

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropSeience. party without the prior written authorisation of Bayer CropScience. Ň

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, op renext a registration basis of the summaries and evaluation of unpublished much a state of the assessment unless they have the

Version history

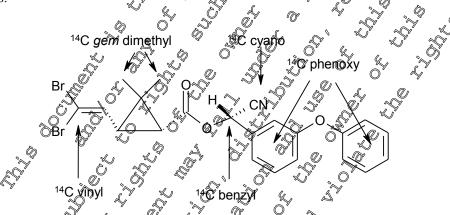
	Version history	0
	·	
Date	Data points containing amendments or additions ¹ and brief description CA7 requested documents M-533554-02-1 and M-539732-01-1 added at applicants adopt a similar approach to showing revisions and dersion 2013 Chapter 4 How to revise an Assessment Report ne document after the Completeness Check are highling to the total dersion of the	Document identifier and
2015-12-02	CA7 requested documents M-533554-02-1 and M-	M-480234-02-1 ~ ~ ~ ~
	539/32-01-1 added.	
	The second secon	
¹ It is suggested the SANCO/10180/2	at applicants adopt a similar approach to showing revisions and version 2013 Chapter 4 How to revise an Assessment Report	n history a outlined a of the
Additions to t	he document after the Completeness Check We highli	ahter in sellow Content not
necessary anyn	nore is crossed out.	
5 5		
ð		G.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
A B B B B B B B B B B B B B B B B B B B		
4		
$\bigcirc$		

## **Table of Contents**

	Table of Contents	0
		L' D
		Page
CA 7	FATE AND BEHAVIOUR IN THE ENVIRONMENT	
CA 7.1	Fate and behaviour in soil.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CA 7.1.1	Route of degradation in soil	7.
CA 7.1.1	Aerobic degradation	
CA 7.1.1.2	Anaerobic degradation	á So a.
CA 7.1.1.2 CA 7.1.1.3	Aerobic degradation Anaerobic degradation Soil photolysis Rate of degradation in soil	$\langle 0 \rangle$
CA 7.1.2	Rate of degradation in soil	
CA 7.1.2.1	Laboratory studies	105 /
CA 7.1.2.1 CA 7.1.2.1.2	Laboratory studies	 ØŽ6
CA 7.1.2.1.2 CA 7.1.2.1.3	Anaerobic degradation of the active substance	37
CA 7.1.2.1.3 CA 7.1.2.1.4	Anaerobic degradation of metabolites, breakdown and reaction products	38
CA 7.1.2.1.4 CA 7.1.2.2	Field studies	
CA 7.1.2.2.1	Soil dissipation studies	
CA 7.1.2.2.1 CA 7.1.2.2.2	Soil accumulation studies	
CA 7.1.2.2.2 CA 7.1.3		, 39 39
CA 7.1.3 CA 7.1.3.1	Adsorption and desorption	39
CA 7.1.3.1 CA 7.1.3.1.1	Adsorption and desorption of the active substance	39
CA 7.1.3.1.1 CA 7.1.3.1.2	Adsorption and desorption of metabolites, breakdown and reaction products	
CA 7.1.3.1.2 CA 7.1.3.2	Aged sorption	40 /1
CA 7.1.3.2 CA 7.1.4	Mobility in soil	41 /1
CA 7.1.4 CA 7.1.4.1	Column reaching studies	
CA 7.1.4.1 CA 7.1.4.1.1	Column leaching of the acti a substance.	42
CA 7.1.4.1.1 CA 7.1.4.1.2	Column leaching of metabolites, breakdown and reaction products	42 12
CA 7.1.4.1.2 CA 7.1.4.2	Lysmeter studie	42 12
CA 7.1.4.2 CA 7.1.4.3	Lysemeter studies	42 12
	Lysimeter studies	42 12
CA 7.2.1	Pout and tota of dogradation in Quality water and the dogradation in Quality water an	42
CA 7.2.1	Route and state of degradation in aquatic systems (chemical and photochemical degradation)	47
CA 7.2.40	degradation)	
CA 7.2.1.2	Directer a hotestantical door Wation	
CA 7.2.1.2 CA 7.2.1.3	Independent and the stand and the standard and the standa	40 19
CA 7.2.1.5 CA 7.2.2	Route and rate of biological degradation in equatic systems	40
	- "Poot sign factor of opposition of a second secon	49 40
CA 7.2.2.1 (	@"Ready biodegradabûlity". OO	49
CA 7.2.2.2 \$	Water/appendix with the water	49 52
CA 7.2.2.5 CA 7.2.2	Water/sediment study	33
CA 7.2.29	Description in the aturated zero	88
CA 7.2.3 CA 7.3	Degradation in the saturated zone	
	Route and rate of degradation in air	
CA 7.3.1	Koute and rate of degradation in air	
	CTransport vi@air, S	95
CA 7.3.3		
CA 7.4	Definition of the fesidue	
CA 7.4	Definition of the residue for risk assessment	
CA 7.4.2 C	Definition of the residue for monitoring	
CAIDS	Monitoring data	91
v Š		
$\bigcirc$		

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin


## CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Data on the fate and behaviour of deltamethrin in soil, water, sediment and air were submitted within the EU Dossier (Baseline Dossier), which resulted in the Annex I inclusion under Directive 91/41/EEC in 2003. In the Supplemental Dossier for renewal of approval of deltamethrin presented here only these environmental fate studies are described in sections 7.1 to 7.5, which were ont submitted within the Baseline Dossier. However, for a better understanding of the behaviour of deltamethrin in soil, water and sediment, and air, short summaries including the results of all environmental fate studies which were considered relevant during the first EU evaluation (compare EU Monograph Annex B) are given additionally in this summary in sections CA 7.1, CA 7.2 and CA 7.3 Fo differentiate between studies of already evaluated during the last Annex I listing and new studies, the references or author(s) oven in tables are written in grey for studies already evaluated and in bold black for new studies.

The proposed residue definitions for each compartment are given in CA 7.4

The results from monitoring studies published in literature, which were for arder relevant for the EU, are summarized in CA 7.5. Generally they well confirmed the knowledge about fate and behaviour of deltamethrin in the environment.

The studies concerning the fate and behaviour of deltamethrm in the environment were conducted using different radiolabel positions (vinyl, gemi dimethyl-, benzyl-, cyano- and phenoxy- (C-label), as well as unlabelled deltamethrm. These adiolabel positions are sufficient to define the route of degradation of deltamethrm. The structure of deltamethrm and the positions of the different radiolabels are as follows:



The results of the studies are summarized in the following sections, the proposed degradation pathways in soil, water and sediment are given in Figure 7.19 - 1 and Figure 7.2- 1, respectively.

In addition, studies have been performed with the addiolabelled and unlabelled major degradation products,  $Pr_2^2CA$  (AE F108565) cis) and mPEacid (AE F109036):

Structural formula of Br ₂ CA (AECF108565; cis); gemi dimethy ^{M4} C-labeling position was used, indicated by *	Br H CH ₃ -*CH ₃ H ³ OH
Structural formula of mPEacid (AE F109036): benzy C-labeling position was used, indicated by *	

In original reports study authors may have used different names or codes for degradation products of deltamethrin. In this summary, a single name or a single code is used for each degradation product. If not otherwise noted, the name  $Br_2CA$  is referring to the cis-isomer, always A full list containing structural formula, various names, short forms, codes and occurrences of degradation products is provided as Document N3.

Upon request by the RMS UK the notifier Bayer CropScience has prepared the two position papers M 533554-02-1 and M-539732-01-1 providing a comparison of the metabolic pathway in rat with those in plants, goats and the environment. The document M-53972-01-1 also includes a table of all significant metabolites identified in the different compartments and their quantitative occurrence.

## CA 7.1 Fate and behaviour in soil @

Deltamethrin is well degraded in aerobic soil of the trial degradation product CO₂ (36% - 70% at day 64 to 90 depending on ¹⁴C-label) and the substance is not expected to accumulate in soil. In parallel to mineralization, indicating a complete degradation of the molecule, non extractable residues (NER) ranged from 18 to 48% of the total radioactivity applied. The bound residues are mainly associated with the humin and fulvin acid fractions of bumus, and the major part of this humus bound residues consists of bound degradation products. Degradation of deltameterin in soil is a microbial process and the main degradation pathway in soil can be described by ester cleavage followed by oxidation leading to the formation of Br₂CA (AE F108565; cis) and mPBacta (AE F109036). Only Br CA was identified at levels >10%, at a maximum of 23% of applied radioactivity. No other metabolites exceeded 10% of applied radioactivity although the metabolite mPBacid was detected at >5% on at least 2 consecutive occasions.

A minor route of transformation, which was observed only in some of the soil degradation studies, is the oxidation of the nitrile group of deltamethrin resulting in deltamethrin-amide (D-CONH₂, AE 0035077), followed by further oxidation to deltamethrin-arboxylic acid (D-COOH, AE 0035100), which was also rapidly degraded by ester cleavage, axidation and mineralization to CO₂.

Deltamethrin is extensively degraded in soft under anaerobic conditions as well. However, degradation is somewhat retarded in comparison with aerobic degradation ( $DT_{50}$  ranges from 32 to 105 days, n = 5). The principal degradation pathway under anaerobic conditions is the same as observed under aerobic conditions. Since degradation is lowered down the main metabolite Br₂CA was found at a maximum level of 52 % of the radioactivity applied of day 59.

Photolysis will not significantly contribute to the degradation of deltamethrin in soil since extensive transformation was observed also in the dark control. Photo induced R/S epimerisation forming the alpha-R-isomer of dettamethrin and ester cleavage leading to mPBacid and *cis*-Br₂CA, respectively, was observed. The *trans*-Br₂CA was formed as a minor metabolite by photo induced opening of the cyclopropene ring of *cis*₂Br₂CA and subsequent recombination to the trans-isomer.

The kinetics evaluation of the laboratory rate of degradation studies resulted in overall best fit trigger DT₅₀ values of 5.3 to 59 days for deltamethrm. The DT₅₀ values normalised to 20 °C and pF2 were calculated to range between 12.5 and 231 days, and modelling endpoint geometric mean DT₅₀ of 54.8 days for deltamethrin.

Both major soil metabolites of deltametarin,  $Br_2CA$  and mPBacid, degrade very rapidly in soil. The  $DT_{50}$  values of BrCA normalised to 20°C and pF2 were calculated to range between 3.2 to 16.8 days, (geometric mean of 5.0 days), that of mPBacid ranged from 6.9 to 9 hours (geometric mean of 7.5 hours), only only only one details for the route and rates of degradation of deltamethrin and its major degradation products in soil are given in section CA 7.1.1 and section CA 7.1.2, respectively.

Field satisfies and the satisfiest of the set of the set of the set of the satisfiest of the set o

soil. Br₂CA was not detected above the limit of quantification (LOQ = 0.01 mg/kg soil) under field conditions.

Deltamethrin and its major degradation products are strongly to weakly adsorbed in soil, more details for the adsorption and desorption in soil of deltamethrin and its major degradation products are given in section CA 7.1.3.1.

## CA 7.1.1 Route of degradation in soil

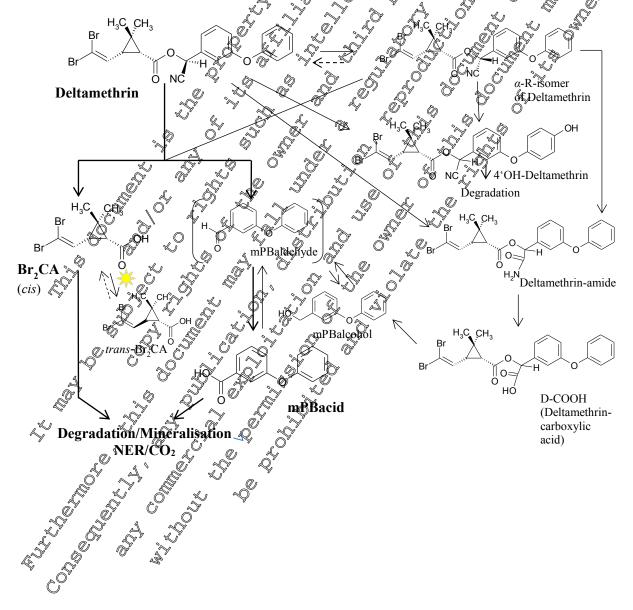
The route of degradation of deltamethrin in soil has been investigated in a comprehensive series of laboratory studies using different soils and radio-labels (e.g. vinyl-, geni dimethyl-, benzyf), cyard and ophenoxy- ¹⁴C-label). The proposed degradation pathway in soil is shown in Figure 7.1.1-1.

Deltamethrin is well degraded in aerobic soil to the final degradation product  $CO_2$  (36% - 40% at day 64 to 90 depending on ¹⁴C-label) and the substance is not expected to accumulate or soil. In parallel to mineralization, indicating a complete degradation of the prolecule, non-extraorable residues (NER) ranged from 18 to 48% of the total radioactivity applied. The bound residues are mainly associated with the humin and fulvin acid fractions of humas, and the major part of this humas bound residues consists of bound degradation products. Degradation of deltamethrin in soil is a microbial process and the main degradation pathway in soil can be described by ester cleavage followed by ordation leading to the formation of Br₂CA (AE F108565, cis) and mPBacid (AE F109036) Only  $Br_2CA$  was identified at levels >10%, at a maximum of 23% of applied radioactivity. No other metabolites exceeded 10% of applied radioactivity although the metabolite mPBacid was detected at >5% on at least 2 consecutive occasions.

A minor route of transformation, which was observed only in some of the soil degradation studies, is the oxidation of the nivile group of deltamethrin resulting in deltamethrin-amide (D-CONH₂, AE 0035077), followed by further oxidation to deltamethrin-carboxylic acid (D-COOH, AE 0035100), which was also rapidly degraded by ester cleavage, oxidation and minoralization to CO₂.

Deltamethrin is extensively degraded in soil under anaerobic conditions as well. However, degradation is somewhat retarded in comparison with aerobic degradation (DT₂₀ ranges from 32 to 105 days, n = 5). The principal degradation pathway under anaerobic conditions is the same as observed under aerobic conditions. Since degradation is slowed down the main metabolite Br₂CA was found at day 59 at a maximum level of 52% of the radioactivity applied Levels of other metabolites found in the anaerobic soil studies (D-COOH/mPBacid, mPBalcohol, D-OONH₂) were much lower (maximum 4%).

Photolysis will not significantly contribute to the degradation of deltamethrin in soil since extensive transformation was observed also in the dark control. Photo induced R/S epimerisation forming the alpha-R-isomer of deltamethrin and ester cleavage deading to mPBacid and cis-Br₂CA, respectively, was observed. *Trans*-Br₂CA was formed as a minor metabolite by photo induced opening of the cyclopropane ring of *cis*-Br₂CA and subsequent recombination to the trans-isomer.


The maximum occurrences of degradation products in percentage of applied radioactivity [% AR] are given as means of duplicates (see able 9.1.1-1). Normal written values were taken from the List of Endpoints (SANCO/6504) V1/99 final, 17 October 2002). The <u>underlined</u> figures are not new and were part of the EU Monograph Annex By already, but had not been listed in the above-mentioned List of Endpoints. Due to new EU requirements to address metabolites >5% on two sequential sampling dates, the mPBaciel is newly addressed as a more soil degradation product in this Supplemental Dossier.

The second secon

# Table 7.1.1-1:Summary of maximum occurrences in soil of major deltamethrin<br/>degradation products derived from laboratory studies<br/>(AR = percentage of applied radioactivity)

Compound	Aerobic Soil [% AR]	Anaerobic Soil [% AR]	Photolysis	
Br ₂ CA (AE F108565; cis)	23.0	52	54 (dark controls)	
mPBacid (AE F109036)	<u>5.6</u>	<u>()</u> <u>4.3</u>	<u>(in a pre-test</u> )	
Carbon dioxide	70	<u>₹ 71</u>	9 (dark copyrols)	
Non-extractable residues	48	<u>28</u>	<u>35</u>	j og

Figure 7.1.1-1: Proposed degradation pathway of deltamethrin in soil major metabolites are highlighted in bold writing





## CA 7.1.1.1 Aerobic degradation

The route of degradation of deltamethrin in soil under aerobic conditions in the laboratory was evaluated during the Annex I inclusion (compare EU Monograph Annex B7) and was accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002). The following four of six studies included in the Baseline Dossier were regarded as relevant during the Annex I inclusion



No additional studies are submitted within this Supplemental Dessier for the deltamethrin tenewal of approval. The degradation product mPBacid (AE F 109036) is rewly addressed as major soil degradation product in this Supplemental Dossier Because it was formed above the new identification triggers in aerobic soil degradation studies (see Gable 7.1-1). A summary of the route of degradation of deltamethrin in soil is given in section CA 7.1.1 and

## CA 7.1.1.2 Anaerobic degradation

The route of degradation of deltamethrin in solution and was accepted by the Cark in the laboratory was evaluated during the Annex Pinclusion and was accepted by the Curopean Commission (SANCO/6504/VI/99 final, 17 Occepter 2002). The following two of three studies included in the Baseline Dossier were considered as relevant during the Annex I inclusion

0		$\sim$	& ~	¥ .&	$\sim$	, C	s and a second s	
Author(s)	Ś.	0 (	D' &	le la		ľ	Year	Document No.
	A.,		A	~~~ (	¥	G	\$ <b>19</b> 91	M-136665-01-1
Ĺ		\$ \$ 2 2 4				$\hat{o}_{\prime}$	1980	M-149538-01-1
	Q /	Y Q		2×				

No additional studies are submitted within this Supplemental Dossier for the deltamethrin renewal of approval. A summary of the route of degradation of deltamethrin in soil is given in section CA 7.1.1 and Figure 7.1.1-9.

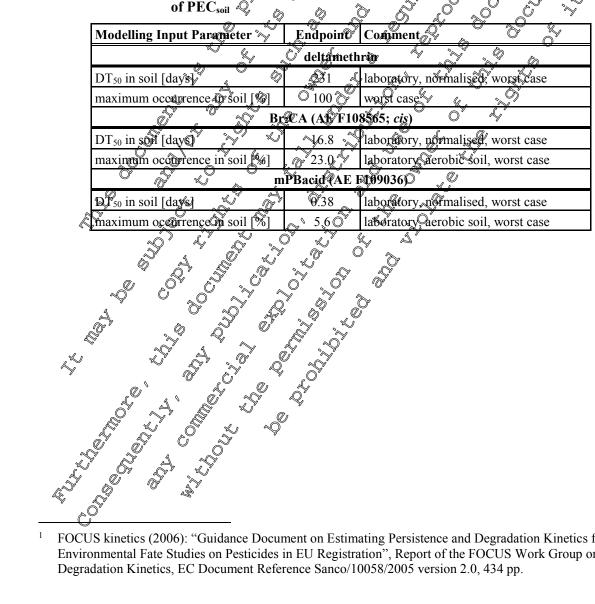
## CA 7.19.3 Soil photolysis

The toute of degradation of detamethon in foil under photolytic conditions in the laboratory was evaluated during the Annex I inclusion, and was accepted by the European Commission (SANCO/6504/VI/99 final, 10 October 2002). The following one of two studies included in the Baseline Dossier was considered as relevant during the Annex I inclusion:

a y	Q		v		
	A M	thor(s)		Year	<b>Document No.</b>
		2		1991	M-136671-01-1
En O		a la			

No additional studies are submitted within this Supplemental Dossier for the deltamethrin renewal of approval. A summary of the route of degradation of deltamethrin in soil is given in section CA 7.1.1 and Figure 7.1.1-1.




### CA 7.1.2 Rate of degradation in soil

Deltamethrin was degraded in soil under aerobic and anaerobic conditions in the laboratory (see section CA 7.1.1 before), as well as under field conditions. The kinetic models and DT₅₀ values in soil of deltamethrin and its major degradation products used for modelling purpose and reger evaluation (bestfit) as well as the formation fractions in soil for major degradation products are summarized in sections CA 7.1.2.1 and CA 7.1.2.2.

Modelling input values for the calculation of predicted environmental concentrations and deltamethrin and its major degradation products in soil (PECsoil), group water (PECsoil) and sorface water (PECsw) were derived from studies and kinetic evaluations (acc. to FOCUS kinetic 2006) sumparized in sections CA 7.1.1, CA 7.1.2 and CA 7.2, and are submitted within this Supplemental Dossier for the deltamethrin renewal of approval.

The DT₅₀ values and maximum occurrences formation fractions in soil and aquatic systems of deltamethrin and its major degradation products used as modelling input values for the calculation of PECs are summarized in Table 7.1.2-1 and Table 7.1.2-

### Table 7.1.2-1: DT₅₀ values and maximum becurrences in soil of deltamethrin and its major degradation products used as modelling input alues for calculation of PEC_{soil}



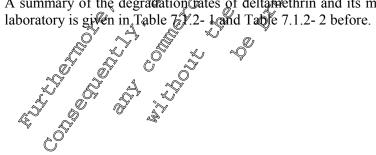
FOCUS kinetics (2006): "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration", Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp.

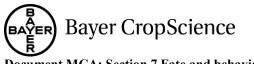
### DT₅₀ values and formation fraction / maximum occurrences in soil of Table 7.1.2- 2: deltamethrin and its major degradation products used as modelling inpat values for calculation of PEC_{gw}

		· · · · · · · · · · · · · · · · · · ·
Modelling Input Parameter	Endpoint	Comment O O
	deltameth	rin O O
DT ₅₀ in soil [days]	54.8	geometric mean, lakoratory, normalised
]	Br ₂ CA (AE F10	8505, cis)
DT ₅₀ in soil [days]	5.0	geometric memory laboratory, normalised
FF deltamethrin $\rightarrow$ Br ₂ CA in soil	1.0	worst case assumption
	mPBacid ( AE F	$5109036) \xrightarrow{\circ} \bigcirc \bigcirc$
DT ₅₀ in soil [days]	Ø.31	geometric mean, laboratory, formalised
FF deltamethrin $\rightarrow$ mPBacid in soil	$\bigcirc_{1.0}^{y}$	arithmetic mean the a so
FF: formation fraction		

## CA 7.1.2.1

## Aerobic degradation of the active substance CA 7.1.2.1.1


The rate of degradation of detramethrin in soil under aerobic conditions in the Jaboratory was evaluated during the Annex I inclusion (compare Et Monograph Annex B7) and was accepted by the European Commission (SANCO/6304/VI/99-final, 17 October 2002) The following four of six studies included in the Baseline Dossier were regarde thas relevant through the Annex I inclusion


	$a^{\nu}$		<u>0                                    </u>	<u> </u>	<u> </u>	~	
Author(s)			,×	_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		year	<b>Document No.</b>
		~~ ~	Ž.	S.		¥1991	M-136659-01-1
	- 2	2	- 2		Å Ø	1979	M-149530-01-1
	-	- (	1			1979	M-149541-01-1
			N .N	ý (k.)		1978	M-063775-01-1
				0 [×]	\$		

No additional "rate of degradation study for the active substance" is submitted within this Supplemental Dossier for the deltap thring eneway of approval.

However, updated kinetic value ons of the degradation behaviour of deltamethrin in soil under aerobic conditions in the dark in the laboratory have been performed according to FOCUS kinetics (2006)¹ to derive kinetic parameters suitable for modelling puppose and environmental risk assessment (see Error! Reference source not found. 2019, report M-462053-01-1, below).

A summary of the degradation dates of deltamethrin and its major degradation products in soil in the





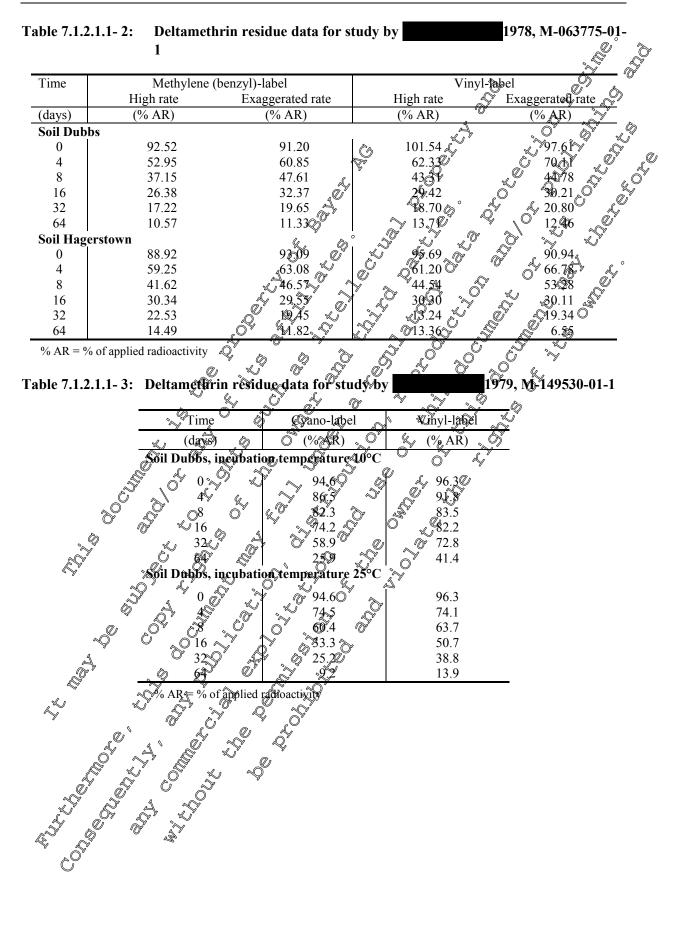
Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

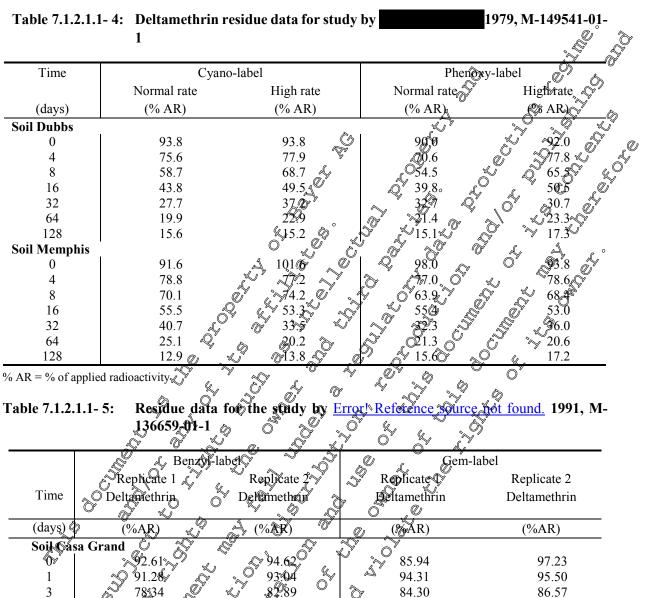
Report:	KCA 7.1.2.1.1 /10; ; 2013
Title:	Deltamethrin: Kinetic Modelling Evaluation of Data from Aerobic Soil
	Degradation Studies to Derive Trigger and Modelling Endpoints
Report No:	VC/11/026A
Document No:	M-462053-01-1
Guidelines:	- EU Council Directive 91/414/EEC, as amended by Commission Directive
	95/36/EC of July 1995, Section 5, Point 7 and Commission Regulation (EC) Nor
	1107/2009 of 21 October 2009; V Q Q Q Q X
	- FOCUS kinetics (2006) ¹
GLP:	No (modelling calculation)

## **EXECUTIVE SUMMARY**

A kinetics evaluation of the relevant aerobic soil degradation studies with the insecticide deltamethrift has been conducted using the computer program King II2 according to FOCUS Kinetics guidance [FOCUS, 2006]¹⁾. The trigger and modelling endpoint DT₅₀ values derived for deltamethrin can be used in environmental exposure assessments along with the modelling ondpoint DT offor the mPBacid and Br₂CA metabolites. However, the updated killetics results for both the metabolites are summarized later, i.e. in the relevant section CA 7.1.21.2. °~

The resulting DT₅₀ values and graximum occurences in soil of detaimethim anoits major degradation products used as modelling input values for the calculation of predicted environmental concentrations in soil (PEC_{soil}) are summarized in Table 7.1.2-4, those for predicted environmental concentrations in groundwater (PECgw) in Table 7.1.2-2?


### I. **METHODS**


Laboratory degradation, data for reltamethrin and the metabolites (see sections CA 7.1.1 and CA 7.1.2) were evaluated against the FOCUS Kinetics flowcharts for the determination of parent trigger/modelling

where evaluated against the POCUS Structures and metabolites modelling, endpoints. The chemical structure and mames of deltamethrin and the metabolites mPBacid and Br₂C Apare shown absection 2 of report. The used data on degradation of deltamethrin are shown in the following tables.

Soil	Label	Rate	Temp. (°C)	Moisture content	Texture (USDA)	Reference
Dubbs	Methylene	High	25	75% 1/3 bar	Sandy loam	
Dubbs	Methylene	Exag'd	25	75% 1/3 bar	Sandy loam	
Dubbs	Vinyl	High	25	75% 1/3 bar	Sandy loam	
Dubbs	Vinyl	Exag'd	25	75% 1/3 bar	Sandy loann	[197]
Hagerstown	Methylene	High	25	75% 1/3	Silty claydoam	M-063778-01-10
Hagerstown	Methylene	Exag'd	25	75% 1/3 bar	Silty clay loam	
Hagerstown	Vinyl	High	25	75% <b>1</b> 3 bar	Silty Clay loam	
Hagerstown	Vinyl	Exag'd	25	75% 1/3 bar	Siltyclay baam	
Dubbs	Cyano	High	10	75% 1/3 bar	Sandy Kam	
Dubbs	Cyano	High	25	, 75% 1/3 bar	Sandy Joam	20079a]
Dubbs	Vinyl	High	10 (	75% Ø3 bar	Sandy loan	M ₂ 149530-01-1
Dubbs	Vinyl	High	25 «	75% 1/3 bac	Sandy loam	
Dubbs	Cyano	Normal	25	75% 1/3 bar	Sandy Joam	
Dubbs	Cyano	High	25	75% 1/3 bar	C Sandy loam y	
Dubbs	Phenoxy	Normal	Q. 25	75% 1/3 bar	Saundy loann	
Dubbs	Phenoxy	High "	0 [*] 25	75% 1/3 bar	Sandy Joam	[1979b]
Memphis	Cyano	Norm	25	75% 1/3 bar	Silt Sam	с ^{M-149541-01-1}
Memphis	Cyano	High	× 25 i	75% 108 bar	Sitt Ioam	
Memphis	Phenoxy	Normal	≈ 25.	75%9/3 bar	Shit loam	Ö y
Memphis	Phenoxy	High	250	75% 1/3 har	Silt logm	
Casa Grand	Benzyl	∦ High	29	5% 1/3 bar	Sandy loam	K [1991]
Casa Grand	Gem	High	25 ×	75% /3 bar		₩-136659-01-1
Dollendorf	- 🖉	\$- J	[©] 20 [©]	@0F2 `≈	Clay Isam	$\sim$
Höfchen	a,s ^r	- ~0	2Ø	pF2	Silt loam 🖒	[2011]
						M-413119-01-1
Wurmweise	∂ ⁷ - _● \		20 🥎	Ê <u>p</u> î¥2 ⊃	Sandy loan	(refer to MCA
4		0 0		N Dr		7.1.2.1.2/02)
Wurmweise	Gem		20 © 20	→ ² 55% → MWHC	Sandy loam	
AXX	Geng		20 N	\$3% NWHC	, Damy sand	[2013] M. 455510, 01, 1
Höfchen	jer j		×20	© 55%≈ © MWHC ≫	Silt loam	M-455519-01-1 (refer to MCA
Dollendorf	© Gero		200		Loam	7.1.2.1.2/01)

### Table 7.1.2.1.1-1: Soil degradation study information - deltamethrin





	- (0				
,	7	<b>Q</b> 63 5	× × 67.87 ×	\$ 79.20	
1	4	~50.33 ° · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	48.45	
3	30 " 👻	33.7		31.94	
5	59 🚔	15.51	12.50	19.35	
9		×9.04 ~	8.10	12.30	
<u>_1</u>	2Õ	5.804	5.63	9.47	
	81	4.06	Q 2\$\$8	6.66	
% AR	= % of appl	ied radioactivity			

## Modelling strategy for date processing: @

For time zero when metabolities are detected, the concentration was set to 0 and their detected concentration was added to concentration of parent. Values reported as <LOQ were set to  $\frac{1}{2}$  LOQ for the first occurrence and subsequent <LOQ values not used in the kinetics.

## Optimisation model:

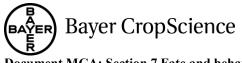
The sampling times and residue data (Table 7.1.2.1.1- 1 to Table 7.1.2.1.1- 5) were entered into KinGUI2 (compare Figure 1 and Figure 2 and section 4.2 of report) and optimisations carried out for deltamethrin (and the metabolites mPBacid and  $Br_2CA$ , see later) in a stepwise procedure according to

81.08 54.20 35.42 20.83 11.39 9.82 8.99

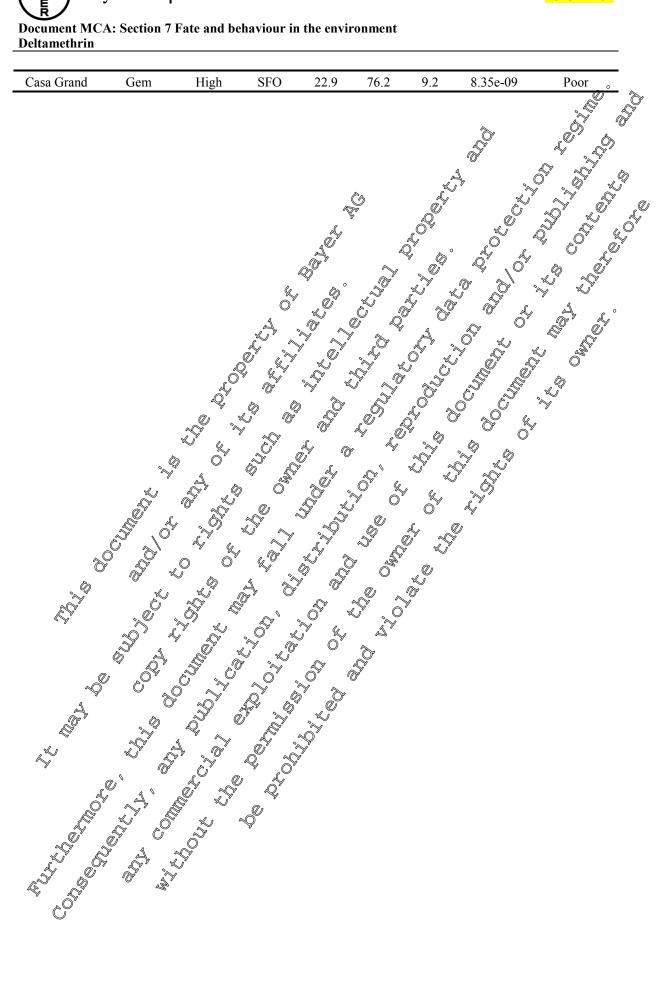


FOCUS Kinetics guidance for the determination of trigger and modelling endpoints (FOCUS, 2006; Flowcharts 7-1, 7-2, 8-5 and 8-6). Equations 1-4 describe the SFO, FOMC, DFOP and HS kinetics models used. The kinetic evaluations and the statistical calculations were conducted with KinGUL (2.0) using iteratively re-weighted least-squares (IRLS) optimisation (for details on optimisation statistics see section 4.3 of report).

## II. RESULTS


Table 7.1.2.1.1- 6 to Table 7.1.2.1.1- 9 summarise the optimised SFO FOMC, DFOP and HS model parameters. The detailed KinGUI2 output files are shown in Appendices.1 of the report.

For the determination of trigger endpoints, the SFO, COMC and DEOP model fits (Table 7.1.2, 1-6 to Table 7.1.2.1.1-8) were evaluated according to Flowchart 7-1 (FOCUS, 2006) (For determine the best-fit kinetic (Table 7.1.2.1.1-10). For a number of soils, HS kinetics was determined to be the best-fit kinetic by expert judgement (case-by-case decision).


For the determination of modelling endpoints, the SFO FOMO, DFOP and HS model firs were evaluated in order to determine the best-fit kinetic (Table 7.1.2.1.1-11) according to Flewchart 7-2 (FOCUS, 2006). Two trials resulted in the selection of SFO as acceptable fits for modelling. Four trials were within the experimental  $DT_{90}$ , thus the modelling endpoint  $DT_{50}$  was derived as the Set-fit biphasic kinetic  $DT_{90}/3.32$  (two soils FOMC and two soils HS). The majority of trials resulted in the selection of the modelling endpoint  $DT_{50}$  based on the DFOP or HS slow-phase k2 degradation rate. Table 7.1.2.1.1-12 shows the calculated FOCUS correction factors (Q2 2.58 and B-factor 0/7) for each soil. An overall geometric mean normalised (20°C and pF2) modelling endpoint  $DT_{50}$  of 54.8 days is calculated for deltamethrin (Table 7.1.2.1.1-11).

			2 0		$\sim$ $\sim$	/ <u>%</u> .		
Soil	Sabel of	Into K	Kinetic	DT (days)	DCoo Orays)	Chi ² Serror C (%)	t-test (-)	Visual fit
Dubbs 🗘	Methylene	©Exag'd	S¥O €	§ 11.6	[≫] 38∂ [∞]	12.7	0.006731	Poor
Dubbş 🖗	Methylene	High	ASF0	7.9	26.3	<b>6</b> .7	0.016958	Poor
Dubbs	Viny	Æxag'd	SFQ	<b>9</b> ?9	^\$32.9 ^	¥ 13.1	0.008436	Poor
Dubbs	Vinyl	∼y High	SFO >	≫ 8.5 ₆	28 î	15.4	0.014121	Poor
Hagerstown	Methylene	Exage d	`∕≫SFO	105	34.8	12.1	0.006708	Poor
Hagerstown	Methylene	Arigh N	> SFQ	<i>"</i> ₩.7	~~~38.9	15.8	0.027242	Poor
Hagerstown	Via Vi	ÔExag2d	"SPÓ »	©í1.4 ″	o ^o 37.9	7.2	0.000732	Good
Hagerstown	Vinyl 🔗	High	SFO S	9 <b>0</b>	29.9	12.8	0.006150	Acceptable
Dubb	Cyang	ÅØ°C (	SFO	<b>\$9</b> .4	131	3.5	0.000171	Good
Dubbs	Cyano	25°6	SĘÕ "^	QĨ3.6	45.3	7.9	0.00149	Acceptable
Dabbs	₩inyl Vinyl	1000	SFO	59.3	197	3.8	0.000857	Good
Dubbs	Vinyl 🖉	\$\$°C	SFQ ^O	22.3	74.0	7.5	0.00182	Acceptable
Dubbs	Cyanò	@High\$	SAÇÓ	27.6	91.8	10.0	0.00369	Acceptable
Dubbs 🦉	Cyano 🖉	Normal	<b>SFO</b>	19.5	64.9	13.4	0.00948	Poor
Dubbs	Phenoxy	High	SFO	25.7	85.4	11.6	0.00662	Poor
Dubos	Phenoxy	Rormal	SFO	23.5	78.1	15.1	0.023765	Poor
Memphis	🕅 Coano 👡	J High	SFO	23.0	76.3	9.8	0.00215	Poor
Memphis	Cyano	Normal	SFO	32.2	107	6.6	0.00043	Acceptable
Memphis	Phenoxy	High	SFO	27.0	89.8	9.7	0.00272	Poor
Memphis	Phenoxy	Normal	SFO	24.5	81.3	11.2	0.00477	Poor
Casa Grand	Benzyl	High	SFO	19.0	63.2	6.6	1.12e-11	Acceptable

Table 7.1.2.1.1-6: Optimized SFQ kineter model parameters for dettameterin



Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin



Label Methylene Methylene	Info	Kinetic	DT50 (days)	DT90 (days)	error	t-test	Vistor fit
Methylene			(days)	(davs)		(M_)	
5	Erroz'd			(44,5,5)	(%)		
Methylene	Exag'd	FOMC	8.4	84.9	1.0	<u> </u>	Excellent
	High	FOMC	5.3	78.3	1.2	- 🗞	© Exceptent
Vinyl	Exag'd	FOMC	7.7	گ 70.4	5.¥	- 40	Excellent
Vinyl	High	FOMC	6.0	78.2	<b>Q</b> 2.3	-0	Sexcellent
Methylene	Exag'd	FOMC	ĒŸ	75.9	1.9	, Č	Sexcodent 🖇
Methylene	High	FOMC	7.6	132	209°	ð - Å	Excellent
Vinyl	Exag'd	FOMC 🧸	9.8	53.1	°~3.3	~~~\ 	x Excellent
Vinyl	High	FOM	628	<b>20</b> 4.9	^{لي} 4.7 (		Very good
Cyano	10°C	FQMC	≪34.1	ن 1130	50	···~	Very good
Cyano	25°C	. <b>FO</b> MC №	× 11.7√	64.7	<u>\$</u> 5.4	ş - °	Kery good
Vinyl	10°C	FOMC	52,1	Å74	\$ 4.8 ×		Very good
Vinyl	25°C 🖉	, FQMC	A7.3 ~	[™] 136 [™]	50	\$ - ô	Good
Cyano	High	FOMC	°∛19.8∜	216	A.2	Š - Š	<b>Excellent</b>
Cyano	Normal	∂FOM©	1309	686	03.80	Ď	°∛Very good
Phenoxy	"High »	FOMC	Ø8.7 J	226 Q	3.9	8°- %	✓ Very good
Phenoxy		FOMC &	C 13.9	294	×3.3	ĝ-, ⁰	Excellent
Cyano, 🖗	High	<i>∲</i> OMG	17.6	153	\$4.7	i Li	Very good
Cyano	Normal	FOM	<b>2</b> 5.2	192 آ	0.9	\$ <del>7</del> -	Excellent
Phenoxy	High		20.3	200	×219	× -	Very good
Phenoxy.	Normal	~ FOMC [~]	17.2	206	4.1	ຯ	Very good
\$\$1O	Ĥigh	FOMC	245.8	~85.9 Ø	× 2.2	-	Excellent
Gen	High	FOMC :	£19.0	114	6.3	-	Excellent
					Ŷ		
	Vinyl Cyano Cyano Vinyl Vinyl Cyano Cyano Phenoxy Cyano Phenoxy Cyano Phenoxy Cyano	Methylene High Vinyl Exag'd Vinyl High Cyano 10°C Cyano 25°C Vinyl 10°C Vinyl 25°C Cyano High Cyano Normal Phenoxy High Cyano High Cyano High Cyano High Cyano High Cyano High Cyano High Cyano High	MethyleneHighFOMCVinylExag'dFOMCVinylHighFOMCCyano10°CFOMCCyano25°CFOMCVinyl10°CFOMCVinyl10°CFOMCVinyl25°CFOMCCyanoHighFOMCCyanoNormalFOMCCyanoHighFOMCPhenoxyHighFOMCCyanoHighFOMCCyanoHighFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyNormalFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyHighFOMCPhenoxyHighFOMC	Methylene High FOMC 7.6 Vinyl Exag'd FOMC 9.8 Vinyl High FOMC 9.8 Cyano 10°C FOMC 34.1 Cyano 25°C FOMC 11.7 Vinyl 10°C FOMC 53.1 Vinyl 25°C FOMC 77.3 Cyano High FOMC 19.8 Cyano Normal FOMC 13.9 Phenoxy High FOMC 13.9 Cyano High FOMC 13.9 Cyano High FOMC 17.6 Cyano Normal FOMC 17.6 Cyano Norma FOMC 17.6 Cyano Norma FOMC 17.6 Cyano Norma FOMC 17.6 Cyano Norma FOMC 17.6 Cyano FOMC	MethyleneHighFOMC $7.6$ $132^{\circ}$ VinylExag'dFOMC $9.8$ $53.7$ VinylHighFOMC $9.8$ $64.9$ Cyano $10^{\circ}$ CFOMC $34.1$ $113^{\circ}$ Cyano $25^{\circ}$ CFOMC $11.7$ $64.7$ Vinyl $10^{\circ}$ CFOMC $52.1$ $174$ Vinyl $10^{\circ}$ CFOMC $52.1$ $174$ Vinyl $25^{\circ}$ CFOMC $17.3$ $136^{\circ}$ CyanoHighFOMC $19.8$ $216^{\circ}$ CyanoNormalFOMC $13.9$ $294^{\circ}$ CyanoHighFOMC $17.6$ $153^{\circ}$ CyanoHighFOMC $20.3^{\circ}$ $205^{\circ}$ PhenoxyHighFOMC $17.6$ $153^{\circ}$ CyanoNormalFOMC $20.3^{\circ}$ $205^{\circ}$ PhenoxyHighFOMC $17.6$ $153^{\circ}$ CyanoNormalFOMC $20.3^{\circ}$ $205^{\circ}$ PhenoxyHighFOMC $17.2^{\circ}$ $206^{\circ}$ PhenoxyNormalFOMC $17.2^{\circ}$ $206^{\circ}$	MethyleneHighFOMC $7.6$ $132$ $29^{\circ}$ VinylExag'dFOMC $9.8$ $53.7$ $3.3$ VinylHighFOMC $9.8$ $53.7$ $3.3$ VinylHighFOMC $68^{\circ}$ $64.9$ $4.7^{\circ}$ Cyano $10^{\circ}$ CFOMC $34.1$ $113^{\circ}$ $50^{\circ}$ Cyano $25^{\circ}$ CFOMC $11.7^{\circ}$ $64.7^{\circ}$ $5.4^{\circ}$ Vinyl $10^{\circ}$ CFOMC $52.1^{\circ}$ $174^{\circ}$ $4.8^{\circ}$ Vinyl $10^{\circ}$ CFOMC $17.3^{\circ}$ $136^{\circ}$ $59^{\circ}$ CyanoHighFOMC $19.8^{\circ}$ $216^{\circ}$ $2.2^{\circ}$ CyanoNormalFOMC $13.9^{\circ}$ $294^{\circ}$ $3.3^{\circ}$ PhenoxyHighFOMC $13.9^{\circ}$ $294^{\circ}$ $3.3^{\circ}$ CyanoHighFOMC $17.6^{\circ}$ $153^{\circ}$ $4.7^{\circ}$ CyanoNormalFOMC $20.3^{\circ}$ $205^{\circ}$ $29^{\circ}$ PhenoxyHighFOMC $20.3^{\circ}$ $205^{\circ}$ $29^{\circ}$ PhenoxyNormalFOMC $17.2^{\circ}$ $206^{\circ}$ $4.1^{\circ}$ PhenoxyNormalFOMC	Methylene       High       FOMC       7.6 $132^\circ$ $29^\circ$ -         Vinyl       Exag'd       FOMC       9.8 $53.7$ $3.3$ -         Vinyl       High       FOMC $9.8$ $53.7$ $3.3$ -         Cyano $10^\circ$ C       FOMC $34.1$ $113^\circ$ $50^\circ$ -         Cyano $25^\circ$ C       FOMC $11.7^\circ$ $64.7^\circ$ $5.4^\circ$ -         Vinyl $10^\circ$ C       FOMC $52.1$ $174^\circ$ $4.8^\circ$ -         Vinyl $10^\circ$ C       FOMC $52.1$ $174^\circ$ $4.8^\circ$ -         Vinyl $10^\circ$ C       FOMC $52.1$ $174^\circ$ $4.8^\circ$ -         Vinyl $25^\circ$ C       FOMC $19.8^\circ$ $216^\circ$ $2.2^\circ$ -         Cyano       High       FOMC $13.9^\circ$ $284^\circ$ $3.3^\circ$ -         Phenoxy       Normal       FOMC $13.9^\circ$ $294^\circ$ $3.3^\circ$ -         Cyano       High       FOMC $25.2^\circ$ $192^\circ$ $0.9^\circ$ -         Phenoxy

## Table 7.1.2.1.1-7: Optimised FOMC kinetic model parameters for deltamethrin

Table 7.1.2.1.1- 8:	Optimised DFOP kinetic model parameters for deltamethrin
---------------------	----------------------------------------------------------

Soil	Label	Info	Kinetic	DT50 (days)	DT90 (days)	Chi ² error (%)	k2 t-test	Vis <b>o</b> al fit
Dubbs	Methylene	Exag'd	DFOP	8.3	71.0	2.2	0.02523	Excellent
Dubbs	Methylene	High	DFOP	5.3	67.7	1.4	v 0.00773 👡	Excolent
Dubbs	Vinyl	Exag'd	DFOP	7.5	گ 86.3	43	0.1561	Excellent
Dubbs	Vinyl	High	DFOP	6.0	82.6	A. 8	0.03026	Excellent
Hagerstown	Methylene	Exag'd	DFOP	<i>78</i>	80.0	<b>§</b> 0.5	0.00332	Sexcollent
Hagerstown	Methylene	High	DFOP	A.3	102 🌂	1.60°	£012865	Excellent
Hagerstown	Vinyl	Exag'd	DFOP 4	ॐ 9.7 。	550	°~3.5	0.09334	* Excellent
Hagerstown	Vinyl	High	DFO	7,2	<b>98</b> .1	ملي 5.5 س	0.35,090	Very good
Dubbs	Cyano	10°C	DFOP	\$39.4	0 131 0	4.	0.03239	Good "C°
Dubbs	Cyano	25°C	DFOP 2	√ ⁰ 11.5√	68.0			Good
Dubbs	Vinyl	10°C	DFOR	593	J. 197	^م 4.8	0.04907	🖉 Good
Dubbs	Vinyl	25°C	DEOP	<b>.</b>	85.7	3.2 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Q.90881	Very good
Dubbs	Cyano	High	DOOP	°≫19.3 ≪	192	Z	ð.0247	<b>Excellent</b>
Dubbs	Cyano	Normal	<i>DFOP</i>	13.6	<b>\$</b> \$4		0.04906	S≪Excellent
Dubbs	Phenoxy	"High »	DFOP	108.1	372 ⁽	[*] 1.7 [•]	001369	/ Excellent
Dubbs	Phenoxy	Normal	DÊOP	چ 12.8	372 1964	~2,8	<i>©</i> 0.01213	Excellent
Memphis	Cyano 🔊	High	<b>PFOP</b>	17,9	100	£.0 ×	0.25730	Excellent
Memphis	Cyano 🌂	Normal	DFOP	25.0	۱58 م	0.8 ¹	0.00089	Excellent
Memphis	Phenoxy	High	DFOP	20.5 °	× 5280 ×	5.0	<b>X</b> .29731	Excellent
Memphis	Pleenoxy L	Normal		^y 17 \$	200		0.21500	Excellent
Casa Grand	a Wan and O	High	[₩] DFQP	¥\$.7	\$87.2	2.70	0.00051	Excellent
Casa Grand 🏾	O Gein	High	D FOOP	×18.9	13,15	6.0	0.19300	Excellent
Le L								
		² ² ²	¥					

Soil	Label	Info	Kinetic	DT50 (days)	DT90 (days)	Chi ² error (%)	k2 t-test	Visit fit
Dubbs	Methylene	Exag'd	HS	9.6	78.5	7.5	0.21873	Very good
Dubbs	Methylene	High	HS	5.6	66.6	4.9	🖗 0.05695 🗞	O'Exceptent 🖉
Dubbs	Vinyl	Exag'd	HS	7.3	گ 🖉	28	0.02211	Excellent
Dubbs	Vinyl	High	HS	6.2	74.5	æŽ	0.048	Excellent
Iagerstown	Methylene	Exag'd	HS	7,87	71.9	L 2.7	0.01985	Recodent
Iagerstown	Methylene	High	HS	<i>⇒</i> 1	93.1	🖗 1. <b>6</b> 2°	<b>6</b> 00716	
Iagerstown	Vinyl	Exag'd	HS	∕® 9.8	557	2,5	0.01182	Excellent
Iagerstown	Vinyl	High	HS 🌭	8 2	24.4	8.7 🐇	0.50000	Acceptable
Dubbs	Cyano	10°C	HS HS	×41.2	© 104 2	8.7 × 1.30	0.00343	Vety good °
Dubbs	Cyano	25°C	<b>%∄</b> 8 ≦	~11.3~	67.3	3,1	Ø.03251	Kery good
Dubbs	Vinyl	10°C	HS	570	4,55	2.9 <u></u>	0.02149	≪ Very good
Dubbs	Vinyl	25°C 🦨	₹ HSÝ	£9.1 ×	85.2	3.20	0.00695	Very good
Dubbs	Cyano	High	ØŠ	گُ∯17.5 ل	³ 1639	29	Q.0067	Very good
Dubbs	Cyano	Normal	ŵ HS 🖉	13	201	3.6	0.03646	°∛Very good
Dubbs	Phenoxy	"Afigh »		10.0	226	2 1.9 ^O	0.00613	
Dubbs	Phenoxy	Normal	<b>Ì</b> IS	£ 11.1	226 164 147	29 29	Ø.00330	Very good
Memphis	Cyano		AHS A	, 17,6	147	\$.9 ×C	0.05617	Very good
Memphis	Cyano	Narmal	HS	20.3	A36	~ 2.7 [©]	0,00128	Very good
Memphis	Phenoxy	High	HS	9.2 ×	∑ 1780 [™]	′4×₄γ	0.03393	Good
Memphis	Phenoxy "	Normal	~CHS *	⁹⁷ 17,99			0.08073	Good
Casa Grand	Benzy	High	W'HS	17/2	88.6	7, 4.5~C	0.00466	Excellent
Casa Grand 😞	O Gen	High	/HS	√¥9.0 ≫	129	6.1	0.01714	Excellent
	Phenoxy Phenoxy Benzy Geter Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Co	Normal Aligh High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High Hig				Ċ,		

## Table 7.1.2.1.1-9: Optimised HS kinetic model parameters for deltamethrin

Soil	Label	Info	Kinetic	DT50 (days)	DT ₉₀ (days)	Chi ² error (%)	Test	Visual fit
Dubbs	Methylene	Exag'd	FOMC	8.4	84.9	1.0	y - 👡 🤇	Exceptent
Dubbs	Methylene	High	FOMC	5.3	گ گ	1	- 🔊	Excellent
Dubbs	Vinyl	Exag'd	HS	7.3 🚿	73.1	Q.8	0.0227,1	Picelleut
Dubbs	Vinyl	High	DFOP	60	82.6	¢1.8	0.03016	🤅 Excolent 🐇
Hagerstown	Methylene	Exag'd	DFOP	7.8	80.0 🖓	05°	g.00332	Excellent
Hagerstown	Methylene	High	DFOP 🐇	\$ 7.3	102	~ <i>Q</i> .4	0.01286	* Excellent
Hagerstown	Vinyl	Exag'd	HS 🍫	9¢8	"~\$\$.7	∞ 2.5 لا	0.04982	Excellent
Hagerstown	Vinyl	High	FOMC	\$6.8	õ 64.9 ô	4.7	Ĩ. 4	Very good °
Dubbs	Cyano	10°C	STO >	^{39.4}	131	\$.5	\$0.0001	Good
Dubbs	Cyano	25°C	HS.	163	67.3	\$3.1 \$	0.03251	Very good
Dubbs	Vinyl	10°C 🔍	SEOV	<b>39</b> .3	×197 ×	3.8	00086 S	God
Dubbs	Vinyl	25°Q	ån∯Š '	°∻√19.1 ≪	85.2	A.Ž		Very good
Dubbs	Cyano	High	∂ <b>F</b> OMC⊘	1908	A 6	02.2		°≫Excellent
Dubbs	Cyano		DFOP	\$3.6	254 Ç	× 1.8°	0004306	
Dubbs	Phenoxy	High	Ĵ.	18.0 í	× 22 <b>6</b>	· .19	©0.00613	Excellent
Dubbs	Phenoxy 🖉	~~	DFOP C	12.8	1,90	\$2.8	0.01213	Excellent
Memphis	Cyano	Aigh	FOME	. 17.6	\$153	[∞] 4.7 [√]		Very good
Memphis	Cyano	Normal	DFOP	25.0	158	65.8	20.00089	Excellent
Memphis	Phenoxy		ACHS A	¥ 19,2	æ78	<b>4</b> .4	0.03393	Good
Memphis	Rhenox	Normal	FOMO	°17.2	206	§ 4.1	-	Very good
	Benzol	High	FORMC	× 15.8~	~ 85.9	2.2	_	Excellent
Casa Grand Č	^{&gt;} Gem ∢	J High	HS .	2 19.Q	85.9 109	£.0	0.01767	Excellent
						<b>*</b>		

ø

Table 7.1.2.1.1-11:	Selection of optimised kinetic model parameters for deltamethrin –
	modelling endpoints

		ing enup					
Soil	Label	Info	DT ₅₀ derivation	DT ₅₀ (days)	DT59 20°C and pF2 (days)	Chi ² error	P-test
Dubbs	Methylene	Exag'd	Slow-phase DFOP k ₂	32.9	43.2	, Q	0002523
Dubbs	Methylene	High	Slow-phase DFOR 2	36.7	48.3	^ الْ	0.0077
Dubbs	Vinyl	Exag'd	Slow-phase HS k ₂	36.1	) 47.4 🦉	€ 2.85	0.02211
Dubbs	Vinyl	High	Slow-phase DFOP k ₂	52.4	68.8	1.8	003016
Hagerstown	Methylene	Exag'd	Slow-phase DFOP k ₂	4 <b>7</b> ⊀4	©° 62,2∜	A.0.5	0.00332
Hagerstown	Methylene	High	Slow-phase DFOP k ₂	\$3.6	20.4	0 1.4	0.01286
Hagerstown	Vinyl	Exag'd	H&DT90/32	16,8	≪22.0 €	2. <b>F</b>	0.01182
Hagerstown	Vinyl	High	FOMC DA 90/3.32	19:5	° 25.70°	Å4.7	A °
Dubbs	Cyano	10°C	SPO ~	<b>3</b> 9.4 <u>A</u>	12,5	⁰ 3.5 ¢	0.00007
Dubbs	Cyano	25°C	Slow-phase HS k2	[©] 26,9 €	م مي 5.3 م	36)	0.03251
Dubbs	Vinyl	10°C Q	, SFQ ~	593	ِنَ [*] 18.8	3.8	0.00086
Dubbs	Vinyl	25°C	Blow-phase HS 12	~28.5 ~	° 3,40Å ,≰	S 3.2	0.00695
Dubbs	Cyano	High	Slow-phase DOP k2	96. <b>5</b> 0	OI27	2.3%	0.02473
Dubbs	Cyano	Sormal	Slow-phase FOP k	120	231	<b>%</b> ≱.8	0.04306
Dubbs	Phenoxy [§]	🖉 High 🌷	Stow-phase HS k ²	چپانې پر مړ	[©] 1&9	[©] 1.9	0.00613
Dubbs	Phenoxy 🖏	Notinal	Slow-phase DFOP k ₂	92.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.8	0.01213
Memphis	Cyano	High	Slow-phase HS k	67.2	* 88. <b>3</b>	5.9	0.05617
Memphis	Cyago 4	Normal	Slow-phase DFQP k2	@4.3	× 84.3	0.8	0.00089
Memphis	Phenoxy	High	Slow-phase HS k2	78.6 ⁽	103	4.4	0.03393
Memphis	Dhenox	Nørmal	Slow-phase AS k2	850	112	6.4	0.08073
Casa Grand 🔊	Dan	High	_FOMC_DT 90/3-32	\$5.9	^{34.0}	2.2	-
Casa Grand	6 Bengyi	High	HS DT 90/3.52	⊙39.0 ¢	51.2	6.0	0.01767
		N é	Geom@r	ric mean	54.8*		

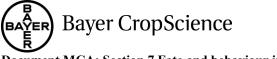

* Geometry mean of the Dabbs (565 days), Magerstown (396 days), Memphi (96.3 days) and Casa Grand (41.7 days) soils calculated first.

Table 7.1.2.1.1 1	2: ĴŤOCŀŜ	soil temperatu	re and masture	content correction factors
. 6			× A	

Soil <u>A</u> T	emperature	2° 4° .	👌 Mosture c	ontent		FOCUS
	(°C)	Measured	V Incubation	Incubation (%w/w)	Reference (%w/w)	correction factor
. K		<u>, pr 2.3 ( 76 w.w)</u>		(70W/W)	(70W/W)	lactor
	25 🔊	€ 23.7 €	⊙75% 1/3 bar	17.8	23.7*	1.313
	ຽ້ 25	~ 32 ⁶ Q	75% 1/3 bar	24.5	32.6*	1.313
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× *37.6 _{@1} *	75% 1/3 bar	28.2	37.6*	1.313
	×25 Ö	<i>√</i> 23.4 23.7	75% 1/3 bar	17.5	23.4*	1.313
	Ž 10 U	<u>0</u> 23.7	75% 1/3 bar	17.8	23.7*	0.317
6	20 2	¥ -	55% MWHC	31.6	21.8^{+}	1.000
	<u>20</u>	-	55% MWHC	26.7	15.0^{+}	1.000
	20	-	55% MWHC	29.7	37.5^{+}	0.849
	20	-	55% MWHC	49.0	36.5+	1.000

* Measured pF2.5 > FOCUS default, so measured pF2.5 used

+ measured pF2

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

III. CONCLUSIONS

Deltamethrin is degraded in aerobic soil kept under standardized laboratory conditions with a DT_{50} of 54.8 days. The DT_{50} values and maximum occurences in soil of deltamethrin used as modelling input values for the calculation of predicted environmental concentrations in soil (PEC_{soil}) are sumparized in Table 7.1.2-1, those for predicted environmental concentrations in groundwater (PECgw) in Table 7.1.2-2.

The following laboratory study on degradation of deltangthrin in soil was found in the literature. It is summarised in the following. The outcome was <u>not</u> included to derive endpoints once non-EU soils were used, and not all EU study requirements for such a study type were fulfilled. The resulting DT_{so} was not worst case and thus covered by the used data

Report:	KCA 7.1.2.1.1 /11; Chen&L. Gu&X. Day, R.; Wu, Y. Zhang G.; 2008 🛷
Title:	Persistence and dissipation of synthetic pyrethroid pesticides in red soils from the
	Yangtze River Delta area 🖉 🖉 🧟 🖉
Source:	Journal:Environ. Geochem (Pealth, (2008) 30 (1) 67–77 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Document No:	
Guidelines:	None of the second seco
GLP:	M-460924-01-1 None No, published study (peer-reviewed article)
Literature	
review	
classification:	b) supplementary information (EFSA Journal 2011, 9(2):2092)

EXECUTIVE SUMMARY

Laboratory incubation trials were conducted to investigate the effects of several factors on the persistence as well as the dissipation of three witheric pyrethroid perticides among them deltamethrin in "red" soils obtained from the Yangtze River Delta region in China.Dissipation half-lives (T_{12}) tended to correlate with soil pH and soil organic matter contents, but not with soil ration-exchange capacity. The rates of pyrethroid dissipation also tended to increase with increasing initial soil concentration, but were largely unaffected by whether the pesticides were present in the soil separately or as a mixture. Microbial activity appeared to dominate the degradation process.

Dissipation half-lives @18.4 and 18.1 days were reported for deltamethrin in unsterilized soil when being applied as single compound or as pyrethroud mixture, respectively.

I. A. Material 1. Test material Deltameth Test item: Deltamethrin Active substance Chemical state and description not reported Source of test item: (USA) not reported Batch number: ~98% Purity: Storage conditions: not reported not reported **Classification** not reported Source, sampling date, storage conditions

Top soil field samples (0-20 cm deep, red), collected from farmland in the three locations in the Yangtze River Delta region:

S01, ortho red soil:

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

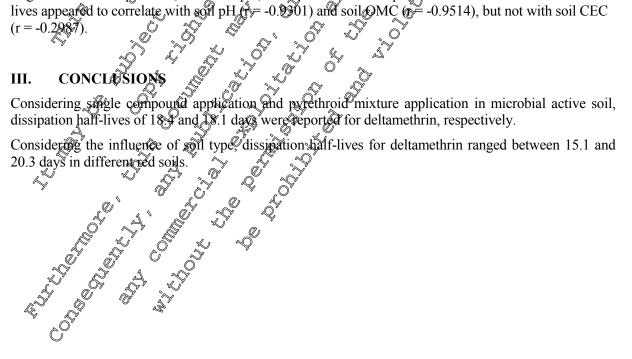
	Zhejiang province;
	S02, yellow-red soil agriculture and ecology
	; Or of a
	S03, brown red soil: experimental station
	Air-dried, sieved 60-mesh, storage in the dark at 20 °C y
Soil type:	not reported S01: Clay ($<5 \mu m$): 34%, Silt S-50 μm): 59%, Sau ($>50 \mu m$): $(>50 \mu m)$:
Particle size:	S02: Clay (55 μm): 28%, Sut (5-50 μm) 57% Sand (>50 μm).
	15% S03: Clay (<5 μm): 29%, Silt (5-50 μm): 58%, Sand (>50 μm):
pH:	13% O S014 6.07, 502: 6.86, S032 7.13
Organic matter content:	SOF: 24-57 mg-kg ⁻¹ , SOE: 30.79 mg kg ⁻¹ , SO2; 33.64 mg kg ⁺
B. Study design and methods 🧳 🖉	S013 6.07, 802: 6.86, S032 7.13 S01: 24.57 mg-kg ⁻¹ , S02: 30.79 mg kg ⁻¹ , S03: 33.64 mg kg ⁻¹
<u>1. Sampling</u>	
Sample preparation:	gon suppres were sugar radia into o but and rot reatment with
	The pyrethroides separately and as a mixture.
. Ø Ö ^v	Product label-specified max. application rate of 2 mg kg ⁻¹ . Monitoring soil subsamples of 0 g were sampled for
	quantification of rendue contents at intervals of 0, 7, 14, 21, 28,
	35, 49, 70, 91, and 12 days following pyrethroid treatment.
	The following test parameters were investigated: ⁽⁴⁾ Three pyrethroides among them deltamethrin present in soil
	separately versus a mixture
	2) Sterilized versus unsterilized soil: 3 x autoclavation for 30
	A min at 121 C S I mL of a glucose solution (200 g
	\mathbb{A}^{4}) was added to each subsample
	4 Pesticide concentration: 2, 5, and 20 mg kg ⁻¹
Sampling frequency:	(0, 7, 19, 28, 35, 49, 50, 91 and 112 days following pyrethroid treatment of treatment of the second
Number of samples per site/soil	not reported
Sampling frequency:	
Storageof samples:	The tab soil samples were kept in an incubation box at 25 °C and a soil moisture content of 25% by weight.
2. Chemical analysis	
Method validation:	not reported
Guideline/protocol:	not reported Gas chromatograph (GC) equipped with electron capture
	*Qetector (ECD) and a capillary HP-5 column
Pre-treament of samples:	The extraction and clean-up procedure is described in detail in
Method: O' J G' C'	literature ² .
¥	

² Gu, X. Z., Zhang, L., Zhang, G. Y., Fan, C.-X., Chen, L. (2010). Preliminary Evidence that Copper and Zinc Inhibits the Dissipation of Synthetic Pyrethroid in Red Soil. Water Air Soil Pollut, 212: 345-355.

Page 25 of 117 2015-12-02

Bayer CropScience

The data from the present study tend to suggest that pyrethroid dissipation in soil is not affected by whether the pesticides are present in soil separately or together as a mixture. Deltamethrin dissipated with half-lives of 18.4 and 18.4 days in unserilized soil with separate compound application and application as a mixture, respectively


Increasing concentrations of deltamethrin in soil (2, 5, and 20 mg kg⁻¹) lead to a considerable increase of the half-life of deltamethrin from 18 4 days to 29.2 days in unsterilized soil. Comparing the study data and half-life between unsterilized and sterilized soils, the results reveal that microbial activity played a dominant role in the present study, soil pH, soil organic matter contents, and external carbon source were all seen to affect the half-lives of the three pyrethroids in soil somewhat, although to a lesser extent compared to microbial activity.

The results of the study are summarized in the following table.

Table 7.1.2.1.1-13: Deltamethrin dissipation equations and half-lives (days) in soil resulting from various treatments: sterilized, unsterilized, single compound application, pyrethroid mixture application, pyrethroid soil concentration, external carbon source, soil types Ď \gg

	external carbon	J		2°	
Soil	Treatment	Dissipation	Correlation	balf-life	
sample		equation	coefficient ^{r²}	{ [day]	5 5
	Single compoun	d or mixture applica	tion 🖉	, b	Dissipation rate
S02	Sterilized - Single	$C_t = 2.35 \cdot e^{-0.0087}$	-0.9836	79.7 Õ	
	Sterilized - Mixture	$C_t = 2.27 \cdot e^{-0.0082t}$	-0.9901	84.5	
	Unsterilized - Single	$C_t = 2.14 \cdot e^{-0.0376t}$	-0.9239	18,4	
	Unsterilized - Mixture	$C_t = 2.05 e^{-0.0383t}$	~0.9551© [°]	98.1 C	
		4	, 2° , 2° 4		
	External carbon	source gluces ado	Kition & S	Ĩ.	constant
		4 0		((mg kg ¹ day ¹)°
S01	None (CK)	$C_t = 2.26 e^{-0.034 t}$	<u>∼</u> 0.90⊅	^{20.3}	©0.034
	Glucose added	$C_t = 4.90 \cdot e^{-0.0426t}$	~~-0.8€¥1 v	× 16.2	<i>∞</i> 0.0 4 26
S02	None (CK)	C = 2.14 = 0.0376t	<u>~</u> 9239	\$.4	0.0376
	Glucose added	$C_t = 2.40^{\circ} e^{-0.0447t}$	~0.964 [®]	<u>8</u> 15.5 \$	、≪0.0447
<i>S03</i>	None (CK)	$C_t = 2.10 \text{ C}$	0.9072	150	0.0440
	Glucose added	$C = 2.16 \cdot e^{0.0501t}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19.8	0.0501
	. Meltamehrin	concentration (mg k	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24 24 24 24 24 24 24 24 24 24 24 24 24 2	Dissipation rate constant (mg kg ⁻
				Y SY	¹ day ⁻¹)
S02	2 2 5 2	$C_t = 2.14$ $0.0376t$	-0!9235%	°¥8.4	0.0376
	5 01	$e^{-0.035}$	@0.9758	[*] 19.5	0.0355
		$C_t = 2.37 \cdot e^{-0.237t}$	-0\$789	29.2	0.0237

Regressions of dissipation half-lives on pH, OMC and CC web performed for deltamethrin. The halflives appeared to correlate with soft pH (f) = -0.0001) and soil OMC (f = -0.9514), but not with soil CEC

CA 7.1.2.1.2 Aerobic degradation of metabolites, breakdown and reaction products

Maximum formation fractions of Br_2CA (*cis*) and mPBacid, as well as the degradation rate of Br_2CA in soil under aerobic laboratory conditions in the dark were evaluated during the Annex I inclusion using the parent study of <u>Error! Reference source not found.</u> (1991) and (1978) From the data of 14-90 days samples a DT_{50} of 21 days ($r^2 = 0.95$) for Br_2CA in order soil was indicated and accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002). Not any DT_{50} data were stated for the metabolite mPBacid since it was not regarded as a major metabolite that time. The following still relevant studies needed for both metabolite assessments are included in the Baseline Dossier:

	40	<u> </u>	,O	
Author(s)			Yean D	ocument No
			991 AM	1-1,36659-01-1
	- >		1978 M	€06377\$-01-1 _∘
		<u>Q</u>		

In order to fill data gaps new rate of degradation studies (Error! Keterone source not found 2013, report M-455519-01-1, and 2011, report M-43119,01-1) have been performed for both major degradation products. They are submitted within this Supplemental Dessier for the deftamethrin renewal of approval, together with an updated kinetics evaluation of their degradation kinetics considering all respective relevant data (see Errors Reference Source not found. 2013, report M-462053-01-1) in order to derive kinetic parameters suitable for modelling purpose and environmental risk assessment (a summary of the respective firm data is given in Table 7.12-2.

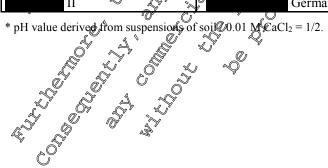
Report:	KCA 7,1.2.1.2,01; ; ; 2013 O 4
Title:	Ciemdinethy C A F108565 (BpCA) Degradation in four aerobic soils
Report No:	© EnSa 13-0193 (M 55510-01-1) (© CD 56 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
Document No.	M 5551001-10 4 2 2 2
Guidelines:	M 55510-01-1 C C C C C C C C C C C C C C C C C C
	DRAFT SANČO 11/802/2090/rex 7 in accordance with Regulation (EC)
	Nog 107/2009 (O C C C C C C C C C C C C C C C C C C
* 7	No f 107/2009 USEPA ØCSPP Test Guideline Nov 835.4200 / 835.4200
GLP:	
-	

EXECUTIVE SUMMARY

The rate of degradation of [gendimethyl-¹⁴CAE F008565 (Br₂CA) was studied in four soils under aerobic conditions in the dark in the laboratory for 21 days at 20.1 °C and 54.6% of the maximum water holding capacity. For mation of significant amounts of non-extractable residues and carbon dioxide indicates a participation in the natural carbon cycle of soil and the potential for a complete mineralization of Br₂CA.

The experimental data could be well described by a single first order model for all soils tested. The halflife of Br₂CA under aerobic conditions was less than 6 days in all soils (see Table 7.1.2.1.2-1).

From the stude it is concluded that Br_2CA and its degradation products have no potential for accumulation of the environment.


Chi² Error Visual Soil **Best Fit** DT 50 **DT**90 Kinetic Model¹ [%] 🔊 Assessment (Soil Type) [d] [d] 1.4 SFO 5.8 19.2 Â.3 AXXa SFO 3.0 10.2 4.2 4a SFO 4.1 13.7 Ĉŀ 4.9 SFO 3.2[°] 10.6 Π ¹ SFO: Single first order ² Visual assessment: + good, o = moderate, - = poor I. **MATERIALS AND METHODS** MATERIALS A. **Test Item** 1. Radio-labelled Br₂CA Gendimethyl-ÅE F**JØ**8565© KML 9443 Batch Code 9.04 MBq/mg 190, 30 Ci/mg Specific radioactivity 92% Radio-chemical Purity: > 99%Chemical Purity: ¢ 99% Diastereomeric Purity C 2. **Test Soils**

Best fit kinetics of Br₂CA degradation in soils under aerobic conditions Table 7.1.2.1.2-1:

2. Test Soils Four soils were used (see Table 7.0.2.1.2.2., for more defails see Table 1 of report). The soils were taken from agricultural use areas representing different geographical origin and different soil properties as required by the guide wes. No plant protection products were used for the previous 5 years. The soils were sampled freshly from the fields (upper bolizon of 0 to 20 cm and sieved to a particle size of ≤ 2 mm. Scal collection and handling were in accordance to SO 10381-6. Microbial biomass determination confirmed that the soils were viable.

Table 7.1.2.1.2- 2 Physico-chemical properties of test soils

	Q					<i>J</i>		
Soil	Ø			Source	<i>W</i>	Texture (USDA)	рН *	OC [%]
				Germa	u v	Sandy loam	5.2	1.8
	AXXa	i B	2	Germa	lny	Loamy sand	6.5	1.7
		4a		G çrma	any	Silt loam	6.3	1.8
	II	K (Ger	many	Loam	7.3	4.7

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

B. **STUDY DESIGN**

1. **Experimental Conditions**

The static test system for degradation in soil under aerobic conditions consisted of Erlenme gass flasks (volume e.g. 300 mL). Each flask was closed with a polyurethane (PU) from plug allowing free oxygen exchange.

For preparation of the test systems, 100 g dry weight equivalents of the signed soils were weighed into each flask. Soil moisture was adjusted to $55 \pm 5\%$ of the maximum water bolding capacity (MWHC) for the individual test systems by addition of de-ionized water. The flasks were then closed with PU foam plugs and equilibrated to study conditions for 3 days ptior to application.

The amount of test item for the treatment of test systems was based on the single maximum recommended field application rate (FAR) of the parent active substance Deltamethrin, \$2.5 geper hectare, and a maximum formation of approximately 25% of degradation product Br2CA in a Deltamethrin soil degradation study (see Erro? Reference source not found. 1991, report MA 36665-01-1). Due to analytical reasons, a 40-fold application cate was used, resulting in a noncoral state application rate (SAR) of 197 µg per kg soil dry weight following QECD To No. 307. The FAR was converted to the SAR by assuming a homogenous distribution of BOCA in a soil aver of 2.5 cm depth and a generic soil bulk density of 1.5grcm^3

The test item (141896 Bq equal to 20.2 µg, 100% ÅR) was applied dropwise onto the soil sufface of the respective test systems in 400 μ L methanol/water 1/0 (v/v) using a pipette. After application, the test vessels (except DAT-0 samples) were closed with PU foarly plug

The test systems were incubated in the dark for 21 days at mean temperature of 20, \$ C (MIN 19.8 °C, MAX 20.3 °C) and soil moisture of 54.6% (MIN 52.3%, MAX 55.4%) of NWHC in a walk-in climatic chamber.

2. Sampling 7 sampling intervals were distributed over the entire incubation period pe were processed and analysed 0, 1, 2, 4, 7, 1 Pand 21 days after treatment (DAT). Microbial soil biomass was determined at the start and after termination of the study (DAT-QDAT-22).

Analytical Procedures 3.

At each sampling interval, the entire soil of each test system was extracted three times at ambient temperature using scetonitrile / water 4/1 (v/s). Furthermore, two microwave-accelerated extraction steps were performed using acconitrife / water 1/1(v/v) at 70 °C and methanol / water 1/1(v/v) at 50 °C. The amount of ten in soil extractowas determined by liquid scintillation counting (LSC) and by HPLC/radiodetection, analysis. The amounts of volatiles and non-extractable residues were determined by LSC and combustion/LSC, respectively. The test item was identified by HPLC-MS(/MS) including accurate mass determination. The LOD of the HPLC/radiodetection method was determined as 6.0 Bq absolute on column or 0 4% AB

The degradation kinetics of the test item was determined according to FOCUS kinetics (2006) using the software KinGI 2 with three different kinetic models: single first order, first order multi compartment and double first order in particle. Model input datasets were the residual amounts found in each replicate test system at each sampling interval. The initial recovery at DAT-0 was included in the parameter optimization procedure, but for optimal goodness of fit, the value was allowed to be estimated by the model. The best fit kinetic model was selected on the basis of the chi² scaled-error criterion and on the basis of a visual assessment of the goodness of the fits. DT_{50} and DT_{90} values were calculated from the resulting kinetic parameters.

II. RESULTS AND DISCUSSION

Results indicated that the anticipated standardized aerobic conditions were maintained and that the soils were microbially active over the duration of the laboratory study. Further, the results demonstrated that the sample processing method was well suited to recover high amounts of the applied test item from the soil and that the test item was stable under these conditions.

A. DATA

 Table 7.1.2.1.2-3:
 Degradation of Br₂CA in soil
 Degradation
 Degradation

 conditions (expressed as percentage of applied radioactivity (mean ±SD))

conditions (expr		P - A	8 ··I	Q	A O		, (, (
	Mean		\sim	`. Ø	ØAT '	Ŷ.	Ô ^v		Ď
Compound	SD 🕵	0⊘°	A.	2×	40	70	14	210	
Br ₂ CA	Mean	96.3	م 8 5.7 ر	78.4	600.9	40.4	18.9	<u>6</u> .6	e
BI2CA	<u>S</u> D	@ 0.5	$v \pm 0.4$	± 0.5	± 1.4	± 0.7	@ <i>"</i> 0.8	æ 1.7	Ŵ
Sum of Unid./Diff. Residues ¹	Mean	¢≪ LOΩ [≫]	30	5,0	8.50	9. 5 C)	7.2	[∞] 5.1	
Sum of Onid./Diff. Residues	y ^y SQ°≫	Ű "O`	s <u>≠</u> 0.2	.±00.5	₹0.7	±0,5	±Q¥	±Øð	
Total Extractable Residues 2	Mean	.	\$89.6 _@	84.4	G 9.4	\$0.9	26 .1	<u>11.7</u>	
	S D	°∕¥ 0.5 [™]	± 0,6%	± 0	± 0.7	[™] ± 1.2	£ 0.9≈	G±1.7	
Carthar Diarida 3	Mean (n.aO	DS	2,4	70	12	29.8	37.2	
Carbon Dioxide ³	SD	Ĩ.	, ≠ 0.1	₽ 0.1	± 0.1	£0 0.0	± 2 .6	± 1.2	
Volatile Organic Compounds ³	Mean	, n.a. ∩	0.1 🎸	0.1	0.3 Ç	0.4	0.5	0.5	
Volatile Organic Compounds	SD		± 0.0	± 000	± 0.0	± 0.0	2 ± 0.1	± 0.1	
Non-Extractable Residures ³	Mean	69	A .3	12.9	23.8	36,3	44.3	48.6	
Non-Extractable Residues	S	€ 0.2 %	$5 \pm 0.2^{\%}$	∕±0.6⁄	_± 0.7 °		± 1.1	± 2.4	
Total Recovery ²	Ørean j	\$97.1	98.4	100 9	100.6	100.0	100.7	98.1	
I OLAL SECOVERY -	SD.	± 00	₹9.9	‡ 0.5	±@1	± 2.1	± 2.4	± 0.6	
	~ ×	¹ ¹ ¹ ¹	C.	Ø	AC Y				

 Table 7.1.2.1294:
 Degradation of Brack in soil
 Degradation of Brack in soil

 (expressed as percentage of applied radioactivity (mean ± SD))

		0°		<i>(</i>])	407				
	E Compound	Mean	\cap^{v} \checkmark	Ş. (DAT			
		S SD	× 0,	15	2	4	7	14	21
	Br2CA	Mean	9&6	~79.8	64.6	41.2	19.7	3.0	1.3
		∿,SD	ي 0.2 ¢	¥0.1	± 1.5	± 1.0	± 1.3	± 0.6	± 0.0
	Sunoof Unid,/Diff Residues 1	Mean	C LOD	5.4	8.8	9.4	8.4	5.5	5.4
		SDO	ð	± 0.2	± 0.3	± 0.1	± 0.1	± 0.4	± 0.2
	Restal Extra atchia Dationa 20	Mean	.99.0	85.2	73.4	50.6	28.1	8.5	6.7
	Total Extractable Residues 20"	SBD _	0.6 ±	± 0.3	± 1.2	± 1.1	± 1.1	± 0.2	± 0.2
		Mean	n.a.	2.1	6.3	12.3	19.5	33.3	37.1
A		SE		± 0.1	± 0.1	± 0.4	± 0.3	± 0.6	± 0.8
	Volatile Organic Compounds	Mean	n.a.	0.1	0.1	0.1	0.3	0.3	0.2
	volatine Organic Compournes	SD		± 0.0	± 0.0	± 0.0	± 0.1	± 0.0	± 0.0
	Non-Extractable Residues 3 ~9	Mean	0.5	10.5	19.5	34.3	47.6	51.7	50.1
		SD	± 0.0	± 0.5	± 0.1	± 0.9	± 0.5	± 0.4	± 0.1
	Totak Becovery 2	Mean	99.5	98.0	99.2	97.3	95.6	93.8	94.1
	Total Recovery ²	SD	± 0.6	± 0.9	± 1.2	± 0.2	± 0.3	± 0.8	± 1.2

5 n.d.: not detected, n.a. and analyzed, DAT: days after treatment, SD: standard deviation

¹ Minor degradates are summed up to unidentified residues, see Appendix 10 and 11 of report for max. amounts

 2 Difference to material balance values due to rounding errors as well as clean up and chromatographic losses

³ Values taken from material balance

Degradation of Br₂CA in soil Table 7.1.2.1.2- 5: under aerobic conditions (expressed as percentage of applied radioactivity (mean \pm SD) ð

		*	<u> </u>				•	. 4	
	Mean]	DAT	A .		5	- S
Compound	SD	0	1	2	4	Ç7	14	L 21	Ś
Dr.CA	Mean	96.9	84.4	75.7	52,5	28.2	5.2	3.8	8
Br ₂ CA	SD	± 0.4	± 0.8	± 0.4	±23	± 0.2	, O ^x	±	
Sum of Unid./Diff. Residues ¹	Mean	<lod (<="" th=""><th>s 3.6</th><th>6.0</th><th>§8.5</th><th>6.6</th><th>×4.6</th><th>Å.3</th><th>Ŝ.</th></lod>	s 3.6	6.0	§ 8.5	6.6	×4.6	Å.3	Ŝ.
Sum of Onid./Diff. Residues	SD	\square	₹ ± 0.3	± 0	± 0.3	$\pm 0.1_{\text{m}}$	0 A	QÉ 0.3≰	
Total Extractable Residues ²	Mean	97. L	88.0	807	61.0	34%	9.5	8.4	
Total Extractable Residues	SD	±30.7	± 0.4	0.4	±.2.6	₹0.1	_ſ	±0.7	, O ^v
Carbon Dioxide ³	Mean	on.a.	1.4	4.0 _@	8.8	Q17.0	3 2.2	چ36.5	Ď
Carbon Dioxide	SD "	°V ∕≈°	±QQr	±Ů¥	± 0.%	± 0		$\int \pm 0 \hat{J}$	
Volatile Organic Compounds ³	Mean	næ	₹0.1	AQ.1	Å	09	0.2	Q.3	
Volatile Organic Compounds	ŞD		0.0	Q0.0	₩ 0.0	± 0.0	d a	\$0 .0	s, °
Non-Extractable Residues ³	Mean	$\sim 0.9 \sim$	8.8	14,8	28.7	43.0	50.5	\$47.7	U [*]
Non-Extractable Residues	\gg SD $_{\sim}$	1 ± 0	±0.3	±0%.4	±2,4	± 0,5	Ś	$\pm 0.2^{\circ}$	
Total Recovery ²	Mean	28/1	\$9 8.2	\$100.6	98.7	£ .0	92.8	92.6	
	SD -	≫€0.7 %	$y \pm 0 A$	± 0.2	1 ± 0.3	€0.2	Ğ.	. ≄ 0.2	
		~ ·		J	()	~	J	\vee	

*: Material Balance of one sample was < 90% AR, presumative due to a leakage during determination of parbon dioxide. Therefore, the values of this sample were not used for calculations

Table 7.1.2.1.2- 6:	Degradation of Br2CA@in soil and the source of the second conditions
	(expressed as percentage of applied radioactivity (mean ± SD))

Ø,

Ô

	(()) V		\bigcirc	N. A				
Compound	Mean	7 1	γ (o" g	DAT	Š,		
	Mean SD	AS T	10	2	4	7	14	21
BECA & K	Mean	98.6	£9 .9	\$®.7 €1.3	\$ ¶.0	22.0	3.9	1.6
Besch y ky	🖉 SD ĸ	} [™] ± 0.5⊳		S¥ 1.3	£5.3	± 2.6	± 2.5	± 0.9
Sum of Unid./Diff. Residues 1	Mean	0.5 ± 0.0	3.90	5.1	5.6	6.2	5.2	4.9
	SD	± 0.0	±@.2	±Øřľ	± 0.4	± 0.1	± 0.7	± 0.4
Total Extractable Residues	Mean	94.0	73.8	63.8	46.6	28.2	9.1	6.6
1 otal Extravable Residues	SD	± 1,0	± 2.8	∕±1.2	± 4.9	± 2.7	± 1.8	± 0.5
	Mean	n.a.	2.2	5.6	11.5	19.1	34.5	37.7
Carbon Dioxide	s,≪SD	\sim	6 .2	± 0.2	± 0.9	± 0.6	± 0.6	± 0.5
Volavile Organic Compounds 3	∫MeanC	🕈 n.a. 🖉	Ø≪0.1	0.1	0.1	0.1	0.2	0.1
	SD	ð	± 0.0	± 0.1	± 0.0	± 0.0	± 0.1	± 0.0
Non Extractable Dec June 30	Mean	× 2.3	21.4	29.1	39.0	46.1	52.3	50.5
Non-Extractable Residues 3	SD 👔	± 0.2	± 1.5	± 1.0	± 3.3	± 1.1	± 2.0	± 1.7
K Total Recovery 2 0	Mean	96.3	97.4	98.6	97.3	93.5	96.0	94.8
	<u>s</u> ø	± 0.8	± 1.1	± 0.0	± 0.8	± 1.0	± 0.9	± 1.7

n.d.: not detected, n.a.: not and zed, D&T: days after treatment, SD: standard deviation ¹ Minor degradates are summed up for inidentified residues, see Appendix 10 and 11 of report for max. amounts ² Difference to material balance values due to rounding errors as well as clean up and chromatographic losses ³ Values taken from material balance ~Ç

Õ ĥ Ì

MASS BALANCE AND DISTRUBUTION OF RADIOACTIVITY B.

Mean material balance was 99.8% AR (range from 97.5 to 101.6% AR) for soil

97,0% AR (range from 94.1 to 99.6% AR) for soil AXXa, 96.8% AR (range from 92.8 to 400.8% AR) for soil and 96.4% AR (range from 93.9 to 98.6% AR) for soil II.

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Extractable residues decreased from DAT-0 to DAT-21 from 96.6 to 12.3% AR in soil AXXa, from 97.4 to 8.3% AR in soil from 99.1 to 7.0% AR in soil Ĩ and from 94.2 to 6.6% AR in soil Non-extractable residues (NER) increased from DAT-0 to DAT-21 from 0.0 to 48.6% AR in soil AXXa, NER increased from DAT-0 to DAT-14 from . In soil 0.5 to 51.7% AR and slightly declined to 50.1% AR until DAT-21. NER increased in soil from DAT-0 to DAT-14 from 0.9 to 50.5% AR and declined to 47.7% AR antil DAT-21 dn II, NER increased from DAT-0 to DAT-14 from 2.3 to \$2.3% AR and slightly declined soil to 50.5% AR until DAT-21. The maximum amount of carbon dioxide was 37.2 \$7.1, 36.5 and \$7.7% AR at study and (DAT-2 soil respectively. was insignificant as demonstrated by salues $3 \le 0.5\%$ Formation of volatile organic compounds (AR at all sampling intervals for all soils. C. DEGRADATION OF TEST IFEM The amount of Br2CA in the soil @tracts decreased from DADO to DAT-24 from 96.3 to 6.6% AR in AXXa, from 96.9 to 3.8% from 98.6 to 0.3% AR in soil soil and from 93.6 to 1.6% AR H soil AR in soil The experimental data could be well described by a single first order (SFO) interior model. The half-life of Br2CA under aerobic conditions was 5.8 3.0, 4. Fand 32 days in soil respectively. Table 7.1.2.1.2- 1 AXXa summarizes the best fit results of the DT algulations III. CONCI Br₂CA, a major degradation product of deltamethrin, is fast degraded and mineralized in aerobic soil in the dark The half-life of Br₂CA under standardized aerobic laboratory conditions was less than 6 days in all soils. that Br2CA and its degradation products have no potential for From this study it is concluded accumulation in the environment. Ô The results are included in the summary of the degradation rates of deltamethrin and its major degradation products in soil in the laboratory given in section CA 7.1.2. 7.1.2 1.2 /022 : 2011 **Report:** AE F10906: Aerobic degradation in three European soils Title: S¥1-01624 Report Nos M-41H19-01-1 Document No: Guidelines: OECD Tese Guideline No. 307 GL₽[‰] Yes EXECUTIVE SUMMARY

The rate of degradation of AE F109036 (mPBacid), a degradation product of deltamethrin, was studied in three soils under aerobic conditions in the dark in the laboratory for 48 hours at 20 °C. The average soil moisture content was 55 % of the maximum water holding capacity over the entire period of the

study. The application rate of AE F109036 was 5.72 µg per vessel and 50 g air dried soil, which was equivalent to 0.11 mg AE F109036/kg soil.

The mPBacid was rapidly degraded in all three soils under standardized aerobic laboratory conditions The experimental data could be well described by a single first order model resulting in a pax. DF_{50} and DT₉₀ value of 9 and 30 hours for mPBacid (see Table 7.1.2.1.2-7).

From this study it is concluded that mPBacid has no potential for accumulation in the enormality

Table 7.1.2.1.2- 7:	Best fit kinetics of mPBacid	degradation	in soils under	aerobic	conditions	6
		8	Q.	(//)		é
		e		, . <u> </u>		\cap

Ĉ

L

Soil (Soil Type)	(C	DT50 [hrs]	DT (hrs]	Chi ² Error	Wisup Assessment 24
	SFO	7.	رې 23 گې	_@#.6 %	
4a	SFO O	Ø9 ×	30	2.5	+4
II	SFO	~ <u>7</u> ~	-Q3	0,9	
SEO: Single first order					

¹ SFO: Single first order

I.

1. **Test Item**

4	Visual assessment: + good, o = moderate, - Choor, 'A' O' A'
	MATERIALS AND METHODS
	Test Item
	Unlabelled mPBacid $\sqrt[4]{}$ (APE F109036 $\sqrt[4]{}$ (C)
	Batch No.
	Certificate: $A = A = A = A = A = A = A = A = A = A $
	Chemical purity: The second seco

2. Test Soils 3° 3° taken from agricultural use areas representing different geographical origin and different soil properties as required by the guidelines. No plant protection products were used for the previous 5 years. The soils were sampled freshly from the fields (upper horizon of to 20 cm) and sieved to a particle size of ≤2 mm Soil collection and handling were in accordance to ISO 10381-6. Microbial biomass determination configmed that the soils were viable.

Physico chemical properties of test soils Table 7.1.2.

Soil	4		Source 0	Texture (USDA)	рН *	OC [%]
		Ŷ.	Gènnany	Sandy loam	5.1	1.7
		4 a	Germany	Silt loam	6.5	1.6
	II	Î Î Î	Germany	Clay loam	7.3	4.8

* pH value derived from suspensions of solv 0.01 Q CaCl₂ = 1/2.

B. STUDY DESIGN

Experimental Conditions 1.

The static test system for degradation in soil under aerobic conditions consisted of Erlenmeyer glass flasks (volume e.g. 300 mL). Each flask was closed with a closed by cotton wool plug allowing free oxygen exchange.

For preparation of the test systems, 50 g dry weight equivalents of the sieved soils were weighed into each flask. Soil moisture was adjusted to $55 \pm 5\%$ of the maximum water holding capacity (MWHC) for

the individual test systems by addition of de-ionized water. The flasks were then closed with PU foam plugs and equilibrated to study conditions for 3 days prior to application.

The study application rate (SAR) was based on a single field application rate of deltamethrin of \$2.5 g per hectare and a maximum theoretical formation of 100% of mPBacid in soil resulting in anominal SAR of 118 µg mPBacid per kg soil dry weight.

The test item (actually 5.72 μ g / 50 g dry weight of soil) was applied dropwise onto the soil surface of the respective test systems in 200 μ L methanol/water 1/1 (m/v) using a pipette. After application the test vessels (except DAT-0 samples) were closed with PU form plugs.

MWHC soil misture The test systems were incubated in the dark for 48 hours days at 20 % and at 55 in a climatic chamber.

Sampling 2.

Two treated flasks per soil were taken for analysis at the following sampling date

0. 3. 6. 24 and 48 hours after treatment

Ő Note: The selected sampling intervals should guarantee to have at least two data points before the degradation half-life, which is recommended by the referenced OECD DG 30Z On the other hand, due to the observed rapid degradation just 5 sampling intervals were investigated within 48 brs in this stude, the test guideline recommendation is at least six but that during a time period of up to 120 day

The microbial biomass of the soil was determined by shor determined by shor determined by shor determined by shore arrival and directly after treatment. It was confirmed that the test soils were viable (see Table9 of report).

44 untreated flasks containing 50 g (dry weight) soil were used for the concurrent recoveries. At every sampling date wo samples were fortified with the same amount of test item as the treated flasks and two samples were treated with an amount at the LOQ level.

Analytical Procedures 3.

The test item was extracted from the soil with 80 mil acetonitril water (1/1, v/v). The suspension was shaken for at wast 30 min. The dispersed soil was transferred to a 200 mL glass centrifuge tube. The extract was separated from the sediment by centrifugation at 2600 tpm for 5 minutes. The extraction was repeated for one time!

The additional extraction of the samples was done using a soxidet extractor. For this the complete soil samples were transferred to soxheet hull and extracted with 120 mL acetonitrile/water (1/1, v/v) for 3 hours.

After this the applicand southlet extracts were combined for the final analysis. About 1 to 2 mL of the supernatant was filtered over 0.45 um siggle-use RC filters and transferred into a glass vial for HPLC-MS/MS analysis.

Concentrations of the test item in extracts and application solutions were determined by HPLC-MS/MS within 3 days after sampling. The test item was also used as analytical standard. The HPLC-MS/MS method was validated with regard to linearity, accuracy and precision (for more details see sections 5.7.4 and 7.2 of report). The fortified samples were processed and analysed as described for the degradation samples. Black soil matrix solutions were used to determine the background abundance of the test item in the respective soils.

The disappearance time of the test item was calculated using the software package MATLAB (KINGUI), meludice information about the dissipation/degradation kinetics according to the recommendations of EC document 9188/VI/97 rev. 8 (2000). The kinetic analysis followed the recommended procedures to derive modeling endpoints outlined by FOCUS (2006) with three different kinetic models: single first order, first order multi compartment and double first order in parallel. Model input datasets were the residual amounts found in each replicate test system at each sampling interval. The initial recovery at DAT-0 was included in the parameter optimization procedure, but for optimal

goodness of fit, the value was allowed to be estimated by the model. The best-fit kinetic model was selected on the basis of the chi² scaled-error criterion and on the basis of a visual assessment of the goodness of the fits. DT_{50} and DT_{90} values were calculated from the resulting kinetic parameters.

II. RESULTS AND DISCUSSION

Results indicated that the anticipated standardized aerobic conditions were maintained anothat the soils? were microbially active over the duration of the laboratory study. No significant differences in biomass of the samples were observed within 7 days.

A. DATA

 Table 7.1.2.1.2- 9:
 Degradation of mPBacid in soils under aerobic conditions (mean values and SD expressed as % AA)

	-	<u> </u>	à Sĩ	<u> </u>		× v
Soil	Sample		U Hour	rs after Tre	atment 24	
5011			<u> </u>	<u>V</u>		
	А	102	~ ⁹⁶⁸ ~	, 5 5 ,		6
	В	Û 103¥	© 74 5	055		¥ 4 (<60Q)
	Mean	× \$402 \$, ¶¶r	\$ 55 m	\$12 Q	چ 5 *
	A A	106	83	× 60°	S 21, S	, ∜LOQ
4a	B ^S	\$ 105 ²	83	~66 °		5
4 a	^©Mean °^	106	8\$y	€ ⁵ 64	978 O	5 *
	∼ Ak	⁰ 98	@76 <i>*</i>	\$ 577		(<loq)< th=""></loq)<>
II 🦻	B	0 ³ 98 4 5 985	د 69_∿	« <i>š</i> i ~	V &	(<loq)< th=""></loq)<>
A	Allean 🖉	88 ~	້ 70 ້	<u>د</u> 54 ^۲	. 09	2 *
			\sim	$\cap' $	No.	

AA: Applied Amount

*: Value taken for kinetics calculation

B. METHODVALDATION

Analyses of the samples were performed using a HPLC-MS/MS method, which was validated as required by the SANCØ/3029/99 rever working document prior to analysis of the samples. During method validation, recoveries of AE F109036 in soft WW were between 90-100 %, in soil DD between 80-90 % and in soil HPI were between 94-04 %. The determined values of the blank samples were less than 20 % of the assigned LOQ of the test itemom all soils.

In addition, the extraction efficiency was demonstrated by investigating the concurrent recovery samples at each sampling interval (for data see Table 7 of report). The mean recoveries of all concurrent recoveries were between $\frac{1}{200} - \frac{1}{200}$

C. DEGRADATION OF PARENT COMPOUND

The amount of AE F109016 decreased fast during the incubation time from 106% of the applied amount directly after application to 5% in soil HH at the end of the study (48 hours). In soil DD the amount of AE F109036 decreased from 88% to 2% and in soil WW from 102% to 5% during the study. The extraction efficiency during the study was demonstrated by concurrent recovery samples.

The disappearance time OT_{50} and DT_{90}) of the test item was calculated and is represented in the Table 7.12.1.2.

III CONCLUSIONS

AE F109036 (mPBacid), a major degradation product of deltamethrin, is rapidly degraded in aerobic soil in the dark. The half-life of mPBacid under standardized aerobic laboratory conditions was less than 10 hours in all soils.

From this study it is concluded that mPBacid has no potential for accumulation in the environment. The results are included in the summary of the degradation rates of deltamethrin and its major degradation products in soil in the laboratory given in section CA 7.1.2.

		Ôř.	
Report:	KCA 7.1.2.1.2 /03; ; 2013	S.	
Title:	Deltamethrin: Kinetic Modelling Evaluation of Data fi	rom Aerobic So	
	Degradation Studies to Derive Trigger and Modelling	Endpoints 🔩	
Report No:	VC/11/026A	y 🖉	
Document No:	M-462053-01-1		
Guidelines:	- EU Council Directive 91/414/EE©, as amended by O	Commission Di	rective S
	95/36/EC of July 1995, Section 5, Point 7 and Comr	nission(Regula	tion (EC) No 🖤
	$1107/2009 \text{ of } 21 \text{ October } 2009; \qquad \sim \emptyset$	/ Q' 0 [*]	Ô, Û
	- FOCUS kinetics (2006) $\frac{1}{2}$		
GLP:	No (modelling calculation) $\delta^{x} = \delta^{x} + \delta^{x}$	à S.	× =

EXECUTIVE SUMMARY

A kinetic evaluation of the relevant aerobic soll degradation studies with the insecticity deltanethrin and its major soil metabolites has been conducted using the computer program KinGU2 according to FOCUS Kinetics guidance [FOCUS/2006]⁴. The updated kinetics results for the parent compound were summarized earlier, i.e. in the relevant section CA 7.12.1. In the following, the modelling endpoint DT₅₀ values derived for the metabolites mPBacid and Br₂CA

In the following, the modelling endpoint DT_{50} values derived for the metabolites mPBacid and Br₂CA are summarized, which can be used in environmental exposure assessments.

The resulting DT_{50} values and maximum occurences in soil of deltanethrin, major degradation products used as modelling input values for the calculation of predicted environmental concentrations in soil (PEC_{soil}) are summarized in Fable 7.1.2- 1, those for predicted environmental concentrations in groundwater (PECgs) in Table 7.0.2-2.

I. METHODS

Laboratory degradation data for the metabolites of defamethrm (see sections CA 7.1.1 and CA 7.1.2) were evaluated against the FOCUS Kinetics flowcharts ¹ for the determination of metabolite modelling endpoints. The chemical structure and names of the metabolites mPBacid and Br₂CA are shown in section 2 of the report. The used data on degradation are shown in the following tables.

Table 7.1.2.1.2-	Résidue data for the study performed by <u>Error! Reference source not for</u> 1991, N-136659-01 J	und.
¥	1991. NF-136659-01 N N N	
(7) n		

			9			
4	Benzyl-labeQ		Gem-lab	Gem-label		
Time	Replicate 1 2 0	Réplicate 2	Replicate 1	Replicate 2		
Time			Br ₂ CA	Br ₂ CA		
(days)	× (& AR) 0	AR)	(% AR)	(% AR)		
Soil Casa G	Soil Coop Grand					
0	A And A	n.d.	0.00	0.00		
1		, [≫] n.d.	2.45	2.74		
3	\mathcal{F} \mathcal{A} \mathcal{F} $n.d_{\mathcal{K}}$	n.d.	6.83	7.94		
7 1 1 4	A A A A A A A A A A A A A A A A A A A	n.d.	10.61	12.20		
ħ¶ÿ	De a angl.	n.d.	21.08	25.48		
£30	A A A.d.	n.d.	22.91	21.35		
30 59 4 904	n.d.	n.d.	8.86	8.35		
^{لان} 90 ک ^و	n.d.	n.d.	1.75	2.32		
120	n.d.	n.d.	0.00 ^{a)}	0.00 ^{a)}		
181	n.d.	n.d.	0.00	0.00		

%AR = % applied radioactivity; ^{a)} lowest tabulated value is 0.17%AR, $\frac{1}{2}$ LOQ is be set as 0.09% for the calculations

Table 7.1.2.1.2- 11:	mPBacid residue data for study performed by	2011, report	
	M-413119-01-1		ð

Time		mPBacid (mg/kg)	
(hours)			
0	0.113	0.121	0.117 0.116 0.078
0	0.112	0.120	A 0.115 2 2
3	0.087	Q.095	0.078
3	0.079	0.070 0.070	0.116 0.078 0.084 0.063 0.065 0.014 0.012 0.007 0.007 0.007 0.007
6	0.065	° 0.070	Ø.063 J S
6	0.058	0.076	0.063 O ⁷
24	0.011	0.024	0.014 °
24	0.009		
48	< LOQ	$\sim < 1000$	
48	< LOQ	Q 0006 A	LOQ ^y
LOQ level 0.0058	mg/kg		

Modelling strategy for data processing potimisation model See earlier in report summary of Error, Resevence Source not found. 201 Л#62053-01-1.

n

II. RESULTS

Ø The mPBacid data (Table 7, 2.1,2-11) were entered into the Figure 1 of Kincoll scheme and optimisations conducted in a stepwise procedure according to the FOCUS Kinetice Flowchart 7-2 for the determination of parent modelling endpoints (mPRacid dosed study).

Table 7.1.2.1.2-12 summarises the optimised moded fits for mPB acid for the determination of modelling endpoints. Detailed SinGUI2 outpot files are shown in the Appendix of report. The three soils from the mPBacid dosed study (<u>Evror!</u>, <u>Reference source source source source</u>, etcal. 2021, report M-413119-01-1) afforded excellent fits. The resp. study was conducted at 20°C and pF2 and thus the calculated DT₅₀ values do not require Arther ormatisation.

The geometric mean DT_{50} of $\sqrt{75}$ hours (Table 7.12.1.2, 13) can therefore be used in exposure assessments, along with a conservative formation fraction of 1.0.

		A		V KJ)ř	ini Daciu – I	noutining (nupoints
Soil	Label		Parento	Ď DŽ%	Э́ФТ90 Э́		Chi ²	t-test	Visual fit
5011	~QªLabel		kinetic	(høurs)	∑ (ho⊉rcs)	(-)	error (%)	(-)	v Isuai IIt
	N/A	N/A		6.9 ⁶	29.0	-	1.3	3.41e-09	Excellent
		≈_¶/A	(SFO)	9.€	∑×29.9	-	1.9	1.96e-08	Excellent
	N/A	N/A	(SFO)	6.9 %	22.9	-	4.2	2.87e-08	Excellent
\sim		Ĩ	Š	~~ ⁰					

Table 7.1.2.1.2-12 Optimised kinetic model parameters for mPBacid – modelling endpoints

Table 7.1.2.1.2@13:	Optimised ki	netic mode	l parameters for	r mPBacid –	modelling endpoints
		×1, ~~	1		8 1
O' ~	X20° Sand pe	2) _@			

Soft Dabe	I A Info	Parent	DT50 (hours)	Norm. DT ₅₀ (hours)	ffm (-)	Chi ² error (%)	t-test (-)	Visual fit
N/A	N₩Â	(SFO)	6.9	6.9	-	1.3	3.41e-09	Excellent
N/A	N/A	(SFO)	9.0	9.0	-	1.9	1.96e-08	Excellent
N/A	N/A	(SFO)	6.9	6.9	-	4.2	2.87e-08	Excellent
		Geome	ric mean	7.5				

The Br₂CA data (Table 7.1.2.1.2- 11) were entered into the Figure 1 of KinGUI scheme and optimisations conducted in a stepwise procedure according to the FOCUS Kinetics Flowchart 7- \mathcal{L} for the determination of parent modelling endpoints. Detailed KinGUI2 output files are shown in Appendix 8.2.1 and 8.2.2 of the report. The Casa Grand soil (Error! Reference source not found. 1990) report M-136659-01-1) is considered to give an acceptable DT₅₀ value of 12.8 days (see Table 7.1.2.1.2-1.9), 16.8 days when normalised to 20°C and pF2 (see Table 7.1.2.1.2- 15).

Table 7.1.2.1.2-14: Optimised kinetic model parameters for Br2CA2- modelling endpoints

1 abic 7.1.2.1	1,20 1,70	Opin	mscu km	cut mou		J			
Soil	Label	Info	Parent kinetic	DT50 (days)	DT (days)	ffm (-)	Chi ² error	للم الم الم الم الم الم الم الم الم الم	Vistral fit
Casa Grand	Gem	High	HS	12.8	42.5 。	07809	مُ 12.0 م	⊘ 2≳30-10 ≪	Nery good
				1	s g	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Table 7.1.2.1.2-15 summarises the optimised model fits for Br_2 for the determination of modelling endpoints, thereby including the further data listed in Table 7.1.2.1.2-3 to Fable 7.1.2.1.2-6, i.e. of Br_2 CA rate of degradation study report **Equation** 2013, report M 455519-01-1 on four soils

Altogether a geometric mean DT_{50} of 5.0 days can therefore be used in exposure as essments, along with a conservative formation fraction of 1.0.

Table 7.1.2.1.2-15: Optimised kinetic model parameters for Br₂CA – modelling endpoints (20°C and pF2)

Soil	Label Info	Barent DT50 Kinetic (days)	(days)	ffm, criff (-)0 (%)	t-test (-)	Visual fit
	Gerth Nor ((SEO) ~5.8*~	59 ¢		1.82e-15	Very good
AXXa	Gem NA ((SFO) (3.0*)	~ 0.0	- 2 43	3.10e-16	Very good
	Gem N/A O	(SFO) [©] 4.5↓*	3.5	- 43 - 4.2	4.51e-11	Very good
	Gem N/A ((SFO)3.2* 💭	1 300-	- 💥 49	1.07e-09	Very good
Casa Grand	Gem High A	(12.8)		0.809 12.0	2.3e-10	Very good
		Geometric mean	× 5.0	<u>i</u>		

* Results taken from 2013, report 104455519,01-1

CA 7.1.2.1.3 Anaerobie degradation of the active substance

The degradation rate of deltamethrin in soil under an aerobic conditions in the dark in the laboratory was evaluated during the Annex I inclusion and was accepted by the European Commission (SANCO/6504/VI/99-final 17 October 2002). The following two studies included in the Baseline Dossier were regarded relevant.

Author(s	Year	Document No.
	1991	M-136665-01-1
	1980	M-149538-01-1

Deltameterin is extensively degraded in soil under anaerobic conditions, DT_{50} ranges from 32 to 105 days ($n \neq 5$), however, degradation was somewhat retarded in comparison with the aerobic degradation. The principal degradation pathway under anaerobic conditions was the same as that observed in aerobic conditions.

No additional studies are submitted within this Supplemental Dossier for the deltamethrin renewal of approval. In general, anaerobic conditions are unlikely to occur in soil when deltamethrin is used.

CA 7.1.2.1.4 Anaerobic degradation of metabolites, breakdown and reaction products 🖉

During the Annex I inclusion information on degradation of deltamethrin metabolites under anaeropic conditions in the dark in the laboratory was accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002), and it was not regarded as a relevant, processon soil. Therefore, no additional studies on this topic are submitted within this Supplemental Dossier for the deltamethrin renewal of approval.

In general, anaerobic conditions are unlikely to occur in soil when deltamethrin is used. In the exceptional case that anaerobic conditions occur in soil after deltamethrin was used, it is expected that, temporarily, the major metabolites Br_2CA (*cis*) and mPBacid will be more stable in an anaerobic soil environment, however, will then be rapidly degraded once aerobic conditions are established again (see section CA 7.1.2.1.2 before); subsequently they do not have the potential to reach unaerobic aquifers (see for PECgw calculations in the MCP dossier section 92.4).

CA 7.1.2.2 Field studies

The dissipation of deltamethrin in soil under field conditions was evaluated during the Annex l inclusion and was accepted by the European Commission (SANCO/6504/VI/99-final 17 October 2002).

No additional studies are subinitted within this Supplemental Dessier for the deltamentrin renewal of approval. In general, the field studies confirmed the results received by the second laboratory studies.

CA 7.1.2.2.1 Soil dissipation studies

The following two studies, one from USA and one from Germany, included in the Baseline Dossier were regarded relevant during the Annex I inclusion.

_	. 0	°S`	~ ~ ~	×	. 6	14		£S [°]	**
	Auth	or(s)	*	0 *	×.	<u></u>	Q.	b ear (Document No.
)		. 2 2				Ø,	19917	M-149730-01-1
Ê,			- 2				C/2	1990	M-127756-01-1*
4			N.	. /		No.			

*: German language; the English translation is report M-127756-0142.

In the terrestrial field soil dissipation studies conducted in Minnesota, US and at four sites in Germany Deltamethrin showed a relatively fast to moderate dissipation from soil under field conditions with field DT_{50} ranging from 14 to 29 days (SFO, $n \neq 5$) or bare soil, even after multiple application of exaggerated doses. In the US study soil cores were analysed for deltamethrin and its major soil metabolite Br₂CA down to a depth of 90 cm and 30 cm, respectively. Deltamethrin residues were mainly confined to the upper 15 cm of soil Br₂CA was not detected above the limit of quantification (LOQ = 0.01 mg/kg soil) under field conditions.

Table 7.1.2.2 1: Agreed EU field DT₅₀ values estimated for deltamethrin according to Appendix II of SANCO/6504/VI/99-final, 2002)

Study No	DT50	Comment
M@4973@901-1	2-3 weeks	Both cropped and bare soil (US)
м-127756-01-2	1 – 4 weeks	Four bare soils in GER, overall realistic estimate: 3 weeks

CA 7.1.2.2.2 Soil accumulation studies

Field accumulation and soil residue studies have not been performed and are not required for of deltamethrin.

CA 7.1.3 Adsorption and desorption in soil

CA 7.1.3.1 Adsorption and desorption

The adsorption and desorption behaviour of deltamethrin, Br₂CA and mPBacid in soil was evaluated during the Annex I inclusion (compare EU Monograph Annex B7) and was accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002). However; not any adsorption and desorption data were stated in the LoEP for the methodite mPBacid singe it was not regarded as a major metabolite that time.

in soils to be used for modelling The following table summarizes the adsorption constants purposes:

Overall summary of adsorption constants Kocads) in Soils of deltamethrin Table 7.1.3.1-1: and its major degradation products

<i>"</i> O"			Ň	õ	_0	\sim	
Compound	mL/g]		Freunc (expone		80 86		, ≯
Deltamethrin 🌾	10,240,000	4 - 6	0.93	Z°	, Ô]	
$Br_2CA_{O} O^*$	2536 0		0.89	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2	
mPBacid 🔬	138.3	ã	Q:96		J z	,	
						-	

CA 7.1.3.1.1 Adsorption and desorption of the active substance

The adsorption and desorption behaviour of destamether in soil in batch equilibrium experiments was evaluated during the Annexy inclusion and was accepted by the European Commission (SANCO 6504/VI/99 mal, 6 October 2002). The following study included in the Baseline Dossier was regarded relevant during the Annex Kinclusion: Å

	S	4	Ĩ	J.Y	Ö	0″		
	Auth	or(s)		<u>~</u>	\sim	Ç	Year	Document No.
Ŷ			×	\sim	 		1990	M-135594-01-1
ν		ð	~0	R				

dependency was stated.

Soil	Kf value [mL/g]	Koc value [mL/g]	Kom value [mL/g]	1/n. 5
Arizona I (sandy loam)	9,600	16,300,000	9,500,000	Q.97
Arizona II (sandy loam)	30,000	12,800,000	7,400,000	1.20
Arizona III (clay)	26,700	11,400,000	×6,600,000	
Mississippi (silty clay loam)	3,790	گ 460,000	270,000	× 101 5
Arithmetic mean:	17,520	10,240,000	Q 5,940,000	, S.93 & A

Table 7.1.3.1.1-1 Adsorption data of deltamethrin (1990; M-135594-01-1)

Note: In March 2008 the former RMS Sweden (KemI) informed the EU commission and MS in a letter about the Swedish re-evaluation of the Koc-values stated in Appendix II to the feview report of the insecticide deltamethrin (Review report for the active substance deltamethrin (6504/VI/99-final, 17 October 2002). Sweden was RMS for the application of deltamethrin as a biocide (9T 18) in which an adsorption study by (1993; M-152148-01-1) was evaluated. This study provides three new Koc values ranging from 204 000 to 577 000 mL/g in soils with organic carbon contents of 0.46 (81%. Chis study was regarded as acceptable by Sweden. A new mean Koc of 408 250 mL/g was proposed by the former RMS which still indicates a very high adsorption to soil and a classification as animobile. The see of this value would not significantly charge any predicted environmental concentration calculations. This Koc, was also used by KemI in the evaluation of deltamethrin as a biocide. KemI was of the option that a harmonised approach for the Draft Assessment Report and the Competent Authority Reports to prefer. However, officially the empoint was not changed in the list of endpoints under EU directive 91/414 and therefore, the Oficial value is still used for PKO calculations.

No additional studies are submitted within this Supplemental Dossier for the deltamethrin renewal of approval. A summary of the adsorption and desorption behaviours of deltamethrin and its major degradation products in soil is given in section CA 7423.1.

CA 7.1.3.1.2 Adverption and desorption of metabolites, breakdown and reaction

The adsorption and desorption behaviour of Br₂CA and mBacid in soil in batch equilibrium experiments was evaluated during the Annex I inclusion and was accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002) The following studies included in the Baseline Dossier were regarded relevant during the Annex I inclusion.

	r n	í su	Ő	, N	& .	SY
n de la comercia de l	Author	·(s)	, Z	, Ø	Øear 🔊	Document No.
<i>Q</i>			δ		*1991©	M-150487-01-1
	a)	Į	\sim	ð°	1992	M-149517-01-1
Å.			"Q"	Q.	,Oř	

The sorption of Br₂CA was investigated by <u>Errory Reference source not found</u>. 1991 (report M-150487-01-1) in a batch equilibrium study with five soils. Sorption values for two of the soils were not included here, following a tecommendation in the EU Review Report of Deltamethrin (EU, 2002). The remaining measured Koevalues ranged from 0.1 to 43.7 mL/g (see table below). No pH depencency was stated.

Modelling simulations should be conducted with the arithmetic mean Koc = 25.6 mL/g and with the arithmetic mean Fieundlich exponent 1/n = 0.89.

arithmetic mean Freundlich exponent 1/n = 0.89.

Adsorption data of Br₂CA (Error! Reference source not found. 1991, report M-Table 7.1.3.1.2-1: 150487-01-1)

	,			<u> </u>
Soil	K _f value	Koc value		140
	[mL/g]	[mL/g]	[mĿ@]	
Arizona II (sandy loam) ^{a)}	0.089	38.2	22.2	1.00 ×
Arizona III (clay) ^{a)}	0.109	46.8	2 7.1	
Mississippi (silty clay loam)	0.355	A3.7	25.4	× Q.96 ~
USA (sandy loam)	0.587	23.0	13.3 🖉	
Michigan (clay loam)	0.267	í 10.1	5.9 v	× 50.83 × 0
Arithmetic mean:	0.403	. 25.6	14.9 0	0.80

a) not included in the average of 26 mL/g, following the recommendation of the EU deview Report

The sorption of mPBacid was investigated by Error, Reference (report Msource pi 149517-01-1) in a batch equilibrium study with four soils. The measure OKoc values ranged from 50,7 ő to 287.8 mL/g (see table below). No pH dependence was stated.

Modelling simulations should be conducted with the arithmetic mean Koc (from) mL/g (91.8 mg/L) and with the arithmetic mean Excundlich exponent 1/n = 0.95

Table 7.1.3.1.1- 2	Adsorption data	of mPB	acid	Error	eferonc	e source	mo four	1992, report
	M-149517-01-1)	~C	"O" ~	4	, O'Y	Ô,	0	

Soil		° į	K f value	💡 Koc value 🔬	🖇 Koom vaku	e 1/n
		A a		Ó míľ/g	⊂_ [≪] [mL∂g]	
Arizona (clay)	Å Ő	i di	0.6677	× 287016	× *¥66.9	0.9898
Mississippi (silty o	loam)	A.	1.542 P	5 189.90 0 205.03 f	[™] 110.2	1.0068
Maryland (sandy 4	pam)		¥2.6806	. ~© abits 03√	/ 60.9	0.9386
Michigan (clay	im)	Ś (.	1,3397 "	Ĩ ~ 50.6€ [°]	29.4	0.9218
× A	rithmetic me	ean: O	& 19.558 ×	> 15 8 3	91.8	0.96

No additional studies are subplitted within this Supplemental Dessier for the deltamethrin renewal of approval. A summary of the adsorption and desorption behaviours in soil of the major degradation products of deltamethrin and is given in section CA 7 3.1

CA 7.1.3.2 Aged sorption

Compossion Regulation (EU) No 283/2013 in accordance with Studies are not required under Regulation (EC) No 1107/2009

CA4.1.4 Mobility in soil

The mobility of deltamethrin in soil was expluated during the Annex I inclusion and was accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002). Soil column studies and one of the field dissipation studies (see Error! Reference source not found. et al 1991, report M-149730-01-1) confirmed the conclusion that deltamethrin has a very low potential to leach through soils and contamilitate groundwater or surface water via this route.

Studies on the column leaching of deltamethrin are not required anymore. The leaching behaviour can be assessed from the available adsorption/desorption values combined with other relevant input data by accepted modelling estimations, i.e. PECgw calculations submitted by the respective MCP section 9.2.4.

CA 7.1.4.1 **Column leaching studies**

CA 7.1.4.1.1 Column leaching of the active substance

The following studies included in the Baseline Dossier were regarded relevant during the Annex I

Author(s)	Year	Document No.
	1877	M-149491-01-2
. 2	¥980	M-149493-01-1

No additional studies are submitted within this supplemental Dossier for the celtanothringenew a approval.

CA 7.1.4.1.2 Column leaching of metabolites, breakdown and reaction products

No relevant studies are included in the baseline dossier, and so additional studies are submitted within this Supplemental Dossier for the delta netherin renewal of approval.

The leaching behaviour can be assessed from the available adsorption desorption values combined with other relevant input data by accepted modelling estimations De. PECgw calculations submitted by the respective MCP section 9.2.4~

Lysimeter studies CA 7.1.4.2

No relevant studies are inclused in the baseline dessier since orch were not required. No additional studies are submitted within this supplemental Dossier for the deltamethrin renewal of approval.

CA 7.1.4.3 Field Peaching studies

 \bigcirc

No relevant studies are included in the baseline dosser, since such were not required. No additional studies are submitted within this Supplemental Dossier for the deltamethrin renewal of approval.

Fate and behaviour in water and sediment CA 7.2

Deltamethrin is hydrologically stable in water under neutral (pH = 7) and acidic conditions (pH = 5) at 25 °C. The degradation of deltamethrin in water due to hydrolysis is significant only at elevated pH conditions, with a DT_{50} of 1 days at pH \approx 8 (at 23 °C) and 2.5 days at pH = 9 (at 25 °C). The two major hydrolytic products, mBaldebyde and Br₂CA, i.e. found at pH 9, result from the ester cleavage of deltametirin. If oxygen is present in such aqueous solutions it is expected that the final products of hydrodytic cleavage would have been no Bacid and Br2CA. Under environmental conditions in the presence of oxygen, mPBaldehyde is rapidly oxidised to mPBacid.

The UV-VIS absorption date in the environmentally relevant pH range showed that deltamethrin in aqueous solutions does only absorb very dow amounts of light at wavelengths above 290 nm. Further, the quantum yield of direct photo-transformation in water is rather low ($\Phi = 8.72 \times 10^{-4}$). Therefore, no contribution of the direct photodegradation to the overall elimination of deltamethrin in the aqueous environment is to be expected ($DT_{50} \ge 48$ days). However, the indirect photodegradation of deltamethrin in subface water is faster in the presence of natural photosensitising substances with a DT₅₀ of 4 days. There, the main degradation product detected was mPBacid at maximum amounts of 47% of the applied radioactivity in the sensitised system.

The studies evaluated during the last Annex I listing with deltamethrin in two different natural water/sediment systems showed that the compound was thoroughly degraded leading to CO₂ as the end Bayer CropScience

R Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

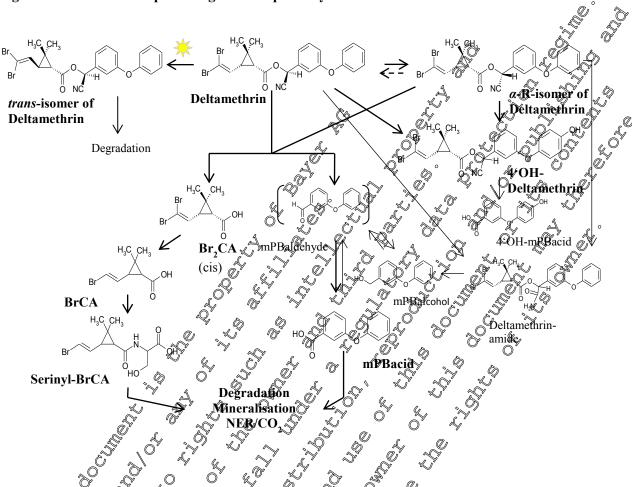
product of the mineralization process. The adsorption of deltamethrin from water to the sediments accounts for 60 to 88% of the applied radioactivity, and is the most important dissipation route in natural surface water. 50% of the deltamethrin in the water disappeared from the water column within. day, The DT₅₀ for the entire system (water + sediment) ranged from 40 to 90 days under standard conditions in the dark. Main metabolites in water/sediment systems were: α -R-isomer of deltamethrin (max. 24% of applied radioactivity in sediment,); 4'-OH-deltamethrin (maximum 8% in sediment) and mPBacid (maximum 6% in water). Position of ¹⁴C- labelling (benzyl-¹⁴C) did not allow measurement of Br₂CA, β

The dissipation DT_{50} of deltamethrin in the water column of several mixed-mesocosm and natural poind studies ranged from 1.5 to 24 hours. It was concluded that the substance will rapidly disappear from the water column with an expected half-life of about 1 day. Deltamethrin will mainly be distributed to suspended organic material, biota, and eventually to sediments. Further bioavailability is reduced, which in part may explain the slow biodegradation. In the outdoor microcosm study (1990), report M-200619-03-1), with three applications at 7 day intervals trans-isomer of deltamethrin was observed in the water column at up to 16.6% of TRP (= total radioactive residue) one day after the 1st application.

A conservative DT_{50} of 1000 days for trans-isomer of deltant thrin in water and sediment was used in the FOCUS STEP 1 and 2 calculations

Despite the low vapour pressure of deltamethrin $(1.1 \times 10^{-6} Pa at 20^{\circ}C)$ volatilisation from water surface appears to be an additional dissipation route, as deltamethrin may form a pricrolayer film onto the water surface after spray drift. Volatilisation from this surface incrolayer can be explained by the Henry's law constant of deltamethrin of 25 × 10 Pa×m³/mol (reterring to distilled water of a final pH 6.8).

The dossier supporting the approval renewal of defamethom includes an additional mesocosm study with realistic spray exposure (2005, M-246137-01-1) using 12 test tanks of 6 m³ water and 1 m water depth, as representative of a small stagnant water body. It was completed after the Annex I inclusion. Deltamethrin decreased after all applications quickly and steadily with an average half-life in the water column of 22.4 hours and the DT₄₀ for the whole system (water plus sediment) was determined to be 31 phours, only.


An additional aerobic water-sediment study for the parent compound (2012, M-434820(M-1) is included using a second label position, ¹⁴C gemi-dimethyl label of deltamethrin to allow the investigation of the second hat of the deltamethrin molecule. The new study performed with two different water/sediment systems included acidic sediment also. Both topics had been mentioned as a kind of data gap during the earlier EU/evaluation.

Again it was shown that detamethrin is thoroughly degraded during the study duration leading to ${}^{14}CO_2$ as the end product of the mineralization process (max. 39% of AR at 99 days). Further, in total five major metabolites were detected during the study of R-isomer of deltamethrin, Br₂CA, Serinyl-BrCA, and BrCA (isomer Land 2). The new metabolites resulted from the degradation of Br₂CA which could not be followed by the earlier, study performed with the other radiolabel. The proposed updated degradation pathway of deltamethrin in water and sediment is shown in Figure 7.2-1.

In summary the major routes of degradation or dissipation of deltamethrin in natural water systems are adsorption to the sediment (as well as to suspended solids and aquatic macrophytes), chemical and photochemical conversion to the trans- and alpha-R-isomer of deltamethrin, and hydrolysis with subsequent or dation of the transformation products.

In addition, several authors have also stated that volatilisation may be a route of dissipation of deltamedrin from a water surface microlayer.

Altogether deltamethrin has no potential to be present in open waters.

Figure 7.2-1: Proposed degradation pathway of deltamethrin in water and sediment

In the following a summary of input data, considering the respective new kinetic evaluations of <u>Error!</u> <u>Reference source not found</u>, 2013 (Sport M-461952-017) and <u>Frror! Reference source not found</u>. 2013 (report M-462042-017) on degradation in aerobic water sediment systems according to FOCUS kinetics guidance, is given for detamethan and its metabolites in order to be used for surface water and sediment exposure assessments

Table 7.2.2.3 [14 and Table 7.2.2.3] 15 summarise the resulting optimised modelling and trigger endpoint DT₅₀ values for <u>deltamethrin</u> resulting from the new water sediment study.

Table 7.22.3- 16 summarises the resulting optimised total system modelling endpoint DT_{50} values for <u>alpha-R isomer of deftamethrin</u>, a primary degradate of the parent compound. The α -R-isomer was observed in the water column at up to 116% and in total water sediment system up to 36.5% of the total applied deltamethrin 1 day after the application. In FOCUS STEP 1 and 2 calculations a DT_{50} value of 34.0 days can be used to quadrify the degradation in water and sediment.

Table 7.2.2 25 summarises the optimised modelling endpoint DT_{50} values for the sum of <u>deltamethrin</u> and <u>alphore</u> of <u>deltamethrin</u> considering the data from the water/sediment studies with both radiolabels, the study with the benzyl-¹⁴C-label already evaluated and the new study with the gemidimetryl label. In FOCUS_{sw} evaluations, a total system DT_{50} value of 52.2 days can be used as a conservative approach for the water phase degradation along with a default DT_{50} value of 1000 days for the sediment phase degradation. **Bayer CropScience**

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Table 7.2.2.3- 26 summarises the calculated water phase and total system DT₅₀ values for the sum of deltamethrin and alpha-R isomer of deltamethrin considering the data from the water/sediment studies with both labels suitable for use as trigger endpoints.

Table 7.2.2.3- 27 summarises the optimised total system modelling endpoint \mathfrak{T}_{50} values for Br₂OA (*cis*). In the new laboratory water/sediment study with deltamethrin, Br_2CA was observed in the water column at up to 32.2% and in total water sediment system up to 43.9% of the total applied deltamethring 7 days after the application. In FOCUS STEP 1 and 2 a DT₅₀ value of 10,7 days can be used to quantify the degradation of Br₂CA in water and sediment.

In the new laboratory water/sediment study with deltamethrin, BrCActsomer 1 was observed in the water column at up to 20.4% and in total water sediment system up to 324% of the total applied deltamethrin 30 days after the application. BrCA isomer 2 was observed in the water column at up to 767% and in total water sediment system at up to 9.9% of the total applied deltamethrin 5@days after the application. A conservative DT₅₀ of 1000 days for BrCA moment and 2 in water and sediment can be used in the FOCUS STEP 1 and 2 calculations for these metabolites.

In the new laboratory water/sediment study with deltamethrin Geriny BrCA was observed in the water column at up to 7.8% and in total water sediment system up to 10.0% of the total applied deltamethrin 73 days after the application. A consolvative DT 50 of 1000 Pays for sering -BrCS in water and sediment can be used in the FOCUS STEP band 2 calculations for this metabolite.

In the laboratory water/sediment/study with deftamethin (Foror! Reference source not found., 1993; M-131938-01-1) 4'-OH-deltamethrin was observed in the sediment at up to 8.5% of the total applied deltamethrin 7-14 days after the application. For FOCUS PECsw STEP and calculations the maximum occurrence of 1% in water of Gudy MF131968-01-1 can be used X conservative DT₅₀ of 1000 days for 4'-OH-deltamethrin in water and sediment can be used in the FQCUS STOP 1 and 2 calculations for this metabolite. L \cap

In the laboratory aqueous photolysis study of deltamethrin (1991; M-136754-01-1) mPBacid was observed at up to 14%. A conservative DT₅₀ of 1000 days for mPBacid in water and sediment can be used in the EOCUS STER 1 and 2 calculations for this metabolite.

Table 7.2. Pand Table 7.2- 2 summarists the orbstance related parameters to be used for deltamethrin and its metabolites in the calculations at FOCUS SW Step 2 level.

For PECsw calculations the maximum occurrence in the water solumn is used. For PECsed calculations the maximum occurrence in total water/sediment system is used. For PECsw calculations of metabolites, for which measured Koo values are not available, ack oc of mL/g is used.

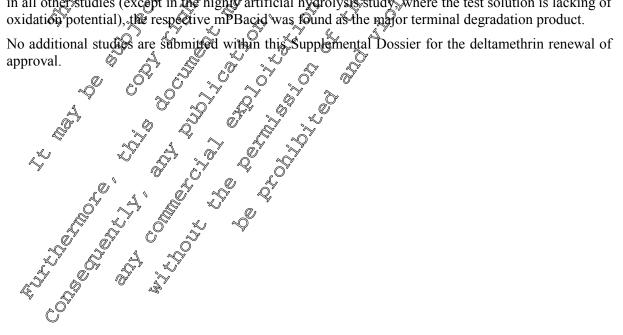
For PECsed Sculations measured Koc data can be used if available. For the alpha-R isomer and transisomer of deltamethrin, for which measured koc values were not available, the Koc of Deltamethrin was used For metabolites, for which measured Koc values were not available, the default Koc of 1000

Гаble 7.2- 1:		ance paramet ations	ers for deltame	thrin and its m	etabolites ı	used in PECsw
Parameter	Unit	Deltamethrin	alpha-R-isomer of deltamethrin	trans-isomer of deltamethrin	Br ₂ CA	BrCA isouter 1
Molar Mass	g/mol	505.2	505.2	505.2	@98.0	219.1 . ~
Water Solubility	mg/L	0.00027	0.003	0.0042	9000	\$10000
Koc	mĽ/g	10240000	0 ^A	0 ^A	25.6	O QAQ X
Degradation			Č		×	
Soil	days	54.8	1000* 🔊	1000	5.0	\$900 * *
Total System	days	52.2	34.0	1000	10,50	
Water	days	52.2	34.6	1000* 。	10.7	1000 .
Sediment	days	52.2	2000	↓000 1000* °		1000*
Max Occurrence	uays	52.2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	0/		لاًم 11.6¢		۵ می ک	Se no A
Water / Sediment		-			32,65	≫ 20.4∞
Soil	%	-	0.00		<u> </u>	0.001
_		A		~~~~	Q U	
Parameter	Unit	BrcA			ØH- ≪ ímethryn	mPBack
Molar Mass	g/mol	Â 2 19.1	KY C S	16.2	21 &	214.2
Water Solubility	mg/L	م 1000	d '' 'Y4	000	0. Ý 🔊	×9100
Koc	mĽ/g	°\$° ø≱	i 6 a)^~~ , ⁰ ~ , (Ď ^A Č	گ∕ 158.3
Degradation	0	O V	o S.	V A O		,
Soil	days	1 000*	s~ ^{'0'} 作	00* 0× 0 1	000* Č	0.31
Total System	days	× 1000			Q00* &	1000*
Water	days			00* 3 ~0	ann* </td <td>1000*</td>	1000*
Sediment	dave	1000*		\$0* ₆ 4	000*	1000*
Max Occurrence	days				\$\$\$ \$	1000
Water / Sediment	S.		, S , .		A.	11
Soil					r 001	
<u> </u>	<u>* 70 0″</u>				2.001	5.6
No measured Koc Default value Sable 7.2- 22	d S) ance paramet	ersfor delfame	Ő.		
Parameter	ÖUnit 🛴	Deftameth	alpha-Rkisom	er 🔊 trans-isomer	Br ₂ CA	BrCA
	¥ , [^] ¥		. Of deltamethr			isomer 1
Koc	ndg	\$ 10240000	102400000		25.6	1000*
Max Occurrence		f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			12.0	22.4
Water / Sediment	-% &	<u> </u>	<u> </u>	16.6	43.9	32.4
	.00					
Parameter	Unit	BrCA	Serinyl-Br	CA 4-OH		mPBacid
~ 	S A	isomer 2,		Deltame	thrin	
Koc	mL/g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ 1000*	1000		158.3
Max Occurrence	00	0 0.				
Water / Caling	%or \$		Q 10	8.5		11
Koc of delta Dethrix	hand a		¥ 10	0.0		**
Default value use	you a	×, ~				
Detault valute used	, _o	S X				
Koc of deltagethrin Default value used		Ş				
ĉ						
\lor						

CA 7.2.1 Route and rate of degradation in aquatic systems (chemical and photochemical degradation)

CA 7.2.1.1 Hydrolytic degradation

The hydrolytic route and rate of degradation of deltamethrin in buffers under sterile conditions in the dark in the laboratory were evaluated during the Annex I inclusion using two radiolabel positions $[4^{4}C]$ -benzyl and $[1^{4}C]$ -gemdimethyl], and were accepted by the European Commission (SANC) 65042 I/99final, 17 October 2002). The following studies included in the Baseline Possier were regarded relevant during the Annex I inclusion:


	4Ú		Ő	
Author(s)		Year Docu	nent No.	
- 2		2002 M-200	5738-01-1	
	Ŏ ^ĸ "Ű	1990 19-129	0626-01	1. A
	.4 @	n Q.		S . F

Deltamethrin is hydrolytically stable in water under neutral (pH = 7) and acdic conditions (pH_{\pm}) at 25 °C. The degradation of deltamethin in water due to hydrolysis is significant only at elevated pH conditions, with a DT₅₀ of 31 days a_{1} $PH = S(at 23 \ C)$ and 2.5 days at pH = 9 (at 25 C).

The two major hydrolytis products, i.e. found at pH 9, josult from the ester cleavage of deltamethrin into mPBaldehyde and Br₂CA. However, under less artificial conditions mPBaldedhyd is kapidly oxidised by oxygen to mPBacid. If exigen is present in such aqueous solutions it is expected that the final products of hydrolytic cleavage would have been mPBacid and Br2CA

Remark: In the LoEP the Br2CA was listed just to be found in trace during the hydrolysis studies. However, the method used was designed main to analyse for parent compound and the mPBaldehyde, which were adequately extracted from the water samples by texane The confusive 2nd hydrolysis product, probably mainly present in the extracted water was (i.e. Br2CA) was not adequately quantified. However it is regarded as major degradate as well.

A summary of the route and rate of hydrolytic degradation of deltamethrin in the aquatic systems is given in section CA 7.2. In respective Figure 22-1 the mPBaldehyde is not marked to be major since in all other studies (except in the highly artificial hydrolysis study where the test solution is lacking of oxidation potential), the respective mPBacid was found as the motor terminal degradation product.

CA 7.2.1.2 **Direct photochemical degradation**

The route and rate of direct photochemical degradation of deltamethrin in buffers under serile conditions in the dark in the laboratory were evaluated during the Annex I inclusion, e.g. using two radiolabel positions, [¹⁴C]-benzyl and [¹⁴C]-gemdimethyl], and were accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002). The following studies included in the Baseline Dossier were regarded relevant during the Annex I inclusion:

		(Ì	Á.	
Author(s)			[™] Year	Document No	ø, S
	- 2		1991	M-136754-0	1 Q
	* 2		1987 🗳	M-124981-91-	1
		Q.	1993	M-149258-01-	·N* *
		<u>× ĝ</u>	2000	M-197547-0	<u>}</u> *`>>

*: this information was filed in the pys.-chem section, earlier.

Two tests of aqueous photolysis (M-136754-01 and and MA24989-01-4) led to the conclusion that transformation by direct photochemical reactions is insignificant in natural environments, as laboratory DT₅₀ values of approx. 48 days were Obtained. This conclusion is also in agreement with the absorption spectrum of deltamethrin (M-149268-01-1), which shows only a small absorption of wavelengths above 290 nm, and no absorption above 300 nm, and the quantum yield Φ for direct photodegradation of deltamethrin was calculated to the 8.72×10^4 , only (M-197547-0124).

A summary of the route and rate of degradation of destamethin in water and sediment is given in section CA 7.2 and Figure 9.2-1.

No additional studies are submitted within this Supplemental Dessier for the celtamethrin renewal of approval.

Indirect photochemical degradation CA 7.2.1.3

Route and rate of indirect photochemical degradation of deltamethrin in the laboratory were evaluated during the Annex I inclusion using [146]-behavyl deltamethrin, and were accepted by the European Commission (SANCO 6504 4/99-tonal, 17 October 2002). The following study included in the Baseline Dossier was regarded relevant during the Annex I inclusion:

			, N	Ĩ	\circ	~	
	Author(s)		Ø	Ž,		Near	Document No.
	0	- •		, ii		Ø1987	M-124981-01-1
¥.			Q."	, Q'	Ő		

Indirect photochemical reactions are more likely to secur than direct photochemical reactions, since the laboratory DT50 in a sensitised system was A days However, due to the fast partitioning of deltamethrin to the sediment within one day, detramet win is only expected to remain available for such reactions for a very short period of time, only

The results are included in the proposed degradation pathway of deltamethrin in aquatic systems shown in Figure 7.2 v and in the symmetry given in section CA 7.2. Not any new main degradation products were found in the sonsitised test system

No additional studies are submitted within this Supplemental Dossier for the deltamethrin renewal of approval.

CA 7.2.2 Route and rate of biological degradation in aquatic systems

CA 7.2.2.1 "Ready biodegradability"

The "ready biodegradability" of deltamethrin was evaluated during the Amex I inclusion using unlabelled deltamethrin, and was accepted by the European Commission (SANCO/6504/V/99-final, 17 October 2002). The following study included in the Baseline Dossier was regarded relevant during the Annex I inclusion:

		a.V	\sim
Author(s)	Year	Document No.	Ŵ
	1994	M-149487-01-	
	40		0

The parent compound deltamethrin showed less than 2% degradation after 28 days and therefore, is classified as "not readily biodegradable".

No additional studies are submitted within this Supplemental Docsier for the deltamethrin renewal of approval.

CA 7.2.2.2 Aerobic mineralisation in surface water

Since this topic was not yet part and thus not evaluated by the European Commission during the last Annex I inclusion of deltamethrin, no respective study is included in the Baseline Dossier. However, the applicant believes that the circumstances in which the study is required are not fulfilled for deltamethrin, considering its intrinsic properties the available information on the fate and behaviour in the environment) and realistic exposure conditions.

"Studies on aerobic mineralisation in surface water shall be provided unless the applicant shows that contamination of open water (freshwater, estuaring and marine) will not occur? (Commission Regulation (EU) No 283/2013 £ 93, Section 9.2.2, page 52).

Deltamethrin is used as spray application in various crops, and the many exposure of surface water is spray-drift. However, in order to reach an acceptable risk for aquatic organisms, it is necessary to implement mitigation measures, such as drift reduction nozzles or buffer zones to limit the amount of deltamethrin that will reach the water bodies at the edge of the field. It is thus very unlikely that contamination of open water (i.e., surface, water far away from the edge of the field) will occur. Moreover, deltamethrin is immobile in soll (see below and section CA 7.1.3.1); accordingly, drainage entires to water bodies are very unlikely.

Deltamethrin invery low soluble in water, O_s at 20°C in distilled water of pH 6.8 is 0.27 µg/L (ref. 2012: M-439336-01-9, KCA 2.5/6) and please defer also MCA 2.5). In addition, deltamethrin shows a very strong adsorption on particles and surfaces thus the substance must be classified as immobile in soil (compare SANCO/6504/VF99-figal, 17 October 2002).

Due to both before mentioned properties any presence in a water phase should be minimal whenever some particles and solid surfaces are present. In particular due to the quick and strong adsorption and portioning to the sediment, the very low quantities of deltamethrin present in water do not have enough time to reach any open water after its use on a cropped field. This fact was confirmed by the evaluation of monitoring studies published in the literature (see section CA 7.5).

Deltamethrin is stable to hydrolysis at a pH up to 7, but hydrolyses under alkaline conditions (see section CA 7 $\stackrel{?}{2}$). It should be noted that the majority of surface waters in agricultural areas tend to be slightly alkaline (around pH 8) and are thus in a pH range where hydrolysis of deltamethrin starts. This further reduces the small quantities of deltamethrin that might occur in open water bodies.

The most important situations of exposure and degradation of deltamethrin at the edge of a treated field are described by all the laboratory studies summarized in the following section. The applicant therefore

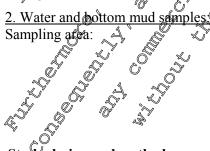
believes that no further testing is required to meet the current section 7.2.2.2 of Commission Regulation (EU) No 283/2013.

Further, the following article was found in the literature well supporting above mentioned position that deltamethrin can hardly be present in open waters.

		1	<u>, 67</u> , 69
Report:	KCA 7.2.2.2 /01; Wang, Q.; Liu, Q; Li, J.; O	Chi (Ĥ.; Wang, J	2011 7 8
Title:	Residual elimination and kinetics of low conce	peration of deltar	nethrig in water.
Source:	Nongye Huanjing Kexue Xuebao 2007, 26 (5)	€ 1725-1728	
Document No:	M-461213-01-2 (English translation)		
GLP:	No, published study	R Q O	
Literature review		y a s	
classification:	b) supplementary information (PFSA Durnat	2011: 9(2):2092)	°∼y [™]

EXECUTIVE SUMMARY

The degradation of deltamethrin in different water environments was studied to assess aquaculture ecology and environments of freshwarer and seawater systems in China. The tests was performed in eight separate groups: sterilised freshwater, sterilised freshwater bottom mud, natural freshwater, natural freshwater bottom mud, sterilised seawater, sterilised seawater bottom mud, Gatural seawater and natural seawater bottom mud; with an initial concentration of deltaphethrin@f 5 µg L in the water. Deltamethrin detection was performed by using HPLC.


Deltamethrin degraded greckly after pesticide application. As time went on us degradation rate gradually slowed and became undetectable by day 20 in each group. Half lives (DT₅₀) of deltamethrin ranged from 1.34 (water + mid) to 4.45 (water) days in the seavater system and from 1.32 (water + mud) to 5.99 (water days in the freshwater system.

MATERIA A. Material 1. Test material 2.5% deltamethrin miscible oil prepared agent, manifactured by the Sichuan Huaqiang Fishery and Animal Hispandry and Rightmacourtical Co Test item and south Husbandry and Parmaceutical Company. Active substance(s) Deltamethrin spindard (chromatographically pure, Agro-Environmental Protection Institute of the Ministry of Agracultur@ 25% miscible oil prepared agent

Chemical state and description Batch number and description Storage conditions:

Not given

China.

China.

Seawater and bottom mud were obtained from

Freshwater and bottom mud were obtained from the

B. Study design and methods

1. Sampling Sampling interval:

Not reported

Not given

Bayer CropScience

B/

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Sampling method:	Not reported The test was performed in eight separate groups: - sterilised freshwater, - natural freshwater bottom mud, - natural freshwater bottom mud, - sterilised seawater, - sterilised seawater, - sterilised seawater bottom mud, - natural seawater - natural seawater - natural seawater bottom mud. The test were performed in <i>P</i> household boxes (44 cm & 31.5 cm x 28 5 cm) (Test with bottom much included a bottom much thickness of 4.6 ±0.5 cm with a water volume of 25 L Water temperature was 18-20 °C, pH value was 8.2 – 8.4 (seawater) and 7.04 7.2 (freshwater). Sterilized water was natural water bolted for 20 minutes; the sterilized bottom much was wer heat sterilised at 120°C for 15 minutes. The properties of bottom much are summarized in
Test design:	The test was performed in eight separate groups:
	- sterilised freshwater,
	- sterilised freshwater bottom mild,
	- natural freshwater,
	- natural freshwater bottom inud,
	- sterilised seawater better mud
	- natural seawater
	- natural seawater boltom mud
	1 he tests were performed in CP nousenoid boxes CH4 cm&
	bottom must thickness of 4.6 \pm 0.5 cm with a water volume
	of 25 L
	Water temperature was 18-20 °C, off value was \$2 - 8
Ő	(seawater) and 7.057.2 (freshwater).
Sample processing:	Sterilized water was natural water boiled for 20 minutes; the
Sample processing:	sperilised bottom mud was wet heat sterilised at 1,20°C for
	Theorem and the summarized in
	Table 7,2.2.2-1 0 0
Test item concentration:	Sugar water phase y g
Sampling point:	2 hours after pesticide application
Replicates:	
2. Chemical analyzes	
Guideline/protocol:	Not given \circ
Extraction:	250 mL of water was added to a 500 mL inquid separation
	shaken vigoriously for 5 minutes and was set aside for 15
	minutes. The liquid was separated and the upper layer of
	liquid (normal hexane) transferred into a 10 mL glass
	Otentruitige tube, blown dry with the nitrogen blower. Then
	vortex mixer and a 0.22 um filter membrane used to
	After it no a 1 mL centrifuge tube, to await testing.
Analytical method:	The otravidet detection wavelength was 230 nm; for the
	solid phase a Hypersilo ODS column (250 mm × 4.6 mm, 5
	(1) was used with a mobile phase methanol: water (85:15);
	temperature sampling quantity was 30 µL. The external
	standard method was used for quantification.
Recovery:	For the amount of 0.05, 0.1, 1, and 5 μ g deltamethrin/L
	added:
	Freshwater: 94.33 – 98.87%
Limit of detection	Scawaler. $93.22 - 99.327_{0}$
	202. 0.02 µg L
	(seavater) and 7.04 7.2 (freshwater). Sterilized water was natural water bould for 20 minutes; the aerilised bottom mud was we heat sterilised at 120°C for 15 minutes The properties of bottom mud are summarized in Table 7.2.2.2-1 y µg/z in the water phase 2 hours after pesticide application 3 Not given 250 mL of water was acted to a 500 mL liquid separation timel, 10 mL corrmatinexane was added. The sample was shaken vigorously for 5 minutes and was set aside for 15 minutes. The liquid was separated and the upper layer of liquid (normal hexane Oransferred into a 10 mL glass ventrifuge tube, blown dry with the nitrogen blower. Then 0.5 mL mobile phase added, mixed thoroughly for 1 minute on a vortex mixer and a 0.22 μm filter membrane used to filter it into a 1 mL centrifuge tube, to await testing. The diraviglet detection wavelength was 200 nm; for the solid phase a Hypersilo ODS column (250 mm × 4.6 mm, 5 µm) was used with a mobile phase methanol: water (85:15); flow fae 1 mL/min; column temperature was room temperature; sampling quantity was 30 µL. The external standard method was used for quantification. For the amount of 0.05, 0.1, 1, and 5 µg deltamethrin/L added: Freshwater: 94.33 – 98.87% Seawater: 95.22 – 99.52% LOD: 0.02 µg/L
\bigcirc	

Table 7.2.2.2-1: Summary of the bottom mud properties

Property	Freshwater	Seawater &
pH	7.6	8.2
Quantities of bottom mud of different grain diameters (1-0.05mm) [%]	32.42	43.24
Quantities of bottom mud of different grain diameters (<0.05mm) [%]	67,58	56.76
Quantity of organic material [g/kg]	52.97	48.32 J
Total quantity of positive ion exchange [cmol/kg]	59.21	¥53.48 0 0
	ç y	

RESULTS

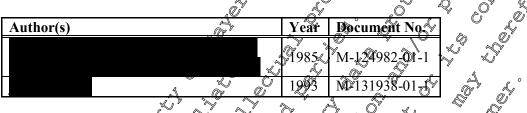
 <u>1. Validity criteria:</u> No validity criteria defined.
 <u>2. Analytical findings:</u> Deltamethrin degraded quickly after pesticide application. As time went on outs degradation rate gradually slowed and became undetenable by day 11 incode drawn (end Eigen 1 constituted in the second state). gradually slowed and became undetenable by day 21 in each group (see Figure 1 of article for the deltamethrin degradation curve in seawater, and see Figure 2 of article for the degradation curve in freshwater. n

The half-lives of deltamethrin ranged between 4.98 25.99 days for freshwater and 1.32 1.60 days for freshwater mud, and between 4.28, 4.45 days for seawater and 4.34 -2.10 days for seawater mud (for summary of results see Table 7.2.22-2). The role of microorganisms in fresh ater was significant while their role in seawater was not significant.

Table 7.2.2.2- 2: DElimination Equation of Each Deltamethrin Sample in Water

Kind of Sample	Correlation Scoefficient (r ²)	Half-life [day]
Natural segwater bottom mud $C_t = 4.220 \ 3e^{-0.55 \text{ st}}$	29347	1.34
Sterilised seawater $C_{t} = 4.9445 e^{-0.1620t}$	× × 0.9779	4.28
Natural seawater $C_{4,5}$		4.45
Sterilised seawater pottom mud $\sqrt{1+5.145}$ $0e^{-0.3597t}$	0.9571	2.10
Natural freshwater bottom mug $C_t = 4.843$ lg ^{-0.5276t}	0.9379	1.32
Sterilised fre@water C Ct Ct 4.742@e ^{-0.1156}	0.9815	5.99
Natural freshwater $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	0.9774	4.98
Sterilison freshwater bottom much $\tilde{C}_t = 4.801 \ 1e^{0.4319t}$	0.9791	1.60

In the formula: Co is the first sediment quantity after pesticide application, k is the elimination rate constant, t is the number of days after pesticide application and Ct is the deltamethrin concentration at interval t after pesticide application.


III.

Comparatively short, half-lives of deltamethrin in different Chineese water environments were determined in Order to assess aquaculture ecology and environments of freshwater and seawater systems. The outcome indicates that any longer presence of deltamethrin in open waters should be minimal.

CA 7.2.2.3 Water/sediment study

Route and rate of degradation of deltamethrin in water/sediment systems under aerobic conditions were evaluated during the Annex I inclusion using [¹⁴C]-benzyl labelled deltamethrin, as well as unabelled deltamethrin, and were accepted by the European Commission (SANCO/6504/QI/99-final, 17 October 2002). During the evaluation the summary of micro/mesocosm/pond studies of the fate of deltamethrin in water were listed under this section, too. Nowadays, however, those studies should be better grouped into the new section where influence of natural sunlight is included (see pext section).

The studies with deltamethrin in two different natural, water/sediment systems showed that the compound was thoroughly degraded leading to CQ, as the end product of the minerarization process. The adsorption of deltamethrin from water to the sediments accounts for 60 to 88% of the applied radioactivity, and is the most important dissipation route in natural surface water. 50% of the deltamethrin in the water disargreated from the water column within 1 day. The DT% for the entire system (water + sediment) ranged from 40 to 90 days under standard conditions in the dark. Main metabolites in water/sediment systems, were: α -R-isomer of deltamethrin (max) 24% of applied radioactivity in sediment; facks insecticidal activity) 4'-OH deltamethrin (maximum 8% in sediment) and mPBacid (maximum 6% in water). Position of C- labelling (benz) 14°C) did not allow measurement of Br₂CA.

The dossier supporting the approval renewal of deltanethrin includes the following new aerobic watersediment study for the parent compound using a second label position, ¹⁴C-gemi-dimethyl label of deltamethrin, to allow the intestigation of the second had of the deltamethrin molecule. The new study performed with two different water/sediment systems included acidic sediment, also. Both topics had been discussed to be clarified better during the earlier EU valuation.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Report:	, KCA 7.2.2, 7/04; ; ; ; ; ; ; ; ; ; ; 2012
Title:	[gena-dimethyl-]] Delta methrin: Aerobic Aquatic Metabolism
Report No: 🖉	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
Document No:	$(1.130870-6)^{-1}$
Guidelines:	OECD Guadeline for the Pesting of Chemicals No. 308,
	Commission Directive 95/36/BC amending Council Directive 91/414/EEC
, v	AnnexesII and III, Fate and Behaviour in the Environment), 1995
L.	US LPA Fate, Transport and Transformation Test Guidelines, OPPTS 835.4300
	and OPPIS 83524400, Aerobic and Anaerobic Aquatic Metabolism, 2008
GLP:	Yès V V Q
. <u> </u>	

## EXECUTIVE SOMMARY

The acrobic transformation of [gem-dimethyl-¹⁴C]deltamethrin was studied in two types of water sediment systems for a maximum of 99 days in the dark at  $20 \pm 2$  °C. The water/sediment systems were taken from [water: pH 7.6, TOC = 4 mg/L; sediment: loam, pH 6.1 (CaCl₂), TOC = (6%)] and [water: pH 7.7, TOC < 2 mg/L; sediment: sand, pH 7.2 (CaCl₂), TOC = (0.34%)].

The nominal application rate of 7.8  $\mu$ g deltamethrin per test system was the 12-fold overdose of an application rate calculated according to a single maximum field use rate of 12.5 g/ha. Laboratory



Samples were taken after 0, 0.125, 0.5, 1, 2, 3, 7, 14, 30, 50, 73 and 99 days of incubation. Water phase and sediment extracts were analyzed by LSC and HPLC. The evolved  ${}^{14}CO_{2}$  as well as the non-extractable residues were determined. At the last sampling date, sediment allocots were also used to determine the amount of  ${}^{14}CO_{2}$  in the sediment.

The test conditions outlined in the study protocol were maintained throughout the study. The overview of material balance and distribution of radioactivity in the two test series is summarized by Table 7.2.2.3-3, for more detailed data see Table 7.2.2.3-8 and Table 7.2.2.3-9. Shortly after treatment the radioactivity in the water phase of both test systems decreased rapidly, then it increased until DAT 30 and declined to less than 6% of AR towards the end of the study. Extractable ¹⁴C residues in the sediment increased to a maximum of 80.0% at DAT-0.5 and declined then to owards the end of the study.

Water/Sediment System	
Material Balance [% AR] *	0 $(45.8 - 90.7)$ $(7.0)$ $(2.0)$ $(2.0)$
Water Phase [% AR]	$\mathcal{A}^{O^{\vee}}$ $\mathcal{O}^{4.2} \rightarrow 56.7$ $\mathcal{O}^{\vee}$ $\mathcal{O}^{O}$ $\mathcal{O}^{\vee}$ $\mathcal{O}^{5.6} \rightarrow 5.6 \rightarrow 5.6$
Sediment Extract [% AR]	2 $_{2}$ 24.6 $_{2}$ 80.0 $_{3}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$ $_{7}$
Max. ¹⁴ CO ₂ [% AR]	21.3 ° 21.3 ° 39.1 °
Max. NER [% AR]	

Table 7.2.2.3- 3: Results synopsis on material balance and distribution of applied 14 2

*: minimum values at the last sampling, always are non extractable residues are a set of the set of

The dissipation of Detramethon from the supernation water phase was characterized by translocation into the sediment as well as by degradation. This was best described using the DFOP kinetic model with  $DT_{50}$  and  $DT_{90}$  values of 0.03 and 0.64 days for the sediment of the sediment with  $DT_{50}$  and  $DT_{90}$  values of 0.06 and 0.80 days for the sediment of the corresponding modeling endpoints were either determined using the DFOP kinetic model (**Equation**), resulting in a  $DT_{50}$  value of 0.2 days, of the HS kinetic model (**Equation**) with a  $DT_{50}$  value of 0.3 days.

In both entire water/sectment systems, deltanethrin was degraded well which was best described using the FQMC kinetic model. The estimated  $DT_{50}$  and  $DT_{90}$  values were 1.0 and 28.8 days for

and 0.9 and 20.6 days for the corresponding modeling endpoints were determined with  $DT_{50}$  values of 8% days for the corresponding modeling endpoints were respectively. A second se

## Table 7.2.2.3-4:5 Results synopsis on "best fit" dissipation kinetics for deltamethrin in the supermatant water layers (persistence endpoints)

Test System	Kinetic Model	DT50 [days]	DT90 [days]	Chi ² Error [%]
	DFOP	0.03	0.64	8.35
	HS	0.06	0.84	7.97

DFOP = Double First Order in Parallel Model; HS = Hockey stick model

ð

### Table 7.2.2.3- 5: Results synopsis on "best fit" dissipation kinetics for deltamethrin in the entire test systems (persistence endpoints)

Test System	Kinetic Model	DT ₅₀ [days]	DT ₉₀ [days]	Chi ² Erroe
	FOMC	1.02	28.8	11.34
	FOMC	0.88	20.6	£2.21 ×
EOMC - Eirst Order Mu	lti Comportmont Model	<b>A</b> .	Ň	

FOMC = First Order Multi Compartment Model

In the water/sediment systems from three major transformation products detected. They were identified as  $\alpha$ -R-isomer of delta methrin, Br₂ $\dot{Q}$  (AE F108565, *cis*), and a isom of BrCA (BrCA-isomer 1). In the water/sediment sostems from ,  $\alpha$ -RQ some of deltamether  $\hat{n}$ , Br2CA, Serinyl-BrCA, BrCA-isomer 1 and 2 were found as major degradation products.

#### Table 7.2.2.3- 6: Results synopsis on metabolism & deltamethrin in the entire test sy stems

Sediment	Lørm V V KI Kand V
Туре	Login V V V Sand V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a-R-Isomer of Deltamethrin βr ₂ CA BrCA-isomer b BrCA-isomer b CO CO CO CO CO CO CO CO CO CO
<u>Minor</u> transformation	
products	\wedge Here Δ_{-1} is a merit \wedge \wedge \wedge
* Outrain Carllant &	

* Criteria for "majør"

> 10% of AR in total system > 5% of AR at Wo successive DAT's per compartment

Ô > 5% and increasing at the end of the study per compartment

NER = note extractable residues

Ő Ś From this study it is concluded that delamethin and its degradation products have no potential for accumulation in the aqueous environment.

Test Item 1.

	Batch RATH 6385
Specific Radioactivity	3.96 MBq (106.9 μCi) / mg
Radiochemical Purity:	>99% (HPLC, radioactivity-detector)
	>>99% (TLC, scan)
Chemical purity.	98.6 %
Diastoreometric purify:	> 99% (HPLC, radioactivity-detector)

est Systems 2.

The study was carried out with natural water/sediment systems from two locations:

Germany): This is an artificially dammed pond in the ". On account of it's in- and outlet course of the " the pond (approx. 1000 m² in surface area) has strong water current.

Germany): in the raw data it was named always. However, since it is a small lake, i.e. a reclaimed gravel-pit which is used for fishing only, it was re-named within the current report. The lake is entirely enclosed by a fence. 0

Fresh water and sediment samples were taken separately and poured into plastic containers provide to the start of the study. A description of water and sediment collection and storage given in Appendix 2 of report. The results of the on-site measurements as well as the other system characteristics are given in following Table 7.2.2.3-7. **Table 7.2.2.3-7:** Physico-chemical properties of water and sediment

Properties of Waters	<u> </u>	
Parameter	Q S S S S S S S S S S S S S S S S S S S	
Temperature [°C] ¹	الار مي [°] 17.8 مي	
pH ¹	€ 6°17.85° 2° 0 2°76 6° 2°76 6° 2°76 6°	6 0 L7.7 A
Hardness [mmole/L]*		
Oxygen Concentration (saturation) [mg/L] ¹	4 6 17.85° 20° 766 7° 766 7° 767 7° 766 7° 767 7	27 J 49.0 J
Total Organic Carbon (TOC) [mg/L]*	\$ \$\$ \$\$5 \$\$ \$\$	
Dissolved Organic Carbon (DOC) [hg/L]		
Redox Potential $E_h [mV]^{1,4}$	0 6 433 9 Q	° ° 4414.6
Properties of Sediments 🛷 🔬 🎽		
Geographic Location	O Gennany 🖉 🌾	Germany
Soil Taxonomic Classification (USDA)#	C S Stoam O	Sand
Soll Taxonomic Classification (USBA)" Sand (2000 – 50 ppr) [%]		<i>₽</i> 97
Silt (< 50 - 2 μm) [%]	42 42 4	^y 0
$Clav (< \mu m) \mathbb{W}_{l}^{\#} \otimes^{\mathbb{Y}} \ll \mathbb{W}$		3
pH ¹ N X X X	0° 6.50 0°	7.1
рН# 29	$6 $ (CaCk), 6.6 (10° O)	7.2 (CaCl ₂); 7.8 (H ₂ O)
Temperature $[^{\circ}C]^{1}$	$\sum_{\alpha} \frac{17.6}{4.6}$	21.6
Organic Carbon [8]*.5	4.6/@3	0.34 / 0.29
Organic Matter [%]*,3	1 - 76 71	0.6 / 0.5
Sediment Microbial Activit [mg CO ₂ Ar/kg sediment (dry w)) ²⁻⁶ Cation Schange Capacity [med 100 g] [#] Total Nitrogen [mg g g]	Y N N	1.25 / 2.50 / 1.25
Cation Exchange Capacity [mee 100 g]#	8 81	2.9
Cation $ \mathbf{X} $ change Capacity $ [med 100 g]^{\#} $ Total Nitrogen $ [mg g g] $ $ \mathcal{O} $ Total Phosphorus $ [ppm]^{*} $ $ \mathcal{O} $ Redox Potentia $ \mathbf{E}_{h} [mV]^{1,4} $	Ž X 4400	< 1000
Total Phosphorus [ppm]* 7	1000	150
Redox Potentia $E_h [mV]^{1,4}$	197.6	201.3

		Ŵ	<u> </u>
Table 7 1 1 2 7.	Dhuming abamiant m	amandian of what are	and a still as a set
Table 7.2.2.3- 7:	Physico-chemical pi	oberties of water a	

* Analyzing & Foratory;

, Germany

Analyzing Jaboratory:

, USA, start of acclimatization

¹ Measurement at day of sampling O
² Measurement of DAT U and at the end of the study
³ %organic matter =%organic earbon x 1.724
⁴ Kotential difference between used electrode and H₂-electrode at 20°C: 210 [mV]

Theoretical potential of used buffer solution for Pt-Ag/AgCl electrode at 25°C: 220 [mV]

⁵ start *Epre-equilibration* and at the end of the study

⁶ Measurement at the start of pre-equilibration

n.a. = not analyzed

Q.

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

B. **STUDY DESIGN**

1. **Experimental Conditions**

The collected sediment samples were sieved with 2 mm mesh-size to remove parts of e.g. plants and stones. The collected water phases were filtered through a 0.06 mm sieve. Water and sediment phases were stored in the laboratory until the assembling of the water/sediment test systems (1 day). Static test flasks, laboratory microcosm flasks, for degradation in aquatic systems under aerobic conditions were used. For the assembling of the water/sediment systems rediment aliquots, either 74.9 (

) dry weight sediment corresponding to a volume of 175 pt (height approx.) or 250 g (2.5 cm) were poured into the vessels and 520 mL (height approx. (Sem) of the corresponding batural water were added. Then, the systems were closed with a solid trap attachment for absorbing volatile compounds. The water to sediment ratio was about 3/1 (v/v). The migrobial bromass of the sediment was determined by short term respiration measurements.

For technical reasons the study application rate (SAR) of of 7, jug [C]deltamethrin dissolved in approx. 1 mL of acetone per test system was the 12-fold overdose of the application rate valculated based on the intended single maximum field use rate of 12.5 g/m. Since delta methric is very low soluble in water a co-solvent was inevitable. During incubation the supernation water was in smooth motion.

2. Sampling

Two treated flasks per test system were taken and processed completely or analyses at the following sampling dates: sampling dates:

13 and 99 days after Weatment and respective aerobic incubation 0, 0.125, 0.5, 1, 2, 3, 7, 14, 30, 50

3. **Analytical Procedures**

Aliquots of the water phase were raken to determine the dissolved amount of ¹⁴CO₂. Then, the water layer was decanted and centrifuged with 5 mL acetone to avoid adsorption on the walls. After centrifugation, the volume of the supernatant water was determined and doubled by the addition of acetone. One balf of the mixture was deep trozen while the other half was treated with formic acid (20 μ L / 10 mL₂ to stabilize the ratio of the test item and the α -R-isomer of deltamethrin.

The moist sediment was extracted with 2 x 80 mL apetone containing 1% formic acid and subsequently with 3 x 80 mL pure acetope (ambient organic extracts). Afterwards, the sediment was extracted once more with 80 mL acetone using a microwave-accelerated solvent extraction (10 min. at 50 °C, aggressive organic extract). The acidified water phase, the combined extract of the ambient extraction steps as well ag the aggressive extract were concentrated and analyzed by LSC and HPLC in order to determine the amounts of the test item and its gransformation products. Identification of the test item was achieved by NMR and GC MS/MS or co-chromatography (HPLC).

The transformation products were identified by HPLC or TLC co-chromatography and / or HPLC-MS and HPLC-MS/MS with accurate mass determination (for more details see section 4.5 of report).

The extracted sediment phase was air dried pomogenized and combusted in an oxidizer. The evolved 14 CO₂ was transped in a scinfulation cocktable and measured by LSC to determine the non-extractable residues. At the last sampling date, sediment aliquots were also used to determine the amount of ¹⁴CO₂ in the sediment.

The data of dissipation/degradation kinetics according to the recommendations of EC document 9188/VI/97 rev. 8 (2000) were directly taken from Error! Reference source not found. 2013, report M.461952-91-1, which is summarized later. Respective print-outs of modelling calculations were filed in the ra@ data.

Deltamethrin

II. RESULTS AND DISCUSSION

Results indicated that the anticipated standardized aerobic conditions were maintained and that the supernatant water was aerobic (approx. $4.7 - 8.7 \text{ mg O}_2/L$) during the entire incubation period in the dark. The mean incubation temperatures were 20.4 ± 0.1 °C for and 19.6 🔊 0.04 🔊 for test systems. m The pH value in the water phase of the water/sediment systems varied throughout the study period and showed a slight decrease during the course of the study, ranging from pH 5.8 - 8.4 for . The redox potential E In the supernitiant water of lest and from pH 7.3 - 8.7 for and from 325 - 455 meV for systems ranged from 278 – 503 mV for The pH value in the sediment of the test systems slightly decreased in @verall@ The redox varied between pH 6.2 - 7.2 for and from pH 6.5 7.9 for potential E_h in the sediment ranged from 47 - 175 mV for and from 70 – 386 mV for The microbial activity in the sediments indicated that the systems were biologically active during the entire period of the test (see Table 7.2.2,3-7), the the systems, a reduction of the microbial activity in the course of the experiment was observed. This is characteristic for a laboratory experiment due to the gradual depletion of nutrients in the sediment and lacking supply of organic matter as a source of energy.

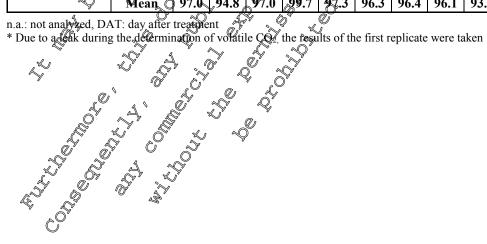
A. DATA

All calculations for radioactivity (as % of applied radioactivity) in water and sediment extract, in the solid materials and in the trap attachments are listed in Table 7.22.3- 8 and Table 7.2.2.3- 9, the overview was presented in Table 7.2.2.3- 3, atteady of a second second

Complete material batances were found for all sampling dates except for the dast sampling interval for the last work sampling intervals for the dast sampling

Significant formation of ${}^{14}\text{CO}_2$ was observed in both water/sediment systems. At termination of the study, the ${}^{14}\text{CO}_2$ recovery (mean values of duplicates) was ${}^{27.3\%}$ and ${}^{39.1\%}$ of the applied radioactivity in systems from **and and an energy** respectively. From these data it can be concluded that deltamethrin is mineralized to water sediment systems. The majority of total ${}^{14}\text{CO}_2$ accounted for the volatile ${}^{14}\text{CO}_2$ trapped by sola lime. Just a minor portion included in those values was found to be ${}^{14}\text{Carbonate}$ dissolved in the water mass or contained in the sediments. No significant amounts of organic volations were found ($\leq 0.2\%$ of AR).

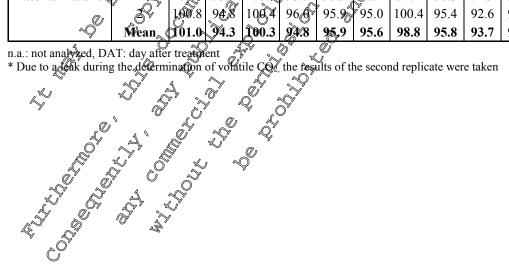
The mean radioactivity in the water phase of the state test systems decreased rapidly from 56.7% of the applied radioactivity at day 0 to 14.6% at DAT-0.5. Afterwards, the radioactivity increased to 32.0% of AR until DAT-30 and declared then to 5.4% of AR towards the end of the study. The radioactivity in the water phase of the systems showed a similar pattern. It decreased from 62.7% of the applied radioactivity at day 0 to 19.2% of AR at DAT-0.5. Then, it increased to 39.7% until DAT-30 and declared to 5.6% of AR towards the end of the study.


٨Ô

 \land

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Table 7.2.2.3- 8:	Distribution of radioactivity during aerobic aquatic metabolism in
	, expressed as percent of applied radioactivity (% AR


			, expressed as percent of applied radioactivity (% AR											
	Replicate		-				DA	AT	-			Ő	Y	
	No.	0	0.125	0.5	1	2	3	7	14	N	50	75	99	
atiles									ſ	ď		¥ ≫		
¹⁴ CO ₂	1	n.a.	< 0.1	0.1	0.1	0.2	0.2	0.6	2:1	3.8	16.Ø	14.8	21.3	
	2	n.a.	< 0.1	< 0.1	0.1	0.3	0.3	0.6	\$2.0	0.9	12,5	20.0	21.2	
	Mean		<0.1	0.0	0.1	0.2	0.3	0.60	2.0	2.4	4.7	97.4	21.2* 2 1.3	
Volatile	1	n.a.	< 0.1	< 0.1	< 0.1	0 .1	< 0.1	≤0 .1″	< 0.1	0	0.1		0.2	
organics	2	n.a.	< 0.1	< 0.1	<0,1	,<0.1	< 0.1	Q _{0.1}	₿ 0.1	Ø1	QC1	0.P	0.1	
	Mean		<0.1	<0.1	≪0 01	<0.1	<0,1%	<0.1	<0.1	0.1	0.1	Ø .1	, dfl	
Total	1	n.a.	< 0.1	0.06	0 .1	Q.2	<i>_</i> @2	Ø.C	22	3,80	17.Ì^	°15.0	^v 21.4	
	2	n.a.	< 0.1	<0.1			0.3	@0.6	2.0	ſØŎ	12,6	20:2	21,4 °	
	Mean		<0.1	0.0	9.P	0.2	0.3	0.6	2.0	2.4	14.8	A 7.6	20.4	
ractable Radio	oactivity		, A	Ş .,	Š		Å,	Å,						
Water (W)	1	66.1	149	13.8	31,1	25.2	26.4	24.5	35.0	25.8	158	4.4	4.8	
	2	47.3	25.1	18:4	230	23.6	22	22.2	27.6	\$0.2	\$3.8	£.0	5.9	
	Mean	56.7 ⁴	×19.9¢	þ14.6	27.1	2 4.4	23,3	23.3	313	32.0	14.8 [°]	¥4.2	5.4	
Ambient	1	285	755	79.9	64.00	71.1	67.2	6 0.8	.44.4	40:4	25.5	33.0	22.7	
Extract	2	¥¥7.1	¢67.2	Ê.9	72,2	66,1	67.6	65.3	\$55.5 ¢	6 48.4	35.5	29.5	25.2	
(SO)	Mean 🖗	38.3	₽ 71.3 ∂	7 7.9	68.1	68.6	67,1	63,1	50.0		⁹ 30.5	31.3	24.0	
Aggressive	1	0.8	2,1	2.14	2.0	1.8	ĵ°1.7 ∢	1.5	۴ <u>M</u>	J.	0.8	0.9	0.6	
Extract		A.4	2,1 ≪₽.7	2.1	2 2 2 2.2	1,8,7	1.9C	1.7	1.3	71.2	1.0	0.8	0.7	
(SH)	Mean	1.1 Ĉ	§1.9 ~	2.1 ∑2.1		Â.Š	178	1.6	1.2	1.1	0.9	0.9	0.6	
Total 🖉		96,Ã	92.2	95.Z		¥98.1 🛦	95.3	86.8	80.5	78.3	42.1	38.4	28.2	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, Ô,	95.7	<b>84</b> .0	<b>8</b> 304	975	91 <del>5</del> 5,	91.2		84.5	79.7	50.2	34.3	31.8	
Å	Mean 🗸	96.1	93.1	94.6	97.3	94.8	93 <mark>.3</mark>	88.0	82.5	79.0	46.1	36.3	30.0	
ind Résidues	15	058	1.90	2.6 0	2.1	2.1	\$2.8 v	8.0	11.8	12.0	27.5	37.0	34.4	
E.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø).1	1.6	2.2 Õ2.4	2.0	2. <b>5</b>	2.8	₹7.5	11.5	12.5	30.9	36.6	34.5	
	Mean 🏑	×1.0	[€] /1.7.	Ž.4	2.3	×2,3	2÷8	7.7	11.6	12.3	29.2	36.8	34.5	
terial Balance	2 1 <u>A</u>	97 <b>P</b>	94:0	98.4	99.3	100.4	98.3	95.4	94.3	94.2	86.6	90.3	84.0	
an an		96.9	<b>95</b> .6	95.7	1067	94 <i>\$</i> \$	94.2	97.3	97.9	93.3	93.7	91.1	87.7	
~Ç	Mean C	97.0	94.8	97.0	99.7	97.3	96.3	96.4	96.1	93.7	90.1	90.7	85.8	



Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment **Deltame**thrin

Table 7.2.2.3- 9:	Distribution of radioactivity during aerobic aquatic metabolism in
	expressed as percent of applied radioactivity (% AR)

able 7.2.2.3- 9:	Distribution of radioactivity during aerobic aquatic metabolism in												
		expressed as percent of applied radioactivity (% AR)											
	Replicate						D	4T				Ő	У [°] С
	No.	0	0.125	0.5	1	2	3	7	14	Ņ	50	79	<b>90</b>
olatiles									6	d'	6	×	
¹⁴ CO ₂	1	n.a.	0.1	0.1	0.2	0.9	1.2	2.6	6.4	12.0	14.TÔ	15.4	37.7*
	2	n.a.	< 0.1	0.1	0.1	1.0 🖉	s 0.5	2.3	<b>\$7.1</b>	11.1	120	20.2	40.S
	Mean		0.0	0.1	0.1	1.0	0.8	2.40	6.7	11.6	<b>15.8</b>	<b>7.8</b>	39.1
Volatile	1	n.a.	< 0.1	< 0.1	< 0.1	<b>\$0</b> .1	< 0.1	SQ, 1 °	0.1	0.5	0.14		0.2
organics	2	n.a.	< 0.1	< 0.1	<0.14		< 0.1	Q0.1	<b>50</b> .1	ØĂ	0(2	0.3	
	Mean		<0.1	<0.1	<0)1	<0.1	<0,1>	′ <0.₁	0.0	0.1	0.2	<b>Ø</b> .2	
Total	1	n.a.	0.1	0.14	K_0.2	Ø.9	4Q2	2.6	6:4	12,2	14.8	15.6	⁶ 37.9
	2	n.a.	< 0.1	0.12	0.1	0 1.0	0.5	2.3	<del>7</del> .1	1 2.2	17,2	20.5	40 ₆ 7°
	Mean		0.0	<u>_0</u> ,}	<b>6.</b> ]	1:0	0,8	× 2.4	6.7	<b>A11.7</b>	16.0	<b>.[8.1</b>	39.3
xtractable Radi	oactivity		Ģ		$\sim$	$a^{\vee}$	. ~	^``	<u>`</u> N	, Ç			S.
Water (W)	1	70.2	32 Q	220	31.5	28.5	27.5	\$9.0	<b>\$3</b> .8	36.4	368	24.8	8.4
	2	55.2	27.8	1508	34.0	25.⊮	37.9		41.6		\$6.4	20.8	2.8
	Mean	62.7	\$5.0	ZJ 9.2	<b>Q</b> 2.8	26.8	32,7	39.9	37.Ø	<b>39.7</b> C		¥22.8	5.6
Ambient	1	30.5	595	67.2	⁰ 59.6	r °	61.1	<b>P6</b> .1	39.4	2017	22.5	16.5	7.8
Extract	2	<b>44</b> .4	\$5.5	82,3	5902	65,3	52.6		30.1	22.1	19.6	14.1	6.0
(SO)	Mean	<b>37.3</b>	Q <b>5</b> 7.5	74.9	59.4	63.7	56,8	47.6	34.8	23.9	21.0	15.3	6.9
Aggressive	1	0,4	1.0	°5.3⊖	0.9	¢1.0	<b>60.8</b>	0.6	0.7	Ô,	0.4	0.3	0.3
Extract	, Qui	Ø.7	۴Ű	0,5	0.0	1.0	1.0 🕻		Ø0.5 _"	0.5	0.5	0.4	0.3
(SH)	Mean 🔍	I &	ðð.9 <u>í</u>	<b>Ž</b> .9	0.9	1.0	009	0.7	0.6	0.5	0.5	0.3	0.3
Total		1008	92.8	952	۶92.1°	91.6	389.4	\$5.7	<b>73</b> .9	64.6	59.6	41.6	16.5
~~	, C	100.2		98 ⁹ 8	94	91%		88.9	72.2	63.5	56.5	35.3	9.2
	Marean *	400.5	<b>93.4</b>	<u>97.0</u>	• <b>93</b> .1	91.5	90.3	87.3	73.0	64.1	58.1	38.5	12.8
ound Residues	1 🖉	05	1.00	^{\$} 4.9	^{D*} 1.2	» 3.4 _≈	<b>\$</b> .5	8.9	16.0	18.1	20.2	29.3	35.3
Ř.	, U	0%	0.8	1.5 Q.2	1.0	3.5%	× 3.1 (	9.2	16.1	17.8	23.9	28.4	31.5
	Adean 4	0.5	<b>0.9</b> .	<b>Q</b> .2	<b>A.</b> 5	\$,5	4:3 [°]	9.0	16.1	18.0	22.1	28.8	33.4
laterial Balance	5 1 A	101	93.%	0	93.5	95.9	<b>@</b> 6.1	97.1	96.3	94.9	94.6	86.5	89.7
	5	1.00.8	<u>_</u> 9∉,8	1004	96	9	°95.0	100.4		92.6	97.6	84.2	81.5
~	Mean	<b>J</b> 01.0	94.3	100.3	<b>9</b> 4⁄.8	95,9	95.6	98.8	95.8	93.7	96.1	85.4	85.6

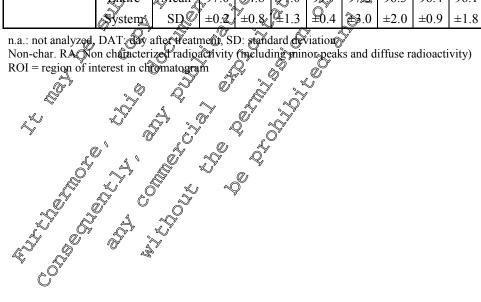



Table 7.2.2.3- 10:	Biotransformation of deltamethrin in	under aerobic
	conditions, expressed as percent of applied radioactivi	ty (mean ± SD) 🖉 🔞

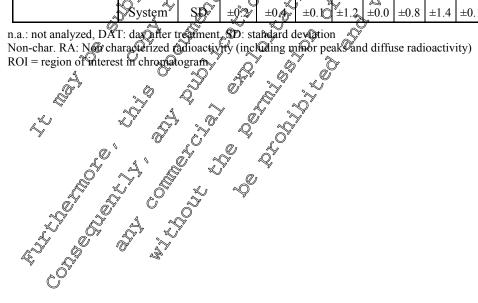
conditions, expressed as percent of applied radioactivity (mean ± SD)														
		Mean						DA	<b>Δ</b> Τ	ð			ġ,	°
Compound	Source	SD	0	0.125	0.5	1	2	3	7	<b>J</b> A	30	50	7 <b>3</b> Ç	99
	Water	Mean	54.1	14.3	7.5	12.0	7.1	4.0	0.7	0.7	0.0	<b>9</b> .0	$\sim 0.0$	000
Deltamethrin		SD	±9.4	±4.5	±1.1	±2.5	±0.5	±0.9	±0.3	±0.7	$\pm 0.0$	$\pm 0.0^{\circ}$	¢±0.0₄	<b>₩</b> 0.0
Deitamethrin	Sediment	Mean	36.0	54.3	57.3	33.1	32.7	23.9	15.0	12.1	10.1	.29×	8.6	4.0
		SD	$\pm 8.8$	±3.2	±1.1	<b>#</b> #.0	±1.7	±LS	¥±1.3	±2.2	±1.5	Q-0.2	60.3	£0.
	Water	Mean	1.5	3.1	2.6	9.3	5.9	<i>3</i> !.5	¢	Ø.	0.01	0.0	لم 0.0	0.0
α-R-Isomer of		SD	$\pm 0.8$	±0.2	±0.3	±1.7	±0,2	±1.0	$\mathbb{Q}^{*}_{\neq 0.0}$	±0.3	<u>≜0.0</u>	<b>≭0</b> .0	±000	±0.0
Deltamethrin	Sediment	Mean	0.0	5.9	11.5	<b>4</b> .6	20.5	18,6	2,5	8.5	7.9	3.2	9.9	3.8
		SD	$\pm 0.0$	± <u>2</u> 0	±2,8	±0.3@	© ∉±3.7↓	Q <b>±</b> 2.0	±0.6	±1.7	±0	$\pm 0.0$	±1.8	°±0.2
	Water	Mean	0.0	J.0	~3,8	4.6	9 D	13.8	16.8	Di 3.2	Q2.8	0.5	<b>A</b>	0.0
Br ₂ CA		SD	±0,6	±0,1		€ #0.0	££.0	₹9.0	$\pm 0$	±2.0	±0.9	≥ ≠±0.1	Q <u>0.0</u>	±0.0
(ROI 3)	Sediment	Mean	<u>1</u> 9	876	7:8	18.6	10.2	9 13.3 2	Ŷ7.0	<b>10</b> .8	<b>6</b> 6	IJ.P	0.0	10.7
		SD [*]		¢≠0.3	<b>@</b> 0.5	± <b>0</b> :4	±Z	±0¢D	±0,90	()	≈ £1.4	°∰3.7	±0.0	±1.3
	Water	Mean	0.%	0.0	0.0	0.0	<b>\$0.0</b>	Ø4	0.0	0.0	0.0	0.0	0.0	0.0
			\$ <b>₩</b> 0.0	+0.0	±050	±0.00	±0.0	±0.4°	© ₩0.0₅	Â0.0	±0.0	±0.0	±0.0	±0.0
ROI 4	Sediment	Mean	0.0	0.2	A.2	AQ.7	29	3:5	3,79	3.4	1.6	1.1	2.0	0.8
	\$	SO	±000	±0.©	±0.60	֎ Հ±0.0 _֎	Q_0.6	<b>≸</b> 40.5	≪±0.7	±0,0	±0.4	±0.1	±0.0	±0.3
	Water		\$0.0	<b>Ø</b> .0	Ŵ	0:0	0.3	0.6	0.0	× 0.0	0.0	0.0	0.0	0.0
		L/ ()	±0.0	$\sum_{\pm 0.0^{\circ}}$	y±0.0 s	90.0	<b>£</b> 0.3	±Ø1	±0.9	±0.0	±0.0	±0.0	±0.0	±0.0
ROI 5	Sediment	Mean	a ø	Q.O	0.9	0.6		2.5	3.5	3.7	1.4	1.7	1.9	1.1
Š	Sediment	≪sd ∂	±0.0	±0.2	×0.2	$\pm 0.2$	±0.0	$\pm 0.2$	±0.3	±0.4	±0.1	±0.1	±0.1	±0.5
	Water	Mean	0,0	0.0	0.0	, 0.0 ¢	<b>S</b> .2	~0,4	3.5	11.4	20.4	4.2	0.0	0.0
BrCA-isomer 1	~~Ŭ	, SD	0.00 ±0.0	±0,0	±0.0	±0.0	€ ±0.2	©″ ¢±0.4	±0.5	±0.0	±1.0	±1.2	±0.0	±0.0
(ROI 9)	Sectiment	Mean		0.0 ₩0.0	0.0	0.0	0.0	0.6	2.2	6.8	12.0	4.3	1.7	0.6
	¢ A	SE		$\pm 0.0$	0.0∼ ±0.0∼		<b>2</b> 0.0	±0.1	±0.1	±0.2	±0.3	±0.2	±0.5	±0.0
	Water		°∼Ø.0		aQ.		0.0	0.0	0.7	1.8	2.3	7.0	4.0	5.2
Serinyl-BrCA	, in the second s		V. a al	0	Ø,	0.0 ₩0.0	±0.0	±0.0	±0.1	±0.0	±0.3	±1.2	±0.2	±0.6
(ROL to)	Sediment	Mean	0.0	0.0	0.0	0.0	0.0	0.7	0.2	0.7	0.9	2.3	4.8	2.4
4 "	~9	ASD /	20.0	0.0 £0.0		±0.0	±0.0	±0.7	±0.2	±0.1	±0.0	±0.4	±1.0	±0.3
$\overrightarrow{ROI} = region of$	interest in	hromato	, ram					I						
(ROL (T)) ROL (T) ROL (T)										Со	ntinue	d on n	ext pa	ge

Table 7.2.2.3- 8 cont.:	Biotransformation of deltamethrin in	under aerobic	
	conditions, expressed as percent of app	plied radioactivity (mean ± SD) ©	ð

	Conditions, expressed as percent of applied radioactivity (mean ± 5D)												
	Mean						DA	Т	~			<u>6</u>	- The second sec
Source	SD	0	0.125	0.5	1	2	3	7	<b>1A</b>	30	50¢		99
Water	Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.7	2.3	<b>\$</b> .6	~0~0	050
	SD	±0.0	±0.0	$\pm 0.0$	±0.0	±0.0	±0.0	±0.3	±0.3	~ ~ ~		£0.0	
Sediment	Mean	0.0	0.0	0.0	0.0	0.0	0.3	Ø.0	1.0	Ê8	19	0.00	0.0
	SD	$\pm 0.0$	$\pm 0.0$	$\pm 0.0$	±0.0	$\pm 0.0$	±0,Ô	[≸] ±0.0	<i>(</i> )	€£0.1	ð0.4	<b>±0</b> .0	<b>≭</b> 0.0°
Water	Mean	1.0	1.5			1.1	-₽ <b>,</b> 7	\$0	2	4.2	0.5	0.3	©.2
	SD	±0.4	±0.5	±QØ	±0.4	±0.4	∕/±0.5 _∞	¥0.3			$\pm 0^{2}$	±0,	±0.1
Sediment	Mean	1.6	3.6		ĝ.3	h.J	55	4.₩		9 [°] 4.8	≫3.2	*¥.2	1.2
	SD	$\pm 0.5$	±1_0	±0.5%	€±0.9	Ĵ£0.7	<b>A</b> .6	£07.1		±1.\$	±1.0	¢±0.9€	_≗0.4
Water	Mean	56.7	11	146	27.1	244,	24.3	11		32.0	14.8	4	5.4
	SD	±9.40	¥±5.2	¥0.8	<b>£4</b> .1	s±0∕.8	±D	±1	±3.7	¥±1.8	€±1.0	<b>á</b> 0.2	±0.5
Sediment	Mean	3674	73.	80.6	70.3	70.4	768.9	<b>6</b> #.7	5 <b>\$</b> 2	47.Y	313	32.1	24.6
	SD 🖉	<b>£</b> 9.1	20	±3.0	±4.3	à	$\pm 0.0$	) ±2.3	Ĝ <b>±</b> 5.7	2.5 £	s≠5.1	$\pm 1.8$	$\pm 1.3$
Entire	Mea	n a.K	0.0	0.0	<b>30</b> .1		<u>6</u> 3	0.0	2:0 ^C	2.4	14.7	17.4	21.3
System	<b>S</b>	*¥ G.	$\pm 0$	$\pm 0$	±0.0	¥±0.0₄	$\mathbb{P}_{0.0}$	0.0	±0.0	±1.4	±1.6	±2.6	$\pm 0.0$
Entire 👡	ØMean (	Dn.a.	<b>@</b> 0.0	Ø.0	0.0	0.Q	0,00	0.0	×0.0 ⊀	<b>3</b> 0.1	0.1	0.1	0.1
System	S₽	Ro	±0.0	±0.0	¢±0.0	<b>6</b> 0.0	¢±0.0	±0.0	$\pm 0.0$	±0.0	$\pm 0.0$	$\pm 0.0$	$\pm 0.0$
Sediment	Maan	×4.0	₽,7	2,4	2.3	2.3 🖗	D ² .8	7.7	A. 1.6	12.3	29.2	36.8	34.5
			<u> </u>	±0.2	<b>40</b> .2	±0.2	±0,0	±0.2	±0.1	±0.3	±1.7	±0.2	$\pm 0.0$
Water	Mean	56.7	19.9	14.6	27.1	24.4	A.3	23.3	31.3	32.0	14.8	4.2	5.4
-G	_≪ ©D	₽ <b>9</b> .4	±\$y.2	±0,8	±4.0	±3.65	±2.1@	y±1.1	±3.7	±1.8	±1.0	±0.2	$\pm 0.5$
Sediment	Mean	40.4	75.0	82.4	12.6	7 <b>2</b> .7	71	72.4	62.8	59.3	60.5	68.9	59.1
Ď	Ŵ	±991	±4.3	±3.6	±4.3	~~~	<b>0.0</b> €	±2.3	±5.7	±2.5	±5.1	±1.8	±1.3
Entire		<b>\$9</b> 7.0	Ø4.8	27:0	, in the second se	97 3	96.3	96.4	96.1	93.7	90.1	90.7	85.8
~~	SD	V V		€1.3	$\mathbb{D}_{0.4}^{v}$	€3.0	±2.0	±0.9	±1.8	±0.5	±2.9	±0.5	±1.8
	Water Sediment Water Sediment Water Sediment Entire System Sediment Sediment Support Sediment	SourceSDWaterMeanSDSedimentMeanSDWaterMeanSDSedimentMeanSDSedimentMeanSDSedimentMeanSDEntireMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSystemSDSedimentMeanSubSDSedimentMeanSubSDSedimentMeanSubSD	SourceSD0WaterMean $0.0$ SD $\pm 0.0$ SedimentMean $0.0$ SedimentMean $1.0$ WaterMean $1.0$ SedimentMean $1.6$ SD $\pm 0.5$ $\pm 0.5$ WaterMean $56.7$ SedimentMean $304$ SedimentMean $304$ SedimentMean $304$ SubsemSD $\pm 9.4$ SedimentMean $304$ SystemSD $\pm 9.4$ SedimentMean $1.0$ SystemSD $\pm 9.4$ SedimentMean $56.7$ SubsemSD $\pm 0.2$ WaterMean $56.7$ SubsemSD $\pm 0.2$ WaterMean $56.7$ SedimentMean $56.7$ SubsemSD $\pm 9.4$ SedimentMean $56.7$ SubsemSD $\pm 9.4$	Source         SD         0         0.125           Water         Mean         0.0 $\pm 0.0$ $\pm 0.0$ Sediment         Mean         0.0 $\pm 0.0$ $\pm 0.0$ Sediment         Mean         0.0 $\pm 0.0$ $\pm 0.0$ Water         Mean         0.0 $\pm 0.0$ $\pm 0.0$ Water         Mean         1.0         1.5           Sediment         Mean         1.6         3.6           SD $\pm 0.4$ $\pm 0.5$ $\pm 1.0$ Water         Mean         56.7 $\pm 9.9$ SD $\pm 9.4$ $\pm 5.2$ $\pm 5.2$ Sediment         Mean $3.04$ $7.35$ SD $\pm 9.4$ $\pm 4.3$ $\pm 0.0$ System         SD $\pm 9.4$ $\pm 4.3$ Entire         Mean $56.7$ $49.9$ System         SD $\pm 0.2$ $\pm 0.0$ Sediment         Mean $56.7$ $19.9$ SD $\pm 0.2$ $\pm 0.1$ $56.7$ $19.9$ <	Source         SD         0         0.125         0.5           Water         Mean         0.0 $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ Sediment         Mean         0.0 $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ Sediment         Mean         0.0 $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ Water         Mean         1.0         1.5 $0.7$ SD $\pm 0.4$ $\pm 0.5$ $\pm 0.2$ Sediment         Mean         1.6         3.6 $4.4$ SD $\pm 0.4$ $\pm 0.5$ $\pm 0.2$ $\pm 0.5$ Water         Mean         1.6         3.6 $4.4$ SD $\pm 0.5$ $\pm 1.0$ $\pm 0.5$ Water         Mean $56.7$ $49.9$ $1^{1}_{24.6}$ SD $\pm 9.4$ $\pm 5.2$ $\neq 0.8$ $\pm 0.0$ Sediment         Mean $30.4$ $7.3$ $\pm 0.0$ Entire         Mean $n.a.$ $0.0$ $\pm 0.0$ System         SD $\pm 0.2$ $\pm 0.0$	SourceSD00.1250.51WaterMean0.0 $0.0$ $0.0$ $0.0$ $0.0$ SD $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ SedimentMean $0.0$ $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ WaterMean $1.0$ $1.5$ $0.7$ $1.2$ SD $\pm 0.4$ $\pm 0.5$ $\pm 0.2$ $\pm 0.4$ SedimentMean $1.6$ $3.6$ $4.4$ $42.3$ SedimentMean $1.6$ $3.6$ $4.4$ $42.3$ SedimentMean $56.7$ $49.9$ $14.6$ $2.7$ WaterMean $56.7$ $49.9$ $14.6$ $2.7$ SD $\pm 9.4$ $\pm 5.2$ $\neq 0.8$ $\pm 4.1$ SedimentMean $30.4$ $73.2$ $80.6$ $70.3$ SD $\pm 9.4$ $\pm 5.2$ $\neq 0.8$ $\pm 4.3$ SedimentMean $n.a$ $0.0$ $0.0$ EntireMean $n.a$ $0.0$ $0.0$ SystemSD $\pm 0.2$ $\pm 0.0$ $\pm 0.0$ SupportSD $\pm 0.2$ $\pm 0.0$ $\pm 0.0$ SupportSD $\pm 0.2$ $\pm 0.0$ $\pm 0.0$ SupportSD $\pm 0.2$ $\pm 0.0$ $\pm 0.0$ WaterMean $56.7$ $19.9$ $14.6$ SupportSD $\pm 0.2$ $\pm 0.1$ $\pm 0.2$ WaterMean $56.7$ $19.9$ $14.6$ SupportSD $\pm 0.2$ $\pm 0.4$ Suppor	SourceSD00.1250.512WaterMean0.0 $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ SD $\pm 0.0$ SedimentMean $0.0$ $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ WaterMean $1.0$ $1.5$ $0.7$ $1.2$ $1.1$ SD $\pm 0.4$ $\pm 0.5$ $\pm 0.2$ $\pm 0.4$ $\pm 0.4$ SedimentMean $1.6$ $3.6$ $4.4$ $40.3$ SedimentMean $1.6$ $3.6$ $4.4$ $40.3$ SedimentMean $56.7$ $49.9$ $44.6$ $27.7$ WaterMean $56.7$ $49.9$ $44.6$ $27.7$ WaterMean $30.4$ $73.2$ $80.6$ $70.3$ So $\pm 9.4$ $\pm 5.2$ $\pm 0.8$ $\pm 4.1$ $\pm 0.8$ SedimentMean $30.4$ $73.2$ $80.6$ $70.3$ FutireMean $n.a$ $0.0$ $0.0$ $50.1$ EntireMean $n.a$ $0.0$ $0.0$ $\pm 0.0$ SystemSD $\pm 0.2$ $\pm 0.0$ $\pm 0.0$ $\pm 0.0$ SedimentMean $56.7$ $19.9$ $14.6$ $27.1$ Subseq $50.7$ $19.9$ $14.6$ $27.1$ $24.4$ SD $\pm 0.2$ $\pm 0.2$ $\pm 0.2$ $\pm 0.2$ Subseq $56.7$ $19.9$ $14.6$ $27.1$ $24.4$	Source         SD         0         0.125         0.5         1         2         3           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.0           SD $\pm 0.0$ <	Source         SD         0         0.125         0.5         1         2         3         7           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0	Source         SD         0         0.125         0.5         1         2         3         7         14           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         1.7         1.7           SD $\pm 0.0$ </td <td>Source         SD         0         0.125         0.5         1         2         3         7         44         30           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.0         1.7         2.3         1.7         2.3           SD         $\pm 0.0$ $\pm 0.0$</td> <td>Source         SD         0         0.125         0.5         1         2         3         7         $4^4$         30         $56^4$           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.7         1.7         2.3         $2^26$           SD         $\pm 0.0$ $\pm 0.3$ $\pm 1.4^\circ$ $\pm 1.0^\circ$           Sediment         Mean         0.0         0.0         0.0         0.0         0.3         $60.0$         1.0         $58^\circ$ $42^\circ$ $4.5^\circ$ $40.4^\circ$ $40.4^\circ$ $40.4^\circ$ $40.4^\circ$ $40.7^\circ$ $40.$</td> <td>Source         SD         0         0.125         0.5         1         2         3         7         44         30         56         73           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.7         1.7         2.3         2.6         0.0           Sediment         Mean         0.0         0.0         0.0         0.0         0.0         1.0         1.8         1.4         ±1.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         &lt;</td>	Source         SD         0         0.125         0.5         1         2         3         7         44         30           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.0         1.7         2.3         1.7         2.3           SD $\pm 0.0$	Source         SD         0         0.125         0.5         1         2         3         7 $4^4$ 30 $56^4$ Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.7         1.7         2.3 $2^26$ SD $\pm 0.0$ $\pm 0.3$ $\pm 1.4^\circ$ $\pm 1.0^\circ$ Sediment         Mean         0.0         0.0         0.0         0.0         0.3 $60.0$ 1.0 $58^\circ$ $42^\circ$ $4.5^\circ$ $40.4^\circ$ $40.4^\circ$ $40.4^\circ$ $40.4^\circ$ $40.7^\circ$ $40.$	Source         SD         0         0.125         0.5         1         2         3         7         44         30         56         73           Water         Mean         0.0         0.0         0.0         0.0         0.0         0.0         0.7         1.7         2.3         2.6         0.0           Sediment         Mean         0.0         0.0         0.0         0.0         0.0         1.0         1.8         1.4         ±1.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         ±0.0         <



Table 7.2.2.3- 11:	Biotransformation of deltamethrin in	under aerobic condition	18,
	expressed as percent of applied radioactivit	y (mean ± SD)	v or


expressed as percent of applied radioactivity (mean ± SD)												Ő			
		Mean						DA	Т				6	Q	ř
Compound	Source	SD	0	0.125	0.5	1	2	3	7	14	30	<b>50</b> "	<b>(</b> 73	Â9	
	Water	Mean	57.3	22.5	9.3	13.1	4.6	4.6	1.1	0.8	0.0	0,0	0.0	0.0	
		SD	±6.1	±2.7	±1.3	±0.4	±1.2	±1.2	±0,5	<b>≟</b> 0.3	$\pm 0.0$		±0,0		2
Deltamethrin	Sediment	Mean	36.5	45.7	54.6	31	30.7	24.9	<b>Ø</b> .2	9.2	5.0	4.3	2.7	Ø.O	e
		SD	±7.1	±2.4	±6.2	±1.2°	±1.4	±2.80	)¥2.0	±2.8	<b>≠</b> 0.4	±03	±0.2	⊌ ≠±1.Q	Ô
	Water	Mean	3.2	9.3	6.2	¶1.6	5.9	408	0.80	0.2	0.0°	0.0	¢Ŭ	0.0	
a-R-Isomer of		SD	±1.1	±0.4	+23	±0.9	±0.8	±1.4	<b>£</b> Ø.2	$\pm 0.2$	±0.0		¢±0.0	<b>É</b> 0.0	
Deltamethrin	Sediment	Mean	0.0	11.9 🔇	20.0	<b>2</b> 4.8	2352	21,*	12.6	<b>9</b> 7.5	<u>\$</u> .2	4.5	4.6	1.4	
		SD	$\pm 0.0$	±0.2 ^O	±1.2	10.8	<b>₩</b> 0.2	±0:4	±		±0.9	€≠0.8	±0.8	±1.4	l
	Water	Mean	0.0	×1.5	3,3	7.7	14,7	20.4	<b>\$</b> 2.2	24.4	13.5	3.0€	0.0	Ø.0	
Br ₂ CA		SD	w w	¢±0.1∞	<b>≇</b> 0.6	<b>₩</b> 0.2	±Q9	±16	A.	¥£4.3	¢2.3	±0,3	±0¢	/±0.0	
(ROI 3)	Sediment	Mean	0.00	000	0.4	0.3~	A.4	\$9	3.0	4.10		20.5	0.3	0.0	
		SD 🦼	€0.0	±0.0	±0.0	±0.3	±0.0	™±0.1	0.5	<b>±0</b> .2	±02	±Q.Ø	±0.3	$\pm 0.0$	
	Water	Mean	0.0¢	P 0.0 q	× 0.0	<b>Q9</b> .0	<b>0</b> 0	0	0.0	₹ 0.0 ₂	0.0	0.0	0.0	0.0	l
ROI 4		, SĐ	±0.0	±0.0	±0.0°	±0.0	¥0.0	<b>£0</b> .2	±00,0	±0.0		D±0.0	$\pm 0.0$	$\pm 0.0$	
K014	Sediment	Mean	T (/	<b>3</b> 0.4	æ.9	1.0	4.6		\$5.2	°~3.1		1.1	0.3	0.0	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SB	±0.0	±0.05		€0.2	<b>±07</b> .1	±0.3	±0:2)	[≥] ±0.4	€ <b>≇</b> 0.2	±0.1	±0.3	$\pm 0.0$	l
	Water	Mean	0,0	0.0	0,00	× 1	0.4	0.8	\$ 9 /0	0.0	0.3	0.0	0.0	0.0	
ROI 5			~	©±0.0	£0.0	±000	±04	±0.3	$\bigcirc^{1}_{\pm 0.0}$		±0.3	±0.0	±0.0	±0.0	
Č	Sediment	Mean	0.0	0.0	0.5		3 .2		578	3.8	2.2	1.5	0.0	0.0	
<u>~</u>		SD	€ 0.0	¢0 <u>9</u> 0	±Ø"ľ	±0,0	±0.34	-	±0.1	±0.5	±0.2	±0.6	±0.0	±0.0	
. Q	Water	Mean		0.0	\$0 .0	10.0	0.0	0.4	1.1	6.2	14.4	17.3	6.5	0.0	
BrCA-isomer 1	Ô	SC	±00	±0.0		×	@ 0.0	\cap	±0.7	±1.2	±0.1	±1.2	±0.3	±0.0	
(RƠI 9)	Settiment		0.0			0.0	0.0%	0.0	1.4	3.9	4.6	4.3	2.1	0.0	
		SD	$\pm 0.0^{\circ}$	%±0.0 ℓ		€ 0.0			±0.1	±0.3	±0.0	±0.8	±0.2	±0.0	
(Mn	Water	Mean	800	0.0	0.00	90	Q0.0	0.0	1.2	2.1	4.1	7.4	7.8	5.5	
Serinyl-Br		^C SD	∕ ¥0.0	≈ 0.0	<u></u> ≩0.0	±0.0	±0.0	±0.0	±0.5	±0.2	±0.4	±0.4	±1.7	±2.7	
(ROI <u>10</u>)	Sedimen	Mean	0.1	≫0.0 ¢	r ≪	Ø.0	0.0	0.0	0.0	0.4	1.0	1.5	2.2	1.5	
		Ŵ	±0.0	±000	±0`0/	±0.0	± 0.0	± 0.0	± 0.0	± 0.4	± 0.0	±0.1	±0.5	±1.5	l

Continued on next page

RQL = region of interest in chromatogram

Table 7.2.2.3- 9 cont.: Biotransformation of deltamethrin in the second seco	
conditions, expressed as percent of applied radioactivity (mean ± SD) 🦉	ð

	conditions, expressed as percent of apprical radioactivity (mean ± 5D)														
		Mean						DAT	Γ	~	<i>.</i>		Ď	/	O,
Compound	Source	SD	0	0.125	0.5	1	2	3	7	14	30	50	3	29)	
	Water	Mean	0.0	0.0	0.0	0.0	0.0	0.0	1.1	1.5	4.3	7.	7.2	0.0	Ĩ.
BrCA-isomer 2		SD	±0.0	±0.0	±0.0	±0.0	± 0.0	±0.0	e	±0.9	±1.9	×0.1	±0.9	+0.6/	Ĵ
(ROI 11)	Sediment	Mean	0.0	0.0	0.0	A	0.0	0.0	Ø.0	0.8	1.4	2.2	2.2		
		SD	±0.0	±0.0	±0.0,0		± 0.0	±00	±0.0	± 0.0	€ 0.0	±0	±0.14	€0.0	, O
	Water	Mean	2.1	1.9	0.4	0.3	1.2	Q.4	1.5	2.50	D _{3.2}	1.2	10	0.10	Ý
		SD	±0.6	±0.6 4	£0.2	±0.1	±0.4	±0,50	€±0.6	±0.9	±Į.Ď	±0.5¢	¢±0.5	0.10 -0.10	
Non-char. RA	Sediment	Mean	1.4	0.4	0.3	°1.9	Ť.6	20	2.1	2.6	<u>@</u> .4	Î÷6	1.8%	3.4	
		SD	±0.5	±0.1″	±0,1	±0,6) ±0.5	æ1.0	206		±0.4	¢≠0.6	±0,5	±1,6°	
	Water	Mean	62.7	₹ 5.0 %	9.2	~32.8	26.8	32. <u>75</u>	39.0	S 7.7	39.7	36.6	22.8	B .6	
TED		SD	±7,5	±27	±3.4	¥1.2	\$∳1.7	+52	± 0.0	/±3.9	©¥1.3	±0,2	±2.0	±2.8	
TER	Sediment	Mean	A .8	\$58.3	70,28	60Q	64.7	\$7.7	A8 .3	35	24.4	21.5	15.7	7.2	
		SD	€±7.2	©±2.1	≝5.2 _∞	±0.2	± 0.0	±4,2	s i	Â.8	±08	"A	€) /±1.2	±0.8	
T (11400	Entire	Mean	n⁄a,	0.0	0.10	0.1	P .0	6.8	2.	6.7	Q11.6	15.8	17.8	39.1	
Total ¹⁴ CO ₂	System ,	Ŝ.	°~	0 .0	±0.0	±0.0	±0.0	±0.0	æ0.1	±0.0	±0.50		±1.7	± 0.0	
T 7 1 4 1 •	Entire	Mean	n.a	0.0	0.0	Ø .0	0.0	0:0	0.0	0.0	Ĵ Ĝ A	0.2	0.2	0.2	
Volatile organics	System	SD	, Q	±0,00	± 0.0	±0.0	¥0.0	±0.0	±600	±0.0	¥0.0	±0.1	±0.1	± 0.0	
NED	Sediment	Mean	y0.5	0.9	9 .2	Ĵ.S	3.50	4.3	\$9.0	16A	18.0	22.1	28.8	33.4	
NER		SD	±0;40	±0.1 *	±1.7		@ .1	±1.2	±0.2	₩ ±0.1	±0.1	±1.8	±0.4	± 0.0	
Ô	Water	Mean	62.7	25,0	19.2	32.8	26.8	<u>B</u> 2.7	3900	37.7	39.7	36.6	22.8	5.6	
) SD ()) €±7.5 ¢	£2.7	₩3.4	€ }•2	±0:0		≈ ±0.0	±3.9	±1.3	±0.2	±2.0	±2.8	
	Sediment	Meôn	38,4	59.Ž	81.0	61.9	68.2	62.0	57.4	51.4	42.3	43.6	44.5	40.6	
Total recovery	Š	~SD	9.2	±2.1	±52	()	±1.6	¥4.2	±1.6	±4.8	± 1.8	±1.3	±1.2	±0.8	
	%∧ntire %	Mean	101.0	\$94.3 °	¥00.3	94.8	9 <i>3.</i> 9	95.6	98.8	95.8	93.7	96.1	85.4	85.6	
	System	SE	±0.2	±0,45	′±0.1◯			±0.8	±1.4	±0.1	±1.1	±1.5	±0.4	±2.5	

Table 7.2.2.3- 12:	e e e e e e e e e e e e e e e e e e e										
		u	under aerobic con	dition	s, exp	ressed	l as j	percent	t of applied	ð	
	radio	activity						~		Or v	
							-			k	

Compound Replicate Sampling Times [days]											"0"			
Compound	Replicate Sampling Times [days]										. 4		þ	
		0	0.125	0.50	1	2	3	7	14	30	50	\$73	99	Ô
Deltamethrin	1	90.7	67.2	62.6	43.5	41.0	27.5	14.7	11.2	8.6	2,89	9.0	4.1	Ú.
	2	89.5	69.9	67.1	46.5	38.0	28.3	16.7	Q14.2	11.5	_@12	× S	3, Ø	
	Mean	90.1	68.6	64.9	45.0	39.8	27.9	150	12.7	10.1	3.0	8.6	4 .0	
	1	2.3	10.7	17.3	26.04	29.8	25.1	.(3 .5	7.5	62	2.6 ©9	[™] 11.7Ĉ		
a-R-Isomer of	2	0.7	7.2	10.8	220	23.1	19.0	, 9.7 (¥0.2	*9 .7		87 1	3.	1
Deltamethrin	Mean	1.5	8.9	14.0	24.0	26:5	229	9.1	8.9		3.2	9 .9	≪3 %8	
Br ₂ CA	1	1.6	9.8	12.60	74	Ø 9.8	\$26.9	A3 .4	2507 22.3	11	8.0	0.04	9.3	0
(ROI 3)	2	2.1	9.5	10,6	22@ ~ 22.6	20.00		¥2.3	-	7 .0	1\$.3	0.0	12	
	Mean	1.9	9.7	<u>()1.6</u>	22.6	19,9 3.6	270r	43.9	24.0 ⁽	9.4 *		0.0	40. 7	
ROI 4	1 2	0.0 0.0	0,6 0.5	1.8 9,5	0./*	2.3C	2./ 4.6	×3.0	2,8				0.5 0.1	
KUI 4	2 Mean	0.0 4	20.2	1.2	0.7	2.3C) 22.9	4.0 3.P	0.4.3 3.70	3.4	3.0 1.6		2@) ~2.0	1.1 0.8	
	1		\$0.2 0.4	0.7		2.3	\$.3 •	3. 0	3.4	1.0	1.6	1.9	1.6	
ROI 5	2	0.0 .0	0.8	£9		3.1	2.9 (03.8°	4 .1	*@*	1.8	1.9	0.7	
	- Mean 🗞	Ŭ.	0.6	Q0.9	0,8 Ø.6	2.7	3.1	3,5	3.7 [°] *	0 ^{1.5}	1.7	1.9	1.1	
BrCA-isomer 1 (ROI 9)	1	Q_0	0.0	0.045		0.0	Å.6	, 5.2	180	3	7.2	2.3	0.6	
	Mean	0.0	0,0	0.0	0,0	0.5	0.5	K .	≪ 18.4	33.7	9.9	1.2	0.6	
	Mean	0.0	Sho.	0.0	Ð.Õ	Q.2	1.0	5.6 [©]	18.2	32.4	8.6	1.7	0.6	
Sorinyl BrCA	or 1, 0° ∂Acan ≪	0.0	0.0	0.0	چ 0.0 ک	0.0	P .3	é.M	20	2.9	10.8	8.0	6.8	
Serinyl-BrCA Ĉ (ROI 10)		0.0	0.30		0.0	0.0	0.0	0.5	~2.6	3.4	7.7	9.6	8.5	
((((10)))))		U,	0.0	0.0	° 680	0,0	0.Ø	0.8		3.2	9.3	8.8	7.6	
BrCA-isomer 2		0:0	0.0		0.0	0.0	Ø.3	100	2.4	2.8	5.3	0.0	0.0	
(ROI 11)		<u>io</u> jo	09.0	0.0 0.0	0.6	0.0K	v 0.2 (⊅0.3	3.0	5.4	2.6	0.0	0.0	
		0.0	<u>0.0</u>	Ø .0	<u>~0.0</u>	Q.0	0.3 °	0.7	2.7	4.1	4.0	0.0	0.0	l
$ROI = region of \mu$	perest in chr	omatog	ram ≮j			, d	Ş,							
	, Ö [¥]	õ.	Š	~0″	~~ ⁰ "	Ô	v							
.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) ~ ~0	× £	, ,		$\hat{\beta}$								
Ĩ	, Ø		Ĩ	° T		Ĵ								
BIC Associate 12 Bic Associate 12 <td></td>														
N N					S.									
Ø	۸ ۸			Å	J									
, O ^r	A &	Ş.	<i>S</i>	~~~ @,										
S.	\$ ⁷ _0 ⁵	Ś	~Ç											
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y O	Ő												
* ^A														
$\bigcirc$														

**Bayer CropScience** Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Table 7.2.2.3-13:       Biotransformation of deltamethrin in total water sediment system         under aerobic conditions, expressed as percent of applied radioactivity														
Compound	Replicate	Sampling Times [days]												- Contraction of the second se
		0	0.125	0.50	1	2	3	7	14	30	50	73 [©]	<b>99</b> Ô	>
Deltamethrin	1	92.8	67.9	59.1	42.9	35.1	31.2	16.7	13.1	9.4	4.6	3.0	1.9	<u>,</u>
	2	94.8	68.4	68.8	46.1	35.6	28.0	19.8	7.0	» 4.6	4.0	Ø2.4	Sn.d.	Ŝ
	Mean	93.8	68.1	63.9	44.5	35.3	29.6	18.2	16,0	5.0	4.3	27	1.0	× 0)
α-R-Isomer of Deltamethrin	1	4.3	20.6	29.8	36.3	29.7	25.0	15.0	<b>Q</b> 9.2	6.0	<b>.</b> 3	<b>3</b> 8	2:7 On.d.	Ň
	2	2.1	21.7	22.7	36.7	28,3	27.0	11.	6.1	4.3 C	3.7	Q3.2	Ôn.d.	
	Mean	3.2	21.1	26.3	36.5	29.1	26.0	13A	<b>Z</b> J [°]	5.2	4.5	<b>4.0</b>	1.4	
Br ₂ CA (ROI 3)	1	0.0	1.6	3.1	7.9 [®]	15.2	20.9	34.5°	24.4	13.5	\$.9	.O.7		
	2	0.0	1.3	4.3	81	16.9	23.8	37,7	32.6	ĭ17.6€	°3.2	×0.0	×0.0	
	Mean	0.0	1.5	3.7	8.0	46.1	<b>2</b> 2.3	36.1	285	15.5	3,5		0.0 C	0
ROI 4	1	0.0	0.4	1.4	1.2	4.5	v 4.3 _≫	5.0	<b>1</b> 3.5	€¥.8	1.0	6S	2.6	
	2	0.0	0.4	Ź.4	0.9	4®	4. <b>6</b> /	5.5	2.7		د 1.2	<b>€∕0.0</b>	<b>20</b> .0	
	Mean	0.0	0.4	Ş1.9 Ş	1.0	<b>Å.6</b>	A.1	5,2	30	1.5	1.1	0.3	0.0	
	1	0.0	0.0	0.60	0.8	4.2	2.6	\$5.7	<b>À</b> .4	2.9	20	, ØØ	0.0	
ROI 5	2	0.0	0.0	<b>6</b> 04	<b>Q</b> .9	4.2 2.9	5 D	5.9	3.3	2.0	0.9	0.0	0.0	
	Mean	0.0	v 0.0 V	¥0.5	0.8	<b>Ø</b> .5	- <b>B</b> .9	5,8	3.8	2.	1.5	0.0	0.0	
BrCA-isomer 1 (ROI 9)	1	0.0	0.0	0.00	0.0	0.0	y 0.8	3.1	8.6	<b>\$9</b> .2	19.6	8.7	0.0	
	2 «	0.0	0.0	Ó	<b>Q</b> Q <b>9</b>	0.0	0.0 \ 0.4	2.00	11.79	18.8	£23.5	8.7	0.0	
	Mean	0.0	∲0.0 ¿	b.0 🖉	<b>60.0</b>	<b>9</b> .0		2,6	10.1	190	21.5	8.7	0.0	
Serinyl-BrCA (ROI 10)	1	$0.0^{\circ}$	0.0	0.0	0.05	0.0	0.0	⁰ .6	3.0	£4.7	9.5	11.2	11.2	
	Mean	<b>\$9.0</b>	, ØŽ	Ĵ)	0.0	60	0.0	1.7	1.8	, 5.5	8.3	8.9	2.8	
	Mean	0.0 ≮	v 0.0	0.0 ·	<b>0.0</b>	<b>.0</b> .0	ĐÕ	1.2	2.4	5.1	8.9	10.0	7.0	
BrCA-isomer 2 (ROI 11)		0.0	0.0	0.6	0.0	0.0	¢ 0.0	<b>0</b> .4	₀ 1.4	7.6	9.7	10.1	0.0	
	20	0.0	Ø.0	0.0	0.0 0.0	0.0	0.0 ~ <b>0.0</b>	1.7%	3.2	3.9	10.1	8.6	0.0	
	Mean 💍	<b>0.0</b>	0.0	Ø <b>0</b> .0	0.0	<b>.0</b> 0.0	~0.0	1,1	2.3	5.7	9.9	9.4	0.0	

ROI region of interest in chromatogram

### METHOD VALIDATION B.

**B.** METHOD VALUE ATION  $\mathcal{O}$  is a shown that  $\alpha$ -R-isomer of deltamethrin was stable in acetone over a period of 96 hrs. It was also shown that detamethrin and a-R some of deltamethrin were not stable in mixtures of deionized water and acconitrile (80/20) v/v) and er neutral conditions (pH 7) but in mixtures of deionized water and acetonitrile (80/20, v/v) adjusted to acudic pH of 3 over a period of 92 hrs. Therefore, the water phase was acidified with formic acid prior to processing within this study.

In order to investigate if the metabolites are stable under acidic conditions, acidified water phase of Anglersee (DAT-50, replicate 1 and 2) was re-analyzed with the primary chromatographic method after 55 days of freezer storage. The results were compared with those obtained by first analyses, as well as with the results obtained for samples that were deep frozen without acidification. The corresponding fraction for BreA, Serinyl-BCA and the 2 isomers of BrCA were well comparable, showing that the mentioned metabolites were stable under the prevailing experimental conditions.

In addition, various tests see Section 3.6.5.1 of report) demonstrated that Br₂CA (AE F108565; *cis*) is stable under acidic, neutral and alkaline conditions in deionized water as well as in the water phase of and

Bayer CropScience

**B** Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

The extraction procedure of sediment was established in pre-tests prior to the start of this study. In order to stabilize the ratio of deltamethrin and  $\alpha$ -R-isomer of deltamethrin, the extraction solvent acetone was acidified for the first and second extraction step. Throughout the entire study, the portions extractable with the aggressive extraction method were low ( $\leq 2.9\%$ ). At the last sampling date, the amount of radioactivity extracted with the aggressive extraction method was remarkably lower than the amount of radioactivity determined in the ambient extracts. This indicates that the extraction was exhaustive.

The test item was stable under the conditions of the extraction procedure and sample processing. The DAT-0 recoveries for deltamethrin were 90.1 and 93.8% of AR for the extraction procedure from the extraction processing in the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extraction processing is a stable to extract of the extract of the extraction processing is a stable to extract of the extract of the

Deltamethrin from the sediment matrix.

The recovery of radioactivity after the concentration procedure was checked for samples taken at DAT-0.5 and DAT-50 and ranged from 94.0 - 108.4%.

A reversed-phase HPLC method was used for data evaluation. A good reproducibility demonstrated the suitability of the separation and quantitation. A reterizion time of approximately 53.2 min was determined for the test item deltamethrin. The HPLC limit of quantification (COQ) for a single peak in the water phases and sediment extracts was \$1% of AR. The recovery of radioactivity after HPLC analysis for a representative aged sample was 98.6% indicating that no radioactivity was lost on the HPLC column. Representative samples were analyzed with a conformation method (normal-phase HPLC). The analysis was not performed immediately after sampling but after a storage period of about three month, in which the water phases and sediment extracts were deep-frozen. For storage stability testing samples were re-analyzed with the primary chromatographic method, and the results of these analyses were used for comparison

With the normal-phase HPLC method fewas only possible to confirm the results for deltamethrin and  $\alpha$ -R-isomer of deltamethrin; the metabolites could be detected with this method. Since the radioactivity bound in metabolites would be added to deltamethrin or  $\alpha$ -R-isomer of deltamethrin/deltamethrin? was used to compare the results with the primary chromatographic method (see Appendix 12 of report). For most camples the ratios were in a similar range.

In order to confirm the results for the polar metabolites several PIPLC runs were performed from which all peaks were collected and applied separately onto a TLC plate. For Br₂CA and the two BrCA-isomers one radioactive spot besides the origin was visible on the TLC plates, respectively, and the results of both methods were comparable. This confirms that no major hidden peaks were present. However, the radioactivity eluted with the resention time of Semiyl-BrCA was distributed into several peaks, especially in the water phase.

## C. DEGRADATION OF PARENT COMPOUND

A synopsis on biotransformation of deltamethrin, in aerobic water/sediment test system is shown by Table 7.2.3- 6, and the results were included in the proposed pathway of degradation in water and sediment (see Figure 7.2- 1). More detailed data (expressed as percent of applied radioactivity, mean  $\pm$  SD) are summarized for the manual and manual in Table 7.2.2.3- 10 and Table 7.2.2.3- 11.

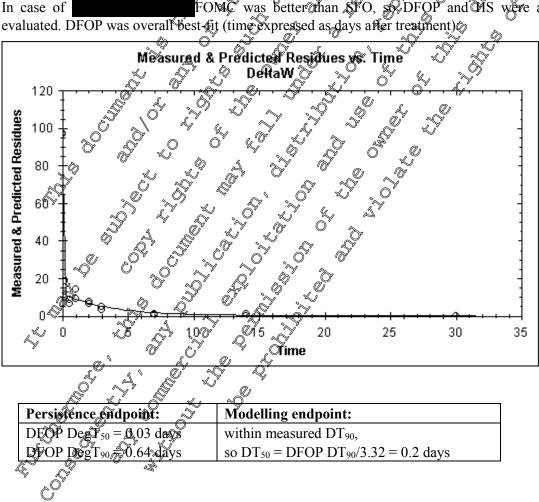
## Water phase

In the water phase of **determined** and **determined** respectively, the amounts of deltamethrin decreased from 4.1% and 57,3% of AR at day 0 to amounts < LOD from DAT-30 onwards.

Three major transformation products accounting for  $2 \times 5\%$  of AR or increasing towards the end of the study were detected and identified in the **study** water:  $\alpha$ -R-isomer of deltamethrin, Br₂CA and one isomer of BrCA (BrCA-isomer 1). The  $\alpha$ -R-isomer of deltamethrin accounted for up to 9.3% of AR (DAT-1), Br₂CA for up to 16.8% of AR (DAT-7) and BrCA-isomer 1 for up to 20.4% of AR (DAT-30).

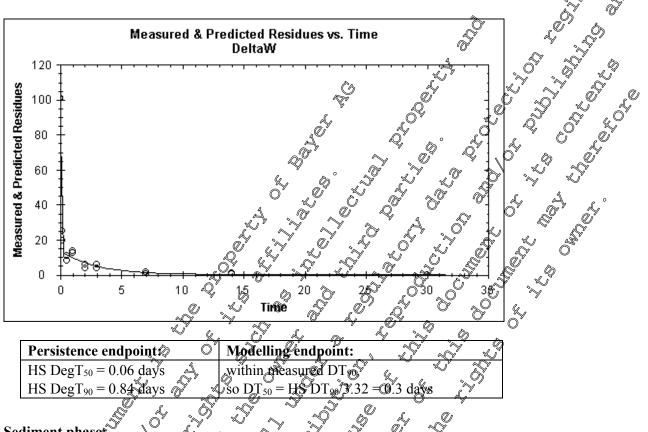
**Bayer CropScience** 

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin


In addition, four minor transformation products were characterized according to their retention times in HPLC-analysis. Two of them were identified as Serinyl-BrCA and BrCA-isomer 2 and accounted for up to 7.0 and 2.6% of AR (DAT-50), respectively. Two minor transformation products were characterized according to their retention times (ROI 4 and ROI 5) and accounted for maximum amounts of 0.4 (DAT-3) and 0.6% of AR (DAT-3), respectively.

water, five major transformation products were detected and identified: R-isomer of In the deltamethrin, Br₂CA, Serinyl-BrCA and two isomers of BrCA (BrCA-isomer 1 and BrCA-isomer 2). R-isomer of deltamethrin accounted for up to 11.6% of R (DAT-1) Br₂CA for up to 32,2% of R (DAT-7), Serinyl-BrCA for up to 7.8% of AR (DAT-73), BrCA-isomer 1 for up to 10.3% of AR (DAT-50) and BrCA-isomer 2 was found with a maximum amount of 7,7% of AR (PAT-59). The minor unidentified transformation products ROI 4 and ROI 5 accounted for maximum amounts of 0.2% and 0.8% of AR (DAT-3), respectively.

The maximum amount of the non-characterized radioactivity in the water phases was 4.2% of AR (DAT-). It contains various minor transformation products as 30. well as the diffuse radioactivity which was not assigned to individual peaks.


Deltamethrin was eliminated from the supernation water via translocation into the sediment as well as via degradation (for a summary of DT₉₀ and DT₉₀ values of deltamethrin in the supermatant water see Table 7.2.2.3- 4. In the following just the pest fit dissipation kinetics graphs and their outcome were shown.

and **M**S were additionally was better whan SFO. In case of FOMĈ S. evaluated. DFOP was overall best-fit (time expressed as days after treating





In case of FOMC was better than SFO, so DFOP and HS were additionally evaluated. HS was overall best-fit (time expressed as days after treatment):



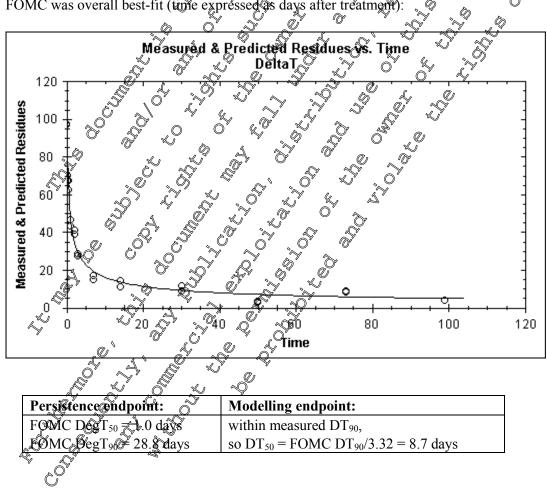
## Sediment phase

In the sediment phase of the sediment, the amounts of deltamethrin increased from 36.0% of AR at day 0 to a maximum of 57% at DAT-0.5 and declined then to 4.0% of AR towards the end of the study. In the sediments the amounts of deltamethrin accounted for 36.5% of AR at day 0, increased to 54.6% of AR at DAT-0.5 and decline to 1.0% of AR towards the end of the study.

In the sediment extracts of the sediment extr

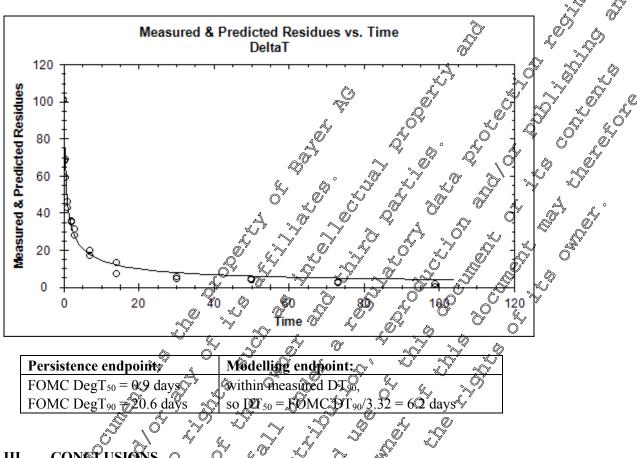
Bayer CropScience

**R** Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin


The bound and thus non-extractable residues (NER) in test systems from accounted for 1.0% of the applied radioactivity at day 0 and increased to 36.8% of AR until DAT-73 (before slightly decreasing to 34.5% of AR at DAT-99). The maximum amount of bound residues (36.8% of AR) was detected on DAT-73. For supervised water/sediment system, the amount of bound residues was 0.5% of the applied radioactivity at day 0 and increased to 33.4% towards the end of the study (DAP-99).

The bound residues were further characterized into humic acids, fulvic acids and insoluble humins for representative samples. For the test system from from from the full of the radioactivity cas found in the humic acid fraction (17.4% of AR) while similar amounts were associated with the fulvic of acids (9.6% of AR) and the insoluble humins (7.9% of AR). For the full test system, a different pattern was observed. The major part of radioactivity (17.4% of AR) was detected in the fulvic acid fraction whereas only 4.7% of AR where observed in the humic acid fraction. In the humin fraction, 12.0% of AR was found.

## Total test system:


Table 7.2.2.3- 12 and Table 7.2.2.3- 13 show the content of deltamethin and its transformation products in the total water/sediment test systems. The climination of deltamethin from total water sediment body occurred via degradation (for respective DT  $_{6}$  and DT₉₀ values of deltamethin see Table 7.22.3- 5). In the following just the best fit dissipation kinetics graphs and their outcome were shown.

In case of FOMC was better than SFO, so FOR and HS were additionally evaluated. FOMC was overall best-fit (time expressed as days after treatment):





FOMC was better than SFO, so DFOP and HS were additionally evaluated. FOMC In case of was overall best-fit (time expressed as days after treatment):



### III. CONCLUSIO

The dissignation of deltamethring from the supernatant water phase was characterized by translocation into the sediment as well as by degradation. This was best described using the DFOP kinetic model with DT₅₀ and DT₉₀ values of 0.02 and 0.64 days for and using the HS kinetic model with DT₅₀ and DT₉₀ values of 0.06 and 0.84 days for respectively. The corresponding modeling endpoints were either determined using the DFOP kinetic model resulting in a DT₅₀ value of @2 days or the HS kinetic model. with a DT₅₀ value of 0.3 days.

In both entire water/sediment systems, detamethrin was degraded well which was best described using the FOM@kinetic model. The stimated DTs and DT90 values were 1.0 and 28.8 days for

respectively. The corresponding modeling endpoints were and 0.9 and 20.6 days for determined with DI 50 volues of 8.7 days for and 6.2 days for respectively.

Altogether in the water/sediment systems tested five "major" transformation products were detected. They were identified as a r-isomer of deltamethrin, Br₂CA (AE F108565; cis), Serinyl-BrCA, BrCAisomer 1 and BrCA-isomer 2.

Along with degradation significant mineralization of deltamethrin to ¹⁴CO₂ (max. 39.1 %) and formation of bound residues (NER, max. 36.8 %) occurred in the viable aerobic water/sediment systems.

From  $t_{AB}$  study it is concluded that deltamethrin and its residues have no potential for accumulation in the environment. The outcome is included in the summary of the degradation rates of deltamethrin and its major degradation products in soil in the laboratory given in section CA 7.2.



# Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Report:	KCA 7.2.2.3 /05; ; 2013	
Title:	Kinetic Modelling Analysis of Deltamethrin from a Water/ Sediment Study	Ô
Report No:	VC/11/015A	Ş
Document No:	M-461952-01-1	y.
Guidelines:	- EU Council Directive 91/414/EEC, as amended by Commission Directive	
	- EU Council Directive 91/414/EEC, as amended by Commission Directive 95/36/EC of July 1995, Section 5, Point 7 and Commission Regulation (PC)	
	No 1107/2009 of 21 October 2009	?
	EQCUE trippeting $(2006)$ by $(1 + 2006)$	6
GLP:	No (modelling calculation)	Ś

#### **EXECUTIVE SUMMARY**

The aim of this evaluation was to conduct a kinetic modelling analysis of the data from a water sedment degradation study with deltamethrin (2012) report WI-434820-014) in order to derive DT₅₀ values for use as trigger and modelling endpoints.

For the determination of  $DT_{50}$  values for tellamethrin, all datasets were evaluated according to FQCUS Kinetics guidance (2006)¹ using the water/sediment/Level P-I flowcharts for trigger or modelling endpoints. The alpha-R isomer of deltamethrin in the total system was evaluated using the Level M-I flowchart.

Table 7.2.2.3- 14 summarises the resulting optimised modeling endpoin  $DT_{50}$  values. Table 7.2.2.3- 15 summarises the resulting optimised trigger endpoints  $DT_{50}$  values for deltamethrin.

Table 7.2.2.3- 16 summarises the resulting optimised total system modelling endpoint DT₅₀ values for alpha-R isomer of deltamethrin, a primary degradate of the parent compound.

Table 7.2.2.3- 14: SFQ DT₅₀ alues for deltamethrin for use as modelling endpoints

	$\mathbb{V}$ $\wedge$ , $\mathbb{V}$	
Water/ sediment soften	SFO DI	Comment
	(days)	C geinetic determination of DT ₅₀ )
– water phase	A 2019 0	
– water phase 🖉 🖉	0.25	HS, DT ₉₀ 0.84/3.32
Geomea	an 🛇 0.22	Å.Y
– total system	× 8.7 O	FOMC, DT ₉₀ 28.8/3.32
- total system	× × 6.2 ×	FOMC, DT ₉₀ 20.6/3.32
Geòrga C Ceòrgaea		10°
		Ž.

Table 7.2,2:3-15: DT 50 values for deltamethrin for use as trigger endpoints

Water/ sed	kinent system	DT50 (days)	DT90 (days)	Best-fit kinetic
	-water please	0.03	0.64	DFOP
	vater phase	0.06	0.84	HS
	່ 💍 🕵 Geognean	0.04		
AC .	– total system	1.0	28.8	FOMC
	- total system	0.88	20.6	FOMC
	Geomean	0.95		

#### Table 7.2.2.3- 16: DT₅₀ values for alpha-R-deltamethrin for use as modelling endpoints

Water/ sediment system	SFO DT50 (days)	Comment (kinetic, determination of DT ₅₀ )
– total system	63.1	HS, DT ₉₀ 210/3.32
– total system	18.3	DFOP, DT 90 60.8/3.32
Geomean	34.0	

#### I. METHODS

Laboratory degradation data for deltamethrin and its alpha-R isomer <u>Proc Reference source for</u> <u>found.</u> et al. 2012, report M-434820-01-1) were evaluated against the OCUS Kinetics flowcharts for the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the determination of trigger and modelling endpoints and the ocus of the ocus of the determination of trigger and modelling endpoints and the ocus of the o

The chemical structure and names of test items are shown in section 2.1 of teport; Table 7.2.2 5.7 shows all the physico-chemical properties of the test systems. The used data on degradation used for the modelling calculations are shown in the following tables.

Table 7.2.2.3- 17:	Biotransformation of deltamethrin in	under verobic
	conditions at 20 °C in the dark, expressed as % @applic	d radioactivity

			-	<u> </u>	y j		$\sim$		ĨØ	<u>×</u>			
Compound	Rep		Ś.	`		× L	DAT.		2	0			
Source	, Ø	Ő	<b>0.</b> 325	<b>£</b> 50	<u>1</u> 0	2	Ĵ,	Ĩ	14	⁾ 30	50	73	99
Deltamethrin	×1 2	63.5	9.8	6.4	¥4.4	\$ <b>6</b> .7	4.9	×0/9	<u>A</u> S	n.d.	n.d.	n.d.	n.d.
Water	t lai	440	18.8	8.6	9.5	7.60	[♥] 3.1 [《]	v 0.4	≫n.d.	n.d.	n.d.	n.d.	n.d.
Ĩ.	Mean	<b>Š</b> .1	13.3	<i>7</i> .5	12.0	21	4.0	0.7	0.7	0.0	0.0	0.0	0.0
Deltamethrin	01	27.2	57.5	¥56.2%		\$4.4	ŽŽ.6	<b>45</b> .7	9.9	8.6	2.8	9.0	4.1
Deltamethrin	<u>2</u>	44	5J.O	585	374	31.0	25.3	16.3	14.2	11.5	3.2	8.3	3.9
, ·0	Mean	36.0	54.3	°57.3	33.1	32.9	23.9	15.0	12.1	10.1	3.0	8.6	4.0
	× 1 ×		€7.2 °	62.6	43.5	Ø <b>4</b> 1.0	291.5	14.7	11.2	8.6	2.8	9.0	4.1
Total system 🚬 🖉	26	89.5	69,9∿	67D	46. <b>S</b>	[₹] 38.6©	28.3	16.7	14.2	11.5	3.2	8.3	3.9
	Mean	<b>20</b> .1	<b>68</b> .6	64.9	45,0	39.8	27.9	15.7	12.7	10.1	3.0	8.6	4.0
a-R-isomer of		บ้ * 2.3 ข	2.9	0 2.9	0 11.04	5.6	4.5	n.d.	0.7	n.d.	n.d.	n.d.	n.d.
Deltamethrin		(Сп	()		Ĩ								
		~Q7	33	2 <u>?</u> 2	Z6	6.2	2.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mean	21.5	3.1	2.6 🔬		5.9	3.5	0.0	0.3	0.0	0.0	0.0	0.0
a-R-isomer of Deltamethrin		rf.d.	7:9	12Q	14.9	24.2	20.6	8.5	6.8	6.2	2.6	11.7	4.0
Sediment	\$2 (	n.d.	3.9	8.6	14.4	16.9	16.5	9.7	10.2	9.7	3.9	8.2	3.5
e , .	Mean	0.0	5.9	11.5	14.6	20.5	18.6	9.1	8.5	7.9	3.2	9.9	3.8
Deltamethrin		ž.3	<b>4</b> 9.7	17.3	26.0	29.8	25.1	8.5	7.5	6.2	2.6	n.d	n.d.
		©0.7 '	\$7.2	10.8	22.0	23.1	19.0	9.7	10.2	9.7	3.9	n.d.	n.d.
	Mann	1.5	8.9	14.0	24.0	26.5	22.0	9.1	8.9	7.9	3.2	0.0	0.0
n d. non-detect (200 after													

n.d. non-detect DOQ of 0.1% 👟

# **BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

a	nt 20 °C	C in the dark, expressed as % of applied radioactivity											
Compound	Rep		DAT (days)							D,			
Source		0	0.125	0.50	1	2	3	7	۴4 ل	30	59	<b>7</b> S	99
Deltamethrin	1	63.4	19.8	10.6	12.8	5.8	3.5	1.5	°1.1	n.d.	n.d.	°~19.d.	n.d.
Water	2	51.2	25.1	8.0	13.5	3.4	5.8	9:6	0.5	n,dÖ	n.dô		n.d.
	Mean	29.4	48.1	48.4	30.20	\$29.3	27.7	<b>45.1</b>	12.0	<b>\$14</b>	~4,6	3.0	1.9,
Deltamethrin	1	43.6	43.3	60.8	32.6	32.1	22. <b>1</b> Q	19.2		4.6	\$4.0	<b>2</b> .4	jaxd.
Sediment	2	4.3	8.9	8.6	<b>Å</b> Ø.7	6.7	X,5	1.0	00	n.ď.	n.d.Ĉ	n.d.	∕n.d.
	Mean	2.1	9.6	3.9☆	12.6	5.1	6.2	Ø.6	<b>@</b> .d.	nd.	n.d.	n A	n.d.
Deltamethrin	1	92.8	67.9	599	42.9	35	31.2	16.7	13.1		J4.6	<b>3</b> .0	1.9
Total system	2	94.8	68.4	68.8	<b>Å8</b> .1	23.6	28.0	19.8	7.0	4.6	4.0 **	⁹ 2.4	n.d.
	Mean	93.8	68.1	63.9	44.5	35.3 [°]	29.6	08.2	10.0	510	43	2.7°	1.0
α-R-isomer of	1	n.d.	JQ.7	24.2	1 A	2300	215	14.0	8.84	60	5.3	\$4.8	2.7
Deltamethrin		n.u.	ay./	~~~~ ~~~	25%		.0″	× 1		6.0		v4.0	2.1
Water	2	n.d.	∛12. <b>©</b> ¢	<u> </u>	24.1		20.8	Ĵ.3	<b>36</b> .1	QU3	3.7	3.2	n.d.
	Mean	63,4	19.8	10.6	12.8	5.8	3.50	َّ 1.5 رُ	1.1	Sn.d.	Kn.d.	n.d.	n.d.
a-R-isomer of	1	♥ Ø51.2 _≫	Q 251	Ø 8.0	¥3.5	Ø.4	Â	<b>0</b> .6	<b>6</b> 8	n‰d,	n.d.	n.d.	n.d.
Deltamethrin			60L X		6ª J.J ,	$\checkmark$	0.8 0	Ĉo	•	$\bigcirc$	n.u.	II.u.	n.u.
Sediment	2~	29.4	48Û	48,#	30@	29.3	A V		012.0	_ວ 5.4	4.6	3.0	1.9
	Mean	43.6	<b>\$</b> 3.3	60.8	<b>3</b> 2.6	32.1	22Å	1992	64	4.6	4.0	2.4	n.d.
Deltamethrin	, 1 <u></u>	[≫] 4.3 ∅	) 20.6Ĉ	29.8	36.3	Q29.7	\$ <b>2</b> 5.0 (	15.0	<u>9</u> 2	6.0	5.3	4.8	2.7
Total system	20	2d	21	225	36∜⊅	28.5	27.00	[≫] 11.9≮	6.1	4.3	3.7	3.2	n.d.
	Mean	3.2	21.1 /	26.3	<b>\$</b> \$6.5	29.1	26,0	1324	7.7	5.2	4.5	4.0	1.4

# Table 7.2.2.3-18:Biotransformation of deltamethrin in **Sector** under aerobic conditions<br/>at 20 °C in the dark expressed as $\frac{9}{20}$ of applied radioactivity

n.d. non-detect, <LOQ of 0

# Modelling strategy for data progessing, optimisation model and statistics:

The residue data summarised before was used in the evaluations without further processing. For the kinetic evaluations to derive  $DT_{50}$  values for use as trigger or modelling endpoints, the recovered time zero values were used for delta nethrin in the water phase and total system. During the kinetic evaluations, residue data for the first timepoint <LOQ (n.d. onon-detect) were set to  $\frac{1}{2}$  LOQ of 0.05%. Subsequent <LOQ data were not used in the kinetic evaluations.

Following the recommended procedure for determining modelling endpoints acc. to FOCUS 2006, all datasets were initially evaluated using SFO annetice with free optimisation of parameters. Where datasets were statistically and/or visually unacceptable, further evaluation with FOMC, DFOP and HS kinetics were applied. A comparison between the models was made and the best-fit kinetic model was selected.

Following the recommended procedure for determining persistence endpoints acc. to FOCUS 2006, all datasets were initially evaluated using SFQ and FOMC kinetics with free optimisation of parameters. Where datasets were statistically and/or visually unacceptable, further evaluation DFOP and HS kinetics were applied. A comparison between the models was made and the best-fit kinetic model was selected. The kinetic evaluations were performed according to the respective decision flowchart for the determination of level P-1 parent endpoints for use in modelling (FOCUS, 2006; Figure 10-2, p. 198) and as trigger endpoints (FOCUS, 2006; Figure 10-1, p. 197). The sampling times and residue data (see tables above) were entered into KinGUI (Figure 1 of report) and optimisations carried out for SFO (Figure 9 of report), FOMC (Figure 4 of report), DFOP (Figure 5 of report) or HS (Figure 6 of report) kinetics.

The alpha-R isomer of deltamethrin in the total system was evaluated using the Level M-I flowchart (FOCUS, 2006; Figure 10-9, p. 227) and the KinGUI scheme in Figure 2 of report.



#### II. RESULTS

#### **Deltamethrin:**

Optimisations using SFO kinetics showed both visually and statistically unacceptable fits to the data with Table 7.2.2.3-19 summarising the calculated DT₅₀ values for deltamethring

#### Table 7.2.2.3-19: Deltamethrin parameter optimisation results (SFQ) all datasets optimisation L. Ĉ a

optimisatio	<b>)</b>		G	a)		Ý ÔÝ .O
Water/ sediment system	DT50	DT90	Min Chi ²	()	Ç Sv	isual
water/ seument system	(days)	(days) (days)	error (%)	· (-) O	asse	ssment /
– water phase	0.05	0.15	27.4	\$1.03E		Poor
– total system	1.8	6.0	。21. <b>3</b>	°∕∑ 1.04€-05⊘		Poor
– water phase	0.06	0.19	26.6	9.64E-07	I I I	Poor
– total system	1.7	5.6	@22.2 Q	01.61E-05	Ô 1	oor 🖌
	\$1	× ~ .	Y & '		Ű,	

Optimisations using FOMC kinetics stowed both visually and stansticatly accortable dits to the data with Table 7.2.2.3- 20 summarising the calculated  $\mathfrak{PT}_{50}$  values for deltamethric

Table 7.2.2.3- 20:	Deltamethrin paramete	r optimisation	results (FØ	MC) all datasets – free
	optimisation 📎			

- ""C		y .c			<i></i>
Water/ sediment system	DT50 (days)	D <b>()</b> 30	Min Chi ²	tetest	Visual
	(days)	days)	errør (%)	لي ⁷ (-) ي	assessment
– væter phæ	0.01	0.410	×12.1	4 <del>-</del> 7	Acceptable
Gotal system	1.00	2898	S 112	0 4	Very good
- water phase O	0.02	<b>\$0.63</b>	1,000	× ~~ -	Acceptable
- toto syster	Ø.88 _/	20.6	12.2	≪ _	Acceptable
			S Õ	^Q	

Optimisations using DFOP kinetics showed both visually and statistically acceptable fits to the data with Table 72.2.3-21 summarising the calculated DT₅ Values for deltamethrin.

Table 7.2.2.3- 21	Deltamethrin	paramete	r optimis	ation results	s (DFOP) all datasets –	free
Q	m timisation			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Water/ sediment	system ô	DT 50	<b>D1</b> 50	Min Chi ² error (%)	t-test *	Visual
			s (days)	error (%)	(-)	assessment
	- water phase	0.03	0.6Å	8.3	0.0100	Very good
	total system	€ ⁷ 1.3 ©	382	14.8	0.0582	Very good
– water	r phase 🖉 🖉	0.05	QU.84	8.0	0.00147	Excellent
	system	~0.90 &	8.8	12.5	0.0127	Poor
* worst-case of Q and	K results		•			
	V. Ö v	~				

Optimisations using HS kinetics showed both visually and statistically acceptable fits to the data with  $2.3 \cancel{2}2$  support support the calculated DT₅₀ values for deltamethrin. Table 税

# Table 7.2.2.3- 22:Deltamethrin parameter optimisation results (HS) all datasets – free<br/>optimisation

Water/ sediment system	DT50 (days)	DT90 (days)	Min Chi ² error (%)	t-test * (-)	Vistsal assessment
– water phase	0.05	0.64	8.3	0.00995	Very good
– total system	1.6	42.1	16.6	0794	OVery good 🖌
– water phase	0.06	0.84	<u>Č</u> 8.0	0.00219	Poor S
– total system	0.92	15.0	15 1	Q 0.00604 V	SGood S

* worst-case of  $k_1$  and  $k_2$  results

Table 7.2.2.3- 14 summarises the resulting optimised modelling endpoint DT₅₀ values, Table 7.2.2.3 15 summarises the resulting optimised trigger endpoints DT₅₀ values for detameter.

#### Alpha-R isomer of Deltamethrin:

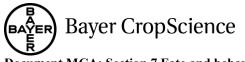
According to the respective flowchart, FOMC was chosen as the best-fit kinetic for deltamethrit along with SFO kinetics for the alpha-R isomer of deltamethrin. Optimisations using FOMC/SFO kinetics showed both visually and statistically unacceptable fits to the data with Table 7.2.2.5 23 summarising the results.

C

# Table 7.2.2.3- 23: Deltamethrin parameter optimisation results (HS) all datasets – free optimisation

	or sr			
Water/ sediment system	<b>DT</b> 50	DT90 Min Chi2	t-test	Visual
	(days)	(days) error (%)	Ŵ Ŵ	assessment
stotal system	<b>3.3</b>	10.9 22.00	0,000926	Poor
- total system	2.6	8.8 3 38.3	\$.55E-06	Poor

Metabolite dissipation fits (decline from maximum) were therefore evaluated according to the Level M-I flowchart, HS and DEOP kinetics were determined to be the best-fit for the two datasets, with the optimisation results supermarised in Table 7.2,2.3-24.


Table 7.2.2.3- 24: 🍣	Level M-Ftotal system metabolite decline DT50 parameter optimisation
Ro ^o	
	results for the alpha-R isomer of deltamethrin
-8	A SUILS AND UNCAMPTIA IN ISUIRUI OI VICILATIICUTTITI

Water/ sediment system		DT90 Ordays)	Min Chi ² error (%)	t-test (-)	Visual assessment
-total system	HS 3.3	210	15.9	0.1505	Acceptable
– total system	DFOR A	60.8	4.0	0.00773	Excellent

SFO modelling endpoint  $DS_{50}$  values were derived for the two systems. Table 7.2.2.3- 16 summarises the resulting optimised total system modelling endpoint  $DT_{50}$  values for alpha-R isomer of deltamethrin.

#### 

Kinetic modelling analysis of datasets from a water/ sediment degradation study for deltamethrin showed good model fits when determining trigger and modelling endpoints. The calculated SFO  $DT_{50}$  values can be used for environmental exposure assessments.



Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Report:	KCA 7.2.2.3 /06; ; 2013
Title:	Kinetic modelling analysis of deltamethrin from two water/sediment
	studies
Report No:	VC/11/015B
Document No:	
Guidelines:	- EU Council Directive 91/414/EEC, as amended by Commission
	Directive 95/36/EC of July 1995, Section 5, Point 7 and Commission Regulation (EC) No 1107/2009 of 21 October 2009
	Regulation (EC) No 1107/2009 of 21 October 2009
	- FOCUS kinetics $(2006)^1$ $\sqrt[6]{9}$
GLP:	- FOCUS kinetics (2006) ¹ No (modelling calculation)

#### **EXECUTIVE SUMMARY**

The aim of this evaluation was to conduct a kinetic modelling analysis of the data from two water/ sediment degradation studies with deltamethrin (<u>Wrort Reference source national</u> 1993 feport/M-131938-01-1 and <u>Error! Reference source not found</u> et al 2012, report M434820-01-1) in order to derive DT₅₀ values for use as trigger and modelling endpounds. In the first study separate analysis of deltamethrin and the alpha-R isomer of deltamethrin was conducted for some sediment samples, only. Therefore a separate kinetic analysis of both compounds was not possible with the data of this study. As a consequence, all kinetic evaluations were performed using the sum of deltamethrin and the alpha-R isomer of deltamethrin in each phase (water and total system).

For the determination of  $DT_{50}$  values for the sum of deltamethrin and the alpha R isomer of deltamethrin all datasets were evaluated according to FOCUS Kinetics guidance (2006) using the water/sediment Level P-I flowcharts for trigger or modelling endpoints. The metabolite  $Br_2CA$  on the total system was evaluated using the Level M@flowchart.

Table 7.2.2.3-25 summarises the optimised modelling endpoint DTs value for the sum of deltamethrin and the alpha-R some of deltamethrin. In FOCUSs, evaluations, a total system DT₅₀ value of 52.2 days can be used as a conservative approach for the water phase degradation along with a default DT₅₀ value of 1000 days for the sediment phase degradation.

Table 7.2.2.3- 26 summarises the calculated water phase and total system  $DT_{50}$  values for the sum of deltamethrin and the apphart isomet of deltamethrin suitable for use as trigger endpoints.

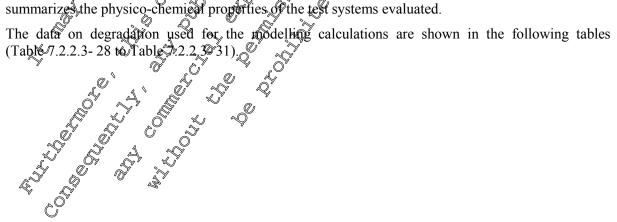
Table 7.2.2.3- 27 summarises the optimised total system modelling endpoint  $DT_{50}$  values for  $Br_2CA$ .

 Table 7.2.2.3-25:
 SFO DT₅₀ values for the sum of deltamethrin and the alpha-R isomer of deltamethrin for use as modelling endpoints

Water/sediment System	SFQ DT50	Comment
	(days)	(kinetics, determination of DT ₅₀ )
- water shase	ó 0.78 کړ ک	HS, DT ₉₀ 2.6/3.32
water phase &	0.85	HS, DT ₉₀ 2.8/3.32
- Mater phase 5 x ~	0.86	HS, DT ₉₀ 2.8/3.32
- water phase	0.09	HS, DT ₉₀ 0.29/3.32
S & Geomean	0.48	
– toral system	72.9	HS, slow-phase k ₂ (0.009503)
– total system	11.9	DFOP, DT ₉₀ 39.5/3.32
– total system	61.2	HS, slow-phase k ₂ (0.011322)
– total system	140	HS, slow-phase k ₂ (0.004968)
Geomean	52.2	

#### SFO DT₅₀ values for the sum of deltamethrin and the alpha-R isomer of Table 7.2.2.3-26: deltamethrin for use as trigger endpoints

	88	- F	
Water/ sediment system	DT ₅₀ (days)	DT90 (days)	Best-fit kinetics
– water phase	0.05	2.6	HS N N
– water phase	0.07	2.9	HSO OF A
– water phase	0.09	گ 2.8 d	V NAS V V
– water phase	0.09	0.29 Q	WHS S S
Geomean	0.07		
– total system	3.9	101	
– total system	3.8	<b>1</b> 5 ~	DFOP S
– total system	38.9	× 181 ×	HS A
– total system	109	¢ 430	
Geomean	15.8	Y & A	
	'Y 6 ( @."		


Table 7.2.2.3- 27:	Total system	DY values	for Br. C & for	r hitto os hi	odelling endpoints
Table 7.2.2.3- 27:	Total system or O	1 50 vaunes		last as n	podenting enupoints

	, U	
Water/ sediment system	(days)	fin Complete V (-) Co
– total system &		0,92 ~ ~ ~ SFO
– total system	6 12.20	$\downarrow 0.64$ $\downarrow 1000$ $\downarrow$
Geomean	107 2	
S Average	8 0- 4	0478 0 A
Average		

#### METHODS 2 I.

Laboratory degradation data of two water/sediment studies (Error! Keference source not found. 1993, 2012 report M-434820-01-1) were evaluated in order to report M-131938-01-1 and derive Da 50 values for dise in Subsequent exposure assessments All kinetic evaluations were performed using the sum of detramethrin and the alpha-R isomer of detramethrin in each phase (water and total system). The respective residue data were evaluated again the FOCUS Kinetics flowcharts ¹ for the determination of trigger and modelling endpoints. P

The chemical structure and names of test items are shown in section 2.1 of report; Table 1 of report summarizes the physico-chemical properties of the test systems evaluated.



	Biotran									sys	tem u	nder	
	aerobic	condit	tions (v	alues i	n % o	f appl	ied rad	dioacti	ivity)				ð
Compound	D						DAT (	days)				ý i	de la companya de la
Source	Rep	0	0.125	0.50	1	2	3	7	Û	30	50	73	99
Deltamethrin	1	63.5	9.8	6.4	14.4	6.7	4.9	0.9	A.3	n.d.	n.d.	, PQI.	n.d.
Water	2	44.7	18.8	8.6	9.5	7.6	3.1	0.4	n.d.	n.d.	🖓n.d. 😞	An.d.	n.d.
vv ater	Mean	54.1	14.3	7.5	12.0	7.1	4.0	<b>Q</b>	0.7	0:Q	0.00		0.0
Deltamethrin	1	27.2	57.5	56.2	29.1	\$\$4.4	22.6	<b>4</b> 3.7	9.9	8.6	28	9	4.
Sediment	2	44.7	51.1	58.5	37.1	^ø 31.0	25.3	16.3	14.2	P1.5	<b>\$9</b> .2	×8.3	J.
	Mean	36.0	54.3	57.3	33,1	32.7	23.9	15.0	12.1	10.1¢	<b>3.0</b>	8.6	<b>4.0</b>
Deltamethrin	1	90.7	67.2	62.6		41.0	2 <b>0</b> .5	14.7	11.2	8,6	2.8	9.0©	<b>*</b> 4.1
Total system	2	89.5	69.9	67.10		38.6	28.3	<b>P6.7</b>	<i>4</i> <b>Q4</b> .2	ð.5	<u>z</u> 2	8)¥	3.9
	Mean	90.1	68.6	64.9	45.0	39.8			× 12.7	10.1	<b>&amp;3.0</b>	8.6	4.0
α-R-isomer of	1	2.3	2.9	<b>\$</b> 2.9	19.0	5,6	43	n.e.	0.7	n.d.	n.d.	n.d.	n.d.
Deltamethrin	2	0.7	3.3	⁰ 2.2 r	57.6	<u>C6.2</u>	Ø.5	Ðd.	n.e.	n:d.	n.e.	n.d. °	n.d.
Water	Mean	1.5	3.1->	2.60	9.3	5.9	₩3.5	0.0	<b>Q0.3</b>	0.0	.0	Øð	0.0
α-R-isomer of	1	n.d.	2.9	14,4	14.9	24.0	20.6	8.5	6.8	~	2.6	¶1.7	4.0
Deltamethrin	2	n.d.	3.9	8.6	4.4	°16.9	165	<u>%</u> 7″	102	9.7	3.90		3.5
Sediment	Mean	0.0	S [≫] 5.9 ≪		14.6	20.5	<b>A8.6</b>	<b>9</b> .1	8.5	Į,	3,2	9.9	3.8
Deltamethrin	1	23	10.9	17.3	26.0	29.8	25.1		7.5	<u>6.2</u>	×2.6	n.d	n.d.
Total system	2	0.7	<b>\$</b> 2	10.8	200	2305	19:0	9,70	10.2 ^C	9.7 ′	₹3.9	n.d.	n.d.
	Mean	¶1.5 ∘	8.9	14.0	<b>2</b> 4.0	26.5	22.0	9.1	83	7.9/	3.2	0.0	0.0
Br ₂ CA	1 🔊	n.d.	0.9	4.3	4.6	11.7	13.8	<b>P</b> 7.5	15.2	3.7	0.6	n.d.	n.d.
Water	2	ng.	15	3¢	4.60	7.8	13.8		11.2	Q1.8	0.4	n.d.	n.d.
	Mean	4 0.0	<b>%</b> .0	3.8	4,6	<b>9</b> 7	13.8	16.8	13.2	2.8	0.5	0.0	0.0
Br ₂ CA		1.6		1 (	18.4	<b>%</b> .1	3.1	27.9		8.0	7.5	n.d.	9.3
Sediment	2 0	2.1	8.4	7.3	17.6	[*] 12.2 ⁽	$P_{13.5}$	26.1	(11.1	5.2	14.8	n.d.	12.0
	Méan _v Oi	<b>109</b>	<b>8.6</b> 9.8	7.8		100	13.3	27.0	10.8	6.6	11.1	0.0	10.7
Br ₂ CA	- 1				×23.0	49.8	26.9	45 A	25.7	11.7	8.0	0.0	9.3
Total system 🔊 🔒	$\frac{2}{100}$	^v 2.1 ^(k)	¥ 9.5 ⊚ <b>9.</b> 7√		22.2	20.0	27.4	¥2.3	22.3	7.0	15.3	0.0	12.0
	Mean	1.9°	<u>9.°7</u> ⊗ ₄	1106	22,6	19.95	ີ 27.1 _ໃ	43.9	24.0	9.4	11.6	0.0	10.7

# n.d. non-detected <LOQ of 0.1% Time zero recovered amount Rep 1 77.2% Rep 2 = 96.9% Values in % of applied radioactivity, sum of deltamethrin & alpha-R isomer of deltamethrin

		<u>Ø</u>	<u> </u>		$\bigcirc$	<u></u>							
Compound 🖗	An s		(///2 9.	S,			DAT (	days)					
Source	C Keb	0 C	0.125	0.50	× 1 @	2	3	7	14	30	50	73	99
Deltamethrin@alpha©	Rep 5	65.9	12.7	93	254	12.2	9.4	0.9	2.0	n.d.	n.d.	n.d.	n.d.
R isomer <u>of</u>	Q	<b>4</b> .4	23.1	Ø.9	<b>Ø</b> .1	13.8	5.6	0.4	n.d.	n.d.	n.d.	n.d.	n.d.
water 🔹	Mean	55.7	0 17.4	.~Q	© ∦21.3	13.0	7.5	0.7	1.0	n.d.	n.d.	n.d.	n.d.
Deltamethrin+ alpha-		2702	6 <b>9.3</b> 54.9	70%	44.0	58.6	43.2	22.2	16.7	14.8	5.4	20.7	8.1
R isomer of	<u>0</u> Ž	A4.7	54.9	<b>6</b> 7.1	51.4	47.9	41.8	25.9	24.5	21.2	7.1	16.5	7.4
deltamethrin	∧Mean	36.00	v	68.8	47.7	53.2	42.5	24.1	20.6	18.0	6.3	18.6	7.8
Deltamethring alpha		93.1	<b>78</b> .0	79.9	69.5	70.8	52.6	23.1	18.7	14.8	5.4	9.0	4.1
R isomer of a	¢2 "	90.2	77.0	77.9	68.5	61.7	47.3	26.3	24.5	21.2	7.1	8.3	3.9
R isomer of a deltametarin Total system 5	Mean	91.6	77.5	78.9	69.0	66.3	50.0	24.7	21.6	18.0	6.3	8.6	4.0
	A.S.												

Table 7.2.2.3- 29:	Biotrans								syster	n und	er aer	obic		
	condition	ns (val	lues in ^o	% of a	pplied	l radio	activit	ty)				Ů	ð	
Compound	р						DAT (	days)			n n n n n n n n n n n n n n n n n n n	X V		
Source	Rep	0	0.125	0.50	1	2	3	7	<b>Å</b> 4	30	50	73	99	
Doltomothrin	1	63.4	19.8	10.6	12.8	5.8	3.5	1.5	\$1.1	n.d.	ñ⁄.d.	, rQd.	n.d.	
Deltamethrin Water	2	51.2	25.1	8.0	13.5	3.4	5.8	0.6	0.5	n.d. 🔍	n.d.	n.d.	n.d.	
w alei	Mean	29.4	48.1	48.4	30.2	29.3	27.7	15,1	12.0	5,4	4,6		1.9	
Deltamethrin	1	43.6	43.3	60.8		\$32.1	22.1	<i>≸</i> ∕9.2	6.4	×4/6	40	2	n.d.	
Sediment	2	4.3	8.9	8.6	10.76	6.7	3.50	1.0	0.4 (	n.d. 2	Ga.d.	<b>∞0.</b> d.	nkd.	
Scamient	Mean	2.1	9.6	3.9	12.6	5.1	6.2	0.6	n.đ.	n.dÔ	n.d.,	∲n.d.≰	n.d.	
Deltamethrin	1	92.8	67.9	59.1	42.9	35.1	ðľ.2	16.7	18.1	<u>5</u> .4 [♥]	4.6	3.00	1.9	
Total system	2	94.8	68.4	68,80	^{**} 46.1	35.6	28.0	,19.8	Q.0 、	<b>4</b> .6	A.0	2°.4	n.d.	
i otai system	Mean	93.8	68.1	63.9	44.5	35@	29,6	18.2		∖ <b>5.0</b> ≭	<b>4.3</b>	<b>2.7</b>	1.0	
$\alpha$ -R-Deltamethrin	1	n.d.	11.7	\$1.2	<b>2</b> 3.6	23.0	21.5	14.0	8.8	6.0	5.3 *	4.8	2.7	
Water	2	n.d.	12.0	18.8	¥ @	¢23.4	@0.8	∂A.3	<i>6</i> 91	4,3	3.Å ∭o.d.	3,2 °	n.d.	
	Mean	63.4	19.8	10.6	12.8		∜3.5 _≦	1.5	<b>\$1.1</b>	n.d.		æð.	n.d.	
α-R-isomer of	1	51.2	25.1	~8,0	1355	3.0	5.8	0.6 ^C	0.5%	n.d.,	n.d.	Sn.d.	n.d.	
Deltamethrin	2	29.4	<b>4</b> 8.1 ¢	<b>4</b> 8.4		°29.3	2 <b>9</b> .7	ار <u>کار</u>	12,0	5.A	4.6	3.0	1.9	
Sediment	Mean	<b>43.6</b> C	~ ~ ~	60,8			22.1	<b>19.2</b>	<b>\$6.4</b>	<b>A.6</b>	<b>A</b> 0	2.4	n.d.	
Deltamethrin	1	431	20.0	29.8	36.3	29 Z	25.00		9.2	§6.0	\$5.3	4.8	2.7	
Total system	2	2.1	Ø1.7	<b>2</b> 2.7	36.7	285	27,0	14.9	6.10	4.3	3.7	3.2	n.d.	
i otai system	Mean	Ø3.2 🦻	21.1		36.5	29.1	26.0	13.4	đ	5.2	4.5	4.0	1.4	
Br ₂ CA	1 🔊	n.d.	1.69	2.7	7.9	[∞] 13.8		\$ <b>3</b> 1.1	20.1	M.2	3.4	n.d.	n.d.	
Water	Z	nod.	15°	308	7.9	15.5 °	22.0	33.3		15.8	2.7	n.d.	n.d.	
	Mean	n.d.	A.d.	\$0.4	<i>^</i> \$9.d.	d.4	2.0	<i>3.</i> 4 [°]	40	2.3	0.5	0.7	n.d.	
Br ₂ CA		n.d. (			0.7	01.4	×1.8	4.4	, Ø)9	1.8	0.5	n.d.	n.d.	
Sadimant	<u>Ş 20'</u>	n	16	2.4 3.8	7.9	13.8 [©]		¥31.1	20.1	11.2	3.4	n.d.	n.d.	
	Mean	đđ.	~			1505	22.0	33,3	28.7	15.8	2.7	n.d.	n.d.	
Br ₂ CA		×0.0	1.6	>3.1	7.9	3.2	<b>29</b> .9	34.5	24.4	13.5	3.9	0.7	0.0	
Br ₂ CA	2	0.0	1.3	4.3	8.1		23.8	37.7 36.1	32.6	17.6	3.2	0.0	0.0	

#### Rightmansformation of deltamethrin in the second system under gerobic Table 7 2 2 3_ 29.

# Total system20.012.017.057.752.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.052.017.017.017.017.017.017.017.017.017.017.017.

		¥	. 7		$\odot$								
Compound 🖗	An s			S,	~	, Or	DAT (	days)					
Source	<b>Rep</b>	Ĩ Q Ĉ	0.125	0.56	× 1 @	2	3	7	14	30	50	73	99
Deltamethrin@alpha	or الم	67.7	28.7	19.X	23.5	12.5	6.9	2.5	1.5	n.d.	n.d.	n.d.	n.d.
R isomer <u>of</u>	Q	<b>\$</b> .3	A.7	¢\$1.9	<b>26</b> .1	8.6	12.0	1.2	0.5	n.d.	n.d.	n.d.	n.d.
water *	Mean	, 60.5	31.75		© ∦24.8	10.6	9.5	1.9	1.0	n.d.	n.d.	n.d.	n.d.
Deltaonethrin+ alpha-	L.	2904	5 <b>9.</b> 8	62%	55.7	52.2	49.2	29.1	20.8	11.4	9.9	7.9	4.7
R isomer of	62	A3.6	59.3	Ø9.7	56.7	55.5	42.9	30.5	12.5	8.9	7.7	5.6	n.d.
deltamethrin Sediment	Mean	36.5	ν	74.6	56.2	53.9	46.1	29.8	16.7	10.2	8.8	6.7	2.3
Deltamethring alpha		97.1	88.5	88.8	79.2	64.8	56.2	31.6	22.3	11.4	9.9	7.9	4.7
R isomer of a deltametarin	° ²	6.9	90.1	91.6	82.8	64.1	54.9	31.8	13.1	8.9	7.7	5.6	n.d.
Total system 8	4 🐇 🕺	97.0	89.3	90.2	81.0	64.4	55.6	31.7	17.7	10.2	8.8	6.7	2.3
Total system of the system of	and a second												

ð



Table 7.2.2.3- 30:	Biotransformation of Deltamethrin + alpha-R isomer in	system
	under aerobic conditions (values in % of applied radioactivity)	

											. 4	ž "Ož
Compound	Don				Ľ	AT (d	ays)		*		6	
Source	Rep	0	0.25	1	2	4	7	14	<b>2</b> 8	56	<b>8</b> 4	Ô
Deltamethrin+	1	13	12	13	9	11	6	4 🔞	🕅 na	na	ha	S)
alpha-R isomer of	2	31	13	15	11	8	5	3	na	na 🛇	na 💎	t Ča
deltamethrin Water	Mean	22	12.5	14	10	9.5	5.5	<b>3</b> .5	na	îna	Îta	
Deltamethrin+	1	78	59	59	$7N^{\circ}$	62	600	65	41	34 🐊	Q29 🛛	
alpha-R isomer of	2	46	54	78	<i>\$</i> 74	73	64	54	3%	400	27	, ^o
deltamethrin Sediment	Mean	62	56.5	68.5	72.5	67.5	Ŷ62	59.5	~39 ~39	~ <b>B</b> 7	28	
Deltamethrin+	1	91	71	92	80	785 ⁹	00	07	41	34 ≪	<u>کې 29 کړ</u>	Ž,
alpha-R isomer of	2	77	67	<b>§</b> ∕∕93	<b>\$</b> 85	<u>^</u> %1	<u> </u>	_\$J	37	4Õ≫	27 🖤	
deltamethrin Total system	Mean	84	69	82 5		77	67.5	0 ⁷ 63	39	ð ³⁷		ŵ,

na not analysed, <LOQ of 1%

Time zero recovered amount: Rep 1 = 103% Rep 2

		×			7
Table 7.2.2.3-31: Bi	otransformation	of Deltamethri	n t∾aïlpha∈K	isomer in th	é
	·····	0	On <b>F</b>		-
SV	iotransformation stem under aerot	oic Conditions (v	values in %	of Opplied ra	diøactivity)

	R.	>	1	"(		1 0	7, 8 5		0	$\bigcirc$	
Compound	Don	v (4 .		L	Ĩ	DAT 4		? Ø	)	0	
Source	Rep	Ø	<b>0</b> 25	<u></u>	2	4	Ę.	14	28 [©]	56	84
Deltamethrin+	Ж	<u> </u>	[©] 16	5	5∦6	Q ³ .	Y	Ľ,	~Q <b>a</b>	na	na
alpha-R isomer of	K) 2 K	🔊 22 🖗	100	48	4	5 🖇	¥6 (4	. 1 %	Ma	na	na
deltamethrin	Maan	~07	Ø.	45	Jak -		3.5	2 🖇			
water	Mean		$\sim$	AUTS (		đ	3.3° «		na	na	na
Deltamethrin+	NQ.	×61	^{\\$} 47	🖉 85 🎾	75	88	85	80	68	68	54
alpha-R isomer of	<b>b</b> [*] 2	58	580°	84	84	83	78 🎽	© [*] 80	72	64	52
deltamethror	Mean	Q	535	° <b>8</b> 4.5	<b>79</b> .5	85.5	81 S	80	70	66	53
Sedimena	Mean	<b>5</b> 9.5	32.3 2 2	~oA.3	402			80	/0	00	33
Deltamethrin+		85	۶ 63	90	, 81 🔊	©91 ∧	86	85	68	68	54
alpha-R isomer of	v 2. Ó	80 🛇	68, \	_8®>	88	88 C	84	81	72	64	52
deltamethrin	Mala		Ň	×89	\$4.5	89.5	85	83	70	66	53
Total system	Méan	<b>\$2</b> .5	\$5.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 ^{4.3}	09.5	65	63	70	66	33

na not analysed, <LOQ of 15

Time zero recovered amount: Rep T = 99% Rep 2 = 0.7% .  $0^{7}$ 

# Modelling strategy for data processing, optimisation model and statistics:

For the kinetic evaluations to derive  $DT_{50}$  values for use as trigger or modelling endpoints, the recovered time zero values were used for deltamethrin in the water phase and total system. During the kinetic evaluations, resolute data for the first timepoint <LOQ (n.d., non-detect) were set to  $\frac{1}{2}$  LOQ of 0.05%. Subsequent  $\frac{1}{2}$  DOQ data were not used in the kinetic evaluations.

Following the recommended procedure for determining modelling endpoints, (FOCUS, 2006), all datasets were statistically evaluated using SFO kinetics with free optimisation of parameters. Where datasets were statistically and/or visually unacceptable, further evaluation with FOMC, DFOP and HS kinetics were applied. A comparison between the models was made and the best-fit kinetic model was selected.

Following the recommended procedure for determining persistence endpoints all datasets were initially evaluated using SFO and FOMC kinetics with free optimisation of parameters. Where datasets were statistically and/or visually unacceptable, further evaluation DFOP and HS kinetics were applied. A comparison between the models was made and the best-fit kinetic model was selected.

**Bayer CropScience** 

Ò

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

 $DT_{50}$  and  $DT_{90}$  values were determined for the degradation of deltamethrin. The determinations of the kinetic values followed the recommendations of FOCUS rules. These were aimed at deriving  $p_{50}$ values for use as trigger endpoints and model input according to the FOCUS guidance document on degradation kinetics. The kinetic evaluations were performed according to the respective ocision flowchart for the determination of level P-I parent endpoints for use in modelling (FOCUS, 2006; Figure 10-2, p. 198) and as trigger endpoints (FOCUS, 2006; Figure 10-1, p. 197).

The sampling times and residue data were entered into KinGUI (Figure Kor report) and carried out for SFO, FOMC, DFOP or HS kinetics (Figures 3, 4, 5 or 6 of report).

The Br₂CA metabolite in the total system was evaluated using the Level M-I flowebart ( Figure 10-9, p. 227) and the KinGUI scheme in Figure 2 of report

The kinetic evaluations and the statistical cale pations were conducted with KinOUI (2.0) iteratively re-weighted least-squares (IRLS) optimisation.

Optimisation statistics was described in section 3.41 of report. The model fits were exaluated using a chi-square  $(\chi^2)$  error statistic and visual inspection of residual plots. The kinetic analyses and apalysis the predicted optimisations were carried out using the replicate data, however for the concentration is compared to the mean measured value.

#### II. RESULTS

Optimisations using SFO kineties showed both visually and watistically unaccepted fits to the majority of data sets with Table 7.2.2.3 32 summarising the calculated  $DT_{50}$  values for deltamethrin + alpha-R. Ŵ

Detramethrin + Alpha R isomer of deltamethrin parameter optimisation Table 7.2.2.3-32: results (SFO) all datasets - Free optimisation

Ø

Water/ sediment Stem	DISO	~	Min Ghi ²	t-test	Visual
	(days)	(days)			assessment
Ovater phase	0.05 (	of 0.17	39.8	[%] 0.000627	Poor
total system	4.8 ×	15.8	\$ 17. <b>9</b>	<b>4.36E-05</b>	Poor
water phase 🖉	0,98	Ø.27	39.3	0.000785	Poor
- total system	^{\$4.4}	∿ 14.®	√9.5 _∞ 0″	5.61E-10	Poor
– water phase	0.080	0(28	≤y 29.9 ×	0.000178	Poor
- total system 🔬 🖉	41.6	×J38	0.0	9.59E-06	Acceptable
- total system - water phase?	۵.09 🖉	0.25	<b>Ö</b> 15.9	9.30E-08	Poor
- total system	126	418	⊗ 8.2	6.51E-05	Acceptable
			Ũ	1	1

AS FOMC showed improvement over SFO the datasets were also evaluated using DFOP and HS cinetics. Optimisations using EOMC kinetics showed both osually and statistically improved fits to the data with Table 7.2.2.3-33 summarising the calculated DT₅₀ values for the sum of deltamethrin and the alpha-R isomer of deltamethrin. 🛷

As FOMC showe kinetics.

ð

**BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Table 7.2.2.3- 33:	Deltamethrin + alpha-R isomer of deltamethrin parameter optimisat	ion
	results (FOMC) all datasets – free optimisation	Ľ

	,				
Water/ sediment system	DT50	DT90	Min Chi ²	t-test	Visual
Water, Seament System	(days)	(days)	error (%)		assessment Ô
– water phase	0.005	1.4	21.5	<u> </u>	Poor
– total system	3.8	70.1	11.3	- 4	Wery good
– water phase	0.04	2.2	گ 16.9 <u>ک</u>	- ×	Roor of
– total system	3.8	30.1	¥ 4.8 Q	@	Excellent
– water phase	0.003	1.1	10.2	0	Poor
– total system	32.8	689	9.8		Good
– water phase	0.01	0.42	5.3 ×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Very good
– total system	119	395.2	8.6	~ - S	Acceptable

Optimisations using DFOP kinetics showed both visually and statistically acceptable fits to the data with Table 7.2.2.3- 34 summarising the calculated DU₅₀ values for the sum of defamethrin and the algina-R isomer of deltamethrin. Optimisation using HS, kinetics showed both visually and statistically acceptable fits to the data with Table 7.2.2.3-35 summarising the calculated DU₅₀ values for the sum of deltamethrin and the alpha-R isomer of deltamethrin.

Table 7.2.2.3- 34:	Deltamethrin + alpha-R isomer of deltamethrin parameter optimisation
	results (DFQP) all datasets – free optimisation

		`	0		
Water/ sediment system	DT& (Øays)	(days)	Min Chi ^{2 K} erfor (%)	F-test*	Visual assessment
	× 0.01	28	× 15.8°	0 0.45877	Very good
Stotal system 📎	305	√116 %		@0.12	Very good
- water phase	&Q.06	2.86	₹ <u>12.6</u>	0.00128	Very good
- to at system	° 3.8 %	395	4.2	0.00294	Excellent
– watter phase	0.01	2.8	A,1	0.474	Excellent
– tetal system	\$0.4	473	×910.3	0.409	Good
– water phase 😵 💈	0.08		2.2	0.0498	Excellent
– tabil system	126	_@¥18 C	<u>~</u> 2.1	0.4731	Acceptable
* moret again of the and the south	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$	²		

* worst-case of k1 and k2 regults Table 7.2.2.3935: Deltamethrin + alpha-B isomer of deltamethrin parameter optimisation results (IS) all gatasets – free optimisation

Water/ sediment system	DT50 (days)	DT® (days)	Min Chi ² error (%)	t-test* (-)	Visual assessment
– water phase	0,05	O _{2.6}	15.8	0.00705	Very good
total system		🖉 101	10.2	0.043	Very good
water phase	0.08	2.8	12.6	0.00243	Very good
≠ total system of or	3.6	38.5	5.8	0.00013	Very good
Swater phase A	0.09	2.8	4.1	8.88E-05	Excellent
- total@system	38.9	181	10.9	0.02716	Good
– water phase	0.09	0.29	2.3	0.0466	Excellent
– total system	109	433	7.9	0.012273	Very good

* worst-case of  $k_1$  and  $k_2$  results

**BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

SFO kinetics was applied to all datasets and verified according to FOCUS acceptability criteria (minimum Chi² error <15%, t-test parameter significance >95% and visually acceptable). For the water phase dissipation, SFO evaluations showed poor model fits to the data. DT₉₀ values were within the experimental period for all datasets and therefore conservative modelling endpoint SFO DT values were calculated from the best-fit (FOMC, DFOP or HS) kinetic DT90/3.32. For the total system degradation, SFO evaluations showed poor model fits to the data. DT₉₀ values were within the experimental period for the Anglersee dataset and therefore a conservative modelling endpoint SFO DT50 value was calculated from the best-fit (DFOP) kinetic DT90/3.32. For the remaining three datasets, DT₉₀ values were outside of the experimental period, with conservative modelling endpoint SFO DT50 values thus being derived from the HSk₂ 'slow-phase' degradation rate. Table 7.2.2.3- 25 summarises the calculated SFO DT₅₀ values for the sum of deltamethrin and the alpha R isomer of deltamethrin, suitable for use as modelling endpoints. In FOCUS we evaluations, the geometric mean total system DT₅₀ value of 52.2 days can be used as a conservative approach for the water phase degradation along with a default DT50 value of 1000 days for the sediment phase degradation.

Table 7.2.2.3- 26 summarises the calculated water phase and total system DT₅₀ values for the sum of deltamethrin and the alpha-R isomer of deltamethrin suitable for use as trigger endpoints.

#### Br2CA metabolite of deltamethrig;

According to the flowchart, HS and the alpha-R isomer of deltamethrin along with SFO kinetics for the Br₂CA metabolite.

Optimisations using FOM@/SFO Rineties showed both visually and statistically acceptable fits to the data with Table 7.2.2.3- 36 summarising the essults of the statistical sta

Table 7.2.2.3-36: Level M-I total system DegT₅₀ parameter optimisation results for the Brock metabolite of deltameter in S

Water/ sediment system	DT50 (days)	(days)	S (-) C	Min Chi ² error (%)	t-test (-)	Visual assessment
- total system	200	30.8	0.92	~ 26.2	0.000134	Acceptable
- total system	12.2	× 40.₽	0.64 🦻	<b>11.2</b>	3.43E-14	Excellent
	N O'		8, 2	4		

Table 7.2.2.3- 27 summarises the optimised total system modelling endpoint DT₅₀ values for Br₂CA.

# III. CONCLUSIONS

Kinetic modelling analysis of datasets from two water/ sediment degradation studies for deltamethrin showed good model fits when determining rigger and modelling endpoints. The calculated SFO DT₅₀ values can be used for environmental exposure assessments.

The results are included in the summary of the route and rate of degradation of deltamethrin and its major degradation products is water and seement given in section CA 7.2.

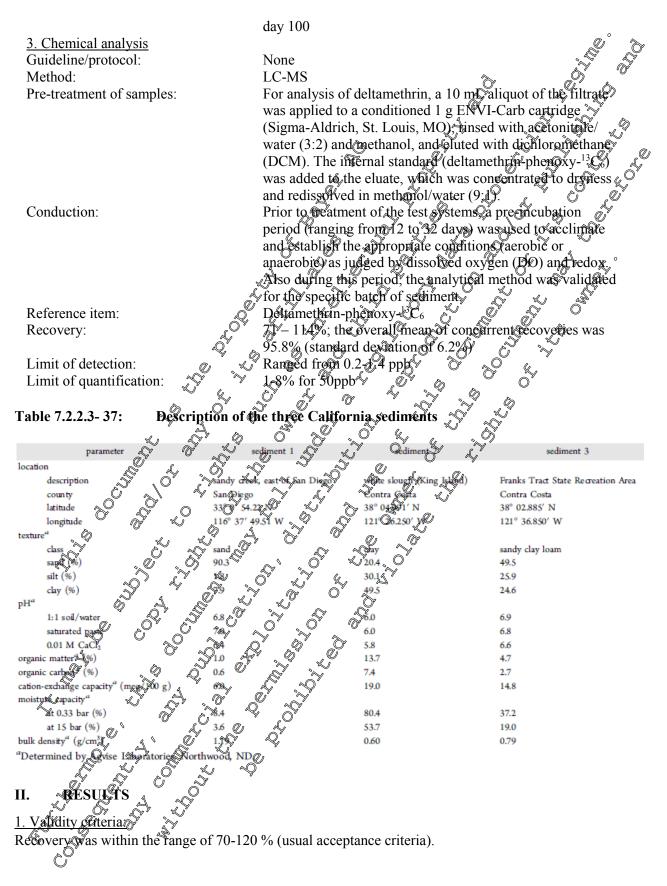
Further information on the behaviour of deltamethrin in the water/sediment system was published in the literature by Meyer, et al, 2013 (for respective summary see below).

	~		<u>o</u> r
Report:	KCA 7.2.2.3 / 07; Meyer, B.; Jones, R.; Moore, S.; Lan, C.; 2013	,°° b	
Title:	Laboratory Degradation Rates of 11 Pyrethroids under Action An	aerobic	
	Conditions	2 Colored Barris	Ô
Source:	J. Agric. Food Chem. 2013, 61, 4702–4708		Į Š
Document No:	M-462374-01-1	× .0	,O
Guidelines:	None V S		Ô
GLP:	No, published study	O O	K .
Literature review			Í
classification:	b) supplementary information (EFSA Journal 201; 9(2):2092)		
			-

#### **EXECUTIVE SUMMARY**

Degradation of 11 pyrethroids was measured over approximately 100 days in three sediment/water systems under aerobic and anaerobic conditions at 25 °C in the dark. The three California sedurents represented a range of textures and organic matter. Deltamethrin was analyzed by liquid chromatography/tandem mass spectrometry using deltamethrin-phenoxy-¹³C as an internal standard. First-order half-lives under aerobic conditions ranged from 11.7 to 44 & days. Under anaerobic conditions, the range was from 59.9 to 190 days?

## I.


#### A. Material

**Bioactivity:** 

<u>1. Test material</u> Test item: Active substance(s): Dettamethrup, CAS 52918-63-5 (S) cyarb(3-phenoxypenyl)methyl (1R,3R)-3-(2,2-
Test item:
Active substance(s):
1. Test material Test item: Active substance(s): Chemical state and description: Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub Deltamethrub D
Source of test item:
Batch number:
Purity 20 5 29.4 % 0 5
Storage conditions: 4 Refrigerated and stored in the dark
Water solubility? A Q Not reported
<ul> <li>Active substance(3).</li> <li>Chemical state and description:</li> <li>Source oftest item:</li> <li>Batch number:</li> <li>Purity,</li> <li>Storage conditions:</li> <li>Water solubility</li> <li>2. Soil:</li> <li>B. Study design and methods</li> <li>1. Sampling</li> <li>Sampling</li> <li>Sa</li></ul>
<ul> <li>B. Study design and methods</li> <li><u>1. Sampling</u></li> <li>Sampling technique:</li> <li>All sediments were sieved (2 mm) and thoroughly mixed;</li> <li>The time between sediment collection and dosing ranged bolween 2 and 8 weeks. Test systems were sampled in duplicate at seven intervals (approximately 0, 3, 7, 14, 28, 60, and 100 days post-treatment).</li> <li>Sampling frequency:</li> <li><u>2. Measurements</u></li> <li><u>D. Fredox</u></li> <li>On day 0, DO concentrations, pH, and redox were measured: pH was between 5 6 and 8 4</li> </ul>
1. Sampling
Sampling technique: A QAII sediments were sieved (2 mm) and thoroughly mixed;
$\delta^{\gamma}$ $\delta^{\gamma}$ $\delta^{\gamma}$ The Dime between sediment collection and dosing ranged
botween 2 and 8 weeks. Test systems were sampled in
duplicate at seven intervals (approximately 0, 3, 7, 14, 28,
$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 60, and 100 days post-treatment).
Sampling frequency:
2. Measurements
pHoredox $\mathcal{O}$ $\mathcal{O}$ On day 0, DO concentrations, pH, and redox were
measured: nH was between 5.6 and 8.4

measured: pH was between 5.6 and 8.4 Bioactivity was determined at Agvise Laboratories, Northwood, ND, by aerobic or anaerobic plate counts in representative untreated flasks at day 0 and approximately BAYER Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin





#### 2. Analytical findings:

Table 7.2.2.3-38:

The data showed a decline in residues in all of the total water/sediment systems, and the rate of decline varied among the three sediments. Degradation rates appear to follow first-order kinetics until about 50-75% of the compound has degraded, and then degradation rates slow. To provide an indication of the degradation curve, Table 7.2.2.3-38 provides the times required for 50 and 90% of the material to degrade (in cases where this occurs within the study period) and the amount remaining at the end of the study period. Single first-order degradation rates are provided in Table 7.2.2.3- 30 along confidence intervals for deltamethrin.

Characterization of the degradation curves in the aerobic and anaecobic studies

				0 a		٧	,O	8	
	DT ₅₀ ^a	DT90 ^a	End amount ^b	DT ₅₀ ^a	$\mathbf{D}_{\mathbf{I}}$ 90° $\mathcal{D}_{\mathbf{V}}$	End Stunt ^b	DT 50 ^a	ØT₀₀ª≰	© End amount ^b
			1	Aecobi	ic C Q	<i>Q</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ő	a s
Deltamethrin	9.8	88	8 ^f , 4	~30° ~	Jd 3 27	2	Ôĩ2 🔬	, 64 [°]	⁸ 8 ^f , <b>1</b>
a Anaeropic y o y o o									
Deltamethrin	106	d	B, 46 K	54~	ja	5, 43°	60	<u> </u>	ري 28, 31

a The time to 50 and 90% degradation of the starting material was determined by the set fitting kinete model if these points

were reached during the study period b The duplicate values from the last time interval are reported. The last time interval was 100 day; for the herobic studies with sediments 1 and 3 and the anarobic study with sediment 3, 103 days for the aerobic study with sediment 2, 101 days for the anaerobic study with sediment 1 except for deltangehrin, which was 108 days), and 104 days for the anaerobic

c Test mixture 1.

d Not reached during the study period

e Test mixture 2.

f The concentration in the sample was bed w the LOQ

C

days corresponded to 90% or greater degraded. The g The amount remaining in the amples at the end of the study at 100 model prediction was slightly longer than the study length. Ôn

Table 7.2.223-39: "	Summary of the degradation rates (expressed as half-lives) obtained with Jonlinear regression using single first-order kinetics
	ponumear regression using single mrst-order kinetics

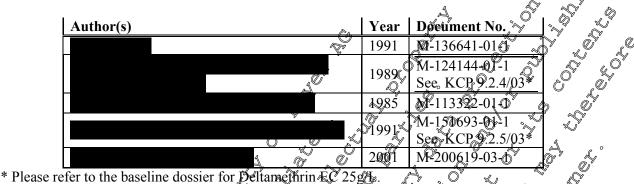
(I) I

		monlugea	r regression u	singsinglecti	rst-order kine	tics	
	<u> </u>						
	« \Y			) <b>F</b> irst order h	aff-life (days)		
			nent 1 🧳 🖉	° ^{° O} ′Se¢ių	nent 2	Sedim	ent 3
	<u></u>	aerobic	anaerobic	aerobic	anaerobic	aerobic	anaerobic
	Ą	11.7%-18)	×00 (20 121)	244.6 (\$ <b>9</b> 7-56)	68.4 (51-103)	14.4 (11-22)	59.9 (55-
]	Deltamethrin			244.0 (29-30)	08.4 (31-103)	14.4 (11-22)	66)
	<u></u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
TT /	s a a a a a a a a a a a a a a a a a a a						

# $III. \rightarrow CONCLUSIONS$

First-order half Hves for delta nethin under aerobic conditions ranged from 11.7 to 44.6 days. Under anaerobic conditions, the range was from 59.9 to 100 days.

These published OT₅₀ pesults on aerobic US test systems were in good agreement with the beforementioned data for the EU, but not worst case. Therefore, they were not included in the set of data used as input parameter for EU exposure assessments (compare section CA 7.2).


Data for an are a special US requirement but not needed for the EU.

Ľ

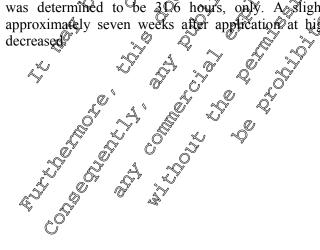


#### CA 7.2.2.4 Irradiated water/sediment study

Degradation of deltamethrin in water/sediment systems under outdoor conditions were evaluated doring the Annex I inclusion, and were accepted by the European Commission (SANCO/6504/VI/9) final, 17 October 2002). The following studies included in the Baseline Dossier were regarded relevant during the Annex I inclusion:



The dissipation  $DT_{50}$  of deltamethrin in the water column of several micro-/mesocosm and natural pond studies ranged from 1.5 to 24 hours. It was concluded that the substance will rapidly disappear from the water column with an expected half-lite of about 1 day. Deltamethrin will many be distributed to suspended organic material, blota, and sediments. Further bioavagability is reduced.


Ø

Despite the low vapour pressure of deltamethria  $(1.1 \times 10^{-6} \text{ Pa at } 20^{\circ}\text{C})$  volatilisation from the water surface appears to be an additional dissipation route as deltamethrin may form a microlayer film onto the water surface after spray dirft (M2241401-1) Volatilisation from this surface microlayer can be explained by the Henry's law constant of deltamethrin  $0^{\circ}$  2.1 Pa⁻² m³/000 at 20°C.

The dossier supporting the approval renewal of deltamethria includes an additional mesocosm study with realistic spray exposure (Error Reference source not found, et al 2005, report M-246137-01-1, see nex page) using 12 test tanks of 6 m³ water and 1 m water depth, as representative of a small stagnant water body It was completed after the Annex Enclusion.

Test mesocosms were treated with detaimethrin, formulated as Detaimethrin EW 015, at five different treatment levels.

In conclusion deltamethrin present in a mesocosim point was subject to fast dissipation by biotic and/or abiotic processes Deltamethrin decreased after all applications quickly and steadily with an average half-life in the water column of 22. Thours and the DT of for the whole system (water plus sediment) was determined to be 3.06 hours, only. A slight increase in sediment residues was detected approximately seven weeks after application at higher test concentrations, and thereafter steadily decreased





Report:	KCA 7.2.2.4 /01; ; ; ; ; ; 2005
Title:	Biological Effects and Fate of Deltamethrin EW 015 in Outdoor Mesocosm Ponds
Report No:	HBF/BT 07
Document No:	M-246137-01-1
Guidelines:	- OECD Guidance Document "Simulated Freshwater Lentic Field Tests Outdoor
	Microcosms and Mesocosms)", July 2004 (Draft)
	- Guidance Document on Testing Procedures for Pestivides in Freshwater
	Microcosms (SETAC-Europe Workshop Monks Wood UK July 1991) 👘 🔬 🛛 🥠
	- Community-Level Aquatic System Studies – Interpretation Criteria (2002)
	(Proceeding from the CLASSIC Workshop) $Q^{\vee}$
GLP:	Yes

#### **EXECUTIVE SUMMARY**

Deltamethrin

Only the part of the study relevant to the environmental tate of detamethrin is summarised in section 7 Fate and behaviour in the environment. The data relevant to the ecotoxicological assessment is summarised in the MCP section 10.

The distribution and degradation of deltamethrin was studied in mesocosm ponds containing natural sediment and water in Gemany for 105 days. Test mesocosms were deated with 'deltamethrin, formulated as Deltamethrin EW@15, at five different freatment levels. The nominal test concentrations ranged from 4.8 to 111 ng deltamethrin/le The formulation was applied on three occasions with an interval of 7 days between each application.

Deltamethrin dissipated very rapidly from water by degradation and partitioning to sediment, with a mean  $DT_{50}$  value of 24 hours. Only two thirds of the total deltamethrin detected in pond water was dissolved in water, with the remaining third adsorbed to algae or particulate matter. The mean  $DT_{50}$  for the whole system (water plus sediment) was 32 hours.

Deltamethrin present to sediment was also subject to dissipation by biotic and/or abiotic processes. A slight increase in sediment residues was detected approximatel@sever@weeks after application at higher test concentrations, and thereafter steadily decreased. From this study it is concluded that deltamethrin has no potential for accumulation in the aqueous environment.

## I. MATERIALS AND METHODS

#### 1. Test Item

Deltamethrin EW 015, an Al/water emulsion containing 1.64% w/w of deltamethrin

# 2. Test Systems

The study was carried in mesocosin poros:

Natural water and sediment from the Nespen water reservoir in Oberbergisches Land, 80 km from the test facility were used to fill difficial ponds to a sediment level of about 15 cm. Additional local ground water and water from an uncontaminated pond near Monheim, Germany was added up to 1 m depth. The ponds were filled 7 ponts before application of the test item.

# 3. Experimental Conditions

The distribution of deltamethrin, formulated as Deltamethrin EW 015, was investigated in aquatic mesocoso containing natural sediment and water under realistic outdoor conditions. The mesocosms were installed at the Bayer CropScience Germany. The twelve test tanks used in this study are part of system designed to establish virtually identical conditions in each tank. The tanks were covered with a layer of natural sediment. The water was composed of local



ground water and water from a nearby uncontaminated pond. Natural biological communities developed during the months before the start of the study. Each pond was 2.75 m in diameter, with a water lover of ca. 1 m in depth, a sediment layer of ca. 15 cm and contained 5940 L of water.

The test substance was applied three times during the early growing season in May 2004 at an interval of 7 days onto the water surface of nine test ponds. Each application was made with a commercial compressed air sprayer. The treatment levels were 4.8, 10.5, 23, 51 and 111 ng a.s./L per application (two replicates of 4.8 to 51 ng a.s./L, one replicate for 111 ng a.s./L). Three further tanks were used as untreated controls.

The mesocosms were investigated for a period of 14 days before and 105 days after the first treatment. Water and sediment samples were taken for biological and chemical analysis at time points up to 105 days. Further biological parameters were investigated but are not directly relevant for the evaluation of the fate and behaviour of deltamethrin in aquatic systems, and therefore are not addressed in this dossier chapter. The data relevant to the ecotoxicological assessment is summarised in the MCP section 10. The water temperature of the mesocosms ranged from 12 to 16°C in the pre-treatment phase, increasing during the summer to 23 °C. Dissolved oxygen values ranged between 8 and 26 mg/L. The pH ranged between 8 and 10.1 before and during the three treatments. Thereafter the pH was between 9.8 and 10.3.

Table 7.2.2.4- 1:	Physicochemieal and biological characteristics of water and sediment of the

	mesocosm ponds	Germany &
	, Origin ,	Cermany Germany
	Sediment & S & S Texture class (USBA)	
	Texture class (USDA)	silkløam S L
	Sediment Texture chass (USBA) 6 Sand 6 Silt 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Image: Weight of the second
	Silt of the second seco	1 KI 954.5 K KI
	CRAY & S 25 ~	
	Organik carbon /	
ð	Nitrogen O C &	[°] [°] 0.4 [°] / ₉
, Ôj	Nitrogen O O K	820 mg/kg
	Cation Exchange Canacity	
and the second s	Water w	
	pip (during experimental period)	9.9 (mean, range 8.3 - 10.4)
	Plardness (mean values)	→
~Ģ	Alkannity (mean values)	[∞] 3 − 7 mg/L
.1 1	Conductionty (mean values)	$384 - 521 \mu\text{S/cm}$
A B	Oxygen content 0	6.5 - 26.1 mg/L
.~	A A A	<i>v</i>
Sampling	Alkaffinity (mean values)	
I U		

4.

Water samples for residues analysis (approx) 500 - 800 mL) were collected at 0 (1 hour before and 4 hours after 1 application)  $3^{\circ}$ , 2, 4, 7 (1 hour before and 4 hours after 2nd application), 8, 9, 11, 14 (1 hour before and 4 hours after 3rd application), 15, 16, 18 and 21 days after the initial application. Later timepoint, were taken but not analysed as the levels of deltamethrin in water rapidly dropped below the limit of detection. On selected occasions, water samples were obtained from four depths (approx. 10 – 30, 30 – 50, 60 - 70 and 70 – 90 cm beneath water surface), to reveal the distribution of the test substance in the water column during the first 48 hours after each application. Sediment samples were collected at 0 (1 hour before 1st application), 2, 4, 7 (1 hour before 2nd application), 9, 11, 14 (1 hour before 3rd application), 16, 18, 21, 29, 35, 42, 49, 56, 63, 70, 84, 91 and 105 days after the initial application. Sediment samples were taken at two positions in each pond by means of a grab sampler. The upper 2 cm of both samples were mixed and used for analysis.



#### 5. **Analytical Procedures**

Water samples (ca. 500 and 800 mL) were diluted with 150 mL of acetonitrile + 10 mmol/ ammonium acetate, and analysed by HPLC-MS/MS using an internal standard. The Kimit of quantification (LOQ) was 5.0 ng a.s./L and the limit of detection (LOD) was 2.0 ng a.s./L. Ø

The percentage of adsorbed deltamethrin in selected water sample was determined by filtering the sample and extracting the filter with acetonitrile. Acetonitrile was evaporated to dryness and the sample reconstituted in test water / acetonitrile (4/1, v/v) of 10 mmol/L ammondam acetate. The reconstituted sample and the filtered water were analysed by HPLC-MS/MSas described above

Deltamethrin was extracted from sediment with acetonitrile 10 mmon um acetate (9/1, v/v) using a microwave extractor. The extract was centrifuged to remove any fine particles of sediment and analysed by HPLC-MS/MS using an internal standard. The LOQ was () ug a /kg dry weight sedonent and the LOD was 0.03 µg a.s./kg dry weight sedimen

No deltamethrin was detected in conformation water or sediment above the lights of quantifications. II. RESULTS AND DISCUSSION

#### 1. Data

For all tested concentrations the distribution of the active substance in water (given as ng deltamethrin equivalents/L) is shown by Table 3.2.4 $\odot$  2, that in the sediment (given as  $\mu g$  deltamethrin equivalents/kg dry weight) by Table 7.2.2 - 3.  $\cap$ 

The water sample Fesult taken four hours after each application indicate that the test systems were correctly dosed, with measured concentrations on average 94.1% of nominal.

The distribution of the active substance in water and sediment ven is % of applied amount is shown by Table 7.22.4-4 for the three highest test concentrations. The residues in sediment were too low to calculate mass balances for lower test concentrations.

During the first 48 bours after each application the distribution of deltamethrin in the water column was investigated by sampling water from four different Cepths, on the other sampling occasions mixed samples of the whole water countrations were analysed Clear stratification of deltamethrin concentrations was detected four hours after each application, when the major part of the test amount was found in the uppermost water layer. A hours after apple ation deltamethrin was distributed homogeneously throughout the entire water column. Dettamethrin residues declined rapidly in the water phase after all applications, with no residues LQQ (5 ng a.s./L) remaining by the following application days at 7 and 14 days. At selected sampling dates, the percentage of adsorbed deltamethrin in water was determined. Approximately two third of the total deltamothrin in pond water was dissolved in water, with the remaining third adsorbed to alsae or particulate matter.

The test substance was detected only once, shortly after the first application, in sediment from the two lowest test concept ation 0.4.8 and 10.5 mg/L, LOD = 0.03  $\mu$ g/kg dry weight). The results of the higher test level (23 - 211 ng/L) show a slight increase in sediment concentrations for about 7 weeks after application resulting the up to 20% of the total applied amount in sediment, followed by a steady decline to less than 6% of the total applied amount by the end of the study at 105 days.

As the stody was conducted under outdoor conditions, the influence of volatilisation into the air was not possible to evaluate.



#### 2. **Dissipation of parent compound**

The mean DT₅₀ value for dissipation of deltamethrin from the water phase was 22.4 hours and \$1.6 hours for the entire system (water plus sediment) assuming FOMC kinetics, reported as providing the best fits. Simple first order fits of the water phase and whole systems gave DTC values of 2006 hours and 32.1 hours, respectively. m

#### Distribution of the active substance in water after spray application of Table 7.2.2.4- 2: Deltamethrin EW 15 to mesocosm ponds and incubation under German outdoor conditions (given as no deltamethrin equivalents L) Q

Time after				<u>a</u>	plication	Rate	? _Q ,	NO CO	0
application	4.8 ng	a.s/L	10.5 r	ла о сл ^у	. 22	Qa.s/L	<i>™</i> 51 nô	a.s/L.	111
(days)	A	B	A			[™] [™]		B	<u>ک</u> ایآن م a.s
$0/+4h^{a}$	6.6		10.6	10 <u>,</u> 80		Q26.6	780	(©7.1) b	
1 ^{a)}	< LOQ	< LOD	6.6	< BQQ	14.9	160	\$3.9	16.8	36
2 ^{a)}	< LOD	< LOD	< LØQ	£ €LOQ ∗			\$v 24.9€		Ő12
4	< LOD	< LOD	₹₽ŎD	K LOD	< <b>k</b> ØQ	LOQ)	10.5	LOQ Q	
7/-1h	n.d.		Qn.d.	næl.	∼n.d. ∠	n.do	, EOQ (	) < LOD	< L0
7/+4h ^{a)}	7.1	< LOQ		9.2	§ 34.6€	(35,9) ^b	⁰ 77.8	44,2	126
8 a)	6.3	< LiQQ	e, 7.7	\$\$ 7.6 _€	9.1	10.0		P3.4	24
9 ^{a)}	< LOQ	<i>©</i> 9.2	റ്7.3 പ്	< LØQ	9.3	(9.4)		11.0	18
11	n.d.	~~LOD	< LOQ	SEOD (	LOQ	≲LŎQ	8.0	< LOD	7.
14/-1h	< LOD	′ < LØD	<b>≪</b> FOD	< LOD	< ĽØD	C LOD	× 8.0 < LOQ	< LOD	< L0
14/+4h ^{a)}	< LOD	<u></u> ≰LOQ (	LOQ	< LÔQ	A10.0 @	, 15.4	35.8	14.4	26
15 ^{a)}	S SOD ∖	Q LOD		× VOQ >	7.35	\$2.2 ≈	© 29.2	7.9	17
16 ^{a)}		< LOD	< YOQ	€ LOD		50	15.6	< LOQ	15
18	n.co	[∞] ₩.d.	n.d.	n.d. N.d.	Sn.d.	D < LQB	< LOQ	< LOQ	< L
21	n.d.	🖉 n.d. 🖉	n.Q	Ĥ.d.	n.d	≲ ÍØD	< LOQ	< LOD	< L
18 21 n.dc hot de a) average b) sample t LOQ: Limit LOD: Limit LOD: Limit LOD: Limit LOD: Limit	t of detection	$a_{1} = 2 n \delta a.s.$	g a.s./b /L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

#### Table 7.2.2.4- 3: Distribution of the active substance in sediment after spray application of 1920 Deltamethrin EW 15 to mesocosm ponds and incubation under German outdoor conditions (given as µg deltamethrin equivalents/kg dry weight)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time after	Application Rate								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	application	4.8 ng	g a.s/L	10.5 n	g a.s/L	23 ng	a.s/L	®1 ng	a.s/L	114 ng
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(days)	Α	В	Α	В	Α	В	A A	Ĩ KÔ, ĩ	a.s/L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 (-1h)	< LOD	< LOD	< LOD	< LOD	< <b>I</b> OD	< LOD	< LOD		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	< LOD	< LOD	< LOD	< LOD	< ĽOD	V//		€ LOD	< KØD
9 $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$	4	0.18	0.52	< LOQ	< LOD	k LOQ				0.16
9 $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$	7 (-1h)	< LOD	< LOD	< LOD	< LOD	< LOD			≪¥LOQ_	0.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	< LOD	< LOD	< LOD	0.24	<loq< td=""><td>S&lt; L0Q</td><td>Q.31</td><td>V&lt; roos</td><td>Q(79</td></loq<>	S< L0Q	Q.31	V< roos	Q(79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	< LOD	< LOD	< LOD	< DD	Ø 0.16	< FOO	×0.70		0.42
16 $<$ LOD	14 (-1h)	< LOD	< LOD	< LOD	< LOD	0,40			Z OD	È≫ LQD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	< LOD	< LOD	< LOD	[™] <ĽØØ	<u>^</u> %.26 _≫	0.51			0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	< LOD	< LOD	< LQD	< OD	© ⁹ 0.314	035	<u>م</u> ر 0.36	0,\$7	<b>40</b> .29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	n.a.	n.a.	p az	🖉 n.a. 🔊	0.C4	LOQ	0.75	<b>Ø</b> .29	0.23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	n.a.	n.a.	n.a.	n.a.	0.23		6,35	\$0.32¢	0.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	n.a.	n.a.	n.a.	ma.	0.46	0,0,3	°∼0.69 0	0.19	0.29
49 $<$ LOD	42	< LOD	< LOB	< ľød "	~ LOD ℓ	0.5	Ø LOO	0.32	<b>€</b> ČOQ	0.73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49	< LOD			[∞] <lø⊅< td=""><td></td><td>0.567</td><td></td><td></td><td>0.59</td></lø⊅<>		0.567			0.59
$\frac{70}{84} < LOD < LOD < LOD < LOD < LOD < 0.33 0.34$	56	< LOD	× LOD	< LOQ			0.41/8	~\$0.60 ×	0.27	0.70
$\frac{70}{84} < LOD < LOD < LOD < LOD < LOD < 0.33 0.34$	63	< LOD %	ر <lod< td=""><td>&lt; KOD</td><td></td><td>0,39</td><td>\$0.32 ¢</td><td>0.5Ø</td><td>0.15</td><td>0.22</td></lod<>	< KOD		0,39	\$0.32 ¢	0.5Ø	0.15	0.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70	< LOD	< LOD	~~LOD@	r < LQD	×0.39	0.150	Ø\$37	0.33	0.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	84	< LOD	StoD's	^O ≻LQD ^y	≼LOD (	¢≈LO@	0Q5	@0.33	< LOQ	0.24
105 COD	91	<₽°OD ?	LOD V	<¢OD	×LOD(	<loq< td=""><td>0.22 🔬</td><td>0.31</td><td>0.15</td><td>0.31</td></loq<>	0.22 🔬	0.31	0.15	0.31
LOQ: Limit of quantification = 1.0 µg a 3/kg droweight LOD: Limit of detection = 0.5 µg a s Ag dry weight n.a. = not malysed	105	& LODS	< T`OD	QLOD &	∕ <lød< td=""><td>DOQ d</td><td>0.19</td><td>0.26</td><td>0.24</td><td>0.14</td></lød<>	DOQ d	0.19	0.26	0.24	0.14
	n.a. = not invaly	sed								

Table 7.2.2.4- 4:	Distribution of the active substance in water and sediment after spray
	application of Deltamethrin EW 15 to mesocosm ponds and incubation 2
	under German outdoor conditions (given as as % of applied amount)

							~		" "Or
Time after				Ар	plication Ra	nte	, Or	<u> </u>	Ś
application		23 ng a.s/L			51 ng a.s/L		Ø	111 ng a.s/L	
(days)	water	sediment	sum ^{a)}	water	sediment	sum ^{a)_1}	water	sediment	Sum [©]
0 (+4h)	116.55	n.a.	116.55	144.04	_©n.a.	144,04	79.17	n.a.	<b>79</b> .17
1	67.59	n.a.	67.59	50.57	n.a.	<b>50</b> ,57	33.22	n g.	≪33.22 Å
2	38.77	0	38.77	29.37	0	¢29.37	10.84	Ŵ, Ŵ	10.84
4	10.99	1.33	12.32	12,95	4.05	16 <b>.9</b> 7°	6.45	ấ∳ 1.76 ⁽ )	\$21
7	n.a.	0	0	<b>2</b> .56	5.15	×2,71	2.28	3,19 4	\$5.39
7 (+4h)	155.86	n.a.	155.86	M23.8	nî,a.	123.85	114.07	°n.a.	Ĵ 114.77
8	42.16	n.a.	42.16	33:52	Ch.a.	33.62	22.36	n.a	22.36
9	41.18	2.66	43 83	28.26	y 4.02	<b>22</b> .28	6.63	8.4	Z5.05
11	10.92	5.54	<b>16</b> .46	√8.04 <i>©</i> ²	<u>8.</u> 26	Ô16.30	6.90	<b>4</b> 4.47	11.44
14	0	18.34	§ 18.34	2.47	×4.88	7.36	2525		2.25
14 (+4h)	54.78	n.a.	54.78	49.53	n.a	49.53	<u>َ</u> 23.66	n:a.	23.66
15	41.67	n.a	AP.67	\$36.51	<u>д</u> , ф.	€36.5 <b>p</b>	15.5	n.a.	15.59
16	17.49	19047	°∕≫34.96	18.66	\$7.10	25,7,7	14.05	o [≫] 3.35	17.4
18	n.a.	19.34 🖇	19,\$4	A.86	⊘ 8.27	13.13	\$ 0 g	3.24	3.24
21	n.a. 🍾	¥ 4.11	<b>4</b> 011	\$2.44.	1 <b>4</b> ,17	≪À3.60S		2.57	2.57
29	n.a.	8673	<i>ଦ୍ଧୁ</i> 8.35 ଠି	næ	چ. 1.57 %	7,57	s. 19.3.	3.06	3.06
35	na	13.23	13.23	a.	§ 9.74	Ø74	≪yn.a.	3.22	3.22
42	a.	5 7.95 ⁰	£95 🔉	n.ą.~Q	487	Ç 4.07 ©	n.a.	8.04	8.04
49	Ö n.a.	19.72	19.72	n 🎝	₹.88 <u></u>	7.88	n.a.	6.46	6.46
56 🔊	n a	£2.57 C	19.72 × 12.57	op.a.	9.86 ^{°°}	<b>@</b> ,80	n.a.	7.72	7.72
63 🖏	n.a.	15.14	15,14	∽n.a. Ø	7,32	7.32	n.a.	2.45	2.45
700	n.a. 🖒	12 88	¢11.88	n 🎝	8.03	8.03	n.a.	3.70	3.70
84	n.a.	مُنْ 6.93 م	6.98	^~p.a. 🬾	4.167	4.16	n.a.	2.60	2.60
91	jy.a.	6.15	6/11	🖉 n.a. 🔿	5.16	5.16	n.a.	3.41	3.41
105	n.a.	5.9Å	<u>∲~5.41</u>	n.a. O	\$5.68	5.68	n.a.	1.55	1.55

n.a. = not analyses the applied amount reached the sediment during the first 24 hours after application a) Assuming that only a neg

#### Ш CONCLUSION

Deltamethrin disappeared very rapidly from water by degradation and partitioning to sediment, suspended organic matter and to biota (e.g. macrophytes). The mean DT₅₀ for dissipation of deltamethrin in the water column of mesocosms was 24 hours. The mean  $DT_{50}$  for the whole system (water plus sediment) was 22 hours. Ő

Deltamethrin present in sediment is also subject to dissipation by biotic and/or abiotic processes, albeit more slowly than in the water phase.

0.

Deltamethrin

CA 7.2.3 Degradation in the saturated zone

The degradation of deltamethrin in the saturated zone was not studied since deltamethrin is not expected to reach the saturated zone after its use according to good agricultural practices. A summary of the route and rate of degradation of deltamethrin in water and sediment is given in section CA 7.2 and Figure 7.2-1.

No additional studies are submitted within this Supplemental Dossier for the deltamethon renewal of approval.

#### CA 7.3 Fate and behaviour in air

Deltamethrin has a low vapour pressure of  $1.1 \times 10^{-6}$  Pa (at 20°C), indicating a low volability of the active substance. In wind tunnel experiments, deltamethrin showed a negligible volatilisation from bean leaves and soil with 0.6 - 1.1% and 0.2% of the appled radioactivity over 24 hours, respectively. Volatilisation of deltamethrin from a water surface microlayer was observed in laboratory and poind studies. This is in agreement with the calculated Henry's Law Constant of 2. D'a m² mol at 20°C, which indicated some volatilisation of deltamethrin from the water surface. The indirect photolytic degradation after reaction with OH-padicals is rapid, with a calculated

The indirect photolytic degradation after reaction with OH-radical is rapid, with a calculated atmospheric  $DT_{50}$  of 16 hours, assuming the 24 hours average QH radical concentration for calculation.

According to these results, an accumulation of long angeomass of the transformed by the air and a subsequent contamination by wet or dry deposition are not to be expected. This fact was confirmed by the evaluation of monitoring studies published in the literature (see section  $C(P7.5)_{CO}$ )

Despite the new pys.-chem data on vapour pressure Henry's Law Constant (see section MCA 2) no additional studies are submitted within this Supplemental Dossier for the defiamethrin renewal of approval.

# CA 7.3.1 Route and rate of degradation in air

Route and rate of degradation of deltamethrin in air was evaluated during the Annex I inclusion and was accepted by the European Commission (SANCO/6504/VI/99-final 17 October 2002). The following study included in the Baseline Possier was regarded relevant during the Annex I inclusion:

	$\sim$	S.Y.	$\swarrow$	Ô	, N	<b>%</b> ,	Š	
Å	Author	(š)	Ő 4	×	Ô	$\bigcirc^{v}$	Year	Document No.
1 1 1			e de la constante de la consta	<u>کر</u>	ST ST		1999	M-184105-01-1
测┖	õ	0	, °N	~	\$ \$	*		

The potential persistence of the compound in an has been estimated according to the models developed by Atkin on. Half-life for reaction with OH tradicals was calculated to be 16 hours and the half-life for reaction with ozone was calculated to be 50.4 days (M-184105-01-1).

It can be concluded from its degradability in air that deltamethrin will not accumulate in the atmosphere, or be transported in gaseous phase over large distances.

# CA 7.3.2 Transport via air

In the Baseline Possier this section includes one laboratory study on volatilisation from water, one study on volatilisation from dwart bean plants in a wind-tunnel, one field study on volatilisation from soil and field beans and finally, one field study on volatilisation from soil, glass beads and various plants (letuce, kohirabi, green beans and wheat). All studies were evaluated during the Annex I inclusion and were accepted by the European Commission (SANCO/6504/VI/99-final, 17 October 2002). The following studies included in the Baseline Dossier were regarded relevant during the Annex I inclusion: Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

**Bayer CropScience** 

Author(s)	Year	Document No.
	1991	M-136601-01-1
	1993	M-132965-02-2 See also KCP 9.3/02*
		See also KCP 9.3/02*
- 2	1993	M-131700-01-20 0
	1993	M-132706-01-2 M-132707-01-2 M-132707-01-2
	1993 Ø	
Boehnecke, A., Siebers, J., Nolting, H. G. (Publication)	100	M-151719-01-1-2 6
Doenneeke, A., Siebers, J., Nolulig, H. O. (Fubgration)		See K 9.3/01* 2

* Please refer to the baseline dossier for Deltamethrin EC 25g/

As overall conclusion, small amounts of deltamethring may be lost by volatisation from plants and soil in the field. Indirect measurements in the field most probably overestimated the volatilisation rate. Tunnel results were considered more refrable by the former BMS Sweden From water, a significant Ø) volatilisation may occur.

Since the substance is not likely to besusceptible to direct phototransformation, the rate of reaction with OH-radicals is the most important dissipation route (see section CAS.1.1 Sefore). Model calculation indicates that deltamethrin reacts with protochemically produced hydrox radicals in air, with a halflife of 16.4 hours. From its descadability in air it can be concluded that deltamethrin will not accumulate in the atmosphere, or be transported in gaseous phase over large distances. 

# Local and global effects





## CA 7.4 Definition of the residue

#### CA 7.4.1 Definition of the residue for risk assessment

The proposed residue definitions relevant for exposure assessments, which can be used as basis for risk assessments in each compartment, are the following:

Compartment	Residue Definition
	Deltamethrin (AE F032640) Br ₂ CA (AE F108565, <i>cis</i> ) mPBacid (AE F109036)
Soil	Deltamethrin (AE F032640) Br ₂ CA (AE F108565, $cis$ )
	Deltamethrin (AE F032640) Br ₂ CA (AE F108565, <i>cis</i> ) mPBacid (AE F109036)
	Deltamethrin (AE F032640) Br ₂ CA (AE F108565, $cis$ ) mPBacid (AE F109036)
Groundwater	Br ₂ CA (AE F108565, <i>cis</i> )
	Deltamethrin (AE E0326/0) $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
	Alpha-R-isomer of deltamethrin (AE F108569) <i>Trans</i> -isomer of deltamethrin (AE f108569) 4'-OH-Deltamethrin (AE 0035073) Br ₂ CA (AE F108965, <i>civ</i> ) BrCA isomer D (code not given) BrCA isomer 2 (code not given) Serinyl-BrCA (BC8-CW57835) mPBacid (AE \$109036)
	Arpha-K-isomer of deframetriam (AFF 100309) <i>Trans</i> -isomer of deframetriam (AFF 100309) 4'-OH-Deltamethrin (AFF 0035082) Br ₂ CA (AE F108965, G) BrCA isomer D code not given) BrCA isomer D code not given) Serinyl-BrCA (BCS-CW57835)
Surface water	4'-OH-Deltamethrm (AF40035082) $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$ $2^{-1}$
and	Br ₂ CA (AE F108965, <i>city</i> ) BrCA isomer Q code not given)
sediment	BrCA isomer D code not given)
	BrCA isomer 2 (code not given) a given
	BrCA isomer 2 (code not given)
	mPBacid (AE \$109036)
Air	mPBacid (AE \$109036) Deltamethrin (AE F6326400)

# CA 7.4.2 Definition of the residue for monitoring

For the compartments soil, groundwater, surface water, sediment and air the proposed residue definition for monitoring B deltamethrin.

# CA 7.5 Monitoring data

Monitoring data of detramethrin were evaluated during the Annex I inclusion, and were accepted by the European Commission (SANCO 6504/VI/99 mal, 10 October 2002). The following study regarded relevant for the current section is included in the Baseline possier:

~	¢ ^o	Ö 🗞	O`		102		
	Author(s)	$\frac{2}{3}$		<u>Ś</u>	ð	Year	Document No.
						1991	M-136600-01-1
- C	[°]			~0×			

More recent monitoring data received from literature review have been evaluated and are submitted within this Supplemental Dosster for the deltamethrin renewal of approval. Data were available for deltamethrin in Soil, surface water, ground/orinking water, sediment and air.

The results from monitorings published in literature, which were regarded relevant for the EU, are summarized in the following. Generally they well confirmed the knowledge about fate and behaviour of deltanethrin in the environment and the used endpoints for exposure modellings.

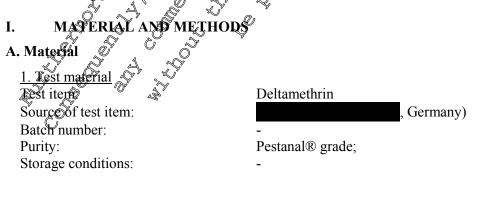
If detected avail, the observed concentrations of deltamethrin in all mentioned compartments are very low

#### Soil Compartment:

Report:	KCA 7.5 /02; Goncalves, C.; Alpendurada, M. F.; 2005
Title:	Assessment of pesticide contamination in soil samples from an intensive
	horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry
Source:	Talanta, 65, 5, p. 1179-1189
Document No:	M-460866-01-1
Guidelines:	None V Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
GLP:	No, published study $4$
	Literature review
Literature review	
classification:	b) supplementary information (EFSA Journal 2011; 9@):2092)

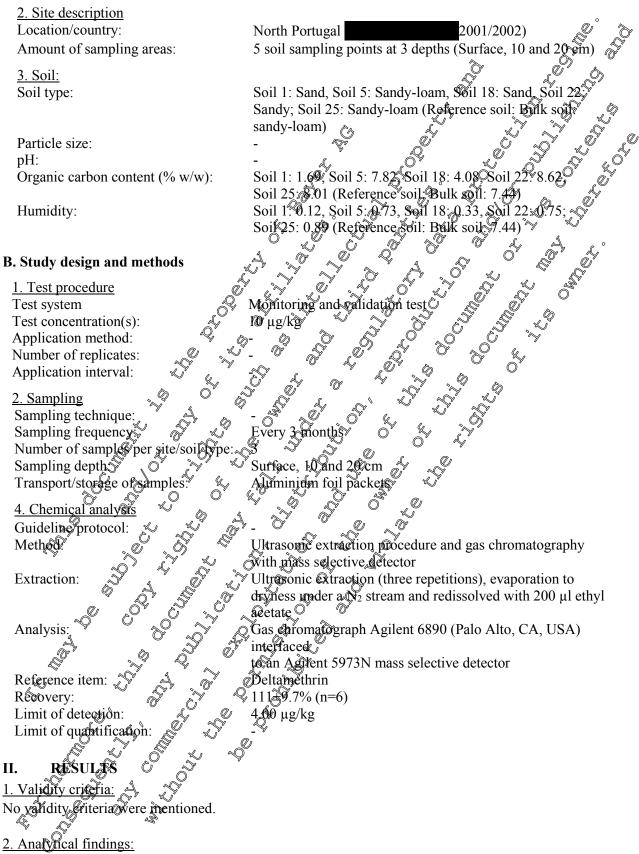
#### **EXECUTIVE SUMMARY**

This paper describes the development and application of an ultrasonic extraction (USE) technique combined with gas chromatography and mass spectrometric detection for the analysis of OCPS OPPs, triazines, pyrethroids, acetanilides and other miscellaneous pesticides in soil samples from an intensive horticulture area in North Portuga


The implemented monitoring program is expected to allow observing temporal trends on pesticide contamination as well as variations according to depth in five sampling points, during two years.

Material and methods as well'as results are summarized for validation of the method and the monitoring study of deltamethrin.

An uncontaminated bulk soil sample was selected to use in the validation experiments and spiked with 10  $\mu$ g/kg deltamethrin Pestanal® grade; **Selected to use in the validation** (Kernany) Real soil samples from five sampling points at three depths (surface, 10 and 20 cm) were collected in four sampling dates and analysed with the USE method. This monitoring program was scheduled to include a sampling event approximately every 3 months. After collection and transport to the laboratory in aluminium foil packets, the samples were driver in an oven at 40° (during 48 h, seved at 500 µm, perfectly well homogenized and kept refrigerated at 4 °C before analysis.


For extraction, 5 g of soil samples was placed in small Etlemyer, flasks and 5ml of a suitable organic solvent added. The soil samples were firstly manually agitated and then exposed to USE in a Bandelin RK 100H (80/160 W) ultrasonic bath (Soobrex, Germany) for 15 min, three times. After each extraction period, extracts were collected by pouring the extractart through a funnel plugged with a small piece of cotton wool overlaid by a portion of adhydrous sodum subate, which had been previously washed with the same solvent. In order to achieve the adequate concentration factor, 5 g aliquot of sample was submitted to extraction and the fuel extract (cd 15 m) evaporated to dryness under a gentle stream of nitrogen without need of any clean up procedure and redissolved in 200 µl of ethyl acetate. The following chromatographic analyses were carried out in a gas chromatograph Agilent 6890 (Palo Alto, CA, USA) interfaced to an Agilem 5973 k mass selective detector.

Limit of detection and recovery was  $4.0 \,\mu\text{g/kg}$  and 111% (n=6), respectively. No deltamethrin was found in the soil samples.



Bayer CropScience

# Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin



Limit of detection and recovery was 4.0  $\mu$ g/kg and 111% (n=6), respectively. No deltamethrin was found in the soil samples.



#### III. CONCLUSION

No deltamethrin was found in the soil samples from an intensive horticulture area. Therefore, it is not regarded as a persistent compound in soil.

Report:	KCA 7.5 /03; Fernandez-Alvarez, M.; Llompart, M.; Lamas, J. R. Lores,
	M.; Garcia-Jares, C.; Cela, R.; Dagnac, T.; 2008
Title:	Simultaneous determination of traces of pyrethroids, organochlorines and other
	main plant protection agents in agricultural soils by headspace solid-phase
	microextraction-gas chromatography
Source:	J. Chromatogr., A, 1188, 2, p, 454-163
Document No:	M-455938-01-1 $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$
Guidelines:	
GLP:	None None None None No, published study
Literature review	
classification:	b) supplementary information (EESA Journal 2011; 9(2):2092)

#### **EXECUTIVE SUMMARY**

A solvent-free and simple method based on headspace solid-phase picroextraction (HS-SPME) was developed in order to determine simultaneously 36 common pesticides and breakdown products (mostly pyrethroids and organochlorine compounds) in soil. The analysis was carried out by gas thromatography with micro-electron-capture detection (GC nECD). As far as we know, this is the first study about the SPME of pyrethroid insecticides from soil. However, material and methods as well as results are summarized only for the monitoring of deltamethrine.

summarized only for the monitoring of deltamethrin Different soil samples (A–G) were collected from overal pardens (A, B) and agricultural locations (C–G) of NW Spain. The soil samples (0.5 g/were placed in 10mL vial). Sodium chloride was added in proportion of 20% kw/v in the required experiments. The vials were then called with aluminium caps and PTFE-faced cepta. Samples were let to equilibrate in a water bath at the working temperature for 5 min and the SBME fiber was then exposed to the fleadspace over the sample for 30min under stirring. Once finished the exposition period, the fiber was thermally desorbed for 5 min into the GC injector port and the chromatographic analysis was carried using GC  $\mu$ ECD.

In order to assess the performance of the HS-SPME procedure, analytical quality parameters were measured using spiked soil samples with known concentrations of the target compounds. Therefore, garden soil A (7.4% of organic matter, 70M- content) was spiked at levels raning from 0.5 to 200 ng/g. Fortification of the sample was carried out by weighing 30g of soil in a big beaker and adding 15 ml of the corresponding working colution so that the entire sample got covered with organic solvent. The slurry was allowed to stand and stirred occasionally until the acetone completely evaporated (9–12 h). Afterward 0.5 g fractions were collected and kept in a freezer at  $-20 \, ^\circ$ C until 5–10min before the analysis. For the analytical performance assessment, aliquots of the same soil sample (A) spiked at different concentration levels ranging from 0.5 to 200 ng/g were analysed as described before.

The calculated LOD and DOQ for deltamethrin were 1.2 and 4.0 ng/g, respectively. Recovery efficiency of optimized method was 81%. No deltamethrin was found in non-spiked real soil samples.



# A. Material

 1. Test/material
 Image: Constraint of the second secon

Bayer CropScience

(в⁄

<b>Document MCA: Section 7 Fate and behaviour in the environment</b>
Deltamethrin
Denamethrin

Storage conditions:	-
<u>2. Soil:</u>	
2. Soll. Name / Classification	S S
	Different soil semples (A. C) were callested from setteral &
Source, sampling date and storage	ordena
conditions	gardens $(C, C)$ of NW Quin $(C, C)$
Soil trmo:	- Different soil samples (A–G) were collected from several 6 gardens (A, B) and agricultural locations (C–G) of NW Spain. 5 Sieved to 2 mm A: 7.4%; B& 3.7%, C: 8.7%, G:11.2%
Soil type: Particle size:	Signad to 2 mm
pH:	
Organic carbon content:	A · 7 /0% · B / 3 70% C · 8 / 6 · 11 20% 2 0
Organic carbon content.	A. $7.470$ , $B015.770$ , C. $0.390$ , $G.11.270$ $V$
B. Study design and methods	
<u>1. Test procedure</u>	Monitoring and analytical quality test
Test system (study type):	
Treatments:	Analytical quality test: Deltamethrin
Application rate:	Analytical quality test: 0.5 to 200 pg/g
Number of replicates	
Application:	Apalytical quality test 95 ml working solution was added to
Q° (	30 g of soil in a big braker. The slurry was allowed to stand
	and stirred occasionally until the acetore completely
	evaporated (9-12).
Sampling technique:	
Sampling frequency:	Analytical quality test: Only one 2
Storage of samples:	Apatytical quality test 20°C
Storage of samples: <u>3. Chemical analysis</u> Guideline/protocol: Method:	
Guideline/protocor:	
Method:	HS SPME and GO + uECO
Method:	Afeadspace solid-phase microextraction using sodium
	chloride (20% w/v) and SPME Fiber
Analysis: Reference item: Recovery: Limit of detection: Limit of quadtification:	Heweett-Packard \$890 CC system equipped with 63Ni -
Reference item: N	Deltamethrin X
Recovery:	×81% 0° ~
Limit of detection:	
Limit of quantification:	$\mathbf{D}$
II. RESULTS	
1. Validay criteria:	
No validity criteria svere mentioned.	
2 Analytical fundings:	
No deltamethrin was founded non-snike	dreal soil samples
Reference item: Recovery: Limit of detection: Limit of quadification: II. RESULTS 1. Validity criteria: No validity criteria No validity criteria No validity criteria No deltamethan was found in non-spike III. CONCLUSION Deltamethan was not found in real soils	samples from agricultural areas. Therefore, it is not regarded
Dentainetining was new rounds in rear son s	samples from agricultural areas. Therefore, it is not regarded
as a persistent compound	
, jor	
$\lor$	

#### **Aquatic Compartment:**

Report:	KCA 7.5 /04; Figueiredo, F.; Ribeiro, M.; Rocha, M.; Cruzeiro, C.;
	Rocha, E.; 2012
Title:	Development and validation of a GC-MS method for determination of 39
	common pesticides in estuarine water – targeting hazardous amounts in the
	Douro River estuary
Source:	Intern. J. Environ. Anal. Chem. Vol 92, No. 14, 10 December 2012, 1587-
Document No:	M-457780-01-1
Guidelines:	None $\Delta^{(1)}$ $\hat{Q}^{(2)}$ $\hat{Q}^{(3)}$ $\hat{Q}^{(3)}$
GLP:	No, published study $\sqrt{2}^{\nu}$ $\sqrt{2}^{\nu}$ $\sqrt{2}^{\nu}$ $\sqrt{2}^{\nu}$ $\sqrt{2}^{\nu}$
Literature review	
classification:	b) supplementary information (FFSA, Journal 2011; 9(2):2092)

#### **EXECUTIVE SUMMARY**

An analytical method based on solid-phase extraction followed by gas chromatographs mass spectrometry (GC-MS) was developed and validated for the quantification of 32 pesticides with distinct physico-chemical characteristics (focluding some degradates) in extraine water samples. Method detection limits were between 3.6 and 6 2 ng/L. The obtained sensitivity and accuracy, associated with the inherent confirmatory potential of GC-MIS, validate the northod as a cool in environmental monitoring. Analyses of water samples (n=S#) taken from the Douro River estuary, from March to May 2009, showed the presence of deltamethrm.

The measured concentrations ranged from  $15\sqrt{2}$  ng/L in March to 276.6 rg/L in April, however, the methodology used was not adequate to rule out that detects were caused by particles trapped on the filters.

## I. MATERIALS AND METHODS

# A. MATERNALS

Test item: Deltamethrin (chemical state and description: not reported) Source of test item: Nor reported Batch number: Nor reported Purity: Analytical grade

Water samples:

Storage condition

prepared in methanol to produce a final stock solution of 1000 mg/L and kept in the dark -20 $^{\circ}$ 

Surface water samples were collected from the sampling, all water was kept refrigerated (-4°C), transported in the dark to the laboratory

## B. STUDY DESIGN AND METHODS

Sampling:	Water samples were collected into 2.5-L amber glass bottles, which were
A	rinsed in the laboratory with ultrapure water and later, on site, with water
	sample x
Sampling@requency:	Wice a day according to both high and low tides, from late March to late May
	2009 (n=84).
No. of samples/site	N=84 in total
Storage of samples:	All samples were maintained at 4° C in dark until extraction
Samplingdepth:	Sampled from a depth of approximately 1m using a peristaltic pump (Global
0	Water, model: WS 3000, California, USA).

# Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Measurement of	
temperature and pH: Temperature and pH were measured immediately after collection using a	ð
Consort C868 electrochemical apparatus	S.
Statistics: After checking assumptions of normality and homogeneity of variances	
(Kolmogorov-Smirnov and the Bartlett tests), data sets were analyzed by our	
way analysis of variance (ANOVA) (Holm-Sidak test or post-hoc, Tukes test	A-
way analysis of variance (ANOVA) (Holm-Sidak test or post-hoc, Tukey test with ranked sums). Chemical analysis of samples Guideline/protocol: none Method: GC-MS	Q j
Chemical analysis of samples	<i>a</i> r
Guideline/protocol: none	Å
Method: GC-MS	Ş
Pre-treatment: After sampling all water was kept retrigerated and then immediately acuum	7
filtered through 0.45 mpoglass fibre filter to remove suspended particles.	
Thereafter, each filter was washed with approximately 2nd of methanol and	
this volume was added to the filtrate Solid phase Extraction followed.	
Conduction: After extraction 1 g of anhydrous sodium sulfateor as added to the sample bottle	
to remove any residual water and the bottle was rinsed three times with	
approximately 4 mL of dichloromethane. This volume, reduced to 1 mL under a	
gentle nitrogen stream, was added to the ethyl acetale fraction which was	
concentrated to 200 mL. The standard s	
Reference item: Standard solutions of pesticide standards purchased from Sigma-Aldrich	
Recovery: $10/.2\%$ (RSD $(5\%)$ $(5\%)$ $(5\%)$ $(5\%)$ $(5\%)$ $(5\%)$ $(5\%)$	
Limit of detection: 4.8 ng 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Limit of quant.: $15.8 \text{ mg/L}$	

## II. RESULTS AND DISCUSSION

- 1. Validity criteria fUPAC validation gridelines):
- evaluation of linearity; Dank matrices (free of all target pesticides)
- accuracy: percentage of agreement between the method results and the nominal amount of added compound (three replicates of each QC samples)
- precision: relative standard deviation (%RSD) of the replicate measurements (three replicates of each QC samples)
- limit of detection and quantification: was determined evaluating the signal/noise ratio (S/N 3 for LODs and S/N 100 or LOOs)

## 2. Analytical findings

1

Deltamethrin was detected in 94% of all measured water samples. In April its amounts were higher than in March and May (Table 7.5.7). Dettamethrin values reported for water include the extraction of particles on filters.

Table 7.5- 1:	Environmental levels of deltamethrin in the	estuary (n = 84).
¢`	Deviation to the mean is represented by +/- SE [ng/L]	• • • •

	rch (n=2)	🔊 April	n (=8)		May	(n=4)
[%] 5 4	th week 3 1 st v	week 2 nd week	3 rd week	4 th week	2 nd week	4 th week
	<b>\$51.2</b> 22	8.0 179.5	184.6	276.6	133.9	132.5
294.0 0 ô	ý 0. –	18.5 +/- 13.8	+/-13.7	+/-24.5	+/-7.5	+/-4.7

# III. CONCLUSION

Deltamethrin was found in 94% of analysed samples (n = 84) taken from the **delta setuary**, from March to May 2009 in concentrations up to 276.6 ng/L. However, the methodology was not adequate to



rule out that detects were caused by particles been trapped on the 0.45 mm glass fibre filters. Since the amount of trapped particles is not given, but the filter wash solution was added to the filtere, the interpretation of results is quite difficult. It is reasonable for a very well adsorbing compound like of deltamethrin that the major portion of deltamethrin reported for the water phase in fact was bound to particles of samples, which were not specified in detail.

1

Report:	KCA 7.5 /05; Menkissoglu-Spirouci, U.; Tsocharzis, E.; Papageorgiou,
	M.; Tzimou-Tsitouridou, R.; Karpouzas, D.; 2012 🖉 🖉 🖉 🖉
Title:	Development and validation of the HPLC-DAD method for the simplification of the simplifi
	determination of most common rice pesticides in paddy water systems
Source:	Intern. J. Environ. Anal. Chem. Vol. 92, No. 5, 548–560
Document No:	M-457791-01-1
Guidelines:	None
GLP:	No published study
Literature review	
classification:	b) supplementary furformation (EFSA Journal 2011; 9(2):2092)

## **EXECUTIVE SUMMARY**

Rice crop is mainly cultivated in large river basins which constitute unique ecosystems and their ecological quality is invaluable. However the high loads of perticides used in rice cultivation contribute to the contamination of the water resources in such rice-cultivated regions. To regularly monitor the quality of such water resources there is a need for a rapid and sensitive multi-residue analytical method. This study presents the development and validation of a new analytical method for the simultaneous determination of most rice pesticides including detamethrin.

A solid-phase extraction (SPE) procedure followed by high performance liquid chromatography (HPLC) with diode array detection (DAP) was used. A C18 TP column operated at 30 °C was utilised and the analytes were separated with a mobile phase of acetopitrile/water maxture to a linear gradient. Clean-up of water samples and isolation of pesticides was performed on SPE Bakerbond octadecyl cartridges and an ethyl acetate dichlomethane mixture (9:1 v/v, 2 mL) was used for elution.

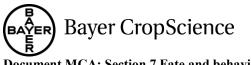
Method validation was performed by means of intra-day (n=5) and inter-day accuracy and precision (n=8), sensitivity and linearity. The relative recovery of the deltamethrin in paddy water samples was acceptable (99.2 %) and the relative standard deviation (RSD%) ranged from 3.0 to 4.2 %. Limits of detection (LOD) and limits of quantification (LOD) were 0.2 ng/mL and 0.6 ng/mL respectively. Deltamethrin was not detected at the 10 sampling sites.

# I. MATERIAL AND METHOPS

## A. Material

<u>1 Fest material</u> Test item: Chemical state and description: Source of lest item? Batch number; Purity Source conditions Source of lest item? Deftamethrin Not reported Not reported

Ten water samples were collected from rice paddies and receiving canals located in the river basin. These paddies (organic and conventional fields) were experimental field facilities


Five

of Greece

samples were collected at mid-June 2008, while five more samples were collected during the period

BAYER Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

from end of July to mid August 2008.						0	
Soil parameters like soil type, particle s	size, pH, (	OC conten	t were not	reported.			ð
<b>D</b> Study design and methods				~	9	S ^N	de la compañía de la comp
B. Study design and methods				Å.			
<u>1. Sampling</u>	Matura			.0,			
Sampling technique:	Not repo	rted		A	, Ô ^v		Ì.
Sampling frequency:	Not repo	rted Ø		Ś	L.		
Number of samples per site/soil type: Storage of samples:	In refrig	ration for	sofo prot	U runtion be	tyllion + a	Sc and	Ś
Storage of samples.	-2°C unt	il malysis					0' ∦
2. Measurements		<i>b</i>	~~~		Å.		
Temp., soil moisture, pH, OC :	Not repo	rted •	safe prese		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C and C	
3. Chemical analysis	Oʻ.			~ 0	Y L	4 60	
Guideline/protocol:	Not repo	rted V	~~~ 4	Q.	0″	Ê Û	
Method:	HPLC,D	AD∕y	ð <i>C</i> i	, <u> </u>	£ 1.	, S	
<u> </u>							
Pre-treatment of samples:	Through	a Glass Fi	hrolds tor 1	ISL/ALAND	d thom//trov	isterred to	
Â ^Y .	J.T. Bak	er BAKEF	BOND	tade of SI	PE Partrid	ges.	
Conduction:	[»] Not tepo	rted 🦉		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·	
Reference item:	Not repo	rtæd 🏑	Ű,	~ 0 &	, N		
Recovery:	<b>99</b> .2 %{	0			Čo -		
Limit of detection:	-0.2 ng m	L			L.		
Limit of quantification:	0.6 mg/m	Le ^y ô'	, K	, ^N , Õ	y ^v )		
Limit of quantification: II. RESULTS <u>1. Validity criteria</u> <u>2. Analytical findings:</u> Table 7.5-2: Pesticide concentration	چ بخ detined.						
2. Analytical findings:			õ, v	~			
Table 7,5-2: Pesticide concentration	, °				المع مماليم	And from	
Table 7.5-2:       Pesticide concentration         rice paddic and received       received	ns (ng/m) vin à drok		a in the w	ater samp	river	ted from	
(Northern Greece) and	Ving aran	nage cana	is apocated	in the	d develor		
					u ueveloj	Jeu.	
Sample Sample Sample	Sample	Sample	Sample	Sample	Sample	Sample1	
		6	7	8	9	0	
<pre>&lt; LOD &lt; LOD &lt; LOD &lt; LOD</pre>	LOP	< DOD	< LOD	< LOD	< LOD	< LOD	
Samples 1- Swere collected an mid-June while an	nples 8-10 y	vere collecte	d during a pe	eriod from er	nd of July to	mid-August.	
	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	)7					
Deltamethrin was not detected at all 10 sa	ampling si	tes (comm	ion paddy	rice water	system).		
Samples 1- Swere collected an mid-June while and III. A CONCLUSION Deltamethrin was not detected at all 19 sa	ν D						



ó

Report:	KCA 7.5 /06; Laubel, A.; Friberg, N.; Kronva		S.; 2003
Title:	Pesticides and heavy metals in Danish streambed s	sediment	
Source:	Hydrobiologia, 494, p. 93-101	ð	
Document No:	M-460841-01-1	- Starley - Star	
Guidelines:	None	105	
GLP:	No, published study		
Literature review	ť,	L. L	
classification:	b) supplementary information (EFSA Journal 20	1; 9(2):2092	

Ò

## EXECUTIVE SUMMARY

The role of streambed sediment as a sink for pesticides and heavy metals was investigated in 30 Dawish lowland streams. For heavy metals, material and methods as well as results were not summarized. The investigated streams drain catchments varying in hydrology, topography soil type and land use. The <250 µm newly accumulated fraction of the uppermost 1-2 on layer of streambed sedurent was analysed for 19 old and modern pesticides and 2 heavy metals by using GC-EC and GC-MS using both EI-ionisation and NCI-ionisation). Ø i

DDE was present in the sediment of all the streams. Of the herbicides, fungeides and insecticides currently in use, the most frequently detected was thuron (50.0%), fen propinsiph (66,7%) and lambdacyhalothrin (6.7%), respectively.

The pesticides detected in the lighest concentration were lenpropimorph (1700 ng/g), propiconazole (130 ng/g) and isoproturon (130 ng/g).

Deltamethrin was found in Danish Towland stream sediment samples at concentrations up to 50 ng per g DW; detection frequency was comparatively tow (\$5%). L i

The average number of pesticides detected in the 27 speams draining predominantly agricultural catchments was (3.7#2.0) being higher (p= 0.075) that in the three streams draining non-agricultural catchments (1.7±0.6). Pesticides were significantly related to catchment size, soil type and hydrological regime.

# I.

## A. Materia

Location/country nead@vater_streams / Denmark Nr. of catchments

B. Study design and methods 2. Samplific 2. Sampling Sampling technique Sampling date: Number of samples persi Sampling depth:

Kajak corer Autumn 1998

30-𝔅𝔅𝔅 core-samples

1,2 cm of newly accumulated fine sediment and detritus Samples were pooled and to one composite sample for each stream and transported in 2 l glass bottles. The  $<250 \,\mu m$ portion was stored frozen in an aluminium foil tray.

Laser diffraction spectrometer

The content of organic matter was measured as the loss on ignition in a subsample by combusting the sediment samples at 500 °C for 4 h.

orage of sam Transpo

Organic matter content:

**Bayer CropScience** 

#### Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

4. Chemical analysis Guideline/protocol:

Method:

Pre-treatment of samples:

GC-EC and GC-MS (using both EI-ionisation and NC) ionisation) ď Samples were extracted with aceton dichlormethane 1:15 n a Soxtec Avanti 2050 Auto system 

 Interference of the extract was analysed with GC-EC. The other half

 Conduction:

 Recovery:

 Limit of detection:

 Limit of quantification:

 I. Validity criteria:

 No validity criteria

 We was present in the sediment of all the streams. Of the herbicides, fungicides and insecticides currently in use, the most frequently detected was diuron (50.0%), fentpropinorph (66.7%) and lambda 

currently in use, the most frequently detected was diuron (50.9%), ferropinorph (66.7%) and lambdacyhalothrin (6.7%), respectivel m

Deltamethrin was found in soment samples in concentrations up to 50mg/g DW; delection frequency was comparatively low (< 5%). The average number of pesticides detected in the 27 streams draining predominantly agricultural catchments was  $(3.7 \neq 2.0)$  being higher (p = 0.077) that in the three streams draining non-agricultural catchments ( $1.7\pm06$ ). Pesticides were significantly related to catchment size, soil type and hydrological regime

 $\frac{2.5 \text{ cmct measurements}}{\text{Median grain size was}} N.7 \,\mu\text{m}/\text{median clay content} 16.3\%$  and needian organic matter content 15.4%. III. CONCLUSION

HI. CONCLUSION Deltamethan was found in Dabish lawland stream sediment samples up to 50 ng/g DW, detection frequency was comparatively dow (~5%).



#### **Drinking Water:**

KCA 7.5 /07; Nazimek, T.; Badach, H.; Kaminska, I.; 2007
Pesticide content in drinking water samples collected from orchard areas in
central Poland
Ann. Agric. Environ. Med., 14, 1, p. 109-114
M-458077-01-1
None G A A A A
No, published study
b) supplementary information (EFSA Journal 2011; 9(2) 2092) 👘 🖉 🖉

#### **EXECUTIVE SUMMARY**

central Poland were tested for the Samples of drinking water collected in presence of pesticides. Data obtained from analysis of water samples will be used for further epidemiological and environmental studies in the region. Samples were coverted during spring and autumn of 2002-2003 from dug wells deep wells and water mans in \$1 randomly selected rural households scattered throughout this region of extensive agriculture. The concentration of pesticides from four main chemical groups was determined by gas chromatography: organochlorines (lindane, DDT, methoxychlor), triazines (atrazine, simazine), organophosphores (acephate, diazinon, fenitrothion) and pyrethroids (upha-cypermethrin, deltanethrin) Two-year monitoring of drinking water samples indicated the presence of DDT and methoxychlor contamination. Pyrethroids e.g. deltamethrin, were generally not detected, with the exception of alphaevpermethrin found in only a few samples. Triazines were also found in water samples collected in the course of the study with higher incidence during spring period. Organophosphates were by far the most common contaminants of drinking water in this region. Althost all samples were contaminated by significant amounts of fenitrothion. 

#### MATERIA I. DMETHÔ

#### A. Materia

1 Site Proprietion
1. Site description Location/country
Location/country: 2 2 Water mains (20%), Water dug (40%) and Water deep weels
(40%); Poland
Amount of sample sites a a a a a
Cultivated coops: 2 C Study area in the immediate vicinity of large orchards
<ul> <li><u>1. Site description</u> Location/country:</li> <li>Amount of sample sites Cultivated coops:</li> <li><b>B. Study design and methods</b></li> <li><u>1. Sampling</u> Sampling techniques</li> <li>Sampling frequency:</li> <li>Sampling frequency:</li> <li>Sampling data</li> </ul>
D. Study (Resign and increases a second se
1. Sampung
Sampling technique
Sampling frequency: Single samples
Sampling date Spring and autumn of 2002-2003
Number of samples $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ water intakes
Sampling Jopth: 🖓 🖉 🖉 🖉-
Transport storage of samples: $\sim$ -
2 Charter and real voir
B. Study design and methods <u>1. Sampling</u> Sampling technique Sampling frequency: Sampling date Sampling da
2. Cipulcal analysis
$\mathcal{E}_{I}^{O'}$



#### Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Guideline/protocol:
Method:
Pre-treatment of samples:
Conduction:

Badach et al. 2000³; Juhler 1997⁴; LeBel et al. 1979⁵ Gas Chromatography Solid Phase Extraction with Octadecyl C18 columns A Hewlett-Packard 5890 Series II (Hewlett-Packard Germany) gas chromatograph equipped with an electron capture detector and a capillary RTX column was used (Duplicates were tested) (Duplicates were tested)

Reference item: Recovery: Limit of detection: Limit of quantification:

89% for pyrethroide Deltamethrin; 0.10 µg/L

#### II. RESULTS

1. Validity criteria: No validity criteria were mentioned.

#### 2. Analytical findings:

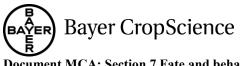
Two-year monitoring of drinking water samples indicated the presence of DET and methodychlor contamination. Pyrethroids were generally not detected, with the exception of alpha-cyclermethrin found in only a few samples. Organophosphates were by far the most common contaminants of drivking water in this region. Almost all samples were contaminated by significant amounts of fenitrothion. In the following tables just the results for deltamethrin are shown s.

6

Table 7.5- 3:	Concentration and prevalence of pesticide-contaminated samples collected from water mains in the second
	mains 24 the second for the second for the second for the second se
	mains in the section dating spring and autoini 012002/2005

L.

	Total & Number of contantinated samples & Range of con	ncentrations
Compound	nomber of Spring Automn Spring	Autumn
	² Ν Ψ n ₆ 4 % 4 n.5 % 4 μg/L	μg/L
2002		
Deltanyethri n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	not detected
Deltamethri	10 0 00 00 00 0.0 not detected	not detected
n 🔊		
A		


#### Concentration and prevalence of pesticide-contaminated samples collected Table 7 from deep wells in the region during spring and autumn of . 2002/2003 Č _0

Total no. Number of conta	minated samples	Range of con	centrations
Compound Jof Spring	Autumn	Spring	Autumn

³ Badach H Wazimek T, Kaniński R, Turski AW: Organochlorine pesticides concentration in the drinking water from regions of extensive agriculture in Poland. Ann Agric Environ Med 2000, 7, 25-28.

⁴ Juhler **K**: Optimized method for the determination of organophosphorus pesticides in meat and fatty matrices. J Chromatogr A 1997, 786, 145-153.

⁵ LeBel GL, Williams DT, Griffith G, Benoit FM: Isolation and concentration of organophosphorus pesticides from drinking water at the ng/L level, using macroreticular resin. J Assoc Off Anal Chem 1979, 62, 241-249.



#### Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

	Ν	n.	%	n.	%	μg/L	μg/L 。
2002							
Deltamethri	32	0	0.0	0	0.0	not detected	not detected
n							<u>v</u> o
2003						O ^v	
Deltamethri	31	0	0.0	0	0.0	not detected	t detæred
n					Ĝ		

		al a	. 69		Ĵ' d
Table 7.5- 5:	Concentration and pre	valence <i>of pesticide</i>	-contaminated	l samples	collected
	from dug wells in	region	duringsprin	and ant	umn of 🔏
	2002/2003		y , Ø'' "	K VO	

	2002/2003	
	Total no.	Number of contanginated samples Range of concentrations
Compound	of samples	Spring Autumn A Spring Sutume
	N	n μg/ μg/
2002		
Deltamethrin	32	$\mathbb{Q}$ 0.0 $\mathbb{Q}$ 0.0 $\mathbb{Q}$ 0.0 $\mathbb{Q}$ Not detected Not detected
2003		
Deltamethrin	32	0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$
	6	

#### III. **CONCLUSIO**

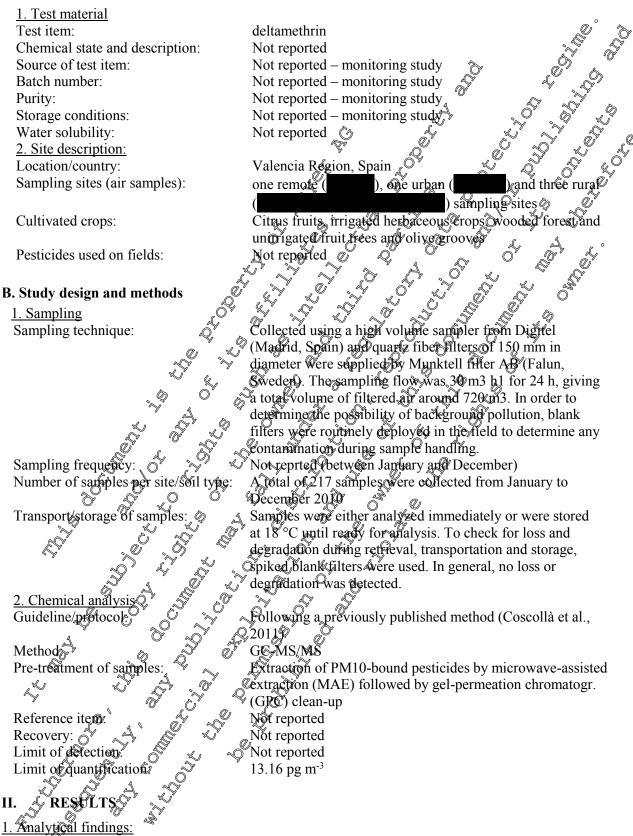
III. CONCLUSION During two year monotoring of drintering water samples in Polish orchard areas no deltamethrin residues were detected.

# Air Compartment

Report:KCA 7.5/08; Hart, E.; Pastor, A.; Yusa, V.; Coscolla, C.; 2013Title:CC-MS characterization of contemporary pesticides in PM10 of Valencia	
Title:	
Region, Spain O L &	
Source: Atmospheric Environment 62; 198-128	
Document No: $M_{462}^{\circ}/-01$	
Guidelines of Anone	
GLP: No published study	
Literature review	
classification: by supplementary information (EFSA Journal 2011; 9(2):2092)	

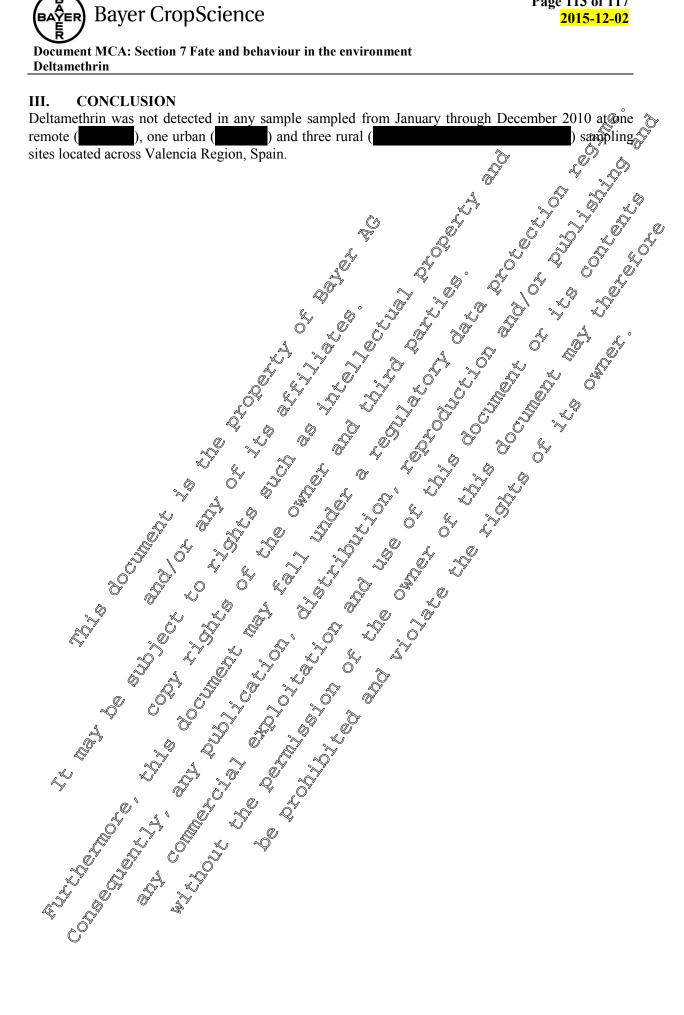
# EXECUTIVE SUMMARY

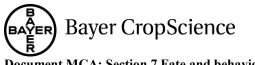
EXECUTIVE SUMMARY O could be verouseful for future exposure assessment in individuals of the general public. The present work studies the spatial and temporal distribution of the occurrence of currently used pesticides (CUPs) in PM10 Ambient air samples were collected from January through December 2010 at one remote, one urban and three rural sites in Valencia Region (Spain) and analyzed for 42 CUPs using a gas chronatography coupled to mass spectrometry in tandem (GC-MS/MS) approach.


Deltamethrin was not detected in any sample.

I.

- **MATERIAL AND METHODS**
- A. Material


Bayer CropScience


Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin



Deltamethrin was not detected by analytical method of microwave-assisted extraction (MAE) followed by gel-permeation chromatography (GPC) clean-up and determination by GC-MS/MS.

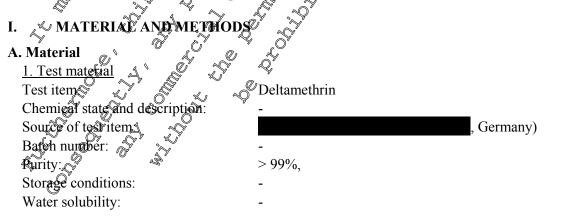






Document MCA: Section 7 Fate and behaviour in the environment	
Deltamethrin	

Report:	KCA 7.5 /09; Gonzalez, F.; Granero, A.; Glass, C.; Frenich, A.; Vidal, J.;
	2004
Title:	Screening method for pesticides in air by gas chromatography/tandem mass spectrometry
Source:	Rapid Commun. Mass Spectrom., 18, 5, p. 537-543
Document No:	M-455826-01-1
Guidelines:	None
GLP:	No, published study
Literature review	
classification:	b) supplementary information (EFSA Journal 2011; 9(2):2092)


#### **EXECUTIVE SUMMARY**

A multiresidue method for determining more than 70 pesticides in air has been validated using a single injection with gas chromatography/tandem mass spectrometry (GC/MS/MS). However, material and methods are summarized for recovery and monitoring of deltamethrin only. The efficiency of the extraction method was studied by spiking sampling cartridges containing the granular sorbents (Tenax TA or Chromsorb 106) with standard solutions, and applying the extraction method. Three analyte levels were assessed (30, 60 and 100 ng Deltamethrin purity > 99%,

, Germany)? Cartadges were extracted by chaing with ethyl acetate at a flow of 1 ml/min for 10 min. The eluents were concentrated close to dryness with a mirogen flow, the internal standard (caffeine) was added, and the final volume adjusted to 2 mL with ethyl acetate. Another extraction method was tested, in which the sorbents were treated with three sequential portions of 20mL of ethyl acetate, and sonicating each for 15 min. The solution was transferred to a round-bottomed flask and concentrated to dryness inder vacuum; the internal standard was then added, and the volume made up to 2 mL with ethyl acetate. The two extraction methods yielded similar results, but the first is more amenable to automation allowing savings of solvent and time. The gained extracts were used for GC/MS analysis using a Varian 3800 gas chromatograph, equipped with electronic flow control (EFC) and a Staturn 2000 ion trap mass spectrometer (Varian Instruments, Sunnyvale CA, USA). Six replicates were performed.

For the monitoring study, 30 samples were analysed. 20 of these were collected close to urban areas surrounded by greenfouses with intensive agricultural activities (therefrom 15 during afternoon and evening and 5 in the morning), and 10 Others were collected in areas close to open fields (southern Spain). Ambient, temperature and relative humidity were recorded during the sampling periods. Sampling duration was in general 6 P Extraction and analysis procedure was conducted as described for the efficiency test.

Efficiency test with 30 ng reltance hrin indicated a LOO of 4.0 ng and a recovery of 85%. However, no deltamethin was found in the an samples.



Bayer CropScience

# Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

2. Site description (for soil) Location/country: Southern Spain 30 (15: close to urban areas surrounded by greenhouses with intensive agricultural activities (after soon to evening); 5 close to urban areas surrounded by reenhouses with Amount of sampling sites: intensive agricultural activities (morning); 10: weas elose to open fields) and 60% humidity 15 afternoon to evening samples (25-28°C and 8 Temperature/Humidity: humidity); 5 morning samples (19-25 Delete if not stated Other specifications: **B.** Study design and methods 1. Test procedure Test system Monitoring stud and Efficience 30, 60 and 100 ng (Efficiency study) Test concentration Cartfinge container with granular sorberts (Tenax TAS Sampling technique: Chromsorb 106 Que oxer approx Sampling frequency: Number of samples per site/soil 0/pe Storage of samples: 3. Chemical analysis Guideline/protocol: Elution or sonication of the cartridges containing sorbents with following analysis with gas chromatography with Method: electropic flow control and on trap mass spectrometer. Eluation with ethyl acetate at a flow of 1 ml/in for 10 min or Extraction: three sequential extractions using a ultrasonic homogenizer with 20 ml of ethyl acetate for 15 min The gamed extracts were used for GC/MS analysis using a Varan 3800 gas abromatograph, equipped with electronic Analys flow coptrol (EFC) and a Staturn 2000 ion trap mass spectrometer (Varian Instruments, Sunnyvale CA, USA) Reference item: Deltamethrm 0 ng initial concentration) Recovery: Limit of detection: Limit of quantification II. RESULTS vafidit 1. Validity criteria.* 2. Analytical findings: Efficiency test with 30 ng deltamethrin indicated a LOQ of 4.0 ng and a recovery of 85%. However, no deltamethen was found in the air samples.

# III. CONCLUSION

Noteltamethrin was found in the air samples from Southern Spain taken close to urban areas surrounded by greenbouses with intensive agricultural activities and close to open fields.



Document MCA: Section 7 Fate and behaviour in the environment Deltamethrin

Report:	KCA 7.5 /10; Schummer, C.; Mothiron, E.; Appenzeller, B.; Rizet, A.;
	Wennig, R.; Millet, M.; 2010
Title:	Temporal variations of concentrations of currently used perticides in the
	atmosphere of Strasbourg, France
Source:	Environ. Pollut. Volume 158, Issue 2, p. 576-584
Document No:	M-457521-01-1
Guidelines:	None
GLP:	No, published study
Literature review	
classification:	b) supplementary information (EFSA Journal 2011;9(2):2092)

#### **EXECUTIVE SUMMARY**

Deltamethrin was determined in atmospheric samples collected rance between April m 17th and May 29th, 2007, by a multimethod comprising 7 pesticides in total.

The number of pesticides detected in atmospheric camples is very low given the total number of molecules that were monitored. This pay bedge to a pon-application of them during the sampling period or to applications at very low amounts, to too high limits of detection, for example for Detamethrin  $(LOD = 230 \text{ pg m}^{-3})$  that give very weak analytical responses in mass spectrometric when it is operated in electron impact mode, or to the physic-chemical properties of the molecules. In fact, the detection of atmospheric pesticides requires good stability of the compounds for them to remain in atmosphere. Many of the pesticides that were not detected are not persistent in the atmosphere.

The detected concentrations of deltamethrin anged from 0.8 - 79, ng/m³ with an average of 27 ng/m³. Deltamethrin was mostly present in the solid phase with a gas-particle distribution of less than 5:95. This indicates that the deltamethin present such samples is strongly bound to particles which are transported in the air.

#### I. MATERTALS

#### MATERIAL Α.

#### 1. Standards

used as internal standard, were of certified quality (purity Deltamethrin and > 98%).

#### 2. **Test Site**

with a high volume sampler, which was placed in the botanic Air samples were collected in approximatel 0.5 km from the town centre, 2 km from industrial garden zones and about 5 km from the first exploration of high maize and cereal crops. Trifloxystrobin was not used in the botanical garden.

#### B. STUDY DESIG

#### Experimental Conditions 1.

A high volume sampler collected simultaneously particulate and gaseous samples on 30 cm (diameter) glass fibre filters and 20g XAD-2 resin, a copolymer of styrene/divinylbenzene and macroporous acrylic ester at a flow rate of 9.96 L/min.



## Deltamethrin

#### 2. Sampling

Air samples were collected at 10 sampling intervals for 48 hour periods on average between April  $\mathcal{Q}\mathcal{T}^{th}$ and May 29th, 2007. After sampling, filters and resins were stored in the dark at -20 °C for a maximum of 4 days until extraction.

#### **Analytical Procedures** 3.

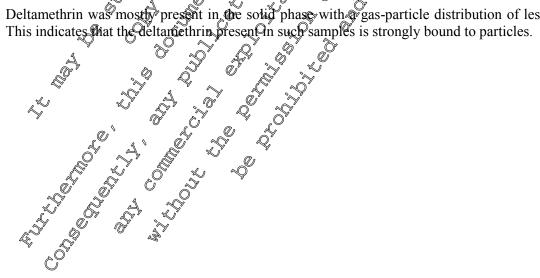
Prior to sampling, the glass fibre filters and the XAD-2 resin were Soxhlet-cleaned for 24 hours with nhexane/CH₂Cl₂ 1/1 and dried. After drying, they were individually wrapped in clean pastic bags or aluminium foil, and stored in the dark at -20 °C.

The extraction of the pesticides from the filters and the resin was done separately by Soxhle Dextraction for 20 hours with n-hexane/CH₂Cl₂ 1/1. After extraction, the Solvents were concentrated to approximately 1 mL in a rotary evaporator at 40 %, and spiked with tecnazed, which was used as internal standard.

A multimethod was developed for the determination of 7.1 pestorides in air by GC-MS/MS or GC-SCD, including deltamethrin. Intraday and interday accuracies and variabilities were determined by spiking blank filters and resin samples with two different concentrations. The adalysis has been performed on samples of particulate and gaseous phases, respectively. The results of both phases were combined to obtain the concentration found in the total atmosphere. The limit of detection in an was approximately 230 pg m⁻³ for deltamethrin.

#### II. RESULTS

Table 7.5- 6:	Summary of	concentratio	on data	obtained	i jož 10 ai	<b>E</b> samples	
	(expressed as	s <b>mg/m³) 🖉</b>	Ś	Ø			Ô


Compound 🔔	No of Detecti	ons Range	Average ± 95% CI 1
Deltamethrin	× 8	5,8779.00	<b>27.41 28.03</b>
			V '8

CI: confidence interval of the arithmetic mean and standard deviation of samples with concentrationsuperior to the LOD

#### **CONČLUSIONS**^K III.

The detected concentrations of deltamethrin in all were low and therefore of no toxicological or ecotoxicological relaxance, even during the period of main use. The detected concentrations of deltamethrin range from 5/8 - 720 ng/m² with an average of 27 ng/m³.

Deltamethrin was mostly present in the solid phase with gas-particle distribution of less than 5:95.

