of deltamethrin	4'OH- Deltamethrin				
PEC _{fisk} mg/kg A	< 0.014	< 0.014	0.028	< 0.014				
FIR/bw	0.142	0.142	0.142	0.142				
DIXD [mg/kg bw/d]	< 0.002	< 0.002	0.004	< 0.002				
NO(A)EO [mg/kg bw/d]		4.2	2					
TERLT	> 2100	> 2100	2100	> 2100				
Trigger	5	5	5	5				

DLT EW 15

Substance I PEC _{fish} [mg/kg] FIR/bw DDD [mg/kg bw/d]	Deltamethrin < 0.014	α-R isomer of deltamethrin< 0.014	<i>trans</i> -isomer of deltamethrin	4'OH-	
FIR/bw	< 0.014	< 0.014			-0
		< 0.014	0.028	© < 0.014	<u>s</u>
DDD [mg/kg hw/d]	0.142	0.142	0.142	0.142	2
	< 0.002	< 0.002	0.004	< 0.002	Ĉo
NO(A)EL [mg/kg bw/d]		_ 4.2	2 🔊		Ş.
TERLT	> 2100	> 2100	2100	>2400 0	Ş.
Trigger	5	5	<i>5</i> Q		

CP 10.1.2.1 Acute oral toxicity to mammals

Please refer to MCP 7.1.1 where a summary of the formulation study (rat, acute oral; 2000, M-197188-01-1) is presented.

The oral LD50 of the formulation was found to be higher than 2000 mg/kg b w. in Sprague Dawler rats.

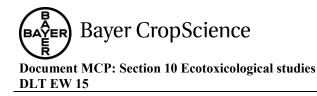
CP 10.1.2.2 Higher tier data on managemais

In view of the results presented above, no further studies were precessary.

CP 10.1.3 Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)

Since deltamethrin is of how toxicity in bords and laboratory rodents, no risk for repulses and amphibians is to be expected.

CP 10.2 Effects on aquatic organisms


Deltamethrin EW15

Aquatic studies were conducted with the representative formulation Deltamethrin EW 15. Summaries of these studies are provided under point CP 102.1, while Table 10.2-1 gives an overview of the resulting endpoints

Fiss, acuteLC $_{0}$ 14.4 µg prod./L (mm). (2000) $\mathcal{O}ncorhynchus mykiss\mathbb{LC}_{0}14.4 µg prod./L (mm)\mathbb{M}-197428-01-1Invertebrate, acute\mathbb{PC}_{50}1.33 µg prod./L (mm)\mathbb{M}-197398-01-1Deltamethrin W15\mathbb{Daphnia magna}\mathbb{EC}_{50}0.7 µg prod./L (mm)\mathbb{M}-470588-01-1Algae, growth inhibition\mathbb{E}_{r}C_{50}8140 µg prod./L (mm)\mathbb{M}-197387-01-1Algae, growth inhibition\mathbb{E}_{r}C_{50}8140 µg prod./L (mm)\mathbb{M}-197387-01-1$				"Ø"	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Test substance C	Test species >		Endpoint	Reference
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A .	Fise, acute Oncorrynchus mykise		14.4 μ g prod./L (mm)	
Deltamethrin W15 Daphnia magna 2 EC ₅₀ 0.7 µg prod./L (mm) (2013)	AC AC	Daphala magna	× ¥	1.33 µg prod./L (mm)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deltamethrin/EW15	🔪 Daphnia magna Q	EC ₅₀	0.7 µg prod./L (mm)	
Algae growth inhibition $E_{\rm r}C_{50}$ 5350 µg prod./L (mm) (2011)		Seudokirchnefella	E_rC_{50}	8140 µg prod./L (mm)	
$\begin{bmatrix} \mathcal{L} & \mathcal{L} $		Pseudokirchneriella	E_rC_{50}	5350 µg prod./L (mm)	(2011) <u>M-413217-01-1</u>

Table 10.2- 1: Toxicity of the formulated product deltamethem EW 15 to aquatic organisms

Ecotoxicological endpoints of the formulation Deltamethrin EW15 reflect the toxicity of the active substance deltamethrin. Minor deviations are considered normal due to the natural variability of biological systems and do not indicate a higher toxicity of the formulated product. Hence, it is justified

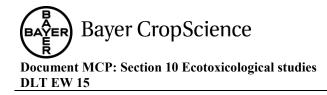
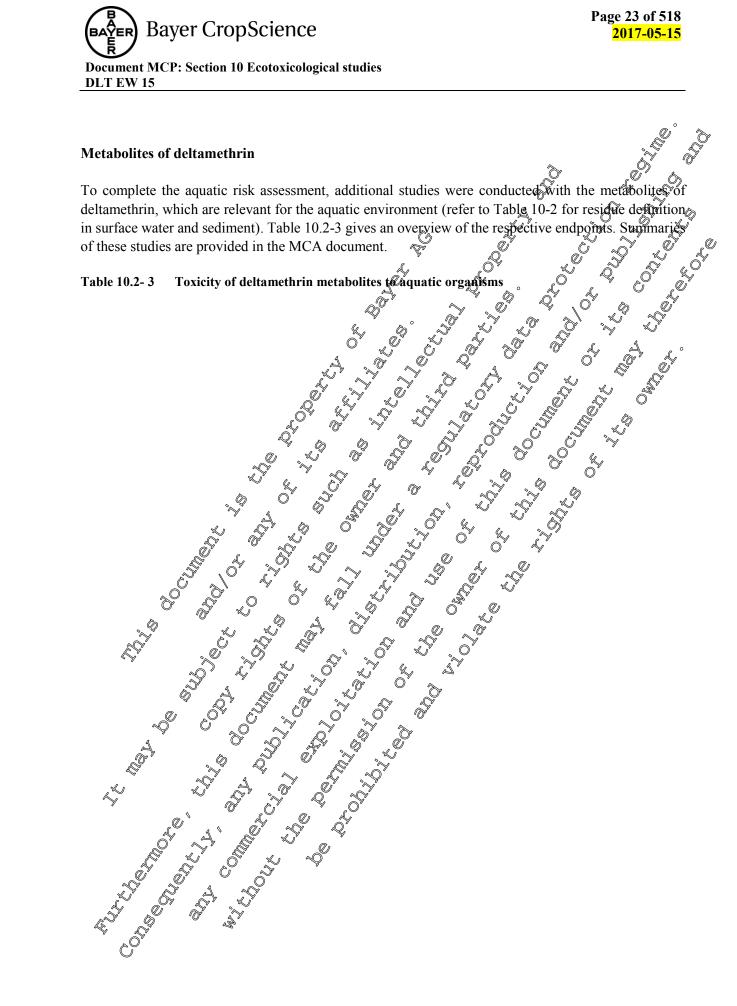

to base the aquatic risk assessment on endpoints derived from studies with the active substance deltamethrin.

Table 10.2- 2:	Toxicity of the active subst	anaa dagamathuin	to advatia	Sugariam [®]	
1 able 10.2- 2:	Toxicity of the active subst	ance dereametigrin	to aquaticat	nganisins /	I


Active substance d	eltamethrin			station of the second s	, , Q' 4, ³
ndpoints from aqu			Č,		
	atic studies w	rith the activ	e substance deltameth	rio are summarized in	
able 10.2-2.			A Q		
able 10.2- 2: Tox	city of the act	tive substanc	e deframethrin to aqua	tic organisms	
Test organism	Test system			EU agreed endpoint	Reference
		4		(Review Report	
Acute toxicity to fish		a de la companya de			's and the second se
Oncorhynchus mykiss	Static				(1(0))
(rainbow trout)	96 h	Q LC ₅₀	0.91 (nom)	YOF D ST	M-149417-01-1
	l l			Ý ô _n (KCA 8.2.1/02
Oncorhynchus mykiss	Flow-through	"Y @	(0 15 (mm)	New endpoint suggested, derived from a study	(1990) M-135553-01-1
(rainbow trout)	96 h	LC50	(0.15 (mm) 4	with chemical analysis	KCA 8.2.1/03
	N A				
Lepomis macrochirus	Static Static	LC50	1.4 (nom)	Already evaluated on EU	
(bluegill sunfish)	96 n⊍		J J D	levor L	<u>M-149416-01-1</u> KCA 8.2.1/01
2					
Cyprinodon varieguus	Flow-through	LC50 &	\$ 0.48(mam)	Marine species not considered in last EU	(1990)
(sheepshead minow)	\$ 96 l ⁰			review	<u>M-135536-01-1</u> KCA 8.2.1/04
Chronic to fis				ð.	
Oncorhynchus mykiss	Juvenile				(1990)
(rainbow trout)	growth,	NOE		Yes, but lower endpoint	M-135553-01-1
Prolonged toxicity	flow-through		$\sqrt{3} < 0.0032$ (nam)	available	KCA 8.2.2.1/01
	Early Kite				
Pimephales promelas (fathead minnow)	Stage Dow-	NOF	0 (0 (mm)	Already evaluated on EU	(1991) M-149413-01-1
Early Life Stage (ELS)	through ~			level	KCA 8.2.2/01
	N SOU OF		0.024 (mm)		<u> </u>
Cyptinodon variegatus	Early Life	or jor			
(sheepshead minnow)	Stage, flow-	NOEC 4	0.024 (mm)	New study	(2012)
Early Life Stage (PLS)	through			-	M-439783-01-1
	t s	× ø			KCA 8.2.2.1/02
	Line cycles	, ~~		Already evaluated on EU	(1000)
Pimephale@promelas	test flow	NOEC	0.017 (mm)	level; lowest chronic endpoint for fish –	(1993) M-149454-01-1
Fish full life cycle	through 260 d	TOEC		should be considered for	KCA 8.2.2.2/01
				risk assessment	
Acute toxicity to inver	tebrates		1	T	
Daphnia magna	Flow-through	EC50	0.56 (mm)	Yes, but new study	(1999) M-187113-01-1
(water flea)				available	

Test organism Test system Endpoint EU agreed endpoint Reference (Review Report [µg a.s./L] 6504/VI/99-final) New study resulting in Static-Daphnia magna (2014) lower endpoint - to be renewal EC50 0.0131 (mm) (water flea) 48 h considered in RA CA 8 2.4.1/03 Flow-(20)Newstudy 0.00017 (mm) Hyalella azteca through, 96 h, LC_{50} 4%1147-6%-1 A 8.2 42/01 water only A Marine species not Static-Americamysis bahia considered in ast EU (1991∳ renewal LC50 0037 (mm) (mysid shrimp) M#49478 96 h KØA 8.2.4,2/02 Chronic toxicity to invertebrates Ň Daphnia magna Flow-through 0.0041 (mm) <u>1-1742</u> (water flea) 21 d -01-1 Ø Q2.5.1/01 CA Americamysis bahia Flow-through (2013) M-437923-01-1 0.00073 (mm) (mysid shrimp) 35 d × 1 KCA 8.2.5.2/01 Chronic toxicity to sediment dwelling organism O 0.010 (bom) Static, 28 d Ô Chironomus riparius 1998 NOEC (chironomid) spiked water M-152560-01-1 0 O CA 8.2.5.3/01 State, 28 d Ø (2012) K, 7⁄25 μg å:ş,/kg dys/sed Chironomus riparius Ø spiked 😽 EC10 New study M-425202-01-1 Sediment (chironomid) (nom) 🖓 Ô KCA 8.2.5.4/01 ØFlow-through (2013) ο μg a.s. kg sedØmm) Chironomus dilutus 63 d, spiked New study M-466314-01-1 (chironomid) Codiment Q KCA 8.2.5.4/02 S Algae/Plant Ý Study evaluated on $\overline{\rm EU}$ 100 (Qm) (1990)Pseudokirchneriell Static level but enpoint M-149388-01-1 subcapitata 96 h considered uncertain KCA 8.2.6/01 Static .1 (im) (2013)96 h Navicula pelliculosa New study 3.1 (im) M-468384-01-1 KCA 8.2.6.2/01 Static Ŵ >3.6 (im) (2013)Anabaena flos-aquae 96 h New study >3.6 (im) M-468386-01-1 KCA 8.2.6.2/02 Static ErC50 96 h >3.4 (im) (2013) Skeletonen New study EbC50 >3.4 (im) M-468465-01-1 KCA 8.2.6.2/03 Ľ Static-Ŀ, ErC50 >0.779 (im) (2012)Lemna gi🕅 renewal New study >0.779(im) M-439085-01-1 E_bC_{50} 7 d KCA 8.2.7/01

To complete the aquatic risk assessment, additional studies were conducted with the metabolites of deltamethrin, which are relevant for the aquatic environment (refer to Table 10-2 for residue deforition)

Test substance	Test species	Endpoint	Reference
alpha-R-isomer of	Fish, acute Oncorhynchus mykiss	LC ₅₀ 16.2 µg/L (mm)*	(2014) M-473954-01-7 KCA 8.2.1/05
deltamethrin	Invertebrate, acute Daphnia magna	EC ₅₀ 0.0366 μg/L (mm)*	KCA 80.4.1/0
trans-isomer of	Fish, acute Oncorhynchus mykiss	LC ₅₀ 0.239 µg/L (mg/)*	(2013) <u>M-47373451-1</u> KEA 8 2 7/06
deltamethrin	Invertebrate, acute Daphnia magna	EG 0.069 μg/ℓ (mm)*	(2014) M-428835-01-1 K&A 8.2,41/05
4'OH-deltamethrin	Fish, acute	LC 399 µg/b (mm)	(2013) (2
(BCS-BY84407)	Invertebrate, achte Daphnia magna	νEC ₅₀ 670 ^γ μg/L (Onm)	Ø' Ø'13) MI-465 17-016 KC & 2.4,1/06
Br ₂ CA (AE F108565)	Fish, acute Oncor/fenchus mykiss Nivertebrate, acate Daptinia magna	LC ₅₀ 109000 μg/L (nom)	KCA8.2.1/08 & 2001) M-199793-01-2
Serinyl-BrCA	nivertebrate, acute Daphinia magna	EC ₃ 35,000 μgf (mm)	KCA 8.2.4.1/07 (2013) M-465372-01-1 KCA 8.2.4.1/08
mPBaldehyde** (AE F194152)	Invertebrate, acute Daphnia magna	EC ₅₀ 7 162 µg/L (mm)	(2010) <u>M-386854-01-1</u> KCA 8.2.4.1/09
	A Fish, acute Oncorhynehus myktos	С С С С С С С С С С С С С С	(1981) BL/B/2038 Syngenta number CGA55186/0707 KCA 8.2.1/09
m Bacid			<u>M-479954-01-1</u> (Letter of Access) (1983)
	Invertebrates acute	EC ₅₀ 85000 µg/L	Syngenta number CGA55186/0721 KCA 8.2.4.1/10
om = Apominal mm = m			<u>M-479954-01-1</u> (Letter of Access)

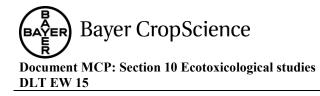
- nom forminal mm = mean measured * Results from the studies with the alpha-R-isomer and the trans-isomer of deltamethrin <u>are not suitable for the use in aquatic</u> risk assessments. An explanation is provided below.
- ** mPBaldehyde is only a minor metabolite and will not be considered in the risk assessment.

Aquatic risk assessment for metabolites

Results from the aquatic toxicity studies with the alpha-R-isomer and the trans-isomer of deltamethrin are not suitable for the use in aquatic risk assessments. In all four studies, the parent compound deltamethrin was also detected at concentrations, which are lethal to fish and Daphnia Therefore it is expected, that deltamethrin contributed significantly to the toxic effects observe in these studies. In a conservative approach, endpoints were derived based on the mean@neasured concentrations of the respective metabolite only. These endpoints most likely overestimate the actual toxicite of theo alpha-R-isomer and the trans-isomer of deltamethrin, as they do not consider the effects caused by the presence of the parent compound deltamethrin. The available studies do not allow foroa definite determination of the metabolite toxicity, and are therefore not considered adequate for a risk assessment. Nevertheless, these worst-case endpoints clearly demonstrate that the apha-R-isomec nor the trans-isomer of deltamethrin is more toxic to aquate organisms than the parent compound itself.

The alpha-R-isomer and the trans-isomer of deltamethrin are formed rapidly from deltamethrin in the aquatic environment. As demonstrated in the laboratory studies with the metabolities, both isomers also re-isomerize into the parent compound deltamethon.

Drift is the only relevant entry pathway of deltamethrin into surface water bothes, with subsequent formation of the metabolites alpha-Roisomer and trans-isomer of deltamethrin Significant entry of the parent or the two metabolites after formation in soil via runoff or draining cafe be excluded. This means, that the maximum PECsw value for deftamentation occurs directly after application due to drift entry. PECsw values for a single application, i.e. using the highest don't rate, are considered for the TER calculations as a worst case. This mitial RECsw for the parent compared deframethrin covers also the two isomers, as – even if the metabolites are formed quickly, the sum of all three compounds cannot exceed this value. Therefore, the risk assessment conducted for destamethrin covers the two isomers as well.


The higher tier tak assessments for aquatic invertebrates and this are based on endpoints from mesocosm studies taking into account nominal deltamethrin concentrations.

As neither the alpha R-isomer nor the trans-isomer of Beltamethrin are more toxic than deltamethrin, it can be concluded that the refined aquatic risk assessment for the parent compound based on nominal endpoints from mesocosm stodies and initial drift@ECsw values for deltamethrin, covers also the two metabolites alpha-RQ and trans-isomer of deltamethrin

The metabolite **BrCA** was identified as major metabolite and needs to be addressed in the aquatic risk assessment. BRCA is formed from Br₂CA via elimination of a brome atom. Other than that, the two metabolites are identical. Br₂CA showed to tox city to aquatic organisms in acute studies, with an LC₅₀ of 100 mg/L for fish and an $EC_{50} > 100$ mg/L for *Daphnia*, respectively. Therefore, it is not expected that the metabolite BrCA poses a risk of aquatic organisms. No studies were conducted for this Ś metabolite.

Acute TER calcolations are provided for the metabolites 4'OH-deltamethrin, Br₂CA, Serinyl-BrCA and mPBacid

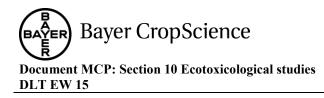
The Tier 1 risk assessments for fish are based on endpoints from laboratory studies, i.e. an acute LC_{50} of 0.15 µg a.s./L and a chronic NOEC of 0.017 µg a.s./L, respectively. However, both endpoints were derived under flow-through conditions, where the test concentration of the substance is artificially

maintained over the test period (i.e. 96 h for acute testing, 260 d in the FFLC study). Due to this study design, the results considerably overestimate the toxicity of deltamethrin to fish under realistic exposure conditions.

Due to its strong adsorption to organic matter, drift is considered the only refevant entry pathway for deltamethrin to surface water bodies. Continuous exposure, e.g. via drainage or repeated runoff events, are not expected for this compound. Moreover, deltamethrin dissipates rapidly in natural water bodies (with a dissipation DT_{50} in water of1 day), especially due to adsorption to particulate matter, sediment and macrophytes, which reduces the bioavailability of the substance order natural conditions very fast.

To obtain data on potential effects of deltamethrin on fish in the environment, a higher tier study was performed in outdoor enclosures simulating reasonable worst-case conditions (2005, <u>M-256605-01-1</u>). The representative formulation Deltamethrin EW15 was applied onto the water surface three times at a 7-day interval simulating spray drift. Juvenile fish were exposed to nonunal debamethrin concentrations of 125, 250, 500 and 1000 ng a.s. It for 27 days

Compared to surface waters in agricultural areas, the oligo mesotrophic microcosm system represents a worst case regarding nutrient content of water, and consequently growth of algae and macrophytes. Dissipation of deltamethrin is expected to be even higher in relevant water bodies in agricultural landscapes. Also, the test design considered three applications of deltamethrin at a seven-day interval, whereas only 1-2 applications are intended in sugarbeet, cauliflower and wheat? Therefore, the exposure profile of this study can be considered conservative.


The study was conducted with Rainbow trout (*Omykiss*), which was identified as the most sensitive fish species in acute aboratory studies (see Table 10.2.2). For deltamethrin, growth turned out to be the most sensitive endpoint in the chronic fish studies with Fathead mindow (*P. promelas*) (Early Life Stage (ELS) and Fish Full Life Cycle (FFFC) study). For this reason, in addition to survival, growth was also assessed in the microcosm study

No treatment related effects on survival were observed up to the highest treatment level of 1000 ng a.s./L. Furthermore, the most sensitive endpoint growth (measured as length, wet weight, dry weight, growth of length and weight) from the fathead minnow studies was not affected even at the highest test concentration. Although slight symptoms (swimming behaviour, coughing) occurred for a few hours on day 1 after the first application at 500 ng a.s./L the overall NOEC of this study on rainbow trout has been set at 500 ng a.s./L. Considering the fast recovery of the initially observed symptoms, the NOEAEC was set at 4000 ng a.s./L.

To summarise, this outdoor microcosm study was performed:

- under realistic exposure conditions of a natural freshwater community,
- taking into accouncine applications of deltamethrin at a seven-day interval,
- with the post sensitive fish species Rainbow trout

At the NOEAC of this study, no adverse effects on the overall most sensitive endpoint (growth in weight according to the results of the laboratory ELS and FFLC studies) were observed. For these reasons, the use of the NOEAEC and the chronic assessment factor of 10 seems adequate for the final risk assessment for fish, resulting in a Regulatory Acceptable Concentration (RAC) of 100 ng a.s./L. As long-term exposure of fish to deltamethrin is not expected in the environment, the endpoint from this 21-day study is considered appropriate to cover both, the acute and chronic risk of deltamethrin to fish.

This conclusion is in line with and further supported by other semi-field studies, which were already evaluated for the last Annex I inclusion. A brief summary of the key findings of these studies is provided in the following:

- Experimental ponds (1981; M-095315-01-1; Decis EC25 baseline dossie), KCP(10.2.2/01): No mortality was observed in Roach (*Butilus rutilus*) and Crucian carp (*Carassius*) at nominal concentration of 1 μg a.s./L from overspray at 10 g o.s./ha to 1 m deep water (≈3 g a.s./ha to a standard 0.3 m deep water). Severe mortality was observed in fish at a nominal concentration of 5 μg/L from overspray at 50 g/ha to 1 m deep water is 15 g a.s./ha to a standard 0.3 m deep water).
- Microcosms (1991; M-1366Φ1-01- C Decis EC25 baseline dossier, KCP 9.245/01 No adverse effects were observed in Fathead milliow (*Rimephales promelas*) at a nominal concentration of 2.2 µg a.s./L from overspray at 20 g.a.s./ha to 0.9 m deep water (≈ 6.7 g.a.s./ha to a 0.3 m deep water) after 7 days of observation
- Mesocosms (<u>mesocosmic</u>, 1985, <u>M-113322, 01-1</u>; KCA 8,2,8/02). No mortality was observed in Fathead minnow (*Pijnephafes promelas*) at a notainal concentration of 3.2 μg a.s./L from application of 10 g a.s./ha below the surface of a 0.6 m deep water body ≈ 6 g a.s./ha to a 0.3 m deep water) up to 12 days postgreatment.
- Mesocosm study on tralomethrm (box and box and

These studies conclusively demonstrate that the risk assessment based on laboratory data by far overestimates the offect levels, which can be expected under field conditions.

Conclusion

Deltamethrin has a high acute toxicity to aquatic organisms when exposed under worst-case laboratory conditions. However, it was demonstrated in Several higher tier studies that deltamethrin has a low toxicity or is non-toxic to fish inder tield conditions. Therefore, the use of a regulatory endpoint derived from laboratory data would represent a very conservative approach. The RAC of 0.100 μ g a.s./L based on the higher-tier microcosm study on Rainbow trout (______, 2005; <u>M-256604-01-1</u>) is considered to be an adequate endpoint for the acute and chronic risk assessment for fish.

Refined risk assessment for aquatic invertebrates

A high toxicity of deltamethrin to aquatic invertebrates, especially for the isopod *Asellus aquaticus*, was identified already during the last Annex I listing process. In the following, a refined risk assessment for aquatic invertebrates is presented taking into account new experimental studies and expert statements, which were performed after the last Annex I inclusion of deltamethrin, in addition to the already evaluated data.

Outdoor mesocosm studies

Two higher tier outdoor mesocosm studies investigating the effects of deltamethrin on aquatic invertebrates are available and summarized below (2001, M2006, 0-03-

and et al., 2005; M-246137-01-1). Of these studies only the (2001) study was part of the Decis EC25 baseline dossier (KCP 102.2). Therefore, the results of both are compared here.

a) Outdoor mesocosm study with artificial exposure conditions

2001; already evaluated for last Annex Listing <u>M-20061943-1</u>; KCA 82,06) To study the effects of deltamedrin under more realistic conditions that in standard laboratory studies, an outdoor mesocosm study on a natural freshwater community was conducted in 1 m³ enclosures. Deltamethrin EC 25 was <u>applied under the water surface</u> to static systems of 1 m depth and <u>artificially mixed into the water body</u> immediately thereafter. This stirring was a method required by the former Rapporteur Member State Sweden, but these not reflect the most realistic exposure conditions. Deltamethrin was applied three times at nominal concentrations of 1.0, 3.2, 10, 18, 32, 56, 100 and 180 ng as./L at 7-day intervals. Due to the expected sensitivity of *Asellus aquaticus*, this species was periodiced into the mesocosms about two months before the first application to ensure its presence.

The results of this study show that 20 of 55 taxa/determination groups, i.e. 53%, were neither directly nor indirectly affected by the test item, oven at the highest test concentration of 180 ng a.s./L. They include species of Gastropoda, Hirudinea Oligochaeta, sediment dwelling organisms, Inserta and several zooplankton organisms. The taxonomic richness of the aquatic ecosystem communities was not affected at concentrations up to and including 18 ng a.s./L. At higher levels, effects on taxonomic richness lasted for maximum 71 days, depending on the concentration and the organisms.

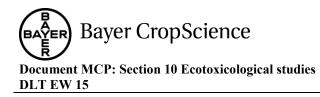
The effects found at the three lowest test levels, i.e. 1.0, 3.2 and 10 ng a.s./L, were similar. In total four groups of organisms were affected: the larval instars and emergent insects of the Chaoborids at all three levels. Ephemeroptera larvae at 3.2 and 10 ng a.s./L, the crustacean zooplankton species *Daphnia* spec. at 10 ng/L, and the Isopod Species *Asellus aquaticus* at all three levels. However, the effects on Chaoborids, Ethemeroptera and *Daphnia* spec. were only short-term effects lasting between 8 and 19 days after the first application. The effects on *A. aquaticus* at 10 ng a.s./L lasted longer the for 65 days, until recovers was observed. However, it is difficult to judge whether or not the statistically significanceffects detected at 1.0 and 3.2 ng a.s./L for *A. aquaticus* towards the end of the study (days of onset of effect: day 99 and day 71, respectively) were test item related. Such a delay in observable affects is rather unlikely for deltamethrin, which disappears rapidly from the watcophase and is known for its fast knock-down effect.

All groups affected at ≤ 10 ng a.s./L recovered from the impact of the three test item applications between 21 and 85 days after the first treatment.

From the results of this mesocosm, it was concluded that the effects on the aquatic ecosystem \bigcirc observed after the application of 10 ng deltamethrin/L are acceptable as overall structure and function was not permanently affected. A NOEAEC ("no observed ecological adverse effect concentration") of 3 x 10 ng a.s./L was derived.

In the mesocosm study performed by **and the second state and the second**

- the hydrophobic behaviour (surface specading) of deltamether on the water surface,
- a possible dissipation (e.g. by and ireal photo ysis, platilisation) of deltandethrin from the micro layer film on the water surface after spray drift
- and the reduced expositive of sediment dwelling organisms when deltamethrin is applied via spray don't.


To simulate spray drift as the celevant entry foute for defamethum under field conditions, another outdoor mesocosm study was performed by realistic exposure conditions?

b) Outdoor mesocosm study simulating the relevant route of entry (2005; <u>M-24612001-1</u>)

A mesocosm study with Deptamethrin EW 15, the new representative formulation, was conducted simulating spray trift as the actual entry route Outdoor tanks with 6 m³ of water (1.0 m deep) and 1% cm natural sediment taken from an uncontaminated pond nearby were used for this study. The application rates targeted nominal concentrations of 4.8, 10.5, 23, 51 and 111 ng a.s./L (three application at 7-day intervals). Spray drift was simulated by spraying the test item directly on the surface of the pond water. The study evaluated all immanent freshwater pelagic and benthic invertebrate species. Since most freshwater gammarids clearly prefer running water, this taxon was not tested in this static pond system but in bioassays performed in parallel to the mesocosm study (2005; M-246173-01-1).

As *Suquaticus* can be considered representative for lentic water bodies of this type, this species was artificially introduced into the test ponds since a natural population was not available in the ponds. Because it was unclear whether the inserted populations could be maintained throughout the study, bioassays for this species were also performed with water and food samples taken from the

à

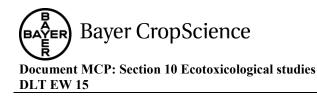
C

ponds throughout the study. The bioassays also allowed the assessment of potential recovery of an affected population.

Deltamethrin dissipated very rapidly from water by degradation and partitioning to sediment, with a mean DT_{50} value of 24 hours. Only two thirds of the total deltamethrin detected in pond water was dissolved in water, with the remaining third adsorbed to algae or particulate matter. The mean DT_{50} for the whole system (water plus sediment) was 32 hours.

Chaoborus crystallinus was identified as the most sensitive taxon with consistent effects even at 4.8 ng a.s./L. These occurred immediately after application will about a very few weeks after the last application when a full recovery was observed even at the highest test level. At 10.5 ng a QL, short-term effects were also observed for one Rotatoria species (Keratella quadrata) and Copepod nauplii. A. aquaticus showed a reduced activity at this test level for yery few days after application without any sign of mortality or affected reproduction. At 23 and 56 ng a.s./L, Offects on one to three more individual species were observed, but these effects were also short term only, with full recovery being observed within the first weeks after the last application. The abundance of Asellus was clearly reduced after application at these concentrations but to turned mostly to the level of controls until study termination. The differences between control and treatment levels were small and population abundance clearly increased in these ponds during the study, as additionally demonstrated by the increasing number of juvenile organisms. The broassay findings confirmed that water and food samples taken from the mesocosms did not have any negative effects on A. aquaticus at the latest one week after the appreciations. At 11 ng or s./L the number of affected zooplankton and insect species was distinctly higher, and the effects on *Anaquaticus* exer more pronounced as compared to lower treatment weeks.

The study author derived NOEAEC ("no observed ecological adverse effect concentration") of 51 ng a.s. D, based on the observed effects on several involtebrate species at 51 ng a.s./L and the observed fast recovery of affected populations at 4.8 to 51 ng a.s./L. Because of the missing replication of the highest treatment level of 111 org a.s. C, this concentration was not considered for the NOEAEC deduction.


Nevertheless, a NOEAEC of 23 ng as./L is suggested to be considered in this risk assessment as a more conservative approach, which is in line with the expert statement by $(2005; \underline{M}-254687-0)$ that is provided below.

While a recovery of affected populations was dearly demonstrated for all pelagic or benthic invertebrate species at test concentrations up to and including 51 ng a.s./L, an in situ recovery of the *Asehus* population could not be demonstrated in this study at 23, 51 and 111 ng a.s./L. However, taking into account the recovery potential of *Asellus aquaticus*, a NOEAEC of 23 ng a.s./L can be derived.

An independent expert statement on the two mesocosm studies presented above is available and summarized in the following:

Exaluation report on higher-tier tests to assess the ecological risks of the insecticide adeltamethrin to freshwater organisms (1990) 2005; <u>M-254687-01-1</u>)

In the context of this evaluation report, the author assessed the treatment-related effects observed in the mesocosm studies of (2001; M-200619-03-1) and (2001; M-200619-03-1)

(2005; <u>M-246137-01-1</u>). Responses of the measurement endpoints were considered treatment-related when:

- 1. Clear concentration-response relationships were evident that could not be observed thiring the pre-treatment period
- 2. Statistically significant effects were demonstrated on at least two consecutive sampling dates
- 3. The statistically significant effects were ecologically relevant

An overall summary of the "effect classes" determined by the author for Several Categories of endpoints is given in the tables below, for the detailed assessment reference is made to the original report. Within each category the most sensitive endpoint was selected. For the explanation of the effect classes reference is made to the summary provided under point CP10.2.3 of this document. In this evaluation report the author considers class 3 effects acceptable to derive the NOFAEC.

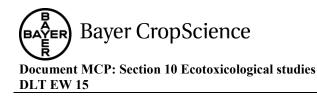
Summary table of study from Schaffe & Van der Kolk, 2001; C

2	•	Q,			N Cĩ	, C	a Y	
Nominal peak concentration	1.0 ng/L	3.2 ng/L /	0 ng/L	18 ng/L	32 m L	So ng/LS	100xpg/L	180 ng/L
Micro-	1		Ø3a ∂	7 5.D	5a	~ 3 0	‰, 5b	5b
Crustacea		× ,		~~	O ^Y ò	- (þ ″	
Other zooplankters		×1 ×		@1	34.	² 3a * Q	3a *	3a *
Macro- Crustacea			° ³⁵ 3b ∞	Ĩ, ^I	ي 5b	, B	5b	5b
Insects	S 2 0	a 3a @	<u>3</u> aS	_≪/3b	30	√y 3b	5b	5b
Other macro-			\sim^1			3a *	3b *	3b *
Water quatry endpoint		ŎĨ &				1	1	1

* = responses can at least in part be explained as resulting from indirect effects

The study of **Sector Control** (200) revealed class 2 effects on two very sensitive taxa only at 1 ng detramethrin/L, the lowest treatment level tested (see table above). Since these effects were transient and flight, the overall **NOEC** compunity of the study is set in this evaluation report at 1 ng detramethrin/L. When considering class 3a/9b effects (clear short-term effects) on a few populations of crustaceans (*Asellus Daphria*) and insects (*Chaoborus*, Ephemeroptera) acceptable a **NOEAEC of 10 ng detramethrin can be derived from the study**. At treatment-levels of 18 ng deltamethrin/L and higher the results revealed clear long-term effects (class 5a/5b) on calanoid copepods and on *Asellus aquadicus*.

2005:


		· · · ·			
Nominal peak, consentration	A.8 ngAL	9 10.5 ng/L	23 ng/L	51 ng/L	111 ng/L
Micro-		3a	3a	3a	3a
Other v zoopQankters	2 *	2 *	3a *	3a *	3a *
Macro- Crustacea	1	2	3b - 5a? #	5a - 5b?	5b?
Insects	3a	3a	3a	3a	3b – 5b

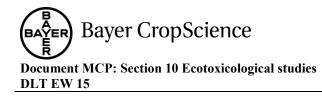
Summary for studyof

Other macro-	1	1	1	2 *	2 *
invertebrates					e s
Phytoplankton	1	1	3a *	3a *	× 9 á * 5
Water quality endpoints	1	1	1		
	t least in part be ex	plained as resulting	g from indirect effe	cts 🖉	
# = The in situ bioa	ssays show that po	tential recovery ma	y be fast		
An overall NOE	C _{community} cannot b	e derived from the	experimental p	ond study provid	by 🗖 🖉
(200	5), since the low	est treatment-ley	el (4.8 ng deftam	ethrin/LXresulto	I in class 3a
effects on the pha					
long-term effects					
microcosm study			oioassays pertorm		
water from the ou	utdoor microcosn				
fast. For this rease					
				\cap^{v}	
	, A				Ő
microcosm study Taking into acco	ount the two mas	ocosin studies a	nd related bioas	ays, the author c	oppes to the
following conclus	sions [.] Q.				\$J [*]
• The two outdoo	or semi-field tests	seported by		(2001) and	
(2005) can b	ve used to evaluat	e the effects of s	nort-term pulsed		deltamethrin
	eshwater continun				
• The study of		(2001)) used test system	ns that had a rel	atively high
diversity of fre	diversity of frequencies arthropods. In this study relatively worst case exposure conditions were				
simulated, due	simulated, due to mixing of the test compound in the water column immediately after deltamethrin				
application					
• The study of	• The study of (2005) is characterised by test systems with a lower (but not				
	exceptional for such model ecosystem studies diversity of freshwater arthropods. However,				
several very sensitive attropodopopulations (e.g. Chaoborus, Asellus) were present and additional					
bioassays with the sensitive macro crustageans A. aquatcus and G. pulex were performed. In					
addition, the study of a state (2005) more realistically simulated the risks due to spray					
drift and described the spratification and dynamics in exposure concentrations in the course of the					
experiment in $(areat detail)$					
experingent in great detail.					
deframethrin/L con be derived from the study of action of approximately 1 lig					
Vinder the assumption that short-term (class 3) effects on a few populations of sensitive arthropods					
are acceptable a NOEAEC of approximately 10 ng deltamethrin/L (based on nominal initial					
concentration) can be derived from the semi-field experiment reported by					
(2004), and 310 ± 23 ng deltamethrin/L for the study reported by					
• Publications on the ecological effects of other pyrethroids in aquatic micro/mesocosms suggest					
that the NOEAEC of approximately 10 - 23 ng deltamethrin/L as observed in the studies reported					
byO		(2001) and		(2005) can be	used as an

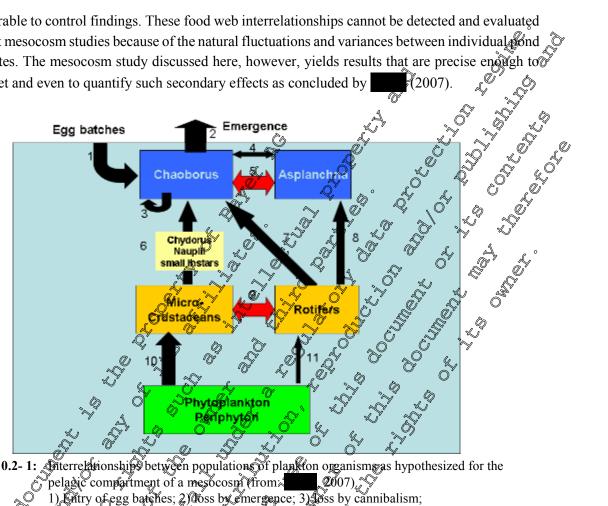
(2001) and (2005) can be used as an Environmentally Acceptable Concentration of deltamethrin in freshwater ecosystems (without

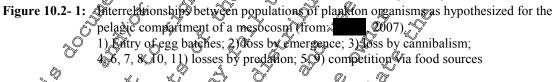
applying an extra Uncertainty Factor), at least if short term effects on a few insects and crustaceans are considered acceptable.

To address some open questions for the aquatic invertebrate risk assessment, which could not be fully

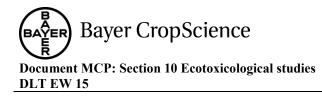

... coe fully ... presented in this ... pres

EW 015 to aquatic mesocosms with special focus on the Chaoborus crystallinus population 2007; **A-291864-01** L, \bigcirc


Overall, Chapforus Grystallinus was found as the most sensitive species in the mesocosm study with deltanothrin demonstrating a distinct reduction in abuddance of larvae and emerging midges immediately after the application at all treatment levels. However, garvae hatching from egg masses in the treated pond of the highest test level 11 ng a.s./Ig/already survived seven to eight days after the dast application and merged later on. The author concluded that the Chaoborus crystallinus population in the mesocosm probabl@recovered by means of external sources via egg masses laid on the water surface of treated ponds soon after the last application.


In addition the abundance of Daphyria longisping and copepods (mainly nauplii) was affected by deltangethrin at the highest test levels. Atthough the recovery for D. longispina was delayed by the predation of a growing population of Charborus larvae (see below), the populations of both, Daphnia longispina and coperiods (mainly muplii) recovered even up to the highest test level within some weeks after the last application at the latest. The population dynamics of Chaoborus crystallings also caused some short term indirect food web effects (as on rotifers and phytoplankton, Thus the treatment with deltamethrin caused distinct short-term effects on a few zooplankton species, which also induced fluctuations on other zooplankton and phytoplankton species within the food web for some weeks only.

The results gained from the (2005) mesocosm study allow for an interpretation of secondary effects caused by the population growth of a predator like Chaoborus or food competition between Cladocera/Copepoda and Rotatoria. These relationships cause delayed fluctuations and oscillating population dynamics for some time until a stable population density is reached


comparable to control findings. These food web interrelationships cannot be detected and evaluated in most mesocosm studies because of the natural fluctuations and variances between individual fond replicates. The mesocosm study discussed here, however, yields results that are precise enough to interpret and even to quantify such secondary effects as concluded by

Following the food web evaluation it is seen as highly improbable that the test item had any direct effect on rotifers. On the contrary, the population growth of rotifers was promoted due to an indirect effect via the rexicant-induced short-term loss of effective predators (Chaoborus) and of competing Cladocerans (Daphuia longisping, Chydorus sphaericus), until the predators came into play again. Asplancha and hew oung chaobord large repopulating the mesocosms probably caused the sharp decline in rotifers soop after the application. Thus, it can be assumed that all observed effects on the population dynamics of rotifers are to be considered as secondary effects of the treatment with deltamethrin.

Also, a dose response relationship in population growth of *Daphnia longispina* was demonstrated. The abundance in the two highest test concentrations reached the range of the control group on day 63, Faking into consideration the rapid dissipation of the test item from the water phase and the short Generation cycles (d) of this species, the start of recovery appears rather delayed. Since the daphned densities did not reach control densities until the first emergence of the adult chaoborids wook place, it is highly probable that the growing population of 3rd- and 4th-instar Chaoborus larvae contributed by predation substantially to the delayed recovery. This is supported by the observations on the copepod populations, which was equally affected by the test item, but recovered more rapidly than the daphnid population, probably due to the fact, that the copepods are less frequently predated

by *Chaoborus* larvae, as they can easily escape from predation. It can be concluded that the delayed recovery of Daphnia longispina is a secondary effect rather than a direct result of deltameterin exposure.

The secondary effects described are restricted to higher test concentrations, and the impacts on population densities are not very strong as compared to fluctuations of natural populations in control mesocosms. All observed direct and indirect effects recovered within some weeks after the application: the latest full recovery was observed for the rotifer Keratella quadrated and the cladoceran Daphnia longispina seven weeks after application. However, the generation time of C these species is a few days only and, thus, the potential for the growth of an affected population is high. This period of seven weeks is shorter than a recovery period of eight weeks, which had been defined as an acceptability criterion for coserved effects within the EU Guidance Document on Aquatic Ecotoxicology (SANCO/3268/2001 rex, 4 (final) 2002).

2. Gammarus spec. Based on acute laboratory endpoints for aquatic invertebrates listed in the US PPA ECOTOX" (2001; M-201581-01-1; ACA \$2708) identified the omphipod Gammarus database. fasciatus as the most sensitive species, which showed a higher sensitivity to deltamethrin than Gammarus pulex. However, G. fasciatus is a North American species mainly inhabiting upstream brooks with clear and fast flowing water, and is not considered relevant for European agricultural areas 2007; M291865701-1). Hence this species was not selected as a test species for bioassays (see below), but Gammorus proex, which is known to be sensitive to deltamethrin and other pyrethroids. This species is also the most common Gammarue species in streams in agricultural landscapes in Europe 2007)

Studies with Gammarus fasciatus, conducted with the former representative formulation Deltamethrin EC 25 were evaluated for the last Amoex I listing of deltamethring

Test species		Test system 🖉	Endpoint	Reference
Gammarus	Deltamethrin	96 b, flow 4	LC ₅₀ 0.31 ng a.s./L (mm)	(2000)
fasciatus 🦉	EC250 EC250	through water O	LC = 3.2 ng a.s./L (nom)	<u>M-194285-01-1</u>
~~~		yonly of	ð	KCA 8.2.4/03
Gammarus	Deltamethrin	96 h single	$LC_{50} > 43$ ng a.s./L (nom)	(2000)
fasciatis	EC25	pulse exposure		<u>M-198400-01-1</u>
L.	J A .	water & diment		KCA 8.2.4/04
<b>~</b>		system		

mm = mean measured, nom = nominal  $\sim$ 

The results demonstrate that the toxicity to this species is considerably reduced under more realistic exposure conditions.

In addition, New bioassays with the amphipod Gammarus pulex were performed in parallel to the mesocosm study of , 2005; M-246173-01-1) with water (2005) ( and leave samples taken from the mesocosm ponds at different sampling dates after the deltamethrin applications. Leaves function both as habitat and food for Gammarus species. A NOEC of 23 ng a.s./L was derived from this study for *Gammarus pulex* based on nominal peak concentrations. The bioassays showed mortality of test organisms only in samples taken at higher concentrations shortly after the deltamethrin applications, demonstrating a full recovery potential of affected populations and reference of the test concentrations (up to 111 ng a.s./L) already after about one we hafter application of the test item.

*Gammarus pulex* was less sensitive in these bioassays than *Asellus aquaticus* (NOEC = 10.5 ng  $\infty$  /L, see below), confirming the results from Tier 1 laboratory studies (see 2001; 2001; 2001; 201581-01-1, KCA 8.2/08). Therefore, unacceptable effects on relevant *Gammarus* species are not expected at environmental concentrations of deltamethtin, which are considered sate for *Faquaticus*.

### 3. Asellus aquaticus

The isopod *Asellus aquaticus* was identified as another sensitive species to deltable thrin in laboratory studies (see 2001; M-201581, 01-1; &CA 82/08) and in the mesocosm study of 2001; M-200619-03-1; KCA 82006). Therefore, it was also artificially introduced into the ponds of the mesocosm study of 2005; see M-245137-01-1) and selected as test species for the corresponding bioassays. The study is strainarized under point CP 10.2.3 of this document, and the general results were discussed above. Nevertheless, the effects observed for the isopod *Asellus aquaticus* are presented here in further detail:

Effects on A. aquaticus in the outdoor mesocosm study with Deltamethrin FW15 ( 2005; M-24613 (01-1))

When interpreting the *Asellus* results of the mesocosin studies, one has to bear in mind, that both sampling devices used for *A. aquaticus*, i.e. artificial substrate samplers (ASS) and leaf cages, are mainly activity measures of this species ('activity traps'). The efficiency of these methods is influenced by other competing factors such as availability of food in the mesocosin ponds (e.g. macrophytes). Thus, reduced numbers of trapped individuals do not necessarily reflect mortality, and results from these samplings do not allow for a conclusive interpretation of population dynamics.

Three applications of 4.8 and 10 % ng asu/L deltamethrin at an day interval did not cause relevant effects on the activity or mortalities of exposed adult and juvenile organisms, resulting in a NOEC for the mesocosm and and bioassay of 19.5 ng a.s./Leor Asellus aquaticus.

 Table 10.294:
 No-Observed Effect Concentrations (in ng a.s./L) of Asellus aquaticus in the mesocosms as obtained from statistical testing

Day(s)	Leaf cages	Artificial substrate samplers (ASS)	Leaf cages & ASS
-1 - 0 (pre-application)	JAN ANI	>111	>111
2	4.8 [#]	>111	10.5
4 4 6	لاً من المالي المالي من المالي الم	>111	4.8#
7 5 5 1	23.0	>111	10.5
9 2 07 5	<u>,</u> ≪ [♥] >111	>111	>111
$\frac{1}{14} \stackrel{\sim}{\searrow} \stackrel{\sim}{\otimes} \stackrel{\circ}{\nabla}$	>111	>111	>111
14 5	10.5	>111	>111
16 Ű	4.8#	10.5	4.8#
18	10.5	10.5	10.5
21	>111	>111	>111

## Document MCP: Section 10 Ecotoxicological studies DLT EW 15

29 - 105	≥10.5*	≥10.5*	≥10.5*	]
Consistent NOEC	10.5	10.5	10.5	S &

* Test concentrations above 10.5 ng a.s./L could not be derived as NOEC after day 21, because one of the two replicates was used to simulate immigration at higher concentrations.

[#] A NOEC of 4.8 ng a.s./L was determined for single sampling dates only. A consistent NOEC determination for a mesocosm study, should be based on at least two consecutive sampling dates

At 10.5 ng a.s./L a slight reduction in the activity of adult and juvenile *A. aquaticula* was observed for very few days after the <u>first</u> application only, most likely due to the well-known effect of pyretholds to cause short-term paralysis of invertebrates at low opposure concentrations. However, the later findings clearly indicate no mortality at this test concentration, since the abundance of trapped" individuals was the same as in control ponds at the following ampling days, and was not reduced after the second and third application (see Figure 10.2-2).

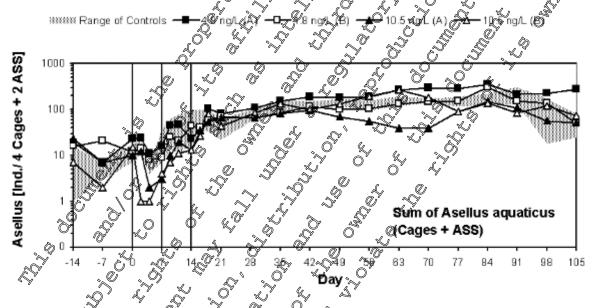
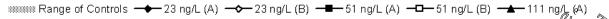




Figure 10.2-2 Sum of Aselias aquencies in the leaf cage and ASS following application of deltamethrin acrominal concentrations of 4.8 and 10.5 hg a.s./L, respectively. The vertical lines indicate the applications.

In the three highest test concentrations of 23,51 and 111 ng a.s./L the mobility of *A. aquaticus* during the treatment period was clearly reduced in all ponds. However, one to two weeks after the third application the number of mobile (i.e. trapped) individuals clearly increased in one pond of each of the 23 and 51 ng a.s./L treatments, and the aburdance reached the control level by the end of the study at the latest in both treatment groups (see Figure 10.2-3).

the latest in both treatment groups (see Figure 10.2-3).

#### BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15



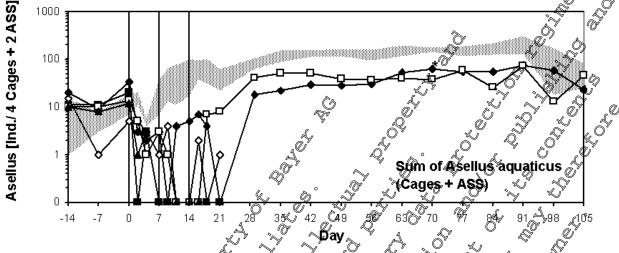
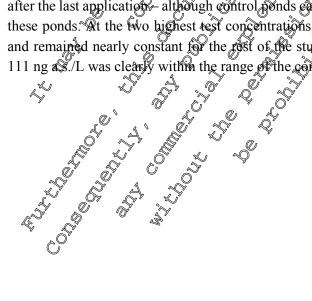




Figure 10.2-3: Sum of Asellus aquaticus in the leaf cages and ASS following application of deltamethrin at nominal concentrations of 23 and 51 ng/L, respectively. The pertical lines indicate the applications. In the replicates 23 ng/L (BP and 5 ng/L (A), additional Asellus from the culture were inserted at day 21 to simulate immigration. Therefore, these replicates are considered in the graph above only until day 21.

The number of probile *A. aquaticus* was low seven days after the third application in all ponds of the three highest test concentrations. Hence, the study performers decided to introduce further individuals of *A. aquaticus* from the culture to one replicate of each of these test concentrations as well as to the highest test concentration of LD ng a *A*/L in order to simulate introduce.

At 23 ng a.s./L the numbers of mobile *Aschus* slowly increased after the introduction of new individuals in these additionally inoculated ponds and reacted the same abundance as in control ponds eight weeks after the last application – although control ponds can no longer be considered as fully valid controls for these ponds. At the two highest test concentrations, the number of sampled mobile *Asellus* fluctuated and remained nearly constant for the rest of the study. At the end of the study the abundance even at 111 ng as./L was clearly within the range of the control.



## Document MCP: Section 10 Ecotoxicological studies DLT EW 15

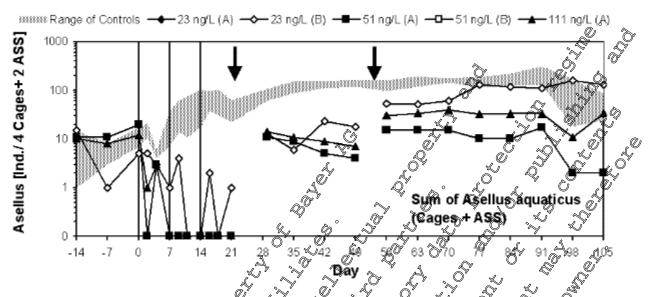
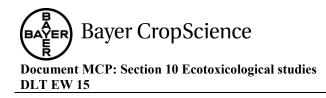



Figure 10.2-4: Sum of Asellus aqueacus in the leaf rages and ASS tollowing appleation of deltamethrin in those replicates of the orige highest test concentrations, to which additional Asellus individuals were inserted to simulate impligration. The vertical lines indicate the applications the arrows indicate the additional insertion of Asellul from the culture.

After day 70, the proportion of juveniles at these test levels also reached the level of control ponds. However, a full recovery to the control level within eight weeks after the last application could not be demonstrated without doubt for 23 \$1 and 111 ng a.s./L. Nevertheless, the differences between control and treatment levels are small and population abandances clearly increased in these ponds, as also demonstrated by the increasing number of juvenile organisms and the corresponding reproduction in sput. Since Asellus has a long generation time of several weeks under the conditions of this study, it cannot be expected that this species could have built up the same population density as incontrol ponds within a few weeks only. The bioassays performed in parallel showed that three weeks after the first application (one week after last application) survival of immigrating Asellus would no longer be affected by treated point water and exposed leaves even at the highest test concentration, depondent of the recovery potential of an impacted A. aquaticus population.


However, since control ponds cannoble used for ordirect comparison after the insertion of further *Asellus* individuals, these additionally inoculated mesocosm replicates have to be interpreted with care and should be used as supporting information only.

The corresponding **bioassays** conducted with mesocosm water and leave material from different sampling dates showed effects on survival of adults at test concentrations  $\geq 23$  ng a.s./L only shortly after the applications, indicating a recovery potential for all test concentrations including the highest one (110 ng a x/L) as early as about one week after application.

Overall, the findings suggest, that effects on *Asellus aquaticus* observed at concentrations up 23 ng a. AL can be considered as acceptable, based on the assumption that recolonisation will occur in natural water bodies of the agricultural landscape.

Ĉ

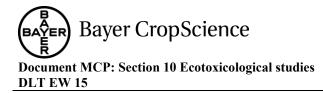
****



## Effects on *A. aquaticus* in an outdoor mesocosm study with the formulation Thiacloprid & Deltamethrin OD 100+10 (2005; M-259938-01-2)

Effects were observed at all treatment levels: at the lowest level (0.5 µg prod./L, equivalent to 4.8 ng deltamethrin/L), a slight reduction of activity was observed, but population growth was possible again within a few weeks. Due to unlimited growth of the control population, the control levels could not be reached, however, the population growth rate was comparable. At higher concentrations, populations became extinct or almost extinct. However, up to 5.5 µg prod./L (equivalent to 5 µg deltamethrin/L) possible recolonisation after two weeks was demonstrated by inserving of hew organisms into test ponds. At the highest treatment level, survival of immigrants was possible at least after seven weeks. Laboratory bioassays also showed after eight weeks full servival of the highest treatment level.

A NOEAEC of 2.5 µg product L was derived by the study director, which is equivalent to a deltamethrin concentration of 23 ng a.s./L. Although the results of this mesocosm study are considered supporting information only - as it covers only a single application, and the second active substance of the formulation (the insecticide thaclourd) may have contributed to the observed effects - the outcome of this study supports the overall conclusion, that effects of deltamethrin on aquatic invertebrate species, especially the isopod *A. aquaticus*, are observed only for a short period of time followed by recovery a application rates up to 23 ng deltamethrin/L


Small, fully treated fond mesocosms represent a worst-case situation for recovery of species like *Asellus*, which do not have resting stages (like e.g. daphnids) and are not able to immigrate by flying life stages. However, the successful artificial immigration and the survival in the bioassays demonstrate the recovery potential in the field by immigration of organisms from adjacent water bodies or unaffected areas of the same water body. To examine the retual mobility, and hence – recolonisation potential - of *Asellus amaticus*, a field experiment was conducted in a representative water body of the agricultural landscape:

Field experiments on the drifting believior of Asellus aquaticus in an agricultural stream (

Ŋ

2007 M-221925-0 1)

Drifting is a special behavioural response of lotic animals to specific environmental conditions. To gain some information on the drift behaviour of *Asellus aquaticus* experiments were performed in an agricultural stream (Birmach) close to Landau, Southwest Germany. The Birnbach is a third order stream discharging agricultural land (mainly vineyards). It has a permanent discharge of about 10 L/s at a depth between 10 and 20 cm. The streambed is between 50 and 150 cm wide and has a sandy-loamy substrate, which is covered by macrophytes and filamentous green algae (coverage: 50% to 60%). The



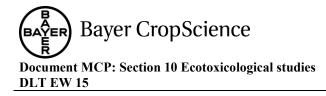
flow velocity during the observation time between July and August was between 0.01 and 0.31 m/s with an average of  $0.05\pm0.06$  m/s (n=68). In consistence with the EU FOCUS scenarios, the Birnbach is comparable with a slow flowing ditch. The average density of *Asellus* found in the Birnbach was relatively high (average of 2223±1040 individuals/m²) (n=15) and was comparable to densities reported in literature from different countries (Iversen & Thorup, 1998¹; Graca et al. 1994² and Petridis 1999⁶). Experiments were performed to observe the total abundance of *Asellus* in this stream and their drift behavior (drift rate and drift distance). Sampling with drift nets over 24 hours resulted in **drift rates** between 225 and 1918 individuals/24 h (mean drift rate:  $675 \pm 467$  individuals/24 J2 n=455 Regarding the **drift distance**, the observed drift pattern suggested that distances of 14 m and 25 m were of relevance for *A. aquaticus* in the two experiments conducted. Based on the results the authors concluded: "Even if it is not conclusively possible to distinguish between active or passive components or between drift and becomption, the data from the study reported here still **suggest a rather high spatial dynamic for the topod species** *A. aquaticus* 

#### These results support the assumption, that recovery of an Asalus population in Fratural water bodies in the field, e.g. ditches, occurs faster that possible in the isolated mesocoam ponds.

To receive additional information on the toxicity of deltamethring to Asellus aquations a study was performed with different life stages of the isonod A aquations L. (Isopoda) under realistic spray exposure conditions in the aboratory:

Acute and chronic effects of deltamethrin to different the stages of *Asellus aquaticus* (

In the first study conducted with the new representative formulation Deltamethrin EW 15, the test organisms were exposed to nominal concentrations of 1.0,  $Z^2$ , 4.8, 10.6, 23.4 and 51.5 ng a.s./L (overspray application, simulating spray drift) in a natural water sediment system for a period of 21 days, the observed toxicity of detamethrin to A aquaticus after 24 hours in this study was in the same range as after 48 hours and up to 25 days after application. Since it was not possible to find all introduced individuals at the interim sampling dates due to technical reasons, the final evaluation on day 21 is considered the most relevant for the tisk assessment. After 21 days LC₅₀ values were determined to 43.0 ng a.s./L for adult and 44.8 ng a.s./L for juvenile *A. aquaticus*, respectively, based on nominal concentrations. These results indicate that the sensitivity of juvenile *A. aquaticus* to deltamethrin was the same as for adults.


In the vessels where adults that been introduced newborn *A. aquaticus* were already observed four days after application up to a concentration of 23.4 mg a.s./L. At 51.5 ng a.s./L newborns were only observed 14 days after application.

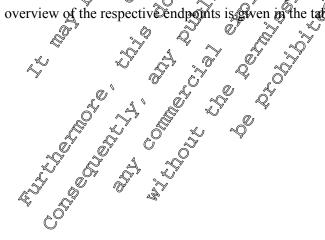
## Based on mortality the 21 day NOEC for adult and juvenile *Asellus aquaticus* was determined to be 23.4 ng a.s./L

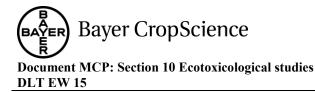
¹ Iversen, T. W. & Thorup, J. (1988): A three years' study of life cycle, population dynamics and production of *Sellus quaticus* L. in a macrophyte rich stream. Internationale Revue der gesamten Hydrobiologie 73:73-94.

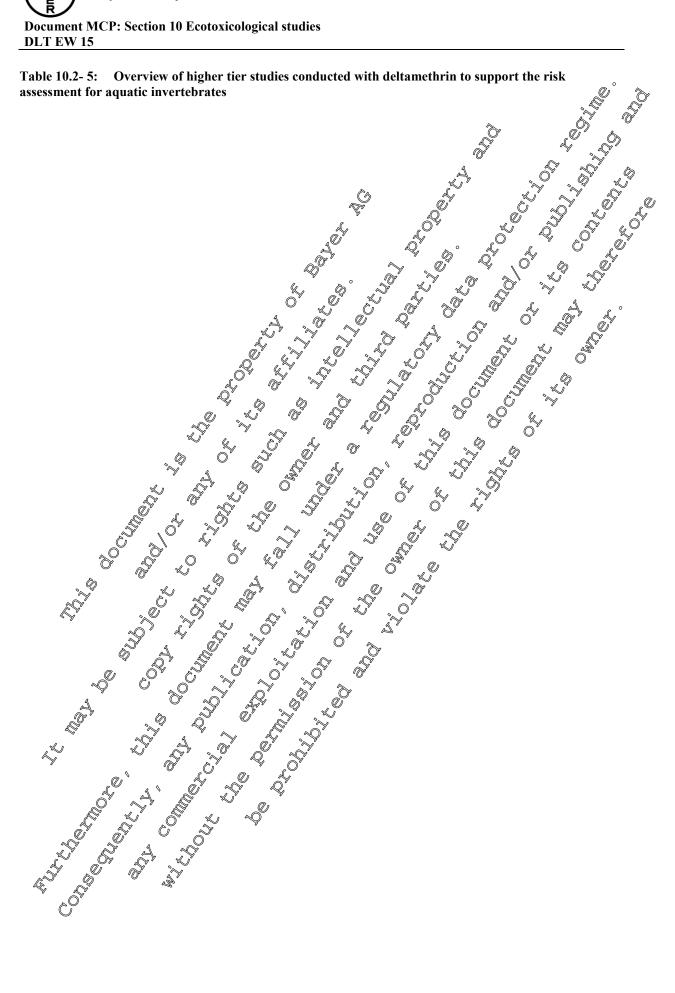
² Graca, J.A.S.; Maltby, L. & Calow, P. (1994): Comparative ecology of *Gammarus pulex* (L.) and *Asellus aquiticus* (L.) I: population dynamics and microdistribution. - Hydrobiologia 281:155-162.

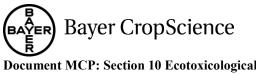
³ Petridis D. (1990): Influence of grass carp and tench on the ecology of *Asellus aquaticus*. Archiv für Hydrobiologie 118:105-124.




The findings of this life stage study are well confirmed by the results of a second, laboratory population study with *Asellus aquaticus* (2007; M-291879-01-1). The study was aimed to determine the chronic effects (such as population dynamics and potential recovery) of deltamethrin towardo a population of different age (size) classes of *Asellus aquaticus* in a water-sediment system under realistic spray exposure conditions. However, since the life stage study provided reliable results and the interpretation of results from a population study with different age classes is difficult, the population study was terminated already five weeks after study implementation. Survival of Juvenile and adult *A. aquaticus* was not affected after 35 days of exposure to deltamethrin in astatic vater-sedimentsystem up to a nominal peak concentration of 51.5 ng a.s./L. No difference in ensitivity between juvenile and adult organisms was observed.


The results of these laboratory studies on Asellus aquatieus are in agreement with those from the


. mesocosm study. Since delta methrin had been sprayed three times at a seven day interval in the mesocosm study the biological effects are slightly more provounced as compared to the faboratory studies with a single application only. The proposed use pattern according to the GAP is a single application in sugarbeet, and two applications at a 14 day interval in cauliflower and wheat, respectively. Hence, the three applications at a 5 day interval in the mesocosm from the faboratory (2005) can be considered a conservative scenario.


# Overall summary of the presented higher tier studies and derivation of an endpoint for the aquatic invertebrate risk assessment

The available data indicate a high acute sensitivity of several invertebrate species (mainly insects and macro-crustaceans) to deltamethrin in acute laboratory studies under flow-through or semi-static conditions in water only studies. Because of the low water solubility of the substance and its high adsorption to organic material, the toxicity is distinctly reduced under realistic environmental conditions. Therefore, a number of additional higher tier studies were conducted as described above. An overview of the respective endpoints is given in the table below:









#### Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Test species	Test substance	Test system/Activity	Results/Endpoint	Reference
Mesocosm studies				
Freshwater community	Deltamethrin EC25	<b>Outdoor mesocosm</b> 3 appl. <u>mixed into</u> water, appl. interval 7 d	NOEAEC 3 x 10 fog a.s./L	(20%) <del>M-2006 (% 03-1</del> OCA \$\$ 06
Freshwater community	Deltamethrin EW15	Outdoor mesocosm 3 appl. <u>sprayed onto</u> water surface, appl interval 7 d	NOEAEC 3 x 23 ng a.sqL#	02005) NCP 10⊙:3/02, M1-244937-0127
Freshwater community	Thiacloprid + Deltamethrin OD 100+10	Outdoor mesoarsim Single <u>spray</u> application water surface	NOCAEC 23 mora.s./Its	(2095) KCP 102.3/06 <u>M-259938-01-2</u>
Scientific evaluation	ons	<u> </u>		
Freshwater community	Deltamethrin	Analys of the metocospy data of (2001) and etal. (2005), incl. bioassays for Ase tors	NOPAEC 23 mg/a.s./10, 10	(2005) KCF 10.2.3/04 M-254687-01-1
Zooplankton (incl. Chaoborus crystallinus)	Deltamethran EW15	Analysis of zooplanktor dynamics in 2005) mesocosm with special focus on <i>C. cystallingus</i>	ROEASC ¢111 ng QS./L	(2007) KCP 10.2.3/05, <u>M-291864-01-1</u>
Gammarus 🖉				
Gammaruspulex	Beltamethrin &	Bioassay with water from mesocosm study to assess potential for recovery	NOEC 73 ng a.s./L	& (2005) KCP 10.2.3/03 M-246173-01-1
Gammarus fasciatus	Deltamethrin	Lab study, 35 h, flow- through, water only	LC ₅₀ 0.31 ng a.s./L (mm) C ₅₀ 3.2 ng a.s./L (nom)	(2000) <u>M-194285-01-1</u> KCA 8.2.4/03
Gammarus fasciatus	Deltamethrin EC23	Labordudy, 90 h, single pose exposure, water- sediment system	LC ₅₀ >43 ng a.s./L (nom)	(2000) <u>M-198400-01-1</u> Decis EC25 baseline dossier KCP 10.2.1
Asellus	<u> </u>	NY O ^Y	Γ	
Asellus aquadicus	Deltameterin EW15	<b>Bibassas</b> with water from mesocosm study to assess potential for recovery	NOEC 10.5 ng a.s./L	(2005) KCP 10.2.3/02 <u>M-246137-01-1</u>
Asethus adaaticus	Deltamethrin EW13	Lab study with different life stages of <i>A. aquaticus</i> , single application to static water sediment system, 21 d	NOEC         23.4 ng a.s./L           LC _{50 adult} 43.9 ng a.s./L           LC _{50 juvenile} 44.8 ng a.s./L	(2007) KCP 10.2.3/07 <u>M-291885-02-1</u>

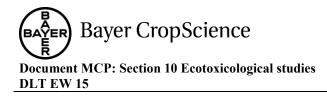


DLT EW 15

Asellus aquaticus	n.a.	Generic field study to examine drift behavior of <i>A. aquaticus</i>	Results suggest a rather high spatial dynamic for the species.	(2007) KCP 10.2.3/12 M-290925-01-1
# A MORADO CO	/T ·	1 * 11		· · · ·

A NOEAEC of 3 x 51 ng a.s./L is derived by detected et al. (2005) in the original report. However, in a conservative approach, the NOEAEC of 3 x 23 ng a.s./L is considered in the risk assessment provided in this document.

* Endpoint recalculated for the active substance deltamethrin based on its content of 0.938% w/w in the test iter Thiacloprid + Deltamethrin OD 100+10. As thiacloprid may have contributed to the observed effects, on endpoint is of limited reliability and considered as supporting information only.


The mesocosm study of **Sector**. (2005) confirms the high sensitivity of insects and macrocrustaceans to deltamethrin but shows a reduced toxicity compared to the results of laboratory studies under artificial test conditions. It also demonstrates that the observed effects on various taxa (e.g. *Chaoborus*) are of short duration only, with a fast recovery of all affected populations within a few weeks (except for *A. aquaticus*, see argumentation below). Based on the demonstrated fast recovery of affected populations at 4.8 to 23 m a.s.A, a NOEAFC ("no observed ecological" adverse effect concentration") of 23 ng a.s./L can be derived from this mesocosm study. Ichas to be noted, that this mesocosm covered three applications at a 7-day interval, whereas the GAP proposes a maximum of two applications at a 14-day interval. Therefore the results from this study can be considered a conservative scenario.

The bioassays also confirm that Asellus aquiticus  $\mathcal{G}$  more sensitive than Gamparus pulex (NOEC = 23 ng a.s./L), the relevant Gammard's precises for agricultural landscapes in Europe. A risk assessment based on the sensitive species A quaticus, is therefore expected to cover also the risk to gammarids.

The demonstration of an *in situ* recovery of the *Aseffus* population (NOEC = 10 ng a.s./L) could not be demonstrated in the **formulation**. (2005) mesocosm at concentrations  $\geq 23$  ng a.s./L. However, the complementary bioassays on *A aquaticus* demonstrated the potential for recovery within a few days after application. This is supported by the increasing numbers of potential for recovery within a few days after application. This is supported by the increasing numbers of potential for recovery within a few days. Moreover, the sampling devices used for *A aquaticus* are primarily "activity traps". Reduced numbers of trapped individuals do not necessarily reflect mortality, and results from these samplings do not aconclusive interpretation of population dynamics. The missing recovery of *Asellus* in the mesocosm is most likely due to the isolation of the individual test ponds, and hence, a missing recolonisation potential of this species during the study. A field study on the drift behaviour of *A. aquaticus* showed a rather high mobility of this species, supporting the conclusion that recovery of *Aselus* via recolonisation can be expected in natural water bodies in the agricultural landscape.

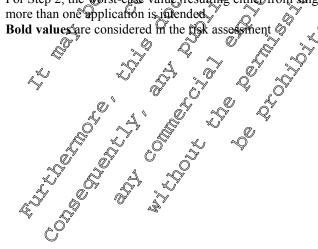
In addition, acute and chronic effects of a single application of deltamethrin to different life stages of *Asellus aquaticus* were investigated in a water-sediment laboratory study (**1997**, 2007). The results of this study show that no life-stage depended sensitivity to deltamethrin exposure could be observed. The NOEC derived from this study was 23.4 ng a.s./L for both life stages. A population study performed in parallel confirmed the outcome of the life stage study.

Taking into account this additional information on *Asellus aquaticus*, and its recovery potential under field conditions, a NOEAEC of 23 ng a.s./L can be derived for this species. This conclusion is also supported by an independent expert statement of (2005; <u>M-254687-01-1</u>).



Taking into consideration all data available, an overall NOEAEC community of 23 ng a. is proposed for deltamethrin. No unacceptable effects on aquatic invertebrates are expected at this surface water concentration.

*****


#### Predicted environmental concentrations used in risk assessment

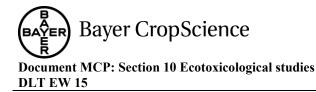

Predicted environmental concentrations of deltamethrin in surface water were calculated according de FOCUS for the uses of Deltamethrin EW15 in sugarbeet, cauliflower, spring and winter wheat. PECsw values that are relevant for the aquatic risk assessment are summarized to the following tables. For ° details of PEC calculations refer to MCP Sec. 9 Point 9.2.5

Table 10.2- 6: Max	kimum PECsw	values FOCUS Ste	p~ <b>1</b> ,& 2 ~~	
Compound	FOCUS	🖉 Sugarbeet 🗶		Spring w
	Scenario	Pl x 7 5 g a.s. ha	2 x 7.5 g.a.9/h	a 🗶 🏹 6.25 🖓

Compound	FOCUS	🖉 Sugarbeet 🗶		Spring wheat	<b>Winter</b> wheat
	Scenario	Pl x 7,5, g a.s. /ha	2 x 7.5 g,a.9./ha	20x 6.25 2 a.s./ha	2 x 625 g a.s./ha
	Q,	PEC _{sw, max}	PEC max	PEC _{sw, max}	∘ PECsw, max
	N M	{у [µg/]	, [hgh]	ωμg/LD	_{ℓ。} [μg/L]
	STERC	^م ي 0.0692 گ	مَرْضِ 0.13 <b>م</b> رْضَ	0.9753	0.1153
Deltamethrin	STEP 2 - North	0.0690	🔊 0 <b>.06</b> 90 S	🖓 🤇 🦚.0575	0.0575
	STEP2 - South	<u> </u>	0,0690	0.05 <b>75</b>	0.0575
4'OH-deltamethrin	STEP A	<b></b>	\$0.0015	≪° 0. <b>001</b> 2	0.0012
(BCS-BY84407)	SPEP 2 North	<b>9</b> 0.0002	0.0613	& <b>0,001</b> 0	0.0010
(DC3-D104407)	STEP 2 - South	0.0007	2.0013 (	O` <b>~9.0011</b>	0.0010
Br ₂ CA	STEP 1	Q3411 _^	Q 20.6822	0.5685	0.5685
(AE F108565)	STEP 2 - North		<i>№</i> 0.0446	0.0371	0.0282
(AE 1108500)	STEP 2 South	× ( ⁰ 0.07 <b>0</b> 2)	0.0769	0.0641	0.0461
Soring L PorCA	STEP 1	0,0033	0.0066 ×	0.0055	0.0055
Serinyl-BrCA (BCS-CW57835)	STEP 2 - North	@ [*] 0. <del>0</del> 033	©0.00570	0.0048	0.0048
(DCS-CW 57855)	SPEP 2 South	0.0033 ⁵	0.0057	0.0048	0.0048
mDDaaid	STBP1 🔬	0.0 <b>522</b>	<u>k</u> 0 <u>5</u> 1045	0.0871	0.0871
(AE F109036)	STEP 2 - North	_^>> 0.0032	0.0053	0.0044	0.0044
(AL 1103030)	STEP 2 - South	<u> </u>	0.0053	0.0044	0.0044

For Step 2, the gorst-case value, resulting either from angle of multiple application is given, for crops where more than one application is intended

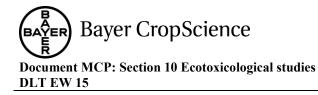




Compound	FOCUS Scenario	Sugarbeet	Cauliflower	Spring wheat	Winter wheat
		PEC _{sw, max}	PEC _{sw, max}	PEC _{sw, m}	PEC, max
		[µg/L]	[µg/L]	[µg/J	[µµ/L] 🖉
Deltamethrin	D1 (ditch)	-	-	0.0401	Q9.0400
	D1 (stream)	-	-	<b>QD3</b> 16	<u>∞</u> 0.03@7 [×] ≪
	D2 (ditch)	-	<u></u>		
	D2 (stream)	-		Q -	200332 x 00396 x
	D3 (ditch)	0.0393	<b>S</b> 0.0476	0.0399 🔊	0.039
	D4 (pond)	0.0016	0.0017	0.0014	0.0004
	D4 (stream)	0.0325	Ø 0.0378 👡	0.032Q	0 0 0317
	D5 (pond)	-	· · · · ·	× 0.0014	<b>∞ 0</b> .0014 <b></b>
	D5 (stream)	- 🖇		0.09313	0.0321
	D6 (ditch)	0	× 0.0 <b>46</b> 4 0	r >> - 0	√ 0.0 <b>4</b> 02 °
	R1 (pond)	0.0016	Ø 0.0017 9		QQ9014 Q
	R1 (stream)	0.0272	<b>%</b> .0315 <b>°</b>		0.0263
	R2 (stream)		× 0.0422 v	0 <u>1</u> 0	-O
	R3 (stream)	0.0382	\$ 0. <b>0</b> \$42 @		0,0369
	R4 (stream)	- °	0.0313	0.0263	🔊 <u>ຄ</u> .ຄັງເວ

#### Table 10.2-7: Maximum PEC_{sw} values – FOCUS Step 3

Application is intended. Maximum PECsw values including the amount of deltamethrin sorbed to suspended solids are considered in the aquatic risk assessment as a worst-case approach. The worst-case value, resulting either from angle of multiple application is given. For crops where more than one


Ô

## Table 10.2- 8: Maximum PECs for deltamethrin - FOOUS Step

		<u> </u>			
Compound		Sugarbeet	Cauliflower	Spring wheat	Winter wheat
	Scenario	∘1, x 7.5 g a.s./ha	2 x Q.5 g a /ha	√Q x 6.2 Øg a.s./ha	2 x 6.25 g a.s./ha
		PECsw, max	2 x 0.5 g agy/ha PECsw;max	PECsw, max	PECsw, max
~0		Jµg/L4	<u>ν</u> [μα/L]	μg/L]	[µg/L]
	S V	s i 5 mal	ouffer zone 🔍 🔍	*	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D1 (ditch)		- 0	0.0109	0.0109
	D1 (stream)			0.0114	0.0111
**	DŽ (ditch)		× 4 x×	-	0.0109
	D2 (stream)	17 . Y W	0 - <u>~</u>	-	0.0120
(D3 (ditch) 🦼	© 0 2 0128	0.0128	0.0109	0.0109
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D4 (pond)	9.00 <u>1</u> 40°	© ^v 0.60014	0.0012	0.0012
	D4 (stream)	~ 0.0137	<b>D</b> 0138	0.0116	0.0114
Deltamethrin	D5 (pond)			0.0012	0.0012
	D5 _s (stream)	- &	~~ -	0.0113	0.0116
	D@ ditch)		0.0125	-	0.0109
L.	Ry (pond)	0.0004	0.0014	-	0.0012
	R1 (stream)	0 0 0 1 1 4	0.0115	-	0.0095
	R2 (stream)	r	0.0154	-	-
Į į	R3 (stream)	0.0161	0.0161	-	0.0133
	A4 (stræm)	x ~	0.0114	0.0095	0.0095

The worst wase, resulting either from single or multiple application is given, for crops where more than one application is intended

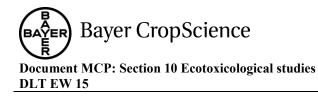
Maximum PErsw values including the amount of deltamethrin sorbed to suspended solids are considered in the aquatic risk assessment as a worst-case approach.



#### ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

	SESSMENT FOR AQU				
Compound	Species	Endpoint [μg/L]	PEC _{sw,max} [µg/L]	TER _A	Trigger
Sugarbeet	•			S	
	Fish, acute	LC ₅₀ 0.15	, st	\$2,2°	<u>_</u> @100 🖉
	Invertebrate, acute ( <i>D.magna</i> )	EC ₅₀ 0.0131		0.2	
Deltamethrin	Invertebrate, acute ( <i>A. bahia</i> )	LC ₅₀ 0.0037		0.05	2 ⁹ 100
	Invertebrate, acute ( <i>H. azteca</i> )	EC 50 0.000			
4'OH-deltamethrin	Fish, acute	PC ₅₀ 3.99	to anon	\$7,00	چ 100 .
(BCS-BY84407)	Invertebrate, acute	EC ₅₀ 670		957143	100
Br ₂ CA	Fish, acute	LC30 100000	a V	1424501	<b>A</b> 00
(AE F108565)	Invertebrate, acut	$EC_{50}$ $\gtrsim$ $20000$	0.0702	£1424501	0 ₁₀₀
Serinyl-BrCA (BCS-CW57835)	Invertebrate, aoute	EC ₅₀ 35300	0.0030	10696969	100
mPBacid	Fish, acute	PC ₅₀ (19300	<i>b</i> ′	°℃4156 <b>2</b> 50	100
(AE F109036)	Invertebrate, aqute	EC ₅₀ 85000	<b>0</b> 0032	26562500	100
Cauliflower					
	Fish, acute	C50 0 00.15		2.2	100
_@	Invertebrate, acute (D.magna)	EC 0.013		0.2	100
Deltamethrin	Invertebrate acute (A, bahia) (A, bahia)	C ₅₀ , , , , , , , , , , , , , , , , , , ,		0.05	100
. 6	Mivertebrate, acute (H. azteca) @	EC.38 50.00097		0.002	100
4'OH-dettamethrin	Fish, acute	LC ₅₀ ~ 3.99	0.0013	3069	100
(BCS-B¥84407)	Anvertebrate, acute	EC56/ 676	0.0013	515385	100
Br ₂ CA	Fish, acute 🖇 👌	LG 50 0 100000	0.07(0	1300390	100
(AE F108565)	Invertebrate, acuto	EC ₅₀ >100000	0.0769	>1300390	100
Serinyl-BrCA (BCS-CW57835)	Invertorate acute	EGR 35300	0.0057	6192982	100
mPBacid	Fish, acute	¥C ₅₀ 13300	0.0052	2509434	100
(AE F109036)	Invertebrate, acute	EC30 85000	0.0053	16037735	100
Spring wheat					
	Fish, acute	PC ₅₀ 0.15		2.6	100
	Invertebrate, active	EC ₅₀ 0.0131		0.2	100
Deltamethru 2	Invertebrate, acute (A. bahia)	LC ₅₀ 0.0037	0.0575	0.06	100
Deltamethrin	Invertebrate, acute ( <i>H. åzteca</i> )	EC ₅₀ 0.00017		0.003	100
4'ÕH-deftamethrin	Fish, acute	LC ₅₀ 3.99	0.0011	3627	100
(BCS-BX 84407)	Invertebrate, acute	EC ₅₀ 670	0.0011	609091	100
Br ₂ CA	Fish, acute	LC ₅₀ 100000		1560062	100
(AE F108565)	Invertebrate, acute	EC ₅₀ >100000	0.0641	>1560062	100

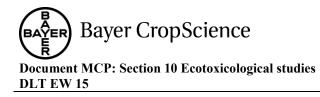
#### Table 10.2-9. TER, calculations based on FOCUS Step 2




Compound	Species	Endp [μg		PEC _{sw,max} [µg/L]	TERA	Trigger
Serinyl-BrCA (BCS-CW57835)	Invertebrate, acute	EC ₅₀	35300	0.0048	7354167	§100 °
mPBacid	Fish, acute	LC ₅₀	13300	0.0044	3022727	100
(AE F109036)	Invertebrate, acute	EC ₅₀	85000	0.0044	1931818	200 g
Winter wheat			<i>Č</i> a		Ĵ.Ņ	
	Fish, acute	LC ₅₀	0.15	<u></u>	2.6 ر	× 100°
	Invertebrate, acute ( <i>D.magna</i> )	EC ₅₀	0.0131	Ő¥		j¥00 &
Deltamethrin	Invertebrate, acute ( <i>A. bahia</i> )	LC	0.0037	ີ ເຊິ່າ ເຊິ່ງ ເຊິ່ງ ແລະ	0.06	
	Invertebrate, acute ( <i>H. azteca</i> )	BC ₅₀	0.00017		\$ 0,003	A 100
4'OH-deltamethrin	Fish, acute	LC5%	× 3,99×	Acces	3990 🐇	<u>1</u> 00
(BCS-BY84407)	Invertebrate, acute	EC 50 0	<u> </u>	0.0010	670000	A 00
Br ₂ CA	Fish, acute	LC ₅₀	~100000		2160097	100
(AE F108565)	Invertebrate, acute	EC ₅₀	>100000	0.0461	>2,0919,7%	100
Serinyl-BrCA (BCS-CW57835)	Invertebrat@ acute	ØČ ₅₀	<b>E</b> 300	0.0948	~ ⁷³⁵⁴¹⁶⁷	100
mPBacid	Fish, acute &	LC	_℃ 13300⁄	~~0 0044	3022727	100
	Invertebrate, acute	EC 50	85000	≪	19318181	1

The acute TER values for all relevant metabolites meet the required trigger of 100 based on FOCUS Step 2 PEC values. Therefore, an unacceptable acute risk to aquaric organisms is not to be expected from these merabolites following the application of delemethy EW15 in sugarbeet, cauliflower and P wheat.

wheat. However, the required to ger is not met for the parent compound to tamethrin, when based on endpoints


However, the required trigger is not met for the parent compound deframethrin, when based on endpoints derived from worst-case laboratory studies. Therefore, TER catenations taking into account higher tier endpoints are provided in the following the second state of the second state of



#### CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

Compound	Species	Endpoint	PEC _{sw,max}	TER _{LT}	Prigger
compound	~ process	[µg/L]	[µg/L]	y 121421 /	
Sugarbeet			4	Q	
	Fish, chronic	NOEC 0.017	S.	0.25	چې 10 <u>م</u>
	Invertebrate, chronic (D. magna)	NOEC 🔗 0.0041		0.06	
	Invertebrate, chronic ( <i>A. bahia</i> )	NOEC 0.00073	0.0690		
Deltamethrin	Sediment dweller	NORC 0,010		0.14	
	Green algae, chronic ( <i>P. subcapitata</i> )	ØrC ₅₀ Ør ² 59100		\$~13 <u>1</u> 884	
	Algae, chronic (N. pelliculosa)	$E_{A}C_{30}$ $\sim$		ی >45 ⁴	
	Aquatic plants, chronic	EC ₅₀ 20.77%		Ç ÎI	0 10
Cauliflower					?
	Fish, chronic	NOEC 0 05017		0.25	10
	(D. magna) 🦉 🌾	NOEC \$ 0.00		<b>Q</b> .06	10
	Invertebrate, chrome $\sqrt[3]{A}$	NOEC 4 0,00073		0.01	10
Deltamethrin	Sediment dwolfer		\$0.069 <b>0</b>	0.14	10
	Green algae, chronic (B) subc (D) tata)	ErC ₅₀		>131884	10
ð Ö	Algaechronic (N. priliculosa)			>45	10
	Aquatic plants, chronic	CE 50 00.779	¢	>11	10
Spring 🔊 winter			/		
~ 17	Fish chronic 🖉 💍	NØPC & 06017		0.30	10
<i>a</i> .	Invertebrate, chronic (D. magna)	WOEC 9.0041		0.07	10
گې~ د د	Invertebrate Chronic (A. bahia)	NOEC > 0.00073		0.01	10
Deltamethin	Sediment dweller	NOEC 0.010	0.0575	0.17	10
	Green algae, chronicy	E-C30 >9100		>158261	10
Ś	Algae, chronic	$E_r C_{50}$ >3.1		>54	10
	Aquatic plants, chronic @	EC ₅₀ >0.779		>14	10

The long term SER values for all relevant metabolites meet the required trigger of 10 based on FOCUS Step 2 PEC values, Therefore, an unacceptable chronic risk to aquatic organisms is not to be expected from these metabolites following the application of deltamethrin EW15 in sugarbeet, cauliflower and wheat.



However, the required trigger is not met for the parent compound deltamethrin, when based on endpoints derived from worst-case laboratory studies. Therefore, TER calculations taking into account higher tier endpoints are provided below.

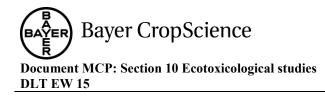
The following TER calculations are based on higher tier endpoints as derived from the refined risk assessments for fish and aquatic invertebrates presented above:

Table 10.2- 11: Refined TER calculations using endpoints derived from figher tier studies (endpoints acute and chronic exposure) based on KOCUS Step 2  $\bigcirc$ 

		, Q		al contraction of the second sec	U,U
Compound	Species	🖉 Ěndpoint 👡 Č	PEC sw,max	<b>TOPR</b>	Trigger
		[μg/L]	޶μg/L		
Sugarbeet					1
Deltamethrin	Fish ^a	NOBAEC 0.0 Q	0.0690\$ -		° 10 √
Denamethrin	Aquatic invertebrates ^b	NOEAEC 0.023		≪ <i>J</i> 0.33	<u></u>
Cauliflower				, ş	Ő
Deltamethrin	Fish ^a	NOÉAEC	Q.0690		lo 10
Denametiim	Aquatic invertebrates b	NOEARS 0.02		ري من 0.33 مي	1
Spring & winter	r wheat	TO AT LO A	<u>, 0, 9</u>	, <u>k</u>	
Deltamethrin	Fish ^a 🗸 🌮	NQEAEC 1.0 K	0.0575 ⁰ -	۶H	10
Denametiim	Aquatiç invertebrates b	NOEAEC 0.023		ي ² 0.4	1

^a NOEAEC based on a mesocosm study with the the most sensitive fish species (Rainbox trout) that covers both, acute and chronic effects of detramethrin ( , 2095; <u>M-256605691-1)</u> 🖔

^b NOEAEC based on the endpoint derived from a lentic freshwater community mesocosm with the formulation Deltamethrin EWDS and Wher supporting information as explained in the refined risk assessment for aquatic invertebrates.

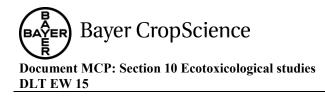

The TER values for fish meet the trigger value based on FOCUS Step 2 PEC values. Therefore, an unacceptable risk to fish is not to be expected following the application of Deltamethrin EW15 in

However, the required trigger ignot net for aquatic invertebrates in this step. TER calculations using

the set of a quatic met for a quatic met

## Table 10.2- 12: Refined TER calculations using endpoints derived from higher tier studies (endpoint covers acute and chronic exposure) based on FOCUS Step 3

covers acute and chronic exposure) based on FOCUS Step 3							
Compound	Species	Endpoint	PEC _{sw,max}	FOCUS	TER	Trigger	
C		[µg/L]	[µg/L]	scenario 💍		2 _Ô	
Sugarbeet			0.0202		<u>م</u>		
			0.0393	D3 (ditch)		Ş' Q	
			0.0016	D4 (pond)			
Deltamethrin	Aquatic invertebrates	NOEAEC 0.023	¥	D4@stream)		×1 \$	
	invertebrates		0.0016 0.0272	BI (pond)	0.85 C		
			0.0382	R1 (stream)	<u>0.85</u>	A S	
C l'A		Q [~]	0.0382	<u>₹</u> 3@/stream)≫			
Cauliflower				D3 fall(ch)		*0	
			0.0476	<u> </u>	0.48	Ay °	
			~0.0017 ~~ 0.0378	D4 (pond)		R R	
			0.03.(8	D6 (ditch)	0.6 Ø.5		
Deltamethrin	Aquatic	NOFAEC 00.023	0.0017		14.3	1	
Denameinrin	invertebrates	NON AEC 100.023	0.03	RE(pond)	<u>5</u> 14 0.73	1	
			0.0422	67) (P) (A)	0.73 0.55		
	Ŵ		0.89422 @.0442	R2 (stream)	0.55		
	, Ø	O S Q		KS (stream)	0.52 0.73		
Sauin a sub sat			x, 0.0313	AC4 (SUGAIII)	° 0.73		
Spring wheat			× × × × × × × × × × × × × × × × × × ×	DD(ditch)	0.57		
		5 5	0.0305	Du (anch)	0.57 0.73		
Č			0.0399	D3 (ditch)	0.73		
Deltamethrin	Aguatic 2	MOEAEC 0.023	0.0399 <u>3</u>	D3 (ond)	16		
Deltamethrin	Agguatic «	<b>XOEAEC</b> 0.023 0.023 0.023 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0321		0.72	1	
	invertebrates			D5 (pond)	16		
K.Y.				D5 (pond) D5 (stream)	0.73		
			0.0312	R4 (stream)	0.73		
Winterwheat			* 0.0 <del>6</del> 93	K4 (Sueani)	0.07	<u> </u>	
			<i>∞</i>	D1 (ditch)	0.58		
A \$	ð .			D1 (ditell) D1 (stream)	0.38		
Ĩ	. Q .		0.0307	D1 (stream) D2 (ditch)	0.73		
		~ ~ ~	0.0402	D2 (ditch) D2 (stream)	0.37		
Ly V			0.0332	D2 (stream) D3 (ditch)	0.09		
_0	,		0.0333	D3 (ditcil) D4 (pond)	16		
	A S	NOEAEC 0.025	0.0317	D4 (polid) D4 (stream)	0.73		
Deltamethm	Aquatice [*]	NOEARO 0.023	0.0317	D4 (stream) D5 (pond)	16	1	
		U"	0.0014	D5 (pond) D5 (stream)	0.72		
L ^a G			0.0321	D5 (stream) D6 (ditch)	0.72		
Le Q	N N		0.0402	R1 (pond)	16		
			0.0014	R1 (polid)			
$\bigcirc$			0.0203	R1 (stream)	0.87		
			0.0309	R3 (stream)	0.62		
			0.0263	R4 (stream)	0.87		




Based on FOCUS Step 3 PEC values, the TER values meet the trigger value only for the pond scenarios. For all other relevant FOCUS scenarios, further refinement using FOCUS Step 4 PEC values is provided below, taking into account a 5 m buffer zone.

Compound	Species	Endpoint [µg/L]	PEC _{sw,max} √ [μg/L]	FOCUS scenario	TER	Trigger
Sugarbeet						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0128	D3 (ditch)	1.8	
	Aquatic		0.0137	D4 (stream)	1.7	w ^v
Deltamethrin	invertebrates	NOEAEC 0.023	0,0414	R1 (Stream)	<u></u> 2.0	
			0.016	Ra (stream)	<u>1.4</u>	
Cauliflower		Ű, ín í				<u> </u>
			0.0128	D2 (stream)	Q1.8 0	
			0.013	DA (stream)	\$ 1,7 °	
			\$ 0.0123	D5 (storam)	<u> </u>	
Deltamethrin	Aquatic ~		0.0115	R ₁ (stream)	©2.0	1
	Directicolates	NOEAEC 0023	0.0154	RO2 (stream)	Q 1.5	
			0.0461	R3 (sttpam)	1.4	
			0:9114	R44(stream)	2.0	
Spring wheat						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0.0409	D1 (ditch)	2.1	
~		j k k	8,0114	D1 (stream)	2.0	
Deltameţhŵn	Aquatic ~	SOEARC 0.023	\$0.0109 ^O	D2 (stream)	2.1	1
	invertebrates		0,0,916 ~	⁰ D4 (stream)	1.98	1
R. S.			0.0113	D6 (ditch)	2.0	
	<u>\$' '\</u>		×0.0095	R4 (stream)	2.4	
Winter wheat			<u> </u>	1	1	r
			000109	D1 (ditch)	2.1	
.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.0111	D1 (stream)	2.1	
Į,	. Q .		0.0109	D3 (ditch)	2.1	
			0.0120	D2 (ditch)	1.9	
N N	Aquat		0.0109	D2 (stream)	2.1	
Deltamethrin	invertebrates	NOEAEC 0023	0.0114	D4 (stream)	2.0	1
	A` &		0.0116	D6 (ditch)	1.98	
Ĺ		z P	0.0109	D5 (stream)	2.1	
		D.	0.0095	R1 (stream)	2.4	
		MOEAEC 0.023	0.0133	R3 (stream)	1.7	
r ST B	O in		0.0095	R4 (stream)	2.4	

Table 10.2-13: Refined TER calculations using endpoints deriv	ed from higher tier studies (endpoint covers?
Table 10.2- 13: Refined TER calculations using endpoints derivation acute and chronic exposure) based on FOCUS	Sten 1 taking into account a 3 m hitter zone
acute and enrone exposure) based on POC 63	Step 4 taking into account a 5 in punct zone

According to the presented risk assessment based on FOCUS Step 4 calculations, the risk to aquatic organisms from the use of the product Deltamethrin EW15 in sugarbeet, cauliflower and wheat is considered acceptable for all scenarios taking into account a **buffer zone of 5 m** to surface water bodies.



#### **CP 10.2.1** Acute toxicity to fish, aquatic invertebrates, or effects on aquatic alg macrophytes

Report:	KCP 10.2.1/01, <b>10.1</b> ,
Title:	Acute toxicity to <i>Oncorhynchus mykiss</i> (rainbow trout) in a static-renewal system Deltamethrin oil in water emusion 15 g/L @de: AE F032640 00
	system Deltamethrin oil in water emotion 15 g/L Code: AE F032640 00 00 00 00 00 00 00 00 00 00 00 00 0
Document No:	$\left[\frac{M-19}{428-01-1}\right]$ (CE00/043)
Guidelines:	- OECD guideline no 203
	- US-EPA Subdivision E, § 72-1
	- US-EPA Subdivision E, § /2-1 - EU directive 92/69/EWG Annex Part C C.1
GLP:	

#### **Objective:**

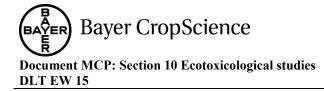
The effect of deltamethrin, oil in water emulsion 15 g/L, on rainbow trout (Oncorhynchus mykiss) was tested in a static-renewal system over 96 hours according to OFCD guideline 203

#### Materials and methods:

Test item: Deltamethrin; oil m water emutsion 15 g/L (analysed a.s. contents 1.48% w/w); code: AE F032640 00 EW01 B103 🖗

Three months old trout (average weight: 0.82 g, average length: 3.69 cm) were exposed to the nominal concentrations of 10, 18, 32, 36, and 100 µg test item/L and an intreated control under static-renewal conditions (daily change of test solutions) for 96 hours. Mortality and intoxication symptoms of the test fish were assessed at 24 hour intervals.

Chemical analysis of the freshly prepared and aged (24 hours old) test solutions was performed for the tested concentrations of 10,32, and 100 µg test item/L Samples were malysed for the active ingredient deltamethnin using High Performance Liquid Chromatography withoutraviolet detection (HPLC/UV).


#### **Results:**

Analytical results

Analyses of test substance concentrations which were based on deltamethrin revealed that mean measured concentrations over the time of exposine ranged from 75.9% to 83.4% of nominal values for fresh test solutions and ranged from 322% to 39.7% of nominal values for aged samples. The time weighted average concentrations of deltamethrin ranged from 54.5% to 56.9% of nominal. Therefore, all concentrations were corrected by the lowest mean measured factor of 0.545. The biological endpoints are based on the following mean measured concentrations: control, 5.45, 9.81, 17.4, 30.5 and 54.5 µg test item/L.

#### Biological

~Ô In all treatments pasme of the fish according the release to the new vessels were observed. Although these symptoms were observed on a short term scale only, the concentration without mortality and with that any observed effects (NOEC) was set to <5.45 µg test substance/L.



C	Cumulative mortality [%	] during the exposu	re of Rainbow trout	to the test item	
	Mean measured conc.	24 h	48 h	72 h	96 h 🔊 🖓
	Control	0	0	0	per s
	5.45 µg test item/L	0	0	0 🖉	
	9.81 µg test item/L	0	0	10-	0 ⁹ 40 0 ⁹
	17.4 µg test item/L	0	0	AD	~ AO7 ~ ~
	30.5 µg test item/L	0	60 🖤	Q100	0 300 × ×
	54.5 µg test item/L	90	1,550	⁰ 100	Q 100 5 4
			A	Q' a' A	

#### LC50 values for rainbow trout exposed to deltamethen, oil in water emulsion (15 g/L), based on mean measured concentrations

п	easured concentrations	
	Test substance:	Deltamethrin Wil in Seter emulsion 45 g/L
	Test object:	Rainbow trout (Qncorhorchus mykiss)
	Exposure:	96 høyrs, static-renewal test design dose-response
	LC ₅₀ 96 h (95% C.I.):	Q 14,4 (10.8-19.1) ing test item/L (mean measured)

 $LC_{50}$  of deltamethrin, foil in water emulsion (15, g/L), based on mean measured concentrations, was determined to be 14.4 ug test item/L,  $\frac{1}{\sqrt{2}}$ 

Report:	KCP 10.2.1/02;,,,; 2000
Title:	Acute toxicuty to Daphnia magna (water lea) Beltamethrin oil in water
Document No:	epertsion 15 g/1 Code: AE F03/2640 00 EW & B103
Document No:	<u>M-197598-01-1</u> (CE00/012)
Guidelines:	$OFGD N_0 \ll 0^2 \qquad \bigcirc \qquad $
Leg "	
× ÿ	ŬŠEPA (≠EPA) E § 7322 2 2 3 4 3 3
GLP:	Dives , by , y , o O ,
ŰĮ	

#### Objective:

The acute toxicity of deltamethin oil in water emulsion (15 g/L) to the waterflea (Daphnia magna) was determined under staticgonditions according to OECD guideline 202.

#### Materials and methods:

Test item: Deltamethrin; oil in water emulsion 15 g/L (analysed a.s. content: 1.48% w/w); code: AE F032640 00 EXV01 B103 Ľ Z,

Waterflea (Raphnia magne) were exposed under static conditions to nominal concentrations of 0.32, 0.56, 1.0 7.8, 3.2, 5.6, 10, 18 and 32 µg test item/L and an untreated control. Two replicates with 10 animals each were tested per concentration and control. Chemical analysis of test solutions was performed for the pominal concentrations of 0.32, 0.56, 1.0, 10 and 32 µg test item/L at test initiation and termination. Samples were analysed for the active ingredient deltamethrin by chromatographic determination.

#### **Results:**

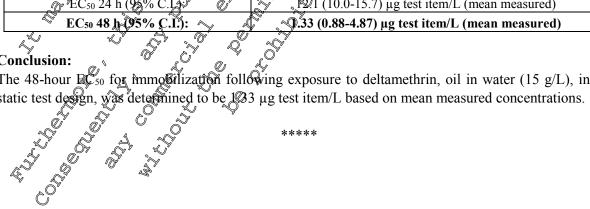
#### Analytical results:

Analyses of freshly prepared test solutions revealed test item concentrations ranging from 81% to 122% of nominal values, based on deltamethrin. Analyses of aged samples (48 h) for deltamethrin at experimental termination resulted in test item concentrations ranging from 11.92 to 29.5% of monipal values. The mean measured values over the time of exposure ranged from 4807% to 68.7%. Therefore all concentrations were corrected by the lowest mean measured factor of 0.487. The biological endpoints are based on the following mean measured concentrations; control, 0.16, 0.27, 0.49 4.87, 8.77 and 15.6 µg test item/L.

#### **Biological results:**

5	,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mean measured test	Exposed	O A Finmobilised daphnids	LA.
concentration	daphnids	$\begin{bmatrix} A & \mathbf{a}^{\mathbf{A}} \mathbf{h} \\ \mathbf{a}^{\mathbf{A}} \mathbf{h} \end{bmatrix} = \begin{bmatrix} A & \mathbf{a}^{\mathbf{A}} \\ \mathbf{a}^{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} A & \mathbf{a}^{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} A & \mathbf{a}^{\mathbf{A}} \\ \mathbf{a}^{\mathbf{A}} $	Dh Q' 🏹
[µg test item/L]	(=100%)	$ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	[~] % &
Control	20		
0.16	20		
0.27	20		<u></u> ,≪ [*] 0
0.49	20		, [∞] 0
0.88	20		× 0
1.56	20° (		75
2.73	j @ 20 0		55
4.87	≥ 20 <u>√</u>		100
8.77 🕵	20°" 20 ~0		100
15.6	20 ~		100
	<u> </u>		

Toxicity of deltamethrin, oil in water emulsion (15 g/L) to Daphnia magna:


Those daphnids which were still alive in the concentrations of and above 0.88 µg/L moved erratically and/or floated at the water surface. The concentration without any observed effects (NOEC) after 24 and 48 hours was 0.49 µg test item/

#### EC50 values for Daphnia magna exposed to deltamethrin, oil in water emulsion (15 g/L) based on mean measured concentration

 measured concentrations	
Test substance: S	Deltanethrin, oil in water emulsion, 15 g/L
$\mathcal{Q}$ Test $\mathcal{Q}$ ject: $\mathcal{C}$	🔊 🖤 Daphnia magna
Exposure and a	$\int_{a}^{b}$ hours, static test design (dose-response)
EC ₅₀ 24 h (95% C.L)	1 (10.0-15.7) µg test item/L (mean measured)
EC50 48 h (95% C.I.): ~	.33 (0.88-4.87) μg test item/L (mean measured)

#### **Conclusion:**

50 for immobilization following exposure to deltamethrin, oil in water (15 g/L), in a The 48-hour static test design.





**DLT EW 15** 

Report:	KCP 10.2.1/03;	; 2013	
Title:	Acute toxicity of deltamethrin EV	W 15B G to the waterflea I	Daphnia magna
	in a static renewal laboratory test	system	
Document No:	<u>M-470588-01-1</u> (EBDAN128)		
Guidelines:	EU Directive 91/414/EEC	- Contraction -	
	Regulation 1107/2009 Europe	4	
	US EPA OCSPP 850.1010	ČA Á.	
GLP:	yes		

#### **Objective:**

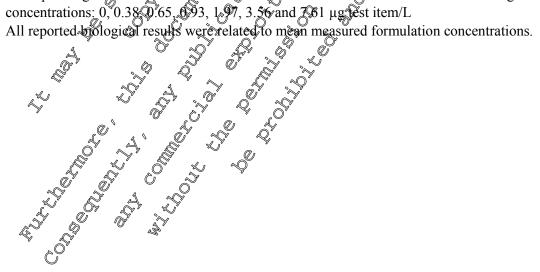
The study was performed, to detect possible effects of the test item on mobility of Daphnig magnet caused by 48 hours of exposure in a static renewal laboratory test system expressed as EC immobilisation.

#### Material and methods:

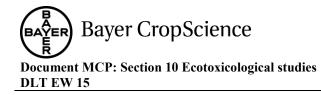
specification N Test item: Deltamethrin EW 15B G, batch 20,12,000065 No.: 102000025999-01, parity: 1.58% w/w (TOX 09629-00)

Daphnia magna (1st instars < 24 Kold, 6[°] x 5 animals per concentration) were exposed in a static renewal test system for 48 (2 × 24) hours to normal concentrations of 0,  $(0, 2, 1, 2, 4, 8, and 16 \mu g$  test , O item/L without feeding. Ŋ

exposure media was measured for verification of the test item The content of deltamethrin in concentrations.


#### **Results:**

Analytical results:


The accompanying chemical analysis of deltamethem in the freshly propared test solutions at test initiation revealed measured contents between 532 and 91% (mean: 70%) of nominal. The measured concentrations in the aged test solutions at the end of each 20 hour exposure period ranged between 24% and 69% (mean: 40%) of rominal

No contaminations of deltamentrin were detected in samples from the untreated water control.

Based on the measured a concentrations of deltamethrin (AE F03264) in the test solutions, the corresponding test item concentrations were recalculated and resulted in the following mean measured concentrations: 0, 0.380.65, 693, 1.97, 3.56 and 761 µg fest item/L



Ø)



#### **Biological results:**

Mean measured	Exposed	Immobilised daphnids			,¢´ a
test concentration	Exposed daphnids	24	4 h	<b>A</b>	8 h 👋 🔬 🖓 🎽
[µg test item/L]	(=100%)	n	%	, Âp	
Control	30	0	R		1 0 × 0
0.38	30	0	\$~0	<b>U</b> 7	U 23.3 U
0.65	30	0	<u>کر</u> 0	0 ⁵ 15 🖉	30.0
0.93	30	0		o 17 م	<u>56.7</u> 56.7 √
1.97	30	2	6.7	28 Q	93.3
3.56	30	2 💐	6.7	× 29	96.7
7.61	30	14 Қ	\$ 46.7°		×>100 ×

No immobility or other effects on behaviour, were observed in the untreated control within the hours of exposure.

## EC50 values for Daphnia magna exposed to Detamethrin EN 15 B C based on mean measured of concentrations

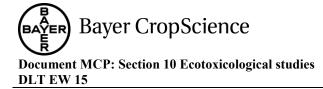
concentrations			Ĉo		.0 6	) C	
	Test substance:	Ľ,	<i>N</i>		acethrin ev		
	Test object: 🔊	Å.	Ş 4	a 4	Daphula m	iĝna 🚬	
	Exposure	о́ Х	48 1	hpurs, static-r	enewal test	esign (dose	-response)
EC	C50 24 h (95% C.I.).		Å	62 (5.95-12.5	ug test iten	/L ôrgean n	neasured)
EC	50 48 h (95% CA.):			0 (0.57-0.85)	ug test item	/L (mean n	neasured)
					0	0	

#### **Conclusions:**

The 48-hour E $\mathbb{C}_0$  for the mobilization following exposure to Delta methrin EW 15 B G in a static-renewal test design, was determined to be 0.70 µg test item/L based on mean measured concentrations.

Report:	KCP 10.2, 104; <b>1</b> , 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Title:	AQal growth infubition Pseudokirchueriella subcapitata Deltamethrin oil
~Q	in water emulsion 15 L Code: ABF032640 00 EW01 B103
Document No:	<u>M-197387-62-1</u> (C\$00/002)
Guidetines:	OECD N62201
A A	ESU (=EEC) 92/69 C.2 USERA (=EPA) J § 23-2
GLP:	yes of the
<u> </u>	

L,


~0

Objective:

A test on prowth inhibition of the green alga *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricarhutum*) was performed with deltamethrin; oil in water emulsion 15 g/L; under static conditions according to OECD guideline 201.

#### Materials and methods:

Test item: deltamethrin; oil in water emulsion 15 g/L; purity: 1.48% w/w, Code: AE F032640 00 EW01 B103



Triplicate algal cultures (*Pseudokirchneriella subcapitata*, formerly *Selenastrum capricornutum*) with an initial cell density of 10 000 algal cells/mL were incubated in a synthetic medium at 25 + 1 °C for 96 hours. Nominal test substance concentrations were 1.8, 3.2, 5.6, 10, and 18 mctest item/L with three replicates each, together with an untreated control with six replicates. Samples of the algal populations were removed daily from each test vessel and cell concentrations were determined after 24, 48, 52 and 96 hours test duration. Algal morphology was also observed daily using a light microscope and counting chamber. Chemical analysis of the freshly prepared and aged (96 hours and) test solutions was performed for the active ingredient deltamethrin using High Performance Liqui Ochromatography with ultraviolet detection (HPLC/UV). The concentrations were analysed prior dilution.

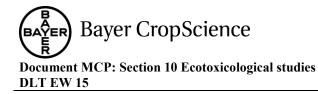
#### **Results:**

Analytical results:

Analyses of freshly prepared test media for deltargethringevealed concentrations ranging from 57,3% to 106.1% of nominal values. Analyses of samples taken after 48 h esulted in deltangenrin concentrations ranging from 52.0% to 66.9% of nominal values. Analyses for deframethem in aged test media at study termination (96 h) resulted in concentrations ranging from 15.4% to 69.7% of nominal values. The mean measured value over the time of exposure anged from 59.8% to 72.6%. Therefore all concentrations were corrected by the lowest measured factor of 578 The mean measured concentrations were calculated to be 1.04, 1.85, 3.24, 5.78, and 10.4 mg test item/L. Biological endpoints are based on mean measured values?

**Biological results:** 

Significant inhibition of growth based on a comparison of areas under the growth curves (significance level of alpha = 0,05) was observed in concentrations of 1,04 mg/test item/L and above. Significant inhibition of specific growth rate based on a comparison of slopes of the growth curves (significance level of alpha 0.05 was observed in concentrations of 9.85 mg test item/L and above.


EC50 values for Pseudoktechner ella subsapitata exposed to deframe thin, oil in water emulsion (15 g/L) based on mean measured concentrations

Test substance: $\sqrt{2}$ $\sqrt{2}$ In Itamethrin, oil in water emulsion (15 g/L)	
Pest object: S or Reeudokirchneriella subcapitata	
Exposure: $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ 96 hours, static test design (dose-response)	
$E_bC_{50}$ 72 h (95 % C.I.) $2^{-2.96}$ 2.96 2.92-2.99) mg test item/L (mean measured)	
المن التحقيق الت التحقيق التحقيق التحقيق التحقيق التحقيق التحق التحقيق التحقيق التحق التحقيق التحقيق التحق التحق التحقيق التحقيق التحق التحق التحق التحقيق التحق التحقيق التحقيق التحقيق التحقيق التحقيق ا من المي المحقيق التحقيق التحقيق التحقيق التحق التحقيق التحقيق التحقيق التحق التحق الحقيق التحق التحقيق التحقيق ال	

#### **Conclusion:**

 $C_{50}$ , based on mean measured concentrations, were determined to be 2.96 mg The 72-hour  $E_b C_{50}$  and  $\vec{E}_{50}$ .14 mg test fem/L, respectively. test item/L and

	× ~ ~ ~ ~ ***** A ~ ~ ~
Report:	KCP 10,2.1/05; (2011)
Title: S	Pseudokirchneriella subcapitata growth inhibition test with deltamethrin EW 15 G
Document No:	<u>M-413217-01-1</u> (EBDAL035)
Guidelines:	OECD Guideline 201 (2006)
GLP:	Yes (certified laboratory)



#### **Objectives:**

The aim of the study was to determine the influence of the test item on exponentially growing Pseudokirchneriella subcapitata expressed as NOEC, LOEC and ECx for growth rate of algabiomass (cells per volume).

#### **Materials and Methods:**

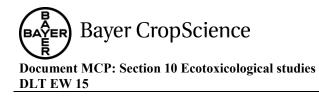
Test material: Deltamethrin EW 15 G, purity: 1.5% w/w deltamethrin, specified by 002975, sample description: TOX08992-00 and specification no.: 102000013165-05. Pseudokirchneriella subcapitata (freshwater microalgae, formerly known Selenastruk as *capricornutum*) were exposed in a chronic monogeneration test for days under static exposure conditions to nominal concentrations of 0.0960, 0.307, 0.980, 3.13 and 10.0 mg test iteral in comparison to a control. The pH values ranged from 7.8 to 8.2 in the controls and the incubation temperature ranged from 21.4°C to 23.5°C measured in additional incubated glass vessel over the whole period of testing at a continuous illumination of 8059 kg. Quantitative amounts of deltamethrin were measured in all treatment groups and on the control on day 0 and day 3 of the exposure period.

Dates of experimental work: @ctober 01 2000 to December

#### **Results:**

Analytical results:

The analytical findings of deftametarin in the treatment levels found on day 0 were 48% to 109% of nominal (average: 2%). On day Danal findings of 65% to 83% of nominal (average: 71%) were found. Therefore the biological results are based on geometric plean neasured concentrations test of the test item (formulated product).


#### Biological results:

on Freshwater Algae (Pseudokirchmeriella subcapitata) in a 72 h growth Effects of Deltamethrin inhibition test

Nominal test item concentration	Geometric mean measured	Cell formber after 72 h	(0-72h)-average specific growth	Inhibition of average specific
[mg test item/L]	concentration of test	(means) por mL	rates	growth rate
	[mgtest item/L]		[days ⁻¹ ]	[%]
Control	Control 👋	°740 000	1.434	
0.0960	0.0713	<u>627</u> 000	1.379	3.8
0.307	<b>9</b> .181 V	751 000	1.440	-0.4
0.980	0.7 <b>3</b> C3 ~Q	744 000	1.436	-0.1
	2574	398 000	1.216	15.2
×10.0 5	8.07	32 000	0.379	73.6

test initiation with 100000 cells/mL

- % mhibition: Increase in growth relative to the control



No morphological change in algae was observed in any test concentration.

#### EC50 values for Pseudokirchneriella subcapitata exposed Deltamethrin EW 15 G based on mean measured concentrations

eoneener weroms		
Test substa	ance:	Deltamethrin 🕬 15 G
Test obje	ect:	Bseudokirchnefiella subcapitota
Exposu	re:	72 hours, static tegedesign (dose @sponse)
E _y C ₅₀ 72 h (95	5% C.I.):	2.86 (2.12-4.12) my test item/L (mean measured)
ErC ₅₀ 72 h (95	% C.I.):	5,35 (4.92-5.81) mg test grem/Lamean measured)

#### **Conclusion:**

A 72-hour growth inhibition test conducted with Deltament 5 ou algae (P. subcapitata) under static exposure conditions resulted in an  $\mathbb{R}\mathcal{L}$ testatem/I based on geometric mean measured concentrations.

### studies on Fish, aquatic Additional long term and chronic toxicity **CP 10.2.2** invertebrates and sediment dwelling or ganisms

No new studies were conducted.

CD 10 2 2	Further	Xandina.	~~~~~			
CP 10.2.3	ruriner	lesung	onaqua	ac or	gamsn	ISO.

Report:	CP 10.2.3/0 2005 0
Title:	Effects of Destamethrin EW 15 on rainbow troug in aqualic outdoor
	merocosmenclosures.
Document to:	<u>1</u> <u>2566@-01-1</u> (ALT.JD.2005.1)
Guidelines:	OECD Guidaace Document "Freshovater Lentic Field Tests", 2004 (Draft);
	Guidance Document on Testing Proceedings for Pesticides in Freshwater
K,	Mesocosfie (SETAC-Europe Workshop, Monks Wood, UK, July 1991)
GLP:	wes in a construction of the second s

the second state of the se

#### **Objective:**

The aim of the study was to assess the effects of repeated applications of Deltamethrin EW15 in a lentic freshwater ecosystem on the growth and survival of juvenile rainbow trout under outdoor field conditions.

#### Material and methods:

Test item: Deltamethrin EW 15 (= Decis Protech EW015) purity: 16.24 g deltamethrin (2) (1 batch no.: AAIM00846

Juvenile rainbow trout (mean weights and lengths of the groups in the different enclosures ranged from 1.88-2.66 g and 55-62 mm, respectively) were exposed to 4 treatment levels and a control under field conditions for 21 days.

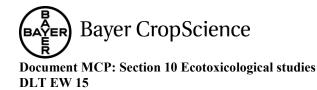
The study was carried out using 10 enclosures in an experimental ditch the Netherlands. All enclosures contained approx. 433 dm³ @ water some macrophyte and had a bottom layer of sediment. The treatment consisted of 3 applications of Deltarbethrin EW15, at one week intervals, simulating spray drift. Nominal treatment levels were 125, 250, 500 and 1900 ng/a.s./L. Treatments were duplicated, using 2 enclosures per treatment level and 2 controls. The test lasted for 21 days after the first application of the test substance on 11 April 2005. The Conceptrations of the active ingredient in the water phase were followed over time. Fish mortality and behavior was checked four times per week from day -4 to day 21. The weight and length of the figh were determined 4 days prior to the first application of the test substance (day -4), when they were transferred to the enclosure, and at the end of the experiment (day 21), Dynamics in chlorophyll-a content of phytoplankton, macrophyte species composition and cover and community metabolism stemperature, pH and dissolved oxygen content) were followed over time in allenclosures

#### **Results:**

#### Analytical results

<u>Analytical results</u>. The water concentration measured in the enclosures 4 hafter the 1st application was on average 88% of the nominal target concentration. The mean peroverved h after the 2rd and 3rd application was 74% of nominal values. The concentration of the test compound decreased steadily after the application with a  $DT_{50}$  in water of 0.9  $\pm$  0.2 day (average value over all treatment vevels and all applications).

For the nominal treatment levels of 125, 250, 500 and 1000 ng a.s./L, the average peak concentrations were 90, 215, 44 and 1013 ng s.s./L rosp., whereas the highest peak concentrations were 109, 224, 478 and 1063 ng &s./L respectively. Time-woghted average exposure levels over the 21-day treatment period were 16, 37, 96 and 231 ng a.s./LQ


As nominal concentrations were confirmed by initial measured concentrations, the biological endpoints are based on nominal values

#### Biological results:

No treatment-related effects on macrophytes species composition and cover were observed, nor could any treatment related effects be demonstrated on the measurement endpoints temperature, oxygen content pH and chlorophyll-a content of phytoplankton.

During the 21 say exposure period to the test substance, 9 out of 100 fish had died and 7 fish were missing at the end of the study. There was no apparent relationship between mortality and the test item concentrations.

Dead and missing fish after 21 days of exposure to deltamethrin

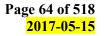


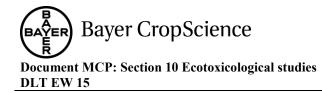
Nominal treatment level [ng a.s./L]	Dead fish [% of inserted]	Fish missing on day 21 [% of inserted]	Sum of dead and missing fish [% of inserted]
0	0 %	21 %	21 %
125	20 %	10 %	30 %
250	15 %	0 %	0 [*] 15 % *
500	0 %	6%	6 6 7 5
1000	10 %	5%	1,5%
-			

There were no significant differences in mean length, weight, growth of length and growth of weight of the fish in the various treatment levels.

In the enclosures treated at the highest level (1000 mg a.s./L) several of the fisheshowed slightly erratic swimming without losing balance. The fish also appeared to be coughing, These symptoms occurred within a few hours after the first and third applications, and were no longer apparent on the next day. Similar behavior was observed in the enclosures reated with 500 ng a.s./L, but only after the first application and not after the second and third application. In view of the fast recovery of the fish within a day after the application these symptoms are considered to be of minor biological relevance.

#### **Conclusion:**


At all treatment levels up to and including 1000 ng a SL no reatment-related effects were observed on length, weight, growth of length and survival of juvenity rainforw trout. In addition, no consistent treatment-related effects on chlorophyll-a of communitymetabolism and points could be observed after 3 applications of the test substance in a weekly interval. The NOEC is 500 ng a.s. Is since the symptoms observed at this test concentration overe only short term and were only observed after the first application. Considering the fast recovery of observed symptoms after each application, the No Observed Ecological Adverse Effect Concentration (NOEAEC) can be set at  $\geq$  1000 ng a.s./L.


Additional information on the analytical methods of this study was provided on request of the RMS in document M-55758@01

* 2	
Report:	KCP 10.2.3 (2), 2005
Title:	Biological Effects and Fore of Deltamentrin EW 015 in Outdoor
	Mesocosin Ponds.
Document No:	$\underline{\mathbf{M}}_{-240} \underline{37}_{-0} \underline{37}_{-0} \underline{\mathbf{M}}_{-1} (\mathbf{H}_{\mathbf{M}} \underline{37}_{-0}) \underline{\mathbf{M}}_{-1} \underline{37}_{-0} \underline$
Guidelines.	OECD Guidance Document "Singulated Freshwater Lentic Field Tests
L.	(Outdoor Microcosms and Mesocosms)", July 2004 (Draft) Quidance Document on Testing Procedures for Pesticides in Freshwater
, K	Quidance Document on Testing Procedures for Pesticides in Freshwater
×	Microeosme SETAR-Europe Workshop Monks Wood UK July 1991)
	Community-Level Aquatic System Studies – Interpretation Criteria (2002)
O`	(Proceeding from the CLASSIC Workshop)
GLP:	Lyes of L of

#### **Objective:**

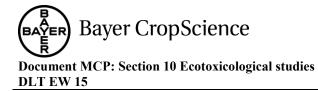
The aim of the study was to determine the ecological effects of a repeated simulated drift contamination with Deltamethrin EW 013 on different trophic levels (emergence, zooplankton, macroinvertebrates and phytoplankton) in outdoor mesocosms as an aquatic model ecosystem for lentic aquatic fresh water sytems with different trophic levels. The fate of the compound in the individual compartments (water body and sediment) was monitored simultaneously.





#### Material and methods:

Test item: Deltamethrin EW 015, purity: 1.64% w/w deltamethrin, batch no.: AAIM00846 Twelve test tanks (6 m³ water, 1 m water depth) which were used in this study are especially designed systems which allow the establishment of almost identical conditions at the start of a study. The bottoms of the artificial tanks were covered with natural sediment (approximately 15) in height) 7 months prior to the study start. The water was composed of local ground water and water from a nearby uncontaminated pond, which was inoculated several times with zooplankton from a natural pond pearby, Natural communities developed spontaneously from seeds and roots of aquatic plants as well as from air borne and naturally transferred stages of planktonic, benthic and filementous algae organisms during the months before study start. Some weeks before the first application 300 Asellus aquaticus were artificially inserted in each pond to establish a stable population of this isopodal Since the populations could not be maintained in a few ponds during the study, new Asellue aquations were added to these ponds. In general, the artificial ponds are representative of a social stagnant water body. The test substance Deltamethrin EW 015 (Batch.-N@AAIM00846, AZ No.10459) was applied during the early growing season in May 2004 three times of an interval of 7 days onto the water surface of nine test ponds. The treatment levels were 4.8, 10.5, 23, 51 and 111 ng a.s.A. per application (two replicates of 4.8 to 51 ng a.s./L, one replicate for 11/1/ ng a.s./L). Three further tanks were used as untreated centrols. The mesocosms were investigated for a period of 14 days before and 105 days after the first treatment (= 91 days after the last treatment). Several times during the study period water and sediment samples were taken and analysed to investigate the concentration of the test Oubstance in water and sediment. Further parameters studied were the tax momic composition of zoopland on, phytoplankton, macroinvertebrates and emergence of insects at different days before and after the applications. Since Asellus aquaticus was assumed to be one of the most sensitive species in this study, this species was studied intensively in site on Artificial Sabstrate Samplers (ASS) and in small cages with leaves which function as traps for these organisms. In addition, bioassays were performed with this species to investigate the potential recovery of a population by immigration of organisms from adjacent water bodies (more details on the setor of the bioassays is given below). The physico-chemical water parameters and the content of chlorophyll a of phytoplankton were also evaluated, as well as the coverage of the sediment with macrophytes and filamentous algae. One diurnal cycle of oxygen concentration, water temperature and pH was recorded during the study.


#### Bioassay

Sixteen bioassays with Asellus aquaticus were conducted in the treatment and post-treatment period at thirteen sampling dates in order to demonstrate the potential of a recovery of this species. For a bioassay two 1 L glass bothes per mesocosm were filled with pond vater and somer of the exposed leaves from the corresponding pond. The bottles were exposed in a climatised room and slightly aerated. After adaptation of the water samples to the water temperature of the room, ten Asellus aquaticus were transferred into each bottle. For the first ten bioassay adult organisms were used. During these studies it became obvious, that these organisms might get too old during the study period according to their seasonal development, since rather high mortalities were observed in the controls as well. Therefore, Therefore, later on two versels with invenites and two vessels with adult Asellus were used per mesocosm. The experimental time for each bioassay was 21 days with one to two evaluations for survival weekly.

#### Analytical findings:

The analytical results of water samples taken four hours after each of the three applications show that an average of 94.1% of the nominal concentrations could be found in the mesocosm water confirming nominal concentrations very well. The a.s. disappeared after all applications quickly and steadily with an average half-life in the water column of 22.4 hours. At some sampling dates the percentage of adsorbed active substance in the water was determined, the results revealed that about 2/3 of the total applied amount was bioavailable (solubilized in water) in the pond water, whereas 1/3 was adsorbed to particles as algae or particulate matter.

 $\sim$ 



"Qʻ

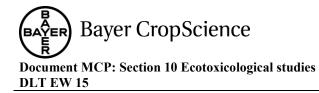
In the sediment of the 2 lowest test levels (4.8 and 10.5 ng/L) the test substance could be found only once shortly after the first application (limit of detection =  $0.03 \ \mu g/kg$  dry weight). The results of the higher test levels (23 to 111 ng/L) show a slight increase of sediment concentrations during about 7 weeks after application resulting up to 20% of total applied amount in the sediment, and a slow decrease during the later part of the study to less than 6% of total applied amount. The DT 56 for whole system (water plus sediment) is 31.6 hours.

#### **Biological findings:**

Direct and indirect effects of the application of deltamethen to the chemical and physical provimeters the pond water have not been observed at any test concentration. Also no effects on the coverage of the ponds and the biomass of macrophytes and filamentous algae were observed at any treatment level. Ŵ

Results from the bioassays with Asellus aquaticus: All bioassays show a control portality of 32% on average in three weeks. Nevertheless, all bioassays together indicate clear coherest effects of the pond water and the exposed leaves on survival of Asellas shorfy (2 to 7 days) after each application. Que week after each application at the latest significant effects were not longer detectable. For the bioassays statistically significant NOEC values of 10.5 to 51 bg a.s. were calculated at two to seven days after the three applications. The NOECs were considered consistent, if they occurred on consecutive observation days. Three weeks after the first application (one week after the last application) survival of Asellus in the bioassays was no longer affected by treated pond water and exposed leaves. Thus, assuming only acute effects a potential of full recovery after day 21 was depionstrated.

No-Observed-Effect-Concentrations (ng/ $1$ ) statistical testing (p < 0.05, Williams test):	of As	ellus aquaticus	in the t	nioassays as	obtained from
statistical testing ( $p < 0.05$ , Williams test):	S.S.	A A	15 A		


	A .	Å	ès (		<u>v</u> . C	) ^v (L)	N.	Š		
Bioassay	Bioas ay start	đđ on 🐇	, [°] Øj	S	ýðs	ervation o	on day 🏾 ,	Ŷ		consistent
No.	Bioas ay start	Day)	₽\$\$	4-6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	@1-13	14-16	18	21-23	NOEC
1 A	05.05.2004	~ <u>2</u>	23 🕺	y 23	♥ 4,8 ペ	7 23 Q A	Į,		51	23
2 A	0.05 <b>00</b> 4	) 7 C	$\geq 1  \mathrm{KeV}$	51	50	<u></u>	<i>a</i> 23	≥111	≥111	51
3 A 🔬 🧔	12.05.2004	Ŕ	10,5	23	@0,5	10,5	10,5		10,5	10,5
4 A	17.05.2004	~¶4	<b>2</b> 111	$\geq 1110$	>≥114©	$\tilde{r} \geq 10^{10}$	≥111	≥111	≥111	≥111
5 Å	19.03.3004	16 16	515	23%	2111	A A	≥111		≥111	≥111
6 A	2405.2004	Ĩ,	≥_111	ſ₫1+	©111 ₂	≥111	≥111		51+	51+
7 A	01.06.2004	Š ²⁹	<b>@</b> ∐111%∧		$r \ge 114$		≥111		≥111	≥111
8 A 🔍	07.06,2004	35~∼	$\geq \mathbb{W}$	× A	≥111		≥111		≥111	≥111
9 A 🔔	14.06.200	Ŷ	<b>≥0</b> \$1		©111		≥111		≥111	≥111
10 A	21.06,2004	<u>Q</u> 49	<u>⊯</u> 111 _€		≥111		≥111		≥111	≥111
11A	01.072004	[*] 59	Ő	≥vÂM		≥111			≥111	≥111
∕≱ĭ J	01.07.200	59	-Q	8Å11		≥111			≥111	≥111
12 A	@\$.07.2004	~~63 ~~	🖉 111 (	Y	≥111		≥111		≥111	≥111
A	05.07.2004	€ 63≪)	$\geq 111^{3}$		≥111		≥111		≥111	≥111
13 A	12.07.200	<i>3</i> 0	≥Qĭ1		≥111		≥111		≥111	≥111
13 10	ØŽ.07.2004	0 ⁷ 0	≥111		≥111		≥111		≥111	≥111

A Study conducted with adult organisms

Story conducted with juvenile organisms J

Shaded areas: no data

+ = increase as compared to control findings

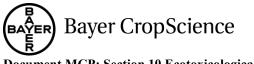


**Results from the mesocosms:** The biological data showed some minor and major effects on some groups of organisms, as indicated in the following Tables. In these Tables, the effects were classified according to the following effect categories according to "Guidance Document on Aquatic," Ecotoxicology" in the context of the Directive 91/414/EEC (SANCO 3268/2001 rev.4 (final) of 17 October 2002:

<b>Classification of effects</b>	
1 effect could not be demonstrated	no (statistically significant) effects observed as result of the reatment, and observed differences between treatment and controls show for causal relationship
2 slight effect	effects reported in terms of "slight" or "fansient" and/of other similar descriptions, and short-term and/or quantitatively restricted response of sensitive endpoints, and effects only observed at individual samplings
3 pronounced short-term effect	clear response of ensitive endpoints, but that recovery within & yeeks after the last application, and effects oported as "temporary effects on less sensitive species/endpoints" and/or other simplar descriptions, and effects observed at some subsequent/sampling instances
4 pronounced effect in short-term study (not relevant in this study)	clear effects (such as strong reductions inclensities of sensitive species) observed, but the study is too short to demonstrate complete recovery within 8 weeks after the (last) application
5 pronounced long-term effect	cleant response of sensitive ondpoints and repovery time of sensitive endpoints is longer than 8 weeks after the lost application, and efforts reported as "long- term effects on many sensitive species" indpoints" and/or other similar descriptions, and effects observed at various subsequent samplings.
	effects reported myterms of "slight" or "fansient" and/or other similar descriptions, and short-term and/or quantitatively restricted responseror sensitive endpoints, and effects only observed at individual samplings clear response of sensitive endpoints, but filtal recovery within 8 vecks after the last application, and effects reported as "temporary offects (or less sensitive species) other similar descriptions, and effects observed at some subsequent/sampling instances clear effect? (such as strang' reductions in densities of sansitive species) observed but the study is too shart to enconstate couplete refovery within 8 weeks after the last application clear tesponse of sensitive species ondpoints is longer than 8 weeks after the last application and effects reported as "long- term effects on the system of the last application and effects or similar descriptions, and effects observed at various subsequent samplings.



#### **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15


Effects or	n species				
		Test conc	entration [	ng a.s./L]	N.
	4.8	10.5	23	51	10
ooplankton			â		Υ.
nyllopoda			4		
Daphnia longispina	1	1	×3×	3	<u>30</u> °
Simocephalus vetulus	1 🖒	1	×1	14	~2%
Chydorus sphaericus	18	1	0 1*	2	<u>~</u> 92* <u>«</u>
Acroperus harpae			<u>* 1</u>		
Eurycercus lamellatus					2* \$ 2* \$ * b
Graptoleberis testudinella	°, 1		Q ² I A	<u>, 10</u>	
stracoda	(ča)			$\partial_1$	
Ostracodes (not det.)					y 1 © 4
opepoda O Cyclopoid Copepods		<u> </u>	O'	20	
Copepod Nauplii		¥∕ ∕≫ 2 ∉	$\frac{2}{2}$	30	
otatoria					
Keratella quadrata			03		
Lecane lunaris					
Polyarthra spec.	ð,			CH CH	$\rightarrow$ +
Lepadella patella	$\mathcal{S}_1$		- Ô	+ %	+
Asplanchna spec.	1	, P	Ô1.	+0	+
Trichotria pocillum	10			Č)	+
Synchaeta spec.	al a				+
Testudinella a a a a a a a a a a a a a a a a a a		× I K	. 1	6 1	1
Cephalodella spece.		Q	× 1	1	1
Euchlanis deflexa	Ň	Q1		1	1
iptera					
Chaoborus crystallinus larvae	√ 3 <u></u> ~~	<u>B</u>	≪3	3	3
axa richnes	1º	ð1 (	P, 1	1	1
iversity (Shannon Index)	Ø.	1	2	3	3
vennessy & a a			1	2	2
milauty (Steinhaus (adex) 🔿 💦 💦 🔍	D [™] 1 [∞] ″	, P	3	3	3
milarity (Stander hdex) 🖉 🖉 🗸	s.	A 1	3	3	3
incipal Response Curves (PROP 27 0	Oi 🎓	≥ 2	3	3	3
ommunity-NOEC Q 🔊 🔊	C X S	,			
ommunity-NOEC	<4.8				
OEAEC V Q Q	Ö			x#	
crease in numbers	×,				
atistically not significant	×				
e NOEAEC was set to 51 bg a.s. [], due to the missi	ng replicati	on at 111 i	ng a.s./L.		
incipal Response Curves (PRQ)					

## BAYER Bayer CropScience

#### Document MCP: Section 10 Ecotoxicological studies DLT EW 15

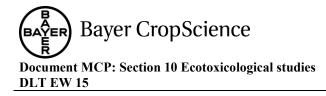
Effect	ts on species				(	Ů
		Test con	centration [	ng a s /I ]		) A
Macroinvertebrates (benthic, ASS)	4.8	10.5	23	ng a.s./∟]	114	
Turbellaria	4.0	10.5	23	Q* 31	110	Ś
	1	1	1	1		, v
Dugesia spec.	1	1	1	1		Ô
Oligochaeta		1		\$		Ś
Tubificidae						Ĩ
Stylaria lacustris	1 %	l		, C		Ĵ d
Hirudineae			$\mathcal{O}$	No.		4
Helobdella stagnalis	49	I "Q"	1.		· 10-	s.
Diptera	0"			<u>Rei o''</u>		
Chaoborus crystallinus larvae	<u> </u>	S@@ 200]	plankton	aluation	A	ÿ
Sum of Chironomid larvae			<u>Y 150</u>	A .	[™] 2 [™]	
Ephemeroptera		<u>t oʻ</u>	<u> </u>	Ø L		L°
Cloeon dipterum		Î%	<u> </u>	$> 1 \lor$	Å.	V
Odonata 🕺	$\sim \sim$	Ö ,				7
Ischnura elegans	∽ _X ¥	× 1 C	× ×	ô1	5 10	
Pulmonata 👸 🌾	v "Qž "S	r ø		E D	l in	
Gyraulus albus	$\gamma_1 \approx$	J.	<u>ð</u> 1 <i>ö</i>	" 1\$°	, Kľ	
Radix ovata	Ô, Ô	<u>6</u> 1 4	P $10$	Ŵ	$\gg 1$	
Taxa richness		<u> </u>	1	<i>6</i> √1 <i>×</i>	1	
Diversity (Shannon Index)	r 1	l.	s. 91		1	
Evenness	0 10	1 *		Û.	2	
Evenness Similarity (Steinhaus Index)	\$\$ _\$	~ ¹	l l'S		1	
Similarity (Stander's Index) 🔊 🖉 Õ		D 1&	. 1 .	<b>Š</b> 1	1	
Principal Response Cutres (PRC)		ρř		× 2	2	
Community-NOEC S	<u> </u>	, O	X			
Lowest population NOE	$\vee$			X		
NOEAEC			s s s s s s s s s s s s s s s s s s s	x#		
		Ő	<i>Q</i> 1	n		
	<del>Ì</del>		<u> </u>	· /т ]		
	-		entration [			
Macroin Pritebrates (ben Hic)	<u> </u>	× 105×	23	51	111	
Oligochaeta		A.Y				
Tubificidae	<u>e</u> d'	l	1	1	1	
Diptera Q A Q X						
Chironomidae larvae	0 [×] 1 0 [×]	1	1	1	1	
Ceratop@onidae@arvae	à b	1	1	1	1	
Pulmonata 🔍 🛇 🌾	Q [*] U					
Gyraotus albus 🔗 💍 🖉 🐊	1	1	1	1	1	
Bivalvia A A	<u></u>					
Pisidium spec. 🗸 🖉 🖉		1	1	1	1	
Taxa richness	O ^v 1	1	1	1	1	
Diversity (Shankon Index)	1	1	1	1	1	
Evenness	1	1	1	1	1	
Similarity (Steinharts Index) 4	1	1	1	1	1	
Similarity (Stander's Index)	1	1	1	1	1	
Principal Response Cyrves (BRC)	1	1	1	1	1	
Community OEC		1		x#	-	
Lowest population-NOEC				x x [#]		
NOEAE			+	x x [#]		
NOEAE $0^{\circ}$ The NOEAEC was set to 51 ng a s /L due to the i	<u> </u>		<u>і</u>	X		

[#] The NOEAEC was set to 51 ng a.s./L due to the missing replication at 111 ng a.s./L.



#### Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Emergence4.810.52351Chironomidae1111Sum of Chironominae1111Chironominae (female)1111Chironominae (female)1111Chironomus spec. (male)1111Dicrotendipes spec. (male)1111Paratanytarsus spec. (male)1111Micropsectra spec. (male)1111Micropsectra spec. (male)1111Polypedilum spec. (male)1111Orthocladiinae (female)1111Orthocladiinae (male)1111Orthocladiinae (male)1111Discortopus spec. (male)1111Orthocladiinae (male)1111Cricotopus spec. (male)1111Psectrocladius spec. (male)1111Corynoneura spec. (male)1111Acricotopus spec. (male)1111Tanypodinae (female)1111Tanypodinae (female)1111Tanypus spec. (male)1111Holtanypus spec. (male)1111Holtanypus spec. (male)1111Holtanypus spec. (male) <th>$\begin{array}{c}       L \\$</th>	$     \begin{array}{c}       L \\                             $
Emergence       4.8       10.5       23       51         Chironomidae       1       1       1       1       1         Sum of Chironominae (female)       1       1       1       1       1         Chironominae (female)       1       1       1       1       1       1         Chironomus spec. (male)       1       1       1       1       1       1         Dicrotendipes spec. (male)       1       1       1       1       1       1         Paratanytarsus spec. (male)       1       1       1       1       1       1       1         Micropsectra spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	$ \begin{array}{c}                                     $
Chironomidae       1       1       1       1       1         Sum of Chironominae (female)       1       1       1       1       1       1         Chironomis spec. (male)       1       1       1       1       1       1       1         Dicrotendipes spec. (male)       1       1       1       1       1       1       1         Paratanytarsus spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	$\begin{array}{c} & & 2 \\ & & 2 \\ & & 2 \\ & & 2 \\ & & & 2 \\ & & & &$
Sum of Chironominae1111Chironominae (female)1111Chironomus spec. (male)1111Dicrotendipes spec. (male)1111Paratanytarsus spec. (male)1111Micropsectra spec. (male)1111Micropsectra spec. (male)1111Polypedilum spec. (male)1111Sum of Orthocladiinae1111Orthocladiinae (female)4111Orthocladiinae (female)4111Orthocladiinae (female)4111Orthocladiinae (female)4111Cricotopus spec. (male)4111Psectrocladius spec. (male)4111Corynoneura spec. (male)4111Sum of Tanypodinae1111Tanypus spec. (male)1111Holotanypus spec. (male)1111Holotanypus spec. (male)1111Monopelopiaspec. (male)1111Holotanypus spec. (male)1111Holotanypus spec. (male)1111Holotanypus spec. (male)1111Holotanypus spec. (male)1111 <t< td=""><td>$\begin{array}{c} &amp; &amp; 2 \\ &amp; &amp; 2 \\ &amp; &amp; 2 \\ &amp; &amp; 2 \\ &amp; &amp; &amp; 2 \\ &amp; &amp; &amp; &amp;$</td></t<>	$\begin{array}{c} & & 2 \\ & & 2 \\ & & 2 \\ & & 2 \\ & & & 2 \\ & & & &$
Chironominae (female)1111Chironomus spec. (male)11111Dicrotendipes spec. (male)11111Paratanytarsus spec. (male)11111Einfeldia spec. (male)11111Micropsectra spec. (male)11111Cryptotendipes spec. (male)11111Polypedilum spec. (male)11111Sum of Orthocladiinae11111Orthocladiinae (female)11111Orthocladiinae (male) cf. Dratnalia sp.1111Psectrocladius spec. (male)11111Corynoneura spec. (male)11111Acricotopus spec. (male)11111Sum of Tanypodinae11111Ablabesmyia spec. (male)11111Holotanypus spec. (male)11111Monopelopiaspec. (male)11111Holotanypus spec. (male)11111Holotanypus spec. (male)11111Holotanypus spec. (male)11111Holotanypus spec. (male)11111Holotanypus spec	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 4 \\ & & 4 \\ & & 2 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ \end{array}$
Chironomus spec. (male)111Dicrotendipes spec. (male)111Paratanytarsus spec. (male)111Einfeldia spec. (male)111Micropsectra spec. (male)111Micropsectra spec. (male)111Cryptotendipes spec. (male)111Sum of Orthocladiinae111Orthocladiinae (female)111Orthocladiinae (male) cf. Dratnalia sp.111Orthocladiinae (male)111Dicotopus spec. (male)111Dicotopus spec. (male)111Cricotopus spec. (male)111Dicotopus spec. (male)111Corynoneura spec. (male)111Acricotopus spec. (male)111Sum of Tanypodinae111Tanypodinae (female)111Holotanypus spec. (male)111Holotanypus spec. (male)111Monopelopiaspec. (male)111Monopelopiaspec. (male)111Monopelopiaspec. (male)111Holotanypus spec. (male)111Holotanypus spec. (male)111Holotanypus spec. (male)111Holotanypus spec. (male)111Holotanypus spec. (	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 4 \\ & & 4 \\ & & 2 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ \end{array}$
Dicrotendipes spec. (male)1111Paratanytarsus spec. (male)11111Einfeldia spec. (male)11111Micropsectra spec. (male)11111Cryptotendipes spec. (male)11111Polypedilum spec. (male)11111Sum of Orthocladiinae11111Orthocladiinae (female)11111Orthocladiinae (male) cf. Dratnalia sp.1111Psectrocladius spec. (male)1111Corynoneura spec. (male)1111Acricotopus spec. (male)1111Sum of Tanypodinae1111Tanypodinae (female)1111Holotanypus spec. (male)1111Monopelopia/spec. (male)1111Monopelopia/spec. (male)1111	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 4 \\ & & 4 \\ & & 2 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ \end{array}$
Paratanytarsus spec. (male)1111Einfeldia spec. (male)11111Micropsectra spec. (male)11111Cryptotendipes spec. (male)11111Sum of Orthocladiinae11111Orthocladiinae (female)11111Orthocladiinae (female)11111Orthocladiinae (male) cf. Dratnalia sp.1111Psectrocladius spec. (male)1111Limnophyes spec. (male)1111Acricotopus spec. (male)1111Sum of Tanypodinae1111Sum of Tanypodinae1111Holotanypus spec. (male)1111Munopelopia spec. (male)1111Monopelopia spec. (male)1111Monopelopia spec. (male)1111Monopelopia spec. (male)1111	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 4 \\ & & 4 \\ & & 2 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ \end{array}$
Einfeldia spec. (male)1111Micropsectra spec. (male)1111Cryptotendipes spec. (male)1111Polypedilum spec. (male)1111Sum of Orthocladiinae1111Orthocladiinae (female)1111Orthocladiinae (male) cf. Dratnalia sp.111Orthocladiinae (male) cf. Dratnalia sp.111Psectrocladius spec. (male)111Corynoneura spec. (male)111Sum of Tanypodinae111Sum of Tanypodinae111Tanypus spec. (male)111Holotanypus spec. (male)111Holotanypus spec. (male)111Monopelopia spec. (male)111Monopelopia spec. (male)111Monopelopia spec. (male)111Monopelopia spec. (male)111Nonopelopia spec. (male)111Monopelopia	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 4 \\ & & 4 \\ & & 2 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ \end{array}$
Interopsectia spee. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 4 \\ & & 4 \\ & & 2 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & 1 \\ \end{array}$
Cryptotendipes spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	
Sum of Orthocladiinae       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	
Sum of Orthocladiinae       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	
Orthocladiinae (male) cf. Dratnalia sp.       1       1       1       1       1         Cricotopus spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>· 1</td></t<>	· 1
Cricotopus spec. (male)       Image: Cricotopus spec. (male) <t< td=""><td>· 1</td></t<>	· 1
Cricotopus spec. (male)       Image: Cricotopus spec. (male) <t< td=""><td>· 1</td></t<>	· 1
Limnophyes spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>· 1</td>	· 1
Corynoneura spec. (male)       0       1       10       1         Acricotopus spec. (male)       7       1       10       1         Sum of Tanypodinae       1       1       1       1       1         Tanypodinae (female)       1       1       1       1       1         Tanypus spec. (male)       1       1       1       1       1         Ablabesmyia spec. (male)       1       1       1       1       1         Holotanypus spec. (male)       1       1       1       1       1         Psectrotanypus spec. (male)       1       1       1       1       1         Monopelopiaspec. (male)       1       1       1       1       1       1	· 1
Acricotopus spec. (male)       1       1       1       1       1         Sum of Tanypodinae       1       1       1       1       1       1         Tanypodinae (female)       1       1       1       1       1       1       1         Tanypus spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	· 1
Sum of Tanypodinae       1       1       1       1         Tanypodinae (female)       1       1       1       1       1         Tanypodinae (female)       1       1       1       1       1       1         Tanypus spec. (male)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <	Sy 1
Tanypodinae (female)       f       1       1       4         Tanypus spec. (malê)       f       1       1       1       1       1         Ablabesmyia spec. (male)       f       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	
Tanypus spec. (male)       Image: Complex spec. (male)       I	$\bigcirc$ 1
Tanypus spec. (male)       Image: Complex spec. (male)       I	2
Holotanypus spec: (male)	1
Psectrotanypus spec. (male) Monopelopia spe	1
Psectrotanypue spec. (male) Monopelopia spec. (male)	1
Monopelopia) spec (male) $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 1	2
	1
Culicidae	
Anopheles spec	1
Chaoboridae & A A A A	
Chaoborus crystallands and the second	2
Ephydidae 🖉 🖓 👋 🖉 🖓 🖓	
Clanoneurum spec. L & O L & A 1 1 1	1
Ephemeroptera N ( ) ( )	
Cloeon spec:	1
Taxa richness a france of the second se	2
Diversity (Shannon Index)	2
Evenness 2 2 2 2 1 1 1 1	1
Similarity (Steinhaus Index)	1
Similarity (Stander Sindex)	1
Principal Response Curves (PRC) Q 1 1 1 2	2
Community-NQEC	<u> </u>
Lowest population-NOEC	2
NOEAEC	


* The NOEAEC was set to 1 ng as /L due to the missing replication at 111 ng a.s./L.

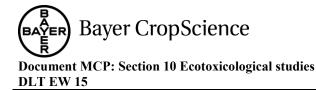


#### **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

Effects o	n species				
	species	Test con	centration	ng a c /I 1	
	10	1			1.00
	4.8	10.5	23	÷ - 2-1	IQA'
Distance	1	1		1	
Diatomeae	1	1			
Nitzschia spec. Cryptophyceae	1	1	<u> </u>		
Chyphophyceae Chroomonas spec. <10 µm		1	$0^{\frac{3}{2}}$		
Cryptomonas spec. 10-20 µm	l × √∤		$\frac{Q}{1}$		
		1.0	्री		
Cryptomonas spec. 30-40 µm					
Englenophyta					
Conjugatophyceae					
Cosmarium spec.					
Cyanobacteria (Merismopedia spec.) Sum of filamentous algae					
Taxa richness					
Diversity (Shannon Index)					
Evenness		r kj			i col
Similarity (Steinhaus Index)	<u>, 1</u>		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array}$		©1 ≪`2
Similarity (Stenhaus Index)	ġ	$\bigcirc 1$			$\gamma \frac{1}{2}$
Principal Response Curves (PRS)	$   \overline{\mathcal{O}}^{\text{yl}} $				1
Community-NOEC					1
Lowest population-NOEC		X		, Ô	
NOEAEC	â â			≪∵ v [#]	
			() () ()	6 A	
		<u> </u>	<del>ð í s</del>	/1.1	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		entration [[]		111
	A.8	\$10.5 ×		51	111
Asellus aquaticus	<u>y</u>		storie in the second se		
Asellus in mesocosms O O & A		$-\bigcirc_1$	<u> </u>	3	3
ASS A A		$1 \sim 1.0^{\circ}$	3	3	3
Leave cages and ASS	$\sqrt[3]{1}$		3	3	3
Asellus bioassay			5	5	5
Bioassay 1 (Day 2)		1	1	2	3
Bioassay 1 (Day 2) Bioassay 2 (Day 7)		1 A	1	1	2
Bioassay & Day O		, <u>1</u>	2	3	3
Bioassay 4 (Day 14)		1	1	1	1
Bioassay 5 (Day 16)	a Qi	1	1	2*	2
Bioessay 6-13 (Day 10)		1	1	1	1
Lowest In situ-NOE			1	1	1
Lowest bioassay-NOEC	v	X			
NOÉAEC		Х		x#	
		Test cons	entration [
	10		L	<u> </u>	111
Phytoplankton v v	4.8	10.5	23	51	111
	1	1	1	1	1
Scenedesmus spec.	1	1	1	1	+
Schrøederia spec.	1	1	1	1	1

+ Increase in fumber
* Statisticative not significant
The NOPAEC was set to 51 ng a.s./L due to the missing replication at 111 ng a.s./L.

At the end of the study, no **zooplankton** taxon showed significant differences in abundance compared to controls, demonstrating the recovery of the zooplankton after the third application within 7 weeks Chaoborus crystallinus was identified as the most sensitive zooplankton taxon with consisten affects even at 4.8 ng a.s./L immediately after application until about 2 weeks after the last application when a full recovery of the *Chaoborus* population was observed. The crustaceans, especially the copepods and Daphnia longispina, proved to be the next most sensitive zooplankton group exhibiting a consistent? NOEC of 4.8 ng a.s./L and 10.5 ng a.s./L, respectively. The rotifers were either suppressed (especially Keratella quadrata, consistent NOEC of 4.8 ng a.s./L) or promoted (o.g. Polyarthra spec Sconsistent NOEC of 10.5 ng a.s./L) obviously by secondary effects. The PRC Principal Response Ourve and to some degree Similarity and Shannon Diversity Indices reflected these effects on the zooplankton with@ community NOEC of 4.8 ng a.s./L. However, all offected populations recovered shortly after the fast application and reached control abundances within some weeks only at all greatment levels including the highest one. Seven weeks after the last application, no taxon showed significant differences in abundance compared to controls, demonstrating the full recovery of the Zooplankton community. Due to the missing replication at 111 ng a.s. The results of this study yield a NOEAEC (no observed ecological adverse effect concentration) of 51 ng a.s./ for the zooplankton.


In sediment, significant impacts on the identified species in the ASS (Artificial Substrate Samplers) were only obtained for chironomic arvae at the highest test concentration, resulting in a NOEC of 51 ng a.s./L for the evenness and 23 ng a.s./L for the PRC, whereas all other community parameters did not indicate any effect up to the highest test concentration. Observed effects were even short-term only: no long-lasting effects could be detected. In the sediment samples, no effects even up to the highest treatment level could be detected (NOEC 111 ng a.s./L).

Direct effects of the text item on the **emergence** of some insects were detected for five taxonomic groups: *Chironomus* spec. Orthocladiino, *Pseutrotanypus* spec., Tanypodinae (females) and *Chaoborus crystallinus*. Except of *Chaoborus* (same NOEC as in Zooplankton), all other groups were affected only at the highest treatment level (*Psectrotanypus* spec, also at 51 ns.a.s./L), with a full recovery within 8 weeks after last application for the latest for all species. Thus, the community indices yielded a community NOEC of 23 ng a.s./L. Because of the fast and full recovery in emergence (which even included the full aquatic life cycle of the emerged insects) within the first weeks after application on the one hand and the missing representation of the highest treatment level of 111 ng a.s./L on the other hand, the NOEAEC for emergence can also be set as \$4 ng a \$7/L.

In the mesocosms clear effects on *Aselius aquaticus* were demonstrated for the 3 highest test concentration both in leaf ages and ASS. At 10.5 ng a s./L *Asellus* was only short-term affected after the first application indicating only a decrease in mobility but no mortality. (Both sampling methods indicate a reduction in activity of individuals, which does not necessarily mean mortality). Thus, a consistent NOEC of 10.5 ng a s./L can be derived from this study for *Asellus* in the mesocosms. In the 3 highest test concentrations the abundance of *tsellus* reached mostly the level of controls until study termination. After day 70 the proportion of juveniles in the higher treated ponds reached the level of controls. A full recovery to control level within 8 weeks after last application could not be demonstrated for 23, 51 and 111 ng a.s./K. However, the differences between control and treatment levels are small and population abbudances clearly increased in these ponds, as demonstrated by the increasing number of juvenile organisms and the forresponding reproduction in situ.

The bioassay findings confirm that water and food samples from the mesocosms taken at the latest one week after the applications did not have any negative effects on *Asellus aquaticus*. Overall, the NOEAEC for *Asellus* was 51 ng/L due to the missing replication at 111 ng a.s./L.

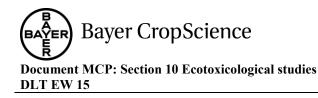
No direct toxic effects were observed on the **phytoplankton**. During the application period cell densities of some species, as e.g. the dominant *Chroomonas* spec., were slightly lower at higher treatment levels for a short time than in the controls caused by indirect food web effects, probably by toxic effects of the

test item treatments on the copepod populations, which enhanced the rotifer population density by decreased competition. The community NOEC for phytoplankton was 23 ng a.s./L and the NOE C 51 ng a.s./L because of the missing replication at the highest treatment level.

Conclusion:

The fate of deltamethrin demonstrates a steady and fast decline of deltamethrin in the mesocosm water with a mean DT_{50} of 22.4 hours, and a mean DT_{50} of 31.6 hours for the whole test system (water plus sediment). In the sediment of the 2 lowest test concentrations (4.8 and 10.5 ng a s./L) the active substance was only detected once shortly after application. The results of the higher jest concentrations (23 to 111 ng a.s./L) show a slight increase of the amount of the test substance in the sediment for about the first 7 weeks after application and a slow but constant decrease thereafter.

Chaoborus crystallinus was identified as the most sensitive taken with consistent effects even at 48 ng a.s./L immediately after application until about a very few weeks after the fast application when a full recovery had been observed even at the highest test level. At 10 5 ng a S/L also short term effects for one Rotatoria species (*Keratella quadrata*) and Copepod Nauplii had been observed. *Asellus aquaftus* showed just a reduced activity at this test level for a very few days after application without any sign of mortality or affected reproduction. At 23 and 56 ng 4.s./L effects on 1 to 3 individual more species had been observed, but also these effects were short term only with a full recovery within the fast weeks after the last application. The abfudance of *Asellus* was clearly reduced after application at this test levels but reached mostly the level of controls intil study termination. The differences between control and treatment levels were small and population abundances clearly increased in these ponds during the study, as also demonstrated by the increasing number of juvenile of ganisms. The bioassay findings confirm that water and food samples from the necocosms taken at the latest, week after the applications did not have any negative effects on *Aselfus aquaticus* At 141 ng a.s./L the number of affected zooplankton and insect species was distinctly higher, and the effects on *Aselfus aquaticus* even more developed as compared to lower treatment levels.


Based on these findings and because of the missing replication at the highest test level, 51 ng a.s./L can be concluded as the overall NOEAEC (no abserved ecological adverse effect concentration) of this study.

Notifier's comment:

Although the author study director derived a higher NGEAEC in his report, a NOEAEC of 23 ng a.s./L is considered for this study in the risk assessment for aquatic invertebrates as a more conservative approach. This is also the line with an independent evaluation from (2005; <u>M-254687-01-1</u>).

is considered for this study in the risk assessment for adjustic invaporach. This is also believe with an independent valuation from

a

Report:	KCP 10.2.3/03, ; 2005
Title:	Bioassay on the Effects of Deltamethrin EW 15 on Gammary pulex in
	mesocosm water
Document No:	<u>M-246173-01-1</u> (HBF/BT 08)
Guidelines:	OECD Guidance Document "Simulated Freshwater Lentic Field Tests (Outdoor Microcosms and Mesocosms)" July
	Field Tests (Outdoor Microcosms and Mesocosms)" (July
	2004 (Draft)
	Guidance Document on Testing Procedures for Resticides in Foshwater
	Mesocosms (SETAC-Europe Workshop, Monks Wood, UK July 1991)
	2004 (Draft) Guidance Document on Testing Procedures for Pesticides in Foshwater Mesocosms (SETAC-Europe Workshop, Monks Wood, UK, Vuly 1991) Community-Level Aquatic System Studies – Interpretation Criteria (2002)
	(Proceedings from the CLASSIC Workshop) $\gg \sqrt{2}$
GLP:	Yes O & O & O & A

Objective:

The aim of the study was to run a bioossay in order to demonstrate a potential recovery of Gammarus pulex populations parallel to a mesocosm study on Deltamethrin 2005; **2** - 246137-01-1). This allows a better control and evaluation of the effect of Detaamethin on Gammerus pulex as a direct test method for Gammadus in the mesocosms, which prefeo natural habitants with running water instead of the lentic conditions of the mesons study

Material and methods:

Test item: Deltamethrin/EW 075, purity: 1.64% www deltamethrin, batch no.; AAIM00846; TOX-No. AZ 10459

In this study the sological effects of Deltamethrin PW 15 were studied on the aquatic invertebrate Gammarus puley. The investigation was performed within several consecutive bioassays running parallel to the mesocosm study (2005 <u>M-240137-02-1</u>). The bioassay test water and food for the Gammarids (Populus leaves) originated from the mesocosm study with deltamethrin, the test organisms from a laboratory culture. J.

The test regime enabled the investigation of the toxicity of deltamethrin to Gammarus pulex and demonstration of the possibility of a population recovery by immigration of new individuals into an affected system.

The 12 test tanks (6 m² water, 1 m² water, depth) used in the mesocosm are especially designed systems which allow the establishment of almost dentical conditions at the start of a study. The bottoms of the artificial tanks were covered with natural sedurent (approx. 15 cm in height) 7 months prior to beginning of the study. The water was composed of local ground water and water from an uncontaminated pond nearby, which was moculated several times with zooplankton also from a natural pond nearby. Natural communities developed spontaneously from seeds and roots of aquatic plants as well as from airborne and naturally transferred stages of planktonic, benthic and filamentous algae organisms during the months before the beginning of the study. In general, the artificial ponds were representative of a small stagnant mesotrophic water body.

The test substance was applied during the early growing season in May 2004, three times at an interval of 7 days onto the water surface of 9 test ponds. The treatment levels were 4.8, 10.5, 23, 51 and 114 ng a.s. L per application (two replicates 4.8 to 51 ng a.s./L, one replicate for 111 ng a.s./L). Three further tanks were used as untreated controls.

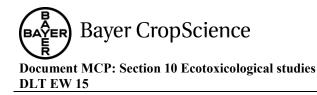
Document MCP: Section 10 Ecotoxicological studies DLT EW 15

The test organisms (Gammarus pulex) were derived from ditches of the research institute (The Netherlands). They were cultured in the laboratory at about 12-15 °C LDde la constante de la constant 16:8 hours in aerated tanks and fed by leaves of Populus spec. Two and 7 days after each application (and 4 hours after the 2nd and 3rd application), and on days 15, 21 and 28 after the last application of the mesocosms, pond water samples were taken from the mesocosms, together with some of the exposed leaves (Populus spec.). The bottles were exposed in a climatised room (same climatic conditions as the culture) and slightly gerated. After adaptation of the water samples to room temperature within a few hours, ten Gammarus pulex of similar size were transferred from the culture into each bottle. The experimental time for each bioassay was 3 weeks with 1 to 2 evaluations weekly. Surviving and dead animals were counted to calculate the survival rate. Water and live animals were refilled into the test bottles each time. Univariate analyses were performed to calculate NOEC value

Findings:

A response from Gammarus pulex could only be observed at the highest treatment levels of 51 ng a.s./L and 111 ng a.s./L. A reduction of the numbers of surviving Gammaries was noted of these concerdrations in the bioassay water and food samples taken 4 hours to 2 days after application. Neverthelessono effects were found at any of the test concentrations, even the highest one in bioastays established seven or more days after applications.

NOEC (seg.a.)	s./L) after
Time after application $\sqrt[n]{2^n}$ 1% application $\sqrt[n]{2^n}$ 2 nd (pplic	catton 3^{rd} application
4 hours not tested a 23	23
2 days 🔊 🔘 🔊 🖄 🖓 🎝	≥ 111
7 days	$1 \sqrt[\infty]{v} \ge 111$
15 days & & 0 0 % & 0 5	\swarrow \geq 111
21 days 21 days see 2 nd application see 3 rd app	≥ 111
28 days y	<u>> 111</u>
Conclusion:	


Table 10.2.6- 1: Calculated MOEC values after each application

Conclusion:

A NOEC of 23 nga.s./L can be derived from this bioassay study. At higher test concentrations, mortality was observed only in samples taken during the first 2 days after application. Samples taken thereafter did not indicate any loxic effects, even at the highest test concentration of 111 ng a.s./L.

Further information concerning the validiation data of this study was provided on request of the RMS in dogument M-588250-01-4

	A & D A
Report:	КСР 10.2.3/04, (2005)
Title:	Evaluation report on higher-tier tests to assess the ecological
\sim	Asks of the insecticide deltamethrin to freshwater organisms
Doctment No:	<u>M-254687-01-1</u>
Guidelines.	Does not apply
GLP C	no

In the context of this evaluation report, the author assessed the treatment-related effects observed in the mesocosm studies of (2001; M-200619-03-1) and (2005, M-246137-01-1). Responses of the measurement endpoints were considered treatment-related when (2005, M-246137-01-1).

4. Clear concentration-response relationships were evident that could not be observed during

- the pre-treatment period
 Statistically significant effects were demonstrated on at least two consecutive sampling
- 6. The statistically significant effects were ecologically relevant.

In this report the observed treatment-related responses in the microcosm are evaluated by using "Effect classes" adapted after 12000, viz.:

Class 1: No effects demonstrated

No consistent adverse effects are observed as a result of the treatment. Observed differences between treated test systems and controls do not show a clear causality.

Class 2: Slight effects

Confined responses of sensitive endpoints (e.g., partial reduction in abundance). Effects observed on individual samplings only and/or of a very short duration directly after treatment.

Class 3a: Clear short-term effects, lasting <8 weeks

Pronounced direct or indirect effects on measurement endpoints. Recovery takes place within eight weeks post final treatment and the total time span of effects (such of response periods after each treatment) does not exceed 8 weeks (56 days). Transient effects reported on both sensitive and less sensitive endpoints. Effects observed on a sequence of sampling

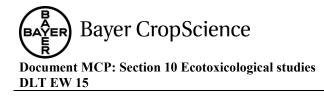
Class 3b: Clear short-term effects, lasting > 8 weeks, but@full recovery within 8 weeks post last application

Convincing direct or indirect effection medsurement endpoints and recovery of these endpoints within 8 weeks after the last treatment, but the total time pan of effects (including the period between treatments) is larger than 8 weeks (56 days). Effects reported over a sequence of samplings.

Class 4: Pronounced effects in short-term study

Not relevant for the evaluated study.

Class 5a: Clear long-term effects, but full recovery before the end of the experiment


Convincing effects on measurement endpoints in the period after 8 weeks post last application but full recovery of these endpoints observed before termination of the study.

Class 5b Clear long-term effects, without Pull recovery

Convincing effects of measurement endpoints also in the period after 8 weeks post last application and without full recovery before termination of the study.

An overall commaty of the "effect classes" determined by the author for several categories of endpoints is given in the tables below. Within each category the most sensitive endpoint was selected. In this evaluation report the author considers class 3 effects acceptable to derive the NOEAEC,

⁴ **Construction**, R.P.A. van Wijngaarden & G.J. van Geest (2000): Ecological risks of pesticides in freshwater ecosystems. Part 2: Insecticides. Alterra-rapport 089, 142 pp.

Nominal peak concentration	1.0 ng/L	3.2 ng/L	10 ng/L	18 ng/L	32 ng/L	56 ng/L	100 ng/L 180 pg/L
Micro-Crustacea	1	1	3a	5a	5a	<u>S</u> b	5b,0 🖉 👌
Other zooplankters	1	1	1	1	3a *	∂ða *	3a ♥ ,
Macro-Crustacea	2	?	3b	5b	5b .4	5b	Sb 5b
Insects	2	3a	3a	3b	3b 🔊	∛ 3b	5b 5b
Other macro- invertebrates	1	1	1	¶ ¶		3a * 💍	310 ³⁴ 2 ³ b * 2
Water quality endpoints	1	1	1	y 1		10 L	

Summary table of study from Schanné & Van der Kolk, 2001:

* = responses can at least in part be explained as resulting from indirect effecto

The study of (2000) revealed class 2 effects on two very sensitive taxa only at 1 ng deltamethrin/L, the lowest treatment-level tested (see table above). Since these effects were transient and slight, the overall NOEC community of the study is set in this evaluation report at 1 ng deltamethrin/L. When considering class 3a/3b effects (clear short-term effects) on a few populations of crustaceans (*Asellus, Daphnia*) and insects (*Chaoborus*, Ephemeroptera) acceptable a NOEAEC of 10 ng deltamethrin can be derived from the study. At treatment-levels of 48 ng deltamethrin/L and higher the results revealed clear long-term effects (class 5a/5b) on calanoid copepods and on *Asellus aquaticus*.

Summary for study of

	i u i ki	
Nominal peak concentration 4.80 g/L 10.5 ngL	23 ng/L 31 ng/L	111 ng/L
Micro-Crustacea $\sqrt{2}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}a$ $\sqrt{2}$	3a L @ 3a	3a
Other zooplankters $2 \sqrt{2} \sqrt{2} \sqrt{2}$	3a * 3a *	3a *
Macro-Crustação	3b 3a? # 5a - 5b?	5b?
Insects $\sqrt[4]{3a}$	<u>◯3a</u> <u>3a</u>	3b – 5b
Other macro- 2 1 2 0		2 *
invertes av a v	\bigcirc	
Phytoplankton	"3a * 3a *	3a *
Water quality 1 4 4 6 6		1

* = responses can at least in part be explained as resulting from indirect effects

[#] = The in situ bioassays show that potential recovery may be fast

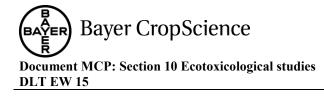
An overal NOEC community cannot be derived from the experimental pond study provided by

(2005), since the lowest treatment-level (4% ng deltamethrin/L) resulted in class 3a effects on the phantom midge *Chaoborns*. At beatment-levels of 23 ng deltamethrin/L and higher, long-term effects on *Asellus aquaticus* cannot be excluded on basis of the responses observed in the microcosm study of (2005). In stu bioassays, performed with *Asellus aquaticus* and water from the outdoor

microcosms however, show that potential recovery of this isopod may be fast. For this reason a NOEAEC of 23 ng deltamethon/L can be derived when both the outdoor microcosm study and the in situ bioassays are considered.

Taking into account the two mesocosm studies and related bioassays, the author comes to the following conclusions:

Document MCP: Section 10 Ecotoxicological studies DLT EW 15


- The two outdoor semi-field tests reported by (2001) and (2005) can be used to evaluate the effects of short-term pulsed (3x,) interval 7 d) deltamethrin exposure on freshwater communities.
- The study of **Constant and Constant and Co**
- The study of **Sector** (2005) is characterised by test systems with a lower (but not exceptional for such model ecosystem studies) diversity of freshwater arthropods. However, several very sensitive arthropod populations (e.g. *Chaoboaus, Asellus)* were present and additional bioassays with the sensitive macro-crustaceaus *Asellus aquaticus* and *Gammarus pulex* were performed. In addition, the study of **Sector** (2005) more realistically simulated the risks due to spray drift and described the stratification and dynamics in exposure conceptrations in the course of the experiment in great detail.
- On basis of the most sensitive endpoints studied a NOE Communy of approximately 1 ng deltamethrin/L can be derived from the study of (2001).
- Under the assumption that short term (class 3) effects on a few populations of sensitive arthropods are acceptable a NOEAEC of approximately 40 ng deltamethrin/L (based on nominal initial concentration) can be derived from the semicfield experiment reported by
- Publications on the ecological effects of other pyrethroids in aquatic micro/mesocosms suggest that the NOEAEC of approximately 0 23 ng deltamethrin/L as observed in the studies reported by (2005) can be used as an Environmentally Acceptable Concentration of deltamethrin in freshwater ecosystems (without applying an extra Uncertainty Factor), at least if short term effects on a few insects and crustaceans are considered acceptable.

Report:	KCP 40.2.3/05, (2007)
Title.	Analysis and interpretation of the zooplankton dynamics after
e (² application of Deltamethrin EW 015 to aquatic mesocosms with
Ő	special focus on the Chaoborus crystallinus population
Document No:	≪ <u>M-289864-01-1</u> (HØF/BT 07)
Guidelines:	Does not apply
GLP 🖉 🖉	

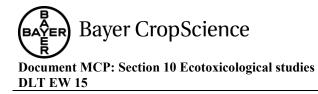
Summary

Based of the results of the mesocosm study with Deltamethrin EW 15 (2005; M-246137-01-1) a food web evaluation of the mesocosm zooplankton community has been used to analyse direct and indirect effects on the zooplankton composition observed in the above mentioned mesocosm

X

study.

Exemplary life-cycle calculations, observations and considerations on the population densities and emergence of *Chaoborus crystallinus* in the mesocosm revealed that this population probably recovered by means of external sources via egg masses laid on the water surface of treated ponds soon after the last application. Larvae which hatched from egg masses about 6 to 7 days onwards after the last application of 4.8 ng a.s./L (7 to 8 days at 111 ng a.s./L; egg deposition about 4 days carlier) survived and got trapped as emerged midges later on during the study. Ô


Following the food web evaluation it is seen as highly improbable that the test item had any effects of rotifers. On the contrary, the population growth Protifers was promoted due to an addirect effectivia the toxicant-induced loss of effective predators (Chaoborus) and of competing Cladocerans (Daphnia longispina, Chydorus sphaericus), until the predator came into play again Asplanchna and new young chaoborid larvae repopulating the mesocosins probably Gaused the sharp deckine in fotifers Soon after the applications. Thus, it can be confirmed that all observe Deffects on the population dynamics of rotifers are to be considered as secondary effects of the treatment with Deltamethym.

The increase in the population densities of **Daphnia longisping** at higher test concentrations some weeks after the applications does probably also not depend on the test item concernations. Taking into consideration the rapid dissipation of the text item from the water phase and the short generation cycles (< 10 d) of this species, the start of recovery appears rather delayed. Since the daphied densities did not reach control densities until the first emergence of the chaobarids, most probably the growing population of 3rd- and 4th-instar larvae substantially contributed to the delayed recovery by predation.

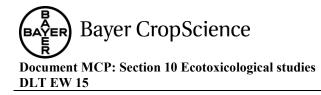
With respect to the coperiod populations the authorshares the description and interpretation of (2005; 1246137-014) that the toxic effect of the test item on the cyclopoid copepods (juvenile copepodids plus adult copepods) was slightly lower than on the nauplii (only at test concentration of 23 to 11,1 ng a s (L), but the population density reached the control level not before day 29. However, the effects on the nauph are seen by the present author to be also caused by the decline of the copepods themselves, since their decline caused less production of eggs and thus nauplii.

Overall, Chaoborns crystallings was found as the most sensitive species in this mesocosm study with Deltamethrin, demonstrating a distinct eduction in abundance of larvae and emerging midges immediately after the application at all treatment levels. However, larvae hatching from egg masses in the treated pond of the highest test level (141 ng us./L) already survived 7 to 8 days after the last application and emerged later on In addition the abundance of Daphnia longispina and copedopds (mainly nauplii) was affected by Deltamethrin at the highest test levels. Although the recovery for D. longispina was delayed by the predation of a growing population of Chaoborus larvae, the populations of both, Daphnia longispina and copedopds (mainly nauplii) recovered even up the highest test level within some weeks after the latest application at the latest. The population dynamics of Chaoborus crystalinus also caused some short-term indirect food web effects (as on rotifers and phytophytkton). Thus, the treatment with deltamethrin caused distinct short-term effects on a few zooplankton species which also induced fluctuations on other zooplankton and phytoplankton species within the food web for some weeks only.

The following study was conducted with the mixed formulation Thiacloprid & Deltamethrin OD 100+10. As the observed effects on aquatic invertebrates, especially *Asellus aquaticus*, seem to be dreven mainly by the deltamethrin content in the formulated product, the results are considered in the risk assessment as supplemental information.

Report:	KCP 10.2.3/06, , , , , , , , , , , , , , , , , , ,
Title:	Fate and effects of Thiacloprid & Deltamethrin OD 400 + 10 in outdoor with the mesocosm ponds.
Document No:	<u>M-259938-01-2</u> (BAY-018/4-52)
Guidelines:	Guidance Document on Higher? ier Aquatic Risk Assessment for Pesticides (HARAP), SETAC Europe, 1999 European Commission. Health & Consumer Protection Directorate-General Directorate E1 – Plant Health. (2002): Working/Document, Guidance Document on Aquatic Ecotoxicology in the conext of Directis 91/444/EEQ, 17 October 2002 Community Level Aquatic System Studies – Interpretation Criteria (CLASSIC Workshop), SETAC 2002 OECD Guidance Document (2003): Draft Guidance Document of Simulated Freshwater Bentic Freld Tests (Outdoor Microcosms and Mescrosms), August 2003
GLP:	Yes (certified taboratory)

Objective:


The aim of the study was to determine the ecological effects of a simulated deft contamination with Thiacloprid & Deltamethria OD 100+10 on different tropDic levels (envergence, zooplankton, macroinvertebrates and phytoplant on) in a lentic aquatic freedwater system. At the same time the fate and distribution of the compound in the individual compartments (water body, sediment) was monitored. Asellus aquations, on of the acutely most sensitive invertebrate species, was artificially introduced about three weeks before application into the mesocosts and monitored. In addition Asellus was tested parallel in Laboratory bioassays using mesocosm water.

Material and methods:

Material and methods: Test item: Thiacloprid & Delta methrin OD 100 + 10, purity; 9.8% w/w thiacloprid and 0.938 % w/w deltamethrin, batch no 208136 0061 (0020)

Twelve cylindrical ponds diameter 2.5 pr; total depther 5 m, water depth above sediment surface: 1 m; surface atea. 4.91 m²) were used in this study. The ponds were linked by a system of pipes which allow the establishment of almost identical conditions at start of the study. The bottoms were covered with natural sediment (approximately 40 cm a height) five months prior to the study start. The sediment was covered with local tap water. The mesocosis water was additionally stocked with phytoplankton and zooplankton organisms from field collections from several local non-polluted ponds. Asellus aquaticus, one of the actitely most sensitive invertebrate species was artificially introduced three weeks before the application and monitored. In replicates, where the Asellus population was severely affected two weeks after the application (one replicate of the 1.1 µg/L concentration, all replicates from higher concentrations), additional Asellus were introduced on days 12, 47 and 57 (each time 200 individuals perseplicate) to demonstrate a potential recovery of the isopoda populations.

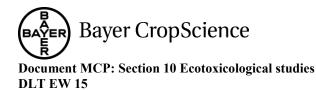
The test frem Thiacloprid & Deltamethrin OD 100+10 was applied once during the early growing season on 12 May 2004 onto the water surface of nine mesocosms. The treatment levels were 0.5, 1.1, 2.5, 5.5, and 11.9 μ g test item/L corresponding to 50.4, 110, 242, 536, and 1166 ng thiacloprid/L and 4.8, 10.5,

23, 51, and 111 ng deltamethrin/L. Two replicates were used for all except the unreplicated highest A DO treatment level. Three mesocosm served as untreated controls.

The mesocosms were investigated 14 days before and 77 days after the treatment? Several times during the study period water and sediment samples were taken and analyzed to investigate the concentration of the active ingredients in water and sediment. Further parameters studied were the taxonomic composition of zooplankton, phytoplankton, macroinvertebrates and emergence of insects at different days before and after application of the test item. Since Asellus aquatients was assumed to be one of the most sensitive species in this study this species was investigated in site on Artificial Substrate Samplers (ASS) and in small cages with leaves which function as trapsolor these organisms. Additionally, laboratory bioassays were performed with this species to investigate the potential recovery of a population by migration of organisms from adjacent water bodies. Physico chemical parameters, the chlorophyll-a content of the phytoplankton Ocoverage of the sectiment with macrophytes and the thickness of the periphyton layer on the mesocos or wall were also evaluated. Two Quurna Cycles of conductivity, oxygen concentration, water temperature and plowere recorded during the study.

Analytical findings: The analysis of all spray solutions how an average of 105% for the substance deltamethrin and 97.1% for thiacloprid confirming nominal concentrations.

The analytical results of water samples taken four hours after the application show a distinct stratification for both active substances. However, after 24 hours deprametorin and thiacloprid were distributed homogenously in the whole water column. Deltamethrin disappeared quickly after application with an average half-liftin the water column of 2 days, The DPm for this cloprid was calculated to be 43 days.


In the sediments of the two lowest reatment levels de Damethin was not found during the study. In the higher test level concentrations increased up to about day 42 and decreased during the second half of the study. This loprid was found in all treated segment and showed a slower increase in the sediment during the study period up to about day 49 with a decrease until the end.

For the total system, the DT₅₀ cere slightly higher than for the water (2.5 and 49 d, respectively). At the end of the study (105 days after application), deltamethrin is found only in the sediment of the mesocosms of the two highest treatment levels with 7% and 1% of the total amount applied, respectively. Around 30% of the total applice amount of the the cloprid was found at the end of the study in all treated mesocosms (around 20% in the water and 0% in the sediment).

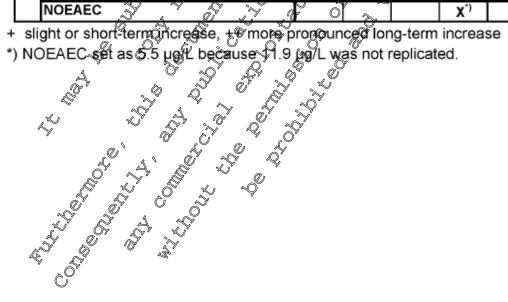
Biological Sindings:

The biological data showed some minor and major, direct and indirect effects on some groups of organisms, as indicated in the following ables In these tables, the effects were classified according to the following effect categories suggested in the Guidance Document on Aquatic Ecotoxicology in the

context of the parective 91/41 //EEC (SAMCO 3268/2001 rev.4 (final) of 17 October 2002.

		Classification of effects	
1	effect could not be demonstrated	no (statistically significant) effects observed as result of the treatment and observed differences between treatment and controls show no causal relationship	
2	slight effect	effects reported in terms of "slight" or "transient" and/or other similar descriptions, and short-term and/or quantitatively restricted response of sensitive endpoints, and effects only observed at individual samplings	Ô
3	pronounced short-term effect	clear response of sensitive endpoints, but total recovery within 8 weeks after the last application and effects reported as "temperary effects on less sensitive species/endpoints" and/or other similar descriptions, and effects observed at some subsequent sampling instances	
4	pronounced effect in short-term study (not relevant in this study)	clear effects (such as strong reductions in densities of sensitive species) observed, but the study is too short to demonstrate complete recovery within 8 weeks after the (last) application	7
5	pronounced long-term effect	clear response of sensitive endpoints and recovery time of sensitive endpoints is longer than weeks after the last application, and effects reported as "long term effects on many sensitive species endpoints" and/or other similar descriptions, and effects observed at various subsequent samplings.	

The NOEAEC (No Observed Ecologically Adverse Effect Conventration) is dessured to be the l concentration with only effects up to class 3 (short-term effects with recovery within 8 weeks). Effect classes for the various taxa are sumplarized in the following tables: The NOEAEC (No Observed Ecobolically Adverse Effect Concentration) is assumed to be the highest



	Т	est con	centrati	ion [µg/	L]
oplankton	0.5	1.1	2.5	5.5	
Cladocera	2	2	3		3
Daphnia magna	1	2	2	3	5
Daphnia longispina / pulex	2	2	3		3
Chydorus sphaericus	1	1	1	31	3
Simocephalus, Scapholeberis	1	Å	1	Ϋ́,	+
Copepoda	2	No.	2	0 3	3 (
Copepodits and adults	1	(¹	1_0	≶ 3	1 2,9
Nauplii	2,0	2		3	Q
Rotifers		+	× +	2+ 	Q*++_ (
Lepadella cf. quadricarinata	1	. 1 .	∂ ² 1 `^	1	1
Keratella quadrata	× 1 K		+	N.	<u> </u>
Polyarthra spec.	K	Ũ		8º	Ø++
Synchaeta spec.	Sa.¶	l∕∿1 _	×1 _	+ 4	++
Taxa richness	\mathbb{N}^{1}	71,	1 /	1 1 1	
Diversity Q	12		*	1 apr	<u></u>
Taxa richness Diversity Similarity PRCs	0.24°	×2	2 1	2 3	5 3
PRCs Q	a 1 6	2 2	D 2 0	300	5
COMMUNITY-NOFC (1) SI (1)	×< 0.5			Ŭ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lowest population-NOE	< 0.5	~	Ū ^V	Ŵ,	
	<u>o</u> y	l v			
	X	est con	centrati	ion [bg/	L]
Total emergence	0%5	.1 0 ″	\$ 5	5.5	0)1.9
Total emergence 🖉 🖉 🖉	S S	1	02	D 3 1	3
Total emergence	1		2 2 L	-Øj	3
Chironiminae		Q,	Q,		3
	$\ll 1^{\nu}$	2	3"+	+	+
	21	\$ 1 (01	5	5
Einfeldia speco Micropsectra speco Parachironomus pec. 8	× 1 °	10	, to	5	5
Parachironomus pec. 8	6 yr	₩. N	, of	+	++
Tanytarsini 🔿 🖉 😓 👌	N (¥ 2	5	5
Parachironomus pec.	6 1 C		1	1	3
Cricotopus Spec	L.V		1	1	1
Tanypod anae		01	2	3000	3
Culicidae 🔗 🔗 🦧	\$j1	Ô″ 1	1	+	+
Chapboridae	15	1	1	1	5
Eptemeroptera Cloeon X		1	1	1	5
Similarity 💭 👌 🖉	°ي*1	1	2	3	3
PRCs	× 1	1	2	5	5
Community-NOEC		Х			
		х			
NOEAEC & A			Х		

+ slight or short-term increase, ++ more pronounced long-term increase

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

	T	est con	centrati	on [µg/	L]	
Macroinvertebrates in ASS	0.5	1.1	2.5	5.5	11.9	
Macroinvertebates in total	1	1	1	1 /	2	ST O
Chironomus plumosus	1	1	+	++ ~	3	
other Chironomidae	1	1	1	5	5	
Tubificidae	1	1	+	A	+ . Ó	
Helobdellla	1	Č\$	1	√ 1	1	
Radix ovata	1	∕♥1		1		2 4 4
Gyraulus albus	1 🔬	1		1	×++	
Taxa richness	1	1	-Qí	°1 /	ر ۱ کر	° O _s Oʻ
Diversity	Q ⁹	1 ^	y 1, 0			
Similarity	1	° 1,2	K V	5) 5)	5 🗞	
PRCs O	10	Å		5	5	4
Community-NOEC	. 0	Ũ	Q X "		0″	Q° N
Community-NOEC		, Č			×,	
			× °	N.		Ő
			contrați			, Ôg
Macroinvertebrates in sediment	0.5		2.50	56	1,1,9,9	L L V
Macroinvertebrates in total	1.5	, C	ð	õ i		<i>v</i>
	10	Ś	, OM (δ 3	30	
Tubificidae	^م ۶1	𝔅 1 ΄	× 1,×	I I	89 - X 1	
Gyraulus albus	۶ 1 ړ	1~		Ĵ, Ĝ	\sim	
Lowest population-NOE			X V	×))	
NOEAEC		Q [°]	0 0	ХX		
	~0	est con	centrati	or@µg/	L]	
Lowest population-NOEC	0(5	1)Î		5.5	11.9	
Mesocos without artolicial in migration	62	5	5	5	5	
Mesocosms with artificial inventoration	Y 2 0	2,	1	2	3	
Bioastav C A		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	2	3	
Lowest population-NORC	∽∕ 0.5		Ø Ø			
Bioassay			r	X ^{*)}		
	r U	ð		^		

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

	T	est con	centrati	on [µg/l	L]	
rimary produces	0.5	1.1	2.5	5.5	11.9	
Total phytoplankton	+	+	+	太	+	S O
Chlorophyceae	1	1	+	**************************************	++	
Cryptophyceae	+	+	+	°+	+~~	
Diatomeae	1	1	+	> +	, , O	
Chlorella minuta	1_0	> 1	14	1	XI I	
Chroomonas spec.	1 🕅	1	Q	1 () _*
Cryptomonas spec.	Â,	+	С `+	+ 🖉	+ Q	
Taxa richness	A 1	1 🖗	16°	A S	<u>_</u>	
Diversity 🖉	1			Ϋ́Υ)	°+ ,	þ (
Similarity* 🔬	Ø)°	₹ 22	\$2 ₹	° 2 °	3~>>	d S
PRCs O		, + 0	000	+0	A++	
Chlorophyll a in the water	r 1. 9	,+ %	4+	\$ +	0+	
Periphyton		Д ^О Г	<u>~</u> }````		+ .	A CONTRACTOR
Macrophytes	×1	×1 «	° 1.≫	10	A	\bigcirc
Total primary production (Q2, pH)	> 1√	×,0	Ţ,		¢+	\$
Total primary production (Conductivity)	<u>ک</u>	a la companya da companya d		0 + Ô		
Community-NOEC	×.	Q″.d	y O		×,	
Lowest population-NOEC	< 0.5				0	
NOEAEC	o A			(X X)	þ	

+ slight or short-term increase, ++ more procounced increase

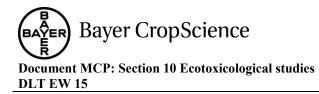
*) NOEAEC set to 5.5 µg/L due to missing replication & 11.8 µg/L

Within the **zooplankton** community, *Daphuia* species and Cyclopoida - especially nauplii - were identified as the most sensitive zooplankton taxa with statistically significant effects at all test concentrations. With a NOEC of 2.5 μ g/L *Chydorus phaericus* was less sensitive. For other taxa, no consistent negative effects on abundance were found. Some rotifer species and two cladoceran species were promoted with a lowest consistent NOEC of 0.5 μ g/L obviously by secondary effects (reduced competition). The similarity indices reflected the toxic effects on the zooplankton with a community NOEC of < 0.5 μ g/L, whereas the PRC indicates a NOEC of 0.5 μ g/L.

From day 35 m, in nost cross no consistent effects on the zooplankton were found up to 5.5 μ g/L demonstrating recovery of the zooplankton within 5 weeks. Only for *D. magna* recovery at 11.9 μ g/L could not be demonstrated. The rotifer *Synchaeta spec*. was absent in the controls but present in the treated mesocosms until the end of the study. These two taxa showed the highest respectively lowest species weights and thus, they were responsible for the deviation of the PRC of 11.9 μ g/L from the controls until the end of the study. Therefore, the NOEAEC for zooplankton in this study is 5.5 μ g/L.

The test item affected the **aquatic insects** sampled by **emergence** traps. Consistent effects over at least two sampling dates, were observed directly after application for abundant chironomid taxa at concentrations of $2.5 \ \mu$ g/p and higher. Culicidae were the only taxon which seems to benefit indirectly from the test item application at the two highest treatment levels. Thus, the NOEC on the population and community level is 1.1 μ g/L. Several taxa showed no or only low emergence until the end of the study in the two highest treatment levels, while no significant consistent effects were found at the end of the study in the two highest treatment levels. The study is 2.5 μ g/L. Therefore, the NOEAEC for emerged insects is 2.5 μ g/L.

Macroinvertebrates were monitored in Artificial Substrate Samplers (ASS) and sediment samples. Direct effects on macroinvertebrates were detected for chironomid only, starting at 5.5 μ g/L. Due to the reduction of the abundant taxa, other populations like Tubificidae, *Gyraulus albus* and *Radix ovata*



benefited temporarily, but often not in a dose related way. Thus, the NOEC for Macroinvertebrates is 2.5 μ g/L. Because, chironomids showed no clear recovery in the ASS until the end of the study if the two highest treatment levels, the NOEAEC is also 2.5 μ g/L.

Asellus aquaticus, a species known to be very sensitive to Deltamethrin, was artificially introduced into the mesocosms before the application. Effects were observed at all treatment levels: At the lowest level, a slight reduction of activity was observed, but population growth was possible again within a few weeks. Due to unlimited growth of the control population, the control levels could not be reached, but the population growth rate was comparable. At higher concentrations, populations, became extinct or almost extinct. However, up to 5.5 µg/L possible recolonisation after two weeks was demonstrated by insertion of new organisms into test ponds. At the inghest treatment level, survival of immigrants was possible at least after 7 weeks. Laboratory bioassays also showed after eight weeks full surprival up to the highest treatment level. Because the mesocosm represents a worst case situation for recovery of animals like Asellus, which do not have resting stages (like daphnids) or are not able to immigrate by flying (like insects), the successful artificial immigration and the survival in the bioassays demonstrate the recovery potential in the field by immigration of organisms from adjacent water bodies. Thus, the potential of recovery within eight weeks is shown up to $11/9 \ \mu g/L^{O}$. However, because of the missing replication of this concentration, the QOEADC for Asellus in this study is set to 5.5 µgL. The test item had no direct effects on the phytoplankton but as an indirect effect some algae species showed a concentration related increase after application because of the reduced graphing of zooplankton organisms. Based on significantly higher abundances of Cryptonionas in all treated mesocosms in the first week after application, the population-NOFC is <0.5 µg/L. Based on short term effects on the community level, also indicated by the PRCs, the Community NOEC is set to 0.5 mg/L. At all treatment levels, the algae blooms occurred only a few works. Because the highest treatment level was not replicated, the NOFAEC is set to 5.5 ag/L. No statistically significant effects were found for macrophytes (Elocie candensis) and periphyton (filementous algee), but a slightly increased growth was observed at 2.5 µg/L and higher for periphyton and at 11,0 µg/L×for macrophytes. Chlorophyll concentration and indicators of total primary production foxygen concentrations, pH, and conductivity) confirm the indirect growth of the phytoplankton.

Conclusion

The accompanying chemical analysis demonstrates esteady and fast decline of Deltamethrin in the mesocosm water with a mean \$1.50 of 2.1 days and a mean of 2.5 days for the whole test system (water plus sediment @In the Gediment of the two dowest dest concentrations Deltamethrin was not found. The results of the higher test concentrations show a slight journease of the amount of the test substance in the sediment for about the first six weeks after application and a slow but constant decrease thereafter. Thiacloprid was more persistent with a DT of about 43 days for the water and 48 days for the whole system. Thiscloprice was found in the sectment of all treated mesocosms and showed a slower increase in the sediment during the stude period over the first seven weeks with a decrease until the end. Some crustaceans were identified as the most sensitive taxa with effects even at 0.5 µg/L. For Daphnids and cyclopodite opepods a recovery withing few weeks could be demonstrated up to 5.5 µg/L. Asellus aquaticus showed a normal population growth a few weeks after application at 0.5 µg/L. At the higher treatment levely the introduction of new Asellus demonstrated the potential for recolonisation at concentrations up to 1.9 pg/L. The bioassay findings confirm that water and food samples taken from the mesocosms a few weeks after application did not have any negative effects on Asellus aquaticus survival ∂ herefore, a fast recovery is concluded even for the most sensitive species up to the highest test concentration. The NOEAEC for the crustaceans was set to 5.5 μ g/L because of the missing replication of 11.9 µg/L. Chironomid species were identified as the most abundant insects and macroinvertebrates in general, according to the emergence, ASS and sediment data sets. Effects on these

midges were observed at initial concentrations of 2.5 μ g/L and higher. Full recovery could only be demonstrated for all species at 2.5 μ g/L. Thus the NOEAEC for these midges is 2.5 μ g/L. The direct effects on the daphnids, copepods, *Asellus* and chironomids caused indirect effects on the phytoplankton (reduced predation) and on competitors like rotifers, Culicidae and maybe shalls and Tubificidae (reduced competition). However, in most cases these indirect effects were only temporarily and restricted to higher treatment levels.

Taking into account all the findings summarized above, an overall NOEAEC (No Observed Ecological Adverse Effect Concentration) of 2.5 µg/L Thiaclopric & Deltamethrin OD 110 can be derived from this study. This test item concentration corresponds to a nominal peak concentration of 242 ng thiacloprid/L and 23 ng deltamethrin/L, respectively.

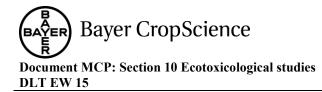
Report:	KCP 10.2.3/07;
Title:	Deltamethrin EW 15 . Acity and aronic Effect to Different Life Stages of the
	Isopod Asellus aquaticus & in a Natura Water Sediment System
Document No:	M-291885-02-1 (MA)
Guidelines:	
GLP:	Yes a way of a grant of a

Material and methods: 🔬 🖗

Test item: Deltamethrin EW 15G, purity: 1.5% w/wedeltamethrin, batch no.: OP240778, specification no. 102000003191

In this laboratory test the ecological effects of Deltamethrin FeW 15 on the aquatic invertebrate Asellus aquaticus were studied. Different life stages of Asellits aquaticus were tested in two separate approaches, one with juvenues and one with adults. The animals were collected in natural ditches in

(The Netherlands), from where the natural water and sediment was collected and transferred to the test facility.


The following biological parameters were monitored: Mortality, sublethal effects (such as reduced activity) and the time taken for recovery deffects occur,

The endpoints of the study were CC_{50K} NOEC mortality and sublethal effects.

Nominal test concentrations were 0, 9.0, 2.2, 4.8, 50.6, 2, 4 and 51.5 ng a.s./L (number of replicates: three for each life stage). Ten, test organisms of each life stage were introduced randomly into corresponding test vessels 8 days before application. Exposure period was 21 days; the system has been equilibrated and conditioned for approximately 12 days before the application of the test item.

The test conditions were: temperature: $18\frac{3}{2} - 26\frac{3}{2}$ °C, light regime: 16 light:8 dark, light intensity: 100 – 566 lux, aeration of test chambers: gentle pration, feeding: 10 leaves of pre-conditioned *Populus canadensis* per replicate; the leaves were introduced into the test vessels 11 days before the test item application.

For each test item concentration three additional replicates without test species were prepared for analytical purposes. These replicates were treated in the same way as the test systems with test species. Samples for analytical purposes were taken form the overlying water column of all additional test vessels 2 - 4 hours after application and at each observation point for each concentration level. Sediment samples were taken for the three highest concentrations on day 7, 14 and 21 of the test period. The chemical analysis was performed by Bayer CropScience AG.

Findings:

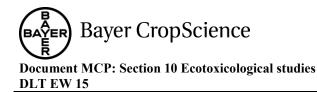
<u>Analytical findings:</u> The analysed concentrations of the stock solutions confirm the nominal dest concentrations. After application the concentration of deltamethrin in test water decreased rapidly. They total recovery of all introduced individuals was not possible at the interim sampling dates (e.g. due to turbidity in the test vessels). At the end of the test period (21 days after application) a final assessment was performed by emptying the test vessels and searching through the sediment for driving test organism. Therefore, the final evaluation is the most relevant one.

<u>Biological findings (survival)</u>: The survival of *Asellus aquaticus* after 21-day exposure to deltar ethrin in a static water-sediment system is summarized in the table below Survival of both, juvenile and adult organisms was significantly reduced in the highest test concentrations. No difference in sensitivity of the two life stages was observed.

Percentage of survival as mean of 3 replicates at day 2

	$\frac{1}{\sqrt{3}}$
Nominal deltamethrin	Survival at day 214% A Aults A A
concentration	Juventes J J & Atults & S
Control	
1.0 ng a.s./L	
2.2 ng a.s./L	
4.8 ng a.s./L	a_{μ} 72^{3} a_{μ} a_{μ} a_{μ} a_{μ} a_{μ} a_{μ}
10.6 ng a.s./L	66.7 × 66.7
23.4 ng a.s./L	86.7 D 4 765 0
51.5 ng a.s./L	

Other observations:


In the test vessels with initially introduced adults of *AseMus aquaticus*, newborns were observed for the first time 4 days after application up to a concentration of 23.4 ng a.s./L. In the highest concentration (51.5 ng a.s./L) the first newborns appeared only in one replicate 14 days after application.

LC50, LOEC and NOEC

The following LC_x-, OOECOND LOEC values were calculated for juveniles and adults of Asellus aquaticus:

Estimated LCx mortalio LOEC and NOEC in ng a. L for <u>mult</u> Asellus aquaticus based on statistical evaluation of Bological results and nominal mitital concentrations for day 21. Control mortality was compensated using Abbott Formula

	0 – 21 d	
	Lower 95%	Upper 95%
Endpoint fug a.s. A.	confidence interval	confidence interval
LC ₁₀	14.7	41.7
LC_{20} \mathcal{A}^{\wedge} \mathcal{Q}^{\vee} $\mathcal{S}^{\vee} 30.1 \mathcal{Q}^{\vee}$	20.4	44.5
LC_{50} \bigcirc \bigcirc \checkmark 430	34.8	55.3
LOEC \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}		
NOEC 23.4		
Č ⁹		

Estimated LCx mortality LOEC and NOEC in ng a.s./L for juvenile Asellus aquaticus based on statistical evaluation of biological results and nominal (initital) concentrations for day 21. Control mortality was compensated using Abbott's formula

		0 – 21 d	
	Endpoint [ng a.s./L]	Lower 95%	Upper 95% C confidence interval
LC10	28.2	19.6	040.5 0
LC20	33.1	Cg 25.0 L	43.87 5
LC50	44.8	36.7	
LOEC	51.5	K C	
NOEC	23.4	Ý _l ô ^y , l	

Conclusion:

In a static water-sediment laboratory system, the Lation of the lation o deltamethrin was 43.9 ng a.s./L for adults and 44.8 gg a.s. for joveniles of Asellus and aticus based on nominal concentrations. The NOEC was 29.4 ng a.s./L.for juvesiles and adults. It can be concluded that the sensitivity of of juvenile A. aquaticas to detrametherin is equal to the sensitivity of adult organisms.

The test concentrations of the study summarized above welf evaluated in the following reports:

Report:	KCP f0.2.3/08; ; 2007 ~ ×
Title:	Analysis of deltamethrin concentration in water samples of CT study no. P1MA
Document No:	<u>xx 291848-01-</u> (MR-07/295) x x O X
Guidelines:	
GLP:	Yes

Report: O	<i>β</i> X 111A X 10.2.3/09, ; 200 [#] b
Title: 🔊	Modification M001 of analytical metho@00886@for the determination of total
<u>i</u>	residues of deltatoethrin (AE F032640) in surface water by HPLC-MS/MS
Document No:	M-291,7*6-01-1
Guidelines:	Does not apply ' O
GLP:	n_{0}

Summary

This method M00886/M001 describe the determination of deltamethrin in test water from aquatic toxicity tests by HPLCMS/MS and provides validation data for test water using Multiple Reaction Monitoring (MRM)

Water samples are analysed after addition of acetonitrile and internal standard solution by direct injection into an HPLC MS/WS instrument using electrospray ionization in the positive mode. The mass spectrometric detector showed linear response in the concentration range of 2 ng/L to 100 ng/L with a correlation coefficient of 0.9995 (1/x weighted).

Repeatability testing of MS/NS detection of deltamethrin in test water samples fortified at concentrations of 2 ng/L and 10 ng/L yielded a relative standard deviation (RSD) for the peak area ratio of 2.4% and 3.3%. The RSD for the retention time was $\leq 0.2\%$ for both fortification levels. The limit of quantitation (LOQ) for deltamethrin is 2 ng/L.

The limit of detection was 0.5 x LOQ.

Report:	КСР 10.2.3/10,	2007	_ 0
Title:	Analysis of deltamethrin concentrations in sediment s	samples of ECT	study no.
	P1MA	-	
Document No:	<u>M-291818-01-1</u> (MR-07/297)	ð	
Guidelines:	-	Â	
GLP:	Yes	1	\$ \$ 0

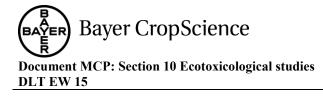
***** 💭

Report:	KCP 10.2.3/11, ; 2,007
Title:	Brief Summary of Methods and first Results (non-GPP) of the Carcelled Microcosm Study on Chrome Effects of deltamethrin EW 15 G on Population
	Microcosm Study on Chronic Effects of deltamethrin EW 15 G on Population
	Dynamics of the Isopod Asellus equations L. in a Natural Water-Sediment System
Document No:	<u>M-291879-01-1</u>
Guidelines:	No Guideline available
GLP:	No y y y y y y y

The study was aimed at determining the chronic effects such as popplation dynamics and potential recovery) of deltamethrin towards a population of different age (size Classes of Acellus àquaticus in a water-sediment system under realistic spray exposure conditions However, since the dife stage study (see above; M-291885-02-1) provided reliable results and the interpretation of results from a population study with different age classes is difficult, the prerocosm study was perminated five weeks after study implementation. Nevertheless, the results obtained confirm the results of the life stage study:

- Survival of jovenile and actult A. aquaticus was not affected affer 35 d of exposure to deltamethringin a static water-sediment-system up to a nominal peak concentration of 51.5 ng a.s./L
- No difference on sensitivity between Juvenile and adult of ganisms was observed.

Report:	KCP 10.2.3/42,	; 2007
Title:	Drift of the freshwater ise	god As@lus aquaticus in a stream in an agricultural
Į.	landscape a case study	
Document Nor.	Q1-291025-04-9 O	
Guidelines:	No Sindeline available	
GLP:	No 5 6	
		×


Objective:

Ò

A field study was conducted to examine the doft behaviour of the freshwater isopod Asellus aquaticus.

Material and methods: Field studies were conducted in , a third order stream (width: about 1.2 m, depth: about 20 cm, flow velocity: between 0.91 and 0.2 m/s) discharging agricultural land (mainly vineyards) close to South Western Germany. The stream itself is considered to belong to the category "ditch" when applying a scheme on FOCUS scenarios.

Population density: Population densities of A. aquaticus were determined between June and August 2007 with a Surber sampler (are: 0.062m²; 1 mm mesh). Five independent samples were taken each month over a stream length of 500 m.

Drift rate determination: The drift of isopods was measured with continuously operating bottom drift nets (opening 10 x 4 cm; net length 200 cm; mesh size 1 mm) at a total of 10 sites. Each same ing 🖉 interval lasted for 24 hours. Additional drift rates were measured in the blocking experiments described below.

Drift distance (blocking experiments): These experiments were designed to determine the effect of blocking the total drift upon drift rates of A. aquaticus at points located downstream of the mesh barrier used as a block. If the occurrence of organisms accumulating in the mesh barrier was the result of only random activity in the immediate vicinity of the mesh barrier, and the individuals found there were not in the process of moving downstream, then drift rates in locations townstream of the block would be unaffected. On the other hand, if the isopods stopped at the block had been rooving downstream and were about to contribute to the drift further downstream, then drift rates down from the block would be correspondingly reduced. Two blocking experiments were conducted in July and August 2007. The block consisted of a coarse metal mesh (mesh size: 2 cm) @ retain arger detritus followed by @ fine spire mesh (mesh size: 1 mm) positioned downstream Both blocking nets covered the complete cross section of the water body to make sure that macroinvertebrates were not able to pass the det from either side. The drift of the isopods was measured with continuously operating bottom drift nets (see above) at a total of seven sites, situated downstream at distances of 2, 4, 6, 8, 10, 92 and 14 m (1st experiment) and 2, 4, 6, 10, 15, 25 and 50 m (2nd experiment), respectively. Defit measurements started 1 h after installation of the mesh barrier in two (1st experiment) and four (2nd experiment) 24-hour intervals. Flow velocities were measured about 19cm upstream of the drift net openings

Findings:

 \bigcirc sulted in a mean population density of 223 ± 1040 ind/m² (n = 15), Samples taken in which represents a moderate to high density for this species?

Drift rates rates and from 2250 to 1998 individuals 24 h Gnean drift rate: 675 ± 467 ind/24 h; n=45). Measured flow velocities varied between 0.01 and 0.2 m/s at the different sampling sites and intervals. Based or all drift data and corresponding flow velocity measurements, there is no correlation between the drift rate and the flow velocity at a given site and time. The data show a pronounced activity and movement of A. applaticus over the full range of observed flow velocities.

The results from the 1starte strance experiment suggest that the effect of the mesh barriers is visible at 14 m (i.e. maximum distance examined), i.e. the relevant drift distances do cover stretches of this length. The 2nd experiment indicated that distances of up to 25 m seem to be relevant drift distances for A. aquations.

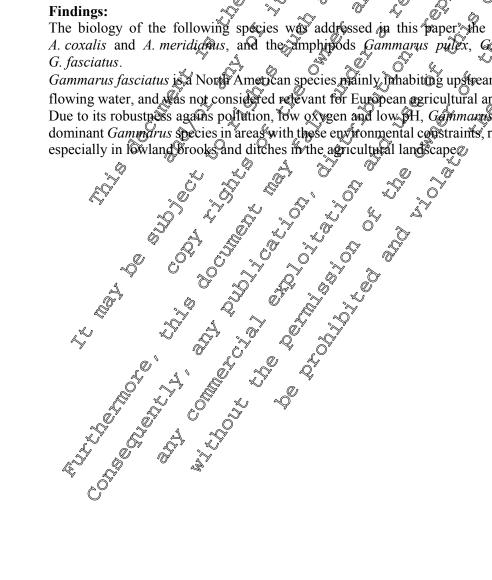
L 1 **Conclusion:**

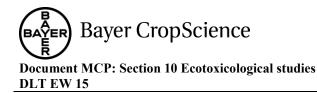
Even if it was not conclusively pessible in this study to distinguish between active or passive components of between droft and becomption, the data suggest a rather high spatial dynamic for the isopod specifies A, aquaticus.

Report:	KCP 10.2.3/13, ; 20	07	° .
Title:	Biology and distribution of selected waterlice	and freshwater	shrimps of 0
	Central Europe – a literature review	~	J d
Document No:	<u>M-291865-01-1</u>	Č,	
Guidelines:	No Guideline available	0 ³	
GLP:	No	A	6° 55' 9

Objective:

U V The aim of this report was to accumulate data on the biology and distribution of selected waterlice and C freshwater shrimps of Central Europe. It summarizes information on reproduction and life cycle, the preferred habitat of the different species, but also to describe the variation of occurrence, the geographic distribution pattern in Central Europe, food preferences and interactions with other species focusing on other species in the same group.


Material and methods:


In total over 100 primary sources (publications) were reviewed for relevant information on the waterlice Asellus aquaticus, A. coxalis and A. meridianus and the amphipods Gammarus pules, G. fossarum, G. roeselii and G. fasciatus. The collection of this information was in post cases not of a quantitative manner and not carried out with a standardized methodology.

Findings: The biology of the following species was addressed in this paper the isepods Asellus aquaticus, A. coxalis and A. merididaus, and the amphipods Gammarus pullex, Gossarum, G. roeselii and

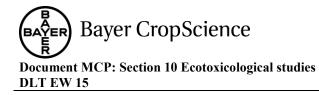
Gammarus fasciatus is a North American species mainly inhabitor upstream prooks with clear and fast flowing water, and was not considered relevant for European agricultural areas.

Due to its robustness agains pollution, low oxygen and low oH, Gammarus pulex was identified as the dominant Gammarus species in areas with these environmental constraints, resulting in high abundances

CP 10.3 Effects on arthropods

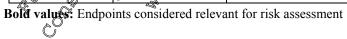
CP 10.3.1 Effects on bees

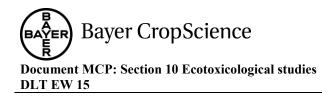
Table 10.3.1-1: Acute toxicity of deltamethrin (tech.) to honey bees


Test substance	1 0	Endpoint	Reference
Deltamethrin, tech.	Honey bee, 48 h	$LD_{50} - \text{contact} \approx 0.0015 \ \mu g = 1.00000000000000000000000000000000000$	ee <u>M-140380-0591</u> Ligof Enclosints of Source w report, 2002
Deltamethrin, tech.	Honey bee	LD ₅₀ – oral ° 0.009 µg a 3//bee LD ₅₀ contact 0.051 µg a.s./bee	(19780)
Deltamethrin, tech.	Honey bee	LD ₅₀ ² oral 0.0 7 9 μg a.s./bec LD ₅₀ ² contact 0.047 μg@.s./bec	Anonymous (1977) M-150494-01-2 K&A 8.3.1/01
Deltamethrin, tech.	Honey bee, A	LD ₅₀ – oral 0.19 µg a sobee	73584035 . M 44971-01-1 K℃A 8.3¥.1/02
Deltamethrin, technical concentrate	Honey bee, O	LIDS- oral 0.023 µgsts./beg	(1996) CW 94/084 <u>MQ 40579-01-1</u> KCA 8.3.1.1/03
Deltamethrin, technical concentrate	Honey bee	LD _m contact Q012 µg s.s./be	CW 94/083 (1996) M-149608-01-1 KCA 8.3.1.1.2/02

Toxicity of deltamethrin to burnble bees in the laboratory

There is currently no harmonized and ring tested test guideline available in Europe to assess the acute toxicity to bumble bees; this is particularly true for the oral route of exposure, as bumble bees do not share their food through tropheraxis, For the determination of the contact toxicity of deltamethrin to bumble bees, the horey bee lest method has been adopted, wherever possible.


Table 10.3,1+2: Acute toxicity of deltamethrin (uch.) to bumble bees


Test substance	Lest species/study ~ Endpoint	Reference
<u> </u>	ký design ví lý ví	
× .		(2014)
Deltamethrin,	Bumble bee, LB_{50} – contact 36.0 µg a.s./bee	<u>S13-04467</u>
tech.		<u>M-477381-01-1</u>
		KCA 8.3.1.1.2/03
	A A	
A. Q	O H	
Ň,		
(C)		

Test substance	Test species/study design	End	point	Reference
Deltamethrin, EW 15	Honey bee, 72 h	LD ₅₀ – oral LD ₅₀ – contact	0.067 µg a.s./bee 0.078 µg a.s./bee	(2007) 031048047 <u>M-103549-05-1</u> KCP 10.3. 01.1/06
Deltamethrin, EW 15	Honey bee, 72 h	LD ₅₀ – oral	0.294 μg a Spee	CW 00/027 CW 00/027 M-+09/244-61-1 KCP 10.3.1.1.1/02
Deltamethrin, EW 15	Honey bee, 72 h		0.00° µg as Уbee _0	$\begin{array}{c} (2000)\\ CW_{00}/032 \\ M_{-} \\ 98509 \\ 901-1 \\ Wep 10 3 1 1 2 \\ (01) \end{array}$
Deltamethrin, EW 50	Honey bee, 48 h		0.75 µg a.s.7bee . С 0.12 µg a.s.7bee . С	(2000) 05 10,48 103 <u>M 7046 91-1</u> KCP 102.1.1.1/03
Deltamethrin, EC 15	Honey bee, 4		0 μg a s./bee	(2000) CW@0/026 [*] ≫ M ^{999148,01-1} KCP 10 ⁽²⁾ .1.1.1/04
Deltamethrin, EC 15	Honey bee, 72 h		00025 µg a.s./bee	TKCP 10.3.1.1.2/02
Deltamethrin, EC 25	Homey bee	\mathcal{L} \mathcal{L} \mathcal{D}_{50} - $\operatorname{contact}$ a	0.28, µg a.s./bee 00010 µg s:/bee y 0.108 µg a.s./bee	(1987) LEA/I/87-005 <u>M-118451-01-1</u> KCP 10.3.1.1.1/05
Deltamethrin, EC25	Honey bee 48/7 Str	$ \begin{array}{c} LD_{\xi 0} - \text{ oral} \\ LD_{\xi 0} - \text{ constant} \\ \\ $	0@43 ug@.s./bee 9.108 gg a.s./bee	(2008) 33041035 <u>M-309900-01-1</u> KCP 10.3.1.1.1/06
Deltamethrin, &	Haney bes,	TD ₅₀ -OFal	φ.266 μg a.s./bee	(2000) CW 00/028 <u>M-199150-01-1</u> KCP 10.3.1.1.1/07
Deltamothrin, E©100	Honey bee, 72 h	Lipso – contact	0.028 μg a.s./bee	(2000) CW 00/031 <u>M-198786-01-1</u> KCP 10.3.1.1.2/03
Deltamethrin EG 06	Honey bee,	^y QLD ₅₀ – oral	0.182 μg a.s./bee	(1995) CW94/067E <u>M-134668-01-1</u> KCP 10.3.1.1.1/08
Deltamethrin AG 06 65	Honey See, A 22h	[≫] LD ₅₀ – contact	0.064 μg a.s./bee	(1995) CW94/030E <u>M-133791-01-1</u> KCP 10.3.1.1.2/04

Table 10.3.1-3: Acute toxicity of formulated deltamethrin to honey bees

Foliage residual toxicity of deltamethrin to honey bees in the laboratory

There is currently no harmonized and ring tested European test guideline to assess the residual to city of pesticides to honey bees. However, there is an US EPA test guideline established which investigates the residual toxicity of aged foliar spray deposits on honey bees under laboratory conditions.

Table 10.3.1- 4:	Foliage residual	toxicity of deltamethrin to	honey bees in the	aboratory

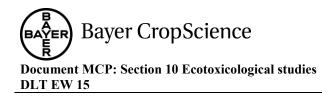
Test substance	Results	<u>Ò</u>	Referen	ice S
Deltamethrin EC 25	Exposure of honey bees to foliar res application of 22.4 g a.s./ha) aged o under field condition resulted in 31 rates. With the 24h old residues, the significant difference in mortality as control. The RT ₂₅ at a rate of 22.4 g hours. For the rate of 22.4 g a.s./has honey bees was concluded when he foraging during application (e.g. even	ver 2, 8 and 24 hours 4, 21% and 5% norta fre was no statistical () s compared to the unit a s/ha was less than 8 a minimal haz to for ney bees are not active	Lity eated Marticles Marticles	

 RT_{25} = residual time at which mortality rate is less than 25%

Chronic toxicity of deltamethrin to adult honey bees

There is currently no harmonised and ring tested European test guideline to assess the chronic risk to adult honey bees. To address this endpoint, available guidance as well as recently developed working group experience was applied to feed honey bees exclusively and *ad libitum* with reated 50% (w/v) sugar solutions for a period of 70 consecutive days. The respective feeding study was conducted with formulated deltameterin (Deltameterin EV 15) due to the very low water solubility of the technical grade material.

Table 10.3.1- 50 Chronic toxicity of deltameturin to adult honey bees


Test substance	Test species/study	Č Endpotot v	Reference
	Test species/study		
	5 7 4 8	14 6 AV	(2014)
Deltamethrin	90 d chronic adult	LC 15.1 mg a.s./kg	S13-00151
EW 15 🖉	feeding story	\swarrow LDD ₅₀ 0.50 µg a.s./bee/day	<u>M-477250-01-1</u>
<i>Q</i> ₁		<u>× 6× 67</u>	KCA 8.3.1.2/01
LDD(50): Letha Die	etary Dose (Q_0)	je s	

Effects of deltamethom on honey bees and honey bee colonies under forced exposure conditions (i.e. in the semi-field, under continement), when applied during full bloom to highly bee attractive crops during honey bees actively loraging

Several studies under forced exposure conditions have been conducted to examine the risk posed by foliar applications of formulated deltamothrin to honey bees. In order to maximize exposure of honey bees to deltameterin residues, the product was applied to the highly bee attractive surrogate crop *Phacetra tandoctifolia* during honey bees actively foraging. These studies followed either the provisions of the respective current version of French CEB-guidelines or the provisions of the respective current version of French CEB-guidelines or the provisions of the provisions of the EPPO 170 guideline; one study additionally complied with the provisions of the OECD Guidance Document 75 (detailed photographic brood assessment). The investigated application rates covered application rates between 5 - 12.5 g a.s./ha.

	oraging in flowering, his		
Test substance	Study design	Results	Reference X
Deltamethrin EW 15	7.5 g a.s./ha in full- flowering <i>Phacelia</i> , bees actively foraging	Slight increase in mortality, no or very transient effect on foraging activity, no adverse effects on brood- and colony development	(2001) S01A VB.877 6044 <u>M-20 260.0021</u> KCP 10.3 5/01
Deltamethrin EW 15	7.5 g a.s./ha in full- flowering <i>Phacelia</i> , bees actively foraging	Slight-moderate, transient increase in mortality, slight-moderate, transient decrease in foraging activity, no adverse effects on brood- and colony development.	(20050 S05BAB.DELVO16 MO272845-01-1 KCP 10.5.1.5/92
Deltamethrin EW 15	7.5 g a.s./ha in full- flowering <i>Phacelia</i> , bees actively foraging	Moderate, transfent increase in mortality, slight, transfent decrease in foraging activity no adverse offects on brood, and colony development	(2000) 2060-23.2 M-1982, <u>8-01-1</u> KCP 10.3.1.5
Deltamethrin EW 15	7.5 g a.s./ha in full flowering <i>Phacelfu</i> , bees actively foraging	Slight increase in mariality, slight decrease of foraging activity, no adverse effects on brood- and colony development digital imagine as well as overall brood assessment)	(2044) \$12-00041 <u>M-477316-01-1</u> KC&10.3.1.5/04
Deltamethrin EW 50	7.5 g a.s./ha in full- flowering <i>Phacelia</i> , bees actively foraging	Transient facrease in mortality, (mansient) decrease in foraging activity, no adverse effects on brood- and colony development	, S (2006) Ø9011037 <u>M-274120-01-1</u> KCP 10.3.1.5/05
Deltamethrin EC 15	75 g a.s./ha in full- bowering <i>Phazelia</i> , bees actively foraging	Ternsient nerease in mortality, ternsient decrease in forming activity, to adverse effects on brood- and colony development	(2001) 20001132/01-BZEU <u>M-200402-01-1</u> KCP 10.3.1.5/06
Deltamethrin EC 25 & EW 15	5 87.5 g s./ha in full- flowering <i>Phacelia</i> , bees actively Graging	Shent, transient increase in mortality, slight, transient decrease in foraging activity, no adverse effects on brond- and colony development	(2001) 36-2001 <u>M-205048-01-1</u> KCP 10.3.1.5/07
Deltamethrin EC 25 & EC 100	5 67.5 g as./ha in full- floweing <i>Phacelia</i> , bees actively braging	Soght, transient increases in mortality, slight, Mansier decrease in foraging activity, no adverse effects on brood- and colony decolopment	(2001) 35-2001 <u>M-205046-01-1</u> KCP 10.3.1.5/08
Deltamethrin EC 25 CEG 06	flowering Dhalia	Aroderate, transfort increase in mortality, slight-moderate, transient decrease in foraging activity, novadverse effects on brood- and colony development	KCP 10.3.1.5/09
Deltamethrin EC 25 & EG 06	12.5 g, s./ha infull- flowering <i>Phacelia</i> , bees active foraging	Moderate, transient increase in mortality, slight ansient decrease in foraging activity, no overse effects on brood- and colony development	(2000) 99379/01-BZEU <u>M-195280-01-1</u> KCP 10.3.1.5/10
Deltamethrin EC 25 & EG 06	flowering <i>Phacelia</i>	Sight increase in mortality, no or very transient effect on foraging activity, no adverse effects on brood- and colony development	(1999) 999 <u>M-195036-01-1</u> KCP 10.3.1.5/11
EC 25 & EG 06			

Effects of deltamethrin on honey bees and honey bee colonies under forced exposure conditions (i.e. in the semi-field, under confinement), considering foliar application to cereals in a simulated honey dew scenario during honey bees actively foraging

Several semi-studies under forced exposure conditions have been conducted to examine the risk posed by foliar applications of formulated deltamethrin to cereal crops which may attract honey bees due to honeydew formation at high aphid infestation levels. The studies followed the provisions of the respective current version of French CEB-guidelines underconsideration of the provisions of the respective current version of the EPPO 170 guideline. The investigated application are was 6.25 to a.s./ha.

Table 10.3.1- 7:	Cage and tunnel studies (forced exposure) w	with homey bees Apis mellifera sp.) actively
	foraging on cereal crop which had been treated	d with sugar colution prior to application of
	the test item to simulate a honey dew scenar	

Test substance	Study design		Results (<u> </u>	Reference
	Study design	Y NY , C			
Deltamethrin EW 15	6.25 g a.s./ha on sugar-treated cereals, bees actively foraging	Slight increase i foraging activity grood, and colo	in mortality pho e , no advorse eff ny development	filter on 5 Sets on C	(2001) S01AVB.879VO45 <u>M-203985-01-1</u> KCP/10.3.1.5/12
Deltamethrin EW 15	6.25 g a.s./ha ou sugar treated cereals, bees actively foraging	on foraging acti	nortality, no or f vity, no adverse ny development	effects on \mathcal{A}	(2001) S00AGB3264VO56 <u>M-205201-01-1</u> KCP 10.3.1.5/13
Deltamethrin	6.2 Dg a.s./ha on sugar-treated cereals, bees actively foraging	transient decrea actorse effects development	n mortality, she se in foraging ac on prood and co	ht and tiwity, no lony	; (2005) /AM039 <u>M-262484-01-1</u> KCP 10.3.1.5/14
Deltamethrin EC 100	6.25 g a sona on sugar-treated cereals, bees actively foraging	transient decrea adverse effects development	increase in more se in foraging ac but brood and co	tivity, no lony	(2001) 33-2001 <u>M-201580-01-1</u> KCP 10.3.1.5/15
Deltamethrur EC 100	625 g a Sha on sugar-treated cereals, becs actively foraging	Slight, transfent transient decrea adverse offects development	increase in mort se in foraging ac on brood- and co	tivity, no	(2006) 87-2005 <u>M-268997-01-1</u> KCP 10.3.1.5/16
Deffamethrin EC 100	6.25 g a.s./ha ôn/ sugar-ticated cereals,	No increase in r Goraging activity brood and colo	nortality, limited y, no adverse eff ny development	effect on ects on	(2001) S00AGB3264VO54 <u>M-205203-01-1</u> KCP 10.3.1.5/17
EC 100		Ŷ			

Effects of deltamethrin on bumble bees under forced exposure conditions (i.e. in the semi-field, under confinement), during bumble bees actively foraging

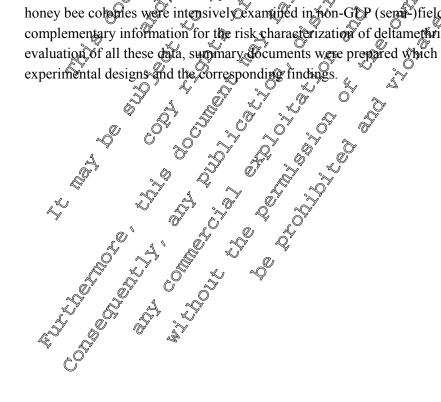

de la constante de la constant There is currently no harmonized and ring tested European test guideline available to assess risk posed by pesticides to bumble bees. To address this endpoint, available honey bee guidance is well experience from greenhouse pollination experiments has been adopted, wherever possible On the basis of the French CEB-guidelines, bumble bees were exposed to a foliar treatment of formulated deltamethrin, applied to the highly bee attractive surrogate crop Phacella tanacetifolia during bumble bees actively foraging on the crop. The investigated application rate was 12.5 g a. wha.

Table 10.3.1-8: Cage and tunnel studies (forced exposure) with bumble bees Bombus terrestris) actively foraging in a flowering, highly bee-attractive crop

	88	
Test substance	Study design	Reference &
Deltamethrin EW 15		No effects on foortality slight transient 2000 24.1 decrease in foraging activity 5 5 4 5 4 5 1 5 1 5 1 8
Deltamethrin EG 06	12.5 g a.s./ha in full- flowering <i>Placelia</i> , bumble bees actively foraging	No effects on prortality, slight transient decrease in foraging activity KCP 10.3.1.5/19
	<u> </u>	

Investigation of side_effects of formalated deltamethrin on honey bees and honey bee colonies in non-GLP semi-field and field experiments, cooducted in the late 1970's and early 1980's

In the context of the early development of deltamethin for commercial use, effects on honey bees and honey bee cohores were intensively examined in non-GOP (sem) field studies which provide useful complementary information for the risk characterization of deltamethein. To facilitate the reading and evaluation of all these data, summary documents were prepared which outline the applied

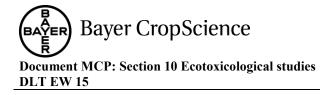
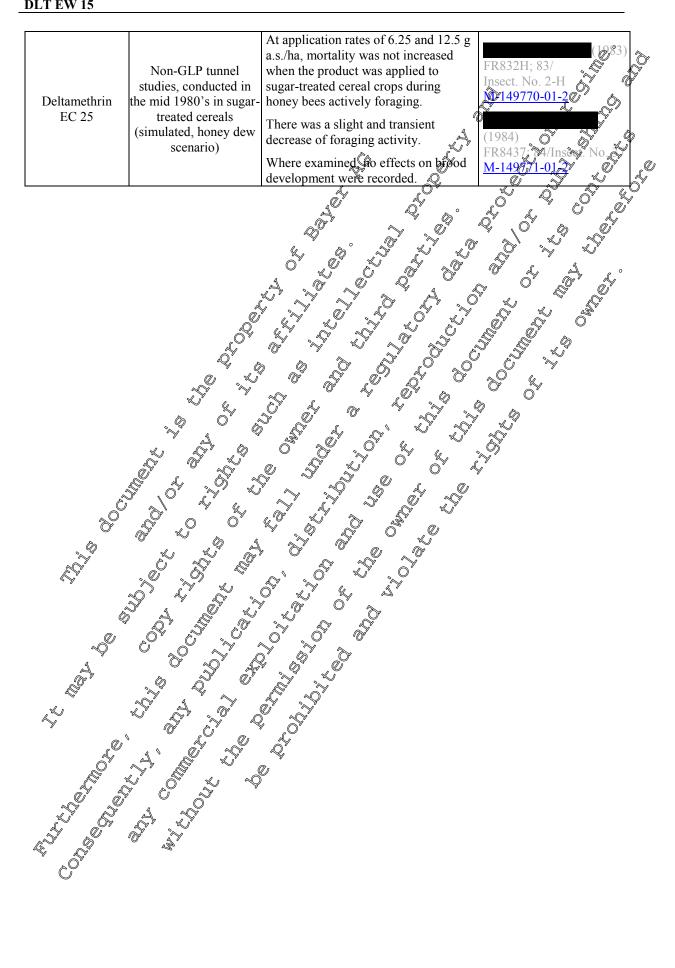
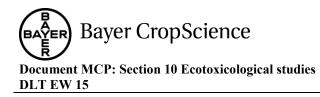
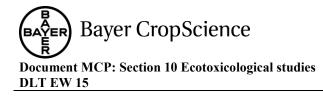




 Table 10.3.1- 9: Non-GLP trials during the early development of deltamethrin, to examine the risk posed by foliar treatments of formulated deltamethrin to honey bees and honey bee colonies (*Opis mellifera* sp.), during honey bees actively foraging on bee-attractive crops or on sugar-treated cereals

Document MCP: Section 10 Ecotoxicological studies DLT EW 15



Effects of deltamethrin on honey bees and honey bee colonies under field conditions

Several field studies have been conducted with formulated deltamethrin using highly bee attractive crops and following the provisions of the respectively current version of the EPRO 170 guideline. In some of these studies, further endpoints beyond to the standard assessments were examined, e.g. homing behaviour, bee health parameters (bee diseases, viruses, parasites), overwintering performance and effects of repeated applications.

8	attractive crops		
Deltamethrin EC 25	7.5 g a.s./ha in full- flowering <i>Phacelia</i> ; bees actively foraging	No adverse offects on mortality, flight intensity, behaviour, brood- and solony development	(2007) 20061298/G143FEU <u>M-200584+07-1</u> KQ ³ 10.3.1.6/01
Deltamethrin EC 25	7.5 g a.s./ha in full- flowering oil-seed rape; bees actively foraging; three separate locations including a detailed homing- behaviour assessment	No adverse effects on mortality flight intensity, bekaviour brood-and colony development. No impact of homing behaviour.	(2007) 20071100KG1-BFPU 51-295850-01- KCP-00.3.1,6402
Deltamethrin EC 25	17.5 g a.s. Ara in full- flowering <i>Phacelia</i> ; evening application, after bee flight	No advesse effects on mortality Hight intensity, behaviour, prood- and colony development	(2009) S0 00073 <u>58267-01-1</u> KCP 10.3.1.6/03
Deltamethrin EC 25	5 g as,/ha infyill- floweing <i>Phatelia</i> ; bees actively foraging	Right transienOncrease in mottality, a adverse effects on flight intensity, brood- and colony development	(1998) 98299/01-BFEU <u>M-185038-01-1</u>
Deltamethrin	9.5 g a.s./ha ir@full- flowering <i>Phycelia</i> bees actively foraging	No adverse effects on mortality, flight intensity, behaviour, brood, and colony development	(1998) 98300/01-BFEU <u>M-184784-01-1</u> KCP 10.3.1.6/04
Deltameth EW 15	assessments, ∅ ncluding over √ withering ∅	No acute, short-term or long-term adverse effects on mortality, flight intensity, colony strength, colony health and vitality, blood & food development and overwintering performance in the exposed colonies	(2013) S10-3820 <u>M-452717-01-1</u> KCP 10.3.1.6/05
Deltamethrin EWAS	2 x 125 g a s ha in full-flowering <i>Phacetia</i> ; bees actively foraging; long form bec health assessments, including over- wintering	No acute, short-term or long-term adverse effects on mortality, flight intensity, colony strength, colony health and vitality, brood & food development and overwintering performance in the exposed colonies	(2013) S10-3824 <u>M-452723-01-1</u> KCP 10.3.1.6/06
	Er.		

Table 10.3.1- 10:	Field studies with honey be attractive crops	es (<i>Apis mellifera</i> sp.) a	ctivel©foragin	g in flow	ering, hig	hlybee-
	attractive crops		LO ^V		Q,	6 ⁵ %

Tier 1 Risk Assessment: Hazard Quotients

A Hazard Quotient (Q_H) approach has been defined by the EPPO risk assessment scheme to identify use patterns which pose a negligible acute risk to honey bees. The Q_H is determined by calculating the $^{\mathcal{Q}}$ ratio between the application rate (expressed in g a.s./ha) and the lowest laboratory contact and oral LD_{50} (expressed in µg a.s./bee).

 Q_{HO} and Q_{HC} resp. = Application rate [g a.s./ha] / LD₅₀ or LD₅₀ contact [µg a.s./h

Q_H values can be calculated using data from the studies performed with either the active substance with the formulated product. Q_H values higher than 50 indicate the need of higher tieres activities clarify the actual risk to honey bees.

For deltamethrin, the calculation of hazard guotients is based on the product Deltamethrin EVAS which is both, the actual product of the review process and a product which can be considered to be a representative product for formulated detramethrin.

Table 10.3.1- 11:	Hazard quotie	ents fo r h	oney be	es – oral	exposure
	-	*		()) ((

Crop	Exposure	LD50	Application	Haza	rd Quotient	Trigger	🖌 Refined risk
	route	≪ [µg a≰≸bee]	(g a g /ha)	Ø,		value V	assessment required?
		.1 Q	Deltamethrit	∙ EW,≵\$ [©]	s [*]		
Sugarbeet	≪	2) 0	0 7.5		M2 6	Ĩ,	
Cauliflower	orai	0.Q57°	@ 7.\$ ^{\$}	× "	¥12 🔗	ي [*] 50	Yes
Wheat	organ La Ly	. 6 . 4	ð 6.25 á	ŶO		~ 7 n	
	<u></u>	N N			67 ~C	0 1	

Table 10.3.1- 12. Hazard quotients for honey bees contact exposure

Crop	Exposure route	Jud a.ş./bee]	Application rate [g a.s. ha]	Hazard quotient	Trigger value	Refined risk assessment required?
Deltamethrin EW 15						
Sugarbeet Cauliflower	concect	0.078	<u>,</u>	96 96 96	50	Yes
Wheat $\sim \heartsuit$				80		

The hazard quotients for oral and contact exposure exceed the trigger value for *a priori* non-critical product uses. Therefore, a more refined risk assessment is required, which is presented below.

Refined Assessment of Risks Posed by Deltamthrin to Honey Bees

The destamether use pattern comprises the rate of 7.5 g a.s./ha in sugar beet and cauliflower, considering the or two applications from BBCH 10 - 49. The use in cereal crops comprises two applications of 6.25 g a.s./ha from BBCH 10 - 83.

In commercial sugar beet production, sugar beets are harvested well in advance of flowering (i.e. generally at about BBCH 49: "beet root has reached harvestable size"). Therefore, bees are not attracted to the crop due to the lack of forage, i.e. up to and including BBCH 49, the vegetative crop stages do not offer bees any nectar (carbohydrates) or pollen (protein). [Sugar beet is a biennial plant, During the growing season in commercial sugar beet production, the crop produces a large storage root which contains significant amounts of sucrose as a carbohydrate storage source. If the plant would not be harvested at the end of the growing season, then during a potential 2nd growing season, autrients and stored carbohydrate in the root will be used to produce flowers & seeds and the root will decrease in size. Thus, in commercial beet production, the root is harvested after the first growing season (

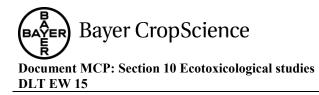
The same holds true for commercial cauliflower production: the common ty to be harvested as a vegetable is the white or greenish "head" of a cabbage crop, which is a fact the immature inflorescence of the plant. Thus, cauliflower is harvested before flowering (i.e. generally at about BBCH 49: "typical size, form and firmness of heads reached") and as such, bees are not attracted to the crop due to the lack of forage, i.e. up to and including BBCH 49, the vegetative crop stages do offer bees neither nectar (carbohydrates) nor pollen (protein).

Wheat, as a cereal crop, is in itself - at any growth stages not a profitable foraging area for bees (nor relevant nectar and/or pollen supplier). However, there are observations that boney bee forage in cereal crops in situations where aphid infestation attains a level that arge amounts of honeydew are formed. However, high aphid infestation levels and associated formation of honeydew is not in compliance with Good Agricultural Practice, since it poses the risk of secondary infections, e.g. with sooty moulds and impacts yield quality. Accordingly, advised use recommendations aim for product applications at infestation levels at which honeydew formation does not attain levels valich attract honey bees.

There are 2 key application stages for aphid control

Fall treatments: Aphid control of fall is imperative to prevent virus infections. For efficient virus control, ARVAEIS, the National Technical Institute for cereals in France calls for aphid control as soon as 10% of the plants bear aphids, or when aphids are encountered in the field for 10 consecutive days

(http://www.arvalisinfos.fr/view.jspz;jsessionid=0982C13F8D2F8D298F19B61C4107523E.tomcat1?obj=arvarticle&I d=14339&syndtype=null&hasCookie=false&hasRedirected=true).


10% of infested prop plants describes very early stage of infestation, at which virus transmission can still be efficiently controlled

• Spring treatments: Aphid control in spring is healy important to ensure quality of yield. For the spring treatment, ARVALIS calls for aphid control treatment, if 1 out of 2 ears are infested by at least 1 aphid http://www.arvalis-2

infos.fr/view.jsp2.obj=arvarticle&id=4610&syndtype=null&hasCookie=false&hasRedirected=true). This infestation threshold is acknowledged as a simple and relevant indicator for the start of

aphid population growth, *i.e.* when honeydew formation is still negligible. Therefore, it can be concluded for sugar seet, cauliflower and cereals that the risk posed to honey bees by a foliar spray treatment of these crops is low due to poor crop attractiveness (no relevant nectar and/or pollen supplier), and application practices following the principles of Good Agricultural Practice, i.e. product use according to recommended pest threshold concepts, which keep aphid infestation below bee-attractive honeydew levels.

Nevertheless, in exceptional cases, honey bees may be attracted to those crops, e.g. during very dry and warm spring seasons with rapidly evolving pest-aphid populations, or due to high infestation levels of other pest species producing honeydew. Therefore, the following chapters address the risk

posed by deltamethrin foliar applications in those worst case scenarios. However, it must be stressed that honeydew-related bee incidents are reported for crops with higher pest threshold levels, and a such with a higher risk of honeydew formation - like potatoes, however, these cases are very incidentation in crops like sugar beet, cauliflower and cereals.

Hazard Characterization of Deltamethrin

Deltamethrin acts on insect nerve membranes by delaying/inhibiting the closing of the activation gate for sodium ion channels. As a so called Type II pyrethroid the inhibition of the sodium channel activation gate results in prolonged permeability of the nerve to sodium, which results in a series of repetitive nerve signals, i.e. in an overstimulation. This overstimulation swiftly pralyzes the infact's nervous system which in turn results in a fast knock-down effect, primarily induced via contact activity. In insects, de-toxification occurs metabolically via de esterification, catalyzed by both, esterases and cytochrome P450 enzymes and via hydroxylation of aromatic rings, again by cytochrome P450 enzymes.

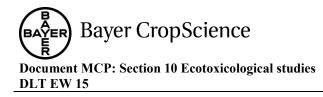
In standard laboratory toxicity assays, deltamethin reveals a figh intrinsic acute toxicity to hones bees. However, the extremely low contact toxicity endpoint as reported by (1991: M-149380-01-1) for technical grade deltamethrin appears not to be reproducible. Such a low value was never recorded in either earlier studies (Anonymous, 1977; MS 5991 201-1 and 1978; M-098831-01-1) or in any study conducted afterwards. The study of (2013: M-444971-01-1) is regarded as providing the most relevant endpoints since the study was conducted with the actual specification of the technical grade delimethin and testing complied with the latest stateof-the art OECD-testing guidelines. The results of this latest study with technical grade deltamethrin (M-444971-01-1) did not show a higher toxicity of the technical material as compared to the EW 15 formulation in particular as well as to other investigated straight formulations. Moreover, when considering the interent variability of the acute honey dee toxicity test system within a laboratory as well as inter-laboratory variability, this endpoint is well in the with all other reported endpoints except (1990). A comparison of contact and oral toxicity endpoints suggests that that of deltamethrin is more toxic to be evia the contact than via the oral route (see Table 10.3.1-1 and 10.3.1-3, which is well line with the mode of action of detramethrm (see chapters on product efficac v.

Due to the generally higher sensitivity of honey bees via the contact route of exposure and because the oral test system of bumble bees is currently lacking standardisation, bumble bees were exposed in the laboratory via the contact route in order to benchmark their susceptibility to deltamethrin against honey bees (Table 10.3, 1-2). The comparison of endpoint data as obtained with technical grade deltamethrin between bumble bees (1997) 2017, M-477381-01-1) and honey bees (Table 10.3, 1-1) suggests that bumble bee foragers are less susceptible to deltamethrin than honey bee foragers.

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

a.s./bee), it can be concluded that deltamethrin has no delayed, chronic or accumulative toxic effects to honey bees.

In summary, deltamethrin shows a high intrinsic toxicity to honey bees. Results from standard alaboratory toxicity assays clearly suggest that (formulated) deltamethrin poses a higher risk to honey bees by contact than by the oral route of exposure. Repeated oral exposure tests revealed that deltamethrin has no delayed, chronic or accumulative toxic effects to honey bees. Accordingly, tasks posed by deltamethrin to honey bees are mainly related to short-term peak exposures which prevail during and shortly after foliar application. Under standard red laboratory conditions, bumble bee foragers. Therefore, and considering the intrinsic properties of deltamethrin (see below), product uses which pose a low risk to honey bees can be expected not to pose a relevant fisk to bumble bees other.


Exposure Characterization of Deltamethrin

The very low vapour pressure of deltamethrm ($\approx 1, 2 \times 10$ Pa) renders deltamethrm to be practically non-volatile. Due to deltamethrin's high octanol-water partitioning coefficient (logPow ≈ 6) and ow water solubility ($\approx 0.2 \ \mu g/L$), deltamethrin is virtually non-systemic. Accordingly, there will be no prolonged exposure of bees to residues in factar and pollen after foliar application. This conclusion is strongly supported by field residue survers which analysed notar (honey) and pollen stores under realistic agronomic conditions e.g. **10** and 2006, 2011; **10** 2010 **2010**. 2013.

From the hazard studies above and the physical-elemical properties of deltamethrin it can be concluded that any intoxication risks for bees are mainly related to contact with spray residues, either by direct overspray or by rather fresh deposits. These risks exist during application and only short-term post-treatment. Due to deltamethrin clow solubility in aqueous media, its high lipophilicity which results in a very strong adsorptivity to organic surfaces, the lack of systemicity and the lack of volatility, it can be concluded that bee-pollinators will not encounter a chronic exposure situation from the label-compliant agronomic use of deltamethrin folia products. This conclusion is strongly supported by the findings of 1992 (M-106394401-1) who defermined the residual toxicity of deltamethrin on alfalfa foliage When applied with a rate of 22.4 g a.s./ha, the RT₂₅, i.e. the time needed to cause mortality rates less than 25%, was less than 8 hours.

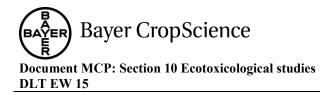
Risk Characterization from Forced Exposure Studies (Tuppel Studies)

A high number of tunnel studies have been conducted with various formulations, containing deltamethrin as the sole active substance including Deltamethrin EW 15, which followed the respective current versions of either the French CEB-or the EPPO 170 guideline (see Table 10.3.1- 6). As indicated above, there is no indication that existing araight formulations of deltamethrin differ significantly in their intrinsic toxicity to honey bees. Under forced exposure conditions, an application range between 5 and 12.5 g a.s. tha formulated deltamethrin for the highly bee-attractive surrogate crop *Phacelia*, during honey bees actively foraging on the full-flowering crop, did in most cases result in only a slightly to moderately increased mortafity, usually observed within the first 24 hours after application. Application rate between 7.5 and 12.5 g a.s./ha deltamethrin also caused a repellence effect, which was lasting for at least 24 hours after application. This repellence effect is well known for pyrethroid insecticides and is considered as a protective property of this chemical class for honey bees, since this effect with reduce honey bee exposure in/to treated areas. Further, the repellence effect is apparently not long-lasting and, therefore, is not expected to have a major impact on the food flow to the beehive.

The slightly to moderately increased initial mortality was also very short-lived and did not result in any observable adverse effect at colony level endpoints such as total brood-, food- and population development, or overall colony vitality. The same conclusion has been drawn from the most recent OECD GD 75 tunnel study which paid particular attention to bee brood development.

These findings are also in line with the results obtained in tunnel studies where deltamethin was applied at an application rate of 6.25 g a.s./ha to sugar-treated cereals, simulating a worse case koney dew exposure situation (see Table 10.3.1-7). These studies followed the provisions of the respective current version of French CEB-guidelines under consideration of the provisions of the respective current version of the EPPO 170 guideline, and reveated only in some cases a slight increase in mortality within 24 hours after application, sometimes accompanied by a slight depression of foraging activity. The findings of these guideline-compliant studies are fully in time with earlier non-GLP tunnel studies (see Table 10.3.1-9), which did also no find any significantly increased mortality or adverse effects on brood development for application rates of 6.25 g a.s./ba and 12.5 g/s.s./ha

Two tunnel studies were conducted with bumble bees Deltanochrin was applied at an application rate corresponding to 12.5 g a.s./ha to full (Dowering *Phacelia* during bumble bees actively to raging on the crop (see Table 10.3.1-8). The findings of the two tunnel studies are consistent and is line to the findings of the laboratory study (Table 19.3.1-2), indicating that for ging bumble bees are less susceptible to deltamethrin than honey bees.

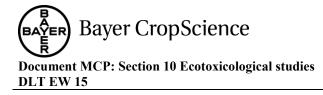

The findings from forced exposure studies consistently support the risk predictions from the exposure and hazard characterization of deltamethrin. Even under forced exposure conditions, a foliar treatment of crops which are highly attractive to honey bees has only a very short term effect on mortality and foraging activity, which was consistently found to have no adverse effect at the bee colony level. When applied during periods when honey bees were not actively foraging on the crop (e.g. during late evenings / early mornings), no adverse effects even at the level of individual bees could be observed. This finding is in line with the predominantly contact route of action and the rather short RT_{25} -values measured on treated folgage (1992; M466394-01-1)

Risk Characterization from Realistic Exposure Sundies (Field Studies)

In addition to the high miniber of studies conducted under torced exposure conditions, a series of field studies have also been conducted to characterize the risk to honey bees and honey bee colonies under realistic exposure conditions. In early non-GLP trials, conducted in the late 1970's and early 1980's, deltamether was applied at appreation rates between ≤ 7.5 up to and including 35 g a.s./ha to various bee-attractive crops during flowering and during bees actively foraging in these crops (see Table 10.3 & 9). These trials revealed that deltamether applied at application rates of ≤ 12.5 g a.s./ha, does not cause increased mortality even when applied to bee-attractive and full-flowering crops, while honey bees were actively foraging. An application rate of 17.5 g a.s./ha during bee flight caused only a very slightly uncreased mortality, application rates of 21.2 and 25 g a.s./ha during bee flight were found to be about the threshold rates for mortality. Only very high rates such as 35 g a.s./ha, applied to bee-attractive crops during honey bees actively foraging during full-bloom, resulted in a substantially increased mortality.

Up to and including 17.5 a.s./ha, there was a transient depression of foraging activity recorded (repellenceffect), which was less prominent at application rates >17.5 g a.s./ha.

In some studies brood development, honey production and overwintering performance of exposed hives were also examined and no adverse effects were recorded for these colony level endpoints.

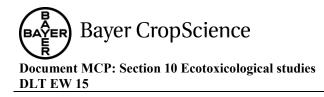

Where honey and/or pollen was analytically investigated, deltamethrin residues were either not detected or at only minute levels.

Besides these early non-GLP studies, further field studies are available which followed the respective of current versions of EPPO 170 guideline , i.e. EPPO 170 (2) [1992], EPPO 170 (2) [2001] and EPPO, 170 (4) [2010]. In these field studies, deltamethrin was applied at application rates of 7.5 and of 12.5 g a.s./ha on bee-attractive and full-flowering crops, while honey bees were actively foraging. One study was conducted at an application rate of 17.5 g a.s./ha, applied after daily bee flight. These guideline compliant field studies confirm that deltamethrin has, if any, only sligh to moderate effects on individual honey bees which are actively foraging in treated crops during application (see Table 10.3.1-6). Mortality was in most cases not and in a few cases only marginally increased and no adverse sub-lethal or adverse behavioural effects could be observed. Actight, short-term depression of foraging intensity in the treated crop could be observed in some cases, generally limited to the period right after application. Most importantly, no adverse effects on hive vital and brood/eolony development were recorded.

In one field study ((2007, M-22, 800-4, -1)), comprising three independent trials and different locations, also detailed investigations on the honoring behavious were triade following an application of 7.5 g a.s./ha to full-dowering oil-seed rape (OSR) while hones bees were actively foraging. The data consistently evealed that there was no increation of an disturbance of the homing behaviour.

In two further identically designed field studies, Deltamethrar EW 15 was repeatedly applied to the highly bee-attractive surrogate crop Phacelia tana cotifolia t (2013), <u>M-452717-01-1</u> and M-452723-01-1) at b. 5 g a.s./ha with an application interval of 13 days. At both treatment days, honey bees were actively foraging within the full-flowering grop during application. Each of the two studies comprised one treatment field (T) and one control field (G), with G honey bee colonies per field, respectively. The field size was within the range of 2.1 - 23 ha and treatment-fields were separated from control fields by a least 4 km. The 1st application was conducted at BBCH 64-65 (during bees actively for aging) and the 2nd application at BBCH 65(-67), always during bees actively foraging? The colonies remained at the treated fields until end of flowering (BBCH 69), which resulted in a exposure duration of the colories to the treated crop from 21 June - 21 July (1st study) and from 15 June - 15 July (2th study) Thereafter the colonies were evaluated in regular intervals for the rest of the season until over whitering, and a last time after over whitering. In both studies, assessments of acute (e.g. mortality, flight intensity, etcQ and chronic offects (e.g. season-long assessment of colony performance, food storage behaviour, bealth status, etc.) in comparison to the corresponding untreated control were conducted. Additionally, there were intensive, season-long assessments of colony health parameters, i.e. occurrence of bee diseases, viruses, Nosema/Varroa, etc. and finally an assessment of potential interactions with the overwintering performance. Both of these two long-term honey bee health studies consistently showed no treatment-related adverse effects on mortality, flight intensity or bee behavior throughout the entire field exposure period. Moreover, also no treatment-related adverse effects were observed on Honey Dee health, colony development (including colony strength, colony health, bood and food development) or overall colony vitality throughout the entire field exposure period and throughout the entire monitoring period including overwintering success. Br. ه.

All findings from field studies conducted with various commercial deltamethrin straight formulations consistently confirm the conclusion drawn from studies conducted under forced exposure conditions: Deltamethrin can be applied at rates of 12.5 g a.s./ha or lower during the daily bee flight activity to



bee-attractive crops without posing any undue risk to honey bees and honey bee colonies. All studies, either conducted under forced or realistic exposure conditions, have consistently demonstrated that adverse effects at colony level do not occur. Even repeated and prolonged exposure has neither resulted in adverse effects on colony health (occurrence of bee diseases, viruses *Nosema/Var*, etc) nor on adverse effects on overwintering performance of the exposed honey becolonies.

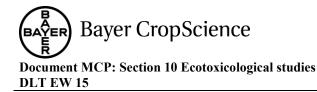
Further Information from Published Research

- Carvalho, S. M. [Reprint Author]; Carvalho, S. A.; Carvalho, C. F.; Bueno Filhe, J. S. S., Baptista, A. P. M. Toxicity of acaricides/insecticides for curus crop to the africanized honey bee *Apis mellifera* L., 1758 (Hymenoptera Apidae). OrtGINAL TITLE: Toxicidate de acaricidas/insecticidas empregados citricultura para a abelha africatuzada, *Pis mellifera* L, 1758 (Hymenoptera: Apidae) (Doc. No.: <u>Ma 461216-01-2</u>)
- Ramirez-Romero, R.; Chaufaux, J., Pham-Delegue, M.H. (2005). Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee *Apis mellifera*, a comparative approach. Apidologie, 36, 4, p. 501-647 (Doc. No.: <u>M-460897-01-1</u>)
- 3. Song, H.; Zhou, T.; Wang, Q., Dai, P., Luo, Q.; Xu, S.; Wo, Y. (2011). Effects of sublethal doses of insecticides on olfactory sensitivity of honeybee (*Apis mellifera ligustica*). Yingyong Kunchong Xuebao, 48, 3 (D. 611-615) (Dec. No.: M-462163-(Q-2))
- Dai, Ping-Li; Wang, Qtang; Sun, Ji-Hu; Liu Feng, Wang, Xing; Wu, Yan-Yan; Zhou, Ting. (2010). Effects of subject all concentrations of bitenthrin and detramethrin on fecundity, growth, and development of the boneybee *Apis mellifera ligustica* Environ. Toxicol. Chem., 29, 3, p. 644-649 (Doc No.: M-461225-01-1)
- A.E. Gradish, C.D. Scott-Dupree, A.J. Frowin, G.C. Cuffer (2012). Lethal and sublethal effects of some insecticides recommended for wild blueberry on the pollinator *Bombus impatiens*. CarC Entopol. 146: 478–486 (Doc. No. M-462175-01-1)
- Carvalho, S.M.; Belzunces, L. P. Carvalho, G. A.; Brunet, J.-L.; Badiou-Beneteau, A. (2013). Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the nonexpect *Apps mellipera* to insectio des. Environ. Toxicol. Chem, 32, 9, p. 2117-2124 (Doc. No.: M-404768-01-1)

Publication 1-4 (Carvalho, S. M. eval, M. 46121, 01-2; 2. Ramirez-Romero, R.;et al. 2005, M-460897-01-1; Song, H. et al, 2010; M-462163-01-2; Dai, Ping-Li et al, 2010; M-461225-01-1) investigated honey bees with either individuals, dosed under laboratory / indoor conditions (Carvalho, S. M et al, M-461215-002; Ramirez Romero, R.;et al. 2005, M-460897-01-1; Song, H. et al, 2011, M-462163-01-2; and queen dosing in Dai, Ping-Li et al, 2010; M-461225-01-1) or colonies, fed with defined doses under field conditions (Dai, Ping-Li et al, 2010; M-461225-01-1). Individual honey bees which were dosed under laboratory / indoor conditions suffered from various adverse effects in a dosedependent manner. However, the ability of large honey bee colonies to absorb impacts from stressors and contribue to grow makes extrapolation from effects observed in a laboratory on individual bees to effects of relevance at the colony level in the field extremely difficult. In many cases, acute risks of lethal or sub-lethal effects for individual bees observed in the laboratory may have no consequences whatever for colonies in the field. In summary, testing on individual bees does not allow for an

evaluation of potential impacts on the entire colony: only on the basis of field and monitoring studies, is it possible to determine whether a particular stressor gives rise to a colony level impact.

Only Dai, Ping-Li et al (2010; <u>M-461225-01-1</u>) examined effects on colony level under field \bigcirc conditions. However, the authors applied deltamethrin at a total amount of 8,640 µg to each test colony per day which represents approximately 100 LC₅₀ doses per colony per day over 20 day. On top, they dosed the queen each 5th day with a defined dose. No efforts were made to relate these doses to field-relevant doses. From the physico-chemical properties of deltamethrin it is very unlikely that colonies are exposed to deltamethrin over longer periods and the high lipophilicity makes is very unlikely that nurse bees feed queens with doses applied in this study. Finally, all the sentence of the studies \bigcirc which had been conducted with field-relevant application rates under realistic exposure conditions \bigcirc spray treatment of flowering target crops, demonstrated that colonies were not impacted in any \bigcirc endpoint relevant for colony development an Operformance

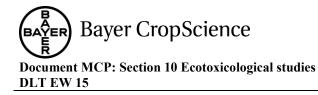

Gradish *et al.* (2012; <u>M-462175-01-1</u>) examined the effect of deltamethrin on bundle bees (*Bombus impatiens*). From laboratory assays, they calculated an oral LC_{50} of 33.8 ing deltamethrin/L (= 845 µg a.s./bee) which is substantially above the reported contact LC_{50} of 36 µg a.s./bee for *Bombus terrestris*, and suggests that deltamethrin acts primarily viethe contact LC_{50} of 36 µg a.s./bee for *Bombus terrestris*, and suggests that deltamethrin acts primarily viethe contact LC_{50} of vortee described for honey bees. The authors reported significantly reduced survival and reproduction rates of worker bees in micro-colonies which had been fed under laboratory conditions with 14/mg a s/L detamethrin (≈ 40 µg a.s./bee). No significant reduced survival or reproduction rates were observed for worker bees in micro-colonies which had been fed under laboratory conditions with 1.7 mg a.s./b deltamethrin (≈ 4 µg a.s./bee). No attempt had been reade to relate the applied does to field-relevant doses. Two tunnel studies with field-relevant application rates (12.5 g a.s./ha) under realistic exposure conditions, i.e. spray treatment of flowering target crops, demonstrated that foraging bundle bees were not impacted in any endpoint newstigated

Carvalho *et al.* (2013; <u>M464768-01-16</u> exposed honey bees under faboratory conditions to lethal and sub-lethal doses of detramethon via the contact rome of exposure. The 48h-LD₅₀ of technical grade deltamethrin was found to be 0.051 μ g a. 6 bee, which is in line with the regulatory database. Sub-lethal dose of deltamethrin (LD 20 and LD₅₀/00) were found to have a short-term knock-down effect with a full recovery of the bees after V- 2 hours after exposure. The investigated sub-lethal doses of deltamethrin of some of the investigated biomarkers without inducing mortality.

In addition, several publications were found considering residues of deltamethrin in bee-relevant matrices. The following publications are considered as supplemental information regarding the exposure profile of deltamethrun to be pollihators:

 Cossu, M. Alamanni, M. C. (2003). Monitoring of pyrethroid residues in Sardinian honey by solid phase extraction and high-performance liquid chromatography. Ital. J. Food Sci., 15, 4, Page 341-554 (Doc No.: <u>M-457696-01-1</u>)

Campillo, N.; Penalver, R.; Aguinaga, N.; Hernandez-Cordoba, M. (2006). Solid-phase microextraction and gas chromatography with atomic emission detection for multiresidue determination of pesticides in honey. Anal. Chim. Acta, 562, 1, p. 9-15 (Doc. No.: <u>M-460886-01-1</u>)


- Chauzat, M.-P.; Faucon, J.-P.; Martel, A.-C.; Lachaize, J.; Cougoule, N.; Aubert, M. (2006).
 A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ.
 Entomol., 99, 2, Page 253-262 (Doc. No.: M-455906-01-1)
- 4. Chauzat, M.-P. ; Martel, A.-C.; Cougoule, N.; Porta, P.; Lachaize, J.; Zeggane, S.; Atbert, M., Faucon, J.-P. (2011). An assessment of honeybee colony matrices, *Apis mellifera* (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ. Toxicok Chem, 30, 1, p. 103-111 (Doc. No.: M-455993-002)
 5. Wiest, L.: Bulete, A.: Circuid, P.: Fratta, C.: Apria, S.: Leucher, O.: Pauling, H. S. (1998)
- Wiest, L.; Bulete, A.; Giroud, B.; Fratta, C.; Atnic, S.; Lambert, O.; Pouliquen, H. Arnaudguilhem, C. (2011). Multi-residue analysis of 80 em/ronmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chrom., A 218, 34, p. 5743-5756 (Doc. No.: M-456064-01-1)
- Lambert, O.; Piroux, M.; Puyo, S., Thorin, C.; L'Hostis, M.; Wiest, L. Bulete, A.; Delbacor.; Pouliquen, H. (2013). Widespread Occurrence of Chemical Residues in Bechive Matrices from Apiaries Located in Different Jandscapes of Western France. PLoS ONE 17 Jun 2013) 8(6): e67007; DOI-No.: 10.0371/journal.pone.0067007 (Doc. 36).: M. 20504(201-1)

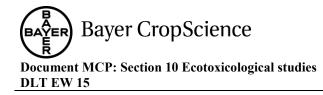
Cossu & Alamanni, M. C. (2003) in Italy as well as Campillo *et al.* (2006) In Spain investigated together 80 honey samples obtained from beekeepers, local markets and supermarkets for the presence of deltamethrin and found no quantifiable deltamethrin residues.

Chauzat *et al.* (2006) investigated the residue situation of several plant protection products in pollen loads collected by honey bees in France. Apiaries were evenly distributed in five sites located on continental France Five colonies were randomly selected in each apiary, leading to a total of 125 studied honey bee colonies. For 3 year (starting in autumn 2002), colonies were visited four times per year: after winter, before summer, during summer and before winter. Pollen loads from traps were collected at each visit. In total, 82 pollen samples were subjected to deltamethrin residue analysis and in all samples no quantifiable deltamethrin residues were found.

In 2014, Chauzat *et al.* Investigated several hive matrices like honey, pollen and bee-wax. The studied apiaries were distributed among five sites in continental France covering the main zones of French honey production. Professional and hobbyist apiarists took part in the investigation. At the beginning of the study, 125 colories (five honey bee colories randomly selected in five apiaries from five different locations across France) were pesticide residues over 3 year (2002-2005). Out of 198 analysed pollen samples, quantifiable deltamethrin residues were found only in one single sample (0.5% of all samples investigated). Out of 257 analysed honey samples, collected from the hives under investigation, quantifiable deltamethrin residues were found only in two samples (0.8% of all samples investigated). Out of 87 analysed bee-wax samples, collected from the hives under investigation, quantifiable deltamethrin residues were found only in one single samples investigated).

Wiest *et dl.* (2007) investigated bee-matrix samples collected in France during the beekeeping season 2008 and 2009. The samples were collected from 16 apiaries of the "Région des pays de la Loire" (Western France) located in four types of landscapes (bocage, large-scale farming, gardening/ orchards furban area) and two control apiaries (less inhabited landscapes) located in Atlantic islands (Island of Yeu and Island of Ouessant). For each period, samples were collected in several colonies of every apiary (honey, foraging bees and trap pollen). No quantifiable deltamethrin residues were found.

Lambert *et al.* (2013) most likely refers to the same dataset as Wiest *et al.* (2011), and reassured that on o quantifiable deltamethrin residues were found in all investigated matrices.


Overall, the findings of these publications, investigating the residue situation of deltamethrin to beerelevant matrices, are well in line to findings made in regulatory investigations, and confirm that the physical-chemical properties of deltamethrin (virtually non-systemic, highly lipophilic and nonvolatile) results in a favorable exposure profile.

Summary Conclusion

For deltamethrin, a very comprehensive database exists. Across all time scales die. acrite, short-term and long-term, deltamethrin shows a consistent hazard, exposure and usk profile:

- Deltamethrin acts on bees on the acute time scale, mostly via the direct contact route of exposure, of and consistently across all short-and long-term studies, no delayed or chronic effects were recorded, neither on individual honey bees nor on the colony level,
- Foraging bumble bees were found to be tess sensitive than foraging honey bees,
- The physical-chemical properties of deltamethrin (ortually non-systemic) highly lipophilic and non-volatile) results in a favourable exposure profile, i.e. a shopperiod of bioavailability, reflected in very rare detects of deltamethrin residues inpollen and/or bectar (honey) in definitive studies and monitoring exercises,
- A large number of semi-field (forced exposure) and field (realistic exposure) studies, including studies investigating repeated and prolonged exposure scenarios, have consistently demonstrated that honey bees at the colony level are not at undue risk from foliar treatments of deltamethrin at field-relevant application rates. There is no indication that long term honey bee health and/or the overwintering performance of colonies is impaired by a realistic worst-case exposure to deltamethrin,
- Sugarcheet, cauliflover and cereal crops are not attractive to bees since these crops are no (relevant) nectar and/or puller supplier Attraction of bees to these crops by honeydew is a rare scenario, since use recommendations aiming to provent xirus infections (fall season) and to obtain high quality yields (spring season) direct farmers to apply the product well before aphid colonies have reached an infestation level where massive honeydew formation occurs. Accordingly, the risk, respectively the corresponding exposure situation, posed by deltamethrin foliar uses in sugar beet, cauliflower and cereal erops is substantially lower than in the highly bee-attractive surrogate crops used in the higher tier studies and provide additional margins of safety,
- Finally, deltamethrin is used since more than three decades in European agriculture in a range of bee attractive crops. Based on the available data from bee incident schemes and the long-lasting use experience, the compound can be regarded as fully compatible with apicultural operations.

Overal, it can be concluded that the use of deltamethrin in sugar beet, cauliflower and cereals does not pose an macceptable risk to honey bees and honey bee colonies.

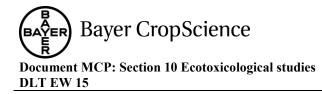
CP 10.3.1.1 Acute toxicity to bees

Report:	KCP 10.3.1.1.1/01, (2003)
Title:	Acute toxicity of Deltamethrin Protec EW 15 to the honeybye
	Apis mellifera L. under laboratory conditions
Document No:	<u>M-103549-01-1</u> (Rep. No.: 031048047)
Guidelines:	OECD 213 (1998), OECD 214 (1998)
GLP:	yes

Material and Methods: The insecticide Deltamethrin Protec EW 15 (AE F032640 00 EW01 Bi13, analytical control: 16.05 g/L (equivalent to 1.64 % w/w) deltamethrin (AF F032640); specification; Article No.: 0308474, Batch: AAIM00846), was tested under laboratory conditions on the honey bee *A*. ifter oral and contact exposure. Endpoints were inortality and behaviour of the be-ontrol up to 48 h after application. Mortality values were used to provide alculate the median lethal dose value (LDa) expressed in the pplication rates for contact and oral toxing mount of sucrose solution. Contending Material and production of the be-solution of sucrose solution. Contending Material and oral toxing Material and production of the be-solution rates for contact and oral toxing mount of sucrose solution. Contending Material and contact exposure and oral toxing mount of sucrose solution. Material and oral toxing Material and production of the be-solution for the be-for for the be-solution for the be-for the be-for the be-for

a	mount of sucrose			"O" (z v	<i>.</i> 0′		s s s s s s s s s s s s s s s s s s s
		Contact toxicity		C		° Oral@		0'
	μg product/be		g a/s./bee 🔍	æ	μ©produc	bee y	🔊 μg 🖉	s./bee
	38.2		0.6 6	R.	£ 38.2 <u>(</u> 36.	18) 🔊 🚬	~~ 0.CM	(0.568)
	19.1		0,3		2^{n} 10 $\frac{10}{10}$	8 5)	⁽¹⁾ à 3	(0.264)
	9.55		QC)5		9.5 5 (9.1	Ó ×	₹≫0.15	(0.144)
	4.78	Ű.	Q.075 0	- Ar	A.78 (4,7	76) 🔍	^{~%} 0.075	(0.075)
	2.39		0.038		<u>~</u> \$2.39 6 2.3	38) 🖧 🛛	0.038	8 (0.037)
					Y N		S.	

Toxic standard Dimethoate E6 400 vos applied at the following doses


Contact toxicity	oxicity
μg product/bee 🔬 🖓 μg a.s. Ape Ο΄ μg product/beo	μg a.s./bee
\$90.663 \$\$ 0.350 \$\$ 0.350 \$\$ 0.350 \$\$ 0.350 \$\$ 0.350	0.250
0.332 3 3 0.125 3 125 3 125 3	0.125
0.166 0.166 0.166	0.062
	0.031

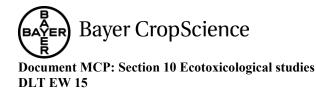
Findings:

The study was performed in compliance with the GLE principles.

The validity criterion winortantly in the control $\leq 10\%$ - was accomplished (being 0 % in the contact and oral toxicity tests after 48 hours). The D₅₀ (24 h) values for the toxic standard of 0.1 - 0.30 µg a.s./bee (contact) and 0.1% 0.35 µg a.s./bee (or al) were accomplished (being 0.233 µg a.s./bee and 0.139 µg a.s./bee in the contact and the oral oxicity tests, respectively).

us a.s./bei ...e. contact and the ora

Oral and contact toxicity LD50 values of bees treated w	vith Deltamethrin Protec FW 15
Oral and contact toxicity LD50 values of bees treated w	In Denametirin Frotec Ew 15


Test item		Dalt	amathrin Drat	oo EW 15			
	Deltamethrin Protec EW 15 Honeybee Apis mellifera L.						
Test object							
Exposure			contact / or	ral 🖉	, VÍ (A)		
Treatment			LD ₅₀		× , \$		
	time	contact toxic			toxicity test		
	time	μg product/bee	μg a.s./bee	µg product/bee	γµg a s. Dee 🔬		
Test item	24 h	4.978	- Co	Â.308			
	95 %-cl lower	4.186	- **	Q 3.390			
Deltamethrin	upper	5.920		¢ 5.475 گ			
Protec EW 15	48 h	4.768	Å	R & 069 🔬			
	95 %-cl lower	4.001	- ~	Ø3.170 🖓			
	upper	5.682		× 5.220 (
	24 h	Ő . C	0,233		0.139		
Reference item	95 %-cl lower	A 0	a 212 a	° °°.	0 0 16 K		
	upper		0.256 ^{>}	A ô ^r .	9 .166		
Dimethoate	48 h		0.174	A A A	× 0.135		
EC 400	95 %-cl lower		Q.146 ×	v 8- &	0.113		
	upper		×0.201~		0.113 0.113 0.162		
1: confidence limits	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V.,	D D				
	Ŵ		, o	Å & ~C) ¢		
NI 4•	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	í 🗸 🧯	y a v	0×		

Observations:

No statistically significant offects of the test iter Deltamethrin Protected is a survival were observed at the dose of 2.39 µg product per bee in the contact toxicity test (10 % prortality) during 48 hours. For the tested doses of \$.78, 9.35, 19.1 and \$8.2 µg product per bee staffstically significant effects of the test item on survival were observed (56.7, \$3.3 and 100 % mortality, respectively) during 48 hours. The calculated DD_{50} (48 h) was 4.98 µg product per bee in the contact toxicity test. Statistically significant effects on survival were observed at consumed doses of 2.38, 4.76, 9.17, 16.85 and 36.18 µg product per bee in the oral toxicity test (267, 63 \$\overline\$, 73.3\$\overline\$96.7 and 100 % mortality, respectively during 48 hours. Therefore, the colculated LD @ (48 h) was 4.07 µg product per bee in the ô Š oral toxicity test. Ô Before bees died in the test item treatments, apathy and immobility were observed shortly after

application until 24 hour assessment.

Conclusions: Therefore, the calculated OD₅₀ (48 h) was 4.77 frg product/bee (equivalent to 0.078 µg a.s./bee) in the contact toxicity test and 4.07 µg product/bee tequivalent to 0.067 µg a.s./bee) in the oral toxicity test.

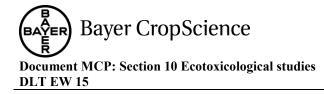
Report:	KCP 10.3.1.1.1/02,	(2000)	
Title:	Oral toxicity (LD ₅₀) to honey bees			
	Deltamethrin oil in water en		15 g/L	
	Code: AE F032640 00 EW01 B103	3		ð
Document No:	<u>M-199244-01-1</u> (Rep. No.: CW00/0	027)		
Guidelines:	EPPO 170			1
GLP:	Yes	А	Å	F >
		- A	Ő	

Material and Methods:

the test mater \$2.311.% eadb Groups of fifty worker honey bees, Apis mellifera, were offered 5 concentrations of the test material in a sucrose diet for 5 hrs; the tested concentrations were 0.039; 0.078; 0.155; 0.203 and 0.311 % (w/w) product. Actual food consumption was measured after 5 hrs, and then the numbers of dead bees in each cage were assessed after 24, 48, and 72 bs.

Based on the quantities of food actually consumed during the 5 ho feeding period, the frean measured dose rates to which the bees were exposed were equivalent to 2,26 and \$4.26 ug product/bee.

Findings:


8	
	AE F032640 00 FW01 F103
Time (hours)	LD ₅₀ (95% fiducial limits) µg product per bee
24	22.937 (200911-26.116)
48	20.392 (38.180 23.265)
72	A9.857 (17.45 – 23 049)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2
Report:	K@P 10.3.1.1.1/\$3, (2003)	
Title: O	Scute toxicity of Deltamethren EW 50 to the honeybee	Apis
, Q	mellifera L. under laboratory conditions	
Document No:	<u>M-27046891-1</u> (Rep. No.: 05 1048 109)	
Guidelines:	ØECD 243 (1998), OECD 214 (1998)	
GLP:	yes y by by by by	
Ò		

## Material and methods

Test item: Deltamethrin ENP 50 (Are F0,22640 50 EW) analysed content: 51.69 g/L deltamethrin; specification: Article No.: 00-06481367, Development No.: 30-00375503, Batch: 08398/0049(0031), TOX No. 07112-00

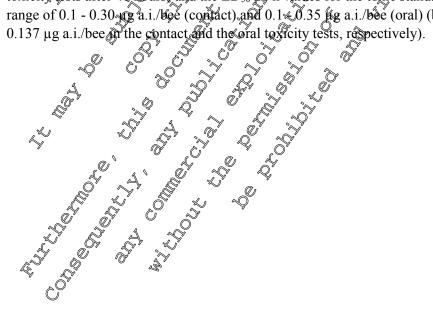
Reference item (toxic standard): Perfektition EC400 (analysed content: Dimethoate: 408.7 g/L) Deltamethrin EW 50 was tested under laboratory conditions on the honeybee A. mellifera after oral and contact exposure. Endpoints were mortality and behaviour of the bees compared to control up to 48 h after application.

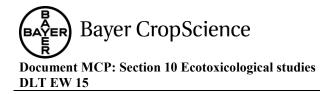


### Application rates for contact and oral toxicity test (based on analysed content of a.i.):

	ppneation rates for conta	et und of al toxicity test	(bused on analysed con	cone or any.	0
Γ	Contact t	oxicity	Oral		
	Test item	Deltamethrin	Test item	Deltamet	hrin
	[µg product/bee]	[µg a.i./bee]	[µg product/bee]	∕∰,g a.i./t	bee]
ſ	20.0	0.994	39.4	× 1.960	
	8.0	0.398	19.5	0.967	
	3.2	0.159	9.8	0.487	'Ô' Â' .Q
	1.28	0.064	جم 5.0	0.249	
	0.51	0.025	2.5	¢× 0.124	
*	based on actual intake				

Applied/exposed volume in the contact test: 2 µL (1) % Tween solution bee (according to the practical experience and to guarantee a good penetration of the test item his application volume is more appropriate than 1  $\mu$ L/bee suggested in the guideline Applied/exposed volume in the oral toxicity test: 200 µL or rose folution 10 bees


## Toxic standard Perfekthion EC 400, applied at the following doxes:


	/ I L				*
Cont	act toxicity 🔗 🖇		ora Ora		Q' à
Reference item	Dimethoate	ř 🏷 R	eference item	Di Andrea	methoate
[µg product/bee]	[µg a.i./bgs]	) iq	g product/bee]C	) 24]	Ça.i./beer
1.315	_© 0.500°	The second se	1009 0	ð þ	0.49
0.657	2 0.250 A	>	°Ø.656 ℃	Ô,	0.2 <b>®</b> ″
0.329	6425 L		© 0.329♥		02125
0.164	· 9.0625	S L	0.164 🔊		0.0625
*based on actual intake	A	<u>~~~</u>	¢		V V

Applied/exposed volume in the contact fest: 2 µL 0.1. & Tweet solution/bee Applied/exposed volume in the oral toxicity test:  $200\mu$ L sucrose solution 10 bees =  $20 \mu$ L/bee

## Findings

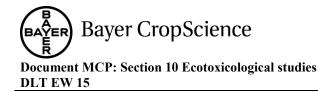
L. The validity criteria were met as mortanty in the was control  $\leq 10\%$  (being 0% in the contact and oral toxicity dests after 48 hours) and the  $\hat{ED}_{50}$  24 h values for the toxic standard were in the postulated range of 0.1 - 0.30 g a.i./bee (contact) and 0.1 0.35 fs a.i./bee (oral) (being 0.195 µg a.i./bee and





Test item	Deltamethrin EW 50						
Test object	Honeybee Apis mellifera L.						
Exposure			contact / oral LD ₅₀				
	treatment	contact toxic	city test	oral toxici	ity test		
	time	µg product/bee	μg a.i./bee	µg product/bee	uga.i./beg		
Test item	24 h 95 %-cl lower	2.6 2.1	Ö.	17.1 14.6			
Deltamethrin	upper	3.3	L.	jÕ ^v 19.9 🔊	1 2 5 k ⁰		
EW 50	48 h 95 %-cl lower upper	2.5 2.0 3.2		15.9 (13.0 ° (19.6) (19.6)			
Reference item	24 h 95 %-cl lower upper		0.195 0.668 0.227				
Perfekthion EC 400	48 h 95 %-cl lower upper		0.172 0.144 0.144 0.204		0.132 x 0.116 0.149		
l: confidence lim	its		D B				

### Oral and contact toxicity LD₅₀ values of bees treated with Deltamethrin EW 50:


In the contact toxicity test no statistically significant effects of the test item Deltamethon EW 50 on survival were observed at tested doses of 0.51 and 1.28 µg product per bee (3.3 and 6.7 % mortality, respectively) after 48 hours. For the tested doses of 3.2, 8.0 and 20.0 µg product per bee statistically significant effects of the test item on survival were observed (56.7, 96.7, and 100% mortality, respectively) after 48 hours. The enculated LD₅₀ 48 h) was 2.5 µg product per bee (equivalent to 0.12 µg a.i./bee) in the contact to ricity test.

In the oral toxicity test no statistically significant effects of the test item on survival were observed at consumed doses of 2.9, 5.0 and 9.8  $\mu$ g product per bee (6.7, 6.7 and 10.0 % mortality, respectively) after 48 hours. For the consumed doses of 19.5 and 39.4  $\mu$ g product per bee statistically significant effects of the test item on survival were observed (50.3 and 100 % mortality, respectively) after 48 hours. The calculated LD₅₀ (48 h) was 15.0  $\mu$ g consumed product per bee (equivalent to 0.79  $\mu$ g consumed a.i./bee) on the oral toxicity test.

## **Observations**

In the contact toxicity test po effects on behaviour were observed in honeybees after exposure to doses of 0.51 and 1.28 µg product per bee. Bees exposed to doses equal or greater than 3.2 µg product per bee were affected at the 4 hour assessments. At assessments conducted 24 and 48 hours after contact exposure bees had generally recovered and no different behaviour for all surviving bees exposed up to a dose of 8.0 µg product/bee compared to control bees was observed.

In the oral to active test no effects on behaviour were observed in honeybees consuming doses equal or less than 98  $\mu$ g product/bee. After consuming doses of 19.5 and 39.4  $\mu$ g product/bee most bees were affected at the 4 hour assessment. At the assessments conducted 24 and 48 hours after oral exposure affected bees had generally recovered and no different behaviour for all surviving bees consuming doses up to 39.4  $\mu$ g product/bee compared to control bees was observed.



## Conclusion

The calculated LD₅₀ (48 h) was 2.5 µg product per bee (equivalent to 0.12 µg a.i./bee) in the contact toxicity test and 15.9 µg consumed product per bee (equivalent to 0.79 µg consumed a.i./bee) in the oral toxicity test

	<u>کہ</u>	, ST	
Report:	KCP 10.3.1.1.1/04, (2000)	Ű	
Title:	Oral toxicity $(LD_{50})$ to honey bees (Apis	méthifera L.)	
	Deltamethrin emulsifiable concentrate 15 g/L	Å .	
Document No:	<u>M-199148-01-1</u> (Rep. No.: CW00/026)		
Guidelines:	EPPO Guideline No.170		$\sim$ $\sim$ $\sim$
GLP:	yes & a s		
			¥ c . A .

## **Material and Methods:**

In this laboratory study the oral toxicity of the acaricide AE F032640.00 EC02 A804 to the worker honey bee was determined. The study was conducted in compliance with EPPO Guideline No. 70 and the Principles of Good Laboratory Practice Groups of fifty worker honey bees. *Apis fiellifera*, were offered 5 concentrations of the test material in a sucrose diet for 5 hr, the concentrations tested were 0.35; 0.17; 0.09; 0.05 and 0.02 % (w/x) product. Actual food consumption was measured after 5hr, and then the number of dead bees in each eage were assessed after 24; 48 and 72 hours. Based on the quantity of food actually consumed during the 5 hr feeding period, the mean measured dose rates to which the bees were exposed were equivalent to 7.7/13.4; 18.0; 23.7 and 29.7 µc product/bee.

Findings:	5 0 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	5 \0 \1 \1 \2 \2 \2 \2 \2 \2 \2 \2 \2 \2 \2 \2 \2
]	Time hours / / LD56 95% fiducial mits) ug product per bee
	$0^{2}4$ $0^{2}$ $0^{2}5.78821.172 - 43.043)$
	<u>48</u> <u>48</u> <u>49</u> <u>4</u> <u>57</u> <u>67</u> 25.613 (20,624 – 47.700)
0	$\sim$ 72 $\sim$
- A	

Report:	KCP 10 3.1.1.1705, (1987)
Title: 🔬	Laboratory overstigations into the toxicity of Hoe 032640 -
le l	em@sifiable concentrate 25 (g/l) (Code: Hoe 032640 0I EC03
	AP15) to the Honey Bee Apis Mellifera L.
Document No:	<u>₩1-118931-01-9</u> (Rep. No. & EA/I/87/005)
Guidelines:	none ^O
GLP:	$n_0 \land q \land $

## Material and Methods?

The effect of deftamethrin, enallsifiable concentrate 25g/L; Code of the test substance: AE F032640 00 EC03 B0 on worker honey bees, *Apis mellifera*, was investigated in a contact and oral toxicity test. In the contact test two trials, in the oral test three trials were conducted with 5 replicates containing 10 bees eacd. Dose rates in the contact test were 0.001, 0.005, 0.01 and 0.05 µg a.i./bee, in the oral test 0.01, 0.05, 0.1, 0.5 and 1.0 µg a.i./bee, respectively. The mortality was determined after 24 and 48 h.

## **Findings:**

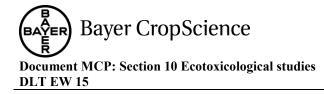
		(	Contact test			Oral tes	t 🖉 🖉
Time (hours)		LD ₅₀	LD50 µg a.s. per bee			LD ₅₀ µg a.s. p	er bee 🔊 💣
24			0.01			0.38	
48			0.01			® <b>*</b> 0.28	
Report:		3.1.1.1/06,		(2008)	Q ⁴ b°	Å &	A A A A A A A A A A A A A A A A A A A
Title:	Effects of Bees) Ap	f Deltamethri is mellifera L.	n EC 🎝 AF .) in the Lab	G (Acute	Contact a	nd Oral and	
Document No:	<u>M-30990</u>	<u>0-01-1</u> (Rep. 1	No©3304Ø.	35) 🔊	à sô	, .	Å .
Guidelines:	OECD 21	3 (1998), OE	GD 214 A 199	98)Ø	ç, o	~~ O [*]	
GLP:	yes	A A		V D		Ő ^v K	
Guidelines:     OECD 213 (1998), OECD 214 (1998)       GLP:     yes       Waterial and Mathods:     O							

## Material and Methods:

Deltamethrin EC 25AF G (Deltamethrin: 2.5 % w/w nominal, 3.77 % //w analytical), Specification: Batch No.: 2008-000434; under Jaboratory conditions Apis melliferer 30 worker bers were exposed for 48 hours to doses of 1040, 450, 243, 136 and 67.5 ng a.i. per bee for feeding (oral dose) response test, value based on the actual intake of the test ftem) and 30 worker bees per treatment were exposed for 96 hours to doses of 250, 125, 63, 31 and 16 ng a.i. per bee for topical application contact dose response test). The contact toxicity test was prolonged for 48 hours due to increasing mortality between 24 and 72 hours, up to a maximum of 96 hours

		k O
Test Item		rin EQ 25AF G
Test object 😞 🖉 🔘		mellifera
Application rate (ng a.s./bee)	1040, 450; 243, 136 and 67.5	250, 125, 63, 31 and 16
Exposure & &	oral (sugar solution)	© contact
		(solution in Adhäsit (0.5 %)/water)
LD50 (ng a.s./bee)	24 hours: 151;	24 hours: > 250;
	1 $3$ $2$ $4$ $3$ $3$ $1$ $4$ $3$ $4$ $3$	48 hours:138;
		72 hours: 108;
		96 hours: 110

## **Observations:**


## Contact Test:

Dose levels of 250, 25 and 63 ng as. per bee led to mortality ranging from 96.7 to 6.7 % at the end of the test (96 hours). No mortality occurred in the 31 and 16 ng a.s. dose groups. There was 3.3 % control (water +@.5 % Adhäsit) mortarity.

Ť

Behavioural abnormalities (e.g. moving coordination problems, apathy and/or vomiting) occurred in all treatment groups during the 4 hours assessment. 24 hours following the application these symptoms were still found of all treatment groups except the 16 ng a.s./bee dose level. During the 48 hours assessment some behavioural abnormalities still occurred but only in the two highest dose groups. After 72 and 96 hours in the highest dose group (250 ng/bee) a few apathetic bees were found only. Ô

Oral Test:



Nominal dose levels of the 1000, 500, 250, 125 and 62.5 ng a.s./bee corresponded to an actual intake of 1040, 450, 243, 136 and 67.5 ng a.s./bee, respectively. Mortality occurred at 1040, 450, 243 and 136 ng a.s./bee in a dose related pattern. The oral dose levels resulted in mortality ranging from 100.0 ô to 46.7 % at the end of the test (48 hours after application). There was no mortality in the 67.5 mg/bees dose group. No mortality occurred in the control (50 % sugar solution). During the first 4 hours, behavioural abnormalities (e.g. movement coordination problems and/or apathy) were observed all treatment groups with the exception of the 67.5 ng a.s./bee dose group. During the 24 hours assessment behavioural abnormalities of a few bees were still found append the dose groups No further behavioural impairments were found at the 48 hours assessment. The contact and oral LPS0 values of the reference item (dimethoate) were calculated to be 0.12 and 0.14 µg a.s./bee, respecti

## **Conclusions:**

The toxicity of Deltamethrin EC 25AF G was dested in both an acute contact and oral toxicity test on honey bees. The LD₅₀ (24 h) value of Deltamethin/ EC 25% F G was determined to be greater than 25% ng a.s./bee and the LD₅₀ (48 h + 72 h + 96 h) values of Deltanothin EC 25APG were 138, 108, and 110 ng a.s./bee in the contact toxicity test, respectively. The  $D_{50}$  (24 h +48 h) values were 15 D and 143 ng a.s./bee in the oral toxicity test, respectively

Report:	KCP 10.3.1.1, 1407, (2000)
Title:	Oral toxicity (LD to thoney bees (Apis melliferty L.)
	Deltamethen emulsifiable conceptrate 100 g/k
Document No:	Mc 1991 50-01-1 (Rep. No.: CW 00/028)
Guidelines:	PPO Guidelove No 170 ~ , ~ , @
GLP:	yes v v v v

## Material and methods: 🐇

Groups of fifty worker honey bees, Apps mellifera, were offered 5 concentrations of the test material in a sucrose diet for 5 hrs/the tested concentrations were 0.33, 0.1600.08; 0.04; and 0.02% /w/w) product. Actual food consumption was measured after 5, hrs, and then the numbers of dead bees in each cage were assessed after 24048, and 72 hg. Based on the quantities of food actually consumed during the 5 hr feeding period the mean measured dose rates to which the bees were exposed were equivalent to 0.27; 303; 7.13, 0, and 20.20 µg/product/bee.

## Finding

rmunige		1 A	
. /	Al Al	E <b>F032640 00 EC11 A308</b>	3
Time (h	LD5Q 95 %	Coducial limits) µg produ	ct per bee
24		2.935 (0.046 - 5.534)	
48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.563	
"OŽ		2.534	
<u> </u>	() ~Õ		

**Conclusion:**  $\sqrt[3]{2}$   $\sqrt[3]{2}$   $\sqrt[3]{2}$ The oral LD₅ was determined to be 2.534 µg product/bee after 72 h of exposure.



Report:	KCP 10.3.1.1.1/08, (1995)	°
Title:	Determination of the oral toxicity of Decis WG2 (Hoe 032640	
	00 EG06 A101) to the honey bee <i>Apis mellifera</i> L.	& / 4/P
Document No:	<u>M-134668-01-1</u> (Rep. No.: CW94/067E)	
Guidelines:	BBA VI, 23-1, (Jun. 1991)	
GLP:	yes	

## Material and Methods:

The oral toxicity of AE F032640 00 EG06 A101 was investigated in the laboratory. The bees were fed, for 5 hours with a 50% sugar solution containing the test substance at 0.002, 0.004, 0.008 and 0.016% a.i. (w/w). At the end of this time the amount consumed was checked by weighing. Afterwards the bees received a pure 50% sugar solution ad libitum instead of test substance ontil the end of the study. The checks were carried out 24, 48 and 72 hours after treatment. The LD₅₀ was calculated by probit analysis.

Based on the quantities of food actually consumed during the 5-hr feeding porod, the mean measured dose rates to which the bees were exposed were equivalent  $10^{\circ}3.7$ ;  $52^{\circ}$ ; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.9; 3.

## **Findings:**

i mungs.	0.	
		AE F032640 AU EGOC A101
Time (hours)	~(X X x	LD@ (95% fiducia) imits) µg a.i. per bee
24		0.19240.152 0.236 0
48		$0.182 (0.14 \times 0.22 )$
72	Y J Q	$3^{2}$ $3^{2}$ $0$ $3^{2}$ $0$ $3^{2}$ $(0.143 - 0.224)$ $3^{2}$
~//		

## Supplemental information from the literature

0	
Report:	KCP90.3.1.9.1/0% Rammez-Romero R.; Chaufaux, J.; Pham-Delegue, M-H.
Ô	(2005) Q A X Q
Title:	Effects of Cry14b protoxin, deltamethrin and imidacloprid on the foraging
<u>k</u>	Cactivity and the learning performances of the honeybee Apis mellifera, a
	of comparative approach.
Source:	Apidologe, 36,4, p. 60 -611
DOI No:	Q0.1057 apide 2005 039 5 5
Document No.	C <u>M-460897-01-1</u> ~ ~ ~
Guidelines	
GLP:	

# EXECUTIVE SUMMARY

The study compared the mortality, rate of softp consumption, foraging activity and learning performance off free-bying honeybees from colonies fed with syrups containing Cry1Ab protoxin, deltamethrin or implacion d with bees from the same colonies given syrups without additives. In addition, to estimate the dynamic of Cry1Ab protoxin in the hive, we present data obtained when honey darvae and be foragers were analysed using immunological tests (ELISA). However, material and methods as well as regults are summarized for deltamethrin only.

Experiments were performed on a colony of *Apis mellifera* L. (about 10 000 bees) with a one-year queen and 3 brood combs. Experiments were done in a flight cage ( $2.5 \times 2 \times 2 \text{ m}$ ) placed in an acclimatized room ( $23 \pm 1^{\circ}$ C, 50% RH, photoperiod: 12:12 (L:D), 400 lux artificial lighting during observation periods, and 200 lux after observation period). The sugar syrup (500 g/L sucrose)



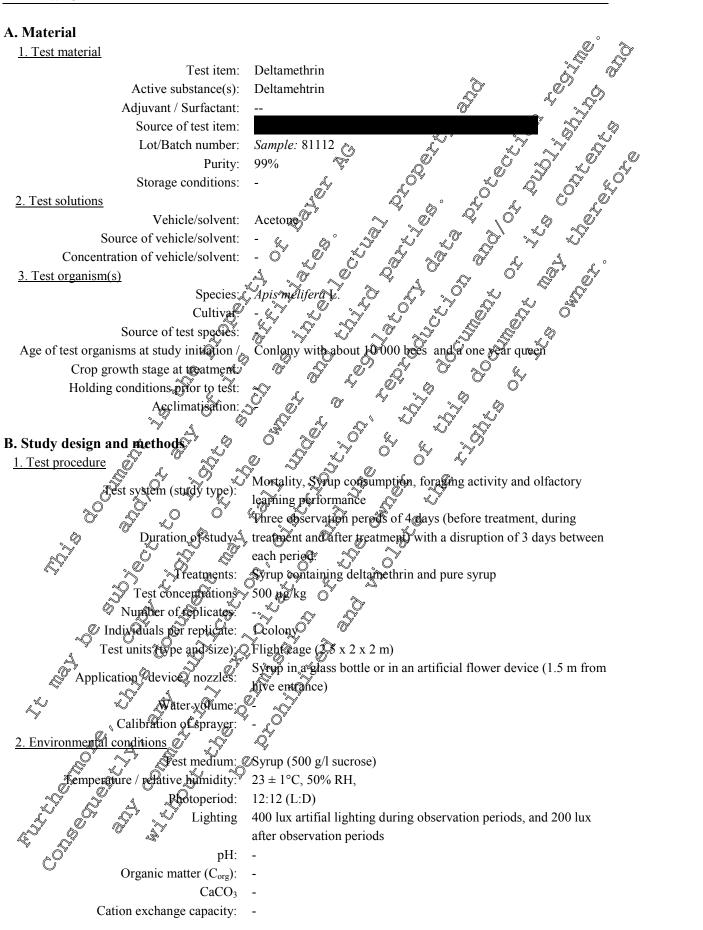
contained 500 µg/kg deltamethrin (99% purity, sample: 81112; Cluzeau InfoLabo (Sainte-Foy La Grande, France)). No control experiment was performed. Three observation periods of 4 days each were used to investigate mortality, syrup consumption, foraging activity and olfactory learning performance. A disruption of 3 days, during which the colony was provided with non-contamorated sugar syrup, was allowed between each period to let the colony recover. All dead bees found on the ground were counted over four consecutive days. Syrup was renewed daily. The standard feeding device (glass bottle) was positioned 1.5 m from the hive entrance. Syru consumption was estimated daily by measuring the difference in volume on each of four consecutive days for each observation period. The foraging activity and learning performances were evaluated using an artificial flower device described by Pham and Masson (1085) and a structure of the str described by Pham and Masson (1985)⁵ and modified by Decoustye et **3**. (2004)⁶. During conditioning, the 6 artificial flowers were filled with syrup (contaminated of not) and were offered in association with a conditioning stimulus (pur analog). When the power device was used to test learning performance, the flowers did not contain the synth and byly three out of six flowers provided the odour stimulus (testing device). The flower device was placed 1.5 m from the have entrance. To evaluate foraging activity, bees were allowed to visit the conditioning device over 4 days, for a hours observation period the first 2 days, and 1 hour observation period the following 2 days. All bees spontaneously visiting the device during the observation periods were marked by a colour dot on the thorax and counted. After recording for aging activity offactory leading performance was tested. This testing procedure consisted of a conditioning phase (15 min) where the conditioning device was offered (and the new bees visiting the device were marked as in the period of foraging activity recording) alternating with a testing phase (5 mm) using the cesting device. The tearning performance was evaluated by recording the number of marked bees visiting the flowers delivering the CS on the testing device. A total of 4 conditioning and 4 testing periods per day were conducted. Additionally, the volume of syrup administered during experiments was noted and the volume of remaining syrup was measured.

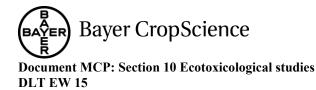
The mortality decorded before treatment was significantly higher than mortality recorded after treatment (p = 6.5; 2 df; P = 0.04) (Mean number per day: before treatment: 196.3, during treatment: 109.5 and after treatment 102.75). Symp uptake was significantly lower during and after treatment than before treatment (F = 46.9; 2 df; P < 0.01) (Mean number per day: before treatment: 110.1 ml; during treatment: 47.8 ml and after treatment: 67.9 mb

Foraging activity was significantly higher before treatment than during and after treatment (F = 11.7; 2 df; P < 0.01). The mean number of visits before treatment was 1.7 (± 0.3 SEM), 0.7 (± 0.1 SEM) during the treatment and by (± 0) SEMD after treatment. The decrease due to the treatment was of ca. 60% visits, and the recovery after treatment ted to an increase of ca. 35% visits.

The olfaetory learning performance was strongly coduced during the treatment period and the level of visits was not significantly different from a randomised distribution between scented and unscented sites (P = 0.1 and P = 0.5). Similarly, after treatment, the visits on scented sites were not significantly different from that on unscented sites (P = 0.1).

⁵ Pham Mc⁴., Masson C. (1985) Analyse par conditionnement associatif du mécanisme de la reconnaissance de sources alimentaires par l'abeille, Bull. Soc. Entomol. Fr. 90, 1216–1223.


⁶ Decourtye A., Devillers J., Cluzeau S., Charreton M., Pham-Delègue M.H. (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions, Ecotoxicol. Environ. Saf. 57, 410–419.


**Bayer CropScience** 

Page 121 of 518 2017-05-15

## **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

## A. Material





Soil textural fractions / extractable micronutrient concentrations [mg per kg soil]: Fertilization: Mortality, Syrup consumption, for aging activity and olfactory of the second se 3. Observations and measurements: Analytical parameters measured: Biological parameters measured: Friedman Sanalysis of varance test, nonsparametric analysis of Measurement frequency: mentuwas stenificantly higher the variance repeated-measures and vsis of variance and chi-squage Statistical analyses: RESULTS 1. Validity criteria: No validity criteria were stated. 2. Biological findings: The mortality recorded before treatment was stenificantly higher than mortality recorded after

treatment ( $\chi 2 = 6.5$ ; 2 df; P = 0.04) (Mean number per day: before treatment: 196.3, during treatment: 109.5 and after treatment 102.75) Syrup uptake was significantly lower during and after treatment than before treatment (F = 46.9; 2 df; P < 0.01) (Mean number per day: before treatment: 110.1 ml; during treatment: 44.8 tal and after treatment? 64.9 ml).

Foraging activity was significantly higher before treatment than during and after treatment (F = 11.7; 2 df; P < 0.01). The mean number of visits before treatment was 1.7 ( $\pm$  0.3 SEM), 0.7 ( $\pm$  0.1 SEM) during the treatment and 1.0 ( $\pm$  0.1 SEM) after treatment. The decrease due to the treatment was of ca. 60% visits, and the recovery after treatment led to an increase of ca. 35% visits.

The olfactory learning performance was strongly reduced during the treatment period and the level of visits was not significantly different from a random sed distribution between scented and unscented sites (P = 0.1 and P = 0.5). Sumilarly, after treatment, the visits on scented sites were not significantly different from that on unscented sites (P = 0.1 and P = 0.1).

Table 1: Mortality in relation to treatment*. Data represent mean number of dead honeybees per day (± SEM) which were found on the ground of the flight chamber. Mortality was recorded over 4 days per week.

[	Before treatment	During treatm	ent 🔊	Ster treatment	t
	المراجع من المراجع من المراجع ا	$109.5 \pm 24.8a$	b 🎝	~~102.75 ± 16.3b	

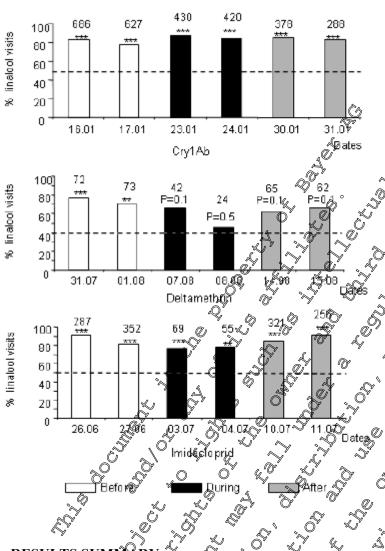
Different letters following the means within a pow indicate significant differences.

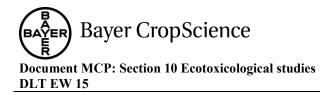
Table 2: Syree consumption for each treatment*. Data represent the mean value of syrup consumption (mL) per day (±SEM), Syrup consumption was recorded along 4 days per week.

Before treatment	Paring treatment	After treatment
√110.10 7.6a	44.8 ± 1.7 b	$64.9 \pm 5.6$ b

Different letters following the means within a row indicate significant differences.

## **Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15**





Figure 2. Olfactory learning per formance of free-flying foragers relation to treatment. After cooditioning to linalool (seented sees reward syrup), the visits of prager on wither the sce@ed sites or unscenter ones were noted every 30-s during 3 periods of 5-min per day, Pars give the percentage fortgers visiting the scented sites conditioning te linale affor White and gree bars correspond to the periods of eeding with the cong trolorrup before and after the treat ment, respectively. Black bars are related to the period with the conamin ed scrup. Dach testing period was Onducted over 2 days, semirated by 2 bys of recording Waging activity and O days of nter-treatment recovery. The total number of focagers disiting the testing device is indicated above the bars. The observed numbers of visits were compared to a hypothetical equal distribution of landings on scented sites and unscented the ites, shown as the 50% dotted line **P < 0.01,

**RESULTS SUMMARY** The mortality recorded before beatment was significantly before than mortality recorded after treatment ( $\chi^2_2$  46.5; 2, P; P = (0.04); (Mean number Per day, before treatment: 196.3, during treatment: 109.5 and after treatment 12.75 Syrupuptake was significantly lower during and after treatment than before treatment (F = 46.92 df; C < 0.01) (Mean number per day: before treatment: 110.1 ml; during treatment: 44 & ml and after treatment: 64.9 ml).

Foraging activity was significantl@highef before treatment than during and after treatment (F = 11.7; 2 df;  $P \le 0.01$ ). The mean number of visits before treatment was 1.7 (± 0.3 SEM), 0.7 (± 0.1 SEM) during the treatment and  $1.0 \times 0.1$  SEM) after treatment. The decrease due to the treatment was of ca. 60% visits, and the recovery after treatment led to an increase of ca. 35% visits.

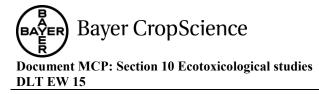
The olfactory leading performance was strongly reduced during the treatment period and the level of visits was not significantly different from a randomised distribution between scented and unscented sites (P = 0.1) and P = 0.5. Similarly, after treatment, the visits on scented sites were not significantly different from that on unscented sites (P = 0.1 and P = 0.1).

Comment of the Notifier: Individual honey bees which were dosed under laboratory / indoor conditions suffered from various adverse effects in a dose-dependent manner. However, the ability of large honey bee colonies to absorb impacts from stressors and continue to grow makes extrapolation



from effects observed in a laboratory on individual bees to effects of relevance at the colony level in the field extremely difficult. In many cases, acute risks of lethal or sub-lethal effects for individual bees observed in the laboratory may have no consequences whatever for colonies in the field. In summary, testing on individual bees does not allow for an evaluation of potential impacts on the entire colony: only on the basis of field and monitoring studies is it possible to determine whether a particular stressor gives rise to a colony level impact.

Report:	KCP 10.3.1.1.1/10; Dai, Ping-Li; Wang, Qiang; Sun, Ji-Hu; Liu Feng; Wang,
_	Xing: Wu, Yan-Yan: Zhou, $\sqrt{2}$ ing. (2010) $\sqrt{2}$
Title:	Effects of sublethal concentrations of bifenthrin and deltamethrin on fecundity
	growth, and development of the honeybee Apis mellifera lighterica.
Source:	Environ. Toxicol. Chepp., 29, 3, p. 644-649
DOI No:	10.1002/etc.67
Document No:	$\frac{10.1002/\text{etc.}67}{\text{M-461225-01-1}}$
Guidelines:	
GLP:	


## **EXECUTIVE SUMMARY**

Effects of two pesticides at subjethal concentrations on feelundity prowth, and development of honeybees *Apis mellifera ligustica* were examined with the feeding method for a three-year period (2006–2008). Material and methods as well as results are only summarized for deltamethrin. Worker bees (*Apis mellifera ligustica*) were captured from Boney and pollen combs in the hive for bioassays. Deltamethrin solutions were prepared to a liquid mixture of 1:1 sucrose:water. Concentrations of deltamethrin were 20.0, 36.0, 64.8, 616.6 and 210.0 mg/z. Control bees were fed a liquid mixture of 1:1 sucrose:water. In each experiment, a treatment included three cages of 20 bees each. The cages were placed on the fucubator (30,  $\pm 1^{\circ}$ C,  $\oplus \pm 10^{\circ}$  relative humidity, darkness). Three cages of 20 bees were used for each concentration of deltamethrin. Experiments were replicated at least three times. Mortantly was recorded at 48 h after the feeding.

Experiments to example the effect of deftametint at subject at abse on feedulatly, growth, and development of horeybees commenced on May 15, 2006 and continued on July 20, 2007 and September 1, 2008. New colonies were used each year, a pair of sister queens were used in the same year, and all treatments had five colonies. Each treated colony was fed pesticide solution (400 ml per day) at an estimated 5% lethal concentration (LC5) that was derived from the toxicological tests. The queen was directly fed 5 ml of pesticide solution every 5 d. Pesticides were in a liquid finxture of 1:1 sucrose water. Control colonies were fed a liquid mixture of 1:1 sucrose:water. All of the colonies were fed for 20 d. The stored honey and syrup were taken out every 3 d to avoid the effects of pesticides concentrated in the stored honey. The queen laid eggs on a new comb within 1 d in the queen excluder. The number of eggs per female per day and their weight was recorded. After hateling, the larva weight was measured within 6 h of when the cells were capped. To check the amergence of adults, the mapped frames were placed in the incubator ( $34\pm 1^{\circ}$ C,  $60 \pm 10\%$  relative humidity, darkness) after the cells capped at approximately 9 d.

The LC50 and Lc5 values of deltamethrin in honeybees obtained with oral tests were 60.8 and 21.6 mg/D respectively.

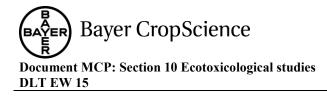
*Daily feedbalty*. The Tukey's HSD test indicated that and deltamethrin-treated females produced significant fewer ( $p \le 0.05$ ) eggs than the control in 2006, 2007, and 2008. *Egg weight*. Egg weight indicated significant differences ( $p \le 0.05$ ) in egg weight between the control and deltamethrin across the three-year period. *Fresh larval weight*. The larval weight of colonies fed deltamethrin was



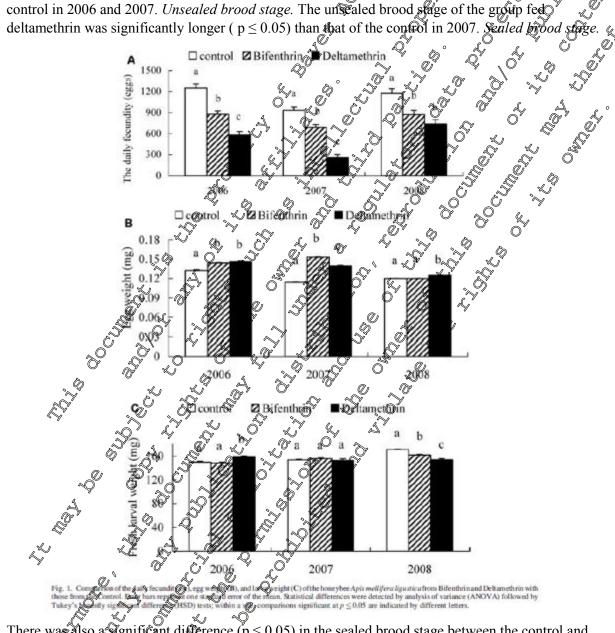
significantly higher ( $p \le 0.05$ ) in 2006 and lower ( $p \le 0.05$ ) in 2008 than the control. *Hatch rate.* Significantly lower hatch rates were found for colonies fed deltamethrin compared with control agress the three-year period. The hatch rates for deltamethrin were 62.0, 75.0 and 80.5% in 2006, 2007 and 2008, respectively. Cap rate. The cap rate of colonies fed deltamethrin was significantly lower than that of control over the 3-year period (72.0, 93.3 and 85.1% in 2006, 2007 and 2008 respectively) Emergence rate. There were no significant differences in the emergence rate between delemether and the control in 2006 and 2008, but there was a significant difference in 2007, and colonies fed deltamethrin had a lower emergence rate compared with the control. Success rate of development. The success rate of development in the colonies treated by delamethrin was also lower than the control colonies (40.7, 62.5 and 66.8% in 2006, 2007 and 2008, respectively). Egg stage, The duration of the egg stage exposed to deltamethrin was significant longer (Tukey's HSD  $p \le 0.05$ ) than that of the  $\mathcal{Q}$ control in 2006 and 2007. Unsealed brood stage. The unsealed brood stage of the goup fed deltamethrin was significantly longer ( $p \le 0.05$ ) that that of the control it 2007 Sealed brood stage. There was also a significant difference ( $p \leq 0.05$ ) for the sealed before stage between the control and deltamethrin during the three years. Immature stage. There was a significant p<0,05) difference in the immature stage between the control and deltamethrin fed colonies during the diree years. **MATERIAL AND METHOD** Acst item: " A. Material 1. Test material (S)-alphacyano - 3-phenoxyber zyl(1R, 3R)-3-(2,2-dibromovinyl)-2,2-dimethyle yclopropancarboxylate ctive substance(s): Ô djuvant / Surfactant Source of test item: ot/Batch number solutions ehiclersolvent; Sucrose:water vehicte/solvent: Concentration of vehicle/solvent

3. Test organism(s) Species: Apis mellifera ligustica Cultivar: Age of test organisms at study unitiation / -Crow growth stage at treatment: Holding conditions prior to test Acclimatisation: -

B. Study design and methods <u>Fest procedure</u> Test system (study type): Duration of study: Acute oral toxicity (AOT) and chronic oral toxicity (COT) AOT: 48 h; COT: 3 years (experiment were commenced on May 15, 2006 and continued on July 20, 2007 and September 1, 2008; **Bayer CropScience** 

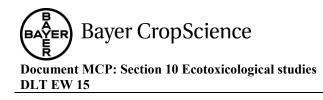

## **Document MCP: Section 10 Ecotoxicological studies DLT EW 15**

	Food was provided each time period over 20 days) $_{\circ}$
Treatments:	Deltamethrin and Control (Sucrose:water solution (1:1))
Test concentrations	AOT: 20.0, 36.0, 64.8, 116.6, and 210.0 mg/L; COT: LC5 AOT AOT: 3 replicates (&3 repetitions); COT replicate AOT: 20 individuals; COT: 5 colonie
Number of replicates:	AOT: 3 replicates (&3 repetitions); COTO replicate
Individuals per replicate:	AOT: 20 individuals; COT: 5 colonie
Test units (type and size):	AOT: 9 x 9 x 6 cm cages; CTO: Apiaries
Application / device / nozzles:	
Water volume:	
Calibration of sprayer:	
2. Environmental conditions	
Test medium:	1:1 sucrose: water solution
Temperature / relative humidity:	AOT: $30 \pm 1\%$ / $60 \pm 1\%$ relative humidity $\%$
Photoperiod:	AOD. darkfress 2 2 2 2 2 2
Lighting	
pH:	
Organic matter (Cor	
CaCO3	
Cation exchange capačity:	
Soil textural fractions / expactable	
micronutrient concentrations [mg per kg Soil]: Fertilization: <u>3. Observations and measurements:</u>	
jõil]:	
3. Observations and measurements:	
Analytical parameters measured:	
	AOT: Mortality; COT: daily fecundity, egg weight, larva weight,
Biological parameters measured:	hatch rate, cap rate, emergence rate, success rate, egg stage,
	Deltamethrin and Control (Sucrose:water solution (1:1)) AOT: 20.0, 36.0, 64.8, 116.6, and 210.0 mg/L; COT: LC5 (AOT) AOT: 3 replicates (&3 repetitions); COT (replicate AOT: 9 x 9 x 6 cm cages; CTO: Apiaries - - - - - - - - - - - - -
	, immature stage
Meas@ementbequenty	AOT: motality were assessed at test end; COT: daily (number of
	reggs perfemale)
Statistical analyses	Proprianalysis; one-way analysis of variance (ANOVA), Tukey's
	AOT: montality were assessed at test end; COT: daily (number of eggs per temale) Probit analysis, one-way analysis of variance (ANOVA), Tukey's honestly significant difference (HSD) test, $\chi^2$ test
	X X X
1 Validite criteria:	
<u>1. validity criteria</u>	homestly significant difference (HSD) test, $\chi^2$ test


## 3. Biological findings:

The LC50 and c5 values of celtamethrin in honeybees obtained with oral tests were 60.8 and 21.6 mg/L, respectively,

mg/L, respectively Daily fecurality. The Tukey's HSD test indicated that and deltamethrin-treated females produced significant fewer (  $p \le 0.05$ ) eggs than the control in 2006, 2007, and 2008. Egg weight. Egg weight indicated significant differences ( $p \le 0.05$ ) in egg weight between the control and deltamethrin across the three-year period. Fresh larval weight. The larval weight of colonies fed deltamethrin was significantly higher ( $p \le 0.05$ ) in 2006 and lower ( $p \le 0.05$ ) in 2008 than the control. *Hatch rate*. Significantly lower hatch rates were found for colonies fed deltamethrin compared with control across the three-year period. The hatch rates for deltamethrin were 62.0, 75.0 and 80.5% in 2006, 2007 and 2008, respectively. Cap rate. The cap rate of colonies fed deltamethrin was significantly lower than




that of control over the 3-year period (72.0, 93.3 and 85.1% in 2006, 2007 and 2008 respectively). *Emergence rate.* There were no significant differences in the emergence rate between deltamethrin and the control in 2006 and 2008, but there was a significant difference in 2007, and colonies fed deltamethrin had a lower emergence rate compared with the control. *Success rate of development.* The success rate of development in the colonies treated by delamethrin was also lower than the control colonies (40.7, 62.5 and 66.8% in 2006, 2007 and 2008, respectively). *Eggstage.* The duration of the egg stage exposed to deltamethrin was significant longer (Tukey's HSD,  $p \le 0.05$ ) than that of the control in 2006 and 2007. *Unsealed brood stage.* The unscaled brood stage of the group fed deltamethrin was significantly longer ( $p \le 0.05$ ) than that of the control in 2007. *Sealed brood stage.* 



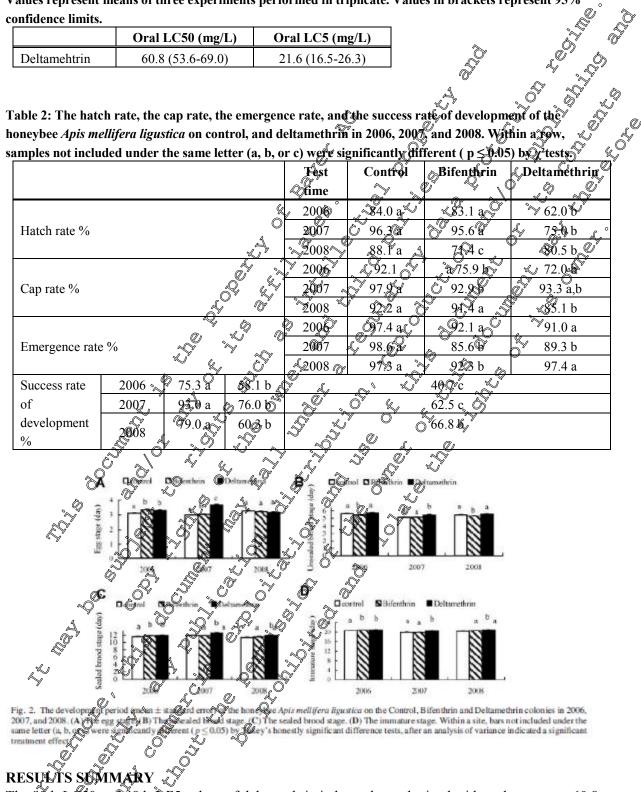
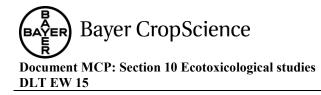

There was also a significant difference ( $p \le 0.05$ ) in the sealed brood stage between the control and deltamethrin during the three years. *Immature stage*. There was a significant (p<0.05) difference in the infiniture stage between the control and deltamethrin fed colonies during the three years.

Table 1 Table




Values represent means of three experiments performed in triplicate. Values in brackets represent 95%

	Oral LC50 (mg/L)	Oral LC5 (mg/L)
Deltamehtrin	60.8 (53.6-69.0)	21.6 (16.5-26.3)

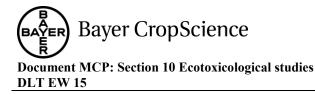


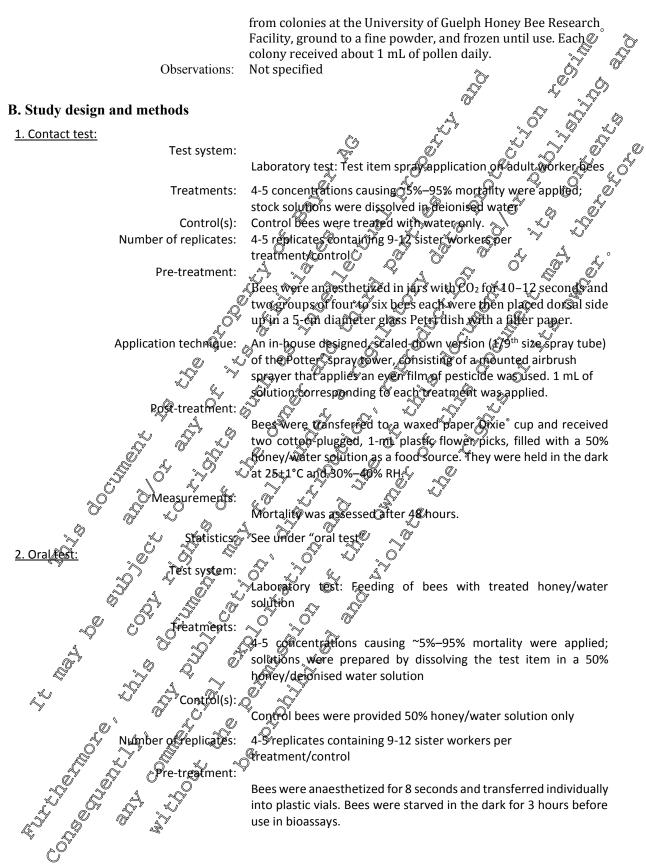
30 an@48 h. C5 values of deltamethrin in honeybees obtained with oral tests were 60.8 The ∆#8 h-I and 21.6 mg/L, respectively.

Comments of the Notifier: The authors applied deltamethrin at a total amount of 8,640 µg to each test colony per day which represents approximately 100 LC₅₀ doses per colony per day over 20 days.



On top, they dosed the gueen each 5th day with a defined dose. No efforts were made to relate these doses to field-relevant doses. From the physico-chemical properties of deltamethrin it is very unlikely that colonies are exposed to deltamethrin over longer periods and the high lipophilicity makes is very ô unlikely that nurse bees feed queens with doses applied in this study. Finally, algsemi-)field audies which had been conducted with field-relevant application rates under realistic@xposure conditions i.e. spray treatment of flowering target crops, demonstrated that colonies were not impacted in any endpoint relevant for colony development and performance.

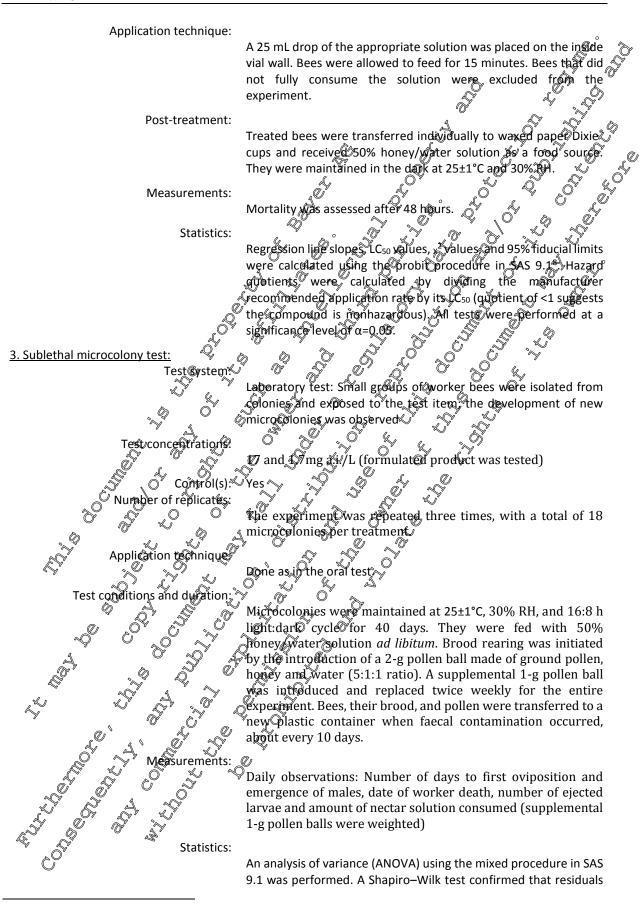

Report:	KCP 10.3.1.1,1/11; A.E. Gradish, C.D. Scott-Dupree, A.J. Frewin, G.C.
_	
Title:	Lethal and sublethal effects of some insecticides recommended for wild blueberry
	on the pollinator Bombus impartens 2 4
Source:	Can. Entomol. 144: 478–486 (2012)
DOI No:	10.4039/tce.2012.40° × × × ×
Document No:	M-462175-01-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guidelines:	None Q (Y Q Q Z Q Q Q Q
GLP:	No (Peer-reviewed orticle)


## **EXECUTIVE SUMMARY**

The susceptibility of common eastern bumble bee Bombus impattens Cresson (Hymenoptera: Apidae) to some insecticides used of projected for use in Mueberry pest, management was investigated. Workers were killed by topical application of deltamethrin and when deltamethrin was ingested via honey solution. L  $\cap$ In another experiment, workers were fee one sublethal dose of contaminated honey solution and placed in microcolonies to assess impacts on feeding, life span, and reproduction. The highest concentration of deltamethrin (Bmga GL) reduced folding Workers treated with deltamethrin had shortened life spans and produced fewer males

### A. Material 1. Test material Active substance(s): Deltamethrin hemical state and desception Not specified Source of test item. Baser CropScience, Calgary, Alberta, Canada Batch number: Not specified •Rurity: 🖉 Not specified torage conditions; Not specified Water N₀₀ specified Species: Class "A" colonies of Bombus impatiens Cresson Common eastern bumble bee Common name: Source of test species: Canada) of test organism(s) A bottle of sugar solution ( , Canada) was included with each Feeding:

colony and provided the bees with nectar substitute *ad libitum*. Honey bee-collected mixed floral pollen pellets were obtained







⁷ Potter, C. 1952. An improved laboratory apparatus for applying direct sprays and surface films, with data on the electrostatic charge on atomized spray fluids. Annals of Applied Biology, 39: 1–28.

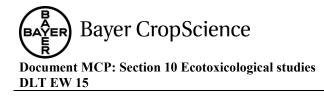
Page 131 of 518 2017-05-15

**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15



⁸ SAS Institute. 2005. PROC users manual, version 9.1, 6th ed. SAS Institute, Cary.




were approximately normally distributed. Differences among means were determined with Fisher's least significant difference test (significance level of  $\alpha$ =0.05). 2. Chemical analysis Guideline/protocol: Not specified Method: Not performed RESULTS 1. Contact toxicity: Results for deltamethrin are summarized in table 1. Table 1:Direct contact toxicity and hazard of formulated deltamentin foradult worker. Bombus importens 48 hours following spray application. Label Pate Hazard LC50 n Slope ± SE 95% Fi [mg_a.i./L)^{∧∪} quotient^B (mg a.i./L) 301 346.5 316/8-382 6 31  $4.4 \pm 0.76$ 5.7 A Based on an application volume of 200 L/ha Where & range of recommended applications rates was given on the formulated insecticide label, a mean rate was sed: detramethrs 6.25 g a.i./ha. considered ponhazardous. ^B Hazard quotient=insecticide label rate / its/LC50. Insecticide with hazard quotient SE, standard error; FL, fiducial limits. 2. Oral toxicity: Results for deltamethrin are summarized in Table 2: Oral toxicity and hazard of formulated deltamethrin to adult worker Bombus impatiens 48 hours following ingestion abel rate Hazard n 95% Slope ± SEC quotient^B »[mg a.i./L)^ (mg a.i./L) 260 ₼ 33.8 ○ 4.1 ± 0,56 ¹30.8 37.4 1.5 🔊 31 0.9 K. A Based on an application volume of 200 L/ha. Where a range of recommended applications rates was given on the formulated insecticide label, a mean rate was used; deltamethrin 6.25 g a m/ha. ^B Hazard quotient=insecticide label rate / its 1450. Insecticide with hazard quotient of <1 is considered nonhazardous. SE, standard error; FL, fiducial limits 3. Sublethal microcolons test Workers treated with detametrin at 7 mg a.i./L had significantly reduced survival and produced fewer males mpared to the control (p and p=0.0008, respectively). Results for deltamethrin 0000 are summarized in table 3 Table 3: Sublethal impacts of insectiondes on Bombus impatiens. ccoccode (month + SENA) T Amoint

Treatment	Endpoint assessed			
	Life span	Daily nectar	Days to first	Total males
(mg a.i./L) ^A		Consumption (g)	oviposition	produced
Control (0)	395 ± 0.3 ab	2.9 ± 0.1 abc	5.2 ± 0.7 a	9.5 ± 2.0 a
Deltamethrin (1.70)	<b>∂</b> 7.8 ± <b>0</b> ,9 b	2.9 ± 0.1 abc	6.9 ± 0.7 a	6.8 ± 2.0 a
Deltamethrin (17.0)	32.7 <b>1</b> .6 c	2.7 ± 0.1 c	6.3 ± 0.7 a	4.3 ± 2.0 b
			1 1	1

^A Each worker consumed  $\Im$ mL of Noney/water solution mixed with insecticide prior to being placed in a microcolony ^B Values with columns with the same letter are not significantly different ( $\alpha$ =0.05).

## RESULPS SUMMARY

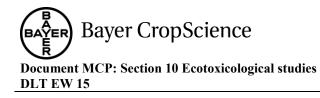
48-h toxicity tests with *Bombus impatiens* resulted in  $LC_{50}$  values of 346.5 mg deltamethrin/L (contact test) and 33.8 mg deltamethrin/L (oral test), respectively. In the 40-d sublethal microcolony test,



workers treated with deltamethrin at 17 mg a.i./L had significantly reduced survival and produced fewer males compared to the control.

Comments of the Notifier: Gradish et al. (2012) examined the effect of deltamethrin on bumble bees ô (Bombus impatiens). From laboratory assays, they calculated an oral LC₅₀ of 33 mg deltamentin/I (= 845  $\mu$ g a.s./bee) which is substantially above the reported contact LC₅₀ of 36  $\mu$ g a.s./bee for Bopbus terrestris, and suggests that deltamethrin acts primarily via the contact route as described for honey bees. The authors reported significantly reduced survival and reproduction rates of worker bees in micro-colonies which had been fed under laboratory convitions with 17 mg a.s./L deftamethorn ( $\approx 4$ µg a.s./bee). No significant reduced survival or reproduction rates were observed for worker bees in micro-colonies which had been fed under laboratory conditions with 1.7 mg a.s. deltamethrif (~ µg a.s. /bee). No attempt had been made to relate the applied doses to fold-relevant doses. Two turged studies with field-relevant application rates (12,5 g a.s/ha) under realistic exposure conditions, ic spray treatment of flowering target crops, demonstrated that foraging burgete bees were not impacted CP 10.3.1.1.2 Acute contact toxicity to bees

Report:	KCP 10.3.1 4, 2/01, (2000) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Title:	Contact to City (LD50) to honey bees (Apis methifere L.) Deltamethin
	oil in water emusion 10 g/L fr m the start of a
	Code: AE F032640 00 EW0 B102
Document No:	<u>M-198509-01-1</u> (Rep. No CW00/032)
Guidelines:	$E RO 176^{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
GLP:	Les L B S S S S


## Material and Methods.

Groups of fifty worker honey bees, Apis, mellifera, were treated by topfcal application with the dose rates of 0.4, 0.8; 1; 2 and 4 µg test item per bee. After 24, 4@and 72 hours the numbers of dead bees in each cage were asses

Findings:	
	Q * SAE FØ32640 00 EW@ B103S
Time (hours)	LD50 05 % figueial fimits) up product per bee
24	0.947@0.851@1.055
48	0.921(0.825 - 1.025)
\$2	0.871 (0.481 - 0.972)
L ↓	
Report: ©	KCP 10,3,1.1.2,02, (2000)
Title:	Contact toxicity (LD ₅₀ ) to honey bees (Apis mellifera L.)
	Deltamethrin emuls@able concentrate 15 g/L
Document No	<u>M-198885-91-1</u> (Rep. No.: CW00/030)
Guidelines:	ERPO Gordeline No.170
GLAY:	jes j
	49

## Materia and Methods:

In this laboratory study the contact toxicity of the insecticide AE F032640 00 EC02 A804 to the worker honey bee was determined. The study was designed to comply with EPPO Guideline No.170



and under GLP. Groups of fifty worker honey bees, Apis mellifera, were treated by topical application with the dose rates of 0.2; 0.4; 0.8; 1.0 and 2.0 µg AE F032640 00 EC02 A804 per bee. After 24, and 72 hours the number of dead bees in each cage were assessed.

## Findings:

0	-
	AE F032640 00 EC02 A804
Time (hours)	LD ₅₀ (95% fiducial limits) $\mu$ g product per bee
24	1,598(1.371-1.894)
48	1.481 (1.307 - 4743)
72	$\dot{\rho}^{\gamma}$ 1.494 $\dot{\rho}^{\gamma}$ $\dot{\rho}^{\gamma}$ $\dot{\gamma}^{\gamma}$

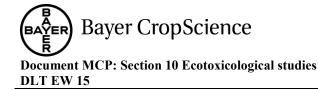
Report:	KCP 10.3.1.1.2/03,
Title:	Contact toxicity (LD ₅₀ ) to honey bees (Apis mellifera L.)
	$1$ Deltamethrin emulastianle concentrate $18009/1.0^{\circ}$ . $\sim$ $0.0^{\circ}$ $1.0^{\circ}$
Document No:	<u>M-198786-01-1</u> (Rep. No.: CW90/03)
Guidelines:	
GLP:	

## Material and methods:

Groups of fifty worker hovey bees, Apisonellifera, were treated by topical application with the dose rates of 0.04; 0.08; 0.1z 0.2 and 0.4 µg test item per bee. After 24,48 and 72 hours the numbers of dead bees in each cage were assessed.

## Findings:

	0 0 % <b>x</b> E F <b>032</b> 640 0	DEC113308
Time (hours)	🖞 🛛 🔏 D50 (95 % fið þýðial ljóði	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.288 (0.24)	9
£ 9 48 01	0.276(0.24)	2, - 0.32 0 ¹
72	× × 5× 0.264 (0.22	1 - 0.332


Conclusion:

The contact Last was h of exposure.

Report:	KCP 10.3.1.1.2/04, (1994)
Title:	Determination of the contact toxicity by topical application of
L L	Decis $W_{0,2}^{0,2}$ (Here 032640 00 EG06 A101) to the honey bee
Į (Apis mellifera L.
	M-1,0791-64-1 (Rep. No.: CW94/030E)
Guidelines:	EPPO Gu@eline No.170
GLP S	Jes J

Material and Methods:

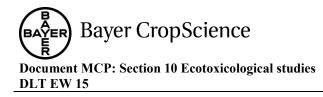
The contact toxicity of AE F032640 00 EG06 A101 following topical application was investigated in the laboratory. A single dose of 1 µl of the test substance was applied to each bee with the aid of a microapplicator. Inspections took place 24, 48 and 72 hours after treatment. The LD₅₀ was calculated

by means of probit analysis.

Findings:		AE F032640 00 EG06 AD01		
Time (hours)	LD_{50} (95% fiducial limits) μ_{0} i.i. per bee		
2		0.074 (0.065 – 0.085)		
4				
7	2	© 0.064 (0.056 9 0.073)		
Supplemental info	ormation from the	$= \text{literature} \begin{array}{c} 0.068 (0.060 - 0.078) \\ 0.064 (0.056 + 0.073) \\ ***** \\ & & & & & & & & & & & & & & &$		
Report:		D_{a}		
-	Filho, J. S. S.: Toxicity of aca mellifera l., 17 acaricidas/inse	2/05; Carvalho, S. M.: Carvalho, G. A.; Carvalho, C. F.; Bueno Baptista, A. P. M (2009) aricides/insectocides for citrus crop to the africanized horeybee apis 758 (hymenoptera: apidae) original title doxicidade de til das empregados na citricultura para a abella africanizada apis 58 (hymenoptera: apidae).		
Title:	Filho, J. S. S. Toxicity of aca mellifera l., 17 acaricidas/inse mellifera l., 17	Baptista, A. P. M (2009) aricides/insectocides for citrus crop to the africanized horeybee pris 758 (hymenoptera: apidae) original title loxicidade de tiledas empregados na citricultura para a aberba africanizada apis 58 (hymenoptera: apidae).		
Title: Source:	Filho, J. S. S. Toxicity of aca mellifera l., 17 acaricidas/inse mellifera l., 17	Baptista, A. P.M. (2009) aricides/insectocides for citrus crop to the africanized houeybee apis 758 (hymenoptera: apidaed original title doxicidade de citrudas empregados na citricultura para a aberra africanizada apis		
Title: Source: DOI No:	Filho, J. S. S. Toxicity of aca mellifera l., 17 acaricidas/inse mellifera l., 17	Baptista, A. P. M (2009) aricides/insectocides for citros crop to the africanized horeybee apis 758 (hymenoptera: apidae) original title toxicidade de tiledas empregados na criticultura para a abebra africanizada apis 58 (hymenoptera: apidae).		
Report: Title: Source: DOI No: Document No: Guidelines:	Filho, J. S. S.: Toxicity of aca mellifera l., 17 acaricidas/inse mellifera l., 17 Arquivos do fi	Baptista, A. P. M (2009) aricides/insectocides for citrus crop to the africanized horeybee pris 758 (hymenoptera: apidae) original title loxicidade de tiledas empregados na citricultura para a aberba africanizada apis 58 (hymenoptera: apidae).		

EXECUTIVE SUM

EXECUTIVE SUMPARY This study was performed to assess the actions of chemical products on A. mellifera adults when applied by spraying, ingestion of contaminated food and exposure to treated surfaces. Material and methods as well as results are summarized for deltamethon only


M

Deltamethrin (25EC) was tested at a concentration of 50mk beltamethrin per100 L water. Distilled water of pure food was used for the control treatments. The methods used in our experiments were chosen with the ain of obtaining results for various modes of exposure of the bees to the pesticides, knowing that this can occur by chrect contact during spraying, settling on treated surfaces and ingestion of contaminated food. The tests were performed on an entirely randomized basis with 10 repetitions per treatment, with each experimental unit bring formed by 10 adult bees kept in a climatized room at $25 \pm 2^{\circ}$ C, r. b $70 \pm 30^{\circ}$ and 12-hour photo phase.

Spraxing of products on A melligera: One hundred bees per treatment were placed in a Petri dish and sprayed with the products by means of a Potter tower at a rate of $1.5 \pm 0.5 \,\mu\text{L/cm2}$ at 15 psi. They were then transferred to PVC gages (5 cm diameter x 10 cm height) Sugar paste⁹ was given as food and cotton wool soaked with distilled water was placed on the tulle in the upper part of the cage.

Provision of product-contaminated sugar paste to A. mellifera: The sugar paste was prepared with 50 g of fcing sogar and 10 m of honey. The amount of pesticide to be incorporated was determined according to the diet volume and the pre-established dose. After placing 10 bees in each PVC cage, the sugar paste contaminated with each of the pesticides was placed on the tulle in the upper part of the

⁹ WAHL, O. Le nourrissement. In: CHAUVIN, R. (Ed.). Traité de bologie de l'Abeille. Paris: Masson et Cie, 1968. Tome IV, p.162-180.

cage together with cotton wool imbibed with distilled water.

Residual effect of pesticides on A. mellifera using a contaminated glass surface: The inside surfaces of the Petri dishes (10 cm diameter x 2 cm height) were sprayed with the pesticides by means of a Potter tower at an application rate of $1.5 \pm 0.5 \,\mu$ L/cm² at 15 psi. After evaporation of the excess of each pesticide, the food packed in a plastic lid of 2 cm diameter was placed inside the chambers followed by the anaesthetized bees.

Residual effect of pesticides on A. mellifera using contaminated strus leaves: Tangerife leaves (Citrus reticulate Blanco cv. Ponkan) collected from a plant exempt from pesticide treatment were immersed for 5 seconds in the chemical mixtures of each treatment. Togetiminate the excession uid, the leaves were placed for about 3 hours in a ventilated place in the dark. After drying four treated leaves were placed in each chamber set. Food packet in a plastic life was placed on the base of each chamber, followed by the previously anaesthetized bees. (M) The assessment times were standardized on all the experiment ending where the control treatment mortality was 20% or more (EPA-Opps 1996). The assessments were made at 12, 3, 45, 6, 212, 15, 18, 21, 24, 30, 36, 42, 48, 60 and 22 hours. The experiments were performed in duplicate in a factorial scheme (Offeatments x Papplication methods) with measurements repeated in time where by the data obtained and erwont survival analysis using the Survival packet¹⁰ compiled by Software R® (2008). The respective 50% lethal times (FY50) were also calculated^{11,12}

Spraying of products on A. mellifera: Deltamethon showed low toxicity with an LT50 of 178.57 hours.

Provision of product contaminated sugar paste to A. mellifere. Deltanethrin caused mortality that increased with mcreasing exposure time to reach 7% after 72 burs, with an LT50 of 64.65 hours.

Residual effect of pesticides on A. mellifera using a contaminated glass surface: Deltamethrin was toxic with an LT50 of 42.91 hours and a figal mortality of 64% (48 h).

Residual effect of pesticides of A. mellifera using contaminated citrus leaves: Deltamethrin was toxic to bees, with mortalities of 100% respectively and a mean LT50 of 27.74 hours.

S MATERIAL AND METH

A. Material

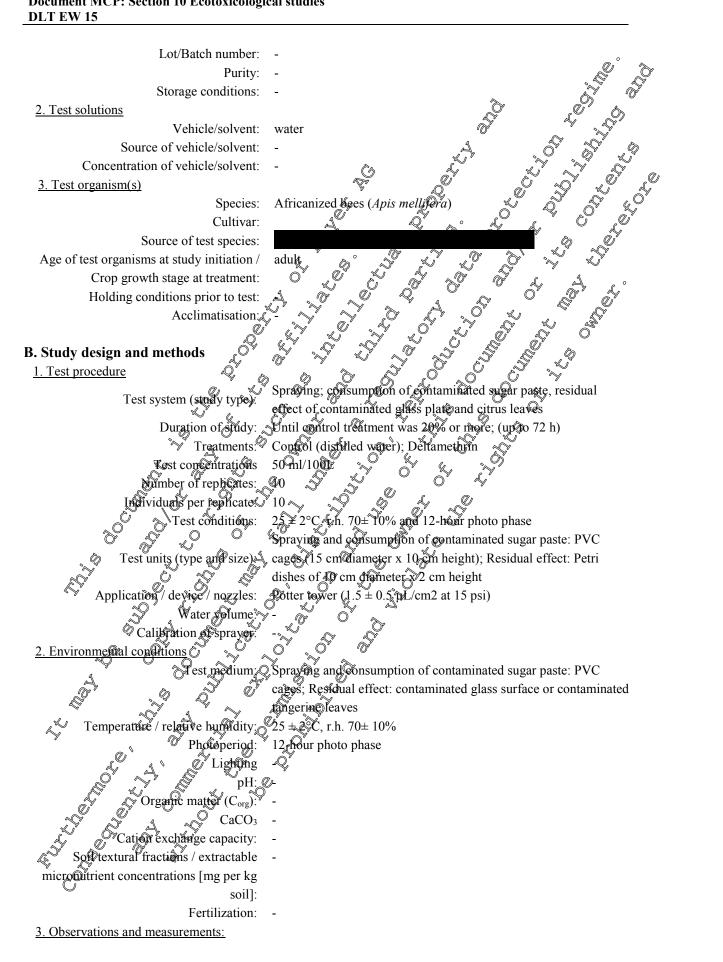
1 A est material

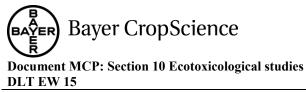
Deltamethrin 25 EC est item:

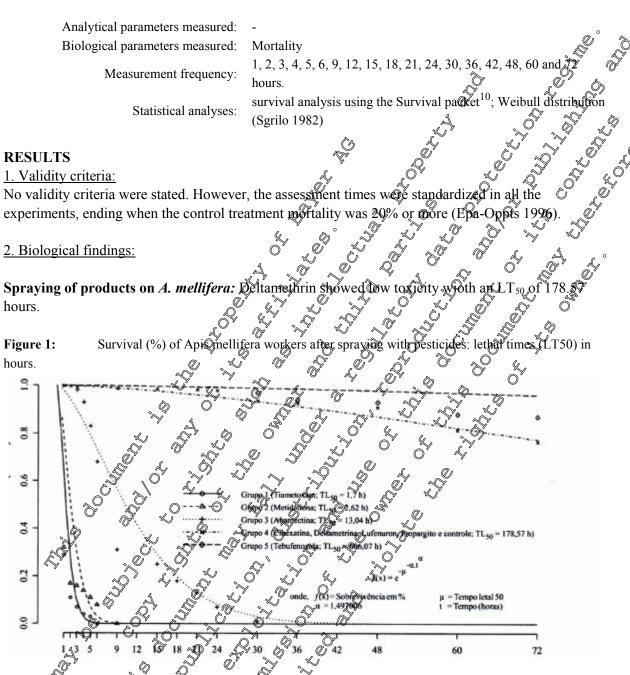
Active substance(s): Deltamethrin

djuvant / Surfactant -

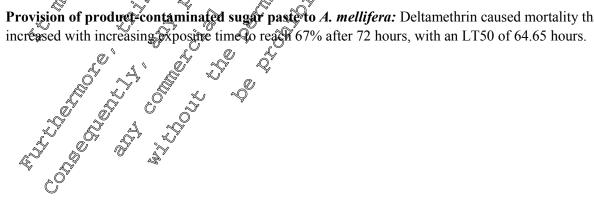
Source of test item:

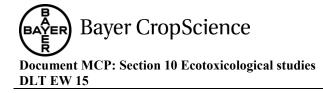

¹⁰ THERNERU, T.; LUMLEY, T. Survival analysis, including penalised likelihood. Package version 2.43-1, 78p. 2008

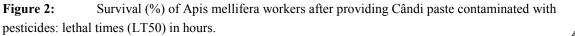

¹¹ MONCHARMONT, F.X.D; DECOURTYE, A; HANTIER, C.H; PONS, O.; PHAM-DELEGUE, M. Statistical analysis of honeybee survival after chronic exposure to insecticides. Environmental Toxicology and Chemistry, v.22, p.3088-3094, 2003.

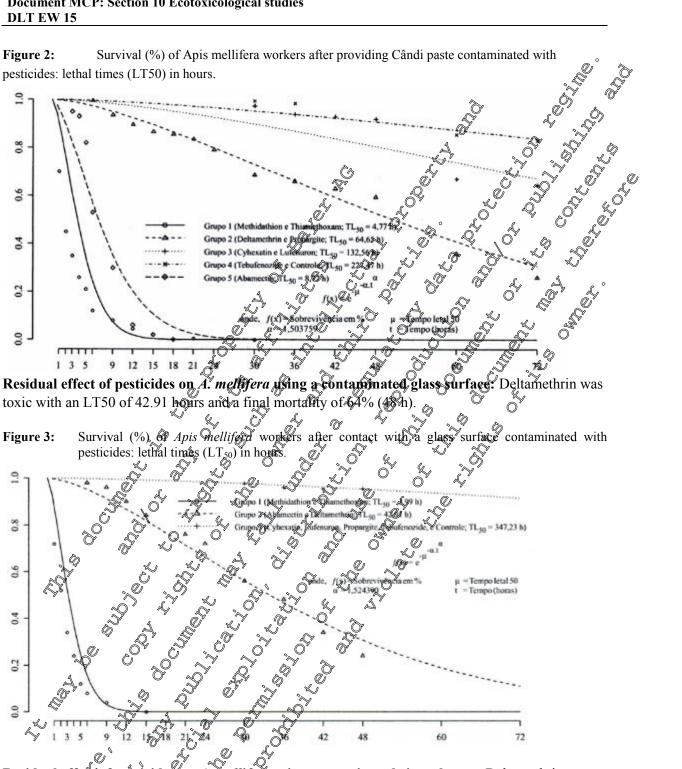

¹² COLOSIMO, E.A.; GIOLO, S. R. Análise de sobrevivência aplicada. São Paulo: Edgar Blucher, 2006. 392p.

Bayer CropScience

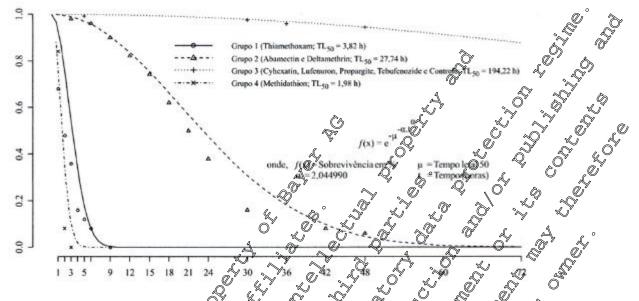

Document MCP: Section 10 Ecotoxicological studies DLT EW 15







Provision of product contaminated sugar paste to A. mellifera: Deltamethrin caused mortality that



Residual effect of pesticides on A mellifera using contaminated citrus leaves: Deltamethrin was toxic to bees, with mortalities of 100% respectively and a mean LT50 of 27.74 hours.

Superval (2) of Approximated with pesticides: Figure 4; lonal times (LT,) in hours. ŝ

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

RESULTS SUMMARY

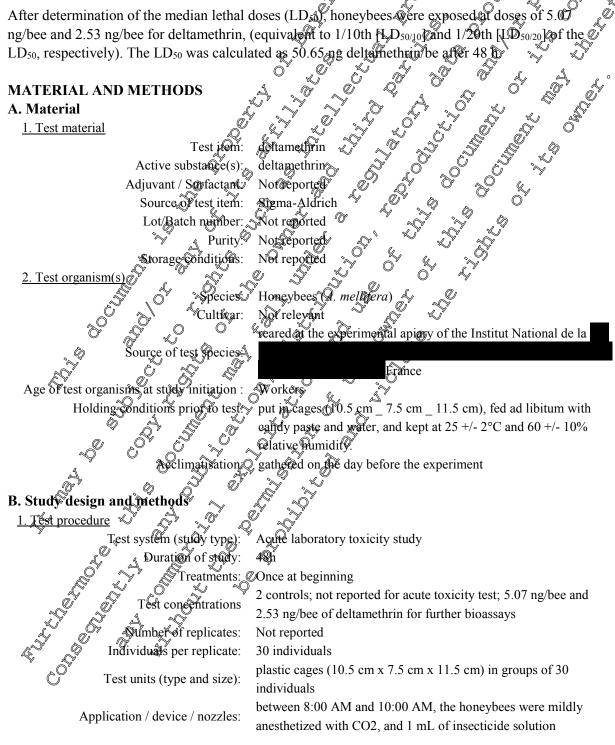
Spraying of products on *A. mellifera:* Deltamethrin Dowed by to Acity, Noth at T₅₀ of 178.57 hours.

Provision of product-contaminated sugar paste to *A. mellifera*: Deltamethrin caused mortality that increased with increasing exposure time to reach 67% after 2 hours, with an LESO of 64.65 hours.

Residual effect of pesticides on *mellifera* using a contanginated glass surface: Deltamethrin was toxic with an LT59 of 42.91 hours and a final mortantly of 65% (48 h).

Residual effect of posticides on *A. mellifera* using contaminated citrus leaves: Deltamethrin was toxic to bees, with mortalities of 00% pespectively and a mean LT30 of 27.74 hours.

Comment of the Notifier: Individual honey bees which were dosed under laboratory / indoor conditions suffered from various adverse effects in a dose-dependent manner. However, the ability of large honey bee colonies to absorb in pacts from stressors and continue to grow makes extrapolation from effects observed in a laboratory on individual bees to effects of relevance at the colony level in the field extremely difficult. In pany cases, acute risks of lethal or sub-lethal effects for individual bees observed in the laboratory may have no consequences whatever for colonies in the field. In summary, testing on individual bees does not allow for an evaluation of potential impacts on the entire colony: only on the basis of field and monitoring studies is it possible to determine whether a particular stressor gives rise to a cology level impact.


Report: 0 5	KCP 10. 1.1.2/06; Carvalho, S. M.; Belzunces, L. P.; Carvalho, G. A.; Brunet, JL.;
	Badion-Beneteau, A. (2013).
Title:	Enzývhatic biomarkers as tools to assess environmental quality: a case study of exposure of
Title:	the honeybee Apis mellifera to insecticides
Report:	Environmental Toxicology and Chemistry, Vol. 32, No. 9, pp. 2117–2124
Document No .:	<u>M-464768-01-1</u>
Guidelines:	European and Mediterranean Plant Protection Organization guideline 170 Deviations:
	higher requirement for control mortality (<5%)
GLP:	No

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

EXECUTIVE SUMMARY

The present study was intended to evaluate the responses of enzymes in the honeybee Apis mellifierd after exposure to deltamethrin and its use as biomarkers. The responses of acety cholinesteras (AChE), carboxylesterases (CaEs-1-3), glutathione-S-transferase (GST), catabase (CAT), and alkaline phosphatase (ALP) were assessed. For the enzyme involved in the defense against oxidative stress deltamethrin induced no CAT activity. However, exposure to deltamethrin induced slight effects a modulated only CaE⁻¹ and CaE⁻², with opposite effects.

After determination of the median lethal doses (LD s), honeybees were exposed at doses of 5.00

Page 142 of 518 2017-05-15

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

JOTA. Lutomatic interval containing the appropriate dose was applied to the dorsal thorax by means of a Hamilton microsyringe coupled with an automatic dispenser 2. Environmental conditions Test medium: Plastic cages 25 +/- 2°C / 60% Temperature / relative humidity: Photoperiod: Not reported candy and water ad libitum food 3. Observations and measurements: Analytical parameters measured: none Biological parameters measured: mortality Measurement frequency: After 24 and 48 Statistical analyses: **RESULTS AND DISCUSSION** 1. Biological findings: 1. Biological findings: The LD₅₀ was calculated as 50.65 by deltamethrin/be after 48 bwith oconfidence interval of 43.33-57.97. From the LD50 values of each insecticide, the sublethal doses L1930/20and LD50 determined and used in the exposure assays. Table 1: Acute toxicity (median that dose [LD3]) of deltamethrin to Apis mellifere D50 (ng/bee at 95% CI Qj2 🔊 df LD50/20 LD50/10 Sarity (%) ≪48h) 21.88 15 2.53 5.07 deltamethrin

CONCLUSION deltamethoin/be ofter 48 h 6**5**, ng The LD₅₀ was calcolated as

Comment of the Notifier: Carvalho et al 2013 Exposed honey bees under laboratory conditions to lethal and sub-lethal dosecof detramether via the contact route of exposure. The 48h-LD50 of technical grade deltamethrin was found to be 0.051 be a.s./bee, which is in line with the regulatory database. Sub-lethal dose of deltamethrin (D50/20 and LD50/10) were found to have a short-term knock-down effect with a fail recovery of the bees after 1 - 2 hours after exposure. The investigated sub-lethal doses of deltamethrin resulted in a modulation of some of the investigated biomarkers without inducing mortality.

Chronic toxicity to bees CP 10.3.4.2

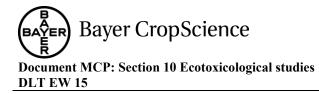
A chronic study was performed with the active substance deltamethrin (2014, M-477250-01-1) and is included in the MCA document (see MCA 8.3.1.2/01).

57.97.

CP 10.3.1.3 Effects on honey bee development and other honey bee life stages

A honey bee brood semi-field study (OECD GD 75) has been conducted with the EW 15-formulation , 2014; M-477316-01-1) and is included under CP 10.3.1.5, below.

There is no particular study design / test guideline to assess "sub-lethal effects" in honey bees, the sub-lethal effects in honey bees, the sub-lethal effects if occurring are described and reported.

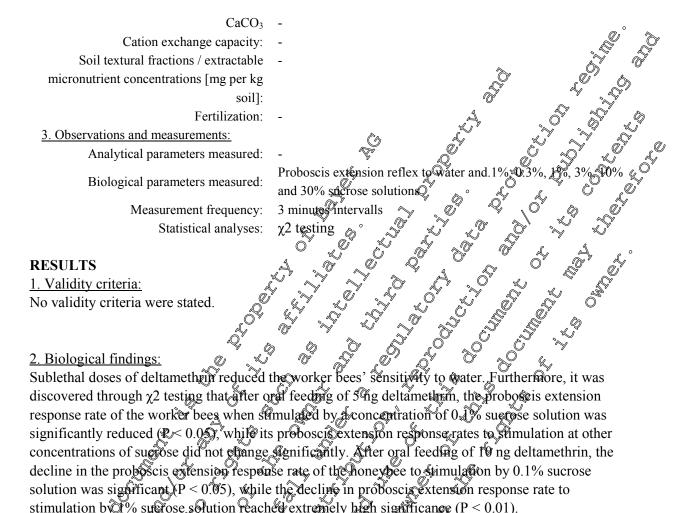

Report:	KCP 10.3.1.4/01; Song, H.; Zhou, T.; Wang, Q.; Dai, P.; Luo, Q.; Xu, S.; Wu,
Title:	Effects of sublethal doses of insecticides on olfactory sensitivity of honeybe
	(Apis mellifera logustica).
Source:	Yingyong Kunchong Xuebac, 48, 3 p. 61 615 S
DOI No:	
Document No:	<u>M-462163-01-2</u> 9 9 6 6 6 6
Guidelines:	
GLP:	

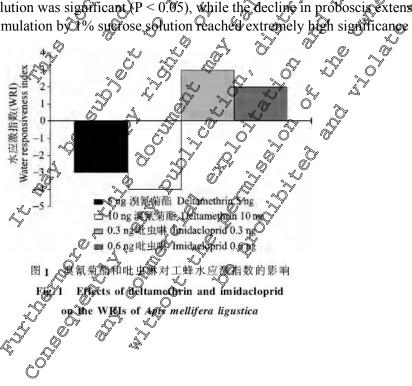
EXECUTIVE SUMMARY

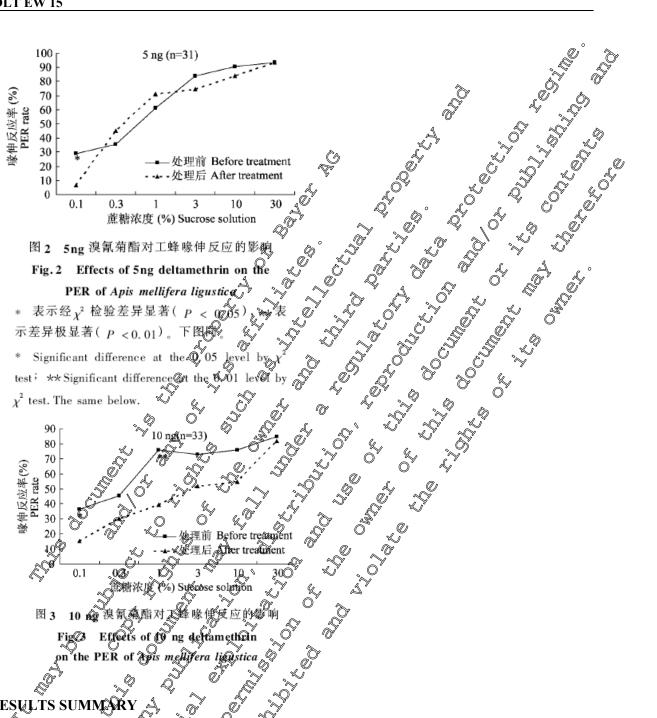
The authors observed the proboscie extension reflex of the honeybee as a means of studying the effects of sub-lethal doses of deltamethrin and inidacloprid on honeybee offactory sensitivity, to provide an evidentiary basis for the reasonable use of insecticides and to protect the poneybee. Material and methods as well as results are summarized for deltamethon only?

The test used Italian honeybee Apis mellifera liguistica? ... worker bees obtained from the Experimental Apiary of the Honeybee Protection and Biological Safety Laboratory of the Institute for Apicultural Research of the Chinese Academy of Agricultural Sciences; the insecticides used were 0.6% deltamethrin miscible oil preparation (Jiangsu Province Yixing City Yizhou Chemical Products). Young worker bees (18 days old) were randomly selected for the bioassay. Step 1: After the worker bee was starved for 2 bours, it was removed from the incapator (35°C and 67-70 % relative humidity), and outside the incubator aglass wand dopped in water was used to approach the antenna of the worker bee. Probasis extension was observed and recorded. The same method was used for each concentration in sequence at 0, 0, 3%, 1%, 3%, 10% and 30% sucrose solutions to stimulate the worker bee. The water and each concentration of sucrose solution were used to stimulate at time intervals of 3 minutes anothe proboscis extension response was recorded. Step 2: After 0.5 hours, each bee was fee 10 µL 30% across solution containing sub-lethal doses of deltamethrin (5 and 10 ng) and then placed back into the incubator. Step 3: After 2 hours, step 1 was repeated, and the proboscis extension response of the honeybees to water and to each concentration of sucrose solution were recorded.

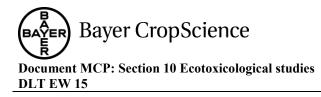
Sublethal doses of deltametorin reduced the worker bees' sensitivity to water. Furthermore, it was discovered brough 22 testing that after oral feeding of 5 ng deltamethrin, the proboscis extension response rate of the worker bees when stimulated by a concentration of 0.1% sucrose solution was significantly reduced (P < 0.05), while its proboscis extension response rates to stimulation at other concentrations of sucrose did not change significantly. After oral feeding of 10 ng deltamethrin, the decline in the proboscis extension response rate of the honeybee to stimulation by 0.1% sucrose




Page 145 of 518 2017-05-15


DLT EW 15

solution was significant P < 0.05), while the decline in proboscia extension response rate to stimulation by M subrose solution reached extremely high significance (P < 0.01).


Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

RESULTS SUMMARY

Sublethal doses of deltamethrin reduced the worker bees' sensitivity to water and sub-lethal doses of deltamethrin caused a decline in hone bee sensitivity to sucrose solution and this effect became more notable as the pesticide concentrations increased.

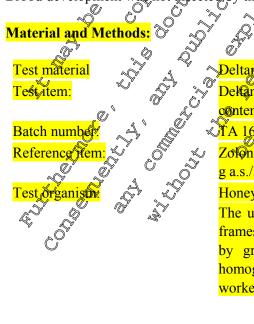
Comment of the Notifier: Individual honey bees which were dosed under laboratory / indoor conditions suffered from various adverse effects in a dose-dependent manner. However, the ability of large honey bee colonies to absorb impacts from stressors and continue to grow makes extrapolation from effects observed in a laboratory on individual bees to effects of relevance at the colony level in the field extremely difficult. In many cases, acute risks of lethal or sub-lethal effects for individual bees observed in the laboratory may have no consequences whatever for colonies in the field. In summary, testing on individual bees does not allow for an evaluation of potential impacts on the entire

colony: only on the basis of field and monitoring studies is it possible to determine whether a particular stressor gives rise to a colony level impact.

Cage and tunnel tests CP 10.3.1.5

During the evaluation of the AIR dossier for Deltamethrin the RMSUK noted that a number of study summaries on the bee tunnel studies for deltamethrin do not contain sufficient information. The RMS UK requested to submit revised study summaries for an under of reports summarized below. The study summarie were written according to a master templa provided by the RMS UK and include daily tabulated mortaility rates peoper plicate.

Report:	KCP 10.3.1.5/01,
Title:	Tunnel test - Acute and short term effects of AE F032640 (9 EW01 B106, application
	white mustard on hopey bees (Apis mellifera L.)
Document No:	<u>M-204260-01-1</u> (Rep. Nov S01 WB.87 WO44)
Guidelines:	EPPO 170, (1992), CEB 129 ~ ~ ~ ~ ~ ~ ~ ~ ~
GLP:	yes Q & & & & Q & V 'N


Material and Methods:

Bees were confined within tunnel acclimatization phase of seven days, application was performed during bee Might. The control was treated with water, the test item was applied at a rate of 0.5 1/ha, as a non-poxic standard, Zolone Florwas used at a rate of 1.2 L/ha. The test substance treatment was twice replicated, control and standard once. Endpoints storage of honey and pollen, behavior, and brood assessed were mothality. Graging and flight activity; development.

Findings:

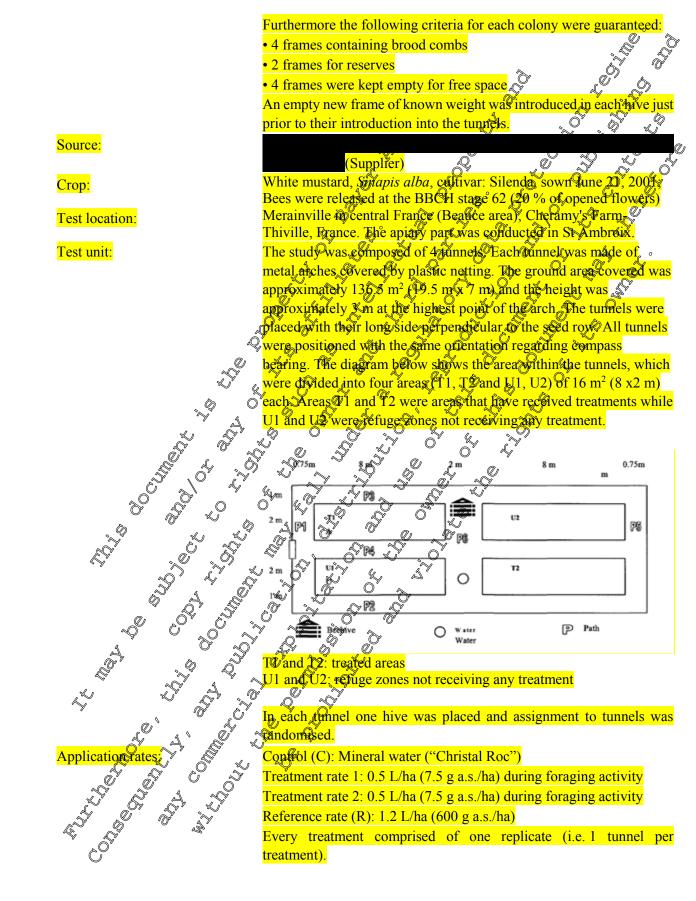
Mortality and flight activity in the test substance treatment were similar as in the non-toxic standard. Foraging activity was not or only very slightly affected by the test substance treatment on the treated as well as on the refuge afte tunnels. . Litrewise on the behaviour were detected. ulstance Featment as well. Brood development was not

Material and Methods:

Deltamethrif

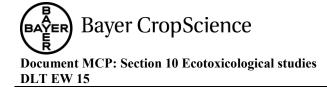
Dekamethan EW 15 (Decis 15 EW, AE F032640 00 EW01 B106) content of a.s. deltamethrin: 1.51 % w/w (15 g/L nominal)

A161/99PM

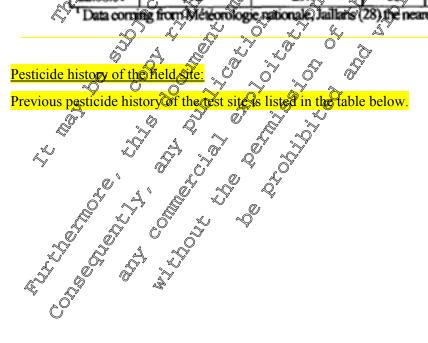

Zolone Flo SC 500 (500 g a.s./L nominal, analysed content: 499 g a.s./L)

Honey bees (Apis mellifera L.)

The used hives were single box colonies (type DADANT) with 10 frames, 10.000 bees and one queen at test start. Queens were obtained by grafting. and colonies (consisting of Caucasian bees) were homogeneous as possible. At the beginning of the test, the oldest worker honeybees were a maximum of 3 months old.


BAYER Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies DLT EW 15


The spray volume was 300 L/ha in all treatment groups. The sprayer was calibrated before use on the day of application. The deviation reached a maximum of 3.12 %. Ô Data for mortality, foraging activity, behaviour of the beey and data of Data sampling: the colony were assessed. Linear regression analysis using STAT TTCF was done to compare the Data analysis: mortality of the bees during the acclimatisation phase and the mortality on Timate conditions during the experiment. The new rounder way shifting the new shifting the of the bees during the exposure period. Ø, Ì One deviation we recorded in the study report. This deviation had no

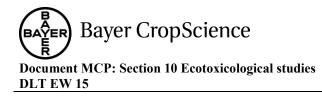
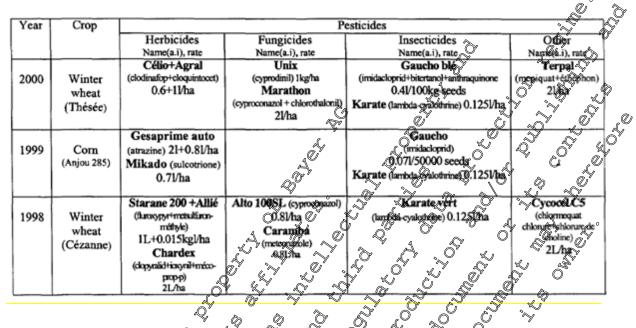


Table 1: Field conditions


Date	Temperature Mini °C	Temperature Maxi °C	Relativ humic Mini	ve'air ਨ lity %ਿੱ Maxi	Rainfall	
01.08.01	17.1	32.0 😋	40	√ 92	****	
02.08.01	17.7	28.0	52	91	9.0 0	
03.08.01	13.0	253	44	1 99	~ 3Q,	S &
04.08.01	13.2	22.4		l 🤊 100 🖏		
05.08.01	15.5	22 A 201	Area			
06.08.01	17.2	×23.0 Ø	271 20	100		d ^y
07.08.01	14.3	I ⊻ 22.0 ° A	750	800	174 A	° م1.
08.08.01	14.3		25 71 × 2 757 1 × 2 757 257	96° 96° 99°	0.6 2	
09.08.01	93	219 219 221 221 221 221 221 221				
10.08.01	93 7.6 8.0 10.8 10.8	22150 70 2456 V		299 2102 102)
11.08.01	8.0 🗸	40° 2430 °	23 8			
12.08.01	10.8	g7.0 O	5 35 20			
13.08.01	10.8 9		2 32 ¢ -\$46 °	100 C		
14.08.01	MAN ()	8 334 m	- \$ 6	1000		
15.08.01	<u>\$9199</u>	5 ⁷ 5 ² 22 5 ⁴ 41 AQ	37	460	× 23.4	
16.08.01	1 14-4	5 ³ 41 AU . C	× 5/ 2	¥00 ô	0.2	
17.08.01	\$ \$1.6 ×	0, 30 L	ØŠ (× 100,×	-	
18.08.01	1630 150		© 75	100	1.8	
1908.01	150	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,75 3 500	298	3.8	
20.09.01		2 41 A 41	\$ 500 ¹	100	0.2	
21.08.01	1200	×7.6 ×	⁰ 41 x		-	
22.08.01		29.7	C KO	100	-	

rs (28) the nearest station. Data con

Table 2: Pesticide history of the field site

The aim of the study was to exact that potential side effects of a spray application of Deltamethrin EW 15 on the honeybee, *Apis mellifera*, under forced exposure conditions.

This study included four exposure groups (tunnels) each: one tap-water treated control group, two testitem groups and one reference them group. In all exposure groups the crop was sprayed 7 days after setup of the hives in the tunnels (Acclimatisation phase) at BBCH 62 (200% flowering), during honeybees actively foraging on the crop under contined conditions. The boneybees remained 17 days in the tunnels. Depending on the weather conditions the observations were conducted for a 10-day period following a 7-day adaptation period of the hives to the confinement. At the end of this 10-day period, symptoms of toxicity (mortality, behaviour, etc.) were no more clearly observed in each tunnel, the exposure phase of the study was stopped and be hives returned to the apiany.

The assessments of the number of any dead bees were performed in each tunnel, each morning during both the adaptation period of the hives and thereafter until the end of the test. For each tunnel, these daily assessments was performed commencing Angust 10 in the morning (not possible before because of the rain) and subsequent daily assessment was conducted at approximately the same time for each tunnel each day. This daily assessment was not performed August 18th and 19th because of bad weather conditions. During each assessment all deachees were collected in the 6 paths and in the dead bee trap (the bees collected from each of the path areas [to 5 were pooled].

The assessments of the foraging activity were performed only on those days when the weather is such that honeybees are likely to be foraging. Counting was done over the whole of the zone by assessing the number of bees passing an area of 60cm wide, whilst walking at a normal speed down the side of the zone. The foraging activity of the bees was expressed as the number of bees observed separately within each zone on each assessment. After the adaptation period of the beehive, the foraging activity was evaluated twice a day at regular intervals (starting around 10 a.m. in the morning and 3 p.m. in the afternoon). In addition, the day of treatment foraging activity is assessed around 15 minutes before treatment around 15 minutes and 1 hour after each treatment.

Before the foraging assessments were performed within each tunnel the number of bees leaving and entering the hive were recorded (when possible) over a five-minute period. In order to avoid any mistake,

counting of bees entering the hive was done for a 150 seconds period, then counting for bees leaving the hive for a 150 seconds period with another second sequence of 5 minutes.

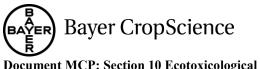
Duration of flower visits was assessed during same time number of the assessment bees leaving and entering the hive. This was performed by recording the time (in seconds) that the different bees for the over 15 different attractive plants (This was done for 15 bees with a maximum time of 90 seconds in order not to delay the following assessments). The plants chosen for this assessment were prosen without conscious bias from those available within each tunnel.

Behaviour of bees was observed during assessment of bee mortality. Oraging activity and control of the colony. Bees were observed for abnormalities like aggressiveness intensive flying without landing of the crop, moribund or severely affected bees, bee accumulation at the behive entrance, trembling, bees no longer producing pollen balls, etc..

The following endpoints were assessed:

- Cumulative number of dead bees before as well as after the applications of the control, the test item groups and the reference item group? respectively?
- Number of foraging bees per zone (T1, 12 and 11, U2) and number of beepn² in each turnel before as well as after the applications in the control, the test item groups and the reference item group, respectively.
- Number of bees leaving and entering the beshives in the control, the lest item groups and the reference item group, respectively
- Duration of lower visits in the control, the set item group and the reference icem group, respectively
- Behaviour of the bees during assessments in the compol, the test item groups and the reference item group, respectively.
- Control of the colory with the to Mowing criteria examined: weight of the empty frame introduced into the centre of the hive, for both sides of each frame the percentage frame surface area containing honey, for both sides of each frame the percentage frame surface area containing pollen, for both sides of each frame the percentage frame surface area containing eggs, for both sides of each frame the percentage frame surface area containing eggs, for both sides of each frame the percentage frame surface area containing eggs, for both sides of each frame the percentage frame surface area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both sides of each frame the percentage area containing eggs, for both eggs, eggs, for both eggs, e

Dates of Work: 6th August to 1,1 October 200


Findings:

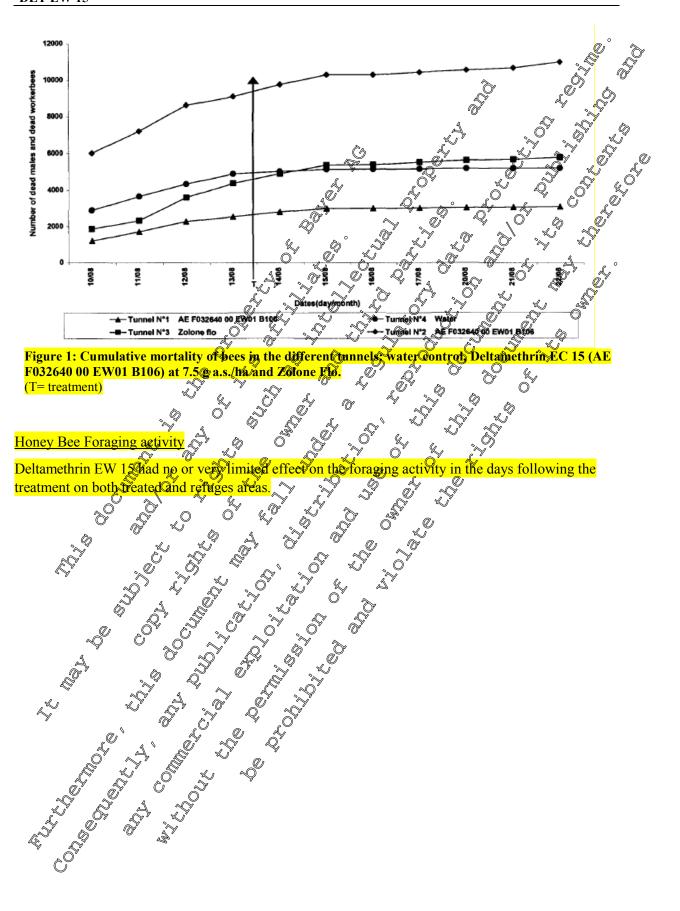
Honey Bee Mortality

A summary of the daily mortality (cumulated dead bees) is shown in following table.

Table 3: Cumulated dead bees during the study period (only males and worker-bees considered)

Tunnel No1	Tunnel No. 2	Tunnel No. 4	Tunnel No. 3
Date Deltamenthin EW 15	<mark>Deltamenthrin EW 15</mark>	Water	Dimethoate
<u>ັ</u> ້	<mark>@ 7.5 g a.s./ha</mark>	vvaler	<mark>@ 600 g a.s./ha</mark>

	<mark>Males</mark>	<mark>Workers</mark>	<mark>Tota</mark> l	<mark>Males</mark>	<mark>Workers</mark>	<mark>Tota</mark> l	<mark>Males</mark>	<mark>Workers</mark>	්ර <mark>ූ Total</mark>	<mark>Males</mark>	<mark>Øgrkers</mark>	
10.08.0 1 3DBT	0	<mark>1200</mark>	<mark>1200</mark>	<mark>3</mark>	<mark>6006</mark>	<mark>6009</mark>	<mark>0</mark>	2894	گ ^و 2894	200 00 00 00 00 00 00 00 00 00 00 00 00		186 29
<mark>11.08.0</mark> 1 2DBT	<mark>0</mark>	<mark>1720</mark>	<mark>1720</mark>	<mark>3</mark>	<mark>7211</mark>	7214 2	<mark>4</mark>	9 <mark>8656</mark>	3660 2		232 232	232
12.08.0 1 1DBT	<mark>1</mark>	<mark>2281</mark>	<mark>2282</mark>	<mark>111</mark>	8519	8630	K K K	\$326 \$326 \$	4341		359 6	<mark>359</mark> 6
13.06.0 1 0DBT	<mark>3</mark>	<mark>2532</mark>	<mark>2535</mark>	<mark>190</mark>	0´ 1 <mark>8918</mark> 7	910 8	2 9	4865	4894	0 ⁷ 2	<mark>437</mark> 5 0	€ <mark>437</mark> // <mark>7</mark>
14.06.0 1 1DAT	<mark>3</mark>	<mark>2796</mark>	<mark>2799</mark>	207 5	0 '>	9760 9760	300 2	4 <u>9</u> 97	5027	₽ 2 <mark>2</mark> 201	489 29 20	<mark>490</mark> 1
<mark>15.06.0</mark> 1 2DAT	<mark>4</mark>	<mark>2986</mark>	<mark>2990 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</mark>	2 <mark>32</mark>	10073	0305 0305	35 35 2 2) 5109 、 ⁽²)	57292	*> (% <mark>8</mark> ()	<mark>537</mark> 4	<mark>538</mark> 2
<mark>16.06.0</mark> 1 <mark>3DAT</mark>	<mark>5</mark>	<mark>2989</mark> ~)	2994 2994	232 0	10076	^م ر 10308 م م	> <mark>38</mark>	5112 5	5157 	8	<mark>538</mark> 3	<mark>539</mark> 1
17.06.0 1 4DAT	<mark>7</mark>	\$014 \$	³⁰²¹	246 ,	10216			5142 5142	5181	8	<mark>552</mark> 6	<mark>553</mark> 4
20.06.0 1 7DAT	n N N	3037	2 <mark>3046</mark>	0 259 4	√ 10323 ⊘″	10582		© <mark>5161</mark>	<mark>5201</mark>	<mark>9</mark>	<mark>562</mark> 7	<mark>563</mark> 6
21.06.0 1 8DAT	9	3065	3074	259 259	2 <mark>10449</mark> 2	10708		<mark>5169</mark>	<mark>5209</mark>	<mark>9</mark>	<mark>568</mark> 2	<mark>569</mark> 1
22.06.0 1 9DAT	ð <mark>oro</mark> Sra	3083 0	2092	2 <mark>61</mark>	2 10767	\$ <mark>11028</mark> \$	<mark>گر</mark> 40	<mark>5178</mark>	<mark>5218</mark>	<mark>9</mark>	<mark>579</mark> 4	<mark>580</mark> 3


Document MCP: Section 10 Ecotoxicological studies DLT EW 15

The effect of Deltamethrin EW is on becomparing was similar to the effect on the bee mortality of the non-toxic standard Zolone Flet. This was true for the tunnel No. 1 or No. 2 even if the daily mortality was higher in tunnel No. 2 (the daily mortality, in tunnel No. 2 was higher before and after the treatment).

was higher in connel No. 2 (the daily mortality, in tunnel No. 2 was higher before and after the treatment).

Í.

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Table 4: Number of bees foraging in the treated zones (T1, T2) in the different tunnels: water control, 0 Deltamethrin EC 15 (AE F032640 00 EW01 B106) at 7.5 g a.s./ha and Zolone Flo. Ø1

Assessment date (Day/month/hour) 10/08 - 14h05-14h24 11/08 - 14h34-14h53 11/08 - 16h23-16h43 12/08 - 13h42-14h00 12/08 - 16h25-16h40 13/08 - 10h45-11h04 13/08 - 11h30-12h06 13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20 16/08 - 13h55-14h20 16/08 - 13h55-14h20 16/08 - 13h55-14h20 16/08 - 13h55-14h20 16/08 - 13h45-11h10 20/08 - 11h28-11h50 20/08 - 11h28-11h50 20/08 - 13h42-14h00 Treatments	2,47 5,72	×69 ×69 ×72,32 ×72,32 ×73,75 ×75 ×75 ×75 ×75 ×75 ×75 ×75 ×	2,56 2,66 4,07 4,03 2,56 3,69 4,03 5,56 5	237 1,91 0,53 2,06 2,00 2,44 0,53 2,44 0,53 481 0,53 481 0,53 481 0,53 481 5,50 5,03
11/08 - 14h34-14h53 11/08 - 16h23-16h43 12/08 - 13h42-14h00 12/08 - 16h25-16h40 13/08 - 10h45-11h04 13/08 - 11h30-12h06 13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	2,97 2,03 3,56 1,50 5,72 3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	2,41 1,69 2,56 1,41 5,72 3,31 0,741 2,38 1,09 3,69 4,22 2,32 2,32 3,75	1,75 2,56 2,16 2,16 2,66 2,66 2,66 2,66 2,66 4,03 4,03 2,56 2,57 2,56	0,51 0,91 0,91 0,53 0,55 0,55 0,550 0,50 0,53 0,550 0,50
1/08 - 16h23-16h43 2/08 - 13h42-14h00 2/08 - 16h25-16h40 3/08 - 10h45-11h04 3/08 - 11h30-12h06 3/08 - 12h07-12h34 3/08 - 13h05-13h36 3/08 - 16h38-16h45 4/08 - 11h32-11h48 5/08 - 11h13-11h29 5/08 - 13h45-14h00 16/08 - 13h55-14h20	2,03 3,56 1,50 5,72 3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	1,69 2,56 1,41 5,72 3,31 0,7,41 2,38 1,09 4,22 7,32 2,32 2,32 3,75	2,16 2,06 3,56 2,66 4,97 4,03 4,03 2,56 3,69 4,03 4,03 5,56 4,03 5,566 5,566 5,566 5,56 5,56 5,56 5,56 5,56 5,56 5,56 5,56 5,56 5,5	0,53 0,55 0,550 0,50
2/08 - 13h42-14h00 2/08 - 16h25-16h40 3/08 - 10h45-11h04 3/08 - 11h30-12h06 3/08 - 12h07-12h34 3/08 - 13h05-13h36 3/08 - 16h38-16h45 4/08 - 11h32-11h48 5/08 - 11h13-11h29 5/08 - 13h45-14h00 16/08 - 13h55-14h20	3,56 1,50 5,72 3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	1,69 2,56 1,41 5,72 3,31 0,7,41 2,38 1,09 4,22 7,32 2,32 2,32 3,75	2,16 2,06 3,56 2,66 4,97 4,03 4,03 2,56 3,69 4,03 4,03 5,56 4,03 5,566 5,566 5,566 5,56 5,56 5,56 5,56 5,56 5,56 5,56 5,56 5,56 5,5	0,53 0,55 0,550 0,50
12/08 - 13h42-14h00 12/08 - 16h25-16h40 13/08 - 10h45-11h04 13/08 - 11h30-12h06 13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	3,56 1,50 5,72 3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	2,56 1,41 5,72 3,31 0,741 2,38 1,09 4,22 4,22 2,32 2,32 3,75	2,56 2,66 4,07 4,03 2,56 3,69 4,03 5,56 5	2,00 2,00 2,00 2,00 2,44 0,53 2,00 2,44 0,53 4,81 0,53 4,81 0,53 4,81 0,53 4,91 0,53 2,00 2,44 0,53 4,91 0,53 0,55
12/08 - 16h25-16h40 13/08 - 10h45-11h04 13/08 - 11h30-12h06 13/08 - 12h07-12h34 13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	1,50 5,72 3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	1,41 5,72 3,31 3,31 2,38 4,1 2,38 4,2,38 5,69 4,22 2,32 2,32 4,22 2,32 4,22 2,32 4,23 2,37	2,56 2,66 4,07 4,03 2,56 3,69 4,03 5,56 5	2,00 2,00 2,00 2,00 2,44 0,53 2,00 2,44 0,53 4,81 0,53 4,81 0,53 4,81 0,53 4,91 0,53 2,00 2,44 0,53 4,91 0,53 0,55
13/08 - 10h45-11h04 13/08 - 11h30-12h06 13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	5,72 3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	5,72 3,31 3,31 41 2,38 41 2,38 41 4,2,38 4 4,22 4,22 4,22 4,22 4,22 4,232 4,334 4,3344 4,3344 4,3344 4,3344 4,33444 4,33444 4,34444 4,344444 4,344444444	2,56 2,66 4,07 4,03 2,56 3,69 4,03 5,56 5	2,00 2,00 2,00 2,00 2,44 0,53 2,00 2,44 0,53 4,81 0,53 4,81 0,53 4,81 0,53 4,91 0,53 2,00 2,44 0,53 4,91 0,53 0,55
13/08 - 11h30-12h06 13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	3,41 2,53 3,13 0,97 4,44 5,53 2,47 5,72	3,31 ,41 ,2,38, ° ,09 ,09 ,09 ,09 ,09 ,09 ,09 ,09	√ 0/97 √ 0,78 √ 0,78 √ 4,03 √ 4,03 √ 2,56 √ 3,69	2,00 2,00 2,00 2,00 2,44 0,53 2,00 2,44 0,53 4,81 0,53 4,81 0,53 4,81 0,53 4,91 0,53 2,00 2,44 0,53 4,91 0,53 0,55
13/08 - 12h07-12h34 13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	2,53 3,13 0,97 4,44 5,53 2,47 5,72		√ 0/97 √ 0,78 √ 0,78 √ 4,03 √ 4,03 √ 2,56 √ 3,69	2,00 2,00 2,00 2,00 2,44 0,53 2,00 2,44 0,53 4,81 0,53 4,81 0,53 4,81 0,53 4,91 0,53 2,00 2,44 0,53 4,91 0,53 0,55
13/08 - 13h05-13h36 13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	3,13 0,97 4,44 5,53 2,47 5,72	2,38 ° 1,09 3,69 2,32 2,32 2,32 3,75	1,28 0 1,28 0 4,03 4,03 2,56 3,69	2,00 2,00 2,00 2,00 2,44 0,53 2,00 2,44 0,53 4,81 0,53 4,81 0,53 4,81 0,53 4,91 0,53 2,00 2,44 0,53 4,91 0,53 0,55
13/08 - 16h38-16h45 14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	0,97 4,44 5,53 2,47 5,72	×69 ×69 ×72,32 ×72,32 ×73,75 ×75 ×75 ×75 ×75 ×75 ×75 ×75 ×	4,03 4,03 2,56 3,69	2,05, <u></u> 2,44 2,00 2,44 0,53 2,44 0,53 2,44 2,00 2,44 2,00 3,38 3,00 3,38 3,34 5,50 2,50 2,50
14/08 - 11h32-11h48 15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	4,44 5,53 2,47 5,72	×69 ×69 ×72,32 ×72,32 ×73,75 ×75 ×75 ×75 ×75 ×75 ×75 ×75 ×	4,03 4,03 2,56 3,69	2,05, <u></u> 2,44 2,00 2,44 0,53 2,44 0,53 2,44 2,00 2,44 2,00 3,38 3,00 3,38 3,34 5,50 2,50 2,50
15/08 - 11h13-11h29 15/08 - 13h45-14h00 16/08 - 13h55-14h20	5,53 2,47 5,72	2,32 3,7 3,7 4,22 2,32 4,22 2,32 4,22 4,	4,03 2,56 3,69	2,00 2,00 2,44 0,53 481 3,00 3,38 3,34 5,50 5,03
15/08 - 13h45-14h00 16/08 - 13h55-14h20	2,47 5,72	2,32 3,7 3,7 4,22 2,32 4,22 2,32 4,22 4,	4,03 2,56 3,69	
16/08 - 13h55-14h20	5,72	2,32 2,32 3,75 2,90 3,66 3,66 4,08 4,08 5,91 4,08 5,91 4,08 5,91 4,08 5,91	2,56, 0 3,69 5,75 3,78 5,50 4,28 5,50 4,28 6,66 6,19 5,25 5,25 4,3,31 0 4,428	
	5,72 Ø 0,84 9 9,56 6 6,130 7,47 7 7,47 7 8,75 6 6,75 6 9,13 0 5,97 7 9,13 0 5,97 7 7 9,13 0 5,97 7 7 9,13 0 5,97 7 7 9,13 0 5,97 7 7 9,13 0 5,97 7 7 7	3,75 4 9,91 3,66 6,84 4,88 4,99 4,9	3,69 1,09 5,75 3,78 4,28 4,28 6,66 6,19 5,25 4,3,31 6,19 5,25 4,28 5,25	
16/08 - 16h58-17h13 17/08 - 11h16-11h36 17/08 - 14h04-14h23 20/08 - 14h04-14h23 20/08 - 14h16-14h35 21/08 - 10h51-11h11 21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00	0,84 9,56 6,130 7,47 3,53 7,47 8,75 6,75 9,13 9,13 5,97	0,63 7,91 3,66 6,84 4,88 4,99 4	1,09 5,75 3,78 5,50 4,28 6,66 6,19 5,25 5,25 4,3,31 6 6,19	
17/08 - 11h16-11h36 17/08 - 14h04-14h23 20/08 - 14h04-14h23 20/08 - 11h28-11h50 20/08 - 14h16-14h35 21/08 - 10h51-11h11 21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00	9,56 6,130 7,47 553 8,75 6,75 9,13 597 597	3,66 3,66 6,84 4,886 4,886 4 4,806 4 4,807 4 4,900 4 5,7,94 5 6,847 5 6,847 5 7,94 5 6,847 5 7,94 5 <td>5,75 3,78 5,50 4,28 6,66 6,19 5,25 4,3,31 5,25 4,3,31</td> <td></td>	5,75 3,78 5,50 4,28 6,66 6,19 5,25 4,3,31 5,25 4,3,31	
17/08 - 14h04-14h23 20/08 - 11h28-11h50 20/08 - 14h16-14h35 21/08 - 10h51-11h11 21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00	6,130 7,47 3,53 3,75 6,75 3,9,13 5,97 5,97 5,97 5,97 5,97 5,97 5,97 5,97	3,66 6,84 4,88 4,88 5,25 7,94 5,9,00 4,97 5,49 5,90	3,78 5,50 4,28 6,66 6,19 5,25 3,31 6 7	5,50
20/08 - 11h28-11h50 20/08 - 14h16-14h35 21/08 - 10h51-11h11 21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00 Treatments	7.47 3.53 3.75 6.75 3.913 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.75	6,84 4,88 4,88 5,25 7,94 5,9,00 4,97 5,497 5,497 5,497 5,497 5,497 5,845 5,845 5,845 5,845 5,25 5,9,00 5,9,00 5,497 5,9,00 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,00 5,497 5,9,000 5,9,0000 5,9,0000 5,9,0000 5,9,0000 5,9,0000 5,9,0000 5,9,000 5,9,0000 5,9,000 5,9,0000 5,9,0000 5,9,0000 5,9,0000 5,9,	5,50 4,28 6,66 6,19 5,25 4,3,31 6 7	5,50
20/08 - 14h16-14h35 21/08 - 10h51-11h11 21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00 Freatments	3,63 · · · · 6,75 · · 9,13 · · 5,97 · · · · · ·	4,88 4 8,25 7,94 9,00 4,97 7 4,97 7 9,00 7 4,97 7 9,00 9,00	4,28 6,66 6,19 5,25 4, 3,31 0 4, 4,28 5,25 4, 3,31 5,25 4, 3,31 5,25 4, 3,31 5,25 4, 3,31 5,25 5,2	5,50
21/08 - 10h51-11h11 21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00 Freatments	- € ,75 6,75 3,9,13 € ,97 5,97	8,25 7,94 9,00 4,97 9,00 5 4,97 9,00 9,00 9,00 9,00 9,00 9,00 9,00 9	6,19 5,25 3,31 5,25 4 5,25 5,25 5,25 5,25 5,25 5,25 5,	5,50
21/08 - 14h00-14h40 22/08 - 10h39-10h57 22/08 - 13h42-14h00 Treatments	6,75 9,13 9,14 9,15	27,94 39,00 487 487 4 5 487 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	6,19 5,25 4,3,31 6 7	Ø 5.03
22/08 - 10h39-10h57 22/08 - 13h42-14h00 Treatments	9,13 Q 597 7 07 4 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	2 9,00 3 4,97 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	5,25 4, 3,31 0 0 0 0 0 0 0 0 0 0 0 0 0	5,91 3,63
22/08 - 13h42-14h00				3,63
Treatments				0,00
ý,				

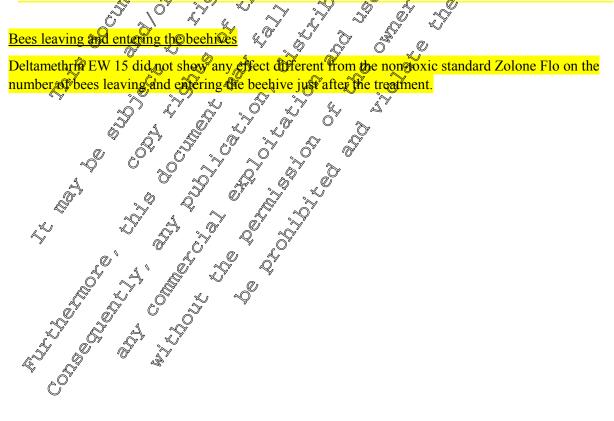


Table 5: Number of bees foraging in the refuge zones (U1, U2) in the different tunnels: water control, Deltamethrin EC 15 (AE F032640 00 EW01 B106) at 7.5 g a.s./ha and Zolone Flo. a

Assessment date		Number of be	es/m² (means)	
(Day/month/hour)	Tunnel Nº4 Water	Tunnel N°1 AE F032640 00 EW01 B106	Tunnel N°2 AE F032640 00 EW09 B106	Tunner W 3 Zolohe Flo
10/08 - 14h05-14h24	1,50	1,56	1,31	
11/08 - 14h34-14h53	3,00	2,38	3,50	0 1 10 0
11/08 - 16h23-16h43	1,91	1,47	2,3	
12/08 - 13h42-14h00	3,25	2,50	\$84	2 0,88 C
12/08 - 16h25-16h40	1,44	1,06	0,94	
13/08 - 10h45-11h04	5,59	4,09	ی 3,4 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13/08 - 11h30-12h06	3,09	2,12	Q 2,63 K	1,90
13/08 - 12h07-12h34	1,97	Q01,38	🕎 ູ 🕼 19 🏾 🌱	V (281 0
13/08 - 13h05-13h36	2,75	1,81, 0	0 1,69 0	, 1,28 , S
13/08 - 16h38-16h45	0,72	0,75		0,38
14/08 - 11h32-11h48	4,03	3(69 0	1 A 3 4	4 1,78 s.°
15/08 - 11h13-11h29	4,75	A . 0,16 ~	Q 4,09 Q	√y 1,78, 2,50 0, y
15/08 - 13h45-14h00	2,78	1,72	2,53	K 1.91 🔊 🗌
16/08 - 13h55-14h20	4,66		0 3,91 1,09 6,41 5	1,72
16/08 - 16h58-17h13	0,72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,09	0,81
17/08 - 11h16-11h36	8,53	₩ 75,84 ₩	→ 6,41 ,5°	3,94
17/08 - 14h04-14h23	4,38.Q	3,09 5,75		\$ 2,69
20/08 - 11h28-11h50	4,94	575		2,88
20/08 - 14h16-14h35		4,59	5,31 0	2,00
21/08 - 10h51-11h11	×7,63 (c 7,44	67 41	√	5,16
21/08 - 14h00-14h40	7,44 7,44		~(≫6,66 ~~	S,66
22/08 - 10h39-10h57	N. Y 004 (A	5.28 5.28	4,81	5,56
22/08 - 13h42-14h00	× 0,94 4 × 576 × 0 ² × 10	5 5 28 07		4,16

Treatments

Ż

ð

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Table 6: Bees leaving and entering the beehives in the different tunnels: water control, Deltamethrin EC 15 (AE F032640 00 EW01 B106) at 7.5 g a.s./ha and Zolone Flo. Ø

									Ş
			Nu	mber of be	es/m² (mea	ins) 🔊		۳ <i>آ</i>	, ,
Assessment date (Day/month/hour)		el Nº4 ater	AE F03264	el N°1 10 00 EW01 06	AE F0326	el Nº2 40 00 Ext01	Tung Zolor	er N°3	
(,,	Leaving	Entering	Leaving	Entering	Leaving	Entering	LeavOg	Extering	2
10/08 - 14h05-14h24	83,00	101,00	126,00	139,00	192,00	206,00	41,00	50 000	a
13/08 - 16h38-16h45	134,00	167,00	91,00	101,00	121,000	145,00	0,183,00	227,00	d d
14/08 - 11h32-11h48	37,00	35,00	44,00	37,00	23,00	44,00 %	87,06	167,00	Ö.
15/08 - 11h13-11h29	40,00	42,00	41,00	©36,00	37,00	31,00 C	41,00	A 3,00 €	/
15/08 - 13h45-14h00	38,00	35,00	17,00	> 14,00	27,00	29,06	19,00	25,00 V	
16/08 - 13h55-14h20	20,00	19,00	35,000	37,00	44,00		21,00	25,00	
16/08 - 16h58-17h13	11,00	13,00	18,00	21,00	17,00	10,00	D' 11,00, °	\$4,00	
17/08 - 11h16-11h38	66,00	70,00		@ ^{\$} 48,00	61,90	55,00 31,00	34,00	4 29,00	
17/08 - 14h04-14h23	54,00	42,00	26,00	23,09	39,00		20,00	~18,00C	
20/08 - 11h28-11h50	36,00	31,00	43,00	46,00	40,00	36:00	21,00	17,00	
20/08 - 14h16-14h35	39,00	38,00 🔍)° 47,00, °	×49,00	20,00	14,00	
21/08 - 10h51-11h11	66,00	58,00	63,00	57,00	61,00	\$ 53,00	42,00	6,00	
21/08 - 14h00-14h40	51,00	46.00	\$53,00 C	58,00	55,00	0 59,00	42,00	45,00	
22/08 - 10h39-10h57	67,00	58.00	@ 67,00 ℃	63,00	37,00	41,00	\$4,00	49,00	
22/08 - 13h42-14h00	56,00	-Q4,00	49,00	₹7,00	46,00		40,00	42,00	

Ø

Ó

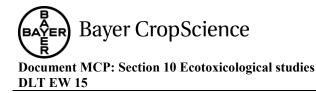
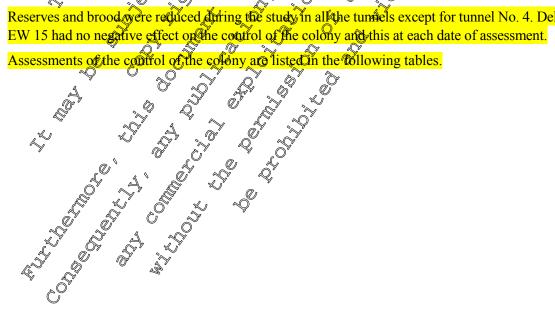
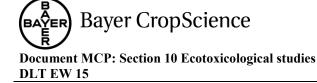


Table 7: Duration of flower visits (based on 15 bees) in the different tunnels: water control, Deltamethrin EC 15 (AE F032640 00 EW01 B106) at 7.5 g a.s./ha and Zolone Flo.

Assessment date		Total in seconds	(based on 15 bees)	
(Day/month/hour)	Tunnel N° Water	Tunnel Nº1 AE F032640 00 EW01 B106	Tunnel N2 AE F032640 00 EW01 B106	Tunnel No
10/08 - 14h05-14h24	70,90	79,09	104,80	233 94
13/08 - 16h38-16h45	62,39	149,29 🖉	773,33	\$4,39
14/08 - 11h32-11h48	58,30	70,05	Q 84,01	34.39 568.52 2, 104.54
15/08 - 11h13-11h29	64,51	78,11	86,03	Q 104 4
15/08 - 13h45-14h00	73,05	76,59	Q 101,63 L	94,12
16/08 - 13h55-14h20	107,76	126,97	> €123,52 \ \ \ \ \ \ \ \	Ø\$2,60 Ø
16/08 - 16h58-17h13	175,22	د ° چ@90,53 د	2 188043 O	140,38
17/08 - 11h16-11h38	73,92	0°7,310°	59,47	89,56
17/08 - 14h04-14h23	48,54	115,05	Q 94,57 O	63 ,63
20/08 - 11h28-11h50	67,92	× 37/64 × 7	80,00	31,22
20/08 - 14h16-14h35	83,53	€ ×133,17 ×	O 115,34 C	159 9
21/08 - 10h51-11h11	74,81	Q (× 83,20 ~ ×	68,50	93,30
21/08 - 14h00-14h40	55,59	© 57,¥5 ₩	68,50 51,47 51,57 51,47 51,575	\$2,86
22/08 - 10h39-10h57	76,55	الم الم الم الم		≫ 102,82
22/08 - 13h42-14h00	51093	<u>066,72</u> 5 0°	Q ^Y 103,41 ~ (4)	, 68,50


Treatments

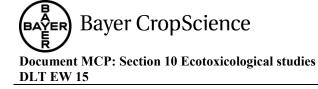
Behaviour of the be


15 had no effect on the beer behaviour in the days following the treatment. Deltamethrin

402 202 Ò Control of the colony

Reserves and brood overe reduced arring the study in all the tunnels except for tunnel No. 4. Deltamethrin

aî 🛸


Table 8: Control of the colony exposed to water treated white mustard (Tunnel No. 4) NR = Not relevant. T = Treatment

O6.8 22.8 0 0 0 <th>Oservations</th> <th></th> <th></th> <th>me</th> <th></th> <th>me</th> <th></th> <th>me</th> <th></th> <th>me</th> <th></th> <th>me</th> <th></th> <th>me</th> <th>Em</th> <th>PX</th> <th></th>	Oservations			me		me		me		me		me		me	Em	PX	
Weight in g . <th< th=""><th></th><th>Dates</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th>A .</th></th<>		Dates														1	A .
% frame surface area containing honey Side a 10 70 20 20 15 15 20 15 15 20 15 15 20 0 80 % frame surface area containing pollen Side b 20 0 5 0 0 5 0 0 5 0 0 5 0 0 60 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0			06.8	22.8	06.8	22.8	06.8	22.8	06.8	22.8	06.8		06.8	22.8		22.8	S)
% frame surface area containing honey Side a 10 70 20 20 15 15 20 15 15 20 15 15 20 0 80 % frame surface area containing honey Side a 0 0 5 0 0 75 10 15 15 15 15 20 0 20 20 20 20 20 20 15 15 15 15 20 0 20 <th2< td=""><td>Weight in g</td><td></td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>· ·</td><td>· ·</td><td>102</td><td>•</td><td>•</td><td>1100</td><td>1400</td><td>×</td></th2<>	Weight in g		•	•	•	•	•	•	•	· ·	· ·	102	•	•	1100	1400	×
pollen Side b 0 0 10 10 0 5 0 10 0 0 0 0 4 5 0 10 0 0 5 0 10 0 6 5 0 4 5 0 4 5 0 4 5 0 4 5 0 10 0 6 5 0 4 5 0 10 0 0 4 7 0 8 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0		Side a	10	70	20	20	15	15	20	15	20	15	15	20			Q
pollen Side b 0 0 10 10 0 5 0 10 0 0 0 0 4 5 0 10 0 0 5 0 10 0 6 5 0 4 5 0 4 5 0 4 5 0 4 5 0 10 0 6 5 0 4 5 0 10 0 0 4 7 0 8 0 NR 0 0 0 0 0 0 0 0 0 0 0 0 0		Side b	20	60	15	20	15	Ch.	10	15	16	15			Q	20	Q.
pollen Side b 0 0 10 10 0 5 0 10 0 0 0 0 4 5 0 40 0 0 5 0 10 0 5 0 10 0 6 5 0 4 5 0 4 5 0 4 5 0 4 5 0 10 0 6 5 0 10 0 0 6 5 0 10 0		Side a	0	0	5	0	0	V	0			0	0	Ũ5	~0″	0	l' 4
* surface area of brood Side a 0 0 70 0 80 20 30 80 05 80 0 0 0 0 90 90 90 30 80 05 80 0 0 0 0 90 90 90 90 90 90 50 0 0 0 0 0 90		Side b	0	0	10		0,(0		×0	0		5	\mathbb{D}^{0}	A.	<u>ب</u>
% surface area of brood Side a 0 0 70 0 80 20 30 80 05 80 0 0 0 0 90 10 90 30 80 05 80 0 0 0 0 90 10 90 90 90 50 0 0 0 0 0 100 90		Side a	NR	NR	0	NR	1	5	NR	Q	10	e e	\mathbb{N}^{-}	NR	NR	NR	"O"
% surface area of brood Side a 0 0 70 0 80 20 30 80 05 80 0 0 0 0 90 10 90 30 80 05 80 0 0 0 0 90 10 90 90 90 50 0 0 0 0 0 100 90		Side b	NR	NR	0	NO	0 30	5			Ø0	NR	NR	~		NR	Ũ
Side b 0 0 70 90 90 90 90 90 50 0 0 % capped alveolus Side a NR NR 20 NR 5 99 1000 0 90 90 5 0 0 % capped alveolus Side a NR NR 20 NR 5 99 1000 0 90 0 NR NR Side b NR NR 100// 5 75 385 0 50 100 100 NR NR		Side a	0	0	70	, o ĭ	80	20		32	80			0 .		D'	×
Side b NR NR 80 100 5 75 385 0 76 100 100 100 100 100 NR NR	brood	Side b	0	0	70	1		20	90		800	20	20	5	0	0	
Side b NR NR 80 100 5 75 385 0 75 100 100 100 100 100 NR NR	% capped alveolus	Side a	NR	NR	30			Ø	100	Ŭ O				O ^R	NØ	NR	S.
% uncapped Side a NR NØ 30 NR 90 10 ∀0 00 90 0 NR NR NR NR		Side b	NR	NR	680	160	5~	75	35	0,4	50	000	100	100	NR	NE	
	% uncapped alveolus		NR		30	NR	, A	10	2	O	90/	× o	á l	NK	NR	Ó ^R	
alveolus Side b NR ST GO 0 795 20 5 100 29 0 20 NR NR	arveorus	Side b			10	0	Ç*95		5			0	0	Ø,	NE	NR	

	Ø	,	a s		' 8° ₂ 0	() (Y) (4.
	J.		S d.			0×
Table 9: Control of the	e colony exp	posed to D	eltamethrin I	W 15 treated	white mustard	Funnel No. 1) at
<mark>7.5 g a.s./ha</mark>	N'A	Q.		S.	1 2 T	<i>"</i>

.5 g a.s./na	· 7	1	~ ~	j.		Ů.				s,		Ÿ			
Oservations	Dates	Fra N	nne P1		ume (°2 \$	🕈 Fra	insve 98	1 1 1 2	ime (< °4 ∩	Fra N	ime 5	Fra N	me °6		ipty ime
l é		06 8	22,8	06.8		06.8	22.8	Ø6. 8	22.8	06,8	22.8	06.8		06.8	
Weight in g		\sim			- 1	\sim	S.S.	- (7 -		-	-	-	650	1000
% frame surface	Side a	50	10	(29	10	15	10	K	15	15	10	20	15	0	0
area containing honey	Side	60	10	15	10	15	10	Q ₁₅		15	10	20	10	0	30
% frame surface	Side a	Ő	1 A	10) o	0	20	0~		0	0	50	0	0	0
area containing	Jide b		©0	15	_2Ô	0	65		2	0	0	50	0	0	0
% frame surface	Side	NR	NR	D'o	ŇŔ	NR	NR	20	NR	20	NR	NR	NR	NR	NR
area containing eggs	Side	ØNR	NR	0	NR	NR	NR.	0	NR	10	NR	NR	NR	NR	NR
% surface area of	Qde a S		00	*10 /	0	80	a a a a a a a a a a a a a a a a a a a	80	0	80	0	0	0	0	0
brood	Side a	~	0 ^	70	No No	70	5	80	0	80	0	0	0	0	0
% capped alveolus	Side a	QR	MR	30	NR	Ø	100	90	NR	20	NR	NR	NR	NR	NR
- A	Side b	NR	NR		NR	100	100	80	NR	15	NR	NR	NR	NR	NR
% uncapped	Side	NR	NR		NR	0	0	10	NR	80	NR	NR	NR	NR	NR
Arreotus	Side b	NR	NR	95	NR	0	0	20	NŔ	80	NR	NR	NR	NR	NR
	L.	,	T	Å	Г		Г		T]	ſ		Т	7	ſ

NR = Not relevant, T= Treatment

Table 10: Control of the colony exposed to Deltamethrin EW 15 treated white mustard (T	Funnel No. 2) at
7.5 g a.s./ha	Ŵ

Oservations	Dates		°1		°2		°3		°4		Frame Nº5		°6	En	pty me	ð
		06.8	22.8	06.8	22.8	06.8	22.8	06.8	22.8	06.8	22.8	06.8	22.8	$\rho \simeq$	22.6	
Weight in g		•	•	•	•	•		•	•		"0"		- 2	1200	1300	
% frame surface	Side a	30	20	15	15	15	10	15	15	12	2 10	10		0	15	
area containing honey	Side b	20	15	20	10	15	Ô	15	15	A.50	5	15	15	180	20	
% frame surface	Side a	10	0	0	0	0	V ₀	0	0		0	@	0	Ş,	×	
area containing pollen	Side b	30	5	0	0	84	0	0	AP -	0	0	O B	5 Q	0	24°	
% frame surface	Side a	NR	NR	0	0	Hø	NR	0	₽ ₀	Ø	0 Å NR	15	ŊR	NR	NR	Ç.
area containing eggs	Side b	NR	NR	0		0	0	0	0	U_{20}			NR	Ø₽ R	L'S	ľ
% surface area of	Side a	0	0	80	10	86) 80	\$0	80	010		10	0	Kó	
brood	Side b	0	0	80	5	50	20	80	70	~P	5 4	80	(10	0	0	0
% capped alveolus	Side a	NR	NR	<i>9</i>	95	70 /	W R	76			Ś	20	100	R	NØ	Ý
	Side b	NR	NR	90	-97	2008 2008	90	Q30	36	20°⁄	100		100	NR	K.R.	
% uncapped	Side a	NR	R	10	15	≪30	NR	30	50	1 and 1	100	80	Ŷ	NR	NR	
alveolus	Side b	NR	NR	and the second s	3		10	20	1 20 T 0	280		0.4	0	ÔR	NR	
		Q	f L	1	r N	A A A	ŗ	, , , , , , , , , ,	T		ςO		r 🗞		r	

NR = Not relevant, T = Treatment

Conclusion: non-toxic standard Zorone Flor. This was true for funnek No. 1 of No. Zeven if the daily mortality was higher in tunnel No 2 (the daily mortality, in tunnel No. 2 was higher before and after the treatment). Deltamethrin EW 15 had no of very limited effect on the boraging activity in the days following the treatment on both treated and refuges areas. Delfamethin EW \$5 had not shown any effect different from the non-toxic standard Zolone Flo on the number of bees leaving and entering the beehive just after the treatment. The results of not show any effect of Deftametorin EW 15 on the duration of flower visits. Beltamethrin EW 15, had no effect on the Gee behaviou in the days following the treatment. Deltamethrin EW 15 had to negative effect on the control of the colony and this at each date of assessment.

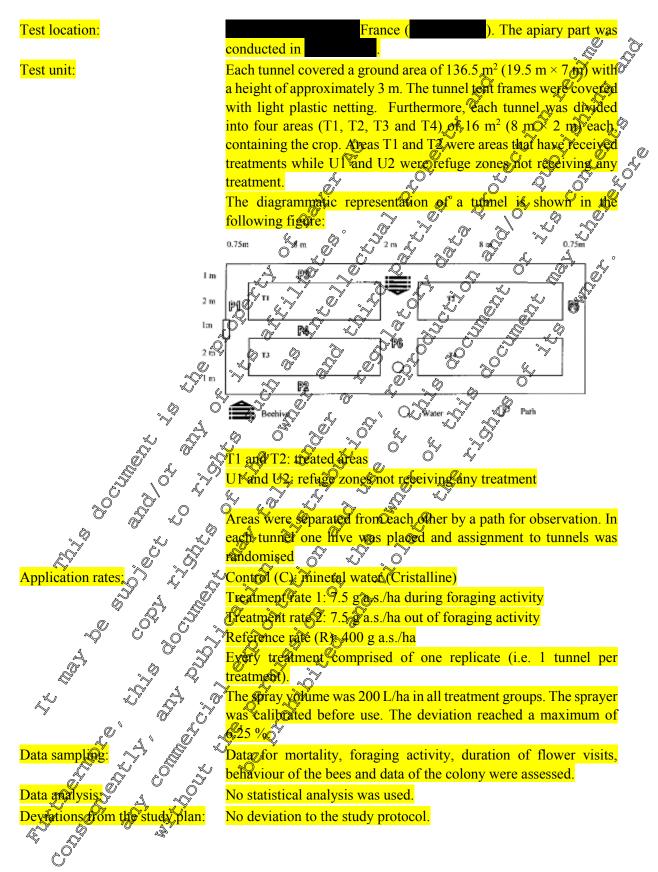
Report:	«KCP 10 3.1.5/02, 2005
Title:	Tunnel lest Acute and short-term effects of Deltamethrin EW 15 and Thiacloprid &
l l	Deltamethrin OB 110 applied on white mustard or phacelia, on honey bees (Apis
Ú ^y	Anellifera L) ²
	<u> M-276845-04-1</u> (Rep. No.: S05BAB.DELVO16)
Guidelines:	EPPO Bulletin No. 170
GLR S	ves 2

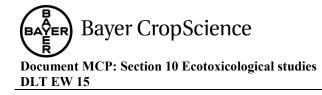
Materiakand Methods:

Bees were confined within tunnels on flowering phacelia, fields. After an acclimatization phase of seven days, application was performed during foraging activity or without foraging activity. The control was treated with water, the test item was applied at a rate of 0.5 L/ha (Deltamethrin EW 15), as **Bayer CropScience**

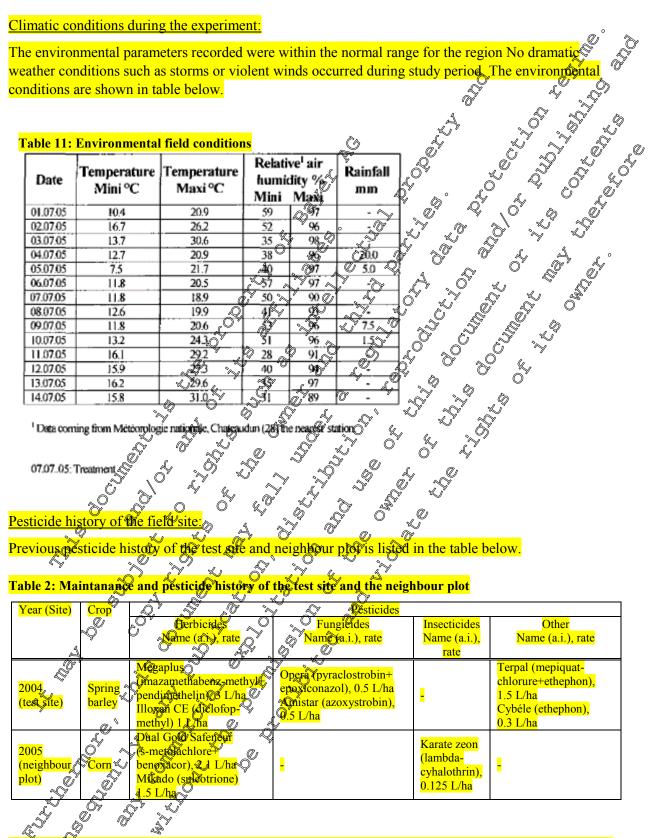
Document MCP: Section 10 Ecotoxicological studies DLT EW 15

a toxic standard, Dimethoate 400EC was used at a rate of 1.0 L/ha. The test substance treatment, control and standard were replicated once. Endpoints assessed were mortality, foraging acti storage of food, honey and pollen and brood development.

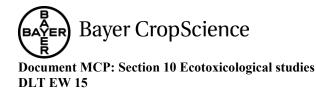

Findings:


Deltamethrin EW-15 applied during foraging activity showed a relatively slight toxic effect the a application. Nevertheless, this toxic effect was, by far, lower than the toxic standard toxicity. When applied out of any foraging activity period, Deltamethring W 15 showed no effect the day following the application and a very limited effect two days later. The Itox values were quitedow in both cases, the level of mortality stayed at a very acceptable level taking into account the high level of motivality. the toxic standard tunnel. Deltamethrin EW 15 had ho or a very limited impact on for a ging activity except in the hours or the day following the application when applied during for ago activity. This impact was somewhat longer, one day more, When Deltamethrin EW 15 years applied out of any foraging activity. Reserve reduction (hone and patter), and brood reduction were nil m the Mater ve of application. (control) tunnel. This was the same thing for Deltamethyin EV015

BBCH 62


Page 162 of 518 2017-05-15

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15



Climatic conditions during the experiment:

The aim of the study was to evaluate the acute and short-term effects of a foliar treatment Deltamethrin EW 15, applied on phacelia during foraging activity or without foraging activity, on the mortality, behaviour and foraging activity of honey bees, *Apis mellifera L*. under semi-field conditions (tunnels).

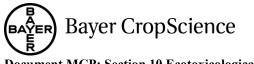
This study included four exposure groups (tunnels) with one replicate (tunnel) each: one water treated control group, two test-item groups and one reference item group. In all exposure groups, crop was sprayed 4 days after set-up of the hives in the tunnels (Acclimatisation phase) at BBCH 62 (flow oring) of during honeybees actively foraging (afternoon) or later (evening) when bees were not foraging on the crop. The honeybees remained all in all 12 days in the tunnels.

Depending on the weather conditions the observations were conducted for a 8 day period following a 4day adaptation period of the hives to the confinement. At the end of this 8-day period the exposure phase of the study was stopped and beehives returned to the apiary on July 19th.

The assessments of the number of any dead bees were performed of each tunnel each morning during both the adaptation period of the hives and thereafter until the end of the test. For each tunnel, these daily assessments were performed commencing July 05 in the porning and subsequent daily assessment was conducted at approximately the same time for each tunnel each day. During each assessment all dead bees were collected in the 6 paths and in the dead beer rap (the bees collected from each of the path areas 1 to 5 were pooled).

The assessments of the foraging activity were performed only on those days when the weather is such that honeybees are likely to be foraging. Counting was done over the whole of the zone by assessing the number of bees passing an area of 60cm wide, whilst valking at a pormal speed down the side of the zone. The foraging activity of the bees was expressed as the number of bees observed separately within each zone on each assessment. After the adaptation period of the beefive, the foraging activity was evaluated generally twice oday acregular intervals. In addition, the day of treatment foraging activity is assessed around 15 minutes before treatment and around 15 minutes and 1 hop after each treatment except for tunnel n°3 where the item was applied the in the evening out of any foraging activity.

Before the foraging assessments, when possible, were performed within each tunnel the number of bees leaving and entering the hive were recorded over a five minute period by an observer equipped with clicker counters. In order to avoid any mistake, counting of bees entering the hive was done for a 2min 30s period, then counting for bees leaving the live for 2min 30s period with another second sequence of 5 minutes.


Duration of flower visits was assessed during same time number of the assessment bees leaving and entering the hive. This was performed by recording the time (seconds) 15 different bees forage over 15 different attractive plants (This was done for 15 bees with a maximum time of 30 seconds in order not to delay the following assessments). The plants chosen for this assessment were chosen without conscious bias from those available within each tunnel.

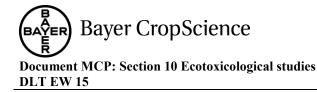
Behavious of bees was observed during assessment of bee mortality, foraging activity and control of the colony, Bees were observed for apportabilies like aggressiveness, intensive flying without landing on the crop, moribund or severely affected bees, bee accumulation at the beehive entrance, trembling, bees no longer producing pollen balls, etc.

Assessments on the control of the colon were made on the day of their installation within the tunnels, July 1st and at the end of the exposure phase, July 14th, the day before returning beehives to the beekeeper.

The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

The following endpoints were assessed:

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

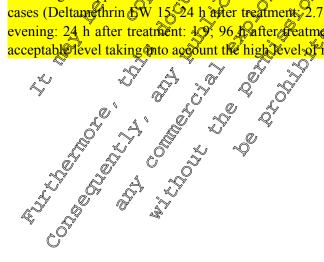

- Cumulative number of dead bees before as well as after the applications in the control, the two test item groups and the reference item group, respectively
- Number of foraging bees/m² before as well as after the applications in the control, the two test item groups and the reference item group respectively.
- Behaviour of the bees during assessment in the control, the two test item groups and the reference õ item group, respectively
- · Bees leaving and entering the hives in the control, the two test item groups and the reference iten group, respectively
- Duration of flower visits in the control, the two test item groups and the reference item group respectively
- Control of the colony with the following criteria examined weight of the empty frame introduced into the centre of the hive, the percentage frame sufface area containing boney for both sides of each frame, the percentage frame surface area containing collegion from sides of such frame, the percentage frame surface area containing consistence of such frame, the percentage surface area containing consistence of such frame and % of surface area containing consistence of such frame and % of surface area containing consistence of such frame and % of surface area containing consistence of surface area containing containing containing containing frame, the percentage frame surface area containing poller for both sides of each frame, the percentage frame surface area containing eggs for both sides of each frame, for both sides of each

Dates of Work: 01st July to 14^wJuly, 200

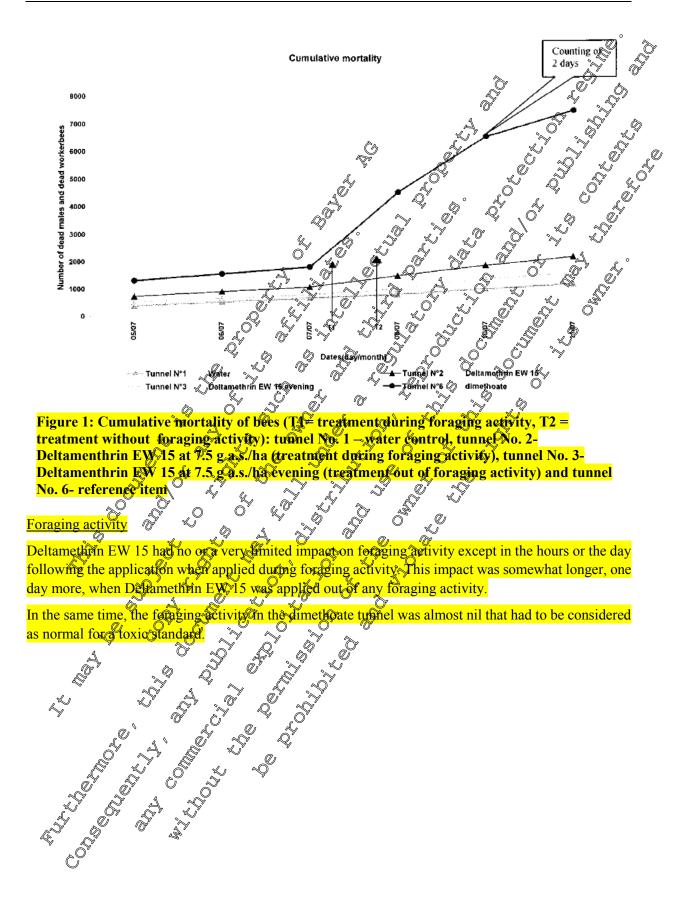
Findings:

Honey Bee Mortality

A summary of the da


					l <mark>ates</mark>		
Treatments		05.07.05 3DBT	06.07.05 2DBT	07.07.05 0DBT	08.07.05 1DAT 🚿	10.07.05* 1+2DAT	11.05.05 5DAT
Tunnel No. 1	<mark>Males</mark>	9	<mark>15</mark>	<mark>19</mark>	26 49 770	<mark>35</mark> 🔏	, <mark>27</mark>
Water	<mark>Workers</mark>	<mark>367</mark>	<mark>514</mark>	<mark>640</mark>	<mark>770</mark>	<mark>957</mark> 🔊	1∕154
	Total	<mark>376</mark>	<mark>529</mark>	<mark>659</mark>	, <mark>796</mark>	<mark>992</mark>) ×	6 <mark>1191</mark> 9
Tunnel No. 2	<mark>Males</mark>	<mark>11</mark>	<mark>12</mark> _گ	<mark>15</mark>	A 22	x <mark>25</mark> ~	5 5
Deltamenthrin EW 15	<mark>Workers</mark>	<mark>717</mark>	902 🕅	<mark>1049</mark> 🦼	<mark>1464</mark>	1839 🏷	2133 /
<mark>@ 7.5 g a.s./ha</mark>	<mark>Total</mark>	<mark>728</mark>	<mark>914</mark>	1064 O	<mark>1486</mark>	🗸 <mark>1864</mark>)	2188 2 2 2 2 188 2 2 188 2 3 2 188 2 188 2 188 2 188 2 188 2 188 2 188 2 188 2 188 2 188 2 188 2 188 2 19 2 19
<mark>Treatment during</mark>			A	, Q) ×	õ "Oʻ
foraging activity				<u></u>	a Q	<u>, Ö^v ö</u>	Ű
<mark>Tunnel No. 3</mark>	<mark>Males</mark>	<mark>5</mark>	<mark>≶ 6</mark> ∘	<u></u>	/ <mark>8</mark> 07	<mark>⊳} 10</mark> √	313
Deltamenthrin EW 15	<mark>Workers</mark>	517	656 s	ິ <mark>773</mark> ເ∕ັ	99 <mark>5</mark>	چ <mark>1347</mark>	<mark>ِ مَ 1575</mark>
@ 7.5 g a.s./ha evening	<mark>Total</mark>	<mark>522</mark> 、	662 C	7 80	0 <mark>1003</mark>	<mark>1357</mark>	1588
Treatment out of			× ×			4,	
foraging activity				<u> </u>	<u>`</u>	<u> </u>	A V
<mark>Tunnel No. 6</mark>	Males 🦼	Q <u>10</u> %	×11	<mark>ダ 15</mark> 0	ی <mark>20</mark>	[*] 27 *	✓ 36
<mark>Dimethoate</mark>	Workers Workers	1297	°∼∕ <mark>`1555</mark> ℃	4 788 🔊	2 45015	6514) <mark>7467</mark>
<mark>@ 400 g a.s./ha</mark>	Total &	<mark>1307</mark>	<mark>1566</mark>	A 1803	4521	<mark>گ 6541</mark>	<mark>7503</mark>
T = days before treatment		LÍ O	A L	Ŭ Q	ð ð		
T = days after treatment; counting of two days 09. ar		× ~	т. Л		ĝ _ĝ	O	
ounting of two days 09. al		~~ (, o	~	Ž ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, Ôg	

Cable 3: Cumulated dead bees during the study period (only males and worker-bees considered


During the adaptation phase bee mortality was medium. The day before application, the different level of mortality were medium to low and homogeneous, the toxe standard tunnel having the highest mortality but in a normal range. If the water (control) tunnel mortality was stable after treatment and quite low. In the dimethoate tunnel, mortality was high after treatment with 2718 dead bees and stayed relatively high

In this context, Deltamethrin EW 15 applied during foraging activity showed a relatively slight toxic effect the day of application. Nevertheless, this toxic effect was by far, lower than the toxic standard toxicity.

When applied out of any foraging activity period, Deltamethrin EW 15 showed no effect the day following the application and every limited effect two days later. The I_{tox} values were quite low in both cases (Deltamethrin EW 15, 24 h after treatment: 2.7; 96 h after treatment: 1.7; Deltamethrin EW 15-evening: 24 h after treatment: 40, 96 h after treatment: 2.0). The level of mortality stayed at a very acceptable level taking into account the high level of mortality in the toxic standard tunnel.

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

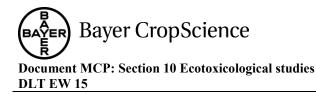


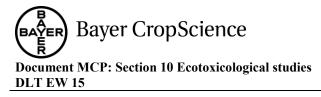
Table 4: Number of bees foraging in the treated zones (TI, T2, T3 and T4): tunnel No. 1 – water control, tunnel No. 2- Deltamenthrin EW 15 at 7.5 g a.s./ha (treatment during foraging activity), tun@l No. 3- Deltamenthrin EW 15 at 7.5 g a.s./ha evening (treatment out of foraging activity) and tunnerNo. 6- reference item Ô

Assessment date (Day/month/hour)		Number of	bees/m² (means)	Â,	
	Tunnel N°1 Water	TunnelN°2 DELTAMETHRIN EW 15	Turbel N°3 DELTAN DHRIN EW 15 evening	Tornel NG Smethcate	
05/07 - 11h43-12h24	9,08	4,89	6,06	5,70	
05/07 - 15h51-16h33	9,44	8,27	A 8,81 Q	\$1,20	
06/07 - 15h00-15h41	5,75	7,38	6,06 8,81 6,27 9,13	11.20 ×	
06/07 - 19h34-20h27	2,95		· 3,13 0	× 4,550	
07/07 - 11h13-11h49	4,08	3,78	0° 340 A	7	
07/07 - 14h15-14h45	13,06	9,05		0,97	
07/07 - 14h52-15h13 07/07 - 15h37-15h56	5,72 8,81	042 208 06,78 4 06,84 2 0 6,84 7,11 2 7,11	× · ~	5,39 0,45 0,45 0,45 0,69 0,05 1 0,63 0,63 0,63 0,63	
07/07 - 17h26-18h00 08/07 - 14h15-15h05	2,52		¥ 10/02	~ 0.44 054 ~ 7,69 5 0.05 0 0.05	
08/07 - 17h41-18h14 09/07 - 16h10-16h59	1,31	Q [*] 7.11 Q ³⁶ Q ³	O' a action		O N
10/07 - 14h33-15h50	16.77	°~15,34	2,17 3 3,95 7 10,17 8,83 4		
10/07 - 17h31-18h36	16,72	<i>I</i> . 9.39 (0.03 &	 €.75 m 	Í O'
11/07 - 11h00-11h42	18,89		96,17	0,75 √ 0.56 √	
11/07 - 16h00-16h46	×21 80 .	0 18,11 0, 6,77 0	18,60	~ 0.56 3,27	
12/07 - 11h57-12h16	°≱1,80 10,56	 	~ 20 4	0,06	
12/07 - 14h54-15h22		21.84	× 27,31 O	0.06	
Treatment		6.77 O 21 84 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18.50 × 18.50 × 9.95 × 2.131 × 7.7 × 50 × 1.7 × 50 × 50 × 50 × 50 × 50 × 50 × 50 × 5		
			W.	K)	

Bees leaving and entering the beehives

Compared to the water control tunner, no negative impact on bee entrance or leaving numbers was seen with Deltamethref EW B except in the hous or the day following the application when applied during foraging activity. This impact was also somewhat longer when Deltamethrin EW 15 was applied out of any foraging activity. On the contraty, in the toxic standard tunnel, a negative impact was observed during all the exposure phase showing that there was more or less no or a very limited activity

0


Table 5: Bees entering the beehives in the different tunnels: tunnel No. 1 – water control, tunnel No. 2-Deltamenthrin EW 15 at 7.5 g a.s./ha (treatment during foraging activity), tunnel No. 3- Deltamenthein EW 15 at 7.5 g a.s./ha evening (treatment out of foraging activity) and tunnel No. 6- reference item Ĩ

Assessment date (Day/month/hour)	Number of b	ees entering the be	1		
	Tunnel Nº1 Water	TunnelN°2 DEL.TAMETHRIN EW 15	Tunnel N°3 🖒 ² DELTAMETHRIN EW 15 evening	Turnel Nr6 dimethode	
05/07 - 11h43-12h24	155,00	160,00	112,00 >	167,00 ~	
05/07 - 15h51-16h33	181,00	134,00	246,00	, @26,00	
06/07 - 15h00-15h41	87,00	110,00	154.00 00	0 ^{130,00} /	
07/07 - 11h13-11h49	79,00	54,00	109,00	80,00	
07/07 - 14h15-14h45	-	k o°	S & 4		station of the second s
07/07 - 14h52-15h13 07/07 - 15h37-15h56 07/07 - 17h26-18h00	- - 213,00		· · · · · · · · · · · · · · · · · · ·		
08/07 - 14h15-15h05		Q 272,00 Q	17000 2 5,00 167,00 178,00	→ <u>46,00</u> → 5,00 → 84,00 → 106,00 → 106,00 →	0 North Contraction of the second sec
08/07 - 17h41-18h14	206,00	× × 74,000 ~	× 65,00 V	§ 84,000′	Ĉo
10/07 - 14h33-15h50	303,00	0 226,00	167,00	~ 106,00 ≺	
10/07 - 17h31-18h36	177,00	<i>⊘</i> 2 5 7,00 ℃	5 178 90 <u></u>	1@6,00 🗇	
11/07 - 11h00-11h42	199.00 249.00	208,00	, 1,00,00	% 44,00%	
11/07 - 16h00-16h46	248,00		∑ £82,00 ⊘	186,00	
*		208,00 ~~ 264,00			

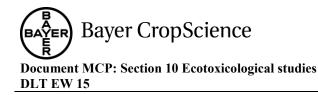
Table 6: Bees leaving the beehives in the different tunnels: tunnel No. 1 - water control, tunnel No. 2-Deltamenthrin EN 15 aOI.5 g as./ha (treatment during for ging activity), cunnel No. 3- Deltamenthrin EW 15 at 7.5 g. s./ha evening (treatment out of for aging activity) and turnel No. 6- reference item

O

	(Day/montQhour)	Number of t		hives in two times	2.5 minut
		Surrel Na		Tunnel N°3 DELTAMETHRIN EW 15 evening	Tunnel N°6 dimethoate
	05/07911h43-42h24	D 183,00 ~ 7	× 59,00	41,00	109,00
	05 <u>/0</u> 7 - 15h51-16h33 ^O	~Q9.00 4	63. 00	33,00	68,00
Ī	00/07 - 15h00-15k01	87,00 ⁰	497,00 99,00	109,00	28,00
Ì	07/07 - 11h13-11h49	25,00	~079,00	46,00	122,00
4	07/07 - 14h1&-14h45			-	-
/	07/07 - 14h52-15h13	<u>A</u>	_0° -	- 1	-
ſ	07/07 - 18h37-15h56	J 1300	Å -	-	-
	07/07 \$7h26-18h00		45,00	36,00	28,00
	08/02 - 14ht5-15h05	£78,00~	222,00	112,00	34,00
1	08/07 - 17 41-18h 04	ి 29,00	233,00	18,00	50,00
ŀ	0/07 - 14h33-15h50	187,00	276,00	56,00	46,00
ſ,	10/07017h3108h36	133,00	96,00	55,00	40,00
Ŷ	11/07 - 11h00-11h42	74,00	220,00	223,00	16,00
ł	1007 - 16h00-16h46	139,00	217,00	155,00	118,00

Duration of flower visits

The time (in seconds) that 15 different bees forage over 15 different attractive plants was recorded plants chosen for this assessment were chosen without conscious bias from these available within each tunnel.


The results did not show any evident effect of Deltamethin EW 15 on the duration of lower visits the toxic standard tunnel, a negative impact was observed only the day collowing the application but this had to be counterbalance with no or a very limited foraging activity during all the exposure phase.

	1	
Table 7: Mean	duration of flower visit	(based on 15 bees)

Assessment date		O″	<u> </u>	e.		
Assessment date	Duration	of flowe	r visit in	vsecon	d (mean	s of 15 bees
(Day/month/hour)			$\gamma \sim \gamma$	ð	A.	O ^V K
to be counterbalance ble 7: Mean duration Assessment date (Day/month/hour) 05/07 - 11h43-12h24 05/07 - 15h51-16h33	Tunnei N°1 (Water ()		HNTU FONEW 15		Unipelinitä K Methirain Kan Mening	15 Cimetrat
05/07 - 11h43-12h24	6,80	6	33 🏷		9,20	
05/07 - 15h51-16h33	4@0 .,*	U 02	37 5	Ũ	Q90	> ~4,28 ⟨⟨
06/07 - 15h00-15h41	420	6,1	93		Ø8,60 Ø	2,75
06/07 - 19h34-20h27	4 26	5 <u>6</u>	j o	· ·	5.07	× 2001
07/07 - 11h13-11h49	- 29.71 4.26 4.49 4.49		02		5,8/3	\$.53
07/07 - 17h26-18h0@		Q Q			¥,71 &	0,00
08/07 - 14h15-15005	4,43		X S			1,59
08/07 - 17h41-18h14		~ ***	56 🔊	R		0,00
10/07 - 14h3 15h5	4,30	8.4	19 5	No de la constante da la const	5.96 ×	4,91
10/07 - 17031-18196	× ⁰ 5,19 ⁰	S 6,2	ð _A		7,85	3,62
11/07 - 61h00-11h42	4,190	4 2	73 O ^V		3.61	3,47
11/07 - 16h00-16h46	262	0 8,	14	S '	\$,61	3,16
1267 - 11h57-12h	,57	6.			4,96	2,21
12/07 - 14h54-15022	left 3.15	SO' K	76 <u>%</u>	Å.	5,23	5,26
12/07 - 14h54-14022	430 4 05,19 4,10 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 4,10 5,57 5,7 5,			-0- -0- -0-		

Deltamethrin EW 15 showed to effect on bee behaviour except the day of application and the following morning for the application during for aging activity and the day after for the application done out of any foraging activity. Ouring that time, bees were avoiding the crop, flying on the crop without any landing in the bxic standar Qunnel, no or a very limited activity at all was observed during all the exposure phase. Only dead bees were seen.

Before the hives were retured to the apiary, the examined criteria showed that the treatment effect on the beer blony was nil for Deltamethrin EW 15 whatever the type of application. On the contrary, a strong impact of the treatment was observed on the bee colony belonging to the toxic standard tunnel.

Control of the colony

Reserve reduction (honey and pollen) and brood reduction were nil in the water (control) tunnel Thi was the same thing for Deltamethrin EW 15 whatever the type of application. On the contrary there were limited reserves in the toxic standard tunnel. At the end, the queen was seen in all the tunnel

Assessments of the control of the colony are listed in the following tables.

Table 8: Control of the colony exposed to Deltamethrin Exp15 treated Phacelia at 7.5 gas./ha turing foraging activity) Q Ø

Observations		Ers	me	Free	ame	Fre	wie wie	Ere	ime 🖉		ume		ame	ŴЕп	Š	í
observations	Dates		°1		102		W		°4 📿		25	L C		Fra	Ŵ	
			14.07			01.07	14.07	01.07		01.0	14.07	Q.07	1001	01.07	14.07	
Weight in g					-	40	- 0	- (7 -	.~~			$\sum_{i=1}^{n}$	340	506	
% frame surface area	Side a	0	0	15	1.5	15	Q.	3	15	10	41	50	10	~	0 0	
containing honey	Side b	0	0	15	15	20%	15	$\hat{\mathcal{U}}_{5}$	Ŷ	10 (19°	6	0	d o	L
% frame surface area	Side a	0	0	10	>5		10	10				0	0	Sec.	A SUC	Ľ
containing pollen	Side b	0	0	a la	0	\mathbb{Y}_{10}		1g	5	5/10		0_€	0	K)	and the second s	ľ
% frame surface area	Side a	NR	NR	20 15		20	Ú 15	S S		10	10	J.	NR	NR	NR	
containing eggs	Side b	NR	NR	15	10	249	10%	15	A	QQ.	10	NR		NR	NR	
% surface area	Side a	0	~Q,'	¢.	60 (60	<u>ک</u>	80	60	00	0	0	V 0	my -	0	
of brood	Side b	0 🤇	0.		660	50	\$70	l Ø 1	600	¥ 30	Q ₀	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 🐇	, 0	0	
% capped	Side a	NY.	NR	\mathbb{V}_{50}	\$80	20		50	L.	പര	30	NR	NØ	NR	NR	
alveolus	Side b	NR	0×	50	70	S a	860	30	50		5%	NR	QNR	NR	NR	
% uncapped	Side	NR	NR	Q	20	80	L60	Q	30 8	(J100	Š	NO	NR	NR	NR	
alveolus	Side b	NO	-NR-C	0 -50-		-40	20 $^{\circ}$	Q ₀		-100	50		NR	NR	NR	
NA = Not available.	Not Ge	T آڻ vant. آ		- C	Ŋ ~	S.				б У		. 7 1	Т	1	Г	
NA = Not available.	Not Oc	vant.		- S									T	NK	1	T

15 treated Phacelia at 7.5 g a.s./ha (in the Table 9: Control of the colony exposed to Reltamethrin EN S evening out of foraging activity) 4

Observâtions		Fé	me		ume	Fra	ame		ume	r	ume		me		npty
L ES	Detes		°1 4	N N	°2	0	9 [°] 3 .	(J ^V N	°4 O ⁷		°5		°6		me
	~	100		01.07	04.07	61.07	14.07	01.07	N/07	01.07	14.07	01.07	14.07	01.07	14.07
Weight in g)	∀ -	S.	2	-	Ľ.	×	- 1	-	-	-			500	500
% frame surface aga containing honey	Sidea	0	0	*	W.	15	15	ð	15	5	10	5	5	0	0
	()) *	all a	00	$0'_{15}$		10	10	S15	10	10	10	0	10	0	0
% frame surface area	Gide a	0^{0}	67	10	12 5	°ran	ð	10	5	5	5	0	10	0	0
containing pollen	Side 🖗		Q٥	R	30	810		10	5	0	5	0	0	0	0
% frame surface area	Siloa	NÔ	NR	\hat{U}_5	Mar 1	15	5	10	NR	5	10	NR	30	NR	NR
containing eggs	Side b	NR	K M	10			10	10	2	NR	50	NR	NR	NR	NR
A surface area	Side a	2 ^y 0		60	60~	×B0	60	50	50	20	30	0	10	0	0
of brood	Side	Ů,	Ű0	@ ⁶⁰	×°	60	60	70	50	0	20	0	0	0	0
% capped	Side a	Ø	NR	20	Q,	50	60	80	100	10	50	NR	10	NR	NR
alveol 6	Side b	S NR		600	50	60	80	50	70	NR	10	NR	NR	NR	NR
% un pped	Side	NR	NR		95	50	40	20	0	90	50	NR	90	NR	NR
el eolus O	Side b		NR	40	50	40	20	50	30	NR	90	NR	NR	NR	NR
% unterpred 2 apeolus 0			r	-	Г		Т		Т		Т		Т		Г

Not a glable, NR - Not acevant, T - Treatment

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Observations			me		ame		$\mathbf{m}\mathbf{e}$		me		me		me	Em	pty me.	
	Dates		°1		°2		°3		°4		°5	N		Fra	me	Ş
		01.07	14.07	01.07	14.07	01.07	14.07	01.07	14.07	01.07	14.07	01.07	14.07	01.07		10%
Weight in g		-	-	-	-		-	-	•			ð		400	, WU	Ś
% frame surface area	Side a	0	0	15	15	15	15	15	20	10	15	ã.	10	0		
containing honey	Side b	0	0	10	20	15	20	15	20	10	14	15	10	S	0~	Ô
% frame surface area	Side a	0	0	10	5	10	5	>10	5	5	Ka V	3	5	γ^0		, S
containing pollen	Side b	0	0	5	5	10	10 🖉	Ĝ10	10	10 @	5	0	Ð	0	Yo (Ĵ,
% frame surface area	Side a	NR	NR	5	10	30	15	10	20	R	10	NR	, Qũ	NØ	NR	<i>"</i> 0
containing eggs	Side b	NR	NR	10	10	10	Ő	10	30	NR 15	30	NRC	30		NO	
% surface area	Side a	0	0	60	70	80	80	80		1.0	Q 40	0.Y	30%	0		
of brood	Side b	0	0	70	60	<i>Rq</i> [°]	80	80	30	×Q	60	X	10			
% capped	Side a	NR	NR	60	80 🖗	50	¢¢ °	70	20	× Vo		NR	\mathcal{O}_0	۱۹۶۲	NR	
alveolus	Side b	NR	NR	70	700	$50_{\%}$	0_{70}^{*}	69	200	100	Ŷ0	NØ	0 /	NR	AR .	°
% uncapped	Side a	NR	NR	40	-40	<u>\$560</u>	50	\mathbb{Q}_{30}	\$ 6 /	04	70	MR	100	NR	ONR 0	Y
alveolus	Side b	NR	NR	30(30	50	50	50) 80	A V	82	NR	\$ 200	NR	NR	
		1	r			Y,			r 🧹	\mathcal{O}		NR	ř	Ş		

Fable 10: Control of the colony exposed to the water treated Phacelia

NA = Not available, NR = Not relevant, T - Tree

Conclusion:

Based on the different results observed in the water tunnel and in the dimethoate tunnels, this study had to be considered as a valid study. Water application was not oxic on bees whereas dimethoate (reference item) was very toxic. In addition, the level of foraging activity was high.

During the adaptation phase bee mortality was medium. The day before application, the different level of mortality were medium to fow and homogeneous, the toxic standard tunnel having the highest mortality but in a normal range. In the water (control) tennel, mortality was stable after treatment and quite low, lot the dimethoate tunnel, mortality was high after treatment with 2718 dead bees and stayed relatively high. In this context, Deltamethrin EW 15 applied during foraging activity showed a relatively slight toxic effect the day of applied but of any foraging activity period, Deltamethrin EW 15 showed no effect the day following the applied but of any foraging activity period, Deltamethrin EW 15 showed no effect the day following the application and a very limited effect two days later. The Itox values were quite low in both cases, the toxic standard tunnel.

Deltameterin EW 15 had no on very limited impact on foraging activity except in the hours or the day following the application when applied during foraging activity. This impact was somewhat longer, one day more, when Deltameterin EW 15 was applied out of any foraging activity. In the same time, the foraging activity in the dimeteriate turnel was almost nil that had to be considered as normal for a toxic standard.

Compared to the water control tunnel, no negative impact on bee entrance or leaving numbers was seen with Deltamethrin EW 19 except in the hours or the day following the application when applied during foraging activity. This impact was also somewhat longer when Deltamethrin EW 15 was applied out of any oraging activity. On the contrary, in the toxic standard tunnel, a negative impact was observed during all the exposure phase showing that there was more or less no or a very limited activity within the tunnel.

The results did not show any evident effect of Deltamethrin EW 15 on the duration of flower visits. In

the toxic standard tunnel, a negative impact was observed only the day following the application but this had to be counterbalance with no or a very limited foraging activity during all the exposure phase

Finally, Deltamethrin EW 15 showed no effect on bee behaviour except the day of application and the following morning for the application done during foraging activity and the day after for the application done out of any foraging activity. During that time, bees were suspicious of the crop, flying on the crop without any landing.

In the toxic standard tunnel, no or a very limited activity at all was observed during all the exposure phase. Only dead bees were seen.

Before return to the apiary, the examined criteria showed that the treatment effection the bee colony was nil for Deltamethrin EW 15 whatever the type of application. On the contrary, a strong inpact of the treatment was observed on the bee colony belonging to the toxic standard tunnel.

Reserve reduction (honey and pollen) and brood reduction were only in the water (control) tranel. This was the same thing for Deltamethrin EW 15 whatever the type of application. On the contrary, there were limited reserves in the toxic standard tunnel. At the end the goven was seen in all the tunnels.

Thus, in conclusion, Deltamethrin EW 15 showed clearly that this kind of active substance (porthroids) has a slight to moderate impact on bees mainly the day of the application when applied directly on bees (during the foraging activity) and less toxicity when applied out of any foraging period. Impact on bee colony was nil.

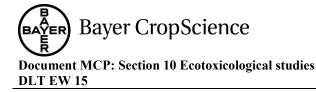
Report:	KCP 10.3.1.503, 1000 3700 1000
Title:	Evaluation of impact AE F032640.00 EW91 B166 on honey bees (insectproof tunnels
	onophacelia crop
Document No:	<mark>∞2-1982 8-01-1 (Rep. No.: 2000-23⊙)</mark>
Guidelines.	$CEB_{4}129$ \downarrow \rightarrow γ
GLP:	yes a a a a a a a a a a a a a a a a a a a

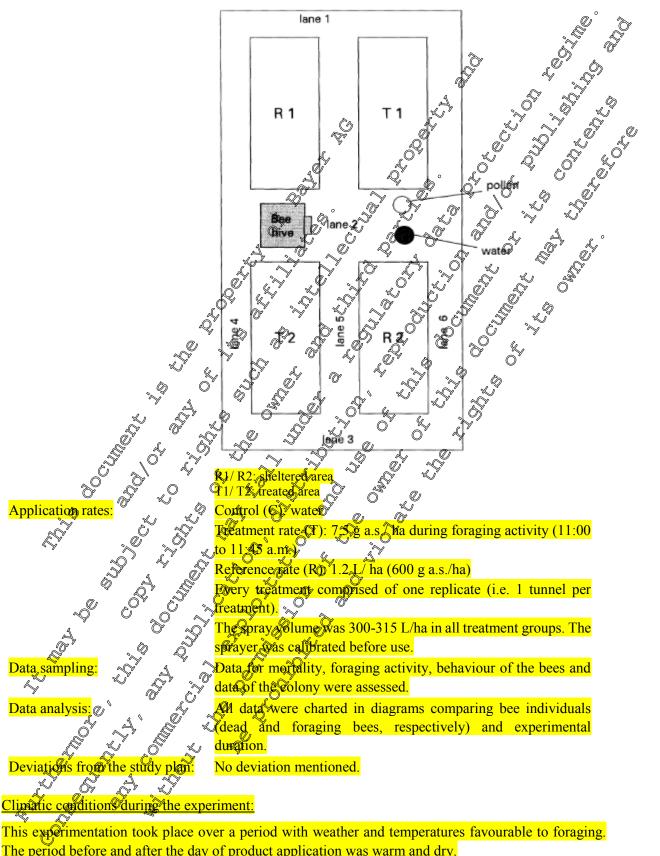
0

Material and Methods:

Honey bee colonies (ca 17,000 bees for hive, colonies of comparable development, brood, and food store status, queens of homogeneous maternal origin) were confined in tunnels on *Phacelia* fields with additional pollen sources provided. Five days after introduction of the bees into the tunnels, application was performed. The test substance was applied at rates of 7.5 g a.i./ha, the toxic standard was Zolone Flo (500 g/L phosilone). Furthermore a water treated control was set up. Treatment was carried out during flight activity of the bees. Endpoints observed were foraging activity, behavior, mortality, and colony development.

Findings:

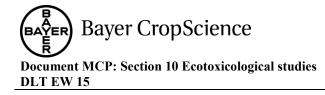

Behavior of the bees was only slightly affected by the test item as well as by the standard. Foraging activity was influenced by the test substance only for a short time. Mortality was not increased significantly by the test item; there was a slight and short-term increase of mortality after application, but overall mortality was comparable between treatment and control. The toxic standard, however, led to a longer-lasting increase of mortality. Colony development was not affected by the treatment.

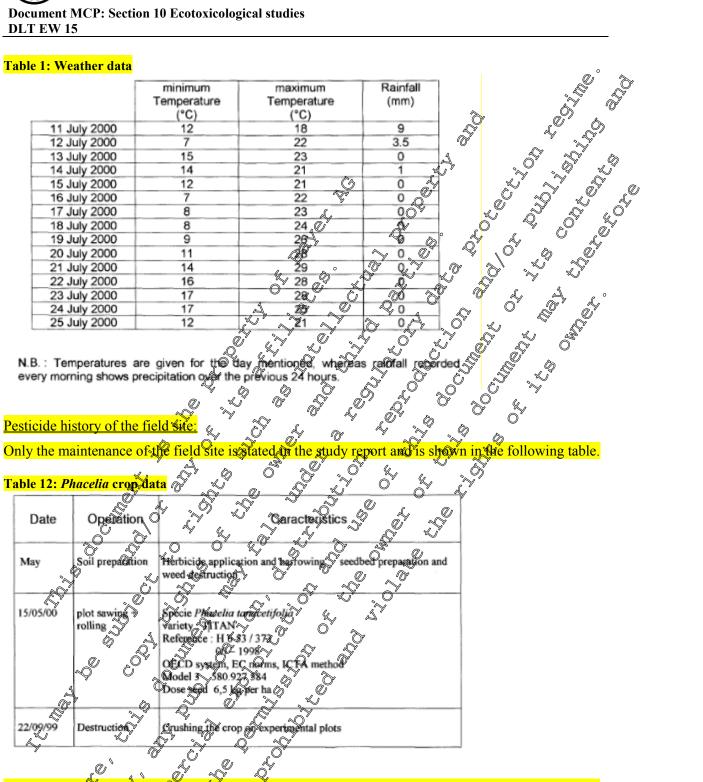

Page 174 of 518 <mark>2017-05-15</mark>

Bayer CropScience k Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Material and Methods:

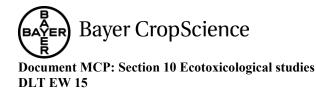
Aaterial and Methods:	Q° &
Test material	Deltamethrin
Test item:	Deltamethrin EW 15 G (AEF032640 00 EW91 B106) content of
	a.s.: deltamethrin: 1.51 % w/w (15.0 g a [®] /L nominal), density. 1.023 g/ml TA161/99PM
	1.023 g/ml J
Batch number:	TA161/99PM & Ly
Reference item:	Zolone Flo (active ingredient: physalone, 500 ga.s./Lytominal,
	Zolone Flo (active ingredient: phesalone, 500 g a.s./L prominel, analysed content 499 g a.s./L) Honey bees (Apris mellifera)
Test organism:	TA161/99PM Zolone Flo (active ingredient: physalone, 500 g.a.s./L prominal, analysed content 499 g.a.s./L) Honey bees (Aprils mellifera)
	Young honey bee colonies with gavens from the local black breed which were one year old. The queens had a common genetic
	identity as the were sisters (or half-sisters) coming from a single
	straip. The colonies live in hives of the DADANT fo frames
	model.
e e e e e e e e e e e e e e e e e e e	Populations special over 7 to frames (of which poproximately
	2 to 4 frames of brood) have been estimated at abound 46,000 to
	18,000 bees per lave. Bee colonies came from the same apiary containing 1,200 hives
Source:	Bee colonies came from the same apiary containing 1,200 hives
Crop:	allowing easy selection of swarms A A A A A A A A A A A A A A A A A A A
Crop:	flowering stage
Test location:	on a figled from
\$. 6 . ~ ?	France
Test unit:	Each tunnel had a half-moon support made from galvanised
	roof height approximately 3 metres. A polyethylene mesh net
	(12 mm \$1.2 mm) covered the supports. Both ends were made
	ap of the same material. Access was possible through a zip
	opening. The second sec
	Each had a surface of 16 m^2 (2 m x 8 m). Two plots were
	considered as Sheltered areas (R1 and R2; not treated with test
	item) the other two (T1 and T2) as treated areas. A beehive, a
	tunnels and subplied daily
	Exact interior design of the tunnel is shown in the figure below:
Ŭ	allowing easy selection of swams Phatelia conacetifolia variety: HTAN (bee attractive crop) at towering stage) on a field from Frace Each tunnel had a half-mool support made from galvanised geel. (The surface per unit was 140 m² (7 m x 20 m) and their roof height approximately 3 metres. A polyethylene mesh net (12 mm x 1.2 mm) covered the supports. Both ends were made ip of the same material. Access was possible through a zip opening. Inside the tunnel the <i>Phacelia</i> crop was split into four plots. Each had a surface of 16 m² (2 m x 8 m). Two plots were considered as sheltered areas (R1 and R2; not treated with test item) the other two (T1 and T2) as treated areas. A beehive, a watering prace and feeders with pollen were placed in each of the tunnels and supplied daily. Exact interior design of the tunnel is shown in the figure below:




Climatic condition during the experiment:

This experimentation took place over a period with weather and temperatures favourable to foraging. The period before and after the day of product application was warm and dry.

The environmental conditions are shown in the following table.


Table 1: Weather data

The effects of Deltamethring EW 15 G were tested on the honeybee (Apis mellifera L.) under confined semi-field conditions by Ollowing the Buidance document C.E.B. method no. 129.

The aim of the study was to valuate potential side effects of a spray application of Deltamethrin EW 15 G on the poneybee, Apis mellifera under forced exposure conditions.

This studs included three exposure groups with one replicate (tunnel) each: one water treated control group (tunnel 2), one test-item group (tunnel 4) and one reference item group (tunnel 3). In all exposure groups, the crop was sprayed 7 days after set-up of the hives in the tunnels at flowering stage of the

crop, during which time honeybees were actively foraging on the crop under confined conditions. The honeybees remained 7 days in the tunnels following application.

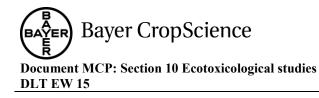
The hives were introduced into the tunnels five days prior to product application, in order to await a mortality decrease and stabilisation. The colonies were comparable to each other during the first visic at the beginning of the test period, and mortality was homogeneous the first day of the study.

Mortality in each tunnel was recorded on a daily basis for all areas covered with plastic film, from a days before treatment (7DBT) to 7 days after treatment (7DAT). Moreover, the day on which product application was carried out (0DBT) additional counts were done at the end of the day (0DAT) in order of to establish possible brutal intoxication of foraging bees. The total mortality rate recorded in a tunnel for a given day results from adding up mortality rates observed in each of the six plastic rows in the tunnel.

Foraging was observed from 2DBT to 2DAT in all the sheltered (Ref and R2) and treated areas (T1 and T2). It was possible to adapt the time of counting to the environment of the treat and to active foraging periods. Counts were shifted if activity was not considered satisfying (late activity due to morning mist or disturbed by rainfall...etc.) This parameter was also taken into account for an additional count on the day of treatment, during the hour following product application.

Two colony assessments were carried out in the beginning and at the end of experimentation (7DBT and 7DAT), allowing to evaluate colony development taking into account parameters like the adult bee population, the quantity and quality of the brood (different stages observed) amount of reserves and potential construction of new frames on offered was sheets. These visits were carried out in the tunnels at dates which were as close as possible to the first and last day of confinement blowever, for practical or climatic conditions, they necessarily took place within 48 hours before of after introduction of the hives in the tunnels on the one hand, and when the hives were taken out on the other hand.

Assessments of bee behaviour were carried out, when products were applied and during the thirty minutes following product application. In general, this observation phase continued all over the day, between counts. Bees were especially observed for feactions and behaviour like intense flying, bee clusters of the net or at the obtrance of the hive, aggressiveness beginning of an intoxication etc. in each of the tunnels.


The influence of the test stem was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

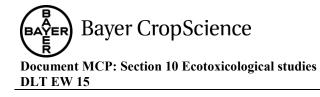
The following endpoints were assessed; Q

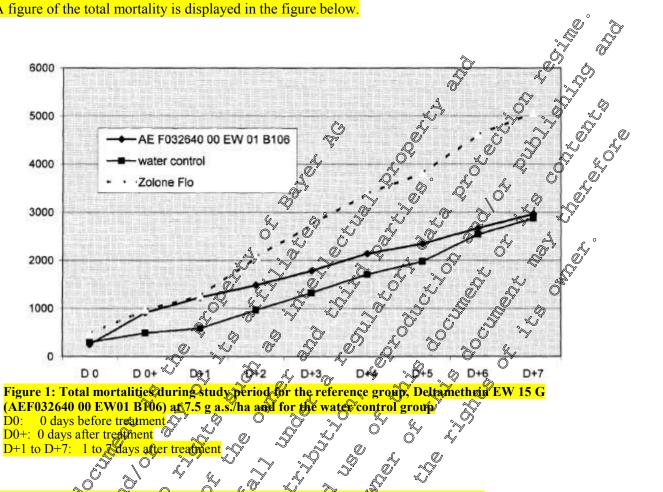
- Number of dead bees per day before as well as after the applications in the control, the test item group and the reference item group, respectively
- Number of foraging bees/m² per day on all the areas (T1, T2 and R1, R2) before as well as after the applications in the control, the test areas and the reference item group, respectively
- Behaviour of the bees during assessment in the control, the test item groups and the reference item group, respectively

• Colon@Assegment for the beginning and at the end of experimentation

Dates of Work: 12th July to 25th July 2000

Findings:

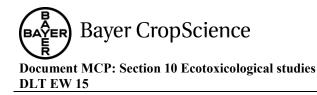

Findings: Honey bee mortality A summary of the daily mort Table 3: Daily mortality data Treatment							
Honey bee mortality							
A summary of the daily mort	ality and to	tal mortali	ty results a	<mark>re shown i</mark> i	n the follow	wing table	
r summary of the dairy more	anty and to		ty results a				
					.1	<i>A</i>	
Table 3: Daily mortality data			<i>.</i>		S.	_°~~~ <	
Treatment				<mark>3T – 12th J</mark>	dy		
zone	lane 1	lane 2	lane 3	lane 🕀 🖗	<mark>lane 5</mark> 🔬	lane o	iotal O
Deltamethrin EW 15	100	20	10 ⁷		· · , 0		
<mark>(7.5 g a.s./ ha)</mark> Water control	<u>199</u> 35	28 14 @	<mark>∕ √ 57</mark> 43	$\frac{9}{12}$		77 2 2	432 185
Zolone Flo	290	52%			3	242	× 764
		0		BT – A ^{Sth} Ju	K V	k (1
zone	lane 1) lane®	fame 4	lane 5	lane 6	total
Deltamethrin EW 15	<mark>014</mark> -	× 50					
(7.5 g a.s./ ha) Water control	214 62 &	v <u>39</u> ≯ √ <mark>62</mark>	$\frac{\sqrt{71}}{124}$	<u>7 40°</u> . <u>%</u> *		159 262	<mark>656</mark> 573
Zolone Flo	578		300 ⁰	132	<u>3</u>	202 2407	1531
	- R	6 Ø		B T - 14 ^t Uu	<u> </u>	Ĵ Ŷ	
zone	🛛 🕼 🖉 🖉		Stane 3		Pane 5		<mark>total</mark>
Deltamethrin EW 15			1 @%				400
(7.5 g a.s./ ha) Water control		$\frac{19}{22}$	' <mark>1922</mark> ∡ <mark>168</mark> ∼	× 21 ×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	⊘ <mark>86</mark> ♪ <mark>93</mark>	423 382
Water control Solution Zolone Flo .	<u>- 157</u>	28	218	« <u>55</u>	28	187	673
				BT©15 th Ju	ły "Ś		
zone L	lane 1	Aane 2		🖉 <mark>lane 4</mark>	lane 5	<mark>lane 6</mark>	<mark>total</mark>
Deltamethrin DW 150	× ×	ľ 🔊	27 56 X		\$ <mark></mark>	100	
(7.5 g a s tha) Water control ([∞] 205% 149	×16 ~	√y [°] <mark>56</mark> 500∕	<u> </u>	© ^v <u>11</u> 7	106 105	<mark>409</mark> 358
Zolone Flo	14 9 149	16 15 7	8 7	$\frac{3}{41}$	15	105	<u>484</u>
				BT -46 th Ju	ly		
Z zone	S <mark>lane Î</mark>	<mark>lane 2</mark> () [°] lane <mark>3</mark> °	s lane 4	lane 5	<mark>lane 6</mark>	total 🛛
Deltamethrin EW 15		0 ³ 4 ³ 7 <u>15</u> 6			~	41	201
(7.5 g a.s./401) Water control		,∛ <mark>1,</mark> %⊘ 	$\frac{022}{31}$	<mark>19</mark> 42	6 12	41 127	281 414
	21.6	0^{16}	280^{2}	18	4	105	387
		0 ⁷ .0 ⁷		<mark>BT – 17th Ju</mark>	ı <mark>ly</mark>		
zone	Jane 1	ane 2	_🗶 fane 3	lane 4	lane 5	<mark>lane 6</mark>	<mark>total</mark>
Deltamethrin EW 13				20	1	50	250
(7.5 g a.s./ ha)			<mark>44</mark> 71	29 42	1 7	50 53	250 254
Zolone Flo	¹¹⁵	18	88	61	<mark>/</mark> 8	<u>55</u>	344
	<u>v ,</u> ç	<u> </u>		<mark>BT - 18th Ju</mark>	ly	·	
zone 🕎 🔊	lane 1	@ <mark>lane 2</mark>	lane 3	lane 4	lane 5	lane 6	<mark>total</mark>
Deltaniethrin EW 150 (Los g a. Cha)	2 2 193	2 11	15	<mark>16</mark>	7	31	<mark>273</mark>
Water control	211	20	<u>15</u> 24	63	<mark>/</mark> 6	48	<u>273</u> 372
Zolone Flo	203	20 24	24 21	64		56	375
			<mark>0DBT -</mark>	19 th July m	orning	· · · · · · · · · · · · · · · · · · ·	
<u>zone</u>	lane 1	lane 2	lane 3	lane 4	lane 5	<mark>lane 6</mark>	<mark>total</mark>
Deltamethrin EW 15	164	0	16	24	o	20	250
<mark>(7.5 g a.s./ ha)</mark>	<mark>164</mark>	<mark>8</mark>	<mark>16</mark>	<mark>24</mark>	<mark>8</mark>	<mark>30</mark>	<mark>250</mark>


DLT EW 15

Water control	<mark>180</mark>	12	<mark>14</mark>	<mark>39</mark>	<mark>4</mark>	<mark>49</mark>	<mark>298</mark>
Zolone Flo	316	14	18	<mark>69</mark>	3	58	478 /
				19 th July aft	ternoon		
zone	lane 1	lane 2	lane 3	lane 4	lane 5	lane 6	potal
Deltamethrin EW 15						ر دست	
(7.5 g a.s./ ha)	<mark>321</mark>	<mark>18</mark>	<mark>126</mark>	<mark>80</mark>	19 [×]	103	661
Water control	85	<mark>9</mark>	44	21	A <mark>7</mark>	25	191
Zolone Flo	<mark>294</mark>	13	<mark>40</mark> 🙈	<mark>39</mark>	10 ¹⁰	9 %	<mark>492</mark>
20 July				$T - 20^{\text{th}}$	<u>и</u>	l v v	× _0
zone	lane 1	lane 2	lans 2	lane 🗗		lane o	total .
Deltamethrin EW 15			¹ ane 5 ² ⁶⁷	Å	_0		
<mark>(7.5 g a.s./ ha)</mark>	<mark>147</mark>	<mark>7</mark>	🔿 <mark>67</mark>	<mark>34</mark> (° <mark>4</mark> ∕∕	<mark>\$55</mark>	314
Water control	<mark>51</mark>	<mark>4</mark> 🔍	15 15	2 <mark>16</mark> 2	/ <mark>5</mark> ∛	\	<mark>.99</mark>
Zolone Flo	<mark>137</mark>	<mark>23</mark>	<mark>∂4</mark> 9 _⋒	5° <mark>45</mark> ≪″	×,5	D 36	≪ <mark>2∮5</mark>
21 July		O'	<u>_</u>	AT – 🎝 👫 Ju	N W		1 .
zone	lane 1		lane®	lane 4	lane 5	Q ne 6	total/
Deltamethrin EW 15				ð Å	<u> </u>		<u>R</u>
<mark>(7.5 g a.s./ ha)</mark>	152	€ <u>7</u> ~″	<mark>40</mark>	<u>18</u>	<mark>3</mark>	<u>7</u> 32	A253
Water control	204 📿	(<mark>23</mark>	م ^م <mark>47</mark>	<u> </u>	<u>ک 2</u>	<mark>\$9</mark>	<mark>∭376</mark>
<mark>Zolone Flo</mark>	52 4	<mark>24</mark> ^∧	y [™] <mark>78</mark> 9″	<mark>85</mark>	r <mark>s</mark> õ	\$ <mark>89</mark> {	806 800
	- Q	à à	🏷 <mark>3D</mark> 4	Y - 22'Oj u		õ '~	
zone	 &	i <mark>lan 2</mark>	Jane 3 Ø		Pane 5	læne 6	total
<mark>Deltamethrin EW 15</mark> 🛛 💡	³ 212	~ <mark>^</mark>	<mark>40</mark> 🔧		55 5	0 <mark>22</mark>	<mark>303</mark>
<mark>(7.5 g a.s./ ha)</mark>						<u>ĝ</u>	
Water control	2 <mark>14</mark> (6 <u>16</u> 0	<mark>62</mark>	∖ <mark>33</mark> 6, ³	<mark>10</mark>	∮ 34	<mark>364</mark>
Zolone Flo	<mark>کم451</mark>	22 ⁸ .	<u>© 52</u> റ്	<mark>€67</mark>	~ <mark>55</mark> &	<mark>73</mark>	<mark>675</mark>
				AT <mark>©Ž3th "Ť</mark> t	dy 🏹		
zone 🦉 🛴	lane 1	ane 2	latte 3	🖉 <mark>lane 4</mark>	lane 5	lane 6	total
Deltamethrin SW 15	^ <mark>245</mark> ⊀	12 12 12 12 1	34 ×	36 7		<mark>27</mark>	<mark>356</mark>
(7.5 g a.s ^ŷ ha)	· •			× ×		40	200
Water control	21 S	& <mark>17</mark>		0 ⁴ /	73 2	49	380
Zolone Flo	<mark>∲54</mark>	<u> </u>		755	<u> </u>	<mark>67</mark>	<mark>648</mark>
	~~ ~0			AT →2 ^{4th Ju}			
ZONE	Slane f	lane 2	³ lane 3	Nane 4	lane 5	lane 6	total
Deltamethrin EW 15		6 ⁹ 19	\$ 2	<u>چک 32</u>	<mark>8</mark>	<mark>54</mark>	<mark>206</mark>
(7.5 g a.s./ ha)	S 2 ×	N O	62	<mark>50</mark>	13	<mark>46</mark>	<mark>269</mark>
Water control	× 52 740	$\sqrt{35}$	950 ⁰	<u> </u>	<u>36</u>	85	419
NÖ Ör			-	<mark>94</mark> AT – 25 th Ju		<mark>00</mark>	717
	Nono 1	Nane 2	≫ <mark>6D</mark> 4	1 – 25 Ju lane 4	liy lane 5	lang 6	total
<mark>Jone</mark> Deltamethrin EW 15	$\frac{1}{27}$		Viane S 142	^{lane 4}	lane 5	lane 6 96	total 322
(7.5 g a.s./ ha)				<u>~ /</u>	<mark>2</mark>	<mark>20</mark>	522
Water control	s g	6 54	<mark>309</mark>	<mark>40</mark>	<mark>16</mark>	<mark>134</mark>	<mark>562</mark>
Zolone Flo	0 <mark>75</mark>		405	<u>114</u>	7	134	799
(7)				$\frac{114}{T - 26^{th} Ju}$		1.57	
zone 🔨 🖉	lane 1	ane 2	lane 3	$\frac{1-20^{\circ} \text{ Ju}}{\text{lane 4}}$	lane 5	lane 6	total
Deltamethrin EW 15			110	26	¹ ane 5 22	52	298
1000000000000000000000000000000000000	ð"'	ד <mark>ד</mark> א	110	20	<u>~~</u>	<u>52</u>	<u>~~0</u>
	22 22	<mark>69</mark>	129	<mark>36</mark>	12	<mark>68</mark>	<mark>336</mark>
Water wantrol &	4 1.1						
Water control	<u>58</u>	76	135	84	28	80	<mark>461</mark>

DAT: days after treatment

A figure of the total mortality is displayed in the figure below.


After a week of confinement, mortality rates were comparable for the three tunnels.

The day after the treatment, mortality grends showed quite some differences. Deltamethrin EW 15 and the reference item (Zolone Flopshowed an increasing mortality whereas the water control tunnel showed a regular evolution of this control tunnel (treated with water) the colony was not disturbed by the treatment. Mortaby rates recorded varied very few along the week.

At 1DAT the difference between Deltamethrin EX 15 and the reference item was linked to the duration effect. Deltamethrin EW of showed a peak at 10AT but this phenomenon was very brief. From 2DAT the mortantly rates recorded in this turnel literally dropped to a level which was comparable to the one before treatment and remained stable till the end of the experimental phase. M

On the other hand, the standard tunnel treated with the reference item showed an increasing mortality for several days. The daily mortality trend in the tunnel treated with Deltamethrin EW 15 was comparable to that of the control tunnel. There was, however, some increase in mortality rates following product apprention observed only at HOAT. This increase in mortality rates had only a limited extent. Until the end of the trial this parameter regularly remained low observed in the other tunnels.

The staph of total portality rates confirmed these mortality trends. In the tunnel where the test item Detramethen EW 15 was used, the curve increased during the first half day following product application. On the contrary, afterwards, progression was quite regular from 1DAT to 7DAT, comparable to the standard tunnel. Most of the dead bees in the final global count were due to the mortality peak on 1DAT.

The effects caused by the reference item Zolone Flo were more complex: immediately after product application, a high mortality rate was observed. Thereafter, daily mortality rates remained high antil 7DAT, yielding a total mortality rate which was clearly higher than that of the other tunnel in the end. 🔊

Distribution of dead bees within the tunnels did not give any additional information. This distribution Are data Are da was mainly influenced by wind and maybe by the sunlight guiding the bees. because most of the data were recorded in the rows at both ends of the tunnels (A1 or A3).

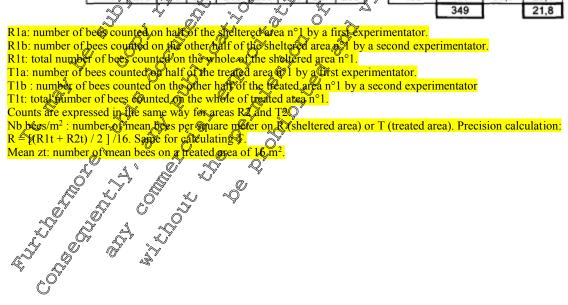
Foraging activity

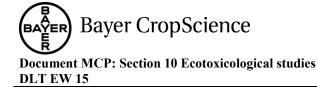
A summary of the daily foraging activity and breaking down of foraging on treatment shown in the following figure.

Table 4. For	aina de	ta. D	oltan	oth w	- FX	15 o	+ 7 5	Hac.			ð ð	0 10	Ő ^y	À
Table 4: Fora	iging ua	ita: D	enan	letiiri				g a.s.	WA	_ ~~				
tunnei 4				numbe		see he	LUNIC			br	\rightarrow	catoulate	d data	√ √ / m²
day	time	R1a	R1b	R2a	R25	T1a		Da	T26	ŕ	mean zR	mean zT	NŘ / m²≈	$\int \int \int m^2 ds^2$
17 juil 00	10h00	33	71	42	. 6	34	17	26	52	8	م 96 ر	66	6,0	
D-2	11h00	204	171	181	0206	147	194	229	198	~0	38,00	383	22.5	2409
	14h00	249	258	213		9152	218	221	251	\sim	40	A21	29,4	26,3
				~~~	, Ôg		Ĉ2	Ś	Ő	6	Д, ·	0290	Ũ	∕%/8,1
				<u>v</u>	, K	Û	F	Š	251 251	<i>"</i>	1550 364	174		
18 juil 00	9h30	92	75	60	82	62	85	106	<b>^9⁄4</b>	, Q	155g	174	9,0	10,8
D-1	10h30	186	197	167	172	CŽ12	140	203	219	~~	JØ¥	3274	22,0	24,6
	12h00		Ø216	203	224	214	460	197	217		\$56	394 ,	28,5	24,6
		Ň	1	1	Q	and the second se	Y	Ő	, ô ^g		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, [≫] 321∧0	7	20,0
		×.	, C	, Y	Ô		2		<u>, 0'</u>	×	1 0	<u> </u>		
19 juil 00	9h45 /	<b>90</b>	1/08	97	74	88	501	76	,106	$ $ $\bigcirc$		162	11,8	10,1
D 0	10h4	195	182	285	179	201	458		187	7,	396	384	24,7	24,0
	- Ali	. Ó		$\sim$	Ś			\$ \$	187 2	9	Ø Å	273		17,1
	D. S.	al	4	1 (	1	Ś	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ň	ſ		Ý		
\$	<b>32h00</b>	966	201 (196		178		54	64	,72 122	A.	352	156	22,0	9,7
Q	14h30			145	201	175	692	147	122	$\bigcirc$		293	22,0	18,3
, Ô	15h30	238	183	<b>2</b> 017	196	244	190	205	170		432	418	27,0	26,1
		ð	ŝ	V V			) A	$\sim$	$\sim$	~	×	289		18,1
		$\mathcal{Q}_{\mathcal{I}}$	ON:	, 		~ \		¥ .	S.	.C	×432			
20 juil 00	9h30		°193	64		63	56	49 107	86 148	×,	152	127	9,5	7,9
D+1	10139	99	175	AQ2	150	170	86		148	P	303	256	18,9	16,0
	14030	247	208	267	244	231	188	245	10	J	483	420	30,2	26,3
	~~	Q"	Ŝ	, ,		×	0	, ,	S S			268		16,7
~~~~	Ø r		Õ	°~		$\bigcirc$	$\sim$		0	_			-	
21 juil 00	10h00	204	996	201	178	176	144	163	170]	386	327	24,1	20,4
D+2	1100	I Z14	198	213	14	162	150	@ 95	140		385	324	24,0	20,2
D+2	14h30	<i>25</i> 57	220	287	238	208	180	283	224]	501	468	31,3	29,2
		Ś	_~~~		7 4	<u>C</u>	~0					373		23,3
Å €	ŝ	1 ^V	A	. 61	(238 -Q		° N						-	
Š	-0		ÿ,	Š	-Q	~	S.							
		°0'	((J	a.	L.	7							

R1a: number of bees counted on both of the sheltered area n°1 by a first experimentator.

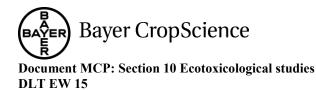
R1b: number of bees contact on the other half of the sheltered area n°1 by a second experimentator. R1t: total number of bees counted on the whole of the sheltered area n°1. T1a: number of bees counted on half of the treated area n°1 by a first experimentator.


T1b : number of wes counted on the other half of the treated area n°1 by a second experimentator


The image of second experimentator The image of second experimentator The treated area n°1 by a second experimentator The treated area n°1 by a second experimentator The treated area n°1 by a second experimentator The treated area of 1. Not bees/m² number of mean bees per square meter on R (sheltered area) or T (treated area). Precision calculation: $R \neq [(R1t + R2t)/2]/16$. Same for calculating T. Mean R number of mean bees on a treated area of 16 m².

Bayer CropScience **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

Table 5: Foraging data: Water Control


tunnei 4				numbe	er of be	es pe	rzone				[calculate	d data		¢° &
day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b	1	mean zR	mean zT	R/m ²	T/m ²	S A
17 juil 00	10h00	33	71	42	46	37	17	26	52		96	66	6,0		
D-2	11h00	204	171	181	206	147	194	229	198		381	3840	23,8	24	Ó S
	14h00	249	258	213	222	152	218	221	251]	471	42	29,4	26,8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
												290		(18,1	
18 juil 00	9h30	92	75	60	82	62	85	106	<u>~94</u>	1	155	174	9,7	10,8	? 🔬
D-1	10h30	186	197	167	172	212	148		219		361	394	22,6	24 8	
	12h00	249	216	223	224	214	160	107	217			394	28,5	24.6	K A
		2.10						S		1		321	\bigcirc	020,0	S ko
								Ô			Q	• L)	¥ 0	, Č ^v
19 juil 00	9h45	90	118	97	74	88	540	76	106	$ \land$	190	160	168	10,1	a.
D 0	10h45	195	182	235	179	201	15/8	222	187	The second secon	396	384	\$4,7	,24,0	~~~~
						¥.	V	¢,	106	F		273		√17 ,1	K,
	40500	100	004	150	470			© 64	- Gh	4	3520	Ŭ D			<u></u>
	12h00 14h30	166 162	201 196	158 145	178	124	142	147	2 122			156 293	22.0 22,0	97. 18:3	a, s
	15h30	238	183	247	196		190	235	170		352	Q18	27,0	26,1	<u>A</u>
	101100	200	100	241	Ű	· ·		0/10		ŗ		289		18,1	È.
				,	Q	4	í Í	(, N					V
20 juil 00	9h30	52	103	64	84	63	56	49 [%]	86]∾″	152	127		19	
D+1	10h30	99	175		150	170	86	1927	148	þ″	303	256	A 18,9	16,0	
	14h30	247	208	267	249	231	188	245	176	\triangleright		420	30,2	26,3	
			~	1	°	0	6	\mathcal{D}^{ν}	176	ץ ו ~~		2680	Ň	16,7	
			<u> </u>	1		ŝ				, Ý		Č)			
21 juil 00	10h00	204	196	28	\sim		044	163				°~327	034,1	20,4	
D+2	11h00		198 220-	213 287	238	162	150	195	140	1		\$324	24,0	20,2	
	14h30	A	2202	201	230	1 2 6 6	1 160	283	84	J 🌾	<u>501 ×</u>	468	31,3	29,2 23,3	
	G	Ş	S	~	//	U	S.	, K	γ					23,3	
00.1011.00	Lobe		<i>a</i>	a			NY I						440	45.0	1
20 juil 00	9h39	178		900 152	1/15	83	132	08	82	Ĩ	239	243	14,9	15,2	
D+1	10H30 4h30	206 328	98 (195	242	/185	160	176	215	74 120	1	286~ 426	287 366	17,8	17,9	
Ĩ	U-III30	USE O	\bigcirc	1 243	100 K	Jaco V		- (1 120	1	/ <u>"*0</u> °	299	20,0	22,8 18,7	
Pr-		Y .	K)	Ĉn -	4	*	N.	Ş	5		×,	200	1	10,7	1
21 juil 00	10h00	93	140	185	000	124	98	79	98/] "	Ø 204	198	12,8	12,4]
	11h00	233	200	211	137	221	172	160	,212] _	391	383	24,4	23,9	
	14h30	273	238	216	252	221 255	200	227	250	\sim	495	466	30,9	29,1	
	39		8 4									349		21,8	
la: number of	NI POL	A	1 1/4		× 1))						-		-

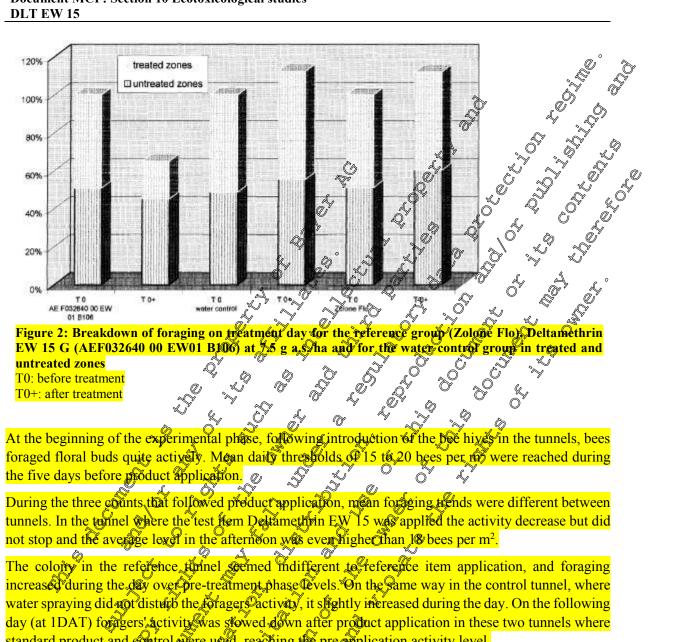
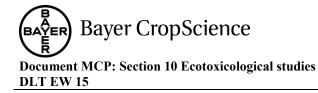


Table 6: Foraging data: Reference item Zolone Flo

Tunnel 3				numb	er of be	ees ne	7 2004	•				calculate	d data		
day	time	R1a		R2a	R2b	T1a	_	, T2a	T2b		mean 78	mean		2 T/m	5
17 juli 00	10h00	32	34	19	15	15	19	13	31		50	3.9.7	3,1	26	Ó
D-2	11h00	162		135	156	116		155	189		311	2087	40.4	17,9	~~~~
	14h00	233		192	226	186		236	256		441	440	27.5	17,9 \$27,5 ^	a l
	111100	200	200	102		100			1 400			255	N	15.90	× 4
									Ĉŝ		L.				
18 juil 00	9h30	111	151	124	91	145	109	96	153		23	252	4 ,9	~0.7	l "V
D-1	10h30	186	201	135	219	130	176	172	223		3M	351	23,2	21,9	Ĉ,
	12h00	248	278	198	263	172	174		257		494	412	30,8	25,7	
tunnei 4				numbe	er of be		70100		7	í	9 - Ø	calci	Cach h	17,9 27,5 15,9 0,7 21,9 25,7 2,25,7 1,2 4,1 24,0 26,5	
day	time	R1a	R1b	R2a	R2b	T1a	RP6	T2a	T2b	\searrow	mean zR	mean 7T	B/m ²	T To Renz	, O
17 juil 00	10h00	33	71	42	46	37 🕼	17	25 °	52	Ì,	×96	66	06,0	41	Ň
D-2	11h00	204	171	181	206	140	194	@29	1,58		- 11	384	23.8	24.04	•
	14h00	249	258	213	222	152	218	221	281	6	4710	421	29.2	26 3	مار م
						A				Ą		290		181	Č
					Ľ	<i>"</i>	\searrow			Ì	Å		Ł		
18 juil 00	9h30	92	75	60	ø	62^	85	4 96	94		_O155 🤬		9,7	10,8	
D-1	10h30	186	197	167	Q72	@1Z	148	209	219	, ©	° 361_Û	394	22	24,6	
	12h00	249	216	223	224	@14	160	197×	217	\searrow	456	391	26,5	24,8	
				~Ç	, Ôj	(Ŷ	ð	Å	J	, Õ	^{9/21}	õ	20,0	
10 108 00	9h45	90	119	97			54	76	106	// 	Q 190	1620	11,8	10,1	
19 juil 00 D 0	9040 10h45	195	118 182		179	88 201	150	222	187	ź	3962		24	24,0	
00	10045	190	nga	235	1/9	6	158	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		d y	3904	384 ∿273		17,1	
		. (Ô	°)	ŝ	r d	, O	e		\$	S.		Ŝ.	17,1	
	12h00	166	201	158	178	124	51	64	F		252	156	22,0	9,7	
	14h30	4.62	196	145		125	142		122	¥	352	293	22,0	18,3	
	15h30	238	183	247	196 (241	190	235		0	432	418	27,0	26,1	
		Å	-	- AN	S	1				')		289		18,1	
	S.	0	, J	\sim		\sim	/		, Q		× 152×	×	•		
20 juil 00		∕⊳52	103	64	84	63	56	49	86	R	152	127	9,5	7,9	
D+1	10h30		105	1820	Í150 %	170	8.	107	148	S.	303	256	18,9	16,0	
Ĉo	14h3@	247	208	267	244	231	188	245	170	9	L 403	420	30,2	26,3	
		Ľ	*	Š.	A.	C	F a	».			Ø	268	1	16,7	
ACY .	401.00					130	Â		Ŝ		×	0.07			
24 juil 00 D+2	10h00 11h00	204	.196	201 219	170	176 162	149	163 195	170 140	" V		327	24,1	20,4	
0+2	14400	257	220	287	238		180	203	224	1	385 501	324 468	24,0 31,3	20,2 29,2	
	ģ	A.	220	Sec.	238							373	31,3	23,3	
	~~	,9°	O C C C C C C C C C C C C C C C C C C C		, ĝr			,	S.			0/0		20,0	
() a	V e	Q°	Ô,			0	\sim	~	0"						
number of	bees cou	nted	0 n half	of the	shelle	red as	nº1	bay f	irst ex	nerir	nentator				
number of	bees cou	inted o	on the	wher h	naffof	thesh	eltere	1 area	n°1 by	a se	cond expe	erimentato	or.		
totatinumb	er of beer	s coun	ted on	the w	hole of	f the sl	helten	d area	n°1.		•				
number of	bees con	nted o	n half	ofthe	treater	area	n Bo	y a firs	t expe	rime	ntator.				
humber of	f bees co	unted	on the	other	halfof	the tre	eated a	area n ^o	°1 by a	seco	ond experi	mentator			
total numb	er of bees	s coon	ted on	the w	hole of	f treate	ed area	ι n°1.							
nts are expr	essed in	the sar	ne way	y for a	teas R	2 and	12.	1	×		()			1 1	
ees/m^2 : nu	vaber of	mëan l	bees p	er say	are me	ter%on	K (sh	effered	area)	or T	(treated a	rea). Prec	ision ca	Iculation:	
(KII + K)	1/2 Myt	r. Sam	Calor C	dicula	ung ()	f_{16}	2								
				FCated F	arsato	1 10 m	I.								
~?	Ľ,	,	Ő	-											
ees/m ² : nu (R1t + R2t 1 zt: numbe		\$ s													
y "Ø	Ĩ		Ĭ												
	~	j.													
Ň															



day (at 1DAT) for agers' activity was stowed down after product application in these two tunnels where standard product and control were used, reaching the pre application activity level.

In the Deltamethrin EW is tunned this activity and not move and stay at the same level the day before. In the three tunnels, foraging thresholds remained quite high two days after product application (2DAT), at comparable levels to those obtained over severablays, always about 15 and 20 bees per m² on average, with even higher activity peaks during the day in the most favourable conditions.

Shortly after product application (OPAT, during the thirty minutes following product application), a minor repulsive effect was observed in the tunnel. The decrease in foraging activity affected treated areas only, whereas shelfered (untreated) areas were visited by the same amount of foragers. This confirms the impact of Deltamethrin EW 15 on foraging activity on average on the treatment day.

On the contrary, the two other tunnels showed increased activity on both sheltered and treated areas. this explaine levels over 100 %. However, it is preferable to deal about relative foraging stability in the three turnels because differences were not significant.

Colony Assessment

There were few differences concerning the structure of the colonies between the two visits. The state of the reserves and proportions of the brood remained stable for the reference item tunnel (Zolour Flo). Brood from the control and test item (Deltamethrin EW 15) tunnels remained also constant, but their reserves slightly decreased. However, these differences were not of sufficient magnitude to reveal a radical change in the colonies behaviour of those two tunnels.

The slight consumption of reserves for the water tunnel and the Deltamethrin EW 15 cunnel could Have been induced by the difference between the need for food of the colonies and the restrictive conditions during the tunnel confinement phase.

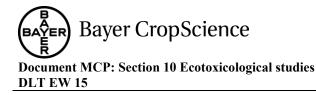
Despite a high mortality recorded during the trial on the Zolone Plo turnel, populations of the remarked stable between the two apiarist visits. The increase of mortality, during the treatment period (1DBT to 1DAT), may have been compensated by the emergence of new bees on the brood frames, which would explained the stability of the bees populations.

explained the stability of the bees populations. Behaviour of the bees Colony behaviour was comparable between turnels, as foraging was quite regular on Phacelia plots. Colonies in the different tunnets only showed little reaction to treasments, if it were not for flying away when the boom with water passed by. Õ 1

In the tunnels where the test product was used, a few clinical signs occurred in the hour following product application. These signs were observed in the afternoon but not the next or following days.

Activity at the hive entrance was normal in three tunnels. No bee clusters were observed on the nets nor at the hive entrance and no fleeing events were observed in any of the tunnels.

Intoxication somptoms. Foragers in Contact, with the test Otem were the ones that were affected first. In the Deltamethrin EW 15 and in the reference then (Zohone Flo) tunnels, some bees were on the ground after treatment and they had typical indexication signs. \bigcirc


In these tunnels, intoxicated bees fell on the plastic surface of the rows, walked in a difficult way alternating periods of sluggishness and frenzy Buch abee rolled over itself and appeared unable to lift off. Its fore legs then it prind legs and abdomen appeared to be paralysed. The bee died in a range from a few minutes to a few hours

Conclusion:

Overall conditions for conducting this experimental phase of the scheme were favourable to bee activity. Climatic and crop conditions were satisfactory. The different parameters observed agree with the results obtained.

During the treatment phase, the test item Deltamethrin EW 15 and the reference item Zolone Flo showed impact on bees deaths compared to the water control. But fundamental difference was that mortality caused by the reference itervistill showed effects over several days, when test item Deltamethrin EW 15 effect was restricted to the day after product application.

Experimental conditions of the study were quite strict, including confinement and product application carried out during intense foraging activity, on very attractive plots. Only the use of the reference item gave a high mortality.

During this trial on a blooming phacelia the effects of the test item Deltamethrin EW 15 only showed a temporary increase in mortality yielding comparable total mortality rates to those recorded in the control tunnel.

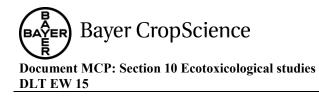
Report:	KCP 10.3.1.5/04,
Title:	Determination of Side Effects of Determethrin EW 15D C on Uknow Boo
	(<i>Apis mellifera</i> L.) Brood Under Confined Sent-Field Conditions
Document No:	M-47/316-01-1 (Rep. No.: S1200041)
Guidelines:	OECD guidance document \$ 0. 75 (2007) No mater deviations
GLP:	yes (certified laboratory) $\&$ $\&$ $\&$ $\&$ $\&$ $\&$ $\&$
<u></u>	

Material and Methods:

Test item:

Name: Deltamethrin EW 15B, G; Sample description: TO\$09629,00 Batch-ID: 2002-000065; cortent of a.s. (analysed): deltarnethr g/L, 1.58 % w/w @ 5.0 g/L nominal).

M The effects of Deltamethrin EW 15B were tested on the boneybee (Apis mellifera L) under confined semi-field conditions by following the GECD guidance document No. 75 (2007), with modifications.


The aim of the study was to evaluate potential side effects of a spray application of Deltamethrin EW 15B G on the honeybee, Apismellifera L. under forced exposure conditions. The crop used for this semi-field study was Phagelia tanacetifolda, the study was conducted in Germany.

This study included three exposure groups with three replicates (junnels) each: one tap-water treated control group (C), one test-item group (T) and one reference item group (R). In all exposure groups, the crop was sprayed 4 days after set-up of the hives in the translated BBCH 65 (full-flowering), during honeybees actively for aging on the grop under confined conditions. The target application rate of the test item Deltamethrin EW SB G corresponded to 7.5 g a.s./ha, tap water was applied in the control group and insegat 25 We was applied at a target rate of 600 g product/ha in the reference item group (corresponding for 150 g) tenoxy carb per ha) The spray volume was 400 L/ha in all treatment groups. The colony size at ot-up was in the range of 6188 – 9188 bees. The honeybees remained 10 days in the tunnels.

The first colony assessment was performed days before set-up of the colonies in the tunnel tents. Subsequently, six further colony assessments were conducted.

The colonies were assessed once before, twice during and four times after the end of the confined exposure phase The development of the best brood was assessed in parallel in individual marked brood cells. One assessment before application (Brood Area Fixing Day = BFD0) and four further assessment Took place. Mortality, flight intensity and behaviour assessments were conducted daily, starting 3 days before the test mem application and continued for seven days after the test item application under continued conditions. Further mortality assessments (in bee traps only) and behaviour assessments were conducted at the monitoring site, after the end of the confinement period until DÄA26.

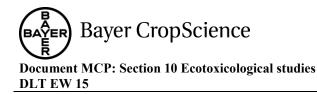
The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

The following endpoints were assessed:

- Total and mean number of dead bees on the linen sheets in tunnel tents and in the dead beer aps • before as well as after the application in T, C and R, respectively.
 - Flight intensity (mean number of forager bees/m² and treatment group on P. take • before as well as after the applications in T, C and R, respectively.
 - Behaviour of the bees in the crop and around the hive. •
 - Condition of the colonies and development of the bee brood (number of bees (strength) and area of the different brood stages and food storage per colony and assessment date). Development of the bee brood assessed in individual brood cells.
 - •

Dates of Work: 15 June 2012 to 18 July 2012

Findings:


emi Field Lest under Contined Reposure Conditions Mortality and Flight Intensity of Honey Bees

The state			\$ <u></u>
Test item		Deltamethring W 15E	
Test object		01-1	
Treatment group	Confrol	Deltamethrin	Reference item
Treatment group		EW 15B Co	Insegar 25 WG
	(C)		🧳 🖉 (R)
· · · · · · · · · · · · · · · · · · ·		Deftamethrin a.s./ha	1 × 150 g
Application rate	Ø Õ Å	Doltamethrin a.s./ha	Fenoxycarb/ha
A B		at BOBCH 65	at BBCH 65
Mean mortality DA 3 to 0ba	× × × 15,1 ×		15.3
Mean mortality DA 23 to 0ba [dead bees/day]			15:5
Mean mortality AA000			22.2
[dead bees/date	O' & 36.3 X		32.3
Mean mortality DAA0aa			
[dood hooddow]	22.0 "	~~~~ <u>30</u> ?3	19.3
Mean mortality DAAgaa to 7			
Mean mortality DAAta to 7	() (^{19.2} , ^{(19.2})	¥29.9*	27.5
Mean mortality DA0aa to 26		ð	
[dead bees/day]	2 15,8 S	18.4	72.7*
Sum of dead pupae and larvae		15 Pu	4574 Pu
	0 Pu/20 0 4 06 Pu/20 0 4 4 0 4 4 0 7 1 0	15 TU	4574 I u
Q _M (DAA0aa)		1.8	1.3
42 8 4		1.0	1.5
Q _M (DAA0aa to 7)		1.7	1.8
Q _M (DAA0aa to 7)		1.7	1.8
Daily mean flight intensity	Č <u>7.6</u>	0.2	10.5
DAA_3 to 0 be $rac{1}{2}$	/.6	9.3	10.5
Daily means flight intensit	~~~	C Oth	16.0
DAA0aa [bees br]	17.3	6.0*	16.8
Daily mean forth intersity		24.4	247
$DAX1 [bees/m^2]$	28.5	24.4	24.7
Daily mean flight intensity	22.6	17.0*	19.5
DAA $@aa$ to 7 [bees/m ²]	22.0	17.0	17.3

DAA = Days after application

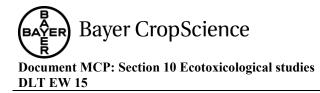
ba = before application

aa = after application

* = statistically significant compared to the control Pu = pupae La = larvae

Results and Observations:

Honey Bee Mortality:


After set-up of the colonies inside the tunnels until the day of the test iter Application (BAA-3 Oba), the mean mortality value was 15.1, 17.3, and 15.3 dead bees/day for the treatment group C. and R, respectively. There are no statistically significant results between the treatment groups concerning mortality during this period (t-test, method pooled, one sided, $\alpha = 0.0$ s). On the day of the application, immediately before test item application in Tand the concurrent application in C and R, respectively (DAA0ba), the mean mortality value was 36.3 3.7 and 32.3 dead bees/day for the treatment group C, T and R, respectively. On the day of application, after the application (DA0aa), the mean mortality value in the treatments group C, T, and R accounted to 22.0, 30 3 and 19.3 dead bees day, respectively. One day after application (DAA1) the recan mortality in T (34.7 deal bees day) was slightly, but statistically significantly higher than the corresponding value in the control group C (19.0 dead bees/day) (t-test, method pooled, $\alpha = 0.05$). Also statistically significantly higher than the corresponding value in the control group C (12,7 dead bees/day) (t-test, method pooled, one-sided, $\alpha =$ 0.05) were the mean mortality values of T and R on DAA7 with 5.7 dead bees day in and 36.3 in R, respectively.

The mean daily mortality value during the confined exposure period after the application (DAA0aa to DAA7) of the test item treatment was slightly increased with a mean value of 29% dead bees/day and statistically significantly higher than the corresponding value in the control group C with 19.2 dead bees/day (t-test, method pooled, one-sided, $\alpha = 0.05$).

During the further monitoring of the colonies outside the tannels of the remote monitoring location (DAA8 to DA326), daily mean modality was in a range from 60 to 25.0 dead bees in C, 6.0 to 35.0 dead bees in T and 5.7 to 277.7 dead bees in R X statistically significantly higher mortality value occurred only on DAAS during this period of time in the test iten treatment group T when compared to the control group Cu-test method pooled, one-Sided, $\alpha = 0.05$). The mortality values of the reference item treatment group were statistically higher throughout DAA10 to DAA15. During the total time period after the application (DAA0aa & 26), the mean daily mortality was

recorded to be \$5.6, 164 and \$2.7, for C, To and Rorespectively. The mean mortality values in the test item treatment group T before (DAA-3 to 0ba) as well as after test item application (DAA0aa to 26) were not statistically significantly different, when compared to the control group C (t-test, method pooled, one-sided, $\alpha \Rightarrow 0.05$).

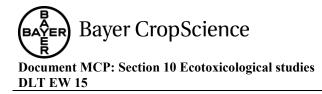
Additionally, from DAA10 onwards (i.e The typical point in time to detect the effect of the reference item), dead bees, dead provae and dead larvae on the bottom board of each hive were counted and added to the dead bees found in the dead bee trap and were included in the calculation. The values from the bottom board of DAA10 are as such the sum of dead bee life stages until that day. During the daily assessments of mortality (DAA0aa to 26), the sum of dead pupae and larvae, found inside the dead fee traps and on the bottom board (from DAA10 onwards) of the test item group and control group stayed on the same level with 18 and 15 dead pupae and larvae for C and T, respectively. In contrast, 4374 dead pupae were found in the reference item group during this period. When comparing the mean mortality before application (DAA-3 to DAA0ba) until the day of the test item application, the $Q_{M(DAA0aa)}$ values were 1.5, 1.8 and 1.3 for the treatment groups C, T and R, respectively. The Q_{M(DAA0aa to 7)} values were 1.3, 1.7 and 1.8 for C, T and R, respectively.

Although the mean mortality in the test item treatment group was compared to control statistically significantly increased one day after test item application (C: 15.0 vs. T: 34.7 dead bees/day) as well as during the confined exposure period after the application (DAA0aa to DAA7, C: 19.2 vs. T: 29.9 dead bees/day), mortality was in absolute terms still on a low, biologically not a verse level. Therefore, it can be concluded that Deltamethrin EW 15B G, even when appled under forced (confined) exposure conditions at a rate corresponding to 7.5 g a.s./ha during full-flowering of a highly bee-attractive crop (*Phacelia tanacetifolia*) with honey bees actively foraging on the crop during application, does not result in biologically adverse effects on mortality

Honey Bee Flight Intensity:

After set-up of the colonies inside the tunnels until the day of the test item application and the concurrent application in C and R, respectively (DAA, 3° to 0bs), the mean daily flight intensity was 7.6, 9.3 and 10.5 bees/m² in C, T and R, respectively The daily mean flight intensity during this period was in a range from 1.8 to 15.1 forager becom² in \mathbb{Q} , 0.8 for 15.4 in T and 1.9 to 17.7 for \mathbb{R} , respectively.

On the day of the test item application application (DAA0aa), the mean daily flight intensity across 7 assessments within a period of about 6 hours was 17.3, 60, and 16.8 honeybees/m² for C, T, and R, respectively, and was statistically significantly reduced in T, when compared to C ti-test, method pooled, one-sided, $\alpha = 0.05$). m


One day after the test item application and the concurrent application in a and R, respectively (DAA1), the mean flight intensity was nearly on the same level in all treatment groups with 28.5, 24.4 and 24.7 forager bees/m² in the C, T and R, respectively and there were no statistically significantly differences in the test item treament group Twhen compared to the control group C, but statistically significant differences were observed in the reference item group (t-test, method pooled, one-sided, a = 0.05). \bigcirc

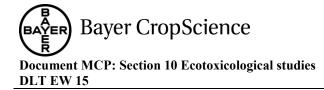
During the confided exposure period, after test item application and the concurrent application in C and R, respectively (PAAQas to DAA7), the flight intensity in the test item treatment group T was statistically@ignificantly_lower_of/DAA2 (23.8 ForageDees/m²) and DAA3 (10.6 forager bees/m²) when compared to the control group (DAA2: 28 and DAA3: 17.7 forager bees/m²) (t-test, method pooled, one-sided, $\alpha = 0.05$). The mean daily flight intensity during DAA0aa - DAA7 was in a range from 17.3 - 28.8 for ager bees/m² fr C, 6 9 - 24 fin T and 13.1 - 27.5 in R, respectively. The corresponding mean daity flight intensity during DAA0aa, DAA7 was 22.6, 17.0 and 19.5 for C, T and R, respectively. The flight activity was statistically significantly lower in T when compared to C (Mann Whitney Exact, one-sided a = 0.05) during this period.

Overall, a slight repellent effect of the test frem was indicated in comparison to control by a statistically significantly reduced fight intensity on DAA0 (day of application, after application), during the 2nd and 3rd day after application as well when considering the overall mean value during confinement. The reduction in flight intensity was most apparent immediately after application, but recovered shortly and distinctly thereafter. Overall, flight intensity was in absolute terms on a sufficiently high level, and as such biologically not adversely reduced.

Behaviour of the Be

No abnormal behaviour was recorded in the control, in the test item and in the reference item treatmen group before application (DAA-3 to DAA0ba). The few cramping, inactive / motionless and clustering bees observed during this period are considered as not unusual and did not impair the interpretation of the study. Bees sitting on the linen sheet and motionless wet bees were considered as normal.

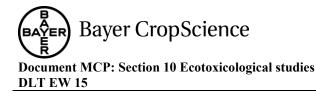
In the test item treatment T, shortly after the application on DAA0aa, across 7 observation time points, 22 cramping bees, 27 bees with locomotion / coordination problems and 6 inactive / motionless bees treatment group at these 7 observation time points. On DAA1, on the first out other assessments that day, 28 cramping bees, 81 motionless bees and 6 bees with locomotion problems were observed in the three replicates of test item treatment. In the following two assessments, only one motion tests be but mainly normal behaviour of the bees was observed. From DAA2 to DAA26 only occasionally cramping bees, motionless bees, bees with locomotion problems and fighting bees were observed in 1 In the reference item treatment group, shortly after application on DroA0aa across Tobservation time points, 26 intensive cleaning bees, 13 trembling bees, 6 intensive cleaning bees with locomotion problems, 2 motionless bees and one bee trembling with locomotion problems, one bee flying without landing on the crop, one cramping bee and one bee with locomotion problems. One day after application (DAA1), mainly normal behaviou of the bees was observed in the three assessment times. per replicate (Ra, Rb, Rc). Only 1 cramping and 3 protionless bess were recorded in this time period On the following days during confined exposure (DAA2 to DOA7) mainly normal behaviour was noticed. One cramping bee, one bee with locomotion problems and the suitensidely controlled by a guarding bee were observed in this time period in the reference item tents. Additionally, 44 inactive / motionless bees could also be observed, which is probably due to adverse weather conditions. During the observations from DA A0aacto DA 26, abornat behaviour was observed in the control group C only on very few occasions, which is considered biologically normal under confined conditions.


Overall, sub-lethal/behavioural effects in the test item treatment group occurred mainly on the day of application, with a clear decline during the following day, and thereafter only occasionally, showing the transient nature of the effect.

Development of Honey Bee Brood in Individual Cells (Digital mage Analysis)

According to the development time of a worker honey bee from egg to adult bee (imago), which normally averages to 21 ± 1 days, it can be expected that young bee will have hatched until the assessment date BFD 21 (i.e. 21 days after the **B** odd Area Fixing **D** ay BFD0). For this particular assessment, about 250 individually marked cells per hive were selected in C, T and R, respectively.

The control (C) and text itent iteratment colonies. To and Te showed a successful development, with rising brood indices throughout the entire assessment period, except for the assessment on BFD+15, where stable values (due to the bong development time of the sealed brood) compared to the previous assessment on BFD+17 were observed in all C cotonies and in the colonies Tb and Tc. The development of the colony Ta was interpreted in the observed cells between the assessments BFD0 and BFD+6 and the brood indices were 0 from BFD+6 up to BFD+21.


Maybe this development occurred due to unknown mechanical reasons at the assessment on BFD0 or due to individual characteristics of this bee hive (e.g. the marked, small number of eggs had no priority for the colony at this point in time). Considering (i) the equivalent performance of the colonies Tb and Tc where compared to control (ii) the overall low termination rates in Tb and Tc, (iii) the absence of any difference between T and C in terms of dead larvae and dead pupae as determined in the bee traps and on the bottom boards of each hive in combination with (iv) the overall comparable performance of brood development in all hives in the test item treatment group when compared to the control group as assessed in a series of six subsequent colony assessments, involving both sides of each comb per hive - a direct, test item related effect appears unlikely.

The brood development of the reference item colonies Ra and Rb was interrupted and the indices decreased to 0 at the first assessment after application (on BFD+6). The colony Rc showed a successful development of the observed cells, with rising brood indices which is rather untypication colonies treated with the reference item Insegar. Even with this positive development of the norked cells in this particular R-colony, the effect of the reference item treatment become obvious in Rc box the high number of dead pupae (partially with sickle eyes) in the bee traps, by the high number of dead brood in the cells of the individual combs as well as by the high number of dead pupae on the bottom board, in all of the three R-replicates - Ra, Rb and Rc, respectively. In total, the brood indices were 1.00 in each treatment group at the first BFD assessment and reached & mean values of 3.79, 2.68 and 1.53 in C, T and R at the last assessment on BFD#21. The compensation index is an indicator for the receivery of the brood in those cells which had been emptied before successful hatch. The mean compensation indices of the control were 2.64, 3.06, 3.11 and 4.28 on BFD+6 to BFD+21 and 1.93, 2.30, 2.75 and 3, 39 in the test item treatment. In the only replicate in the test item treatment group (Ta) which showed a total loss of the brood $\widehat{\mathfrak{M}}$ the warked cells at BFD+6, the determined increasing compensation indices of 0.54, 0.59, 1.74 and 2.87 on S BFD+6, +11, +15 and +21, indicate recovery from this event and show new egg raying activity and ° S successful brood development. m In the reference item treatment R, the mean compensation index increased only to 1,11 at BFD+6 and thereafter on BFD+21 to a value of 2, 39. Ô At the last assessment (BFD+21), the mean permination rate was 24.37 % in the control and 46.58 % in T, compared to a mean value of 69.51 % in the reference item treatment R Over the entire assessment period, no statistically significant differences of the brood- and compensation indices and the termination rate of the test item treatment group compared to the control was recorded (t-test, method pooled, one-added, of 0.05). Similarly, and no statistically significant difference of the reference item group compared to the control group was deticed, due to the good development of the individual cells of the replicate &c. However, the high number of dead pupae (partially with rickle eyes) if the bee traps, the high number of fead brood in the cells of the individual combs as well as the high number of dead pupae on the bottom boards show a clear effect of the reference item treatment

Overall, the quantitative assessments of brood development in individually marked cells revealed that Deltamethrin EW15B G, when applied under forced (confined) exposure conditions in gauze tunnels at a rate corresponding to 7.8 g a.s. tha during full Howering of a highly bee-attractive crop (*Phacelia tanacetifolia*) with honey bees actively foraging on the crop during application, does not cause treatment related adverse effects on honey bee brood development.

This conclusion is in the with the other brood-related parameters as measured during the course of the study (i.e. the absence of any difference between T and C in terms of dead larvae and dead pupae as determined in the bee traps and on the bottom boards of each hive and the overall performance of brood development within all nives of the test item treatment group, when compared to the control group, as assessed in a series of six subsequent colony assessment and by considering all combs per hive).

Replicate	E	Brood / Compe brood :	nsation indice area fixing da		er	Termination rate (BFD+24)
	0	+6	+11	+15	+210	
Ca	1.00 / 1.00	3.12 / 3.13	3.92 / 3.93	3.90 / 3.92	4.87 #.91	3.20
Cb	1.00 / 1.00	2.81 / 2.81	2.93 / 2.95	2.93 / 2.99	3.67 / 4.00	6 ⁵⁷ 26.79 0
Cc	1.00 / 1.00	1.97 / 1.97	2.27 / 2.29	2.27 / 2.42	2,84/3.93	× 43×22 ~~
Mean C	1.00 / 1.00	2.63 / 2.64	3.04 / 3.06	3.03 / 3.11	3.79 / 4.28 🖉	Q4.37
STD	0.00 / 0.00	0.60 / 0.60	0.83 / 0.85	0.82 / 0.76	1.02 / 0.55	Q 20.6 K
Та	1.00 / 1.00	0.00 / 0.54	0.00/0.57	0.00 / 1.4	B.00 / 2587	L 100.00 L
Tb	1.00 / 1.00	2.64 / 2.66	3.34 3.33		4.13 / 4.32	0 \$7.65 °
Tc	1.00 / 1.00	2.58 / 2.58	3 (1,7 / 3.10)°	3.13/3.16	3.91/4.27	°≫ 22.08 ×
Mean T	1.00 / 1.00	1.74 / 1.93	2.16/2.36	0.15/2075	2:68 / 3.84	مَرْ 46. 58 ر°
STD	0.00 / 0.00	1.51 / 1.20	1.87 1.55	1.86/0.88	2.32 0.85	\$ 4 6.32
Ra	1.00 / 1.00	0.00 / 043	0,00/0.18	0.25	0,00/0.7.	🖉 100 để
Rb	1.00 / 1.00	0.00 / 0.07 &	0.00/0.00	Q.00 / Q.38	0.00 / 1.78	100.00
Rc	1.00 / 1.00	2.75 2.81 0	3.6773.68	3.67.3.69	4.59 4.67	8.54
Mean R	1.00 / 1.00	0.93 / 1.14	1,22 / 1,29	1.22 / 1.45	1.53/2.38	^(م) 69.51
STD	0.00 / 0.00		2.12 / 2.07	2 .12/\$94	2.65 / 2.05	52.80

Summary of the brood and compensation indices and termination rates

DAA = Days after application

ba = before applicationaa = after application

* = statistically significant compared to the control

Strength of the Colonies

The mean number of bees assessed before set up of the hives (first colony assessment, DAA-7) in the tunnels revealed a mean colony strength with an average of 6845 bees/hive in C [range: 6188 - 7625], 6875 bees/hive in T [range: 66886 7125], and 8459 bos/hive in R [range: 8000 – 9188].

At the second colony assessment on DAA-1, the mean colony strength was 6771 bees/hive in C [range: 6063 – 7563], \$875 bees/hive in T trange: \$500 -6375] and 7709 bees/hive in R [range: 6688 to 8813].

At the third colory assessments (DAA5), during the confined exposure period, an increase of the mean number of bees was observed in both C and I (C:8500 bees/hive, T: 7313 bees/hive), whereas the mean number of bees in R was almost on the same level as on the first assessment with 8605 bees/hive

At the subsequent colony assessments, after the end of the confined exposure period outside the tunnels, on the remote monitoring Acation the mean number of bees increased continuously in the C and T colonies up to the sixth colony assessment (DAA20) to 15000 bees in C and 10875 bees in T. On the last colony assessment (DAA26) the number of bees was comparable in both, C and T, with 11708 and 10271 bees, respectively.

On DAA10 and 14, the noan number of bees in the R colonies was nearly on the same level with 11813 and 1177 bees despectively on DAA20 the number of bees increased to 12750 and decrease to 8917 bees on DAA26.

The increase of the mean number of bees from the first to the last colony assessment in the C and T was comparable and accounted to +70.3 % and +49.4 %, respectively, whereas the increase in R colonies accounted only to +5.4 %.

The overall development of colony strength of all treatment groups showed fluctuations which are typical for this type of study. The colony strength values at the last assessment in the C and T colonies

were higher compared to the first assessment and showed comparable absolute numbers (C: 11708, T: 10271 bees). Also the relative increase in colony strength until the end of the study was comparable in C and T (C: +70.3 %, T: +49.4 %). As such, no test-item related adverse effects on colony strength were observed.

Development of Brood Area

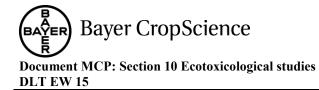
The mean abundance of brood (sum of cells containing eggs, larvae, and pupae) assessed before set-up (confinement) of the hives (first colony assessment, DAA-7) was 2060 cells/hive for C, 20033 cells/hive for T and 22800 cells/hive for R. At the second colony assessment (DAA-1 / B6D0), before \bigcirc start of exposure, the mean abundance of brood in C. T and R had occreased to 23133 cells/hive for C. 20533 cells/hive for T and 24267 cells/hive for R.

At the third colony assessment, during the confined exposure period on DAA5, the mean abundance of brood in C, T and R was nearly on the same level with 22333, 20933 and 21955 cells/hive in C, T and R, respectively.

On the fourth colony assessment (end of confined exposure, a) the monitoring site (on DAA10, the mean abundance of brood in C and T had decreased sightly and in parallel to almost identical 20267 cells/hive for C and 20400 cells/hive for T whereas the mean abundance of brood decreased noticeably to 15933 cells/hive in the R colonies.

On the fifth colony assessment (DAA 14), the mean abundance of brood in C and P had increased in parallel and was again almost on an identical level with 24000 cells/hive for C and 24 33 cells/hive for T, whereas in R, with 13533 cells/hive the mean abundance of brood had further and noticeably decreased. This refers to a clearly detectable effect of the reference item, which is typical for this point in time.

On the following assessments, the threan abundance of brood in C increased to 29200 cells/hive on DAA20 and 29865 cells/hive on DAA26. In the T cotonies on DAA20, the mean abundance of brood increased to 28400 cells/hive and on the last colony assessment (DAA26) 26800 cells/hive was recorded.


Brood of all stages (eggs, larvae, capped brood) was present in all colonies at all assessments during the study, with the exception of colony Ra, where no larvae were recorded on the third colony assessment at DAA5. The fluctuations of all brood stages were within the range of natural variation and typical for this prind of study.

Overall, hone we brood development and colon conditions in the test item treatment T were comparable to control during the entire assessment period. No test-item related adverse effect on brood development was observed.

Development of the Food Storage Area

The mean extent of food stores in the colonies (sum of cells containing nectar and pollen) assessed before set-up (confinement) of the hoves (first colony assessment, DAA-7) was 18467 cells/hive for C, 14533 cells/hive for T and A467 cells/hive for R. At the second colony assessment (DAA-1, before start of exposure), the mean extent of food stores decrease slightly in C and increased in T and R (C: 18200 cells/hive, T: 17333 cells/hive, R: 15733 cells/hive). At the third colony assessment, during the confined exposure period, on DAA5, the mean extent of food stores in the colonies C, T and R had decreased to almost identical levels, i.e. 15867 cells/hive in C, 15333 cells/hive in T and 15533 cells/hive in R).

At the subsequent colony assessments on the remote monitoring location, after the confined exposure period, the mean extent of food stores in C, T and R decreased from DAA10 to DAA26 to finally 8867 cells/hive in C, 6267 cells/hive in T and 8333 cells/hive in R.

The observed de- and increase in food stores in both, treatment and control, during confinement and thereafter can be considered as typical for this type of study. The colonies were well provided during the course of the study. No test-item related adverse effects on the development of the food storage area were observed.

Conclusion:

Deltamethrin EW 15B G was applied at a rate corresponding to 7.5 g a.s. ha during full-flowering to the highly bee-attractive crop *Phacelia tanacetifolia* with noney bees adverse for going on the crop during application. The effects on bee hives under confined exposure conditions considering mortality, flight intensity, behaviour, colony strength and brood development were evaluated. The tested Deltamethrin EW 15B G application rate has not caused adverse effects on the survival of marked eggs (brood termination rate), on brood development from eggs into adult bees (brood index) as well as on the brood compensation ability (brood compensation protection protection).

Overall, the employed application scenario did nor result in test item related adverse effects on brood development, on colony development and on overall colony verality under forced exposure conditions. A repellent effect of the test item was indicated by reduced tight intensity on the day of the test item application as well as on two further days during the confined exposure period, but the observed repellent effect was not biologically adverse.

The mortality values in the test item treatment group during the post-application phase were slightly increased on three days compared to the control, but were never on a biologically advess level. Bees intensively cleaning themselves, cramping bees and bees showing locomotion problems were observed particularly on the day of test item application.

The application of the reference item showed clear fierts on the brood development, resulting in low brood indices, low compensation indices and high termination rates in the three replicates and high termination rates of the three replicates and high mortality values concerning pupae and larvae in all replicates of R.

Overall, based on the results of this study, Deltamethrin DW 15B G applied at a rate corresponding to 7.5 g a.s./hardoes not adversely affect honey be broothand colony development.

Report: @ RCP 10.3.1.5/95, ; 2006
Title: Toxicity Testing of Deltargethrin DW 50 on Honey Bees (Apis mellifera L.)
under Sem Field Conditions - Junnel Test.
Document No: <u>N-274120-01-1</u> (Rep. No.: 28011037)
Guidelines: OEPP EPPO 2001 Guideline for the efficacy evaluation of plant protection
products – Side effects on noneybees. OEPP/EPPO, PP 1/170(3) update 2000
Revision (updated with CPBR-recommendations) approved in 2000
GLP: Ages a grant of the second secon

Material and Methods?

Test item: Deltamethrin EW 50, Batch ID: 2005-004004, Sample Description: TOX07463-00, analysed content of AE F032640 (= deltamethrin): 49.7 g/L (4.78 % w/w) (nominal: 50 g/L).

A tunnel test was conducted, in order to assess the effect of Deltamethrin EW 50 on honey bees under semi-field conditions. Cages (14 m length \times 5.5 m width \times 2.5 m height) were set up on a 40 m² plot of flowering *Phacelia tanacetifolia* (2 \times 20 m²) and small bee colonies were introduced 6 days before

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

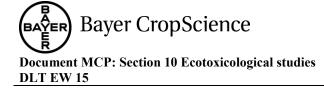
the application. One bee hive was used per tunnel. The test item (7.5 g a.s. (156.9 g product) in 400 L water/ha), water (400 L water/ha) and a reference item (1.5 L Perfekthion EC (dimethoate) in 400 k water/ha) were applied on the whole plot of plants in two operations, with foraging bees present. The trial was performed using three tunnels for the test item treatment, the control and the reference item treatment (dimethoate 400 g/L), respectively. The total duration of the test was 7 days following the application.

Mortality and foraging activity (flight density) of the bees were assessed before and after application Sublethal effects, such as changes in behaviour, were also monitored. Colony assessments (tood stores, brood status and hive populations) were made twice, 2 days before the applications and afthe end of the study (day + 7). Weather conditions were good during application. The sky was a little cloudy but warm with no precipitation. No rain occurred during the treament day and the following 3 days. The weather was variable but warm for the remainder of the treament.

Findings:

Effect on honey bee mortality:

Starting conditions of the experiment were ideal, indicating similar natural mortanty levels among the different treatment groups before application (no statistical significant difference of the hives Dunnett's t-test, multiple comparison to the control, two sided $\alpha = 0.95$).


On the day of the test item application a short fasting and slight increase of bee mortality occurred, when a mean of 171.0 dead bees per colony were found in the test item treatment compared to 31.0 in the controls but this was not statistically significant compared to the control (Student) t-test, one-sided greater, $\alpha = 0.05$). However, this level of mortality will not affect colony with lity or pollination activity of the colony.

The following day (day +1) mortality levels in the test item treatment remained slightly higher compared to the control, but this was not statistical significant anymore.

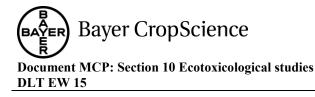
From day 2 on which until the end of the assessment period on day 7, metallity levels of the bees after treatment with Deltarethrin EW 50 were comparable to the levels of the control treatments. At any day the number of dead bees per famel in the est item group did not differ from the control (Student t test, pairwise comparison, $\alpha = 0.05$, one sided greater). An overall comparison of the mean dead bees found in the traps and on the gauze did not show a statistical difference between the control and the test item treatment (Student t test pair wise comparison to the control, one sided greater, $\alpha = 0.05$). After treatment with the reference item (dimethoate) a distinct increase of bee mortality was observed for the first fixe days. From day 1 to day 3 following the application the number of dead bees found in the reference item treatment was approximately to to 1 Stimes higher compared to the control values, indicating the sensibility of the test system. An overall comparison of the mortality data indicates a statistically significant difference compared to the control (Student t-test, pairwise comparison to the control/, one-sided greater, $\alpha = 0.05$).

Effects on honey bee flight intensity

After application of Deltamethrin EW-50 flight intensity was reduced on the day of application (statistically significant differences, Welch t-test, pairwise comparison to the control, one-sided smaller $\alpha = 0.05$). From day - onwards until the end of the trial the foraging activity of the bees were comparable or even bigher in the test item treated tunnels compared to the controls. An overall comparison of the mean dight activity did not show a statistical difference between the control and the test item frequence item (Welch t-test, pair-wise comparison to the control, one-sided smaller, $\alpha = 0.05$). The foraging activity after application of the reference item (dimethoate) led to a clear decrease of flight intensity until the end of the experiment (7 days), which was statistically significant compared to the control on each single day (Welch t-test, pairwise comparison, one-sided smaller, $\alpha = 0.05$).

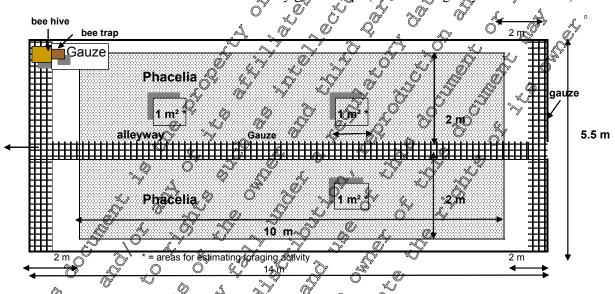
Effects on honey bee behaviour

Behavioural abnormalities *e.g.* poisoning symptoms such as discoordinated movement, apathy of an intensive cleaning behaviour were observed following the application after Deltamethrin EW 50 treatment on day 0 for ca. 4 hours. Up to a maximum of 65 bees per tunnel were observed with such symptoms. 6 hours following the application, these behavioural abnormalities had gone. On the text days until the end of the experiment no more behavioural abnormalities could be observed if the control group. The reference item treatment caused behavioural abnormalities (moving coordination problems, abnormal cleaning) at least until the first day following the application of dimethrate.


No adverse effect of the test item on the brood was observable. After the applications, all colonies showed a sufficient amount of all brood stages without any indication of atest item related effect. During the brood assessment 7 days following the application, and queens were found in the follonies

Conclusions

No ecologically relevant effects on prortality, flight intensity, behavious or brood of the honey bees were observed after direct application of Deltamethrin EW 50 C/.5 g ms./ha) in 400 D water ha into a bee attractive, flowering crop and during bee flight in a semic field dunnel study. According to the results of this study, Deltamethrin EW 50 does not adversely affect honey bee colonies.


Material and Methods:²

Test material Test item:
Test item: S S S Deltamethrin EW 58 content of a.s. (analysed): deltamethrin:
Test material Test item: Batch number:
Batch number.
Batch number. 2905-004004 2005-00400040000000000000000000000000000
ر المعندية المعندية المعندية المعندية المعندية (المعندية المعندية المعند
Test organism:
Reference item: Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L nominal, analysed content: 406.1 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L nominal, analysed content: 406.1 g a.s./L) Forevolves (<i>Apis mellifera</i>) Source: Source: Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L bonevolves (<i>Apis mellifera</i>) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L Nominal, analysed content: 406.1 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L Nominal, analysed content: 406.1 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L) Ferfection EC (BAS 1521 I) (batch no.: 1810, 400 g a.s./L)
Batch number? Reference item: Source: Reference item: A Perfection EC (BAS 15211 I) (batch no.: 1810, 400 g a.s./L nominal, analysed content: 406.1 g a.s./L) Honey bees (<i>Apis mellifera</i>) Source: Small honey bee colonies, maintained according to normal beckeeping practice No Varroacide has been used in the hives for at least 2 month prior to the experimental start date. Honey beel for and gueen right colonies, containing about 5000
No
A Starroacide has been used in the hives for at least 2 month prior to
Varroacide has been used in the hives for at least 2 month prior to the experimental start date.
Containing about 5000
hone bees on 4 honeycombs with all brood stages present were
\mathcal{O} used for the study.
Crop: Crop: Phacelia tanacetifolia, Type: Boratus, at flowering (height: ca.
Test location:
Cĩ.

Test unit:

Size of the tunnels: 14 m length \times 5.5 m width \times 2.5 m height, tunnels were semi-circular in cross-section and constructed out of a tubular steel frame, covered with synthetic gauze (mesh size a. 2 mm) and were placed on the crops a few days before experimental start with a distance of *oa*. 2 meters in between. The tunnels were placed over the flowering plants a few days before experimental starting date. One small bee hive a trap for collecting dead bees and one drinking trough were installed in each tunnel. In order to facilitate the collection of dead bees the plants on both ends of the funnels were temoved, thereby creating bare paths on the ground of approximately 0.5 m width and covered by gauze strops (see test design layout in each tent).

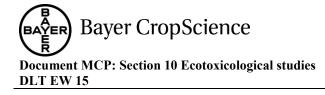
Application rates: 5 5 Control (C): Tap water

Treatment rate (Tc): 7.5 ga.s./ha during foraging activity

Reference rate (R): 1.5 L/ha (600 g a.s./ha)

Three replicates per reatment group were used.

The spray solume was 400 L/ha in all treatment groups. The sprayer was calibrated before use. The deviation reached a maximum of 0.6%


Mortality and flight density data were tested for normal distribution using R/s lest or Kolmogorroff/Smirnov test and homogeneity of yariance using Cochran's test.

Before Application: a multiple and two-sided comparison ($\alpha = 0.05$) way done for the comparison of the mortality and flight density data before application using Dunnett's t-test for homogeneous variances. <u>After Application</u>: a pairwise comparison ($\alpha = 0.05$) was done for the comparison of the mortality and flight density data after application using Student t-test for homogeneous variances (mortality) or Welch t-test for inhomogeneous variances (flight density).

The computer program used to perform the statistical analysis was TOX Rat® Pro version 2.09, Spirit Solutions (2005).

th Th Deviations from the study plan:

No deviations to the study plan occurred.

Climatic conditions during the experiment:

The day of application and the following days of the experiment were characterized by sunny and warm summer weather, which resulted in a high foraging activity of the bees. On day 4 and 5 following the application some rain occurred with a precipitation of 5.4 and 4.4 mm. This precipitation occurred during the evening or the night on these days. The mean day temperature following the application was between 16.8 and 23.2°C. The environmental conditions during the whole experiment are shown in the table below.

Table 1: Data on the climatic conditions during the	periment
---	----------

					\vee	(Contra	×~	<u></u>		st i	
day	-5	-4	-3	-2 🕵	,-1 Ø	, A	¢.	30	4	5 × 6	∜ ″7
rain [mm] ¹	0.0	0.0	0.0	14.4 ⁰	0.0 0.0	0.0	00.0	9 .0	59Å	4.4 0.0	, 0 <u>,</u> 0°
temperature $[^{\circ}C]^{2}$	18.9	17.7	21.5	23.0 2	20,5 21.9	18.5	16.&	19.5	23.2	20.8 🕅.7	18.2
minmum [°C]	14.9	9.5	11.3	16.6	14.7 3 8.′	7 JA.6	6.6	Ĵ0 <u>8</u>	165	16: 15.	14.0
maximum [°C]	24.0	24.9	299	28.6	25,6 25,		1 A	27.8	Å.9	25.5 26.	5 24.8
rel humidity [%] ²	81.9	70.6	68.1	79.3 8	37.6 76.4	68.07	64.4	م ح	79.6 5	0.5 A.5	88.4
¹ total presinitation no	n davi	•	¥ .	Ò Û		ð		۵a	Q	~~	

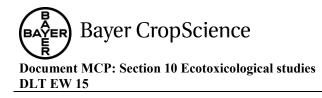
total precipitation per day

² daily mean values

day = days in relation to the application day

Pesticide history of the

Management of the Field (non-GP): Phacelia tanacco folia shtil August 2005, afterwards rape was used as an interctop between 2005 and the seeding of the new Phaeelia


Pesticides and Fertilisation (non-GLP): Horse manure (80 dtba) was spread on the field in 2005 and the area was treated with 2.0 Lana Butisan Top (Herbicide, 375 g/1 Metazachlor, 125 g/L Quinmerac, non-toxic to bees, cla

The effects of 'Deltamethrin E tested on the honeybee (Apis mellifera L.) under semi-field conditions in aunnel fest.

Honey bees (A. mellifera D) can be afferred by pesticide residues on plants, via oral intake with contaminated food or water and/or by direct contact in the course of application during normal farming practice. Investigations under Semi-field condition serve as practical tests to estimate the effects of Deltamethrin

EW 50 to honey bees in annelsander full field conditions.

Mortality and foraging activity of the bees were assessed before and after application. Sublethal effects, such as charges in behaviour, were also monitored. Colony assessments (food stores, brood status) were made at the beginning and at the end of the study. Results for the test item were compared with those for the control while the results for the reference item were used to demonstrate exposure of the bees under the test conditions.

The following endpoints were assessed:

- Mortality: Assessment of dead bees from the gauze strips in the tunnels (laid on the bare ground in front of the hive and at both ends of the tunnels) and from dead-bee traps placed in front of each hive $^{\circ}$ at different time point before and after the application in the control, the dest item group and the reference item group, respectively
- Flight intensity (number of bees foraging on flower plants/m²) in each tunnel before and often applications in the control, the test item group and thereference iter group, respectively
- Behaviour abnormalities of the bees at the hive entrance or on the plants like egt. intersive cleaning restless or moving coordination problems were recorded.
- • State of brood (occurrence of eggs, young and old larvage and supply of potten and food in the

an polen and food if the experimential observation is experimential observation. The experimential observation is experimential observation is experimential observation. The experimential observation is experimential observation is experimential observation. The experimential observation is exper

Table 2: Summarised mortality data

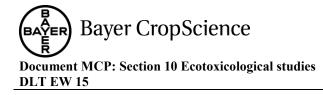
	Wate	rtreated	control		tamethri @7.5 g a				~	nce Item		9.20 0
Time		dead bee	es		dead b	ees	1		dead	d bees 🔍		>
Time	total ^b	mean د	SD	total ^ь	mean c	SD V	Statistic	totale	e mean	SD SD SD	د کار کار کار کار کار کار کار کار کار کار کار	\$2×, 4
5DBT	30	10	± 6.2	19	6.3	∲±0.6	- "	0°19	6.3	±.05	Ŝ-	K ^O
4DBT	86	28.7	± 27.0	96	32,1	± 4.6	-Q	111.0	30	± 5.6 (<u>،</u> - ر	V
3DBT	93	31	± 24.3	103	\$9 .3	± _ 12.7 ្ដ	<i>~</i> _	• 4 3	47.7	0±26.3		2
2DBT	162	54	± 47.7	197 (65.7	± 8.3	- 4	154	51.5	± 21.4	-	
1DBT	96	32	± 31.4	964	, 30		Q	178	.59.3	0± 12.90		0
0DBT	119	39.7	± 35.5	Q254	751.3	* ± , (31.4		175	58	±3.5	0 ⁴ -	
Daily mean 5DBT to 0DBT	98	32.6	± 14.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36.9	≪ي× 20.10	n.s. 4) 130 0	43.3 0	± 19.9	n.s.	
0DAT	93	31 0	± 250	5D3	¥71	©± , 32.2	n.s. 🖞	91177 (392.3	± 152.4	*	
1DAT	57	ي 19	2 19.0×	© Ö 170,	567	17.0	Qs.	8 48	282.7	± 109.8	*	
2DAT	67	22.3	± 165		25.7	€ 7.5 @	n.s.	387	[″] 129	± 36.4	*	
3DAT	170	,5X	±⁄¥9.6	121	40.3	± 15.7	n Ç	675	225	± 94.0	*	
4DAT) 150	⁶ √50 ≪) ± 38,6	128	×42.7	¢± 24.7,	On.s.	3 61	120.3	± 34.6	*	
5DAT	117		§23.4	© 144 \	48	15.7	گە: ئ	301	100.3	± 18.5	*	
6DAT	208 2	2	± 570	287 ×287	چ 95.7 (23.87	n.s.	331	110.3	± 71.8	n.s.	
7DAT	57	A P	14.7 (° 84 v	28	+2.0	n.s.	108	36	± 6.6	*	
Daily mean 0DAT to 7DAT	~Ç , 115	38.3 38.3	± 18.9	191 .	\$ 63.5 \$	± 48.6	n.s.	524	174.5	± 116.8	*	

7DAT A

 DBT
 Days before treatment

 DAT
 Days after treatment

 DAT
 Days after treatment

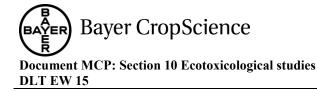

 n.s.
 Not statistical significant from the control

 b
 Total number of three tunnels of each treatment group

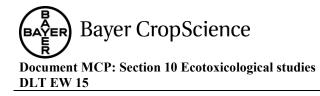
 c
 Mean values (rounded) of three tunnels per treatment group

 Statistic:
 Junnett (t-test, multiple) (before application); Student t-test, one-sided greater (after application), a =

 0.05
 0.05


Table 3: Mortality of the bees in the water treated control tunnels

				r of dea							d bees					
Water control			on	the gau	ze			in th	ie dea	ad bee	e traps	Š		Ò		
	Tuni	nel no) .:		٩		Tur	nnel r	10.:		٩	ago,	D	eadbee	es o	
Time	1	2	3	Total	mean ^b	sd	1	20	3	Total	ر بر	sd	Crotal	х Меап ^ь	sd 4	
5DBT	7	1 4	4	25	8.3	5.1	, a	3	1	Å	1.7	1.20	30 4	م ¢10.0¢		
4DBT	58	2 3	3	84	28. 0	27. 8	0	0	2	چ 2°ہے	0.7	Q 1.2	86	<u>,</u> 28.7	27	
3DBT	46	4 1	3	90	30. 0	©3. ©5	Ĩ	Ľ		~3 ~3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.2	93(,	> `` 31.0	[©] 24. 3_∘	
2DBT	95	5 7	2	154	51	46. (/8)	4	×2	ð	8	2.7) 1.2	0 (162	54.0	€7. ©7	
1DBT	61	2 4	4	89 0	©29. 7 %	2⁄8. 9_1	\$ \$ 5	<u>A</u>	0	× 7	Å.3	O LA	26	32,0	ື 31. 4	
ODBT			1	Q ^Y	-0		>	-	S [×]			Ĵ				
09:40	63	2 3	60	© 92 ≫	30. 7	29 . 3	S.S.	a d		Ç4	1.3	1.9	96	32.0	30. 5	
13:50	12	1 00	*©* > 1	Ø3	J.J.	5.9	0	ð o	0	2 S	0.0		گ	7.7	5.9	
Total ODBT	75	3¥ ⊌3	7) 115)	38. 3	334. 03	A D			4	1×3 [×]		119	39.7	35. 5	
14:10 a.a.	10	4	0	297	7.0	8.D	0	©0	0	0 (∛0	21	7.0	8.9	
15:10		, 8×	0	~7	×2.3	~2.1	, Q		0	j O	0.0	0	7	2.3	2.1	
17:10	26	9	^ م	400	, 13. [*] 3	>11. 2,×	0		03	^۲ 0	0.0	0	40	13.3	11. 2	
19:10	12	9 [×]	3	<i>2</i> 34	8.0	4.6	0	1	V	<u>ال</u> الآ	0.3	0.6	25	8.3	4.7	
Total ODAT	59 	©2 05	8		030. 7	96. 0				y ⁹	0.3	0.6	93	31.0	25. 9	
1DAT		4	<u></u>				<u> </u>	/	Å.	r				1		
10:10	21 /	5 8	16		√110. ≽ 0 ≽	00. 1	a.1	Ĵ,	, 0	2	0.7	0.6	32	10.7	10. 6	
14:30	17 ⁰	₩.		* 30 7 24	8.0°		1	Ô	0	1	0.7	0.6	25	8.3	8.5	
Total 1DAT	38	3 23	3	54	0 8.	188. 0	20	° 1	0	3	1.0	1	57	19.0	19. 0	
2DAT	38	√2 2 ⊬	~Q •6	<u> </u>	22 ×	16 0	7 1	0	0	1	0.3	0.6	67	22.3	16. 5	
3DAT	10 [°] 2	B	54) 167.@	~ 55.	∂ 8. ∕∕6	3	0	1	4	1.3	1.5	171	57.0	49. 6	
4DAT	27,7 7,7	3©	6	ک 146	48. 48.	37. 6	1	3	0	4	1.3	1.5	150	50.0	38. 6	
5D. 4	50 <u>1</u>	رگ 2	Ź	109	36. 3	25. 4	1	2	5	8	2.7	2.1	117	39.0	23. 4	
SCDAT O	107 07	6	َرٌ 9	200	66. 7	59. 0	0	4	4	8	2.7	2.3	208	69.3	57. 0	
	34	1 5 tment	3	52	17. 3	15. 6	1	1	3	5	1.7	1.2	57	19.0	14. 7	


DBT Days before treatment

DAT Days after treatment

a.a. After application

sd Standard	deviat	tion														
^b Mean va			bees pe	er tunn	el										Ů	ð
			1													Ş
												ð		Č	»՝	102
			•	БЦ			-0 /		• .		. = =	S	4	L.)
Table 4: Mortali	ty of t	he bee	s in th	e Delt	amethri	n EW (50 tre	eatec	i tur	inels	at 7.5	goa.s.	ha			æ.
Deltersethrin		Nu	mber o	of dead	d bees					of dea			0	O (Q 4	l?
Deltamethrin EW 50			on th	e gauz	ze		·		e de	ad be	e trap	os	K		Ì Â	1 0
@7.5 g a.s./ha	Tu	nnel n	o.:				Tun			Q			. © 1)ead her		Å
e / 10 g u 101, 114		1	1	Total	mean ^a	sd	{no.:	-	1	otat	an ^a	cd 🤇	<u> </u>			K ^O
Timeª	1	2	3	٩	me	Su a	1	2	ຸ3໌	Q°₽	mean ^a	sd	Tot	me an ^b	sđ	1
Time	-	-	5				-	-	\sim		/ .	"	, Ъ	ਰ ੁੱਤ		
5DBT	6	7	5	18	6.0 🐇	1.0	٥Ő	0	۳ 1	\$ *	0.3	0.6	©1 9	°∼∕6.3	KØ.6	
4DBT	37	30	27	94	31.30	5.1 [©]		Y	4	2 ⁄2	~007	0.6	໌ 96 ₍	32.Q <u>1</u>	4.6	•
3DBT	48	26	25	99	330	1300	_1@	1	2Q	4	1.3	0,6	109″	34.9	127	
2DBT	74	61	54	189	، 63.0	10.1		2	-	8	ľA.	DŽ.1	∡1 ,97	65.7	8.3]
1DBT	45	32	18	95	گ [*] 31.7 [°]	13.5	۳1 1	ġ/	0	, Qľ	Q(3 [%]	0.6	∛96	32.0	14.0	
0DBT				Ő	\sim	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y'	<u> </u>		\$ 	<u> </u>				
09:40	49	21	16	6 86	28.7	17.8	3	2	Ę	80		0.6	<u>.</u> 94	341.3	18.0	
13:50	34	16	9	[%] 59	a 4//	212.9	Ç1	Ø	0	, P	0 3		⁰ 60	20.0	13.5	-
Total ODBT	83	37	25	145	48.3	30.60		ÇŽ	3	Ş9	3.0	1.0	154		31.4	
14:10 a.a.	62	32	[%] 14	¢108	36.0	24.2	ß	0	10) -	0°	0.0	<i>@</i> 0 .0	108	36.0	24.2	_
15:10	52	28¢		O147	¥9.0	1 9.7	Ŏ	0	0	Ĵ.	0,0		147	49.0	19.7	_
17:10	45	71	49	165	້ 55.0 ຮື		0	Î	0	2	0 ⁶ .7 ⁹	1.2	167	55.7	15.1	-
19:10	46	3 4	Å.	2F	30.3	17.8	0°^	0	Ø	0 \$	0.0	0,0	91	30.3	17.8	-
Total ODAT	2050	165	141	\$11	19/0.3	×32.3	<u>ď</u>	2	0	20	0.7 Ø	1.2	513	171.0	32.2	-
1DAT	S.			1				<u>S</u>		ő-	\sim		100	40.0		-
10:10	©32	37 15	45⁄ ©23	1\$4 @7	38.0 \$\$.7	6. 6	4 Ĵ	N1		₹ 6	×2.0	1.7	120	40.0	5.3	-
14:30 🏷 Total 1DAT	9 4 41	52 ×	8	₩/ 0161	_¥s≱.7 ∱_53.7∾		<u>s</u>	0	0 ⁰	3 ₀ %9	1.0 3.0	1.7 3.5	50 170	16.7 56.7	5.7 11.0	-
		26	33	1 0 6	- <u>//</u>	¥	0*7			√2 √2						-
2DAŤ) 3DAŤ	16 58∝	⊉়েচ ©35 ়	28	75 121	້25.0 <u>4</u> 0,3	8.5 197	2 ~ 0 [%]	0	0^ 	<u>∛</u> 2 0	0.7	1.2 0.0	77 121	25.7 40.3	7.5 15.7	-
	200	ີ່ເດີ	20	121 V24	40,5	(13°/	0 - & 1	24		0	1.3	1.5	121	40.5	24.7	-
4DAT	30 M	63	310	1/0/	V16 7	1/ 8	$\tilde{\mathbb{D}}_{2}$	_ر الا	0	4	1.3	1.5	144	48.0	15.7	
6DAT	71	2018	96	280	95°10	23		₩ 1	0	2	0.7	0.6	287	95.7	23.5	-
	7 <u>1</u> 26⊘	28		°≈ 8 4	~ 80	200	. 0	0	0	0	0.0	0.0	84	28.0	2.0	-
DBT Days bef	ore tre	atmen	t ac		R a	Q 7 .0.		Ŭ	Ŭ	Ū	0.0	0.0	04	20.0	2.0]
DAT Days afte	er treat	ment	S			ູຟິ	0 1									
a.a. After app	olicati	my	, R	<	<u>S</u>	~~~~~										
sd مر Standard	devia	ion 🖉	,	T'	Ú ^Y a	° A										
🖻 🦘 Mean va	lues of	dead	bees p	🕈 tunn	ek ₀ 0)×°										
e ⁽	U`,				Ô.Y											
Ő				4J	<i>a</i> ,											
L.	Ľ	Ő	, K	, ~	٥ ٩											
	Ő	Ũ	ð,													
			Ş													
	Ĩ	Ś	<i>.</i>													
K S	-	L'														
Ċ																
30AT 4DAT 5DAT 6DAT 7DAT 0BT Days bef DAT Days after a.a. After app sd Standard b Mean va																

Number of dead bees Number of dead bees **Reference** in the dead bee traps on the gauze j S item Tunnel no.: Tunnel no.: Deadbees mean mean^a Total Total sd sd lean^b Total 2 © Time^a 1 2 3 1 3 sd L, E Ø Ò Ĉı \$1 Ø.6 ്6.3 6.0 4.0 0 0.3 Ĵľ9 Ĵ¥.5 5DBT 10 6 2 18 1 0 41 37 109 36.3 5.0 Ø 2 0.7 0.7 37.0 5.6 4DBT 31 1 0 0.6 1111 27.5 40 3 **5**Q 1,5% 3DBT 76 22 138 46.0 0% 2 1, 143 47.9 26.3 Z ¥.Ž 76 39 152 50.7 22.0 0 0 2 0.7 154 51.3 21.4 2DBT 37 Â 1DBT 59 56 42 157 52.3 8,1 14 3 21 ັງ7.0 [©]6.1 178 \$9.3 12.9 Ű 0 Ĩ, **ODBT** Õ Ô Ż 101 *2* 1.2 38.7 97 09:40 36 25 32.3 0 / ٩4 **L**3 5.9 36 6.4 7 Ô 7 0 2.3 4.0 24.7 13:50 26 24 17 67 22(3 4.7 74 7.1 62 49 164 \$4.7 <u></u>б.7 «ð °9, 11, 4.7 175 🤇 **Total ODBT** 53 3.7 58.3 3.5 2∕{ 85.7 93 62 102 257 '21.0 3 **)**18 Q1 38 129 8.4 2955 98.3 19.6 14:10 a.a. 263 15:10 37 51.7 32 52 ¥08 \$6.0 s1¥.4 87.7 2.3 65 53 155 14.0 24 62.3 75 [°]309 17:10 67 **4**3.2 8Ž 15 40.7 103.0 73.1 17 103 <u>1</u>87 122 30.9 51 19:10 44 25 85 154 \$51.3 30.7 \$25 80% 156 52.0 275 310 103.3 58.0 157 75% 90 141.3 Total ODAT 269 327 251.0 86,4 110 72.3 1177 392.3 152.4 **`**2⁄24 424 Q 1DAT Ô L \$9.9 106 240 10:10 100 Ŕ 1⁄84 372 124 54.4 612 204.0 89.2 34 »_80.0 CÍ O 42.7 30.7 14:30 63 17 108 36.Q 24.00 78 27 Qź 128 236 78.7 28 54.1 **B**1 348 116.0 58.1 207 500 166.7 54.2 Total 1DAT 163 134 188 105 848 282.7 109.8 58.7 176 7\$ 2DAT 82 33, **0**61 24.6 °~89 49 211 70.3 20.1 387 129.0 36.4 521 ر 97.9⁄ 15¥ 70 266 173.76 ⁄63 51 40 51.3 11.5 675 225.0 94.0 3DAT 184 ©ğ7 73 100 270 90.**0**∕∕ 14.8 8 34 @91 30.3 20.7 361 120.3 34.6 4DAT 49 £27 50 74 22.0 5DAT 69 68 90 **7Å**,7 22.4 14 10 24.7 301 100.3 18.5 139 129 291 97.0 ~S Â 40 13.3 15.3 331 110.3 6DAT 23Ĉ 64.3 €81 1.8 7DAT 4.4 23 93 15 34 26 5.0 3.6 108 36.0 6.6

Table 5: Mortality of the bees in the reference item treated tunnels

DBT

DAT

a.a.

sd h

Days before treatment Days after treatment After application Mean values of dear bees per tunne

Before application there was no statistically significant difference in mortality between the treatment groups. On the day of application mortality rates were slightly higher in the test item group (171.0) compared to the control (31.0), but the number of dead bees found on the day of application in the test item treated group was not statistically significant increased compared to the control (Student t-test, pairwise cooparison, $\alpha = 0.05$, one-side greater). From day 2 (2DAT) onwards until the end of the experiment (7DAT) no statistical significant differences between the test item treatment and the control could be observed (Student t-test, pairwise comparison, $\alpha = 0.05$, one-sided greater). In contrast on the observations in the test item treatment group and the control group, application of the reference frem (dimethoate at a rate of 600 g a.i./ha) resulted in a marked and increased number of dead bees found in the traps and on the strips between day 0 and day 5, which was statistically significant different from the control (Student t-test, pairwise comparison, $\alpha = 0.05$, one-sided greater). Mortality increased up to *ca*. 13x the levels of the control values directly after application.

Honey Bee Flight Intensity

Table 6: Summarized flight density data

A summary of the honey bee flight intensity results is shown in the table below. Table 5: Summarized flight density data $\frac{1}{10000000000000000000000000000000000$	Honey Bee Flight Intensity							
water treated control Deltagethrin EW 50, mean number of bees per m ² b Reference from mean number of bees per m ² b time* per m ² b ber m ² b statistics mean number of bees per m ² b per m ² b </td <td>A summary of the honey bee</td> <td>e flight intens</td> <td>sity results is</td> <td>shown in th</td> <td>e table bel</td> <td>ow.</td> <td></td> <td></td>	A summary of the honey bee	e flight intens	sity results is	shown in th	e table bel	ow.		
controlDefault furme is volveReference frommean number of bees mean number of beesmean number of beesmean number of beestime*mean number of beesmean number of beesday -52.2 \pm 1.42.4 \pm 1.3mean number of beesday -52.2 \pm 1.42.4 \pm 1.3%mean number of beesday -32.2 \pm 1.42.4 \pm 1.3%mean number of beesday -414.8 \pm 8.10.7 \pm 1.3%mean number of beesday -32.1.42.1.42.1.42.1.43.716.64.4day -212.4# 4.12.9.8\$ 5.6-16.6# 2.4day -212.4# 4.82.1.4# 4.8day -116.6# 2.4-16.6# 2.4day -116.6# 4.9-16.6# 4.9day -116.6# 4.9-day 0 a.a. <td>Table 6: Summarized flight d</td> <td>ensity data</td> <td></td> <td></td> <td>Â</td> <td></td> <td>L. L.</td> <td></td>	Table 6: Summarized flight d	ensity data			Â		L. L.	
mean number of bees per m² bmean number of bees per m² bmean number of bees per m² bmean number of bees 				Deltamethrin 1	EW 50 💭	/	Reference	tem 🖉
day -5 2.2 ± 1.4 25 ± 1.3 - 69 ± (1.0 day -4 14.8 ± 8.1 07.9 ± 3.7 16.4 ± 3.2 day -3 31.4 ± 4.1 29.8 ± 5.8 - 30.1 ± 6.8 day -2 12.4 ± 8.1 127 ± 0.0 - 166 ± 6.1 - day -1 16.8 ± 7.2 18.4 ± 2.4 - 77.6 ± 2.4 - mean day 0 b.a. ⁶ 20.1 ± 7.9 23.4 ± 3.7 - 16.1 ± 4.9 - daily mean day -5 to 0 b.a. 16.3 ± 9.6 14.5 ± 9.3 n.s. 16.3 ± 9.3 n.s. day 1 66.6 ± 4.6 14.9 ± 2.6 n.s. 0.2 ± 0.2 * day 2 11.7 ± 1.5 12.0 ± 2.0 0.8 0.6 ± 0.7 * day 3 20.4 ± 5.4 28.0, ± 0.9 n.s. 0.2 ± 0.2 * day 4 49.9 ± 4.8 216 ± 5.2 n.s. 0.2 ± 0.2 * day 4 49.9 ± 4.8 216 ± 5.2 n.s. 0.1 ± 0.2 * day 4 10.4 ± 3.4 4.6 ± 4.7 n.s. 0.2 ± 0.2 * day 4 10.4 ± 5.4 12.8 ± 2.5	time ^a	mean number	of bees mean		s statistics			s statistics
day -3 31.4 ± 4.1 29.8 ± 5.8 - 30.1 ± 6.8 - day -2 12.4 ± 8.1 127 ± 6.0 - 166 ± 6.1 - day -1 16.8 ± 7.2 8.4 ± 2.4 - 77.6 ± 2.4 - mean day 0 b.a. ⁶ 20.1 ± 7.9 23.47 ± 3.7 - 16.17 ± 4.9 - daily mean day -5 to 0 b.a. 16.3 ± 9.6 175 ± 9.3 n.s. 16.3 ± 9.3 n.s. mean day 0 a.a. ^d 14.9 ± 4.9 4.0 ± 0.7 0.2 ± 0.2 \times day 1 6.6 ± 4.6 14.47 ± 2.6 n.s. 0.6 ± 0.7 \times day 2 11.7 ± 1.5 12.0 ± 2.0 $a.8$ 0.2 ± 0.2 \times day 3 20.9 ± 5.4 28.0 ± 0.9 $a.8$ 0.2 ± 0.2 \times day 5 10.4 ± 3.4 22.4 ± 2.5 $n.8$ 0.2 ± 0.2 \times day 4 49.9 ± 4.8 216.4 ± 3.7 $n.8$ 0.2 ± 0.2 \times day 5 10.4 ± 3.4 22.6 ± 3.7 $n.8$ 0.1 ± 0.2 \times day 5 10.4 ± 3.4	day -5				Q`-&°	Ø.P	±.(1.0	
day -2 day -1 12.4 ± 8.1 12.4 ± 2.4 12.4 ± 3.1 12.4 ± 3.1 12.5 ± 3.1	day -4	14.8 ± 8	3.1 Q7 .9	± 3.7 🕎		16.4	\₽ 3.2 Ø	~¢
day -1 16.8 \pm 7.2 8.4 \pm 2.4 7.6 \pm 2.4 7.7 16.1 \pm 4.9 \pm 2.0 1 \pm 3.7 \pm 0.1 \pm 4.9 \pm 0.1 \pm 4.9 7.7 16.1 \pm 4.9 \pm 0.2 \pm 0.4 \pm 0.4 \pm 0.8 \pm 0.4 \pm 0.8 \pm 0.5 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.4 \pm 0.8 \pm 0.4 \pm 0.8 \pm 0.5 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.4 \pm 0.8 \pm 0.5 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.9 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.9 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.9 \pm 0.9 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.8 \pm 0.9 \pm 0.9 \pm 0.2 \pm	day -3	31.4 ± 4	.1 & 29.8	©°± 5,80°	\$ - \$	30.	± 6.8%	≪ [™] -
daily mean day -5 to 0 b.a. 16.3 9.6 19.5 9.3 n.s. 0.2 \pm 0.2 \star day 1 10.6 \pm 4.6 14.9 \pm 2.0 n.s. 0.6 \pm 0.7 \star day 2 11.7 \pm 1.5 12.0 \pm 2.0 n.s. 0.6 \pm 0.7 \star day 3 20.0 \pm 3.4 28.0 \pm 0.9 n.s. 0.2 \pm 0.2 \star day 4 19.9 \pm 4.8 216 \pm 9.7 n.s. 0.1 \pm 0.2 \star day 4 19.9 \pm 4.8 216 \pm 0.7 n.s. 0.1 \pm 0.2 \star day 5 10.4 \pm 3.4 42.4 \pm 9.7 n.s. 0.1 \pm 0.2 \star day 6 11.8 \pm 0.8 <td< td=""><td>day -2</td><td>12.4 ± 8</td><td>8.1 ^O 127</td><td>± 3.0</td><td>õ - S</td><td>1696</td><td>±\$6.1</td><td>A a</td></td<>	day -2	12.4 ± 8	8.1 ^O 127	± 3.0	õ - S	1696	±\$6.1	A a
daily mean day -5 to 0 b.a. 16.3 9.6 19.5 9.3 n.s. 0.2 \pm 0.2 \star day 1 10.6 \pm 4.6 14.9 \pm 2.0 n.s. 0.6 \pm 0.7 \star day 2 11.7 \pm 1.5 12.0 \pm 2.0 n.s. 0.6 \pm 0.7 \star day 3 20.0 \pm 3.4 28.0 \pm 0.9 n.s. 0.2 \pm 0.2 \star day 4 19.9 \pm 4.8 216 \pm 9.7 n.s. 0.1 \pm 0.2 \star day 4 19.9 \pm 4.8 216 \pm 0.7 n.s. 0.1 \pm 0.2 \star day 5 10.4 \pm 3.4 42.4 \pm 9.7 n.s. 0.1 \pm 0.2 \star day 6 11.8 \pm 0.8 <td< td=""><td>day -1</td><td>16.8 ± 7.0</td><td>2 8.4</td><td>2.4</td><td>A-</td><td>97.6</td><td>, ± 2.4 🖑</td><td>Ű,</td></td<>	day -1	16.8 ± 7.0	2 8.4	2.4	A-	9 7.6	, ± 2.4 🖑	Ű,
mean day 0 a.a. ^d 14.9 \pm 4.9 4.0 ± 0.7 \times 0.2 ± 0.2 \times day 1 0.6 ± 4.6 14.9 ± 2.6 $n.s.$ 0.6 ± 0.7 \times day 2 11.7 ± 1.5 12.0 ± 2.0 $n.s.$ 0.6 ± 0.7 \times day 3 20.0 ± 4.4 28.0 ± 0.9 $n.s.$ 0.2 ± 0.2 \times day 4 40.9 ± 4.8 21.2 ± 4.2 $n.s.$ 0.2 ± 0.2 \times day 5 10.4 ± 3.4 42.4 ± 9.7 $n.s.$ 0.1 ± 0.2 \times day 6 11.3 ± 0.4 12.8 ± 2.5 $n.s.$ 0.1 ± 0.2 \times day 7 3.4 ± 0.8 40.4 ± 0.7 $n.s.$ 0.2 ± 0.4 \times day 7 3.4 ± 0.8 40.4 ± 0.7 $n.s.$ 0.1 ± 0.2 \times day 7 0.4 ± 0.8 40.4 ± 0.7 $n.s.$ 0.2 ± 0.4 \times $day 6$ $11.3 - 5.4$ $13.7 - 8.0$ $n.s.$ 0.2 ± 0.2 \times $day - 5$ $to -1.4$ <td>mean day 0 b.a.^c</td> <td>20.1 ±</td> <td>23.4</td> <td></td> <td>. 0⁴ - x</td> <td>16.1</td> <td>) ± 4.9</td> <td>- ¹</td>	mean day 0 b.a. ^c	20.1 ±	23.4		. 0 ⁴ - x	16.1) ± 4.9	- ¹
mean day 0 a.a. ^d 14.9 \pm 4.9 4.0 ± 0.7 \times 0.2 ± 0.2 \times day 1 0.6 ± 4.6 14.9 ± 2.6 $n.s.$ 0.6 ± 0.7 \times day 2 11.7 ± 1.5 12.0 ± 2.0 $n.s.$ 0.6 ± 0.7 \times day 3 20.0 ± 4.4 28.0 ± 0.9 $n.s.$ 0.2 ± 0.2 \times day 4 40.9 ± 4.8 21.2 ± 4.2 $n.s.$ 0.2 ± 0.2 \times day 5 10.4 ± 3.4 42.4 ± 9.7 $n.s.$ 0.1 ± 0.2 \times day 6 11.3 ± 0.4 12.8 ± 2.5 $n.s.$ 0.1 ± 0.2 \times day 7 3.4 ± 0.8 40.4 ± 0.7 $n.s.$ 0.2 ± 0.4 \times day 7 3.4 ± 0.8 40.4 ± 0.7 $n.s.$ 0.1 ± 0.2 \times day 7 0.4 ± 0.8 40.4 ± 0.7 $n.s.$ 0.2 ± 0.4 \times $day 6$ $11.3 - 5.4$ $13.7 - 8.0$ $n.s.$ 0.2 ± 0.2 \times $day - 5$ $to -1.4$ <td>daily mean day -5 to 0 b.a.</td> <td>16.3 9</td> <td>.6 , 19,5</td> <td>±9.3 √</td> <td>y n.s.</td> <td>16.3</td> <td>ي 29.3</td> <td>n.s.</td>	daily mean day -5 to 0 b.a.	16.3 9	.6 , 19,5	±9.3 √	y n.s.	16.3	ي 29.3	n.s.
day 2 day 3 day 4 day 4 day 4 day 5 day 6 day 7 a^{2} , b^{2} ,	mean day 0 a.a. ^d	14.9 ± A	چې ۋې 4.0	`⊗± 0.7		0.2) ± 0.2	*
day 3 day 4 day 4 day 5 day 6 day 7 a 20 \oplus \pm 34 b 28.0 \pm 0.9 \pm 0.9 \pm 0.2 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 2.5 \pm n.s. 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.7 \pm 0.7 \pm 0.2 \pm 0.2	day 1	6 ↓4	.6 💇 14) ± 296	Q n.s. 0	69	±%0,0	*
day 3 day 4 day 4 day 5 day 6 day 7 a 20 \oplus \pm 34 b 28.0 \pm 0.9 \pm 0.9 \pm 0.2 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.1 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.2 \pm 0.4 \pm 0.8 \pm 2.5 \pm n.s. 0.2 \pm 0.4 \pm 0.8 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.7 \pm 0.8 \pm 0.7 \pm 0.7 \pm 0.2 \pm 0.2	day 2	≪11.7 ± 1		± 2.0 (\$1.5?	0.6	± ⁰ 0.7	*
day 5 day 6 day 6 day 7 110.4 ± 3.4 110.4 ± 3.4 110.4 ± 3.4 12.8 ± 2.5 1.128 ± 0.2 $1.128 \pm$	day 3 🔊	20. ± 1	QA28.0	± 0.9		× 0.2	©± 0.2	*
day 5 day 6 day 6 day 7 110.4 ± 3.4 110.4 ± 3.4 110.4 ± 3.4 12.8 ± 2.5 1.128 ± 0.2 $1.128 \pm$	day 4	49.9 ± 4	.8 210	× ± £2° (, [™] n.s. [√]	A	± 0.2	*
day 6 day 7 day 7 3.4 ± 0.8 $46 \pm 3.7 \pm 8.0$ $a.s.$ 0.1 ± 0.2 $a.s.$ 0.2 ± 0.4 $a.s.$ 0.2 ± 0.2 $a.s.$ 0.3 ± 0.2 $a.s.$ 0.2 ± 0.2 $a.s.$ 0.3 ± 0.2 a.s. $a.s.$	day 5	\$10.4\$± 3	.4 N.4	, £,≫9.7 Õ	n's	\$0.1	± 0.2	*
daily mean day a.a. to day 7 13.9 \pm 5.4 33.7 \oplus 8.0 a.s. 0.2 \pm 0.2 \star ^a days -5 to 1 \oplus days before application; day 0 = application day; day 4 to 7 = days after application ^b mean values (rounded) of three tunnels per treatment group ^c b.a.= before application; a.= after application n.s. = not statistical significant to the control \times = statistical significant to the control	day 6	1105 ±~0	[™] 12.8	≫± 2.5©	n.s.	0.1	± 0.2	*
^a days -5 to -1 ^a days before application, day 0 = application day; day 9 to 7 = days after application ^b mean values (rounded) of three tunnels per treatment group ^c b.a.= before application; ^d a.= after application n.s. = not statistical significant to the control ** = statistical significant to the control	day 7	3.4 ± 0	0.8 4.6	× ± 57	0 n.s, S	0.2	± 0.4	*
^b mean values (rounded) of three tunnels ber treatment group ^c b.a.= betwee application; a_{a} = after application n.s. = not statistical significant to the control a_{a} = statistical significant of the control	daily mean day a.a. to day 7	013.90 ± 5	۶ ۹ (13.7	8.0	» "" .s.	0.2	± 0.2	*
^c b.a.= before application; $f_{a,a}$ = after application n.s. = not statistical significant to the control $f_{a,a}$ = statistical significant of the control				Pto 7 = days at	ftegapplication	1		
n.s. = not statistical significant to the control * = statistical significant to the control			t group	Ĵ.	Y			
		/ · · · · · · · · · · · · · · · · · · ·		K. AY				

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

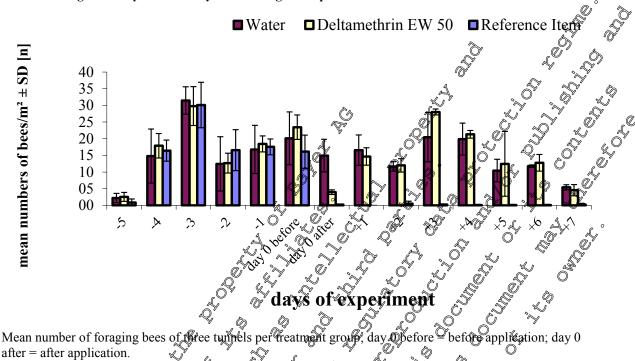
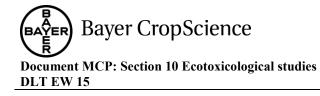


Table 7: Flight density of the honey bees during the experiment

O Between 5DBT and 1DBT the mean flight deposities among the colonies ranged from 2.2 to 31.4 bees per m² in the control, 2.6 to 29.8 bees per m² in the test item group and 0.9 to 90.1 bees per m² in the reference item. No statistically significant@tifference in Hight intensity@was found between the colonies of the overall daily mean of this period

m

Following the est item application foraging activities decreased until the end of the application day (statistical difference to control: Welch t-test, parwise comparison, d= 0.05, one-sided smaller). This was not observed in the control tunnels Flight intensities on the following days (1DAT to 7DAT) were comparable or even higher in the test item treated funnels compared to the control tunnels. There was no statistical significant difference detectable compared to the control for each assessment day (Welch t-test, pairwise comparison, $\alpha = 0.05$, one-side smaller).


After treatment of the efference iten (dime) hoate there was a fairly rapid and significant reduction in flight intensity. Shortly after application the bees reformed to the hive so that about one hour after application average flight activity was 2 % of the pre-application level and within two hours it was down to about 0 %. Flight intensity remained very low for the remainder of the trial and only a few bees were seen foraging of the the wers over the next p days.

Behaviour of the Bee

after = after application.

Following the test item application up to maximum 65 bees per tunnel showed some behavioural impairments like discoordinated movement, apathy, cramps or an intensive cleaning behaviour, but this was gone upril the evening of the application day and was not seen any more until the end of the experiment. No behavioural abnormalities could be observed in the control group.

The reference item treatment caused also behavioural abnormalities (moving coordination problems and intensive cleaning) at least until the first day following the application of dimethoate.

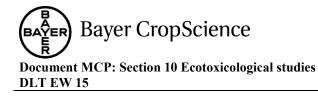
Check of Brood

Check of Brood	<u>1</u>												
Table 8: Brood	estimati	on of tl	ne colo	nies 2 d	ays befo	re the	applica	tions		~		, S	<i>°</i> C [*]
					water	treatn	nent (control)	<u>d</u>	4	×)
		tunne	no.:1				l no.: 2		,	tunne	l no 3		Ĉa
	ł	noneycc	mb no.	:	1	noneyco	mb no.		, S	honeyc	el no 33 ofab no.:		L, [®]
	1	2	3	4	1	2	Ø 3	4	×1	2	× 3 ^	<u>y 4 @</u>	, v
nectar ^a	0%	15%	15%	65%	25%	15%	30%	0%	90%	20%	1580	0%	40 ^Y
pollen ^a	0%	0%	20%	30%	20%	<u> 1</u> 60%	5%	6%	0%	10%	5%	<u></u> (Ũ
eggs ^a	0%	20%	20%	0%	0%	¢20%	5%~	ý Ó% (y 0%	Q15% (J 30%	070	,
maggots ^a	0%	5%	20%	0%	5%	35%	10%	0%	0%	2000	300	QÊ)Î	
closed brood ^a	0%	35%	10%	0%	\$0%	\$0%	Å0%	Ø%	~ @ %	<i>6</i> 5%	20%	0%	0
empty areas ^a	100%	25%	15%	5%	0% (0%	10%	\$00%	10%	> 0%	D´ <u>0%</u> ®	100%	
						\sim	, LO	Å	, î				
				~Q.	Del 🖉 🖉	tameth	uring EV	₩ ~ 50	Ů	Ű	õ.	0	
		tunnel	no.: 1	,0. 1 1	× %	tunne	Lno.: 2			S tun	yel.: 3	2	
	r 1	noneycc 2	mb no.	Å	N I	ioneyco	omb pô:		\sim	honeye	ombano.:	4	
nectar ^a	0%	10%	20%	30% e	≫15%	0%	~ <u>0</u> %	£5%	<u>م</u>	10%	020%	80%	
pollen ^a	0%	10%	5%	′ 30‰́	¥	0%	0%	30%	0%	0%	10%	10%	
eggs ^a	0%	13%	<u>k</u> 5%	15%	1	<i>ã</i> %	\$%	, 5%	20%	25%	25%	5%	
maggots ^a	0%	20%	á. I	20%	20%	0% ²	>0%	ð 10% §	0%	≫15%	35%	5%	
closed brood ^a	020	40%	508	5%	50%	0%	65%	30%	60%	20%	10%	0%	
empty areas ^a	190%	\$	5%	ð%	100%	<u>}</u> 30%	30%	Ø%	~0%	40%	0%	0%	
8		<u>.</u>					V L	<u>s</u>				<u></u>	
Ú Åa			Ĉo	4	Refere	ence¶t	em tre	atment					
		tunnel	no. 1	F		la l					l no.: 3		
Ê,		oneyco				ioneyce	mb no.			-	omb no.:	1	
a		2.**	3≪			2	3		1	2	3	4	
nectar ^a		20%		70%	50%	\$%	20%	5%	0%	10%	10%	40%	
pollen ^a	<i>i</i>	Q10%		\$95%	×30%	* "	A5%	0%	0%	0%	20%	20%	
eggs ^a	0%	10%	20%		0% \$	0%,	20%	15%	10%	10%	20%	15%	
maggots ^a	0%	45%	20%	6%	۵ X	× 6%	20%	10%	0%	20%	20%	15%	
closed brood a	0% °~	<u>%15%</u>	Q0%	20%	\$`0% \$	¥0%	20%	30%	0%	60%	30%	10%	
empty areas ^a	902	0%	Q%@^	5%Ø	20	90%	5%	40%	90%	0%	0%	0%	
a = £1, 1/		u 🖉	Û, in	~~~	O ^v	1 1	1.4						

^a amount of brood/nectar/pollen estimated in poscentage of the whole comb (both sides)

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Table 9: Brood	estimatio	on or th	e colon	ies / ua	ays alle	er the a	ррпсат	10115				
					water	treatn	nent (contro	ol)			
		tunnel					l no.: 2			tunne	el no.: 3	
		ı	mb no.:			honeyco		-	. (honeyc	omb no.	
	1	2	3	4	1	2	3	4	1 "	° 2	3	
nectar ^a	0%	30%	20%	50%	25%	30%	30%	15%	85%	25%	35%	
pollen ^a	0%	0%	25%	50%	15%	10%	Č10%	0%	Ø%	15%	×0%	5%
eggs ^a	0%	5%	0%	0%	15%	10%	^ø 20%	0%	§ 0%	15%	15%	0%
maggots ^a	0%	5%	20%	0%	15%	10%	0%	95%	0%	10%	15%	
closed brood ^a	0%	40%	35%	0%	30%	Ø40%	30%≽	0%	0%	\$\$5% <u>,</u>	35% (0%
empty areas ^a	100%	20%	0%	0%	0%	0% °	20%	85%	15%	0%	0%	802
					0 [°]	"Ø	e de la companya de l	Ĩ	ð	ð	L	4
	_				Del	tunne	kon E	₩ 2 ,50		Ĩ	0'	° Ó
		tunnel		Å	\sim	tume	no.:@	, z		turio	nel.: 3	
	h 1	oneyco 2	mb no.:	6°4 9		honeyco	ombiño.	: 0 64	Č,	honèyc	omb no.	
a a	-		256			∑° ∠ 150/	6 ⁷⁷ ^		مي ا 50%		20%	
nectar ^a	10%	5%	Ŷ	30% \$5%	25%	15%	35%	~~	50%C	<u>30%</u>	i V	70%
pollen ^a	0%	0%	@%			20%	10%			-598	¢%	0%
eggs ^a	0%	5%	20%	[™] 0%≈			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Y	\$0%	0%	Q0%	10%
maggots ^a	0%	0%	250%	0%)	20%	0%	30%	0%	15%	0%		0%
closed brood ^a	0%	80%	\$ 0%	20%	30%	30%	25%	25%	16%	4 5%	50%	5%
empty areas ^a	90%	10%	0%%		10%	>35%	//	©20%	×20%	20%	20%	15%
		á		S.	-∿ •∕∿	ence It	ß	, L				
			√ no.: 1 _℃			ence It	emtre	atmen		4	1	
Ő	"Śh	tunnei onesteo	по.: 1 mb_no.:			Tunne hone yç î	$h_{no.: 2}$,		el no.: 3 omb no.	
	30 H	0110 y€0 ≪ 12	1110 110 KB	A		$1 2^{\circ}$. 40	1	1011Cyc	3	. 4
nectar ^a	20%	~ ~	§40%	35%	×70%	<u>6</u> %	25%	05%	0%	25%	20%	35%
pollen ^a	000	5%	10%	1.00	20%	5%	5%	× 0%	0%	5%	15%	30%
eggs ^a	60%	±1,5%	£0%	×0%	×0%	55%	@%	0%	0%	10%	10%	0%
maggots ^a	y 0%0	D * 6	15%	nor -		Ĵ ⁹ 0%	025%	0%	0%	0%	10%	0%
closed brood	0%	50%	20%	300	0%	20	30%	50%	0%	40%	25%	20%
empty areas	80%		35%	25%	140%	2000	15%	35%	100%	20%	20%	15%
	0070	b ¹³⁷⁰	5~J70	VA 370	*¥070	2×1070	1370	3370	10070	2070	2070	1370


Table 9: Brood estimation of the colonies 7 days after the applications

^a amount of brood/nectar pollen estimated in percentage of the whole comb (both sides)

Two days before and seven days following the application, a check of the brood was conducted in order to assess possible effects of the jest item on colony development.

All stages of blood (eggs, lavae and closed brood) were found during the pre-application check in all colomes of of tunnels. As well a sufficient number of food and pollen was found as an indication of normal behaviour.

Seven $\operatorname{Gays}^{\vee}$ following the applications all brood stages could be found at the end of the test in each of the colonies. Furthermore, in each colony among the treatment groups an alive queen could be found indicating healthy colonies.

Conclusion:

Deltamethrin EW 50 was applied at a rate corresponding to 7.5 g a.s./ha during flowering to the highly bee-attractive crop *Phacelia tanacetifolia* with honey bees actively foraging on the crop during application. The effects on bee hives under confined exposure conditions considering mortality, flight intensity, behaviour, brood development were evaluated.

The mortality values in the test item treatment group during the post-application phase were statistically not different compared to the control.

Following the test item application, foraging activities decreased uptil the end of the application daw (statistical difference to control: Welch t-test, pairwise comparison, $\alpha = 0.05$, one-sided smaller). Flight intensities on the following days (1DAT to 7DAT) were comparable or even higher in the test tem treated tunnels compared to the control tunnels β° β° γ° γ°

Following the test item application up to maximum 65 bees per tunnel showed some behavioural impairments like discoordinated movement, apathy, cramps or an intensive chaning behaviour, but this was gone until the evening of the application day and was not seen any more antil the end of the experiment. No behavioural abnormatives could be observed in the control group.

Seven days following the applications all brood stages could be found at the end of the test in each of the colonies. Furthermore, in each colony among the reatment groups a healthy queen could be found indicating healthy colonies.

Overall no ecologically relevant effects on mortality, flight intensity, behaviour or brood of the honey bees were observed after direct application of Detramethrin EW 50 (7.9g a.s./ha) in 400 L water/ha into a bee-attractive, flowering crop and during bee flight in a semi-field (tunnel) study. According to the results of this study Detramethrin EW 50 does not adversely affect honeybee colonies.

. *****

<u> </u>	
Report:	XCP 10.3.1.5/96, 2001
Title:	Assessment of Side Effects of AE \$\P032640 00 EC02 A804 on the Honey
	be <i>QApis mellifer</i> or L.) in the Secon-Field
Document No:	2004 2-01-4 (Rep. No.: 20001132/01-BZEU)
Guidelines:	EPPCO70 Q Q Q
GLP:	yes of the second se
<u> </u>	

Material and Methods:

S

"Q

The side effects of the test substance AE F032640 00 EC02 A804 were tested on the honey bee (*Apis mellifera* L.) under semi-field conditions according to the guideline of the European and

Mediterranean Plant Protection Organization No. 170 (EPPO, 1992). The test substance AE F032640 00 EC02 A804 was applied at an application rate of 7.5 g a.i./ha in 300 L water/ha. Plots treated with tap water very scontrol. As toxic standard, Hostathion 40 EC was applied at a concentration of 0.6 L/ha in 300 L water/ha. The effect of the test substance was examined on small bee colonies in cages placed over plots with flowering *Phacelia tanacetifolia* Benth. The influence of AE F032640 00 EC02 A804 was evaluated by comparing the effect of the test substance treatment group to the effect of the control group and toxic standard group regarding the following observations:

• Mortality at the edge of the treated area and in the bee traps

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

- Foraging activity (number of forager bees/m² flowering *Phacelia* crop)
- Behaviour of the bees on the crop and around the hive
- Development of the bee brood

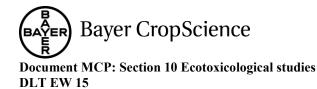
Findings and Conclusion:

Effect on honey bee mortality:

The application of the test substance AE F032640 00 EC02 A804 resulted than increase of mortality restricted to the day of application DAA 0aa (133:7 dead bees colony) which was determined to be not significantly different to the control (74.3 dead best/colony). Acar increase of mortality was observed after application of the toxic standard with an average of 53.57 dead bees/colony. The effect of the toxic standard demonstrated the sensitivity of the method in detecting the toxic effects of a pesticide. When comparing the average pre-application mortality and the average postapplication mortality utilising QM(average) (average post application mortality divided by the average pre-application mortality) no increase et mortality occurred after application of the test substance AE F032640 00 EC02 A804. The values for QM(average) were calculated as substance treatment group and 0.7 in the control group, The value for Q Haveninger in the toxic standard treatment was determined as 4.6.

Effects on honey bee flight intensity

In the AE F032640 00 EC02 A80 Arreatment group an obvious repellent effect occurred directly after application assumed by the behaviour of the bees and confirmed due to the flightintensity (9.2 bees/m²) on this day which remained significantly below the level of the control group (23.2 bees/m²). The significantly reduced flight intensity in the AE F032640.00 EC02 A804 treatment group and in the toxic standard treatment lasted until evaluation day DAAY. Compared with the preapplication period the average daily post-application level of flight intensity was lower in the test substance treatment froup AE F032640-00 EC02 A804 and in the toxic standard treatment but higher in the control group.


Effects on honey bee prood development: 0

Regarding the colomes strength and the bee brood development no abformal differences attributable

Reference item: 2007 Test organism Test organism

guaranteed:

Page 210 of 518 **2017-05-15**

cells

hives.

Not stated in the port.

was approximately 8 m².

is shown below

Arrangement of the different variants during

Source: Crop: Test location:

Test unit:

Test substance Deltamethrin EC 15 (AE F032640 00 EC02

• at least two brood combs containing eggs, larvae and capped

Wooden bee traps (35 cm x 35 cm) with gauze on bottom and w 50 % of the top were attached to the entrance of the nuclear in order to register those dead bees which are carried out of

Phacelia tanagetifolia (bee attractive crop) was full in bloom

The dimensions of the floor of the texts were 4.8 for x 3.6 in and, °

 \bigcirc

T1

the semi-field test

T2

the height was 2 m? The tent frames were covered with light plastic gauze. The tents were placed over the plots of flowering Phacelia A path of approx. 96 m was left at each side between the plots and the tent walls. The path was covered with linen sheet. The size of each port coxered with Phacelia tanacetifolia Ô

The semi-field test was located in the south of Germany

at least one honey and pollen comb

• bees are free of Nosema and other bee diseases

Reference item (R): 0.6 L formulation/ha (240 g a.s./ha)

Three replicates per treatment group referred to in this summary as: colony1, colony2 and colony3.

The spray volume was 300 L/ha in all treatment groups.

The influence of the test substances Deltamethrin EC 15 was evaluated by comparing the bees in the test cage to the control bees treated with water and those treated with the toxic standard and furthermore by comparing the pre- and post-application results in view of the following observations:

Mortality at the edge of the treated area and in the bee traps

- Foraging activity (number of forager bees/m² flowering *Phacelia* crop)
- Behaviour of the bees on the crop and around the hive
- Development of the bee brood

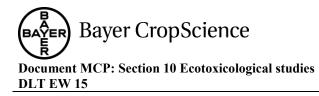
Deviations from the study plan:

A number of deviations were recorded in the study report. As these were procedural deviations and do not impact the study results they have not been reported. However, in the control hive no.3 there were no eggs and larval tages observed at the brood assessment 2 days prior to the application. Therefore this have

Climatic conditions during the experiment:

The environmental conditions are shown in table below

Table 1: Weather conditions during the trial; temperature and precipitation were provided by GAB weather station in Niefern


Date	DAA	Ø Temperature	Precipitation	Cloudosrmation	Å
Date	DAA	o Temperature	Précipitation	Cloud termation at time to	Ņ
		min/max [%C]		attime of	J
30JUN2000	- 6	59/23.75	Ø 0.0 ⁰		Q
01JUL2000	- 5 🏹	10.5/29.1	∑7.6 °~		J
02JUL2000	*4	\$15.0 /2 8.8	°~76 ∘. ♥	× 80 ~	
03JUL2000	Q ² 3	b€8/25.1@	N 5.8	Q00 4	
04JUL2000	2 3 5 - 2 0 -	×4.3/2%	5 5.8 - 194 - 194 - 194	Ly 100 C	
05JUL2000				50 [°]	
06JUL2000	\$0 L	× 11.9622.0 10.9/26.0	\$ 0.2 ()	√ 100 Q √ 560 © -5	
07JUL2000	1	4.6/22	5 ^y 100 ₀ ,	£15-30	
08,44,2000		10.8 46.7	\$13.6	Y 100	
09JUL2000	Ž,	1.0.6/18.15	°∼ 2,2 a	> 100	
10JUL2000	<u>3</u> 4	2.9/19.9		100	
11JUL2000	2 5	\$ 12.208.7	0.0	70-100	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 × Q				

# Pesticide Distory of the field site

The pesticide history of the field site was not stated in the report.

The side effects of the test substance Deltangethrin EC 15 were tested on the honey bee (*Apis mellifera* L.) under semi field conditions following the EPPO guideline No. 170 (EPPO, 1992).

This study included three exposure groups with three replicates (tents) each: one drinking water treated control group (G), one test-item groups (T) and one reference item group (R). The hives were introduced into the test cages 7 days before the application of the test substance to enable the bees getting familiar with the environment and to lower the mortality which usually is increased due to the transport. In all exposure groups, the crop was sprayed at flowering stage of the crop, during which time honeybees were actively foraging on the crop under confined conditions. The honeybees remained 5 days in the tunnels following application.



The influence of the test substances Deltamethrin EC 15 was evaluated by comparing the bees in the test cage to the control bees treated with water and those treated with the toxic standard.

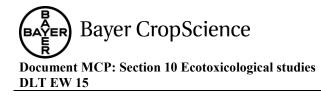
The following endpoints were assessed:

- Mortality at the edge of the treated area and in the bee traps at the entrance of the colonies is as well as after the application in the control, in the treatment and reference item groups respectively.
- Flight Intensity (number of bees that are both foraging on flowering Phacelia and flying immediately over the crop on 1 square meter) at the day the bes colonies set up into the tents and before as well as after the application in the control, in the treatment and reference item groups, respectively.
- The condition of the colonies and the development of the bee prood were checked 2 days before . application and 5 days after application. In order to record effects of the test substance, the following parameters were assessed
  - Strength of the colony (number of combs covered with bees) _
  - Presence of a healthy queen presence of eggs, presence of queen cells) Estimate of the pollen storage area and reas with reaction
  - Estimate of the pollen storage area and area with nector
  - Estimate of the area containing eggs, larvae and capped cells _

Estimate of the area contraining eggs, larvae and capped brood was given in percent of total brood population for each type of brood.
 Behaviour of the bees on the crops and around the hive of the bees on the crops and around the hive of the bees of Work: 29^a June 2000 to 11th July 2000
 Indings: A for the bees of the bees

**Dates of Work** 

**Findings:** 

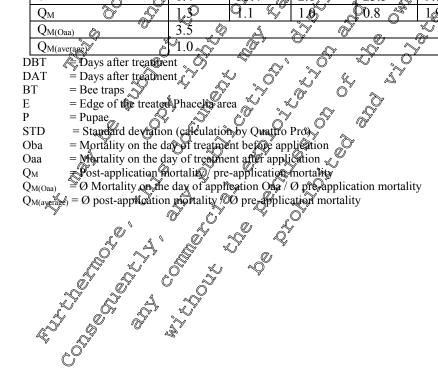

Honey Be

During the pre-application period an average of \$8.5 dead bees/colony/day was found in the Deltamethrin EC215 treatment group. In the control group the average daily pre-application level of mortality was 57.9 dead bees/colon@day compared to 266 dead bees/colony/day in the toxic standard group.

An increase of the mortality was observed in the Deltamethrin EC 15 treatment group on day 0 after application (0DAT) (133.7 dead bees/colory) which was determined to be not significantly different to the control (74.3 dead becycolony). A drastically increase of mortality was observed after application of the toxic standard with an average of 533 dead bees/colony on the day of application, which was significantly different to the control

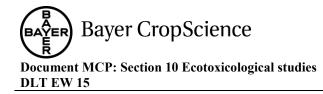
The value for Q (nortality on the day of application divided by the average pre-application mortality was 30% in the Deltamethrin EC 15 treatment group compared to 1.3 in the control group and 20.1 in the toxic standard treatment.

Oncevaluation days 1DAA to 5DAA the average mortality values ranged from 11.0 to 24.7 dead bees/colory/day in the Deltamethrin EC 15 treatment group. The average post-application mortality in this treatment group was 37.0 dead bees/colony/day. The mean post-application mortality in the control group was 38.5 dead bees/colony/day and 123 dead bees/colony/day in the toxic standard treatment.




When comparing the average pre-application mortality and the average post application mortality utilising Q_{M(average)} (average post-application mortality divided by the average pre-application mortality) no increase of mortality occurred in the test substance treatment group Deltamethrin EC 15. An advious increase was observed in the toxic standard group. The values for QM(average) were 1.0 for the substance treatment, 0.7 for the control group and 4.6 for the toxic standard treatment.

A summary of the daily mortality and flight intensity results are shown in the following table


o at 7.5 g a.s./1	la ( <u>AE FU</u>	2040 UU EV	CU2 A004 <u>)</u>	group	AÇ.		$\hat{\mathcal{Q}}$	Ŭ Á
Date	Day	Colony 1		Colony 2		Colony 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(S) Coloray
		BT	E	OBT 🖉	E ó	BT 🖉	B L	and day
03JULOO	3DBT	2	26	1.0 ~	<b>6</b> 9 🖓	1, 1	≫62 [©]	529 0
04JULOO	2DBT	0	26 🔊	2 ~	34 0		44 👟	, 35.7
05JULOO	1DBT	0	19 ^{0°} (	3	17	Qi 🔊	30	27.30
06JULOO	0DBT	3 / IP	ð ×	3 . 🖓 .	ĵ¥6 _ @`	5	S\$5 _	3723
Ø pre-applica	tion	1.5	22.5	2.3	34.0	2 <b>8</b> Č	52.5	s 38.5
STD		1.9	4.0	8	24,8	\$2.1 8	120	11.0
06JULOO	0DAT	4 %	<u>9</u> 2⁄		75 0	25	1997 🔊	133.7
07JULOO	1DAT	0 %	<b>9</b>		26 🔗	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	29	21.7
08JULOO	2DAT	ŹØIP [©]	15		25	27/ IP ~~~	27	24.7
09JULOO	3DAT	1 A	4	R O	16 4	0 🔊	Ĵ₽ [¥]	11.0
10JULOO	4DAT 4DAT	I/J		IP O	°¥6 O [∞]	1 🖌	≫ĭ0	13.0
11JULOO Ø post-applic	5D Ø	I₂/ ĬP 🎇	18	22 5	12 🥡	20	18	18.0
Ø post-applic	ation	Q.0 `~	24.5	2.3 2	28	5.2	48.7	37.0
STD		1.4	\$3.4	2.8 %	23.5	9.8%	73.1	47.6
Q _M	y Sy	1,9	9.1 V	1.0	0.8	12	0.9	n.d.
Q _{M(Oaa)}	101	3.5	A.			× ·		n.d.
Q _{M(average} )	Č	1.0	Ê,			1		n.d.
T An Dave	ftar tranting	nt 🔿	~~~ <	0	× ()			

### Table 2: Individual results of the evaluations of mortality (numbers of Gead bees) in the Deltamethen E 15 at 7.5 g a.s./ha (<u>AE F032640 00 EC02 A804)</u> group $\sqrt[6]{2}$



Date	Day	Colony 1	1	Colony 2	ſ	Colony 3	<b>^</b>	Ø / Colony and day
		BT	Е	BT	Е	BT		
)3JULOO	3DBT	0	34	0	99	2	¥41	58.7
)4JULOO	2DBT	2	51	0	115	0	34	67.4
)5JULOO	1DBT	4/ 2P	22	2/2P	66	3	29	43.37
)6JULOO	0DBT	1/ 3P	35	4/1P #	A19	1/ <b>P</b>	21 🜔	620 20
ð pre-applica	tion	3.0	35.5	2.3 🔍	99.8	, Dð	31-3	\$7.9 \$
STD		2.6	11.9	26	24.1	313	89	10.3
)6JULOO	0DAT	11	53		106		\$0 0 [°]	74.3 26.3
)7JULOO	1DAT	0	13	0	48		18	26.3
)8JULOO	2DAT	6	16	₩ 1P	68		25	40.7
)9JULOO	3DAT	3P	10	3/11	34 0	Ç1∕1P ≫ 0 ⊘	18 5	23.0
10JULOO	4DAT	0	21	18 ~	35 ~	14	25	28.7 Ø
1JULOO	5DAT	IP	31	2×5P	46		Â	38.7
Ø post-applic		3.5	2400	\$3.3 ≪	56/2 «		20.3	* 38.5 [°]
STD	ation	4.3	P6.0	, e.e	27.3	1.3	§11.8 &	189
Q _M		1.2		1,4 2				°Aŋ, d.
QM(Oaa)		1.3	2,0.7					n.d.
QM(average)		0.7		<u> </u>	4 0		<u> </u>	n.d.
= Bee tra = Edge c = Pupae	after treatme aps of the treate ard deviatio	d Phacetia ar	ea 6	Pro ³ plication mortality				

### Table 3: Individual results of the evaluations of mortality (numbers of dead bees) in the control group



oup								Q	
Date	Day	Colony 1		Colony 2		Colony 3	ð	Ø / Golony	
	5	BT	Е	BT	Е	BT 🖉	Ě	and day	
03JULOO	3DBT	12P	11	1	7	3	25	619.7 ×	Q
04JULOO	2DBT	1/21P	10	2	6	2P 2	24		
05JULOO	1DBT	3/ 23P	22	5 4	<b>A</b> 1	111	40 心	383 0	,
06JULOO	0DBT	1/1P	15	1/7P	16	J. Dr	31	26.4 2 26.6 2 8 3	Ć
Ø pre-applica	ation	15.5	14.5	4.0 🖉	10.0	5.8	30.3	26.6	1
STD		10.8	5.4	3.2	4.5	4.1	Q.1 , ,	8.3	
06JULOO	0DAT	202	444	59	149	298 @		\$33.7 A	
07JULOO	1DAT	14	80	27 K	9		57	68.7	
08JULOO	2DAT	30	57	27 🔊	28 0	70 8	90 dy	100:0 °	
09JULOO	3DAT	2	15		<u>9</u> ~ ~	1/48P	6		
10JULOO	4DAT	1/1P	6 5	10 v V	10	_{AP" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 🔊 .	8.0	
11JULOO	5DAT	2/4P	4	2/ 3P	24 2		20 5	8.0 15.0 122	
Ø post-applic	cation	42.7	P01.0	165	6.50 0	62.5	§104.3	1,200	
STD		78.8	170,8	23.0 🔊	55.90	h\$5.2 _0	172	°204.6	
Q _M		2.8	170.8 7.0	23.0 A.1	3.7	12.0 8	3.0 6	n.d.	
Q _{M(Oaa)}		20.∱♡	°~ ~~	, ,	Ý Ö		U N	n.d.	
Q _{M(average)}	after treatme	4.6			≥ ⁴			n.d.	

# Table 4: Individual results of the evaluations of mortality (numbers of dead bees) in the toxic standard

DBT = Days after treatment

DAT = Days after treatment ΒT = Bee traps

E = Edge of the treated Phacelia are

р = Pupae

= Standard & viation @calculation by Quattro Pro) STD

Oba

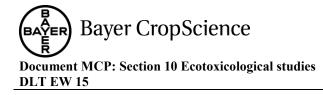
= Mortality on the day of treatment before application = Mortality on the day of treatment after application Oaa

= Post-application mortality / pre-application mortality Ом

= Ø Mortality on the day of application Qaa / Opre-application mortality OM(Oaa)

QM(average) post-application mortality / Offer-application mortality

 $e_{st}; a = 0.05$ significantly higher compared to the control

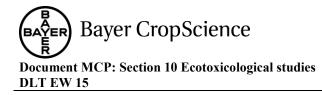

Honey Bee Fligh Intensity

Ő Due to bad weather conditions (rain) almost no fright intensity was observed on DAA-2, 2 and 3.

The average flight intensity during the pre-application period was similar in all treatment groups. In the Deltamethrin EC 15 theatment group an average of 8.3 bees/m² was observed visiting the flowering Phacelia during the pre-application period compared to 7.4 bees/m² in the control group and 6.0 bees/m² in the toxic standard treatment.

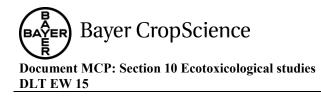
Shortly before application an average of 16. Hees/m² was observed in the Deltamethrin EC 15 treatment group foraging on the flowering Phacelia. The mean flight intensity of 9.2 bees/m² in the test substance treatment foup and 4.8 bees/moof the toxic standard treatment on day DAA Oaa remained significantly below the level of the control group (23.2 bees/m²). Furthermore the flight intensity in the Deltamethrin EC 15/treatment group and in the toxic standard treatment on evaluation day DAA 1 was significantly lower compared to the control. Compared with the pre-application period the average daily postapplication level of flight intensity was lower in the test substance treatment group Deltamethrin EC 15 and in the toxic standard treatment but higher in the control group.

The average post-application level of flight intensity was 6.1 bees/m² in the Deltamethrin EC 15




treatment group, 2.9 bees/ $m^2$  in the toxic standard group and 10.3 in the control.

Table 5: Average flight intensity (number of bees per m² Phacelia) in the three colonies in the Deltamethrin EC 15 at 7.5 g a.s/ha group


Date	DAA	Ø	Number of bees/m	n ²	re colonies in the
		Colony 1	Colony 2	Colony 3	bees/m ² and day
03JUL00	-3	23	7 0	11	
04JUL00	-2	0	0	96 ¥	
05JUL00	-1	2		Q ⁴ os°	3.0 × 0° 0°
06JUL00	0ba	18	Q 16	Q4 0°	
Ø pre-applic	ation.	10.8	6 <b>5</b> 2		
STD		11.5	0.0 Q	Q 7.1	8.0 8.0 4 5 5 5 5 5 5 5 5 5 5 5 5 5
06JUL00	0aa	9.7	× 7.8 ×	0 [°] 10 ⁶ 2 ×	
07JUL00	1	2 <u>8</u> 2, (j		×49.7 C	18.6
08JUL00	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2 00	
09JUL00	3		The second secon		
10JUL00	4 8				≥ 1.0 [©]
11 <b>JUL0</b> 0	50	0.6 5	12		× × 8.0
Ø post-applie	cation.	6.6	)° %,¶ ,0	& 6.2 k	S 6.1
STD			5 ⁷ 6.9 5 ⁷	7.80 ? 07 57	7.3

STD = Standard deviation (calculation by Quattro Pro) Oba = Flight intensity on the day of treatment before application Oaa = Flight intensity on the day of treatment after application 'significantly reduced compared by the control (Dunnet-Test, a = 905)



Date	DAA	Ø	Number of bees/n	n ²	Ø Number of	N W
	DAA				bees and day	
		Colony 1	Colony 2	Colony 3	bees $a^2$ and day 5.7 0.0 6.3 6.3 0.7 6.3	
03JUL00	-3	9	6	2	5.7	× . 8 . 9
04JUL00	-2	0	0		0.0 ×	
05JUL00	-1	11	3 😵		6.3	\$~~~, ć
06JUL00	0ba	17	18 0 ³ 00 ³	2 0 5 0 18 6 3 7 8 1 2 22 2 2 22 2 0	6.7 ~9	
Ø pre-applic	ation.	9.3		~6.3 0	Q 7.4 OY	¢ Ó
STD		7.0	22 4 7.9 22 22 22 22 22 22 22 22 22 2	$ \begin{array}{c} 18 \\ 6.3 \\ \hline 9 \\ 8.1 \\ \hline 9 \\ 202 \\ \hline 9 \\ 22 \\ 22 \\ \hline 9 \\ 22 \\ 22 \\ \hline 9 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ $	Q 7.4 0 Q 7.5 0 Q 7	
06JUL00	0aa	24.4	22	2002 6	Q3.2 Ly	
07JUL00	1	33.7	******		S 27.5	
08JUL00	2	0 0				Ő
09JUL00	3	20		$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	5 ^{90.0}	Ŝ.
10JUL00	4				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
11JUL00	5	9 %	707		<b>9</b> .7 <b>5</b>	
Ø post-applic	cation.	14.3 Q	<b>9.6</b> 0	× 0× 0 × 10.8 ×	× 10.3	
STD	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14.3 Q	<b>9.6 (b)</b>	~ 10.8 ×	S 463	

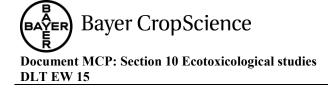

Table 6: Average flight intensity (number of bees per  $m^2$  Phacelia) in the three colonies in the control  $_{\circ}$ grou



Table 7: Average flight intensity (number of bees per m ² Phacelia) in the three colonies in the tox	ric 。
standard group	

rd group	- <b>9</b>				
Date	DAA	Ø	Number of bees/n	n ²	Onumber of O
-		Colony 1	Colony 2	Colony 3	boys/m ⁻ and day
03JUL00	-3	2	10	4	ONumber of by $z^{m^2}$ and day $5.3$ , $y^{m^2}$ , $y^{$
04JUL00	-2	0	0	0	0.0 0.0
05JUL00	-1	3	0 2	10×	
06JUL00	Oba	18	0 kg		£ 17.3.4 C Q
Ø pre-applic	ation.	5.8	\$6.5°	J 5.8~ 4	$ \begin{array}{c}  & 5.3 \\  & 5.3 \\  & & & & & & & & & & & & & & & & & & $
STD		8,3	×6.3 0 7.00 2		0 40 x x x x x x x x x x x x x x x x x x
06JUL00	0aa	5.3 3.3 00 4		6.2	4.8° 4° 0°
07JUL00	1	3.3	2.3		
08JUL00	2	004	× × S		
09JUL00	3		0 D		
10JUL00	4	0.	0 0 0 0 00 0 00		°€ ^{0.3} &
11JUL00	5		× 6 0	🐴 11 🖓	Ø 8,7
Ø post-applie	cation	2.9 0		G`	¥ .9
STD	N.C.	ð W		0 ⁴ .4 %	2.9 3.5
	ý _ 4	5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ŷ

DAA = Days after application STD = Standard deviation calculation by Quattro Prof Oba = Flight intensity on the day of treatment after application Oaa = Flight intensity on the day of treatment after application ' significantly reduced compared to the control (Dunnett-Test; a = 0.05)



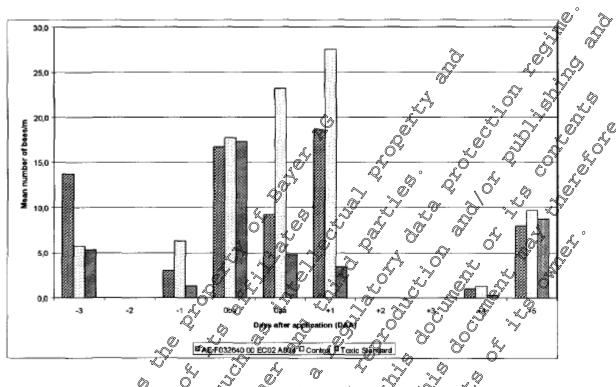
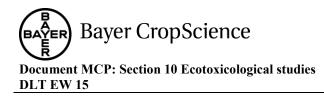



Figure 1: Average flight intensity in the vest substance treatment group Dettamethen EC 15 at 7.5 g a.s./ha (AE F032640 00 BC02 A804), the control and the toxic standard group prior to and after application Oba = evaluation of the day of treatment shortly before application


Oaa = evaluation on the day of treatment after application

### Development of honey bee brood

During the observation period changes and fluctuations in the relative amount of the different preimaginal stages, ie. egg stage Parvak and pupal stage, occurred in almost every colony of the test Ş substance groups, control and Doxic standard group

Compared to the brood assessment at the beginning of the test, no decrease of the amount of the different brood stages and the strength of the colonies could be observed in the hives of the test substance treatment at the assessment five days after application. In the two queen-right colonies of the control group less egg and darval stages were observed at the second brood assessment. In the toxic standard group a clear decrease of large stages was observed during the test period. The number of combs

The continued presence of eggs showed that the queens survived in all colonies except in colony No. 3 of the control group.



Tab	le 8: Brood development of the Deltamethrin E	C 15 at 7.5 g	a.s/ha (AE F(	)32640 00 EC	
grou	IP				
		Colony 1	Colony 2	Colony 3	

	Colony I	Colony 2	Colony 5	
Prior to application: 04JUL00			ð	
Strength (No. of combs covered with bees)	3.0	3.0	3.5	
No. of combs covered with brood	203	3 5	3 🔊	
Average amount of egg stage in %	22.5	159	11.0	3 2 0
Average amount of larval stage in %	307.5	23.3		
Average amount of capped stage in %	30.0	20.0	33.30 ⁵	
After application: 11JUL00	g° S		Ø Å	
Strength (No. of combs covered with bees)		Ø 3.5 O	03.5 24	A L°
No. of combs covered with brood		A A	6 ^{\$7} 2,	
Average amount of egg stage in	@15.0 ×	08.3	29.0	
Average amount of larval stagon %	9 27 9 ,	@ 20.05	\$17.5 °	
Average amount of capped stage in %	<u>30.0</u>	20.0	2265	*
Q V O	S. O	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<i>"</i>

Table 9: Brood development of the control group

	N O		, <u> </u>
	Colony 1	Colony 2	Colony 3
Prior to application 94JUL 90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V c a	Ū
Strength (No. of combs covered with bees)	x 3.5 ℃	3.0 2 30	3.0
No. of combs sovered with brood	ř.	0 <u>30</u>	2
Average amount of egg stage in %	30.0	200.0	0.0
Average amount of larva stage in %	30.0 @ 5 ⁹ 7.5 ⁹	°011.7	0.0
Average amount of capped stage in %	32.5 4	18.3	27.5
After application: AJULO			
After application; AJULOS	3.0	3.0	2.5
No of combs cover of with brood	2	2	2
No. of combs covered with frond a set of cov	× 5.0	12.5	0.0
Average amount of larval stage in %	5.0	10.0	0.0
Average amount of Capped Stage in % O	22,5	22.5	10.0

Behaviour

Directly after application of Deltamethrin EC 15 the bees were observed rising up of the flowering Phacehia, and the bees were observed landing on the flowers but immediately afterwards flying back to the hives Due to this observation a repellent effect of the test substance during a short time after application can be assumed. Approximately one hour after application affected and cramping bees were found on the linen. Bees which returned to the hives were observed cleaning their wings.

### Conclusion:

The side effects of the test substance Deltamethrin EC 15 (AE F032640 00 EC02 A804) was tested on the honey bee (*Apis mellifera* L.) under semi-field conditions following the EPPO guideline to the side of the side of plant protection products on honey bees (EPPO, 1992).

The test substance was applied at an application rate of 7.5 g a.i./ha in 3001 water/ha

Mortality: The application of the test substance Deltamethrin EC 15 resulted in an increase of mortality restricted to the day of application (DAA Oaa). An average of 133.7 dead bees/colony was found in the test substance treatment which was determined to be not significantly different to the control (74.3 dead bees/colony). A drastically increase of mortality was observed after application of the toxic standard demonstrated the sensitivity of the method in detecting the toxic effects of a pesticide.

When comparing the average pre-application mortality and the average post-application mortality utilising  $Q_{M(average)}$  (average post-application mortality divided by the average pre-application mortality) no increase of mortality occurred in the test substance treatment group Deltameterin EQ 15. The values for  $Q_{M(average)}$  were 1.0 for the test substance treatment, 0.7 for the control group and 4.6 for the toxic standard treatment.

<u>Flight intensity</u>: In the Deltamethrin EC to group an obvious repellent effect occurred directly after application assumed by the behaviour of the beec and confirmed due to the flight intensity (9.2 bees/m2) on this day which remained significantly below the level of the control group (23.2 bees/m2). The significantly reduced flight intensity in the Deltamethrin, EC 15,4 treatment group and in the toxic standard treatment lasted until evaluation tay 1DAT.

Compared with the pre-application period the average daily post-application level of flight intensity was lower in the test substance treatment group Deltarkethrin FC 15 and in the toxic standard treatment but higher in the control group.

Brood development: Regarding the colonies strength and the bee brood development no abnormal differences attributable to the influence of the test substance were observed between the test substance groups and the control.

~\$	
Report	KCP 10.3 3.5/07, 5/07
Title:	Assessment of effects on honeybees of AE F032640 00 EC03 A1 and AE F032640 00 EV01 B1. Trial and resectproof tunnels on <i>Phacelia</i> crop.
L AN	00 EX01 Bty Trial ander is sectproof tunnels on <i>Phacelia</i> crop.
Document No:	<u>M-205048-01-1</u> (Rep. No. 36-2001)
Guidelines:	$\bigcirc \mathbb{C} = \mathbb{B} \ 12 \mathbb{Q}^{\mathbb{Z}}$
GLP:	yes &
(	

### Material and Methods:

Honey, bee colonies (ca 16,000 to 19,000 bees per hive, colonies of comparable development, brood, and food store status, queens of homogeneous maternal origin) were confined in tunnels on *Phacelia* fields with additional pollen sources provided. Five days after introduction of the bees into the tunnels, application was performed. The test substance Deltamethrin EW 15 was applied at rates of 0.333 L/ha and 0.500 L/ha, the toxic standard was Zolone Flo (500 g/L phosalone) at a rate of 1.2 L/ha. Furthermore,

**Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

**Bayer CropScience** 

a water-treated control was set up. Treatment was carried out during flight activity of the bees. Endpoints observed were foraging activity, behavior, mortality, and colony development.

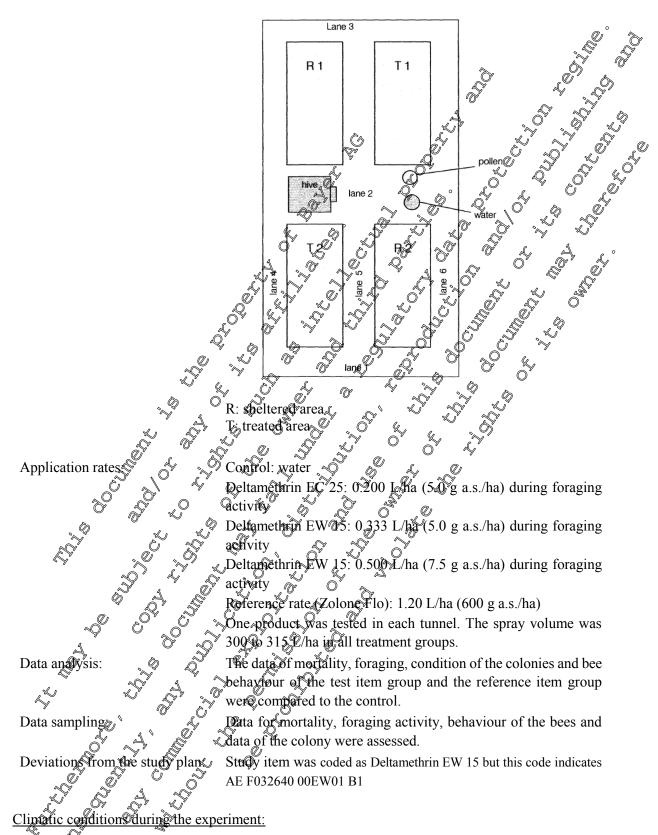
#### Findings:

Behavior of the bees was only slightly affected by the test item as well as to <del>the standard</del> activity was influenced by the test substance only for a short time. Mortality increased shortly after test item appliaction at both rates but dropped down to levels comparable to control Colony development was not affected by the treatment.

Deltamethrin

#### **Material and Methods:**

Test material


Test item:

Deltamethrin EXP15 (AE F032540 00 EW0181) content of a.s.; .

Deltamethrin EC 25 (AF 032640 00 FC03 AV) content of 5. (analyset): 24.9 C/L (25 g/L nominal)

deltamethrin: (analysed): 15. Rg/L (15.0 g/L nominal)

**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15



This experimentation took place over a period with weather and temperatures favourable to foraging. The period before and after the day of product application was warm and dry.

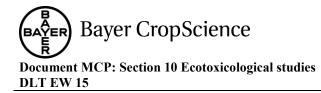
The environmental conditions are shown in the following table.

#### Table 1: Environmental conditions during the experimental period

Dementer					Experin	iental per	riod		ð		Ő	
Parameter	25/8/01	26/8/01	27/8/01	28/8/01	29/8/01	30/8/01	31/8/01	1/9/01	2/201	3/9/01	4/9%01	
Rainfall [mm]	0	0	0	0	0	2	0	0 4	0	0	\$¥4 🎄	ςγ ø
Mmin T [°C]	15	17	19	13	15	15	10	2¢	6	10 3	<u>9</u> °~y	A.V
Max T [°C]	35	31	26	26	26	1¢	20	A2	24	Û8 U	×	

Only the maintenance of the field site is stated in the study report and is shown in the following table. **Table 2: Phacelia crop data, 2001 campaign** 

Table 2:	Phacelia	crop data	, 2001	campaiga
		· · · · · · · · · · · · · · · · · · ·	,	


Date	Operation	Characteristics
April	Soil preparation	Herbicide application and harrowing seedbed preparation and weed
		bestruction of a construction
15/06/01	Plot sowing and rolling	Phacella tangetifolig Wariety Balo, and kg/ha (Batth D/BN 228-0-
	\$\$ ¢ \$	
August	Destruction 🔬 Õ 🕻	Fushing the crop on experimental plots
	× .4	

This study included five exposure proups with one replicate (tranels) each: one tap-water treated control group, three test-item groups ( $1 \times$  Deltamethrin EC 25 and  $2 \times$  Deltamethrin EW 15) and one reference item group. In OI exposure groups, the cropowas sprayed 5 days after set-up of the hives in the tunnels at full-flowering, doring which time honeybees were actively foraging on the crop under confined conditions. The honeybees remained 1, days in the tunnels @

Mortality in each tunnel was recorded on a daily Pasis for all areas covered with plastic film, from 4 days before treatment (4DBA) to six days after treatment (6DAT). Moreover, the day on which product application was carried out (day 0) additional counts were one at the end of the day (0DAT) in order to establish possible butal infoxication of foraging bees of the total mortality rate recorded in a tunnel for a given day results from adding up mortality rate observed in each of the six plastic rows in the tunnel.

Foraging was observed from 2DBF to 20AT, of all treated and sheltered (untreated) areas. It was possible to adapt the time of counting to the environment of the trial and to active foraging periods. Counts were shifted if activity was not considered satisfying (late activity due to morning mist or disturbed by raynfall setc.) This parameter was also taken into account for an additional count on D 0, during the hour following product application.

Two colory assessments were carried out in the beginning and at the end of experimentation, allowing to evaluate colony development taking into account parameters like the adult bee population, the quantity and quality of the brood (different stages observed), amount of reserves and potential construction of new frames on offered wax sheets. These visits were carried out in the tunnels at dates which were as close as possible to the first and last day of confinement. However, for practical or climatic conditions, they necessarily took place within 48 hours before or after introduction of the hives in the tunnels on the one hand, and when the hives were taken out on the other hand.



Assessments of bee behaviour were carried out when products were applied and during the thirty minutes following product application, In general, this observation phase continued all over the day, between counts. Bees were especially observed for reactions and behaviour like intense flying, been clusters on the net or at the entrance of the hive, aggressiveness, beginning of an intoxication etc *i*n each of the tunnels.

The influence of the test item was evaluated by comparing the results obtained in the test? treatment groups to those of the control and the reference free group.

The following endpoints were assessed:

- Number of dead bees per day before as well as after the applications in the control. the test item groups and the reference item group, respectively
- Number of foraging bees/m² per day on all the areas (T1, D2 and R1, R2) before as well as after the applications in the control, the test item groups and the reference item group, respectively
- Behaviour of the bees during assessment in the control, the test item groups and the reference item group, respectively erimentation of the second sec
- Colony Assessment in the beginning and at the end of expe

Dates of Work: 25th August to

Findings: Honey Bee Mortality: A summary of the Gaily mortality and total mortality results are shown in the following table.

	<u></u>	<u> </u>			$\sim$		
Treatment		<u></u>	🤳 4 <b>D</b> BT -	- 25 th Augu	št 2001		
zone	lane 1	ane 2 🕥	lange 3 🛛	🗸 lane 🛛 🏾	lane 5	lane 6	total
Water control	<u>3</u> 33 «		_~≫76 <u>%</u> _	k4×	2	16	146
Deltamethrin EC 55 (5.0 g a.s./ha) 🖗 🍐	27		¹⁵³	<b>6</b> ,52	6	8	257
Deltamethrin EW 150 (5.0 g a.s./ha)	Å7 ×	0 430 ⁹	× 93	32	3	15	233
Deltamethrin EW 15 (7.5 g a@/ha)	535	JA7 .	67. . 67.	7	4	11	159
Zolone Flo	_م 94 م	44	<u></u> _~Q56	26	10	33	363
			JDBT -	– 26 th Augu	st 2001		
zone	[©] lane ^Q	Jane 2	⁾ lane 3	lane 4	lane 5	lane 6	total
Water control 🖌 🔬 🕔	2j,1 ×	24 Q	85	98	14	0.5	505
			05	90	14	95	527
Deltamethron EC 25 (5.0 g a.s. (ba)	61	, je standing and a s	101	67	5	32 32	<u>527</u> 277
(5.0 g a.s.fa) Deltamorhrin 5W 15 (5.0 g a.s./ha)		32					
(5.0 g a.s./ha) Deltamethrin FW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)		, de	101	67	5	32	277
(5.0 g a.s.fa) Deltamorhrin 5W 15 (5.0 g a.s./ha)		32	101 83	67 114	5 12	32 33	277 405
(5.0 g a.s./ha) Deltamethrin FW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)		32 25	101 83 112 122	67 114 91	5 12 14 2	32 33 38	277 405 372
(5.0 g a.s./ha) Deltamethrin FW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)		32 25	101 83 112 122	67 114 91 69	5 12 14 2	32 33 38	277 405 372


# Document MCP: Section 10 Ecotoxicological studies DLT EW 15

	1							
Deltamethrin EC 25	144	24	67	80	8	30	353 。	
(5.0 g a.s./ha)		- ·	0,	00	Ũ	20		ð
Deltamethrin EW 15	208	23	89	40	16	40	410	Ş
(5.0 g a.s./ha)						ð		J
Deltamethrin EW 15	252	17	75	51	5	60	×460, C	
(7.5 g a.s./ha)					"Ø			
Zolone Flo	350	27	88	70	204	115	<u>× 670</u> , č	Q
				28 th Augu	4°C/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_
zone	lane 1	lane 2		ane 4	Lame 5	lane 6	<b>Total</b> ©	s.
Water control	55	5	111	55	6¥ 6		5 [×] 240	Ő¥
Deltamethrin EC 25	47	17	100	169 🔊	4₀		2 <u>3</u> 9 0	1
(5.0 g a.s./ha)	77	17		107 🗸				
Deltamethrin EW 15	116	14	\$251 °	160	م مي 26 م	× Ne .	\$ 605°C	
(5.0 g a.s./ha)	110	14		<u> </u>		<u> </u>		
Deltamethrin EW 15	97	19 C	178	80 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	@ 12 K	<b>⊉</b> 90 .∘	
(7.5 g a.s./ha)		. ٩		7 <i>ĭ -</i> 0.	<u> </u>	O`		
Zolone Flo	202	130	<u>`</u> ^220_^	r <u>16</u> 4 [♥]	A 21 🔊	17	\$ 637 °	
			💛 0DBŤ -	- 29th Augu				
zone	lane 1	🛛 🖓 🖓	lane 3	Nane 4	lane 5	Sane 6	total	
Water control	23	U ¹³	≥4)97 ≭	J 90	~ ⁶	F 14	<i>Q</i> 340	
Deltamethrin EC 25	27 🔗	, to	¢ 120¢	AND A	$\circ$		≫ 357	
(5.0 g a.s./ha)						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* 557	
Deltamethrin EW 15	ŝ,	°≫ 15ũ	ر 159	× 110	, ©5 ,	200	340	
(5.0 g a.s./ha)	- ×			[≁] 110 ^{©™}		20°	540	
Deltamethrin EW 15	\$ 12 O	- 40° - 4	\$ 270	ഭാ 🐇		18	439	
(7.5 g a.s./ha)	× 42	. 4		\$ ⁸²		S 10	439	
Zolone Flo 🕺	6\$* ⁷	20 O	<b>30</b> 5 s	261	&_9 %	22	730	
		y O		[∠] 29 th Augu	stQ001 🔗			
					50 W 001 V			
zone	Mane			<i>(1)</i>		lane 6	total	
V	√ <b>1ane</b> • <b>1</b> 73√	<b>kane 2</b>	lane S 42	<b>bane 4</b>	/ lan@5	<b>lane 6</b> 13	<b>total</b> 179	
Water control	73{~	<b>kane 2</b>	lane®	bane 4 🔍	lancos	13	179	
Water control	73{~		lane Ø	bane 4 🔍	/ lan@5			
Water control		<b>kane 2</b>	lane (0) 42 63	<b>bane 4</b>	lancos	13 28	179 291	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15	73 22 192	<b>kane 2</b>	lane (0) 42 63	bane 4 🔍	lancos	13	179	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15	73 22 192	<b>kane 2</b>	lane \$ 42 63 106	<b>bane 4</b>	∠ lane⊘ 28 ³ 24 4 8	13 28 46	179 291 430	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15	73 22 192	<b>kane 2</b>	lane \$ 42 63 106	<b>bane 4</b>	lancos	13 28	179 291	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15	73{~	kayê 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lane \$ 42 63 106	<b>bane 4</b>	∠ lan€5 ∠8 ² 2 4 8	13 28 46	179 291 430	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)	735 22 1922 1945 507 507 5	kapě 2 ~ 4 1 ~ 1 4 ~ 20 ~ 20 ~ 20 ~	lane 3 42 63 106 106 106 88	bane 4 2 42 6 5 5 6 5 6 5 6 5 6 5 6 7 5 6 7 5 6 7 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	lanco 28 4 8 13 6	13 28 46 66	179 291 430 629	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15	735 22 1922 1945 507 507 5	kayê 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lane 3 42 63 106 106 106 88 7 106 88 7 106	bane 4 2 42 42 56 56 56 58	lanco 28 4 8 13 6	13 28 46 66	179 291 430 629	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo	735 ↓ 922 1945 307 ↓ 1200	kaŋê 2 4 1 14 20 20 20 20 20 20 20 20 20 20	lane 3 42 63 106 106 106 88 7 106 88 7 106	bane 4 ~ 42 ~ 66 ~ 56 ~ 56 ~ 58 ~ 58 ~ 58 ~ 58	lanco 4 4 8 13 6 st 2001	13           28           46           66           66           66	179           291           430           629           363	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo zone Water control Deltamethrin EC 25	73 22 192 307 307 120 57 57 57 57 57 57 57 57 57 57	<b>lative 2</b> 4 1 → 14 → 220 → 26	lane 3 42 63 106 7 106 88	<b>bane 4</b> 2 42 60 56 56 58 58 50 th Augu lane 4 3	lan€5 2 4 2 4 8 13 6 st 2001 lane 5 4	13 28 46 66 66 15	179         291         430         629         363         total         56	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo zone Water control Deltamethrin EC 25	73 22 192 307 307 120 57 57 57 57 57 57 57 57 57 57	kaŋê 2 4 1 14 20 20 20 20 20 20 20 20 20 20	lane 3 42 63 106 106 106 88 7 106 88 7 106	bane 4 2 42 60 56 56 50 58 30 th Augu lane 4	lanco 4 4 8 13 6 st 2001 lane 5	13 28 46 66 66 <b>1ane 6</b>	179 291 430 629 363 total	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha)	734 222 1944 307 1200 307 1200 307 1200 307 1200 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 30	<b>lative 2</b> 4 1 → 14 → 220 26 → 26 →	lane \$ 42 63 106 106 106 88 101 88 100 100 100 100 100 100 100 1	bane 4 2 42 60 56 56 51 58 58 50 th Augu lane 4 3 25	lanco 2 4 2 4 8 13 6 st 2001 lane 5 4 5	13         28         46         66         66         15         24	179         291         430         629         363         total         56         193	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15	73 22 192 307 307 120 57 57 57 57 57 57 57 57 57 57	<b>lative 2</b> 4 1 → 14 → 220 26 → 26 →	lane 3 42 63 106 106 106 88 7 106 88 7 106	<b>bane 4</b> 2 42 60 56 56 58 58 50 th Augu lane 4 3	lan€5 2 4 2 4 8 13 6 st 2001 lane 5 4	13 28 46 66 66 15	179         291         430         629         363         total         56	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha)	734 222 1944 307 1200 307 1200 307 1200 307 1200 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 30	kaŋĕ 2 ∧ 4 1 ~ 14√ 220 26 [√] 26 [√] 26 [√] 1are 2 210 10 √ 10 √	lane 5 42 63 106 7161 & 88 106 88 100 AT 140 52 92	bane 4 2 42 60 56 56 50 th Augu lane 4 3 25 30	lane         5           ↓         4           ↓         8           13         6           st 2001         lane 5           ↓         4           5         7	13 28 46 66 66 15 24 48	179         291         430         629         363         total         56         193         295	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15	734 222 1944 307 1200 307 1200 307 1200 307 1200 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 30	<b>lative 2</b> 4 1 → 14 → 220 → 26	lane \$ 42 63 106 106 106 106 106 106 106 106	bane 4 2 42 60 56 56 51 58 58 50 th Augu lane 4 3 25	lanco 2 4 2 4 8 13 6 st 2001 lane 5 4 5	13         28         46         66         66         15         24	179         291         430         629         363         total         56         193	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha)	734 222 1944 307 1200 307 1200 307 1200 307 307 1200 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 307 30	kaŋê 2 ∧ 4 1 ^ 14√ 220 26 [√] 26 [√] 26 [√] 1are 2 210 10 √ 10 √	lane 5 42 63 106 7161 & 88 106 88 100 AT 140 52 92	bane 4 2 42 60 56 56 50 th Augu lane 4 3 25 30	lane         5           ↓         4           ↓         8           13         6           st 2001         lane 5           ↓         4           5         7	13 28 46 66 66 15 24 48	179         291         430         629         363         total         56         193         295	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha)	73 22 194 194 194 194 194 194 194 194	$\begin{array}{c} \textbf{kat) e 2} \\ (4, 1) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ $	lane 5 42 63 106 106 88 107 101 88 100 100 100 100 100 100 100 100	bane 4 2 42 60 56 56 50 58 30 th Augu lane 4 3 25 30 30 17	lane(5)           ↓         4           ↓         8           13         6           st 2001         1ane 5           ↓         4           ↓         5           ↑         14           ↓         5	13         28         46         66         66         15         24         48         53	179         291         430         629         363         total         56         193         295         332	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g c.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g & s./ha) Deltamethrin EW 15 (5.% g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Deltamethrin EW 15	73 22 194 194 307 307 307 307 307 307 307 307	kayê 2 4 1 14 20 20 20 20 20 20 20 20 20 20	lane 5 42 63 106 88 106 88 100 106 88 100 100 100 100 100 100 100 100 100	bane 4 2 42 60 56 56 50 th Augu lane 4 3 25 30 30 17 - 31 st Augu	lane 5 2 4 8 13 6 st 2001 lane 5 4 5 7 14 5 st 2001	13         28         46         66         66         15         24         48         53         30	179         291         430         629         363         total         56         193         295         332         137	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha)	73 22 194 194 194 194 194 194 194 194	$\begin{array}{c} \textbf{kat) e 2} \\ (4, 1) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ (4, 2) \\ $	lane 5 42 63 106 106 88 107 101 88 100 100 100 100 100 100 100 100	bane 4 2 42 60 56 56 50 58 30 th Augu lane 4 3 25 30 30 17	lanco lanco 4 8 13 6 st 2001 lane 5 4 5 7 14 5 st 2001 lane 5	13         28         46         66         66         15         24         48         53         30	179         291         430         629         363         total         56         193         295         332	
Water control Deltamethrin PC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)	73 22 194 194 307 307 307 307 307 307 307 307	lame 2         4       1         14√       14√         220       25         25       25         1arte 2       24         10       10         10       18         18       25         10       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       <	lane 3 42 63 106 88 106 88 107 106 88 100 106 106 106 106 106 106 106 106 106	bane 4 2 42 60 56 56 50 th Augu lane 4 3 25 30 30 17 - 31 st Augu lane 4 7	lane(5)           ↓         4           ↓         8           13         6           st 2001         lane 5           ↓         4           ↓         5           ↑         14           ↓         5           14         5           st 2001         lane 5           8         8	13         28         46         66         66         15         24         48         53         30         Iane 6         15	179         291         430         629         363         total         56         193         295         332         137         total         143	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)	73 22 194 194 307 307 307 307 307 307 307 307	kaŋê 2 4 1 14 20 20 20 20 20 20 20 20 20 20	lane 3 42 63 106 106 106 106 106 106 106 100 100 100	bane 4 2 42 60 56 56 58 50 th Augu lane 4 3 25 30 30 17 - 31 st Augu lane 4	lanco lanco 4 8 13 6 st 2001 lane 5 4 5 7 14 5 st 2001 lane 5	13         28         46         66         66         15         24         48         53         30	179         291         430         629         363         total         56         193         295         332         137         total	
Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Zone Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)	73 22 194 307 307 307 307 307 307 307 307	lame 2         4       1         14       20         20       20         20       20         25       25         1arre 2       20         10       25         10       25         10       25         10       25         10       25         10       25         10       25         10       25         10       25         10       25         10       25         10       25         110       25         110       25         110       25         110       25         110       25         110       25         110       25         110       25         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35	lane 3 42 63 106 106 106 106 106 106 106 100 100 100	bane 4 2 42 60 56 56 58 50 th Augu lane 4 3 25 30 30 17 - 31 st Augu lane 4 7 14	lanco lanco 4 8 13 6 st 2001 lane 5 4 5 7 14 5 st 2001 lane 5 8 9	13         28         46         66         66         15         24         48         53         30	179         291         430         629         363         total         56         193         295         332         137         total         143         266	
Water control Deltamethrin CC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha) Zolone Flo Water control Deltamethrin EC 25 (5.0 g a.s./ha) Deltamethrin EW 15 (7.5 g a.s./ha)	73 22 194 194 307 307 307 307 307 307 307 307	lame 2         4       1         14√       14√         220       25         25       25         1arte 2       24         10       10         10       18         18       25         10       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       35         110       <	lane 3 42 63 106 88 106 88 101 88 100 106 88 100 100 100 100 100 100 100 100 100	bane 4 2 42 60 56 56 50 th Augu lane 4 3 25 30 30 17 - 31 st Augu lane 4 7	lane(5)           ↓         4           ↓         8           13         6           st 2001         lane 5           ↓         4           ↓         5           ↑         14           ↓         5           14         5           st 2001         lane 5           8         8	13         28         46         66         66         15         24         48         53         30         Iane 6         15	179         291         430         629         363         total         56         193         295         332         137         total         143	

## Bayer CropScience **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

								-
Deltamethrin EW 15	255	10	12	9	11	28	325	0
(7.5 g a.s./ha)				-			525 Q	Č
Zolone Flo	222	15	11	8	5	24	285	S
			3DAT –	1 st Septeml	oer 2001	~	ð	. "0"
zone	lane 1	lane 2	lane 3	lane 4	lane 5 🤞	🕅 lane 6	stotal .	$\mathbf{D}$
Water control	144	2	6	10	7 0	12	181%	1
Deltamethrin EC 25	118	8	5	12	A	24.0	.189	<u></u>
(5.0 g a.s./ha)	118	0	5	12 Ča	ster i standard stand Standard standard stan	34		
Deltamethrin EW 15	195	8	17	8	Q 10	<i>S</i>	265 L	e C
(5.0 g a.s./ha)	195	0	P	0		<u> </u>		
Deltamethrin EW 15	170	2	30	9 0	Ű 5.	19 ⁽¹	208	
(7.5 g a.s./ha)					5.		A	
Zolone Flo	201	6	Q 6	12>>	<u> </u>	<u> </u>	¢264	
20 July		(		2nd Septem		<u> </u>	y w	
zone	lane 1	lane 2 🔍	lane 3	ane 4	lane 5	Mane 🖉	<u>tó</u> tal	0
Water control	172	16	60	v 49:Q	Y0	, 160 [°]	@813	Ý
Deltamethrin EC 25	95	10 [°] .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ga		<b>2</b> 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(5.0 g a.s./ha)		(1) n° 4					, 247	
Deltamethrin EW 15	206	0 ⁹ 11 \$		\$ 38 0	Å.	280	352	
(5.0 g a.s./ha)	200	$\zeta \circ \circ $					4)	-
Deltamethrin EW 15	143	, Q	\$ 39 °	ά. Έλοι			∛ 226	
(7.5 g a.s./ha)	a.	$\sqrt{7}$		<u> </u>	/ ⁻ 0*			-
Zolone Flo	2297		98	<u>∽ 60 0 ×</u>	6	460	442	
21 July	×			3 rd Septem		- Q		
zone	Pane 1	lagge 2	Vane 3	lane 4	) lane (5/	Name 6	total	
Water control	44	<u>9</u>	<u>20</u>	0 ⁹ 43 🥋	<u>5</u>	<u>ک</u> 26	148	-
Deltamethrin EC 25	65		\$ ²¹ \$	× 56 ⁰	0 ⁷ 4	36	186	
Deltamethrin EX 15 (5.0 g a.s./ha)	Ô 9 <u>2</u> )	, ⁴ √7 ~	× 32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		61	238	
Deltamethrin EW 15	~ ⁹ 30		\$22 \$	× 25 [°] ,	© 2	14	124	-
(7.5 g a.s./ha) O ³ Zolone <b>Flo</b> s	107		29	32	r 3	47	225	4
				A th Septem		4/	223	-
Water control	× 20 ·	\$ \$	$\sim 25$	A,  × Septemi Ž≻	7	5	90	1
Deltamethrin EC25	i po	<u> </u>	N ^{Y23} K	<u> </u>				1
(5.0 g a.s./ha)	15 0 ⁵	K B	60	≥15	4	6	52	
Deltamethrin EW 15				S.				1
(5.0 g a.s./ha)	∞_23 ک	Č 120		<b>°</b> 13	8	9	94	
Deltamethrin EW 15					-			1
(7.5  g as/ha)	215	<i>6</i> ,76 ∾		7	7	3	52	
Zolone Flo	. 39 💊	9	~~~¥	5	5	3	65	1
BT: days before treatmen		y ív		-	-	-		1

The total mortality is displaced in the figure below.



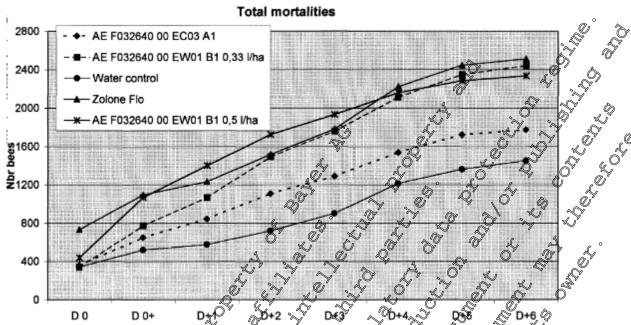
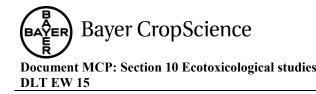



Figure 1: Total mortalities during Qudy period for Deltamethrin EC 25 (AE F932649)0 EC03 A1) at 5.0 g a.s./ha, Deltamethrin EW 15 (AEK03264000 EW01 B1 0.33 1/ha) at 50 g a.s. Da, for the water control group, the reference group (Zotone Flo) and Deltamethring W 15 G (AEF 032640 00 EW01 B1 -0.5 l/ha) at 7.5 g a.s./ha D0: 0 days before treatment

D0+: 0 days after treatment

D+1 to D+6: 1 to 6 days after the atments


One day after treatment in both control and reference tunnels mortality decreased, as water treatment or Zolone application of d not disturboses. On the contrar mortalities increased in all study items tunnels. The difference is that AE F032649 00 EC03 AF formulation induced a very small increase in mortality when Deltamethrin EW 15 at two different rates provided luttle peaks of mortality. A main peak was observed with the higher dose used (0.5 L/ha)

Then during the second part of this trial evolution of mortalities were similar within all tunnels. In a way all mortality evolutions were comparable along this two weeks trial, as there is no toxic reference. The highest peak of provide huder 1,900 individuals, when a toxic was supposed to provide much more dead bees. So all recorded data had to be considered as inducing moderate mortalities, the more so as the effects were limited to the forlowing treatment day (1DAT) only.

On the product application day, between portality records made in the morning (0DBT) and those made in the evening (0DAT), increasing curves gave information about knockdown effects. Only the highest dose of Deltamethrin EW 15 (7, 5, g a.s./16) provided an early high mortality during the afternoon. That was still obvious of the following morning day.

Of course the water copped induced the lowest increase in daily mortality. From 1DAT to 6DAT all evolutions were similar, that Confirmed the limited in time effects of both Deltamethrin EC 25 and Deltamethrin IN 15 formulations.

At the end of this experimental phase, total mortalities were split up in two groups: Deltamethrin EC 25 effects were comparable to the control, whereas the two doserates of Deltamethrin EW 15 and the reference Zolone Flo were linked together.



BAYER Bay	er Cr	opS	Scie	nce								Pa		of 518 7 <mark>-05-15</mark>
cument MCP	: Section	n 10 E	cotoxi	icologi	cal stu	ıdies								
LT EW 15														
oraging activity	/													<i>°</i>
ne mean numbe bles. Fable 4: Foragi	er of for	rager l	bees/r	n² insi	de the	e tunne	els foi	r all tr	eatmei	nts	is show	vn in the	e follov	ving
oles.											~			N a
												) )	, Ĉ	
<b>Fable 4: Foragi</b>	ng data	: Wat	er con	trol							F			
Water control				rav	v data /	nbr be	es				4	calculat	e0 data	<u>م</u>
day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b	Å	mean zR	mean zT	R/m²	T/m
August 27 th 01	14H00	116	43	90	138	65	120	117	40	Ø	194	170	120	10
D-2	15H00	115	51	98	165	84	126	136	42	\$	215	194	43,4	.12,1
	16H30	115	65	107	158	76	2140	137	52		223	0203	*13,9	012,7
							>		*	Ű	Ŷ	189~		11,8
August 28 th 01	12H00	74	41	74	141 (	69	105	104	39	1	<b>165</b>	059	≥√10,3	<b>x9</b> ,9
D-1	14H30	137	78	93	164	93	2138	458	27	~	236	233	14,8 4	14,6
	16H00	152	72	125	183	115	166	150	067	Q	266	249	16,6	15 6
				الم	ŴŸ.	×.	$\sim$	ð.	× ~ ~	\$	, 0 ⁵	214	- C	13.3
				, <u> </u>			<u>ø</u>	A Star	r "Q		$\mathcal{A}$	<u>Ş</u>	$\approx$	
August 29 th 01	12H00 13H30	103	44 87	<b>£0</b> (930	119/	75 123	98 150	112	≪45 ©74		178	256 256	×11,1 °	10,3
D 0	13H30	151	 		600	rza:		170	14	5	277	238		16,2 13,2
00	15H00	120	82	109	179	93	350	136			250	233	15,6	14,5
	15H45	103	61	77	133	72	109	104	<b>6</b> 59	~	187	172	11,7	10,8
	16H30	80 %	48 🤇	89	2.14	79	100	90 🖉	43	Ş	166)	156	10,3	9,8
		, Ø	Ó		S*	Ŵ		·	Ĵ,Ş	1		×187		11,7
			1		44	y"	ý.	\$	~		S j	Ş	·	
August 30 th 01	16H00	31	<b>\$</b> 29	<b>(</b> 371	39	350	43 _A	48	18	Q,	non si	gnificant		n taken
D+1	18H30				Q١	J.				D'I	~~	into ac	count	
A second state					×	97 े	81	72		ام	2187	174	147	10.0
August 31 st 01			108	98 84	102	145	63	59	<b>98</b> 123	×	176	1/4	11,7 11,0	10,9 12,2
D+2 0	16H30	7.2		0 <del>04</del> 61	81	60	70	740		,	132	193	8,2	7,9
- 10	Linger								L TV	r	.02	165	<b>U,</b> 2	10,3
	Č	Ş,		<u></u>	/ (	, L	- 8 *		$\sim$					
September 1 st 01	11100	82	77	87	<b>9</b> 1	.83	93	114	89		169	190	10,5	11,8
D+3	12(130	121	80	109	D <b>1</b> 21	<b>Ø</b> 0	\$\$17	143	99		216	225	13,5	14,0
	è i	1	Į	Ŵ		) )	0	ð				207		12,9
Q,	~ ~ ~	)	5	Ĩ	[°]	S.		Ş						

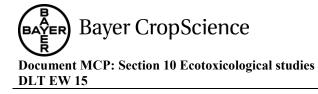
R1a: number of bees counted on half of the sheltered area of 1 by a first experimentator. R1b: number of bees counted on the other half of the sheltered area of 1 by a second experimentator. R1t: total number of bees counted on half of the treated area of 1 by a first experimentator. T1a: number of bees counted on half of the treated area of 1 by a first experimentator. T1b: number of bees counted on half of the treated area of 1 by a second experimentator. T1b: number of bees counted on the other half of the treated area of 1 by a second experimentator. T1b: number of bees counted on the other half of the treated area of 1 by a second experimentator. T1t: total number of bees counted on the other half of the treated area of 1 by a second experimentator T1t: total number of bees counted on the other half of the treated area of 1. Counts are expressed in the same way for areas R2 and Y2. Nb bees/m²: number of mean bees for square meters on R (sheltered area) or T (treated area). Precision calculation: R = [(R1t + R2t) 2] /16 Same for calculating T. Mean zt: number of mean bees on a treated area of 16 m². D-2/ D-1: 2 days before treatment. D0: day of treatment.

D0: Day of treatment D+1 to D+3: 1 to days after treatment

AE F032640 00 EC03 A1				rav	v data /	nbr be	es					calculat	ed data	2	
day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b		mean zR	mean zT	R/m ²	T/P	100
August 27th 01	14H00	66	85	61	83	54	70	94	86		148	<b>.</b> (152	9,2	9,5	-G ^P
D-2	15H00	89	79	62	109	57	83	78	90		170	0154	10,6	9,6	Ç.
	16H30	89	95	84	93	74	89	97	108		181	184	11,3		," ```````
								<u>م</u>			- XV	163	°a l	10,2	L.
								Ö					2	$\overline{\mathbb{N}}$	
August 28th 01	12H00	41	40	57	52	47	47	62	58		Q 95	107	5,9	6,7	u A
D-1	14H30	89	103	70	96	58	80	108	89	۲C	179	168	11,20	10,5	* K)
	16H00	98	97	82	113	81	<b>191</b>	107	114	X	195	197	12,2	123	,¢″
						Ŵ	D, x		$\sim$	۷ ۹.		.057	0×	9,8	
August 29th 01	12H00	38	46	48	66	<u>\$4</u> 1	36)	70.0	72	K)	y 99¢	109	6,2	6,8	Ť
August 29 01	13H30	92	101	98	95	O 88	. 63	114	131	6	193	208	12,1	13.0	
D 0	101100					() ()	~	L <u>C</u>		ſ		159	Ô ^y	<b>10</b> ,9	ć [°]
	15H00	57	74	59	64	36	54	34	40		A, 127	82	7,9	\$5,1	Ø.
	15H45	37	54	46	/57	· 31	37	31 🔍	47	h	97~	73	6,1	4,6	Ĩ.
	16H30	34	65	500	64	43	≪38	32/	48	٢	107	80	87	5,9	
				JOY	- W	1 °~	Ş	J.	~0	'		<b>7</b> 9		04,9	
			Å	Ô¥		~~~~	<u> </u>		S.	. C	ð (		S .	Ç.	
August 30 th 01	16H00	30	34	^{&gt;} 34	232	33	40	47 0	45	Ç	non si	gnificant	data. noi	n taken	
D+1	18H30	25		21	1	19	Ň	29	1	Ľ		inte a	count		
			U ^v	4	ŝ				- K		, Q	Č)			1
	12H00	27	33	14	32	20	25	Ø 31	23	$\sim$		non signi			
August 31 st 01	13H30	° <b>A4</b> °	40	41 (	Q 68	<b>\$</b> 0	56	56	[∿] 44	Ø	97		6,0	6,4	
D+2	15H00	87	60	62	87	110	66	. 63	74		148	105	9,3	10,3	
	16H30	44	52	-36 	44	44	57	82	Ø		×/88	<b>M08</b>	5,5	6,8	
		Å	°~Č	Š'	Ş.	~				ſ,	°	⁹ 125		7,8	
eptember 1 st 01	1100	57	55	59	78	58	83	63	73 136	ŕ	125	139	7,8	8,7	
D+3	12H30	73	92	108	104	95%	ý 93 ·	124	136		189	214	11,8	13,4	
0	- P	Ľ	, Da			N. S.	ð	Ž,		~ ~	D 1	176		11,0	
		L)	Ś	the she	<b>,</b>	ď	102	Ø		ď	, ,				
	(	õ	Ś	, C			Ş	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2					
a: number of be	es count	ed on	half of	une sne	negeu	area n	1 by a	first e	xperime	ent	ator.				
b: number of be	es@unt	ed øb	the oth	er half	othe	shelter	ed are;	a n°1 b	y∮a seco	onc	l experin	nentator.			
t: total number	of Dées c	ountee	l on the	e whole	gof the	g Schelte	redare	a ng							
a: number of be	es count	ed on l	hadtof	the treat	ated ar	ea n°1	by a fi	rstexp	eriment	tato	or.	ntoto-			
b : number of b t: total number of	ees com	ted on	the off	er gali	t of the	treater	area i	n⁄@r by	a secon	id e	experime	ntator			
unts are express								2							
bees/m numl	per of ma	an be	es per s	square	meterv	$r_{R}$	heltere	d area)	or T (f	rea	ated area	). Precisi	on calcu	lation:	
$= [(R_1 + R_2 t) / R_2 + R_2 t)$	2]/16.	ame fo	alci	lating	T. 🔊	¥(3	$\gg$		(1		ureu	,	curcu		
		,	Y		e V		N								

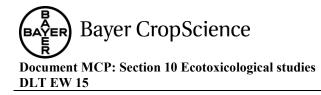
#### Table 5: Foraging data: Deltamethrin EC 25 (AE F032640 00 EC03 A1) at 5.0 g a.s./ha

R = [(Rt, R2t) / 2] /16, Same for calculating T. Mean zt: number of mean bees on a treatest area of A6 m² D-2/D-1: 2/1 days before treatment. D0: day of treatment 0D+1 to D+3: 1 to 2 days after treatment 0


AE F032640 00 EW01 B1 0,33 l/ha				rav	/ data /	nbr be	es						ted data		Ő
day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b		mean zR	mean zT	R/m∛(	T / m²	>
August 27th 01	14H00	120	93	103	157	101	135	159	119		2370	257	14,8	16,1	
D-2	15H00	139	105	110	147	121	145	182	124		251	286	15,7	37,9	Ò,
	16H30	154	118	143	180	126	147	183	150		298	303	718,6	100	∜J` ▼
								9				282		17,6	×
							ÿ	7		Q	·	<u> </u>		- A	I (
August 28 th 01	12H00	110	70	88	127	90	116	156	94	۱٦	198	228	12,3	04,3	
D-1	14H30	161	114	117	168	119/-	156	198	198		280	306	(, 17,5	019,1	Ċ,
	16H00	167	147	146	187	130	159	213	163	Ø		336 C	20,20	21,0	1
						,		2	P	Ž	and the second s	290	N I	18,1	
					Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	\$		K)	Ĵ	J	de la companya de la comp	- C		·~	
August 29th 01	12H00	104	87	109	108	93%	94	G14	108	1	204	205	12,8	12,8	0
	13H30	198	166	143	198	162	165		184	4	353	364	22,0	22,80	/
D 0								,Ò	,		~~~~~	284		17,8	
	15H00	87	100	91	108	58 、	83	21	42	Í	193	27		07,9	
	15H45	76	64	59	84	<b>46</b>	46	60	1	4	142	100	8,8	6,2	
	16H30	64	82		<i>(</i> <b>9</b> 1	54	48	1	₹58	Ô	149	110	9,3	6,9	
			Ą	ı Ö	)	Ô	ð,	6	°	5		162	N N	7,0	
			, O	, K	9	5	S	,Ű	Ő		ð	~~	<b>%</b> ,		1
August 30 th 01	16H00	63	88	44	40	57	49	79	, WY	Ć	non și	gnificant	data. nor	n taken	
D+1	18H30	33	1	<b>√ 26</b>	Û	28	10	37	YI.	Ś			ccount		
		2	0	Ô		Q.	s.	. [\]	K	× '	~~~	N.			
	12H00	48	A30	11	9 45	11	214	25	(23			non signif	ficant dat	а	
August 31 st 01	13H30	102	96	118	78	<b>89</b> 0	68	/147	102	K	/ 197 [°] ^	203	12,3	12,7	
D+2	15000	136	118	101	Ø0	128	97	138	140	0	223	252	13,9	15,7	
	16h30	AM .	68	66	83~	74	~67	23	78		64	149	9,6	9,3	
Č			Ny	<b>%</b>	$\sim$	Å	, Y	Ň	Į,	 	S.	201		12,6	
~	Ô			Ő	60	Ŵ	2	<b>P</b> 4	S ^V		×				
September 1 st 01	11/00	96	86	88	103	<b>9</b> 1	97,7	<b>118</b>	105	Ç,	187	206	11,7	12,8	
	12H30	139	.89	93	120	122	131	161	11		221	263	13,8	16,4	
D.+30	121100			Į,		~	7	Ş	Y			234		14,6	
<b>D+</b> \$0		)	s v			. 0	24	9.	0						
D+32	Č		)) ചി£പ‰	he shel	and a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hyea fi	ret eva	Fimen	ato	r				
a: number of bee	es counte	ed on h	)) alf of ( he of De	ye shel r halfæ	ered au t the sl	rea v 1	by a fi 1 ærea r	rst exp	erimen secon	tato d ex	r. merimen	tator			
a: number of bee	es counte es counte	ed on h ed ôn tl	he office	r half∕oq	t the s	ientered	1 area r	ı°Į by a	arimen 1 secon	tato d ex	r. xperimen	tator.			
a: number of bee b: number of bee t: total number of a: number of bee	es counte es counte bees counte	ed on h ed ôn tl aunted d on h	ne othe on the all of the	r half og whole ne beat	t the sp of the sp ed assea	heltered neltered n°1 40	d area r ed area ∛a firsi	n°l by a n @? r ©xperi	i secon mentat	d ex	perimen				
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee	es counte s counte bees counte s counte es counte	ed or h ed on h aunted d on h ed or t	on the on the and of the he other	r half o whole ne treat r half g	t the sp of the sp ed assea of the ti	neltered neltered n°1 ky reated a	d area r ed area a first area n	n°l by a n @? r ©xperi	i secon mentat	d ex	perimen				
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of bee	es counte es counte bees counte s counte es counte f bees co	ed on h ed on tl aunted d on h ed on t ouged	on the on the and of the he other on the	r half o whole ne weat r half g whole	of the sp of the sp ed assea of the tr of treat	neitered neitered n°1 ky reated a echarea	d area r ed area a first area n	n°l by a n @? r ©xperi	i secon mentat	d ex	perimen				
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor			
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	ne office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	he office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	he office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of a: number of bee b : number of bee t: total number of t: total number of t: total number of	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	he office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	
a: number of bee b: number of bee t: total number of bee b: number of bee b: number of bee t: total number of bee t: total number of bee	es counte es counte bees counte s counte f bees co ed in the	ed on h ed on th aunted d on h ed or bund same	he office on the all of the he other on the way for	r half o whole ne weat r half o whole areas	of the sp of the sp ed area of the tr of treat \$2 and	neltered n°1 ky reated a ed area 212.	area r a area a firsi area n area n	n () n () Cxperi I by a s	mentat second	d ex or. exp	erimenta	tor	calculatio	on:	

#### Table 6: Foraging data: Deltamethrin EW 15 (AE F032640 00 EW01 B1) at 5.0 g a.s./ha

AE F032640 00 EW01 B1 0,5 l/ha				rav	v data /	/ nbr be	966					calculat	ed data		
day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b		mean zR	mean zT	R/m ²	T/m²	
August 27th 01	14H00	79	86	123	120	118	161	90	107		204	@38	12,8	14,9	
D-2	15H00	83	94	123	114	111	168	102	87		207 4	234	12,9	14,6~	y b
	16H30	94	92	95	121	140	193	83	94		20%	255	12,6	15,9	Ś
								- V				242		15,1 20	
August 28 th 01	12H00	72	66	94	93	101	138	71	67		<b>163</b>	189 🗐	10,2	11,8	°, š
D-1	14H30	118	111	103	117	138	178	99	125	5¥	225	269	14,0	16,8,	Ĩ
	16H00	115	136	114	103	152	181	108	134	\$	234	288	14,6	18,0	S.
						Q K	r Ø	0	S.	Å		248		∠ )6,5 ∀	
August 29 th 01	12H00	72	80	97	95	16	166	77	98	S	1720	228	10,8	14,3	0
	13H30	117	123	121	131	162	206	170	100		246	296	154	16,5	S.
D0					J.	7 °A		$\searrow$	×		4	262	,	\$6,4	Ç4 [°]
	15H00	54	82	67	83	.28∕∕	48	39 🧳	22	6	∕ 143°∾		ຸ 8,9 🔬		Ň
	15H45	37	63	62 _{,C}	60	<b>A</b> 4	52	23	26 🔬	5	11	73Q) ^v	6,9	<b>4</b> ,5 ^O	
	16H30	41	40	<b>6</b> 0	37	47 🔬	32	,2 <b>3</b> ″	260		<b>9</b> 3	ČĂ,	5,8	<u>æ</u> 90	
				Q ⁴	ġ.	<i>D</i>	ź	) )	5	L		č) 68	~~ ·	×4,3	
August 30 th 01	16H00	38	43	41	27	30	Ŵ	23	20 0	K.		nificant	data. nør	taken	
D+1	18H30	1	S.	<u>, ' '</u>			1	1	L LO			into a	count		
		Ĉn		×	-	Ŵ	, [°]	Ø	V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ý.	Ô		
August 31 st 01	13H30		84		<i>0</i> 93	<b>8</b> 9	106	92	401	K.	188		J [°] 11,8	12,0	
D+2	15H00	88	80	101	87	100	ר'	102	87		178	188	11,1	11,8	
	16H30	<b>%30</b>	<b>45</b>	53	47	42	48	°490	40		<b>(%8/8</b>	°~89	5,5	5,5	
		199	~		j J	▲.	× ~Ô	) Č	Ø	L		<b>*156</b>		9,8	
September 1 st 01	1,1H00	79	90	87	90 /	,95	100	98) ~107	109	p''	178	201	11,0	12,6	
D+3 0	12H30	112	115	103	1090	440	124	407	116	ĩ	220	233	13,7	14,5	


#### Table 7: Foraging data: Deltamethrin EW 15 (AE F032640 00 EW01 B1) at 7.5 g a.s./ha

R la: number of bees counted on half of the slettered area n°1 by a first experimentator. R1b: number of bees counted on the other balf of the sheltered area n°1 by a coond experimentator. R1b: number of bees counted on the other balf of the sheltered area n°1 by a second experimentator. R1t: total number of bees counted on the other half of the treated area n°1 by a second experimentator. T1a: number of bees counted on the other half of the treated area n°1 by a second experimentator. T1b: number of bees counted on the other half of the treated area n°1 by a second experimentator. T1b: number of bees counted on the other half of the treated area n°1 by a second experimentator. T1b: number of bees counted on the other half of the treated area n°1. Counts are expressed in the same any for areas R2 find T2 Nb bees/m²: particle of mean bees per square meter on R (sheltered area) or T (treated area). Precision calculation: R = [(R1t + R2)/2]/16. Same for calculating 0 Mean zt: number of mean bees on a treated area of 16 a? D-2/D-1/2/1 days before freatment D0: days of treatment D+40 D+3: 1 to 3 days after treatment of the treated area of 16 a?  $R = \frac{1}{2} \frac$ 



#### **Table 8: Foraging data: Reference item Zolone Flo**





From the beginning of this trial, following introduction of the beehives in the tunnels, bees foraged in the crop quite actively.

During the three counts that followed product applications, mean foraging trends were comparable between 2 tunnel groups. The colony in the reference tunnel seemed to be and ifferent to phosal one application. On the same way in the control tunnel, water spraying did not disturb the foragers activity. Foraging activity diminished shortly after treatment in these tunnels. On the contrary this foraging activity literally droped in the Deltamethrin EW 15 formulation tunnels and diminished in Deltamethrin EC 25 too.

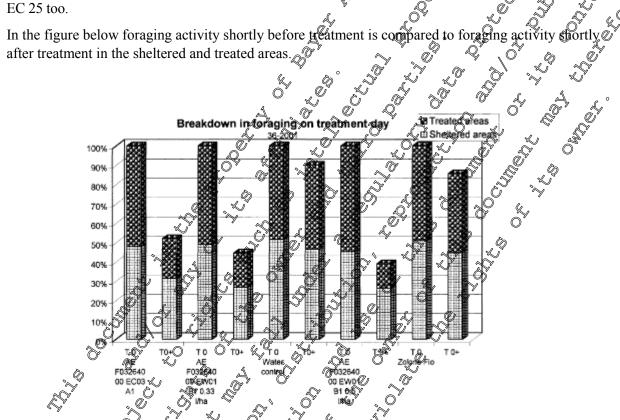
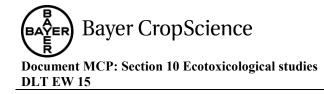




Figure 2: Breakdawn of foraging on treatment day for Deltamethrin EC 25 (AE F032640 00 EC03 A1) at 5.0 g a.s./ha, Øeltamethrin KW 15 (NEF032640 00 EW01981 - 0.5 l/ha) at 7.5 g a.s./ha, Deltamethrin EW 15 (AEF032640 00 EW0 B106 0.33 4a) at 50 g a. ha, the reference group (Zolone Flo) and for the water control group

T0: before product application T0+: after product application

Unfortunately unreliable data were collected on the day after treatment (1DAT) because of cold and cloudy weather all day long that bees activity was insufficient. At 2DAT foraging increased in the three tunnels that received the study itente. Then at 3DAT, foraging activity increased again in the five tunnels to feach sparcely levels of the pre treatment phase. Product applications had no longer impact on this foraging parameter.

First of all, the impact was observed in the water control tunnel or in the reference tunnel. This confirmed the very low effect of the Zolone Flo formulation on bee activity. This was shown on the graph with similar repartition of foraging bees on both sheltered and treated areas. On the contrary, items formulations induced an immediate effect on this activity, as the level diminished quickly, especially on treated zones, and this can be considered as a repulsive effect.



#### Colony assessment

Very few differences concerning the structure of the colonies were observed between the two visits. This state of the reserves and proportions of the brood stayed mainly stable for the different colonies. Only the colony in the tunnel where Deltamethrin EW 15 was used at 0.5 L/ha presented very less brood at the end (- 5 frames), with a very small increase in food storage (+1 frame). Despite of recorded mortalities during trial, populations remained quite stable in all tunnels between the two aparist visits. Deaths of bees were compensated by the emergence of new bees on the brood frames, which explains this of stability of bee populations.

### Behaviour of the Bees

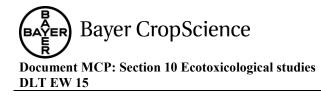
Bee colonies underwent momentary stress following introduction in the tunnels. Older foragers continually hurt themselves on the net looking to get away from the hive on a stationary or circular flight at a few meters high in order to locate themselves in the space. The volume of a tunnel represents sufficient flight space but it was nevertheless confined and colonies adapt to these experimental conditions after the first recording.

During spraying, foraging bees flew away over treated plots when the boom passed and came down again a little further away. No aggressiveness of any frenetic bumbing was noted. However, in the tunnels with the test items a few chinical signs ocuared in the hour following product application. This signs were observed in the afternoon but not the next following days.

In the standard tunnel, a characteristic Zolune smell appeared after treatment and remained for several hours. A few into scation signs appeared and were more frequent by the end of the day, either on next days (2DAT and 3DAE).

Activity at the hive entrance was normal in all tunnels. No beeclutters were observed on the nets or at the hive entrance and not decing events were observed in an for the funnels.

Clinical intoxication symptoms: In Deltamethrin PC 25, Deltamethrin EW 15 and Zolone Flo tunnels, some bees were falling down on the ground after reatment and showed typical intoxication signs. In these tunnels, intoxicated bees tell on the plastic surface of the lane, walked in a difficult way alternating periods of sluggishness and frenzy. Such a bee rolled over idelf and appeared too heavy when trying to lift off. Its fore legs then its hind legs and abcomen appeared to be paralysed. The bee died in arrange from a few minutes to a few hours.


## Condusion:

Overall conditions for conducting the experimental phase of the scheme were favourable to bee activity. Climatic and crop conditions were satisfactory. The different observed parameters agree with the collected data.

During the treatment phase. Deltamethrin EC 25 and Deltamethrin EW 15 had an impact on bees deaths compared to the water control and Zolone Flo.

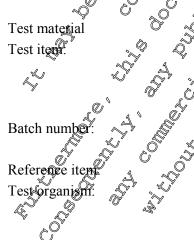
Experimental conditions of the study were quite strict, including confinement and product application carried out during intense foraging activity, on very attractive plots.

The impact of Deltamethrin EW 15 whatever the dose used (0.33 and 0.5 L/ha) induced a small repulsive



effect and a raising mortality, yet limited to a short delay (only one day).

On the other hand the effects of the test substance Deltamethrin EC 25 in the case of this trial on phacelia crop only showed a lower and temporary increase in mortality yielding compareable total mortality rates to those recorded in the control tunnel.

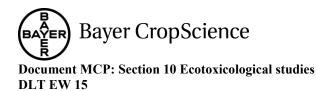

		á.	Ő¥	× ,	N Q I
Report:	KCP 10.3.1.5/08, ;	2001		,0 ,	
Title:	Assessment of effects on hone	bees of AE	E032640 00 E0	03 Alan	d AE F032640
	00 EC11 A313 - Trial under ins	ectproof tung	els on Phaceli	a crop.	
Document No:	<u>M-205046-01-1</u> (Rep. No \$5-2	20099)		Å.	N N
Guidelines:	CEB 129		Å ð	100 24	
GLP:	yes 💭 🥎				ħ.
				2 C	

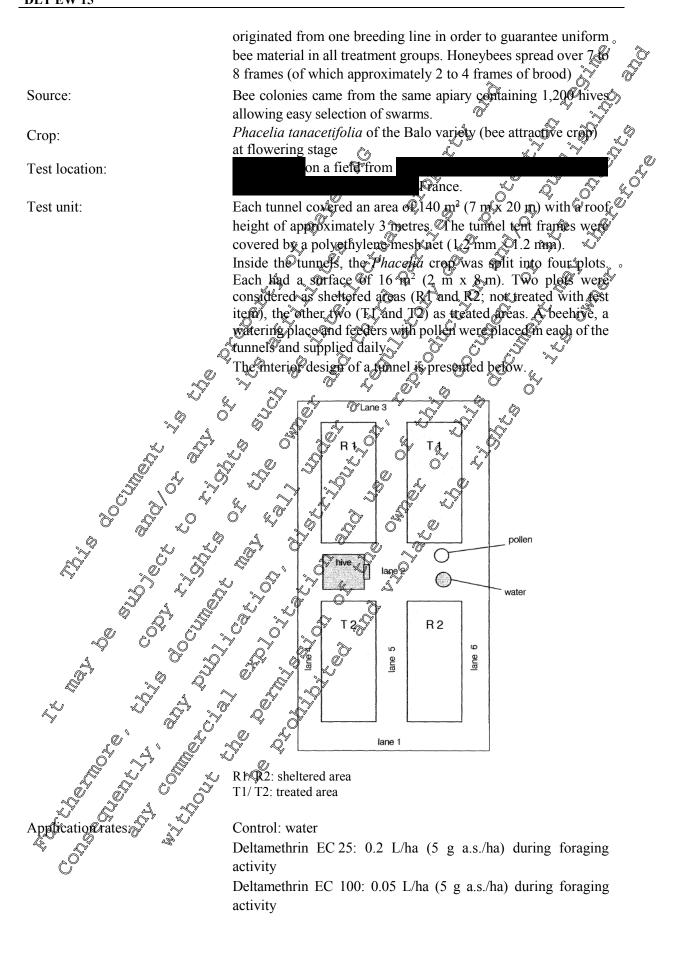
### **Material and Methods:**

Honey bee colonies (ca 17,000 bees per live comparable development brood and food store status, queens of homogeneous maternal origin) were confined in tungels on Phacelia fields with additional pollen sources provided. Five days after infroduction of the bees into the tunnels, application was performed. The test substance was applied at tates of 9.050 L/ha, and 0.075 L/ha, the toxic standard was Zolone Flo (500 g/L phosalone). Furthermore, a water-treated control was set up. Treatment was carried out during flight activit raging activity, behavior, mortality, and colony de

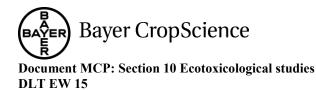
#### **Findings:**

Letter terms Le ging activity was not influenced by the test substance. Mortality was not increased significately by the test ftem; there was a slight and shortof mortality after application, but overall mottality was comparable between treatment konger-losting increase of mortality. Colony





Deltamethrin EC 25 (AE F032640 00 EC03 A1) content of a.s.: Deftamethym EC 100 (AE F032640 00 EC11 A313) content of " S.: delfamethrin (analysed): 10.6 % w/w (100 g a.s./L nominal)

Zolone Flo (500 g a.s./L nominal, analysed content: 499 g a.s/L)


The used hives were of the DADANT 10 frames model, with one queen and approximately 16000 to 18000 bees per hive at test start. The colonies were as homogeneous as possible. The corresponding queens (Italian breed) were one year old and

Page 237 of 518 2017-05-15





Page 238 of 518 **2017-05-15** 



	Deltamethrin EC 100: 0.075 L/ha (7.5 g a.s./ha) during foraging
	activity
	Reference rate (Zolone Flo): 1.20 L/ha (0.5 kg a.s./ha)
	Every treatment comprised of one replicate (i.e. 1 tunnel pero) treatment).
	The spray volume was 300 to 315 L/ha in all treatment groups.
Data sampling:	The data of mortality foraging, condition of the colonies and beg
	behaviour of the test item groups and the reference item group
	were assessed. The data of moreality, foraging activity, breakdown of foraging
Data analysis:	The data of mortality, foraging activity, breakdown of foraging
	on treatment day and colony behaviour in the post-application
	period of the test stem group and the reference item group were
	compared to the control.
	In each tunnel for aging bees in treated and sheltered areas are
	counted separately. Afterwards a mean value is derived.
	All data were charted in diagrams comparing been individuals
	dead and foraging bees, respectively and experimental
A.	duration.
Deviations from the study plan:	Crop plots were damaged by a storm before treatment. The trial
5 140.	was stopped and carried out again on new plots. Previous data
	still available wete not taken into account in study results. No
	other impact on the study.
J. O	
Climatic conditions during the exp	eriment:
The environmental conditions are	shown in the following table.
Table 1: Engronmental conditions	during the experimental period
Prameter	Experimental persod/ Day

Prameter	<i>v</i> 4	$\sim$		4	n	S	2	Expe	rime	ntal p	)ę́rjo(	d/ Day						
rameter	30	31/7	¥/8	258	3/8	<b>4</b> /8	5/8	6/8	ð8	8/8	9/8	10/8	11/8	12/8	13/8	14/8	15/8	16/8
Rainfall [mm]	¹	S.	0	6	de la	1 🦿	×¢	Ž.		Í.	0	3	0	0	0	0	0	0
Min T [°C]	12	<u>9</u> š	Û	18%	»9 /	10	10 %	S.	15	9° ₁₁	11	4	5	7	9	11	11	5
Max T [°C]	31		29	ZO ^Y	22	\$0	285	19	R	20	20	20	23	27	30	33	27	24

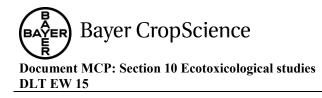
Pesticide history of the field site: Note: Pesticide history of the field site: Only the maintenance of the field site is stated in the study report and is shown in the following table.

#### Table 2: Phacelia crop data

Date	Operation	Characteristics
April	Soil preparation	Herbicide application and harrowing Geedbed preparation and weed destruction
15/06/01	Plot sowing + rolling	Phacelia tanacetifolia
August	Destruction	Crushing the esop on experimental plays

The aim of the study was to evaluate potential side effects of a spray application of Deftamethrin EC25 and Deltamethrin EC 100 on the honeybee, *Apis mellifera* under forced exposure conditions.

This study included five exposure groups with one replicate (tunned) each one tap-water treated control group, three test-item groups (1  $\times$  Deltamethrin EC 25 and 2  $\times$  Deltamethrin EC 100) and one reference item group. In all exposure groups, the group was spraged 5 days after set-up of the hives in the tunnels at full-flowering, during honeybees were actively for aging on the crop under confined conditions. The honeybees remained 11 days in the tunnels


Mortality in each tunnel is recorded on a dail@basis for all areas overed with plastic dilm, from days 4DBT to 6DAT. Moreover, the day on which product applications are carried out (@DBT) additional counts are done at the end of the day (0DAF) in order to establish possible brutal intoxication of foraging bees. The total mortality rate recorded in a tunnel for a given day results from adding up mortality rates observed in each of the six plastic rows in the tunnel.

Foraging was observed daily from 2DBT to 2DAT in all the sheltered (R1 and R2) and treated areas (T1 and T2). It was possible to adapt the time of counting to the environment of the trial and to active foraging periods. Counts could be shifted it activity was not considered satisfying (late activity due to morning mist or distorbed by rainfall...etc.) This parameter was also taken into account for an additional count on D,0, during the bour following product application

Two colony assessments were performed in the beginning and at the end of the experimentation (7DBT and 7DAT), allowing to evaluate colony development taking into account parameters like the adult bee population, the quantity and quality of the brood (different stages observed), amount of reserves and potential construction of new frames on offered wax sheets. These visits are carried out in the tunnels at dates which are as close as possible to the first and late day of confinement. However, for practical or climatic conditions, they necessarily take place within 48 hours before or after introduction of the hives in the tunnels on the one hand, and when the hives are taken out on the other hand.

Assessments of bee behaviour were canted out when products were applied and during 30 minutes following test item application in each of the tunnels. In general, this observation phase continued all over the day. Between county. Bees were especially observed for reactions and behaviour like intense flying, bee cursters, aggressiveness, beginning of intoxication etc. in each of the tunnels.

The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.



The following endpoints were assessed:

- Number of dead bees before as well as after the applications in the control, the two test item groups and the reference item group, respectively
- Number of foraging bees/m² per day on all the areas (T1, T2 and R1, R2) before as well as after the • applications in the control, the two test item groups and the reference item group, respectively
- applications in the control, the two test item groups and the reference item group, respectively
  Behaviour of the bees during assessment in the control, the two test item groups and the reference item group respectively
  Colony Assessment in the beginning and at the end of experimentation
  Dates of Work: 30th July to 16th August 2001
  Findings:
  Honey bee mortality
  A summary of the daily mortality results is shown in the tollowing table
  Table 3: Daily mortality data

Zone Zolone Flo Deltamethrin FC 25	$\frac{00 (7.5^{\circ} g a.s.()ha)}{\sqrt{2}}$	12 × 12 × 100 162 162	5. 5. 9 2 1 ane 2 8	$\begin{array}{c} 4 \\ 14 \\ 3 \\ 3 \\ 10 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	ŠT - <b>7</b> ♥A	K	<b>Pane 6</b> 0 2 21 3 13	total 21 17 49 21 39
Zolone Flo Deltamethrin EC 25 Deltamethrin EC 16 Deltamethrin EC 16 Water control Zone Zolone Flo Deltamethrin EC 25	$\frac{1}{5} \frac{1}{5} \frac{1}$	✓lane       2     60       2     60       3     6       12     4       4     12       4     12       4     12       5     162       5     162	5. 5. 9 2 1 ane 2 8	$\begin{array}{c} 4 \\ 14 \\ 3 \\ 3 \\ 10 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	0 0 2 0 0 8 T - 7 0 A	K	$ \begin{array}{c}                                     $	21 17 49 21
Deltamethrin ECM Water control	5.0  g a.s./ ha 10 (5.0  g a.s./ ha) 10 (7.5  g a.s./ ha) 10 (7.5  g a.s./ ha) 5.0  g a.s./ ha 5.0  g a.s./ ha	12 × 12 × 100 162 162	54 5.5 29 2 1ane 2 8	$\begin{array}{c} 4 \\ 14 \\ 3 \\ 3 \\ 10 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	0 0 2 0 0 8 T - 7 0 A	K	21 3	17 49 21
Deltamethrin ECM Water control	5.0  g a.s./ ha 10 (5.0  g a.s./ ha) 10 (7.5  g a.s./ ha) 10 (7.5  g a.s./ ha) 5.0  g a.s./ ha 5.0  g a.s./ ha	12 × 12 × 100 162 162	5.07 199 299 200 200 200 200 200 200 200 200 2	4 14 3 3 3 10 1ame 3	00 2 00 8 3 7 9 8 7 9 8 7 9 8	$\frac{1}{\sqrt{2}}$	21 3	49 21
Deltamethrin ECM Water control	$\frac{00 (7.5^{\circ} g a.s.()ha)}{\sqrt{2}}$	12 × 12 × 100 162 162	5.07 199 299 200 200 200 200 200 200 200 200 2	lane, 3	ŠT - <b>7</b> ♥A	$\frac{1}{2}$	3	21
Deltamethrin ECM Water control	$\frac{00 (7.5^{\circ} g a.s.()ha)}{\sqrt{2}}$	12 × 12 × 100 162 162	Lane D	lane, 3	ŠT - <b>7</b> ♥A	vg 1		
Water control       zone       Zolone Flo       Deltamethrin FC 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<b>lane b</b>	lane 2 &	lane, 3	ŠT - <b>7</b> ♥A	1	13	39
Zolone Flo Deltamethrin FC 25	$\frac{\sqrt{\sqrt{3}}}{\sqrt{2}}$	<b>lane b</b>	lane 2 &	lane, 3	₿T - <b>7</b> ®A	ugust		
Zone 2 Zolone Flo Deltamethrin FC 25	$\frac{\sqrt{\sqrt{3}}}{\sqrt{2}}$		ane 2/	lane, 3				
Delfamethrin EC 74	5.(4) g a. (2)ha)		<b>S</b> \$		lamě 4	lane 5	lane 6	total
Delfamethrin EC 74	5 <u>x(5.0 g a.s., ha)</u> Ø (5.0% a.s./ ha)	× 63		~Q26	∕√7	11	88	378
Deltamethrin EC N Deltamethrin EC	10 (5.0 % a.s./ ha		°~97	- / 🌾	5	1	13	106
Deltamethrin ECH			V 9 %	12	1	6	25	126
	0 (7.5 g a.s./ha)	<u>لاري</u> 47 م	8	12 Dr 57	4	7	25	100
Water control		0° <u>7</u> 2/	<b>2</b> 4	\$7 	3	3	58	167
Deltamethrin EC M Deltamethrin EC M Deltamethrin EC Water control								

# Document MCP: Section 10 Ecotoxicological studies DLT EW 15

			2DF	<b>BT - 8</b> th A	ugust		
zone	lane 1	lane 2	lane 3	lane 4	lane 5	lane 6	total 🖉
Zolone Flo	88	49	21	4	10	41	213
Deltamethrin EC 25 (5.0 g a.s./ ha)	40	26	13	1	1 🎓		110
Deltamethrin EC 100 (5.0 g a.s./ ha)	41	7	12	1	8 💭	14	~\$3 J
Deltamethrin EC 100 (7.5 g a.s./ ha)	52	8	13	0	00	18	
Water control	58	15	14	3	<u>,</u> ~5	38 (	D 132
				BT - 9 th			<u>`</u>
zone	lane 1	lane 2	Tane 3	lane	lane 5	lane 6	91 133 <b>Ootal</b> 805 202 292 292
Zolone Flo	495	59 L	40	104	9	≪185	2 805 C
Deltamethrin EC 25 (5.0 g a.s./ ha)	137	130	7	Š	_ _ 6 _	$\bigcirc 32$	2000
Deltamethrin EC 100 (5.0 g a.s./ ha)	210	8	17 .	7	2 4 0	46	.292
Deltamethrin EC 100 (7.5 g a.s./ ha)	142	₩7	10	- 4~	4	\$25	× 192 ~
Water control	280 %	19.0	1.5	J.	×10	97	× 430
	0		~~~ »	A .	August (		4
zone	lame 1	⊾lane 2,∝	fane 3	Stong 1	lon	lane 6	aotal (
Zolone Flo	335 ~		520	20		<b>1411€ 0</b> ≪1/36	634
Deltamethrin EC 25 (5.0 g a.s./ ha)	115	150°	~12 ^V	 	×29 ×29 ×22	28	196
Deltamethrin EC 100 (5.0 g a.s./ ha)	293	. Ø	~¶2	@ 19 _ ~	$2^{13}$	120	298
Deltamethrin EC 100 (7.5 g a.s./ ha)	191	×4	$\sqrt[9]{9}$	98	6		×152
Water control	© 204 ¢		125	19	۵Ö	<u>62</u>	≫ 300
	<u>~</u>	<u> </u>			August C		
zone V .	lane 1	Jane 2		Jane 4		lane	total
Zolone Flo	260 _	© 54	57	46	24	<b>1 1 1 1 1 1 1 1 1 1</b>	557
Deltamethrin EC 25 (5.0 g/a.s./ ha)	86,5	84	16	٦	× 3 ~	× 13	167
Deltamethrin EC 100 (5.0 g a. ha)	190	26	s, 25	×24 "	9,0	32	297
Deltamethrin EC 100 7.5 g as./ ha	d 24	. 4 3 5	21 ⁽	$\frac{7210}{120}$	50	19	184
Water control	\$109		<u> </u>	120	7	29	177
				T@11 th	Anioust	2)	177
zone	lane 1	lane 2	Jane 3		lane 5	lane 6	total
Zolone Flo	162	\$ 39 L	1010	10) 10	20	94	447
Deltamethin EC 25 (5.0 g a.s./ hay	113	130	<u> </u>	<u>s</u> i	7	20	294
Deltamethrin EC 100 (50 g as ha)	157	15 - 15 -	~97	×61	6	46	382
Deltamethrin EC 100 (7.5 gas) ha)	132	<u></u>	×95 %	47	2	26	324
Water control $\sqrt{2}$	047 🐇	V 10 %		12	11	19	120
		<u> </u>		T - 12 th		17	120
zone	lane/1	lane 2	Jane 3	lane 4	lane 5	lane 6	total
Zolone Flo	$\sim 244$	81 ×	230	104	33	185	877
Deltamethrin EC 25 (5.0 ga.s./ ha)	Q 61			73	7	22	249
Deltamethrin EC 100 (5 0 g a.s.) ha)	135	. 34	140	79	15	67	467
		22	135	47	13	33	329
Deltamethrin FC 100%75 g a st ha)	80	. OLL		• •			
Deltamethrin EC 100%75 g a st ha)	<b>80</b> 0,75			39	8	46	300
Deltamentrin EC 100 (7.5 g a.s. ha) Water control	@75	×022 >>14	118	39 T <b>13</b> th	8 August	46	300
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control	©15 8	¥14	118 <b>3D</b> A	T - 13 th	August		
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control	075 lapę 1	14 lane 2	118 3DA lane 3	T - 13 th /	August lane 5	lane 6	total
Deltamethrin EC 100 (7.5 g a.s. ha) Water control	075 lap¢1 184	<b>lane 2</b> 78	118 <b>3DA</b> lane 3 150	<b>T - 13th</b> <b>lane 4</b> 47	August lane 5 13	<b>lane 6</b> 135	total 607
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control	<b>apé 1</b> 184 30	14 <b>lane 2</b> 78 7	118 <b>3DA</b> lane 3 150 31	<b>T - 13</b> th <i>A</i> <b>lane 4</b> 47 27	August lane 5 13 7	<b>lane 6</b> 135 12	<b>total</b> 607 114
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control	<b>apç 1</b> 184 30 100	14 14 18 78 7 17	118 <b>3DA</b> <b>lane 3</b> 150 31 77	<b>T - 13</b> th <i>A</i> <b>lane 4</b> 47 27 47	August lane 5 13 7 10	<b>lane 6</b> 135 12 20	<b>total</b> 607 114 271
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (5.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha)	275 <b>lang 1</b> 184 30 100 61	<b>lane 2</b> 78 7 17 5	118 <b>3DA</b> <b>lane 3</b> 150 31 77 49	<b>T - 13th</b> <b>lane 4</b> 47 27 47 32	August lane 5 13 7 10 5	<b>lane 6</b> 135 12 20 17	<b>total</b> 607 114 271 169
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zone Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (5.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha)	<b>apç 1</b> 184 30 100	14 14 18 78 7 17	118 <b>3DA</b> <b>lane 3</b> 150 31 77 49 67	<b>T - 13</b> th / <b>lane 4</b> 47 27 47 32 25	August lane 5 13 7 10 5 5	<b>lane 6</b> 135 12 20	<b>total</b> 607 114 271
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha)	275 <b>lapy 1</b> 184 30 100 61 57	<b>lane 2</b> 78 7 17 5 8	118 3DA 1ane 3 150 31 77 49 67 49	<b>T - 13th</b> <b>lane 4</b> 47 27 47 32 25 <b>T - 14th</b>	August lane 5 13 7 10 5 5 August	<b>lane 6</b> 135 12 20 17 41	total 607 114 271 169 203
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (3.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zone	275 <b>lang 1</b> 184 30 100 61 57 <b>lane 1</b>	<b>lane 2</b> 78 7 17 5 8 <b>lane 2</b>	118 3DA 1ane 3 150 31 77 49 67 40 40 A Iane 3	<b>T - 13th</b> <b>Iane 4</b> 47 27 47 32 25 <b>T - 14th</b> <b>Iane 4</b>	August lane 5 13 7 10 5 5 4ugust lane 5	lane 6 135 12 20 17 41 lane 6	total 607 114 271 169 203 total
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo	275 <b>lape 1</b> 184 30 100 61 57 <b>lane 1</b> lane 1	✓ 14 Iane 2 78 7 17 5 8 Iane 2 63	118 <b>3DA</b> <b>1ane 3</b> 150 31 77 49 67 <b>4DA</b> <b>1ane 3</b> 121	<b>T - 13th</b> <b>lane 4</b> 47 27 47 32 25 <b>T - 14th</b> <b>lane 4</b> 55	August lane 5 13 7 10 5 5 August lane 5 8	lane 6 135 12 20 17 41 <b>lane 6</b> 113	total           607           114           271           169           203           total           527
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha)	275 <b>lanc 1</b> 184 30 100 61 57 <b>lane 1</b> lane 1 167	<b>lane 2</b> 78 7 17 5 8 <b>lane 2</b> 63 11	118 <b>3DA</b> <b>Iane 3</b> 150 31 77 49 67 <b>4DA</b> <b>Iane 3</b> 121 17	<b>T - 13th</b> <b>lane 4</b> 47 27 47 32 25 <b>T - 14th</b> <b>lane 4</b> 55 30	August lane 5 13 7 10 5 5 August lane 5 8 2	<b>lane 6</b> 135 12 20 17 41 <b>lane 6</b> 113 9	total           607           114           271           169           203           total           527           102
Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo Deltamethrin EC 25 (5.0 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Deltamethrin EC 100 (7.5 g a.s./ ha) Water control Zolone Flo	275 <b>lape 1</b> 184 30 100 61 57 <b>lane 1</b> lane 1	✓ 14 Iane 2 78 7 17 5 8 Iane 2 63	118 <b>3DA</b> <b>1ane 3</b> 150 31 77 49 67 <b>4DA</b> <b>1ane 3</b> 121	<b>T - 13th</b> <b>lane 4</b> 47 27 47 32 25 <b>T - 14th</b> <b>lane 4</b> 55	August lane 5 13 7 10 5 5 August lane 5 8	lane 6 135 12 20 17 41 <b>lane 6</b> 113	total           607           114           271           169           203           total           527



DLT EW 15

Water control	71	14	61	51	7	45	264	
			5DA	T – 15 th A	August		<u> </u>	ð
zone	lane 1	lane 2	lane 3	lane 4	lane 5	lane 6	tota	S
Zolone Flo	145	76	159	61	16 🞓	» 89	546	J.
Deltamethrin EC 25 (5.0 g a.s./ ha)	47	8	41	32	4 🖉	12	144	
Deltamethrin EC 100 (5.0 g a.s./ ha)	125	22	71	44	70	40	309	
Deltamethrin EC 100 (7.5 g a.s./ ha)	82	17	70	18	4	38 (	229	ÌQ
Water control	77	11	<u>82</u>	24 🗳	3	72	269	
			💎 6DA	T – 16 🖤	Åugust	Õ	200 200 200 200 200 200 200 200	¢.
zone	lane 1	lane 2	lane 3	lane¥	lane 5	Jane 6	Stotal	Ő,
Zolone Flo	215	62	30	40	18	© 96 ´	¥ 46,Q*	¥
Deltamethrin EC 25 (5.0 g a.s./ ha)	77	to,	10	~22 (	° 17	20	156	
Deltamethrin EC 100 (5.0 g a.s./ ha)	155	<b>∕</b> ©ĭ8	22 🧖	∕ 24_	13 👻	_ ۶۲	280	
Deltamethrin EC 100 (7.5 g a.s./ ha)	122 🌾	, 9 Ø	240	æ í		<u></u> 56	≫ 243≪J	
Water control	1650°	<u>9</u>	N.	<b>4</b> 5	05	¢ 98	3,15	
DBT: days before treatment	1	. ~ .	Ø '	Ç,		0 [%]		
DAT: days after treatment	\$ ⁰ ~		× ~	À	, Ô ^y	«		
Water control         Water control         DBT: days before treatment         DAT: days after treatment         A figure of the total mortality is display	ed in the	," figure t	ekow.	NON NO				
A.	101	"	$\sim$ $\sim$	1	`~	se la compañía de la comp	14	

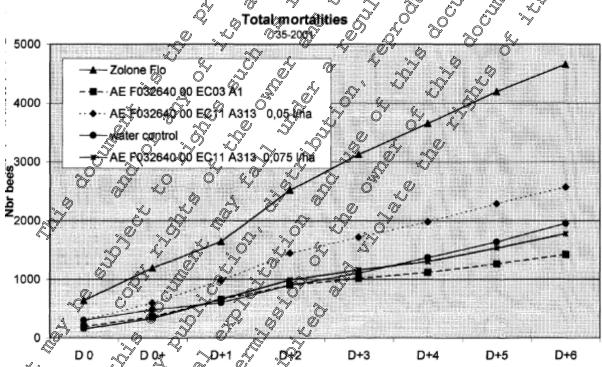
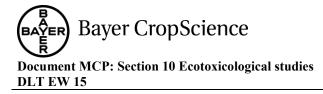



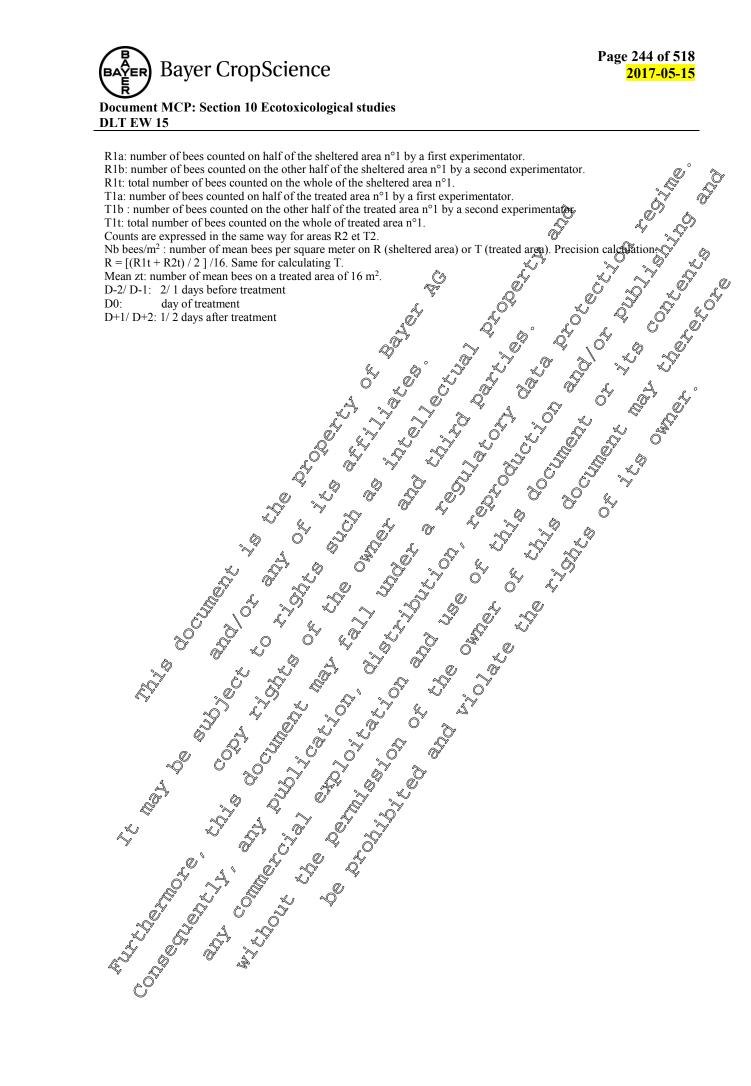

Figure 1: Total mortalities during study period for the reference group, Deltamethrin EC 25 (AE F032640 00 EC03 A1) at 0.2 L/ha (5 g a.s./ha) Deltamethrin EC 100 (AE F032640 00 EC11 A313) at 0.05 L/ha (5 g a.s./ha) and at 0.075 L/ha (7.5g a.s./ha) as well as for water control group

D0: 0 days before treatment D0+: 0 days after treatment D+1 to D4: 1 100 days after treatment

The day after the treatment, the test items Deltamethrin EC 25 and Deltamethrin EC 100 at two different rates another reference item (Zolone Flo) showed an increasing mortality whereas the water control tunnel showed a regular evolution. In the control tunnel (treated with water) the colony was not disturbed by the treatment. Mortality rates recorded vary very few along the week.



At 1DAT the three test items and the reference item (Zolone Flo) induced the same peak of mortality. The peak in Zolone Flo seemed to be higher but the mortality rate in this tunnel was even higher before treatment. Deltamethrin EC 25 and Deltamethrin EC 100 formulations showed a peak at 1DAT but this phenomenon was very brief. From D+2 the mortality rates recorded in these turnels literally drops. At 3DAT the level was comparable with the one from the pre-treatment phase and remained very low until the end of the test.


The total mortalities trends in the tunnel treated with Deltamethrin EC 25 and with Deltamethrin EC 100 at 0.05 L/ha was higher than the three precedent tunnels but much lower than the mortality rate in the Zolone Flo tunnel.

#### Honey bee flight intensity

A summary of the daily foraging activity and breaking down of foraging on treatment day results are shown in the following tables.

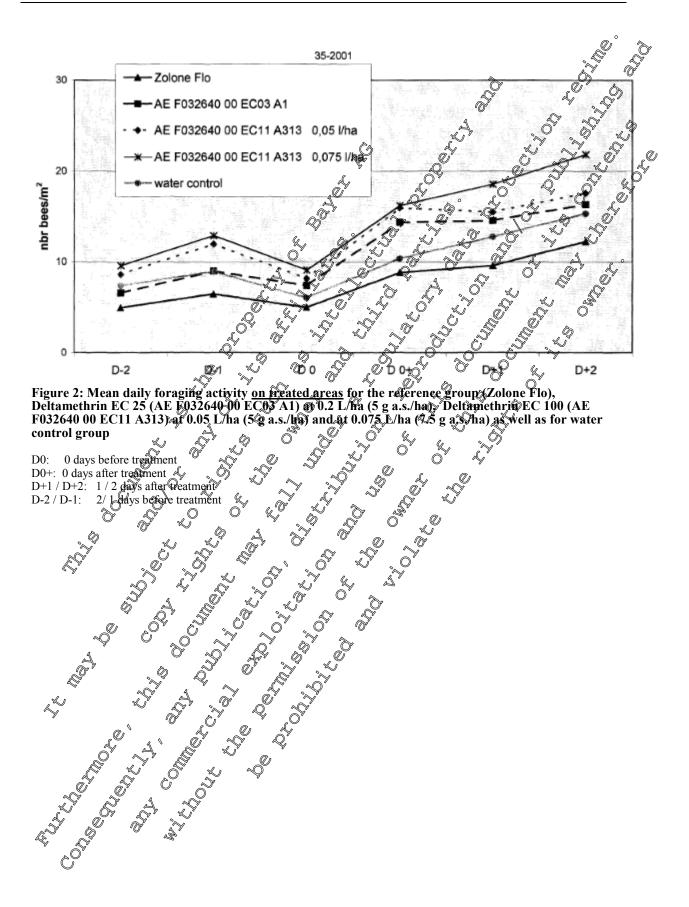
			V ~(V			(//)
Table 4: Foraging data:	Dolto moth win FC	` <b>^%</b> //AT.T%	2767630 6	(CVM) A 1) Set (	) <b>7</b> L 36	(5 🔊 c /haða
Table 4: Foraging uata:	Denamenii M EC		132040/00 E	a uo Aij≈ai u	J.Z Phila	( J & X.S./ II X/)
						<b></b>

			<u> </u>	"((	-	1		-	S		_O'	Ô		y r	Uĩ –
AE F032640 00 EC		_	V			mbr t		(	6	2		<u></u>	lculated	data	/
day		Rta	R1b	R2a		T1a	Tib			Q	mean	zRn	nean zT	R∦,m²	T/n
August 8th 01	14H30		<mark>45</mark> (	25	36	42	37	38	57		\$88		87	5,5	5,4
D-2	16H00	102	68	31	51	Ø <b>4</b> 8	57	67	74		126	°/	[*] 123 🖏	7,9	7,7
	° N	A		Q	A A	J.	Ő.	<u></u>	×	Ŕ		J.	105		6,6
%	j d	$\bigcirc $	ÇÕ,		Õ		Ø 7	$\sim 0'$	<u> </u>	\$	a	<	$\tilde{\boldsymbol{\rho}}$		
August 9 th 015 D-1	11H00		73	48	, 19	A	43	62	53		98	Å	¥	6,1	6,4
D-1	1200	<b>97</b> Ô	76	~ <b>\$</b>	54	46	ZP	76	<b>Ø</b> 8	4	138		136	8,6	8,
	14H30	117	102	65	85	94 ू	84	79	130	ŵ	185	Ņ	194	11,5	12,
<u> </u>			No No	( n	0	<b>94</b>	1 .	2	Ś	N V	s		144		9,0
August 10 th 01			0		1	I A A A A A A A A A A A A A A A A A A A	-C	» 0'			<u> </u>				
August 10th 01	11H30	80		<b>4</b> 0		78	50	62 47	62	9	109		129	6,8	8,
	13H30	70	71	⁹ 39	40		⊳53	40		M	110		108	6,9	6,
Қ ^у D0 👡		/			>	$\sim 0$		<u></u>		)			118		7,4
AQ I	125400	119		<b>. 69</b> °		88	63		<b>≈67</b>		184		133	11,5	8,
	16H00	146	138	89	89			11	143		231		261	14,4	16
	17H00	148	140	99	108	182	124	136	150		248		296	15,5	18
	· O	` ۵	°∼γ	$\sim$	)	۶¢		0				L	230		14
	<u> </u>	$\sim$	1	R'			ð								
August 11 th 01	10H30	<b>.98</b>	112	89	70	<mark>  91</mark> ⊮	127	124			185		209	11,5	13
🖧 D+1 🗞	11H30		109	103	€79	95>		137	and the second se		195	-	224	12,2	14
	13H00	129	125	118	84	114	150	158	111		228		267	14,3	16
ě	ô	Š	-	Q,	Ŷ	Ý						L	233		14
		ç	Ø		Ň					,					
August 12th 01	10H30	138	TZS		93	126		120	_		218	_	231	13,6	14
<b>D+2</b> Y	11/130	155	106	103	125	128	117	133	148		245		263	15,3	16
S S	11,930 12H30	164	157	113	129	172	118	140	151	J	282		291	17,6	18
		) (										L	261		16,
August 12 th 01															
	[°]														
-Q ⁴	L'														
ŝ															



AE F032640 00 EC11 A313 0,05				raw	data /	nbr t	bees			11 A313) at 0.05 L/ha (5 g a.s./hat calculated data mean zR mean zT R / m ² T / m ² 101 115 6,3 7,2					
day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b		mean zR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	$T/m^2$	
August 8 th 01	14H30		57	41	23	65	42	72	51		101	115		7,2	\$ B
D-2	16H00		78	58	40	96	56	91	79		132	161	8,2	10,1	
h								- T			Ø	138	õ	8.6	, Ô
								×			_~~	4	Ø	Ň	Å, Č
August 9th 01	11H00		60	43	62	65	83	88	85		√⁄ 109	1610	-	<b>₽10,0</b>	
D-1	12H00		72	55	60		-90	105	81		≶ 129 ₀ °	1731	8,0	11,1 ^C	4
	14H30	123	92	76	64	120	105		125	8	.178	238	19,1	1408	
					Ś	4	<i>D</i>	)°	S		st i		P° °	12,0	«С ^у
1	44120	74	50	40	C	)	48			Â					
August 10 th 01	11H30 13H30		56 61	43 52	39 22	81 79		82, 61	46	Ŷ	105 _97	129 1733	6,6 6,0	8,0	
D0	13130	50	01	52%	-			$\overline{\nabla}$	55			→ 131 C	h	<u>8,3</u> √8,2	S.
	15H00	96	106			122	80		90	1		190	97	11,8	5
	16H00				62	146	100		149	Ø	185	260	19,6	16,2	
	17H00			121	64			470	4 78	7	007	317		19,8	
		()		J.	ſ,	d D	Å	ý (	$\hat{n}$		5 Z	2550	\$	15,9	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°/	$\mathbb{Y}$			<i>®</i>	Ļ	, ,	Ô		0,	Ő		
August 11 th 01	10H30		107	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	005	97		158	133	¥	183 183 175	2ِ59	11,4	16,2	
D+1	11, H30		@05	75		89			×			214 🗶	ý 10,9	13,3	
	13H00	100		86	116	104	107	141		ų,	206 🔨	272	12,8	17,0	
Å	y i	8 B	, L	Q	Ũ	Ĺ	Ç,	1	(0		248		15,5	
August 12th &	101130			120	78	127	85	147	1 2		,203	7, 251	12,7	15,7	1
August 12 tos D+2	11H30					A	98			Q	203	279	14,2	17,4	
	12H30	, v	97	149			127	173		Ş		315	15,0	19,7	
						Ô		\sim	0	2)		281		17,6	
number of bees con	% 1	×	Q Î	A	Ĩ		Ő	P'	Ŵ	~	~ '				•
p a la l	Õ	S	<i>K</i>		~	C	Ş	ŝ	ý	\hat{o}	1				
number of bees con	nted of	alf o	f the	shelte	fed a	rea _n	1 by	a first	expe	yin	nentator.				
number of bees Qu total number of bees	ntea øp	the of	nerna	airo≸	ane si	neuter	ed ar	syarn⁻i	by a	sec	cond exper	imentator	•		
number of bees cou	nted on l	ıa€õ	f the a	meate	d area	n°1	bry⊳a t	first @	perin	ner	ntator.				
: number of bees co	Dited on	the o	therOa	alf of	føðnje t	reat	Ĵarea	ոԾե	ý a s	eco	nd experir	nentator			
total number of bee	counter	f on t	hể wh	ole ô	f∕treat	ed an	ea n	5							
nts are expressed in t ees/mg/number of i	nean be	way es aôm	soual	eap w	ter a	γ? i R (s	héltei	red are	ea) or	T (treated are	ea). Precis	ion cal	culation	:
(R4C+R2t) / 2] /16	Same f	oRca	lculat	ing T	. P	0	Y		,		(
n zt: number of mean	a bees or	a tre	eated a	area	ĵ∳⁄161	m ²	V								
D-1: 2/1 days beto	ore treat	nent _e	Ý	Ą	, a	S.									
D+2: 1/2 days afte	r treatme	ent/		U	Ś	J									
A 1		Ų ?	S	, 	Ş										
E D		~	n	~0	1										
	Ô	Š	Į,	¥											
	1	۵ گ													
	1														
		, and the second s													
		, e													
ees/m2 number of r (R1C+ R2t) / 2] /16 yzt: number of mean P-1: 2/ 1 days bend day of treatm / D+2: 1/ 2 days after y		, e													

AE F032640 00 EC11 A313 0,075 raw data / nbr bees calculated data l/ha day mean zR mean zT R / m² T / m² time R1a R1b R2a R2b T1a T1b T2a T2b August 8th 01 14H30 70 50 91 63 51 60 100 76 144 8,6 9,0 137 163 10,2 16H00 70 47 100 82 65 60 113 88 150 D-2 9,3 867 153 L August 9th 01 9,2 / 11H00 56 74 83 93 67 45 86 97 153 148 9,6 12H00 87 76 108 66 92 131 122 175 206 10,9 12,8 D-1 78 232 16,6 14H30 121 123 114 106 100 120 154 158 266 14,5 206 12,9 Q Ŵ L 49 66 August 10th 01 11H30 76 65 39 37 49 109 **7:0** 59 1/2 6.8 11,2 71 91 175 4/80 73 87 0,9 13H30 77 76 125 108 146 D 0 9,1 15H00 106 133 148 124 107 010 15,1 130 135 256 24 16,0 16H00 121 124 160 133 185 115 149 174 287 269 16,8 17,9 17H00 103 126 11 91 89 91 170 152 217 251 13,6 15,7 260 /16,2 Ĺ, Ŧ Ø 280 10H30 92 94 131 142 129 110 155 170 (4,3 August 11th 01 278 17,3 251 11H30 1160/111 133 141 135 112 189 168 0297 15,7 18,6 D+1 2 308 0 13H00 167 110 151 188 148 152 154 178 316 19,30 19,8 Ø 297 18,6 Ô Ś Ø Ô \bigcirc \bigtriangledown K j 10H30 148 133 184 157 545 160 220 486 11H30 31 112 174 177 134 47 193 162 August 12th 01 356 311 19,4 22,2 2 12H30 134 159 186 59 178 163 213 194 D+2 297🖗 318 18,6 19,9 31 374 19,8 23,4 Ś Ç, **Ø**49 21,8 Ó R1a: number of bees counted explain of the sheltered are and 1 by phrst experimentator. R1a: number of bees counted on the other half of the sheltered area n°1 by a second experimentator. R1t: total mimber of bees counted on the whole of the sheltered area n°1. T1a: number of bees counted on half of the treated area n°1 by a first experimentator. T1b: number of bees counted on half of the treated area n°1 by a first experimentator.


Table 6: Foraging data: Deltamethrin EC 100 (AE F032640 00 EC11 A313) at 0.075 L/ha (7.5 g a.s./ha)

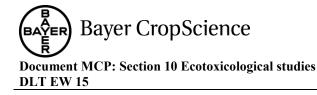


Table 7: Foraging data: Reference item (Zolone Flo)

Tab	le 7: Foraging da	ta: Ref	eren	ce ite	em (Z	Color	ne Flo	0)								@. ^
	Zolone Flo				raw o	lata /	nbr t	bees			1		calculated	data		
1	day	time	R1a	R1b	R2a	R2b	T1a	T1b	T2a	T2b	1	mean zR	mean zT	R/m²	T / m²	Ry Or
	August 8 th 01	14H30	46	25	25	42	36	34	38	32	1	69	70	4,3	4,4 5,5	1 _O
[D-2	16H00	54	43	26	50	54	35	57	30		87	788	5,4	5,5	
											-		<u>4</u> 79		94,9	
ſ		11100	22	26	20	47	44	44		20	1	67	74	°∕~∕ I a‰a	474× 32,9	í S
	August 9 th 01 D-1	11H00 12H00		26 29	38 38	17 52	44 48	41 40	254	30 46		575 ×	71 94	3,6 Ø5,2		
l	D-1	14H30		66	50	52 84	40 81	40 65	/69	40 76		137	146		Q,9,1	
		141100	15		50	04		1	03	10] d		104		6,5	°, °
							QD	ò, x		~	\searrow	<u> </u>	~Q"	, or	© 14,7	, O
	August 10 th 01	11H30		31	31	37	46	26	39	400	ŗ	65	<i>•</i> 76 ′	4,1 。	4,7	S ^r
		13H30	44	45	39	51	49	38	38	43		ر ب 90	> 84 \S	5,6	5,3	
l	D0					4	6)	,Q	0° °	80	^A	5,0	
		15H00		65	48	84	75		~55	60	ľ	127	024	7,9	<i>1</i> ,8	
		16H00		79		_		78		9 P		473	175	10,8	10,9	L. V
		17H00	59	41	6 4	44	76	45	75	\$3		104		6,5	7,8	V
				Å	J	°		1	<i>"</i> "	>>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ž				80	J
[August 11 th 01	10H30	56	66	63	41	\$ 1	56				×113 ?	122	7,1	7,6]
[D+1	11H30		60	~	63	83	78	75		Ő	144	156	9,0∀]
		13H00	69	78	90	61	88 (,100	77	101	Ş	152	\$\$ 3	9,5	11,4	
		\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	0´	Ô)°	S ^a	Å		<i>C</i> ¹			154		9,6	J
ſ	August 12 th 01	10H30		69	273	89	81	67	84	79		155	158	9,7	9,7	1
	D+2	11H30	92	80	87	794	108	90	*14	113	0	177	213	11,0	13,3	1
		12H\$0	80	977	95	83	129	82	127	104		168	o, 220	10,5	13,7	1
	õ		- A	¥ (,	\sim	,Y	Ň	~)* ²		Ø "S	196		12,2	
	number of bees cou		0	Ô	¥ (, O		Ĵ	ð	4	S	, ~ 				
R1a.	number of bees cou	/ 🔣	/ half (Dthe	shelte	ered á	a n	°1 b∅	S a firs	t evne) >rin	nentator				
R1b:	number of bees cou	inted on	theo	ther h	all of	the s	helter	ed ar	ea n	by a	ι sθ	cond expe	rimentator			
R1t:	total number of bee	mounte	drown t	the wi	role o	f_the	shelte	ned a	rea≰n∕	⁸ 1	0	-				
Tla:	number of bees cou	inted on	balf c	of the	treate	d are	a n¶∕	by a	first e	xperí	me	ntator.				
T1t T1t	total number of bees	unieu on	d on	he wi	າສາະວາ າສໄ <i>ສ</i> ດ	f trea	ted ar	l area	1 1	by a s	ecc	ond experi	mentator			
Cour	its are expressed in	thesame	way	for a	as R	2°et/	Г2.	S	Ś	×,						
Nb b	ees/m ² : number of	mean be	ês pe	r squa	ire me	eter of	n R (s	helte	red ar	ea) oi	r T	(treated an	rea). Precis	sion cal	culatior	1:
R = [(R1t + R2t) / 2] / R	5. Same	for ca	fleyilat	ting		Ê.)r							
D-2/	$D-1 \frac{1}{2} \frac{1}{2} 1 \text{ days bef}$	n bees o	n a n meni	eated	anga c		¥0, ∕ 、	K,								
D0:	day of treat	iont	Ş	▲.	•	S	~	\sim								
D+1.	D+2: 1/2 days afte	r treatm	ent	6	Ő	5	°N	/								
\sim	/	Ĩ	Ĉ	Ň	Ą	.(S ^v									
	<u></u>	<u>,</u>	Ś	, 	Ŵ	Å										
		A &	Ø	Ň	, A	~~										
	E J		, A		~0	Ŋ										
	Ő ÍS	õ	S	~	У											
	19 D 1	s ~	$\overset{\mathrm{O}}{\sim}$													
	ç or ş		Ĭ													
Br.	r go lo	N. N														
¥	number of bees so total number of bees its are expressed in ees/m ² : number of (R1t + R2c) / 2] / ft n zt: number of mea D-1/02/ 1 days bef day of treating D+2: 1/ 2 days after the day of treating															
	\bigcirc															

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

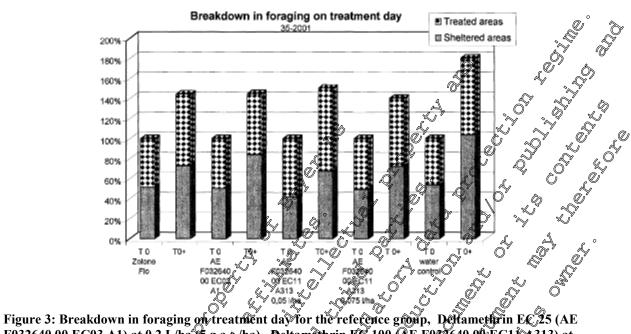
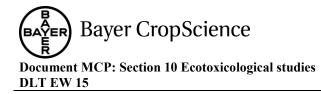


Figure 3: Breakdown in foraging on treatment day for the reference group, Deltamethrin EC 25 (AE F032640 00 EC03 A1) at 0.2 L/ha (5 g a.s./ha), Deltamethrin EC 100 (AE F032640 00 EC11 A313) at 0.05 L/ha (5 g a.s./ha) and at 0.075 L/ha (7.5 g a.s./ha) as well as for water control group in treated and untroated areas

untreated areas

T0: before product application T0+: after product application \bigcirc

Foraging activity increased strongly after treatment for all tunnets. This evolution is similar for the 5 tunnels despite of the treatment phase.


All the tunnels showed an increasing foraging activity on sheltered and treated areas, this explained levels over 100%. For ging activity increased as elimatic conditions were better in the afternoon. So there was not any repulsive effect for any test item. There was no significant difference between the five tunnely.

Colony assessment

There were some difference concerning the structure of the colonies between the two visits. This state of the reserves and proportions of the brood remained stable for colonies in the test item Deltamethrin EC 25 tunnel and water control tunnel. On the contrary, colonies from both test item Deltamethrin EC 100 tunnels as well as standard tunnel presented less tood and more storage at the end of the experimental phase Despite of recorded portalities during triat populations remained quite stable in all tunnels between the two apiarist visits. Deaths of bees were compensated by the emergence of new bees on the brood frames, which explained the stability of bee populations.

Behavioor of the bees

Bee colonic had momentary stress following introduction in the tunnels. Older foragers continually hurt themselves on the net looking to get away from the hive on a stationary or circular flight at a few meters high in order to locate themselves in the space. The volume of a tunnel represented sufficient flight space but it was nevertheless confined and colonies adapted to these experimental conditions after the first recordings.

During spraying, foraging bees flew away over treated plots when the boom passed and came down again a little further away. No aggressiveness or any frenetic bumbling was noted. However, in the three tunnels with the test items a few clinical signs occurred in the hour following product application. This signs were observed in the afternoon but not the next following days.

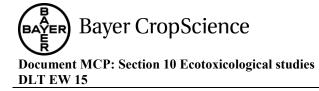
In the standard tunnel, a characteristic Zolone smell appeared after treatment and remained for several hours. A few intoxication signs appeared and were more frequent by the end of the day wither on next, days (1DAT to 3DAT).

Activity at the hive entrance was normal in all tunnels. No bee clutters were observed on the net or at the hive entrance and no fleeing events were observed in any of the tunnels.

Clinical intoxication symptoms: In Deltamethrin C 25, Deltamethrin C 100 and Zolone, fo tunbels, some bees were falling down on the ground after treatment and showed typical intoxication signs. Bees walked in a difficult way alternating periods of sluggishness and frenzy. Such a bee rolled over iself and appeared too heavy when trying to lift off its fore legs then its find legs and abdomen appeared to be paralysed. The bee died in arrange from a few minutes to a few hours of the second second

Conclusion:

Overall conditions for conducting this experimental phase of the septeme were favourable to bee activity. Climatic and crop conditions were satisfactory. The different observed parameters agree with the obtained data.


During the treatment phase, Dettametarin EC25, Dett

Experimental conditions of the study were quite strive, including confinement and product application carried out during intervse foraging activity, on very attractive plots. Only the use of Zolone Flo induced a high mortality. The effect of the test items Deltamethrin EC 25 and Deltamethrin EC 100 in the case of this trial on a phacelia ctop only showed a temporary increase in mortality yielding comparable total mortality rates to those ecorded in the control tunne.

U. S	
Report:	KCP 00.3.1,5/09, ; 2000
Title:	Toxicity to Honeybee Apts mellifera L. (semi-field test) following the EPPO
l l	Guideline No. 470 (1992), Codes: AE F032640 00 EC03 B003 / AE F032640
A.	×00 EG@ A107 ~~~~
Document No:	<u>M-197723-01-1</u> (Rep. No.9991018103)
Guidelines:	EPRO 176 Q
GLP:	

Material and Methods: 0

In three replicates, each time with a duration of 7 days, the toxicity of the test substances AE F032640 00 FC03 B003 (=FC 25) and AE F032640 00 EG06 A107 (=EG 06) to the honeybee *Apis mellifera* L.was examined in a semi-field test. The test substances were applied at the following doses: EC 25: 12.5 g a.s./ha = 0.5 L product/ha in 300 L/ha of water and EG 06: 12.5 g a.s./ha = 0.2 kg product/ha in 300 L/ha of water. The influence of the EC 25 and the EG 06 was evaluated by comparing the effect

ndard variant of the two substance variants to the effect of the control variant and the toxic standard variant regarding the following observations:

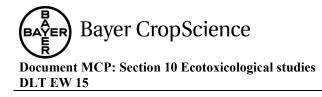
- Mortality at the edge of the treated area and in the bee traps
- Foraging activity (number of forager bees/m² flowering *Phacelia* crop)
- Behaviour of the bees on the crop and around the hive
- Development of the bee brood

Findings

Effect on honey bee mortality and foraging activity

For the control variant the average number of bees in the dead bee trapend around the flowering Phacelia showed no significantly increased mortality observed on day 0 (application), day 1, 2 and 7 compared to day -1 (before application). For the EC 25 treated variant, statistically significant more dead bees were found on day 0 (after application) when compared to day 1 (before application). The mortality on the assessment days 1, 2 and 7 compared to day Owas increased but not statistically S significant. The EG 06 treated variant showed statistically significant more dead bees found on day 0 (after application) when compared to day _[(before application). The prortality on the assessment days 1, 2 and 7 compared to day 0@howed an increase which was not statistically significant. No significant differences concerning flight activity were observed for all variants bour before application (average number of bee/m² between 15.3 and 18.6). Por the control varian ho significant decrease in flight activity was observed for all aggessment days after application. The flight activity of the treated variants was compared directly to control because the flight activity incall treated variants was higher than 100 % when compared to control of fore application (on day 0) For the EC 25 treated variant the flight activity was significant decreased on assessment day 0 immediately after application. The flight activity was decreased to a 35.7 % level compared to control be flight activity. Starting with assessment day 14be flight activity increased again slowly from a 45% % up to a 93.9 % flight activity-level compared to control during the days 3-7. Bees with acute toxic reactions were found on the crop and on the entrance of the bee live shortly after application. The most affected bees were found on the ground showing wathy with discoord mated hove being on their back. On assessment days 1-7 no behay foural anomaties of the bees were observed compared to control. The EG 06 treated variant showed statistically significant decreased flight activity of a 37.8 %-level compared to control on assessment day 00mmediately after application. From assessment day 1 the flight activity increased agait slowl from 54.4 % up toa 89.3% lever compared to control during the days 3-7. On the crop and at the entrance of the hige beer with gente toxic reactions were found only shortly after application. The affected bees wore found on the ground and at the hive entrance with discoordinated movements lying on their back or drowing apathy. On assessment days 1-7 no behavioural anomaties of the bees were observed compared to control.

Effects on honey bee brood development:


The bee brood was assessed before application and on day 7 after application. Based on these assessments the percent area occupied by eggs, larvae, sealed cells, honey, pollen and empty cells was determined comparing day 7 after application with the pre-treatment level. The brood development of the trasted variants was compared directly to control. For the control variant the following brood development compared to the pre-treatment level was assessed after test termination on day 7 after application: 82% eggs and 87% sealed cells. The number of larvae compared with the pre-treatment level was 5.6% and unexpected low. The queen bee of each replicate was available and external healthy on assessment day 7 after application. For the EC 25 treated variant the following bee brood development compared to the pre-treatment level was assessed after test termination on day 7 after

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

application: 180% eggs, 17% larvae and 123% sealed cells. Based on these assessments no significant inhibition of brood development was observed. The EG 06 treated variant showed the following brood development compared to the pre-treatment level after test termination on day 7 after application \$33% eggs, 14% larvae and 150% sealed cells. The occupied egg area was with 53% compared to treatment level significant lower as observed in the control. Compared to control, no in bee brood development including larvae and sealed cells was observed.

Material and Methods:

Deltamethrin Test material Delthamethrin EC 25 G (RE F032640,00 EC08 B003), content of Test item: a.s.: 2.76% w/@ (25 g/a.s./L nominal; density: 0.893 g/cm³) Delthamethra EG 625 (ARF032640 00 EG06 D107) content of a.s. 6.14 % w/w 6.25 % nominat Delthamethrin AC 25: 7CD1 Batch number: Delthamethrin EG 6.25: 8FPS0 nominal Canalysed content: Dimethoate EC 400 (400 Reference item: a*∝3*95.7 g′a.s./L∂ Test organism: Apismellifera carnica L. Per test onit a bee hive of a Nuckers cohony with 3 combs, Data sampling: Data sampling: Data analysis: Data analysis: Data view of the formula to the form approximately 5000 bees, the queen and al stages of brood. Tents with \hat{a} size $\hat{a}^2 3.5 \hat{b}^2 4.5$ m × 2 m covered with a special Treatment rate (Delthamethrin EC 25): 12.5 g a.s./ha during Reference rate (Dimethoate EC 400): 1 L/ha (400 g a.s./ha) Every treatment comprised of three replicates (i.e. 3 tunnel per treatment). The spray volume was 300 L/ha in all treatment Data for mortality, foraging activity (flight intensity), behaviour of the bees and bee brood (incl. conditioning of queen) were And data were charted in diagrams comparing bee individuals (dead and foraging bees, respectively) and experimental

Climatic conditions during the experiment:

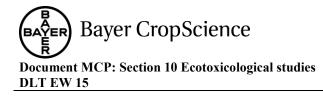
The experiment was conducted under climatic conditions that favoured intensive foraging activity. The environmental conditions are shown in the following table.

Table 1: Weather conditions	during the exposure period
-----------------------------	----------------------------

			CA	d a	×	, <u> </u>	ACY .
Data	Air tempe	rature (°C)	Rainfa	ll (mps)	Rel. air 🏟	ımidûy (%)	
Date	min	max	🐥 min	max	min	2 max	koʻ
beehive placed in the field cage (replicates 1 + 2)					Ś, Ś		
25.08 29.09.99	15.9	19.4	° 0.0	× ² 4	× 435	N 78 V	
application/ start of the test (replicates 1 + 2)) 12.3v					Ŷ
30.08 6.09.99	15	12.3	~ 0.0	A4.	<u>⊳ 49</u>	~67	
beehive placed in the field cage (replicate 3)							
7.09 9.09.99	A\$.8	@`20. <i>2</i> Y	. ~0.0 🔊	157	~ 60 <i>S</i>	×91	
application/ start of the test (replicate 3)						<i>™</i>	
10.09 17.09.99 💞	15.5	21.4	0.0	<u> </u>	6 ⁴³	56	
		ř	"U		¥_,Q		

Pesticide history of the

No pesticide histors of the field wa stated in the study


The effects of Delthamethrin EC 25 and Delthamethrin EG 6.25 were tested on the honeybee (Apis mellifera by under confined setul-fiel@conditions by following the EPPO Guideline No. 170 (1992) The purpose of the study was the examination of the side effects of the two substances Delthamethrin EC 25 and Delthamethrin EG 6.25 on honeybers, Apisonellifera, under semi-field conditions.

This study included four exposure Fours with three replicates (tunnels) each: one deionized water treated control group two test-item groups (Delthamethrin EC 25 and Delthamethrin EG 6.25) and one reference item group (dimethoat). The grop was spraced five days (replicate 1 + 2) and 3 days (replicate 3), respectively, after bee hives were transferred to test units for acclimatisation.

In alkexposure groups, the crop was flowering. The honeybees remained 7 days in the tents after application. Five days (replicate) and 2) or 3 days (replicate 3), respectively, before application the bee boxes were filled with a 3-comb-bechive. One test beehive was placed in each tent near the entrance.

Assessment of mortality (dead bees in the bee trap and around the Phacelia) and foraging activity (flight intensity) was recorded daily during 5 or 3 days before and 7 days after test item application. Bee brood (evaluation of the cutrent bood status of each comb, number of eggs, larvae and pupae in %) was assessed on day before (IDBT) and seven days after application (7DAT). Additionally, condition of the queen was assessed. Furthermore, behaviour of bees in hive and foraging bees was evaluated for poisoning symptoms or any anomalous behaviour in comparison with untreated bees.

The influence of the test items were evaluated by comparing the results obtained in the test item treatment groups to those of the control and the reference item group.

The following endpoints were assessed:

- Total and mean number of dead bees before as well as after the application in the control, treatment and reference item groups, respectively.
- Flight intensity (mean number of forager bees/m²) before as well as after the applications in the • control, in the treatment and reference item groups, respectively.
- Behaviour of the bees in the hive and of the foraging bees before as well as after the application •
- Condition and development of the bee brood before as well as after the application in the control, in the treatment and reference item groups, respectively.
 Condition and development of the bee brood before as well as after the application in the control in the treatment and reference item groups, respectively
 Dates of Work: 30th August to 17th September 1996
 Findings:
 Honey Bee Mortality:
 A summary of the average daily mortality and % mortality compared to day before application are shown in table 2. Results of three replicates of each treatment group were submed up.

in table 2. Results of three replicates of each treatment group were submed up.

Table 2: Average mortality and % acortality compared to day before application

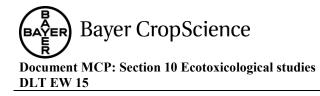
	<u> </u>	<u> </u>		7
Average num	ber of dead bees	(dead bee trap + b	eces collected area	ind Phacelia)
	Control	Reference substance	Delthamethrin C 25 (2)2.5 g (0)3./ha	Delthamethrin EG 6.25 @12.5 g a.s./ha
©©DBT		23.3	20.6	20.7
0DAT	×14.7 ×	0 [°] 410 [°] «	A143.3*	103.0*
1DAT	A 176 ×	× 186.0 °	3 45.6	41.3
2DAT	× 18.3 C	°₹152.5°	37.6	34.0
3DAT to DAT O	25.4 ×	~ 76,6 ~	28.1	30.1
× %		el (compared to da	ay before applicati	on)
The second secon	68.8	17600	663.4	497.6
La IDAT	80.20	298.3	211.1	199.5
2DAT	10 <u>82</u> 92 0	654.5	174.1	164.3
3DAT to 7DAT	£15.5	320.2	130.1	145.4

*statistically significant ($\alpha = 0.05$) compared to the pre-treatment level/replicate DBT: days before the atment DAT: days after treatment

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

		5DBT	4DBT	3DBT	2DBT	1DBT	0DBT	0DBT -1h	0DAT	1DAT	2DAT	3DAT	4DAT	SDAT	[≪] ZÅT	7DAT	Ř DAT	
									Cor	trol				Â				
	Т	34	62	11	0	0	0	1			0	0	đ,	ر» 2	4	Ň		Å.
R1	E	10	02 7	2	1	7	0	1 5	1 2	. 3	6	6	Rs S	21		Ø Ø13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	T	59	113	56	0	3	0	0	- l ©	0	1		0	2	,D	1	₹ <u>5</u>	
R2	E	19	26	8	9	20		6		9	7	g g	1Ô	<u> </u>	Q35	Ź	115	<u>A</u>
	Т	-		18	3	3	3	0	Ø ₁	0	00	3	\gg	Юр-	5%	1	×9 ^	Ç
R3	Е			46	52	33		14	32	41	Â	40	41	39	36	23	179	
								A.	Refe	rence		Q	Õ		»	Ő		Ó
D1	Т	19	25	0	12	0	1	$0 \sim$	×109	100	68)	37	2 22	, Ø	4≪	14	75	A
R1	Е	32	14	3	13	11	Ő		14	43 °	73	3P	48	J59	<u> </u>	590	¥ 2510	ļ
R2	Т	33	91	25	14	4	Óž		12	82	³ 3 l	Ø17	, ZF	7 🐔	24	29	95 ∿~278	
K2	Е	31	32	0	6	Ŕ,	- È	4 👸	104	54	50		51	Ð	57	64, ³		
R3	Т			110	25	©4	, D	00	100	^ø 84	Ø47	Đ,	6	°6	ð	4(. 30	
	Е			96	1.5	44	, [°]	\$ 3 70	659	195	189	¥20	<u>\$</u> 98	84	58	ЭР́	391	
					ĝ k		6	amethe			<u> </u>	- *	A ha		<u> </u>	<u></u>	1	
R1	Т	21	6	0 8		<u>11</u>	_8 ^{~~}	- OF	20	16	\$2 }	⁰	1 %	ي ^ر ا م	Ì	2	4	
	Е	13	2			4 %	Ŝ		30	15%		57	%9	19	₹22	18	76	
R2	Т	49	750 296	5	29	S)	19	× 1 ~	9	Ĵ3	1 1	1	2	≥5″ ≥23	2	3	13	
	E	52	\$ 9 6	Q12	8	7 7	×0		98) ×10	17 ×		K Vi	23 0	/	37	20	118	
R3	T E	ð	Ô	98 [°]	32 KJ9	5 25)°0	25°~	231	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 8P	<u>35</u> ∡	⁰ 43	3 66	3 39	2 19	9 202	
	Ľ	Q	0	70 &			Dan	amethrii						00	39	19	202	
	R.	17	55∞	<u>©</u> 4	, p	» 11	8	<u>م</u> اريد م	Q ₀	10.2.3 W		<u> </u>	2	4	4	5	19	
R1	E	42	20 20	4	\$ <u>8</u>		<u> </u>		₩	16	16	/ 4 17	13	24	25	27	106	
	T	34	¢\$3	23	14£	$\tilde{\mathbb{Q}}_2$	Ý		31	1	$\tilde{\mathbb{O}}_0$	0	2	0	7	27	11	
R2	E	20	28	03 03	Ŕ	<u> </u>	Ĵ	<u>,</u> 09,	Ĩ	10	23	12	19	35	38	35	139	
D 2	Т	~Q	Ĉ	65%	968	8	4,0			03	3	0	1	2	1	1	5	
R3	E	8			89 a	31		15 ⁹	198	86	55	25	38	41	46	22	172	

Table 3: Daily assessment of mortality (number of dead bees in the bee trap and around the Phacelia)


T: Trap; Edges; R1-R3. Replicate; DBT: days before reatment; DAT: days after treatment

¢

Å

For the Delthamethrin EC 25, Delthamethrin EG 6.25 and reference item treated variant statistically significant more dead bees were found on QDAT (after application) when compared to 1DBT (before application). Mortanty on assessment days 1, 2 and 7 compared to day 0 showed an increase but not statistically significant portality. The average number of dead bees decreased rapidly from 1DAT until 3-7DAT after application (291.1% to 130.1% for Delthamethrin EC 25, 199.5 % to 145.4% for Delthamethrin EG 625 and 798.3% to 320.2% for the reference item). L.

e de la construcción de la const

Honey Bee Flight Intensity:

The validity criterion was accomplished (foraging activity $\geq 10-12$ bees/m² during application). A summary of the average number of bees on the flowers and an average flight activity in % compared to control are shown in the following table.

ß

Table 4: Foraging activi	ty during study per	iod		ay @ 3	
Ave	rage number of bee		Der m ² /field Rage/d	ay 0 3	
	Control	Reference substance	Delthamethrin EC25	ay 2 5 Dethamethrin 5 EG 4,25 @12.5 g a.s./ka	
1DBT	15.3		18 4		S.
0DAT	14.3		0° 50° 20°	10° 5A, A,	^
1DAT	12.5	A 20 ~	5.7 A		
2DAT	11.5	0.2	8.2		
3DAT to 7DAT	12.1	No and	¢ \$2.3 ¢		<i>y</i>
	13.1 Average flight ac	tivity (%) compa	red to contror		
1DBT		A106.5	1176	0 121,6 270	
0DAT		15.4	₩ 85 .7 Q	3708	
1DAT			45.6	ý Ø4.4	
2DAT	× A °	1.7 °	S 71.3 W	82.6	
3DAT to 7DAT		29	× 3.9 ×	89.3 ×	
DBT: days before treating	ent			с	
3DAT to 7DAT 1DBT 0DAT 1DAT 2DAT 3DAT to 7DAT 3DAT to 7DA					

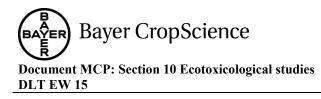


Table 5: Daily assessment of flight activity on the Phacelia (number of bees/m²) in the control, reference item and the two treatment groups (Delthamethrin EC 25 G at 12.5 g a.s./ha, Delthamethrin EG 6.25 at 12.5 g a.s./ha)

																				ð	,					
						Asse	essm	ent o	f flig	ht ac	tivit	y on	the P	hacel	ia (nı	imbe	er of b	ees/n		R.				L.	$ \longrightarrow $	2
Assessment on day	-5	-4	-3	-2	-1			0					1				2		3	0 ² 4	5	6	7	Σ	méan/ day	
/ariant/replicate						-1h	lh	2h	4h	6h	Σ	m	n	a	Σ	m	n	a	<u>}</u> n	n	n	n	<u>Øn</u>	Ô	»	
control (R1)	6	2	5	2	10	11	20	18	17	0	55	0	3	Č.	911	0	8	4	2 6	10	14		۲ ۱۱ ۴ م	SA SA	10	2
control (R2)	8	5	4	3	8	14	18	12	14	1	45	0	6	12	18	0	10	¥ :	17 6	14	, Y	12	J)	57	CM.4	1
control (R3)			14	12	21	21	24	26	17	5	72	0	1 ⁹⁰	24	46	0	Ŷ	22 Ø	10 20		24	Ż	20	80	17.8	Ľ
reference (R1)	10	4	6	2	12	12	2	1	1	- 0	4	Ø	0	0	0	~~	0 💊	Ø	0 5	\mathbb{Q}_{3}	Į.	Oʻ3	80	Q24	, AV	Ĺ
reference (R2)	9	5	4	3	10	12	1	2	0	0	×	0		0	Ś	0° ° 0	Ľ	≫ ′0	0 0 77	, 2,	Ç,	2	°~4	22 ີ	U _{4.4}	
reference (R3)			п	13	24	25	10	8	1	0	19	0	yo,	. 6	្លឹ	¢	00	ıĈ	ΪĮ Ι	"Q	3	Â	4	(ja)	2.6	0
S 3 (R1)	12	3	7	3	9	15	2	10	7	Ţ	19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	Y	14	>°	6		12	5 10	A.J.	10	12	52	2.6 ().4	
S 3 (R2)	9	5	4	1	12	14	1	4	S.	0	10	0	Š	8	~¥3	0	S	6	^ت لم	ĺ	15	Ц	× 10	53 0	10.6	
S 3 (R3)			12	14	26	25	20	Ŷ	¥ 2	Ť	32		3		7	Ż	8	e al la	23 10	\$24 1	24	9 () }	16	A19	15.8	
S 4 (R1)	11	2	7	3	9	15	2	≪ ₈	Ø	0	15	0 (Å	8 %	10	0	×	6 1	120°	12	GK O	8	V	48	9.6	
S 4 (R2)	10	5	5	5	8	Ŕ	<i>U</i> 1	6	×4		,11	0	T ₄	9 🖉	×13	00	Se .	7 Ø	7 5) Ç	14	Ø	10	49	9.8	
S 4 (R3)			12	14	21	27	22	Yo	5	Ş,	39 (Ŷ	8 (<i>©</i> i	16	ð	10		8 %	24		3	18	79	15.8	

S3: AE F032640 00 EC03 B003 (0.5 l/ha) S4: AE F032640 (R); replicate m: morning n: noo \mathbb{C} a: afternoon \mathbb{C}

T: Trap; E: Edges; R R R B R 3: Replicate

S3: Delthamethrin C 25 (AE F032640 00 EC03 B003 at 12.5 g a.s./ka

S4: Delthamethru EG 6 25 (AE 4032640 00 E006 A107) at 12.5 g a ha

No significant differences concerning flight activity were observed for all variants 1 hour before treatment. On all assessment days bees of the control variant showed normal flight and foraging activities on the crop and around the hive.

For Delthamethrin EC 25 and Delthamethrin EG 6.25 flight activity was significant decreased on assessment day 0 immediately after application. Starting with assessment day 1 the flight activity increased slowly compared to the control during 3-7DAT. For both Delthamethrin EC 25 and Delthamethrin EG 6.25 bes with acute taxic reactions were found on the crop and on the entrance of the bee hive shortly after application. The most affected bees were found on the ground and at the hive entrance showing apathy, with discoordinated movements lying on their back. On assessment days 1DAT to 7DAT no behavioural anomalies of the bees were observed compared to control.

For the reference item acute toxic reactions were found on the crop and at the entrance of the hive. The following reactions were observed. Irritations, discoordinated movements and restlessness.

Development of the bee brood

A summar of the development of the bee brood is presented in the table below.

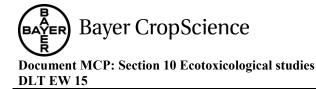


 Table 6: Development of the bee brood before (b) and seven days after application for the control,

 reference substance, Delthamethrin EC 25 (AE F032640 00 EC03 B003) and Delthamethrin EG 6.25 (AE F032640 00 EG06 A107)

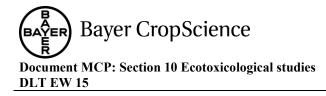
			% eş	ggs/la	arva	e/sea	aled	cells	/hon	ey/p	olle	n/em	pty	cells	(ave	erage	e of 1	repli	cate	1+2 A	+3)		Ő		O ^y
			Con	trol			r	efere	ence	subs	tane	ce		A	E F(326	40		Q	AJ	E FO	326	Ū	S	
														00	ECO	3 B(003	0	0°	00	EGO	6 A1	107 %	y i	
															(0.5	l/ha))	2		().2 k	y/ha) 29	2	Ô
	E	L	s	н	Р	Em	E	L	s	н	Р	Em	E	L	s	н	P	Yem	E	L	Î	н		Em	Ĵ
b	п	18	15	23	ι	33	34	13	12	8	4	29	167	24	13	23		31	17	14	2 14	2	6	Ŷ	Å
a	9	1	13	17	1	60	9	4	17	18	0	550	×18	4	16	AN C	1	41	9	\int_{0}^{∞}	21	Q ₂₈	Ô	40	
ptl	82	5.6	87	74	100	182	26	31	142	225	°Q	<u></u>	180	17	Nº.	83		132	Q,	14	50	150	0	Ó	/

b: before application a: day 7 after application ptl: pre-treatment devel (coppared to bood assessment before

E: eggs L: larvae S: sealed cells Fit hones P pollen Em em

For the Delthamethrin EC 25 treated variant no significant inhibition of brood development was observed. The queen bee of each replicate was available and healthy on assessment day datter application (7DAT).

For the Delthamethrin EG 6.25 treated variant, area occupied by eggs was compared to the pre-treatment level significant lower as observed in the control. Compared to control no influence on the bee brood development including larvae and sealed cells was observed. The queen be of replicate 2 + 3 was available and healthy on assessment day 7 after application. The queen be of replicate 1 diction exist and could not be found on any combonside the higs on day 7 after application (DAT)


The toxic reference treatment resulted in a decrease Onumber of eggs of 26% compared to the pretreatment level. The queen bee of replicate 3 did not exist and could not be found on any of the combs inside the hive on day? after application. All other brood assessments resulted in no significant inhibition in the percept larvae (31%) and scaled calls (142%) compared to the control on day 7 after application.

Conclusion:

Delthamethrin EC25 (05 L product/har and Delthamethrin CG 6.25 (0.2 kg/ha) caused significant effects on the bee mortality in dependence on the time of assessment. The highest and statistically significant mortality in comparison to the pre-treatment mortality was observed immediately after application on day 0. Statting with days after application the bee mortality decreased noticeable up to the control level observed on day 7 after application.

The foraging activity decreased significantly in mediately after application for the Delthamethrin EC 25 (0.5 L product/ba) and Delthamethrin EG 6:25 (0.2 kg/ha) treatment. The foraging activity was not completely decreased up to 0 level because during all assessments after application foraging bees were observed on the freated plants. Starting with day 1 after application the foraging activity for the Delthamethrin EC 25 (0.5 L product/ha) and Delthamethrin EG 6.25 (0.2 kg/ha) treatment reached a non-significant level compared to the control foraging activity.

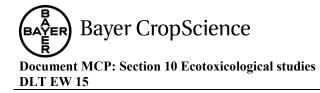
For the Dethamethrin EC25 treated variant the brood development compared to the pre-treatment level was assessed after test termination on day 7 (7DAT). There was no significant influence on brood development or queen bee behavior compared to the pre-treatment level. Compared to the control no significant influence on brood development was observed, too.

The Delthamethrin EG 6.25 treated variant showed 53 % eggs, 14 % larvae and 150 % sealed cells compred to the pre-treatment level observed on day 7 after application. The comparison of the area occupied by eggs was with 53 % of the pretreatment level lower as observed in the control.

The queen bee of replicate 1 could not be found on any comb inside the hive on day 7 after application. On comb number two of replicate 1 queen cells were observed in order to produce another, queen bee. However, based on this observation the queen bee in replicate 1 was not available. If day after application. Compared to the control treatment no negative influence on the brood development including the larvae and sealed cells was observed.

The brood development assessed before and 7 days after application resulted in no definite statement regarding the influence of Delthamethrin EC 25 (0,5 L product/ha) and the Defthamethrin EG 6.25 (0,2 kg/ha) on the brood development.

However, in consideration of the low number of eggs and developing larger from eggs for all treatments observed on day 7 after application no significant negative influence of the Delthamethrin EC 25 and the Delthamethrin EG 6.25 treatment or the brood development could be determined when compared to control.


Report:	KCP210.3.15/10, ; 2000 , 29 , 29
Title:	Assessment of Side Effects of AE 5032640 00 EG06 A107 and AE 5032640 00 EG03 B003 on the Honey bee Apis melliferate.) in the Semi-
	£93264000 EC03 B003 on the Honey bee Apis mellifera L.) in the Semi-
6	ØField av a star
Document No:	M-65280-91-1 (Rep. No.: 9937901-BZEU)
Guidelines:	EPPO 170 $\langle \langle \rangle$
GLP:	Syes O & S S S

Material and methods

The side offects of the two test substances (XE F032640 00 EGR6 A107 and AE F032640 00 EC03 B003 were tested of the honey bee (*Apis, mellifera* L.) inder semi-field conditions according to the guideline of the European and Mediterranear Plant Protection Organization No. 170 (EPPO, 1992). The test substances, AE F032640 00 EG06 A107 and AE F032640 00 EC03 B003E, were applied at an application rate of 12.5 g a.s./ha in 300 L water/ha. Plots treated with tap water served as control. As toxic standard, Hostathion (0 EC was applied at acconcentration of 0.6 L/ha in 300 L water/ha. The effect of the test substances was examined on small bee colonies in cages placed over plots with flowering *Phacelia tanacetiolia* Benth.

The influence of AE F032640 (D) EG06 A107 and AE F032640 00 EC03 B003 was evaluated by comparing the effect of the two test substance variants to the effect of the control variant and toxic standard variant regarding the following observations:

- Mortality at the edge of the treated area and in the bee traps
- Foraging activity (number of forager bees/m² flowering *Phacelia* crop)
- Behaviger of the bees on the crop and around the hive
- Development of the bee brood

Findings:

Effect on honey bee mortality:

The application of both test substances AE F032640 00 EG06 A107 and AE F032640 00 EC03 resulted in a slight increase of bee mortality restricted to the day of application DAA 0). During the pre-application period an average of 27.6 dead bees/colony/day was found in the F032640 00 EG06 A107 variant and 35.1 dead bees/colony/day in the AE E032640 00 EC03 B variant. The average daily pre-application level of mortality was 32.0 dead bees/colons/ control variant compared to 63.8 dead bees/colony/day in the toxic standard variant. On the day of application mortality increased to an average of 97.7 fead bees/colory in AE F032640 00 EG06 A107 variant. In the AE F032640 00 EC03 3003 variant on dead bees/colony was found on the day of treatment. A clear increase of mortality was observed after application of the toxic standard with a maximum of Å 549.3 dead bees/colony on the day of application. When comparing the average pre-application mortality and the average post-application mortal utilizing Q_{M(average}) (average post application mostality divided by the average pre-application

mortality), a slight increase of mortality occurred in the two test substance wariants and also in the control variant. An obvious increase was observed in the dixic standard variants The value for Q_{M(average)} was 1.4 in the AE F032@0 00,EG06 A107 variant. In the AE F032640 00 EC03 B003 variant the QM(average) was determined as 1.5. For the control cariant and the toxic standard variant the Q_{M(average)} value was 1.4 and 3.3, respective

Effects on honey bee flight intensity:

was observed in the AE 1932640 00 EG06 Shortly before application an average of 11.9 bees or A107 variant and 13 bees/m2 in the AE C0326 V00 EC03 B003 variant. A bear decrease of flight intensity was observed after application of AE F032640 00 EC06 AU07.

In the AE F032640 00 EG06 AY07 variant an obvious repellent effect or directly after application and on evaluation day DAA 04he flight intensity (55 beer/m²) remained clearly below the level of the control variant (13.4 Sees/m²).

In the AFF032640 00 EC03 BO03 variant the flightintensity remained on a high level (12.3 bees/m²) on the day of application. s n

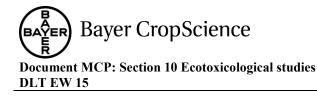
On the following evaluation days flight intensities on the level of the control variant were observed in the two test substance variants compared with the pre-application period the average daily postapplication level of flight intensity was higher in the two fest substance variants and in the control variant but lower in the toxic standard variant.

Effects on honey bee brood development:

Regarding the colorises strength and the see brood development, no abnormal differences attributable to the influence of the test substance were observed between the test substance variants and control.

Material and Methods:

Deltamethrin EC 25 & EG 06


Deltamethrin EG 6.25 (AE F032640 00 EG06 A107) content of a.s. (analysed): deltamethrin: 6.14 % w/w (62.5 g/L nominal) Deltamethrin EC 25 (AE F032640 00 EC03 B003) content of a.s. (analysed): deltamethrin: 2.70 % w/w (25 g/L nominal) Deltamethrin EG 6.25: 8FES0248

Batch number:

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

	Deltamethrin EC 25: 99380
Reference item:	Hostathion 40 EC (active ingredient: triazophos; concentration of
	a.s.: 400 g a.s./L nominal, analysed content; not stated)
Test organism:	Honey bees (Apis mellifera)
2	For the test, small healthy colonies with at least three combs (size of
	the combs ("Zandermaß"): 420 mm x 220 mm) were used. All nuclei
	were produced the same time. The forresponding queens originated
	from one breeding line in order to guarantee unform bee material in
	all variants.
	Furthermore the following criteria for the miclei over guaranteed.
	• at least two brood combs ontaining eggs, larvae and capped cells
	 at least one hope y and pollen comb bees are free of Nosema
	Wooden bee traps (35 cm x 35 cm) with gauze on bottom and on 50
	% of the top were attached to the entrance of the nucleus in order to
	rogister those dead bees which are carried but of the hives.
Source:	Not stated in the report.
Crop:	Placelia lanacerfolia (See attractive Grop) was full in bloom
Crop: Crop: Test location:	The server-field test was located in the south of Germany
Test unit:	The dimensions of the top of the test cages were 4.8 m x 3.6 m and
	the height was m. The cage frames were covered with light plastic
	gauze The test cages were placed over the plots of flowering Phaeelia A path of 0.6 for was left at each side between the plots and
	the tent walls, the path was covered with linen sheet.
	Arrangement of the different variants during the semi-field test are
	shown in the following figure:
ig i i	
Test unit:	nt tent tent tent tent tent tent tent t
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	R #Poxic@andar@
	$R = 10x_1c$ standard 1V = Test substance Deltamethrin EG 6.25
	2T = Jest substance Defiamentin EC 0.25 2T = Jest substance Deltamethrin EC 25
	C = C ontrol
Application rates:	Control (C): drinking water
	Treatment rate (1T): Deltamethrin EG6.25: 12.5 g a.s./ha during foraging activity (≥ 10 bees/m ² visiting flowers)
	Treatment rate (2T): Deltamethrin EC25: 12.5 g a.s./ha during
	foraging activity (≥ 10 bees/m ² visiting flowers)
	Reference item (R): 0.6 L form./ha (240 g a.s./ha)
Č ^O "	Three replicates per treatment group referred to in this summary as:
	colony1, colony2 and colony3.
	The spray volume was 300 L/ha in all treatment groups.

Page 262 of 518 2017-05-15

Data analysis:	The influence of the test substances Deltamethrin EG 6.25 and Deltamethrin EC 25 was evaluated by comparing the bees in the test cage to the control bees treated with water and those treated with the toxic standard and furthermore by comparing the pre- and post- application results in view of the following observations: • Mortality at the edge of the treated area and in the bee traps • Foraging activity (number of forager bees/m ² flowering <i>Phacelia</i> crop) • Behaviour of the bees on the crop and around the five • Development of the bee bood nudy plan: Two deviations were recorded in the study report. Acothese were procedural deviations and do not impact the study report. Acothese were procedural deviations and do not impact the study results they have not been reported.
	• Behaviour of the bees on the rop and around the hive
	• Development of the bee brood
Deviations from the st	udy plan: I wo deviations were recorded in one study report. As these were
	procedural deviations and do not impact the study results they have
	not been teported.
	itions during the trial; temperature and precipitation were provided by
Climatic conditions dur	ing the experiment:
The environmental con-	ditions are shown in the following table.
Table 1: Weather cond	itions during the grial; temperature and precipitation were provided by
weather station	
Date D	AT Octemperature C Precipitation Could formation at
	() On/max C] ([mm] (Sime of Value On]
	N A Q A A A JUNA
26/07/1999	\mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
27/07/1999	$1^{\prime\prime}$ $\sqrt{3/20}$ $\sqrt{3}^{\prime}$ $\sqrt{0.0}$ 0^{\prime} $\sqrt{3}^{\prime}$
28/07/1999	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
29/07/1999	$\sqrt{12} \sqrt{12} \sqrt{127.0} \sqrt{127.0} \sqrt{12} \sqrt{127.0} 12$
30/07/19980	
31/07/1999	3 × 610.9 / 27 3 × 6 50.0 0 0
01/08/1999 -	× × 12. × × × × × × × × × × × × × × × × × × ×
02 02 999	

Pesticide history of the field sue:

The pesticide history of the field site was not stated in the report.

The side effects of the two test substances Deltamethrin EG 6.25 and Deltamethrin EC25 were tested on the honey bee (*Apis mellifera*).) under semi-field conditions following the EPPO guideline No. 170 (EPPO, 1992),

This study included four exposure groups with three replicates (tunnels) each: one drinking water treated control group (C) two test-item groups (1T and 2T) and one reference item group (R). The hives were introduced into the test cages 2 days before the planned application of the test substances to enable the bees getting amiliat with the environment and to lower the mortality which usually is increased due to the transport. In all exposure groups, the crop was sprayed at flowering stage of the crop, during which time honeybees were actively foraging on the crop under confined conditions. The honeybees remained 5 days in the tunnels following application.

The influence of the test substances Deltamethrin EG 6.25 and Deltamethrin EC25 was evaluated by comparing the bees in the test cage to the control bees treated with water and those treated with the text is standard.

The following endpoints were assessed:

- Mortality at the edge of the treated area and in the bee traps at the entrance of the colonies before as well as after the application in the control, in the two treatments and reference item groups, respectively.
- Flight Intensity (number of bees that are both foraging on flowering Phacelia and flying immediately over the crop on 1 square meter) at the day the best colonies set op into the terms and before as well as after the application in the control, in the two treatments and reference item groups, respectively.
- The condition of the colonies and the development of the bee brood were checked 2 days before application and 5 days after application. In order to record effects of the test substance, the following parameters were assessed;
 - Strength of the colony (number of combs covered with bees

 - Estimate of the area containing eggs, harvae and capped cells The amount of eggs, larvae and capped brood was given in percent of total brood population for each type of brood. Behaviour of the bees on the crop and around the hive

Dates of Work:

Findings:

Honey Bee

140 02nd August 19999 The application of both test items, Deltamothrin, DG 6.25 and Deltamethrin EG 6.25, resulted in a slight increase of bee motiality restricted to the day of application (DAA Oaa).

During the pre-application period an average of 27% dead bees/colony/day was found in the Deltamethrin EG 6.25 variant and 35.1 dead bees/colony/day in the Deltamethrin EC 25 variant. The average daily pre-application level of mortality was \$2.0 dead bees/colony/day in the control variant compared to 63.8 dear bees/colony/day in the toxic standard variant. On the day of application mortality increased to an average of 97.7 dead bees/colony in the Deltamethrin EG 6.25 variant. In the Deltamethrin EC 25 variant an average of 1390 dead bees/colony was found on the day of treatment.

A clear increase of mortality was observed after application of the toxic standard with a maximum of 549.3 dead bees/colony of the day of application. When comparing the average pre-application mortality and the average post-application mortality utilizing Q_{M(average)} (average post-application mortality divided by the average pre-application mortality) a slight increase of mortality occurred in the two test substance variants and also in the control variant. An obvious increase was observed in the toxic standard variant. The value for Q_{M(average)} was 1.4 in the Deltamethrin EG 6.25 variant. In the Deltame prin EC 25 variant the Q_{M(average)} was determined as 1.5. For the control variant and the toxic standard variant the Q_{M(average)} value was 1.4 and 3.3, respectively.

A summary of the daily mortality and flight intensity results are shown in the following tables.

	.s./ha			· ·			eltamethrin EC
Date Day	Colo	ony 1	Colo	ony 2	Colo	ony	go Colony and day
	BT	Е	BT	Е	BT 🖁	<i>в</i>	and day
6JUL99 2DBT	0	11	0	1	0 🔊	' 7 🗞	<u>6.9</u>
7JUL99 1DBT	1	9	1	_Ô17	2	81 🕵	~37.0
8JUL99 ODBT	2	8	0	1 9	Q,	87	\$\$39.3 €
Ø pre-application	1.0	9.3	0.3	12.3	J.3	58.3	Q 27
STD	1.0	1.5	0.6	9.9	Q 1.2 °	A4.6	18.4
8JUL99 ODAT	1	25	20	94 📉	, W	~~170 O″	¢97.7 ©
9JUL99 1DAT	0	9	0	· 9 0	A A A	or 280	15.3
0JUL99 2DAT	1	8		¥ 12,~	L 1 . @	AT .	33.3
1JUL99 3DAT	0	15	1 🖉	<u><u><u>6</u></u>2</u>	00	45	27.7 L
1AUG99 4DAT	0	19 🔬		21	× A	\$ 51	\$30.3 V
2AUG99 5DAT	1	25	. 10	× 14°	^^{<0" ``	, <u>5</u> 0	30.0
Ø post-application	0.5	168	, & 0.7 <u>&</u>	281	× 0.3 Å	Ø.2 Å	39.1
STD	0.5	Q.Š	0.0	×32.4 ~	ి 0.మో	\$51.4	2 9.4
Q _M	0.5	Q ⁹ 1.8	2.0 2.0	2.3		0 1.2°	∘ ∭ n.d.
Q _{M(Oaa)}			<u>a</u>	§.5 (?)	<u> </u>		n.d.
$Q_{M(average)}$ = Days after treat	- V	``~~`~		1.4 🎸 🖉	õ× _k _	or S	n.d.
= Standard devia = Mortality on the = Mortality on the = Post-application () () () () () () () () () ()	e day of treat	ment before a	pplication				

Date D	Day	Colo	ony 1	Colo	ny 2	Cole	ony 30°	Ø / Colony and day
		BT	Е	BT	Е	BT	κ ^ν υ ^ν Ε	
6JUL99 2I	DBT	0	9	1	2	1 🗶	♪ 7	6.7.9
7JUL99 1I	DBT	2	23	1	Q17	4	92	V 49.0
BJUL99 OI	DBT	0.7	41	1	[*] ¥*14	Ð,	89 💭	1 2 9 .7 1
Ø pre-applicati	ion	1.2	24.3	1.0	✓ 14.3	2.3	62, 5	Q 35.1
STD		3	16.0	0.0	12.5	Q"1.5 °	48,2	24.℃
8JUL99 0I	DAT	0	74	S. S	68 📉	30	263 0) 1 3 9.0 (
	DAT	2	11	<i>"</i> 0"	· 8 0	× V	<u>@ 23 @ </u>	×44.0
	DAT	2	32		18		, 43	31.7
	DAT	1	56		<u>6</u> 8	0 0	19	54
	DAT	3	53	1 K	√13	× <u>A</u>	\$64	& 3.7 Q
	DAT	1.8	41	<u> </u>	× 12°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y 43 ∞	34.0
Ø post-applicat	tion	1.2	445	لا 1.7 🖉	245	≪ 0.5 Č	8505	\$ 52.8 52.8
STD		2.8	Q.8	2.4	2.4	0 1,20	\$ 8.9	4463
QM		0	Q ⁹ 1.8	1.7	1.7,5"	62	<u> </u>	s∑n.d.
Q _{M(Oaa)}		@		<u> </u>	<u>n</u>	<u> </u>	ř <u>zO</u>	n.d.
$\frac{Q_{M(average)}}{= Days afte}$		- AG		To Prove of the second	<u> </u>	Ó¥ öj	<u> </u>	o [≫] n.d.
= Post-apptaa) = O Mora(verage) = O post approximately		Roortality re day of ap on mortality	5re-application plication Oae / Opre-app	0 0 pre-appl				

Date	DAA	Colo	ony 1	Colo	ny 2	Cole	ony 3		
		BT	Ε	BT	Ε	BT	E E	andday	, ,
26JUL99	2DBT	0	13	1	4	0	2	6.7	\$
27JUL99	1DBT	2	44	1	54	2	43 💊	O 48.25	S.
28JUL99	0DBT	2	33	1	<u>گ</u> 41	24	43 🔬		
Ø pre-appli	cation	1.3	30.0	1.0	☞ 33.0	<u>_</u> .3	29.3 ^(C) 23(J)		Ś
STD		1.2	15.7	0.0	25.9	_OF.2	23	22.3 ×	°¢
28JUL99	0DAT	2	48	1,50	18 🦼	o∑ 0 <u></u> ∘	<u></u> 45	380	
29JUL99	1DAT	0	11		9 👡	× Ø?	Q 7 0	9.0 ô	¥
30JUL99	2DAT	2	61	¥	. 187	<u>`</u> >0	42	. ≪¥2.3 ~	
31JUL99	3DAT	0	81		<i>_3</i> 3	2	65	[∞] 62.0 [∞]	
01AUG99	4DAT	3	51			7 1°	Ø63 A	49.7	0
02AUG99	5DAT	0	82	s S A	S 39 😤	<u>1</u>	🔊 56 U	\$2.3 ()	
Ø post-appl	ication	1.2	55 J	3.0	24.8	×0.7 ×	4639	43.9	
STD		1.3	26.2	3.3	*1.6	0.8%	Ø.4	× 19.8	
Q _M		0.9	_OY.9 _&	3:0	~~0.8 ~~		21.6 0	<u></u> d. ⊾≪n.d.	
Q _{M(Oaa}	l)	Å		″ <u>1</u> .	2	Č,	õ S	s.≪n.d.	
Q _{M(avera}			<u>× ĝ</u>		4 0	x x		🥍 n.d.	
	fter treatme		×	Ĩ (D)	<u>- 0)</u>	0	ð s	5	
DAT = Days a	fter treatmo	ent 🔊	«, S	× L,	~ ~ 0		\$	y .	

Table 4: Individual results of the evaluations of mortality (numbers of dead bees) in the control variant .

ΒT

= Bee traps

E

STD Oba

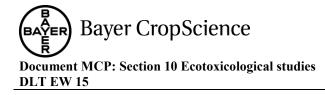
Oaa

Qм

Q_{M(Oaa)} $Q_{M(average)} = Ø \text{ post-application mortality } /$

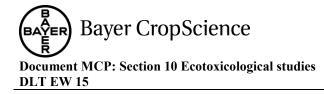
Honey Bee

See Flight Intensity Shortly before application an average of 1.3 bees/m² was observed in the Deltamethrin EG 6.25 variant and 13.0 bees/m22n the Deltanethrin EG 6.25 variant. A clear decrease of flight intensity was observed after application of Detamethrin EC6.25.

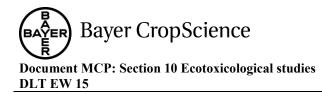

In the Deltamethrin EG 6025 variant an sovious repetient effect occurred directly after application and on evaluation day DAAOOaa the flight intensity (5.9 bees/m2) remained clearly below the level of the control variant (13.4 bees/m2)

In the Deltamethrin EG 625 variant the rlight intensity remained on a high level (12.3 bees/m²) on the day of application.

On the following evaluation days flight artensities on the level of the control variant were observed in the two test substance variants Compared with the pre-application period the average daily postapplication level of flight intensity was higher in the two test substance variants and in the control variant but lower in the toxic standard variant.

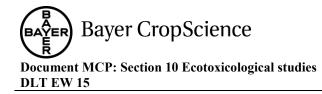

Ø

ð


Table 5: Average flight intensity (number of bees per m² Phacelia) in the three colonies in the Deltamethrin EG 6.25 at 12.5 g a.s./ha (AE F032640 00 EG06 A107) group

26JUL99	DAA	Ø	Number of bees/n	n ²	Ø Number of	
26JUL99		Colony 1	Colony 2	Colony 3	\emptyset Number of becs m^2 and day	
	-2	15.0	12.0	1 9.0	15.3	
27JUL99	-1	16.0	14.0	19.0	16.3	S S
28JUL99	0ba	13.0	11.0	19.0 5 10.0 5 10.0 5	15.3 16.3 110 94.3	
Ø pre-applie	cation.	14.7	11.0 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 14.0 14.0 14.0 12.2 12.2 14.0 12.2 14.0 12.2	5.2, 0 5.2, 0 5 65	94.3 94.3 9 2.60	
STD		1.5	Q9.5	~ 5.2 °	₹ 44.3 2.60 ×	
28JUL99	0aa	6.5	4.8			
29JUL99	1	20.3		Q1.7 O		O 4
30JUL99	2	16.0	× ^{714.0}	≥ 24.0		r st
31JUL99	3	21.0		y 22.0 0	08.3 5	
01AUG99	4	21.0 34.0 24.0 24.0 2 20.3 7 20.3 7	* *\$\$.0 ~~	24.0 24.0 22.0 17.0 13.0 0.7.3 6.7 2	○ 18.9 ○ 18.9 ○ 8.3 ○ 26.2 ○ 26.7 ○ 26.7 ○ 17.9 ○ 17.9 ○	ĝ
02AUG99	5	24.0 0	\$ 25.0 \$			
Ø post-appli	cation.	24.0 g 20.3 y 0.1 g 1	× 16.0	, WY.3 . Q	17.9 O [×]	
STD	Q.	9 .1	Ø ^{'8.8} ^{'0'}	6.7	× 2.9	
			application			

Table 6: Average flight intensity (number of bees per m² Phacelia) in the three colonies in the Deltamethrin EC 25 at 12.5 g a.s./ha (AE F032640 00 EC03 B003) group


	DAA	Ø	Number of bees/m	12	Ø Number of
		Colony 1	Colony 2	Colony 3	the three colonies in the $\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ \end{array} \end{array}$
26JUL99	-2	14.0	17.0	22.0	13.7 & ~
27JUL99	-1	12.0	16.0	C15.0	× 14.3
28JUL99	0ba	13.0	14.0	♥ 12.0	Q 13.0 0 S
Ø pre-applic	ation.	13.0	15.7	y 16.3	
STD		1.0	1.5	5.1	2.4 Q Ó 6 Ó
28JUL99	0aa	10.5	15,5 203 27.0, 0 18,0 18,0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 27.0, 0 20, 00, 0 20, 00, 00, 00, 00, 00, 00, 00, 00, 00,	· 10.80	120 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
29JUL99	1	14.0	203	24.7 24.7 216.0 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30JUL99	2	11.0	27.0.0	~ 16.0 Q	A 18.00 0 6 0
31JUL99	3	18.0	18.07	220	
01AUG99	4	22.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27.3
02AUG99	5	12.0	26.0	28.0	$\begin{array}{c} 120 \\ -09.3 \\ 18.0 \\ \hline \\ 9 \\ 22.0 \\ \hline \\ 0 \\ 22.0 \\ \hline \\ 0 \\ 22.0 \\ \hline \\ 0 \\ 3 \\ 22.0 \\ \hline \\ 0 \\ 3 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Ø post-applic	cation.	146	24 6	9 20 0 75.9 00 75.9 000000000000000000000000000000000000	W .7 ~ ~ ~
STD		- J.5 &	2469 4 258.0 258.0 25 25 25 25 25 25 25 25 2469 4 25 25 2469 4 25 2469 4 25 2469 4 25 2469 4 25 2469 4 25 2469 4 25 25 2469 4 25 25 25 25 25 25 25 25 25 25 25 25 25	\$5.9	
= Days after = Standard de = Flight intens = Flight intens	application viation ity of the ity on the	on A calculation by Cal e day of treatment e day of treatment	attro Pro) before application and application		
= Days after = Standard de = Flight intens = Flight intens	application	on A calculation by Gate e day of treatment e day of treatment of the second se	attro Pro) before application after application after application		

Colony 1 13.0 14.0 12.0 13.0 19.0 17.0 18.0 2.4 0 16.3 <t< th=""><th>18.0</th><th>Colony 3 15.0 11.0 15.0 13.7 2.3 2.3 2.3 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.5 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5</th><th>5 13.4</th><th></th></t<>	18.0	Colony 3 15.0 11.0 15.0 13.7 2.3 2.3 2.3 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.7 2.5 2.5 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	5 13.4	
14.0 12.0 13.0 1.0 13.5 17.0 13.0 19.0 17.0 18.0	12.0 14.0 15.0 3.6 20.7 20.0 20.7 20.0 20.7 20.0 20.0 20.0	15.0 11.0 15.0 13.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	5 13.4	
12.0 13.0 1.0 13.5 17.0 13.0 19.0 17.0 18.0	14.0 15.0 3.6 20.7 20.7 20.0 24.0 24.0 230.0 18.9	2.3 13.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	5 13.4	
13.0 1.0 13.5 17.0 13.0 19.0 17.0 18.0	15.0 0 3.6 0 12.8 0 20.7 2 20.0 7 24.0 2 30.0 7 30.0 7 189	15.0 13.7 2.3 2.3 2.3 2.3 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	5 13.4	
1.0 13.5 17.0 13.0 19.0 17.0 18.0	20.7 20.0 20.7 20.0 24.0 2 30.0 2 30.0 2	13.7 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A	5 13.4	
13.5 17.0 13.0 19.0 17.0 18.0	20.7 20.0 20.7 20.0 24.0 2 30.0 2 30.0 2	2.A 43.8 22.7 22.7 25.0 7.0 25.0 7.0 25.0 7.0 25.0 7.0 25.0 7.0 25.0 7.0 25.0 7.0 25.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	20.1 20.1 20.1 20.0	
17.0 13.0 19.0 17.0 18.0	20.7 20.0 20.7 20.0 24.0 2 30.0 2 30.0 2	407.8 22.7 200 200 200 200 200 200 200 20	20.0 20.0	
13.0 19.0 17.0 18.0	0 230.0 v 0 30.0 v	22.7 250 77.0 30.9 200 70.0 200 200 200 200 200 200 200	20.1 9.3 20.0	
19.0 17.0 18.0	0 230.0 v 0 30.0 v	× 250 × 17.0 × 30:8 × 30:8 × 30:8 × 30:8 × 21.8 × 21.8 × 5.7 ×	09.3 <u>(</u>) 20.07 23.7 <u>(</u>) 23.7 <u>(</u>) 24.7 <u>(</u>) 24.7 <u>(</u>) 25.7	
17.0	0 230.0 v 0 30.0 v	× 17.0 × 30:80 × 21.80 × 2	20.00 [°] 23.7 19.3 	
18.0	18.0	× 30% 200,0 × 21.8 × 5.7 × × × × × × × × × × × × ×	25:7 5 	
18.0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4		22.0 21.80 21.80 5.7	19.3 9 19.3 9 19.6 9 7 3.9 2 9 4 1 9 4 1 9 1 9 1 9 1 9 1 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1	
2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	uattref Pro) 5 ht byfore application after application			
ication 2.4 0 on (calculation by Qu on the day of treatmen n the day of treatmen	uattree Pro)			
ication on (calculation by Qu on the day of treatmen n the day of treatmen	uattrePro) 5 nt before application nt after application			
			Υ	
				ation (calculation by QuattrePro) the day of treatment after application the day of

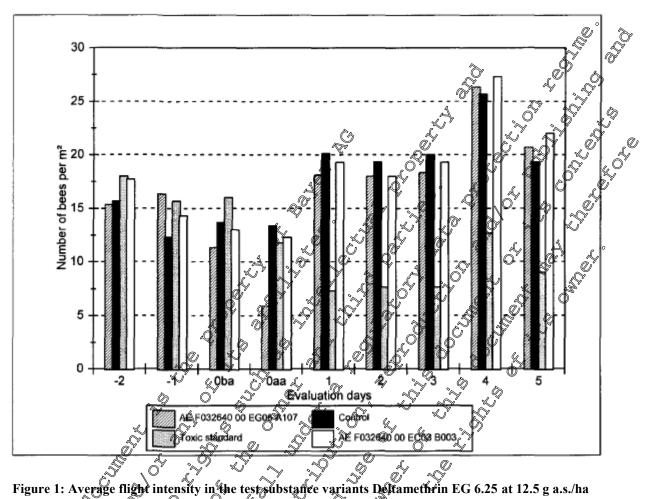
Table 7: Average flight intensity (number of bees per m² Phacelia) in the three colonies in the control

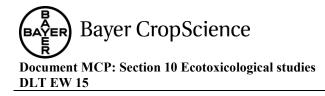
ð

Table 8: Average flight intensity (number of bees per m² Phacelia) in the three colonies in the toxic standard group

Date	DAA	e	Number of bees/	m	Ø Number of	h
		Colony 1	Colony 2	Colony 3	$ \begin{array}{c} \emptyset \text{ Number of } \\ \hline \emptyset \text{ Number of } \\ \hline \theta \text{ bees/m}^2 \text{ and day} \\ \hline & & & & & & & & & & & & & & & & & &$	/
26JUL99	-2	20.0	18.0	16.0	15.7 0 ⁷ 15.7 0 ⁷ 15.7	
27JUL99	-1	11.0	17.0	© 19.0	J 15.7 4 AV	N N
28JUL99	0ba	14.0	16.0	18.0	16.0 J J J	(k
Ø pre-applic	ation.	15.0	17.0	17.7 Q	8° 16.6€ 4° C 2	Ŷ
STD		4.6	1.000	1.5		7
28JUL99	0aa	11.0	1.000 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	1.5 y 	×11.8 S	
29JUL99	1	6.3 9.0 7.0 9.0 9.0	7.0	8.7	0 7.3 0 g 4	0
30JUL99	2	9.0	A 7.0 0 407 407 2480 2 712.0 80	100		
31JUL99	3	7.0	6.0 2	~10.0 ×	2 7.7 0 A O	
01AUG99	4	10.0	Q 12.0~	× 16 0		
02AUG99	5	9.0	820 820 8.3	050		
Ø post-applie	ation.	~ 98.7 ~	8.3 ° 3.4 9 3.4 9 3.5 9 3.5 9 3.5 9 3.5 9 3.5 9 3.5 9 3.5 9 3.5 9 3.	L 11.1 0 V	9.4 0	
STD		1.8	3.4	© 2.6 ~		
AA = Days after a TD = Standard dev ba = Flight intensi aa = Flight intensi	pplication iation (ca ty on the Son the	n alculation by Quat day of treatment k day of treatment s	ttro Pro) tero application after application			
AA = Days after a TD = Standard dev ba = Flight intensi aa = Flight intensi C	pplication iation (ca ty on the Son th	n A Galaculation by Quat day of treatment & day of	ttro Pro) setore application after application a			

Document MCP: Section 10 Ecotoxicological studies DLT EW 15



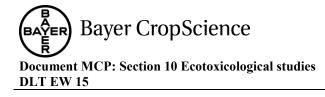

Figure 1: Average flight intensity in the test substance variants DQtamethrin EG 6.25 at 12.5 g a.s./ha (AE F032640 00 EG06 A107) and Deltamethrin EC 25 at 12.5 g a.s./ha (AE F032640 00 EC03 B003), control and toxic standard variant prior to and after application Oba = evaluation on the day of reatment shortly before application Oaa = evaluation on the day of treatment after application

Development & Honey Bee Brood

During the observation period changes and fluctuations in the relative amount of the different preimaginal stages, i.e. egg stage, larval and pupal stage, occurred in almost every colony of the test substance variants, control and toxic standard variant.

When the brood assessment was made 5 days after application, the area of brood and the strength of the colony was reduced in nearly all colonies.

The observed decrease must not be attributed to the influence of the test substances but can be expected, considering that the bees were tept in restricted spaces for 7 days and the limited food supply that would have been available within the small area of crop. The continued presence of eggs showed that the queens survived in all colonies.


Table 9: Brood development of the Deltamethrin EG 6.25 variant at 12.5 g a.s./ha

ole 9: Brood development of the Deltamethr	in EG 6.25 v	ariant at 12.5	5 g a.s./ha Colony 3 2.0 2.0 30.0 7.5 42.5 2 2 2 2 30.0
	Colony 1	Colony 2	Colony 3
Prior to application: 26JUL99			- A
Strength (No. of combs covered with bees)	2.0	3.5	12.0
No. of combs covered with brood	3	2	× ² 2
Average amount of egg stage in %	20.0 🗇	25.0	Ø 30.0
Average amount of larval stage in %	13	25.0 ^O	7.5 🐇
Average amount of capped stage in %	24.0	27:\$	⊗° 42.55
After application: 02AUG99	- Q		
Strength (No. of combs covered with bees)	2	2.5	\$2.5 \$
No. of combs covered with brood			°° 2 ′°
Average amount of egg stage in %	×11.2, ×	2.5 A	<u>Š</u>
Average amount of larval stage in 🖉 🔬	× 6.9	× 7.50 [°]	يري 2.5 ي
Average amount of capped stage h %	×\$* 8. 3 🔊	329.5	S 15.5

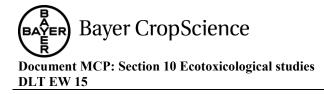
Table 10: Brood development of the Deltamethre EC 25 variant at 125 g a sha L.

	Colony 1	Colony 2	Colony 3
	5° 5	<i>"</i> , 0 [°]	Ϋ́,
Strength (No of combs covered with bees)	\$3.0	3,00	3.5
No. of course covered with brood	\$ 3 8	A A A	2
Average amount of egg stage in %	18,5	016.7	12.5
Average amount of arval stage in %	8.3	n6/7	17.5
Average amount of capped stage in %	21,7 [%]	å≫ 18.3	65.0
After application: 02AUG99			
Strength (No. of combs covered with bees)	\$2.5	3.0	2.0
No. of combs covered with browd		3	2
Average amount of egg stage in %	18.3	6.7	12.5
Average amount of egg stage in %	× 13.3	3.3	0
Average amoun of capped stage in %	18.3	21.7	37.5
	ð í		

<u>capped stage in %</u>

Table 11: Brood development of the control variant

ble 11: Brood development of the control varian	t			a °
	Colony 1	Colony 2	2 Colony	
Prior to application: 26JUL99			- Sa	
Strength (No. of combs covered with bees)	2.5	2.5	3 2.0	
No. of combs covered with brood	2	3	ر ۲	
Average amount of egg stage in %	33.0	100	16	
Average amount of larval stage in %	17.5	1 1 2 7	1 1 2 7	
Average amount of capped stage in %	17.5	1.70	2 15.0 ⁴	
After application: 02AUG99				
Strength (No. of combs covered with bes)	0 [°] 2.5 [°]	2.5	\$ \$2.0	
No. of combs covered with brood				
Average amount of egg stage in	20.0 2 5.0 20.0 2	20.0	3 13.5	
Average amount of larval stage n %	5.40	~ 10.QÛ		
Average amount of conned stage in 0%	, <u>2</u> 0.0		20.0	
ble 12: Brood development of the toxic standard	20.0 20.0	20.0 20.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	
	Colory 1	Colony	Colony 3	
			Q	
Strength No. of combs covered with bees)	× 2.5	&3.0 ₩	3.0	
No. of combs overed with brood	20.0	2,0	2	
Average amount of egg stage in to	20.0 Q 5 12.5 .	200	20.0	
	20.0 2 12.5 2 12.5 2 12.5	20.0	15.0	
Average amount of capped stage in %	12:10	22.5	65.0	
After appleation 02AU 99	<u> </u>			


After appreciation V2AU0999		
Strength (No. Comb covered with Dees) 2.50	2.5	2.5
No. of combs covered with brood	2	2
A grage amount of egg dage in 2 20.0	20.0	10.0
Average amount of larval stage in % 20.0	5.0	5.0
Average amount of capped stage free 20.0	17.5	42.5

Behaviour of the

Directly after application of Detamethrin EG 6.25 and Deltamethrin EG 6.25 the bees were observed rising up of the flowering Rhacelia, but only in the Deltamethrin EG 6.25 variant the flight intensity remained one low fevel on the evaluation day DAA Oaa. Æ,

Conclusion:

The application of both test substances, Deltamethrin EG 6.25 and Deltamethrin EG 6.25, resulted in a

slight increase in honey bee mortality restricted to the day of application (DAA Oaa). An average 97,7 dead bees/colony was found on the day of treatment in the test substance variant Deltamethrin EG 6.25 compared to 38,0 dead bees/colony in the control variant. A clear increase of mortality was observed after application of the toxic standard with a maximum of 549.3 dead bees/colony on the day of application. The effect of the toxic standard demonstrates the sensitivity of the method in detecting the toxic effects of a peticide. When comparing the average pre-application mortality and the average post-application mortality utilizing $Q_{M(average)}$ (average post-application mortality divided by the average pre-application mortality) a slight increase of mortality occurred in the toxic standard variant. The value for $Q_{M(average)}$ was 1.4 in the Deltamethrin EG 6.25 variant. In the Deltamethrin EG 6.25 variant and the toxic standard variant the Coverage value was 1.4 and 33, respectively.

In the Deltamethrin EG 6.25 variant an obvious repellent effect occurred directly after application and on this day the flight intensity (5.9 bees/m²) remained clearly below the level of the control variant (3.4bees/m²). Deltamethrin EG 6.25 variant the flight intensity remained on a high level (12.3 bees/m²) on the day of application. On the following evaluation days thight intensities on the level of the control variant were observed in the two test substance variants.

Regarding the colonies strength and the Bee brood development no abnormal differences attributable to the influence of the test substance were observed between the test substance variants and the control.

Report:	KCP 10,3 1.5/11 ; (1999 ; 1999
Title:	bipact of Decis micro and Decis EC on honey bees- insect proof tunnels on phacelia
	Scrop of the
Document No	Ma 95036-91-1 (Rep. Nov. 999)
Guidelines:	\mathbb{QPB} 120 \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q}
GLP:	yes & A AY & A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

# Material and Methods:

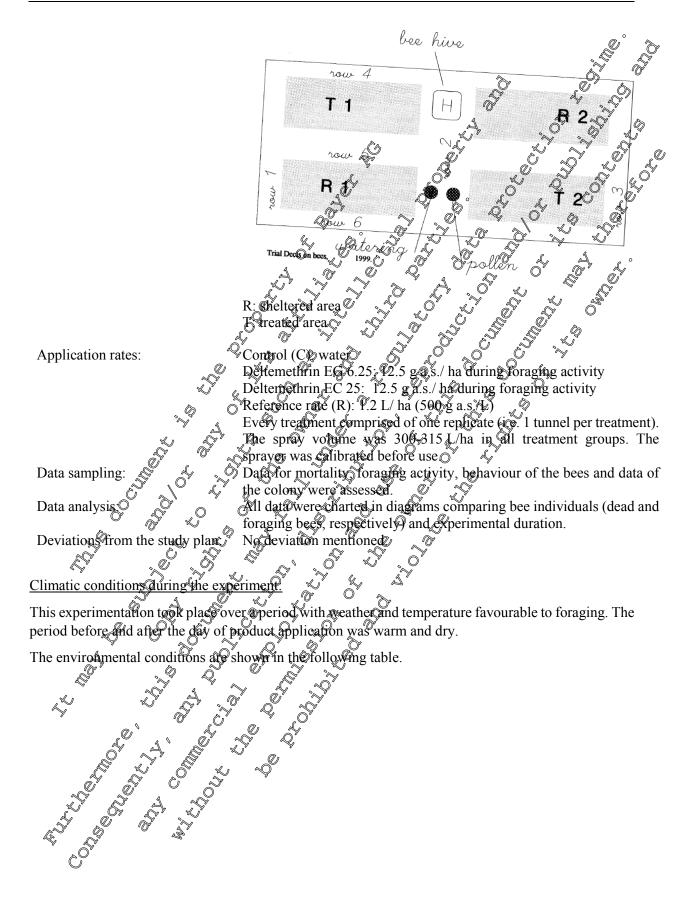
Honey bee colonies (ca 20,000 kees per hive colonies of comparable development, brood, and food store status, queeps of homogeneous internationigin) were confined in tunnels on *Phacelia* fields with additional pollon sources provided. Five dues after introduction of the bees into the tunnels, application was performed. The test substances Decipinicroand Decis EC were both applied at a rate corresponding to 12.5 g f. /ha. Furthermore, atoxic feference and a water-treated control was set up. Treatment was carried out during flight activity of the bees. Endpoints observed were foraging activity, behavior, mortality, and colony development.

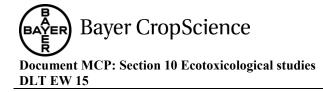
# Findings:

The application of Decis EC, which only slightly disturbed foraging, resulted in a mortality peak the day after treatment, thereafter, daily mortalities were comparable to control. The treatment with Decis EC did not have any further effects. Decis micro showed intermediairy effects, with moderate impact on mortality and restricted to the day after product application.

Apparist visits carried out during the trial allow us to think that all colonies were sufficiently viable to ensure their further development. After the trial, all hives have been returned to professional beekeepers who will put them into use again.

**Material and Methods:** 


BAYER Bayer CropScience


k

# Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Test material	Deltamethrin
Test item:	Deltemethrin EG 6.25 (Décis micro, AE F032640 00 EGQ® A10)
	6.25 % 62.5 g/kg nominal analysed content not stated in the port
	Deltemethrin EC 25 (Décis EC, AE F032646 00 EC03 B00\$25 g a.s./L nominal) Décis micro: 8FES0248 Décis EC: 7CD11324 Zolone Flo (active ingredient: phosalone, 500 g a.s./L nominal)
Batch number:	Décis micro: 8FES0248
	Décis EC: 7CD11324
Reference item:	Zolone Flo (active ingredient: phosalone, 500 g a s/L nominal)
Test organism:	Honey bees (Apis mellifera)
	Bee colonies came from the same apiary containing 1,550 hives allowing
	easy selection of swarms. Among the hives considered seven were
	chosen according to their homogeneity during the weeks preceding the test and three of the hives were infoduced in the tunnels.
	Young honey be colonies with queens from the local black breed which
	were one year old. The queen had a common genetic identity, they were
	sisters for half-sisters) coming from a single strain. The colonie lived in
	hives of the DADANT 12 frames model readjusted to proportions of
	DODANT 10 frames through a feeder frame placed physice on one of the
	sides. The start of the start o
Q	Populations spread over 9 to 10 frames of which approximately 2 to 4
Source:	frames of brood) have been estimated a around 20,000 bees per hive. Not stated in the report?
Source:	Phace the crop of the Phaci variety at flowering stage.
	France
Test unit:	France France Each runnel had a half-moon support made from galvanized steel; the hoops were nailed in the gail and joined with crossbars. The surface per unit was 140 nr (7 m x 20 m) and their roofheight approximately 3
	hoops were nailed in the guil and joined with crossbars. The surface per
	unit was 140 m² (7 m x 20 m) and their roofheight approximately 3
	metres. A polyethylene mesh net (1.2 mm x 1.2 mm) covered the
	supports. Both ends were made up of the same material. Access was
	by de the tunners, the phacekie cron was split into four plots. Each had
	a surface of $36 \text{ m}^2$ ( $2\text{m} \times 8\text{m}$ ) two plots were considered as sheltered
	areas (R1 and R2, not treated with test item), the other two (T1 and T2)
	astreated areas
	A beelove, a voitering place and feeders with pollen were placed in each
	of the tunnels and supplied daily.
	Exact interfor design of the tunnel is shown in the figure below:
A A &	Ş [°] Q
	¥
J Z A J	
Č ^{O*}	Each tunnel had a half-moon support made from galvanized steel; the hoops were nailed in the soil and joined with crossbars. The surface per unit was 140 n ²⁷ (7 m × 20 m) and their roofheight approximately 3 pretres A polyethylene mesh net (1.2 mm x 1.2 mm) covered the supports. Both ends were made up of the same material. Access was possible through a zip opening Boide the tunnels, the Phacehia crop was split into four plots. Each had a surface of 46 m ² (2m x 8m), two plots were considered as sheltered areas (R1 and R2 not treated with test item), the other two (T1 and T2) as treated areas. A beeline, a watering place and feeders with pollen were placed in each of the tunnels and supplied daily. Exact interior design of the tunnel is shown in the figure below:
~	

Document MCP: Section 10 Ecotoxicological studies DLT EW 15





## Table 1: Weather data

25-28/06/99

n and a start of the start of t

	i uata			
	minimum	maximum	Rainfall	
	Temperature	Temperature	(mm)	X R
	(°°)	(°C)		
4 September 9	9 8	28	0	
5 September 9	9 12	29	0	
6 September 9	9 14	27	0	
7 September 9	9 12	24	0	
8 September 9	9 9	28	C 0	4 4 ~ 4
9 September 9	9 9	26	ν O	
10 September S	99 12	28	0 0	
11September 9	39 7	29	0 %	
12 September S	99 12	20	0 Q	
13 September 9	99 10	12 0	27	
14 September 9	99 9	12	<i>≈</i> 10 ×	
15 September 9	99 3	(16 O	N 0 X	
Pesticide history on Only the maintena	of the field site:	e fsystated in the stud	y report and i	is shown in the following table.
Table 2: <i>Phaceli</i>	a crop data		Caracterist	A A A A A A A A A A A A A A A A A A A
Date	Operation		Caracteristi	
Date May / June	on proparation C	Merbicide application and		abed preparation and weed
25/00 44	plot filling	SACI variety at Skg p		

The effects of Deltemethyn EG 6.25 (Decis mero) and Deltemethrin EC 25 (Decis EC) were tested on the honeybee (*Dpis melliferg* L.) under confined semi-field conditions by following the guidance document C.F.B. method no 129. The aim of the study was to evaluate potential side effects of a spray application of Deltemethyn EG 6.25 and Deltemethrin EC 25 on the honeybee, *Apis mellifera* under forced exposure conditions.

alling and watering the plot

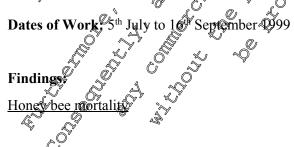
experimental plots

This study included our exposure groups (tunnels) with one replicate each: one water treated control group, two test-item groups, one with Deltemethrin EC 25 and one with Deltemethrin EG 6.25 and one reference) tem group.

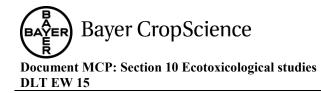
The hives were introduced into the tunnels five days prior to product application, in order to await a mortality decrease and stabilisation. The colonies were comparable to each other during our first visit at

the beginning of the test period, and mortality was homogeneous the first day of the study. Mortality in each tunnel was recorded on a daily basis for all areas covered with plastic film, from days 4D to 6DAT. Moreover, the day on which product application was carried out (day 0) additional counts were done at the end of the day (0DAT) in order to establish possible brutal intoxication of foraging bees. The total mortality rate recorded in a tunnel for a given day results from adding up mortality rates observed in each of the six plasticised rows in the tunnel.

Foraging was observed three to four times per day, whenever possible on all treated (T1 + T2) and sheltered (untreated, R1 + R2) areas. It was possible to adapt the time of counting to the environment of the trial and to active foraging periods. Counts could be shifted if activity was not considered satisfying (late activity due to morning mist or disturbed by painfall...etc.) This parameter was also taken into account for an additional count on the day of treatment (day ), during the hour following product application.


Two colony assessments were carried out in the beginning and althe end of experimentation allowing to evaluate colony development taking into account parameters like the adult bee population the quantity and quality of the brood (dufferent stages observed), amount of reserves and potential construction of new frames on offered wax sheets. These visits were carried our in the tunnels at dates which were as close as possible to the first and last day of confinement. However, for practical or climatic conditions, they necessarily took place within 48 hours before or after intoduction of the hives in the tunnels on the one hand, and when the hives were taken option the other hand.

Assessments of bee behaviour were carried our when products were applied and during the thirty minutes following product application, in general, this observation phase continued all over the day, between counts. Bees were expectedly observed for reactions and behaviour like intense flying, bee clusters on the net of at the entrance of the hive, aggressiveness, beginning of an intoxication etc. in each of the tunnel


The influence of the test iten was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group

The following endpoints were assessed:

- Number of dead bees per day before a well as after the applications in the control, the test item group and the efference item group respectively
- Number of foraging bees/no per day on all the beas (fr, T2 and R1, R2) before as well as after the applications in the control, the test item group and the reference item group, respectively
- Behaviour of the bees during assessment in the control, the test item groups and the reference item group respectively
- Colony Assessment in the beginning and at the end of experimentation  $\sqrt{2}$

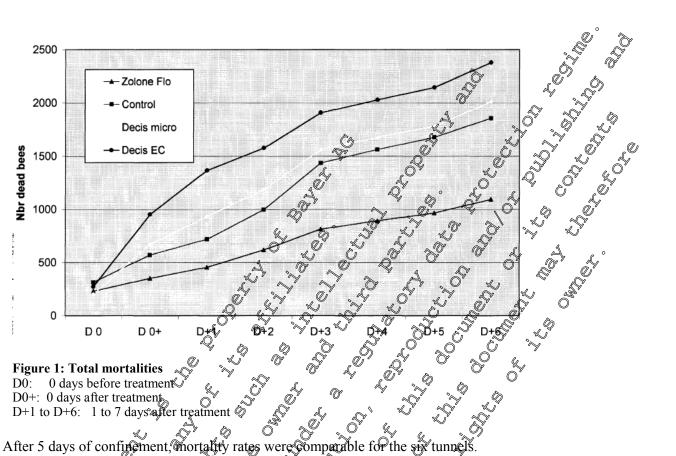


A summary of the daily mortality and total mortality results are shown in the following table.



# Table 3: Daily mortality data

							C.				
Treatment	4DBT - 06 September										
area	row 1	row 2	row 3	row 4	row 5	row 6	total				
Zolone Flo	115	60	147	63	11 🔊		∜471 ∢				
Water control	145	89	276	164	4	131	809				
Deltemethrin EG 6.25	59	72	84 🚕	36	×4	225	°2 <b>8</b> 4				
at 12.5 a.s./ha				þ	<u> </u>	÷.	j (				
Deltemethrin EC 25 at 12.5 a.s./ha	89	51	153	42	S 3		389 ⁵				
Treatment	DBT - 07 September										
area	row 1	row 2	[∞] row 3 _°	1709w 4	y row 5	<b>∧row 6</b> ≪	. N V				
Zolone Flo	106	28	3	21 x	Ŕ	23 🏷	216				
Water control	279	27 0	×24 (	5 40°	63	° 44€	<b>417</b>				
Deltemethrin EG 6.25 at 12.5 a.s./ha	166	22	~~ 65_~~	34	3 65	48 4	\$ 338 \$				
Deltemethrin EC 25	101	Q. in		Ý. 0							
at 12.5 a.s./ha	181	Q 19				Q [*] 455	290				
Treatment	Q,	- ¹ 0		- 08 Septen	ber o		, <del>19</del> , 1				
area	row 1	Fow 2	row 3	row Q	row 5 🏾	row	total				
Zolone Flo	×78 /	225	° 31		Q 7	29	176				
Water control	269	 	j 19 °	40 ~	<u>4</u> ~	 	404				
Deltemethrin EG 6.25					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NO NO					
at 12.5 a.s./ha 🚽 🖉	206	⁹ 19 5			×4 ĉ	S 60	371				
Deltemethrin EC 25	201	ักก	\$ x,	19	0 4 4	60	359				
at 12.5 a.s./ha			\$ ⁷ 55 \$	$\square$		00	339				
Treatment			<b>TOBT</b>	09 Septen	nbør						
area 🏾 🖉	$\sqrt[9]{\text{Pow 1}}$	row 2	©row 3	row 4	🖉 row 5	row 6	total				
Zolone Flo	580	<u>_</u> 38 ~	∀ 396 ³	25 👗	' 4	40	204				
Water control	142	@ [*] 22	<u>8</u> 4 ~	51	3	49	351				
Deltemethrin EG 6.25	~ 63 v	49	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× ~ 0	2	31	212				
at 12.5 a.s./ha		¥		23 23	2	51	212				
Deltemethrin EC 25 at 12.5 a.s./ha	126	لمب ² 32 مي ∞	114	Ö [,] 24	6	53	349				
Treatment $\sqrt[6]{2}$			<u> </u>	» ning - 10 Se	ptember						
area 🔺	rowl	Fow 2	rø¥ 3	row 4	row 5	row 6	total				
Zolone Elo	-Q1	52	2×33	43	3	27	229				
Water control	129	28 .	<del>9</del> 41	89	2	24	313				
Deltemethrin EG 6.25			8								
at 12.5 a.s./ha	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		24	37	6	15	203				
Deltemethrin EC 25 🔬 🕅	<i>.</i>	× 12	60	48	1	22	172				
at 12.5 a.s./ho	\$ 88 \$\' \$	44 * 	60	48	1	32	273				
Treatment of c		,	0DAT even	ning - 10 Se	ptember						
area N R A	Sow 1	row 2	row 3	row 4	row 5	row 6	total				
Zolome Flo 🖉 🗳 👌	39	13	19	23	4	23	121				
Water control	° 64	23	63	71	8	28	257				
Deltemonrin EG 6.25 at 12.5 a.s./ha	88	97	113	145	6	19	468				
Deltemethrin EC 25			1								
Deitemethrin EC 25	108	40	332	131	5	63	679				


# Document MCP: Section 10 Ecotoxicological studies DLT EW 15

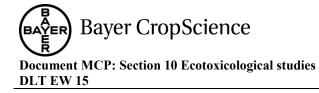
Treatment			1DAT	- 11 Septen	ıber		0
area	row 1	row 2	row 3	row 4	row 5	row 6	total
Zolone Flo	21	22	15	18	4 %	24	1994
Water control	50	12	39	27	6	14	×148
Deltemethrin EG 6.25	50	12					×170
at 12.5 a.s./ha	62	49	88	49	8	8	264
Deltemethrin EC 25	98	22	169 🕅	> 80	×10	30	~A16
at 12.5 a.s./ha	20			<i>,</i> 00	<u></u>	Š a	
Treatment			2DAT	– 12 Septen	nber		
area	row 1	row 2	row 3	row 🌮	apow 5	row 6	total
Zolone Flo	49	28	<i>©</i> 34	28 .	Ø 3 ×	24	2 163
Water control	119	30 🐇	3 <b>&amp;</b> °	40 ≪	70	Q°42 📎	2700
Deltemethrin EG 6.25	70		Q.		~~~ (i	A 16	- A
at 12.5 a.s./ha	73	66			0-3		253
Deltemethrin EC 25		K Y			1		
at 12.5 a.s./ha	62	\$ <del>2</del> 7 .^	y 40 y	J ^{O32} J	,″,4 <u></u> ♥	≪43 √	208
Treatment	(		 SJDAT	¥ 13 Septen	nber .		
	<u> </u>		$\sim$		di an		
area	row 1	row 2	row 3	<b>tow</b> 4 (	rows	row 6°	<b>total</b>
Zolone Flo	85	<u>k</u> 20 V	16	@~30 [~]		04k	196
Water control	<b>\$9</b> 4	× 32	_ ¹ 27 ^	∀ 2,500 [™]	© 13	50°	441
Deltemethrin EG 6.25	114	, Č	2 20 O	52 ~	2 200	.©47	276
at 12.5 a.s./ha	© 114°	a can				× 4/	376
Deltemethrin EC 25 at 12.5 a.s./ha	123	ç 42 Ö	Å4 "	0 [°] 43%	16	85	333
Treatment			² 4 <b>P</b> ÀT	102 Santan	o s		
area	row 1	row 2	4BAT	– 14 Septen	ander 0 Arøw 5	row 6	total
Zolone Flo	$\bigcirc 31$ $\bigcirc$	260			2	9	79
Water control	₩ 78 _{&amp;}	17 .			$\frac{2}{2}$	12	126
	<u> </u>	$\mathbb{A}^{1/}$			, 2	12	120
Deltemethrin EG 6.25 🔬 at 12.5 S./ha		\$ ⁹ 49			2	14	115
Deltemethrin EC 25 at 12.5 a.s./ha	€ [~] 40 €		8%	Å14	4	27	120
Treatment		Ö ×	۵. SDAT	♀ ¥15 Septen	nber		
			 ∑row3,			NOW L	total
area 🔊 🗸		row 2	<u>, rows,</u> 2	<b>row 4</b>	row 5	row 6	total
						7	72
Zolone Flo	9° 360'	ANJ O			1	10	117
Water control		0 5 7	, Y	13	2	13	113
Water control Deltemethrin EG 6.25 at 125 a.s./ha	2 3 40 ~~				2 4	13 2	113 103
Water control Deltemethrin EG 6.25 at 1,25 a.s./ha	2 3 40 ~~			13 16	4	2	103
Water controlØDeltemethrin EG 6.25at 12:5 a.s./ha	40 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			13			
Water control Deltemethrin EG 6.25 at 12.5 a.s./ha Deltemethrin EC 25				13 16	4	2	103
Water control Deltemethrin EG 6.25 at 1253 a.s./ha Deltemethrin EC 25 at 12.5 a.s./ha Treatment	40 0 68 68 rgiv 1	2 18 49 0 5 7 0 18 49 18 49 row 2		13 16 6	4	2	103
Water control Deltemethrin EG 6.25 at 1253 a.s./ha Deltemethrin EC 25 at 12.5 a.s./ha Treatment	2 3 40 ~~		1 6DAT	13 16 6 - <b>16 Septen</b>	4 2 nber	2 21	103 116
Water control Deltemethrin EG 6.25 at 12.5 a.s./ha Deltemethrin EC 25 at 12.5 a.s./ha Treatment	40 40 68 68 roiv 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>row 2</b> 29	6 <b>6</b> <b>6</b> <b>6</b>	13 16 6 - 16 Septen row 4 14	4 2 nber <u>row 5</u> 3	2 21 <b>row 6</b> 11	103 116 total 127
Water control Deltemethrin EG 6.25 at 12.5 a.s./ha Deltemethrin EC 25 at 12.5 a.s./ha Treatment area Zolone Plo	40 0 40 0 68 68 68 68 68 68 68 68 68 68	<b>row 2</b> 29 32	1 6DAT row 3 6 11	13 16 6 - 16 Septen row 4 14 39	4 2 nber <u>row 5</u> 3 3	2 21 <b>row 6</b> 11 13	103 116 total 127 181
Water control     Ø       Deltemethrin EG 6.25     at 12.5 a.s./ha       Deltemethrin EC 25     Ø       at 12.5 a.s./ha     Ø       Treatment     Ø       Zolone Flo     Ø       Water control     Ø       Deltemethrin EG 6.25     Ø       area     Ø       Zolone Flo     Ø       Deltemethrin EG 6.25     Ø       at 12.5 a.s./ha     Ø	40 40 68 68 roiv 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>row 2</b> 29	6 <b>6</b> <b>6</b> <b>6</b>	13 16 6 - 16 Septen row 4 14	4 2 nber <u>row 5</u> 3	2 21 <b>row 6</b> 11	103 116 total 127
Water control Deltemethrin EG 6.25 at 12.5 a.s./ha Deltemethrin EC 25 at 12.5 a.s./ha Treatment area Zolone Plo Water control Deltemethrin EG 6.25	40 0 40 0 68 68 68 68 68 68 68 68 68 68	<b>row 2</b> 29 32	1 6DAT row 3 6 11	13 16 6 - 16 Septen row 4 14 39	4 2 nber <u>row 5</u> 3 3	2 21 <b>row 6</b> 11 13	103 116 total 127 181

DBT: days before treatment

DAT: days after treatment

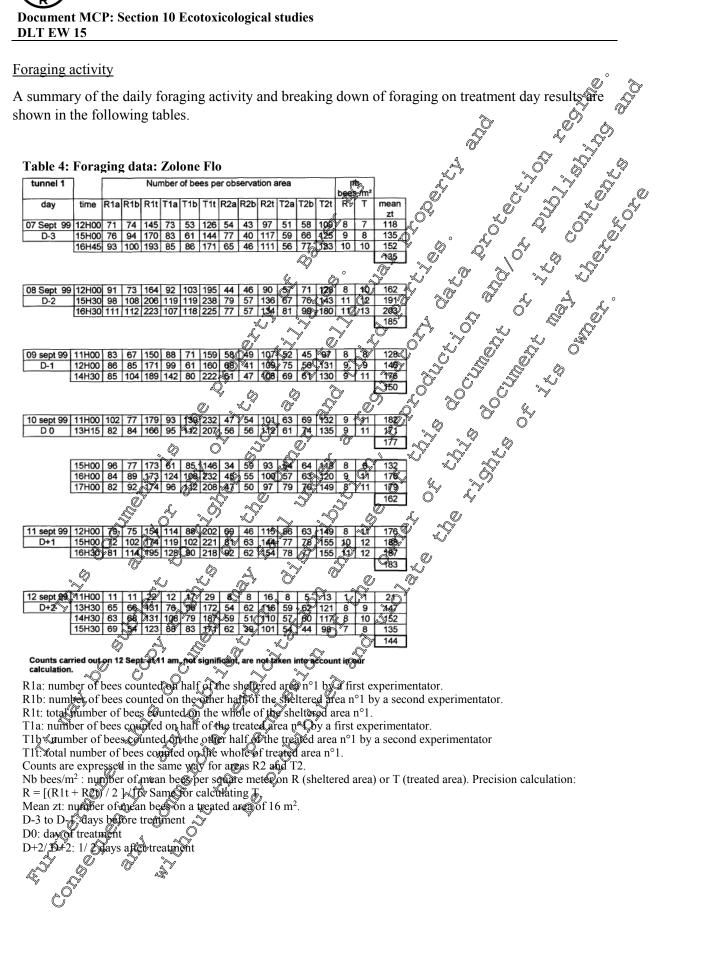
# **Bayer CropScience Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

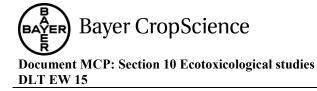



The day after the treatment mortality trends showed quite some differences. Only the Deltemethrin EG25 formulation showed a very distinct mortality peak at DAT. This phenomenon was very spectacular but also very brief. From 2DAB the mortality rates pecorded in this tunnel litterally dropped to clevel which was lower than the one from the pre-treatment phase and remained very low until the end of the tests

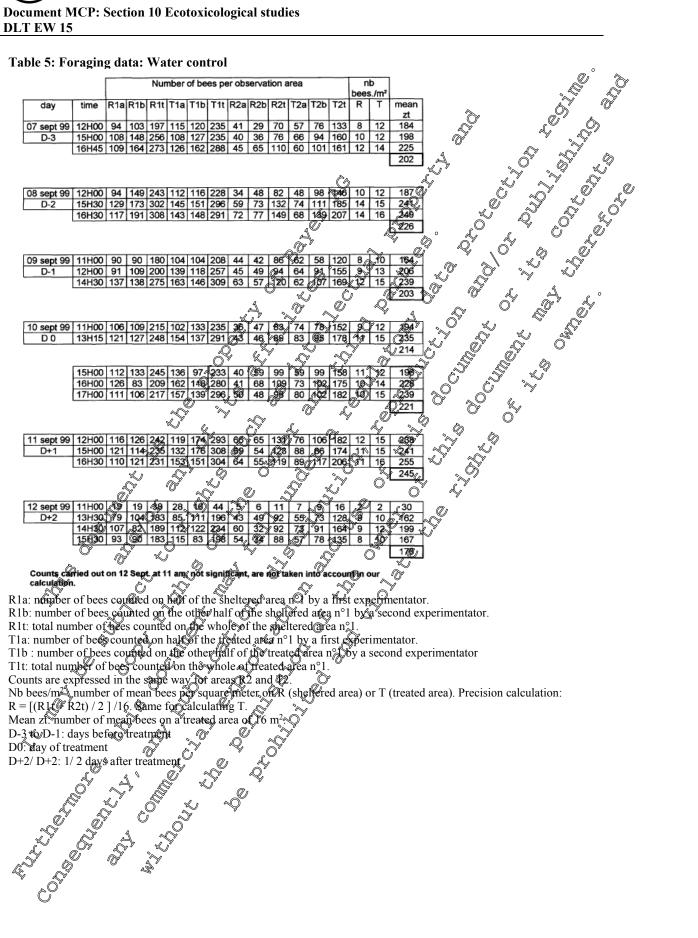
On the other hand the standard tunnel Oreated, with phosalone showed the least variation in daily mortality, maybe because this colony was less active. In the control tunnel treated with water the colony was stronger, but it was not disturbed by a water treatment. Mortality rates recorded varied because the colony's actively was ruled by climatic conditions? This variation was limited and gives an indication of mortality rates in other tunnels.

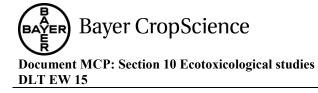
The speciality Deltemethrin EG 6.25 showed an intermediary mortality rate the day after product application between that of the control and Deltemethrin EC 25. This increase mortality was not very high, and it is remarkable that levels of mortality at 2DAT showed the same order of magnitude in the four tunnels.


The graph confirms that portality rate trends are similar in the two tunnels: Deltemethrin EG 6.25 and the water control. Daily mortably rates evolve in the same way and only start showing differences from 1DAT orwards No spraying effects were observed in the standard tunnel, but they were obvious in the Deltemethrie EC 25 tunnel

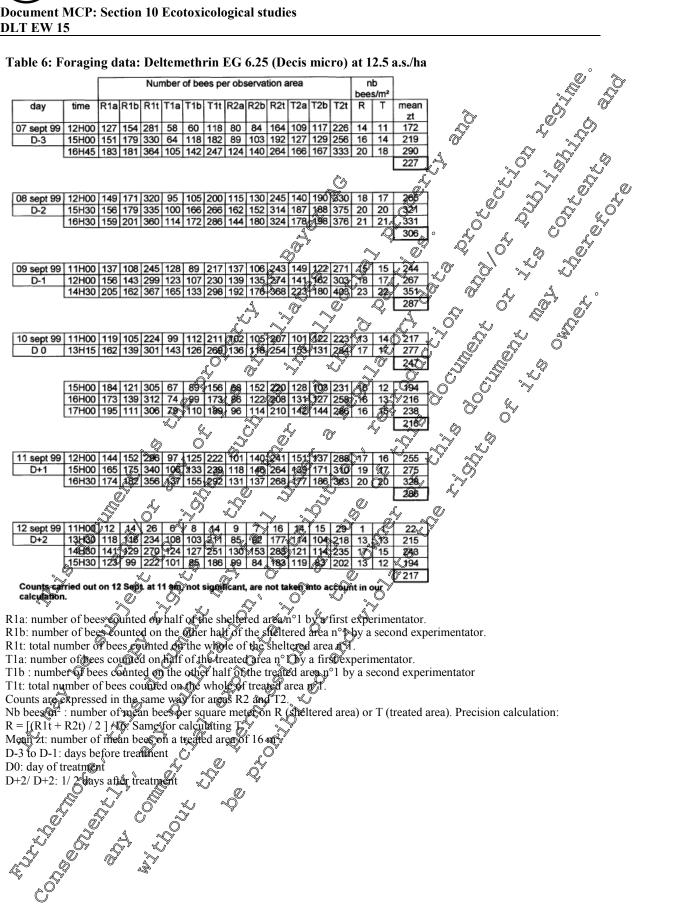

Distribution of dead bees within the tunnels did not give any additional information. This distribution was mainly influenced by wind and maybe by the sunlight guiding the bees, because most of the data were recorded in the rows at both ends of the tunnels (A1 or A3).

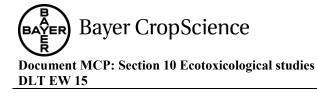



# Foraging activity


A summary of the daily foraging activity and breaking down of foraging on treatment day results are shown in the following tables shown in the following tables.



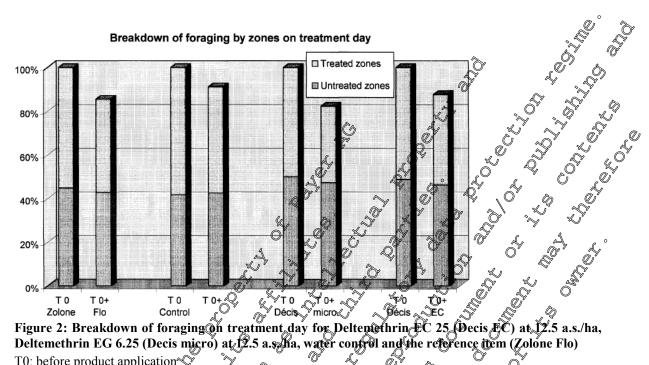




## **Table 5: Foraging data: Water control**





## Table 6: Foraging data: Deltemethrin EG 6.25 (Decis micro) at 12.5 a.s./ha






# Table 7: Foraging data: Deltamethrin EC 25 (Decis EC) at 12.5 a.s./ha

Table 7: I									<u>`</u>			,	_ ,			1	
				Nur	nber	of be	es pe	er ob	serva	tion a	rea			n bee	ib s/m²		
day	time	R1a	R1b	R1t	T1a	T1b	T1t	R2a	R2b	R2t	T2a	T2b	T2t	R	T	mean	י אַ אָ
07 sept 99	12H00	161	140	301	137	157	294	127	122	249	145	122	267	17	18	281	
D-3	15H00	161	130	291	145	153	298	162	126	288	142	147	289	18	18	294	
	16H45	164	149	313	162	169	331	156	120	276	138	138	276	18	19	304 293	
													Ô				
08 sept 99	12H00	137	175	312	147	127	274	163	158	321	154	163	317	20	18	1996	л <i>б</i> . Э́. У́. А́
D-2	15H30	177	180	357	179	192	371	193	183	376	187	1/86	373	23	23	372	
	16H30	161	177	338	152	202	354	184	186		187	181	368	22	1.Og	361	
										Ŕ	°"			$\sum$	1	Č. O.	
09 sept 99	11H00	133	123	256	176	150	326	177	149	326	172	°	287	<i>"0"</i> P18	19	₩ ¥ 307 \$	
D-1	12H00	147	146	293	175	152	327	181	132	313	189	141	324	19	20	3260	P & A
	14H30	199	142	341	181	148	329	186	166	352	214	162	376	22	22	353	
								Ľ	Ĵ°			$\searrow^{7}$	, (	ð.	Å		
10 sept 99	1100	115	04	209	129	129	258	<u>()</u>	Talka	213	125	79	Noc1	13		234	Y Q Q O
D 0	13H15	133	156	289	163	172	335	171	149	320	191	112	303	19	20	309	
			_			Ĩ,	) )	-  }-	"U"	Re -		~		S	,	275	
	15H00	140	139	279	151	133	284	1147	152	299	114	117	23	18	TAG	258	
	16H00	138	144	282	144	170	314	155	159	314	142	121	263	19	18	289	
	17H00	161	135	296	10/	ć	245	161	4,753	314	121	1127	248	1.9	15	264	
					)	© م	<i>y</i>	n n n n n n n n n n n n n n n n n n n	r 4	¢,	Å	, √		^	×		
11 sept 99	12H00	112			12	1137			~	254	0	108	1266	16	17	265	Ť . Ő
D+1	15H00	129	404	273	1038	162	300	149	173	322	151	169	320	19	19	310	
	16H30	132	<b>9</b> 74	306		. 0.	¥308	109	5 <b>  182</b>	34/	160	130	300	20	19 19	293	() ()
		õ			Å	,~~` 1	6	~	$\sim$	¥.	j~	N.	J.	,	Ĭ	 	No. Contraction of the second s
12 sept 99		17	0	36	25	15	<b>Q</b>	25	12	37	19	Î			2	<i>a</i> 34	7
D+2	13H30	105	080	185	127	126	253	118	122	240	106	103	209	<b>P</b> 3		231	1
2/	44H30 15H30	102	138	240	133	123	256	1112	131	255	126	137	263	15		260	
Ê,	, ,		a	9	ŐŇ	/	Š		0	(	$\cap^{\mathbb{Y}}$	2	ູ້	(	)	249	]
Counts ca calculation	rried out 1.	on 1 ~	2/Sep	it. at 1	't≽am ∕	, not	signi	ficar >>>	, are	not ba	ken i	nto a	ccou	nt invi	our		
R1a: numb	er of be	and the second s	» ninte	éÅon	half	Å tl		altar	edsa	ea n'	) 1 by	)) ∕afi	rst	neri	ment	tator	
R1b: numb R1b: numb R1t: total n	er of be	es co	ounte	d on	tho	othe	r þaft	foft	hêst	nelter	ed a	rea p	S b	y a so	econ	d exper	rimentator.
R1t: total n	umber	of be	Sci	ounte	(bn	thể	whol	e of	the s	helte	red a	irea	n°1.				
T1a: numbe T1b : numb	er or be	es co ees co	ounte	ed or	fiant the	or is	r hał	tof	the the	atec	by a 1 are	uursi arn°1	expe bv a	a sec	entat	or. exnerir	mentator
T1t: total ft	ðmíðer og hende af se	of be	eş 🖉	ante	domĵ	the '	whol	e of	treat	ed ar	ea n'	°1.					
Counts are	express	ed ir	1 the	same	war	y for	area	s R2	and	T2.	) balt	arad	oroo	lor 7	Γ (tra	noted or	rea). Precision calculation:
$R = \begin{cases} R & 1t \\ R & $	· R2t) /	2 D-	3  to	D.T.	davs	bef	puare ore tr	reatin	nent/		sneno	ereu	area	01	I (uc	aleu al	rea). Frecision calculation.
DO. Jan af	+ +	4		9	9	, ,	Ø	,	S	J							
D0: day of D+2/D+2:	1/2 da	∮s af	ter tr	eatm	œţ"	4	S		Q.								
]/16. Same Mean zt: nu	TOR Gar	uumaa		1. ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	reate	ed ar	anot	16 r	n ²							
D-3 to D-1	days b	¢¢re	e trea	amer	nt 🔏	5		¥									
D0: day of $D+2/\mathbb{R}^{+3}$ .	treatme	int	121-	aatm	O Sat												
D+2/19592.	1/ 4044.	ys al	Şî yî	Satty S	gni												
D0: day of D+2/ D+2:	Ş	"0		Ŝ													
Ű "Ô	Í																
$\bigcirc$																	

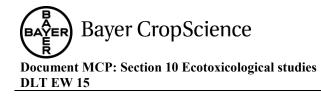
# BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15



T0: before product application T0+: after product application

At the beginning of the experimental phase, following introduction of the bee haves in the tunnels, bees foraged floral buds wite actively. Wean daily thresholds of 8 to 20 bees per m⁴ were reached during the three days before product application.

During the three counts that followed product application, mean oraging trends were different between tunnels. Foragers' activity was slowed down following product application in all tunnels where test products or standard products were used.


In the control tunnel, where water spraying did not disturb the foragers' activity, on the contrary, it slightly increased apring the day,

Following products applications, for aging activity evolved comparatively between Deltemethrin EG 6.25 tunnel, Deltemethrin EC 28 and reference tunnel. These three specialities disturbed foraging, at least temporary but didn't stop it. In fact this activity slowed down but stayed at comparable levels than earlief.

In all tunnels, foraging threshold oremative duite high the day after product application (1DAT), at comparable levels to those obtained over several days, always between 11 and 20 bees per m² on average, with even higher activity peaks during the day in the most favourable conditions.

On 2DAT, acceptable overall weather enditions during the day were beneficial to the bees, but their activity started to reduce in the six tunnels in spite of the colonies' vitality when clouds and temperature started to degrade (rainy storm on 3DAT).

Afterproduct application (0DAT, during the thirty minutes following product application), none of the tunnels showed increased activity, this explains levels under 100 %. It is, however, preferable to talk about relative foraging stability in most of the tunnels because differences are not significant.



# Colony Assessment

There was little difference concerning the structure of the colonies between the two visits. The state of the reserves and proportions of the brood remained stable, but nectar flow from the Phacelia gaused blocking in egg production. After eleven days confinement this colony had no brood, neither open or capped, because foragers had concentrated on storing reserves (+ 1 or 2 frames). This phenomenon could also be observed with other colonies in the control and Deltemethrin EG 5.25 tunnels, These colonies had frames with capped brood, but no more uncapped brood or eggs, implying probable intersuption of egg-laying by the queens.

All the frames had been built in the beginning of the tests, there were only a few way bees and their main role was to maintain the wax cells. In the other hives the queens communed daying eggs, but populations did not grow. The very significant foraging activity, however should have encouraged colony growth. Reserves only increased slightly during the tunnel confinement phase, so most of the activity was justified by the needs for food of this cology. The high foraging activities observed on experimental plots depended on the size of the swarms contained by those higes

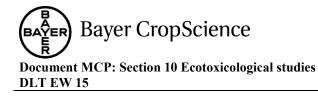
Even though bees died every day, their deaths were compensated by the emergence of new bees on the brood frames, and populations decreased only little during the test.

# Behaviour of the bees

Colony behaviour was comparable between tunnels, as foraging was quite regular on Phacelia plots. Colonies in the different tunnets only showed httle raction treatments, if it wore not for flying away when the boom with water passed by. O  $\bigcap$ 

In the standard tunnel, a characteristic Zolone smell appeared after treatment and remained for several hours. A few intexication signs also appeared and were more frequent by the end of the day, but did not have any consequences on the next day (1DAT).

Activity at the hive entrance was normal in a six tunnels. No becclusters were observed on the nets nor at the hive entrance and no fleeing events wer observed in any of the tunnels.


Intoxication symptoms: description had to be compared to what happened in the standard tunnel. Foragers in contact with the product were the ones that were affected first. In Deltemethrin EG 6.25 and Deltemethrin I 25 Onnels, some bees were of the ground after treatment and they had typical intoxication signs, similar of phosalone.

In these tomnels, intoxicated bees fell on the plastic surface of the rows, walked in a difficult way alternating periods of sluggishness and frenzy. Such a bee rolled over itself and appeared too heavy when trying to lift off. Its fore legs there its hird legs and abdomen appeared to be paralysed. The bee died in a range from a few minutes tog few hours.

# Conclusion:

Overal conditions for conducting this experimental phase of the scheme were favourable to bee activity. Climatic and crop conditions were satisfactory. The different parameters observed agreed with the results obtained.

On this trial, Deltemethrin EC 25, which only slightly disturbed foraging, yielded a strong mortality increase, which was characterised by a very clear peak at 1DAT. It did not have any further effects.



Deltemethrin EG 6.25 showed intermediary effects, with moderate impact on mortality and restricted to the day after product application.

Under the experimental conditions of this study, the phosalone standard behaved similarly to the control and only had a limited effect on the behaviour and the development of the bee colony.

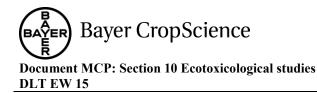
Based on apiarist visits carried out during the trial the viability of colonies was considered sufficient for their further development.

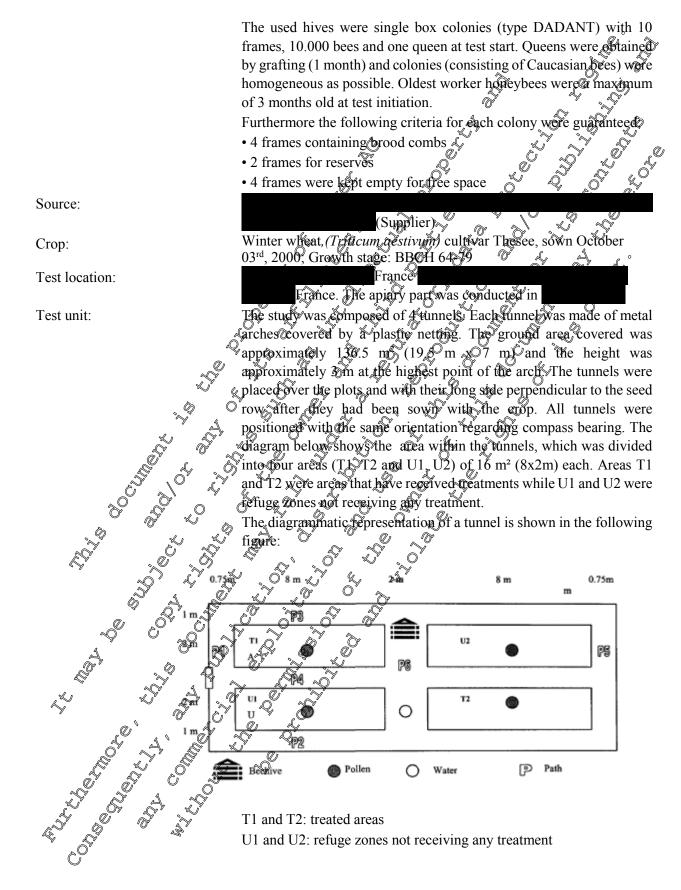
Experimental conditions of the study were quite strict, including commement and product application carried out during intense foraging activity, on very attractive plots. Only the use of Deltemethrin EC 25, gave a high mortality peak the day after treatment and then daily mortalities were comparable. The effects of the other trial substance, Deltemethrin EC 6.25, only showed a temporary increase in mortality yielding comparable total mortality rates to these recorded in the control turonel.

Report:	KCP 10.3.1.5/52, 2001 2 0 0 2 2
Title:	Tunnel test - Acute and short term effects of AE 1032640 00 E& 01 B106, applied on
	cereals, on Groney bees (Apis mellifera K)
Document No:	<u>M-203985-01-4</u> (Rep. 06.: SQ AVB 879VO45)
Guidelines:	EPPQ 970, (1992), GEB 120
GLP:	yes A a a a a a a a a a a a a a a a a a a

# Material and Methods:

Material and Methods:


Bees were confined within tunnels on winter wheat helds (coreals prayed with sugar solution in order to provide food resources to the bees). After an acclimatization prase of four days, application was performed during bee flight. The control was treated with water, the test item was applied at a rate of 0.417 L/ha as a non-toxic standard, Zolone Flo was used at a rate of 1.2 L/ha. The test substance treatment was twice replicated, control and standard once. Endpoints assessed were mortality, foraging and flight activity, storage of honey and pollen, behavior, and brood development.


# Findings:

Mortality and flight activity in the test substance treatment were similar as in the non-toxic standard. Foraging activity was not or only very dightly affected by the test substance treatment on the treated as well activity the refuge areas in the tunnels Likewise, no effects on the behavior were detected. Brood development was not affected by the test substance treatment as well.

N

Test material of of of	Deltamethrin
Test item:	Deltamethrin EW 15 (Decis 15EW; AE F032640 00 EW01 B106):
	content of a.s. deltamethrin: 1.51 % w/w
Batch number:	TA 161/99 PM
Reference item:	Zolone Flo SC 500 (500 g a.s./L nominal, analysed content: 499
	g a.s./L)
Test organism:	Honey bees (Apis mellifera L.)



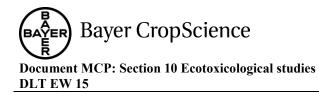


Bayer CropScience

# **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

	Areas were separated from each other by a path for observation. In each tunnel one hive was placed and assignment to tunners was randomised.
Application rates:	Control (C): Mineral water ("Cristal Roc")
	Treatment rate 1: 0.417 L/ha (6.255 g a.s. ha) during for aging activity
	Treatment rate 2: 0.417 L/ha (6.255 g, a.s./ha) during Oraging activity
	Reference rate: 1.2 Lata (600 g a.s $fa$ )
	Every treatment comprised of one replicate (i.e.) tumel per treatment).
	treatment).
	The spray volume was 300 L/Ma in all treatment groups. The sprayer
	was calibrated on the days of application. The deviation reached a
	maximum of 8.33%. Data for mortality, foraging activity, duration of power syisits,
Data sampling:	Data for mortality, foraging activity, duration of hower wisits,
	behaviour of the beer and data of the colony were assessed.
Data analysis:	Linear regression analysis using STAT TTCF was done to compare the
	mortality of the bees during the acclimatisation phase and the mortality
ø	$\circ$ of the bees during the exposure period. $\circ$
Deviations from the study plane	One deviation was recorded in the study report. This deviation had no
- P	impact on the study because only the batch number was changed. The
Ø (	product was fill Deers 15EW.

# Climatic conditions duting the experiment:


The environmental parameters resorded were within the normal range for the region. No dramatic weather conditions such as storms or violent winds occurred during the study period. The environmental conditions are shown in the table below.

Ĵ,

Ô

	, Ø		4 . ~		, 0 x
Table 1:•F	feld conditions	, ,	A S	"O"	O T
2G	relld conditions	S i		- ⁶	
Data	Temporature	Tomerkt	ire Relati		
Date	1 chiper actin c	A compensation	ILÉ OKCIAN	e air	Raijijan
	MIND	Maxr~C	huron	uty ‰	~mm
1			0 Mini	lity % Maxi	Kanyali Amm S ⁴ -
01.06.01	9.1 0	0 21.7	06 .	85	<i>0</i> * -
02.06.01	9.4		0 ⁷ 46 0		0.2
	1	392	J BO	95	-
04.06.01	6.1 🔍 🖓		O NO	°~97	-
05.06.01	9.8	4 25.0		<b>Q 88</b>	-
06.06.01	1030	210	51	92	-
07.06.01		21.6	¥ 450 [×]	93	2.8
08.06.01		20.1 21.1	ÿ - 🕵	97	0.2
09.06.01	\$ 85 4	20.1	46	89	-
10.06.01		21.1	28	82	-
		22	31	96	-
12.06.0	090	25.6	31	97	-
13.06.91	2 10.2	262	26	86	-
14096.01	2 10.2 A 1265	24.2	39	99	10.4
<b>21306.01</b>	12.5 4	25.6 262 242 208	53	99	0.6
× . Ô ^y					
Õ					

Ò

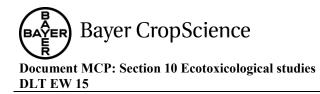


# Pesticide history of the field site:

Previous pesticide history of the test site is listed in the table below.

# Table 2: Pesticide history of the field site

Year	Crop		P	esticides	Citien 2
		Herbicides	Fungicides	Insecticides	Other
		Name(a.i), rate	Name(a.i), rate	Name(all), rate	Name(a), rate
		Célio+Agral	Unix	Gaucio blé _C	Berpal
2000	Winter	(clodinafop+cloquintocet)	(cyprodinil) 1kg/ha	(imidacloprid+instanol+anthraquingre (m	enguat+éthestion)
	wheat	0.6+11/ha	Marathon	0.40/100kg seeds	
	(Thésée)		(cyproconazol.+	Karate (lambda cyalothrais)	C V
			chlorothalonil) 21 ha	~ 0.1⊘1/ha <♀ 、♥	Name(ax), rate 2 Terpal ( catigutat+éthersion) 21/ho 4 4 4 4 4 4 4 4 4 4 4 4 4
		Gesaprime auto		Gaucho O (innidacionit) O (0/1/50(6) seeds Käisate (lanida-cyalonine)	
1999	Corn	(atrazine) 21+0.81/ha		(imidacloprit)	<b>^</b>
	(Anjou 285)	Mikado (sulcotrione)		C 00/71/50089 seeds 0	
		0.71/ha		Karate (lamoda-cyalo(none)	
		Starane 200+Allié	Alto 100SL (cyprocorezol)	Garate vert Garate vert (ambie cyalothree) 0.1255 na Charate vert Charate vert Ch	Cycoce C5
1998	Winter	(fluroxypyr+metsulfuron-	🖓 (())%1/ha 💭	(lambde cyalothr 6) 0.125 ha	(chlormequat
	wheat	méthyie)	Caramby		slorur@chlorure.de Koholine)
	(Cézanne)	1L+0.015kgl/ha	(metconazole) 0.8 ma		°∕∀ 2L/ha
		Chardex	(meticonazole) URANA V		v 20/10
		(clopynalid+ioxymit+seco-	N N		
		21.1ha &			


The aim of the study was to evaluate potential side effects of a spray application of Deltamethrin EW 15 on the honeybee, *Apis meltifera* under forced exposure conditions.

This study included four exposure groups (tonnels) each one tap water treated control group, two testitem groups and one reference item group. In all exposure groups, the groups was sprayed 4 days after setup of the fives in the tunnels (Acclimatisation phase) ac BBC16 67 - 68 (full-flowering), during honeybees actively for ging of the crop under confined conditions. The honeybees remained 13 days in the tunnels.

Depending on the weather conditions the observations were conducted for a 7 day period following a 4day adaptation period of the loves to the confinement. At the end of this 7 day period the exposure phase of the study was stopped and beenives returned to the apiary.

The assessments of the number of an dead bees were performed in each tunnel, each morning during both the adaptation period of the hives and thereafter until the end of the test. For each tunnel, these daily assessments was performed commencing one 07 in the morning and subsequent daily assessment was conducted at approximately the same time for each tunnel each day. During each assessment all dead bees were collected in the 6 paths and is the dead bee trap (the bees collected from each of the path areas 1 to 5 pere pooled).

The assessment of the foraging activity were performed only on those days when the weather is such that honeybees are likely to be foraging. Counting was done over the whole of the zone by assessing the number of bees passing at area of 60cm wide, whilst walking at a normal speed down the side of the zone. The foraging activity of the bees was expressed as the number of bees observed separately within each zone on each assessment. After the adaptation period of the beehive, the foraging activity was evaluated twice a day at regular intervals (starting around 10 a.m. in the morning and 3 p.m. in the

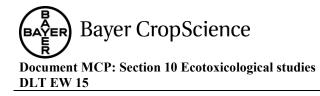


afternoon). In addition, the day of treatment foraging activity is assessed around 15 minutes before treatment and around 15 minutes and 1 hour after each treatment.

The assessments of the number of bees leaving and entering the hive were performed within each funnel and were recorded over a five minutes period. In order to avoid any mistake, counting of bees entering the hive was done for a 150 seconds period, then counting for bees leaving the hive for a 150 seconds period with another second sequence of 5 minutes.

The duration of flower visits by the bees was performed by recording the time (increased) that 45 different bees forage over 15 different attractive plants (This was done for 15 bees with a maximum time of 90 seconds in order not to delay the following assessments). The plants chosen for the assessment were chosen without conscious bias from those available within each tunnel.

Behaviour of bees was observed during assessment of bee morality, foraging actively and control of the colony. Bees were observed for abnormalities like aggressiveness intensive flying without landing on the crop, moribund or severely affected bees, bee accumulation at the beehive entrance, trendsling, bees no longer producing pollen balls, etc..


The following endpoints were assessed

- Cumulative number of dead bees before as well as after the applications of the control, the test item groups and the reference item groups respectively
- Number of foraging bees per zone (TI,  $\frac{1}{2}$  and UI, U2) and number of bee/  $m^2$  in each tunnel before as well as after the applications in the control, the test item groups and the reference item group, respectively.
- Number of bees leaving and entering the beehives and duration of lower visits in the control, the test item groups and the reference from group, respectively
- Behaviour of the beeoduring assessments assessment in the control, the test item groups and the reference item group, respectively
- Number of bees knying and entering the hives in the control, the test item groups and the reference item group, respectively
- Duration of flower visits in the control, the test item groups and the reference item group, respectively
- Control of the cotony with the following criteria examined weight of the empty frame introduced into the centre of the hive, for both sides of each figme the percentage frame surface area containing honey, for both sides of each frame the percentage frame surface area containing pollen, for both sides of each frame the sercentage frame surface area containing eggs, for both sides of each frame the percentage surface area of brook (young and old larvae) in each frame and % of capped and uncapped alveolus as well as the health of the queen.

5th June to 22th June 2001 Dates of Work:

**Findings:** 

A summary of the daily mortality (cumulated dead bees) is shown in following table.



											0.	° 🔈
		unnel No			unnel No			innel No.		Tu	nnel®o	. 4 🖉
	Delta	methrin I	EW 15		Deltamethrin EW 15			Zolone Flo			Ň	. 4
	a	6.3 g a.s.	./ha	a	6.3 g a.s.	./ha	<i>@</i> 6	500 g a.s	./ha	(	Water	5
Date	Males	Workers	Total	Males	Workers	ATotal	Males	<b>Wörkers</b>	Total Total	ČŶ Mary	workers	Total
07.06.01 2DBT	10	1105	1115	11	933	\$⁄944	3 (Ĉ	607	Ra	Â,	630	¥4,56
08.06.01 1DBT	18	1220	1238	15	1160	1179	~13 、	<b>9</b> 76	\$789 C	110		¥1325
09.06.01 0DBT	18	1243	1261	19		1226	23	809	820	Ì4	1345	1359 °
10.06.01 1DAT	19	1375	1394	26	1439	1461	23		» 987 ⁽⁽	25.8	1376	1400
11.06.01 2DAT	20	1590	1610	©58	¥789	$\sim$	250 · 0	1085	birio	28	DA53	1481
12.06.01 3DAT	20	1760	1786	670°	1988	2055	26	<del>م</del> 1276 ک	Ĉ	385 385	1517	1555
13.06.01 4DAT	20	1835		² 75	Ž153	2228	3.00	1431	261	\$ 57	1561	1618
14.06.01 5DAT	20	1973	1983	Ľ	2341	2438	33	1669	1700	61	1644	1705
15.06.01 6DAT	20	2037	2057 g		\$2426¢		\$5 0	1771 (1771	<b>0\$</b> 06	61	1683	1744
BT = days h	afara trad	ant. D	UNT - day	a afi@a to	reatment	K.	<u> </u>		~			

# Table 3: Cumulated dead bees during the study period (only males and worker-bees considered)

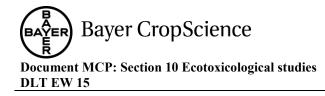
DBT = days before treatment; DAdays after treatment

on bee mortality was similar to the effect on the bee mortality of the The effect of Deltametorin EW ss whether tunner of the two treatment groups (No. 1 or No. 2). non-toxic standard Zoloi

Deltamethrin EW 55 had no or very Hmited offect on the toraging activity in the days following the treatment on both treated and sefuges areas



Table 4: Number of bees foraging in the treated zones (T1, T2) in the different tunnels: water control, 0 Deltamethrin EC 15 (AE F032640 00 EW01 B106) and Zolone Flo. Ø)


Assessment date		Number of be	es/m² (means)	
(Day/month/hour)	Tunnel N°4 Water	Tunnel N°1 AE F032640 00 EW01 B106	Tunnel N°2 AE F032640 00 EW01 B106	Tunne N°3 Zolane Flo
08/06 - 14h45-15h05	4,00	3,08	2,47	3,44
08/06 - 16h57-17h21	3,81	3,28	2,66	0° 2,536 y
09/06 - 10h01-10h24	3,84	3,63	2,69	2.44
09/06 - 10h52-11h37	3,44	5,05	<b>2</b> ,88	Č 326 0
09/06 - 11h45-12h25	1,78	1,28	_O`\$0,47 🔣	~0,52 ~ "O
09/06 - 12h56-13h23	0,41	0,00	0,09 0	
09/06 - 15h57-16h17	1,06	0,23	× 00044	× 1,38 ×
10/06 - 11h07-11h27	2,97	Q00,64		Q17 Q
10/06 - 15h02-16h23	0,56	0,17, 0	0.47. 0 7	0,10
11/06 - 10h07-10h29	4,56	0,17 °	y 9,41 y 1,90,47 0 € 4 0,94 5 0.94 5 0.95 5 0 0.95 5 0 000000000000000000000000000000000	0,69
11/06 - 15h30-15h52	1,63	<b>\$38</b> O	0 104 0	
12/06 - 09h57-10h19	4,78	A \$ \$,57 ~	× 41,91 Q	0° 40 0°
12/06 - 16h37-16h58	0,50	2,05	× 1,72 ×	0,72
13/06 - 10h47-11h09	3,41	A 584	0 3,38 5 106 S	0,23
13/06 - 16h17-16h42	1,00	4 172 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1016	0.58
14/06 - 11h02-11h27	7,81	A 3,87 W	3,72 5	2052 0.31
14/06 - 15h49-16h12	0.250	1,87		°∼ 0,31
15/06 - 11h17-11h39	4,09	1,87 7,72 6/01	3,31 4,2,78, 5,31 4,5,31 4,5,31	2.00
15/06 - 15h33-15h54	A78 °	CONA (	S 5,31 O	0,69
08/06 - 14h45-15h05	4,00		5,31 O	3,44

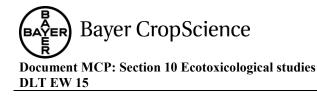
Treatments

Table 5: Number of bees for aging in the refuge zones (U1, U2) in the different tunnels: water control, Deltamethrin EC 15 (AE F032640 00 EW01 B106) and Zolone Flot

	<u>× 0 0 «</u>		4100	
Assessment date		a and a sumpler of De	es/m ² (means)	
(Day/month/hour)	Tuniel Nº4	Tunnel Nº1 AE F032640 00 EW93 \$106	Tunnel N°2 AE F032640 00 EW01 B106	Tunnel N°3 Zolone Flo
08/06-14h45-15h05	3,66	× ~~3,17	≫ 2,71	3,48
08/06 - 16h57-17h2)		4,35 🗸 💆	2,42	2,68
09/06 - 10h01-10h24	4.44 ×	3,24	3,04	2,86
		× A19 S	2,38	3,89
09/06 - 11h12h26	1,84 ~	2,28	1,91	0,93
09/06 - 12h56-13h23		0,66	0,20	0,60
09/06 - 15h57-16h17			1,78	2,58
10/06 11h07-11h27	× ~ <u>4</u> ,22	158 2 1,99	1,35	0,51
10/06 - 15h02-16h2@	א° ג 116° ≫ ۹	× . 90,59	2,19	0,19
1106 - 10h07-10h29	5,840° ° 7° 3,90° °	A.65	4,53	1,36
11/06 - 15h30-15h52	<u>⊘ 300 ×</u>	3,09 4,87 3,43	2,11	0,46
12/06 - 09h57 00h19	5,84 0,91 3,78 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,1	4,87	5,29	2,71
12/06 - 16h37-16h58	0,91	3,43	3,35	1,05
13/06 - 10+47-11h09	3,78 0 1,49	7,11	5,90	0,90
13/06 - 16h17-16h42	V <b>1,199</b> V	4,17	3,20	0,90
14/06 @11h02@1h27	(,00	10,95	11,14	5,16
14/06 - 15h49 16h12	~(>0,31	1,04	2,94	0,64
15/06 - 11/ 97-11h39	4,84	6,72	6,90	4,15
49/06 - 15533-15554	a 2 00	4,37	5,06	0,92
08/06 -94h45-15h05	3,66	3,17	2,71	3,48






# Bees leaving and entering the beehives

Deltamethrin EW 15 had not shown any effect different from the non-toxic standard Zolone Flo on the number of bees leaving and entering the beehive just after the treatment. Table 6: Bees leaving and entering the beehives

					~		- N		
			Nu	mber of be	es/m² (mea	uns) 🏾 👋	V Q	ON N	
Assessment date (Day/month/hour)		el Nº4 ater			AE F032	el N°2 90 00 EV/01 106	Tunnel Nº3		
(,,	Leaving	Entering	Leaving	Entering	Leaving	Entering	Leaving	Entering	
08/06 - 14h45-15h44	141,00	175,00	93,00	@122.00	89,00	0105,00	101,00	132,00 。	
09/06 - 15h57-16h17	294,00	311,00	A198,000	206,00	264,00	269,00	130,00	162 00	
10/06 - 11h07-11h27	104,00	118,00	119,00	408,00	> 41.00 >	<b>6000</b>	<b>() 80,00</b>	83,00	
10/06 - 15h02-15h23	185,00	174,00	1,48,00	@196,00~	142,00	161,00	131,00	150,00	
11/06 - 10h07-10h29	160,00	140.00	(122,00	129,00	82,00	2 161,00 2 C 104,00	141,00	154,00	
11/06 - 15h30-15h52	125,00	176,00	288,00	35% 00	~ 933,00 ~	144,50	<b>\$95,00</b>	185,00	
12/06 - 09h57-10h19	117,00	.049,00	232,00	243,00	<b>96,06</b>	129,00	210,00	247,00	
12/06 - 16h37-16h58	243,00	221,00	209,00	237,00		287,00		195,00	
13/06 - 10h47-11h09	135,00			239,00	163,00	157,00	182,00	169,00	
14/06 - 11h02-11h27	250,00	329,00	333,00	337,00	215,00	274,00	341,00	299,00	
COLUMN TWO IS NOT THE OWNER AND ADDRESS OF THE OWNER ADDRESS OF THE OWNE	the second se	~ /	<b>N</b>	11/12			2		

13/06 - 10047-11009	135,00 1	49,00 201	00 0 239,00		157,00		109,00
14/06 - 11h02-11h27	250,00 3	29,00 333	00 337,00	215,00	274,00	341,00	299,00
Table Duration of flower vi	sits w any effect	of Deltamet	hen EW 05 on	the duratio	on of flower	ç r visits.	
		y <u>ov</u>		Ś. ⁷			
Accorement dat		′ ·∾/Tote	l'in coorde	(heeed on	15 hoor)		
Assessment da		<b>Tota</b>	in seconds	(based on	15 bees)		1 2 202
-*	TunnetN°	Tota	in seconds	(based on Tu	nnel N°2	Tu	nnel Nº3
(Day/mont@/hour	P Water	AE F032640	in seconds	(based on Tu	15 bees) nnel N°2 40 00 EW01	Tu	nnel N°3 lone Flo
-*	P Water	AE F032640	in seconds	(based on Tu AE F0326	nnel N°2	B106 Zo	
(Day/mont@/hour	P Water	AE F032640	in seconds	(based on Tu AE F0326	nnel N°2 40 00 EW01	B106 Zo	lone Flo
(Day/mont@/hour 08/06 - 14h45-15h0	P Water	AE F032640	in seconds	(based on Tur AE F0326	nnel N°2 40 00 EW01 279,85	B106 Zo	lone Flo 305,58
(Day/mont@/hour 08/06 - 14h45-15h0 09/06 15h57-16h1	P Water	AE F032640	in seconds	(based on Tu AE F0326	nnel N°2 40 00 EW01 279,85 157,70	B106 Zo	lone Flo 305,58 221,08
(Day/mont@/hour 08/06 - 14h45-15h0 09/06 015h57-16h1 10/08 - 15h02-15h2	Funnes         Vater           9         924,71           7         110,30           7         244,23           9         223,76           2         207,56		in seconds	(based on Tui AE F0326	nnel N°2 40 00 EW01 279,85 157,70 147,65	B106 Zo	lone Flo 305,58 221,08 400,42
(Day/mont@/hour 08/06 - 14h45-15h0 09/06 15h57-16h1 10/08 - 15h02-15h2 17/06 - 10h07-10k2	Funnes         Vater           9         924,71           7         110,30           7         244,23           9         223,76           2         207,56		in seconds nel 814 0022W01 8306 55,53 0 31,89 76,58 44,51	(based on Tur AE F0326	nnel N°2 40 00 EW01 279,85 157,70 147,65 116,41	Tu B106 Zo	lone Flo 305,58 221,08 400,42 155,31
(Day/mont@/hour 08/06 - 14h45-15h0 09/06 15h57-16h1 10/08 - 15h02-15h2 17/06 - 10h07-10h2 11/06 - 15h30-15h5	Funnel N°           Vater           224,71           110,30           244,23           223,76           207,00           218,64		in seconds nel NM 002W01 B106 5,53 51,89 76,53 44,51 48,19	(based on Tu AE F0326	nnel N°2 40 00 EW01 279,85 157,70 147,65 116,41 184,61	B106 Zo	lone Flo 305,58 221,08 400,42 155,31 335,78
(Day/mont@/hour 08/06 - 14h45-15h0 09/06 015h57-16h1 10/08 - 15h02-15h2 17/06 - 10h07-10k2 11/06 - 15h30-15h5 12/06 - 09h5 10h1 12/06 - 16627-16h5 13/06 - 00h47-15h1	Funnel N°           Vater           224,71           110,30           244,23           223,76           207,60           218,64           8           83,60           2           180,55		in seconds nel NM 00EW01 B106 55,53 31,89 7658 48,51 48,19 32,47	(based on Tui AE F0326	nnel N°2 40 00 EW01 279,85 157,70 147,65 116,41 184,61 140,63	B106 Zo	lone Flo 305,58 221,08 400,42 155,31 335,78 233,89
(Day/mont@/hour 08/06 - 14h45-15h0 09/06 15h57-16h1 10/08 - 15h02-15h2 11/06 - 10h07-10h2 11/06 - 15h30-15h5 12/06 - 09h57 10h1 12/06 - 16637-16h5 13/06 - 10h47-10h1 14/08 11h02/1h2	Punct N°           Vater           24,71           244,23           223,76           20,207,60           20,207,60           2016,64           8           2018,64           9           2018,55	AE         F032640           Q         20           Q         20           Q         21           Q         31           Q         2	in seconds nel 8 1 00 EW01 B706 5,53 31,89 76 98 44,51 48,19 32,47 34,20	(based on Tu AE F0326	nnel N°2 40 00 EW01 279,85 157,70 147,65 116,41 184,61 140,63 114,76	B106 Zo	lone Flo 305,58 221,08 400,42 155,31 335,78 233,89 254,68





# Behaviour of the bees

Deltamethrin EW 15 had no effect on the bee behaviour in the days following the treatment and st the days after beehives returned to the apiary.

# Control of the colony

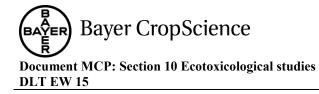
Reserves and brood were reduced during the study in all the tunnels, which is typical of such a study. Deltamethrin EW 15 had no negative effect on the control of the colony and this at each date of assessment. Assessments of the control of the colony are listed in the following tables

Table 8: Control of the c	olony exposed	to water	treated	wheat (	Tunnel	Nô4

				\$U			$\searrow$	$\sim$	, j	<b>\</b>	Ő	A		Ő	, C
Oservations	Deter	Fra	me ( °1.0 0.6	Fra	ine		ime	GFra N	INOY	Fr:	me	Fre	mé ¢	Em	paty me
	Dates	05.6		05.6	15.6	95.6		N 05.6	15.6	.05.6	5 158		6 15.6	Fra 05-6	me 15.6
Weight in g		- 6	¥ -	Ø	-		×,	A B		) )	155 ()-		- 0	600	600
% frame surface	Side a	30	10	225	R	ja Z	20	Ôða	45 60	16	15	<u> </u>		0	0
area containing honey	Side b	30	ÎV	20	10	108	364	10	60	20	15	50	20	0	0
% frame surface area containing	Side a	0	0	Û	8	0	0×0	0		Yo		30	15	0	0
pollen	Side	0	0 0	5		QC/	0	Ø	×	0~	0	120	10	0	0
% frame surface area containing	Side a	R	Ø	NRC	5		<b>, 0</b> 0	NR	10	, 10	, O Č	NR	10	NR	NR
cggs	Adde b	NR.	Ço	ØR	0	0	No.	NR	10 (	60	~9	NR	15	NR	NR
% surface area of brood	Side		0	80	0	<b>24</b> Ô	15	90	70	30	50	0	20	0	0
Û	Side b	≪∕0	<u>د</u> 0	0^	0	28	o2		Ø50		30	0	30	0	0
% capped alveorus	Side a O	NR	ONR	A.P	NE	ν́ο	Õ9	100	50	90	30	NR	50	NR	NR
(0)	O Side b	NØ	NR	NR	$\sim$	٥Ô	NR	100	64	30	50	NR	50	NR	NR
% unespped	Side a	MR	NO	NR	NR	100	106	0	50	10	70	NR	50	NR	NR
	. <b>Bide h</b> Ó 9 4	NR	NR	×,	NR	D100	NR	2	40	60	50	NR	50	NR	NR
NR = Not relevante,							^A 7								
			Ą	<b>)</b>											

Oservations	Dates		nne °1		°2		°3		°4		ume °5		me °6		pty	
	Dates	05.6			_						-		15.6		15.6	
Weight in g					-	-		•		•		R.	•	800	8,00	
% frame surface	Side a	20	10	5	0	10	10	0	5	10	10	°¢6	0	5	0	
area containing honey	Side b	10	10	5	5	10	10	0	5	10	10	, 15	5	00	0	
% frame surface	Side a	5	0	20	10	0	0	Ĉ1	0	0	Å.	0	0	Ĩ	2°	Y Q
area containing pollen	Side b	5	0	20	0	1	0 1	0	0	0	0	1	0	0	Q"	
% frame surface	Side a	NR	NR	0	0	0	NR	NR	NR	, O	5	NR		NR	NR	\$° 4 ⁰
area containing eggs	Side b	NR	NR	0	NR	0	$\mathcal{D}_0$	NR	NR	5%0	0.	10	$O_5$	NR	NR	j je
% surface area of	Side a	0	0	50	80		60	80	A0	50	30	30	40	5%	B	1 67
brood	Side b	0	0	50	60	30	60,	80	60	60	40	80	28	0	10	1,59
% capped alveolus	Side a	NR	NR	5	80	85	100	1.00	100	80	2	100		NR	NR	
[	Side b	NR	NR	90	100	80 × 20	95	1900	100	90	<b>O</b>	90	90	Ś <b>X</b> R	N	l a c
% uncapped	Side a	NR	NR	95	20	240	6	0	0	201	10		0	NR	<b>R</b> R	
alveolus	Side b	NR	NR			¥20	Ì	0,	0	1	10	10		NR	NR	
		1		<u>)</u> 1	K,	ž "C		$\sim$	T 🐇	ິ 1	C		Ų	Ĩ	Г Ал	U

# Table 9: Control of the colony exposed to Deltamethrin EW 15 treated wheat (Tunnel No. 1)


NR = Not relevant, T = Treatment $\sqrt{2}$	l d'	`~` ح` گ				
Table 10: Control of the colory exp	posed to D	eltamethrin	n E <b>W</b> 15 ți	wated wheat	t (Tunnel 🕉	ŏ. 2)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		×			Ş	Ø	~	1			Ô	2		
Oservations	Dates	<u>A</u> N	°1	Fre N		Fra		N N	ume∕ °4	×		ζŶΝ			pty me
		\$6.6	1606	05.6	15.6	05.6	15.6	05.6	\$5.6	05.6		05.6	15.6	05.6	15.6
Weight in g	S. C			Ø	- ~		st st	-	-	\circ	L'	•	-	550	500
% frame surface	Side	,300	15	20	15	15	10	Set .	۶L	10	\mathcal{U}^{10}	10	10	10	0
area containing honey		~Q0	10	15 /	10	J.	10 🔦	10		1Ê	10	15	10	10	0
% frame surface area containing	Ade a O	15	0ð	K.	0	K In	ð	0 45	0	" 0	0	3	0	0	0
pollen	O'Side b	00	0	1	Sol and	0 (0		0%	0	0	10	0	0	0
% frame surface area Ostaining	Side	C.M.	NKO	0	ß	R	NRC	0 ₁₀	P	0	0	0	NR	NR	NR
area oggs)NR	NR	NR,	NŖ	Őð	NR	10	25	0	NR	0	NR	NR	NR
% surface area of brood	Side a	0	0 .	Qů	s de la companya de l	70	∲⁄50	80	60	70	60	50	30	0	0
brood	Side b	O'NR	0%		R	70		90	80	70	60	40	30	0	0
% capped alveolus		NR	NR	Ô		0 ⁹⁵	1/00	90	50	90	80	80	100	NR	NR
~Q~	Uside b	NR	NR	R	NE	95	100	90	50	90	100	90	100	NR	NR
% uncepped	Side	P	NR	100	S.	2ª	0	10	50	10	20	20	0	NR	NR
alvophus	Side b	QNR	NR		NR	° N	0	10	50	10	0	10	0	NR	NR
×.	A		Ç¥	Ĩ		× 1			Г	I		3		1	ſ

$NK \neq Not relevant, T =$

Conclusion:

The effect of Dekamethon EW35 on bee mortality was similar to the effect on the bee mortality of the non-toxic standard Zolone Elo Deltamethrin EW 15 had no or very limited effect on the foraging activity in the days following the reatment on both treated and refuges areas. Deltamethrin EW 15 had not shown any effect different from the nontoxic standard Zolone flo on the number of bees leaving and entering the beehive just after the treatment. The results did not show any effect of Deltamethrin EW 15 on the duration of flower visits. Deltamethrin EW 15 had no effect on the bee behaviour in the days following the treatment and in the month after beehives returned to the apiary. Reserves and brood were

reduced during the study in all the tunnels. Deltamethrin EW 15 had no negative effect on the control of the colony and this at each date of assessment.

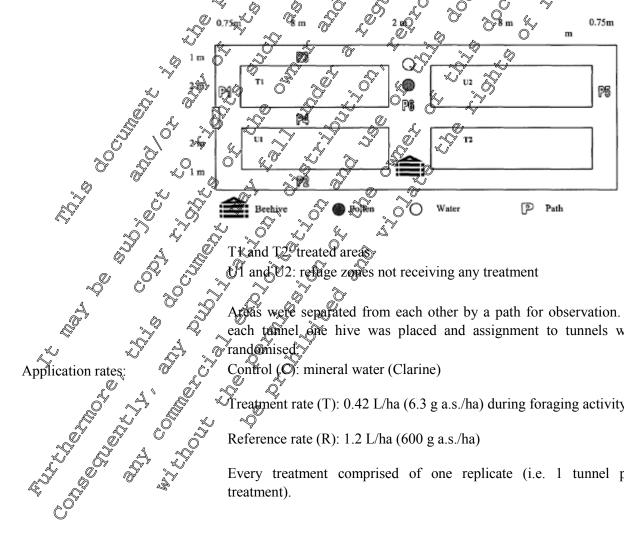
Title: Tunnel test - acute, short and medium term effects of AE F032640 00 EW01 B006, applied on cereals, on honey bees (Appis mellifera P.) Document No: M-205201-01-1 (Rep. No.: S00AGB3264VO5Q			A	
Title: Tunnel test - acute, short and medium term effects of AE F032640 00 EW01 B006, applied on cereals, on honey bees (Appis mellifera P.) Document No: M-205201-01-1 (Rep. No.: S00AGB3264VO5Q)	Report:			
Document No: M-205201-01-1 (Rep. No.: S00AGB3264VO5Q	Title:			00 EW01 BJ06, 🗸
Cuidelines: EBBO 170 (1002) CED 120 de a a a a a a a a a a a a a a a a a a	Document No:			
Guidennes. [EPPO 1/0, (1992), CEB 129	Guidelines:	EPPO 170, (1992), CEB 129	v ^v v	
$GLP: \qquad yes \qquad \qquad$	GLP:	yes yes		

Material and Methods:

Bees were confined within tunnels on winter wheat fields (cerculs sprayed with sugar solution in order to provide food resources to the bees), After an acclimatization phase of tour days, application was performed during bee flight. The control was treated with water, the test item was applied at a rate of 0.42 L/ha, as a non-toxic standard Zolone Flo was used at a rate of 12 L/ha There was one replicate per treatment group. Endpoints assessed were mortality oraging storage of honey and pollen, behavior, and brood development.

Findings:

Mortality was not affected by the test substance treatment. Foraging activity was likewise not or only very slightly affected by the test substance treatment on the treated as well as on the refuge areas in the tunnel. Furthermore, no effects on the behavior Brood development was not affected by the test substance treatment as

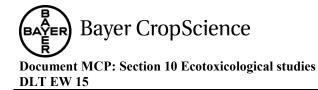

Material and Methods:

Test refin. Image: Content of assume that is a second of the second	Test material		Deltachethrin
Testorganism:	Test item:		Deltamethon EWOI5 (AE F032640 00 EW01 B106) content of a.s.: deltamethrin: 16/14 g/C 1.51 % w/w.
Testorganism:	Batch number.		$\mathcal{O}_{\mathcal{O}}}}}}}}}}$
honeybees were a maximum of 3 months old at test initiation. Additionally, an empty new frame of knowing weight was introduced in each hive prior their introduction into the tunnels. The corresponding queens hatched in 2000 and originated from one breeding line in order to guarantee uniform bee material in all treatment groups.	Reference item:		g a.s./L
honeybees were a maximum of 3 months old at test initiation. Additionally, an empty new frame of knowing weight was introduced in each hive prior their introduction into the tunnels. The corresponding queens hatched in 2000 and originated from one breeding line in order to guarantee uniform bee material in all treatment groups.	Test organism:		Honey bees (Apis mellifera) The used Dives were single box colonies (type DADANT 10 frames)
honeybees were a maximum of 3 months old at test initiation. Additionally, an empty new frame of knowing weight was introduced in each hive prior their introduction into the tunnels. The corresponding queens hatched in 2000 and originated from one breeding line in order to guarantee uniform bee material in all treatment groups.			With 10 rames, one queen and about 10000 bees per hive at test start. Queens were obtained by grafting (1 month) and colonies (consisting
breeding line in order to guarantee uniform bee material in all treatment groups.			of Qaucasian bees) were homogeneous as possible. Oldest worker honeybees were a maximum of 3 months old at test initiation.
breeding line in order to guarantee uniform bee material in all treatment groups.			
	AR CON	L.	The corresponding queens hatched in 2000 and originated from one breeding line in order to guarantee uniform bee material in all

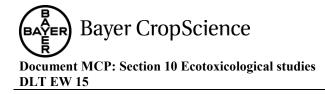
Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies DLT EW 15 • 4 frames containing eggs, larvae and capped cells • 2 frames containing honey and pollen • 4 frames were kept empty for free space Source: (Supplier) Winter wheat, cultivar Soissons sown, October 21, 1999 Growth Crop: stage: BBCH 75-77 🗞 Test location: France France, The apiary part was conducted Test unit:

Each tunnel covered an area of 1365 m^2 (19.5 m $^\circ$ 7 m) with the eight of approximately 3.5 m. The tunnel tent frames were covered with light plastic netting. Furthermore, such turfiel was divided into four areas $(1, T_2)$ and U_2 U2) of 16 m² (8 m² 2 m) each containing the crop Areas T1 and T2 received treatment while U1 and 2 were rectige wones not receiving any treatment. The diagrammatic representation of a turnel is shown in the following figure:


were separated from each other by a path for observation. In each tannel one hive was placed and assignment to tunnels was

Control (O): mineral water (Clarine)


Treatment rate (T): 0.42 L/ha (6.3 g a.s./ha) during foraging activity

Reference rate (R): 1.2 L/ha (600 g a.s./ha)

Every treatment comprised of one replicate (i.e. 1 tunnel per

	The spray volume was 300 L/ha in all treatment groups. The sprayer
	was calibrated before use. The deviation reached a maximum of
	4.17%.
Data sampling:	Data for mortality, foraging activity, behaviour of the bees and data of
Dete and locies	Net stated in the superior
Data analysis:	Not stated in the report,
Deviations from the study plan:	No deviation to the study protocol
<u>Climatic conditions during the e</u>	was calibrated before use. The deviation reached a maximum of 4.17%. Data for mortality, foraging activity, behaviour of the bees and data of the control colony were assessed. Not stated in the report. No deviation to the study protocolo xperiment: ecorded were within the normal range for the region. Not has storms or yfelent winds occurred during study period. e shown in table below.
The environmental parameters re-	ecorded were within the formal range for the region. Nov
dramatic weather conditions suc	h as storms or yfolent vinds occurred during study period.
The environmental conditions an	re shown in table below.
, C	
Q	
Ş.	
× A	
	Y X X X
A A S' A	S Q
	xperiment:
\lor	

Table 1: Field conditions

ate	I emperature Mini °C	Temperature Maxi °C	Relati humi	ve' air dity %	Rainfall				
			Mini	Maxi				Ô	
05.00	14.6	23.7	54	97	3.8			Ş	
05.00	14.3	222	62	98	0.8			102	
05.00	12.8	23.5	48	98	-			.1	
5.00	11.1	23	51	98	-		Ŕ	<u>_</u> >	°~
05.00	12.5	26.7	45	99	-	Ĉħ	L		4
05.00	14.7	27.8	42	95	-	1000	"Q"		Õ
05.00	11.6	25	50	95	-	L ≫	Q		Ũ
05.00 05.00	8.9	17.5	40	92		6	"O"	8	5
05.00	3.4	15.5	53	05		ć	Y.	ÇC)
05.00	5.1	18.2	37	99				í a	Å
05.00	4.8	17.2	48	96	Dof	\sim	. Oʻ	\sim	<u>`</u> O`
05.00	7.8	18.8	49	98		· . @	, M		
05.00	8.5	21.5	49	99	x - 0	ð "N	× 1	V s	٥°
05.00	11.7	21.8	44	91	0.2 🕖		Y ~ U	r 🖓	,
05.00	7.1	18.5	43	96			Ŭ.	-0	~~
05.00	7.2	20.9	49	84	. 10°		.1	S	\bigcirc
05.00	7.9	18.3	35		2.6	N .O		, Oʻ	L)
05.00	4.2	17.9	38	90		v. ~ .	ñ ./	× 2	>
05.00	11.6	17.7	1 220	08	146	Š K	ĭ È,	, j	
05.00	10.8	19.2	L O [¥]	28		JY . O		S.	Ŵ
06.00	13	22.4	63	- Ø	<u> -″≯−</u>		Š	Ř	S.
06.00	14.5	29.2	\$ 54	98	00 -		.0	0	õ
06.00	17.2	25.4	69	98	0.4		\$ 8)) (r
06.00	12.9	21.5	6	97	12.40	L. A.		Ű,	Š
06.00	9.7	147	72"		3.6	× v	°, Q	Ro	O
06.00	8.4 9.4	185	20	00		No V			Ô
06.00	11.2	26.9	0^{+1}	00				(S) #	Ĵ.
.06.00	12.6	26.9	49	97 6	128 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) ~C	7
.06.00	9.6	24.9	50	960		<u>,</u> 0° &,	1.	ଁଁଁ	
.06.00	8.1	240	NU	27	L.Y	VY O	×	`∕Y`	
.06.00	10	24.5	53		N.	No a	\odot	r y	
06.00	15.3	27.7 0 25.7	46	98			al a	<i>¶</i> 1	
06.00	9.6 8.1 10 15.3 14 40 48 02.7	0 25.7 27.6	53	97	¥ - °~		7 ~C	7	
06.00		27.6		98	1 <u>,</u> 4		′ √s″		
06.00		254	Q.	60		O A			
		403		1 07		Ç O	, W		
06.00	1.74	31.1	52	8/	<u> </u>		n Mar		
06.00	17.3	\$ 32.1	37 0	96	۴		0		
0000	15.8	30.7	1 Ale	95	OY.	w . O			
06.00	13	24.8	52	S.	°~y				
06.00	12.7	A22 2	> 38 。	93	× -				
06.00	13.2	A 21.2 0	46 1	90	p . (
06.00	19	183	407	0.2					
	the second s	2000	- C			1 A			
06.00	Ø9.9 C	23				, v			
.06.00	9.4	∞	/ 33	×90	<i>`````````````````````````````````````</i>	Ď			
.06.00	11.3	23.5	31	×83 (0.4 🤇	1			
.06.00	12.1	25.3	31		5 NO				
66.00	12.6		33			i)			
.06.00			1 / 41	O A					
			10 ² 1		<u> </u>	1			
	A A	he freld sit			\mathcal{D}^{ν}				
de þ	Ston Port th	had ald sit	-	Q					

Previous pesticide history of the test site is listed in the following table.

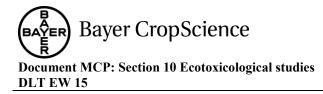

			Pesticides		
Year	Crop	Herbicides	Fungicides	Insecticides	Other
		Name (a.i.), rate	Name (a.i.), rate	Name (a.i.), rate	
2000	Winter wheat	Celio (March 7) (clodinafop-propargyl+ cloquincet-methyl) 0.6 L/ha Agral 90 (March 7) 1 L/ha	Unix (April 18) (crosodinil) 1 kg/ha Amistar (May 9) (azoxystopine) 0.8 L/ha Ogam (May 26) (kresoxim- methyl+epoxiconazol) 0.8 L/ha	Karate vert (May 9) (lambda- cybarothrin) 0.125 I (Jaa))))))))))))))))))	
1999	Winter wheat	Starane (fluroxypyr) 0.5 L/ha Chardax (clopyralide2,4- MCPA) 1.5 L/ha	Ogam/kresoxm- methyl+epoxiconazon 66 L/ha Caramba (metconazore) 1 L/ha	Gaucito blé (imidacloprid+ bitertanol+antaraquinone) 0.4 L 500 kg seeds Karate vert (lambda- cyhalothrin)	- -
1998	Corn	Gesaptime (attazine) 3 L/ka Dikado Gulcotriove) 0.8 IGha		Gaucho (imidae loprid) 0 Kg/150000 seeds Karate flambda-cyhalothrin) 0.125 L/ha	-
1997	Winter wheat	Starane Flurox (byr) 0.5 Tha Chardax (clopyend+2,4) MCPAQI.5 LAS	Alto (cyptoconazol) (& L/ha Wito Mäsathon (cyproconazole chlorothalo nil) 2 L/ha	Gaucho blé (imidacloprid+ bitertanol+ anthraquinone) 0.4 L/100 kg seeds Karate vert (lambda- cyhalothrin) 0.125 L/ha	-

Table 2: Maintanance and	pesticide history	of the field site

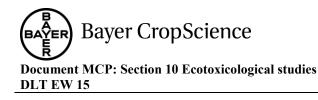
The aim of the study was to evaluate potential side effects of a spray application of Deltamethrin EW 15 on the horeybee *Apis melliferer* under forced exposure conditions.

This study included three exposure groups (tunnels) each: one tap-water treated control group (C), one test frem group (R) and one reference item group (R). In all exposure groups, the crop was sprayed 5 days after set-up of the hives in the tunnels (Acclimatisation phase) at BBCH 75 - 77 (full flowering), during boneybees actively foraging on the crop under confined conditions. The horeybees remained 13 days in the tunnels.

Depending on the weather conditions the observations were conducted for a 9 day period following a 4-day adaptation period of the hives to the confinement. At the end of this 9 day period, symptoms of toxicity (mortality, behaviour, etc.) were not observed in the Deltamethrin EW 15 treatment, the exposure phase of the study was stopped and behives returned to the apiary.

The assessments of the number of any dead bees were performed in each tunnel, each morning during both the adaptation period of the hives and thereafter until the end of the test. For each tunnel, these daily assessments was performed commencing June 19 at approximately 36 hours after the introduction of the hive and subsequent daily assessment was conducted at approximately the same time for each tunnel each day. During each assessment all dead bees were collected in the 6 paths and in the dead bee trap (the bees collected from each of the path areas 1 to 5 were pooled).

The assessments of the foraging activity were performed only on those days when the weather is such that honeybees are likely to be foraging. Counting was done over the whole of the zone by assessing the number of bees passing an area of 60cm wide, whilst walking at a normal speed down the side of the zone. The foraging activity of the bees was expressed as the number of bees observed separately within each zone on each assessment. After the adaptation period of the beehive, the foraging activity was evaluated wice a day aregutar intervals (starting around 10 a.m. in the morning and 3 p.m. in the afternoon). In addition the day of treatment foraging activity is assessed around 15 minutes before treatment and around 15 minutes and 1 hour after each treatment.

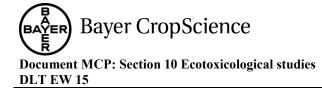

Behaviour of bees was observed during assessment of bee mortality, foraging activity and control of the colony. Bees were observed for abnormalities like aggressiveness, intensive flying without landing on the crop, moribund or severely affected bees, bee accumulation at the beehive entrance, trembling, bees no longer producing pollen balls, etc.

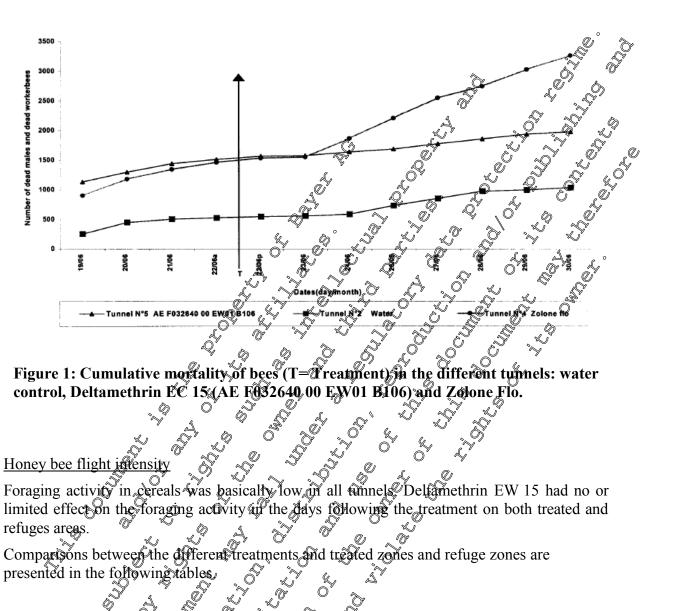
Assessments on the control of the colony were made on the day of their installation within the tunnels, June 17, on the middle of the exposure phase. June 26, just after returning bee hives to the beekeeper, June 30, and around one month after the return to the aplary, August 8.

The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

The following endpoints wore assessed

- Cumulative number of deal bees before as well as after the applications in the control, the test item group and the reference item group, respectively
- Number of foraging bees per zone (1, T2 and U1, U2) and number of bee/m² in each tunnel before as well as after the applications in the control, the test item group and the reference item group, respectively.
- Behaviour of the bees during assessments of bee mortality, foraging activity and the control of the colony. In addition the date time and duration of such abnormal behaviours was recorded.
- Control of the colory with the following criteria examined: weight of the empty frame introduced into the centre of the hive, for both sides of each frame the percentage frame surface area containing honey, for both sides of each frame the percentage frame surface area containing pollen, for both sides of each frame the percentage frame surface area containing eggs, for both sides of each frame the percentage area of brood (young and old larvae) in each frame and % of capped and uncapped alveolus as well as the health of the queen.


Dates of Work:


17th June to 08th August, 2000

Dates of w	OFK:			17	June to 08	Augu	st, 2000		<i>a</i> .°	~						
										F						
Findings:							Č,	6	Ŭ O							
Honey bee	mortality						Ĩ	~~								
<u>itolicy bee</u>	<u>inortant y</u>			nulated dead bees) is shown following table												
					Ĉa	A	\mathcal{L}^{*}	<u>`</u> ~``		Ĩ						
A summary	of the dai	ly mortalit	y (cumu	lated dea	ad bees) is	show	n follow	ing table	, Č	a Contraction of the second se						
					d.	Ő¥	\$		Å.	, O ^V						
Table 3. Cur	nulatad daa	d haas durin	a the stur	ly noriod	Univ males	and wor	kor boes) () () () () () () () () () () () () ()		, Y						
Table 5. Cul	T	unnel No. 5	ig the stud					Fundel Nora								
	Delta	methrin EW	/ 15	40	Funnel No 2	× .~		Zolone Flo	\sim							
Date	(a)	6.3 g a.s./ha	1		& Water	L.	× a	600 g a.s./h	a							
	Males	Workers	Total	Males	Workers	Total	Males	Workers	Total °							
19.06.00	29	1109	113		244 2	256	, ôA	ی 890 ⁴	264							
3DBT	29	1109	1138 3 04 ç	<u> </u>		2,30%			4 P							
20.06.00	49	1255	4304 (× 27 ×	× 423	×450 (23	62	0°1185							
2DBT																
21.06.00 1DBT	86	1359 🗸	1445	<u>3</u> 0	్ర, 475 నో	505	\$6	6 ³³ 1294	1350							
22.06.00			× Š	o`			ð "Ç									
0DBT	91	1426	1817	33 "	494	© 527 ©	66	D4 00	1466							
22.06.00	96	@2474 C	1570	Ŵ	512	536	~~ 7 3 s	³ 1466	1520							
0DAT	90		1570	Sho -	513	240		∫ 1400 ¢	1539							
23.06.00	100 🕺	148	\$15 81	Õ 34 Ö	\$24	558	279	1478	1557							
1DAT	100			- S			- A	11/0	1007							
24.06.00	110	6 ⁴⁵³³	1643	35	°° 55 ₽°	586	@86	1788	1874							
2DAT 26.06.00		\wedge	6		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$											
20.00.00 4DAT		1585	A695	¥ 4 KJ	<u>~</u> 692	× 733 [~]	119	2099	2218							
27.06.00			1.50	À2	@ ⁴	854	120	2425	2562							
5DAT ~	111	1675	1786			8 54	138	2425	2563							
28.06.00	114	1235	1869	N 430	938	981	140	2622	2762							
6DAT				1 43 OV	& A	701	140	2022	2102							
29.06.00	1618	1834	1952	× 944	° 95⊕	1001	141	2905	3046							
7DAT	~		1952	l. A	Q											
30.06.00 8DAT	⁰ ح 118 گ	1876	y 1994	44 ⁰	9 99	1043	141	3143	3284							
DBT = days	∛ afora traatm			trélétment	<u> </u>											

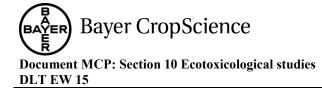
 $DBT = days before treatment, DAT days after treatment <math>\mathcal{O}$

The effect of Deltamethtin EW15 of bee mortality was nil and even lower than the bee mortality of the non-topic standard Zolone Flo for which a slight increase in mortality was moreality of the non-topic standard Zolone Flo for which a slight increase in mortality was observed two to three days after application. When beehives returned to the apiary no mortality was observed in the apiary of the standard Zolone Flo for which a slight increase in mortality was observed two to three days after application. When beehives returned to the apiary no mortality $\frac{1}{\sqrt{2}}$

Honey bee flight intensity Foraging activity in cereals was basically low in all tunnels Deltamethrin EW 15 had no or

refuges areas. Comparisons between the different treatments and treated zones and refuge zones are presented in the following tables.

Assessment date	Number	of bees/m ² (means)	2 M
	Tunnel N°5	Tunnel Nº2	> Tunnel Nº4
(Day/month/hour)	AE F032640 00 EW01 B106		rent tunnels: one flo Tunnel Nº4 Zolone flo
21/06/10h11-10h35	1.16	water % 1.41 1.06 1.41 0 2.41 1.38 1.38 1.38 1.38	Zolone flo 2.91 5.66 0 6/38 0 6/38
21/06/15h05-15h31	3.06	1.06	× 2.91 V
22/06/09h50-10h24	3.97	<u>ک</u> 2.41	\$ 5.66
22/06/11h28-12h30	1.88	1.38	× 2.91, Q [*] × 5.66 1 × 0
	Treatments	08	2.51 5.66 1.40 0.38 0.50 0.50 0.50 0.50 0.19 0
22/06/12h00-13h05	0.72 0.34 0.06 2.34	0/97	0 18/38
22/06/12h57-13h46	0.34		
22/06/16h16-16h35	0.06	0.400	0.50
23/06/10h15-10h40	0.06 Q 2.34 Q 0.47 Q 1.31 Q		5 1.09 5 1.09
23/06/15h08-15h31	<u></u>	8 - A - 3 - 0	1.09 1.12
24/06/10h18-11h17	1.31	$\begin{array}{c} & 0.160 \\ & 2.31 \\ & 2.53 \\ & 0.125 \\ &$	
26/06/10008-10054			1.45
27/06/10/04-10/29	- Chi , ~ U	007 X	S SIM S
27/06/15h09-15h36	1.31 1.38 0.88 22 22 1.97 23 8.590 2203 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1.09 1.13 1.49 1.91 5 1.94 5 1.94 5 3.13 5 8.09 5 128 5 0.97 5 1.31
28/06/10h11-10h40	X 8 500 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		800
28/06/16h11-16h27		200	0 100
29/06/10h59-11h26		2 200 0 1	× .0.97
29/06/15h50-16h13	0.84	V 01 340	0 1.31
30/06/10h28-10h56	× 6.30 × 0	7.47	Ø 3.13
30/06/15h15-15h37		4.39	≪ 0.75
	2.34 0 0.47 0 1.31 1.38 0 0.88 0 222 0 223 0 0.88 0 0.890 0 200 0 0.84 0 0.97 0 200 0 0.84 0 0.97 0 0.9		


Table 5: Number of bees foraging in the refuge zones (U1, U2) in the different tunnels: Deltamethrin EW 15 (AE F032640 00 EW01 B106), water control and Zolone flo

Assessment date	Number	of bees/m ² (means)	
	Tunnel N°5		Tunnel 0 4
(Day/month/hour)	AE F032640 00 EW01 B106	Tunnel Nº2 Water	Zolone flo
21/06/10h11-10h35	1.31	2.03	3.66 × A
21/06/15h05-15h31	2.50	0.94 🔊	3.47
22/06/09h50-10h24	4.41	Q 2.13	
22/06/11h28-12h30	1.94	1.60	
	Treatments		
22/06/12h00-13h05	1.75	N.06	
22/06/12h57-13h46	0.66	0.56 2	0 1.34 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0
22/06/16h16-16h35	0.94		2 875 ~~
23/06/10h15-10h40	1.09 🌾 🦃	0:28 √ 1:28 √ 1.94 √	2.13 2.13 2.1472
23/06/15h08-15h31	1.94 0 0		£ 1.471
24/06/10h18-11h17	1.16		O 1 20 14
26/06/10h08-10h34	1.4° ~ ~		0 1.76 1.78 1.28 5 1.72 5 2.10
26/06/15h51-16h15		25 × 3 00 C	S 1.72 S
27/06/10h04-10h28	Q.59 4 X		
27/06/15h09-15h36			5 4 3 5 4 4
28/06/10h11-10h49			
28/06/16h11-16h37	a 1.66 m Q	W.81 0	0 6 1.63
29/06/10h59-11h26		× @*1.4/6	0.78
29/06/15h50-16h13	0.840' 👋 🍘	1.59° Q	0.69
30/06/10h28-10h56		\$\$ 9 3	3.28
30/06/15h15-15h37	0.39 2 07	5 0.72 V	3.28 √ 1.44

Deltamethrin EW 95 had no effect on the bee behaviour in the days following the treatment and in the month after beehaves returned to the apiary.

Control of the colon

Reserves and brood over reduced during the soldy in all the tunnels, which is typical of such a study. Deltamethrin EW 9.5 had no negative effect on the control of the colony and this at each date of assessment. Assessments of the control of the colony are hited in the following tables. Reserves and brood were reduced during the soldy infall the tunnels, which is typical of such a

Table 6: Control of the colony exposed to Deltamethrin EW 15 treated wheat

	18			e Nº1				ie N°2				ne N°:				ne Nº4				ie N°č				ie N°6		1	Empt	y∛araı	me a	₩¥
	Date		VO5					56-1-0				56-1-0 30.6		17.6		56-1-0 30.6				56-1-0 30.6		N 17.6		56-1-0 30.6		17.0	26.8	¥	8.8	F.
eight in g	Date	17.6	26.6	30.6	8.8	- 17.6	20.0	30.6		17.6	20.0	30.6	0.0		20.0		- 0.0	17.0	20.0		0.0	O	20.0		0.0	_			2500	1
frame surface	Side a	0	10	0	75	5-10	10	25	40	15	15	5-10	30	15	15	15-10	30	10	15	5-10		57	50	60-70	80	A.	0	0		1
rea containing honey	Side b	15	15	20	60	5	10	15-20	40	10	10	5-10	30	10	10	15-10	30	20	20	5-10	20-20	50	0	0	80	0	0		60	
	Side a	0	0	0	10	20	10	0	10	10	5	0	10	10	10	0	10	0	0	04	5	0	0	0	0	0 1	R	ø	10	
pollen	Side b	20	0	0	10	10	5	0	2-5	5	5	0	10	10	10	0	10	0	0	6	,15	0	0	0	5	0	Ô	0	15	P
	Side a	NR	NR	NR	NR	NR	NR	NR	2-5	NR	0	NR	0	NR		0	30	NR	ľ .	ſĽ	NR	NR	NR	NR		NR	NR	NR	X	
rea containing eggs	Side b	NR	NR	NR	0	1-2	NR	NR	0	NR	0	NR	5	NR	Ø	0	5	NR	8	Ø0	80	NR	NR	NR	NR	KR.	NR	NR	15	1
	Side a	0	0	0	5	50	50	20	40	70	50	20	60	80	50	80	30	70	A P	80	30	0	0	96	0 🖉	\odot	0	Nº 1		4
brood	Side b	0	0	0	5	15	15	20	40	80	50	10	60	80	50	80	40	80	\$80	40	60	0	100	0	0	0	0	Ŷ	10-20	\bigcirc
capped alveolus	Side a	NR	NR	NR	100	0	100	100	80	60	60	100	95	75	10	30	0	20	50	10	100	NR	NR	NR	æ,	NR	Nat	NR	0%	6
	Side b	NR	NR	NR	0	0	100	100	90	50	50	100	478	90	10	30	0	590	50	8	0	NR	NR	NR	NR	NR	NR	NR	Ø	
% uncapped Si	Side a	NR	NR	NR	0	100	0	0	20	40	40	9	1	25	80	70	100	V_{20}	500	80	0	NR	NR	MA.	NR	NR	NR	NR	100	1
alveolus	Side b	NR	NR	NR	100	100	0	0	10	50	50	03	30	10	80	70	90	10	Ø	100	100	W R	NR	A R	NR	69	NR	NR	100	

Table 7: Control of the colony exposed to the water treated wheat

									Ì	(k	Ņ.	8	$\langle \rangle$		2	¥		J	\$ \$	IJ"		Őĩ	ř	£	8	(\tilde{O}		
Observati	ons		Fram VO5		1		Fran VO					ne N 54-1			Fran VO	ne Nº4 54-1-0			Fran VØ		5 C5			nØ∲6 N+1-0		E	mpty	fran	ne
	Date	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8
Weight in g		•	•	•	•		Q,	•		•	i.	•	1	. ·		N	•	0	•		φ.	· .	Ŗ.	•		750	-	750	2000
% frame surface area containing	Side a	10	15	0	60	10	10	30	20	15	, P	0	20		15	5	30	15	15		30	15	15	5-10	30	0	0	0	70
honey	Side b	0	10	50	30	Ø	10	50	30	10	O_{15}	10	No.	10	, W	10-15	20	10	20	90	30 4		15	540	30	0	0	0	80
% frame surface area containing	Side a	0	0	0	10	10	10	V	5	AQ	5	0	10	0	>⁄0	0	Ø	0	Ô	0	15	0	10	O°	15	0	0	0	20
pollen	Side b	10	0	0	Y	20	Ø.	0	0	20	5	L9	5	a	5	0	5	0%		0	Ôŋ	0	15	80	0	0	0	0	0
% frame surface	Side a	NR	NR	网	NR	5	2.5	NR	1 A	5	50	10	80	540	0	10	0	Š	0	NR	0	NR	69	NR	0	NR	NR	NR	NR
area containing eggs	Side b	NR	NR	NR	0	NR	0	NR	NR	NR	Ċ	10	æ,	NR	0	\0	0 5	NR	0	NR	0	NR	/NR	NR	10	NR	NR	NR	NR
% surface area of brood	Side a	0	0	0	0	30	30	10	70-60	504	50	80	190	50	150	80	70	15	15 8	36	60	4	5	0	60	0	0	0	0
brood	Side b	0	()	0	10	>30	20	Q35	60	6	60	80	> 50	60	60	80	50-60	0	10	20-30	50-60	2	0	0	70	0	0	0	0
% capped alveolus	Side a		/NR	NR	Øř	50	36	100	100	80	80	Ċ	0	80	80	80 (Q70	0	36	100	00	60	100	NR	70	NR	NR	NR	NR
	Side b	Ø		NR	20	60	Ø	100	100	60	60			50	50	80	10-15	NR	80	100	90	50	NR	NR	10	NR	NR	NR	NR
% uncapped alveolus		NR		(hype	NR	o45	A 5	8	20	10	20	100	a@	10	10	20	30	C100		Ø	5	40	0	NR	30	NR	NR	NR	NR
arveorus	Side 🔊	NR	NR	NR	80	40	40	0	0	40	10	100	≈ 1 98	50	40, ×		807	NR		Ø	10	50	NR	NR	90	NR	NR	NR	NR
	()	2	r /			∇	г ((0		· 📎	ir i	مال			r∾		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		T	,v			r			1	Г		

NR: Not relevant; T: Treatmen

Conclusion:

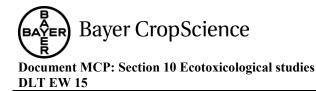
The effect of Deltamethin EW 15 on the mortality was nit and even lower than the bee mortality of the non-toxic standard Zoone Florior which a slight increase in mortality was observed two to three days after application When beehives returned to the apiar no mortality was observed.

Deltamedirin EW 15 had no oplimited effection the foraging activity in the days following the treatment on both treated and refuges areas.

Furthermore, Deltamethrm EWQ5 had no effect on the bee behaviour in the days following the treatment and in the month after beehives returned to the apiary.

Reserves and brood were reduced during the study in all the tunnels, which is typical of such a study.

Deltameterin Exp 15 had no regative effect on the control of the colony and this at each date of assessment.



Report:	KCP 10.3.1.5/14,		(2005)
Title:	Assessment of the short-term effe	ects of Deltame	thrin EW 15 on
	behaviour, foraging activity and	mortality of h	noneybees (Apis
	mellifera) under semifield condition	ons (tunnel test)	in winter wheat.
Document No:	<u>M-262484-01-1</u> (Rep. No.:	/AM 039)	ġ,
Guidelines:	French official method CEB 230		1
GLP:	Yes	۵.	ster "

Material and Methods: Test item: Deltamethrin EW 15: (development No.: 30-00308474, article No.: 00 05946743, barch No.: AAIM00846, TOX-No.: 06988-00, content of a.s. analysed: deltamethrin 6.24 of L), applied and treatment groups 3 and 4 at 0.42 L/ha (6.25 g a.s./ha) at a water volume of 300 L/ha. Toxic reference item: Dimethoate EC 400 (barch Nog 37M20919, content timethoate: 378.05 g/L), applied at 1 L product/ha at a water internet group 1 served as tap water treated on ut during foraging activity of the 1 te evening, with no 6 60 m² (160 m²) with one bee colony (approx. 20,000 honeybees) was set up for each treatment group. Each tunnel was divided into 4 subplots (T1, to T4) of winter wheat size of subplot: 16m² each). In all treatment groups the subplots \$1 to T4 received application. The applications were performed in all 4 the atment groups after 3 days of a stable level of daily mortality. Mortality was assessed every day during 1 k days (from day 6 before until day 4 after application). Foraging activity and bee behavoour were assessed every day during 10 days (from day 5 before until day 4 after application). Two evaluation checks on the weight of the colonies, the development of food stores, brook and egg laying action of the colonies were done, one carried out at the beginning of the study (6 days before the opplication) and one at the end of study (6 days after the application). Additionally thonumber of adult bees on the combs was estimated 6 days before and 6 days after the application. Sugar solution (sugar water 30:50) was applied every morning before the beginning of foraging activity of the boney bees from the day of hive installation in the tunnels (day 5 before the application funtil day 4 after the application, at a volume of approx. 500 L/ha, to ensure the foraging activity of the bees.

Findings:

For all applications performed during the activity of bees on the crop (groups 1, 2 and 3), a sufficient number of bees was present on the crop and was exposed to the application (between 3 and 6 bees/m²). In treatment group 3 (with bees active during the application), no increase in mortality was observed at the day of treatment, and the days after. In treatment group 4, where bees were not exposed to the treatment, mortality on the day after the application was slightly higher than on the previous days but was still in the same range compared to the mortality in the control group during the whole study duration. For ging activity of both treatment groups 3 and 4, with and without bees active during the application, decreased slightly after the application compared to the control, indicating a moderate repellent effect of the test iten. Hive weight development was within the same order of magnitude in all treatment groups exception the toxic reference group where the weight decreased during the study, which can mainly be explained by the very low foraging activity during the second part of the study. The estimated number of adult bees on the combs fluctuated within a great range of variation, which is typical for this endpoint. However, a treatment-related development was not observed in this endpoint. Bee brood development and food stores were not affected by the application in the treatment groups 3 and 4. A strong decrease of brood was observed in all treatment groups, and a progression of food

Page 310 of 518 2017-05-15

stores was also observed in the same range for all treatment groups (in a lesser extent for toxic reference group).

Conclusion:

No noticeable increase of mortality was observed after the application in the tonnel where bees were directly exposed during application (treatment group 3) and in treatment group 4 (without bees present during the application). Cumulative mortality at the end of the study was comparable between the control and the treatment group without bees being present during the application, while cumulative mortality was even lower in the treatment group where bees were present during the application. Thus, no indication of a treatment-related effect was found on mortality. No treatment related effect on colony strength was found either. A slight repellent effect of the product was observed on the day of and +2 after the application. The repellence was present at a greater extent if the turnel where bees were directly exposed to the treatment. Foraging activity reprinted for a normal level after 3 days in both treatment groups. Likewise, other endpoints, which could pose a task to the viability of bee colonies, were not negatively affected by the treatment groups, including the control group and can be explained by the caged conditions on a cereal crop which is detrimental to bee colony declopment. The application of Deltamethrin EW 15 at a rate of 0.42 L/ha corresponding to 6.25 g a.s. ha) to cereals does not pose a risk to honeybees foraging during the application of the product.

Report:	KCP 10.3.1.545, 2001 0 4
Title:	Simpact on hopeybees of Decis 1000 insectproof tunnes on winter wheat
Document No	$M_{201580-91-1}$ (Rep. Nov. 33-2001) \sim
Guidelines:	$C \oplus B 1290 $ $O^* (4)^{\circ} (5)^{\circ} (5$
GLP:	Yes O A AN A L

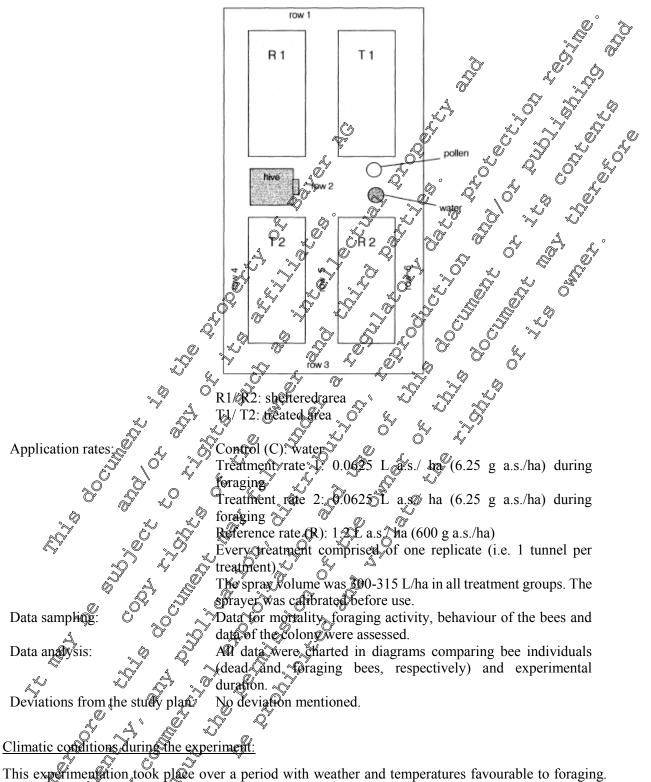
Material and methods:

Honey bee colonies of a 18,000 to 20,000 Bees per hive colonies of comparable development, brood, and food store status, queens of homogeneous maternal origin) were confined in tunnels on winter wheat fields sprayed with sugar syrup. Two replicates were set up for the treatment, one for each control and standard. Six days after introduction of the bees into the tunnels, the application was performed. The test substance was applied at a rate of 0.0625 L/ha (corresponding to 6.25 g a.s./ha), the toxic standard was colone for (500 g/L phosalone) at a rate of 1.2 L/ha while bees were foraging. The control was treated with water. The observed endpoints were foraging activity, behaviour, mortality, and colony development.

Findings:

Behaviour of the Bees was only slightly affected by the test item. Foraging activity was slightly influenced by the test substance only for a short time. Mortality was not increased significantly by the test item, there was a slight and short term increase of mortality after application, but overall mortality was comparable between treatment and control. The toxic standard, however, led to a longer-lasting increase of mortality. Colony development was not affected by the treatment.

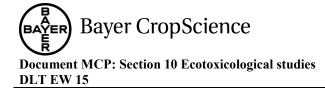
Material and Methods:


BAYER Bayer CropScience

k

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Test material	Deltamethrin
Test item:	Deltamethrin EC 100 G (AB F032640 00 EC11 A313) content of
	a.s.: deltamethrin: 10.6 % w/w (100 g a.s./ nominal), density:
Batch number:	TA066/OOPM
Reference item:	Zolone Flo (active ingredient: phosalone, 500 g a s. L nonanal,
Test organism:	TA066/OOPM Zolone Flo (active ingredient: phosalone, 500 g a.s. 2 nononal, analysed content: 499 g/L) Honey bees (<i>Apis mellifera</i>) Bee colonies came from the same aniary containing over 1,500
rest organism.	Bee colonies came from the same apiary containing over 1,900
	hives allowing deasy selection of swarms. Among the hives @
	considered, fige were choosen according the homogeneity
	during the weeks preceding the test. They four of the lives were
	introduced in the funnels. Young colonies with queens from the local black breed which were one year old. These queens have a
	common generic identity, they were sisters (or at least halfsisters)
	coming from a single strain. The colorines settled in bives of the
	DODANT 10 frame model. Populations spread over to 8 frames
	(with approximately to 4 frames of brood) were estimated at
Source:	around 18,000 to 29,000 bees peronive.
Source:	Neureported. S C S Solar Solars
	or a field
Test unit:	France France Reach turnel had a half-moon support made from galvanised steel. The surface per unit was 140 m ² (7 m x 20 m) and their root height approximately 3 metres. A polyethylene mesh net (1.2 mm x 1.2 mm) covered the supports. Both ends were made
	steel. The sufface per unit was 140 m ² (7 m x 20 m) and their
	root height approximately 3 metres. A polyethylene mesh net
	an of the same material Access was possible through a zin
	opeņing.
	Inside the annels, the wheat crop was split into four plots. Each
Â ^Ŷ , O, Ŝ	had a surface of 16 m $(2 \text{ m} \times 8 \text{ m})$. Two plots were considered
	as sheltered areas (RI and R2; not treated with test item), the
6 A S	watering place and feeders with pollen were placed in each of the
	unnelsand sopplied daily.
	Exact Interior design of the tunnel is shown in the figure below:
	•
Ű,	Each tunnel hed a half-mosa support made from galvanised steel. The surface per unit was 140 m ² (7 m x 20 m) and their root height approximately 3 metres. A polyethylene mesh net (1.2 mm x 1.2 mm) covered the supports. Both ends were made op of the same material. Access was possible through a zip opening. Instite the unnels, the wheat crop was split into four plots. Each had a surface of 16 m (2 m x 8 m). Two plots were considered as sheffered areas. (R1 and R2; not treated with test item), the other two (11 and T2) other as treated areas. A beehive, a watering place and feeders with pollen were placed in each of the tannels and supplied daily. Exact interior design of the tunnel is shown in the figure below:


BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

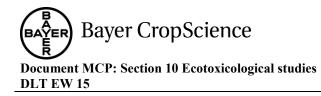
This experimentation took place over a period with weather and temperatures favourable to foragi The period before and after the day of product application was warm and dry.

The environmental conditions are shown in the following table.

e O

Table 1: Weather data

le 1: Weather data				~ °
	Minimum	Maximum	Rainfall	
	Temperature	Temperature	(mm)	L I T
	(°C)	(°C)		
June 21 st 2001	9	28	0 5	
June 22 nd 2001	10	28	0	
June 23 rd 2001	10	32	Ø,	
June 24 th 2001	13	32 () 34 ()		
June 25 th 2001	16	34	Q 0	
June 26 th 2001	18	29 26 25 ~	x 0	
June 27 th 2001	15			
June 28 th 2001	10	a 25 A	©°0 ~≪	
June 29 th 2001	8	K 33 5	L Q	
June 30 th 2001	12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
July 1 st 2001	12 🦼			
July 2 nd 2001	14 🔍	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		£ ,
July 3rd 2001	14 15 14 15 14	234 234 23 23 23 23	O' Q'	
July 4 th 2001	14 6 % &	20 S	, g	
July 5 th 2001	14 / ^{(0*}	20 23 23 23 23 23 23 23 23 23 23		
	Ç, V		L 20	


N.B.: Temperatures are given for the day mentioned, whereas rainfall recorded every morning shows precipitation over the previous 24 hours.

Pesticide history of the field ste

Only the maintenance of the field site is stated in the study report and is shown in the following table.

Fable 2: V	Vheat crop data	
Date	P Operation	Characteristics
February 21 th 2001	Sowing S	
		© Certified seeds under n° 559936 DK © Treated seeds Bockey plusab" (Auguiconazole + prochloraze- Cu Anthraquinone).
February 21 th 2001	Fertiliser	Ammonitrate 33,5%, dose 330 u. N / ha
April 3 th 2001	Fertilise	Annonipere 33.5 %, dose : 50 u. N /ha
0001	121	Athé Express (DuPont), dose : 50g / ha Graffentrazone-ethyle + metsulfuron méthyl)
		9 1

The effects of Deltamethrin EW 100 G were tested on the honeybee (*Apis mellifera* L.) under confined semi-field conditions by following the guidance document C.E.B. method no. 129.

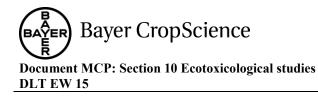
The aim of the study was to evaluate potential side effects of a spray application of Deltamethrin EC 100 on the honeybee, Apis mellifera under forced exposure conditions.

The hives were introduced into the tunnels six days prior to product application, in order to wait a mortality decrease and stabilisation. The colonies were comparable to each other during our first visit at the beginning of the test period, and mortality was homogeneous the first day of the study \sim

Mortality in each tunnel was recorded on a daily basis for all areas covered with plastic film, from days 5DBT to 8DAT. Moreover, the day on which product application is carried out (day 0) additional country are done at the end of the day (0DAT) in order to establish possible bottal intoxication of for aging bees. C The total mortality rate recorded in a tunnel for a given day resolts from adding up mortality rates observed in each of the six plastic lanes in the tuppel.

Foraging was generally observed three times aday, whenever possible, in all the sheltered (R1 and R2) and treated areas (T1 and T2). It is possible to adapt the time of counting to the environment of the trial and to active foraging periods. Counts could be shifted if activity was not considered satisfying date activity due to morning mist or disturbed by rainfall. etc.). This parameter was also taken into account for an additional count on the day of toatment, during one four following product application.

Two apiarist visits were programmed in the beginning and at the and of experimentation. Thus, it allowed evaluating colony development taking into account parameters: the adult bee population, the quantity and quality of the brood different stages observed amount of reserves and potential construction of new frames on offered way sheets. These visits were carried but in the tunnels at dates which were as close as possible to the first and last day of confidement However, for practical or climatic conditions, they necessarily took place within a hours on the one hand before or after introduction of the highes in the tunnels, and on the other band when the hives were taken out.

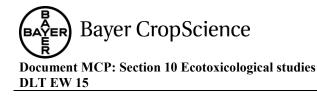

Assessments of be behaviour were carried out when products were applied and during the thirty minutes following product application. In general, this observation phase continued all over the day between counts. Bees were especially observed for reactions and behaviour like intense flying, bee clusters on the net or at the entrance of the hove, aggressiveness, beginning of an intoxication etc. in each of the tunnels.

The influence of the set item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference frem group.

The following endpoints were assessed:

- Numbers of dead bees per day pefore as well as after the applications in the control, the test item group and the reference item group, respectively
- Number of foraging bees/m² per day of all the areas (T1, T2 and R1, R2) before as well as after the applications in the corpol, the test item groups and the reference item group, respectively
- Behaviour of the bees during assegment in the control, the test item groups and the reference item group, respectively,
- Colony Assessment in the beginning and at the end of experimentation

Dates of Work: 21 June to 5th July 2001


Findings:							o
Ionev bee mortality							
A summary of the daily morta	ality and t	otal morta	lity result	s are show	n in the fo	bowing ta	able,
					Ő	Y.	
Findings: Honey bee mortality A summary of the daily morta Fable 3: Daily mortality data Treatment Zone Deltamethrin EC 100 (1)			Č	\$	J.		
Treatment			51	DBT - 22 J	utie	Ű,	
zone	lane 1	lane 2	lage 3	lane 4	lane 5	Qine 6	🗸 total
at 6.25 g a.s./ha	67	J- &	4 6	55			<i>2</i> 26
Deltamethrin EC 100 (2) at 6.25 g a.s./ha	69	12	<u>j</u>	25 J		A6	168
Water control	82	41	~ <u>43</u> @	4.00		<u>380</u>	220
Zolone Flo	91	×15 _	<u>× 62</u> ×	<u></u> , ⁷ , <i>1</i>	$\rightarrow 60^{\circ}$	73	[©] 264
	Ĺ		ي 41	эрт - 239	une 🞺		× Õ
zone	lane	lange 2	ane 3	lame 4	Ane 5	lango	fo tal
Deltamethrin EC 100 (1)	3 1 ∕″	\$ \$ \$	20	6 ² 7 x	50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°≫ 109
at 6.25 g a.s./ha Deltamethrin EC 100 (2)	35 ×	<u>j`@`</u> \$ P	32		ه م ^م 2	<u> </u>	107
at 6.25 g a.s./ha 👋 🕅 Water control	- A	$\sqrt{2}$ $\sqrt{2}$	37			Ŝ	127
Zolone Flo	<u>جر</u> 152	9 12 12	32	\$ 10		29	139
		123		ĎВТ - Ф24 J)	107
<u> </u>					•		
zone 🔊 🧇 Deltamethrin EC 100 (1)	lane 1	Nane 2	lauce 3	Anne 4	lanc 5	lane 6	total
at 6.25 ga.s./ha	a 23 🗶		×43 ,	12	Š	7	87
Deltamethrin EC 190 (2) at 6.25 g a.s./ha	28	A 7 3	275		¢ 4	18	95
Water control	S 17 🖉	16	<u>~</u> 31 ~	8	1	22	95
🔨 Žolone Flo 🔨 🐁	n 56 °		<u> </u>	12 12	5	21	148
)BT - 25 J			
zone [«] Q [®]	Sane 10	lane Ž	Ane 3	🕅 lane 4	lane 5	lane 6	total
Deltamethrin EC 100 (1) at 6,25 g a.s./ha	~5.5 ³⁷		× 58	28	5	5	158
Deltamethrin EC 100 (2) acto.25 g a.s./ha	22 Ô	J.S.	× 27	12	6	16	98
Water control	52×	@ ³ 9 %	48	23	3	21	156
👋 Zolone Flo 🔗	×93	<u>Q 17 </u>	74	33	3	38	258
		Â,	11	DBT - 26 J	une		
zone S	lane 1	đane 2	lane 3	lane 4	lane 5	lane 6	total
Deltamethrin EC 100 (O at C.25 g @s./ha	مي 26 0	9 4	68	21	2	3	124
Deltamethrin EC 100 (2)	16	11	37	11	3	8	86
Water control	23	16	80	24	1	8	152
Solone Flo	87	48	132	22	3	57	349
	0DBT - 27 June morning						

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Deltamethrin EC 100 (1) at 6.25 g a.s./ha	53	8	37	15	1	9	123 _@ °
Deltamethrin EC 100 (2) at 6.25 g a.s./ha	88	11	9	7	2	<u>9</u>	126
Water control	119	10	44	16	5	21	2 95 Ø
Zolone Flo	163	38	48	26	15 0	172	462
					c A		
zone	lane 1	lane 2	ODAT -	- 27 June a lane 4	fternoon bane 5	lane	Tortal of
Deltamethrin EC 100 (1)							
at 6.25 g a.s./ha	103	9	23	18) [°] I	Å,	total 163 129
Deltamethrin EC 100 (2) at 6.25 g a.s./ha	95	9	÷11	2			
Water control	77	5 "	5_0	_03 _	2.0	A) .	102
Zolone Flo	510	29	A 9	x 35 x	13	ST38	V 774
		A.	<u></u>	DAT - 28 J	une "C	* O ^Y	
zone	lane 1	Jane 2	lane 3	Jane 4	ane 3	lane 6	tota
Deltamethrin EC 100 (1)	103		²³	× 18		§ 9 8	163
at 6.25 g a.s./ha	105 03						
Deltamethrin EC 100 (2)	103 99	6 ⁹ 6	12	$\hat{\mathbb{A}}_2$		ad	°≫ 129
at 6.25 g a.s./ha Water control	- Ø/ *		-Qž		- ò	<u>~</u> 0	102
Zolone Flo ^{\$}	510	- Sã	<u>05</u> 1. 49 -	<u> </u>	× 913 @	138	774
				N/	- 0,		//4
°. Sy l	.1		21 چې	DAT - 29 🕯	ůne 🌮		
zone 🔊	Slane 1	lane 2	Qane 3~	lane 4	stane 5 ≫	ane 6	total
Deltamethrin EC 100 (1)	. 187	~~4 [~]		0	0 [*] 4	9	219
at 6.25 g a.s.ha	No S		767	0 ¹⁴	4	9	219
Deltamethrin EC 100 (2) at 6.25 ga.s./ha	^{\$\symp_{91}\$}	a de la companya de	×16 ~		Ŵ	25	146
Water control 🗸	138	. 5 .	240	Ô8 J	Ø 1	14	190
Zerone Flo 🔬	√932	113	119	@ 68 @	28	303	1561
			 ⊖ ^{S™} ∛J	DAT, -30 J	une		
zone 🔊 🗳	lane 1	ane 2%	lane 3	lane 4	lane 5	lane 6	total
Deltamethrin EC 100 (1) at 6.25 g a.s./ha	53 ×	3,40	~ ⁵⁶	32	0	9	153
Deltamethrin EC 100 (2) at 6,25 g a.s./ha	×	~ 6	0. 195, 7 195,	10	1	9	114
Water control	\$71 \$	7 3	× 50	26	2	23	175
Zolone Flo	\$ 363	A .	×169	96	11	229	939
	~		<u> </u>	DAT – 1 J	1		<u> </u>
zone, ^{\sigma}	a Jane 10/	lane 2	lane 3	lane 4	lane 5	lane 6	total
Deltamethrin EC 100(1)	124	3	65	24	3	18	234
at 6.25g a.s.7ha Deltamethrin EC 100 (D)	مَّاً 36	Ş 9	19	10	3	13	190
at 6.25 g 6.s./ha	0						
Water control	× 124	5	33	19	2	11	194
Zolone Flor	499	56	96	73	8	128	860
			5	DAT - 2 Ju	uly		
zone	lane 1	lane 2	lane 3	lane 4	lane 5	lane 6	total
Deltamethrin EC 100 (1)	64	12	47	41	5	3	172
at 6.25 g a.s./ha	04	12	7/	41	5	5	1/2

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Deltamethrin EC 100 (2)	80	9	47	37	6	14	193	0
at 6.25 g a.s./ha							1)3	, °
Water control	76	9	50	15	1	13	164	S
Zolone Flo	300	40	161	85	15	119	7 20)	ч <i>О</i> г л
	6DAT - 3 July)	
					• •0	ð.		ř
zone	lane 1	lane 2	lane 3	lane 4	lane 🏷	lane 6	ý totá 🖓	<u>ĝ</u>
Deltamethrin EC 100 (1)	54	8	109 🕅	85		8 🔊	273	
at 6.25 g a.s./ha	51	0		, 05		Cı		
Deltamethrin EC 100 (2)	65	7	65	35 🦿	Ĵ¥ 3	with the second	³ 192 ³	Ű, Ö ^v
at 6.25 g a.s./ha			"Qĭ	~	~		2 ²⁷ 1925 246	
Water control	61	23	A14	25 Q	2 A	21	246	Ş
Zolone Flo	126	44 🖌	2 ⁶ 184	69	<u></u>	<u>∛ 1</u> 240°	¢\$53_@	/
		×	<u>گُوْرُ</u> 7	DAT - 4 J	ily &	S.		
zone	lane 1	lane 2	Jane 3	lang	lanie 5	lane 6	total 🗸	ç°
Deltamethrin EC 100 (1)		K N		4	A. 5 Å			4
at 6.25 g a.s./ha	126	~ ²⁸ ~~	× 84, ×	ر بر م		29 C	320	
Deltamethrin EC 100 (2)	100	1.7	~ ⁷⁰ ~		Ô	© 21 0	249	
at 6.25 g a.s./ha	e C		~~~				<i>2</i> + <i>)</i>	
Water control	88 ⁹	21	[*] 84	37	$3^{\circ} 3^{\circ}$	20	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Zolone Flo	_150	2 43 a	80	<u>34 </u>	~ ? >	0 ⁷³	382	
8	S.		8	DAT 5 Ju	ıly©	, or or		
zone	lance 1	Aane 2	lane 3	lane 4 ू	Vlane 5	lane 6	total	
Deltamethrin EC 100 (Î)	A.55	25	a Call	Ŝ [°] 10 €	ٌ ۲	\$ 34	176	
at 6.25 g a.s./ha	\$* ³³ _?	20				5, JT *	170	
Deltamethrin EC 100 (2)	59	~~21 [*]	225 [°]	6	°° 9 ∜	18	135	
Water control	× 43		~ *~?*	8 8		25	157	
	00	108	40 a	12	$-\sqrt[N]{A}$	60	268	
DBT: days before treatment)))()	K C				00	200	
DAT: days after treatment .	Q.	A. N		<i>a</i> . <i>×</i>	Ĩ			
	× 6	7° 0		\$ ~' ⁰				
	B &		Ô ^y Ŵ	× _ O″				
			Î V Y V					
Zone Deltamethrin EC 100 (1) at 6.25 g a.s./ha Deltamethrin EC 100 (2) at 6.25 g a.s./ha Water control ZolonoFlo DBT: days before treatment DAT: days after treatment DAT: days after treatment								

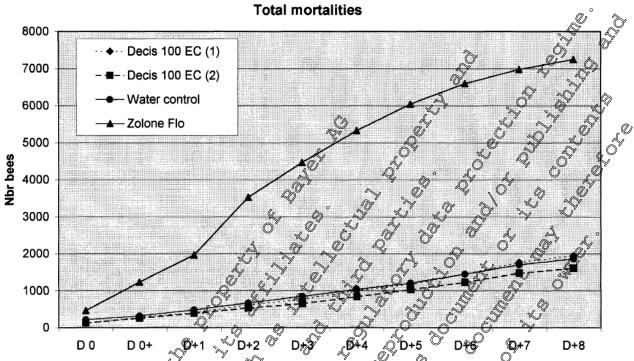
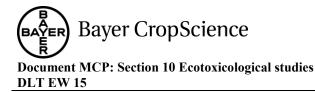


Figure 1: Total mortalities for Deltamethrin EC 400 (1) at 6.25 g a.s./ha (Decis 100 EC), Deltamethrin EC 100 (2) at 6.25 g a.s./ha (Decis 000 EC), the water control and the reference item (Zolone Flo) D0: 0 days before treatment D0+: 0 days after treatment D+1 to D+8: 1 to 8 days after treatment


The day after the freatment, mortality trends showed real differences. A kigh peak of mortality occurred in the reference Zolone Floutment. The elevation of mortality in both cannels treated with Deltamethrin EC 100 showed that mortality levels at 1DAS in these tunnels stayed comparable to the untreated control. This development is taked to the treatment day only, and levels were decreasing on the next day (2DAT).

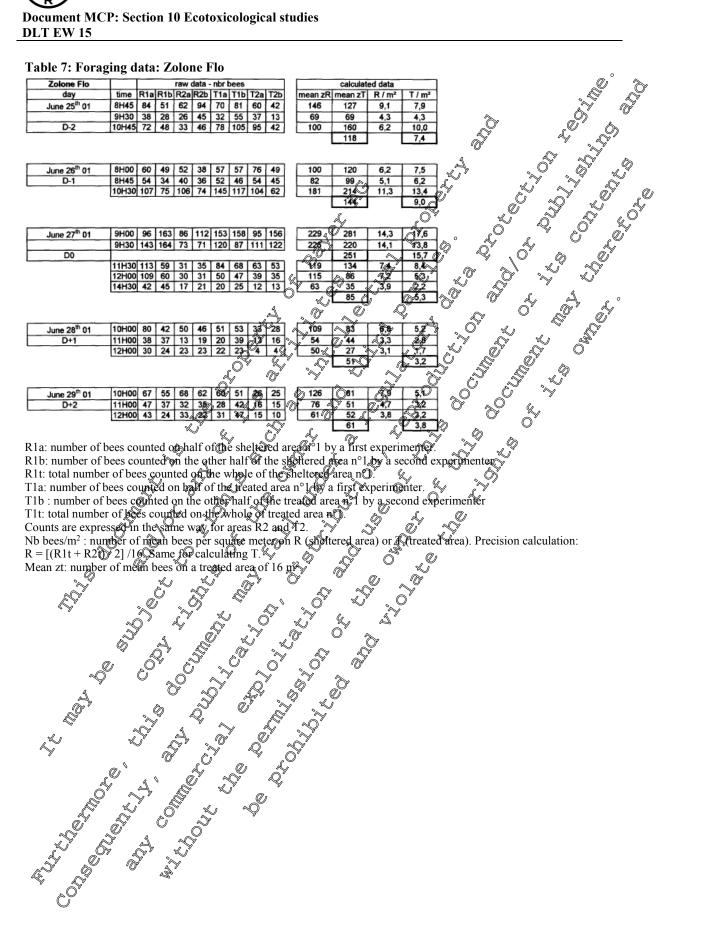
The data validation was available as Zolone Plo showed on increasing mortality whereas the water control tunnel showed regular evolution. In this control tunnel (treated with water) the colony was not disturbed by the treatment. Nortality rates recorded varied few along the week.

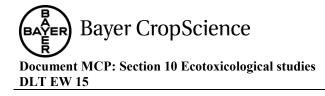
After treatment the difference between Deltanethrin EC 100 formulations and Zolone Flo was linked not only to the intensity but also to the diration effect. The standard tunnel treated with phosalone showed a high mortality for several days. This level of mortality stayed high from 1DAT to 3DAT and we had to wait until 3DAP looking to a decreasing mortality, then until 7DAT to obtain similar mortality data.

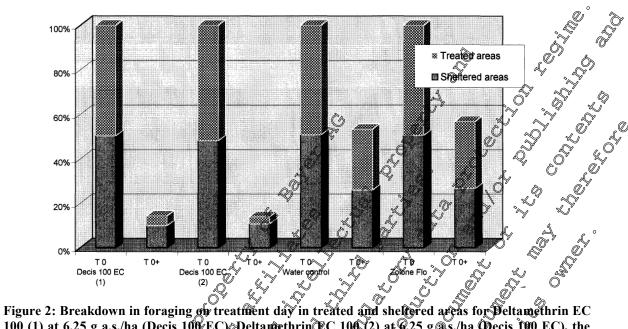
The daily mortality trends in both tunnels treated with Deltamethrin EC 100 were comparable to that of the water control tunnel. There was, however, a small increase in mortality rates following product application observed only at CDAT. This increase in mortality rates was limited in intensity and observed shortly. Until the end of the trial this parameter regularly remained in the same values as in the untreated tunnel.

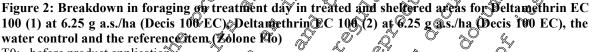
Total dead bees were comparable between the Deltamethrin EC 100 tunnels and the control at the end of this experimental phase as well as on the day of application. So these trends could be considered as

close from one another, with non-high toxicity described in the tunnels where Deltamethrin EC 100 was
applied
apprica.
Foraging activity
close from one another, with non-high toxicity described in the tunnels where Deltamethrin EC 100 was applied. Foraging activity A summary of the daily foraging activity and breaking down of foraging on treatment day results are shown in the following tables. Table 4: Foraging data: Deltamethrin EC 100 (1) (Decis 100 EC) ar 6.25 ga.s./htt $\hline Decis 100 EC (1)$ $\hline dw & time Rtia Rtib R2a R22) Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R22) Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R22) Tia Tib T22 R24 \hline D = 100445 87 34 102 77 76 68 468 661 D = 2 100445 141 54 87 5 494 149 861 157 115 \hline D = 100445 141 54 195 5 494 149 861 157 115\hline dw & time Rtia Rtib R2a R22 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R22 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R22 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtib R2a R24 Tia Rtib R2a R24 Tia Tib T22 R24 \hline dw & time Rtib R2a R24 Tia Rtib R2$
shown in the following tables.
Table 4: Foraging data: Deltamethrin EC 100 (1) (Decis 100 EC) at 6.25 ga.s./ha
Decis 100 EC (1) raw data - nbr bees
day time R1a R1b R2a R2b T1a T1b T2a T2b mean zR mean zT X / m² / m²
June 25 th 01 8H45 97 34 102 77 76 69 105 66 9 155 158 9,7 9,9
D-2 10H45 141 54 95 69 69 81 112 74 489 169 114 105
June 26 ^m 01 8H00 121 64 117 73 006 84 110 87 188 194 110 124
June 27" 01 9H00 84 180 96 179 109 183 116 141 260 275 182 172
11H30 25 25 35 22 14 9 35 8 7 54 24 3,3 1,5
12H00, 26 12, 28 210, 16 50 8 4 40 12 2.7 1,0
June 28 th 01 10H80 191 109 153 130 160 78 127 104 292 285 182 14,6 D+1 11H60 146 88 96 65 109/49 72 154 297 186 123 91
D+1 11H60 146 86 96 6 109 49 72 64 997 446 12,3 9,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
June 29th 01 10H 00 245 110 178 150 174 33 172 116 342 298 21,3 18,6
D+2 471160 160(104 149, 99 99071 105 94 256 185 16,0 11,5 24100 122 65 97 59 68 48 69 74 172 129 10,7 8,0
<u>52H00</u> 122 65 59 66 48 69 74 0 172 129 10,7 8,0 204 12,7
R1a: number of Bees coupled on half of the sheltered area for by a first experimenter.


R1a: number of bees counted on that of the sheltered area of by a first experimenter. R1b: number of bees counted on the other half of the sheltered area n°1 by a second experimenter. R1t: total number of bees counted on the whole of the sheltered area n°1. T1a: number of bees counted on the other half of the sheltered area n°1. T1a: number of bees counted on the other half of the sheltered area n°1. T1a: number of bees counted on the other half of the sheltered area n°1. T1b: number of bees counted on the other half of the treated area n°1. T1b: number of bees counted on the other half of the treated area n°1. T1b: number of bees counted on the other half of the treated area n°1. T1coans are expressed in the sheltered area of the treated area n°1. Coans are expressed in the sheltered area for a meter of R (sheltered area) or T (treated area). Precision calculation: R = [(R1t + R2t) 2] /16. Same for reated area of 16 m². Mean zt: number of mean bees mean treated area of 16 m².


Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

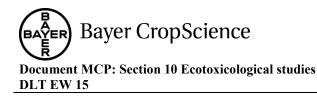



BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Tha number of bees counted on half of the traced area of the value area of the value

T0: before product application T0+: after product application

During the three counts that followed product application, mean foraging trends were comparable between tunnels. In a tunnels this activity decreased a fot during the alternoon. Not only the impact of substances could be involved, as foraging decreased in the unreated tunnel too. In fact this activity was always more intensive in the morning in reason of sugar spraving. Then it decreased as climatic conditions induced evaporation and crystallisation of the syrop. Or this special day (day 0) it was impossible & spray more water on the plots in order to keep them appractive. So most bees left the crop for the end of the day in all turnels. \bigcirc


The main decrease preared in both Deltanether EC 100 tunnels where the foraging activity was close to null in the afternoon. Less infortant was the decrease of activity in the control tunnel, as well as in the reference tunnel where bees get flowly intoxicated despite a characteristic smell.

On the following days foragers' activity occeased with different intensity. It increased regularly for two days in Deltamethrin EC 100 formulation thanels, while it remained close to stable in the untreated tunnel at IDAT and 2DAT, in these three tunnel activity levels reached one another at this time. On the contrary foraging activity remained over in the Zolone Flo tunnel where crop treated plots were less attractive to bees.

Shortly after product application (ODAT, during the thirty minutes following product application), a repulsive effect was observed in both Deltamethrin EC 100 tunnels. The decrease in foraging activity affected at tunner and mostly treated areas.

Obviously spraying disturbed the bees, as foraging activity decreased in control tunnel too. In this water control tunnel, as well as in the reference Zolone Flo tunnel there was no repulsive effect, the decrease of activity was similar on all treated and sheltered areas.

During spraying experimentators experienced neither particular aggressiveness nor any frenetic bumbling. In the tunnels where the test product was applied, a few clinical signs occurred in the hour

following product application. These signs were observed in the afternoon but not the next or following days.

Intoxication symptoms: Description had to be compared to what happened in the standard junnel.⁽⁰⁾ Foragers in contact with the product were the ones that were affected first. In Deltamethrin EC 100 and Zolone Flo tunnels, some bees were on the ground after treatment and they had typical intoxication signs.

In these tunnels, intoxicated bees fell on the plastic surface of the rows, walked in a difficult way alternating periods of sluggishness and frenzy. Such a bee rolled over itself and appeared too beavy when trying to lift off. It's fore legs then its hind legs and abdomen appeared to be paralysed. The bee died in a range from a few minutes to a few hours appeared to be paralysed. The bee

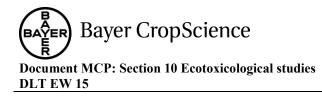
Behaviour of the bees

Colony behaviour was comparable between tunnels as foraging was quite regular on cropplots. Colonies in the different tunnels only showed reaction to treatments as flying away when the boom with water passes by.

In the standard tunnel, a characteristic Zotone Flor smell appeared after treatment and remains for several hours. A few intoxication signs also appeared and are more frequence by the end of the day, either on the next days (1DAT to 4DAT).

Activity at the hive entrance was normal in all minnels. No bee clusters were observed either on the nets or at the hive entrance and no decing events were observed in any of the tunnels.

Intoxication symptoms: Description had to be compared to what happened in the standard tunnel. Foragers in contact with the product were the ones that were affected first in Deltamethrin EC 100 and Zolone Flo tunnels, some bees were on the ground after treatment and they have typical intoxication signs.


In these timnels, intoxicated bees fall on the plastic surface of the rows, walk in a difficult way alternating periods of Suggistiness and freezy. Such a bee rolls over itself and appears too heavy when trying to lift off. Its fore legs then its hind legs and abdomen appears to be paralysed. The bee died in a range from a few minutes to a few hours.

Conclusion;

Overall conditions for conducting the experimental phase of the trial were favourable to beekeeping. Climatic and crop conditions were satisfactory so that the different parameters observed agree with the data obtained.

According to this experimental phase, especially reference Zolone Flo showed an impact on bee death compared to the other tunnels. A main observation was observed in mortality caused by Zolone Flo. This substance showed high effects over several days, when Deltamethrin EC 100 effect is limited to a very small increase of mortality, only the following day after application.

In both two unnels where Deltamethrin EC 100 was used, mortality level reaches water control data the day after reaches the day after reaches water control data the data the day after reaches water reaches wa

Experimental conditions of the study were quite strict, including confinement and product application carried out during foraging activity, on attractive plots. Only the use of Zolone Flo gave a mortality stage that remained a few days.

In the case of this trial under tunnels on a wheat crop, the effects of the test substance Dettamethen EC 100 in two tunnels only showed a low and temporary increase in mortality vielding comparable total mortality rates to those recorded in the water control tunnel.

In these tunnels (except reference Zolone Flo) evolution of mortality was similar all along the trial. This was illustrated as curves were close together on the graphs.

			K O	0	- OF	'0' d	*	۹. °
Report:	KCP 10.3.1.5/16,		;2006	²	1	[₽] 0	ų.	Ĩ
Title:	Evaluation of effects of	n hôn	ey bees of	one Dell	amethrin	e 100/EC	applicat	on on
	winter wheat	, Č	× ^		Ň	<u>Ď</u>	Ç Ö	2
Document No:	<u>M-268997-01-1</u> (Rep.)	Ø.: 87	2005)	Z,			, Òg	
Guidelines:	CEB 230, EPPO 170	, Ča	, Å	S' (Z°	
GLP:	yes a 🗸	- C	Å .0		ð	~° (
		\approx	-10° - 4	0,¥	<i>l</i> a))	

Material and methods:

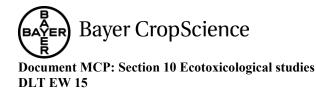
20.000 bees per hive, colonie Honey bee colonies (ca 1/5/000 to elopment, brood. and food store status, queens of homogeneous matemal origin) were confined in funnels on winter wheat fields sprayed with sugar sycop. Ore replicate was set up for the treatment and one for each control and standard. Deltamethun 100 BC is applied in two modalities, during the bee foraging activity under one tunkel, and at night in another funnel in order to avoid the contact with forager bees. The test substance was applied at a rate of 0.0625 L/hr (= 6,29 g a.s ha), the toxic standard was Dimezyl 40 EC (40 g/L dimethoate) at a rate of 120 L/ha while were for a fing. The control was treated with water. The observed endpoints were for aging activity, behaviour mortality, and colony development.

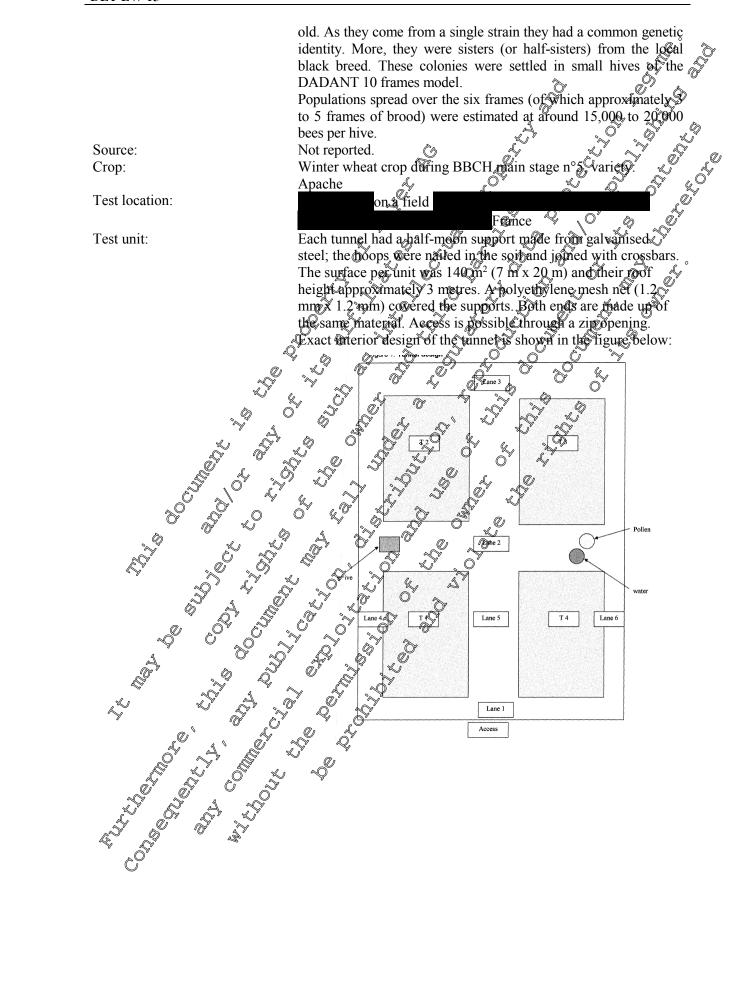
Findings:

slightly affected by the test fem. Foraging activity was slightly Behaviour of the bees influenced by the test Substance only for a short time. Mortality was not increased significantly by the test item; there was a slightand short term increase of mortality after application, but overall mortality was comparable between treatment and control. The toxic standard, however, led to a longer-lasting increase of mortality. Colony development was not affected by the treatment.

Material and Methods: Reference item: Test organism:

^MDeltamethrin


Devamethrin EC 100 G (AE F032640 00 EC11 A3) content of a.s.: deltamethrin: 102.08 g a.s./L (100 g a.s./L nominal), density: 0.954 g/ml


OP240841

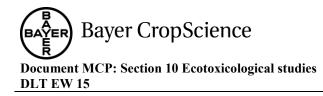
Dimezyl (active ingredient: dimethoate, 400 g a.s./L nominal, analysed content: 400.9 g/L)

Honey bees (*Apis mellifera*)

Bee colonies were especially selected over 1000 hives that permits a selection of swarms. Queens in the four colonies were one year

Bayer CropScience

Page 327 of 518 2017-05-15


Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Application rates:	Control (C): water Treatment rate 1: 0.0625 L a.s./ ha (6.25 g a.s./ha) during foraging activity Treatment rate 2: 0.0625 L a.s./ ha (6.25 g a.s./ha) out of foraging activity Reference rate (R): 1 L/ ha (400 g a.s./L) Every treatment comprised of one replicate (i.e. 1 turnel per treatment). The boom was previously tested on a calibration scale porder to check the homogeneity level of the nozzle flow
	The boom was previously tested on a calibration scale porder to
Data sampling:	check the homogeneity level of the nozzle flow.
Data analysis:	All data were charted inodiagrams comparing bee individuals
Deviations from the study plan:	(dead and foraging bees, respectively) and experimental duration. No deviation mentioned.
Climatic conditions during the exp	eriment:
The period before and after the day	2 of product application was warmand dry
The environmental conditions are	
Table 1: Weather data 🕺 🐴	
Temperature	Temperature Mainfalk
Min (°c) &	
May 16th 2005 3 13 7	
May 17th 2000 0 13 May 18th 2005 0 418	$O^{\text{T}} \qquad $
May 1947 2005 🔬 17 🗸	
May 20th 2005	
May 21st 2005	
May 22nd 2005	
May 22nd 2005 15 May 23rd 2005 2005	2 37 37 5 0 37 5 0
May 24th 2005	
May 25th 2005	
Pestivide history of the field site	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<u>restrated mistory of the logic site</u>	

Only the maintenance of the field site is stated in the study report and is shown in the following table.

Õ

Ø1

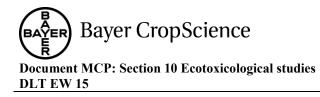
Table 13: Winter wheat crop data

Date	Operation	Characteristics
October 2004	Soil preparation	Harrowing: preparation of the seed bed and adventice destruction
October 29 th 2004	Sowing	Specie : triticum Variety : Apache
February 9 th 2005	Fertiliser	sample: F0389M030203 treatment: Celest (Cotloxonil + anthraquinone) sowing dose: 180 8g/ha
May 25 th 2005	Destruction	Animoniarite : 80 k N / ha 2 A . 0 V Var V V V V V V V V V V V V V V V V V

The effects of Deltamethrin EW 15 G were tested on the honeybee (*Apis mellifera* k) under confined semi-field conditions by following the gaidance document C.E.B. method bo. 2305

The aim of the study was to evaluate potential side effects of a pray application of Deltamethrin EC 100 G on the honey see, Apis mellifera under foreed exposure conditions.

Four tunnels were built up for this trial. Deltamethrin 100 EC was applied in two modalities, during the bee foraging activity under one tunnel, and at night in another tunnel in order to avoid the contact with forager bees. In the same foraging conditions, a toxic reference with dimethoate (400g a.i./ha) and a water control was applied for comparisons.


Colonies were introduced into the tunnels on Sunday May 13th 2005 at night. The colonies were comparable to each other during our first visit at the beginning of the test period, they look homogeneous during these days. After a few days of confinement, for aging bees' activity was adapted to the considered area. Daily mortalities were collected all over plastic covered lanes.

Mortality in each tunnel was recorded on a daily basi for all areas covered with plastic film, from days 2DBT to 6DAT. The total mortality rate recorded in a tunnel for a given day resulted from adding up mortality rates observed in each of the six plastic lanes in the tunnel.

The quantity of forager bees was observed during seven days from 3DBT to 3DAT, on all the crop plots. It was possible to adapt the time of counting the environment of the trial and to active foraging periods. Counts can be shifted if activity was not considered satisfying (late activity due to morning mist or disturbed by rainfall...etc).

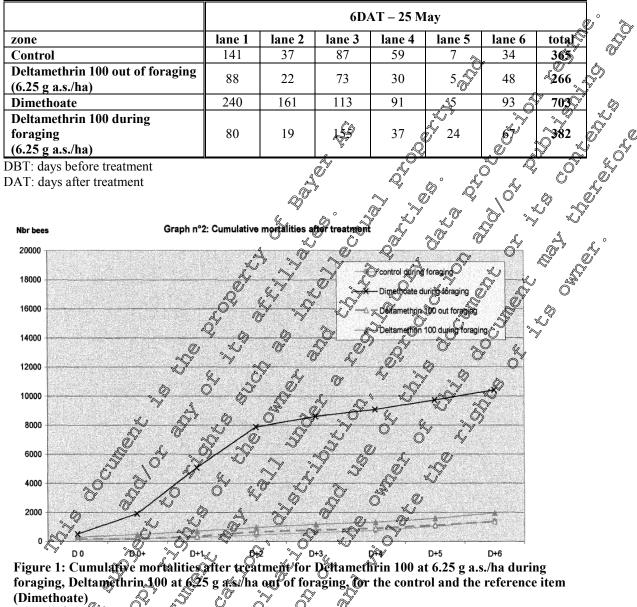
Two aparist crisits was programmed in the beginning and at the end of experimentation, allowing evaluating colony development. Parameters taking into account was the adult bee population, the quantity and quality of the brood (different stages observed), and amount of reserves. These visits were carried out in the tunnels at dates which were as close as possible to the first and last day of confinement.

The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

The following endpoints were assessed:

- Number of dead bees per day before as well as after the applications in the control, the test item groups and the reference item group, respectively
- groups and the reference item group, respectively
 Number of foraging bees/m² per day on all the areas before as well as after the applications in the control, the test item groups and the reference item group, respectively
 Colony Assessment in the beginning and at the end of experimentation
 Dates of Work: 16th May to 25th May 2005
 Findings:

 Honey bee mortality
 A summary of the daily mortality and total mortabily results are shown in the following table.


 Table 14: Daily mortality data

	<u>0'</u>			s' d	0	\sim	\sim
Treatment		R i		BT - 🗗 M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9
zone 🔊	🏑 lane 1 🖗	Vane 2	lane [°] 3	Aane 4	🤉 lane 🔊	lane 6	total
Control 🗞	ర్ ^ళ 30 స్	26/	'¶8	36	24 4	2 912	126
Deltamethrin 100 out of foraging	່າງ	417	20 0			9	110
(6.25 g a.s./ha) 🔬 💭	.\$ ²	\bigcirc 17 \bigcirc		²³		\$ }	
Dimethoate	~105 _@	32	23 4	$O_{123} $	5	35	534
Deltamethrin 100 during 🔬 🔬	5 , 9	~					
foraging	54	A5 🎾	♀ 101 ₂ 9	68 1	~~16	30	294
(6.25 g a.s./ha)	× ,		~	<u>s</u>	Ś		
			\$ 1D	9T - 18 M	ay		
zone	lane 1	lane 2	, lane s	lâne 4	lane 5	lane 6	total
Control 5 5	3 6	× 20 0 [×]	354¥ [°]	0 45	2	6	163
Deltamethrin 100 ont of foraging	K 56 0	sta ²	×49 Å	36	6	23	186
(6.25 g a.s./ha)	56	J. Ore		50	0	25	180
Dimethoate	<i>1</i> 774 ·	18 🔊	168	126	10	36	532
Deltamethrin 200 during 🖒)	O.				
for aging $(6.25 \text{ g a s}^{\text{sha}})$	820 ⁹	60	~ 71	67	14	36	330
(6.25 g a.s.ha)	J.V		Ŵ,				
			0DBT –	19 May n	orning		
zope	lane	lame 2	lane 3	lane 4	lane 5	lane 6	total
Control	39♥	Oí1	46	17	2	18	133
Deltamethrin 100 out of foraging	~~58 ^k	Q 7	63	16	3	18	165
(6.25 g a.s./ha)		¥ /	03	10	5	10	105
Dimethoat 🖉 🖉 🔬	183	28	175	44	10	70	510
Deltametorin 100 during							
foraging N A	78	16	98	40	18	34	284
(6.25(g a.s./ha)							
			0DBT –	19 May af	ternoon		
zone 💍	lane 1	lane 2	lane 3	lane 4	lane 5	lane 6	total
Control	21	5	12	7	0	13	58
Deltamethrin 100 out of foraging (6.25 g a.s./ha)	/	/	/	/	/	/	0
(0.25 5 a.s./ na)	1	1					

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

					· -						
Dimethoate	226	339	232	144	17	430	1388	0			
Deltamethrin 100 during				<i>.</i>	<i>c</i>			e do			
foraging	74	13	36	9	9	36	177				
(6.25 g a.s./ha)					2	<i>a</i>	Ő	-0 -			
		1DAT – 20 May									
					• •0		° R	× .			
zone	lane 1	lane 2	lane 3	lane 4	lame 5	lane 6	total,	, Q			
Control	20	7	29	9	×2	10~>>	~ Z)*	Ž,			
Deltamethrin 100 out of foraging	60	7	80	10	y 3		NO 177 🖌				
(6.25 g a.s./ha)	505	7	<i>a</i> 415	214	36		3187				
Dimethoate Deltamethrin 100 during	505	/	Q ⁷⁴¹⁵	3 IQ	<u> </u>	<u>583 Q</u>		Ĩ			
foraging	65	240	» 95	~ ~17 _ Ø	9 Q	Â	ي255 _	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
(6.25 g a.s./ha)	05	-2700	95								
(0.25 g a.s./ha)					xí						
		, O "	Ų žn	ат ₍₂ 21 м	al a	r Ly	A	al. °			
zone	lane 1/	lane 2	hane 3	lane 43	lane	lane 6	Stotal	Ĭ			
Control	884	<u>`</u>	<u>2</u> 5	∑ 2 <u>2</u> √	\sim	م [∞] 22 ₄	169				
Deltamethrin 100 out of foraging	49.8	K . «	J 27 X	st e	č 5 &	68	314				
(6.25 g a.s./ha)		& °.		* 1 8 ©			Ô				
Dimethoate	^م /1016 🖤	951 [®]	<u>⊾</u> 111	258	56	39 4 ,	∞Ž786				
Deltamethrin 100 during	× Q						*				
foraging (6.25 g a.s./ha)	-142	010	\$ 33¢	Q.	12 °Č	r 4 <u>6</u> ≶∕	248				
(6.25 g a.s./ha) ≪ ^v		<u> </u>		L N	<u>? </u>						
			. 3D.	ат - 22̂ М́	ay	L.					
zone		læne 1 Dane 2 lane 3 kupe 4 lane 5 lane 6 total									
Control	× 65 a	8.0	43	014		42	179				
Deltamethrin 100 out of for aging				, <u> </u>							
(6.25 g a.s./ha)	5 5 S	\sim ⁵	Q 33 🖉	85	2 2	36	135				
Dimethoate	Q53	179.4	57	₂ 23 °	V 11	204	727				
Deltamethring 00 during	O K		ð	0. U							
foraging	84	Ň	\$¥7		10	43	213				
(6.25 a a a b a) 🔍 🔍	~~~ ×			Ž							
		× .~~	1D	≰⊊ - 23 M	av						
	Ŭ, Ū		<u> </u>	7.	•						
zone	lane X	lagne 2	Clane 3	lane 4	lane 5	lane 6	total				
Control	C C	× 7	28	5	1	40	143				
Deltamethrin (900 out Of foraging	sy 52 ∼	14	× 19	4	8	24	118				
(6.25 g a.s./ha)	166	174,00 2060	© 16	11	10	117					
Dimethoat		NOU K	₩ 10	11	10	11/	480				
Deltametirin 100 during Q foraging A	∼ ∼ 79 _ Ś	100	17	11	5	27	149				
(6.25 g a.s./ha)	6 ⁷ ' ´_Û		1/	11	5	21	149				
							I				
	ي الم										
ZONO A A	Man A	lane 2	lane 3	lane 4	lane 5	lane 6	total				
zone	Mane b 169	8	34	28	13	31	279				
Deltameterin 100 out of foraging											
(6.25 g a.s./hat A	106	9	21	19	6	38	199				
Dimerhoat	440	73	24	21	7	85	650				
Deltamethrin 100 durings					,		500				
foraging	149	16	27	11	6	40	249				
(6.25 g-a.s./ha)	/				÷						
(······ə······)	N	1					1				

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

D0: 0 days before meatment D0+: 0 days after treatment

D+1 to D+6: 1 to 6 days after treatment

The main information as a tesult according to the use of Deltamethrin 100 EC was the similarity of the mortality development within the two treatments (during and out of foraging). Whatever the application time, in presence or in absence of forager bees on the wheat plots, this Deltamethrin 100 EC induced similar records according to the daily mortalities. Application during foraging of bees its impact led to a limited increase of mortality that could be hardly observed only on the following day (1DAT). This development was limited to this following day, as then the mortality trends in both treatments were similar until the end of the tecording period. Both mortality levels from 2DAT to 5DAT were low and comparable to their previous levels before applications.

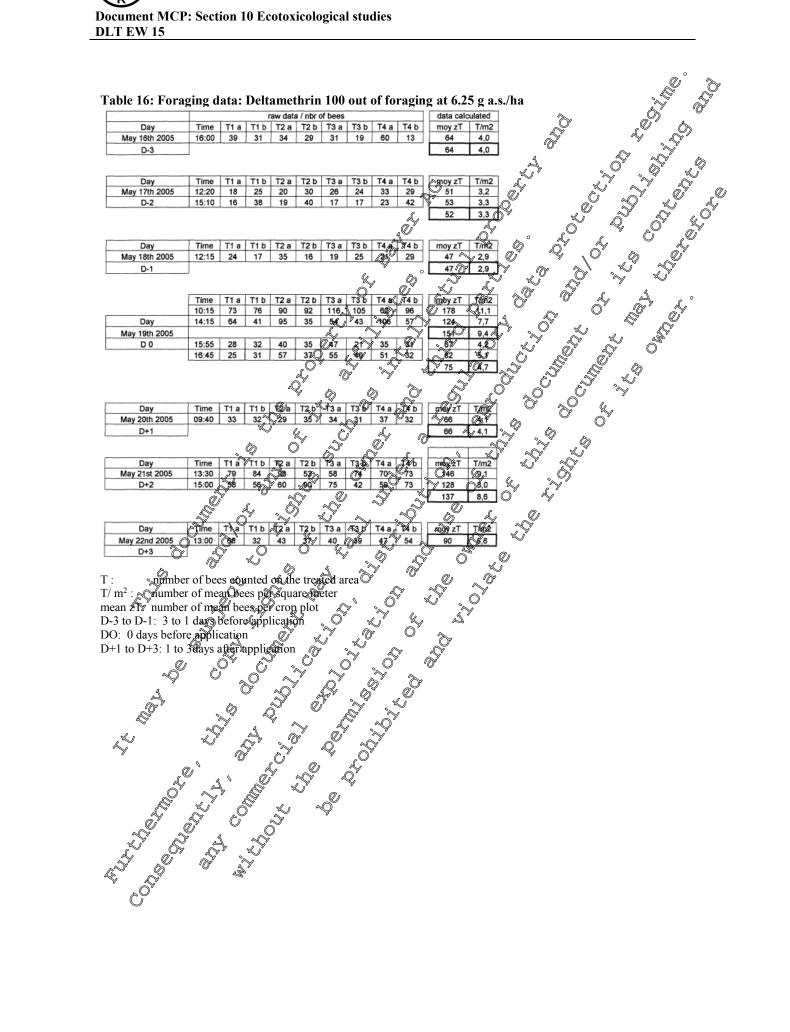
In these experimental conditions Deltamethrin 100 EC (0.0625 L/ha) induces no peak of mortality. More, when applied out of the bee presence on the plots, mortality trend was comparable to the water control and curves similar on a graph. In these experimental conditions Deltamethrin 100 EC (0.0625 L/ha) applied at night when no honeybee forages had no impact on the mortality.

On another view, the graph "Cumulative mortalities after treatment" expresses the effect of the different & items from the treatment day to 6DAT, in order to look at cumulative impact after treatment. Cover on this graph revealed the impact of dimethoate as the highest of all items in this mal (over 10,000 becs). The formulation Deltamethrin 100 EC (0.0625 L/ha) provided low numbers of total dead bees after six days whatever the time of application. This formulation seemed to be very safe to Dees experimental conditions.

Foraging activity	
A summary of th	e daily foraging activity and breaking down of foraging on scattering day tesults are
shown in the foll	owing tables.
Table 15: Forag	e daily foraging activity and breaking down of foraging on reatment day tesults are owing tables. ing data: Water control $\frac{1}{100} \frac{1}{31} \frac{1}{18} \frac{1}{13} \frac{1}{26} \frac{1}{12} \frac{1}{40} \frac{1}{32} \frac{1}{40} \frac{1}{32} \frac{1}{48} \frac{1}{630} \frac{1}{648} \frac{1}{630} \frac{1}{648} \frac{1}{630} \frac{1}{648} \frac{1}{630} \frac{1}{648} \frac{1}{630} \frac{1}{66} \frac{1}$
	raw data cabr of bees and data calculated of a
Day	Time T1 a T1 b T2 a T2 b T3 b T4 a T4 a <th< th=""></th<>
May 16th 2005	16:00 31 18 14 13 26 12 40 32 AB 20 C S
D-3	
Day	Time T1 a 194 T2 a T2 b T3 b T3 b T4 a T4 b may 2T T/mg
May 17th 2005	12:20 4 10 5 11 4 15 28 25 28 38
D-2	15:10 20 9 18 8 7 17 02 27 29 34 72,1 4
	1100 110 110 14 150 1220 12:20 4 10 11 14 152 125 15:10 20 18 9 7 17 12 27 29 34 21 34 21 19 19 19 10 11 12 17 12 27 29 11 13 17 17 17 17 17 11 14 15 14 19 19 11 12 12 14 14 19
Day	Tin@ T1a T1b T2 T2b 43a T3 T4a T4b moy zT T42
May 18th 2005	1235 384 14 20 27 21 24 280 18 49 3.0
D-1	

02	10.10 400 9	10 0			0 0 1 20	
	1 A	1	4		31	1,9
	\$	· · · ·	Ŷ O	\sim	×	4
	<i>C</i>				0	×
Day	Ting T1 a	T1b T28	T2b 43a T3	D T4a T4b	moy zT	T⊭n2
May 18th 2005	1235 38	14 9	27 21 2	4 28 18	49	3,0
D-1		S.Y			49 0,	3,0
		`* ((Ŕ	s an
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0 0	\$ \$	Nº D	- A	
Ú.	Tippe T1 a	T1b T2a	T2b T3a T3	52 T4 a 54 b	may zT	12 n2

Q	10:15	67	46 33	52	75 70	47 55	124 8	S7,7
Day	14:15	48	14 44	El y	50 36	45 32	2 74 0	4,6
May 19(1) 2005		Ç,		Ø		S N	96	6,2
\$ 570	15:55	13	11 20	39	39 29	38 23	°~57	3,3
	16:45	20	4 28	24 C	48 .37	43 38	A 61	3,8
	Ň	, Y		, M	1 and	O´ »	56	3,5
	Q.	A			, KJ		)"	
		Q″	S.	<i>p</i>	N I	S &	, ,	
0.	((	) "	~~ ·	$\bigcirc$		)) 400		

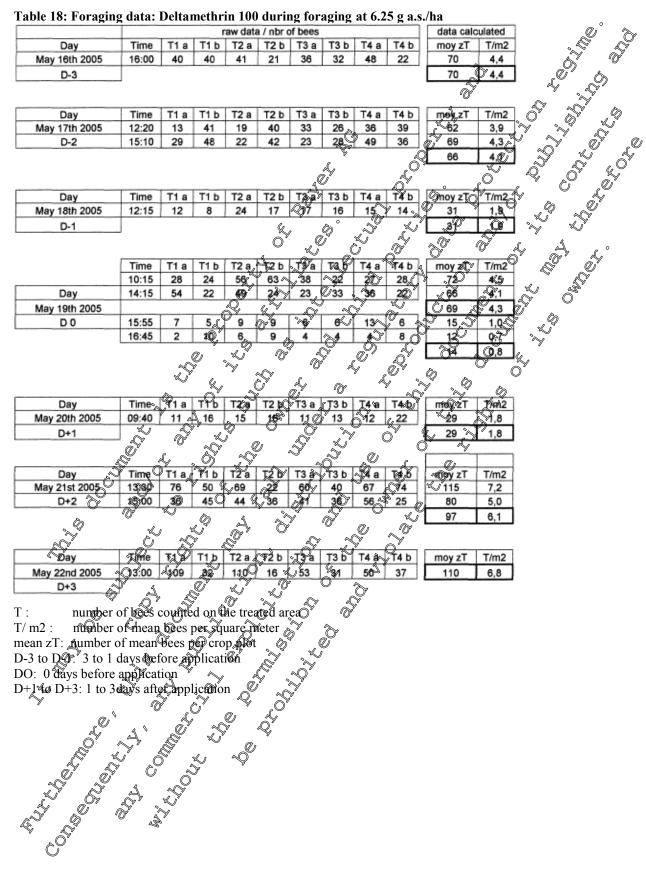

Day         Time         T1 a         T1 b         T2 a         T2 b         Y3 a         T3 b         T4 a         T4 b         moy zT         T/m2           May 20th 2005         09:40         65         120         01         127         103         45         115         121         220         13,8           D+         T         T         T         T         T/m2         13,8         220         13,8							
D+4	Day 🔊	lime   l1a (	J1b 72 a	T2b 73a T	3 D T4 a J4 b	moy zT	T/m2
D+1 1 220 13,8	May 20th 2005	09:40 65	120 120		45 115 121	220	13,8
	D+	<i>R</i> ₀	Ň	Ø N	×,	220	13,8
	N. C.		ą,		N.		

Day Day	Time	T1a 11b	T2 T	2 b 🖉 73 а	T3 1	T4 a	T4 b	moy zT	T/m2	
May 21st 2005	13:30	130 54		10 128	98	96	104	210	13,1	
D+2	15:00	1092 54	062		057	65	53	128	8,0	
Q	,				1			169	10,6	L
A	1	, j	Š	~~						1
_O`	$\sim$		~	a.				moy zT	T/m2	1

	· · · · · · · · · · · · · · · · · · ·	6	N. C.		/				moy z i	T/m2	
Day 🖉	None	T1a	IID KUZA	T2Q	T3 a	T3 b	T4 a	T4 b	141	8,8	
May 22nd 2005	\$3:00	09	45 🔊 81	65	71	58	65	69	141	8,8	
. 170.0	Ø \$3.00		0								


number of loes counted on the treated area. number of mean bees per square meter T/ m mean zT: mumber of mean bees per crop plot D-3 to D: 3 to 1 days before application DO: 0 days before application

D+1 to D+3: 1 to 3days after application




**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

#### Table 17: Foraging data: Dimethoate during foraging



#### Table 18: Foraging data: Deltamethrin 100 during foraging at 6.25 g a.s./ha



# **Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15**

Graph n°3: Daily mean foraging activity Nbr bee /m2 40 control during foraging 35 Dimethoate during foraging thrin 100 EC out 30 25 20 15 10 5

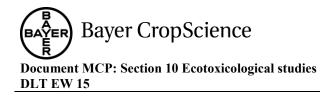
foraging, Deltamethrin 100 at 6.25g a.s./ha out of foraging, control and the reference item 5/ (Dimethoate)

Ò

D-3 to D-1: 3 to 1 days before treatment 0 days before treatment D0:

D+1 to D+3: 1 to 3 days after treatment  $\bigcirc^{\checkmark}$ 

Data were collected at least once day and sometimes twice a day in order to confirm the trend of this foraging activity. On the day of application, Aregistered records of this activity were used to build up the graph, twicebefore application and twice after treatment.


According to this parameter, the mantity of forager beer was firstly similar among tunnels after the hive introduction. The bee activity level ranges from 3 to 6 bees per meter square at this time.

From 3DBT to D 0 the bee colonies reacted to the sugar spray solutions according to their needs and to the number of available forager boneybers. So the activity ranges to sometimes 10 bees per m² that was much over the required evel. Set, the organ solution was doily sprayed in the morning and was less and less attractive along the day. The bees were very active soon after the spray when the staff came to count them. During 0DAT the data expressed the average of two counts before and after treatments.

The main information according to this foraging parameter was the decrease of the activity in the whole tunnels during the application day. The decrease in the control should was suggested as standardised because of the less attractiveness of the sugar solution. This decrease was similar in the tunnel where Deltamethrin 100° EC was applied out of the bee presence. On the contrary in the tunnels where Deltamethring 00 EC and reference were applied the foraging activity drops to null in the afternoon.

During this second part of the trial the activity in the water control tunnel was regular and still over the others.

On the conferry, the reference dimethoate induced a high decrease in foraging activity soon after treatment Moreover this impact runs on during the next three days and the level reaches the nullity. The repellence was so high that bees keep prostrated in their hives.



#### Colony Assessment

Few changes only appear on these parameters between the two visits. Because of the honey dew from the sugar solution, forager bees had an activity but the colonies present food storage at the ord. By comparison the proportion of brood surface remained stable in the four hives.

According to the confinement under tunnels and to the short time between the two assessments these changes were non-significant in the tunnels.

Yet adult bee populations' decreased in all tunnels, only the control colony presents small decrease in the bee population that allows a further development

### **Conclusion:**

Overall conditions for conducting this experimental phase of the study were favourable to the bee activity on the wheat plots. Climatic and crop conditions were satisfactory, so that observed parameters agree with the recorded data.

Bee colonies were strong enough and the design provides mortality data and foraging data and confirmed the reliability of the trial conditions in all tunnels.

Experimental conditions were duite stoct, including confinement and spraying during foraging.

The water control and the reference dimethoate alidated the results with standardized data. Mortality trend was regular in the control tunnel along the whole experimental period, and the dimethoate induces a high peak of mortality that confirmed the toxicity of this reference.

In these experimental conditions the story item Deltamethrin 100 EC (at the dose of 0.0625 L/ha) applied during the bee activity induced a discrete recorded effect on mortably on the following day after treatment only.

Compared to the reference dimethoate this impact on the mortality parameter was really limited. Raw data expressed several prortality levels and the calculation of the toxicity index suggested that this mortality level was comparable between Deltamethrin 100 EC and the water control.

When applied at night in absence of bees, Deltamethron 100 EC (at the dose of 0.0625 L/ha) presented no impact on mortality at 1D ST and a stable foraging activity on the treated wheat plots when it was supposed to increase as in the control.

A A A A A A A A A A A A A A A A A A A	
L.	
Report:	KCP 10.30.5/172 ; 2001
Title:	Tunnel test - acute, short and medium term effects of AE F032640 00 EC11 A308,
	applies on cereals, on honey bees (Apis mellifera L.)
Document No	M-205203-01-1 (Rep. No.: S00AGB3264VO54)
Guidennes:	CEB 129
	yes x
GLA	

### Materia Pand methods:

Bees were confined within tunnels on winter wheat fields (cereals sprayed with sugar solution in order to provide food resources to the bees). After an acclimatization phase of five days, application was

**Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

**Bayer CropScience** 

performed during bee flight. The control was treated with water, the test item was applied at a rate of 0.0625 L/ha (corresponding to 6.25 g a.s./ha). As a non-toxic standard, Zolone Flo was used at a rate of 1.2 L/ha. There was one replicate per treatment group. The assessed endpoints were mortality foraging and flight activity, storage of honey and pollen, behavior, and brood development

#### Findings:

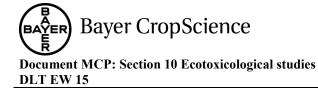
Mortality was not affected by the test substance treatment Foraging activit very slightly affected by the test substance treatment on the treated as tunnel. Furthermore, no effects on the behaviour were-detected. Brood by the test substance treatment as well.

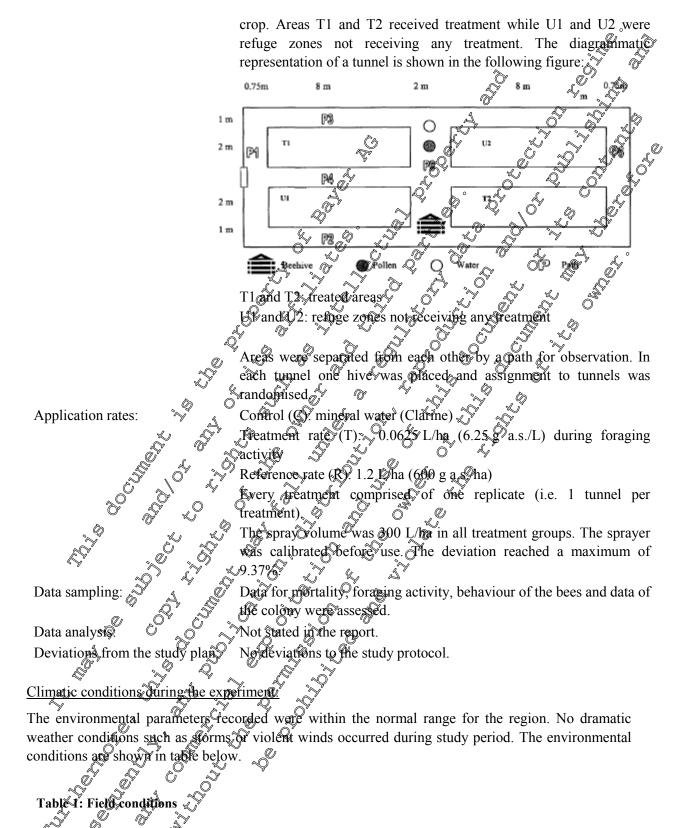
#### Material and Methods:

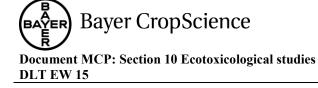
Test material Test item:

Batch number: Reference item:

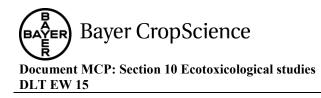
Test organism:


Deltamethrin Deltamethring EC 100 (AP F032640 00 EC1 KA308), contest of a.s.:


nicet of a. , density: 0.954 g/ml , up g a.s.P. nominal, analysed content: 510 , rioney bees (*Apis mellifera* k) The used laves were single box colonies (type DADANT 10 frames) with 10 frames one queen and about 1000006ees per hive at test start. Queens were obtained by grafting (1 month) and colonies (consisting of Gaucasian bees) were homogeneous as possible. Oldest worker honeybees were a maximum of 5 month old at test initiation. Additionally an empty newframe of knowing weight was introduction in each hive prior dreir introduction into the tunnels. The corresponding queens hatched in 2000 breeding line in order to gue-treatment groups -Furtherm-Source Source Test location: Test location: Test duit: Test d


Test was composed of 3 tunnels (control, test substance and non-toxic

Each tunnel covered an area of 136.5 m² (19.5 m  $\times$  7 m) with a height of approximately 3.5 m. The tunnel tent frames were covered with light plastic netting. Furthermore, each tunnel was divided into four areas (T1, T2 and U1, U2) of 16  $m^2$  (8 m × 2 m) each, containing the







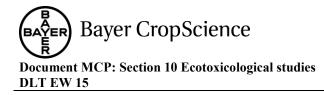



Date	Temperature	Data III	Tommenature	Relativ	un ale	Rainfall mm 38 08 - - - - - - - - - - - - -
Date	Mini °C	Date 1	Maxi °C	humic		Rainfall
	ividia C		Maxi	Mini		
10.05.00	14.6	10.05.00	23.7	54	97	3.8
11.05.00	14.3		22.2	62	98	0.8
12.05.00	12.8		23.5	48	98	08 · · · · · · · · · · · · ·
13.05.00	11.1		23	51	98	
14.05.00	12.5		26.7	45	99	
15.05.00	14.7		27.8	42	95 95	·
17.05.00	8.9		175	45	95	
18.05.00	7.7		17.4	48	94	22
19.05.00	3.4		153	53	95	
20.05.00	5.1		182	37	99	
21.05.00	4.8		17.2	48	96	12
22.05.00	7.8	22.05.00	18.8	49	98	-
23.05.00	85	23.05.00	21.5	49	99	- /=
24.05.00	11.7	24.05.00	21.8	44	91	02
25.05.00	7.1	25.05.00	18.5	43	96	RQ I
26.05.00	7.2	26.05.00	20.9	49	98	4
27.05.00	7.9	27.05.00	18.3	35	91	76
28.05.00	4.2	28.05.00	17.9	38	96	0 .
29.05.00	7.2	29.05.00	17.7	40	98 4	1
30.05.00	11.6	30.05.00	16.4	81	98	14,5 0
31.05.00	10.8	31.05.00	192	61	40	
01.06.00	13	01.06.00	22.4	63	ane	No N
03.06.00	17.2	030600	292	60 1	08 .	K 04
040500	12.9	040600	21.5	610	10 yr	124
05.05.00	97	05,06,00	14.7	"L	97	36
06.06.00	84	06.06.00	18.5	D	.98	A.
07.06.00	9,4	07.06.00	21.1		0	Q-
08.06.00	112	08.06.00	26.9	37	Q 90	0-
09.06.00	12.6	09.06.00	24.9	49	97	12.8
10.06.00	9.6	10.06.00	18.9%	55	96	6
11.06.00	8.1	11.06.00	21	N.	120	n.
12.06.00	10	12.06.00	- Ogs	O33		
13.06.00	15.3	13.06.00	A17 6	46	288	54-
14.06.00	14	14.06.00	25.7	53	97	0 0
15.06.00	14.3	15.06.00	27.6 ~ 27.6		98	Ч - <u>С</u>
16.06.00	12.7	16.06.00	× 25.40°		Q,	-51
17.06.00		170600	265	AN -		$\sim$
18.06.00	13.2	18.06.00	NI SA	32	K M	
19.06.00	A A	19.06.00	32.1	37	96 /	- F
20.06.00	1 058	20.06.00	30.7	35	95 0	
21.06.00	1 OF 13 A	21.0600	24.0	<b>O</b>		1
2206/00	1 Jun m	220500		A. 19	1 (01	
22.00.00	12.0	1220500	1.112		1	
23.0640	13.2	23.0660	8 212 8		0, 20	
	11		18-3			
25.86.00	99 %	25.96.00	21,2	34	990	
200000		201000	- ~Y	Q		
27.06.00	1127	27.06.00	218 185 209 183 179 177 164 192 224 292 254 215 147 185 211 299 249 249 259 249 257 276 257 257 257 257 257 257 257 257	y 31	×3	
28.06.00	100	28.06.00	23 8	31 0	82 。	M ·
29.06.00	12.6	29.06.00	¥ 262~	36 ,	86	
30.06.00	10144 8	30.06.00	20	CALL.		
- And the	ry U				- Y	
4	1	4	- 0 - ~	) ⁷	19 I	
P	*	A			T.	
201	. «	<i>"O"</i> "	\$ N	Q		
· · ₁ \$ .	. C.1	· 18 · 1	Y		, A	, N
<u>icide ni</u>	story of th	cide hist	<u>r field site:</u>	Y	a. S	
, KU	- W	t		6	Ő	
vious ne	sticide his	bus pest	ore of the	ĕst si	ters li	istad in
.040 pt		sus pest		st 51	~~ 10 II //	d a m
	"QUČ		, ×		ģ	S S
	A. A		× "Qʻ	19		4
	$O' \land \Box$	(	, 6	чU,	0.	•
	S. N	, A	S.		. Ø	
ي الد		s.	.0* .*	) '	~Q	
a.	1 _	a t	õ S	-	ų	
	_@ ^v		Ŭ . Ŭ			
, S	S.	A SA				
ي س	Őř Á	×.				
Z	Ŭ Ŝ	S a				
~ 0	"U"	J Ø	A Contraction			
i L.	2	a Car				
»0′		"O"				
Ũ		Ű				
0		0				



			Pesticides		, M
Year	Crop	Herbicides	Fungicides	Insecticides	Other
		Name (a.i.), rate	Name (a.i.), rate	Nam (a.i.), rate	
		Celio (March 7) (clodinafop-propargyl+	Unix (April 18) (cyprodinil) 1 kg/ha	Karate vert May 9) (lambda cyhalothrin) 0.125 L/ha	
2000	Winter	cloquincet-methyl)	Amistar (May 9)		
2000	wheat	0.6 L/ha Agral 90 (March 7)	(azoxystrobine) 0.8 L/ha Ogam (May 26), (Sresoxim-		
		1 L/ha	methyl+epoxiconazol) 0.8 L/ha		A &
1999	Winter	Starane (fluroxypyr) 0.5 L/ha Chardax (clopyralid+2,4-	Ogam (kręsoxim- methyl+epoxiconazol) 0.6 L/ha	Gaucho blé (itm dacloprid+ biter fanol+a thraquinone) 0.4 L/100 kg seeds	
	wheat	MCPA) 1.5 L/ha	Carámba (merconazolo) 1 Lota	Waratevert (lanoda- ~ ycyhaloorin)	L L
1998	Corn	Gesaprime (atrazine) 3 L/ha Mikado (sulcotrione)	Loa Carandoa (metconazore)	Gaucho (ibridacloprid) 007kg/\$50000 seeds Karate (lambda cyhalothrin)	
		0.8 L/ha	Afto (cyptoconazof) 0.8 y	0.125L/ha C Gaucho ble (imida Sopridz	
1997	Winter wheat	0.5 L/ha Chardax (clopy#did+2,4	L/ha Alter A	Diertanot anthraguinone)	
	wheat	MCPA) 1.5 LAGA	(cvproconazole+chiorothala) mi) 2 L/ta	Karate vert (kambda cybatothring 0.125 L/ha	

Table 2.	Maintanance and	nesticide	history o	of the field site	ρ
I ADIC 2.		pesticiae	πιστυί γ υ	n the neiu situ	÷


The aim of the study was to evaluate potential side effects of a spray application of Deltamethrin EC 100 on the honeybee, *Apis viellifera* under forced exposure conditions.

This study included three exposure groups (tunnels) each: one tap-water treated control group (C), one test-item group ( $\hat{D}$ ) and one reference item group ( $\hat{R}$ ). In all exposure groups, the crop was sprayed 5 days after set up of the hive on the ounces (Acclimatisation phase) at BBCH 75 - 77 (full-flowering), during honeybees actively foraging on the crop under confined conditions. The honeybees remained 13 days in the tunnels.

Depending on the weather conditions the observations were conducted for a 9 day period following a 4day adaptation period of the hives to the continement. At the end of this 9 day period, symptoms of toxicity (mortality, behaviour, etc.) were not observed on the Deltamethrin EC 100 treatment, the exposure phase of the study was stopped and been ves returned to the apiary.

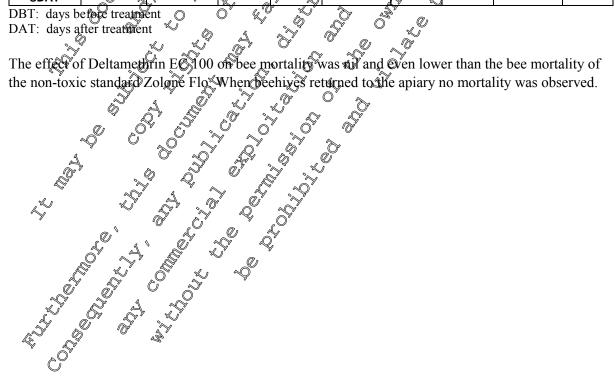
The assessments of the number of any dead bees were performed in each tunnel, each morning during both the adaptation period of the hives and thereafter until the end of the test. For each tunnel, these daily assessments was performed commercing June 19 at approximately 36 hours after the introduction of the hive and subsequent daily assessment was conducted at approximately the same time for each tunnel each day During each assessment all dead bees were collected in the 6 paths and in the dead bee trap (the bees collected from each of the path areas 1 to 5 were pooled).

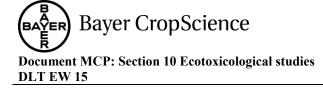
The assessments of the foraging activity were performed only on those days when the weather was such that hone voees are likely to be foraging. Counting was done over the whole of the zone by assessing the number of bees passing in an area of 60cm wide, whilst walking at a normal speed down the side of the zone. The foraging activity of the bees was expressed as the number of bees observed separately within each zone on each assessment. After the adaptation period of the beehive, the foraging activity was evaluated twice a day at regular intervals (starting around 10 a.m. in the morning and 3 p.m. in the afternoon). In addition, the day of treatment foraging activity is assessed around 15 minutes before treatment and around 15 minutes and 1 hour after each treatment.

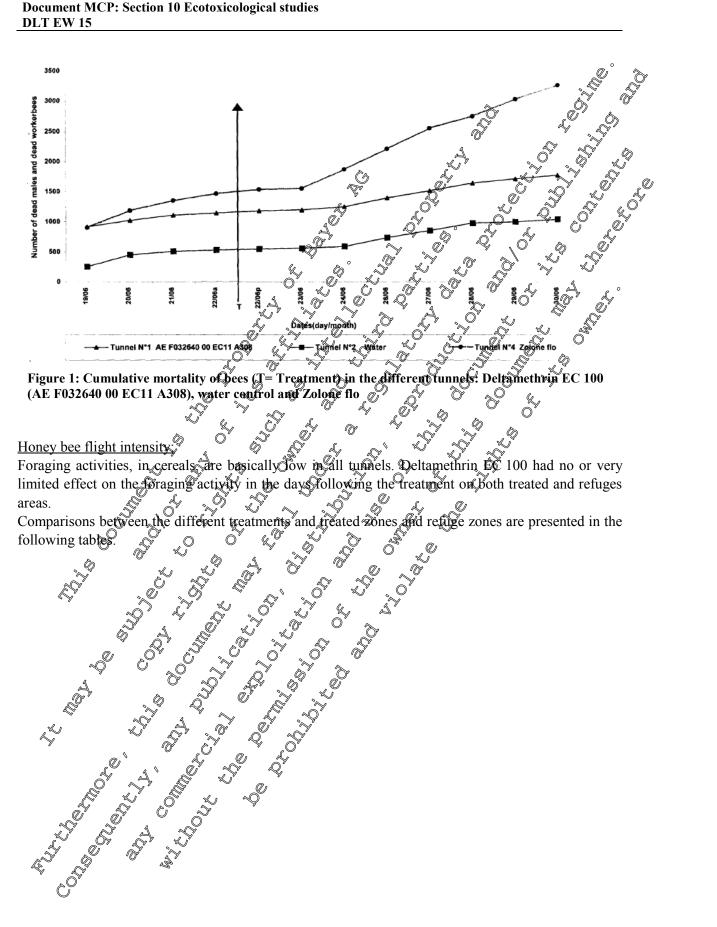


Behaviour of bees was observed during assessment of bee mortality, foraging activity and control of the colony. Bees were observed for abnormalities like aggressiveness, intensive flying without landing on 2 the crop, moribund or severely affected bees, bee accumulation at the beehive entrance, trembling, bees no longer producing pollen balls, etc..

Assessments on the condition of the colony were made on the day of their installation within the tubrels, June 17, on the middle of the exposure phase, June 26, just after returning bee hives to the beckeeper, June 30, and around one month after the return to the apiaco, August 8. 3


The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.


- following endpoints were assessed:
- Number of foraging bees per zone (TI, T2 and 1, U2) and number of bee/10 in each tunnel before • as well as after the applications in the control, the test item group and the reference item group, respectively. n
- Behaviour of the bees during assessments of bee mortality, for aging activity and the control of the colony. In addition the date time and guration of such abnormal behaviours waspecorded.
- Control of the colony with the following priterial xamined: weight of the empty frame introduced into the centre of the hive for both sides of each frame the percentage frame surface area containing honey, for both sides of each rame the percentage framesurface area containing pollen, for both Findings: Honey bee mortality: A summary of the daily mortality (cumulated dead bees) is shown in following table. sides of each frame the percentage frame surface area containing eggs for both sides of each frame the percentage sufface area of brood (coung and old larvae) in each frame and % of capped and


# Bayer CropScience **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

able 5: Cul		d bees durin	g the stud	ly period	(only males	and work			
		unnel No. 1			Tunnel No. 2			Tunnel No. 4	
Date		methrin EC 1			Water		_	Zolone Flo	N R
		6.25 g a.s./ha				r	× //	600 g a.s./h	
	Males	Workers	Total	Males	Workers	Total	Males	Workers	Total
19.06.00 3DBT	24	891	915	12	244	256	,14 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	896	~ <b>90</b> 4
20.06.00 2DBT	27	994	1021	27	A23	450	23	مُنْ 162م	1185
21.06.00 1DBT	30	1077	1107	30	ý 475	<b>505</b>	_。 56 ر	1294	<u>0</u> 350 🕅
22.06.00 0DBT	30	1114	1144	33	494	527	66	\9400 <i>\$</i>	1466
22.06.00 0DAT	30	1152	1182	0 ³³	513	<b>5</b> 46	73	1466	1539
23.06.00 1DAT	30	1168	1198	34	~ ⁵²⁴ ~	558	, 09 , 09	1478	1557
24.06.00 2DAT	31	1219	A250 %	35	551	م م∽586 ℃	, 860 , 860	1788 1788	0 [°] 1874
26.06.00 4DAT	37	1360	1397	<b>A</b> 1	[*] 692	733		⁽²⁾ 209ُ9	2218
27.06.00 5DAT	39	1480	<b>`</b> 1519 ₆ (	42	812	0 ⁷ 8540	138	Q425	2563
28.06.00 6DAT	40	×71606	1646	§43	§ 938	<b>981</b>	§140	2622	2762
29.06.00 7DAT	40	16078	¥1718	44 44 2	x)957	1001	141	2905	3046
30.06.00 8DAT	<i>a</i>	0 ⁹ 1740 ⁹	<b>1780</b>	×44	999	<b>(1043</b> ~	2 2 141	3143	3284
DBT: days b DAT: days a		~ ~ ~	0, 4						
»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»	?		A	Š	° O	. ~			

#### Table 3. Cumulated dood bees during the study period (only males and worker-bees considered)







Table 4: Number of bees foraging in the treated zones (T1, T2) in the different tunnels: Deltame	thrin
EC 100 (AE F032640 00 EC11 A308), water control and Zolone flo	Ű

Assessment date	Number o	f bees/m ² (means)	
	Tunnel Nº1	Tunnel Nº2	Tunnel Nº4
(Day/month/hour)	AE F032640 00 EC11 A308	Water 🔗	Tunnel 74 Zolone flo
21/06/10h11-10h35	1.53	1.41	2.50 2.91 0 2.565 0 2.96 0 2.91 0
21/06/15h05-15h31	1.13	1.06	2.91 2
22/06/9h30-10h08	3.03	j 2.41√y	\$ 5,66 \$
22/06/11h04-12h15	2.5	1.38	
	Treatments	0*	5.65 ⁷ 0.44 0.38 0.38 0.38
22/06/11h44-12h47	1.03 40	<b>0.97</b>	$) \qquad \forall 0.38 \qquad \exists \forall$
22/06/12h44-13h35	0.19	× 0.88	V.30
22/06/16h03-16h28	0.13	~ 0, fø	10.30 A
23/06/10h15-10h40	1.78 🔬 ذ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	© °~1.94 ≪°
23/06/15h08-15h31	1.78 & 6° 0.75 ° 0	2.53 0 0	
24/06/10h05-10h59	1.69	0, 1.25	
26/06/10h08-10h34			
26/06/15h51-16h15	1.34 % % % 5/78 % Ø 01.34 % % 03.56 % % %	L AV.31 X	1.91 2 - 1.94
27/06/10h04-10h28	Q1.34 ×	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	× 1.91 × 1.94 × 303 × 809 - 1.28
27/06/15h09-15h36	O'3.56	3,56, 5	3003
28/06/10h11-10h49	6.69	S 684 0	8.09
28/06/15h59-16h08		2.88	1.28
29/06/10h59-11h26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q 2.00 0	0.97
29/06/15h50-16h12		A 1924 G	1.31
30/06/10h27-10h56	A 434 0 10	a7N47 ~~	3.13
30/06/15h15-15h37	<b>9</b> .91 5 5	Q 0.59 X 4	0.75

Table 5: Number of bee foraging in the refuge zones (U1, U3) in the different tunnels: Deltamethrin EC 100 (AE F652640 00 EC11 A308), water control and Zolone ffe

Assessment date	Number Q	of bees/m ² (means)	
	Tunnel NºD	of bees/m ² (means) @ Tunnel N°2 Water	Tunnel Nº4
(Day/month/hour)	CAE \$032640 00 EC11 A308	🔊 🔊 🕅 🕅 🖉 🖉 🖉	Zolone flo
21/06/10h11-10h38		2.03	1.66
21/06/15h05-15b31	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.34	3.47
22/06/9h30-10h08	A 2/34 2 A	2.13	5.22
22/06/11h04-12h15	2 5 C2.00 × 5 C × C Treatments	2.13 9 1.69	1.16
	Treatments	-	
22/06/11h44-12h47		1.06	1.34
22/06/42h44-13h35	120 120 120 120 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0	0.56	0.50
22/06/16h03-16h28	Q 0.22 S Y	0.28	0.75
23/06/10h15-10h40	A 2.13	1.94	3.13
23/06/15h08-15h34	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	2.56	1.47
24/06/10h05-10h59	0 2.19 0	1.25	1.75
26/06/10h08@0h34		1.56	1.28
26/06/15h51-16h15	2 L 1.63	1.25	1.72
27/06/10004-10h28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00	2.19
27/06/15h09-16h36	3.25	2.97	4.13
Lowertonit	5.75	6.59	6.44
2806/15h59-16h08	1.78	1.81	1.63
29/06/10059-11h26	× 1.00 0.69	1.47	0.78
29/06/13h50-16h12	48 0.69	1.59	0.69
30/06/10h27-10h56	2.69	6.03	3.28
30,06/15h15-15h37	0.75	0.72	1.44

Bayer CropScience **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

### Behaviour of the bees

Deltamethrin EC 100 had no effect on the bee behaviour in the days following the treatment and month after beehives returned to the apiary.

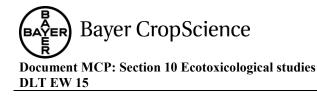
#### Control of the colony

Reserves and brood were reduced during the study in all the tunnels which is typical of such a study The test item Deltamethrin EC 100 had no negative effect on the Control of the Colony and this at each date of assessment.

Assessments of the control of the colony are listed in the following tables

Table 6: Control of the colony exposed t	øD	eltamet	hrin EC	100 reat	ed wi	ieat≈	) 1
Table 0. Control of the colony exposed		citamicu		i vy ji cat	<b>94</b> / 11	icat '	ž

					•			- (	(// 11		, <i>"</i>			U	~	• 🖌		( ))		~//	× .		~			~	6	~	
Observati	ions			e Nº1 64-2-0			Fran I ^o VO				Fran VO		3		Fram					ne N				ne N° 54-2-		E	mpta	fran	ne
	Date						26.6				26.6						8.0					1156			8.8	17.6	26.6	30.6	8.8
Weight in g		-			1 .		4		1.1	OF		1	1.	1.	P.		Y	•	$\overline{\mathbb{A}}$		1º	p.	·	R	•	360	-	350	300
% frame surface area containing	Side a	10	20	0	10	10	Q,	30	60	5	10	5-10	20	1	10	5.10	<b>P</b> 20	10 (	Dio	30	2	20	100	15	30%	1	0	0	0
honey	Side b	15	20	30	0	10	20	30		0	de	5-10	20	<b>F</b> 1	5	9	30	26	20	P	30	0	C?	0	20	0	0	0	0
% frame surface	Side a	0	0	0	0	Ø	0	~ <u>^</u>	30	5	ΓÇ	0	R	0	. T	$\mathcal{O}_0$	15 0	Ğ,	10	2	15	6	20	0	K19	0	0	0	0
area containing pollen	Side b	0	0	0	9	Ø	0	07	5	por	5	0	Ø	0	61	0	3-	2 30	0 (	h	0	0	0	0	5	0	0	0	0
% frame surface area containing	Side a	NR	NR	NR	NR	NR	6x	NR	NR	NR	5	ja k	0	NB	15	15-20	Agy .	NR	°A.	NR	10 (	ONR	NR	NR	0	NR	NR	NR	NR
eggs	Side b	NR	NR	NR	NR	NR	0	NR	NR	2NR		Øø	0	NR	15	20	0	<b>50</b> a	9	NR	40	NR	NR	ONR	0	NR	NR	NR	NR
% surface area of brood	Side a	60	0	04	0	60	60	30	09	60	ø	2 30	70	70	70	30	50	6	20	5.10	<b>2</b> 6	0	×.	0	60	0	0	0	0
brood	Side b	0	0	8	0	6	50	10	0	70	B	10	Ø	60	60	\$80	60	40	30	16	60	0	8	0	70	0	0	0	0
% capped alveolus	Side a	100	NR,	NR	NR	20	20	69	NR	60	10	10	100	90	20	10	70	/50	50	100	90	NR	NR	NR	90	NR	NR	NR	NR
	Side b	NR	NR	NR	100	20	20%	100	NR	80	20	1C	70	80/	,40	0	0	0		/100	90	NR	NR	NR	80	NR	NR	NR	NR
% uncapped alveolus	Side a	Ø	NR	NR	NR	80	20		NR	40	80	S.	20	40	60	80	30	50	Se	0	10	NR	NR	NR	10	NR	NR	NR	NR
arveolus	Side b	and	NR	XR	NR	80	23	0	NR	20	70	80	30	120	60	Ş	20	109	100	0	710	NR	NR	NR	20	NR	NR	NR	NR
	N	ř	r 、	O		<u>_</u>	1	2	$\sim$	1	r		°~	× 1	٦ 💊	Q-		a	ŕ	20	$\frac{1}{2}$		Г				T		


NR: Not relevant;	T: Treatmen	¢ Ő	× 40		à c	
	ي. ن. چي	L.	À.			
Table & Control	of the colon	y expose	to the y	vater <b>fr</b> ěa	ited whea	t 🔊 🖉

			4		U)					~ ~		$-\mathbf{\cup}$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													_	-	
Observati	ons		ram				Fran				Frai				Fran				Fram					e N⁰6		( E	mpty	fran	ne
		N	<b>VO</b> 5	4-r-C	1	N	v0	54-1-6		11	V VO	54-1-	СЗ 🔇	1. N	Nº VO54-1-C4				N° VO54-1-C5				Nº VO54-1-C6						
	Date	17.6	26.6	30,8	8.8	17.6	26.6	30.6	18.8	17.6	26.6	30.6	8,8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8	17.6	26.6	30.6	8.8
Weight in g	~	٢.	-4	-	-	Ø	•	\$1	17-	- /	Ŏ.		10	-		-	-	•	-	-	-				-	750		750	2000
% frame surface area containing	Side	10	E.	y 0	60.0	Se .	10	199	30	15	15	0	30	5-10	Ŵ	15	30	15	15	30	30	15	15	5-10	30	0	0	0	70
honey	Side b	0	1	50	30	2 10	10	50	30		15	(AS)	30	10	10	10-15	20	10	20	10	30	15	15	5-10	30	0	0	0	80
% frame surface area containing %	Side a	Ø	0	0	40	10	140/	0	12	30	5%	V	10	0	0	0	5	0	0	0	15	0	10	80	15	0	0	0	20
pollen	Side b	10	0 4		5	20	×0	0	0"	20	Ċ	0	5	70	5	0	5	0	0	0	0	0	15	80	0	0	0	0	0
% frame surfact	Side a	NR	NR	R	1416	Š Š	2-5	NE	MR	5	Ø	10		5-10	0	10	0	15	0	NR	0	NR	NR	NR	0	NR	NR	NR	NR
eggs m	Side b	NR	<b>M</b>	NR	0 4	ŝ	0	Đ	NR	NR	0	10	60	NR	0	0	0	NR	0	NR	0	NR	NR	NR	10	NR	NR	NR	NR
% surface area of brood	Side a	0%	ð	0	10	, 30	30	10	70-60	S	50	20	50	50	50	80	70	15	15	30	60	5-10	5	0	60	0	0	0	0
		$\sim$	0	04		30	20/	15		60	60	50	50	60	60	80	50-60	0	10	20-30	50-60	2	0	0	70	0	0	0	0
% capped alveolus	Side a 💡	NR	NR	X	NR	50	050	100		80	80	0	0	80	80	80	70	0	80	100	90	60	100	NR	70	NR	NR	NR	NR
	Side b	NR	NR	NR	20	60	60	100	100	60	60	0	0	50	50	80	10-15	NR	80	100	90	50	NR	NR	10	NR	NR	NR	NR
% uncapped alveolus	Side a 🕥	NR	NR				45	A.	0	K	20	100	100	10	10	20	30	100	10	0	5	40	0	NR	30	NR	NR	NR	NR
arveorus	Siles	NR	NR	NR	89	40	490	20	0	O°	40	100	100	50	50	20	80	NR	20	0	10	50	NR	NR	90	NR	NR	NR	NR
	× _	, A	7	Ś	2	1	Ŵ	/	0	¥	T				Т				Т			1	Г			1	Г		

NR: Not relevant:

## Conclusion:

The effect of Deltamethen EC 100 on bee mortality was nil and even lower than the bee mortality of the non-toxiostandard Zolone Flo for which a slight increase in mortality was observed two to three days after application. When beehives returned to the apiary no mortality was observed.



Deltamethrin EC 100 had no or limited effect on the foraging activity in the days following the treatment on both treated and refuges areas.

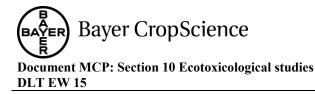
Furthermore, Deltamethrin EC 100 had no effect on the bee behaviour in the days following the treatment and in the month after beehives returned to the apiary.

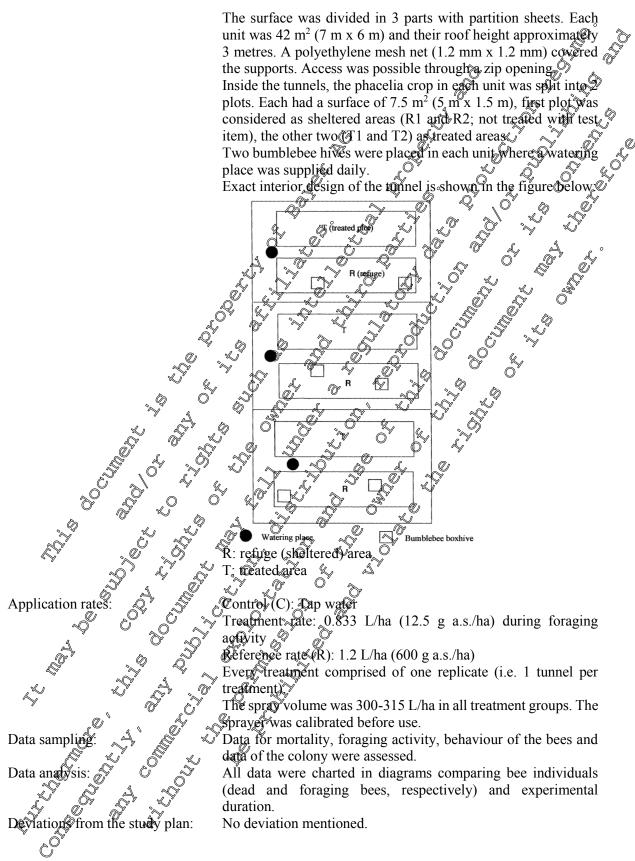
Reserves and brood were reduced during the study in all the tunnels, which is typical of such a study. Deltamethrin EC 100 had no negative effect on the control of the colory and this at each date of assessment.

		× Q	$\sim$		×	- C		~
Report:	KCP 10.3.1.5/18,	; 2000	Ô			O,	Å.	A co
Title:	Impact of AE F032640	00 ŒWQI	[©] B106	Son bu	mbleke	es (B	ombus	terrestris)
	(insectproof tunnels on Ph	iacelia ctop	) Code.	AE E03	26490	0 E₩0	01 B106	S S
Document No:	<u>M-200040-01-1</u> (Rep. No.	:2000+24.1		*	Å.	Ĩ	Å.	0
Guidelines:	CEB 129							2
GLP:	yes Q		ð		Č,	2		
			)	L	s S	0	,	

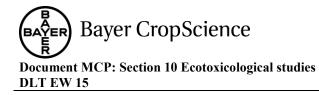
#### Material and Methods:

Bumblebee colonies were confined in tunnels on *Phacella* fields, with two hives pectunnel. The test was replicated once. Six days after introduction application of the test substance was performed (at 0.833 L/ha) during bumble bec flight as well as application of the control, and of a phosalone standard. The assessed Endpoints gessed were for a ping activity, motality, and behavior.


#### Findings:


20

Foraging activity of the bumble bees was only slightly affected by the treatment of test substance and only for a short time. Mortality and behaviour vere not affected at all.


Material and Methods:	
	Deltamethrin EW 15 G (AE F032640 00 EG06 A107), content of deltamethrin EW 15 G (AE F032640 00 EG06 A107), content of
Test material	Deltamethrip S
Test item: 🔊 🖉 🖉	Deltamethrup Deltamethrup CAE F032640 00 EG06 A107), content of
	a st deltamethrin. 1.51 % w/w (15.0 g a.s./L nominal), density:
	@.023 gml
	, TA151/99PQ
Reference item: 4 , 7	Zolone Elo (active ingredient: phosalone, 500 g a.s./L nominal,
	analyse@content: 499 g/L)
Test organism	analyse@content: 499 g/L) Bumblebees ( <i>Bombus terrestris</i> ) Populations were estimated at around 60 to 80 bumblebees per
Source:	Populations were estimated at around 60 to 80 bumblebees per
	IniQe.
Source:	Bumblebee colonies came from a specialised society, breeding
	bumblebees for pollination.
Source: Croop	Phacelia tanacetifolia variety: TITAN (bee attractive crop) at
	flowering stage.
Test location:	on a field
	France
Test unit:	Each tunnel had a half-moon support made from galvanised

steel; the hoops were nailed in the soil and joined with crossbars.

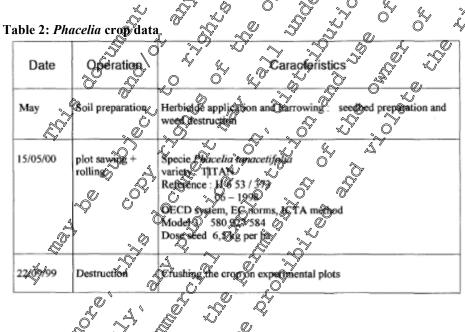




Climatic conditions during the experiment:



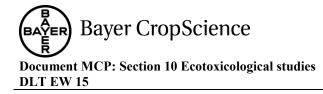
This experimentation took place over a period with weather and temperatures favourable to foraging. The period before and after the day of product application was warm and dry.


The environmental conditions are shown in the following table.

#### Table 19: Weather data

	Temperature mini	Temperature maxi	Rainfall	
	(°C)	(°C)	_ 🕑 (mm)	
August 22 nd 2000	7	25	V 0	
August 23rd 2000	14	30 🔏	0	
August 24 th 2000	14	33 🔊	0	
August 25 th 2000	17	35 25 25	0 ~	
August 26 th 2000	14	25	0~~	
August 27th 2000	15	25		
August 28 th 2000	11			
August 29th 2000	9	Q25 _ U		
August 30 th 2000	14	20 0		
August 31 st 2000	12	26~ ~	45	
September 1 st 2000	14		5	
September 2 nd 2000	14			
September 3 rd 2000	12 炎	≶ %.°21 <i>(</i> > '		
September 4th 2000	6 6	@ ² 20 [°] ⁄ [°]		
		8 8 8		

### Pesticide history of the field


if the Only the maintenance of the field te is stated stuďv report and is shown in the following table.



The effects of Deltamethon EW 15 G were tested on the bumblebees (Bombus terrestris) under confined semi-field conditions by following the guidance document C.E.B. method no. 129.

The an of the study was to evaluate potential side effects of a spray application of Deltamethrin EW 15 G on the bumblebees (Bombus terrestris) under forced exposure conditions.

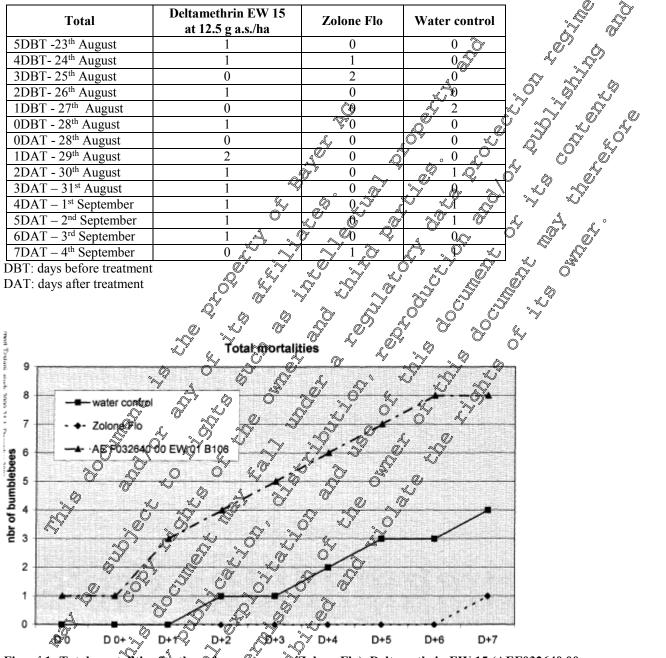
This study included three exposure groups (tunnels) with one replicate (tunnel) each: one water treated control group, one test-item group and one reference item group. Two bumblebee boxhives were introduced into each elementary unit 6 days before product applications in order to enable the colonies



to adapt to their environment. Bumblebee colonies were submitted to test substances while foraging on sprayed crops. Experimental conditions of this type of study were very strict because the colonies are confined in tunnel parts.

Mortality in each tunnel unit was recorded on a daily basis for all areas covered with plastic tilm, from days 5DBT to 7DAT. Moreover, the day on which product application was carried out (day Q) additional counts were done at the end of the day (0DAT) in order to establish possible brutal intoxication of foraging bumblebees. The total mortality rate recorded to a tunnel unit for a given day results from adding up mortality rates observed in each of the plastic rows in the upt.

Foraging was observed from 2DBT to 3DAT, on all treated and shellered areas. It was possible to adapt the time of counting to the environment of the train and to active for ging periods Counts could be shifted if activity was not considered satisfying (late activity due to more mist or disturbed by rainfall...etc.) This parameter was also taken into account for an additional count of the day of treatment, during the hour following product application.


Observations on behaviour were carried out during the trial in order to better understand the incidence of pesticide application on bumblebee Dehax four. Bitt these Abservations appeared especially important on the day the products were applied. On this time and during the thirty minutes following product application, bumblebee reactions and behavious in each of the tunnos were observed (intense flying, clusters on the net or at the entrance of the box hive regressiveness, beginning of an intext ation...). In general, this observation phase continued all over the day, between counts, and results were compared to usual activities before product pplication.

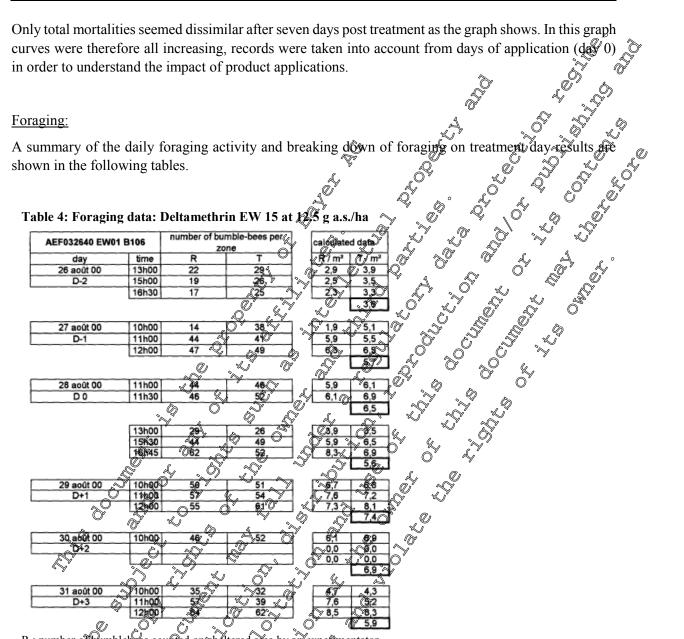
0 The influence of the dest item was aluated by comparing the results Brained in the test item treatment group to those of the control and the reference item group.

The following endpoints were assessed:

- O B Number of dead bees per day before as well as after the applications in the control, the test item group and the reference item group, respectively
- Number of foraging bees/or per day on all the areas (T and Ry before as well as after the applications in the control, the test item group and the reference item group, respectively
- Findings: Mortality: A summary of the staily poortality and total mortality results are shown in the following tables. Behaviour of the bees during assessment in the control, the test item groups and the reference item

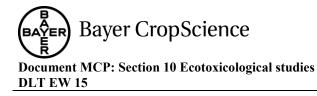
#### Table 3: Daily mortality data




FigureA: Total mortalities for the reference group (Zolone Flo), Deltamethrin EW 15 (AEF032640 00 EWOY B106) at 12.5 g a.s. that and for the water control group D0: 0 days before treatment

Ŷ

D0+: 0 days after treatment D+1 to D+7: 100 7 days after treatment


Daily mortality and not increase in any modality after treatment. Only one or two individuals were collected a day in Deltamethrin EW 15 G modality. However the difference occured while there was absolutely go mortality in the reference modality. In the control tunnel (treated with water) the colony was no prore disturbed by the treatment. Mortality rates recorded varied very few along the week.

Only total mortalities seemed dissimilar after seven days post treatment as the graph shows. In this graph

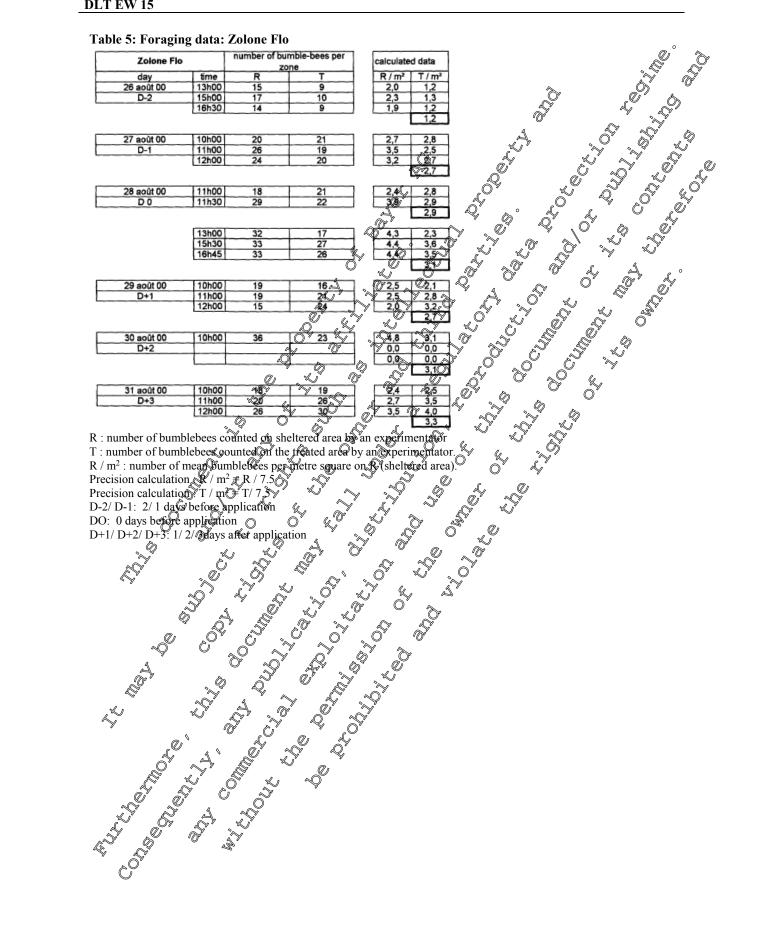
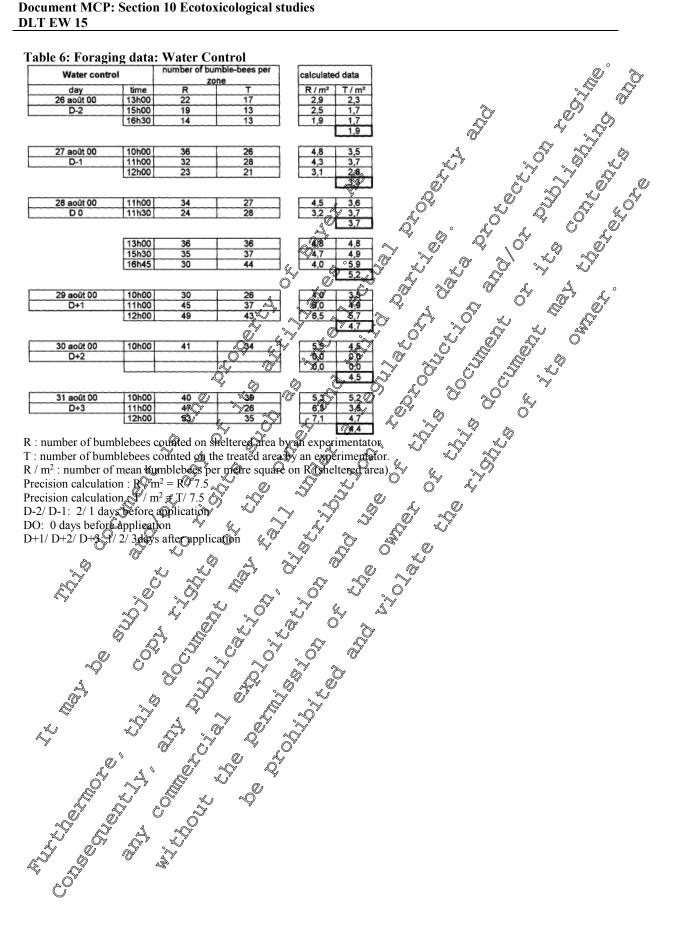



Table 4: Foraging	data: Deltamethrin	EW 15	5 at 12.5 g a.s./l
rable if roraging	autur Dentametini in		


R : number of Sumblebees counted on sheltered area by any experimentator T : number of bumblebees counted on the treated area of an exferimentator. R / m² : number of mean bamblebees per matre squate on R (Stieltered area). Precision calculation : R / m² = R / 4.5 Precision calculation : R / m² = A / 7.5 D-2/D-1: 2/1 days before application D0: 0 days before application D+1/D+2/D+3; 4/2/3 days after application T : number of bumblebees counted on the treatest area by an experimentator.



#### **Table 5: Foraging data: Zolone Flo**



Document MCP: Section 10 Ecotoxicological studies DLT EW 15



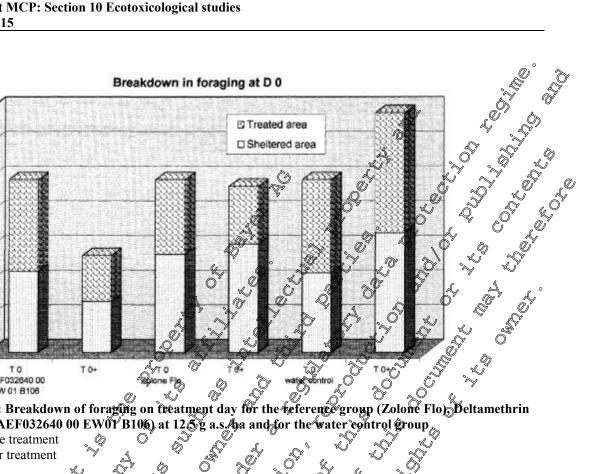



Figure 2: Breakdown of foraging on treatment day for the keference group (Zolone Flo) Deltamethrin **EW 15 (AEF032640 00 EW01 B106) at 12 5 g a.s. ha and for the water control group** T0: before treatment T0+: after treatment

TO

Ø

Quone Fg

L

T O+

In the morning of the product application day, foraging was of ready quite active in the 3 modalities and quite similar one another. The level of this for aging activity was again 3 to 6 bumblebees per m². During the three counts that followed product application, mean foraging trends were a bit different between modalities. In fact, foraging activity remained stable to the reference modality where spraying did not disturb the foragers' activity. However in the unit where Deltamethrin EW 15 formulation was applied the activity decreases a few but didn't stop and the average level in the afternoon was therefore over 5 bumblebees per mere square. The bumblebee colony in the water control modality seemed indifferent to water application and foraging increased during the day over pre-treatment phase level.

### Colony behaviour:

140%

120%

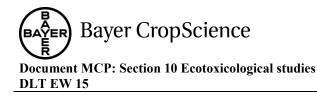
100%

80%

60%

40%

20%


0%

TO

AE F032640 00 EW 01 8106

In such a test, with homogeneous bumpleber polonies, behaviour was also comparable between modalities, as foraging was quite regular on phacelia plots. Bumblebee foragers only showed little reaction to treatments in the different modalities. The volume of a unit modality represented sufficient flight space but it was nevertheless confined and colonies adapt to this environment after the first ~0 recordings

From the beginning of this experimental phase, plots were very attractive for foragers and this triggers activity of bumblebees within box hives. During spraying, the bumblebees present on the experimental plot when the boom passes flight away over treated plot. Generally they come back again a little further away. Experimentators did not notice neither any particular aggressiveness nor any frenetic bumbling.



#### **Conclusion:**

Overall conditions for conducting this experimental phase of the scheme were favourable to bumble bee activity. Climatic and crop conditions were satisfactory. The different parameters observed age with the results obtained.

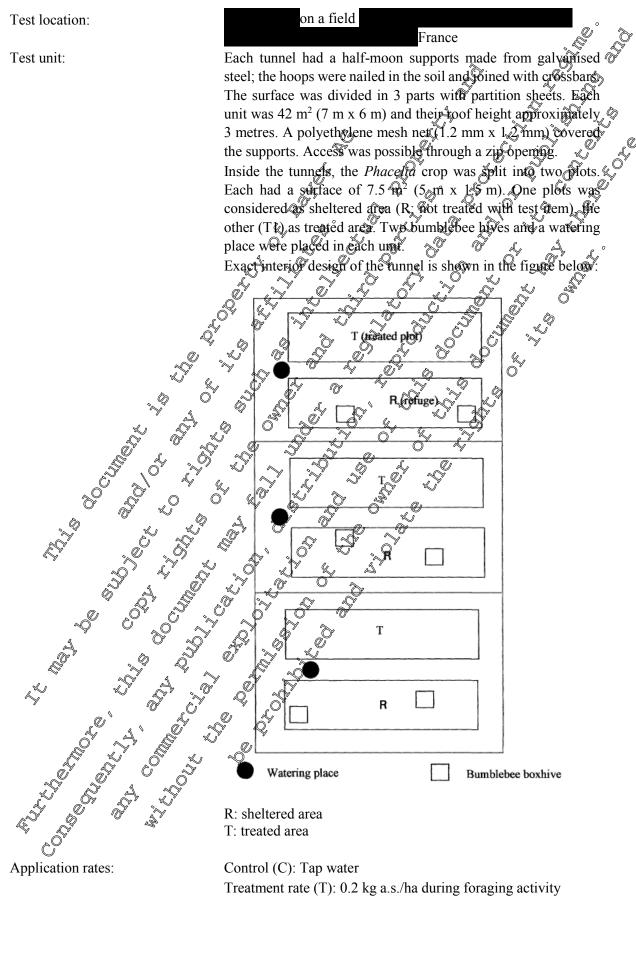
Experimental conditions of the study were quite strict, including confinement and produc carried out during intense foraging activity, on attractive plots.

The effects of the test substance Deltamethrin EW 16 in the case of this trial on a phacella crop, only showed a temporary decrease in foraging, and no impact on daily mortality.

Report:	KCP 10.3.1.5/19, ; 2000 × 2 × 2 × 0
Title:	Impact on bumblebees (Bombus terrestris) (Insection of terrestris) (Insection of terrestris)
	Code: AE F032640 00 EG0G06 A407 57 0 6 57 5
Document No:	<u>M-200043-01-1</u> (Rep. No. 2000-24.3)
Guidelines:	CEB 129 7 7 0 0 0
GLP:	yes y y y y y y y

### **Material and Methods;**

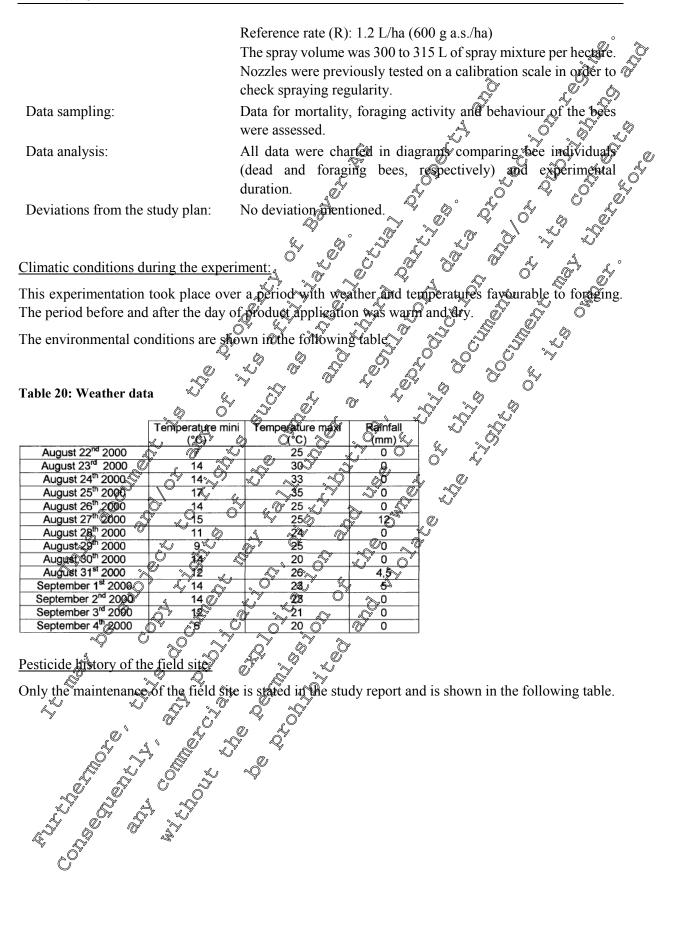
Bumblebee colonies were confined in tungels on Phacelia fields with two hikes per tunnel. The test was replicated once Six days after introduction, application of the test substance was performed (at 0.2 kg/ha) during bumble bee fight, as well as application of the control, and of a phosalone standard. The assessed endpoints were foraging activity, mortality and behavior,


### **Findings:**

was only slightly affected by the treatment of test substance and Foraging activity of the bumblebees only for a short time. Mortality and behavior were not affected at all.

Õ


Material and Methods?	
Test material	Beltanothrin
Test item:	Delramethrin EG 6.25 W (AE F032640 00 EG06 A107), 6.14 %
	w/w (62 g a.s./kg nominal).
Test item:	SFES6248
Reference item: 🔿 🖉 🐇	Zolone Flo (active ingredient: phosalone, 500 g a.s./L nominal,
	analysed content: 499 g a.s./L)
Test organism, Test o	Bumblebees (Bombus terrestris)
	Populations were estimated at around 60 to 80 bumblebees per
	hive.
Source	Bumblebee colonies came from a specialised society, breeding
<u> </u>	bumblebees for pollination.
Crop:	Phacelia tanacetifolia (bee attractive crop) of the TITAN
	variety at flowering stage.






Treatment rate (T): 0.2 kg a.s./ha during foraging activity

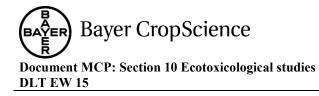
Page 358 of 518 2017-05-15





#### Table 21: Phacelia crop data

	Caracteristics
20/06/00 plot sawing + rolling	
	OECD system, EC norms, ICTA method Model 3 580.927 584 Dose seed 6,5 kg penha
22/09/99 Destruction	Crushing the coop on experimental plots


The effects of Deltamethrin EG 6.25 W were tested on the bumblebers (Bombus terrestric) under confined semi-field conditions by following the guidance document C.E.B. method no. 129.

The aim of the study was to evaluate potential side effects of a spray application of Deltamethrin EG 6.25 W on the bumblebees (*Bombus terrestris*) under forced exposure conditions. This study included three exposure groups (tunnels) each: one water treated control group, one test-item group and one reference item group. Bumblebee colonies were submitted to test substances while foraging on sprayed crops. The bee colonies were control parts. Two bumblebees boxhives were introduced into each elementary unit 6 days before product applications in order to enable the colonies to adapt to their environment.

Mortality in each tunnel unit was recorded on a daily basis for all areas covered with plastic film, from 5 days before treatment (5BBT) to 7 days after treatment (7DAT). Moreover, the day on which product application was carried out (day 0) additional counts were done at the end of the day (0DAT) in order to establish possible bound information of braging bumblebees. The total mortality rate recorded in a tunnel unit for a given day resulted from adding up mortality rates observed in each of the plastic rows in the unit

Foraging was observed from 2DBT to 3DAT, of all treated and sheltered (untreated) areas. It was possible to adapt the time of counting to the environment of the trial and to active foraging periods. Counts could be shifted if activity was not considered satisfying (late activity due to morning mist or disturbed by rainfall, etc.). This parameter was also taken into account for an additional count on 0DAT, during the hour following product application.

Observations on behaviour were carried out during the trial in order to better understand the incidence of pesticide application on bimblebee behaviour. But these observations appeared especially important on the day the products were applied. On this time and during the thirty minutes following product application, bumblebee reactions and behaviour in each of the tunnels were observed (intense flying, clusters on the net or at the entrance of the box hive, aggressiveness, beginning of intoxication...). In general, this observation phase continued all over the day, between counts, and results were compared to usual activities before product application.



The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

The following endpoints were assessed:

- Number of dead bees per day before as well as after the applications in the control, the test iter
- group and the reference item group, respectively
  Number of foraging bees/m² per day on all the areas (treated and sheltered) before as well as after
- behaviour of the bees during assessment in the control, the test item and the reference item group, respectively
  Dates of Work: August 22nd to September 4th 2000
  Findings:
  Mortality
  A summary of the daily mortality and total mortality results are shown in the following table,
  Table 22: Daily mortality data
  Deltamethrin EC6.25 A

				<u> </u>
Total	Deltamethrin	EG 6.25	Zolone Flo	Water control
5DBT - 23 th August		se na		
4DBT- 24 th August	S X		× 1 0×	
3DBT_ 25 th August		Q 3	× 2 (	
ZDBT - ZO ^m August				
	\$ <u>4</u> 1		~~0	2
0DBT - 28 th August	$\cap$ $\cap 0$		$ \begin{array}{c}                                     $	0
0DAT - 28th Augusto	× . 0		\$ 0 x	0
1DAT     -290 August       2DAT     90 th August			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
2DAT 0 th August				1
3DAT [™] 31 st August		ST IN		0
4DAT – 1 st September				1
5DAT – 2 nd September		<u> </u>	$ \begin{array}{c}                                     $	1
6DAT – 3 rd September	No Co		0	0
7DAT – 4 th Soptember		Y N	1	1
DBT: days before treatment	t ^{or} _S o _A	\$`_Q ^{\$} Q		
DAT: daysoufter treatment				
	.4 × ~>	Š. Š.		
¥ (	6 ₍ 0 )	s "Os		
Ĩ,		Q.Y		
		¥ @1		
	8° ~~~~~			
T A C	, » í			
19 D A	~~~~~			
	N N N N N N N N N N N N N N N N N N N			
	2 X			
	~			
Č				
1DAT - 20 August 1DAT - 20 August 2DAT - 30 th August 3DAT - 31 st August 4DAT - 1 st September 5DAT - 2 nd September 6DAT - 3 rd September 7DAT - 4 th September DBT: days before treatment DAT: days after treatment				

# Document MCP: Section 10 Ecotoxicological studies DLT EW 15

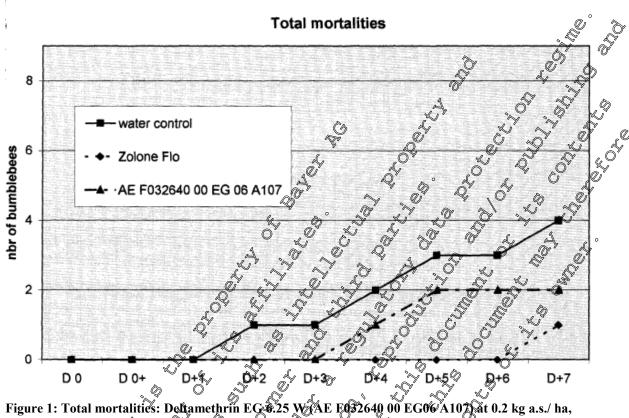
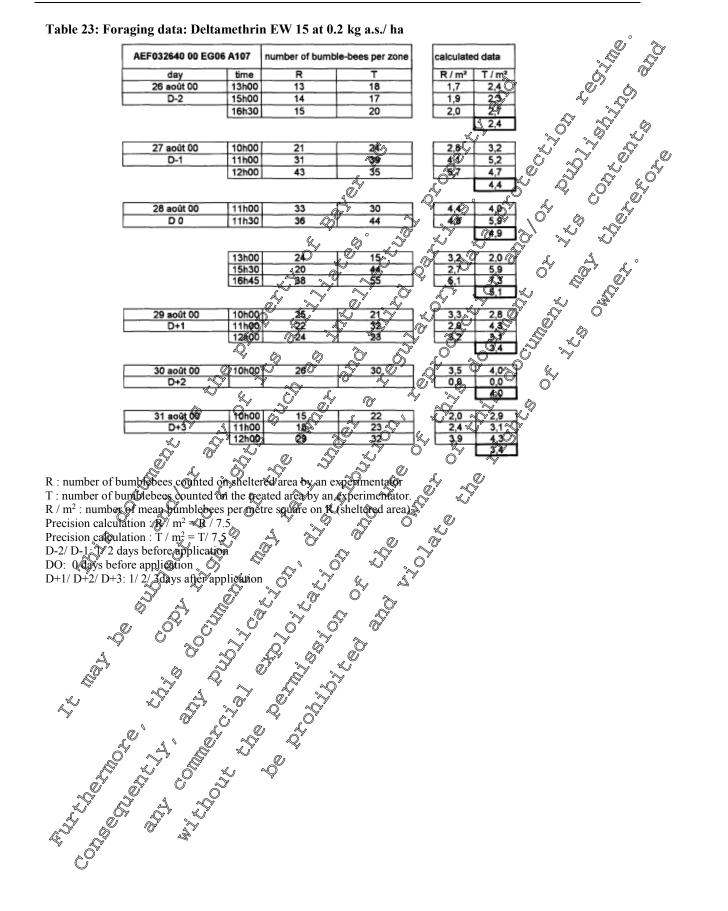
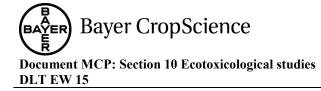



Figure 1: Total mortalities: Dettamethrin EG 25 W/AE E032640 00 EG06 A107 at 0.2 kg a.s./ ha, reference item (Zolone flo) and the vater control DO: 0 days before treatment DO+: 0 days after treatment

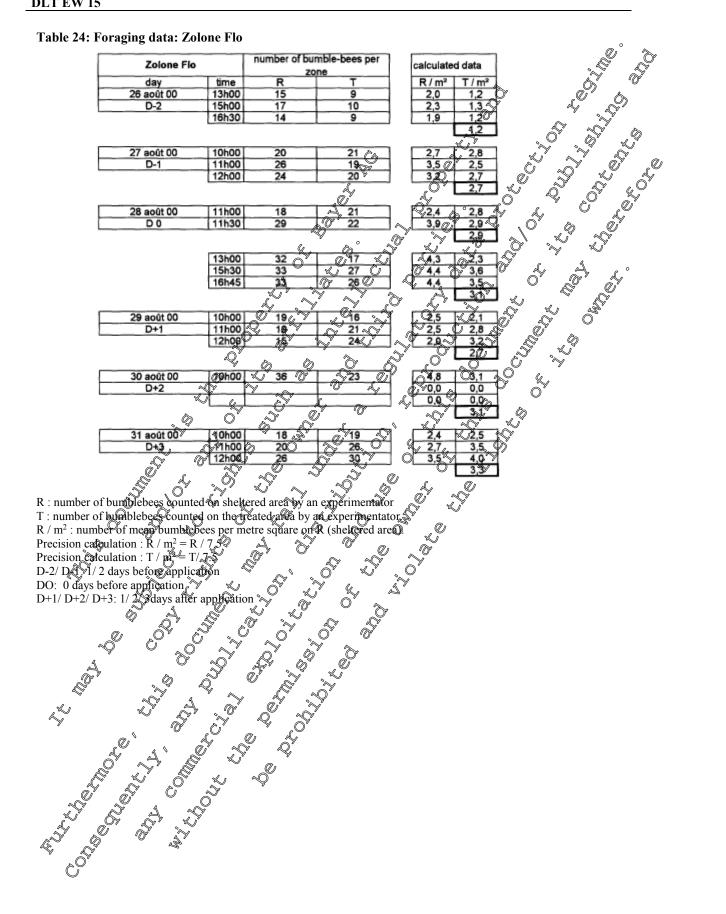
D+1 to D+6: 1 to Adays after treatment

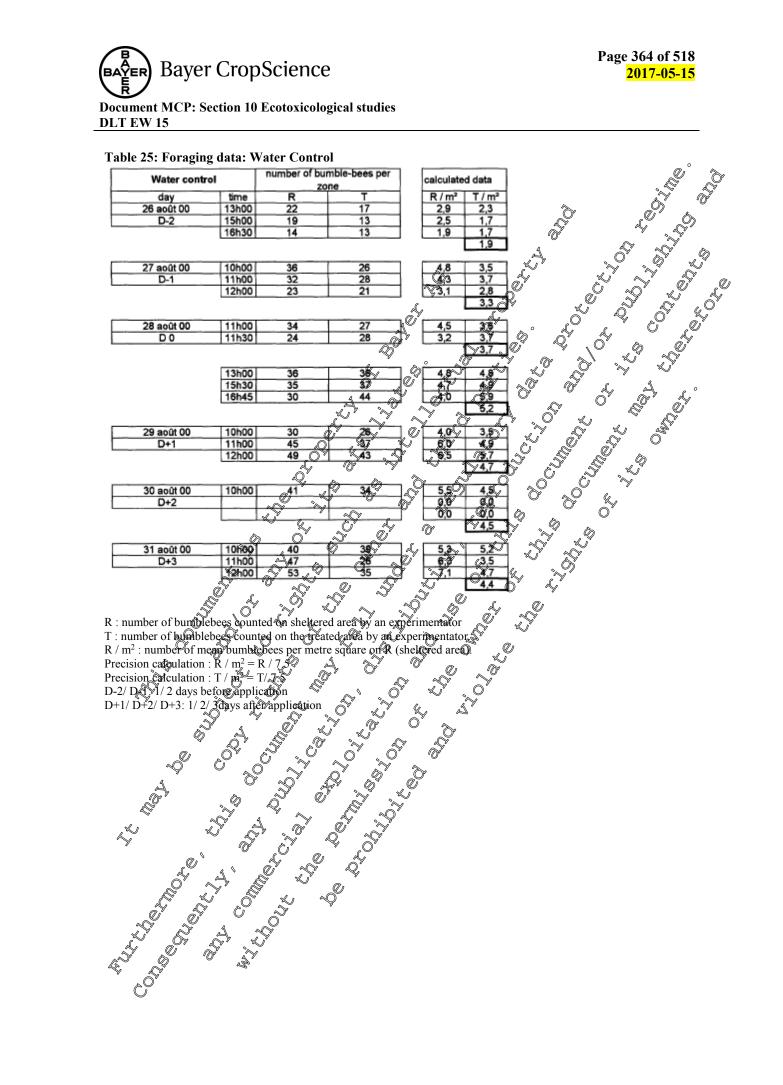
Daily mortality did not increase in any tunnel after treatment. Only one individual was collected per day in the Deltamethrin EG 625 tunnel at 40 AT and 5DAT. It was the same as in the reference tunnel where there was no higher mortality in the control unit (treated with water) the colony was not more disturbed than the Deltamethrin EG 6.25 treatment Mortality rates recorded varied very few along the week. Looking to total mortalities, curves were similar seven days after treatment (7DAT) in both study item and water control as the graph shoved. After a week total mortalities contained between 1 and 4 individuals that means no impact


Therefore all the graph curves of the martalities were increasing: Records were taken into account from the day of application. (DATOn order to understand the impact of product applications.


There was no toxic reference which might have provided an eventual higher mortality, so Deltamethrin EG 6.25 as well as Zolone To was considered as neutral on bumblebees, with data closed to the untreated water control.

Foraging activity


A summary of the daily foraging activity and breaking down of foraging on treatment day results are shown in the following tables.


#### Table 23: Foraging data: Deltamethrin EW 15 at 0.2 kg a.s./ ha





#### **Table 24: Foraging data: Zolone Flo**





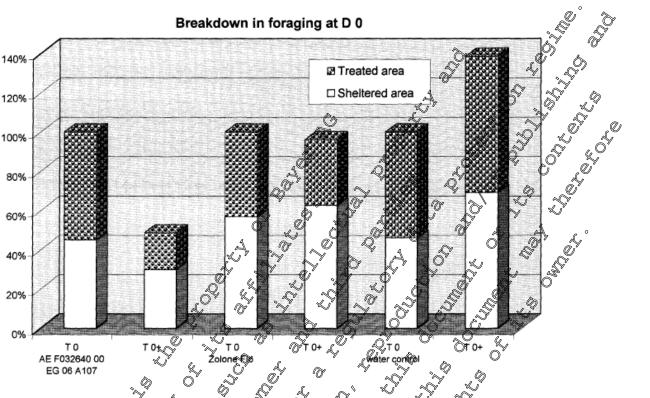
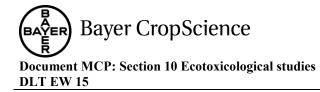



Figure 2: Breakdown in foraging at D 0: Delomethy EG 625 (AE F032640 00 EC 06 A107) at 0.2 kg a.s./ ha, reference item (Zolome flo) and the water control Y TO: before product application


TO+: after product application

On day of the product application (day 0), in the morning before treatment (ODBT), foraging was already quite active in the 3 treatment groups and quite similar. The level of this foraging activity was about 3 to 5 bumblebees per pr again.

During the three counts that followed product application mean foraging trends were a bit different between treatment groups. In fact, foraging activity remained stable in the reference treatment groups where spraying did not disturb the toragets activity. However, in the unit where Deltamethrin EG 6.25 formulation was applied the activity remained stable as in the untreated treatment groups, and the average level in the afternoon was therefore above 5 bumblebees per metre square. On the same way, the bumblebee colone in the water control treatment groups seemed indifferent to water application and foraging increased during the day over pretreatment phase level.

On the following day (1DAT) foragers' activity decreased in the Deltamethrin EG 6.25 treatment, between 3 and 4 bumble bees per m², a medium level between the water control and the standard. Foraging activity decreased too, but slowlow the water control modality, staying over the pre application activity level for the next 2 days. In the modality where the reference item was used this activity did not move and stayed at approximately the same level the day before.

Shortly after product application (0DAT, during the thirty minutes following product application), a repulsive effect was observed in the Deltamethrin EG 6.25 tunnel. The decrease in foraging activity affected both treated and non-treated areas. This confirmed the short term impact of Deltamethrin EG 6.25 on foraging activity on average on the treatment day. On the contrary, the water control modality



showed increasing activity on both sheltered and treated areas, this explained the level over 100 %, while foraging remained stable shortly after treatment in the standard phosalone treatment.

#### Colony behaviour

In such a test, with homogeneous bumblebee colonies, behaviour was also comparable between the treatment groups, as foraging was quite regular on phacelic plots. Bumblebee foragers only showed little reaction to treatments in the different treatment groups. The volume of a unit treatment group represented sufficient flight space but it was nevertheless confined and colories adapted of this environment after the first recordings.

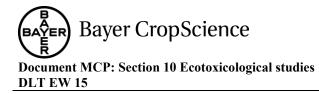
From the beginning of this experimental phase, plots were very attractive for forages and this triggers activity of bumblebees within box hives During spraying, the bumblebees presented on the experimental plot when the boom passed flew away over reated plot. Generally they came back again a little further away. Experimentators noticed in the any particular aggressiveness nor any frenetic bumbling.

#### **Conclusion:**

Overall conditions for conducting this experimental phase of the scheme were favourable to bumblebee activity. Climatic and crop conditions were satisfactory. The different parameters observed agreed with obtained data.

Experimental conditions of the study were quite spict, including confinement and product application carried out during intense foraging activity, on attractive plots

The use of any phyto-pharmacentical substance did not give any high mortality stage.

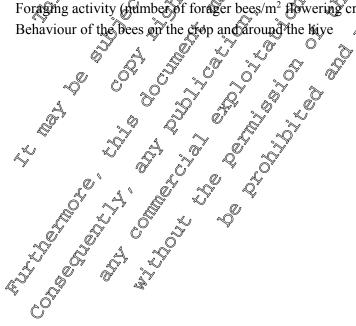

The effects of the test substance Deltamethrin EC 6.25 on the case of this trial on a phacelia crop, only showed a temporary decrease in foraging, but to impact on mortality.

### CP 10.3.1.6 Field tests with honeybees

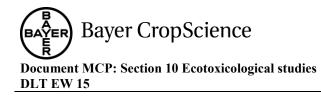
Report:	KCP 20.3.1,6701, ; 2007
Title:	Assessment of side effects of Deftamethrin EC 25 on the honey bee (Apis mellifera $\mathbb{R}$ ) in the field
Title:	<i>medifera</i> $\mathbb{R}$ ) in the field $\mathbb{R}$
Dogument No:	20061298/G1-BFEU)
Guidelines:	OEPP EPPO No. 176 (3), 2001
GLP: _@	yes a w
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Material and Methods:

The effects of the test substance Deltamethrin EC 25 were tested on the honey bee (*Apis mellifera* L.) under field conditions following the OEPP/EPPO Guideline No. 170 (3). The study comprised one trial which has carded out in Germany. As crop *Phacelia tanacetifolia* was used. In total there were three test fields per trial: one test item field with application of Deltamethrin EC 25, one test item field with application of the reference item Fastac SC and the untreated control field. The distance between the control field (size: 5832 m²) and the reference item field (size: 5229 m²) was 2.0 km, the distance between the control and the test item fields T1 (2 smaller fields, separated by approximately 100 m,


sizes: 2592 m^2 and 2898 m^2 = total field size 5490 m²) was >10 km. The distance between the reference item field R1 and the test item field was 12.8 km, respectively. At the each field 4 honexbee colonies were set-up. In the test item field (code: T1) Deltamethrin EC 25 was applied once at an Ô application rate of 7.5 g a.i./ha (nominal). In the reference item field (code: R1) Pastac SC was applied once at a rate of 10 g a.i./ha (nominal). All applications were carried out with a rate of 300 L water ha on the flowering crop with foraging activity of the bees on the test fields. The control field remained untreated, no application of water was carried out in the control field.

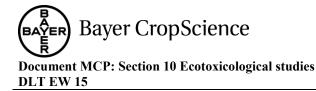
Mortality, flight intensity, and the condition of the colonies and development of the bee brood were assessed before and after application. Homis a believelopment of the bee brood were assessed before and after application. Homing behaviour was assessed twice before application by marking foraging bees in the crop. As only a small amount of the marked bees were recovered at the hive entrances in an appropriate time-span in all control and treatment groups, detailed observations of the foraging activity in the field and at the hive entrances were conducted instead


The treatment groups T1 and R1 are individually compared to the flight activity at the control field at the corresponding time of the day. Therefore two subsequent assessments were conducted on the control field (C for T1 and C for R1) This was necessary as the time-lag between the applications was about 90 minutes due to the distance between the test fields. For the evaluation assessments were made at the control field at the some time as the assessment at the reference item or test item field. For the evaluation only data assessed at about the same time for the test atem treatment and the control treatment respectively for the reference item treatment and the control treatment were used.

The influence of the test item was evaluated by comparing the results of the test item treatment to the control and reference item data and by comparing the pie- and post-application results of the observations. The following points were assessed:

- Condition of the colonies (strength) and development of the bee brood •
- Mortality in the field and in the beg traps for front of the bives
- Foraging activity (number of forager bees/m² flowering crop)

Ø1



Findings:

ffects of Deltamet	hrin EC 25 on the h	onev bee (Apis	mellifera L.) in the	e field		
				ð		J
Test item				hrin EC 25	4 4	
Test species				ra L., çarnica		80
Exposure		T1 and R fl	T1 and R1 : spray treatment during foraging actively at full flowering of the crop under field conditions			2
Treatment group		Control for T1	Control for R1	Ç TI	SR1 S	ó
Application rate g	a.i./ha nominal	-	v - ×	7.5 °O	× 10.9	1
Spray volum [L water/ha]	ne pro ha	- 0		308		
	Pre-application [DAA -4 to 0ba] DAA 0ba			× 38.3 5 24.5	× 4,7 4,7 4,7 4,7 4,7 4,7 4,7 4,7	
Mean mortality [deadbees/	DAA 0aa		9.5	A (Q.5)	⁵ 16.8 5	
colony/day]	DAA +1 Post-application			22.8	9.1	
	[DAA 0aa to +7] QM(average):		$\frac{1}{0.7}$		°∼ 1.9	
Daily mean flight intensity	Q .	K O			Қ.	
[foraging bees/m ²]	Pre-application [DAA-4 to 0ba]	5.0 K	© ^{2.3} K		7.9	
bees/m-j	DAA Oba	42	J 5.8 4	6.2	9.4	
	DAA 0aa	5.2	₹ 275.1 0	\$ 1°45 0 5?7	1.1	
	ØAA+1	5.0 5	5.0	O 5 <u>?</u> 7	8.1	
Q ¹	Post-application [DAA 0aa to+7] (/	£ 6,4×	Less Contractions	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.0	
AA = a	vs.after application				1	
a = bef	or application		S O L	Ű		
a = after application 2 a o o						
M(averagen Ø I	Post-application more	atity / Ø pre-ag	alication mortality			
Observations:						

Honey bee mortality;

The daily mean bee mortably (number Q dead bees in the dead bee traps and in front of the hives) before the application was 38.3 dead bees/colony in the test item group T1, 4.7 dead bees/colony in the test item treatment R1 and 24.0 dead bees to control colonies. In the morning before application on DAA 0 the mean mortality was 24.5 dead bees/colony in the test item group T1, 6.0 dead bees/colony in the test item treatment R1 and 18.0 dead bees per hive in control. In the evening of the application day (DAA 0aa) a mean number of 14.5 dead bees per colony was recorded in the test item group T1, 2.0 dead bees colony in the test item treatment R1 and 18.0 dead bees per colony was recorded in the test item group T1, 2.0 dead bees colony in the test item treatment. Considering the results before and after application of each treatment group, the mortality in the test item treatment was on the same level during the post-application period as during the preapplication. The control mortality of the reference item treatment was slightly increased after the application. The control mortality remained on about the same level in the pre- and post-application period, but showed a slight increase of mortality between DAA +3 and DAA +5. The value for Q_{M(average}) was calculated as 1.0 in the test item treatment group T1 compared to 0.7 in the control group, indicating that the treatment had no effect on honey bee mortality. In the

reference item treatment the mortality was on a low level during the entire postapplication period and the QM(average) value was 1.9, indicating that the bees were well exposed and the test system was sensitive and adequate for detection of effects by plant protection product on honeybee.

Honey bee flight intensity:

Shortly before application on DAA 0 the mean flight intensity (foraging bees/m²) was 6.2 bees/m² the test item treatment group T1 and 4.2 bees/m² in the control treatment group for T1. In the reference item treatment group R1 the mean flight intensity was 9. bees/m² and 9.8 bees/m² in the 100 km s corresponding control group for R1. The mean flight intensity pre-application was 4.2 bes m² in the control group for R1. test item treatment group T1 and 2.0 bees/m² in the control treatment group for T1. The mean dight intensity pre-application in the reference item treatment group RJ was @9 bees/m² and 2.3 bees/m²@n the control treatment group for R1. During the assessments on DAA after application a decreased flight activity was observed in the test item field as well as in the reference item field and resulted in a. mean number of 1.1 foraging bees/m² in the test item treatment group T1 and 1, 1 foraging bees/m² it the reference item treatment group R1. In the copirol group for T1 and in the control group for R4 the mean flight intensity on DAA 0 was 5, 2 and 6, Y foraging bees/m², after application respectively On the following assessment dates potreatment related difference regarding the flight intensity was observed between the treatment groups. The daily mean flight intensity after the application was 7.4 foraging bees/m² in the treatment group T1, 6.0 foraging bees/m² in the treatment group R1 and 6.4 foraging bees/m² in the control group for T-t and 6.4 foraging bees/m² in the control group for R1. The observation of intense flight and foraging activity of the bees on the test fields was also supported by the fact that the amount of P. tanacetiforta polen in the comps of the colonies of all treatment groups was on a high level (see following chapter).

Condition of the colonies:

Assessments of the colony strength as judged by number of bee ways between combs filled with bees and the brood dest size (number of brood combs per colony) did not indicate significant differences between treatment groups T1, R1 and the corresponding control groups. The colonies of the treatment groups T1 and R1 and control showed all brood stages at the assessment dates during the experimental phase of the study. The colonies of both groups treated with Detramethrin EC 25 were in good condition throughout the entire observation period, except one colony (2T1) which died due to Varroosis. Although the colonies were checked for Varroa mites before the trial and showed no symptoms of datigh infestation, a rapid increase of the mite population is possible to occur in autumn between July and October. The increase can show strong differences between different individual colonies and varies between locations?

Most of the colonies in the treatment groups of the trials showed a high percentage of *P. tanacetifolia* pollen from the total amount of pollen per colony. In the trial the percentage of *P. tanacetifolia* pollen on combs in most of the colonies of the treatments ranged from approximately 20% up to 70% during time of exposure at the test fields. The results of the pollen assessments in the colonies confirms the fact that the bees were actively foraging on the test fields. A quantitative comparison between the results of the treatments of pollen in a bee colony depends on outside conditions as well as on the individual need of pollen in the bee colony.

Behaviour of the bees during foraging activity:

During the detailed observations of the foraging activity of the bees in the field, symptoms of affected foraging behaviour of the bees, like trembling, shaking or cramping bees, bees showing erratic foraging behaviour, bees hanging or dropping from flowers or green parts of the plant, excessive cleaning or showing other visible impact on behaviour were assessed. In both the test item treatment

and the reference item treatment only a small percentage bees showed symptoms of affected foraging. behaviour, and only on the day of application after the application. The fraction and absolute number of honey bees showing affected behaviour was slightly higher in the reference item field compared to

Behaviour of the bees at the hive entrance: During the observations at the hive entrance, symptoms of affected bee behaviour like shaking of trembling or cramping bees, bees showing impaired novements, excessive cleaning behaviour or fighting bees were observed in the test item treatment and the reference item treatment and the reference item treatment and the reference item treatment of here. of bees at the entrance of hives in the test item field. Before the application, in T1 and also $\mu R1 a_{a}$ very small proportion of bees was assessed which were already showing symptoms which are categorized as affected behaviour. Also in the control group some bees showing abnormal behaviour were noticed in the entire observation period, before and after application of the test item and reference item up to DAA+3. For the evaluation it has to be taken into account that the behaviour of some bees may have been categorized as affected, although abnormal bee Dehaviour is not always due to the use of pesticides, and may likewise be triggered by natural or other factors to some extent. A higher degree of affected behaviour in comparison to the control was observed in the entire observation period up to DAA+3 in the test item treatment and in the reference item treatment, was highest on the day of application and showed a decrease on the following days

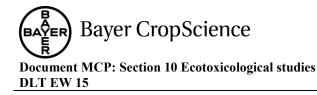
Conclusions:

Conclusions: S S S to flowering Phacelia tangetifold at a rate of 7.5 g a.i./ha (nominal) led to a decrease of the flight intensity on the day of application after the treatment. After the application, the mortality was not elevated and remained below the pre-application level up to DAA +2 increased slightly between DAA +3 and DAA +5 and then returned below the preapplication level. Before the application the mortality was already slightly higher in the test item T1 treatment group and in the reference item group R1 compared to the mortality of the control colony group. In the Deltamethan ECSS treatment some bees showed symptoms of affected behaviour at the hive entrance only in front of the hives) mainly of the day of application after the treatment. In the reference item treatment the fraction of bees showing symptoms of affected behaviour was higher than in the test them treatment and higher than in the control treatment. Symptoms observed and evaluated as affected behaviour at the hive entrance were: bees that were trembling or shaking, bees showing impaired movements, showing intense cleaning behaviour, also bees showing aggressive behaviour and fighting with other bees at the hive intrance. The condition of the colonies, size of the brood nest and the development of the honey bee brood in the test item treatment group was not different the second data in the second da compared to the control during the observation period.

Report:	KCP 10.3.1.6/02, ; 2007		0
Title:	Assessment of Side Effects of Deltamethrin EC 25 of	on the Honey Bee (Api	s a p
	mellifera L.) in the Field		
Document No:	<u>M-295800-01-1</u> (Rep. No.: 20071100/G1-BFEU)	ð.	7.1
Guidelines:	OEPP/EPPO No. 170 (3), 2001	S S	
GLP:	yes	4 \$	

The effects of Deltamethrin EC 25 were tested on the honey bee (*Apis mellifera* L.) under field conditions following the OEPP/EPPO Guideline No. 170 (3): Guideline on test methods for evaluation the side-effects of plant protection products on hone (OEPP/EPPO, 2001).

trial G07N003B was carried out in Northern Germany As crop Brassica napus var. napus was used. In total there were three test fields per trial: One test item field with application of Deltamethrin EC 25, one test item field with application of the efference item Fastae SC and the untreated control field.

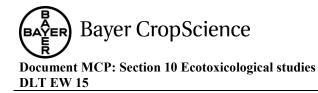

For trial G07N001B, the distance between the control field (size: \$,076 to 2) and the reference item field (size: 7,800 m2) was 8.4 km, the distance between the control and the test item field (size: 7,600 m2) was 9.3 km. The distance between the reference item field and the test item field the was 2.1 km.

For trial G07N002B, the distance between the control field (size 111 096 m2 and the reference item field (size: 59,747 m2) was 5.0 km, the distance between the control and the test item field (size: 64,741 m2) was 23.5 km. The distance between the reference item field and the ost item field was 28.5 km.

For trial G07N003B, the distance between the reference item field (size: 22,500 m2) and the control field (size: 18,200 m2) was about 13 km, between the test item field (size: 23,040 m2) and the control field the distance was about 8 km. The distance between the test item field and the reference item field was about 8 km.

At each field 4 honey bee colorites were set up. In the test item fields (code: T) Deltamethrin EC 25 was applied once at an applied on rate of 7.5 g a i ha (nominal) in the reference item fields (code: R) Fastac SC was applied once at a rate of 10 g a.i ha (nominal). All applications were carried out with a rate of 300 L water ha on the flowering crop with foraging activity of the bees on the test fields. The control field remained intreated, no application of water was carried out in the control field. Mortality, flight intensity, and the condition of the colories and development of the bee brood were assessed before and after application. The horning behaviour of forager bees was evaluated by individually marking 10 bees with numbered Opalith-plates and by additionally marking 40 bees with paint once before and three times after application. For each marking date, the behaviour and recovery of 10 Opalith-marked bees and the recovery of 40 paint-marked forager bees were monitored using a special observation hive which allows a quick inspection of the whole colony inside the hive without disturbing the bees. The marked forager bees leaving the hive and returning to the hive were counted once before and three times after application.

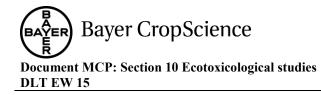
The treatment goups T and R are individually compared to the flight activity at the control field at the corresponding time of the day. Therefore, two subsequent assessments had to be conducted on the control field (C for and C for R) in trial G07N001B. This was necessary in this trial as the time-lag between the 2 applications was here about 75 minutes due to the distance between the test fields and the duration of the application. In the other two trials, one control assessment was sufficient. For the evaluation, assessments were made at the control field at the same time as the assessments at the reference item or test item field. For the evaluation only data assessed at about the same time for the


test item treatment and the control treatment respectively for the reference item treatment and the

- Condition of the colonies (strength) and development of the bee broad •
- Mortality in the field and in the bee traps in front of the hives •
- Foraging activity (number of forager bees/m² flowering crop) •
- Behaviour of the bees in the crop and around the hive •
- Homing behaviour of forager bees •

Findings:

control treatment were used.	-	-			<i>S</i>	
The influence of the test item was evaluat	ed by compar	ing the result	s of the test item	treatment to the) ^y	
control and reference item data and by co observations. The following points were a	mparing the p	ore- and post-a	application tesults	s of the \mathcal{O}^*		
observations. The following points were a	assessed:		« "O"		8-	
• Condition of the colonies (strength) a	nd davalanma	ont of the bee	brood		2	
 Mortality in the field and in the bee tr 	ans in front o	f We hives			Ø	
 Foraging activity (number of forager) 	bees/m ² flow#	ring crop)	R s		Ô	
 Behaviour of the bees in the crop and 	around the hi	ve O			1	
 Homing behaviour of forager bees 			j Q , (Ĵ ^Y os d ^Y		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° . ° .				
Findings:	Ŏ, Ű			я. Д о		
5	A . 0	, C Q				
Toxicity to Honey Bees, Field Test			<u>A. 0° w</u>			
Test item (T)		Delta	methring EC 25			
Reference item (R)	O N		Fashac SC	treatment of the of s of the o		
Test object	8 S	Apis me	lliferaD. cam@a	K.		
Exposure	Cand R:spray	v treatment dur	ing foraging activit	Pat full flowering		
	p VI	= of the erop t	aiger nera contaitag	115		
Trial code/Location			B / Near Tübingen			
Treatment group	Control Ta	Control for Ra	Test item	Reference item		
Application rate g	~~Ĉ		<i></i> .5	10.0		
Spray volume pro ha [L water/ha]	~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>\$</b> 300	300		
Pre-application			<i>Q</i> 18.5	24.3		
	Ø5.5		* 13.0	29.5		
Mean mortality	<u> </u>		8.3	10.3		
DAA#Y.	10.0		6.5	6.5		
Post-application DAA0aa (0+7]:	<i>⊈</i> \$2.2 ○	, D	10.4	9.8		
$\mathbb{Q}$ $\mathbb{Q}^{\mathrm{M}(\mathrm{ayerage})}$	0,80	Å	0.6	0.4		
		5 }	0.0	0.7		
intensity	<u></u>	2.9	2.2	2.4		
[forager bees/m2]						
DAAgba:	× 42×	3.0	3.8	2.8		
	\$ <u>\$</u>	3.4	0.9	0.6		
	3.0	3.0	2.2	1.3		
Post-application [DAQ0aa to +7]:	3.0	3.1	2.2	2.7		
	<u>11 </u>					


a = Two separate sets of assessments were conducted on the control field of trial G07N001B (C for T and C for R) on D40A0aa due to a time-lag Detween the applications of T and R of more than 60 minutes. For the evaluation, onlocontrol group data assessed at about the same time as in the test item treatment and the reference item treatment, respectively, were used.



#### Toxicity to Honey Bees, Field Test (continued)

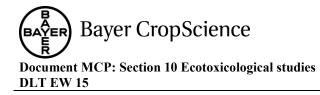
Trial code/Location		G07N002	B / Near Gerichshai	n 🖉
Treatment group		Control	Test item	Reference item
Application rate g a.i.	./ha (nominal)	-	7.5	10.0
Spray volume pro ha		-	300	300
	Pre-application [DAA3 to 0ba]:	41.9	\$25.2	
Mean mortality	DAA0ba:	17.6	<u> </u>	7.0 V
[dead bees/	DAA0aa:	15,5	0 [×] 14.0 v	6.8 ¢
colony/day]	DAA+1:	\$3.8	21.0	19:0 0
	Post-application DAA0aa to +7]:	20.3		D 07.9
	QM(average):	<u>k</u> 005 N		°≫ 0.8 [%]
Daily mean flight intensity [forager bees/m ² ]	Pre-application [DAA-3 to 0ba]:			
	DAA0ba:	4.8 × 1	× 2.2 ×	2.0
	DAA0aa:	\$ . \$ 1.6 \$ Ø		Ø.0
	DAA+1:	2,5 5	D 10 2	°.∜1.7
	Post-application (DAA0a) (DAA0a)	$\begin{array}{c} 0 & 2.5 & 5 \\ \hline 0 & 0 & 2.4 & 0 \\ \hline 0 & 0 & 2.4 & 0 \\ \hline \end{array}$	0 1.7 °	≪ 1.6
Trial code/Location		C / 6 607N	0031 / Near Celle	-
Treatment group		🖉 Control 🔨	Test item	Reference item
Application rate g a.i.		5 ~ · · · · · ·	7.5	10.0
Spray volume pro ha	(b water (bra] 🖉	$a - \sqrt{2} - \sqrt{2} = 0^{2}$	300	300
	Pre-application ( [QQA-3 to oba]:	29.7 Q	¢ Ø8.2	28.0
Mean mortality		× 11.5	≪ ^y 8.8	17.0
	DAAqaa	V 6 6 3 0	<i>©</i> 12.8	9.8
colony/ 🖉	DAA+1 🦉 🕰	2 2 2 3 a, a	4.0	6.8
day]	Post-application @AA0aato +7]:	5.2 J ()	7.6	9.7
×Q	QM(average);		0.4	0.3
Daily mean flight intensity [forager bees fr ² ]	Prevapplication	× 0,4 × 0 × 0 × 1.3 × 0 × 0 × 0 × 1.3 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	1.2	1.8
	DA Boba	1 2 AS	1.0	2.6
	DAA0aa	×2.4	0.2	0.6
te t	$\mathcal{D}AA \pm 1$	0.5	0.3	0.1
	Postcapplication	1.8	1.1	1.0

DAA = Days after application QM(average) = Ø Post-application mortality ÷ Ø pre-application mortality ba = before application aa = ofter application



#### **Observations Trial G07N001B**

#### Honey bee mortality (Trial G07N001B)


The daily mean bee mortality (number of dead bees in the dead bee traps and in Font of the hises) before the application was 18.5 dead bees/colony in the test item group, 24.3 dead bees/colony in the reference item treatment and 16.0 dead bees in control colonies. In the morning before application on DAA0 the mean mortality was 13.0 dead bees/colony in the test item group, 29.5 dead bees/colony in the reference item treatment and 15.5 dead bees per hive in control. A mean number of 8.3 dead bees per colony was recorded in the test item group, 10.3 dead bees/colop@in the reference item treatment & and 9.0 dead bees in control colonies was found on the application day after application (DAADaa). Before the application the natural mortality in the efference item treatment and the test item greatment was on a slightly higher level than in the control treatment. Considering the results before and after application of each treatment group, the mortality in the test them treatment was an a lower level during the post-application period as during the provapplication period. The mortality of the deference item treatment was also slightly lower after the application. The control mortality remained on about the same low level in the pre- and post application period. The value for QM(average) was calculated as 0.6 in the test item (reatment group compared to 0.8 in the control group, indicating that the treatment had no effect on honey bee mortality. In the reference item treatment the mortality wagon a low lever during the entire post-application period and the QM(average) value was 0.4.

# Honey bee flight intensity (Trial G07N001B)

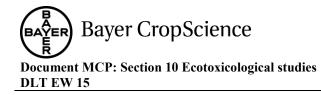
Shortly before application on DAA0 the mean flight intensity (forager bees/m2) was 3.8 bees/m2 in the test item treatment group and 42 bees/m2 in the control treatment group for T. In the reference item treatment group for R. The mean flight intensity pre-application was 2.2 bees/m2 in the corresponding control group for R. The mean flight intensity pre-application was 2.2 bees/m2 in the test item treatment group for R. During the assessments on DAA0 after application a decreased flight activity was observed in the test item field as well as in the reference item field and resulted in a mean number of 0.9 forager bees/m2 in the test item treatment group for T and in the control group for R the gontrol group for T and in the control group for R the mean flight intensity on DAA0 was 2.9 and 3.9 forager bees/m2 after application fespectively. On DAA+1 the flight intensity was 3.0 forager bees/m2 in the control treatment group the flight intensity observed in the treatment group.

On the assessment dates following DAA+2 no treatment related difference regarding the flight intensity was observed between the Geatment groups.

The daily mean flight intensity after the opplication in the entire post-application period was 2.2 forager bees/m2 in the treatment group, 2.7 forager bees/m2 in the treatment group R and 3.0 forager bees/m2 in the control group for T and 3.1 forager bees/m2 in the control group for R. After the application on DAA0 the amount of bees foraging in the test item and reference item field was reduced for several hours after application, slightly reduced on DAA+1 and returned to normal foraging activity on DAA+2. Slightly lower flight intensities in the test item treatment after DAA+1 are presumably due to natural reasons and the condition of the test item fields, as the flight intensity in the test item treatment was already lower than the flight intensity in the reference item treatment and the control treatment before application.



#### Homing behaviour - marking of forager bees (Trial G07N001B)


During the observation of bee behaviour of 10 Opalith-marked bees in the trial on DAA-1 few bees were observed showing affected behaviour in the observation hive in the control and in the reference item treatment group, whereas no affected behaviour was observed in the test item treatment group. On DAA0 after the application few bees with affected behaviour were observed in the test and reference item treatment groups, and slightly more in the reference item treatment group compared to the test item treatment group. On DAA+1 no affected behaviour was observed in the reference item treatment and in the control group, only in the test item treatment group few bees were showing symptoms of affected behaviour.

No clear effect on the recovery of 10 Opalith-marked and 40 paint@narked bees was observed ofter the application. During Marking II on DAA0 and Marking III on DAA+2 Wower number of Opalithmarked bees of the reference group compared to the control and the test iter treatment was noticed returning to the hive, also the recovery of paint-marked bees of the reference item treatment group on . DAA0 was slightly lower than the control but not on DAR+2. OR Marking IV on DAR+3 the recovery of Opalith-marked bees in the test item treatment group was Tower compared to the control treatment group and compared to the reference item treatment group. The recovery of point-marked bees was slightly lower in the reference item treatment before the application of marking I on DAA-1 compared to the control and test item treatment group. After the application the recovery of bees marked at Marking II in the test item treatment group the reference item treatment group and the control treatment group was on a similar level. On DAA+2, Marking III a slightly lower number of bees was recovered in the test item freatment group compared to the reference item and the control treatment group. On Marking IV the recovery of the paint-marked bees in test item treatment and in the reference item treatment going were lower compared to the control but in the range of natural variability. The observation of the paint-nearked bees of Marking I from DAA+1 up to DAA+2 did not indicate any impact on the recovery of the forager bees. The mounts of bees recovered in the test item treatment group were on the same level as the amount of bees observed before the application as well as on the same tevel with the amount of bees counted in the control treatment and the reference item treatment, 🧔

# Condition of the colors (Tryal G07N00118)

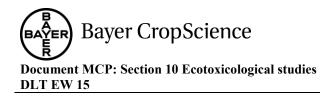
Assessments of the colony strength as judged by number of bee ways between combs filled with bees and the brood nest size (number of brood combs per colony) did not indicate significant differences between treatment groups T ck and the control. The colonies of the treatment groups T and R and control showed all brood stages at any time at the assessment dates and increased colony size during the experimental phase of the study. The colonies of all treatment groups were in good condition throughout the entire observation period.

Behaviour of the bees at the hive entrance and during foraging activity in the crop (Trial G07N001B) During the observations of the foraging activity no symptoms of affected behaviour were observed in the control treatment. In the test item treatment on DAA0 a slightly reduced foraging activity was observed. Half arrhour after the application of the reference item on DAA0 it was observed that the bees would not and on the flowers, at the hive entrance cleaning bees were seen. One hour after application no further symptoms of affected bee behaviour were observed. On DAA+1 the colonies of all treatment groups were slightly nervous at the hive-entrance which was presumably due to natural reasons as it occurred in all treatment groups. On the following assessment dates no further symptoms of affected bee behaviour, like shaking, trembling or cramping bees, bees showing impaired movements, excessive cleaning behaviour, or fighting bees were observed in any of the treatments.



#### **Observations Trial G07N002B**

#### Honey bee mortality (Trial G07N002B)


The daily mean bee mortality (number of dead bees in the dead bee traps and in Font of the hises) before the application was 25.2 dead bees/colony in the test item group, 22.7 dead bees/colony in the reference item treatment and 41.9 dead bees in control colonies. In the morning before application on DAA0 the mean mortality was 19.8 dead bees/colony in the test item group, 7.0 dead bees/colony in the reference item treatment and 17.0 dead bees per hive in control. After application on the application day (DAA0aa) a mean number of 14.0 dead bees per colony was recorded in the test from & group, 6.8 dead bees/colony in the reference item treatment and 120 dead bees in control coloures. Before the application the natural mortality in the reference item treatment and the test item greatment was on a lower level than in the control treatment. Considering the results before and after application of each treatment group, the mortality in the test iten treatment was on a lower level during the postapplication period as during the pre-application period. The mortality of the reference tem that ment was also on slightly lower level after the application. The postapplication control mortality decreased compared to the pre-application level and was on about the same low level as observed in the O reference and test item treatment group in the pre- and post-application period. The Mortality in the test and reference item treatment group were not increased after application The value for QM(average) was calculated as 0.6 in the test diem treatmen or oup Compared to 0.5 in the control group, indicating that the treatment had not affected beiney bee mortality. In the reference item treatment the mortality was on a low level during the entire post application period and the

Honey bee flight intensity (Trial 607N002B) Shortly before appreation on DAA0 the test item track <u>Honey bee flight intensity (Trial 60/N002B)</u> Shortly before application on DAA0 the mean flight intensity (forager bee 2m2) was 2.2 bees/m2 in the test item treatment group, in the reference item treatment group the mean flight intensity was 2.0 bees/m2 and 128 bees/m2 in the control treatment group The mean flight intensity pre-application was 1.6 bees/m2 in the test item treatment group. The mean flight intensity pre-application in the reference item treatment group was 1.5 bees/m2 and 1.5 bees m2 in the control treatment group. During the assessments on DAA a after application a slightly decreased flight activity was observed in the test item field, a mean number of 1.1 forager bees/m2 in the test item treatment group was observed. In the reference item treatment group light activity was discontinued, a mean flight intensity of 0.0 forager bees/m2 was observe in the control group the mean flight intensity on DAA0aa was 1.6 forager bees/m2. On DAA+1 the mean flight intensity was 2.5 in the control, 1.7 in the test item treatment and 1.7 forager bees/m2 in the reference item treatment.

On the following assessment dates no treatment-related difference regarding the flight intensity was observed between the treatment groups. The flight intensity of the control treatment group increased slightly during the post-application period, the mean flight intensity of the test item and reference item groups was on the same level in the entire pe- and post application period. The daily mean flight intensity in the post application period was 1.7 forager bees/m2 in the treatment group T, 1.6 forager bees/m2 in the treatment group it and 2.4 forager bees/m2 in the control group.

### Homing behaviour marking of forager bees (Trial G07N002B)

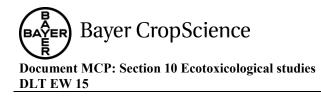
During the observations of behaviour and recovery of 10 Opalith-marked bees and the recovery of 40 paint-macked forager bees using a special observation hive, no symptoms of affected behaviour were detected in the entire observation period.



The results do not indicate any differences in the behaviour or in the recovery of Opalith-marked bees between the different treatment groups and the control. The recovery of the paint-marked bees was on a similar level in the control, test item and reference item treatment group. During four days of observation of paint-marked bees, no differences between the treatment groups control, test item and reference item were perceived.

#### Condition of the colonies (Trial G07N002B)

Assessments of the colony strength as judged by number of bee ways between comb filled with be and the brood nest size (number of brood combs per colony) did not maicate differences between treatment groups T, R and the control. On the first and second brood assessment the colonies of the treatment groups T and R and control showed all brood stages at any time and mareased colony size After the second brood assessment no further swarm prevention wasconducted, 3 colonies of the control treatment, 2 of the test item treatment and 1 Clony of the reference item reatment had swarmed. In these colonies the colony strength as pidged by number of bee ways covered with bees decreased, and a reduction of the brood nest size was observed. The lack of eggs and larvae at the third brood assessment date is due to the natorial process and the biological procedure of swarphing. Summing up, the colonies of all treatment groups were in good condition throughout the entire observation period. No treatment-Qated effects were observed


Behaviour of the bees at the lave entrance and during foraging activity in the crop (Trai G07N002B) On DAA0 during the first two hours after application of the test item many bees cleaning themselves were observed at the hive entrance. In the reference item treatment, bees cleaning themselves were observed at the hive-entrance during the first half hour after the application, the foraging activity was discontinued after the application april the next Day, DAA+1. The behaviour of foraging bees and around the hive-entrance was normal in the control treatment during the entire observation period.

# Observations Trial G07N003B

Honey bee mortality (Prial GON N003B)

The daily mean begonortality (number of dead bees in the dead bee traps and in front of the hives) before the application was 18.2 dead bees/colony in the test tem group, 28.0 dead bees/colony in the reference item group and 24 7 dead bees in controb colonies. In the morning before application on DAA0 the mean mortality was 8 & dead bees/colony in the test item group, 17.0 dead bees/colony in the reference item treatment and 1.5 dead bees per hive in control. After application on the application day (DAAQaa) a mean number of 12.8 dead bees per colony was recorded in the test item group 9.8 dead bees colony in the reference item treatment and 6.3 dead bees in control colonies. On DAA-3 the natural mortality in the reference item treatment was about the level of the control mortality and one slightly higher level that it the test item treatment. All treatment groups were about the same leved of natural mortality before application. Considering the results before and after application of each treatment group, the mortality in all treatment groups was on a lower level during the post-application period as during the pre-application period and on the level of natural mortality. The mortality was not increased by any of the treatments. Only on DAA+3 a slightly higher but still normal range of mortality in the reference treatment compared to the control and test item treatments was observed.

The value for QM(average) was calculated as 0.4 in the test item treatment group compared to 0.2 in the control group and 0.3 in the reference item group, indicating that the treatment had no effect on honey bee mortality.



#### Honey bee flight intensity (Trial G07N003B)

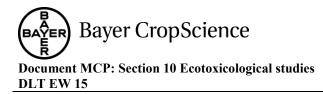
Shortly before application on DAA0 the mean flight intensity (forager bees/m2) was 1.0 bees/m2 if the test item treatment group and 1.8 bees/m2 in the control treatment group. In the reference item treatment group the mean flight intensity was 2.6 bees/m2. The mean flight intensity in the proapplication period was 1.2 bees/m2 in the test item treatment group and 1.3 bees/m2 in the control treatment group, the mean flight intensity pre-application in the reference item treatment group that 1.8 bees/m2.

During the assessments on DAA0 after application a decreased flight activity was observed on the test item field as well as in the reference item field and resulted in a mean number of 02 forager bees m2 in the test item treatment group and 0.6 forager bees m2 in the reference item treatment group on the control group the mean flight intensity on DAA 0 was 2.4 forager bees m2 after application 0 On DAA+1 and on DAA+2 the flight intensity was only reduced in the reference item treatment the flight intensity of the test item treatment and 0 the control freatment were on a similar level. The flight intensities of all treatments recovered to a similar level on DAA+3, the differences in the flight intensity on DAA+4 and DAA+5 were presumably due to natural reasons and the weather conditions at the field sites.

On the following assessment dates no treatment related difference regarding the flight intensity was observed between the treatment groups. The daily mean flight intensity ofter the application was 1.1 doraged bees/m2 in the treatment group T,

The daily mean flight intensity after the application was 1.1 for ager bees/m2 in the treatment group T, 1.0 for ager bees/m2 in the treatment group R and 1.8 for ager bees/m2 in the control group.

Homing behaviour - marking of forager bees (Srial GO7N003B)


The observation of behaviour and recovery of 10 obalith marked bees and the recovery of 40 paintmarked forager bees asing a special observation bive did not indicate any behavioural differences between the different treatment groups. No bees with symptoms of affected behaviour were observed in any of the treatment groups.

No difference in behaviour of Opalith- marked bees of the test item treatment group, the reference item treatment group and the control group was observed. The recovery of Opalith- marked bees was slightly higher in the test item and the reference item treatment group compared to the control. Only on DAA0 on Marking II the ecovery of Paint-marked bees was slightly higher in the control treatment compared to the test item treatment and the reference item treatment, and slightly lower on Marking III and Marking IV on DAA+ and DAA+2. The results show that the recovery of bees marked on Marking I (DAA-1) was not reduced after the application of the test item or the reference item up to the last observation on DAA+2.

Condition of the colonies (Trial G07N003B)

Assessments of the colony strength as jugged by number of bee ways between combs filled with bees and the brood nest size (number of brood combs per colony) did not indicate apparent differences between treatment groups T. & and the control. The colonies of the treatment groups T and control showed all brood stages at any time at the assessment dates and increased or maintained colony size during the experimental phase of the study. The colonies of the reference item treatment increased size slightly as judged by the number of bee ways covered but showed a slight reduction of the brood nest size on the last brood assessment. On the last brood assessment 2 of the colonies had no more eggs and a small brood nest size, which indicates that the colonies had swarmed.

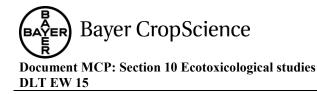
Behaviour of the bees at the hive entrance and during foraging activity in the crop (Trial G07N003B) During the observations at the hive entrance no symptoms of affected bee behaviour, like shaking, trembling or cramping bees, bees showing impaired movements, excessive cleaning behaviour, or



fighting bees were observed in the control treatment. In the test item treatment one hour after the application individual bees (numbers not exactly quantified) with shaking, spinning and cramping movements were observed around the hive entrance. In the reference item treatment it was observed 45 minutes after the application that single bees did not land on flowers, if they did, they remained sitting on the flowers. Other bees showed normal foraging behaviour. After one hour the foraging behaviour was normal, an intense flight intensity was observed at the hive entrance but about the foraging activity in the crop.

#### **Conclusions:**

An application of Deltamethrin EC 25 to flowering *brassica napu* at a rate of 76 g a *i*/ha (nominal) led to a mostly slight decrease of the flight intensity on the day of application after the treatment in all trials. After application of the test item, the mortality was not ficreased in affy of the trials. The observations of bee behaviour of individually Opalith marked and paint-marked bees did not indicate any disturbance of the homing behaviour. Only a few beed in the observation hives of at the five-entrances showed symptoms of abnormal behavior after application of the test item. In the reference item treatment the fraction of bees showing symptoms of affected behaviour warstightly highed than in the test item treatment and higher than in the control treatment. The condition of the colonies, size of the brood nest and the development of the homey bee brood in the test item treatment group was not different compared to the control during the observation period and not affected by any of the reatments. The application of Deltamethrin EC 25 did not result in adverse effects on the home bees in the trials reported here.


Report:	K6P 10.3. P.6/03 2009 2009 2009
Title:	Assessment of Side Effects of Deltargethrin EC 25 on the Honey Bee (Apis mellifera
, Ô	L.) Applied ap17.5 ga.s./ha to Phacelia tanacetifolia in the Field in Greece (Evening
	Application & S
Document No:	$M_{35826}^{01-1}$ (Rep. No.: SQ200073)
Guidelines:	QEPP/EPPO No. 170 (3) (2001), modified for the scope of this study
GLP:	yes A C L L C
3	

# Material and methods:

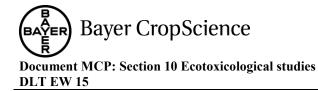
This study was designed to determine the effects of Deltamethrin EC 25 on the honey bee (*Apis melliferg* L.) applied to *Phaceba tanacetifoba* in the field in Greece, in the evening after the period of daily bee flight. This GLP compliant study was conducted following the OEPP/EPPO Guideline No. 170 (3), modified for the scope of this study: Guideline on test methods for evaluation the side-effects of plant protection products of honey bees (OEPP/EPPO, 2001).

The study comprised one trial which was carried out in *Phacelia tanacetifolia* in Greece, consisting of one test item treated field (8015 m²) and an untreated control field (7845 m²) at a distance of 1.3 km between both fields. In the test item field (T) Deltamethrin EC 25 was applied to the crop once during flowering of the crop at a rate of 17.5 g a.s./ha in 400 L water/ha in the evening after daily bee flight stopped. A field of intreated *Phacelia tanacetifolia* was used as control.

Six commercial bee colonies were placed in both fields, respectively, before the application in the test item field (T) at full flowering of the crop. To ensure that the bees are exposed to the treatment in the test fields, detailed assessments of foraging activity were done before as well as after the application.



Mortality and foraging activity of the bees was checked over 5 days prior to the application in the test field and followed up over 7 days after the application. The condition of the colonies and the bee brood development were checked once before the application and twice afterwards (up to 29 days after the application).


Potential effects of the test item on the honey bees was evaluated by comparing the results of the test Potential effects of the test item on the honey bees was evaluated by comparing the results of the test item treatment to those of the control treatment and by comparing the post-application results with the pre-application data. The following points were assessed:
Condition of the colonies (strength) and development of the bee brood
Mortality in the field and in the bee traps in from of the hives of the bees on the crop and around the hive
Foraging activity (number of forager bees/m²)
Behaviour of the bees on the crop and around the hive
Findings:
Toxicity to Honey Bees, Field Test

Test item	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	) Deltame	thrin FC 25 🔗
Test object			mellifera
Exposure		flowering of the crop	tomethrin EC 25 at full whe expring after daily ht stopped.
Treatment group		Test them Y Treatment	Control
Application date (25 May 2009 full flowering) rate g a.s./ha	application.		-
Spray volume per ha [L water/ha]	\$ \$2;	Q 400 a	-
Pre-appl. [DAA -4, to	0ba]: 🏷 🕺	5 Ø9.4 ~	22.6
Mean Mean Pre-appl. [DAA 0ba]:		\$21.2	19.2
[dead bees/colony/ Post-appl. [DAA#1]:		0 19 <b>0</b>	11.7
assessment day]	<b>()</b> +7]: <b>()</b>	Q 10.8	16.6
Mean number dead pupae per colony assessment application, DAA -4 to 0ba		× 0 ² 24.9	11.0
Mean number dead pupae per coony/assessmer application, DAG+1 to 47)		5.3	1.8
Pre-appl. DAA -4 76	0baf 🗸 🖓	[*] 7.7	8.1
Mean flight intervity Pre-appl. DAA Oba]:	× ×	8.2	8.4
[forager bees/m2] [Post-appl. [DAA +1]		1.2	4.5
Post appl. [ØAA +] x	0 +7].~	1.1	2.1

0ba = before applicationDAA ∉ days after application

Honey bee mortality:

During the pro-application period the mean mortality was 22.6 dead adult bees/colony/day in the control group (C) and 19@ dead adult bes/colony/day in the test item treated group (T). At the assessment on the day after the application (DAA +1) the mean mortality in the test item treatment group was 1907 dead adult bees/colony/day and 11.7 dead adult bees/colony/day in the control group. The daily mean post-application mortality (DAA +1 to +7) in the test item treatment group T was 16.8 dead adult bees/colony/day and 16.6 dead adult bees/colony/ day in the control group. The mean number of dead pupae from DAA -4 to +7 was throughout on a relatively high level in both treatment groups, and was generally higher in the test item hives than in the control hives. However,



this difference cannot be attributed to the test item treatment since the proportion of dead pupae remained on the same level throughout the test from DAA -4 until DAA +7 in both treatment groups. On the linen sheets in the crop area of the test fields, the level of recorded bee mortality after the application (mean number of dead bees per day) was 0.8 in the treatment group and 0.9 in the control field.

#### Honey bee flight intensity:

The daily mean flight intensity (forager bees/m²) during the pre-application period was 7.7 in the test item treatment group T and 8.1 in the control group. The mean flight intensity after the application on DAA +1 was reduced in the test item treatment field with 1.2 forager bees/m² in comparison to 4.5 in the control group C, but returned to comparable levels between control and treatment group from DAA 2 onwards. The daily mean post-application (DAA +1 to 47) flight intensity as 1.2 forager bees/m² in the test item treatment and was 2.10 orager bees/m² in the control.

### Condition of the colonies and honey bee brood development:

The mean strength of the colonies (mean number of bees per colony) in the test item treatment group and in the control group was 12850 and 13449 bees per base at the brood assessment before grart of exposure on DAA -6/-5. On DAA@7 the mean strength of the colonies was 22276 bees per hive in the test item group and 25229 bees ger hive in the control group, respectively. On the last assessment on DAA +29 the mean strength of the colonies was 26707 bees per hive in the test item group and 26915 bees per hive in the control group, respectively. Of The brood pest size charged only slightly during the observation period and no test item related

The brood nest size changed only slightly during the observation period and no test item related difference in the development of the brood nest was recorded in the colonies.

On the assessments during exposure in the test fields all colonies in both treatment groups showed all brood stages and a similar development. Only one colony in the test item treatment showed a lack of eggs on DAA 7, cansed by loss of the queen during the brood valuation on DAA -6/-5. On DAA +29 the new queen has already started lo lay eggs again.

However all brood stages in all other colonies of the treatment groups were present at the different assessment dates during the experimental phase of the study which shows that the colonies and the queens were in good condition during the observation period.

Before start of exposure the mean percentage of comb area covered with egg, larval and pupal cells per hive was 2.6, 4.0 and 5.6 % of the test item treatment group hives, and 2.8, 5.0 and 13.1 % in the control hives on DAA -6/-5, respectively. On DAA -7/ the mean percentage of comb area covered with egg, larval and pupal cells per hive was 4.4, 2.5 and 11.3 % in the test item treatment group hives and 4.2, 4.4 and 14.1 % in the control hives. At the last assessment on DAA +29 the mean percentage of comb area covered with egg, larval and pupal cells per hives was 3.6, 3.3 and 12.6 % in the test item treatment group hives and 4.2, 4.4 and 14.1 % in the control hives. At the last assessment on DAA +29 the mean percentage of comb area covered with egg, larval and pupal cells per hives was 3.6, 3.3 and 12.6 % in the test item treatment group hives and 4.6, 4.2 and 12.4% in the control hives with no differences between both treatment groups. Before sort of exposure 22.2, 19.4 and 58.5 % of the comb area per hive was covered by brood food and empty cells, respectively, in the test item treatment group hives, and 20.9, 28.8 and 50.3 % in the control hives.

At the end of exposure on 19AA + 718.2, 48.3 and 33.7% of the comb area per hive was covered by brood, food and empty cells, respectively, in the test item treatment group hives, and 22.7, 44.2 and 33.0% in the control hives. 29 days after start of exposure 19.5, 56.9 and 23.7\% of the comb area per hive was covered by brood, food and empty cells, respectively, in the test item treatment group hives, and 21.1, 50.8 and 28.2% in the control hives.

**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Honey bee behaviour in front of the colonies and within the crop

No differences regarding the behaviour of the bees were observed between the test item treatment group T and the control group C.

#### **Conclusion:**

The test item treatment did not result in an adverse effect on honey bees as determined by mortality. Only on the day after the application in the previous evening, reduced flight intensity was observed in the test item treated field, which does not constitute an adverse effect. Hight activity feturned to comparable levels again on the second day after application. Differences of bee behaviour between control and treatment group were not observed. The condition of the colonies as assessed by colony strength and size of the brood nest was not affected by the treatment. No evidence of an irritation of the test item group and the control colonies.

As a conclusion, it can be stated that an application of Deframethan EC 25 at a rate of 7.5 ga s./ha in the evening after daily bee flight in a flowering, bee-aftractive grop did not cause any adverse effects to exposed bee colonies under field conditions

Report:	KCP 10 3.1.6/04, ; 1998 , Q Q
Title:	Assessment of side effects of AE F032640 00 E606 A106 on the honey bee ( <i>Apts mellifera</i> L.) In the field following application during bee-flight
	(Apts mellifera L.) In the field following application during bee-flight
Document No:	$M_{2}184784701-1002008)$
Guidelines:	BBA VY, 23, LEPPO2170 5 5
GLP:	yes in the second secon
Ô	

### Material and Methods:

The side effects of the test substance AE F032640 00 EG06 A106 were tested on the honey bee (Apis mellifera )) at three different locations in Germany with different bee material following the Guideline for the testing of crop protection produces for registration of the Federal Biological Research Centre for Agriculture and Forestry (BBA), Federal Republic of Germany part VI, 23-1 (STUTE et al. 1991) and the Guideline of the European and Mediterranea Plant Protection Organization No. 170 (EPPO, 1992) The test locations were

AE F032640 00 EG06 A106 was

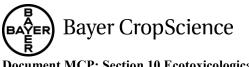
applied with commercial equipment on fields of flowering *Phacelia tanacetifolia* Benth. under actual use conditions according to the recommendations of the sponsor at an application rate of 7.5 g a.i./ha (corresponding to 122.5 gproduct/ha). The effect of the application was examined on bee colonies used for honey, production, which were placed near the test field.

Colonies of comparable strength located at a field with flowering *Phacelia tanacetifolia* which was not treated were used as control group. The effect of AE F032640 00 EG06 A106 was evaluated by comparing the bees of the test oubstance variant with the bee hives near the control field in view of the following observations.

- A Mortality in front of the bee hives and in the field
- Flight intensity in the field
- Behaviour of the bees at the entrance of the hives
- Condition of the colonies and development of bee brood

#### Effect on honey bee mortality:

At none of the three test location the application of AE F032640 00 EG06 A106 resulted in an acute intoxication of adult bees. In both replications carried out at test location (Trial Code: G98092B) an increase of mortality was observed during the post-application period in the less substance and control variant. In the test substance variant the value for Q_{M(average)}, i.e. average post-application mortality divided by the average preapplication mortality, was 1.1 in the 1st replication and 2.1 for the  $2^{nd}$  replication compared to 1.2 and 2.4 in the control variant.


(Trial Code: (98093B) the werage post-In both replications performed at test location application mortality was lower than the average preapplication mortality. In the test substance variant the value for Q_{M(average)} was 0.3 in the 1st replication and 0.5 in the 2nd eplication compared to 0.4 and (Trial Code: G98094Bothe determination 0.3 in the control group. At test location of Coverage) as 0.2 and 0.9 for the test substance varkint confirmed that the mortality was not increased during the post-application period in comparison to the pre-application period. In the confrol variant a slight increase of mortality was observed in both replications (Q in both replications = 1.2).

Effects on honey bee flight intension. In all of the six replications a slight decrease of flight intensity occorred directly after application of AE F032640 00 EG06 A106 and the flight otensity dropped below the lovel of the control variant. During the post-application period evaluations showed flight intensities at levels which were in the range of results in the control variant.

### Effects on honey be brood development.

Regarding the colonies strength and the bee brood development no abnormal difference which could be attributed to the influence of the test substance were observed between the AE F032640 00 EG06 A106 variant and control.

Conclusion: According to the results of this study at three test locations in Germany, AE F032640 00 EG06 A106 showed no significant effects on adult honey bers and the development of the bee brood.



France

#### **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

Report:	KCP 10.3.1.6/05,	2013		0
Title:	Assessment of Side Effects on the Honeybee ( <i>Apis mellifera</i> L.), Exposed to <i>Phacelia (apis mellifera</i> L.), Exposed to <i>Phacelia (apis mellifera</i> L.), Exposed to <i>Phacelia</i>			
	tanacetifolia, Sprayed Seq	tanacetifolia, Sprayed Sequentially with Deltamethrin During Flowering in Long		
	Term Field Study in North	Alsace, France	ð	
Document No:	<u>M-452717-01-1</u> (Rep. No.:	S10-03820)		
Guidelines:	OEPP/EPPO Guideline No.	170 (4) (2010), SA	NCO/3029/99 rev. 4	ST NO IN
GLP:	yes	~	S A	
		<u> </u>		
hi a adirua		- ¥*	40. av	N 4 4

#### **Objective**

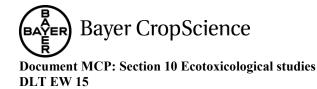
The objective of this field study was to assess potential effects of the active substance deltamether formulated as Deltamtherin EW 15 on bees, considering acute and chrome effects such as mortality flight intensity, colony strength, colony health and vitality, brood and food development and overwintering performance.

### **Material and Methods**

Test item: Deltamethrin EW 15B G (speak application product, Batch-ID: -002948 Test organism: Apis mellifera L. (Hymenoptera, Apidae), provided h

Germany

Crop used for field study: Phacelia tanagetifolia Study dates / location: June 2001 - March 2012,


Description field plots: The size of the field plots were approx 2.1 kba (test item treatment field) and approx. 2.23 ha (control field) The field plots were separated by 4,28 km in order to minimise the chance of the bees from T visiting the field plot of C or vice versa.  $\bigcirc$ The colonies were placed at the field sites early in the morning on 15 Jun 2011 at early to full flowering of P. tanacetifolia (C; BBCH 63-64, T: BBCH 64). Treatments:

- Test item group T. Two applications of rest item Deltamethun EW 15B G (target application rate: 2 x 12.5 g a.s./ha, spraw interval 13 days). The applications were performed during Wowering of Wtang Gifolia. The first application was carried out after set-up of the honeybee colonies at the test fields during powering of *Extanacetifolia* on 21 Jun 2011 (BBCH 65). The 2nd application was performed on flowering P. tanacetifolia on 04 Jul 2011 (BBCH 65-67). The applications were carried our during honeybee toght. The actual application rate was 13.5 g a.s./he (1st application) and 13.4 g/a.s./he (2nd application) in the test item group.
  - : 10 application was performed on the corresponding control field plot Entreated control (C).

### Assessments

The effects of honeybee exposure to Demamethrin EW 15B G-treated Phacelia tanacetifolia flowers were examined or six commercial honeybee colonies placed at each test field. The interest Deltamethron EW 15B G was evaluated by comparing the results of the test item group to the data of the control regarding the following observations:

- Potal and mean number of dead honeybees
- Flight intensity
- Behaviour of bees in the crop and around hives



- Condition of colonies (number of bees (colony strength), mean values of the different brood • stages per colony and assessment date)
- Colony health (bee diseases, bee viruses) •
- **Residue** analysis

Seven days before the first application, the first colony assessment was performed, which ncluded an assessment of the colony strength and the brood and food status. Pollen, nectar and wax from combs. honeybees (for disease and virus analysis), as well as nectar for AFB analysis were sampled on the same day.

At the end of the flowering period at BBCH 69, the honeybee colonies were relocate the a monitoring site without extensive agricultural crops attractive to bees. Here colony health and strength were assessed. Pollen, nectar and bee wax from combs were collected for residue analysis until 22 Mar 2012.

ar for AFB analysis were performed Samplings of honeybees for disease and virus analysis and newar for AFB twice after relocation of the colonies to the monitoring

#### Findings

Mortality and Flight Intensity

	on modely be	b) during sine Eupo	Sure I huse of the buddy	Y
Treatment group			Control Control	Test item treatment
		Pre-application 1 DBAC to 0DBA1	$241 \pm 120$	29.5 ± 31.0
Daily mean mortality (dead bees/col@y)		Post-application 1 (0DAA1 to 0DBA2	JA 518.9 52.3 JA	$10.1 \pm 16.2$
± STD		Post-application 2 20DAA2-17DAA2)	\$4 ± 9.6	$7.7 \pm 10.0$
Ê.		Post-application tot (5DBA1 to 17DA		8.7 ± 13.1
		Pre-application 1 5DBAY to 0DBA1	) O 3.1 ± 3.1	6.0 ± 5.8
Daily mean flight into	enary 5	Post-application 1 (0DAA1 @0DBAQ	₹ 4.1 ± 2.8	7.6 ± 4.2
$(bees/m^2) = STD$		Post-application 2 (0DAA2-17DAA2)	2.1 ± 2.0	$2.5 \pm 2.7$
		Post application tet (5DBA140 17DAA		$4.8 \pm 4.2$

Summary of Effects on Honeybees during the Endosure Phase of the Study

DBAn, days before application (number n); DAAn; days after application (number n)

### Mortality of H

Pre-application phase (5DBA1 to 0DBA1): mortality in test item group slightly higher (mean value: 29.5 dead bees/colony/day) than in control (mean value: 24.1 dead bees/colony/day), but still in the same range for both treatment groups. Š

After first application of test item:

<u>ODAA1:</u> mean mortality in T (26.2 dead bees/colony/day) moderately higher than in control (8.8 dead bees/colony/day) but still below the mean pre-application mortality in T.

1DAA1: mean mortality in T (11.8 dead bees/colony/day) declined to about the mortality level of de la comoción de la control (7.0 dead bees/colony/day).

Entire post-application phase after the 1st application and before the 2nd application (0DA) Entire post-appreation prace a <u>ODBA2</u>): mean number of dead bees slightly lower in test item group (1001 ucau bees/colony/day) than in control (18.9 dead bees/colony/day). Mean mortality levels in both treatment groups during this period below the pre-application mortalities. Calculated mortality quotients during this period: 0.8 in C and 0.3 in T.

0DAA2: mean mortality in T (28.3 dead bees colony/day) was higher than in control (19.0 deal bees/colony/day) but still below mean prevapplication mortality in T. 1DAA1: mean mortality in T (9.0 dead bees/colony/day) declined to mortality level of control (9.2 dead bees/colony/day).

Entire post-application phase after the 20 application (ODDA2 mean number of dead bees slightly lower in test item group (7.7 dead bees coloned day) than in control (8.4 dead bees/colony@tay). Mean mortality, levels in both treatment groups during this period were below the pre-application mortalities Calculated mortality quotients during this period: 0.4 in C and 0.3 in T.

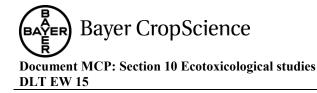
Entire post application phase (0DAA1 to 7DAA2): mortality 13.0 dead bees colony/day in control and 8.7 dead bees colon and a infest item group. Calculated mortality quotients for this period: 0.5 in Cand 0.3 in T.S

### Mortality assessment within the crop area:

On linen cheets pread out within the orop area in the test felds, &8 dead bees/day were found in the test item field compared to 1.7 dead bees/day in the control during the entire post application phase (0DAA1 to (7DAAQ). No wotable differences between control and test item group were observed.

Thus, no test item-related adverse effects on morality were observed.

### Flight Intensit


Pre-application phase 5DBAY to 00BA1 mean light intensity in the test fields lower in control than in treatment (31 bers/m²/day in C compared to 6.0 bees/m²/day in T). After first application of test item:

(DAA1: mean fight intensit amounted to 8.4 bees/m²/day in C compared to 4.8 bees/m²/day in

1DAA1: mean flight intensity 36 beesm²/day in C compared to 7.5 bees/m²/day in T. Entire post-application phase after the 1st application and before the 2nd application (0DAA1 to <u>ODBA2</u>: mean flight intensity 4.1 bees/m²/day in C compared to 7.6 bees/m²/day in T. No notable differences between control and test item treatment group observed during this period. After second application of test item:

DAR: mean flight intensity amounted to 5.5 bees/m²/day in C compared to 3.0 bees/m²/day in T., Ć

1DAA2: mean flight intensity was 4.3 bees/ $m^2$ /day in C compared to 8.2 bees/ $m^2$ /day in T.



Entire exposure phase at the field sites after the 2nd application (0DAA2 to 17DAA2): mean flight intensity 2.1 bees/m²/day in C compared to 2.5 bees/m²/day in T. No notable differences between control and test item treatment group observed during this period. Entire post application phase (0DAA1 to 17DAA2): Total daily mean flight calculated to be 3.05 bees/m²/day in control and 4.8 bees/colony/day in T, respectively. Thus, no test-item related adverse effects on flight intensity were observed.

#### Behaviour of the Honeybees

the day of the first (0DAA1) and the second application (0DAA2). On 0DAA1, up to approx. 70% bees exhibiting intensive cleaning behaviour and up to approx. §0@notionless bees were obser@ed in T. Further observed behavioural differences compared to the control group were observed only in a few bees of the test item group. A slightly evated humber of bees showing intensive cleaning behaviour in T were still present on DAA WOn ODAA2, up to 69 bees were Deerved in T which exhibited intoxication symptoms (cramping), Ourther observed behavioural On all other days during the exposure period, po notable difference in behaviour was observed in the test item treatment group. differences affected only a few bees of the test item group.

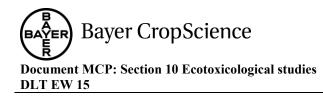
#### Condition of the Colonies

Colony Strength

On the first assessment at 7DBA1 (14 Jug 2011) Sone day before set up of the colonies at the test fields, the mean numbers of beesper colony in and were 18740 and 13984, respectively. All bee colonies were strong and bealthy The control colonies were slightly stronger than the test item group colonies of the first brood assessment? Ô

On the second assessment on 8DAA1 (29 Jun 2011), the mean number of bees per colony amounter to 16354 bees in C and 13574 bees in T respectively.

The 3rd colony assessment was performed on the fast day of exposure (21 Jul 2011), 17 days after the 2% application (= EOK). The mean number of bessper colony in C and T was 19824 and 19977, respectively.


From the 3rd to the 5th colony assessment, the colony assessments were on a rather stable level with only slight fluctuations in colony size.

In both groups (Oand To, a noticeable decline of the colony size occurred from end of July (mean value of bees per colony: 18184 in Q and 20476 bees in T; 28 Jul 2011) until start of

oversantering by middle of October 2014 (mean value of bees per colony: 10488 in C and 13159 bees in T; 13 Oct 2011). This decline of the olony size at the end of summer followed the natural course of colory strength development, with a decreasing tendency from late summer to autumn and spring of the following year,

At the end of overwintering on 22 Mar 2012, the mean colony strength was 5361 bees per colony in C and 185 bees per colony in T

study. No test-item related adverse effects on colony strength were observed during the course of the



#### Brood Stages and Overwintering Success

At the first assessment at 7DBA1 (14 Jun 2011), all colonies of the control and the test item treatment group contained brood of all stages. Brood of all stages was also present in all colonies ô at all further assessments with a few exceptions on single occasions. However, test item group and control were equally affected regarding the sporadic occurrence of missing brood stages At the end of overwintering on 22 March 2012, all colonies of the test item group and the control @ had successfully survived the winter. All brood stages were present in all colonies except for the absence of eggs in the colonies Ce and Cf. However, since the queens were noticed in both colonies, so it was assumed that this was only a temporary gap @egg laying activity probably due to low temperatures. In colony Tf, the number of brood colls was slightly lower than in the colonies Ta to Te. This could be attributed to the presence of frost damaged brood in this colory. No notable differences between the test item treatment group and the control were observed. Overall, no test item-related adverse effect on colony vitality and brood development was observed, which includes queen survival and overwiftering performance

#### Food Storage

In the colonies of the control group C and the fest item treatment group T sespectively, the natural and typical changes and fluctuations in the relative amount of neetar and pollen storage cells occurred during the observation period. All colonies of the study showed approximately equal numbers of pollen and nectar storage cells in C and T throughout the entire@bservation period, respectively.  $\bigcirc$ 

Thus, no test item-retaited adverse effects on the food storage behaviour of the exposed colonies were observed.

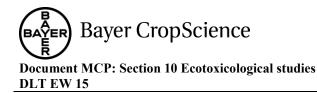
#### Bee Diseases Analysis, <u>sme</u>hi <u>AFB</u>

The objective of the bee disease analysis phase was to determine the presence of different pathogens (Noseria sp., Malphigamoeba menificae Varres destructor, Paenibacillus larvae) in bee samples taken at different time points during the study period.

# Nosema sp. spor

Three control colonies (Ca, Sc, Cd) were free of analysable Nosema sp. spores at each of the four sampling dates.

In the becamples taken from the confol colonies a start of exposure, only in colony Cf Nosema sp. spores were analysed (high infegration fevel). All other colonies were free of analysable spores. ñ


In the bee samples taken from control colonies at end of exposure the colony Cb had a high infestation level and the colory Ce had a medium infestation level with Nosema sp. spores. In the bee samples of the other control colonies no Nosema sp. spores were analysed.

In the beer samples taken at star Coverwatering, no Nosema sp. spores were found in any colony except in colony Cf (high infestation level).

In the control bee samples taken at end of overwintering, no Nosema sp. spores were analysed in anycolony

An the cest item treatment colony Td no Nosema sp. spores were analysed in any of the samples tak@^{*}in 2011 and 2012.

In the bee samples taken at start of exposure from test item treatment colonies, no *Nosema* sp. spores were found.



In the bee samples taken at end of exposure, one test item treatment colony had a low infestation level (Tf) and two test item treatment colonies had a medium infestation level with *Nosema* spores (Tb and Te).

In the samples taken at start of overwintering, no *Nosema* sp. spores were found in any of the test item treatment colonies.

In the samples taken at end of overwintering, test item treatment colony. Ta had a low infestation level and test item treatment colony Tc had a high infestation level. In all other colonies in the infestation with *Nosema* sp. spores was analysed.

#### Varroa mites

The highest infestation rate with *Varroa* mites was 10 % in one bee sample taken at end of exposure of the control colonies (colony Cb). In all other bee samples examined the *Varroa* infestation rate was between 0.0 % and 424 % infall samples taken from compol colonies. The *Varroa* mite infestation rate never exceeded the % level in the bee samples taken from the test item treatment colonies. The infestation rate varied between 0.0 % and 5.4% in all samples analysed.

### Malpighamoeba mellificae and spores of Paenibacillus ladvae

No Malpighamoeba mellificae and no spores of Faenibacillus farvae were found in any of the samples taken in 2011 and 2012 neither in the control nor in the tespitem treatment colonies.

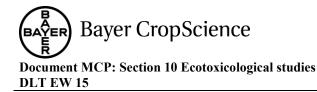
Overall, no differences in health could be observed between the control and the test item treatment colonies. Thus no test item-related adverse effects on colony health in terms of bee diseases were observed.

#### Pollen Source Identification

The pollen from the pollen traps was collected once before the first application (1DBA1), twice before (3DAA1, 6DAA1) and twice after the 2nd application (1DAA2, 3DAA2) in C and T, respectively.

In the control colonies Ca-Cf, the percentage of *Phacelia* pollen collected per colony was 67-97 % on 1DBA1, 97-100 % on 3DAA1, 94-100 % on 6DAA1, 49-96 % on 1DAA2 and 35-95 % on 3DAA2.

In the test atem treatment colories Ta Of, the Percentage of *Phacelia* pollen collected per colory was 89-99 % on 1DBA1, 88 99 % on 3DAA1, 63 89 % on 6DAA1, 2-17 % on 1DAA2 and 2-31 % on 3DAA2.


Thus, it can be concluded that *Phacella tanacetifolia* crop under investigation was a significant foraging area with exposed colonies.

### Bee Virus Analysis

The objective of the bee virus analysis was to determine the following bee viruses in bee samples collected at different time points of the year: DWV (deformed wing virus), SBV (sacbrood virus), ABPV (acute bee paralysis virus), CBPV (chronic bee paralysis virus), KBV (Kashmir bee virus), IAPV (Israeli acute paralysis virus), BQCV (black queen cell virus).

The bee viruses ABEV, CBPV, KBV and IAPV were not detected in any of the samples taken at any of the samples taken at

DWV was detected in sample Cc of the control group taken at the time point 'start of exposure phase', in samples Cc and Cd of the control group taken at the time point 'end of exposure phase', and in samples Ca, Cc, Cd, and Ce of the control group, and in samples Ta, Td, and Tf of



the test item group taken at the time point 'start of overwintering' in 2011, and in sample Tf of the test item group taken at the time point 'end of overwintering in 2012. SBV was detected in all samples of the control group (Ca–Cf) and in all samples of the test them a

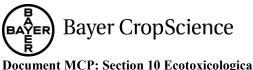
group (Ta-Tf) taken at the time point 'start of exposure phase', and in sample Tc of the test item group taken at the time point 'end of exposure phase' in 2011.

BQCV was detected in samples Ca, Cb, Cc, Ce, and Cf of the control group, and in simples I'b Tf of the test item group taken at the time point 'start of exposure phase', and in all samples of the control group (Ca–Cf), and as well as in all samples of the test fiem group (Ta–Tf) taken af the time point 'end of exposure phase' in 2011 the time point 'end of exposure phase' in 2011.

Thus, no test item-related adverse effects on colony health in terms of virus infestation were observed.

#### **Residue Analysis**

Samples of *Phacelia* flowers as well as nectation of poller bee bread and bee wax collected of from hives were analysed. In pollen nectar, beewax residues of deltamethrin were below the limit of quantitation (LOQ =  $10\mu g/kg)_{0}$  The measured residues in floweres bloss on swee 158  $\sim$  468 μg/kg.


The application was done on 4 duly 2001 and the first samples were taken 7 days before application (i.e. 28 Jun 2011) and the end of analytical phase was 29 Nov@mber 2012. So maximum storage duration for this story was 17 months

Conclusions No test item-related adverse effects were observed on mortality and flight intensity in the test field. No test item-related adverse effects were observed on honeybee health, colony development (including colony strength, colony health, brood and food development of the colonies) as well as on overall cology vitality throughout the entire field exposure period and throughout the entire monitoring period until the encor overwintering in spring 2012.

Moreover, the overwintering performance of the colonies in the test item treatment group was not adversely affected when compared to control performance.

Overall, it can be condided that exposure of hone bee colonies to Phacelia tanacetifolia, sequentially sprayed with Deltamethrin EW 13B G and targer rate @ 12.5 g a.s./ha on two occasions during flowering, did neither cause acute, short-term nor long-term adverse effects on mortality, flight intensity colony strength, colony health and vitality, brood and food development and overwintering performance in the exposed colonies. Behavioural observations indicated a possible short-term correlation between the application of the test frem during bee flight activity and an intensive cleaning behaviour in a larger number of exposed hopeybees as well as motionless bees and intoxication symptoms in a smatter number of exposed honeybees.

*****



Pance

#### Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Report:	KCP 10.3.1.6/06, 2013
Title:	Assessment of Side Effects on the Honeybee ( <i>Apis mellifera</i> L.), Exposed to <i>Phacelia tanacetifolia</i> , Sprayed Sequentially with Deltamethrin During
	Phacelia tanacetifolia, Sprayed Sequentially with Deltamethrin During
	Flowering in a Long-Term Field Study
Document No:	<u>M-452723-01-1</u> (S10-03824)
Guidelines:	OEPP/EPPO Guideline No. 170 (4) (2010), SANCO/3022/99 rev. 4
GLP:	yes

V

#### Objective

The objective of this field study was to assess potential effects of the active substance deltamethrin, formulated as Deltamethrin EW 15 on bees, considering acute and chronic effects such as mortality flight intensity, colony strength, colony health and vitality, broad and food development and soverwintering performance.

### **Material and Methods**

, Germany

Test item: Deltamethrin EW 15B G (speay application product, Batch-ID 2011-02948)

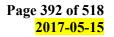
Test organism: Apis mellifera L. (Hymenopera, Apidae), provided by

Crop used for field study: Phagelia tanacetifolia

Study dates / location: June 2011 March 2012

Description field plots. The size of the field plots were approx. 235 have test item treatment field) and approximately 2.25 ha (control field). The field plots were separated by 4.0 km in order to minimise the chance of the bees from T visiting the field plot of C or vice versa.

The colonies were placed at the field sites early in the morning on 10 Jun 2011 at early flowering of P. tanacetifolia (BBCH 63), P


### Treatments:

- Test item proup T: Two applications of test item Detamethrin EW 15B G (target application rate: 2 x 12.5 g a.s./ha spray interval 13 days). The applications were performed during flowering of *P. tanacetifolia*. The first application was carried out after set-up of the honeybee colonies at the test field during Howering of *P. tanacetifolia* on 15 Jun 2011 (BBCH 64 65). The 2nd application was performed on flowering *P. tanacetifolia* on 28 Jun 2011 (BBCH 65-67). The applications were carried out during honeybee flight. The actual application rate was 16.6 g a.s./ha (1st application) and 12.8 g a.s./ha (2nd application) in the test item group.
- Untreated control C No application was performed on the corresponding control field plot

# Assessments

The effects of honeybee exposure to Deltamethrin EW 15B G-treated *Phacelia tanacetifolia* flowers were examined on six commercial honeybee colonies placed at each test field.

The influence of Deltamethrin EW 15B G was evaluated by comparing the results of the test item group to the data of the control regarding the following observations:

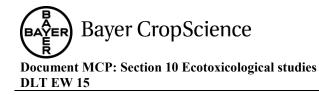


**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

- •
- Total and mean number of dead honeyucco Flight intensity Behaviour of bees in the crop and around hives Condition of colonies (number of bees (colony strength), mean value of the different brood traces per colony and assessment date) •
- •
- •

Six days before the first application, the first colony assessment was performed which included an assessment of the colony strength and the brood and food status Poller nectar and wax from com honeybees (for disease and virus analysis), as well as nectar for AFR analysis were sampled on the same day.

At the end of the flowering period at BBCH 67~69, the hone dree colonies were relocated to a monitoring site without extensive agricultural crops attractive to bees. Here colory health and sprength were assessed. Pollen, nectar and bee wax from courses were control of AFB analysis were performed 2012. Samplings of honeybees for disease and virus analysis and rectar for AFB analysis were performed were assessed. Pollen, nectar and be wax from combs were collected for residue analysis until 23 Mar


#### Findings

Mortality and Flight Intensity

# Summary of Effects on Honeybees during the Exposure Phase of the Study

Treatment group	Control	Test item treatment (T)
مَحْ الْحَكْ (55)BAlt	ičation 1 00BA1) 0 15.3 8.3	22.9 ± 13.5
Daily mean mortality (dead bees/colony)	0.0DBA2	$19.2 \pm 27.2$
± STD		$11.8 \pm 8.0$
	cation total $\sqrt[6]{}$ 15.2 ± 24.9	$15.2 \pm 19.5$
	$\begin{array}{c} \text{Relation } \mathbb{D} \\ \text{6 ODRA1} \end{array} \qquad 4.0 \pm 2.5 \end{array}$	$4.8 \pm 2.8$
Daily mean flight intensity	lication 1 $3.4 \pm 2.0$	$5.9 \pm 4.1$
Post-app	$\begin{array}{c c} \hline Dcation 2 \\ \hline 16DAA2 \\ \hline \end{array} \qquad 1.4 \pm 1.4 \\ \hline \end{array}$	2.6 ± 2.2
± SID	$\begin{array}{c} \text{cation total} \\ 0.16\text{DAA2} \end{array} \qquad 2.3 \pm 2.0 \end{array}$	4.1 ± 3.6

DBAn: dag before application (number n); DAAn: days after application (number n) 



#### Mortality of Honeybees

Pre-application phase (5DBA1 to 0DBA1): mortality in test item group slightly higher (mean value: 22.9 dead bees/colony/day) than in control (mean value: 15.3 dead bees/colony/dag), but still in the same range in both treatment groups.

#### After first application of test item:

0DAA1: mortality in T (14.5 dead bees/colony/day) was on the same level as in contract dead bees/colony/day) and below the mean pre-application morfality in T. 1DAA1: mean mortalities were low and amounted to 3.3 deadbees/colony/day in C and to 7.0 dead bees/colony/day in T, and showed no notable differences between the test in treatment colonies and the control colonies.

Entire post-application phase after the 1 Capplication and before the 2 application (0DAA1 to 0DBA2): mean number of dead bees slightly higher with the test item group (19.3 Read bees/colony/day) than in control (1) () dead Bees/colony/day), but still below the mean preapplication mortality in T. Calculated mortality quotients during this period \$9.7 in C and \$\overline{0}8\$ in T.

#### After second application of test item:

<u>ODAA2</u>: mean mortality in (15.2) dead bees/colony/day) slightly higher than in control (4.3) dead bees/colony/day) but still on a normal level and below the mean pre-application mortality in T. Ì

1DAA1: mean mortanty in T (12.7 dead bees/coffeny/day) declined to the mortality level of the control (9.5 dead bees/colony/dag)

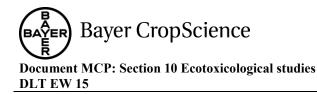
Entire post-application phase after the 2nd application (0DDA240 16D0A2): mean number of dead bees was slightly lower in the test item group (11.8 dead bees/colony/day) than in control (18.7 dead bees colon / day) The mean mortality bevels in the test item group during this period were below the mean pre-application mortality in T. Calculated mortality quotients during this period: 1.2 or C and 0.5 in T.

Entire post apprication phase ODAA1 to JODAA2: mean daily mortality per colony 15.2 dead bees/colony/day in controlas well as in test item group. Calculated mortality quotients for this period: 1 @ in C and 0.70m T.

### Mortality assessment within the grop area

On finen sheets spread our within the crop area in the test fields, 1 dead bees/day were found in the test item field compared to 0.6 dead bees day in the control during the entire post application phase (0DAA1 to 16DAAD). No notable differences between control and test item group were observed

Thus, notest item-related adverse effects on mortality were observed.


# Flight httensity

Pre-application phase (SDBA1 to 0DBA1): mean flight intensity on the same level in test fields and in control (4.0 bees/m²/day in C compared to 4.8 bees/m²/day in T).

After first application of test item:

0DAA1: mean flight intensity amounted to 6.0 bees/m²/day in C compared to 1.9 bees/m²/day in T.

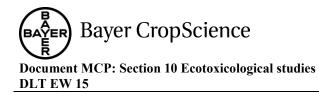
1DAA1: mean flight intensity 2.9 bees/m²/day in C compared to 1.6 bees/m²/day in T.



Entire post-application phase after the 1st application and before the 2nd application (0DAA1 to <u>0DBA2)</u>: mean flight intensity 3.4 bees/m²/day in C compared to 5.9 bees/m²/day in T. Besides a slight reduction of flight intensity immediately after the application of the test item on 0DAX1, no notable differences between control and test item treatment group observed during this period. After second application of test item:

<u>0DAA2</u>: mean flight intensity amounted to 3.8 bees/m²/day in both, Cand T. Entire exposure phase at the field sites after the 2nd application (0DAA2 to 16DAA2): mean flight intensity 1.4 bees/m²/day in C compared to 2.6 beesm²/day in T. No notable differences between Entire post application phase (0DAA1 to 16DAX2): Total date mean flight calculated to be 2. bees/m²/day in control and 4.1 bees/colony/doll in T Thus, no test-item related adverse effects on flight intensity were observed.

#### Behaviour of the Honeybees


Notable differences in behaviour in the test item group compared to the control group occurred on the day of the first (0DAA1) and the second application (0DA 2). On 0DAA1, up to approx. 360 bees in total exhibiting intensive cleaning behaviour, up to approx 20 motionless bees per colony and up to approx. 20 bees in total with intoxication symptoms were observed in T. Astightly elevated number of bees showing intension cleaning behavious in T were stippresent on 1DAA1. Further observed behavioural differences compared to the control group were observed on 6DAA1, 8DAA1, 9DAA1 and 11DAA1, but only after bees of the test item group were involved. On 0DAA2, up to approx? 300 bees per colory in T exhibited intensive cleaning behaviour and up to 50 motionless bees per colony were observed Further observed behavioural differences compared to the control group were observed only in a few bees of the test item group. From DAA2 until the end of exposure, no notable différence & behaviour was observed in the test item treatment group compared to the control group.

Condition of the Colonies

Colory Strength O 6DBA1 (09Jun 2011), one day before set-up of the colonies at the test fields, the mean numbers of bees per colony in Cand T were 18365 and 16970, respectively, and were therefore on the same level. On the second assessment on 7DAA1 (22 Jun 2011), the mean number of bees per colony had increased in both treatment groups and amounted to 19237 in C and 19414 in T, respectively. The 30 colory assessment (last assessment at the field sites) was performed on 16DAA2 (14Jul 2011). The mean number of bees per colony in C and T was 23612 and 18112 respectively. The lower mean number of bees in T compared to C was most Ikely due to swarming activity of colony. TP. The number of bees of all other test item group colonies increased of remained stable during the period from the 2nd to the 3rd colony assessment. From the 2th to the 5th colony assessment, the colony assessments were on a rather stable level with only slight fluctuations in cology size.

In both groups (C and T), anoticeable decline of the colony size occurred from beginning of August (mean value of bees per colony: 21913 in C and 19173 bees in T; 04 Aug 2011) until start of overy intering by middle of October 2011 (mean value of bees per colony: 10375 in C and \$ 9841 bees in 1, 07 Get 2011). This decline of the colony size at the end of summer followed the natorial course of colony strength development, with a decreasing tendency from late summer to autumn and spring of the following year.

At the end of overwintering on 23 Mar 2012, the mean colony strength was 5050 bees per colony in C and 3068 bees per colony in T.



No test-item related adverse effects on colony strength were observed during the course of the study

#### Brood Stages and Overwintering Success

At the first assessment at 6DBA1 (09 Jun 2011), all colonies of the control and the test item treatment group contained brood of all stages. Brood of all stages was also present in all colonies at all further assessments with a few exceptions on single occasions. However, test item group and control were equally affected regarding the spondic occurrence of missing brood stages. At the end of overwintering on 23 March 2012, all colonies of the test item group and the control had successfully survived the winter. All brood stages were present in all colonies, with the exception of colony Tc, which contained larger and pupae but no eggs. However, since the queen was noticed in this colony, it was assumed that this was only a temporary gap of egg laying activity, probably due to low temperatures. In colony Te, the pumber of brood cells was stightly lower than in the other colonies of the test item group. This could be attributed to the presence of frozen brood in this colony.

No notable differences between the test term treatment group and the control were observed. Overall, no test item-related adverse effect on colony vitality and bood development was observed, which includes queen survival and overwintering performance.

### Food Storage

In the colonies of the control group C and the test ifem treatment group T, respectively, the natural and typical changes and fluctuations in the relative amount of nectar and pollen storage cells occurred during the observation period. An colonies of the study showed approximately equal numbers of pollen and rectar storage cells in C and T throughout the entire observation period, respectively for the related adverse effects on the food storage behaviour of the exposed colonies were observed.

Bee Diseases Analysis, AFB Assessment

The objective of the bee disease analysis phase was to determine the presence of different pathogens (Novema sp?, Matphigameeba mellificae, Varroa destructor, Paenibacillus larvae) in bee samples taken an different time points during the study period.

# Nosema sp. spores

From the bee samples taken from the control colonies, only in the colonies Cc and Cd *Nosema* spee. spores were analysed. Control colony Cd showed a low infestation level with *Nosema* spec. spores in the bee sample taken at start of exposure and control colony Cc showed a high infestation level in the bee sample taken at end of overwintering. After overwintering, no samples could be analysed for coronies Ce and Cf.

In the bec samples taken at start of exposure in the test item treatment colonies, no *Nosema* spec. spores were found of the spore found of the s

The amount of infestations with *Nosema* spec. spores increased moderately in the bee samples of the test item treatment colonies taken at end of exposure. In these samples, test item treatment

Colon Tb had a low infestation level with *Nosema* spec. spores and test item treatment colonies Ta Tc, Td and Te had a medium infestation rate, whereas colony Tf was free of analysable

Nosema spec. spores.

In the bee samples taken at start of overwintering, only test item treatment colony Te had an infestation with *Nosema* spec. spores (medium level).

In the bee samples taken at end of overwintering, *Nosema* spec. spores were found in the test item treatment colonies Tb (medium infestation level) and Tc (high infestation level). No samples, were available from end of overwintering for test item treatment colonies Td and Te. In the summer samples, the amount of positive *Nosema* spec. spore findings in the test item treatment colony group was slightly higher than in the control colony group, but the infestation level was not higher than medium. For the health status evaluation, the more distinctive high infestation level was level occurred once in the control and in the test item treatment group, respectively.

#### Varroa mites

In three out of 22 bee samples taken from control colonies, *Varoa* mites were found. The infestation rates with *Varroa* mites of these three findings were between 0.4 % and 0.5 % in all samples taken from control colonies. The *Varroa* mite intestation varie between 0.0 % and 4.3 % in all samples analysed.

#### Malpighamoeba mellificae and spores of Paenibacillus larvae

No Malpighamoeba mellificae and no spores of Faenibacillus farvae were found in any othe samples taken in 2011 and 2012 neither in the control nor in the test ritem freatment colonies.

Overall, no differences in health could be be be even the control and the test item treatment colonies. Thus, no test item-colated adverse effects on cotony health in terms of bee diseases were observed.

#### Pollen Source Identification

The pollen from the pollen traps was collected once before the first application (1DBA1), twice before (1DAAF, 5DAA1) and twice after (7DAA2, 8DAA2) the 2nd application in C and T, respectively

In the control field, the percentage of *Phacetia* pollen collected per colony was 1-10% on 1DBA4, 1-7% on 1DAA1, 2-91 % on 50AA1, 1-30% on 70AA2 and <1-47% on 8DAA2 in the colonies Ca-CC

In the test item incatment field, the percentage of *Phacelia* pollen collected per colony was 10-91% on 1DBAP, 21-71% of 1DAA1, 94,000% on 5DAA1, 18-60% on 7DAA2 and 4-56% on 8DAA2 in the colonies Tay If.

Thus, it can be concluded that the *Phoelia tonacetifolia* crop under investigation was a significant foraging area of the exposed colonies.

Bee Virus Analysis

The objective of the bee viru@analysis was to determine the following bee viruses in bee samples collected at different time points of the year: DWV (deformed wing virus), SBV (sacbrood virus), ABPV (acute bee paralysis virus), CBPV (chronic bee paralysis virus), KBV (Kashmir bee virus), IAPV (Israeli acute paralysis virus), BQCV (black queen cell virus).

The bee viruses ABPV, CBPV, KBV and IAPV were not detected in any of the samples taken at any fine point.

DWV was detected in sample Tc of the test item group taken at the time point 'start of exposure phase in sample Ct of the control group, and in samples Ta and Tc-Tf of the test item group take at the time point 'end of exposure phase', in samples Cc and Cf of the control group, and in samples Ta, Tb, Td, and Te of the test item group taken at the time point 'start of overwintering' in 2011, and in samples Ta and Tc of the test item group taken at the time point 'end of overwintering' in 2012.



SBV was detected in Cc and Cd of the control group, and in samples Ta, Tb, Td, and Tf of the test item group taken at the time point 'start of exposure phase', in samples Ca-Ce of the control group, and in samples Ta and Td of the test item group taken at the time point 'end of exposure phase' taken in 2011.

BQCV was detected in samples Cb-Cf of the control group, and in all samples of the test item from (Ta-Tf) taken at the time point 'start of exposure phase', and in samples Ca, Ce, and Cd of the control group, and in samples Ta, Tb, Te, and Tf of the test item group taken at the time point 'end of exposure phase' in 2011.

Since the bee viruses DWV, SBV and BQCV were detected in both C and T, tespectively, portest, item-related adverse effects on colony health interms of virus infestation were observed.

#### **Residue Analysis**

Samples of *Phacelia* flowers as well as noctar/honey, pollen/hee bread and bee way collected from hives were analysed. In pollen and nectar, residues of deltamethrin were below the limit of quantitation (LOQ =  $10\mu g/kg$ ). In beeway the measured residues of the test substance ranged between the LOQ and 22. The measured residues in floweres/biossoms were  $68 - 40^{-7} \mu g/kg$ .

The application done 15 June 2011 and first samples were sken 6 days before application (i.e. 9 June 2011). End of analytical parse 6 bebruary 2019. So maximum storage duration for this study, vas 20 months.

#### Conclusions

No test item-related adverse effects were asserved on mortality and flight intensity in the test field. No test item-related adverse effects were observed on honeybee health, colony development (including colony strength, colony health, brood and food development of the colonies) as well as on overall colony ritality throughout the entire field exposure period and throughout the entire monitoring period until the end of overwintering in spring 2012.

Moreover, the overwintering performance of the colonies in the test item treatment group was not adversely affected when compared to control performance.

Overall, it can be concluded that exposure of moneybee colonies to *Phacelia tanacetifolia*, sequentially sprayed with Beltamethin FV 15B G at a larget rate of 12.5 g a.s./ha on two occasions during flowering, did neither cause acute short term nor long term adverse effects on mortality, flight intensity, colony strength, colony health and stality brood and food development and overwintering performance in the exposed colonies. Behavioural observations indicated a possible short-term correlation between the application of the test item during bee flight activity and an intensive cleaning behaviour in a larger number of exposed honeybees as well as motionless bees and intoxication symptoms in a smaller number of exposed honeybees.

symptoms in a smaller number of exposed honeybees as

Report:	KCP 10.3.1.6/07,
	(1983) Synthesis of works carried out on bees under natural conditions with
Title:	Synthesis of works carried out on bees under natural conditions with a
	deltamethrin at international level: Effects on the environment of the second s
Document No:	<u>M-151220-01-1</u> (Rep. No.: RA-83-21-09/A)
Guidelines:	No particular guidelines, special test design
GLP:	no

The report summarised among others a five year study with deltamethrm on bees under natural conditions has been carried out using a new methodology. From 1978 to 1982, 24 trials were carried out with different rates of deltamethrin, water, parathion and plosalone. In this context, however, were emphasis is placed on the results of the years 1980 and 1981 obtained with doltamethrin applied as rate of  $\geq$  17.5 g a.s./ha.

### Materials and methods:

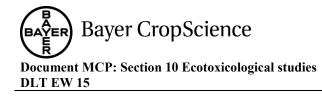
Deltamethrin was applied onto flowering mustard during bee flight the ween 1 and 2 p.m.) at the following application rates:

1980: 7.5 g a.s./ha, 10 g a.s./ha, 12,5 g a.s./ha and 17.5 a.s./ha

1981: 21.2 g a.s./ha and 35 g a.s./ha

The trials were conducted at **Sector 1,500** France) in an environment which was not or only slightly attractive for honey bees (surrounding field crops: maize beetroot, cereals, potatoes). In this field study white mustard was sown on 1,500 m² plots every 1546 20 fays statting from the end of March. Each time the 1,500 m² consisted of 50 strips (50.n × 1 m) separated by 0.7 m wide vegetation free and tamped down alley, from which the insects for the mortality assessments were collected later. Each 1,500 m² area was only used for one trial and then it was ploughed. Honey bees of Italian race x Caucasian race hybrids (*Apis mellifera lignifica x Apis mellifera caucasia*) from movable frame hives supplied by a professional bee-keeper, were used. During each trial (and therefore for each application rate), approx. 4 colonies were placed close to the mustard plot The bees from 3 of these hives remained in the trial area for about 20 days, the 4th hive remained at the field station as a control colony the whole trial period.

Two assessments of mortality and honey bee behaviour were made daily at 8 am and 5 pm at the hives. Moreover, ach time, the bee-keeper was on the station, he made observations on the behaviour and activity of the brood-comb. A pollen trap was placed on some of the hives.


The number of foraging bees was assessed on 35 out of 30) randomly selected strips of crop in each trial. Foraging activity was assessed 4 times per day at 10 am, 12 am, 2 pm and 4 pm on the days before the application. On the application day assessments were conducted at 10 am and 12 am before the application and 18 minutes, 1 hour are 3 hours after the application. After the application daily assessments were conducted at 40 am, 12 am, 2 pm and 4 pm. The behaviour of foraging honey bees was assessed.

The number of dead poney bees was determined on the alleys surrounding the 3 selected strips.

# Findings

Observations on mortality:

At a pate of 7.5 g a.s./ha a slight mortality was revealed which, although not high, was still higher than the one observed at 12.5 g a.s./ha. At 21.2 and 35 g a.s./ha marked mortality occurred.



#### Behaviour of the bees:

No changes in the behaviour of the bees was observed at the hives, moreover, the bees during the trails in the summer showed normal behaviour at the end of the following winter, they recovered a good activity, a normal brood comb etc. On the crop, the behaviour of the foraging bees was normal after application rates of 5 and 12.5 g a.s./ha. At 17.5 g a.s./ha, 21.2 and 35 g a.s./ha some bees crawled on the flowers and showed signs of "sluggishness" which did not last more than one hour after application. However, it was noted that the bees during the sluggishness period were able to fly when touched.

#### Repellent effects:

At the rates of 7.5 to 17.5 g a.s./ha bees flew away finimediately and rapidly behind the spraw boom This behaviour was not observed with lower rates or after a water treatment. The visiting frequency decreased for 2-3 hours after insecticide application. This effect, which can be considered repellent, involved no change in pollination of the visited crop and seemed specific to deltamethin, since it was not observed either with parathion or with phosalone.

#### **Conclusion:**

It is stated that under the tested coolitions, deltamethrin applied directly to to raging bees is not hazardous to bees up to 21.2 g as./ha.

Report:	KCPC10.3.1. 608, (1993) ~ ~ ~ ~ ~
Title:	Deftamethrm: Satety to Groney Pres 🖉 🛛 🖉
Document No:	Me1512 6-01 Rep No.: A729170 6 4
Guidelines:	No No 4 & Y 2 S S ZY
GLP:	Note O O & D Star

The report summarised the results of more than 15 years research on bees exposed to deltamethrin (1976–4993), using avariet of testing methods and designs. The testing programme started with tests performed in small cases, followed by field tests using large plots to finally come out to trials carried out underplastic greenhouses (trannels). Roussel Uctaf together with various French scientists was much involved in the development of this methodology. The assessments carried out during these trials established the following results:

- No approximal mortanty up to 17.5 g a.s. tha.
- Clear repellent effect occurring a few minutes after the application and disappearing within less than 24 hours with dose rates of 75 g/harand higher. Bees are flying back to the hives.
- Behavioural (lethargy) of the bees starting at 17.5 g/ha and higher.
- No adverse effect on the quantity and quality of the brood combs, the density of the populations of the toves exposed to the application and the yield of honey.
- Extremely low evels of residues in the honey.
- Absorce of residues of deltamethrin in the pollen.

Page 400 of 518 2017-05-15



Report:	КСР 10.3.1.6/09,	_ 0
	(1987)	
Title:	Decis EC innocuity towards bees: Control of ear aphids in cereals;	
	Control of <i>Ceuthorrhynchus assimilis payk</i> on rape.	
Document No:	<u>M-151219-01-1</u>	
Guidelines:	No	
GLP:	No	

The study reviews 8 years of experimentation (1977 – 1985) undertaken with deltarbethrin in several field trials in several countries in order to determine the effects on bees. In this context, only the lest results with application rates  $\geq 17.5$  g a.s./ha are prosented. Trials carrie pout by Roussel Uclaf in France from 1978 – 1982 showed that Decis did not affect for aging up to a close of 17.5 g sis./ha slight mortality was found at 21.2 g a.s./ha and foraging activity was reduced at 19.5 g a.s./ha. Furthermore, numerous trials were carried out by third parties under sendenatural or natural conditions. For example, in 1983, 8 tests were carried out in Germany Ander a tent in the open field on Phacelia, with testing doses from 15 to 25 g ars/ha. Ilwas concluded that deltamethrin is hon-toxic to bees because in respect to foraging activity and motality, there was no difference betydeen deltamethrin and non-toxic reference and control. There were also no effects on larvar stages in 3-day and 8-day trials. The brood-comb was also unaffected at 8 days. In 1985, 4 additional studies were cartied out in Germany fosting 25 g a.s./ha. No differences were found compared to the control at the hive or in the field regarding mortality, foraging activity and hive observation and no long-term effects at up to 4 weeks after treatment Thus, the authors concluded that the limit beyond which the first slight signs of pxicity occurred is around 21.2 g a.s./ha

Report:	KCP 10.3.1.6/10, (1982)
Title:	Incidence de traitements a la Deltamethrin, Decis, FLW) et au
	Decie B sur abeille en condition naturelles tests station.
Document No:	Mo149776-01-2 0 0 2 4 2
Guidelines:	
GLP:	No Q & S & S

The report describes three field suidies that were conducted with deltamethrin formulations in the year 1982. Material and methods:

Test item: Decamethrin (active ingredient: detamethrin), was applied onto flowering mustard during bee flight (between 1 and 2 pm) with a sprayer (400 L/ha, 4 bar) in trial 1 (7.5 g a.s./ha), trial 2 (25 g a.s./ha) and (deltamethrin & heptenophos). Trial 2 was conducted with Decis Flow 25 g/L at an application rate of 25 g w.s./ha and is summarised below. The study was conducted

Prance in an Invironment not or only slightly attractive for honey bees. In this field study white Bustard was sown on 1,500 m² plots every 15 to 20 days starting from March. This 1,500 m² consisted of 30 strips (50 m x 1 m) separated by a 0.7 m wide vegetation free and tamped down at ley, from which the insects for the mortality assessments were collected later. Each  $1,500 \text{ m}^2$ area was only used for one trial and then it was ploughed. Honey bees of Italian race x Caucasian race hybrids (Apis mellifera ligustica × Apis mellifera caucasia) from movable frame hives, supplied by a



professional bee-keeper, were used. During each trial (and therefore for each application rate), approx. 4 colonies were placed close to the mustard plot for each trial, except for trial 1 where only 2 colores were used. One control colony remained at the field station.

Two assessments of mortality and honey bee behaviour were made daily at 8 and and 5 pm. Of the application day additional mortality assessments were conducted immediately after the application and within one and three hours after the application.

Pollen traps were installed at the hives for the trials 1 and 5. The pollen was taken from the traps dail and weighed to have a measure of the foraging activity.

The number of foraging bees was assessed on 6 (out of 30) randomly selected strips of crop in each trial. Foraging activity was assessed 4 times per day at 10 am, 12 an, 2 pm and 4 pm on the days before the application. On the application day assessments were conducted at 10 am and 12 cm before the application and 15 minutes, 1 hour and 3 hours after the application. After the application daily assessments were conducted at 10 am, 12 am, 2 pm, and 4 pm. The behaviour of foraging honey bees was assessed.

The number of dead honey bees was determined on the alleys currounding the selected strips

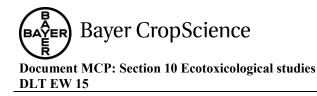
### **Findings and conclusion:**

No changes in behaviour of the bees were observed, no increased mortality beither at the bives, nor in the crop occurred. Repellent effects were not found. Thus, under the tested conditions, application of 25 g deltamethrin/ha did not gause adverse effects to bees

# Supplemental information from the literature

The publications summarized below investigate residues of deltamethrin in bee-relevant matrices and are considered as supplemental information regarding the exposure profile of deltamethrin to beepollinators:

Report? 🏾 🏷	KCP 10.3.1.6/11; Cossu, A.; Alamanni, M. C. (2003)
Title:	Montoring of pytethroid residues in Sardinian honey by solid phase extraction
Ę,	and high performance liquid chromatography.
Source:	Tral. J. Pood Sei., Volume 10, Issued, Page 541-551, Publication Year 2003
DOI No: 🔊 🖤	
Document No:	<u>M⁴57689-01-1</u>
Guidelines:	USP 232 The National Formulary 1995 – Validation of Compendial Methods:
	1982 1260 Fwinbrook Parkway, Rockville, MD.
GLÆ	


# EXECUTIVE SUMMARX

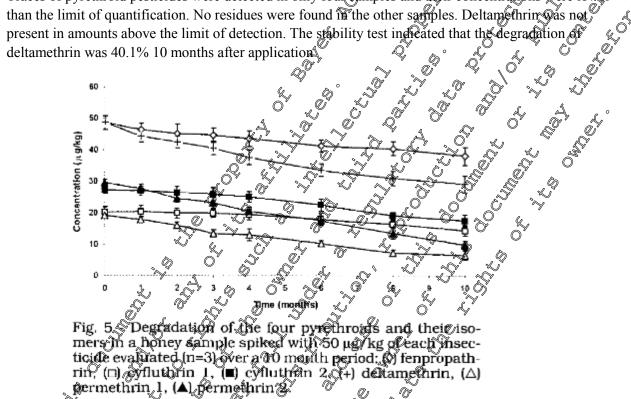
A rapid, economical and mplified multi-residue method, involving an extraction step and further HPLC analysis & described for the determination of fenpropathrin, cyfluthrin, deltamethrin and permethrin residues in honey. The method was tested on 74 honey samples, produced in Sardinia during 2000-2001. Pyrethroids were isolated from the matrix by means of solid- phase extraction (SPE) with octadecylsilane tandem-florisil cartridges. Recoveries of the pyrethroids at four different concentrations ranged from 93.6 to 99.2 %. The estimated limits of detection ranged from 0.2 to 1.6  $\mu$ g/kg and limits of quantification ranged from 0.6 to 5.2  $\mu$ g/kg. The stability of the four pyrethroids and their isomers was investigated on a multifloreal honey sample (spiked with 50  $\mu$ g/kg). The

**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

pesticides had a different degree of persistence in this matrix after 10 months. Deltamethrin had a loss of 40.1% 10 months after application. Traces of pyrethroid pesticides were detected in only four samples and their concentrations were lower than the limit of quantification. No residues were found of the the samples. Deltamethrin was not present in an and the samples. in the other samples. Deltamethrin was not present in amounts above the limit ordetection.





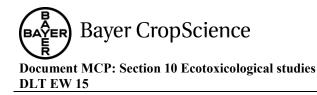

#### RESULTS

#### 1. Validity criteria:

The validation procedure, parameters and acceptance criteria were based on USP 23 (1995) guidelines and recommendations in the literature. The method was validated regarding accuracy and precision

#### 2. Analytical findings:

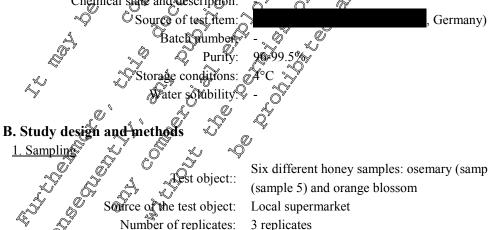
Traces of pyrethroid pesticides were detected in only four samples and their concentrations were lowe than the limit of quantification. No residues were found in the other samples. Delta performance  $\mathbb{R}^{\mathbb{C}}$ 



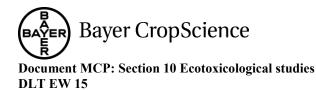

# **RESULTS SUMMARY**

≪. Traces of pyrethrold pesticides were detected in only our samples and their concentrations were lower than the limit of quantification. No residues were found in the other samples. Deltamethrin was not present in amounts above the limit of detection. The stability test indicated that the degradation of deltamethrin was 40.1% 10 months after application

Comment of the Notifier: Cossu & Alamanni, N.C. (2003) in Italy investigated 74 honey samples obtained from beekeepers focal warket and supermarkets for the presence of deltamethrin and found no quantifiable destamethrin residues


Report:	KCP 10.3.1.6/12; Campillo, N.; Penalver, R.; Aguinaga, N.; Hernandez-
	Cordoba, M. (2006)
Title:	Solid-phase microextraction and gas chromatography with atomic emission
Ű	detection for multiresidue determination of pesticides in honey.
Source:	Anal. Chim. Acta, 562, 1, p. 9-15
DOI No:	10.1016/j.aca.2006.01.034




Document No:	<u>M-460886-01-1</u>	0	
Guidelines:	-	Q	ð
GLP:	-	, S	

### **EXECUTIVE SUMMARY**

A method based on solid-phase microextraction (SPME) followed by gas chromatograph with microwave-induced plasma atomic emission detection for determining 16 pesticides of different chemical families (organochlorines, organophosphorus compounds and pyrethrins) in hone As proposed. Parameters affecting the sample enrichment step, such as sample mass sonic stength absorption and desorption times and temperatures, were carefully optimized in the direct immersion mode. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm), bromine (478 nm) and sulphur (181 nm) emission fines, which provided nearly specific chromatograms. The matrix effect was evaluated for samples of different floral origin, it being concluded that standard addition calibration was required for quantification purposes. The detection limits ranged from 0.02 to 10 ng/g, depending on the compound and the honey sapple upder analysis. Six different honey samples were obtained from a local supermarket labeled as cosematy (samples 1-4), heather (sample 5) and orange blossom/sample 6). 1:5 g of honey samples were stracted using a SPME method and analysed using GC-AED. Each sample was performed in triplicates. A recovery assay was conducted with spiked honey samples (4-3000 ng/nf). The spiked samples were set aside for 60 min at room temperature to set the methanol evaporate before sample analysis. The fortification procedure was applied to three different honey samples a four conceptration levels and three replicates were analyzed in each case, corresponding to three aliquots of each sample independently fortified and analyzed, , c lea sobtainer. None of the honeys malyzed confirmed the studied pesticides at least above the stated detection limits. An average recovery  $\pm S$ ,  $D \neq (n = 64)$  of 91.4 $\pm 15$ , 4 was obtained. MATERIAL AND SETHOI A. Material 1. Reference material Reference item: Deltamethrink Deltamethrin Active substance(s) Chemical state and description:



Six different honey samples: osemary (samples 1-4), heather



Method: Pre-treatment of samples: 1.5 g of honey samples were extracted using a SPME method and a Conduction: analysed using GC-AED Reference item: Deltamethrin 91.4±15.4 (average recovery of all tested substance Recovery: Limit of detection: 6.8 ng/gLimit of quantification:

#### RESULTS

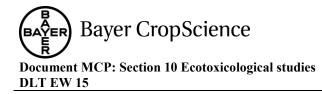
1. Validity criteria: No validity criteria were stated.

2. Analytical findings:

None of the honeys analyzed contained the studied pesticides at least above the stated detection limits. An average recovery  $\pm$ S.D. (n = 64) of 91.4 $\pm$ 15 was obtained

### **RESULTS SUMMARY**

RESULTS SUMMARY None of the honeys analyzed contained the studied pesticides, at least above the stated detection limits. An average recovery  $\pm 8$ , D. (n = 64)  $\oplus$  91.4 $\pm$ 13.4 was obtained,


Comment of the Notifier Campillo et al. (2006) in spain investigated six hones samples obtained from beekeepers, locakmarkets and supermarkets for the presence of deltametarin and found no quantifiable deltamethrin residues.

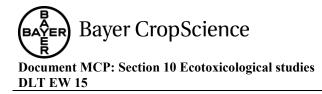
Report: KCP 0.3.1.6/13; Chauza, MP. Faugon, JP.; Martel, AC.; Lachaize, J.;
Cougoule, N.; Andert, M. (2006)
Title: A survey of pesticide residues in poten loads collected by honey bees in France.
Source Surce Surce Surce State 2, Page 253-262, Publication Year 2006
DOI No: http://dx.doi.org/10.1603/0022-0493-99.2.253
Document No: $M-4559$ $M-4559$ $J$
Guidelines:
GLP: Q Q No XY XY XY

# EXECUTIVE SUMMARY

In 2002, a field survey was initiated on Evench aparies to monitor weakness of honey bee, Apis mellifera L., colonies. Afraries vere evenly distributed in five sites located on continental France. Five colonies were randomly selected in each apiary, leading to a total of 125 studied honey bee colonies. For year starting in autumn 2002), colonies were visited four times per year: after winter, before sumpier, during summer, and before winter. Pollen loads from traps were collected at each visit.

Multiresidue malyses were performed in pollen to search residues of 36 different molecules. Specific analyses were conducted to search fipronil and metabolites and also imidacloprid and metabolites. Residues of 19 searched compounds were found in samples. Contamination by pesticides ranged from 50 to 0%. Coumphos and tau-fluvalinate residues were the most concentrated of all residues (mean concentrations were 925.0 and 487.2 g/kg, respectively). No deltamethrin residues were detected. Fipronil and metabolite contents were superior to the limit of detection in 16 samples. Residues of




fipronil were found in 10 samples. Nine samples contained the sulfone compound, and three samples. contained the desulfinyl compound.

Ś Residues of imidacloprid and 6-chloronicotinic acid were found in 69% of samples. Imidacloprid contents were quantified in 11 samples with values ranging from 1.1 to 5.7 g/kg -Chloronic acid content was superior to the limit of quantification in 28 samples with values ranging from 0.6 to 9.3 g/kg. Statistical tests showed no difference between places of sampling with the exception of fipronil. Possible origins of these contaminations, concentration and toxicity of pesticides, and the possible consequences for bees are discussed.

#### **MATERIAL AND METHODS**

# A. Material 2. Site description Location/country: Amount of agricultural area: History of site (crop, pesticides) Temperature Precipitation B. Study design and methods Sampling technique: 1. Sampling Pollen traps Sampling frequency: four times a Number of samples per site Transport/sto@ge of samples Coôtoo 4. Chemical analysis deline/protocol: Multivesidue analysis Samples for the mailtiresidie analysis of pyrethroid insecticides were extracted with agerone and subsequently with dichlorometkane after a liquid/liquid separation. A cleanup step with silicated was performed. The two fractions were concentrated by evaporation. Residues obtained were dissolved in iso-octane for gas chromatographic analysis. Mutiresidue analysis was performed by gas chromatography by nduction using an electron capture detector tem: Recovery: 0. to 57.0 μg/kg Limit & detection: guantification: 24.0 to 196.7 µg/kg RESUL Novalidity criteria were mentioned. 2. Analytical findings:

Multiresidue analyses were performed in pollen to search residues of 36 different molecules. Specific



analyses were conducted to search fipronil and metabolites and also imidacloprid and metabolites. Residues of 19 searched compounds were found in samples. Contamination by pesticides ranged from 50 to 0%. Coumaphos and tau-fluvalinate residues were the most concentrated of all residues (mean Ô concentrations were 925.0 and 487.2 g/kg, respectively). No deltamethrin residues were detected. Fipronil and metabolite contents were superior to the limit of detection in 16 samples. Residues of fipronil were found in 10 samples. Nine samples contained the sulfone compound, and the samples Ì contained the desulfinyl compound.

Residues of imidacloprid and 6-chloronicotinic acid were found in 62% of samples. Imidacloprid contents were quantified in 11 samples with values ranging from 15/to 5.7 g/kg, 6 Chloronicothic acid content was superior to the limit of quantification in 28 samples with values ranging from 0.6 9.3 g/kg. Statistical tests showed no difference between places of sampling with the exception of fipronil. Ċ

Table 1: Pesticide residues in p	ole loads 🦼			A.	) w	
	No.	Winne of		Res	idue	Average
	analysed	Number	Frequency	concen	trations (	con <b>co</b> ntration
	samples	of positive	(%)	main.	[~] max.~	concentration » (μg/kg)
	Q' ø	samples		agug/kgD	(µg/kg)	«γ(μg/kg)
Imidacloprid	@ 81, W	040 S	<b>49</b> .4 Q	>LOD	<b>3</b> .7 9	.12
6-Chloronicotinic acid		S 36	44.4	≥ <b>Ľ@</b> D	<u>9.3</u>	1.2
Fipronil	Å1 _^	L 16	© 12.4 [*]	~¿LOD`^		1.2
Fipronil desulfynil composyd	<u> </u>	<u> </u>	H'I I	€>LQD		1.3
Penconazole	A 796		<u></u> 00.1 🌾	>LOD	<u></u> \$6.0	27.6
Carbaryl	× 36°	a, 3.C	_≪ 8.3 °	126.0	265.0	218.7
Endosulfan	8 ² ~		D 60	, >LOD	[*] 34.0	81.2
Tau-fluvalinate N 0	\$°√ 82 ₩	<u></u>		∀>LQI	2020.0	487.2
Flusilazole	^{∞≫} 7 <b>∮</b>	~ 4 <del>/</del>	5.1	>EQD	71.0	26.1
Parathion-metoyl	82 S	<u>× 45</u>	<b>4.9</b>	<b>⊘</b> LOD	<loq< td=""><td>24.8</td></loq<>	24.8
Carbofuran	ي 79	No C		<b>S</b> LOD	10.9	14.0
Cyproconazole	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	~ .8 ~	>LOD	<loq< td=""><td>7.5</td></loq<>	7.5
Fipronit sulfone compound	S 81 ^S	<u>~ 30</u>	≪3.7 ₅ O	1.7	3.6	1.2
Myclobutanil	\$12 C	<u> </u>	2. <b>S</b>	>LOD	20.3	13.9
Coumaphos	⁽²⁾ 82 ⁽²⁾	JOŽ C	2,4 21.8	150.0	1700.0	925.0
Oxamyl Q	S 550	× 1 ~		38.4	38.4	38.4
Tebuconazole	-29	0, 10,	0 1.3	12.3	12.3	12.3
Hexaconazole	<u> </u>		> 1.3	18.0	18.0	18.0
Parathion ethyl	3 82 A	<u>~</u> ?1 v	1.2	>LOD	<loq< td=""><td>19.2</td></loq<>	19.2
Aldicar			0.0	ND	ND	ND
Aldicarb sulfoxide	24 6	k K	0.0	ND	ND	ND
Aldicarb sulfone	~40 Q	~~~~~	0.0	ND	ND	ND
	^C 82	0	0.0	ND	ND	ND
Chlorpyrifos-ethyl	× 8Q×	Q' 0	0.0	ND	ND	ND
Cyfluthrin O'	82 _ R	0	0.0	ND	ND	ND
Cypermethrm 200	🔬 82 🖓	0	0.0	ND	ND	ND
Deltamet Brin 2 0	õ ^r 82	0	0.0	ND	ND	ND
Dimetorte 🖉 🛆 🔨	82	0	0.0	ND	ND	ND
Eposyconazole	79	0	0.0	ND	ND	ND
Fontrounion	82	0	0.0	ND	ND	ND
Fenthio	82	0	0.0	ND	ND	ND
Lindane	82	0	0.0	ND	ND	ND
Malathion	82	0	0.0	ND	ND	ND
Mercaptodimethur	73	0	0.0	ND	ND	ND

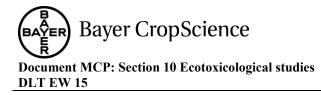


	No. analysed	Number	Frequency	Residue concentrations		Average ° concentration	
	samples	of positive samples	(%)	min. (µg/kg)	max. (µg/kg)	(µg/kg)	
Mercaptodimethur sulfone	71	0	0.0	ND	ND	NO ON	
Mercaptodimethur sulfoxide	73	0	0.0	ND	🖉 ND	ND S	
Methidathion	82	0	0.0	NDA	ND	NDS D	
Methomyl	43	0	0.0	ND	ND	NO NO	
Mevinphos	82	0	0.0 0.0	₿Ď	ND 💍	ND O	
Propiconazole	79	0	0.0	ND	ND	ND OF	
Tetraconazole	79	0	0.0	V ND	N)	− ND ×	

Pesticides are classibed by decreasing frequencies (percentages) ND, not detected

RESULTS SUMMARY No deltamethrin residues were detected in pollen loads of five different apiaries in France

Comment of the Notifier: Chauzat ergil. (2006) investigated the residue situation of several plant protection products in pollen loads collected by honey bees in France Apiaries were evenly? distributed in five sites located on continental France. Five copies were randomly selected in each apiary, leading to a total of 125 Studied honey bee colonies For 3 year (starting to auturon 2002), colonies were visited four times per year: after winter, before summer, during summer, and before winter. Pollen loads from traps were collected affeach visit. In total, St pollen samples were subjected to deltamethrin residue analysistand in all samples no quantifiable deltamethrin residues were found.


Report: KOP 10.3:1.6/14, Chauzat, MPP. ; Martel, AC., Cougoule, N.; Porta, P.; Lachaize, J.; Zeggane, S.; Aubert, M.; Faucon, JP. (2011)
Title: Title: An assessment of honeybee colony matrices, Agis mellifera (Hymenoptera:
Apidae) to monitor pespecide presence in continental France.
Source: Environmental Poxicology and Chemistry 30, 1, p. 103-111
DOI No?
Document No: $\sqrt{\frac{M-42599}{201-1}}$
Guidelines: 6 - 4 6 4 4
$ $ GLP: $\alpha_{i}$ $ $ $\partial_{i} q$ $z^{i}$ $\partial_{i}$ $\partial_{i} q^{i}$ $\partial_{i} q^{i}$

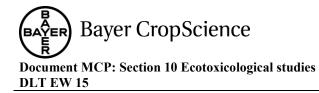
# EXECUTIVE SUMMARY

The aim of the present study was to assess the exposure of honeybees to pesticide residues ¹³ despite the fact that their active ingredients and commercialized substances were legal, regulated, and integral to food production. It provides an assessment of four different apicultural matrices to monitor pesticide presence in the environment over three years.

The studied apiaries were distributed around five sites in continental France covering the main zones of French honey production. Professional and hobbyist apiarists took part in the investigation. At the beginning of the study 125 colonies (five honey bee colonies randomly selected in five apiaries from five different locations across France) were pesticide residues over 3 yr (2002-2005). The number of

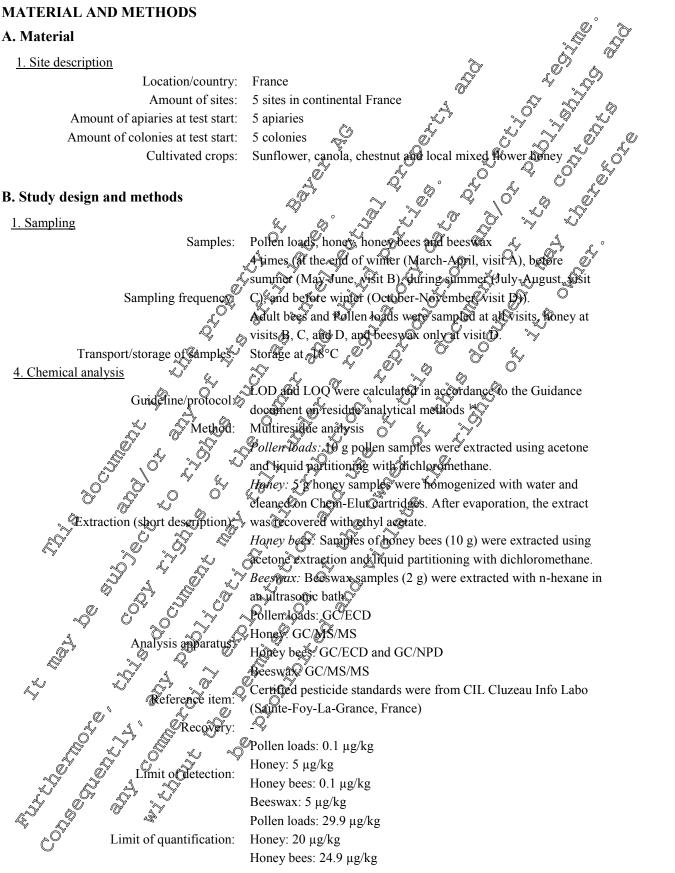
¹³ ChauzatMP, Carpentier P, Martel AC, Bougeard S, Cougoule N, Porta P, Lachaize J, Madec F, Aubert M, Faucon JP. 2009. The influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ Entomol 38:514–523.




surveyed hives was kept constant by replacing any dead colony by another one randomly selected from the same apiary. Colonies were visited four times per year: at the end of winter (March-Aprik visit A), before summer (may-June, visit B), during summer (July-August, visit C), and before winter (October-November, visit D). Adult bees were sampled at all visits, honey at visits B, C, and B, and beeswax only at visit D. Pollen traps were fixed on two extra colonies per apiary, and samples were taken at all visits when available. Individual colony samples, taken during the same visit. Were pooled per apiary for analyses.

Forty-one different molecules were sought through individual (imidad oprid and fipfonil) or multiresidue analyses. However, material and methods as well as results are summarized only for deltamethrin.

Insecticidal residues in honey were processed from 5 g of the boney samples that were homogenized with water and cleaned on Chem-Elut cartridges. After complete exaporation of the elutates, the extract was recovered with ethyl acetate for gas chromatography coupled with tandem mass chromatography (GC/MS/MS) analysis. For deltamethrin, the LOD and LOO were 5 and 20 µg/kg respectively. For multiresidue analysis, samples of poller (10 g) were extracted using aceton extraction and liquid partitioning with dichloromethane. One clean-up was performed on a flica gel column for pesticides analysis. The two eluates were concentrated by complete evaporation under reduced pressure in a rotary evaporator using a 40°C water bath. Residues were dissolved in iso-octane for GC analysis. Multiresidue analysis was performed by GC using an electron-capture detector. The LOD for deltamethrin was 0.1 µg/kg and the LOC was 29.9 µg/kg.


Beeswax samples (2 g) were extracted with n-hexane in an ultrasonic bath heated at 40°C. After freezing in liquid nitrogen and certifugation, the superhatant fraction was collected and evaporated in a rotary evaporator (40°C) until 6 ml remained. Two hquid reparations were performed with a mixture of n-hexane and acetonitrile. The acetonitrile phases were pooled together and concentrated on a rotary evaporator. The extract (2 ml) was cleaned on C18 cartridge. After elution with a mixture of acetonitrile and water, the solution was dried in a rotary evaporator and dissolved in 1 ml ethyl acetate for GC/MS/MS analysis. The LOD was 5 µg/kg, and the LOQ was 10 µg/kg.

Samples of honey bees (10 g) were extracted for multivesidue analysis using acetone extraction and liquid partitioning with dichlorometadine. Crean-up with Eforisil cartridge was performed for pesticides analysis. The two fractions obtained were concentrated by complete evaporation under reduced pressure in a rotary evaporator using a 40°C water bath. Residues were dissolved in iso-octane for the first eluate and in acetore for the second eluate. The two eluates were analyzed by GC analysis with specific detectors (ECD and NPD). The LOD and LOQ were 0.1 and 24.9 µg/kg, respectively. The most frequent residue in pollen loads, honey, and honey bee matrices was imidacloprid or 6-chloronicotinic acid. Deltamethrin were found only in 5.9% of all analysed honey bee samples. In all other compartments (pollen loads, honey, and beeswax), the proportion of positive samples (contaminated with deltamethrin) was lower. The average content of deltamethrin residues in positive samples collected in 120 French hives was between 39.0 µg/kg (Pollen), 14.7 µg/kg (Beeswax), 2.6 µg/kg (Honey) and 16.9 µg/kg (Honeybees).



#### **MATERIAL AND METHODS**

#### A. Material

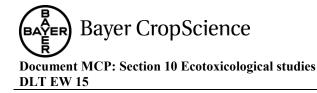


¹⁴ European Commission. 2007. Guidance on residue analytical methods. Document N° SANCO/825/00 rev. 6.



**DLT EW 15** 

RESULTS 1. Validity criteria: The recoveries of analytes were calculated in each sequence of analyses and must be between 70 and 120%


The most frequent residue in pollen loads, honey, and honey bee matrices was indicacloprid or chloronicotinic acid. Deltamethrin were found only in 5.9% of all analysed honey be samples. In all other compartments (pollen loads, honey and beeswax) the proportion of positive samples (contaminated with deltamethrin) was lower. The average content of deltamethrin residues in positive . samples collected in 120 French hives was between 39.0 ug/kg (Pollen), 14.7 ug/kg (Beeswax), 2.6 µg/kg (Honey) and 16.9 µg/kg (Honey) bees

#### **RESULTS SUMMARY**

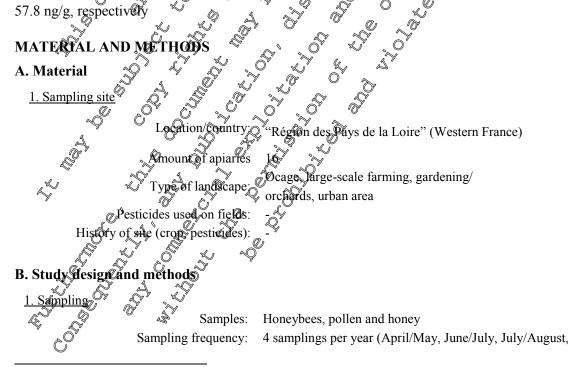
Deltamethrin were found only in 5.9% of all analysed honey bee samples. In all other compartments (pollen loads, honey and beeswax) the proportion of positive samples contaminated with deltamethrin) was lower. The average content of deltamethrin residues in positive samples collected in 120 French hives was between 39.0 / kg (Pollen) 014.7 ug/kg (Beeswax), 2.6 ug/kg (Honey) and 16.9 µg/kg (Honeybees)

Comment of the Nothier: 10 2011, Chaural et af investigated several, hive matrices like honey, pollen and bee-wax. The studied apiaries were distributed among fixe sites in continental France covering the main zones of French hopey production. Professional and hobbyist apiarists took part in the investigation. At the beginning of the study, 125 colonies (five honey bee colonies randomly selected in five apraties from five different locations across France) were pesticide residues over 3 year (2002-2005) Out of 198 analysed poller samples, quantifiable deltamethrin residues were found only in one single sample (0.5% of all samples in Ostigated). Out of 237 analysed honey samples, collected from the hives upper investigation, quantifiable deltamethrin residues were found only in two samples (0.8% of all samples investigated). Out of 87 analysed bee-wax samples, collected from the hives under investigation, quantifiable deltame hrin residues were found only in one single sample (1.1% of all samples investigated)

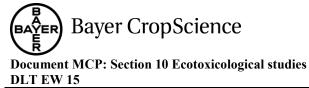
Report: 🔿 🦯	KCF 10.3.K6/15; Wiest, L.; Bulete, A.; Giroud, B.; Fratta, C.; Amic, S.;
	Lonbert O.; Pouliquen, H.; Arnaudguilhem, C. (2011)
Title:	Multi-Osidue analysis of 80 environmental contaminants in honeys, honeybees
	and pollens by one extraction procedure followed by liquid and gas
	chromatography coupled with mass spectrometric detection.
Source:	J. Chromatogr., A,1218, 34, p. 5743-5756
DOI No:	-
Document No:	<u>M-456064-01-1</u>



Guidelines: -GLP: _


### **EXECUTIVE SUMMARY**

This paper presents an original analytical approach which consists in one simple extraction method for each matrix coupled with GC and LC analysis and a comprehensive validation of the whole method. Application to a large number of samples was made in order to check the robustness of the method but also to obtain a global view of environmental contaminants presence in beehives and to compare the contamination of honeys, honeybees and pollens. Material and methods as well a Gresults are summarized for deltamethrin only.


The used multi residue analysis based on a modified "QuEChERS method", followed by gas chromatography coupled with Time of Flight mass spectrometry (GC-ToE). The QuEChERS method" combines salting-out liquid-liquid extraction with aceton trile and a dispersive SPE clean up." It was adjusted to honey and especially to boneybee and pollen, by adding a small fraction of hexape in acetonitrile to eliminate lipids that interfere with mass spectrometry analysis. This method, combined with accurate and sensitive detection, allowed quantification and confirmation at levels as low as 10 ng/g, with recoveries between 60 and 120%. Application to prore than 100 samples of each matrix was achieved. Samples were collected during the beekeeping season 2008 and 2009 (4 samplings per year: April/Mai June/July, July/August, September/October). They concerned 16 apiaries of the "Région des pays de la Loire" (Western France) focated in four appes of landscapes (bocage, large-scale farming, gardening orchards, urban area) and two control apitaries (less inhabited landscapes) located in Atlantic Flands (Island of Yell and Island of Ouessant)¹⁵ For each period, samples were collected in several colonies of every apiary (hone), foraging bees and trap pollen) and repackaged to obtain one pool perapiary

No deltamethrin ver found in the tested samples. Deltamethrin recovery was 104-106, 81-98 and 69-88% for honey honey bees and polyens. The LOP and IQQ ranged between 4.6-28.9 and 16.2-57.8 ng/g, respectively

# MATERIAL AND



¹⁵ M. L'Hostis, H. Pouliquen, Annual report "L'Abeille mellifère (Apis mellifera) témoin de la pollution de l'environnement: étude sur un transect paysager en Pays de Loire" (2010).

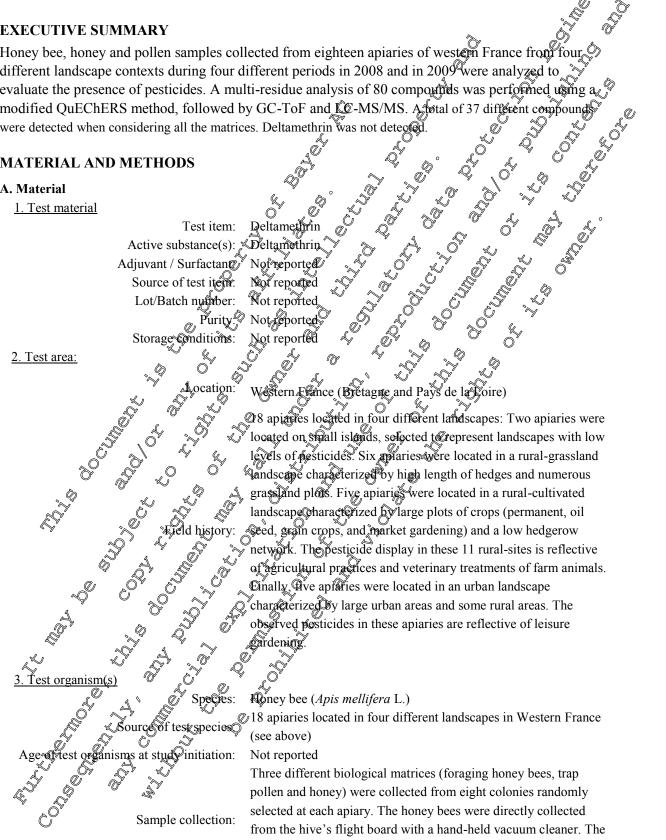


	September/October)
Transport/storage of samples:	- 20°C - Multi residue analysis - Multi residue analysis based on amodified "QuEChERS method", followed by configuration of the set of the s
4. Chemical analysis	
Guideline/protocol:	
Method:	Multi residue analysis
Pre-treatment of samples:	
	Multi residue analysis based on amodified "QuEChERS method",
	Tonowed by gas chromatography coupled with withe opringing
	mass spectroebetry (GC-ToFOThe "QuEChERS method"
Conduction:	combines salting-out liquid liquid extraction with acetonitrile and
	a dispersive-SPE cleam up. It was adjusted to hove and especially
	to honeybee and polled, by adding a small fraction of hexane in
	aceOnitrile Co eliminate lipids that Interfere with mass
s	spectromotry and ysis Q
Reference itema	Deltansethrin 97% Sigmar Ardrich St. Orentin Fallavier
Q	France) $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$
Recovery:	Honey: 104-106%, Honeybee: \$2-98%, Pollen 69-88%
Limit of detection:	Honeybee: 4 % ng/g; honey:6 % ng/g; follen:28.9 ng/g
Limit of quantations	Honeybee: 16.2 ng/g, honey 17.3 ng/g; popen 57.8 ng/g
	Honeybee: K 2 ng/g honey 17.3 ng/g; polyen 57.8 ng/g
RESULIS	
<u>1. Validity criteria:</u>	
No validity criteria were stated.	
2. Analytical findings:	
No deltamethrin was found in honey hon	evbee and pollen samples.
RESULTS SUMMARY	
No deltatoethrin was found in poney gron	eypee and pollen samples.
RESULTS SUMMARY, No deltangethrin was found in honey, from	
	01 Vinvestigated bee-matrix samples collected in France
during the beekeepingseason 2008 and 2	0. The samples were collected from 16 apiaries of the
	rance flocated in four types of landscapes (bocage, large-
	area) and two control apiaries (less inhabited landscapes)
located M Atlantic islands (Island of Yeu	and Island of Ouessant). For each period, samples were
collected in several colonies of every apie	ry (hovey, foraging bees and trap pollen). No quantifiable
deltamethrin residues were found.	
	Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; L'Hostis,
	leté, A.; Delbac, F.; Pouliquen, H. (2013)
Title: Widespread Occur	rence of Chemical Residues in Beehive Matrices from Apiaries

	Lécated in Different Landscapes of Western France
Source: S	PLoS ONE (17 Jun 2013) 8(6): e67007
DOI NO.	10.1371/journal.pone.0067007
Document No:	<u>M-465046-01-1</u>
Guidelines:	None



**Document MCP: Section 10 Ecotoxicological studies** DLT EW 15


GLP:	No. Published study (peer-reviewed article).	
		0

#### **EXECUTIVE SUMMARY**

Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides. A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC-MS/MS. Antotal of 37 were detected when considering all the matrices. Deltamethrin was not detected

#### **MATERIAL AND METHODS**

#### A. Material



pollens were collected in pollen traps installed by beekeepers three days before the sampling. Honey samples were collected from

**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15** 

several honeycombs with a cutter or with a punch. Samples of honey bees, honey and pollen collected in the hives of the same apiary and at the same period were pooled. These field-collected pools were immediately placed on ice affer sampling an when stored at -20°C until analysis.

#### **B.** Study design and methods

1. Test procedure

Test system (study type):

Duration of study:

Monitoring study

Na

2. Chemical analysis

3. Statistical Mal

Guideline/protocol

Method

A multi-fesidue analysis of 80 compounds was performed using a modified "QuEChERS method" ("Quick Easy Cheap Effective Rogged Safe method''), followed by gas

Over 2 years (2008 and 2009). The apiaries were visited four times each year: In spring, at the beginning of summer in summer and at the beginning of autumn. During a single period, all

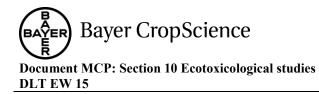
samples were collected when possible within 10 days to minimize, Ariation of n clinkatic factors, flowering and pesocide treatments.

chromatography coupled with time-of-flight mass spectrometry GC-T@F) and Hquid chromatography soupled with tandem mass spectrometry (LC-MS/MS)

of detection: Honey bees: 4.6 ng deltamethriq/g; honey. 6.9 ng deltamethrin/g; Gollen: 38.9 ng deltamethrin/g

ofquantitication Honey bees: 96.2 ngaleltamythrin/genoney: 17.3 ng deltamethtin/g; pollen: 57,8 ng deltamethrin/g

Software: "It's Softwa Linear mixed effects models were used to perform a comparison between the number of residues detected or quantified (i) in honey Dees (n > 141), honey n = 141) and pollen (n = 128); (ii) in different landscape structures (rural-grassland, rural-cultivated, urban and island); and (iii) for different sampling periods. Then, Qukey post-hoc tests (a specific version designed for mixed effects 2. models) were dised to implement multiple comparisons of the means in each model, (i) difference in matrix, (ii) difference in landscare and (iii) difference in sampling periods. The statistical analyses were performed using R software with the


"in the package" for the mixed effects and the "multcomp package" for the post-hoc tests.

#### RESULT

No criteria.

2. Biolog@al findings:

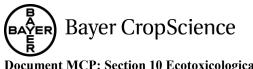
A total of 37 different compounds were detected when considering all the matrices. Deltamethrin was not detected.



#### **RESULTS SUMMARY**

A total of 37 different compounds were detected in honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different of periods in 2008 and in 2009. Deltamethrin was not detected.

**Comment of the Notifier:** Lambert *et al.* (2013) most likely refers to the same dataset as Wiest *et al.* (2011), and reassured that no quantifiable deltamethrin residues were found in all investigated matrices.


# CP 10.3.2 Effects on non-target arthropods other than bees

The risk assessment was performed according to Guidance Document on perrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk to sessment procedures for plant protection products with non-target arthropods (ESCORO 2, Candolfi et al. 2000¹⁶).

TT ( ·			
Test species,	Tested Formulation, Study	Ecotoxicological@nd	peret 🦿
Dossier-File-No.	Type, Exposure		0
Reference			
Typhlodromus pyri	Deltamethrin EW 15	LR ₅₀ ,0.00439 g a.s./ha	L.
<u>M-387027-01-1</u>	Deltamethrin EW 15 Laboratory, glass phates	LR ₅₀₀ 0.00439 g a. Aa Orr. Mortality [%]	
Rep. no: B156TPL	Deltamethrin EW 15 Laboratory, glass prates 5.66 mg a.s./ha 3.32 mg a.s./ba	√ 36 [√] % ≥	
, 2010	3.32 mg a.s. (a 2	48 Oʻ 👆	/
KCA 8.3.2.2/01	6.68 mg a s, ha	6 58 L Q	
	13(44 mg a.s./ha		
M-38/02/-01-1           Rep. no: B156TPL           , 2010           KCA 8.3.2.2/01	3.32 mg a.s./ha 6.68 mg a.s./ha 13(44 mg a.s./ha 27.04 mg a.s./ha Daltomethrin W/ 15		
		LIN509.120 gea.s./11a	
<u>M-198587-00-1</u>	Laboratory slass protes	Corr. Morrality [%]	Effect on Reproduction [%]
Rep. no: AE014ARL	9C+50 g & s./ha 🖉	N A	n.a.
Wientjes 2000	©.255 g a.s./ha	3	n.a.
	0.510 g a.s./ba 0.205 g a.s./ha 0	A 5	39
	$0.8225$ g as sina $3^{\circ}0^{\circ}$	≫ 28	79
	\$725 g.@s./ha`~	S 63	n.a.
	03.000 g a.s./ha	Ø 61	n.a.
1 yphilouronnus pyri	Deltamethrune W 150 OF	LR ₅₀ 0.0165 g a.s./ha	; ER ₅₀ >0.023.6 g a.s./ha
<u>M-401577-41-1</u>	Extended lab., exposure on		
Rep. no; W10/086	detached apple leaves	Corr. Mortality [%]	Effect on Reproduction [%]
, 2011	2.5 mg/a.s./hg/	12.4	3.7
KCR 10.3.2.2/03	5.5 mg a.s. tha	21.3	16.3
	11@mg a s./ha	47.2	27.4
	#3.6 mg s.s./ha_	49.4	44.0
	50.0 mg a.s./ha	80.9	n.a.
KCR F0.3.2.2/03	*** ~~ 5 5		

Table 10.3.2-1	Endpoints	used for risk	assessment

¹⁶ Cand be et al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001



### Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Test species,	Tested Formulation, Study	Ecotoxicological Endpoint
Dossier-File-No.	Type, Exposure	Q
Reference		
Typhlodromus pyri	Deltamethrin EW 15	
M-419712-01-1	Aged residues spray deposits	
Rep.No: CW11/042	on apple plants, 2 appl. of	The second se
, 2011	12.5 g a.s./ha, 7 d interval.	Corr. Mortality [1/2] Effect on Reproduction [1/2]
KCP 10.3.2.2/04	residues aged for 0 d:	
	residues aged for 14 d:	
	residues aged for 28 d:	
	residues aged for 42 d:	41.0
	residues aged for 56 d:	
Aphidius rhopalosiphi	Deltamethrin EW 15	10.5
		LR ₅₀ L 79 g a.s. ha; ERQ >1 40 g a.s. ha
<u>M-400499-01-1</u> Demonstra GW10/082	Extended lab., exposure on 。	Corr. Effect on Repellency rel. Mortality [%] Reproduction [%] to control [%] 31.1 4 7.5 n.sign.
Rep. no: CW10/082	potted barley plants	Mortality [%] Reproduction [%] to control [%]
, 2011	0.25 g a.s./ha	$0^{\circ}$ $0^{\circ}$ $3^{\circ}$ $0^{\circ}$ $3^{\circ}$ $3^{\circ$
KCP 10.3.2.2/05	0.44 g a.s./ha	3.3 $21.0$ $3.3$ $21.0$ $3.5$ b $a$ sign.
	0.79 g a.s./ha	0.00 <b>192</b> n.sign.
	1.41 g a.s./@a 2 2	2000 x 26.3 3 .3 n.sign.
	2.50 g a 5 ha &	2000 20.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Coccinella septempunctata	Deltamethrin EW 15 🖋	LR ₅₀ 0,02979 ga.s./ha
<u>M-401570-01-1</u>	Extended lab, exposure on >	Rertile '
Rep. no: CW10/081	detached apple leaves	Corr. Montality [9] Eggs/Fergale Hatching [%]
, 2011		
KCP 10.3.2.2/06	Control D a C	× × × × × 14,1 88.6
, Q	8 mg a.s. /aa	. \ 0.0 x y x x x x x 2.6 78.2
<b>*</b>	16 mg a.s./ha	³⁷ 37,5 [√] ³ ² 23.8 93.6
×.	\$2 mg/a/s./ha	× 59.4 & × 18.9 64.4
	63 mg a.s./ha	62.5 ° n.a. n.a.
Le de de la del del de la del	125 me a.s/ha	90.6 <i>n.a.</i> n.a.
Chrysoperla carnea	Deltamethrin EW 15	$\mathbf{L}\mathbf{R}_{50} > 7\mathbf{G}0 \text{ g a s, ha}$
M_400889_01_10	Extended lab. exposure on 2	Eseco > 290 g district
	detached apple leaves	CortoMorta (ty [%] Eggs/Female Hatching [%]
2011 @	detached apple leaves	<i>Constructionality</i> [76] Eggs/Feinale Hatching [76]
, 2011 © KCP 10.2 2.2/07		
KCP 10.52.2/0/		
	9.25 g.a.s./ha	22.8 79.8 21.0 25.5
	0.59 & a.s./ba 4	[∞] -5.4 ^A 31.0 85.5
õ A.	1.3 @g a.s.tha	2.7 23.8 81.4
	3. 20 g a 20 ha 😽 🖓	<b>3</b> 0.0 27.8 90.2
	O.50 g.a.s./ha	⁰ 32.4 37.4 85.2
NTA off-crop field study	Deltamethric EW 150	Community level NOER = $1.3 \text{ g a.s./ha}$
(Netherlands)	NFX full fauna off-crop field	Community level NOEAER = $3 \text{ g a.s./ha}$
<u>M-430879-03-1</u>	study. Spray application	
Rep. no.: B158FFN	rates:	Population level NOER = $0.23$ g a.s./ha
,2012\$	0.1, 0, 23, 0, 0, 1.3, 3 g a.s./ha	Population level NOEAER = $3 \text{ g a.s./ha}$
KCP 10.3.2.4/01		NOER: No Observed Effect Rate
		NOEAER: No Observed Ecologically Adverse
		Effect Rate
NTA off-crop field study	Deltamethrin EW 15	Community level NOER = $3 \text{ g a.s./ha}$
	NPA full fauna off-crop field	Population level NOER = $0.6 \text{ g a.s./ha}$
(South-West France)	NEMA IUII IAUNA OII-CIOD DEIO	
(South-West France) $\bigcirc$ M-430897-01-1 $\bigcirc$		
<u>M-430897-01-15 A a</u>	Study. Spray application	
M-4308 7-01-4 Rep. 40.: B15 PFN	Study. Spray application	Population level NOEAER = 3 g a.s./ha
<u>M-43087-01-</u> Rep. 10.: B159FFN , 201	Study. Spray application	Population level NOEAER = 3 g a.s./ha NOER: No Observed Effect Rate
<u>M-430897-01-4</u> Rep. 40.: B1597FN	Study. Spray application	Population level NOEAER = 3 g a.s./ha

^A: A negative value indicates a lower mortality in the treatment than in the control.
 ^B: A negative value indicates a higher percentage of wasps found on plants in the treatment than in the control.

#### **RISK ASSESSMENT FOR OTHER NON-TARGET ARTHROPODS**

The risk assessment was performed according to Guidance Document on Ferrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document of regulatory testing and risk assessment procedures for plant protection products with non-target arthropod 1 laborators (ESCORT 2, Candolfi et al.  $2000^{17}$ ).

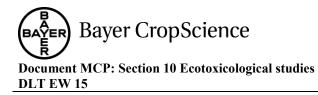
The tier 1 non-target arthropod risk assessment is based on the LR₅₀ values of the tre studies conducted for A. rhopalosiphi and T. pyri.

Table 10.3.2- 2	Tier 1 HQ for terrestrial non-tag	get arthropod	sfor th	¢ in-field scenario	2
-----------------	-----------------------------------	---------------	---------	---------------------	---

						y	A
Crop	Species	Appl. rate	MAE	CLR ₅₀	OffQ 0	Trigger	Refined risk
		[g a.s./ha]		[g a.s./ha]	A 5	0	assesment
				e C a			required
Sugarbeet	T. pyri	7	× 1 ×	0,00439	1×708 @		0 yes
Sugarbeet	A. rhopalosiphi	%	1 . 1 S	~\$1.726°	<u>4</u>		🔊 yes
Cauliflower	T. pyri	A7.5 °	1.7	0.00439	⊘ 290€	\$2 يە	) yes
Cauinowei	A. rhopalosiphi	7.50	Q1.7 Q	′ <u>1</u> 0526 "			yes
Wheat	T. pyri	6.25	1.70	0.00439Q	2420 🖒	2	yes
wheat	A. rhopalosiphi	6.25 S	<u>}</u> .7	1.726	~~~~~ 6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŷ	yes
	(Co		Q) [×]	0° °		, Ô	

### Table 10.3.2-3 Tier 171Q for restrial non-target arthropods for the off field scenario

	W// //	a 🔪				• •			
Crop	Species	Appl.	MAF	Drift	XØF S	Correction	LR ₅₀	HQ	Trig
		L rate		Į*%]	S (	factor	[g/ha]		-ger
		[g/ha]≯	u O	$\sqrt{2}$ $\sim$	<i>d</i> 2	Ŷ			
Sugar	I. pyri 🖉 📣	1.5	, ^w l .	2.77	10	<b>2</b> 10	0.21	47	2
beet 🔬 🖗	A. rhopalosiphi	₹,9.5 €	1 🏷	2.19	@10	õ 10	0.21	0.12	2
Cauli	T. pyri 🜔	\$ 7.5 ¢	1.7	£38 ^	S 10	10	0.30	69	2
flower	A. rhopelosiphi	7,5	£1.7	2.38	10	10	0.30	0.18	2
Wheat	Т. руз 🖓 🕺		01.7 🗳	/ 2.38	10	10	0.25	58	2
wheat	A. Acopalosiphi	6.25 ≪	1.7	2.38	۵۱۵	10	0.25	0.15	2
	° Q″.	S P			Ş.				


The tier 1 in field and off_field HQ calculations indicate the need for a further refined risk assessment based on extended laboratory studies for A. rhopalostphi and T. pyri. and two additional species.

### Refined exposure assessment

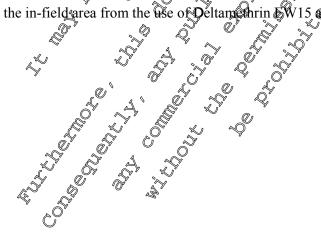
÷

The multiple application actor for the exposure assessment for deltamethrin can be refined based on DT50 values measured on leave/materfal. (M-192201-01-1) determined a DT₅₀ of 2.8 days for residues of deltamethrin on foliage ( , 1999; <u>M-192201-01-1</u>). This 2011, M-424226-01-1) which evaluated additional leave value was confirmed by residue data from barley and spring barley and derived a DT₅₀ of 2.9 days. Based on the DT₅₀ values

¹⁷ Cand for et al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001



of 2.8 to 2.9 days and the intended minimum application interval of 14 days for the uses in cauliflower and wheat the MAF can be refined to 1.1 (see Appendix III, ESCORT 2).


#### Refined in-field risk assessment

of 2.8 to 2.9 days and the intended minimum application interval of 14 days for the uses in cauliflower and wheat the MAF can be refined to 1.1 (see Appendix III, ESCORT 2).											
cauliflower and wheat the MAF can be refined to 1.1 (see Appendix III, ESCORT 2). Refined in-field risk assessment											
Table 10.3.2-4 Tier 2 risk assessment for terrestrial non-target arthropods for the in-field scenario											
Crop	Species	LR ₅₀ ; ER ₅₀ [g/ha]	Appl. rate [g/har]	MAF	In-field PEC _{max}	Effects are					
Sugar beet	T. pyri A. rhopalosiphi C. septempunctata C. carnea	0.0165 1.41 0.02979 > 7.5	A 7.5			No Ves					
Cauliflower	T. pyri A. rhopalosiphi C. septempunctata C. carnea	0.0165 1.41 0.02979 7.5			**************************************	No No No No					
Wheat	T. pyri A. rhopalosiphi C. septempunctata C. carnea	0.02979	× 6.25 [×]			No No					
				Q [*]		, X					

The tier 2 risk assessment indicates the new for acturther refinement for the in field area since initial effects on non-target arthropods live A. phopalosiphi, T. pyri., and Septempunctura are to be expected. 0

# Refined in-field risk assessment

Refined in-field risk assessments To demonstrate the potential for recovery in the in-field area an aged residue study has been conducted with T. pyri being the most sensitive species (M-419712-61-1). Destamethrin EW 15 was applied two times with an spray interval of 7 days on apple leaves at a spray concentration of 12.5 g a.s./ha. After residues had aged for 42 days effects of mortality and reproduction were below 50%. After residues had aged for 56 days effects were 1% on mortality and 0.2% on poroduction. This indicates that the potential of recovery is given for non-target arthropods in the in-field scenario after two month, considering an application scheme of 2 applications, with a day interval and a maximum application rate of 12.5 a.s./ha which even exceeds the mended use rates addressed in this dossier. It can be concluded that no macceptable adverse effects are to be expected on non-target arthropods in the in-field area from the use of Oeltamethrin EW15 according to the proposed use pattern.



#### **Refined off-field risk assessment**

Crop	Species	LR ₅₀	Appl.	MAF	Drift	VDF	Correction	Off-field	Effects		
		[g/ha]	rate		[%]		factor	PECmax	∘ ane		
			[g/ha]				2	[g/ba)	<b>≈\$</b> 0% ?⊘		
	T. pyri	0.01650		~		10	≪∛5	<u></u> 0,10 %	No No		
Sugar	A. rhopalosiphi	1.79	7.5	1.0	2.77	- 0	5	A.04	Y		
beet	C. septempunctata	0.02979	7.5	7.5 1.0	· ·	e	2.11	10Q	5	0.10	No
	C. carnea	> 7.50		a,		AD.	5	0.4Q)	OYes &		
	T. pyri	0.01650	7.5	7.50			$\approx 10$	ه° 5 م	<b>Q</b> .11 ⁽¹	Ng Ng	
Cauli-	A. rhopalosiphi	1.79			7 50	7 50	1.1	2 27	-, @	i [™] 5 [™]	\ ⁰ 1.14\$
flower	C. septempunctata	0.02979			2.77	¥0×	Å.	v 0.41	No		
	C. carnea	> 7.50	Ő		Ŵ	_\$ <u>10</u>	~~ 5 <i>~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.11	Yes		
	T. pyri	0.01650	A (1		, C	10	° 5	Ø.10 Ø			
Wheat	A. rhopalosiphi	1.79 🔬	6.25 4		าโกต	-4		0.95 🛇	Aes		
wheat	C. septempunctata	0.02979			2,07	Jø.	\$¥5 Q	0,40	No		
	C. carnea	> 7.50							U Yes		

Table 10.3.2-5 Tier 2 risk assessment for terrestrial non-target arthropods for the off-field scenarity

The refined off-field risk assessment has been conducted based on the results of the extended laboratory studies for *T. pyri*, *Althopatosiphi*, *C. septempuretata*, and *C. carnea*. The fisk assessment results for *T. pyri* and *C. septempunctata* indicate the need for a further refinement. This refined higher tier risk assessment will be based on the results of 2 full-fauna NTA aff-crop field studies on grasslands.

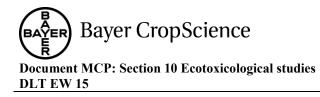
# Higher-tier off-field risk assessment

Two full-fauna@VTA off-crop field studies on grasslands are available which were conducted in the Netherlands (M-430876-034), KCP 10.3.2.4/01) and in Southwestern France (M-430827-01-1, KCP 10.3.2.4/02) to assess off-field effects of Deltamethrin EW (S) under more realistic conditions. This study design has the advantage that an observed response would pertain to a representative, naturally occurring off-field NPA community.

Deltamethrin EW 15 was applied in c dose fresponse design at application rates of 0.1, 0.23, 0.6, 1.3 and 3.0 g a.s.tha to an uncurrent and grassland in the Netherlands and in Southwestern France. Timing of the experiment (application in early duty 2001) coincided with typical use patterns for the test item. Four replicate plots of 24 × 24 m were used per treatment (5 application rates, control, reference treatment = 28 plots th total). Arthropods were sampled comprehensively using three different sampling methods (pitfall, suction and weed/Berlese sampling) shortly before the application and 1, 2, 4-5 and 8 weeks after the application Øveraft community changes relative to the control were analyzed using multivariate statistics and depicted by Principal Response Curves (PRC). In addition, effects on individual arthropod populations were analyzed with univariate statistics for taxa that were sufficiently abundant. The recommendations of the Dutch guidance document on the evaluation of NTA field studies (de Jong 24 al., 2010) were applied.

The toxic reference item treatments caused in both studies clear responses both at the arthropod community level and at the population level, demonstrating that the test systems were sufficiently sensitive to detect toxic effects.

Study results from the study in The Netherlands (M-430876-03-1, KCP 10.3.2.4/01): Arthropod sampling showed that the study site held a diverse and representative insect and mite community, of which 62 taxa were sufficiently abundant for a univariate statistical evaluation ak


population level.

At the highest test rate of 3 g a.s./ha Deltamethrin EW 15 led to a statistically significant adverse effect on prevailing arthropod communities as evaluated by multivariate statistical analysis (PRG). This effect was limited to one sampling occasion one week after application in the suction- and the pitfall dataset. No statistically significant effects on arthropod communities were found at any of the rates tested up to and including 1.3 g a.s./ha. Therefore, 1.3 g a.s./ha is classified as the community NOER (No Observed Effect Rate) of Deltamethrine W 15 and 3 g a.s./ha as the community NOEAFR (No Observed Effect Rate).

The univariate statistical evaluation of the 62 taxa indicated that none of these taxa were adversely effected at 0.1 and 0.23 g a.s./ha. At 0.6 g as./ha, adult studers of the genus *Pardosa* and galomidges of the family Cecidomyiidae showed adverse effects on only one sampling moment shortly after application. Three taxa (adult *Pardosa*, Cecidomyiidae and the chrysometid beetles Alticinae) were adversely affected by treatment with Deltamethrin EW 15 applied at a rate of 5.3 g a.s./ha. These taxa all recovered within two to five weeks after application. At a sate of 5.3 g a.s./ha. These taxa showed statistically significant adverse response patterns that were considered related to the test item treatment, with recovery occurring within two to cight weeks after application. Based on the observed recovery within the study period 9 g a.s./ha could be considered as the population NOEAER (No Observed Ecologically, Adverse Effect Rate).

Study results from the study in Southwestern France (01-430, 27-01, e1, KCP, 10.3.2.4/02): Also the study in Southwestern France covered a diverse and representative insect and mite community, obwhick 80 taxs were sufficiently abundan for a univariate statistical evaluation at population lovel. The evaluation of community level showed no effects up to and including the highest tested rate of 3 g a.s./ha/compainity NOER) as evaluated by multivariate statistical analysis (PRC). At the population level, a dose related response of the taxon Thysanoptera could be observed in the two highest treatment groups (1 and 3 g a, wha) one and two weeks after treatment which was statistically significant the simpling immediatel after pplication. Recovery occurred within two weeks. For the collembolan taxon Poduromorpha the starting densities were similar to the control. Populations developed similar in all test item treatments, but a statistically significant lower peak density was found in the highest test rate of g a. Sha two weeks after application. At the next sampling moment densities of this taxon was again similar to the control. In the highest test item rate (3 g a.s./ha) a decrease in numbers of adult Coccinellidae was found, up to two weeks after application. At the sampling weeks after the treatment the difference to the control was statistically significant. Reputations recovered till themext sampling and population dynamics were similar to the control during the remainder of the sampling period. Juvenile Cocinellini collected with suction did not show treatment related adverse effects.

Based on the evaluation of effects of Deltamethrin EW 15 at population level the application rate of 3 g as./ha can be classified as the population NOEAER (No Observed Ecologically Adverse Effect Rate).



### Conclusion

Since the higher tier risk assessment is based on 2 full fauna NTA studies that covered a wide range of species naturally occurring in off-field habitats, there is no need to add a correction factor in the exposure assessment to addresses uncertainty concerning the sensitivity of off-field arthropod species

T	able 10.3.2- 6	Higher tier	assess	ment for	terrestrial no	on-targ	et arthropo	ds for	the off-field	cenario	D.
	Crop	Appl. rate	MAF	Drift	Off-field	S¶ S	Species	Ĩ,	Community	Populat	ôn

Crop	Appl. rate	MAF	Drift	Off-field     Species     Community     Bopulation       PECmax     Q     NOPAR     NOPAR
	[g a.s./ha]		[%]	[g a.s./ha] (g/ha] (g/ha] (g/ha] (g/ha]
Sugar beet	7.5	1	2.77%	$0.21 \bigcirc 0 \text{ ff-crop field study NL} \qquad \qquad$
Cauliflower	7.5	1.1	2.77%	off-cropfield study NI & 3 & 20
Wheat	6.25	1.1	2.77%	0.19 off-crop field study NL 1.3 0 3.04
			Å	

The comparison of the off-field PEC values with the community NOER and the Populations NOEAER values for the 2 NTA off-crop field studies conducted in The Netherlands and in France indicate that no unacceptable adverse effects on non-target athropods are to be expected from the use of Deltamethrin EW 15 according to the proposed use pattern?

0

#### testing for non-target arthropod **CP 10.3.2.1** Standard laboratory

studies please refer to point KCA the ther 1 laboratory For the summaries of ,8.3.2.2.

# Supplemental information from the literatura

ÊŞ ⁴	
Report:	KCP10.3.2.1/01: Saber, Moosa; Hejazr, Mir Jalil; Kamali, Karim;
	Moharranipour Saeid (2005)
Title:	bethal and subjethal effects of fenition and deltamethrin residues on the egg
	Parasitoid ErrssolcuOgrand (Hymenoptera: Scelionidae).
Source:	$1 \approx con Entromolo 98 1 \approx 35-40$
DOI No:	http://dx.doi.org/10.1603/0022-0493-98.1.35
Document No:	<u>MI-460864-01-1</u>
Guidelines:	No V V V
GLP.	NO ^Y C ^Y ^Q O ^Y
Į (V)	

# EXECUTIV® SUMMAR

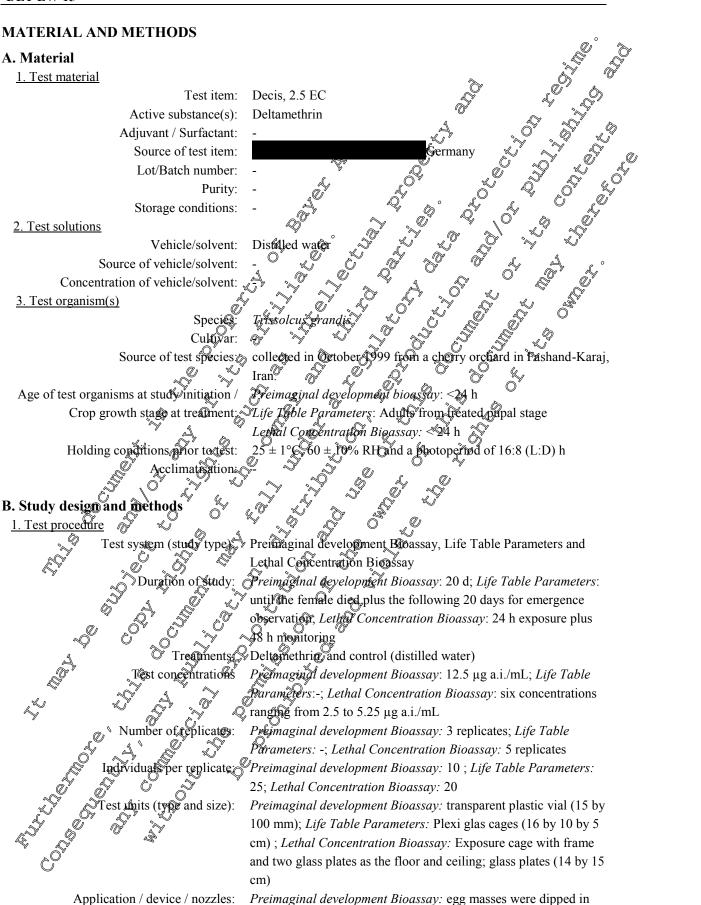
The purpose of this study was to assess the total effects of fenitrothion and deltamethrin on immature and adult stages of T. granids. However, material and methods as well as results are summarized for deltamethrin only.

The T. grandis colony used in all experiments originated from overwintering adults collected in October **1**9999 from a cherry orchard in Fashand-Karaj, Iran. The wasps were reared on *E. intergriceps* eggs for two generations in a growth chamber at  $25 \pm 1^{\circ}$ C,  $60 \pm 10\%$  RH, and a photoperiod of 16:8 (L:D) h. Adult wasps were provide with honey as a food source. The second generation (F2) of parasitoids was used in all experiments.

**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Preimaginal Development Bioassay. E. intergriceps eggs (< 24 h) were offered to young (< 24h) mated T. grandis females for 24 h at  $25 \pm 1^{\circ}$ C,  $60 \pm 10\%$  RH and a photoperiod of 16:8 (L:D) h. Parasitized eggs were exposed to 12.5 µg a.i./mL deltamethrin (Decis, 2.5 EC) at 2-, 4-, 6-, and 2-dold preimaginal stages. Randomly taken parasitized egg masses were dipped in precicide en sister for 5 s. The control groups were submerged in distilled water only. Ten randomly chosen parasitized egg masses were exposed to the insecticides in each treatment, and the trial was repeated free times. After drying, each egg mass were then transferred to a small transparent plastic vial (15, by 100/mm) The vials were monitored daily for parasitoid emergence for 20 d. In the final assessment, the total Life table parameters: Adult T. grandis emerged from E. integrices eggs treated at pupal stage (eighth day after parasitism) were used to measure the state of th number of eggs, parasitized eggs, and the emerged wasps were recorded. (eighth day after parasitism) were used to measure the sublethat offects of the insection des on the life table parameters of the surviving females. One hundred newly emerged females from three replicates of treated parasitized eggs were allowed to make with sufficient number anales for 6 h. Then 25 randomly chosen young female adults (<24th old) were transferred individually to a Prexiglas cages, used for holding adults (16 by 10 by 5 cm). Each female parastroid was presented three E, integrations fresh egg masses (42 eggs) and honey of food on a stripe of white paper. The egg masses were changed daily for each female until the female died. The parasitized eggs were stored at 25 ± 1°C, 60 ± 10% RH, and a photoperiod of 10.8 (L:D) h and allowed to emerge for 20 4. The total numbers of eggs, the numbers of black eggs (parasitized eggs) and emerged wasps, these energed wasps, and the number of eggs containing dead adults were recorded. Lethal Concentration bioassay: Glass plates (1469 15 cm) were sprayed with 1 mLoof six concentrations ranging from 2.5 to 5.25 µg a.j.mL using a Potter Spray Tower. This resulted in homogeneous spray coverage of 0.92 0.018 µL offluid per square centimeter 192 L/ha]. Control plates were sprayed with distilled water. The plates were placed in laboratory for 1 h and allowed to dry completely. Then, 20 young temale adults (<24 h) were placed in each exposure cage at  $25 \pm 1^{\circ}$ C,  $60 \pm 10\%$  RH, and a photoperiod of (6:8 [L:D] h. The number of dead and live wasps in each cage was counted 20th after initial exposure to the insecticide residue. The meatment cages were monitored for at least 48hafter recording the data, and very infrequent recoveries were taken into consideration and the data were adjusted. Each concentration consisted of two exposure cages and each experiment was replicated five times. Data were analysed using PROC PROBIT procedures to compute LC10, LC50 and LC90 values on a standard and log scale with associated 95% fiducial limit. The egg parasitol T. grandis emergence from E. integricens eggs were significantly affected by insecticides. Also, time of insecticide exposure relative to parasitoid preimaginal development significantly affected emergence. The lowest emergence rate occurred with E. integriceps parasitized eggs exposed to insecticides at the pupal stage (8 d after parasitism) in comparison with other stages. Deltamethrin reduced the emergence rate by 34.4%. Examining effects of insecticides on life table parameters revealed that insecticides did not

significantly affect mean longe or of *T. grandis*. Analysis of the reproductive activity of females that emerged from treated eggs at the popul stage revealed no significant treatments effects on progeny production of females. And also the mean number of female offspring per female did not differ significantly compared with control. The proportion of males of the progeny was not significantly affected. Proportion of male offspring produced by *T. grandis* in the early life span of the parasitoid is higher in the reatments that in the control.


The  $EC_{50}$  was 3.9 µg a.i. In L after 24 h exposure plus at least 48 h monitoring.

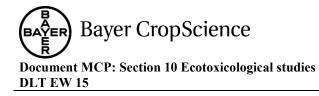
Ĉ

Page 424 of 518 2017-05-15

**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

#### **MATERIAL AND METHODS**




**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

	insecticide emulsion for 5 s; <i>Life Table Parameters: -; Lethal</i>
	Concentration Bioassay: Glass plates were sprayed with 1 mL at
	14 mbar by using a Potter Spray Tower, $0.92 \pm 0.018 \mu L/cm^2$ [92 $\%$
*** . 1	L/ha]
Water volume:	
Calibration of sprayer:	
2. Environmental conditions	Preimaginal development Biogsay: direct confact; Life Table
Test medium:	
	Parameters: $\pounds$ Lethal Concentration Bioassep: Glass plates $10^{\circ}$ 25 ± 1°C, $60^{\circ}$ ± 10% RH $2^{\circ}$
Temperature / relative humidity:	$25 \pm 1^{\circ}C$ , $\Delta U \pm 10\%$ KH $\lambda Q$ $\circ$ $\lambda$ $\downarrow$ $\downarrow$
Photoperiod:	16:8 (LQ)) $\dot{h}$
Lighting pH:	
рп. Organic matter (С _{огд} ):	
CaCO ₃	
Cation exchange capacity	Parameters: A Letinal Concentration Bioassay: Glass plates, 25 ± 1°C, 60 ± 10% RH 16:8 (LOP) h 
Soil textural fractions / extractable	
micronutrient concentrations [mg per kg	
© soik	
Fertilization:	
3. Observations and measurements	
Analytical parameters measured.	
Biological parameters measured:	Preimaginal development Bioassay: total number of eggs,
	Omerger wasps Life Table Parameters total number of eggs,
5 , 7 7 4	number of black eggs, emerged wasps, sex of emerged wasp,
	number of eggs containing dead adults, longevity; Lethal
	Concernation Bloass Inumber of dead and live wasps
🧔 Measurement frequency	Pretraginal development Bioassay: daily; Life Table Parameters:
	daily; Lethal Concentration Bioassay: after 24 h plus following 48 frimonitoring ANOVA, Tubey test, Fisher's protected least significance difference cleast significant difference, LSD); PROC GENMOD procedures and PROC PROBIT procedures
	A monitoring
Statistical analyses	ANOVA, Tubey test, Fisher's protected least significance
	difference (least significant difference, LSD); PROC GENMOD
	procedures and PROC PROBIT procedures
RESULTS &	
RESULTS Validity criteria:	
Validity Eriteria: No xaldity criteria were mention a.	difference (least significant difference, LSD); PROC GENMOD procedures and PROC PROBIT procedures

Biological findings:

The egg parasitoid *T. grands* emergence from *E. integriceps* eggs were significantly affected by insecticides. Also, time of insecticide exposure relative to parasitoid preimaginal development significantly affected emergence. The lowest emergence rate occurred with E. integriceps parasitized eggs exposed to insecticides at the pupal stage (8 d after parasitism) in comparison with other stages. Detainethen reduced the emergence rate by 34.4%.

Examining effects of insecticides on life table parameters revealed that insecticides did not significantly affect mean longevity of *T. grandis*. Analysis of the reproductive activity of females that emerged from treated eggs at the pupal stage revealed no significant treatments effects on progeny production of females. And also the mean number of female offspring per female did not differ



significantly compared with control. The proportion of males of the progeny was not significantly affected. Proportion of male offspring produced by *T. grandis* in the early life span of the parasitor is higher in the treatments than in the control.

The LC₅₀ was 3.9 µg a.i./mL after 24 h exposure plus at least 48 h monitoring.

# Table 1: Mean $\pm$ SE percentage emergence of *T. grandis* adults from *E. integriceps* eggs treated with deltamethrins at various days after *T. grandis* oviposition integregs

ucitametin ms a	it various uays are	ci i. granais o	position mus c	88° ()	a	
	Field		Mean % in			
Treatment	recommended	2	No. daws afte	Č.	° ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	treatments
	concen (ppm)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	(g a.i./l)		k, õ°			
Deltamethrin	500 (0.0125)	$64.9 \pm 5.7 \mathrm{bB}$	964.7. <del>,</del> ≢9.9cB∂	67.1 67.0bB	61.9 #5.4bBc	
Control		98.6 ±	\$ <b>98</b> .6 ±	98.6±3	\$98.6±	986±0.96a
Control		0.96a	. ∕∕0.96aA	0.96a	°∼ 0.96ãA .	

Means in a column followed by different small betters of a row by different casical letters are significantly different (Tukey test,  $\alpha < 0.05$ ).

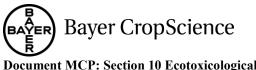
### Table 2: Mean ± SE sublethal effects of deftamethrin on life table parameters of *T. grandis*

Treatment	LangevityQd)		Proportion males
Deltamethrin	36. <b>4</b> ± 3.7 <b>a</b> 169,₹	≝ 9.8å 🏏 🛛 Õ70.36 😓 15.1å 🏏	$0.54 \pm 0.1a$
Control	28.6 ± 500 221 ±	$105. \pm 12.9a$	$0.37 \pm 0.08a$

Means within a column followed by different letters are significantly different (Figuer's projected LSD,  $\alpha < 0.05$ ).

# Table 3: Dose-response statistics for deltamethring adult *T. grandis*

N E	Slope ± SE	Cethal Conce	(μg a.i./mL)
		O LC (95% (95 LC 50 (95	% FL) LC ₉₀ (95% FL)
1200	مَنْ £4.15 مَنْ £4.15 مَنْ £	×1.9 (1.5-2.2) 3.9 (3.6	5-4.2) 7.89 (6.9-10.4)


Lethal concentrations and 65% fiducial limits (FL) were estimated using logistic regression (SAS Institute 1996).

The LCE was 3.9 µg a 1./mL after 24 h exposure plus at least 48 h monitoring.

# Comment by the Notifier

Only the data from the lethal concentration broassay allow the conversion into an application rate per area. The LCS of 3.4 µg a is mL with an application volume of 92 L/ha is equivalent to 0.36 g a.i./ha. The presented data confirm the known acute toxicity of deltamethrin to arthropods under laboratory conditions. Compared to species like *T. pyri* or *C. septempunctata* this species shows a lower sensitivity. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011, 9(2):2092).

****



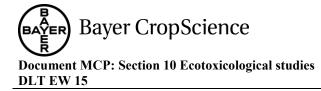
Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Report:	KCP 10.3.2.1/02; Stefanello Junior, G. J.; Gruetzmacher, A. D.; Gruetzmacher, D. D.; Dalmazo, G. O.; Paschoal, M. D. F.; Haerter, W. K. (2008)
Title:	The effect of insecticides used in corn crops on the parasitism capacity of Trichogramma pretiosum riley, 1879 (hymenoptera: trichogrammatidae). original title: efeito de inseticidas usados na cultura do milho sobre a capacidade de parasitismo de trichogramma pretiosum riley, 1879 (hymenoptera) original trichogrammatidae).
Source:	Arqivos do Instituto Biologico Sao Paulo, 75, 2 pp. 187-194.
DOI No:	
Document No:	<u>M-461229-01-2</u>
Guidelines:	Hassan and Abdelgader $(2691)^{18}$ , Hassan et al. $(2000)^{19}$
GLP:	No ( ) V V V V

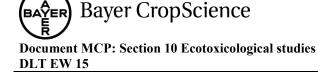
### **EXECUTIVE SUMMARY**

The aim of this study is to assess the effect of registered insecticides for corp crops on the parasitism capacity of *Trichogramma pretiosum* under taboratory conditions, using the methodology standardised by the "International Organization for Biological and Integrated Control of Nozous Animals and Plants (IOBC), West Palaearctic Regional Section (WPRS)". Material and methods as well as results are summarized for deltamethrizonly.

*T. pretiosum* were collected from a corn crop in the municipality of Peløtas, RS, and multiplied in the laboratory using eggs from the alternative fost *Anagast@kuehniella* (Zeller, 1879) (bepidoptera: Pyralidae).


For the test of the parasitism capacity deltamethrin Decis 25 EC 0.0025% a.i. Was diluted in distilled water to the parasitism capacity deltamethrin Decis 25 EC 0.0025% a.i. Was diluted in distilled water to the parasimum registered dosage for corr crops (field dosage 0.20 l/ha), considering a spray solution volume of 200 l/ha. Then, the solution was sprayed on glass plates (13 cm x 13 cm, 0.2 cm thickness) which were later used to make the exposure cages according to Hassan ; Abdelgader (2001). A deposition the of 200 l/ha for the solution of 200 l/ha for the solution of 200 l/ha for the exposure cages according to Hassan ; Abdelgader (2001). A deposition the of 200 l/ha for the solution of 14.5  $\pm$  0.25 mg cm-2 was obtained by weighing the plates using a precision electronic balance.

Distilled water and Lorsban 480 BR, were used as the negative and positive controls, respectively. Emergence tubes (glass vials 12 cm length x 2 cm diameter at one end x 0.7 cm at the opposite end), containing approximately 24-hour old adults of *F. prenosum*, were connected to the exposure cages according to Hassan; Abdelgader (2001). Six hours after disconnecting the emergence tubes, cards containing three 1 cm or clear with  $450 \pm 50$  inviable eggs of *A. kuehniella* and food (solution composed of 200g of hone), 3 g of unflavoured jelly powder, and 100 ml of water) were provided at 24 (three cards), 48 (two cards) and 96 hours (one card) after spraying to be parasitised by *T. pretiosum*, totaling 18 circles, with approximately 9.000 eggs per cage. The evaluation of the parasitism capacity was carried out for up to 144 hours (6 days) and then the cages were taken apart and the cards were placed on Petri dishes (9.0 × 1.5 cm) which were stored under the same conditions as the test for three additional days that the parasitised eggs would become dark enabling them to be


¹⁸ Hassan, S., Abdalgader, H. A sequential testing program to assess the side effects of pesticides on Trichogramma cacoeciae Marchai (Hym., Trichogrammatidae). Pesticides and Beneficial Organisms. IOBCA PRS Sulletin, Darmstadt, v.24, n.4, p.71-81, 2001.

¹⁹ Hassan, S., Halsall, N., Gray, A.P.; Kuehner, C.; Moll, M.; Martin, Roembke, J.; Yousef, A.; Nasr, F.; Abdelgader, H. A laboratory method to evaluate the side effects of plant protection products on Trichogramma cacoeciae Marchal (Hym., Trichogrammatidae), In: Candolfi, M.P.; Blumel, S.; Forster, R.;

M.; Grimm, C.; Hassan, S.A.; **Mathematical**, U.; Mead-briggs, M.A.; Reber, B.; Schmuck, R.; Vogt, H. (Ed.). Guidelines to evaluate side-effects of plant protection products to non-target arthropods. Gent: IOBC/WPRS, 2000. p.107-119.



s.42 introl No introl intro counted. Four replicates per treatment were used. The mean number of females per cage was 136.42. Deltamethrin caused 100% reduction in the parasitism capacity compared to the negative control. No of eggs were parasitized per female. This effect was significant 1100 Test conditions were  $25 \pm 1$  °C,  $70 \pm 10\%$  relative humidity and 14-hour photophase. eggs were parasitized per female. This effect was significant different compared to the control (Kurskal-Wallis, Bonferroni test) (p > 0.05). **MATERIAL AND METHODS** A. Material 1. Test material Test item: 🕼 [25 g a.s./L] Decis 25 Active substance(s): Deltamethrin Adjuvant / Surfactant: Source of test item: Lot/Batch number: Storage condition 2. Test solutions Vehicle/solvent Distilled water Source of vehicle solvent. Concentration of vehicle/solvent: 3. Test organism(s) Trienogramma prefiosum Species: Cultavai collected from a comperop in the municipality of Pelotas, RS, and speci multiplied in the laboratory using eggs from the alternative host Agragasta kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae) Age of test organisms at study initiation / 24-hour old adults Crop growth stage at the atment Holding conditions prior to t eclimatisa B. Study design and methods 1. Test procedure E C Test system (studo type) Dry sidue of pesticides on glass plates Deltamethrm, negative control (distilled water), positive control Reatments: (Lorsban 480 BR) rest concentrations 0.20 tha [5 g a.s./ha] Number of replicates: 4 replicates dividuals per replicate: Mean number: 136.42 of Test conditions  $25 \pm 1$  °C,  $70 \pm 10\%$  relative humidity and 14-hour photophase glass plates (13 cm x 13 cm, 0.2 cm thickness) with exposure st units (typ@and size): cages according to Hassan and Abdelgader  $(2001)^{18}$ lication / device / nozzles: Sprayed with a deposit film of  $1.75 \pm 0.25$  mg cm⁻² Water volume: Calibration of sprayer: 2. Environmental conditions Glass plates Test medium:



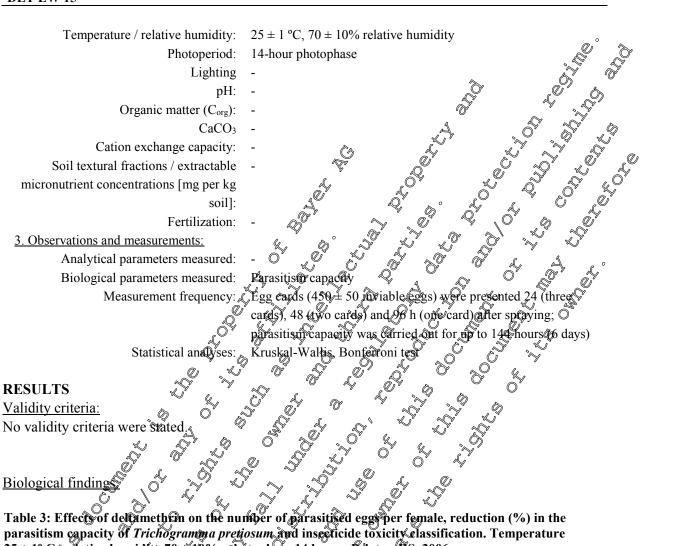
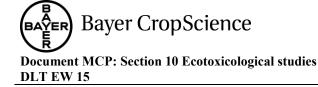



Table 3: Effects of deltamethan on the number of parasitised eggs per female, reduction (%) in the parasitism capacity of Trichogramma pretiosum and insecticide toxicity classification. Temperature 25 ± 1° C; relative humidity 70 ± 10%; photophase 14 hours, Felotas, RS. 2006.

Commercial prod	uct/active ingredi	ent F	males per ca	رگ ge	ر OEggs کر fema		PR** (%)
Distilled wate	negative control		1871.14 O		35.07	а	-
Decis 25 E	e/deltamethring	.0	√¥36.42√	Ŋ.	0.00	с	100
Lorsban 480 BR	chlopyriphos **	*0	©″135.®	Ø	0.00	с	100


*Means followed by the same laters do not diffe inficiently by the (Kruskal-Wallis) Bonferroni test (p > 0.05); Test III (K = 22.76, p = 0.0004); Test (K = 22.7629); p = 0.0004). The results express the mean of four replicates. **PR = Reduction in the payasitism capacity of the reatments with insecticides compared to the negative control (distilled water)

***Positive control, insecticid recognized as being harmful by the IOBC/WPRS.

Deltamethrin at 5 g s.s./havin glass plates caused 100% reduction in the parasitism capacity compared to the negative control (PBC category 4: harmful). No eggs were parasitized per female. This effect was significant different compared to the control (Kurskal-Wallis, Bonferroni test) (p > 0.05).

# Comment by the Notifier

The data on the parasitoid Trichogramma pretiosum a similar sensitivity compared to A. rhopalosiphi that has been tested for the regulatory data package. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

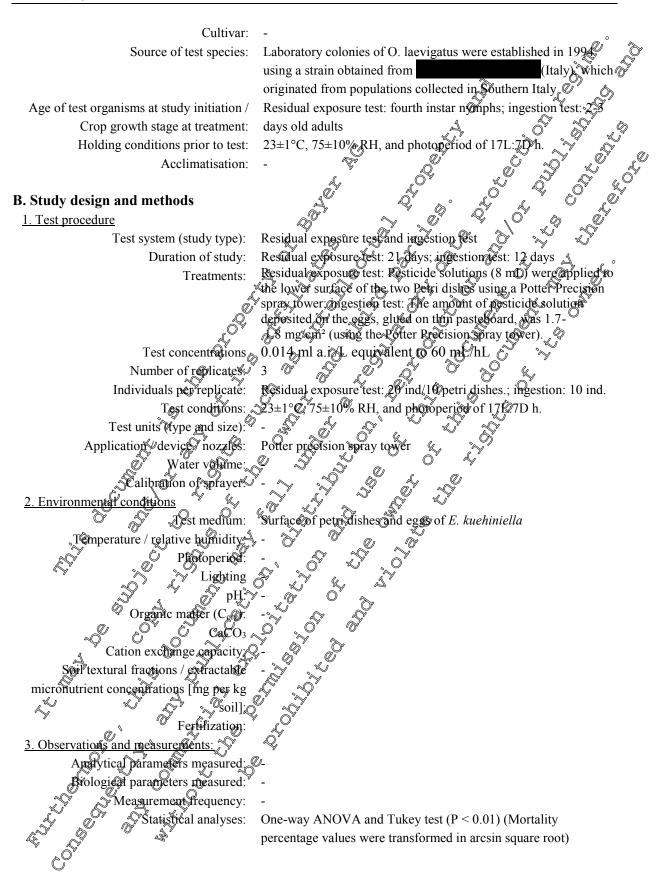


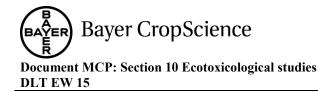
*****

Report:	KCP 10.3.2.1/03; Angeli , G.; Baldessari, M; Maines, R.; Duso, C. (2005)
Title:	Side-effects of pesticides on the predatory bug <i>Orius laevoatus</i> (Heteroptera: Anthocoridae) in the laboratory
Source:	Biocontrol science and technology, 15, 7 p. 745-754
DOI No:	
Document No:	<u>M-460879-01-1</u>
Guidelines:	No Q Q X X
GLP:	No Q Q Q Q

#### **EXECUTIVE SUMMARY**

Laboratory trials were carried out in order to test the effects of 29 pesticides on the predatory bug, Orius laevigatus.


*Residual exposure:* To evaluate residual contact activity, newly moulted fourth instar nymphs of *C laevigatus* were placed on treated Petri dishes and their mortality was checked after 7 days (2 predators per unit). The Decis SC (active instedient, deltamethrin) concentration was 0.014 ml a.i./L applied with 1.7-1.8 mg/cm². Three replicates, each consisting of 20 predators in 10 Petri, shies were used for each product, including a control treated with distilled water. The fecundity of surviving females was assessed every 3 days over a total of 14 days (three replicates with at least) females). *Exposure by ingestion:* Ten, 2-3-day-old adults (sex ratio 1:1) collected from cultures were released in rearing units (180 x120 x 70 mm) for 12 days. Afterwards, treated eggs (0.074 ml a.i./L, Decis SC, applied with 1.7-1.8 mg/cm²) were provided during the first and the third day of experiments; later, predators were supplied with untreated E. kuehnicita eggs. Control groups were fed with E. kuehniella eggs treated with distilled water. Pag hatching was observed by considering at least 150 eggs per product. Three replicates were used for each pesticide including the control group. Adult mortality and female fecundity were recorded after 3, 5,9 and 12 days form


In the residual exposure test unit, 100% of the fourth instar hymphs of *O. laevigatus* were assessed as dead. Consequently, no fecundity could be measured. Furthermore, toxicity of deltamethrin by ingestion to *O. laevigatus* was 100%.

# MATERIAL AND METHODS .

A. Material	
<u>1. Test material</u>	
Testitem:	Deltamohrin (Product: Decis SC)
$\chi^{(1)}$ $\sqrt[4]{}$ Active substance(s)	deltamethrin [active a.s. content in formulation not stated]
A dimediate / School at ante	- 1
Source@f test ftem:	$\mathcal{Q}^{v}$
Lot Batch number:	7_
Adjuvant / Surfactant: Source of test frem: Lot Batch number @ Storage conditions:	-
Storage conditions:	-
<u>2. Test solutions</u> 2. <u>Test solutions</u> 2. <u>Test solutions</u> 2. <u>Test solutions</u> 2. <u>Test solutions</u> 2. <u>Solutions</u> 2. <u>Solutions</u> 3. <u>S</u>	
& Avehicle/solvent:	Distilled water
Source of vehicle/solvent:	-
Concentration of vehicle/solvent:	-
<u>3. Test organism(s)</u>	
Species:	Orius laevigatus

Document MCP: Section 10 Ecotoxicological studies DLT EW 15





#### RESULTS

#### Validity criteria:

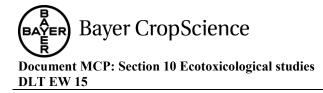
#### **Biological findings:**

Τa	ble 1: Toxicity of deltmaethrin	after residual exposur	e and by ingestion to C	). laevigatus,💭

DLT EW 15			
RESULTS			o
Validity criteria:			
Results were con	sidered valid	l if control n	mortality did not exceed 15%. Observed control mortality was
between 7.6 and	12%.		mortality did not exceed 15%. Observed control mortality was
Biological finding	-	in after resid	dual exposure and by ingestion to O. laevigatus
	Residual	Exposure	dual exposure and by ingestion to O. laevigatus
	(da	iys)	
	Mortality	Fecundity	Mortatiny Fecundity
	%	%	$\begin{array}{c c} \text{Mortaary} & \text{Feculativy} \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
	(7 days)	(21 days)	(12 days) (12 days)
0.014 ml a.i./L	100	-	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
		ړ.	

In the residual exposure test unit, 100% of the fourth instar by mpks of O Jaevig dus were assessed as dead. Consequently, no fecundity could be measured. Furthermore, toxicity of deltanethrin by ingestion to O. laevigatus was 100%.

#### **Comment by the Notifier**


The tier 1 laboratory data and the oral exposure data for Orius laevigarus (100% mortality at 0.014 ml a.i./L with 1.7-1.8 mg/cm³/equivalent to 2.4-2 g a.s ha) indicate a sensitivity to deltamethrin seen also for other species tested for the regulatory data package. Therefore the information is classified as b) supplementary information (EFSA Journal 2017;9(2):2092).

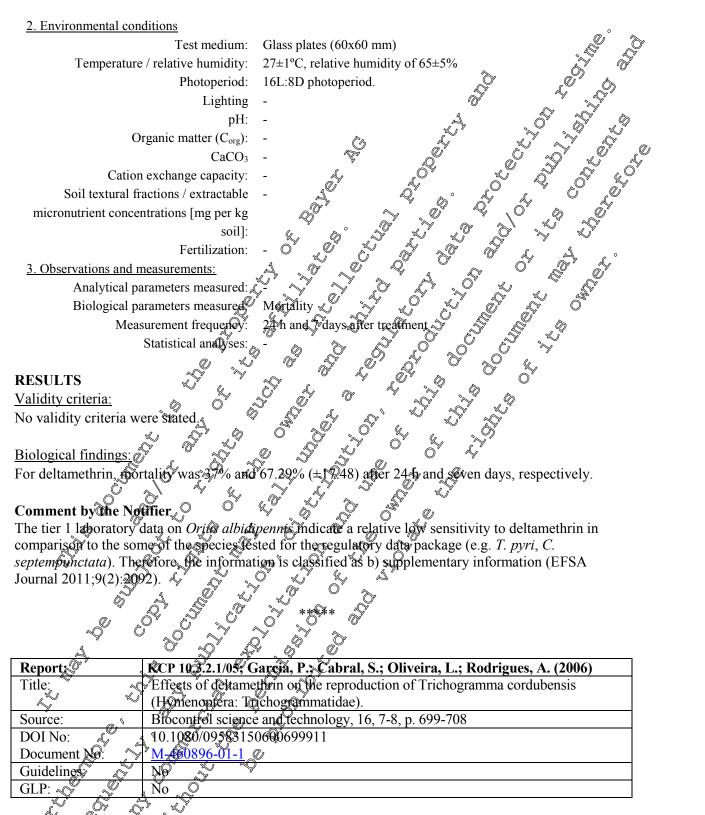
Report: 🖉 KCP 10.32.1/04; Taleby K.; Karami, F.; Kowsari, A. A.; Bagheri, F.
<b>Editor</b> (S): Japsen, J. P. (2010)
Title: Title:
Anthocoridae). $\tilde{\mathcal{A}}$ $\tilde{\mathcal{A}}$
Source: IQBC/WerkS Bulletin, 35, p. 19-22
DOI NO:
Document No. $M-442157-61-1$
Guidelines: No o g g
$GLP: \mathcal{D}^{\mathcal{V}} \qquad \mathcal{D} \mathcal{O}^{\mathcal{V}}  \mathcal{D}^{\mathcal{V}}  \mathcal{D}$

# EXECUTIVE SUMMARY

In this study were xamined the offects of three pesticides on Orius albidipennis under laboratory conditions. Material and methods as well as results are summarized for deltamethrin only. Pretadors collected from from and alfalta field in 2008 were reared in groups of 50 individuals in cylindric plastic containers (8 x 18 cm). Ephestia kuehniella Zeller eggs and maize pollen were used as food Rearing was conducted in chambers at a temperature of 27±1°C, relative humidity of 65±5% and LEL:8D photoperiod

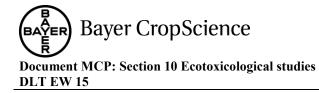
Deltamethrin was tested at their recommended field rates (Decis 2.5 EC: 1.88 g a.i./ha; 12.5 µg a.i./ml Glass plates (60×60mm) were treated with pesticides solutions using Potter precision spray tower (Burkard®) at 15 PSI pressure to get a deposit of 1.5mg/cm² of each pesticide solution. The control was treated with water. Drum-cells (50mm in diameter, 15mm high) were used for exposure of




individuals²⁰. The top and the bottom of drum cells were closed with two treated glass plates. Ventilation was provided through eight holes (1cm diameter) covered with gauze, on the side of the cage. E. kuehniella eggs and maize pollen were placed in the cages. Ten individuals of 1st instax nymphs were introduced to each cell. The cells were maintained in an environmental chambe and der the same conditions as rearing and mortality was recorded up to 7 days after treatment. For deltamethrin, mortality was 37% and 67.29% (±17.48) after 24 h and seven days,



²⁰ van de Veire, M., Smagghe, G. & D. Degheele, 1996: Laboratory test methods to evaluvate the effect of 31 pesticides on the predatory bug, Orius laevigatus. Entomogphaga. 41(2): 235-243.

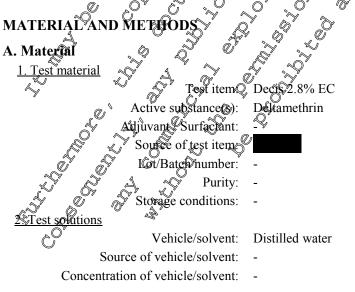

Bayer CropScience

### Document MCP: Section 10 Ecotoxicological studies DLT EW 15



# EXECUTIVE SUMMARY

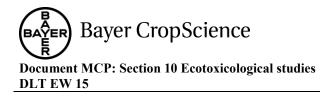
The interfere of deltamethrin on the reproduction of *Trichogramma cordubensis*, a the lytokous egg parasitoid, was investigated by studying egg maturation and daily fecundity of insecticide treated wasps and offspring emergence rates.




Two concentrations of Decis 2.8% WG were tested: 12.5 and 23.6 mg a.i./L. All experiments were conducted at  $22 \pm 0.5$  °C  $70 \pm 5\%$  r.h. and 16L:8D. 15 groups of 10 females wasps (< 24 h old) were isolated in glass tubes. A drop of honey solution (10%) was offered as food and eggs of *E. kuehineiella* were presented to wasps on egg cards (400±10 eggs; < 24 h old). Treatments were applied 96 h after parasitism (prepupal stage) using a Potter's Tower. Afterwards, egg cards were individually maintained until emergence of adult wasps. Then, the emerged wasps were used for two experiments:

Daily fecundity of treated wasps and offspring emergence rates. 30 emerged females per treatment were individually isolated in glass tubes containing a cord with 100  $\pm$ 10 eggs of *E kuehnella* with a corp drop of honey solution (10%). Egg cards were replaced every 24h with fresh onts during seven consecutive days to determine fecundity. Fecundity was determined by counting the number of parasitized host eggs that turned black. Emergence rates were estimated by dividing the number parasitized host eggs with emergence holes bothe total number of parasitized host eggs. *Egg maturation.* 15 emerged host-deprived temales were dissected to determine the number of mature (> 71 µm length) eggs present in the four ovarioles of the cord beautions of the number of mature furthermore, the number of mature eggs in the ovarioles of the cord beautions was estimated after 24, 48, 72, 96, 120, 144 and 168 h of oviposition experience. Therefore, omergen females were individually isolated in glass tubes containing acard with 100  $\pm$  10 eggs of the kuenniella with a drop of honey solution (10%). Egg cards were replaced every day with fresh ones. Subsequent of every 24 h of parasitism, batches of 15 females from eactor eatment were dissected for observation of the mature eggs, following the above-mentioned procedure

Results showed that the total number of parasitized eggs per temale during 7 days was not significantly influenced by the rested concentrations of deltamethrin (one-way, NOVA). Wasps parasitized a significantly higher number of hosts on the first day of parasitism, sharply decreasing thereafter regardless the tested treatments (ANOVA, Repeater Measures). Results indicated that for the higher concentration of deltamethrin (23.6 mg a.i./K) the emergence rates were high in the first 2 days (i.e. at 0 and 24 h), decreasing significantly on the 3rd and 4th day (i.e. at 48 and 72 h) (LSD tests). However, from the 5th day (i.e. at 96 h) onwards emergence rates increased, reaching to values similar to the control (LSD tests).


The egg maturation assessment indicated that the mean number of mature eggs per female decreased significantly after 24 h of oviposition. Throughout the following days, the number of mature eggs was relatively stable at low galues, begardless of the treatments.



Bayer CropScience

#### Document MCP: Section 10 Ecotoxicological studies DLT EW 15

3. Test organism(s) Species: Trichogramma cordubensis Cultivar: Source of test species: Parasitized eggs of Autographa gamma Ofound at (sao Miguel island, Azores) Laboratory reared (1) as on *Ephestia kuehniella*), 24 h 7545% r.h. and L49.D8 generations on Ephestia kuehniella Age of test organisms at study initiation / Less than 24 h Crop growth stage at treatment: Holding conditions prior to test:  $20 \pm 1^{\circ}C$ , Acclimatisation: **B.** Study design and methods 1. Test procedure I offspring emergeder rates Daily fecondity 🖗 Test system (study type): atéc and egg maturation Duration of study days dilated ontrol distilled with distilled Treatments and D.6 mg a.i./L 12.50mg a.i Test concentrations €\$2 L/ha a.i./Ha and 22.5 Number of replicates: Individuals per replicate: Dails Jecundity of theated wasps and offspring emergence rates: emerged D females per treatment; egg muluration: 15 females per Creatment Test units (type and size) glass tubes 14 Application device nozzles: Potter Water volume: \$ ±2217 Calibration of sprayer? 2. Environmental conditions Direct spray to egg card medium: Temperature elative humidity Organic matte Cation exchange capacity; Soil textural fractions / extractable micronutrient concentration mg peckg Fertilization: measurements: tical parameters measured: Mological parameters measured: Daily fecundity of treated wasps, offspring emergence rates, number of mature eggs in the ovarioles Measurement frequency: Daily Statistical analyses: ANOVA, Fisher's least significant difference test, ANOVA repeated mearusures procedure, Pearson's correlation



#### RESULTS

<u>Validity criteria:</u> No validity criteria were mentioned.

#### **Biological findings:**

Results showed that the total number of parasitized eggs per female during 7 days was not significantly influenced by the tested concentrations of deftamethrin (one-way ANOVA). Wasps parasitized a significantly higher number of hosts on the first day of parasitism, sharply decreasing thereafter regardless the tested treatments (ANOVA Repeated Measures). Results indicated that for the higher concentration of deltamethrin (23.6 mg a.j./2 [22.5 g a.i./ha]) the emergence rates were high the first 2 days (i.e. at 0 and 24 h), decreasing significantly on the 3rd and 40 day ore. at 48 and 72 h) (LSD tests). However, from the 5th day (i.e. at 96 h) (neared semergence rates increased, reaching to values similar to the control (LSD tests).

The egg maturation assessment indicated that the mean number of mature eggs per female decreased significantly after 24 h of oviposition. Throughout the following days, the number of mature eggs was relatively stable at low values, regardless of the treatments.

### Comment by the Notifier

The data on the parasitoid *Trichogramma cordubensis* treated during the propupal stage indicated no relevant adverse effects by deltamethrin. Therefore, the information is classified as b) supplementary information (EFSA Journal 2007;9(2):2092).

Report: KCP 10.3.2.1/06: Castillers P. X: Cruetzmether A. D. Nava D. E. Zotti M.
- Report. A. D., Nava, D. E., Zotti, M.
J. Siquéira, P. R. B. (2011)
Title: Selectory of pesticides used in peach orchard on adults of Chrysoperla externa
(Hagen, 1864) (Noroptera. Chrysopidae). Seletividade de agrotoxicos utilizados
em pomaçãos de pessego a adultos do predador Chrysoperla externa (Hagen, 1861)
a contraction of the substance of the su
Source: Revista Brasileira de Fruticaltura, 33, 1, p. 73-80
DOINO
Document No: $M-462 \sqrt{2}-01 \sqrt{2}$
$GL_{P} = \mathcal{O} \cap \mathcalO \cap \cap \cap \mathcalO \cap \cap \cap \mathcalO \cap \cap \cap \cap$
Source:     Revista Brasteira de Fruticultura, 33, 1, p. 73-80       DOI No:     -       Document No:     -       Guidelfines:     No       GLP     No

# EXECUTIVESUMMARY

The objective of this work was to evaluate the selectivity of pesticides used in integrated and conventional peach production in adults (males and females) of predator *C. externa*, in bioassays conducted in the laboratory. Material and methods as well as results are summarized for deltamethrin only.

Test concentration was 0.002 a.i. % (Decis 25 EC). Futhermore, a negative control (no pesticide) and a standard treatment of known toxicity, such as insecticide fenitrothion (Sumithion 500 EC) were performed.

The insects used in the bioassays originated from mass rearing in the laboratory (temperature of  $25 \pm 1$ 

**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

°C, relative humidity of  $70 \pm 10\%$  and 14 hours photophase). The bioassays consisted of exposure of adults of C. externa to dry residues of pesticides which had been sprayed on glass plates (12 x 12 cm) (floor and ceiling of cages), using a CO₂-pressurised sprayer equipped with a uniform flat spray tip (Teejet XR110015EVS) (pressure of 50 psi and spray solution film of  $2 \pm 0.2$  mg cm⁻²). Each wage  $\delta_{10}$ was made of a methacrylate ring (10 cm diameter x 3 cm thickness). The adult diet, consisting of 5 ml of condensed milk, 2 egg yolks, 1 egg white, 30 g of honey, 20 g of sugar, 30 g of brewer's yeast, 50 g of wheat germ and 45 ml of distilled water, was supplied through the cage's side in sufficient quantity to carry out the bioassay. Afterwards, one week vid predator adults, previously sorted by set were placed in the exposure cages. Each treatment consisted of four cages, each one containing five couples, each one being considered a replicate in the completely randomised design. The cumulati mortality of males and females, as well as the general mortality were evaluated at 24,92 and 120 hours after exposure of the insects to the pesticides. The values obtained for the number of dead insects were submitted to analysis of variance; the means . were compared using the Tukey test, at 5% significance, using the WinStat statistics programme²¹ The mortality percentages were calculated for each treatment and were corrected relative to the control Adult *C. externa* showed 24, 72, and 20 hours after the start of exposure to deltamethrin on glass plates 2.5%, 7.5%, and 32.5% motifility, respectively. **MATERIAL AND METHODS A. Material** <u>1. Test material</u> <u>1. Test material</u> <u>1. Test material</u> <u>1. Test material</u> <u>1. Test solutions</u> <u>2. Test solutions</u> <u>3. Source of vehicle solvent</u> <u>4. Source of vehicle solvent</u> <u>4. Source of vehicle solvent</u> <u>5. Source of vehicle solven</u> Concentration of Chicle Olvent @ganism(s) Fhrysoperla externa Species: GultivarQ Irce of test species: Laboratório do Núcleo de Manejo Integrado de Pragas (Centre for Integrated Pest Management Laboratory) (NUMIP) of the ⁶Embrapa Clima Temperado, at the laboratories of Controle Biológico e de Pesticidas (Biological and Pesticides Control), of the Universidade Federal de Pelotas, Capão do Leão - RS

²¹ MACTADO, A.A.; CONCEIÇÃO, A.R. WinStat: sistema de análise estatística para windows. Universidade Federal de Pelotas, 2007. Disponível em <a href="http://www.ufpel.edu.br/~machado">http://www.ufpel.edu.br/~machado</a>.
 ²² PÜNTENER, W. Manual for field trials in plant protection. 2nd ed. Greensboro: Ciba- Geigy, Agricultural Division, 1981.

Page 439 of 518 2017-05-15

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

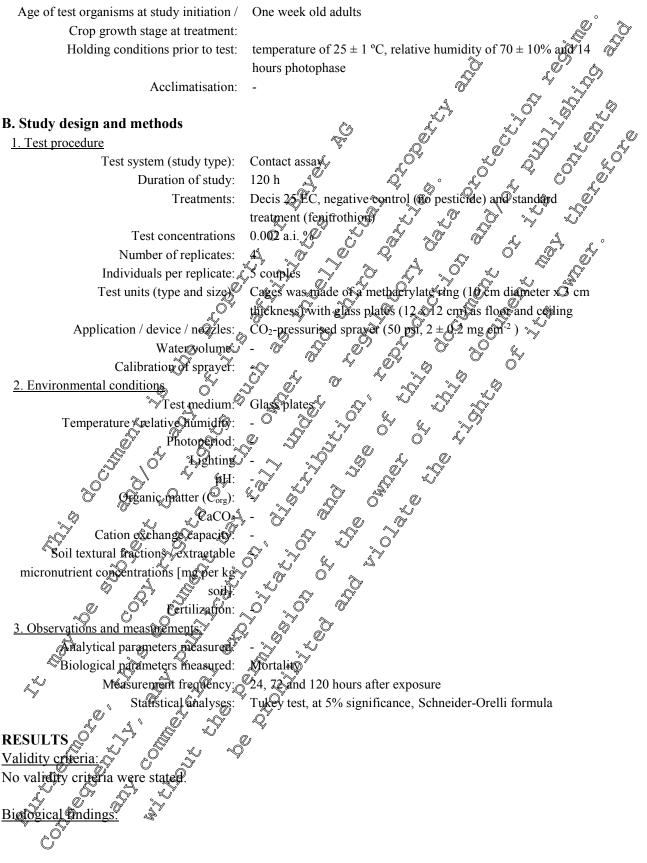



Table: Cumulative mortality (No. ± SE) for females and males at 24, 72 and 120 after the start of exposure of the adult phase of *Chrysoperla externa* for Decis 25 EC

**Bayer CropScience** 

#### **Document MCP: Section 10 Ecotoxicological studies DLT EW 15**

	D.C.	M ¹ [24	hours]	M ² [72	hours]	M ³ [12	0 hours]
Treatment	<b>D.C.*</b>	Ŷ	ð	Ŷ	8	Ŷ	
Control	-	$0.0\pm0.0~bA$	$0.0 \pm 0.0 \text{ bA}$	$0.0 \pm 0.0 \text{ bA}$	$0.0 \pm 0.0$ bA	0.0 ± 0.0 bA	0.0 ± 0.0@A
Deltameth	40	$0.0 \pm 0.0 \text{ bA}$	$0.3 \pm 0.5$ bA	$0.0 \pm 0.0 \text{ bA}$	0.8 ± 1.0 bA	$0.5 \pm 0.6 \text{ bB}$	2.8 ± 9,0 bA
Fenitrothio	155	3.8 ± 1.0 aB	$5.0 \pm 0.0 \text{ aA}$	$5.0 \pm 0.0 \text{ aA}$	$5.0 \pm 0.0 \text{ aAO}^{*}$	$0.5 \pm 0.6 \text{ bB}$	54 ¥ 0.0 aA

*D.C. = Dosage of commercial formulation (g or ml• 100 l-1) •0 l• ha-1; 1Mean values obtained from four replicates with five couples in courses and the second seco by same letter, lowercase in column and uppercase in rows, for each evaluation time, are not significantly different with each other by the

probability.

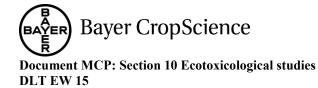
Table: Cumulative mortality (No. ± SE) at 24, 72 and 126 after the start of exposure of the adults of Chrysoperla externa to residues of registered pesticides used in peach crops.

Treatment	D.C.	M [24 hour	Irs] Q ^o M [72 hours] Q M [120 hours] Q Q
Treatment	*	No. $\pm$ SE ¹	$\%^{**}$ (No. ± State 1) $\%^{**}$ (No. ± State 1) $\%^{**}$ (No. ± State 1) $\%^{***}$ (No. ± State 1) $\%^{***}$
Control	-	$0.0\pm0.0\;b$	
Deltamethrin	40	$0.3\pm0.5\;b$	$2.5^{\circ}$ $0.8 \pm 1.0^{\circ}$ $7.5^{\circ}$ $3.3 \pm 0.0^{\circ}$ b $32.5^{\circ}$
Fenitrothion	150	8.8 ± 1.0 a	$82.5$ $10.0 \pm 0.0$ a $100.0$ $160 \pm 0.0$ $100.0$
*D.C. = Dosage of comm	nercial formula	ation (g or ml• 100 41)	1) •0 1• halt; **Corrected mortality by the Schneider Frelli formala

Adult C. externa showed 24, 72 and 120 hours after the start of exposure to deltamethrin on glass plates 2.5%, 7.5%, and 32.5% mortality, respectively.

## Comment by the Notifier

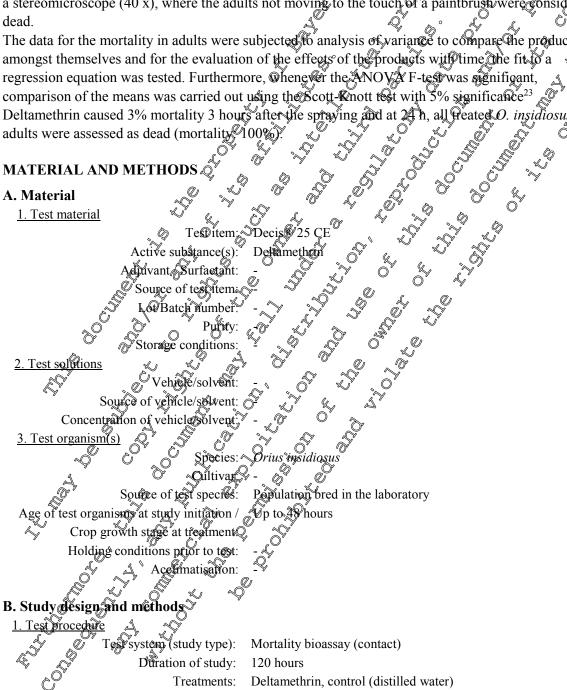
OF The publication confirms as known from the regulatory non-target arthropod data package that Chrysoperla species show compared to other tested fon-target arthropods species like T. pyri or C. septempunctata a lower sensitivity concerning exposure to deltamethrin. Therefore, the information is classified as by supplementary information (EFSA Journal 2011) (2):2092).


Report:	KCP 10.3 2.1/07, Torres, F. ZW.; Carvalho, G. A.; Rodrigues De Sousza., J.;
Keport:	<b>Rocha, J.</b> C. D. (2007)
Title:	Foxicity evaluation of insecticides used in rose crops to adults of Orius insidiosus
	(Say) (Hemiptera Anthocoridae),
Source:	Acta Sci Agron 29, 32, 5. 32,32329
DOI No	
Document No:	<u>M-460911-01-2</u>
Guidelines:	New Q Q
GLP:	

# EXECUTIVE SUMMARY

The objective of his work was to evaluate the toxicity of some insecticides including deltamethrin, used ipcrose copps, to adults of O. insidiosus. Material and methods as well as results are summarized for deltamethrin orby.

As test substance was used deltamethrin (0.0008 g a.i./100 mL) (Decis® 25 CE). The control treatment was distilled water only.


Forty adults aged up to 48 hours were used in each treatment; they were obtained from a population bred in the laboratory and were placed in 15 cm diameter Petri dishes. Then, they were sprayed in a



Potter tower calibrated to 15 lb in⁻², ensuring the application of  $1.5 \pm 0.5$  mg cm⁻² spray solution. After being sprayed, the insects were placed one in each 5 cm diameter Petri dish containing a lump of cotton wool moistened with distilled water to keep the interior of the dish moist. The food source was no non-viable eggs of A. kuehniella provided ad libitum to the insects. The dishes were sealed and keptin a climatic chamber set at  $25 \pm 2^{\circ}$ C, RH 70  $\pm 10\%$  and 12-hour photophase. Food was supplied every 48 hours and the cotton wool was moistened every 24 hours. Four replicates were performed with ten insects in each.

Mortality of the adults was evaluated at 1, 3, 6, 12, 24 hours after the application of the products, a stereomicroscope (40 x), where the adults not moving to the touch of a paintbrush were considered dead.

The data for the mortality in adults were subjected to analysis of variance to compare the products @ amongst themselves and for the evaluation of the effects of the products with time the fit to a regression equation was tested. Furthermore, Whenever the ANOVA F-test was significant, Deltamethrin caused 3% mortality 3 hours after the spraying and at 24 h, all reater 0. *insidiosus* adults were assessed as dead (mortality 100% V comparison of the means was carried out using the Scott-Knott test with 5% significance²³



²³ SCOTT, A.J.; KNOTT, M.A. A cluster analysis method for grouping means in the analysis of variance. Biometrics, Washington, D.C., v. 30, p. 507-512, 1974.

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies DLT EW 15



Report:	KCP 10.3.2.1/08; Godoy, M. S.; Carvalho, G. A.; Moraes, J. C.; Junior, M. G.; Morais, A. A.; Cosme, L. V. (2004)
Title: CO	Selectivity of insecticides used in citrus crops to eggs and larvae of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Seletividade de inseticidas utilizados na cultura dos citros para ovos e larvas de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae).



Source:	Neotropical Entomology, 33, 5, p. 639-646	0
DOI No:	-	
Document No:	<u>M-460874-01-2</u>	N A
Guidelines:	Hassan et al. 1991 ²⁴ ; IOBC/WPRS 1992 ²⁵ ; Hassan and Degrande 199	$6^{26}$
GLP:	No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#### **EXECUTIVE SUMMARY**

The purpose of this work was to evaluate the effects of some pesticides used in citrus groves on the eggs and larvae of *Chrysoperla externa*. Material and methods as well as results are sumparized for deltamethrin only.

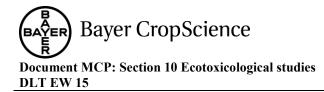
Test concentration was 0.0125 g a.i./L of Decis 25 CE. The control treatment comprised of water only. The sprays were applied by means of a Potter tower at a pressure of 45 psi with an application volume of  $1.5 \pm 0.5$  mg/cm².

Effects on eggs: For each treatment, thirty *C. externa* eggs up to welve hours old were placed in  $5^{4}$  cm diameter Petri dishes and sprayed with deltamethrm or distribution water. After spraying, the dishes were kept in the dark for two hours to reduce the moisture level on the egg surface, after which they were individually placed in glass tubes of 2.5 cm diameter and 8 cm length and kept in a climatised room at  $25 \pm 2^{\circ}$ C, r.h.  $70 \pm 10\%$  and 12-hour photophase.

The eggs were evaluated daily with emergence of the larvae? The latter were feed ad libitum with eggs of *Anagasta kuehniella* (Zeller) (Lepidoptera: Pyralidae) until they changed into pupae. These latter were kept in the glass tubes until the adults emerged. The adults were grouped into pairs and distributed as one pair in each PVC container of 15 cm diameter and 10 cm height, with a minimum of five and a maximum of 15 pairs per treatment. The adults were kept under the same ambient conditions as described above and were fed with brewer's yeast and honey (1.1, v/v).

The numbers of eggs laid were evaluated every three Bays for four consecutive weeks. In addition, 100 eggs per treatment were collected and placed individually in the cells of ELISA microtitration plates covered with EVC film and cept in a climatised from.

The experimental design used was entirely randomised with the seven aforesaid treatments and ten repetitions, with each parcel comprising three eggs. The viability of the eggs and survival of the larvae, pupae and adolfs was evaluated together with the daily and total oviposition per female.

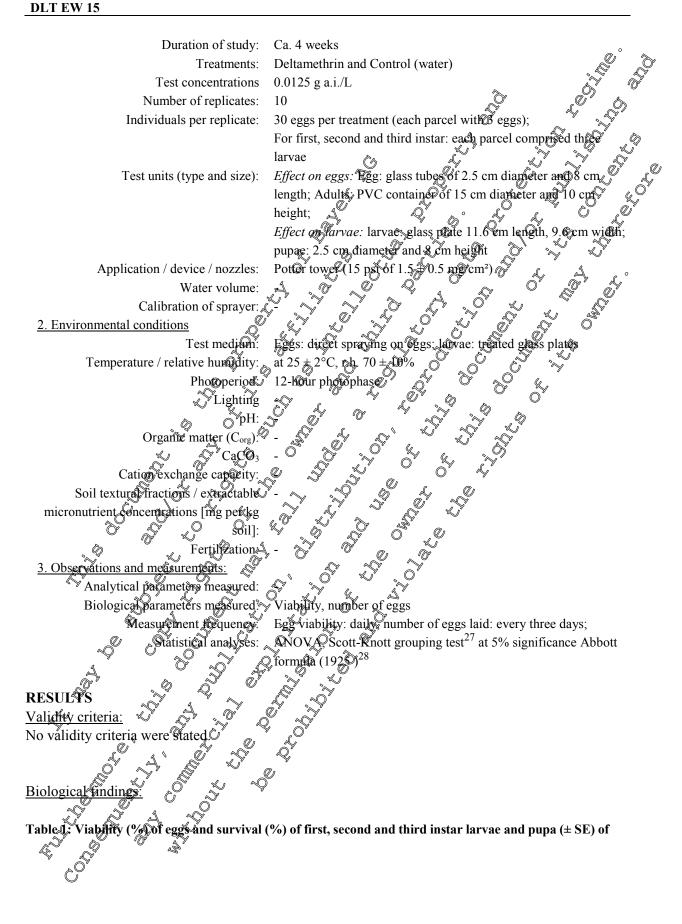

Effect on larvae. The test unit comprised a glass plate of 14.6 cm length, 9.6 cm width, which was sprayed with the insecticide by means of a Potter lower with the setting described above. After spraying, the plates were places in the climatised room.

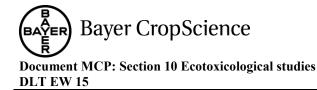
Larvae of the first, second and third instars up to 24 hours old, obtained from the laboratory vivarium, were individually placed on the glass plates and feat ad libitum with *A. kuehniella* eggs until they changed into pupae, when they were transferred to glass tubes of 2.5 cm diameter and 8 cm height closed on top with PVC film and kept in the chimatised room. The adults obtained were maintained

²⁴ Hassan, S.A., F. Bigler, J. Bogenshuetz, E. Boller, J. Brun, J.N.M. Calis, P. Chiverton, J. Coresmans-Pelseneer, C. Duss, G.B. Lewis, F. Mansour, L. Moreth, P.A. Oomen, L. Polgar, W. Rieckmann, L. Samsøe-Petersen, A. Staubli, G. Sterk, K. Tavares, J.J. Tuset & G. Viggiani. 1991. Results of the fifth joint pesticide testing programme capied out by the IOBC/WPRS – Working Group "Pesticides and Beneficial Organisms". Entomophage 36: 55-67.

²⁵ International Organization for Biological Control. West Palaearctic Regional Section. 1992. Working Group "Pesticides and Beneficial Organisms", Guidelines for testing the effects of pesticides on beneficial organisms: description of test methods. Bulletin IOBC/WPRS 15: 1-186.

²⁶ Hassan, S.A. & P.E. Degrande. 1996. Methods to test the side effects of pesticides on Trichogramma, p.63-74. In J.R.P. Parra & R.A. Zucchi (eds.), Trichogramma e o controle biológico aplicado. Piracicaba, FEALQ, 324p.





and fed in the same way as described in the bioassay with eggs. The number of eggs in each container was recorded every three days for four consecutive weeks and viability was determined as described in the previous bioassay with adults arising from eggs treated with the insecticides. The experimental design used was entirely randomised with the seven aforesaid reatments aporten repetitions, with each parcel comprising three first, second or third instar larvae. The control treatment comprised distilled water only. The survival of the larvae and pupa, the daily and total overosition per @ female and the viability of the eggs were evaluated. The data for daily and total oviposition, egg viability and sex ratio underwent analysis of vapance the means were compared by the Scott-Knott grouping test at 5% significance²⁷. Mortality data we corrected by the Abbott formula (1925)²⁸ before undergoing analysis of variance, When the insecticides were sprayed onto C. external eggs, there were no significant differences between the evaluated treatments, with viability of 83,3% for control freatment and 76.6% Deltamethrin significantly reduced the survival of furt instar larvae compared to the other treatments, with a mean of 38.3% compared 95.0% in the control treatment. The insecticide did not affect the survival of second and third instars or the pupae of C. externa For *C. externa* larvae treated in the first, second and third instar, significant harmful effects were found with survival rates of 0%. **MATERIAL AND METHOD** A. Material 1. Test material Aest item: Deltamethrin ctive substance(s): djuvant / Surfactant: ource of test item Batch number Purity storage conditions ncle/sølvent: 🔊 vehiclersolvent Concentration 3. Test orgamsm(s) Chr Source of test Larxae, first instar, second instar and third instar Age of test organisms at study initiation Q Cropgrowth stage at treatment:  $29 \pm 2^{\circ}$ C, r.h.  $70 \pm 10\%$  and 12-hour photophase. Holding conditions prior to test: matisation B. Study design and method Ì ocedure Test system (study type): Direct spray and contact assay

²⁷ Scott, A.J. & M.A. Knott. 1974. A cluster analyses method for grouping means in the analyses of variance. Biometrics 30: 502-512.

²⁸ Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.

**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies





#### C. externa derived from eggs sprayed with Decis 25 CE

Treatment	Egg		Pupa 🖉		
		First	Second	Third	
Deltamethrin	76.6 ± 7.14 a	38.3±10.31 b	$100 \pm 0.07 \text{ a}$	100 ± 0,08 a	100 0.08
Control	83.3 ± 7.51 a	$95.0 \pm 5.06$ a	96.7 ± 3.32 a	$100 \pm 0.08$ a	$100 \pm 0.09$ a

Means followed by the same letter in a column do not differ significantly from each other by the Scott-Knot Dest (P 39.05), %

# Table 2: Percentage mortality of C. extern and mean number of eggs/day/female when deltamethrin was sprayed onto Chrysopidae eggs Image: Constraint of the spectrum of the spect

T J	88				~ ~			
Treatments	М	R1	R2	Е	Ŕ,	· KOBC	Class	
Deltamethrin	73.3	10.0	<b>A89</b> .6	74.4	y "Ű	2 (slight)	y Narmful	
Control	23.2	12.8 🐇	95.40	° _>	Ś		- ~	KJ [¥]
Treatment	Egg	Inst	ar 🖉	Ö.		ja ar	Å	

M = Total mortality (%) of C. externa.

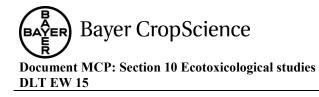
R1 = Number of eggs/day/female.

R2 = Viability (%) of eggs collected in the period

Table 3: Survival (%) (± SE) of first second and third instar larvae and pupa of *C externa* derived from first, second and third instar larvae exposed to contact treatment with deltameturin.

Treatment	Instar & O O Pupa
	First & Second & Mird &
Deltamethrin	$^{\circ}$
Control	83.3 ± \$ 52 a 100 \$ 9.09 0 491.7 ± 5.71 0 96.7 ± 3.34

Means followed by the same letter  $\Phi$  a column do not differ the inficantly from each other by the Scott-Knott test ( $P \le 0.05$ ).


When the insecticides were sprayed onto *C* external eggs, there were no significant differences between the evaluated treatments, with viability of 83.3% for control freatment and 76.6% for the deltamethrin treatment. Deltamethrin significantly reduced the survival of first instar larvae compared to the other treatments, with other of 38.3%. The insecticide did not affect the survival of second and third instars or the pupae of *C. externa*.

For *C. externa* large treated in the first second or third instar, significant harmful effects were found with survival rates of 0.5 5 5 5 5 5 5

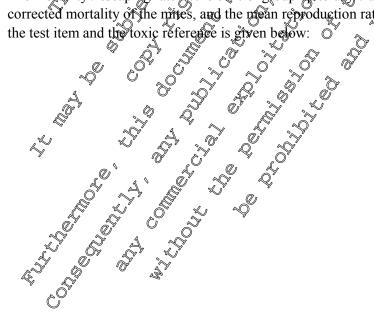
#### Comment by the Notifie

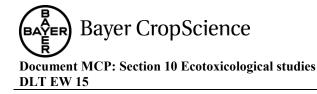
The tier Laboratory data for *Chrysoperla everna* (100% mortality of exposed larvae at 1.9 g a.s./ha) indicate a sensitivity of deltamethrin seen also for other species tested in tier 1 test systems for the regulatory data package. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092)

-J:20920 -J:200



#### **CP 10.3.2.2** Extended laboratory testing, aged residue studies with non-target arthropods


Report:	KCP 10.3.2.2/01, (2011)	<b>~</b>	<u> </u>
Title:	Toxicity to the predatory mite Typhlodromus	pyri Scheuten Acari,	
	Phytoseiidae) using an extended laboratory tes	st on Malus Sylvestris	
	Deltamethrin EW 15 g/L	4	<u> </u>
Document No.:	M-401577-01-1 (Rep. No.: CW10/086		
Guidelines:	Blümel et al. (2000), Candolfi et al. (2001)		
GLP	GLP study		


#### Materials and methods

The oil in water emulsion formulation of Deltamethrin EW 15%/L was tested, specified by sample description: TOX 08992-00; specification no. 10200013165-05; batch 10: 2010 002975 [analysed] . content of active ingredient: Deltamethrin 45.35 g/ ]; density: 1.923 g/mL. The test item was applied onto detached leaves of Major sylvestris at rates of 2.5, \$5, 11,2, 23.6 and 50.0 mg as/ha and the effects on the prodatory mite Typhlodromus pyri were compared to those of a deionised water treated control. A toget reference active substance: dimethoated applied at 10 g as/ha was included to indicate the relative susceptibility of the test organisms and the test system, Mortality of 100 mites (10 replicates with 10 fedividuals pectest group) was assessed 7, 10, 12 and 14 days after exposure by counting the number of living and dead miles. The number of escaped mites was calculated as the difference from the total number exposed. Due to the known repellent effects of the test per the mortality part of this study was performed in closed, actively ventilated cells (Munger cages). Opday 7 after application the surviving mites were transferred on untreated open exposure uses (glass plates) and the reproduction rate of surviving mites was then evaluated from day 7 instil day 14 after treatment by counting the total number of offspring (eggs and larvae) produced.

#### Findings 🖉

The mortality / escaping rate of the control group up to day? after treatment was 11.0%. The mean corrected mortality of the mites, and the mean reproduction rate of the surviving females exposed to





Test item Deltamethrin EW 15 g/L							î M	, C
Test organism	Sest organism Typhlodromus pyri					~	S	O ^y
Exposure on		Detached ap	ple leaves (da	y 0 to day 7 af	ter applicați	(Spři)	,¢´ ô	5
		Morta	ality after 7 da	ys [%]	I I I I I I I I I I I I I I I I I I I	Reproductio		Ès
Treatment	mg a.s./ha	Uncorr.	Corr.	P-value (*)	Rate (eggs per Gemale)	Red. rely to Control	P-value	
Control	0	11.0	- 4	- &	8.2	§ - L	<u>ل</u> 0	Ų"
Test item	2.5	22.0	12:4	0.028 ° sign. «	× 7.9		©0.410 n.sign.	
Test item	5.5	30.0		0.001 sign.	<b>2</b> .9	165	Ø364 A.sign	0
Test item	11.2	53.0	¥7.2	<0.001 ,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~		\$27.4 \$ \$	0.004 sign.	
Test item	23.6	55.0	49.4	≪)<0.001 sign.	0 4.6 C		90.019 sign.	
Test item	50.0	× 83.0	80.9	Sign	n.a.	n.a		
Reference item	15 g a.s./ha	072.2 g	\$8.8		S n:s	Žn.a.		

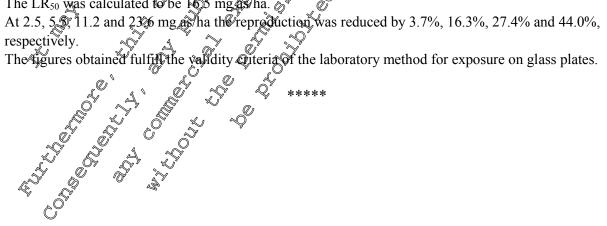
#### Mortality / Reproduction - 7 days after treatment

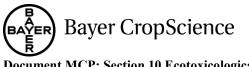
LR50: 16.5 mg a.s./ha; 25 % Confidence Interval: 10.0 25.1; calculated with Probit analysis

* Fisher's Exact test (one-sided), p-values are adjusted according to Bonferroni-Holtor

# Wilcoxon test (one sided), p-values are adjusted according to Booferropi-Holm

n.a. not assessed; not significant; sign. significant


### Conclusion [©]


Of the second se and and a second ×° In this extended laboratory test the effects of Deltamethrin EW 15 grL residues on the survival of the predator mite Typhlogromus gyri were determined at the rates of 2.5, 5.5, 11.2, 23.6 and 50.0 mg as/ha applied to detached apple leaves.  $\langle \rangle$ 

At the test item rates of 2.5 and \$5 mg as/ha acorrected mortality of 12.4% and 21.3% has been observed. 47.2% and 494% corrected mortality, respectively, occurred in the 11.2 and 23.6 mg as/ha rate. In the highest rate of 500 mg as/ha the corrected mortality was 80.9%.

The LR₅₀ was calculated to be 105 mg as/ha.

At 2.5, 5 3, 11.2 and 23% mg m ha the reproduction was reduced by 3.7%, 16.3%, 27.4% and 44.0%,



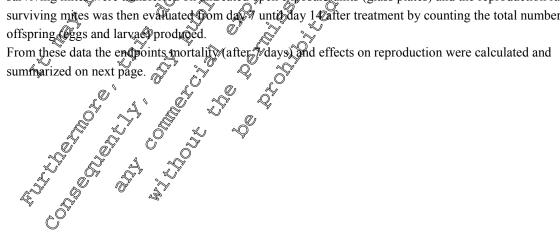


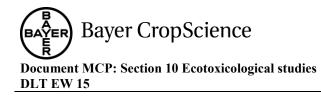
#### **Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

Report:	KCP 10.3.2.2/02, (2011)
Title:	Toxicity to the predatory mite Typhlodromus pyri SCHEUTEN (Acari,
	Toxicity to the predatory mite Typhlodromus pyri SCHEUTEN (Acari, Phytoseiidae) using an extended laboratory test with aged residues on apple
	Deltamethrin EW 15 g/L
Document No.:	<u>M-419712-01-1</u> (Rep. No.:CW11/042)
Guidelines:	Blümel et al. (2000) modified: Use of treated apple plants; mites exposed to freshly applied and under semi-field conditions aged residues on detached
	freshly applied and under semi-field conditions aged residues on detached leaves enclosed in ventilated cells (Munger cages) for the first 7 days of each
	leaves enclosed in ventilated cells (Munger cages) for the first 7 days of each
	bioassay; Candolfi et al. (2001).
GLP	GLP study

### **Material and Methods**

Ô The oil in water emulsion Deltamethrin EW 15 g/Lwas tested, specified by sample description: TOX08992-00; specification no.: 102000013165 - 05; batch ID: 2010-002975 [abalysed Contempor active ingredient: Deltamethrin 15.35 g/L]; density: 1.023 g/mL


The test item was applied two times with 125 g as had diluted in 400 L deignsed water/ha on potted apple plants (Malus sylvestris). The application interval in between way 7 days. The control was treated with deionised water in the same way as the test item. m


The toxic reference Dimethoate was applied at 15 g as/ha di ted in 100 L delonise water ha on the day of the second application on potted apple plants as well. For the purtherrex posure dates it was applied directly on detached apple leaves (with 15 g as/hadiluted m 200 L deionised water ha). It was included to indicate the relative susceptibility of the test organisms and the test system.

Aging of the spray deposits of the dest item on the potted apple plants took place under semi-field conditions with UV permeable rain protection during the first four weeks of the study. Five bioassays were performed, the first started on the day of the second application (0DAT2 = Odays after treatment 2) and the last one eight weeks later (56DAT2).

Predatory mites (Dyphlowomus pyri) were exposed to these residues on the treated leaf surfaces. Mortality of 100 predatory mites, protonyrhohs at study start (10 coplicates with 10 individuals per test group) was assessed 7 days after exposure in all broassays and up to 14 days in the fourt Cand fifth bioassay by counting the number of living and dead mites. The number of escaped mites was calculated as the difference from the total number exposed.

Due to the known repellent effects of the test item, the mortality part of each bioassay was performed in closed but actively ventilated cells (Murger cages). On day 7 after the start of the fourth and fifth bioassay, the surviving miteowere transferred on untreated open exposure units (glass plates) and the reproduction rate of surviving mites was then evaluated from day untig day 1 wafter treatment by counting the total number of





#### **Findings:**

Test item:		Delt	amethrin EW 1	5 g/L					
Application:	$2 \times 12.5 \text{ g as/ha (interval of 7 days)}$								
Test organism:		Typhlodromus pyri D Q							
Exposure on:	Dried	Dried spray deposits on apple leaves from treated apple plants							
		(day 0 to day 7 after start of the bioassay)         0DAT2 ^a 14DAT2 ^a 28DAT2 ^a 42DAT2 ^a 56D T2 ^a (0 weeks)       (2 weeks)       (4 wceks)       (6 weeks)       (8 weeks)         Mortality (%) after 7 days       (8 weeks)       (9 weeks)       (9 weeks)         7.0       11.0       48.0       44.0       90         100.0       100.0       93.0       44.0       10.0         75.0       89.0       87.0       79.0       65.0         Corrected Mortanty (%)							
Start bioassay:	0DAT2 <u>a</u>	14DAT2 ^a	28DAT2 ^a	42DA	56 <b>Q</b> AT2ª, 🖗				
-	(0 weeks)	(2 weeks)	(4 weeks)	(6 weeks)	5042A 1 2 2	S.			
		Mor	tality (🚿) after '	7 day					
Control:	7.0	11.0	\$ 8.0	<b>0</b> ^{4.0}	× 9.6 ő	× «°			
Test item:	100.0	100.0	93.0	Q 44.0	ن 10.0 گ	, O ^Y			
Reference item:	75.0	89.0	💇 87.0 🔍	7 <b>9</b> .0 Q	<u>\</u> 065.0 ⊘	a,			
		Çor	rected Mortabity	y (%)> 🔗	065.0 0 1.1 1.1	Ş			
Test item:	100.0	100.0 🚿	<b>~92.4</b>	م [∞] 41,7 [∞]	<b>1.</b> r	J			
	(p-value	(p-value	(p-value	(p-value	) (p-value	al a			
	< 0.001, sign. <u>b</u> )	< 0.001, sign. ^b )	0.001 sign.b)	< 0.001, sign b,	00.500	Ç,			
Reference item:	73.1	Stra St	.@85.9.4	68.8 Y	<u>,</u> n.sign.				
Kelelence nem.	/ 3.1	87.6	Reproduction						
			ber of eggs per						
Control:			ber of eggs pers		0 7.1 ×				
Test item:	n.a. * n.a. Ø	∛ βa,a. ⊘ √n.a. ⊘		<u> </u>	// N				
i est item.	n.a.		tion rel. to cont						
Test item:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	k n G	Ma.		© 0.3				
1 051 110111.	n.a.	n ng	e www.	<b>46.6</b> (10) alue 0009, signt	<b>⊘ 0.3</b> ≰∲-value 0.470,				
	r V			sion sion a	n.sign.d)				

O`

^a Days after second treatment

^b Fisher's Exact test (one sided) p-values djusted according to Bouterronis Holm Fisher's Exact test (one-sided) by values adjusted according to Borterroni-Holm  $\overset{c}{\downarrow}$  one-way ANOVA. Williams west (one-sided) by a side of the s

### **Conclusions:**

In this extended laboratory rest the effects of Deltamethrin EW 15 g/L residues (aged under semi-field conditions, with this profection during the first four weeks of the study) on the survival of the predatory mite Typhl Formus pyri were determined after two applications of 12.5 g as/ha with an application interval of 7 days onto apple plants (Malusoylvestris).

In the first 4 weeks (28 days) after the second application all bioassays resulted in a corrected mortalite 92%. Ń,

After & weeks (42 days) of aging of the test iten residues, the effects on mortality decreased to 41.7% corrected mortality and an assessment of the performance was performed which resulted in 46.6% reduction of reproduction compared to the control.

In the bioasso starting 8 weeks after the last application (56DAT2), a corrected mortality of 1.1% was found and the reduction in reproduction was 0.3%.

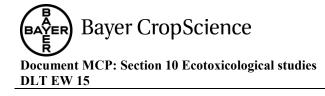
The figures obtained fulfil the alidity criteria of the laboratory method for exposure on glass plates.

****



Report:	KCP 10.3.2.2/03, (2011)			0	
Title:	Toxicity to the parasitoid wasp Aphidius rhopalos	siphi (DeStephan	i-Perez)	¢,	ð
	(Hymenoptera: Braconidae) using an extended lal	poratory test on b	oarley		
	Deltamethrin EW 15 g/L	ð	n an	Δ	
Document No.:	<u>M-400499-01-1</u> (Rep. No.:CW10/082)	S.	4		
Guidelines:	Mead-Briggs et al. (2000), Mead-Briggs et al. (20	09), Candolfi et	al. (2001)		
GLP	GLP study	S.			V
		Û (			Ø
M		Q. Q		s,	S

#### Material and methods:


An oil in water emulsion formulation of Deltamethric EW 15 g/L was tested, specified by sample description. TOX 08992-00: specification no. 10260012167.07 description: TOX 08992-00; specification no.: 102000013165-05; batch PD: 2000-002975 [analysed] content of active ingredient: Deltamethrin 15.35 g/L]; density: @.023 g/mL. @ The test item was applied on barley seedlings of rate of 0.25 0.44 0.79, 141 and 2.50 g as/ha and the effects on the parasitoid wasp Aphidius rhogalosiph were compared to those of a deionised water A treated control. A toxic reference (active substance: dimethoate) applied at 30 g as/ha was included to indicate the relative susceptibility of the test organisms and the test system. Mortality of 30 females (6 replicates with 5 wasps per test group) was assessed 2, 24 and 48 h after exposure.

Repellency of the test item was assessed during the initial 3 hours after the release of the females. Five separate observations were made at 30 minute intervals starting 12 minutes after the introduction of all

wasps. From the water control and the dose rates of 0.25, 0.44, 0.79 and 1.41 g as that 15 pripartially chosen females per treatment were each transferred o a cylinder containing untreated bailey seedlings

rom me water control and the dose rates of 0.425, 0.44, 0.79 and 1.41/g as fai, 15 phpartially chosen females per treatment were each transferred to a cylinder containing untreated barley seedlings infested with *Rhopalosiphumpadi* for a period 0.524 hours. The number of mummies was assessed 11 days later.

Ø1



#### **Findings:**

Test item					Daltamathrin	EW 15 ~/I			
			Deltamethrin EW 15 g/L						
Test organis					Barley se		<u> </u>	4 .4	2
Exposure or	1				Darrey se	eunings			4
		Mortality	y after 7	days [%]	<u>.</u>	oduction	Re	peDency &	
Treatment	g	Uncorr.	Corr.	P-value	Rate	Red. ret to	%	Red Yel. to	,¢
	a.s./ha			(*)	(mummies	Control [%]	Wasp	Control [26]	. Å
					per female)	P-value (#)	Ø	Rvalue ()##)	s -
					A	Q' p°	slant		Ø
Control	0	0.0	-	- 4	44.1	∽, <u>.</u> 0°	48.7		
				1.000			r »`	°∼ 7.5 ℃	
Test item	0.25	3.3	3.3	n.si 🔞	90.4 ×	0.009 n.sign.	45.0	0.132 <u>n</u> .sign.	0
Testitore	0.44	2.2	2.2			[∞] 21 ₄ 0	$\sim$ C	A.5 0	
Test item	0.44	3.3	3.3	n.sign.	RT.0 .	0.080(n.sign	52.3	0.157 n.sign.	
Test item	0.79	0.0	0.00	1,000	36.7¢	×16.8	<u>Ø</u>	\$ 19.2	
i est item	0.79	0.0	0.6%	n sign.	36.75	09145 n Sign.	39.3 S	0.16@n.sign.	
T	1.42	20.0	20.0	ن ش0.047	a s	2 <b>0</b> .3		°∼y 35.3	
Test item	1.42	20.0	20.0 ×	oli 0.047 signo		0.081 n.sig	36	©0.173 n.sign.	
<b>m</b>	<b>a</b> 50	90.0	40.0	<\$0,001	r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n av	(	24.4	
Test item	2.50	90.0 ⁻	940,0 O	Ssign. (	y n <i>a</i> gy	n ay	© 36.8	0.177 n.sign.	
Reference	2.0	90.0			În.a. S		Å 8 7	2.1	
item	3.0		§ 90.0	Ū~			~~~~~~/	-2.1	
LR50: 1.79	g as/ha; 🐕	% Confide	nce Inter	var (1.59	\$2.00);€calcul	ated with Probit	Analysis		
LR50: 1.79 g as/ha; 95% Confidence Interval (1.59 2.00) calculated with Probit analysis									

* Fisher's Exact test one-sided), populues are adjusted according to Bonferroni-Holm # Wilcoxon test (one-sided), p-values are adjusted according to Bonferron-Holtor ## one-way ANOVA, Williams test (one-sided)

n.a. not assessed, n.sign. not significant, sign. significant

# Conclusion:

In this extended laboratory test the effects of residues of Deltamethrin EW 15 g/L on the survival of <u>Aphidius rhopaloziphi</u> were determined at 0.25, 0.44, 0.79 Q.41 and 2.50 g as/ha, applied to barley 0[×] Ő Ò seedlings. Ô

In the test item rates of 0.2 and 0.44 g as ha 3.3% corrected mortality was observed. At the rate of 0.79 g as/ha no mortality was depected and 200% and 90.0% in the 1.41 and 2.50 g as/ha rate. The LR50 was calculated to be 1.79 g as/ha.

No dose related repetient effect of the test item was observed.

The reduction in reproductive success relative to the control at the 0.25, 0.44, 0.79 and 1.41 g as/ha rate was 31.1%, 21.0%, 16.8% and 26.3%, respectively.

The figures obtained falfill the validity criteria of the extended laboratory method (Mead-Briggs et al., 2009).

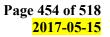
****

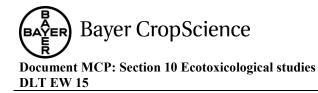


DLT EW 15

Report:	KCP 10.3.2.2/04, (2011)				
Title:	Toxicity to the ladybird beetle <i>Coccinella septempunctata</i> L.				
	(Coleoptera, Coccinellidae) using an extended laboratory test on <i>Malus</i>				
	sylvestris				
	Deltamethrin EW 15 g/L				
Document No.:	<u>M-401570-01-1</u> (Rep. No.: CW10/081)				
Guidelines:	Schmuck et al. (2000) modified, Candolfi et al. (2001)				
GLP	GLP study				

Ò


#### Materials and methods


Findings

The oil in water emulsion formulation Deltamethrin, EW 15 g/L was tested, specified by sample description: TOX 08992-00; specification no.: 102000013165-05; batch ID: 2010-002975 fanalysed content of active ingredient: Deltamethrin 15.35 g/L]; density: 1.025 g/mL. The test item was applied to detached leaves of *Matus sylvestris* advates of 8, 16, 32, 65 and 125 mg or as/ha and the effects on the ladybird beetle *Coccinella septempunctato* were compared to those of advater treated control. A toxic reference (active substance: dimethrate) applied at 12 gas/ha was included to indicate the relative succeptibility of the test organisms and the effects system. The preimaginal mortality of 40 larvae was assessed till the hatch of the imagines (up to 15 days). The fertility and fecundity of the surviving hatched adults were then evaluated over the period of 17 days.

	, Ø	O S				)
Test item		A .	S OI	Deltamethrin E	W 15 g/L 🔊	
Test organism		l Ki		oçcinella septe		
Exposure on				Detached appl	e@eaves 🦘	
			Mortality [%]	Us Dor	Repro	duction
Treatment 📎	mg@a.s./ha ○	Un@orr. 🕵	Corr.	P-value *)	Fertile eggs	Fertility
, Q	To the second se	Ô A			per female and	[hatching rate
- North Contraction of the second sec	×	S' P	O [×] v		day	in %]
Contro	, P, Ö	× 2000	- 68	÷, °, °,	11.1	88.6
Test item		\$20.0		0.£10 10.sign.	12.6	78.2
Test item		,5 <b>9</b> .0	376	\$0.009 sign.	23.8	93.6
Test item	32	5 67 <b>5</b> F	*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.001 sign.	18.9	64.4
Test item	£ 63 A		6 <b>7</b> .5	<0.001 sign.	n.a.	n.a.
	× 125	905 ·	Q 90.6	<0.001 sign.	n.a.	n.a.
Reference &		چى 100.09	100.0	-	n.a.	n.a.
LR50: 29.8 mg	as/ha; 95 % Cor	fidence Interv	al: (18.9 - 42.	1) (calculated	with Probit analys	sis)

LR50: 29.8 mg 35/ha; 95 % Confidence Interval: (18.9 - 42.1) (calculated with Probit analysis) * Fisher's Exact test cone-sided), p-values are adjusted according to Bonferroni-Holm n.a. not assessed n.sign. not significant sign Significant



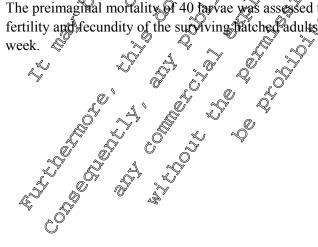


#### Conclusion

In this extended laboratory study the effects of the test item residues of Deltamethrin EW 15 g/L to larvae of the ladybird beetle Coccinella septempunctata were determined. The application was cone onto detached leaves of Malus sylvestris.

The test item rate of 8 mg as/ha had no influence on preimaginal mortality. A@he rates of 16 and 32 mg as/ha, a corrected mortality of 37.5% and 59.4%, respectively, occurred. In the highest rates of and 125 mg as/ha, corrected preimaginal mortalities of 62,5% and 90.6% were found. The LR₅₀ was calculated to be 29.8 mg as/ha.

Reproduction was assessed in the three lowest test rates of Deltamethin EW 15 g/L, 8, 16 and 32 mg & as/ha. The mean number of fertile eggs per female and day was 11Q in the control and 12.6, 228 and 18.9, respectively, in the 8, 16 and 32 mg as/ha rate. Because the reproductive performance was within the historical data base for control beetles (≥ 2 fertile eggs per female and day, Schouck et al. 2000) this parameter is considered as not affected at these test item rates this parameter is considered as not affected at these test item tates a grow of the figures obtained fulfil the validity criteria of the laboratory method for exposure on glass


Report:	KCP 10.3.20/05, (2014), 2 0 0 0 2 2
Title:	Toxicity to the green lacowing Chrysoperla carnea Steph, Deuroptera,
	Chrysophdae) using an extended laboratory dest on Malus sylves ois
	Deltamethrink EW 150g/L from the second seco
Document No .:	<u>M-400889-01-1</u> (Bep. Nov. CW10/085) A 2 2
Guidelines:	Vogt et at (2000) modified, Sindolfoet al. (2001)
GLP	GLP stordy w a w y O w y

# Materials and methods

The oil in water emulsion formulation of Beltamethrin EW 15 eff. was tested, specified by sample description TOX 08992-00; specification no. 20200013165-05; batch ID: 2010-002975 [analysed content of active ingredient: Deltamethrin 15.35 g/Ld; density: 1.023 g/mL.

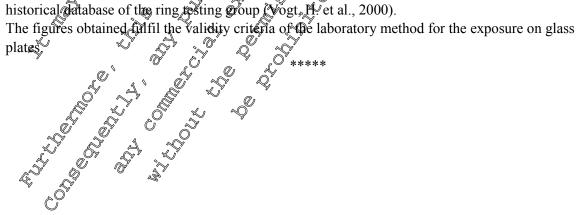
The test item was applied to detached apple leaves at rates of 0.25, 0.59, 1.37, 3.20 and 7.50 g as/ha and the effects on the green Accessing Charssoper la cargea were compared to those of a deionised water treated control. A toxic reference (active substance: dimethoate) applied at 12.0 g as/ha was included to indicate the relative susceptibility of the test organisms and the test system.

The preimaginal mortality of 40 tarvae was assessed till the hatch of the imagines (up to 20 days). The fertility and fecundity of the suppring fratched adults were then evaluated over the period of one

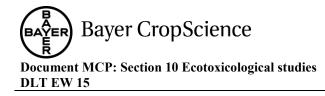


*a*.

# **Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15**


#### Findings

Test item		Deltamethrin EW 15 g/L					
Test organism			Chrysoperla carnea 📎 👘				
Exposure on		Detached apple leaves S			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
			Mortality [%]		Repro	duction X	\$
Treatment	g a.s./ha	Uncorr.	Corr.	P-value (*)	Eggs per	, Fertility	Ŋ,
				Č V	female and day	(Matching rate )	L
Control	0	7.5	- 4	(	ົ້ 16.9 🔬	82.1 5	$0^{\prime}$
Test item	0.25	7.5	0.0	1.000 Q n.sign	\$°22.8	54 79.8 j	7
Test item	0.59	2.5	\$\$5.4 \$\$	° 1.900 « Msign.		×85.5	
Test item	1.37	10.0		© 1.006 n.\$@n.		0 [*] & .4	
Test item	3.20	7 8		\$4.000 √ €n.sign⊘	© 27.8	90.2 90.2	
Test item	7.50	37.5	\$2.4 \$	, 0,696 gign.	9 ~9.4 °	× × × × × × × × × × × × × × × × × × ×	
Reference item	12.0	Q2.5	\$ 91,9	~ - ~ ~	n.20	n.a.	
$LR_{50} > 7.50 g a$			\$ . \$				


* Fisher's Exact test (one-sided) -values are adjusted according to Bonferroni-Holm n.a. not assessed, n.sign, not significant, 4 2 9 9

### Conclusion

In this extended laboratory study the effects of the test item readiues to larvae of the green lacewing Chrysoperlacarnea were determined; the application was made onto detached apple leaves. The test term rates of 0.25, 0.59, 1.37 and 3.20 g as the had no or only minor influence on mortality. At the highest test item rate of 7,50 g as/ha a sorrected mortality of 32.4% occurred which was statistically significant different simpled to the control. The  $LR_{50}$  was estimated to be >7.50 g as/ha. There were no adverse offects of the test item on the reproductive performance at all rates tested. The mean number of eggs femaled day was above the lower limit given as validity criterion for the glass plate method (mean number of eggs/female/day  $\geq 15$  mean hatching rate:  $\geq 70$  %) according to the historical database of the ring testing group (Vogt, H. et al., 2000).



*a* 



Report:	KCP 10.3.2.2/06; Broufas, G. D.; Pa	ppas, M. L.; Vassiliou, G.; Koveos D. S.
	Editor(S): Vogt, H.; Jansen, J. P.; V	inuela, E.; Medina P. (2008) 🖉 🔥
Title:	Toxicity of certain pesticides to the pre-	edatory mite Eusenis finlandicus (Acari
	Phytoseiidae).	
Source:	IOBC/WPRS Bulletin 35, p. 85-91	
DOI No:	-	
Document No:	<u>M-461231-01-1</u>	
Guidelines:	No	
GLP:	No	

#### Supplemental information from the literature

#### **EXECUTIVE SUMMARY**

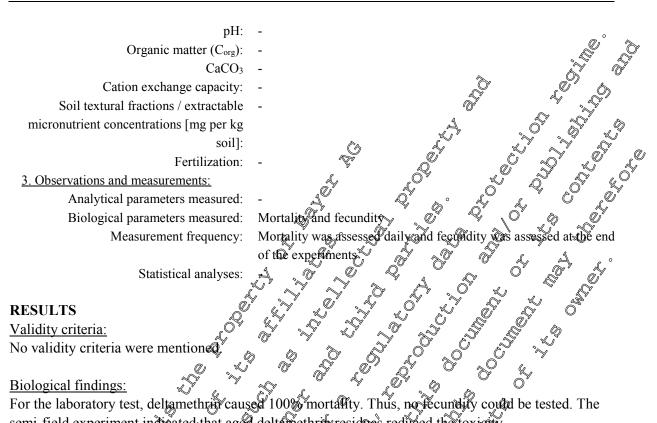
The acute and residual toxicity of certain used pesticides in plumorchards in Greece to the productor mite Euseius finlandicus were determined with laboratory and semi-field experiments. Material and methods as well as results are summarized here only for detlamethron. The test concentration in both experiments was 0.75 g a.i SL Decis EC 25. The acute foxicity was evaluated under laboratory conditions (25°C and a photoperiod of 16; OLD) using defached bean leaf disks (4 cm in diameter) which were sprayed with a Potter spraying tower calibrated to approximately 2 mg wet deposit per cm² [200 L/ha]. Plants sprayed with deionized water were used as the control group. 15 Protonymphs of E. finlandicus. Were transferred on the spraved leaf disks and mortality was recorded every day. Cumulative mortality was assessed after 7 days to the spray residues. Mortality percentages were adjusted for the control montality using ADbott's formula²⁹. Foundity of the surviving females was assessed from 7th to 14th day following the spray application and mean cumulative number of eggs per female was calculated as described by Blümel et al. (2002)³⁰. Additionally, the total effect values (E) were valculated, according to Overmeer & Van Zon (1982)³¹. In a second group of experiments the persestence of the posticides was assessed. Three years old plum potted trees (cv Vanilia), were sprayed till run off with a hand sprayer and subsequently maintained in the field. Control trees were sprayed with dionized water. A certain time intervals (i.e. 3, 7, 10, 15, 20 and 25 days) following sprax application, leaves were cut from the trees and transferred to the laboratory. On each geaf were placed 15 proton inphs of the predatory mite with some Typha sp. pollen as food (25°C and a photoperiod of 165° LD). Mortaary and egg production of the surviving mites were scoped, as described above for the laboratory broassays.

For the laboratory test, detamethrin caused 100% mortality. Thus, no fecundity could be tested. The semi-field experiment indicated that the effects from deltamethrin residues aged for 20, 25, and 30 days decreased to 42.1%, 28.8%, and 10.0% respectively.

# MATERIAL AND METHODE

A. Material <u>1. Test material</u> <u>5. Ext item</u>. Decis EC 2.5 Active substance(s): Deltamethrin

²⁹ Abbott. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
³⁰ Blümel et al. 2002. Laboratory residual contact test with the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products. In: Candolfi, M.P. et al. (eds.): "Guidelines to evaluate side-effects of plant protection products to non-target arthropods" IOBC/WPRS
³¹ Overmeer & Van Zon. 1982. A standardized method for testing the side effects of pesticides on the predacious mite Amblyseius potentillae (Acari: Phytoseiidae). Entomophaga 27: 357-364.




Document MCP: Section 10 Ecotoxicological studies DLT EW 15



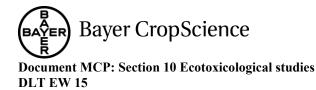
Page 458 of 518 **2017-05-15** 





For the laboratory test, deltamethra caused 100% mortality. Thus, no fecunduly could be tested. The semi-field experiment indicated that aged deltamethrar residues reduced the toxicity.

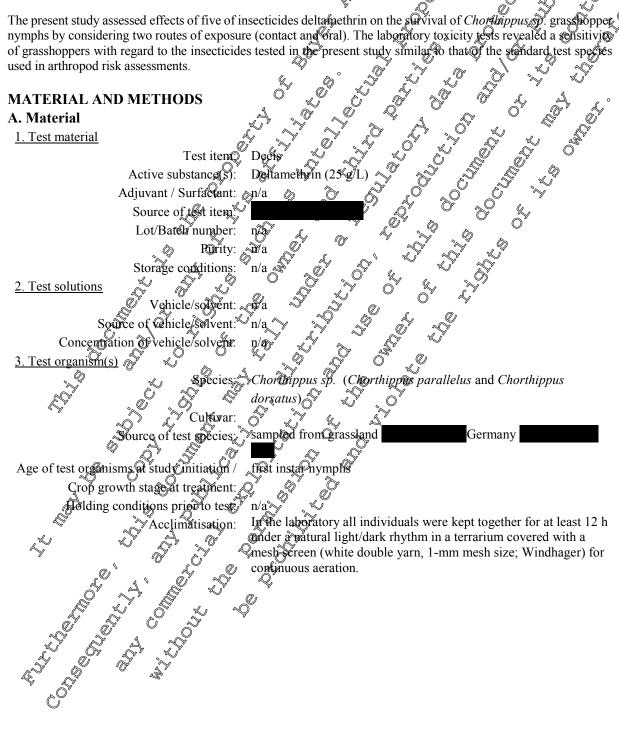
## Table 1: Toxicity of deltamothrin to the predatory mite Efinlandius (estended aboratory tests)


		× 4	. Ř	∫√* E (%)	after	de la companya de la		
Pesticide		°, 3	<b>~</b>	2 10	Ő5	© 20	25	30
			🖇 🕅	s following	applicari	on		
Deltamethrin	M	M A	M	83.1	810×	42.1	28.8	10.0
M= 100% mortality $\mathcal{D}$ F= overall effect $\mathcal{D}$ ( $\mathcal{D}$ ( $\mathcal{D}$ )								

 $\mathfrak{F}_{\mathbf{g}}^{\mathbb{O}}$  a.i. haj caused 100% mortality within 7 days. The In the laboratory test on leave deltamethrin semi-field experiment indicated that the effects from celtamethrin residues aged decreased down to 10% after 30 days.

# Comment by the Notifiers

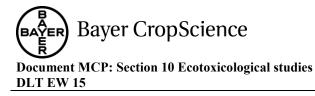
The publication confirms the known exicits of deltamethrin to predatory mites (100% mortality at 1.5 g a.s./ha) and supports the regulatory aged residue studies that indicate the potential for recovery within a few weeks. Therefore the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).


Report:	KCP 10.3.2.2/07; BUNDSCHUH, R.; SCHMITZ, J.; BUNDSCHUH, M.;			
Ű	ALBRECHT (2012)			
Title:	Does insecticide drift adversely affect grasshoppers (orthoptera: saltatoria) in field			
	margins? A case study combining laboratory acute toxicity testing with field monitoring			



	data	0
Source:	Environmental Toxicology and Chemistry, Vol. 31, No. 8, pp. 1874–1879	
DOI No.:	10.1002/etc.1895	, A A
Document No .:	<u>M-462168-01-1</u>	
Guidelines:	No	
GLP:	No	

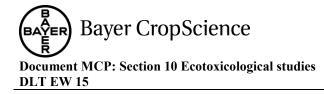
#### **EXECUTIVE SUMMARY**


Ö V The present study assessed effects of five of insecticides deltanethrin on the survival of Chordin puscos, grassing present study assessed effects of five of insecticides deltanethrin on the survival of Chordin puscos, grassing present study assessed effects of the survival of the surv

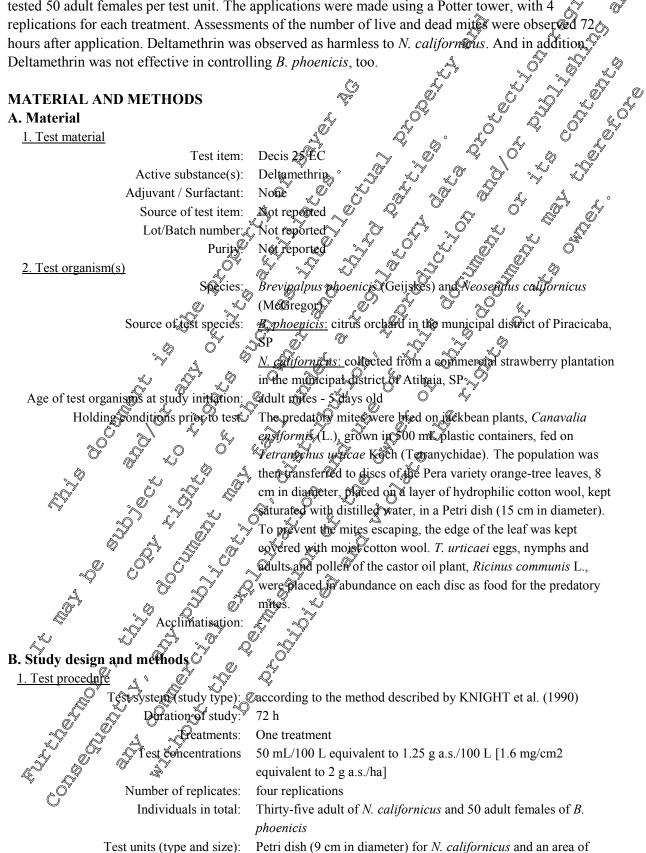


**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15** 

#### **B.** Study design and methods







		application rate (g a.i./ha); the dose received by the individual				
	grassnopper was not measured.					
		I wo- and three-factorial analyses				
RESULTS A	ND DISCUSSION					
Validity criter	ia:					
The control m	ortality did not exce	eed 10%. $\sqrt{2}$				
	2					
Biological fine	<u>dings:</u>					
Toxicity was h	nighest for the conta	act exposure scenario, the combination of contact and oral exposure				
mostly display	red lower toxicities.	application rate (g a.i./ha); the dose received by the individual grasshopper was not measured. Two- and three-factorial analyses eed 10%. act exposure scenario, the combination of contact and oral exposure buss sp. after 4% h of exposure to the insecticides investigated, the interature Model Arhoptialosipter and Bryri from the literature Model Arhoptialosipter a				
Table 3. LR ₅₀	values of Chorthip	ous sp. after 48 h of sposure to the insectivides investigated, the				
model used fo	r calculation, and th	ne LR ₅₀ values of A rhopfulosiptu and & pyri from the literature				
a.i.	Exposure scenario	Model A horthippus sp				
		LRS C LOVER Upper				
		6 48 h (g a.1./ha) 95% 6 95% CI				
Deltamethrin	Contact	$\frac{1}{2} \log \left( \frac{1}{2} \log \left( 1$				
$IR_{co} = application r$	oral ~~	<b>(kog-logi</b> ) <b>(ko</b>				
a.i. = active ingredi	ent.					
	4 Q					
	Ĩ, O					
Chorthippus s	p. 5 . 7 .	tackexposure, on plastic substrates				
LR50 (48 h) =	000 g a $1/ha$ (cont	actexposure, on plastic substrate				
		tace and wral exposure C				
LR50 (48 h) =	0.82 g a.i./ha (oral	acpand stal exposure)				
Commercial	the Ne De an					
Comment by	the Notifier					
The publication	on cooffirms the kn	win to xicity of deltanethrin to herbivorous insects. Since the study				
results indicate	e a lower sensitivity	y of the tested taxon compared to the non-target arthropods tested for				
the regulatory	stata package the int	win toxicity of deltamethrin to herbivorous insects. Since the study y of the tested taxon compared to the non-target arthropods tested for toxination is classified as b) supplementary information (EFSA Journal				
2011;9(2):209	2).					
	R R					
, w						
Report: Title:	Toyicity of	<b>2</b> ,2/08; <b>0</b> I.Z. <b>d</b> Silva, M.E. Sato, C.A.L. de Oliveira, B. Veronez (2012) agrochemicals to the citrus leprosis mite <i>Brevipalpus phoenicis</i> (Geijskes) and				
The.		tog mite <i>Reseiulus californicus</i> (McGregor) (Acari: Tenuipalpidae,				
Č	Phytoseiida					
Source:		iol., Sao Paulo, v.79, n.3, p.363-370, Jul.				
DOI No.: @" Document No.	<u> </u>	01-2				
Guidelines:	No.	01-2				
GKP.	No					
EVE OF THE						

# EXECUTIVE SUMMARY

The objective of this study was to evaluate various pesticides used in citrus crops in regard to their toxicity to *Brevipalpus phoenicis* and *Neoseiulus californicus*, a potential predator of phytophagous



mites in the crop. Bioassays were conducted using orange-tree leaf discs for N. californicus and fruits for B. phoenicis. N. californicus was tested with 35 adult females per leaf disc. B. phoenicis was tested 50 adult females per test unit. The applications were made using a Potter tower, with 4



#### Page 463 of 518 2017-05-15

# **Bayer CropScience Document MCP: Section 10 Ecotoxicological studies** DLT EW 15

	approximately 3 cm2 encircled by adhesive tape (Tanglefoot®) on a fruit for <i>B. phoenicis</i> sprayed using a Potter spray tower (Burkard Scientific, Uxbridge, $H$ UK), spray volume of 2 mL calibrated at 68.9 kPa to 1.6 mg/cm2 Hydrophilic cotton wool for <i>N californicus</i> and fruit 40° <i>B.</i> <i>phoenicis</i> $25 \pm 2^{\circ}$ C, $D \pm 10\%$ 12 hours None Mortalito Once 72 h after application analysis of variance (ANQ A)
	a fruit for <i>B. phoenicis</i>
Application / device / nozzles:	sprayed using a Potter spray tower (Burkard Scientific, Uxbrdge, 7
	UK),
Water volume:	spray volume of 2 mL
Calibration of sprayer:	calibrated at 68.9 kPa to 1.6 mg/cm ²
2. Environmental conditions	
Test medium:	Hydrophilic coffen wool for $N_{C}$ californicus and fruit $O$ B.
	phoenicis & O [×] & O [×]
Temperature / relative humidity:	$25 \pm 2^{\circ}C, 20 \pm 10\%$ $Q^{\circ}$ $Q^{\circ}$ $Q^{\circ}$ $Q^{\circ}$ $Q^{\circ}$ $Q^{\circ}$
Photoperiod:	12 hours $\mathcal{O}'$ $\mathcal{O}'$ $\mathcal{O}'$ $\mathcal{O}'$
3. Observations and measurements:	
Analytical parameters measured:	Note of the second seco
Biological parameters measured:	Mortality Q Q A D O D A
Measurement frequency:	Once Z hafter application C &
Statistical analyses	analysis of variance (ANQVA)
RESULTS AND DISCUSSION Q	
Validity criteria:	
Not stated	
Biological findings:	
No mortality (%) occurred in the treatment	nt with Deprametapin for W. californie 9. In addition, B.
phoenicis mortality rate (%) was not statis	Cally different to the control treatment (2%) (table 1).
Therefore Deltamethrin was observed as I	harmless for Both species &
Table 1: Percentage mortality of Brevipalpus	phoenics adult iemales and Neoseiulus californicus adult
females observed 72 hours after product any	

Technicat name		Dosăge 🖉		Mortality (%) ¹	
	Š	per 100 J.	Allym 100 L	B. phoenicis	N. californicus
Denumetini		50.0 jul >>	@F.25 g O	2.00 A	0.00 A
Control		dispiled water		2.00 A	0.00 A

¹Means followed by the same letter in the column do not differ from one another using Tukey's test (p < 0.05)  $\hat{\boldsymbol{\rho}}$ ð

Assessments of the number of five and dead prites were observed 72 hours after application. Deltamethrin was observed as harmless to . cattornicus (0% Mortality). The mortality rate for B. phoenicis was 2 % fike in the control treatment

Ŀ,

**Comment by the Notifier** on the predatory fite N californicus indicate a low susceptibility of this species compared to T. pyri that has been tested for the regulatory data package. Therefore, the information is classified as b) supplementary information (ÉFSA Journal 2011;9(2):2092).

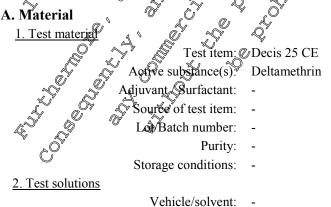
****

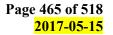


DLT EW 15	
-----------	--

Report:	KCP 10.3.2.2/09; Silva, M. Z. Da; Oliveira, C. A. L. De; Sato (2009)					
Title:	Selectivity of the pesticides to the predaceous mite Agistemus brasiliensis Matoli,					
	Ueckermann and Oliveira (Acari: Stigmaeidae). Seletividade de produtos					
	fitossanitarios sobre o acaro predador Agistemus brasiliensis Matioli, Ugerermann					
	and Oliveira (Acari: Stigmaeidae).					
Source:	Revista Brasileira de Fruticultura, 31, 2, pp. 388-396					
DOI No:						
Document No:	<u>M-462141-01-2</u>					
Guidelines:	No Q Q X X					
GLP:	No A A A A A A					

#### **EXECUTIVE SUMMARY**

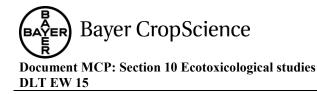

The aim of this study was to evaluate the selectivity of the main pesticides insecticide activity used in citrus to A. brasiliensis Material and methods as well as results and summarized for deltamethrin only. Ô A. brasiliensis (stigmaeid mites) used in this study were collected in August of 2005, from orange plants (Citrus sinensis) of the Pera and Waleocia vapeties, from orchards bocated at the FCAV/UNESP campus in Jaboticabal, SP. They were bred on orange tree leaves of the Peravariety placed on a layer of cotton wool in a Petri dish (15 cm diameter), Nympus and adult of B. phoenicis and castor bean, Ricinus communis L., or bulres, Typha sp., pollen Were placed abandantly in each arena as food source. Holding conditions were  $23 \pm 2 \circ \sqrt{70} \pm 40\%$  relative humidity and 12% h photophase. Orange tree leaf disks (4 cm diameter) placed on a layer of cotton wool in 2 cm diameter Petri dishes containing 25 adult females of *A brasiliensic* were sprayed with Deltamethrin (Decis 25 CE, 50 ml product/100 ml) using a Potter tower (2 ml solution, 1.6 mg/cm² deposit). The test was repeated 4 times. Test conditions were  $25 \pm 0^{\circ}$ C,  $10 \pm 10^{\circ}$  RH and 12 Jephotophase. Mortality was assessed 72 hours after application. The evaluations were carried out using a stereomic oscope; predaceous mites unable to move a minimum distance equivalent to their body length when gently touched with a smooth hair paintbrush were considered dead R


Mortality of A. brasilier is to was subjected to analysis of variance, by the F-test, and the averages compared by Tukey's test. Furthermore, the effect of reproduction and the total or adverse effect were calculated.

The evaluation of the visbility of the eggs laid on the arena? between the application and 72 hours after the treatment, was carried out during a 7-day period

Deltamethrin caused corrected mentalities in A.  $\beta$  asilicasis of 2.0% and did not affect oviposition and viability of the predator's eggs  $\beta$ 

# MATERIAL AND METHODS






**BAYER** Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15



RESULTS Validity criteria:



No validity criteria were stated.

#### **Biological findings**:

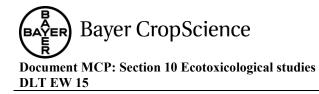
Deltamethrin caused corrected mortalities in *A. brasiliensis* of 2.0% ( $\pm$ 1.07%) and did not affect oviposition and viability of the predator's eggs.

#### **Comment by the Notifier**

The data on the predatory mite A. brasiliensis indicate a few susceptibility of this species compared to T. pyri that has been tested for the regulatory data package. Therefore, the information is classified as (2, 2) b) supplementary information (EFSA Journal 2011;9(2):2092).

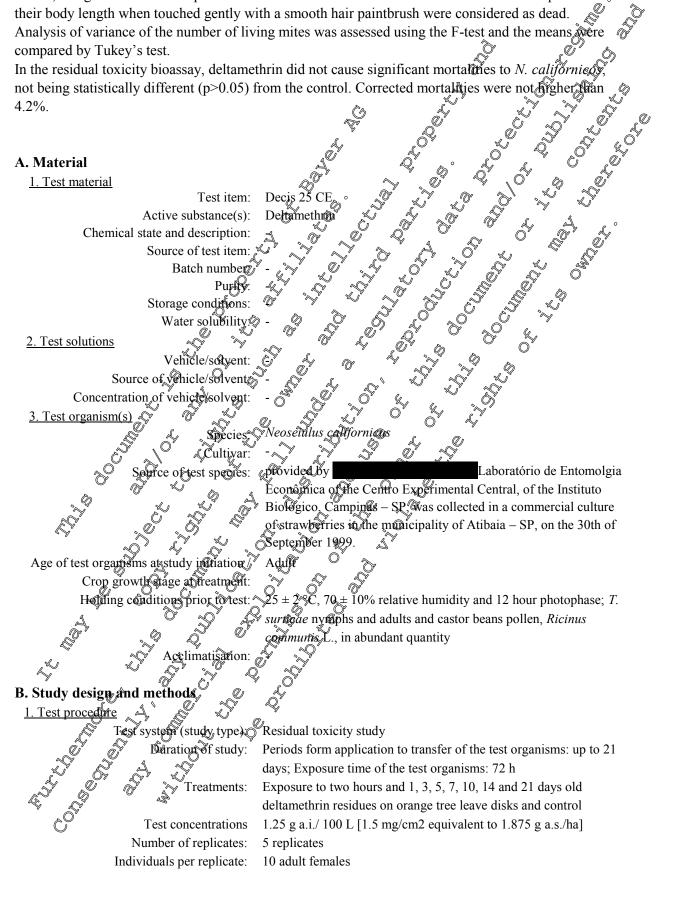
Report:	KCP 10.3.2.2/10; Silva, M. & Da; Oliveira, C. A. (2007)
Title:	Residual toxicity of some pesticides recommended for oftrus orchards on the
	predaceous mite Neosenvius californicus (McOregor) (Acars, Phytoseiidae).
	Toxicidade residual de alguns agrotoxicos recomendados na citricultura sobre
	Neoseiulus califormeus (McGregor) (Acari: Phyloseiidae).
Source:	Revista Brasileirade Fruidcultura, 29, 5 pp. 85-90
DOI No:	
Document No:	M-469/48-01-2
Guidelines:	
GLP:	

### EXECUTIVE SUMMARY


The aim of this study was to evaluate the residual to xicity of some of the main pesticides used in citrus orchards in Brazil on about products of *N. californicus* to obtain information about products which will not cause significant mortantly of that predator. Material and methods as well as results are summarized only for deliverethin.

The N. Californicus population provided by the fustion of the fust

N. californicus was kept or oack beans plants [Canavalia ensiformis (L.)] grown in 500 ml plastic pots in the laboratory and fed with *Terranyepus urfeae* KSeh, being transferred later to disks of "Pêra" orange tree leaves approximately 8 cm in diameter and placed on a layer of cotton wool kept saturated with distilled water for a Petri dish (15 cm diameter). *T. surticae* nymphs and adults and castor beans pollen, *Ricinus communis* L., were placed on each arena in abundant quantity as the food source for the predaceous poiles.

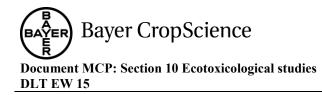

The culture was kept at  $25 \pm 2^{\circ}$  °C,  $40 \pm 10^{\circ}$  relative humidity and 12-hour photophase For the residual toxicity test, 4 cm diameter disks of orange tree leaves of the "Pêra" variety were placed or top of a layer of cotton wool in a Petri dish (9 cm diameter). The cotton wool was kept permanently sourced with distilled water.

Delta nethrig (Decto 25 CD) spraying was carried out in a Potter tower applying 2 ml of solution at a pressure of 0.703 kg/cm². After two hours and 1, 3, 5, 7, 10, 14 and 21 days following the application, 10 *N. californicus* adult females were transferred to each arena. *T. urticae* nymphs and adults were supplied as food. Test conditions were  $25 \pm 2 \degree$ C,  $70 \pm 10\%$  relative humidity and 12-hour photophase. Evaluation of the number of dead and living mites was carried out 72 hours after transfer to treated



arenas, using a stereomicroscope. Predaceous mites unable to move a minimum distance equivalent to their body length when touched gently with a smooth hair paintbrush were considered as dead. Analysis of variance of the number of living mites was assessed using the F-test and the means were compared by Tukey's test.

In the residual toxicity bioassay, deltamethrin did not cause significant mortalities to N. californie not being statistically different (p>0.05) from the control. Corrected mortalities were not fighe 4.2%.




Bayer CropScience

Page 468 of 518 2017-05-15

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Test conditions: Test units (type and size): Application / device / nozzles: Water volume: Calibration of sprayer: 2. Environmental conditions Test medium: Temperature / relative humidity: Photoperiod: Lighting pH: Organic matter (Corr Cation exchange capacity: Soil textural fractions / expactable micronutrient concentrations / mg per kg ooil]: Fertilization: 3. Observations and measurements: Analytical parameters measured: Biological parameters measured: Keasurement frequency: Statistical analyses: RESULTS Validity criteria: No validity criteria were mentioned. Biological findings: In the residual toxicity bioassay, deltam not being statistically different (p>0.05	$25 \pm 2$ °C 4 cm dian were place	$, 70 \pm 1$ neter dis ed on to	0% relat sks of or op of a la	ive hum ange tree	idity and e leaves otton wo	l 12 hou of the "I ol in a P	r photop Pêra" va Petri dish	hase riety of the second
	diameter)	. The co	otton wo	ol was ke	ept pern	anently	saturate	d with
	distilled w	vater.			Ĩ			
Application / device / nozzles:	Potter tow	ver, $2 \text{ n}$	nl solutic	on, press	ure 0.70	3 kg/cm ²	² :3×5 mg	
Water volume	solution p		Ċ5	, Q	Ý	ð		, ô ^s , o
Calibration of spraver:	-	s L	1	, ô ^g		Ň	, St	S LO
2. Environmental conditions		1 ⁰		Q,	,	,0 ,	~~ (	
Test medium:	4 cm dian	eter di	sks of og	angę t	e leaves	í _v oy	, Q	<u> </u>
Temperature / relative humidity:	25 ±22°℃	, 70₀≠°1	0% relat	ivethum	iditØ	ð'		1) 1)
Photoperiod:	12 <b>l</b> our p	hotopha	ise	õ i	Ç ı	d L	, _A	» e°
Lighting		ř ~	Ŭ ⁽		Ş	0'		Ű.
pH:		Ň	, LO	S.		2 Q	\$	A North Contraction of the second sec
Organic matter (Corg		ď,		Š,		U' Å ? _ O	, , , , , , , , , , , , , , , , , , ,	9
Cation exchange and	TON S	, ×	j N	) ₍	í S	J.	, L	
Soil textural fractions / every			, , ,	4	è a	0 1		
micronutrient concentrations/ pro ber kg		O ^v	× (	î, v	) .	y x	×	
sil sil		Ø	, 4			Ø		
°√ Fertilization:	9 - 5	a la	S.	Ŵ	S'			
3. Observations and measurements:	O (	) N	y o	Y (v.		Ď		
Analytical parameters measured:			,	Ő Ő	\$			
Biological parameters measured	⊖ [™] Mortality		, Q	á,				
Measurement frequency:	72 Mafter	trånsfe	r to treat	ed arena	<b>S</b> ^v			
Or Statistical analyses:	'n%≁test aand	Tukey	s test	Ľ				
RESULTS &		~~ ·		<b>N</b>				
Validity criteria:		S *		)″				
No validity criteria were mentioned.		×	A'					
No validity criteria were mentioned.		$\sim$	, Or					
Biological findings:		× 6	) V					
In the residual toxicity bioassay, deltan	cohrin dial n	ot cau	se signif	ficant m	ortalitie	es to N.	califor	nicus,
not being statistically different $0 > 0.05$	from the c	optrol.	Correct	ed mort	talities v	vere no	t highei	than
4.2/0.	\$ .9	1						
	S. S.		0		0 0 1	•	•.	
Table 1: Residual toxicity of pesticides to	N. californici	<i>us</i> , 72 h	ours aft	er trans	ter of th	e mites (	to citrus	leaves
treated, after different periods from appl		Perio	d after a	iges of p innlicati	opulation on	on reduc	tion.	
	\$	1 0110						
			1					
Dosage	2 bours	1 dev	3 days	5 davs	7 dave	10 dave	14 deve	21 days
Technical name	hours	day	days	days	days	days	days	days
deltamethrin 1.25	4.2	2.2	0.0	0.0	0.0	0.0	0.0	0.0
_ ~		1	1	1	1		1	



In the residual toxicity bioassay, deltamethrin did not cause significant mortalities to *N. californicus*, not being statistically different (p>0.05) from the control. Mortalities were not higher than 4.2%

# **Comment by the Notifier**

The data on the predatory mite *N. californicus* indicate a low susceptibility of this species compared to *T. pyri* that has been tested for the regulatory data package. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

Report:	KCP 10.3.2.2/11; Desneux, N.; Fauvergue, X.; Dechaume-Moncharmoni, F.X.;
_	Kerhoas, L.; Ballanger, Y.; Kaiser, L. (2005)         Diaeretiella rapae limits Myzers persicae populations after applications of deltamethrin in oilseed rape.
Title:	Diaeretiella rapae limits Myzes persicae populations after applications of
Source:	Journal of economic entomology, 98. Jp. 9-17 N N S
DOI No:	10.1603/0022-093-981.9 <u>M-460865-019</u>
Document No:	10.1603/0022-0493-984.9 <u>M-460865-019</u>
Guidelines:	No Saa A A O O O Y
GLP:	No Q X O X Q Q Q Q A

# EXECUTIVE SUMMARY

This study investigated the impact of *Diaerefiella refiae* (Mintosh) (Hymenoptera: Braconidae) on populations of *M. persicae* when parasitoids were introduced on deltamethrin treated plants at increasing intervals after treatments

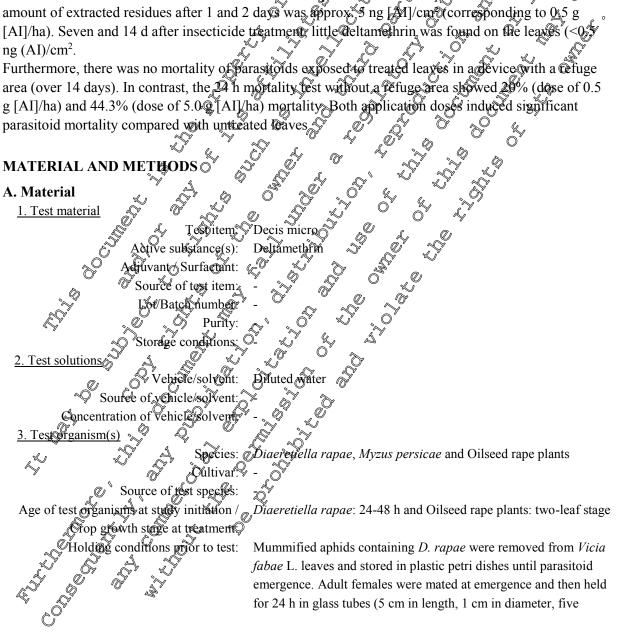
Oilseed rape plants (two reaf stage; infested by M. persicae) were treated with 5 g ai/ha using a powerpack aerosol hand sprayer (T=0) (semifield)? Then, the plants were divided into experimental groups of 30 plants each. The first two-level factor was the presence of absence of deltamethrin. The second two-level factor was the presence of parasitoids (five males and five females released per plant). The four-level factor was the lag time between deltamethrin treatment and parasitoid release: parasitoids were released of the caged plants either 1 (T+1),  $\frac{1}{2}$  (T+2), 7 (T+7), or 14 (T+14) days after deltamethrin freatment.

To quantify subsequent aphid population dynamics, the number of aphids per plant was counted 7, 14, and 21 d after the introduction of parasitorias into the cage. Because all plants had been treated the same day, aphids were consequently counted on different calendar dates for each group, depending on the lag between deltamethrin treatment and parasitoria introduction. To evaluate *D. rapae* population dynamics, we collected mummies on the plants and counted the number of emerging females. This number provided an index R0, of the net reproductive rate in the parasitoria population (i.e., the number of females produced per female and per generation).

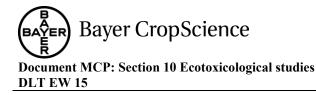
Deltamethrin residues on the plant were analayzed 1, 2, 7 and 14 days after treatment. Between 27 and 34 leaves were sampled on several plants from each group. Hexane and dichloromethane were used to extract the residues. Resulting chemical samples were analysed by gas chromatography-mass spectrometry the limit of detection was approx. 10 pg and the limit of quantification was approx. 20 pg

Furthermore, the mortality rate of parasitoids when exposed to the four ages of deltamethrin residues on oilseed rape leaves (1, 2, 7 and 14 d after treatement; the same plants being used as for the analysis of residues) was evaluated under laboratory conditions. Untreated leaves were used as controls. 10 parasitoids were introduced and five repliactes were performed for each age of residues and the

**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15** 


controls. 24 h later, the dead parasitoids were counted. Insecticide exposure was performed at  $20 \pm$ 1°C,  $65 \pm 5\%$  RH, and a photoperiod of 12:12 (L:D) h. This device contained untreated areas (i.e. plastic cage wall) similar to the semifield cages.

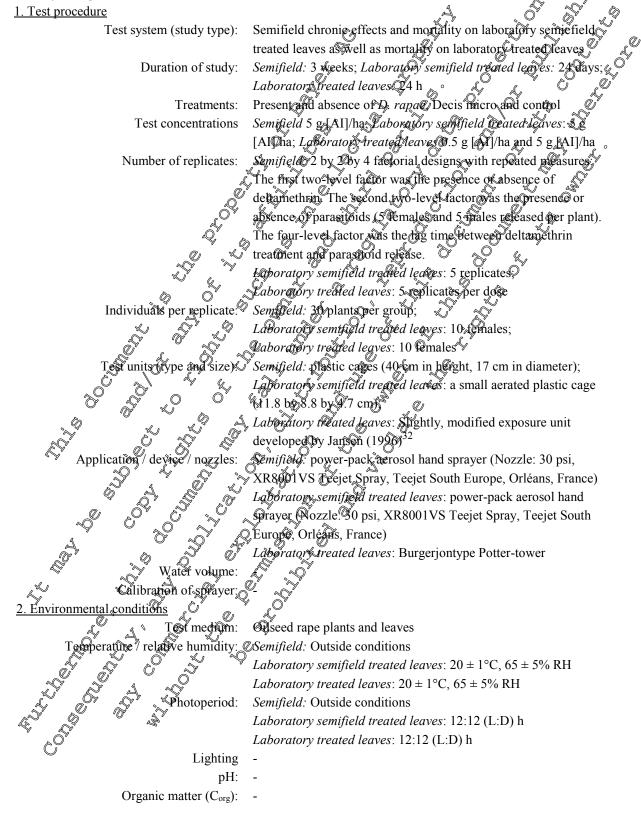
Second, we determined the toxicity of fresh deltamethrin residues without refugerates. We used the formulated insecticide Decis micro. It was applied to cut leaves (7 cm in diameter) by using a Burgerjontype Potter-tower (Burgerjon 1956). Two different doses were tested: 0.5 g (Alfha and 5 g AI/ha; water-sprayed leaves were used as controls. Slightly modified exposure units developed by Jansen (1996)³² were used. Ten parasitoids were introduced per unit. There were five geplicates per dose and a control. After 24 h, the dead parasitoids were counted. Pesticide exposure was performe  $20 \pm 1^{\circ}$ C,  $65 \pm 5\%$  RH, and a photoperiod of 12:12 (L.D) h. First, both the pesticide and the parasitoid reduced aphid population growth, their effects were additive. Deltamethrin residues had no effect on the reproduction of D. rapdo females. The totak amount of extracted residues after 1 and 2 days was approx is ng [A1]/cm@(corresponding to 0.5 g


[AI]/ha). Seven and 14 d after insecticide treatments little deltante hrin was found on the leaves (<0,7) ng (AI)/cm². Furthermore, there was no mortality of parasitorids exposed to treated leaves in a device with a defuge

area (over 14 days). In contrast, the 24 h mortality test without a refuge area showed 20% (dose of 0.5 g [AI]/ha) and 44.3% (dose of 5.0 g [AI]/ha) mortality Both application doses induced significant parasitoid mortality compared with untreated baves

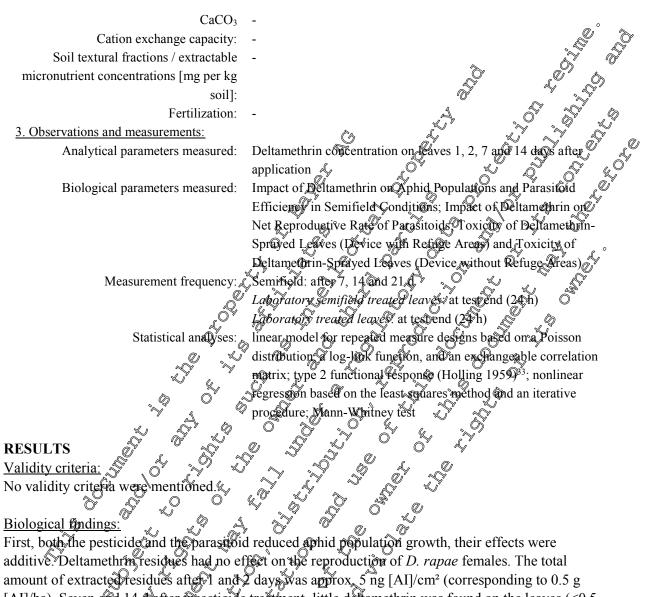
# MATERIAL AND METHODS




³² Jansen, J. P. 1996. Side effects of insecticides on Aphidius rhopalosiphi (Hym. Aphiddidae) in laboratory. Entomophaga 1: 37-43.



individuals per tube), where they were supplied with a dilute honey solution (80%) but no aphids or plants.


Acclimatisation:

### **B.** Study design and methods

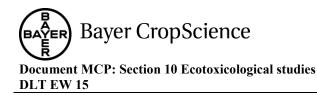


Page 472 of 518 2017-05-15





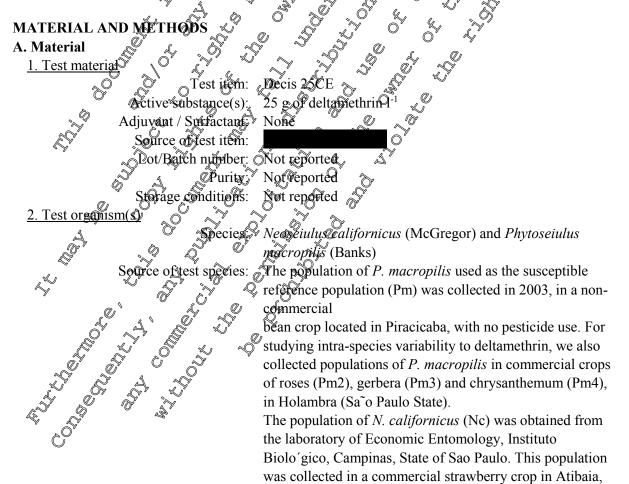
[AI]/ha). Seven and 14 after disection de treatment little detamethrin was found on the leaves (<0.5 ng (AI)/cm².

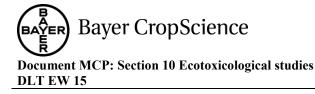

Furthermore, there was no mortality of parasitorias exposed to treated leaves in a device with a refuge area (over 14 days). In contrast the 24 h mortality test without a refuge area showed 20% (dose of 0.5 g [AI]/ha) and 44.3% those of 3.0 g [AI]/ha) mortality. Both application doses induced significant parasitoid mortality compared with untreated leaves.

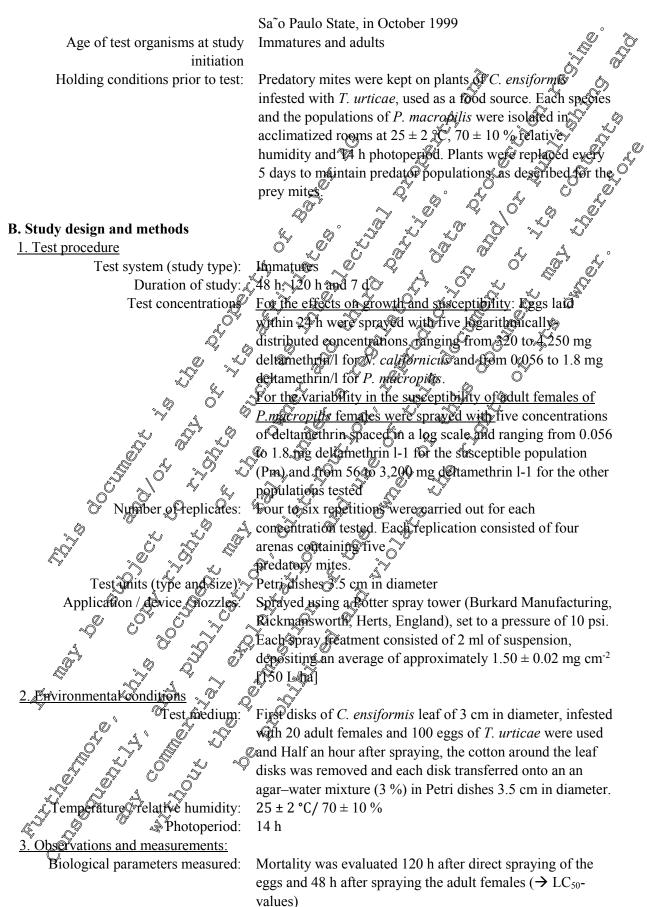
# Comment by the Notifier

The data on the parasitoid *Quaeretiella rapae* indicate a slightly lower sensitivity compared to A. *rhopalosiphi* that has been tested for the regulatory data package. The fast dissipation of the residues is in line with the Wailable DT50 data for deltamethrin. The aged residue part of the study confirms the known potential for revovery after initial effects. Therefore, the information is classified as b) supplymentary information (EFSA Journal 2011;9(2):2092).

****


³³ Holling, C. S. 1959. Some characteristics of simple types of predation and parasitization. Can. Entomol. 91: 386Ð398.





Report:	KCP 10.3.2.2/12; Poletti, M.; Omoto, C. (2012)				
Title:	Susceptibility to deltamethrin in the pred	Susceptibility to deltamethrin in the predatory mites Neoseiulus californicity and			
	<i>Phytoseiulus macropilis</i> (Acari: Phytose crops in Brazil	iidae) populations	on protected ornamental		
Source:	Exp Appl Acarol (2012) 58:385–393	.1			
DOI No.:	10.1007/s10493-012-9588-z	S.			
Document No.	<u>M-462290-01-1</u>	a'y			
Guidelines:	No	Q.			
GLP:	No	4			

# **EXECUTIVE SUMMARY**

The objective of this research was to evaluate the susceptibility to deftamethrin in populations of the predatory mites *Neoseiulus californicus* (McGregor) and *Phytosetulus macropilis* (Barks) populations collected from protected ornamental crops in Brazil. The susceptibility to deftamethrin was characterized against immature and adult stages of both species. The immature and adult stages of *N.californicus* were approximately 3 600 and 3,000 fold more tolerant to deltamethrin than those of *P.macropilis*. The LC₅₀ values for *N.californicus* were 866.3 mg a.i./L for impature stage and 970.1 mg a.i./L for adults. However, high variability in the susceptibility to this insection was detected among *P.macropilis* populations, with resistance ratios of up to \$,500 fold. LC₅₀ values varied between 0.3 mg a.i./L and 0159.1 mg a.j.L.







**Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15** 

Seven days after transferring the contaminated adult females onto the residue, the total number of predators (eggs, larvae, nymphs and adults) per arena was counted for each instantaneous rate of increase (ri) (PNOEC and LOEC) After 48 h, 120 h and after 7 days, Probit (LC₅₀) and ANOVA (NOEC/LOEC) concentration. This data was used to stimate the The second secon

Measurement frequency: Statistical analyses:

# **RESULTS AND DISCUSSION**

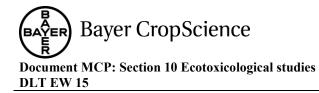
Validity criteria: No validity criteria were defined.

Findings:

Both immatures and adults of N. californicas were more Gerant to deltamethrin than P. macopilis, The tolerance ratios (TR) estimated for immatures and adults were approximately 3,600 times and 3,000 times respectively. The highest concentration that did not affect the rist N. californious (NOE C) was 320 mg deltamethrin l-1 and the first concentration to cause a sugnificant in deltamethrin 1-1. LC50-values are given in the tables below: «

Table 1: Deltamethrin concentration-response of mmature and adult stages veosetatus californicus (Nc) and *Phytoseiulus mucropilis* (Pm).

	Ő	N (total no. of	Comp a.i.AL)	Sløpe +/- SE		df	Tolerance Ratio (=LC50 NC/LC50 Pm)
	N	× 635 °	866.3	2.6+/-0.20	_1 <b>€∕</b> 6	3	3609.4
Immature	Pm 😵	428	0.20	P.8 +/-@2	@2.9	3	
Adult	Nc	- 2 <b>6</b> 44	97,0.1	2.2,+20.1	18.2	3	2939.7
Adult «>>	Pm	م م 705 م	0.3 ×	Q.5 +/-0.3	7.7	3	
	S.		, Y W	0″ 💊			


# Table 2: Deltamethrin concentration response of different population of Phytoseiulus macropilis (Pm)

Species	N (total no of mites used)	40 50 (mg a.i./L)	Shope +/-&E	X²	df	Resistance Ratio ^a
Pm1	705	Í 🌮 Ó	2,5,+/-0.3	7.7	3	-
Ppn2	325	281.9 Q	€9 +/- 0.2	4.5	3	854.1
Pm3	320	√ 438 D	2.1 +/-0.3	4.4	3	1328.3
Pm4	0 ⁴⁴⁸	1159.1	3.1 +/-0.4	4.1	3	3512.5

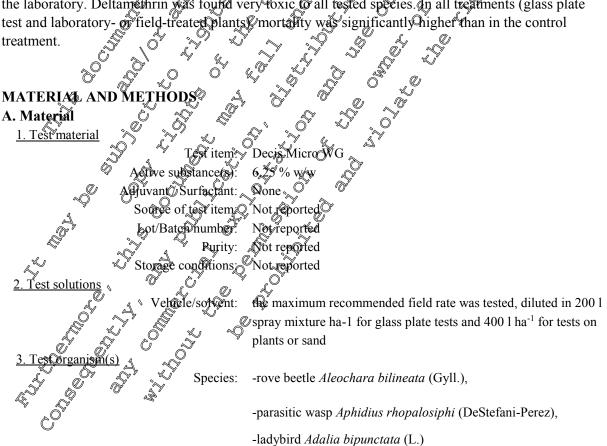
^a =LC₅₀ of the population under investigation  $QC_{50}$  of the reference susceptible population (Pm)

# CONCLUSION

The immature and adult stages of N. californicus were approximately 3,600 and 3,000-fold more tolerant to deltamethrin than those of P. macropilis. The LC50 values for N. californicus were 866.3 mg a.i. for immature stage and 970.1 mg a.i./L for adults. The LC₅₀ values for *P. macropilis* were 0.2 mg a.i./L for immature stage and 0.3 mg a.i./L for adults. However, high variability in the



susceptibility to this insecticide was detected among P. macropilis populations, with resistance ratios, of up to 3,500-fold. LC₅₀ values varied between 0.3 mg a.i./L and 1159.1 mg a.i./L.


# **Comment by the Notifier**

The extended laboratory data on the most sensitive tested predatory mite population of P. mac indicate a similar susceptibility of this species (LC50 0.3 mg a.i./L equivalent to 30 mg a.i./ha) as Y. pyri (LR₅₀ 16.5 mg a.i./ha) that has been tested for the regulatory data package. Therefore, they information is classified as b) supplementary information (EFSA Journal 2011;9(2);2092

Report:	KCP 10.3.2.2/13; J. P. Jansen • T. Defrance • A. M. Warnier (2011)
Title:	Side effects of flonicamide and pointerozine on five aphid natural enemy species
Source:	BioControl (2011) 56:759–776
DOI No.:	10.1007/s10526-011 9342-1 × × × ×
Document No.	<u>M-462296-01-1</u>
Guidelines:	IOBC standard sequential testing scheme for beneficial insects (Bassan et al. 1994).
GLP:	No $\mathcal{O}^{\vee}$ $\mathcal{V}$

# **EXECUTIVE SUMMARY**

The effects of deltamethrin (as toxic reference compound) on ineff and fatural substrates, on the rove beetle Aleochara bilineata (Gyll.) the parasitic wasp Aphidius rhopatosiphi (DeStetani-Perez), the ladybird Adalia bipunctata (L.) and the carabid beet Bembudion lampros (Herbst), were assessed in the laboratory. Deltamethrin was found very toxic or all tested species. In all treatments (glass plate test and laboratory- of field-treated plants mortality was significantly higher than in the control treatment.



-carabid beetle Bembidion lampros (Herbst)

Page 477 of 518 2017-05-15

Bayer CropScience k Document MCP: Section 10 Ecotoxicological studies DLT EW 15

B

	o
Source of test species:	<u>A. bipunctata</u> obtained by mass rearing in the laboratory,
	established in 1996 from adults sampled outside on ornamental
	bushes.
	<u>A. rhopalosiphi</u> : obtained by mass reading in the laboratory
	established in 1994 from aphid munimies collected in winter
	wheat fields.
	<u>A. bilineata</u> : provided by a commercial supplier (
	The Netherlands) by the form of S
	parasitised onion fly numero
	P. Lamping: coupt in Auly and August Program Ofield Amerging
	<u>D. tumppes</u> . Caught in say and august in certain field that gins
	<u>A. bilineata</u> : provided by a commercial supplier ( The Netherlands) in the form of parasitised onion fly pupal <u>B. lampros</u> : caught in fully and august in cereal field margins using pitfall traps and a small aspirator.
Age of test organisms at study initiation:	$\frac{A}{C}$ bipunctata: 203 day old
, Alexandre and Alexandre a	<u>A. rhopalosiphi</u> : 0-40h old y
	<u>A (bilineate</u> ) 3-7 day old
^o ^v	Blampros: notreported 5 5
Ŷ,	
Holding conditions prior to test	<u><i>B. tampees</i></u> : caught in stuy and august in cereal field pargins using pitfall traps and a small aspirator. <u><i>A. bipurcetata</i></u> : 2 ⁻³ day old <u><i>A. bipurcetata</i></u> : 0–40h old <u><i>A. bipurcetata</i></u> : not reported <u><i>A. bipurcetata</i></u> : kepton Plexiglass cages and fed with an excess of a0hids (a mixture of pea abhids <i>Acyrtosiphon pisum</i> (Harris)
Holding conditions prior to test	achids (a mixture of pea whids a cyrtosiphon paum (Harris)
	Seared on French beans (Vicio Jabae 4) and green peach aphids,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Myzus perstone (Sulzer) reared on sweet perper (Capsicum
	annuum ()) and boneybee-collected patien.
	<u>A. rhopilosiphi</u> produced using the cereal grain aphid Sitobion
	avenue (F.) as the host aphil and barley seedlings (Hordeum
	vulgare LS as the host plants
	A biliterate in Otio as a filled with wat and and fad with fragen
	<u>A. biliteata</u> : pleftic cages filled with wet sand and fed with frozen
	<u>A. biliteata</u> : pastic cases filled with wet sand and fed with frozen mosquito flies (Discus fish food) <u>B. lamproc</u> kept of large units on natural soils for 2–8 weeks at 20
L ^Y , C , Š ^Y ^L	<u>B. lampros</u> kept in large whits on natural soils for $2-8$ weeks at 20
	2^{-2} C before being used for the
	tests They were fed in excess with Ephestia kuehniella eggs
	(Nutrimae), aphice and onion fly pupae.
P. Study design and methods	
B. Study design and methods	
<u>1. Test procedure</u>	
Test system (study type):	<u>A bipurcata</u> : glass plates and plants
	<u>A. rhoyalosiphi</u> : glass plates and plants
	<u>A. buineata</u> pure quartz sand according to Grimm et al. 2000 and
	requiral soil. Because of the effects observed on plants in the
	Maboratory, an additional test was also performed with winter
	wheat (<i>Triticum aestivum</i> L.) plants treated in the field under
	conditions similar to conventional practice
	<i>B. lampros</i> : pure quartz sand according to et al. 2000
TO O' T	and natural soil
B. Study design and methods <u>1. Test procedure</u> Test system (study type):	<u>A. bipunctata</u> : five consecutive 24-h periods or until pupation
Duration of study.	<u>A. rhopalosiphi</u> : 48h for mortality and 10-12 d for fecundity
	<u>A. mopulosipili</u> . For for mortancy and 10-12 d for recurrency

<u>A. bilineata</u>: 28-day exposure and 6-8 week emergence

	assessment
	<i>B lampros</i> : mortality was checked on days 1.2, 4.7, 11 and \mathcal{W}°
Test concentrations	assessment <u>B. lampros</u> : mortality was checked on days 1,2, 4, 7, 11 and 10. 5 g a.s./ha <u>A. bipunctata</u> four replicates <u>A. rhopalosiphi</u> five replicates for glass plates; 6 replicates for treated plants <u>A. bilineata</u> : four replicates <u>B. lampros</u> five replicates <u>A. bipunctata</u> ten larve <u>A. five males five females) for</u> mortality and 15 for feetindity
Number of replicates:	<u>A. bipunctata</u> four replicates
-	<u>A. rhopalosiphi</u> five replicates for glass plates; 6 replicates for
	treated plants Tr C C C C C
	<u>A. bilineata</u> : four replicates $\sqrt[O^{4}]$
	<u>B. lamprost</u> five replicates Q^{*} \mathcal{O}^{*} \mathcal{O}^{*} \mathcal{O}^{*}
Individuals per replicate:	<u>A. bipunctato</u> ten larvier 2 2 2 2 2
	<u>A. Wopalostphi</u> : groups of ten (fix@malessfive females)for
S	
and the second se	A hime ata "No rove beetles ber treatment and I /UU onion risk
Q.	pupae added to each unit during the exposure period. <u>B tampros</u> : six beetles 2
	<u>Baamprox</u> : six beetles, and a s
	<u>A. bipunctage</u> : glasedisc (5cm) subounded by a plastic ring
Test units (type and size)	<u>A. Dipunctory</u> : glass also (5 cm) surfounded by a plastic ring
	exated with Fluon GP1 to prevent the larvae from escaping <u>A. rhopedosiphi</u> two treated grass plates (10 \$210 cm) held apart
	by adjustrated match frame 10 x 10 x 2 cm
	A $\frac{9}{1000}$ milling $\frac{1000}{1000}$ million 100
	Wetted at 70% at its water-hol@ng canacity
	<i>B</i> kumpros Pastic box (17% 12 x Gem) filled with 500 g sand
	<u>A. rhogalosiphi</u> two treated glass plates (10 £10 cm) held apart by an untreated metal frame (10 x 10 x 2 cm) <u>A. Bilineata</u> : plastic box (17 x 12 x 6 cm) filled with 500 g sand wetted at 70% of its water-holding capacity. <u>B. kuupros</u> plastic box (17 x 12 x 6 cm) filled with 500 g sand. For the plass plate tests the spray solutions were applied to the substrate by the of a Laboratory Burgerion spray tower (Burgerion
Application / device / nozzles/water	For the place tests, the spray solutions were applied to the
volume/ calibration	substrate by use of a Laboratory Burgerion spray tower (Burgerion
	substrate by use of a Laboratory Burgerjon spray tower (Burgerjon 1956) calibrated to deliver an application volume of $200 \ 1 \pm 10\%$ further an application volume of $200 \ 1 \pm 10\%$ further applied outdoors using a knapsack sprayer connected to a 2 m-wide ramp with four teejet flatfan nozzles (Teejet XR series, Q0). The apparatus was calibrated to deliver an application volume of $4001 \pm 10\%$ ha-1.
	sta-1. For tests performed on sand and plants, the products
2° , 4° , 5° , 5°	were applied utdoors using a knapsack sprayer connected to a 2
	m-wide ramp with our teejet flatfan nozzles (Teejet XR series,
	Q0). The apparatus was calibrated to deliver an application
	volume of $4001 \pm 10\%$ ha-1.
2. Environmental conditions	
Test modium;	Glass plates or treated plant leaves
Temperature / relative kumidity:	20 2°C, 60–90% RH
Bootopeusd:	₩ 8 L:D using a sodium lamp, except for <i>A. bilineata</i> (assessment
	(in the dark)
The state of the s	Light intensity was 1,000–2,000 lux for the 48 h of exposure and
	7,000–10,000 lux during fertility assessment. These methods were
	based on existing guidelines for the registration of pesticides
Temperature / refative fumidity: Temperature / refative fumidity: Protoperad: Tighting 3. Observations and measurements:	(Mead-Briggs et al. 2000).
<u>A polytical parameters recommended</u>	nono
 Analytical parameters measured: Biological parameters measured: 	none Pre imaginal mortality. Mortality, development time, yiehle eggs
Biological parameters measured:	Pre-imaginal mortality, Mortality, development time, viable eggs,
	reduction in fertility and incidence of parasitism

Measurement frequency: Statistical analyses: Aleochara bilineata test: 48 h

As required, treatment mortality was corrected for observed control mortality using Abott's formula (Abott 1925). The fesults ô of the tests were analysed using Statistica Minitab software. A one-way ANOVA test (LSD) for variance analysis was performed, followed by Tukey tests for multiple comparisons betwee treatments (P = 0.05).

RESULTS AND DISCUSSION

Validity criteria: Validity criteria were defined according to guidebies

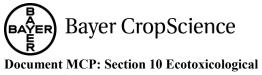
Biological findings:

Mortality on A. bipunctata and A. rhopalosiphi tested on glass-plates was high for delamethen (100%) (table 1 and table 3). Mortality on A. rhopalosiphi on aboratory treated-plants was 31.7 %, and therefore significantly higher than in the control treatment. Significantly higher mortality was also observed for A. rhopalosiphi in the field treated plant treatment (table 3). Deltamethrin used as the toxic standard for A. bilineata, ledge reduction in the incidence of parasitism of more than 50% compared with the control (table 2). Also for B lampsos, detramethin increased the mortality (43.4%) of the beetles significantly compared to the control (6.7%) (table 4)

Table 1: Toxicity of deltamethrin to larvae of the adybirt species A. bipunctata on gla plates in the laboratory × 1

moormoory	
glass plate	Pre-imaginal mortality (mean ± SK)
Control	○ 20.0 +/-& 2 a
Deltamethrin	Q00.0 + Q0.0 c

^a Pre-imaginal@nortality (%), development time to adult ad exposed to the test products One-way ANOVA followed by Tukey test or multiple comparison. Arcsin transformation for percentage Results followed by different letters are spenificantly different (P=0.05)


0 Table 2: Toxicity of deltamethring to the rove beetle species A. buineata on sand in the laboratory

	O Parasitized onion fto puper/unit(mean € SE) _0	Incidence of	Parasitism reduction
Control	678-57/- 83 0 a	56.5	
Deltamethrin	°∼ 70.3 +/- 43.8 c	5.9	89.8

^a Mean number of parasitistized on fly ou pace, in Gidence of parasitism (%), and reduction in parasitism compared with control (%) One-way ANOVA (LSD) followed by Tuke Test for multiple comparison. Results followed by different letters are significantly different

		48 h mortality (mean ± SE)	Mummies/female (mean ± SE) (number of females)	Reduction in fertility
glass plate	Control	0.0 +/- 0.0 a	22.8 +/-20.0 a	-
Ċ	Deltamethrin	100.0 +/- 0.0 c	not assessed	-
Treated plants	Control	1.7 +/- 4.1 a	21.9 +/- 21.3 a	-
	Deltamethrin	31.7 +/- 11.7 b	not assessed	-

Table 3: Effects of deltamethrin on A. rhopalosiphi adults on glass plates and on plants

Field-treated	control	6.0 +/- 8.0 a	17.3 +/- 9.4 a	- 。	l.
plants	Deltamethrin	54.0 +/- 8.0	15.3 +/- 5.0 a	11.2	ð

^a Mortality after 48 h exposure (%), number of aphid mummies produced by females that survived the exposure (number of females assessed), and reduction of fertility compared with control (%) One-way ANOVA follower by Tukey test for multiple comparison. Arcsin transformation for percentage. Results followed by different letters are significantly different of = 0.05)

Table 4: Toxicity of deltamethrin to the ground beetle species. *lampros* on sand in the laborator

Table 4: Toxicity of d	eltamethrin to the ground be	etle species B. <i>lampros</i> og san	d in the laboratory
	Observed mortality (mean ± SE)	Corrected Or mortality	
Control	6.7 +/- 9.1 a	B' N.U	
Deltamethrin	43.4 +/- 25.9 b 🐇	<u> </u>	

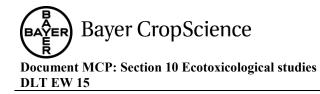
^a Observed and corrected mortality (%) after 14 days of exposure One-way ANOVA followed by Takey test for multiple comparison. Arcsin transformation for percentage. Results followed by difference letters are significantly difference 0.057

CONCLUSION

An application rate of 5 g a.s./ha @deltamethrin was found toxic to the rove beetle Aleochara bilineata (Gyll.), the parasitic wasp, Aphidius Phopalosiphi (DeSterani-Perez), the adybird Adalia bipunctata (L.) and the carabid beetle Bembadion lampros (Herbs). In all treatments (gass plate test and laboratory- or field-treated plants), mortality was significantly higher than in the control treatment.

Comment by the Notifier

, Ø

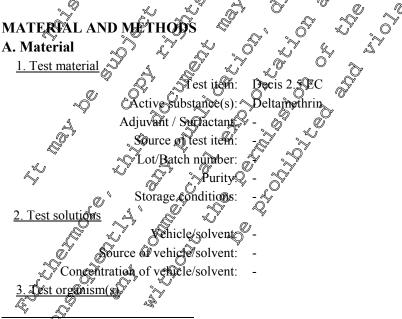

Compared to the available regulatory data package on NFAs are the data on Aleochara bilineata, Aphidius rhopalosiphi, Adalia bipunctata, and Bembidion lampros are in the expected effect range indicating no higher sensitivity of the tested species. Therefore, the information is classified as b) supplementary information (BFSA burnal 2011;9(2):2002).

Report:	KCP 10.3,2,2/14; Pautier, L.; Jansen, JP.; Mabon, N.; Schiffers, B. (2005)
Title:	Selectivity lists of pestigides to beneficial arthropods for IPM programs in carrot -
Source:	Comprun. Agric. Appl. Bio. Sci., 70, 4, p. 547-557
DOI No:	
Document No:	λ -460897-01 ω [*] \sim \sim
Guidelines:	For appredators and penasites ³⁴ , for ground insects ³⁵³⁶
A 1	

³⁴ Copin A. Latteur G., Delea R., Mahaut T. & Schiffers B. (2001). Evaluation du risque de toxicité de pesticides vise -à-vis de troj@auxiliaries (Adalia bipunctate Aphidius rhopalosiphi et Episyrphus baleteatus) par le dosage chimique de résidus. Muistère des Classes moyennes et de l'Agricultue DG 6. 83 pages.

U., Døhmen P Barrett K.L. Brown K., Kennedy P.J., , Römbke J., Schmuck By & Willelmy (I. (2000). A method for testing effects of plant protection products on the carabid beetle Poecilus copereus (Coleoptera, Carabidae) under laboratory and semi-field. In: Candolfi M.P. Bluemel S., U., Mead-Briggs M.A., Reber B., Schmuck R. & Forster R., Mr., Grimm C., Hassan S.A., Vogt H. Guigelines of evaluate side-effects of plant protection products to non-target arthropods. Bulletin OILB-SROP / IGBC-WRPS Bulletin. 158 pp

³⁶ Grimm C., Reber B., , Candolfi M.P., Drexler A., Moreth L., Ufer A. & (2000). A test for evaluating the chronic effects of plant protection products on the rove beetle Aleochara bilineata Gyll. (Col. Staphylinidae) under laboratory and extended labaratory conditions. In: Candolfi M.P., M., Grimm C., Hassan S.A., Bluemel S., Forster R., U., Mead.Briggs M.A.. Reber B.•

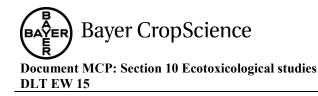

no

GLP:

EXECUTIVE SUMMARY

The aim of this research was to assess the toxicity of pesticides currently used on carrot crop towards natural enemies. 28 pesticides were tested. However, material and methods as well as results are summarized only for deltamethrin. The test concentrations were 10 g ai/ha which was applied with a α pneumatic atomizer at 200±10% l/ha for glass and plants and at 400±10% l/ha for sand and soil. Pesticides toxicity towards beneficial arthropods were assessed according to SETA@guidetnes (Barrett et al., 1994), an original methodology developed by Copin et al. (200 1)³⁴ for aphids predators et al (2000) and Gajmm et al (2000)³⁶. Five and parasites, and for ground insects from beneficial insects were selected for toxicity tests. adult Aphidius Thopatosiphi, larvae of Adatia bipunctata, larvae of Episyrphus balteatus, adult of Benbidjon lampros and adult of Aleochara bilineata. The acute toxicity was assessed according to a sequential testing scheme. First step deltamethrin was tested on an inert substrate, glass or sand, according to the insect. Mortalities of Q aphids parasites and predators were assessed after 48 hours exposition or after 2 weeks for carabits and calculate corrected mortality (CMQ were calculated (Abbot, 1925)³⁷. For standylinify parasitism reduction (PR) was calculated after 4 weeke in comparison with control. If the prodec induced a corrected mortality or a parasitism reduction higher than 30% the toxicity was realised in semi-field controlled conditions on a natural substrate (horse been for Syrphicae and Coccidellidae, barley for Aphidiidae, soil for Carabidae and Staphy midae) In these conditions corrected mortality or parasitism reduction was colculated. Furthermore, for each toxicity test, on glass of on plant, active ingredient on the abstrate is measured by chemical analysis at the beginning and at the end of the test. For A. rhopalosiphi mortality on as 100% whereas the toxicity on plants indicated 75%

morality. Tests with A. bipunctata showed 100% conjected portality on glass and on plants. For E. balteatus mortativy on glass was 75 and on plants T%. On sand A. bilineata showed 100% parasitism reduction. For B. lampros, deltamethrin were tested on sand and indicated a mortality of 72%.



Schmu & Kogt H. Guidelines to evaluate side-effects of plant protection products to non-target arthropods. Bulletin OILB-SROP /IOBC-WRPS Bulletin. 158 pp

³⁷ Abbott S.W. (1925). A method of computing the effectiveness of insecticides. Journal of Economic Entomology, 18:265-267.

BAYER Bayer CropScience

Species:	A. rhopalosiphi, A. bipunctata, E. balteatus, A. bilineata, B.
	lampros
Cultivar:	
Source of test species:	
Age of test organisms at study initiation /	adult Aphidius rhopalosiphi, larvae of adalia bipunctata, larvae of
Crop growth stage at treatment:	adult Aphidius rhopalosiphi, larvae of Adalia bipunctaia, larvae of Episyrphus balteatus, adult of Bembidion lampros and adult of Aleochara bilinenta - - - - - - - - - - - - - - - - - - -
Holding conditions prior to test:	
Acclimatisation:	
B. Study design and methods	
1. Test procedure	
Test system (study type):	Active toxic day
Duration of study:	4 h (Arthids native and nedatores): 2 weeks @arabis@ and 4
	weeks (stanholinid)
Treatments	Devis and control and the second
Test concentrations	weeks (staphylinid) of the second sec
Number of replicates:	
Individuals per coplicate	
Test units (type and size):	According to Barrett et a $2/1994$ Conjin et al. $(2001)^{34}$
	et at 2000° and Grimma et al. (2000) ³⁶
Application / device / nozzles	
Water volume:	
Calibration of spayer:	
2. Environmental Snditions	
Test medium:	Glass, Sand, horse bean, barley, soil
Tenperatures relative humitity:	According to Barrett egal. (1994), Copin et al. (2001) ³⁴ ,
	24 al. $(2000)^{35}$ and Grimm et al. $(2000)^{36}$
Tentperature relative humidity:	According to Barrett et al. (1994), Copin et al. $(2001)^{34}$, according to Barrett et al. (1994), Copin et al. $(2001)^{34}$, according to Barrett et al. (1994), Copin et al. $(2001)^{34}$, et al. $(2000)^{35}$ and Grimm et al. $(2000)^{36}$ According to Barrett et al. (1994), Copin et al. $(2001)^{34}$, et al. $(2000)^{5}$ and Grimm et al. $(2000)^{36}$
	$(2000)^{35}$ and (37) mm et al. $(2000)^{36}$
S kantings	According to Barrett et al. (1994), Copin et al. (2001) ³⁴ ,
	According to Barrett et al. (1994), Copin et al. $(2001)^{34}$, et al. $(2000)^{35}$ and Grimm et al. $(2000)^{36}$ According to Barrett et al. (1994), Copin et al. $(2001)^{34}$, et al. $(2000)^{36}$ and Grimm et al. $(2000)^{36}$
Organie matter (Corg);Q	
The Caco	
Cation exchange capacity:	
Soil textural tractions extractable	
micronutrient concentrations [mg per kg	
	-Q [*]
Fertilization: @	
3. Observations and measurements:	
Analysical parameters measured: Biological parameters measured: Measurement frequency:	-
Biological parameters measured:	Mortality and parasitism reduction (PR)
	Only at test end
Statistical analyses:	Abott (1925) ³⁷

RESULTS

Validity criteria: No validity criteria were stated

Biological findings:

Table 1: Results of toxicity tests, corrected mortality (CM) or parasitism reduction (PR) (%), inert substrate (glass or sand): B; results in semi-controlled winditions (plants or soil); §: pot yet completed tested. al a

Active	Formul	a.i. concen-	g a.i./ha	rhopalosiphi	AQ bipunctața @	• W. K	A. bilineat @	^C B. ^C lampfos
ingredient	ation	tration (%)					a 🏹	
			2		A QB	A B	A ^O B	B
Deltamethrin	Decis 2.5 EC	2.5	Q. U			1.	100 J-	725 [°] -
			$\langle 0^{\circ} \rangle \langle 0^{\circ}$					Ì.

For A. rhopalosiphi, mortality of glass was 100% whereas the toxicity on plants indicated 75% morality. Tests with A. bipurkrata showed 200% corrected mortality on glass and on plants. For E. balteatus mortality on glass was 75 and of plant 277%. On sand, A. buneata showed 100% parasitism reduction. For B. lampros, deltamethrin were wested on sand and indicated a mortality of 72%.

Comment by the Notifier

The presented data configure the known acute toxicity of deltamethrich to insects at an application rate of 10 g a.s./ha under laboratory and extended laboratory conditions, Therefore, the information is classified as bosupplementary information (EFSA Jourper 20159(2):2092).

Semi-field studies with non-target arthropods CP 10,3,2.3

No semi-field studies have been conducted since field tests are available.

CP 10.3.2.4 @Field Studies with non-target arthropods

Report:	KCP 10.32.4/01, 10.1 , 10.1 ; 2012
	A field study to assess the effects of Deltamethrin EW 15 (g/L) on the non-target,
	surface- and plant-owelling arthropod fauna of a grassland habitat (off-crop) in The Netherlands during spring summer
Document No	<u>M-430%76-03-@(EBD</u> AL045)
Guidelines	IOBC Hassar, 1992), Anonymous (1992), Brown (1998), IOBC, BART and EPPO
	Joint Initiative (Candolfi et al., 2000, 2001), De Jong et al. (2010)
GLP:	yês x

Objective 0

Deframethrin EW 15 is an insecticide. This field study was designed to assess the potential adverse effects on Non-Target Arthropods (NTA) in off-crop habitats that might occur at various distances from a treated area for current and future use patterns of the test item. By analogy to regulatory studies in e.g. aquatic environments the study was set up to enable an assessment of community- and

population level ecotoxicological standards, in particular the NOER (No Observed Effect Rate), the NOEAER and the LOEAER (No and Lowest Observed Ecologically Adverse Effect Rate, Ô respectively).

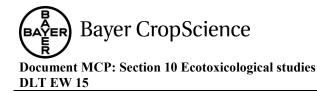
This study was performed in a true off-crop habitat, i.e. a grassland habitat with attle agricultural input in The Netherlands. The site was situated in an agricultural area. This approach had the advantage that the observed response would pertain to a more representative off-crop NTA community, de. a community not previously under selection in an agricultural regime. For this reason the study outcome will represent a realistic worst case situation, irrespective of the intended product use The study was performed as a NOER-type study (007: De Jong et a

To enable a refined assessment of NOEAER/LOF ER sampling was continued until® application.

Methods Deltamethrin EW 15 was applied once te a grassland meadow on 1 kuly 201 at nominal rates of 0.1, 0.23, 0.6, 1.3 and 3.0 g a.s./ha, equivalent to typical drift values for different use patterns of the test item. Average application rates per treatment deviated 7% or less from intender rates A water control treatment and a toxic reference treatment (lambda-cyhalothrip at a rate of 0.4 L product/ha) were run in parallel. Nominal application volumes were 200 Lana.

The soil-surface- and plant-dwelling arthrogod communities were monitored shortly before, one, two, four and eight weeks after application. A broad spectrum of arthropoth was sampled with different sampling methods, viz. pitfall trapping, Berlese-Tulleren extraction from weed samples and suction sampling.

The trial had a rand mized complete block design with replicates/treatment. Each block had seven treatment plots of 34 x 240m. To minimize interference among plots the treat was laid out in a checkerboard design. (N)


The effects of Deltanethrin PW 15 were expressed in terms of Dopulation and community changes relative to the water control. The No Observed Effect Rate (NOER) was defined at the community level and at the population level as the rate at whick adverse responses were not significantly different from the water control at apy/time point. The No Observed Ecologically Adverse Effect Rate (NOEAER) was defined at the community level and anothe population level as the rate at which statistically significant adverses responses were observed, but recovery was demonstrated within two months after applications. By analogy the LOEAER (for community and population responses) was defined as the lowest test at which adverse effects were significantly different from the water control without recovery occurring.

Statistical significances were in principal considered at an alpha level of 5%. Statistical significances at an arpha level of 40% were also indicated as additional information to evaluate potential trends.

Findings

Biological sestem

Biological setems of the arthropod community sampled in this study was diverse and typical for grassland vegetation, and representative for an off-crownon-target arthropod community. The timing of the experiment was such that a high number of abundant taxa were present during the sampling period. In addition timing concided with typical use patterns for the test item. The entire dataset was appropriate for community analyses using ordination techniques. In addition, a total of 62 taxa were sufficiently abundant to be subjected to population level evaluations. A number of evaluations were performed at the family level,

but several taxa occurred at sufficiently high numbers to allow for an evaluation at genus or species level.

di di The taxonomical analysis was performed in great detail. Despite the restrictions caused by the inevitable categorization of specimens at different taxonomic levels, it was felt the number of taxa together with the choice of taxonomic level used for analysis did provide a sufficiently detailed and valid ecological analysis.

Sampling strategy

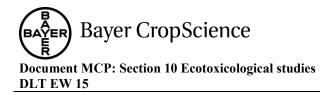
The entire arthropod community occurring in the off-etop habitat was monitored using pital weed/Berlese and suction sampling techniques. There was some overlap of taxa sampled with the different trapping techniques. Because of taxonomic differences different species in the same higher level taxon), biological differences (e.g. life stages with different susceptibility in offerent traps) or behavioural differences (e.g. different exposure in different sub-habitats sampled); taxa sampled with . different techniques were considered different tax of or the overall community analyses (based on a pooled dataset with all sampling methods, included).

Test performance (insecticidal reference treatment)

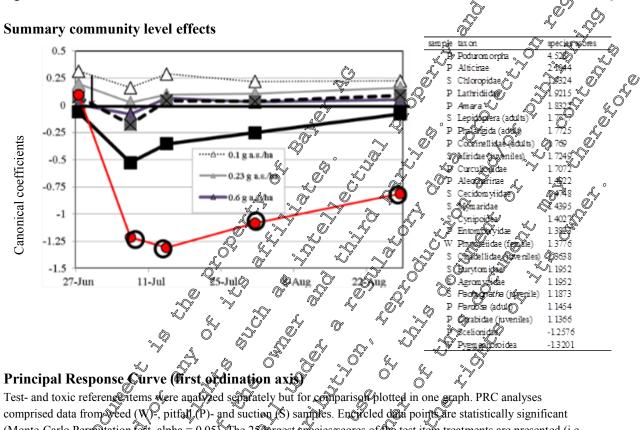
Test performance (insecticidal reference treatment) $\sqrt{2}$ $\sqrt{2}$ fauna in comparison to agricult@ral sites. The wimber of taxe occurring at sufficiently kigh numbers to allow for a population level analysis was higher than the number of taxaausually evaluated in studies performed in commercial agricultarial settings.

By using three different collecting methods (weed/Berlese sampling, pitfall, suction) the arthropod community occurring in grass ands was comprehensively sampled (ground- and plant dwelling arthropods).

Application of the insection of the inse both the arthropod compunity level and the population level. This was the for taxa and communities collected with all three sample types.


The overall PRC obtained from community analyses of all sample types combined was statistically significant for the toxic reference treatment. On individual sampling moments the response was statistically significant in comparison to the confrol on all post application moments. At the population level many taxa appeared adversely and statistically significantly affected. Indirect effects were also observed: numbers of some Collembora taxa were significantly increased compared to the control, probably due to reduced predation by spiders which were adversely affected by the toxic reference item.

For several taxa no recovery was seen in the toxic reference treatment within the two-month sampling period, indicating that the experimental period an oplot size chosen were adequate to demonstrate persistent treatment related effects. Abbott values in the toxic reference treatment were above 50% for approximately half of all taxa examined during the entire post-treatment period. Consequently validity criteria according to De Jong *et al.* (2010) were met.

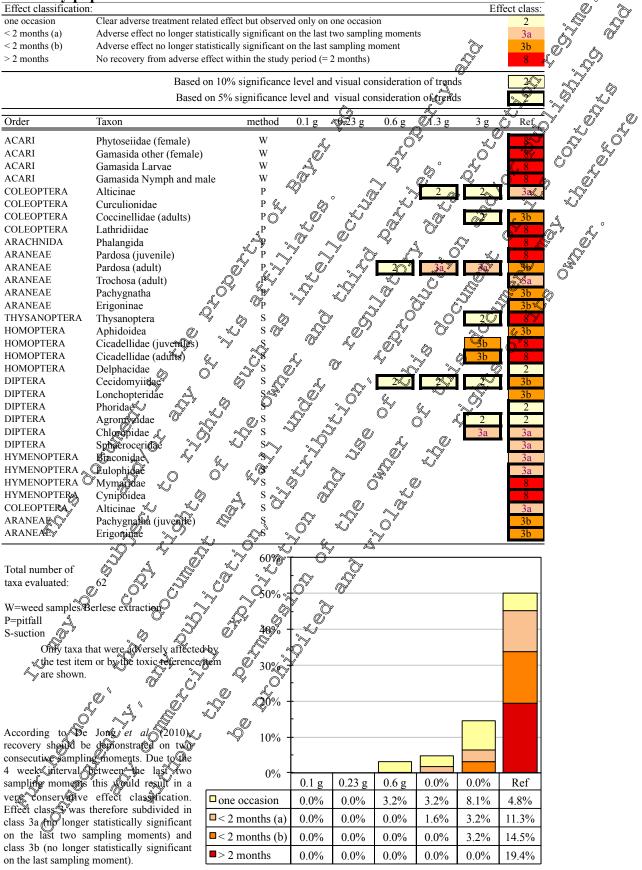

It is concluded that the test method presented in this study accurately examined potential risks for NTA fauna in true and representative off-crop habitats under a realistic worst-case test scenario.

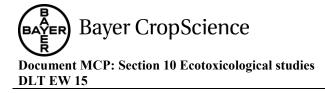
Results Deltamethrin EW 15

Treatment with the insecticide Deltamethrin EW 15 in an off-field grassland habitat in The Netherkinds led to a statistically significant adverse effect on prevailing arthropod communities only for the highest test rate of 3 g a.s./ha, on only one sampling occasion one week after application, and only in the suction- and the pitfall dataset. Visual inspection of the PRC graph confirmed that at the

community level a moderate and transient treatment related response could be observed. With all sampling methods analyzed together differences compared to the control were not statistically significant.

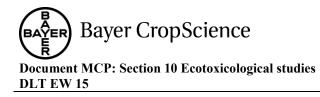
comprised data from veed (W, pitfall (P)- and suction (S) samples. Encycled data points are statistically significant (Monte-Carlo Pernotation Ost, alpha = 0.05) The 250 argest species scores of the test item treatments are presented (i.e.




BAYER Bayer CropScience

BAYER Bayer CropScience

Treatments in		ce accounted	% Variance e			
analysis		or by	treatment ca		D 1 -	D 1 -
The state of the s	time	treatment	ax1	ax2	P-value ax1	P-value ax2
Test item rates	30.5 26.4	12.3 23.4	17.7 73.3	10.4 13.4	0.928 0.027	1.000 0.054
Reference					0.027	0.034
P-values at indivio All data	sampling		0.23 g a.s./ha		1.3 g a.s./ha	3 g a.s./ha0
28-Jun-11	1	0.1 g a.s./na	0.23 g a.s./na 0.942	0.0 g a.s./na 0.977	0.900	0.74 <u>3</u>
28-Jul-11 08-Jul-11	2	0.300	0.942	0.977	0.900	0.145
15-Jul-11	23	0.910	0.869	0.910	© 0.660	0.495
01-Aug-11	4	0.432	1.000		0.000	0.638
29-Aug-11	4 5	0.818	1.000	1.000 (0.917	0.038 0 1.000
Weed data	sample			0.6 g a.C/ha		
28-Jun-11	1	0.321	0.29 g d.3./11d	0.856	0.703	©392
08-Jul-11	2	0.937	0.841	Ø 6 .975		a 006 ~
15-Jul-11	3	0.838	0.910	0.858	0.73¥ 0.\$10	0.7560
01-Aug-11	4	1.000	0.946	0.82	× 9.608 ×	0.925
30-Aug-11	5	0.829	0.823	0.882	0 1.000	0.797
Pitfall data	sample		0.23 g a. s. ha	0.6 ga.s./ha	1.3 g a.s. ma	3 g a.s./ha
	1				₩ %	
08-Jul-11	2	0.742	Ø 866 _ SA	y [#] 0.82		0.045
15-Jul-11	3	0.234	0.302	0,571	0.304	0076
05-Aug-11	4	0.634	1.000	×1,000 s	() 0. 894	0 .664
26-Aug-11	5	0.583 🖉	0.864	<u>. 0.971</u>	0,\$12	0.793
Suction data	sample	0.1 g a.s./ha	0.23 ga.s./ha	0.6 g a, s. ha	1.3 2a.s./ha	🗘 3 g a 🛪 jia
28-Jun-11	1	0,365	∞_0.862	0.857	0.762	, 0.941
08-Jul-11	2	€ <u>6</u> 32	0.86	0.830	0.617	Q050
15-Jul-11	3	© ^{0.446} Õ	× 0.906) 1.000 ·	~~ [*] ⁹ 0.606~
01-Aug-11	4	0.389	12900	♥ 0.884	0.920 \$	() ^v 0.444€ ^v
29-Aug-11	5	0.400	<u>1.000</u>	<u>, 1,000</u>	0.841	1.000
01-Jul-11 08-Jul-11 15-Jul-11 05-Aug-11 26-Aug-11 28-Jun-11 08-Jul-11 15-Jul-11 01-Aug-11 29-Aug-11 29-Aug-11 29-Aug-11						


Summary population level effects

At the population level nine taxa showed statistically significant adverse response patterns that were considered related to the test item treatment (based on magnitude and duration in relation to dose and timing). These were two Coleoptera taxa (Alticinae, Chrysomelidae: 1.3 g and 3 g a.s./ha, and acult Coccinellidae: 3 g a.s./ha), one spider taxon (adult *Pardosa*, Lycosidae; 0.6 g, 1.9 g and 3 g a.g./ha), Thysanoptera (3 g a.s./ha), juvenile and adult Cicadellidae (Homoptera; 3 g a.g./ha), and three dipteran taxa (Cecidomyiidae; 0.6 g, 1.3 g and 3 g a.s./ha, Agromyzidae and Chloropidae; 3 g a.s./ha). For few other taxa reductions compared to the control occurred incidentally, but no consistent trend in time or relation to the dose rate was found.

Community level effects	0.1 g a.s./ha	0.23 g a.s./ha 🛛	0.6 g a@/ha	~ 3.3 g a (ha	🔊 3 g a 🔊 ha
PRC/Monte-Carlo; 5% alpha level)	la la				
	Ő	, Ø 🐇	Effect class		1
Weed/Berlese dataset	1				0 14
Pitfall dataset	× v	\sim 1 \sim \sim	× A.		× L
Suction dataset	I in				2 ³ 2
Conclusion				Commutity	Community
Å				NOT NOT	NOEAER
Population level effects	0.Kg a.s./ha	0 2 8 0 a s / 18	000 g a.s./ha	1.5 g a.s. 4ha	3 g a.s./ha
Mann-Whitney U test; 5% alpha level					0 g a.s./ na
stanii Wintiley O test, 570 alpha le tog	K Ö 	% 0	Effecticlass `~		
Alticinae (Chrysomelidae, Coleoptera) 🔏			W1 S		2
dult Coccinellidae (Coleoptera)	ŵ 1 Ô				2
dult Pardosa (Lycosidae Araneae)				S 3a	2 3a
Thysanoptera			* ' c1 @,	y 5u	2
ivenile Cicadellidae (Homophera)				1	2 3b
dult Cicadellidae Piomoptera)				1	36 3b
Cecidomyiidae (Nematocera, Diptera)			5,9	2	2
			° 1	- 1	2
Chloropica (Acalyptrata, Doptera)			0 1	1	3a
		Population	\searrow		Population
Conclusion		NOER 💫			NOEAER
		<u> </u>			
NOER:	No Observed Eff	ct Rate no statistic	cally significant di	fferences compared	l to control)
		% /			
NOEAER.	No Observed Eco	logically Adverse I	Effect Rate (at leas	at 1 taxon with effect	et class 2 or 3, i.
	clear response to	treatment but with i	recovery within 2	months after applic	ation)
The second se	`_~~ ₍ 0*				
Effect classification:					
Effect classification:	<u>~~~</u>	11			Effect class
o effect Wo consistent treatment of the consistent of	ent related statistica			to the control	1
< 2 months (a) Adverse effect no lor				nents	2 3a
		gnificant on the last			3b
< 2 months (b) Adverse effect no lor > Zmonths No recovery from ad	iger statistically sig	sinneant on the last	sumpring moment		50

Conclusions

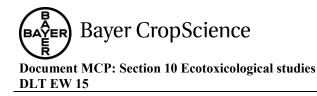
It is concluded that Deltamethrin EW 15 applied at a rate of 3 g a.s./ha in an off-crop grassland in the Netherlands is the community NOEAER (No Observed Ecologically Adverse Effect Rate). No statistically significant adverse effects were found in the 1.3 g a.s./ha rate. This fate is classified as the community NOER (No Observed Effect Rate).

At the population level nine taxa were considered adversely affected by treatment with Dettametorin EW 15 applied at a rate of 3 g a.s./ha, three taxa by treatment with 1.3 g a s./ha and two taxa by treatment with 0.6 g a.s./ha. These taxa all recovered within two to eight weeks after application. Deltamethrin EW 15 applied at 3 g a.s./ha is therefore classified as population NOEAER and 0 are g a.s./ha as the population NOER.

Report:	KCP 10.3.2.4/02, 0^{\vee} , $0^$
Title:	A field study to assess the effects of Deltamethtin EW 95 (g/K) on the non-target,
	surface- and plant dwelling arthropod fauna of a grassland habitat (off-crop) in SW
	France during pring summer of a start of a
Document No:	M-430827-6421 (EBDAL069)
Guidelines:	IOBC (Hassan, 1992), Aponymous (1992), Brown (1998), IOBC, BART and EPPO
	IOBC (Hassan, 1992), Aponymous (1992), Brown (1998), IOBC, BART and EPPO Joint Indicative (Candolfi et al. 2000, 2001), De Jong et al. (2010)
GLP:	yes & D' & m & ry & g

Objective

Deltamethrin EW 15 S an insecticide. This field study was designed to assess the potential adverse effects on Non-Target Arthropods NTA in off-crop habitats that might occur at various distances from a treated area for current and future use patterns of the test item. By analogy to regulatory studies in e.g. aquatic environments the study was set up to enable an assessment of community- and population level ecotoxicological endpoints, in particular the NOER (No Observed Effect Rate), the NOEAER and the LOEAER (No and Powest Observed Ecotogical). Adverse Effect Rate, respectively).


This study was performed in a true off-crop habitat, i.e. a grassland habitat with little agricultural input in SW France. The site was situated in an agricultural area. This approach had the advantage that the observed response would perform to the more representative off-crop NTA community, i.e. a community not previously under selection in an agricultural regime. For this reason the study outcome represents a realistic west case situation, inespective of the intended product use.

The study was performed as a NOER-type study (**Jack House**, 2007; De Jong *et al*, 2010. To enable a refined assessment of NOEAER/LOEAER sampling was continued until 8 weeks postapplication.

Methods

Deltamethrin EW 15 was applied once to a grassland meadow on 2 June 2011 at nominal rates of 0.1, 0.23, 0.6 4.3 and 3.0 g a.s./ha equivalent to typical drift values for different use patterns of the test item. Average application rates per treatment deviated 2.6% or less from intended rates. A water control treatment and a toxic reference treatment (lambda-cyhalothrin at a rate of 0.4 L product/ha) were run a parallel. Nominal application volumes were 200 L/ha.

The solution solution and plant-dwelling arthropod communities were monitored shortly before, one, two, four and eight weeks after application. A broad spectrum of arthropods was sampled with different

sampling methods, viz. pitfall trapping, Berlese-Tullgren extraction from weed samples and suction sampling.

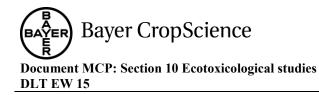
The trial had a randomized complete block design with 4 replicates/treatment. Each block had seven treatment plots of 24 × 24 m. To minimize interference among plots, the trial will laid out in all checkerboard design.

The effects of Deltamethrin EW 15 were expressed in terms of population and community change relative to the water control. The No Observed Effect Rate (NOER) was defined at the community level and at the population level as the rate at which adverse responses were not significantly differen from the water control at any time point. The No Observed Ecologically Adverse Effect Rate (NOEAER) was defined at the community level and at the population level as the rate at which statistically significant adverse responses were observed, but resovery was demonstrated within two months after applications. By analogy the LOEAER (for compunity and population responses) was defined as the lowest test rate at which adverse effects were significantly offerent from the water control without recovery occurring.

Statistical significances were in principal considered at an alpha level of 5% Statistical significances at an alpha level of 10% were also indicated as additional information to evaluate potential trends. Findings

Biological system

The arthropod community sampled in this study was diverse and wpicat for grassland egetation, and representative for an off-crop non-farget arthrop of community. The timing of the experiment was such that a high number of abundant taxa were present during the sampling period. In addition timing coincided with typical use patterns for the test item The entire dataset was appropriate for community analyses using ordination techniques. In addition a total of 80 taxa were sufficiently abundant to be subjected to population level evaluations. A number of evaluations were performed at the family level, but several taxa occurred at sufficiently high numbers to allow for an evaluation at genus or species level.


The taxonomical analysis was performed in great detail. Despite the restrictions caused by the inevitable categorization of specimene at different taxonomic levels, it was felt that the number of taxa together with the choice of paxonomic levefused for analysis did provide a sufficiently detailed and valid ecological analysis

Sampling strategy

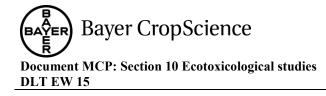
The entire arthropod community occurring in the off-crop habitat was monitored using pitfall-, weed/Bertese and suction sampling techniques. There was some overlap of taxa sampled with the different trapping techniques. Because of taxonomic differences (different species in the same higher level texon), biological difference? (e.g. ffe stages with different susceptibility in different traps) or behavioural differences (e.g. different exposure in different sub-habitats sampled), taxa sampled with different techniques were considered different taxa for the overall community analyses (based on a pooled datase with all sampling method cincluded).

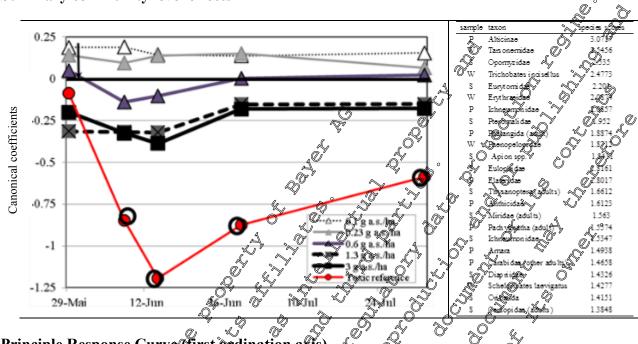
Test performance (insecticida) reference treatment)

At the family Pevel there were no fundamental differences in the composition of the off-crop arthropod faund in comparison to agricultural sites. The number of taxa occurring at sufficiently high numbers to allow for population level analysis was higher than the number of taxa usually evaluated in studies performed in commercial agricultural settings.

By using three different collecting methods (weed/Berlese sampling, pitfall, suction) the arthropod all a community occurring in grasslands was comprehensively sampled (ground- and plant dwelling arthropods).

Application of the insecticidal toxic reference lambda-cyhalothrin resulted in clear responses a both the arthropod community level and the population level. This was true for tax and communities collected with all three sample types. Ô

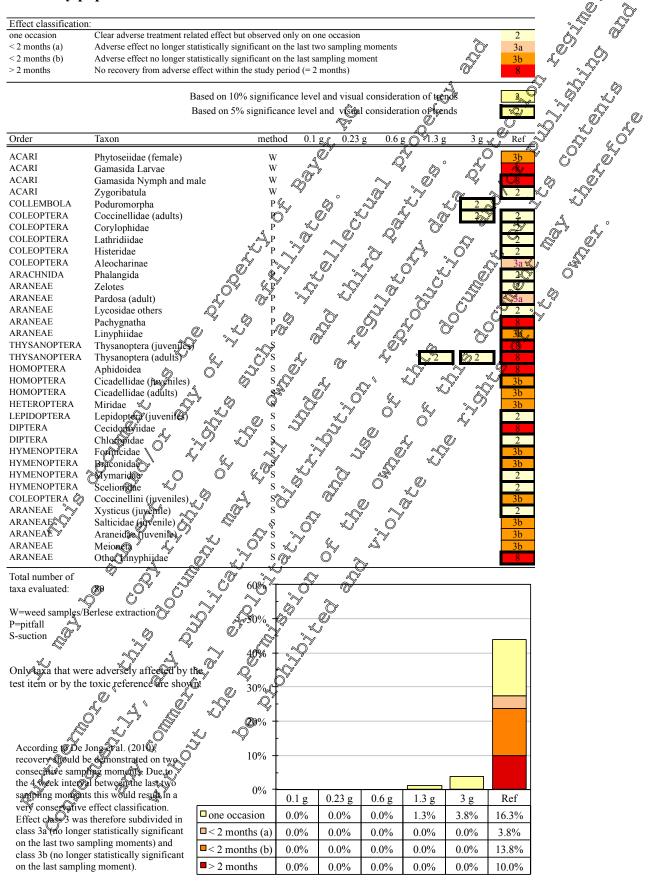

The overall PRC obtained from community analyses of all sample types combined was statistically significant for the toxic reference treatment. On individual sampling moments the response was statistically significant in comparison to the control on all post application moments. At the population, level many taxa appeared adversely and statistically significantly affected. Indirect effects were also observed: numbers of the collembolan taxa Entomobryidae, Sminthuridae and Symplopleora were significantly increased compared to the control, probably due to reduced predation by spiders which , Ø were adversely affected by the toxic reference

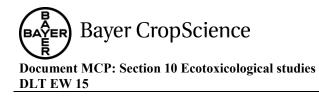

For several taxa no recovery was seen in the toxic reference treatment within the two month sampling period, indicating that the experimental period and plot size closen were adequate to demonstrate persistent treatment related effects. Abbott values in the toxic reference treatment were above 50% for at least 40% of all taxa examined on Oand two weeks after application. Consequently calidity criteria according to De Jong et al. (2010) were met.

It is concluded that the test method presented of this study accurately examined potential risks for NTA fauna in true and representative off-erop habitats under a realistic worst-case test scenario.

Treatment with the insecticid Deltamethrin W 10in an off-field grassland hapitat in South-West France did not lead to statistically significant effects on prevailing arthropod communities for any of the rates tested up to 3 g of /ha. Visual inspection of the PRC graph confirmed that at the community level no treatment related response could be observed.

inder a real inder

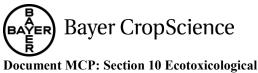



Summary community level effects

Principle Response Curve (first ordination axis) Test- and toxic references were analyzed stparately out for comparison plotted in one graph. P&C analyses comprised data from weed (W)-, pitfall (P)- and suction (S) samples. Encipted data points are statistically significant (Monte-Carlo Permutation test, alpha = 0.05). The 25 largest species scores of the test item treatments are presented (i.e. these species had the largest influence on the shape of the PRC surves).

the largest influ	uence on t	he shape of t	the PRC @1	rves). 🔘		U 🖏	1	0)	
treatments	% Varianc	e gecounted	% Variance	explained by		/ O`	· & ^		~
included in	fo	Ò.	treatment of	capted by	S ~		(Statistically s	significant at $alpha = 0.05$	Ο
analysis	time 🖉	treatment		SV ax2	P-value ax1	P-@Aue ax2	. 0.		
	, S	, O'	N V		02 V	S. A.			
all	38	▲ ^{6.2}	√y 31.8 ₀	9.3	0.001	S 0.803	s Y		
test item rates	40)	O11.8	18.1	1,90	× ^{0.621}	0.9887			
0.1 g a.s./ha	G7 .2	6.5 5.6 62	44. O	7.8	0.645 0	0931	(A)		
0.23 g a.s./ha	44.4	0 5.6∞	38.2	₹ 20.6	0.943	0.932 💉	Ĵ		
0.6 g a.s./ha		§.2	\$ 38	20.3	0.890	@ ^{0.956}			
1.3 g a.s./ha		6.8		22.5	0.515	0.844			
3 g a.s./ha	43.6 40.9	. 011(5) C	≫ 43.3 <i>∞</i>	19.8	$0^{9.606}_{0.033}$ %	v 0.640			
Kelerence/	40.9	N 10.3 N	69.8	(190.) (190.)	0.033	0.2.1.3			
Developed at individ				U 1	j <u> </u>	Â	-		
P-values at individ All data		<i>"</i>	0 g a.s./ha	Action Test	1.2 g 0.0 /bo	Stan a /ha	Reference		
-	sample				1.3 g a.s./ha	g a.s./ha			
30-May-11		Q.760	0.943	0.9NA	Q.401	0.804	0.929		
09-Jun-11		00.548	0.790	© ⁴²	0.510	0.150	0.021		
15-Jun-11	~Q 3	0 0.6690	0.944	O'ana O	× 0.642	0.471	0.029		
30-Jun-11	4	0.789	~O.828	0.837	0.914	0.942	0.027		
02-Aug-11	y 5	0.849	2 ^{0.943}	0.908	0.569	0.643	0.035		
Weed date	sample	Q. I g a.s./had	2.23 g a.s./ha	0.6 g@s./ha	∛.‰g a.s./ha	3 g a.s./ha	Reference		
26-May-11	1 🛦	0.389 4	0.89%	\$ 785	° 0.466	0.779	0.791		
09-Jun-11	2 🔣	0.846	07240	Ø0.426	0.142	0.160	0.037		
16-3ym-11	3	0.318	×9/706	Q, 0.524	0.820	0.368	0.044		
30-Jun-11	4	0.668	(<i>1</i> 0 749	0.896	0.497	0.915	0.048		
30-Jul-11	(U)	0.434	§ 1.000	0,550	0.745	0.648	0.354		
Pitfall data	simple	0.1°g a.s./h	0.23 g a.s/ha	0.6 g se.s./ha	1.3 g a.s./ha	3 g a.s./ha	Reference		
01-Jun-11		0.47	0.612	@0.621	0.343	0.730	0.526		
09-Jun-11 🖉	ىكە 2 🖏	0.639	s‰ 9.973 ≈	O 1.000	0.655	0.638	0.034		
16-Jun-11 🔗	3	000.4	\$1.000	⁹⁶ 0.977	0.325	0.378	0.024		
30-Jun-11	"O"	0.759	0.872	0.465	0.839	0.898	0.026		
02-Aug-Th	<u> </u>	0.828	0.941	0.672	0.509	0.136	0.410		
Suction data	Ginnple ,	0.1 g a.s. tha	0.23 g a.s./ha	0.6 g a.s./ha	1.3 g a.s./ha	3 g a.s./ha	Reference		
30-May-11		v 0.85¥∕	1.000	0.878	0.525	0.664	0.942		
🕼-Jun-11	2	0.205	0.674	0.370	0.284	0.598	0.027		
13-Jun-11	3	0.692	0.829	0.899	0.655	0.629	0.019		
30-Jun +	4	0.891	0.671	0.863	0.800	0.815	0.028		
02-Aug-11	5	0.819	0.672	0.693	0.903	0.714	0.035		

Summary population level effects


At the population level three taxa showed statistically significant adverse response patterns that were considered related to the test item treatment (based on magnitude and duration in relation to dose timing). These were Poduromorpha (Collembola, 3 g a.s./ha), adult Coccinellidae (Coleoptera, a.s./ha) and adult Thysanoptera (1.3 g and 3 g a.s./ha). Õ For few other taxa reductions compared to the control occurred incidentally, but no consistent time or relation to the dose rate was found.

Community level effects	0.1 g a.s./ha	thrin EW 15 r	0.6.00 s /ha	1 3 g/a c /ha	3 6 8 s /h 4. C
•	0.1 g a.s./na	0.25°8/a.s./11a	0.0 gea.s./na		Sau S./ IIa
PRC/Monte-Carlo; 5% alpha level)					
			Effect Quass		
Veed/Berlese dataset	1 🔬	, b ^{l°} ,S			~~~ [¥]
itfall dataset	1 O″			° [™] 1	A 1
uction dataset	1				
Conclusion		chrin EW 15 r 0.23 g a.s./ha			Copprint Copprises
opulation level effects	10.1 g a. Sha	°0.23 g a.s./ha	~0.6 g a.s ./ha .		3 g a.s./ha
Mann-Whitney U test; 5% alpha level					
	<u>, v</u> v		Rect clas		
oduromorpha (Arthropleona, Collera					2
dult Coccinellidae (Coleoptera)					2
		/ 1- / / 1 @\			-
dult Thysanoptera					2
conclusion			Population NODR	Ŷ	Population NOEAER
OER:	No Observed Effe	Rate (postatisti	ally significant di	fferences compared	l to control)
OEAER C	No Deserved Eco	logically Adverse	Effect Rate (at leas re@very within 2 1	t 1 taxon with effect	et class 2 or 3, i.e
		, y y 4		fr -	
frect classification;					Effect class:
effect No comistent tr	estment related statistic	allysignificated diff	erences compared t	o the control	1
	eatment elated Ofect b				2
2 months (a) Adverse effect i	no longer statistically si	anificant on the last	t two sampling mon	nents	3a
	no Onger statustically a				3b
2 months " No recovery fro	advers@effect within	the andy paried (-	- 2 months)		8

Overall conclusions

Overall conclusions It is concluded that Deltamethtin EW@5 applied at a rate of 3 g a.s./ha in an off-crop grassland in South-West France is the community NOER (No Observed Effect Rate).

At the population level, three taxa were adversely affected by treatment with Deltamethrin EW 15 applied a a rate of 3 g a.s./ha and one taxon by treatment with 1.3 g a.s./ha. They all recovered within one month which is considered to be the ecologically acceptable. Deltamethrin EW 15 applied at 3 g a.s./havis there fore plassified as the population NOEAER (No Observed Ecologically Adverse Effect Rate), and 0.6 g a.s./ha as the population NOER.

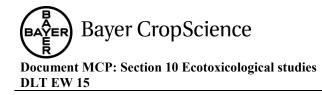
Report:	KCP 10.3.2.4/03, ; 2011		0
Title:	Statement on Residues of Deltamethrin in/on Barley	and Barley, Sp	ring: Kineti 🖉 👔 🐧
	Evaluation		
Document No.:	<u>M-424226-01-1</u> (Rep. No.: MEF-11/879)	ð	
Guidelines:	Not applicable: Kinetic evaluation	S.	4 . 4
GLP:	Not applicable	4	

Methods:

A kinetic evaluation of the plant residue study of deltamethrin in/on barley and barley, spring in Spring Germany, Belgium and United Kingdom (2011; M-408272-01-1) was performed The single-first-order (SFO) half-lives of deltametorin derived in this evaluation are sommarised in the table below: Ŕ

Ó

Summary of DT50 values deltamethrin in various trials

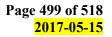

Date	Site Crep DTso days	
10-2120-01	(Spain)	
	(Spain)	
10-2120-02	(Germany) y barley, spring 2.42	
10-2120-03	(Beggium) (Beggi	
10-2120-04	Onited Kingdom Garley 🔗 🖓.4	
Geometric mean		

Results and Conclusion

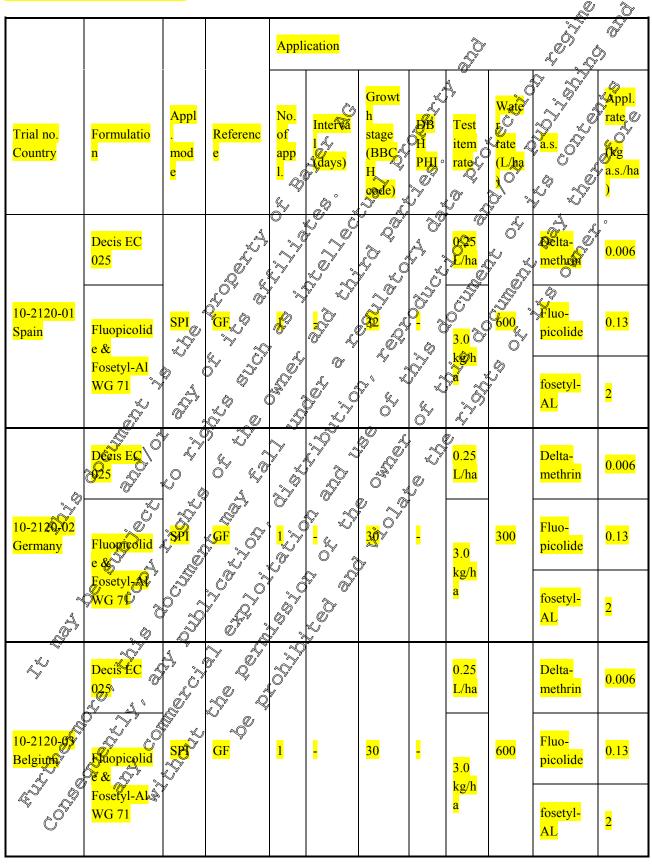
The evaluation of the tate of celtamethrin residues on plants in different locations in Europe resulted in a DT₅₀ of 2.9 day

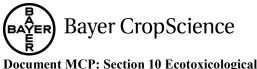
Ô

Report: Title:	
Report: KCP 1022.4/03 2011-M-408272-01-1	
Title: Determination of the residues of deltamethrin and fluopicolide in/on Barley and	
Barley, spring after praying of fluggicolide & fosetyl-Al WG 71 and Decis EC 0	<mark>25</mark>
¹ in the field in Spain, Germany, Belgium and United Kingdom	
Report No.2 10-2120 Documed No.: <u>M-406272-019</u> Guideline(s): EU _c Ref: Council Directive 91/414/EEC of July 15, 1991,	
Docume@No.: <u>@M-406272-019</u>	
Guideline(s): Several EU-Ref: Council Dypective 91/414/EEC of July 15, 1991.	
χ^{2} χ^{2} Anytex II part A section of and Annex III, part A, section 8	
Besidues in of on Treated Products, Food and Feed	
EC gridance working document 7029/VI/95 rev. 5 (1997-07-22)	
Guideline deviation(s), see page 78	
GLP/GEP K K K	
A A A	
Guideline deviation(s), GLP/GEP: GLP/GL	



Objective of the study


The objective of this study was to determine the magnitude of the relevant residues of fluopicolide, its of metabolites (AE C657188 and AE C653711) and deltermotivity in the interview of the relevant residues of fluopicolide, its material) after one spraying application with Fluopicolide & Fosetyl-Al WG 7 a WG formulation


Methods The study included four supervised residue trials, enducted in northern Europe (Germany, Belgium, and United Kingdom) and in southern Europe (Spain) during the 2010 season. At each trial site there was one untreated plot in addition to the treated plot(s). The treated and untreated plote trials there in the same manner.

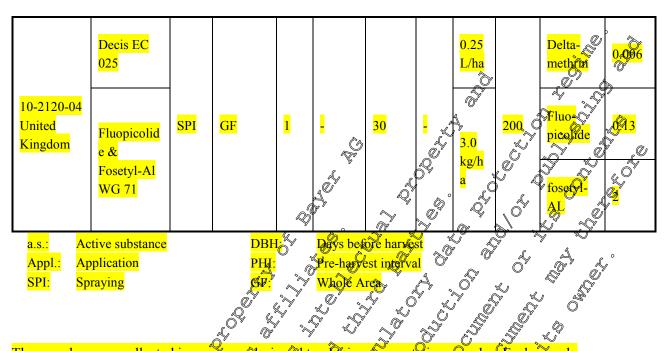
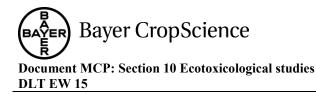

The actual application data are presented in the following table. The data reflects the intended application scheme, or, if minor deviations occurred, these were writing the acceptable ange:

Table 26: Application summary

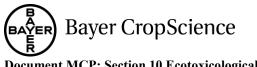


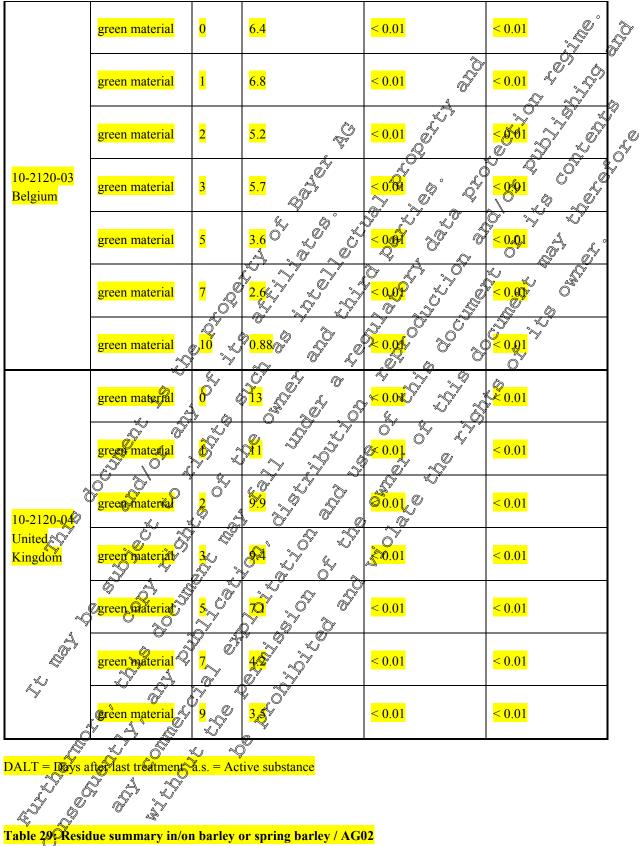
The samples were collected in a manner designed to obtain representative samples Each sample consisted of at least 500 g of green material for samples until 5 days after last application. The field samples from all trials were placed in doubled labelled bags and stored deep trozen within 24 hours after sampling. All field samples were shipped by deep trozen for under monitored conditions during shipment. The field samples were stored in a freezer at 18 °C or delow until preparation of the examination samples.

The analyses were conducted according to the following analytical method(s) which are described in details into the report.

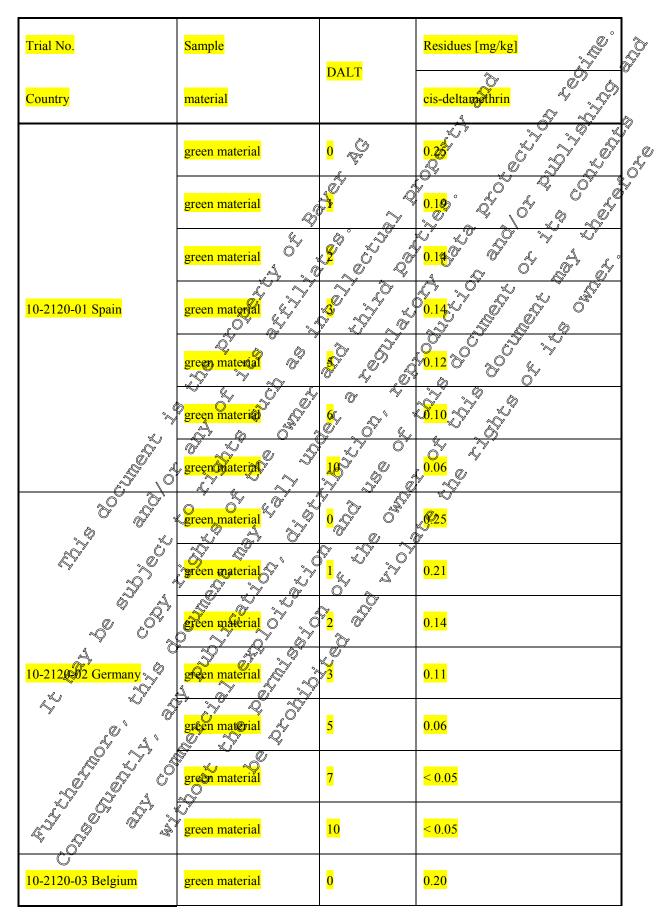
× »	tion mathe		, 1	
Table 27. Allaly				
Active substance	tical methods used	Method nutaber	[♥] ^I Limit of ^I quantitation ^{Img/kg]}	Measurement principle
	2 <mark>fluopicolide</mark>	01209	<mark>0.01</mark>	LC-MS/MS
fluopicolae	XE C657188	<mark>01209</mark>	<mark>0.01</mark>	LC-MS/MS
fluopicol@de	AE C653711	<mark>01209</mark>	<mark>0.01</mark>	LC-MS/MS
deltamethrin	<mark>cis-deltamethrin</mark>	00855/M004*	<mark>0.05</mark>	LC-MS/MS

* the analytical method 00855/M004permits to determine cis-deltamethrin and its isomers AE F108569 and AE 0035073. For this study 10-2120, only cis-deltamethrin was quantified with this method.

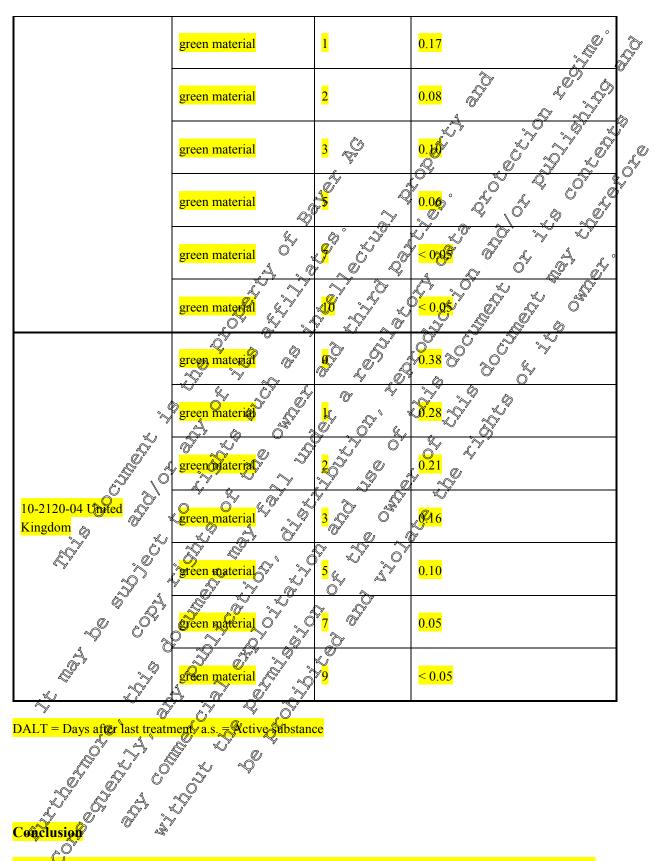

The storage period of deep-frozen samples for fluopicolide (AG01) and its metabolites ranged between 213 and 277 days.

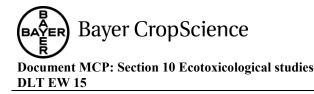

Storage period of the samples for fluopicoline ... between 213 and 277 days. The storage period of deep-frozen samples for cis-deltamethrin (AGOS) ranged between days.

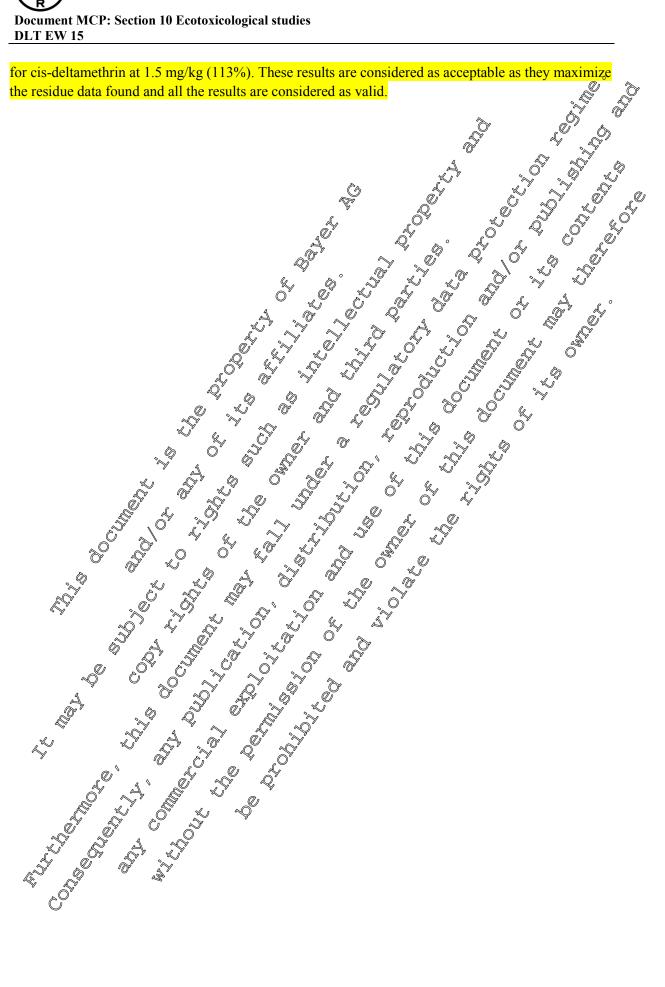

Results
The level of residues of fluopicolide, its detablishes (AU Co557188 and AlE Co55719) and deltangement
in the treated samples are summarised in the table below. No residues above the EOO some found in
the control samples. Results were not corrected for concurrent references.
Table 28: Residue summary in/on highley or pring farley (2/G01

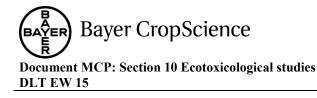


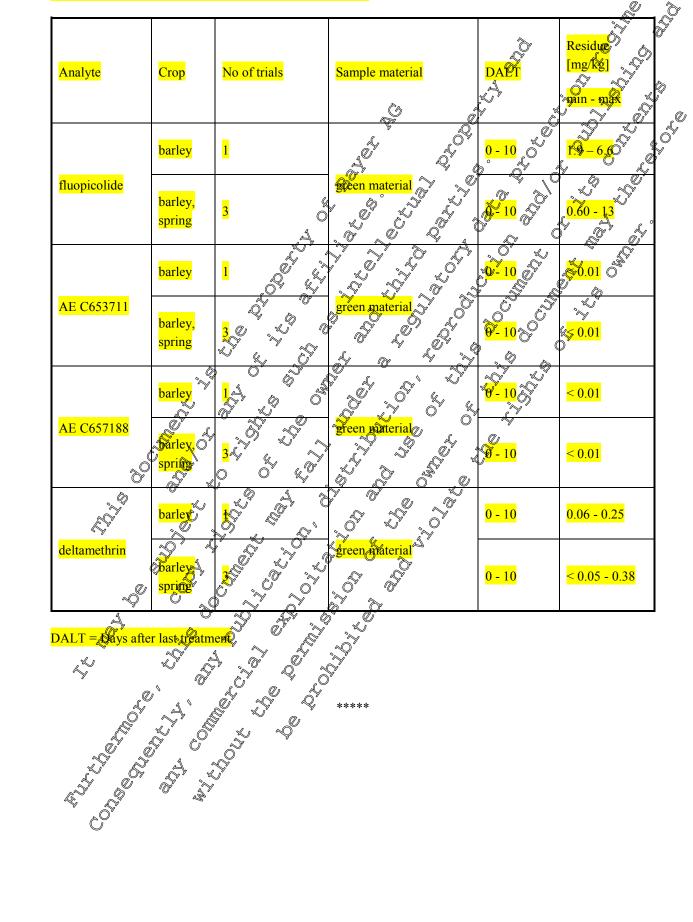
<mark>Trial No.</mark>	Sample	DALT	Residues [mg/kg]	~	AE C65371	47 42 0)	
Country	material				S.		Ô
			fluopicolide	AE C657698	AE C653711		
	green material	<mark>0</mark>	6.6	<0.84 g° q°	AE C653714 < 0.01 <	Ş	
	green material	<mark>1</mark>	6.6 0 2 2 2		Q [*] → √ < 0.01 → √ Q [*] Q [*] Q [*]		
	green material	2 0 0 0	6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6		≥ <mark>< 0.00</mark>		
<mark>10-2120-01</mark> Spain	green material	2 ³ , 4		×0.04 ℃ ~	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01		
	green material	S C		× 0.0 ≰	€ 0.01 F		
	green material green material		2.7 57 57 57		<mark>< 0.01</mark>		
م م	green material			©0.01 U	<mark>< 0.01</mark>		
in the second se	green material			20.01	<mark>< 0.01</mark>		
ĄĢ	green material		13 5 6 6 7 67 6 7 67 6	< 0.01	<mark>< 0.01</mark>		
	green material	2 2		< 0.01	<mark>< 0.01</mark>		
10-2120-02 Germany	green material green material green material green material	₹ <mark>3</mark> ₹ ₹	* 5 ³ 6.2 ³	< 0.01	<mark>< 0.01</mark>		
	green material	*** *** **	3 .9	<mark>< 0.01</mark>	<mark>< 0.01</mark>		
Germany	green material	7	2.7	< 0.01	<mark>< 0.01</mark>		
	green material	<mark>10</mark>	<mark>0.60</mark>	<mark>< 0.01</mark>	<mark>< 0.01</mark>		










The average recoveries were for all compounds and for all fortification levels within the acceptable range of 70 - 110 %, except for fluopicolide at 10 and 15 mg/kg (139% and 144%, respectively) and

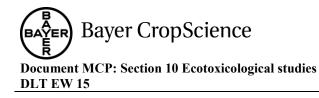
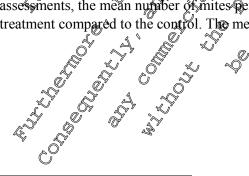


Table 30: Residues on crop after application of test item

Ø)

Supplemental information from the literature

Report:	KCP 10.3.2.4/04; Rodrigue	es, R.; Goncalves	s, R.; Silva, C.; T	orres, L.; 2004; M
Title:	<u>462140-01-1</u> Toxicity of five insecticide	s on predatory m	uites (Acari [,] Phyt	
	two ronuguese regions	s on productory in		
Report No.:	<u>M-462140-01-1</u>		A	
Document No.:	<u>M-462140-01-1</u>	Ĉa	L.	
Guideline(s):	not applicable		<u>"</u> U"	
Guideline deviation(s):	not applicable	ſ	8ª	
GLP/GEP:	no	Ú.	Å	

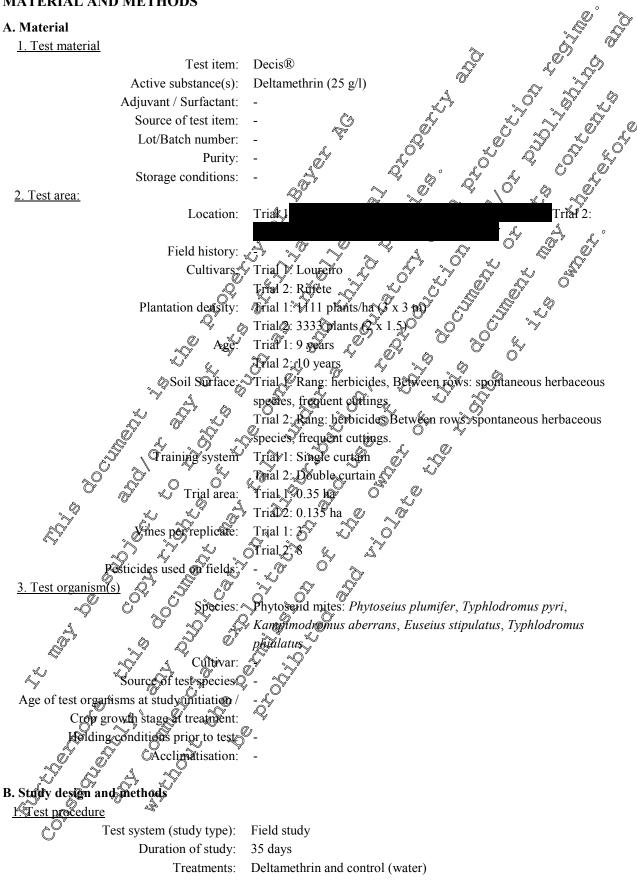

EXECUTIVE SUMMARY

To evaluate the toxicity of five insecticides on predatory mites (Acari: Phyloseiidae), two field tests were carried out during summer 2002, with a fully andomized design and five replicates performent treatment, using commercial formulations at recommended field rates. Material and methods as well as results are summarized for deltamethrin (Decis®, 25 g as/L) only. The trials were conducted at Ponte de Lima Minto region (trial 4) and castelo Brane Beira Interior region (trial 2). The test concentration (0.30 l/ha Decis®) was applied by a knapsack using a hand-lance until run-off (1000 l/ha). The control plot was greated with water.

The assessment of the mobile stages of Phyloseiid mites per leaf was performed in laboratory with a stereoscopic microscope. The leaves were detached in each replicate at five times, four days before the treatments (T0), and 4, 7, 14 and 35 days after treatments (T4, T7, T14 and T 35). In each assessment 25 leaves per replicate (125 leaves per treatment) were evaluated Effects on the predatory mites were calculated with the Benderson-Tilton formula³⁸. After the treatment, mean values of mobile stages of predatory mites per leaf were counted at each time of assessment in all 5 ceplicates and analysed statistically (ANOVA and HSD Tuckey-test).

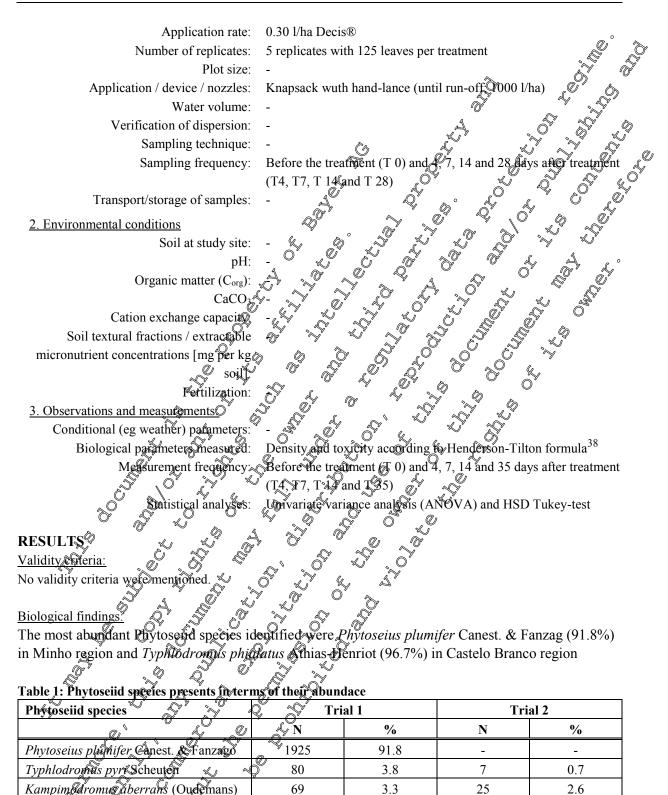
The most abundant Phytoseiid species identified were Phytoseius plumifer Canest. & Fanzag (91.8%) in Minho region and Typhodronnus philatatus Athias-Henrich (96.7%) in Castelo Branco region In trial f. first significant difference between control and deltamethrin treatment were observed 4 days after of application. In the following subsequent assessments, performed 7, 14, 21 and 35 days after the treatment, the mean density of phytoseiid partes per leaf was always significantly less in the deltamethrin treatment compared to the control. The mean foxicity according to Henderson-Tilton was 95.8%.

In trial 2, predatory mites were not homogeneously distributed within the plots before the treatment. Four day after deltamethrin treatment, the density of mites decreased significantly compared to the control. However, the mean number of phytoseide declined also in the control. In the following assessments, the mean number of mites per leaf was again significantly lower in the deltamethrin treatment compared to the control. The mean toxicity according to Henderson-Tilton was 99.5%.



³⁸ Henderson C.F. & Tilton E.W. 1955: Test with acaricides against brown wheat mite.- J. Econ. Ent. 48: 157-161.

Page 509 of 518 **2017-05-15**


Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

MATERIAL AND METHODS

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies DLT EW 15

23

_

1.1

-

-

922

-

96.7

Euseins stipulaçus (Athias-Herriot) Typhodrongus phidlatus Athas-Henriot

BAYER Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

Table 2: Toxicity classification of the insecticides, tested in Ponte de Lima (Trial 1) and Castelo Branco (Trial 2) according to the IOBC Working Group "Pesticides and Beneficial Organisms "(%=reduction in comparison to the control plot, Henderson-Tilton).

tomparison to	the control pro	, menaerson				
Trial area	T4 %	T7 (%)	T14 (%)	T21 (%)	T35,0%)	Tmean (%)
Trial 1	73.3	98.7	98.4	99.2	97. [®]	95.8
Trial 2	100	100	100	100	<i>,∕</i> 9€.7	Q9.5 g
				<i>₿</i> љ	4	

In trial 1, first significant difference between control and deltamethringreatment were observed 4 days after of application. In the following subsequent assessments, performed 7, 14, 21 and 35 days after the treatment, the mean density of phytoseiid mites per leaf was always significantly less in the deltamethrin treatment compared to the control. The mean toxicity according to Henderson Pilton was 95.8%.

In trial 2, predatory mites were not homogeneously distributed within the plots before the treatment. Four days after deltamethrin treatment, the density of mites decreased significantly compared to the control. However, the mean number of phytosends decreased also in the control. In the following assessments, the mean number of mites per leaf was again significantly lower in the dettamethrin treatment compared to the control. The mean toxicity according to Henderson Filton was 99.3%.

Comment by the Notifier

The presented data confirm the known toxicity of deltamethrin to predatory mites at an application rate of 7.5 g a.s./ha conditions. Therefore the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

 \bigcirc

CP 10.3.2.5 Other routes of exposure for non-target arthropods

No relevant expositive of non-target arthropods is exported by othe routes of exposure.

CP 10.4 Effects on non-target soil meso- and macrofauna

The risk assessment for non-target soil meso- and macrofauna follows the procedure given in the Guidance Document on Terrestrial Ecoloxicology and aking into account the data requirements given in the Regulation (EC) to 1107/2009

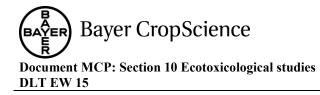

Predicted environmental concentrations used in risk assessment

Table 104-1 Initial max PECsoil values

Compound V Sugarbeets	Cauliflower	Cereals
(P× 7.5@a.s./ha)	$(2 \times 7.5 \text{ g a.s./ha})$	(2 × 6.25 g a.s./ha)
PECsoil, max	🖉 PECsoil, max	PECsoil, max
Ŏ ^Ÿ ĄŢ, Śmg/kġ	[mg/kg]	[mg/kg]
Deltamethrin 🖉 🔊 0.0080 🔗	0.0147	0.0102
Broca 0 00011	0.0016	0.0010
Bacid A. 9.0002	0.0002	0.0001

CP'10.451 Earthworms

Earthworm reproduction tests (*Eisenia fetida*) were performed with the representative formulation and the metabolites Br2CA and mPBacid. The endpoints are summarized in Table 10.4.1-1.

Table 10.4.1-1 Endpoints used in risk assessment

Test item	Test species, test design	Ecotoxicological endpoint Reference	
Earthworm, reprodu	ction		b
Deltamethrin EW 15	<i>Eisenia fetida</i> reproduction	NOEC 281 mg prod./kg dws 100	, Ô,
Deltamethrin EW 15	56 d, mixed	NOEC _{corr.} 140.5 mg prod./kg dws ^A $\frac{M+420+39+01+2}{KCA,8.4.1/03}$	
Br ₂ CA	<i>Eisenia fetida</i> reproduction	NOEC 10 mg/kg dws (2011)	
	56 d, mixed	NOECcorr. A 5 mg/kg dwg ^A 6° KCA(8.4.1/0)	Ø`
mPBacid	<i>Eisenia fetida</i> reproduction	NOEC 10 mg/kg dws v (2011)	
III Bacid	56 d, mixed	NOE Grr. 0 5 mg/kg dws KCA.8.4.1/02	

dws = dry weight soil; a.s. = active substance; prod. = product@corr.

Bold values: endpoints used for risk assessment

^A corrected by factor of 2 due to lipophilic substance

RISK ASSESSMENT FOR FARTH WORM

Toxicity exposure ratios for earthworms diseni@fetida were calculated for Deltanethrin and its metabolites for the representative uses 1 x 7.5 Deltamethrin/ha in sugar beets, 2 x 7.5 g Deltamethrin/ha in cauliflower and 2x 6.25@ Deltamethrin/ha in wheat (Table 90.4.1-2) considering the PECsoil values presented in Table 10. 1.

0°	ŶŴĸ,Ŷ		´ 0`			
Compound	Species	Endp	oin@ kgi o	PECsoil,max [mg/kg]	TERLT	Trigger
Sugarbeet						
Deltamethrin EW 15	Earthworm, reproduction		2,11	0.0080	264	5
Br ₂ CA	Barthworm, reproduction	NOCC	\$5	0.0011	4545	5
mPBacid 🔊 🤅	Earthworm, reproduction	NOEC	5	0.0002	25000	5
Cauliflower						
Deltamethrin EW 15	Barthworm, reproduction	NÔ₽℃	2.11	0.0147	144	5
Br ₂ CA	Earth vorm, reproduction	NOEC	5	0.0016	3125	5
mPBacid	Earthworm, reproduction	NOEC	5	0.0002	25000	5
Wheat \mathscr{Q}						
Deltamethrin DW 15	Earthworm, reproduction	NOEC	2.11	0.0102	207	5
Br ₂ CA	Earthworn, reproduction	NOEC	5	0.0010	5000	5
Br ₂ CA	Earthworm, reproduction	NOEC	5	0.0001	50000	5
	× · · ·					

Table 10.4.1- 2: JER calculations for earthworms \bigcirc

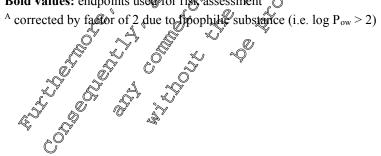
AlkTER values are above the critical trigger value of 5 indicating a low risk for earthworms for the intended ases of Deltamethrin EW 15. Further higher tier testing is not necessary.

CP 10.4.1.1 Earthworms - sub-lethal effects

Please refer to point KCA 8.4.1 where a chronic study with the formulation is presented.

CP 10.4.1.2

Considering the findings reported above no further studies are required.


CP 10.4.2

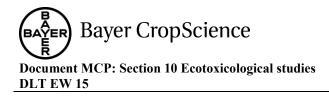

Effects on non-target soil meso- and macrofaura (other than earthworthis) predatory soil mite reproduction test (*Folsomia condida* and *Hupoaspis aculatier* re performed with the representative formulation and the metabolites indpoints are summarized in Table 10.4.2-1. Collembola and predatory soil mite reproduction test Folsomia condida and Hypoaspis acule for respectively) were performed with the representative formulation and the metabolites Br₂CA and mPBacid. The endpoints are summarized in Table 10.4.2-1.

Table 10.4.2-1	Endpoints	used in	risk	assessment	i, N	Ĵ
----------------	-----------	---------	------	------------	------	---

Collembola, reproduc	ction			
Deltamethrin EW 15	Folsomia cantida reproduction 28 d, mixed	NOEC S	178 mg prod Ag dws 2.62 mg a.s Ag dws 80 mg prod /kg dws ^A 4.34 mg a.s./kg dws ^A	(20010)、≪ ∭-397993-01-1
Br ₂ CA	Folsowia candida reproduction 28 d, mixed	NOEC, NQC Coorra	≥100 mg/kg dws ≥50 mg/kg dws	(2010) <u>XCA 8.4.2/03</u>
mPBacid	Folsomia candida reproduction 28 d. mixed	NOEC OF NOEC	$\frac{2100 \text{ mg/kg dws}}{259 \text{ mg/kg dws}}$	(2010) <u>M-398820-01-1</u> KCA 8.4.2/04
Soil mites, reproducti	ion i in in in its in the interview of t		5 & 5	
Deltamethrin EW 15	Hypogspis 🎳 🤅	NOEC	32 mg prod./kg dws 0.40 mg a.s./kg dws 66 mg prod./kg dws ^A 9.24 mg a.s./kg dws ^A	(2010) <u>M-393654-01-1</u> KCA 8.4.2/05
Br ₂ CA	Hypoaspis	NOEC (≥100mg/kg dws	(2011) <u>M-400275-01-1</u> KCA 8.4.2/01
	Hypouspis 😽 🔺	NOES	$\geq 100 \text{ mg/kg dws}$	(2011)
mPBacid	reproduction	NOEC.	≥50 mg/kg dws ^A	<u>M-400270-01-1</u> KCA 8.4.2/02

dws = dry weight soil; a.s. = active sabstanc@ prod > product; corr. = corrected Bold values: endpoints used for risk assessment

RISK ASSESSMENT FOR OTHER NON-TARGET SOIL MESO- AND MACROFAU (OTHER THAN EARTHWORMS)

 candida and H. aculeifer were calculated for Deltamethrin and its metabolites for the representative uses 1 x 7.5 g Deltamethrin/ha in sugar beets, 2. 7.5 g Deltamethrin/ha in cauliflower and 2 x 6.25 g

 Deltamethrin/ha in wheat (see Table 10.4.2-2) considering the PECsoid values presented in Table 10.4.2-1.

 Table 10.4.2-2 TER calculations for other non-target soil meso and macrofaura

 Compound

 Snocioe

 Toxicity exposure ratios for the non-target soil meso- and macrofauna (other than earthworms) *I*

Compound	Species & A	Endpoint	RECsoil,max	TERIO	Trigger
	speere &	[mg/kg]	[mg/kg]	Ro	1116801
Sugarbeet	Species y y				
Deltamethrin EW 15	Folsomia andida	ENOECO 1.54	- \$ 0.0080	3 9168	5
Denametinin Ew 15	Hypoaspis acuteifer	NOEC 0.24	0.0080	کم 🖉	5
Br ₂ CA	Folsómia çandida 🔊	$ NOEC_{a} \ge 50 @$	0.0011	≥45455	5
	Hypoaspis aculeifer 🛛	NOEC 2	A .0011	≥ 45455	5
mPBacid	Folsoma candda 🐇	NOEC 250	A 6000	\geq 250000	5
	Hypoaspis aquleifer	NOEC $0^{2} \ge 50$	0. Ø 002	\geq 250000	5
Cauliflower					
Deltamethrin EW 15	Colsomia candida 🖉	NOEC 1.34	0.0147	91	5
S.	Hypodspis deuleifer	\bigcirc 0.24	3 0.0147	16	5
Q Dr. C.A	Főtsomia candida	NOE6 ≥00	0.0016	≥ 31250	5
Br ₂ CA	Plypoaspis aculeifer 🔊	NOPC 250	0.0016	≥ 31250	5
	Folsomia emdida 🖓	$\bigcirc OEC \bigcirc 2 \ge 50$	0.0002	\geq 250000	5
mPBacid	Hopoaspin aculeifer	$NOEC \ge 50$	0.0002	\geq 250000	5
Wheat ~	Ÿ A. À Â	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Deltamethrin EW 15	Folsomia candida 🔍	XOEC 1.34	0.0102	131	5
	Hypoaspis acule fer	NOEC 0.24	0.0102	24	5
Br ₂ CA	Folsoma candida 🖉	NOEC ≥ 50	0.0010	\geq 50000	5
	Hyj@aspis & uleifeQ	NOEC ≥ 50	0.0010	\geq 50000	5
mPBação D	Folsomi@candida	NOEC ≥ 50	0.0001	\geq 500000	5
mPBacior	Mypodspis aculeifer	NOEC ≥ 50	0.0001	\geq 500000	5
mPBação A	Le la				

All TER values are above the critical trigger value of 5 indicating a low risk for non-target soil mesoand macrofauna (other than earthworms) for all intended uses of Deltamethrin EW 15. Further higher tier testing is not necessary.

Bayer CropScience Document MCP: Section 10 Ecotoxicological studies DLT EW 15

CP 10.4.2.1 Species level testing

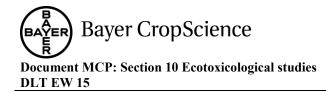
Studies are provided under KCA 8.4.2.

CP 10.4.2.2 Higher tier testing

In view of the findings above, no higher tier testing is required.

Effects on soil nitrogen transformation **CP 10.5**

Studies on nitrogen transformation in soil are available for the representative formulation Destamethin EW 15 (KCP 10.5/01), Deltamethrin (active substance, KCA.\$5/01) and the netabolites Br2CA (KCA 8.5/02) and mPBacid (KCA 8.5/03). A summary of the endpoints used in the ristoassessment is provided in Table 10.5-1.


Test	Test species	Engipoint Elegereed	Reference?
substance		C 2 C 2 C CReview	Reference?
	C. Q.	د کې کې کې ۲۵ (6504/VI/99) ۲۰ کې کې کې د ۲۵ (6504/VI/99) ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲	
Deltamethri n EW 15	aumente 21 and 22 and 2	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	(2010)
n	Notrogen () transformatio	20.375 Kg 3° 20.3	(1994) M-133031-01-2 KCA 8.5/01
Br ₂ ¢A	n28 d	$\frac{20.1770 \text{ kg}}{100000000000000000000000000000000000$	(2011) <u>M-400292-01-1</u> KCA 8.5/02
mPBacid		$ \begin{array}{c c} \ge 0.177 \ \text{kg/ha} \\ influence \\ \ge 0.24 \ \text{mg/kg} \\ \Rightarrow 0.177 \ \text{kg/ha} \\ \ge 0.177 \ \text{kg/ha} \\ \Rightarrow 0.177 \ \text{kg/ha} \\ influence \\ \ge 0.24 \ \text{mg/kg} \\ \text{No} \\ \text{influence} \\ \Rightarrow 0.177 \ \text{kg/ha} \\ \ge 0.24 \ \text{mg/kg} \\ \text{No} \\ \end{array} $	(2011) <u>M-400287-01-1</u> KCA 8.5/03

dws = dry waight soil; a.s. = active substance Bold values: endpoints used for risk assessment

RISK ASSESSMENT FOR SOIL NITROCEN TRANSFORMATION

In no case, deviations from the control exceeded 25% after 28 days, indicating a low risk at concentrations of up to 0.5 mg Deltamethrin/kg and up to 0.236 mg/kg of the metabolites Br2CA or mPBacid. 🔊

Thus, it is not expected that a application of a maximum 2×7.5 g as/ha for the use on cauliflower will pose an unacceptable risk to non-target soil micro-organisms. This use represents the worst case use with regard to the concentration in soil (worst case PECsoil: 0.0174 mg Deltamethrin/kg, 0.0016 mg Br2Gx/kg, 0.0002 mPBacid/kg; Table 10.4-1), in respect of the intended uses presented in Table 10^{4} 1 of this dossier. Consequently potential risks of the other intended uses are covered by the assessment above.

Studies for Soil Nitrogen Transformation

Report:	KCP 10.5/01,	(2010)		ð
Title:	Deltamethrin EV	V 15A G: Determination of e	ffects on nitrogr	m
	transformation in	n soil	.1	
Document	M 206520 01 1	(Rep. No.: FRM-N-150/10)	Ś	2
No.:	<u>IVI-390329-01-1</u>	(Kep. No.: 1 Kivi-IN-130(30)	â¥	R.
Guidelines:	OECD 216 – Nit	rogen Transformation Test	2	,Ø
GLP	GLP study	, D	A l	.0

Materials and Methods:

the second secon Deltamethrin EW 15A G, analytical findings: \$5.35 gft (1.5% w/w), specification No.: 102000013165-05, batch ID: 2010-002975, master tecipe D: 0108025-091, sample description. TOX08992-00, density: 1.023 g/mL) was used in the test. A loamy said soil was exposed for 28 d 6 1.52 µL and 15.20 µL test item/kg dry weight soil. Application rates were equivalent to k14 L and 11.40 L test item/ha. Lucerne-grass-green meal was added to the soil (5 g/kg dry weight soil) to stimulate nitrogen transformation. m The coefficients of variation in the control (NO2-N) were between 1% and %. Therefore the validity criteria for the study, which requires a coefficient of ariation 15 22 in the control, was fulfilled.

Findings:

Effects on non-target soil microorganisms

				J D a.	<u> </u>	
	Time Interval	Application rate		<u>\$</u>	4	
	(days)	Deltamethrin E	V 15A G	L S		
	¹	control O	.52 µ€/kg dr	y weightooil 🔺		lry weight soil
	le l	Nitrate-N ¹⁾	Nitrate-N ¹⁾	% difference	Nitrate-N ¹⁾	% difference
				to control		to control
	Ø-77'	-1.16 ± 0.016	-1.07 ± 0.12	9 n.s.	\bigcirc -1.24 ± 0.07	9 ^{n.s.}
	7-14	$1^{4}7 \pm 0^{24}$	≪1.53 ±0.14	$\checkmark 4^{\text{n.s.}}$	¥ 1.48 ± 0.06	4 ^{n.s.}
	14-28	3.04 ± 0.03	\$1.0 2 *0.09	Ф и.з.w.	1.08 ± 0.02	1 ^{n.s.w.}
1)	\mathbf{D} () \mathbf{N} () \mathbf{N}			$(2) \bigcirc 1$. 1. 1.1.1	

¹⁾ Rate: Nitrate-N in $\log/\log dry$ weight soil/time interval/day, mean of 3 eplicates and standard deviation n.s. = No statistically significant difference to the control (Student-t Tost, two-sided, $\alpha = 0.05$).

n.s.w = No statistically significant difference to the control Welch-t Test for non-homogeneous variances, two-sided, $\alpha =$ 0.05).

Observations:

During the 28-day test, 1.52 uL Deltameterin EW 15A G/kg dry weight soil and the 10-fold dose of the test item had no relevant influence on nitrogen transformation in a loamy sand soil supplemented with Lucerne-grass-green meal. In none of the time intervals analysed during the 28 day exposure the difference in the daily nitrate. N rates exceeds the trigger value of 25 %.

Conclusions: .@

In this test the validity criteria have been fulfilled. If used as recommended, Deltamethrin EW 15A G should not have an impact on nitrogen transformation in soils.

CP 10.6 Effects on terrestrial non-target higher plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations, as non-target plants are TO EW S (see 4) non-crop plants located outside the treated area. Spray drift from the treated areas may lead to residues of a product in off-crop areas.

RISK ASSESSMENT FOR TERRESTRIAL NON-TARGET HIGHEF ANTS

Seedling emergence and vegetative vigour studies have been conducted with Deltameth Annex Points KCA 8.6.2).

Number of species tested	Endpoint	Application &		RU agreed endpoint (Review Report 6504/VI/99 final)	References °
Dicotyledoneae: 8 Monocotyledoneae: 3	Seedling emergence and growth	age/na * y	No adverse effects		2011, <u>M-40202-01-1</u> , KČA 8.6.2/02
Dicotyledoneae: 8 Monocotyledoneae: 3	Vegetative vigour	* 4855 g	effects	No Contraction of the second s	©2011, <u>M-402931-</u> 01-1, KCA 8.6.2/01

Effects of Deltamethrin EW15 on non-target terrestrial plants Table 10.6-1

No phytotoxic effects 50% were found in any of the tested plant species after the application of Deltamethrin EW 15° at the maximum application rate of 48.5 g as/ba.

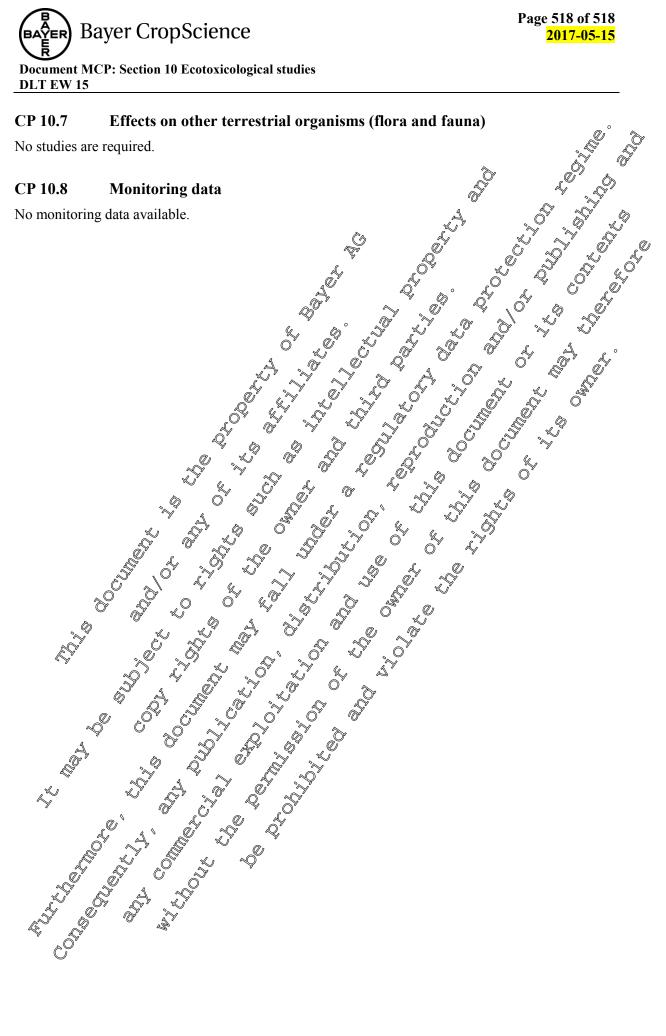
The intended uses in sugarbeet, cauliflower and wheat are with maximum application rates of 7.5 g as/ha, 7.5 g as/ha and 6.25 g@s/ha c@arly tower than the date tested in the seedling emergence and growth test a

It can thus be concluded that the application of Deltamethin EW is under practical conditions will not pose any risk to non-targed terrestrial plant species in off crap areas.

CP 10.6.1 Summary

No new studies are required

Testing on non-target plants CP 10.6.2


No further studies are required. Seedlingemergence and vegetative vigour studies have been conducted with Deltamethrin EW15 and are summarized under KCA 8.6.2.

Extended laboratory studies on non-target plants **CP 10**

Further, studies, were not considered necessary

Semi-field and field tests on non-target plants

Further studies were not considered necessary

of the barrent of the other of the barrent of the b