

Document Title

Data Requirements EU Regulation 1107/2009 & EU Regulation 284/2013 Document MCP Section 10: Ecotoxicological studies According to the guidance document, SANCO 10181/2013, forpreparing dossiers for the approval of schemical active sor

According to the guidence document, SANCO 10181/2013, for preparing dossiers for the approval of a chemical active substance

2914-03-17

Author(s)

Bayer CropScience

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based, either:

- From Bayer CropScience; or
- From other applicants once the period of data protection has expired.

Version history

Date	Data points containing amendments or additions ¹ and brief description	Document identifier and Persion number

¹ It is suggested that applicants adopt a similar approach to showing revisions and version history as outlined in SANCO/10180/2013 Chapter 4 How to revise an Assessment Report

Table of Contents

	1	Page
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT	6
Use pattern co	onsidered in this risk assessment.	7
Definition of t	the residue for risk assessment for flufenacet.	<i>®</i> 7
CP 10.1	Effects on birds and other terrestrial vertebrates	28
CP 10.1.1	Effects on birds Signature of the second sec	8
CP 10.1.1.1	Acute oral toxicity	17
CP 10.1.1.2	Acute oral toxicity Higher tier data on birds	17
	Effects on terrestrial vertebrates other than birds	1.18
CP 10.1.2.1	Effects on terrestrial vertebrates other than kirds Acute oral toxicity to mammals. Higher tier data on mammals. Effects on other terrestrial vertebrate wildlife (reptiles and acophibians). Effects on aquatic organisms. Acute toxicity to fish, aquatic invertebrates, or effects of aquatic algae and macrophytes.	24
CP 10.1.2.2	Higher tier data on mammals.	24
CP 10.1.3	Effects on other terrestrial vertebrate wildlife (reptiles and apphibiags)	24
CP 10.2	Effects on aquatic organisms	25
CP 10.2.1	Acute toxicity to fish, aquatic invertebrates, or effects of aquatic algae and	
	macrophytes	46
CP 10.2.2	Additional long-term and chronic toxfoity studies on rish, advatic invertebre	ates
	and sediment dwelling of gastsins & w	49
CP 10.2.3	and sediment dwelling organisms. Further testing on aduatic organisms. Effects on arthropods. Effects on bees	49
CP 10 3	Effects on arthropods	49
CP 10.3.1	Effects on bees Q	49
CP 10.3.1.1	Acute toxicity to bees	54
CP 10.3.1.1.1	Acute oral boxicits to bees	57
CP 10.3.1.1.2	Acute contact to city to hees O' U 'V'	57
CP 10.3.1.2	Chronic toxicity to bees	57
CP 10.3.1.3	Effects on honey be development and other honey bee life stages	57
CP 10.3.1.4	Sub-lethal effects Sub-lethal effet Sub-lethal effe	57
CP 10.3.1.5	Cage and tunned tests	57
CP 10.3.1.6	Field tests with hone bees	57
CP 10.3.2	Effects on hon-target arthropods other than bees	
CP 10.3.2.1	Standard Laboratory testing for non-target arthropods	61
CP 10.3.2.2	Extended laboratory testing, aged residue studies with non-target arthropod	s 64
CP 10.3.2.3		68
CP 10.3.2.₽	Field studies withoron-target arthropods	70
CP 10.3-2.5	Other routes of exposure for non-target arthropods	70
CP 10 7	Effects on not target soil meso- and macrofauna	70
CP 10.4.1	Earthworms	73
CP 10.4.1.Ĭ	Earthworks - sub lethal effects	74
CP 10.4.1.2	Sarthworms - Geld studies	76
CP 10.4.2	Effects on non-target soil meso- and macrofauna (other than earthworms)	82
CP 10.4.2.1	Speries level testing	85
CP 10.4.2.2	Higher tier testing	87
CP 10.5	Effects on soil nitrogen transformation	
CP 10.6	Effects on terrestrial non-target higher plants	89
CP 10.6.1	Summary of screening data	94
CP 10.6.2	Testing on non-target plants	94

CP 10.6.3	Extended laboratory studies on non-target plants	98
CP 10.6.4	Semi-field and field tests on non-target plants	98
CP 10.7	Effects on other terrestrial organisms (flora and fauna)	98
CP 10.8	Monitoring data	98
CP 10.8	Extended laboratory studies on non-target plants	

CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT

Introduction

The representative formulation FFA WG 60 submitted in the first Annex I listing process is no longer considered to be the representative formulation. The new representative formulation used for the submission of the renewal of the Annex I listing of flufenacet is a mixture formulation of flufenacet and diflufenican, Flufenacet + Diflufenican SC 600 (DFF+FFA SC 600, He old SC 600). The respective summaries will be presented in this Supplemental Possier.

The risk assessment for Non-Target Organisms is presented for furtenacet using the formulation DFF + FFA SC 600, for the use as herbicide in winter careals. Ecotoxicological endpoints used in the following risk assessment were derived from studies with the formulated product, the active substance flufenacet and the metabolites listed in the residue definition for risk assessment. To some cases where due to the study design the use of a technical substance and possible, a solo formulation of flufenacet is used to address the intrinsic toxicity of flufenacet.

For the second active substance in the representative formulation, diffusionican deference is made to the EU agreed endpoints according to the EFSA Scientific Report (2007) 122 For the Annex I listing process of diffusionican also the formulation. Flusenacet + Diffusionican SC 600 (DFF+FFA SC600, Herold SC 600) was submitted as depresentative formulation. Hence, some formulation studies (e.g. on non-target arthropods and non-target terrestrial plants) were already evaluated during this Annex I listing process. This evaluation was done under the Council Directive 91/414/EEC and all respective data requirements were addressed. With the present dossier only flutenacet is under evaluation and not the mixing partner diffusionicant Hence, missing studies on diffusionican according to regulation (EC) 1107/2009 do not influence the evaluation of the active ingredient under consideration. In most cases studies on the mixture formulation will be vailable.

In this Supplemental Possice only codpoints used for the risk assessment are presented. For an overview of all available endpoints for fluttenacet and its metabolites please refer to the respective section of the MCA document. In order to facilitate discrimination between new and information submitted during the first Annex I includion process, the old information is written in grey letters.

According to the windance of EFS on the Submission of scientific peer-reviewed open literature for the approval of pesticid active substances under Regulation (EC) No 1107/2009 (EFSA Journal 2011, 9 (2), 2092), the rature for the active substance and it's metabolites need to be presented, covering the last 10 years prior to the submission of this Annex I renewal dossier. In case where reliable and adequate literature is found for flufenacet and its metabolites during this literature search, summaries are integrated in the respective sections of this document.

In addition literature older than 10 years is included for the common and ubiquitous in the environment occurring metabolite trifluoroacetic acid (TFA). However these articles were not evaluated according to the above mentioned EFSA Guidance. Summaries are presented in the respective sections in the MCA document. Ecotoxicological endpoints extracted from these articles will be used in the risk assessment for the metabolite trifluoroacetic acid (TFA) and presented in this supplemental dossier.

Ĉ

Document MCP: Section 10 Ecotoxicological studies DFF+FFA SC 200+400

Use pattern considered in this risk assessment

Table 10-1: Intended application pattern

Crop	Timing of application (range)	Number of applications	Application interval [days]	Maximum label rate (range) [L/ha]	Maximum application rate, individual treatment (ranges) @g/ha] © @ OMulenican Flufenaret
Cereals	10-13	1	-	% 6	120 0 270
Cereals	11-13	1	-	0.4	80 0 160 .
Cereals	00-22	1	- 💍	0 3	

Product density according to Section 2, MCP 2.6: 1.251g/ml/L at 20%

Definition of the residue for risk assessment for flufenacet

Due to changes in triggers for metabolites to be further assessed as well as due to new studies on the route of degradation in various environmental compartments, additional metabolites are proposed to be included in the residue definition for the risk assessment (see Table 1). Accordingly, studies have been prepared to describe the ecotoxicological profile of these metabolites in the relevant environmental compartment.

Table 10-2: Definition of the residue for risk assessment

Compartment	Residue Definition for Kisk Assessment @
Soil	Flufonacet, FOE oxalate, FOE sulfonic acid, FOE methylsulfone, FOE-thiadone,
	FOD 5043-trifluoroed anesultonic acid and trifluoroacetic acid
Groundwater	Same as for soil A V S
Surface water	Same as for soil Mus FOE methylsulfone
	flufenacet
Air	flutomacet

^{*}Justification for the residue definition for risk assessment is provided in MCA Sec.7, Point 7.4.1 and MCA Sec. 6, Point 6.7.1.

In addition a list of metabolites, which contains the structures, the synonyms and code numbers attributed to the compound lufenate is presented in <u>Document N3</u> of this dossier.

CP 10.1 Effects on birds and other terrestrial vertebrates

The risk assessment has been performed according to "European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA" (EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438).

In addition to the parent compound flufenacet, a risk assessment (screening level only) is performed also for the metabolite trifluoroacetic acid (TFA). TFA has been identified as an environmental metabolite of different chemicals, including pesticide active substances as e.g. flufenacet. TFA has a pKa values < 2, therefore it occurs only in its deprotonated form under environmental conditions. As residues of TFA may occur in plant food items of birds and wild manimals it was considered necessary to establish appropriate ecotoxicological endpoints to be used for risk assessment purposes. However, toxicity endpoints are only available for manimals. As birds are not expected to be more susceptible to TFA than mammals, these endpoints were also used for the bird screening assessment.

CP 10.1.1 Effects on birds

The summary of the toxicity profile of the active substances flufenacet and diflufenican to birds is provided in the following tables. For diflufenican reference is made, to the EV agreed endpoints according to the EFSA Scientific Report 2007, 122.

Only endpoints used for the risk assessment are presented here. For an overview of all available endpoints on flufenacet please reter to the respective section of the MCA document.

It should be noted that the long-term risk assessment for flufenacet is based on a reproductive endpoint established in Mallard sucks. The product DFFFA SC 200+400, however, is applied to winter cereals in autumn at a time of the year when European birds to not reproduce. Flufenacet is quickly metabolized and excreted. Therefore it does not accumpate in birds' bodies and in addition irreversible or persistent adverse effects on the reproductive performance are not known for this compound. From this it is obvious that using a reproductive endpoint for the bird long-term risk assessment reflects a real worst case generic for autumn uses.

Table 10.1.1-4 Endpoints used in risk assessment

Test substance		species/origin	I	Endpoint	Reference
Flufenacet	Agyte Agisk assessment	Lowest LD ₅₀ from Canary	LD_{50}	434 mg as/kg bw	2013 M-468210-01-1 KCA 8.1.1.1/01
Fillenace	Long-term rist assessment	Mallard duck	NOAEL	9.87 mg as/kg bw/d	(1994) M-003858-01-1

Table 10.1.1-2 Endpoints of mixing partner diflufenican

Test substance	Test species	EU agreed endpoints			
		acc. to EFSA Scientific Report (2007) 122, 1-84			
Diflufenican	'Bird' acute, oral	LD ₅₀			
	Bobwhite quail, reproduction	NOAEL 91.84 mg as/kg bw/d	Ö V		

¹⁾ geometric mean of extrapolated LD₅₀ values according to EFSA GD 2009

Toxicity of the formulation

No study was performed with the formulation on birds due to animal welfare peasons A comparison of the acute endpoint of the formulation (LD₅₀) derived from a study on rate with a calculated value (calculated according to Finney's formula GIFAP, \$\pi\90) is shown in Table 10.1.1-0.

Table 10.1.1-3: Comparison of acute toxicity: active ingredients of formulation

Smarian	Diflufenican (€.4%+ ○ Flufenace (532.5%)	
Species	Cal@ated ()* [mg product/kgy**	Study řesúlts V Img přoduct/kg
Bird (Bobwhite quail)	Ø3314 ₺ ~	not available,
Mammal (Rat)	→ 1682	© 500@ LD ₅₀ ≤ 2000

Assessment: The comparison of available toxicity data from an experimental study with results from Finney calculations hows that the preparation is not more tone than expected on basis of its content of active ingredients.

Table 10.1.1-4 Relevant generic axian focal species for screening risk assessment

	Shorte	ut value
Crop Indicator species \$	For acute RA	For long-term RA
	based on RUD90	based on RUD _m
Bate soil Small granivorous bird	24.7	11.4
Cereals Small ombivorous bird	158.8	64.8

based on: diflufenican – LD₅₀ > 2150 ng/kg bw, Hufenacet – LD₅₀ 1608 rg/kg bw based on: diflufenican – LD₅₀ > 5000 ng/kg bw; flufenacet – LD₅₀ 589 rg/kg bw

^{*} Based on a formulation departy of 1,331 g/cm (Section 1)

Table 10.1.1-5 Relevant generic avian focal species for Tier 1 risk assessment

				Shortcu	ıt value
Crop	Growth stage (BBCH)	Generic focal species	Representative species	Long- term RA based on RUD _m	acute RA based on RUD ₉₀
		Small granivorous bird "finch"	Linnet (Carduelis cannobina)	11.40	2
Bare soil ¹⁾	BBCH <10	Small omnivorous bird "lark"	Woodlark (Lullula arborea)	\$.2	Ĵ 17.4
		Small insectivorous bird "wagtail"	Yellow wagtail Motacilla flava)	5.9	10.9
G 1	BBCH 10-29	Small omnivorous bird "lark"	Woodlark (Lullula arboreo)	3 9.9	24.0
Cereals	Early (shoots) autumn –winter BBCH 10-29	Large herbivorous bird (Fink-försted goose		30.5
			Question and the species of 0.3 Land FFFA SC600 equival		

Risk assessment for birds

ACUTE DIETARY RISK ASSESSMENT FOR FLUFENACET

Table 10.1.1-6 Tier 1 acute DDD and TER calculation for birds

	Trig ĝe r						
	Triogar						
[kg/ha] SV90 NIAF90 bw bw							
Flufenacet – 0.6 L/ha o							
Cereals Small omnivorous bird "lark" <woodlark> Large herbivorous bird "goose" <pink-footed goose=""> Cereals Small omnivorous bird 24.0 30.240 30.2</pink-footed></woodlark>	10 ***						
Flufenacet 0.4 L/ha	,						
Cereals Small omnivorous bird "lark" <woodlark> Large herbivorous bird "goose" <pink-footed goose=""> Small omnivorous bird 24.60 3.84 4.88 4.88 89</pink-footed></woodlark>	10						
Flufenacet - 0.3 L/ha							
Small granivorous bird "finch" elinnet>	10						
Small insectivorous bird "wagtail" 10.9 131							
Cereals Small omniverous bird 24.0 2.88 151	10						
Large herbix rous bird "goose" 0.120 0.5 3.66 119	10						

Assessment: The acute risk scenario results in TER values far above the trigger of 10 indicating that DFF+FFA SC 200+000 is safe for blods.

Acute risk assessment for birds drinking contaminated water from pools in leaf whorls

An assessment of the risk potentially posed by consumption of contaminated water is required according to the EFSA Guidance Document for Birds and Mammals (2009).

Leafy scenario

According to EESA (2000) the potential exposure of birds via drinking water from pools on leaves or formed in leaf axils after the application should be addressed for acute risk assessment for birds. This scenario is only relevant for leafy vegetables forming heads at growth stage 4 (BBCH 41-49). This is not the case for cereals at early BBCH stages.

Puddle scenario

The acute risk from water in puddles formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop or bare soil is covered by the long-term risk assessment presented below.

LONG-TERM REPRODUCTIVE RISK ASSESSMENT FOR FLUFENACET

Table 10.1.1-7 Tier 1 long-term DDD and TER calculation for birds

C 1	Consider for all and all and		DDD	0	NOAED	4	Ča
Compound / Crop	Generic focal species BBCH	Appl. rate [kg/ha]	SV _m MAF _m	TWA DDD	NOAED mg kg/bw/d	TERLT	T rig ger
		Flufena	cet – 0.6 L/ha				
Cereals	Small omnivorous bird "lark" <woodlark> Large herbivorous bird "goose" <pink-footed goose=""></pink-footed></woodlark>	0.240	10.9	0.53	\$\frac{1}{2}\text{9.87} \times \text{6}	7.1 4.8	©° ₹ 5
	,	Flufera	cet – 0. L/ha			Y	
Cereals	Small omnivorous bird "lark" <woodlark> Large herbivorous bird "goose" <pink-footed goose=""></pink-footed></woodlark>	0460	10.9	0.92	\$ 67 2 67	7.2	5
	(Flyfena	cet = 0.3 Lana		7		
Bare soil	Small granivorous bird "finch" sinnet> Small omnivorous bird "lark" <wordfark> Small insectiorous bird "wastail" <yellow wagtail=""></yellow></wordfark>	0420	11.4 0	0.73	9.87	13.5 19.0 26.0	5
Cereals	Small@mnivorous bird "lark" <w@dlark>@ Large herbivorous bird "goose" (<pre>y <pre>pink@ooted @ose></pre></pre></w@dlark>	120	16.2	0.70	9.87	9.6	5

Assessment: For use rules of 63 and 64 kg/ha the long-term risk scenario results in TER values greater than the trigger of 5 indicating that DFF+FFA SC 200+400 is safe for birds. Only for the large herbivorous bird the TER is marginally below the trigger at a use rate of 0.6 kg/ha; a refined assessment for this scenario is presented below.

Refined Risk Assessment

Refinement of ftwa

On basis of measured residue data from winter wheat a DT_{50} of ca. 3 days was determined for flufenacet ($\frac{1}{1000}$, 1995; M-004928-01 -1). This value has been confirmed in a new study where a DT_{50}

of 2.97 days was found for cereals (& 2012; M-443138-01-1; & 2013; M-451178-01-1). From this a \mathbf{f}_{twa} value of **0.2025** results.

Table 10.1.1-8 Refined long-term DDD and TER calculation for large herbivorous fords

Compound	Generic focal species		DDD				NOAEL	TER _{LT}	т.Д
/ Crop	ВВСН	Appl. rate [kg/ha]	SVm	MAFm	TWA	DDD'	kg/bw/d	I BAKLT	Trigger
	Flufenacet – 0.6 L/b9								
Cereals	Large herbivorous bird "goose" <pink-footed goose=""></pink-footed>	0.240	16.2	© © 1.0 *	© 0.2025 2©	187 187	3.87 5.87	7 12.5 ×	<i>y</i> ° 5

Assessment: The refined long-term risk assessment based on Hufenacet-specific residue decline data results in an acceptable TER value also for Jarge herbivorous Dirds.

Long-term risk assessment for birds doinking contaminated water in puddles

Table 10.1.1-9 Evaluation of potential concern for exposure of birds denking water (escape clause)

Crop	Koc Application rate * MAF		y Escape	Conclusion
Flufenacet				
Cereals	215 240 x 1.0	9.87 6 24.3	≤ 50	No concern

Assessment: The "Scape clause" calculation shows that DFFFFA SC 200+400 would not result in unacceptable risk for birds drinking contagnated water.

SCREENING ASSESSMENT FOR TEA

The risk assessment on screening level has been performed for bare soil for an application rate of 0.3 L product/ha and for cereals for 0.6 L/ha, corresponding to 120 g flufenacet/ha and 240 g flufenacet/ha, respectively. As a worst case assumption, a formation of 100% TFA from flufenacet was used. The application rate of TFA was then estimated correcting the application rate of the parent for the difference in molecular mass between flufenacet (363.33 g/mol) and TFA (114.04 g/mol). This results in maximum application rates for TFA of 37.7 g/ha (0.3 L/ha DFF+FFA SC 600) and 75.4g/ha (0.6 L/ha DFF+FFA SC 600).

Table 10.1.1-10 Screening step acute DDD and TER calculation for birds - TFA

		LD ₅₀	DDD DDD						
Crop	Indicator species		Appl. rate [kg/ha]	SV90	MAF90	DDD	TERA	Trigger	
	TFA , C								
Bare soils	Small granivorous bird	>2000	0.0377*	24.7	1	0.931	2148	10	
Cereals	Small omnivorous bird	>2000	0.0754*	158.8		14.97	167	_ C OŠ	

^{*} corrected for molecular weight of TFA (114.02g/mol, i.e. 31.4% of the parent flufenages). Additionally, aftermation of 100% TFA from flufenacet was assumed.

Table 10.1.1- 11 Screening step long-term DDD and TER calculation for birds - TFA

				×	j (<u> </u>	Ň	70	
Crop	Indicator species	NOAEL [mg/kg bw/d]	Appl. rate kg/hal	SV _m	MAFm	ftwa	DDD	TERLT	Trigger
TFA D O O									
Bare soils	Small granivorous bird	98.	0.0377*	Q.4	1	0.50	0.228	2 430	5
Cereals	Small omnivorous bird	28/	Ø.0754*©	64.8	ζ\$1 .	Ø 5 3	2,59	38	5
Assessmenterm expositions DFF+FFA	Small granivorous bird Small omnivorous bird for molecular weight of TFA com flufenacet was assumed. at: All TER values are a sure. Accordingly, no ris SC 200+400.	boye the requirement of the second of the se	es 31.4% of tr	er of strong	D) for m read	acute e	xposu TFA	re and s	5 for long- ng uses of

^{* *} corrected for molecular weight of TFA (114,002/mol, i.e. 31.4% of the parent flufactoret). Additionally, a formation of

RISK ASSESSMENT OF SECONDARY POISONING

Table 10.1.1- 12 Log Pow values (for details please refer to section 2.7 "Partition coefficient noctanol/water" in the MCA)

octanol/water" ii	n the MCA)	
Substance	log Pow	
Flufenacet	3.2	
1 Iutendeet	3.5	
	0.80	
FOE oxalate (M01)	pH-dependent	
FOE oxalate (MO1)	-2.0 (pg 3)	
	PH-dependent -2.0 (pH 5) -2.2 (pH 9) North-dependent	
EOE gulfonia agid (M02)	Now H-depondent	
FOE sulfonic acid (M02)	NowH-dependent C	Į į
	2.6 (pH 5)	
FOE methylsulfide (M05)	2.6 (pH 7). 2.6 (pH 90)	C.
	20 (bil 2)	y
FOE methylsulfone (M07)	Q1.7 (pH\$)	
1 0 2 11101113 120110 (1.1207)	1.70pH 9) \$\tilde{\tilde	
	1.7\(\text{pH 9}\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
FOE-thiadone (M09)	O ^Y O ⁹² (pH _O ³³) O ^Y	
	0.62 (O) 7) 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	y - 0.90 GH 9.45	-
FOE 5043-trifluoroethanesulfonic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
acid (M44)	2.95 (ph 7)	
	-3.10 (pH 9)	
trifluoroacetic acid (TFW) (M45)	pH-Cependent	
trifluoroacetic acid (TF\$\tilde{\Omega}\) (M45)	-225 (pH 5)	
	2.5 (pH y -2.6 (pH 7) -2.8 (pH 9)	
	-2.6 (417)	I

Table 10.1.1- 13 Avian generic form species for the Pier 1 risk assessment of secondary poisoning

Generic aviate indicator species	Body weight [g]	Example	FIR/bw
Earthworn atter	1,00	Blackbird	1.05
Fish cater	O 1960	Heron	0.159

Long-term DDD and TER calculation for earthworm-eating birds

Table 10.1.1- 14 Tier 1 long-term DDD and TER calculation for earthworm-eating birds

	Cer	eals	٨
Flufenacet	240 g a.s./ha	160 g a.s./ha* 120 g a.s./ha*	
Pow	3200	3200	
Koc [mL/g]	215	215 .	
foc	0.02	0.02	
BCFworm	9.13	9,13	
PECsoil (twa, 21 d)[mg/kg]	0.203	©0.135 🗸	
PECworm [mg/kg]	1.853		
FIR/bw	1.05	Q" ~1,05 °~	
DDD [mg/kg bw/d]	1.946	3 1.294 3	
NO(A)EL [mg/kg bw/d]	9.87	Q 9.8₹	
TER _{LT}	5.1	F 96 2	
Trigger	56	\$ 5 0°	

^{*}see MCP, section 9, Efate – same PECsoil fo 60/120 a.s./ha due to different interception

The TER value is above the trigger of 5 for all application rates indicating that DFF+FFA SC 200+400 is safe for earthworm eating birds.

Long-term DDD and TEA calculation for fish-eating birds

Table 10.1.1- 15 Tier 1 long-term DDD and TER calculation for fish-eating birds

		Cereals	
Flufewacet	240 ga.s./ha	/ 160@ a.s./ha	120 g a.s./ha
BCF _{fish}	71.4	71.4	71.4
PECsw (twa, 2f d) mg/L	© 0.0193	0.0129	0.0126
PEC _{fish} mg/kg	7 778	0.921	0.899
FIR/bw &	©0.1590°	0.159	0.159
DDD [mg/kg bw/d]	0.22	0.15	0.14
NO(A)EL mg/kg bw/d]	9 7.87	9.87	9.87
YERLT ~	² / ₂ 45	67	69
Trigger	5	5	5

The TER value is above the trigger of 5 for all application rates: Hence the risk to fish-eating birds form the use of the product in cereals is considered acceptable.

CP 10.1.1.1 Acute oral toxicity

One new acute oral toxicity study with flufenacet on canary birds was performed. For details on this study, please refer to the MCA section 8.1.1.1.

CP 10.1.1.2 Higher tier data on birds

No additional studies were considered necessary. For details on studies to determine residue of flufenacet on insects and plants please refer to the MCA section 8.1.1.

CP 10.1.2 Effects on terrestrial vertebrates other than birds

The summary of relevant toxicity endpoints of the active substances flufenacet and the metabolite TFA in mammals is provided in the following tables. For diflufenican references is made to the EU agreed endpoints according to the EFSA Scientific Report (2007) 122.

Only endpoints used for the risk assessment are presented here. For approverview of all available endpoints on flufenacet please refer to the respective section of the MCA focument.

Table 10.1.2-1 Endpoints used in risk assessment

			<u> </u>	
Test substance	Scenario	species / origin	Endpoint Q	Reference
	Acute risk assessment	Rat	\$\int_{50} \frac{1}{9} \frac{589}{60} \text{as/kg} \text{as/kg}	@93) &
Flufenacet	Long-term risk assessment	Rat 🚄	NOAF Charental 000 ppro	& (0,95) M-004984-03-1
	«		NOAEL 37.4 mg as/kg bw/d	Endpoint evaluation: (2014) M-476600-01-1 KCA 8.1.2.2/01
	Acute risk assessment	~\ .r	LO 2000 mg as/kg bw	(2013) M-444479-01-1 KCA 5.8.1/24
TFA	Long-tern sisk assessment	Rat &	NOOEL 98 mg as/kg bw/d	(2007) M-283994-01-1 KCA 5.8.1/27
			NOAEL 98 mg as/kg bw/d	Endpoint evaluation: (2014) M-477154-01-1 KCA 8.1.2.2/02

Table 10.1.2 Endpoints of mixing partner diflufenican

Test substance &	Pest species	EU agreed endpoints acc. to EFSA Scientific Report (2007) 122, 1-84		
D.a.c.	Rat acute, oral	LD ₅₀	> 5000 mg as/kg bw	
Diflufenican	Rat reproduction	NOAEL	35.5 mg as/kg bw/d	

Table 10.1.2-3 Relevant generic focal species for Tier 1 risk assessment

				Shortcut value
Crop group*	Scenario	Generic focal species	Representative species	Long- term RA based on RÜDm
Bare soil ¹⁾	< 10	Small omnivorous mammal "mouse"	Wood mous (Apodemus sylvaticus)	5.7 14.3
	10 - 19	Small insectivorous mammal	Common shrew	(3.2 V 7.6
	≥ 20	"shrew"	(Sorgarangus)	1.9 5.4
Cereals	Early (shoots)	Large herbivorous mammal @ "lagomorph"	Rabbit Rabbit (Orgetolagos cuniculas)	223 22.1
	10-29	Small omnivorous mammal "mouse"	Wood mouses (Apodenjus sylvaticus)	7.8

BOLD: Species considered in risk assessment (only worst case for each species)

.rial vertebrates
.ng level has been performed.
.reals for 0 g.L/ha, corresp.
. As a worst case assumption.
.n rate of TFA was then estimated c
.olecular mass between flufenacet (363..
.application rates for FFA of 37.7 g/ha/(0.3
.FA SC 000). The risk assessment on screening level has been performed for bare soil for an application rate of 0.3 L product/ha and for cereals for 0.5 L/ha, corresponding to 120 g flufenacet/ha and 240 g flufenacet/ha, respectively. As a worst case assumption a formation of 100% TFA from flufenacet was used. The application rate of TFA was then estimated compecting the application rate of the parent for the difference in molecular mass between flufenacet (363.33 g/mol) and TFA (114.04 g/mol). This results in maximum application rates for FA of 7.7 g/ha/(0.3 C/ha DFF+FFA SC 600) and 75.4g/ha

scenario only representative for lowest application rate of 3 L DFg+FFA & 600, equivalent of 120 g FFA/ha

ACUTE DIETARY RISK ASSESSMENT

Table 10.1.2- 4 Tier 1 acute DDD and TER calculation for mammals

DDD LD50										
Crop	Generic focal species	Appl. rate [kg/ha]	SV90	MAF90	DDD	[mg@kg bw]	TERA	Trigger		
	Flufenacet – 0.6 L/ha									
	Small insectivorous mammal		7.6		1 820		301	% n		
	"shrew" < Common shrew>		7.0	~ °	1.82	~~\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 4	Ž		
Cereals	Large herbivorous mammal	0.240	42.1		10.1	\$80	P″ ₅₈ ‰	10		
Cercais	"lagomorph" <rabbit></rabbit>	0.240	72.1		\$0.1			7 10		
	Small omnivorous mammal		17.2	/ %	4.13		143	~/ ·		
	"mouse" < Woodmouse>	7	TFA T		0					
	Small insectivorous mammal	1	FA5		<i></i>			<u> </u>		
	"shrew" <common shrew=""></common>	A	Ő. [™] 7.6 _≈	~ ·	2 0.57	4 %	>350			
	Large herbivorous mammal	. 1	¥ ~0			Ţ	- W			
Cereals	"lagomorph" <rabbit></rabbit>	0.0754	42.15	10	3,100	>2000	≈ 630	10		
	Small omnivorous mammal		17.0		1.20	\^ \(\tau_{\tau} \)	7. 1520			
	"mouse" < Woodmouse>		J17.2		J 1.30		>1538			
	d	Flufenace	et – 0.4¶	Jha D						
	Small insectivorous mamma		ĜΟκ		1 2/2	, O	483			
	"shrew" <common shrew="" td="" ♥<=""><td>,°~~ .</td><td>N. O.</td><td>,O'</td><td></td><td></td><td>463</td><td></td></common>	,°~~ .	N. O.	,O'			463			
Cereals	Large herbivorous manonal "lagomorph" <rabbit< td=""><td>©.160</td><td>¥42.1</td><td>1</td><td>6.74</td><td>√ 589</td><td>87</td><td>10</td></rabbit<>	©.160	¥42.1	1	6.74	√ 589	87	10		
	Small omnivorous mammal		3.7.2°	· ×			214			
	"mouse" < Wood nouse		4Ny.2		~ Z\/5		214			
			¥A @		*					
	Small insectivorous mammal "shrew" <		7		0.38		>5263			
Cereals	Large has pivorous mammal "lagomorph" Rabbi	0 6502*	4 2.1	\$1	2.11	>2000	>947	10		
	Smallomniverous maromal	S Q	17.00		0.86		>2225			
	"wouse" Woodmouse>		17. 2		0.86		>2325			
		Flutenace	et≌Õ.3 I	/ha						
Bare soil	Small omnivorous manmal "nrogse" < Woodmouse >	\$\int_{\int}^{\infty} 0.120 \int_{\infty}^{\infty}	14.3	1	1.72		342	10		
	Snight insection on shammal shrew? Common shrew		7.6		0.91		647			
C 1	Large forbivor s mamol	\$\tag{\chi_120}	42.1	,	5.05	589	117	10		
Cereals	"lagomorph" <rabbi< td=""><td>≪Ø.120</td><td>42.1</td><td>1</td><td>5.05</td><td></td><td>117</td><td>10</td></rabbi<>	≪ Ø.120	42.1	1	5.05		117	10		
F)	Small omnizorous nammal	1 Or 1	17.2		2.06		286			
TFA										
Bare soil	Small omnivorous mammal "mouse" \ Woodmouse>	0.0377*	14.3	1	0.54		>3703	10		
	Small inscorryorous mammal "shrew" Common shrew>		7.6		0.29		>6896			
	Large herbivorous mammal			-		>2000				
Cereals	"lagomorph" <rabbit></rabbit>	0.0377*	42.1	1	1.59		>1257	10		
	Small omnivorous mammal			1						
	"mouse" <woodmouse></woodmouse>		17.2		0.65		>3076			
	for molecular weight of TEA (11		21.10				ditionally			

^{*}corrected for molecular weight of TFA (114.02g/mol, i.e. 31.4% of the parent flufenacet). Additionally, a formation of 100% TFA from flufenacet was assumed.

LONG-TERM REPRODUCTIVE ASSESSMENT

Table 10.1.2-5 Tier 1 long-term DDD and TER calculation for mammals

Compound	Generic focal species	DDD			DDD NOAEI			Trigge	
/ Crop	BBCH	Appl. rate [kg/ha]	SV _m	MAFm	TWA	DDD	mg (kg/bw/d。	TERLT	r
	Flufenacet – 0.6 L/ha								
	Small insectivorous mammal "shrew" <common shrew=""> Large herbivorous</common>		4.2		Q	0 0.53 0.53		71	
Cereals	mammal "lagomorph" <rabbit></rabbit>	0.240	22.3	Ö1.0	0.53	\$\\ 8\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	37 .4	Ø3.2	⊘ ∘5
	Small omnivorous mammal "mouse" <woodmouse></woodmouse>	4	4,8 Q			0.99		38 W	
		W	TFA Å	9 &		O ^X		Ç	•
Cereals	Small insectivorous mammal "shrew" <common shrew=""> Large herbivorous mammal "lagomorph" <rabbit> Small omnivorous</rabbit></common>	0.0754F	2203 24.2		0.53	0.17	\$\tilde{\psi} \\ \tilde{\psi}	576	5
	mammal "mouse" <woodmouse></woodmouse>	Flufenac	7.8 &	L I Zha	¥ (0.31		316	
	Small insectivorous mammad shrew <combon herbiyorous<="" large="" shrew="" td=""><td></td><td>4.2 0</td><td></td><td></td><td>0.67</td><td></td><td>56</td><td></td></combon>		4.2 0			0.67		56	
Cereals	mammal "lagomorph?	0.560	\$2.3	\$.0 /	0.53	0.66	37.4	20 57	5
	*Woodmouse>								
	Small in sectivorous		ľFΑ			I	<u> </u>		1
°.	mammal "skrew" < @mmon @rew> .	Ø.0502*	4.2			0.11		891	
Ceresis	Carge herbivorous mammal fagomorph"	0.0502*	22.3	1.0	0.53	0.59	98	166	5
*	Small omniverous Anammal mouse"		7.8			0.21		467	

Table 10.1.2-5 (cont.) Tier 1 long-term DDD and TER calculation for mammals

1 abic 10.1.2-	able 10.1.2-5 (cont.) Her I long-term DDD and LER calculation for mammais					ı			
Compound	Generic focal species		DDD				NOAEL		Trigge
/ Crop	BBCH	Appl. rate [kg/ha]	SVm	MAFm	TWA	DDD	mg kg/bw/d	TER _{LT}	r
		Flufenac	et – 0.3	3 L/ha			, O		
Bare soil	Small omnivorous mammal "mouse" <woodmouse></woodmouse>	0.120	5.7	1.0	0.53	0.36	3704	©4 ,	
	Small insectivorous mammal "shrew" <common shrew=""></common>		4.2			90.27°		139) -
Cereals	Large herbivorous mammal "lagomorph" <rabbit></rabbit>	0.120	22.3	0 1.0 ×	0.53	7.42	3 7.4	26	y °5
	Small omnivorous mammal "mouse" <woodmouse></woodmouse>	<u> </u>	Q7.8			0.50		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			ΓFÆÇ [™]		" &)	
Bare soil	Small omnivorous mammal "mouse" <woodmouse></woodmouse>	0.0877* (5.7	, Ø1.0 *	©:53	.0.5M ○	9 8	891	5
	Small insectivorous mammal "shrew" (Common shrew)	0 03770 T	*4\D *\			0.09	V. I	1089	
Cereals	Large herbivorousy mammal "lagomorph" <rabbit< td=""><td>0.03770</td><td>22.5</td><td>1.0</td><td>0.53</td><td>D0.45</td><td>98</td><td>218</td><td>5</td></rabbit<>	0.03770	22.5	1.0	0.53	D 0.45	98	218	5
	Small omnworous of mammal mouse? Voormouse		7.8	V (V) (A)		0.16		613	

*corrected for molecul@weight of TFA 14.02 mol, i.e. 1.4% of the parent flufenacet). Additionally, a formation of 100% TFA from dufenacet was as wined.

Assessment: The acute and long-term risk assessment addressing flufenacet and the metabolite TFA results in acceptable TER values for all use rates indicating that DFF+FFA SC 200+400 is safe for mammals.

LONG-TERN RISK ASSESSMENT FOR NAMMON'S DRINKING CONTAMINATED WATER

The puddle scenario is relevant for the long-term risk assessment.

Table 10.1.2 Evaluation of potential concern for exposure of mammals drinking water

Crop	Koc Koc Kog	Application rate * MAF [g as/ha]	NO(A)EL [mg as/ kg bw/d]	Ratio (Application rate * MAF) / NOAEL	"Escape clause" No concern if ratio	Conclusion
Flufenacet						
Cereals	215	240 x 1.0	37.4	6.4	≤ 50	No concern

Assessment: According to the evaluation for flufenacet, the risk to mammals drinking water from puddles on soil following the use of DFF+FFA SC 600 on bare soil and on cereals is acceptable.

RISK ASSESSMENT OF SECONDARY POISONING

As outlined in Point 10.1.1 a risk assessment of secondary poisoning has to be performed for the following compounds: flufenacet.

Table 10.1.2-7 Mammalian generic focal species for the Tier 1 risk assessment of Secondary poisoning

Generic focal species	Body weight [g]	Example	FIR bw
Earthworm eater	10	Common shrew	@1.28 @
Fish eater	3000	Ofter° 4	₩ 0.142 [®] ₩

Generic focal species	Body weight [g]	Example	FIR/bw O
Earthworm eater	10	Common shrew	01.28 0 A W
Fish eater	3000	Ofter°	0.1427
ng-term DDD and TER ca le 10.1.2-8 Tier 1 long-tern			0, 0
	Cereal		
Flufenacet		6Qg a.s./ha* 20 g a.s./ha*	
PECworm [mg/kg]	1.85%	1.232	
FIR/bw	1/2/8	1/28	
DDD [mg/kg bw/d]	Q2.37 S	© 1.58 € °	Ž Õ
NOAEL [mg/kg bw/d]	37.4	₩ 37.4° \$, O
TERLT	\$ 15.8°	23.7	~,*
Trigger		<i>(</i> 55 Q)	4
1115501	Casil for \$60/120 for a /ha	different interd	certion rates
MCP, section 9, Efate – same Pl	CCS011 101(1)60/120 & a.s./11a	due to different interp	peron races

Long-term toxicity exposure ratio for fisheating mammals

Table 10.1.2-9 Ter 1 long-term DDD and TER calculation for fish eating mammals

		Cereals	
Flufenæet	240 g a,s.∦ha	_% 160 g a.s./ha	120 g a.s./ha
PEC _{fish} [mg/kg]	© 1.3 ⁴⁸ €	0.921	0.899
FIR/bw	(C) 42	0.142	0.142
DDD [mg/kg bw/d]	3 0.20	0.13	0.13
NOAEL [mg/kg bw/d]	37.4	37.4	37.4
TER _{LT}	Ŭ 1 8 ₩	286	293
Trigger	~\$	5	5

No risk to fish eating mammals is discernible form the use of DFF+FFA SC 200+400 in Assessment cereals.

CP 10.1.2.1 Acute oral toxicity to mammals

Table 10.1.2.1-1 Endpoints for the representative formulation

Test spe	ecies	Test design	Ecotoxicologi	*	Reference	
Rat	t	acute, oral	[mg production 500 < LD ₅	0 1	, 2002 M-055334-01-1 KCP 7.1.1001	Ö

Toxicity of the formulation

A comparison of the acute endpoint of the formulation derived from a study on this with calculated theoretical endpoints (calculated according to Finney's formula OFFAP, 1990) is shown in Table 10.1.1-3.

Table 10.1.1-16: Comparison of acute toxicity: active ingredients vs. formulation

S	Diflufenican 16.4% Flufenæet 32,5%	
Species	Calculated [mg/product/kg bw]	Study results [mg product/kg bw]
Mammal (Rat)	₹1682 ¹ ° €	500 < 100 < 2000

based on: Diflufenican – LD₅₀ > 5000 mg/kg byc Flufenacet – LD 589, mg/kg byc

Assessment: A comparison of available toxicity data from an experimental study with results from the Finney calculation shows that the preparation is not more toxic than expected on basis of its content of active ingredients.

CP 10.1.2.2 Higher tier data on mammals

No additional studies were considered necessary. For details on studies to determine residues of flufenacet on insects and paints please refer to the MCA section 8.1.1.

CP 10.1.3 Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)

No studies were conducted on regules or amphibrans with the formulation. An acute toxicity study on the African classed from (Xenopus laevis) using flufenacet technical was performed (In et al. 2013, M-47 899-01-40 KCA 8.2.8/03). The 48th NOEC based on mortality and sublethal effects is 10 mg a.s./L, equivalent to the highest dose rate tested.

^{*} Based on a formulation density of 1.25/1/g/cm³ (Section 1)

CP 10.2 Effects on aquatic organisms

The risk assessment is based on the current Guidance Document on Aquatic Ecotoxicology, SANCO/3268/2001, rev 4 final, 17 October 2002. Some implications of the new Aquatic Guidance Document (EFSA Journal 2013, 11(7):3290, 268 pp. doi:10.2903/j.efsa.2013(2290), which is not yet notified, have been taken into consideration as well.

In the first Annex I listing process data on aquatic species for a different formulation of flucturacet were submitted and evaluated. The formulation FFA W600 is no longer considered to be the representative formulation, therefore only data on the new representative formulation Flucturacet + Diflutenican SC 600 (Herold SC 600) for the Annex I process will be presented with this dossier. For the Annex I listing process of diflutenican also the formulation Flucturacet - Diflutenican SC 600 (DFF+FFA SC600, Herold SC 600) was submitted as representative formulation. Hence, some formulation studies (e.g. on non-target arthropods and non-target terrestrial plants) were already evaluated during this Annex I listing process.

The summary of the toxicity profile of the active substances fluseracet and diflusenican to aquatic organisms is provided in the following tables. For diflusenican reference is made to the EU agreed endpoints according to the EFSA Scientific Report (2007) 122

Only endpoints used for the risk assessment are presented here. For an overview of all available endpoints on flufenacet and its metabolites please refer to the respective section of the MCA document.

Ecotoxicological endpoints used in risk assessment

Table 10.2-1 Endpoints for the representative formulation used in risk assessment

		Tr. 41 · 0		E 1	D.C.
Test substance		Test species		Endpoint	Reference
DFF+FFA SC 600	Selenastri 72h, stati	um caprifornuti k	© ErC50	0.00663 mg as/L	(2001) M-073137-01-1 KCP 10.2.1/01
DFF+FFA SC 600	I&mna gil 77d, static		E _r C ₅₀	0.307 mg as/L	& (2001), M- 073160-01-1 KCP 10.2.1/02

Table 70.2- 2 Endpoints for Jufenacet and its metabolites used in risk assessment

Test substance	Açst spesies	Endpoint assessmen	s used in risk nt	Reference
	F.S., acute Lepomis macrochirus	LC ₅₀	2.13 mg a.s./L	(1995) M-002378-01-1
Flufenacet	Fish, chronic, ELS Oncorhynchus mykiss	NOEC	0.334 mg a.s./L $^{\rm (1)}$	(1995) M-002357-01-1
	Fish, chronic, FFLC Pimephales promelas	NOEC	0.138 mg a.s./L ⁽³⁾	M-082934-01-1 KCA 8.2.2.2/01

Test substance	Test species	Endpoints used in risk assessment	Reference
	Invertebrate, acute Daphnia magna	EC ₅₀ 30.9 mg a.s./L	(1994) M-003895-01-1
	Invertebrate, chronic Daphnia magna	NOEC 3.26 mg a.s./L	(1994) M-093795-01-1 O
	Sediment dweller, chronic Chironomus riparius (spiked water)	NOEC 5.0 mg a.s.	M-09/3795-09-1 0" (20/10) /M-372/857-01-5 KCA,8.2.5.3-0
	Algae Pseudokirchneriella subcapitata	E _r C ₅₀ 0.0144 mg ars L	Geometric mean of the three endpoints listed (see MCA 8.2)
	Aquatic plant Lemna gibba	E _r C ₅₀ 9.0139 mg a.s. (14)	(2013) M-451198 91-1 &CA 8.27/11
	Lemna gibba (Duckweed)	Justiff ation to use the few E ₁ CS Bruns, 2013) for risk assessment purposes	M-458762-01-1 K-CA 8.2.7@3
	Lemna gibba (Duckweed)	Reak expossive: one of two 24- figures are a series of the control	(2013) M-452567-01-1 KCA 8.2.7/12
	Fish, acette Cyprinedon varjegatus	LC ₅₀ 3.3 rmg a.s.	& (1994) M-002422-01-1 KCA 8.2.1/05
	Fish, chrome, ELS Cyprinodon variesatus	50EC Q 0.049 mg a.s./L	(2013) M-464909-01-1 KCA 8.2.2.1/02
Flufenacet - Saltwater	Jivertebrate, acute Mysidopsis bahia	5.6 mg a.s./L	M.B. et al. (2013) M-452205-01-1 KCA 8.2.4.2/03
organisms	Investebrate, chronic Moridopsis bahia	NODC 0.221 mg a.s./L	, M.B. et al. (2013) M-452207-01-1 KCA 8.2.5.2/01
	Algae	4d-E _r C ₅₀ 0.00949 mg a.s./L	(1995) M-002353-02-1 recalculated: (1998) M-086470-01-1 KCA 8.2.6.2/07
	Alsae Pseudokirchneriella subcapitata	E_bC_{50} > 100 mg p.m./L ⁽⁵⁾ E_rC_{50} > 100 mg p.m./L ⁽⁵⁾	(2009) M-358823-01-1 KCA 8.2.6.1/08
FOE oxalate	Aquatic plant Lemna gibba	E_rC_{50} > 100 mg p.m./L ⁽⁵⁾	(2009) M-359515-02-1 KCA 8.2.7/05

Test substance	Test species	Endpoints used in risk assessment	Reference
	Fish, acute Oncorhynchus mykiss	LC ₅₀ > 86.7 mg p.m./L	(1995) M-00493-201-1
FOE Sulfonic	Invertebrate, acute Daphnia magna	EC ₅₀ > 87.3 mg p.m./L	M-094930-02-1
acid	Algae Desmodesmus subspicatus	E _r C ₅₀ > 86.7 mgg m./L	M-004931-01-
	Aquatic plant Lemna gibba	EC ₅₀ > 75.9 0 mg mn./L ⁽⁶⁾ 7	(095) 2004929 01-1
FOE	Algae Pseudokirchneriella subcapitata	E _r C ₅₀ 63.8 mg J-m./L	
Methylsulfide	Aquatic plant Lemna gibba	E _r C ₅₀ 105 mg p.m. L ⁽⁵⁾ &	(2010) M-393709-01-10 KCAS 2.7/070
FOE	Algae Pseudokirchneriella subcapitata	A, C ₅₀ > 100 mg p.m. L	(20 10) N=36459©01-1 KCA 8 2.6.1/10
Methylsulfone	Aquatic plant Lemna gibba	EC, 100 tôg p.m./IO	(2010) M-369703-01-1 KCA 8.2.7/06
	Fish, acute Brachydania rerio	LC ₅₀ > 1200 mgp.m./L	et al., (1992) M-247889-01-1 KCA 8.2.1/10
	Brachroanio revio	NOEC 300 ang p.m. L	et al. 2013; M-462660-01-1 KCA 8.2.2.1/01
TFA	Invertebrate, acute	> 1200 mg p.m./L	et al. (1992) M-247890-01-1 KCA 8.2.4.1/04
	Algar A O Psoudokirchneriella Subcapitaja	E	et al. (1992) M-247820-01-1 KCA 8.2.6.1/12
		EC ₅₀ 618.3 mg p.m./L	& (2004)
	Myriophyllum © spicatWh	312.9 mg p.m./L	M-455787-01-1 KCA 8.2.7/14
FOE 5043- trifluoroethane	Algae Pseudokir Gineriella Subcapitata	E_rC_{50} > 100 mg p.m./L	(2012) M-444217-01-1 KCA 8.2.6.1/15
sulfonic acid	Aquatic plant Lemna gibba	EC ₅₀ > 10 mg p.m./L	(2013) M-445884-01-1 KCA 8.2.7/10
FOE-	Fish, acute Oncorhynchus mykiss	LC ₅₀ 9.1 mg p.m./L	M-005388-01-1 KCA 8.2.1/06
Thiadone	Invertebrate, acute Daphnia magna	EC ₅₀ 31.7 mg p.m./L	& (1998) M-005390-01-1 KCA 8.2.4.1/03

Test substance	Test species	Endpoints used in risk assessment	Reference
	Algae Pseudokirchneriella subcapitata	E _b C ₅₀ 4.1 mg p.m./L	& (1999) M-0092 (201-1 KCA § 2.6.1/06
	Aquatic plant Lemna gibba	E_rC_{50} 18.3 mg p.m./L ⁽⁵⁾	(2010) MS93718-01-1 CA 8.25/08
FOE-Thiadone	Fish, acute Cyprinodon variegatus	LC ₅₀ 15.3 mg @m./L	M-009684-01-A K&A 8.2.107
Saltwater organisms	Invertebrate, acute Mysidopsis bahia	EC ₅₀ > 15/1 mg pm./L	M-005© 0-01-1© KCA 8.2.4.2/02
Flufenacet WG 60	Macrophytes & periphyton indoor microcosm	NOE 0.52 mg v./L (EAC) 0.024 mg v.s./L (2)	(2009) M-329959-01-1 KCA 8.2803

⁽¹⁾ The fish-ELS NOEC-value reported in the descrier is 0.34 mg/L. The endpoint fixed by the Elsis 0.2 mg/L ("value where a significant reduction of growth was measured" at post-hatch day 33). The choice of this value is not supported by BCS. Justification: Growth, measured as fish length, was statistically different from controls on post-hatch day 33 (study-day 66). This proved to be biologically not pelevant of post-hatch day 62 (study-day 97), where no effects were observed for length. The biological significance of this transfer effect is questionable. Measurements of length at this study time are based on picture analysis, which is a doubtful method and not required in OECD 210 US-specific; see also comment of study-author on page 19 of study report). The NOEC for growth (as length) at the old of the study is given as 0.8 mg/l (measured 0.735 mg/L). Therefore, the NOEC for the whole study should be based on the parameters "percent swim-up" and "97d-dry weight": 0.4 mg/L).

(2) The microcosm study has been further evaluated by an expert statement confurming the EAC as relevant endpoint (Bruns, 2005, M. 2

2009, M-329959-01-1, see point 10.2.3).

(3) Lower endpoint obtained from a new study

- (4) Former EU agreed endpoint (2 day Lemna study Considering only of endpoint (frond counts)) will be replaced by a new 7-day Lemna study (2013, 10-451198-01-1) performed according to current valid OECD 221 guideline considering two endpoints (frond number and frond area). The Erc 50 from this study will be used in the risk assessment. P, 2014 (M-478762-01-1). For details see Statement performed by
- (5) No EU agreed endpoint available. Endpoint used for risk assessment obtained from a new study.

(6) Based on mean measured concentrations as proposed in the study report.

Endpoints of mixing partner Diffufenican

Test substance	Test species	EU agreed endpoints acc. to EFSA Scientific Report (2007) 122, 1-84			
Divinfenical	Fish, acute y Springs carpio	LC ₅₀	> 0.0985 mg as/L		
	Fish, chronic A Pimerhales promelas	NOEC	0.015 mg as/L		
****	Invertebrate, acute Qaphnia magna	EC ₅₀	> 0.240 mg as/L		
	Invertebrate, chronic Daphnia magna	NOEC	0.052 mg as/L		
	Sediment dweller, chronic Chironomus riparius (spiked water)	NOEC	0.100 mg as/L		
	Sediment dweller, chronic Chironomus riparius	NOEC	2.0 mg as/kg		

Test substance	Test species	EU agreed endpoints
		acc. to EFSA Scientific Report (2007) 122, 1-84
	(spiked sediment)	
	Algae Desmodesmus subspicatus	EC ₅₀ 0.00025 mg as/L
	Algae Desmodesmus subspicatus (with recovery)	Maximum concentration from which recovery is possible loverall NQEC 20001 fog as/L
	Aquatic plant Lemna gibba	E _r C 0.039 mg as 1/2
AE B107137	Fish, acute Oncorhynchus mykiss	AC 50 27 27 377.3 mg/L ²⁾ 20°
	Invertebrate, acute Daphnia magna	EC:
	Algae Desmodesmus subspicatus	© 0.4* mQ/L 2)
AE 0542291	Invertebrate, acute Daphnia magna	© EC ₅₀ > 10pmg/L ²⁾
	Algae Desmodesmus subspicerus	○

¹⁾ EFSA Scientific Report (2007) 122, 1-84. In order to cover effects on less sensitive but sower reproducing algal species the safety factor of 10 was maintained in the risk assessment. The prosure pattern of the FOCUS scenarios were analysed and the risk was considered acceptable provided that the peak exposure is below 0.42 µg diffusenican/L and that this exposure does not last longer than 3 days on order to cover the overall NOEC of 0.1 µg diffusenican/L no other peak exposure should exceed the NOEC of 0.1 µg diffusenican/L.

Selection of algae endpoints for risk assessment

Processes in ecosystems are dominantly rate driven and therefore, the unit development per time (growth rate) is more suitable to measure effects in argae. Also, growth rates and their inhibition can easily be compared between species, test durations and test conditions, which is not the case for yield or biomass based endpoints. Following current state of ceience, the test guidelines OECD TG 201, the EU-Method 3, the FC regulation for classification and Labeling (EC regulation 1272/2008), the PPR Opinion (EFSA Journal 461, 1-44; 2007) and also the EFSA Aquatic Guidance Document (2013, not yet formally noted by SCFCAHA first growth rate as the relevant endpoint of the algae inhibition test. The previous Guidance Document on Equatic Toxicology (SANCO/3268/2001 rev. 4) still states that "As there is no clear evidence available to odicate which is the most relevant endpoint for the field situation the lower figure should be used in the risk assessment". As this statement is clearly superseded by recent escientific and regulatory developments, toxicity-exposure-ratios in this assessment were based on the TC50, when available.

Selection of Lorina endpoints for risk assessment (see also Statement from P, 2014, M-478762-01-1, K@ 8.2.7/12)

²⁾ above the limit of aqueous solubility

^{*}above the limit of aqueous solubility

1) is considered to be not valid according to current guidelines (OECD 221, 2006) as a second endpoint like frond dry weight or frond area has not been determined.

To address this data requirement with a fully valid study a new 7-day Lemna study (2013; M-451198-01-1) was performed. In this study two parameters, frond number and frond area, were assessed as required by the currently valid OECD 221 guideline. The determined endpoint relevant for risk assessment – the 7-day ErC50 based on growth rates of frond area—way by more than a factor of 2 lower than the one recalculated by (1998) out of the 14-day study. To addition the OECD guideline 221 states that growth related endpoints should be used for risk assessment purposes to allow comparison of sensitivity of different species. As in addition the no observed effect concentrations (NOECs) from both studies reveal that the test organisms were of equal sensitivity (0.44 and 0.658 µg/L from the old and new study, respectively) it is considered justified to the new fully valid and according to current state of the science performed 7 day Lemna-study supersedes the old 14-day Lemna study where the endpoint is based solely on the frond counts. Consequently the risk assessment will be performed using the new 7-day ErC50 of 13.5 µg a.s. 4 based on growth rate.

Predicted environmental concentrations used in risk assessment

Table 10.2-4 Initial max PEC_{sw} values FOCUS Step 1, 2

				7 20
Compound	FOCUS Scenario	Winter cereals	Winter cereals	Winter cereals
	, Q		1 x 160 g a s/ha	
	**************************************	PEC so max	PECsw, Qux	PEC _{sw, max}
	4 , 3) [µgPL] ,	[∨] [μg/L] ́	🔑 [μg/L]
	STEP 1	64.38	°42.92	32.19
Flufenacet	STER 2 - North	©21.80	a. 14.53	14.24
	STEP 2 - South	× 17.79	6 11.86 Y	11.57
	O STEP Y	, 1 5 73 () 1Q Q v9	7.864
FOE sulfonic acid	STEP 2 & North	5 152	3 435	3.435
_	STEP 2 - South	4.121	<u> \$2</u> .748	2.748
	STEP 4	\$\$\times 12.9\$\times\$	8.634	6.476
FOE oxalate	SPEP 26 North	3.967	2.645	2.645
₩,	STEP 2 South	® 174 ≪ 3	2.116	2.116
\$	STEP 1	3.615	2.410	1.807
FOE methylsulfone	STEP 2 - North	1.30D*	0.867	0.867
. Ö	SOUEP 2 - South	V 1,041	0.694	0.694
	STEP 1	£ 767	0.111	0.084
FOE methylsulfide		°>0.167	0.111	0.084
4 0	STEP 2 - South	0.167	0.111	0.084
	STEP(1 ^	2.959	1.973	1.480
FOE-thiadone	TEP 2@North O	0.975	0.650	0.510
∠ ′ ,	STEP 2 - South	0.947	0.631	0.492
FOE 5043-	STEP 1	2.168	1.445	1.084
trifluoroethan	STEP 2 - North	0.600	0.400	0.400
sulfonic acid	FEP 2 - South	0.480	0.320	0.320
	STEP 1	20.46	13.64	10.23
TFA	STEP 2 - North	7.651	5.101	5.101
	STEP 2 - South	6.121	4.081	4.081

BOLD – values considered in risk assessment

Table 10.2-5 Initial max PEC_{sw} values – FOCUS Step 3

Compound	FOCUS Scenario	Winter cereals	Winter cereals	Winter cereals	
		1 x 240 g a.s/ha	1 x 160 g a.s/ha	1 x 120 g a.s/ha	
		PEC _{sw, max}	PEC _{sw, max}	PEC _{sw, max}	
		[µg/L]	[µg/L]	//ng/L]	
	D1 (ditch, 1st)	6.762	4.460	∞ √ 2.767 ∘	.
	D1 (stream, 1st)	4.230	2.782	1.728	
	D2 (ditch, 1st)	7.223	4.646	57 3 ≪ 3 50 ₄	
	D2 (stream, 1st)	4.517	2.905	©.343 , ¬	
	D3 (ditch, 1st)	1.513	₫:010	~√ ⁹ 0.7580 ⁹	
	D4 (pond, 1st)	1.245	2 ⁰ 0.8122	(°) 0.4% √	×
Flufenacet	D4 (stream, 1st)	1.892	(1.228) (× 2658	0
Fiulenacet	D5 (pond, 1st)	1.176	© 0.276 0	∑ 3 9.575 ∑	
	D5 (stream, 1st)	1.419	© 946	©0.710°	
	D6 (ditch, 1st)	6.021	3.969	2.950	
	R1 (pond, 1st)	0.116 🌯 💮	0.07%	0. 0 57	ľ
	R1 (stream, 1st)	6.341	9 4,142	3062	
	R3 (stream, 1st)	7.887	5 ,148 &	4.173	
	R4 (stream, 1st)	\$5,943	(§3.936 °	1.156	

Table 10.2- 6 3-day time-weighted average PEC_{sw} values FOCL Step 3 FOCL Step 4

Compound FOCUS Scenario Winter cereals 1 x 240 g a.s/ha 1 x 160 g x 3/ha x 120 g 2 x 12	36 06 69 26
PECtwa-3d PECt	36 06 69 26
PECtwap3d PECt	36 06 69 26
Step 3 D1 (ditch 1st) 6.634 4.410 2.75 D1 (steam, 1st) 4.136 2.75 1.70 D2 (ditch, 1st) 3.759 2.23 2.20 D2 (stream, 1st) 2.258 453 1.33 O3 (ditch 1st) 0.403 0.270 0.20 D4 (pool, 1st) 1.244 0.812 0.4	36 06 69 26 06
Step 3 D1 (ditch 1st) 6.634 4.410 2.75 D1 (steam, 1st) 4.136 2.75 1.70 D2 (ditch, 1st) 3.759 2.23 2.20 D2 (stream, 1st) 2.258 453 1.33 O3 (ditch 1st) 0.403 0.270 0.20 D4 (pool, 1st) 1.244 0.812 0.4	06 69 26 06
D1 (steam, 1st) 4.136 2.759 1.70 D2 (Grich, 1st) 3.759 2.23 D2 (stream, 1st) 2.258 4.53 1.33 D3 (ditcle 1st) 4.03 70.270 0.20 D4 (pool, 1st) 1.244 0.812 0.4	06 69 26 06
D2 (dirch, 1st) 3.759 2.263 2.20 D2 (stream, 1st) 2.258 3.453 1.33 D3 (ditch, 1st) 0.403 0.270 0.20 D4 (pond, 1st) 1.244 0.812 0.4	69 26 06
D2 (dirch, 1st) 3.759 2.263 2.20 D2 (stream, 1st) 2.28 3.453 1.33 D3 (dirch, 1st) 0.403 0.270 0.20 D4 (pool, 1st) 1.244 0.812 0.4	26 06
De (stream, 1st) 2,258 3,453 1.33 De (ditch 1st) 6,403 7,0270 0.29 De (pool, 1st) 7,244 0.812 0.4	06
D4 (powel, 1st) 1.244 0.812 0.4	
D4 (powel, 1st)	17
[] D4 (stream, 1st) 1.601 1.030 0.52	21
(stream, 1st) 0.500 0.500 0.3	
D6 (ditch, 1st) (2) (4.246) 2.767 2.00	40
R1 (pond, 1st) 0.013 0.074 0.00	
R1 (stream, 1st) 0.993 0.649 0.44	
(stream, 1st) (\$\infty\$ 136 1.002 1.70	
R4 (stream, 1st) 7.660 1.105 0.3	18
Step 4, 10m buffer	
© D1 (ditch, 15t) 6.634 4.410 2.7	36
DY (stream, 1st) 4.136 2.750 1.70	06
2.20 (ditch, 1st) 2.30 3.759 2.423 2.20	
D2 (stream, 1st) 2.258 1.453 1.35	
D3_(ditch, 1st) 0.058 0.039 0.03	29
(pond, 1st) 1.237 0.807 0.4	
Flufenacet 194 (stream, 1st) 1.601 1.030 0.52	
D5 (pond, 1st) 1.166 0.770 0.5	
D5 (stream, 1st) 0.760 0.500 0.3	
D6 (ditch, 1st) 4.246 2.767 2.04	
R1 (pond, 1st) 0.055 0.036 0.00	
R1 (stream, 1st) 0.444 0.290 0.2	
R3 (stream, 1st) 0.694 0.453 0.80	00

R4 (strea	m, 1st)	0.747	0.498	0.143

Table 10.2-7 Initial max PEC_{sw} values – FOCUS Step 4 – cereals

Compound	Buffer Width& Type; Drift reduction	FOCUS Scenario	Winter cereals 1 x 240 g a.s./ha single	Winter cereals 1 x 160 g a.s/ha		
	Differ reduction		PEC _{sw, max} [μg/L]	PECsw, max	PEGw, max	
		D1, ditch	6.762	0 4.460	2.767	
		D1, stream	4.230	≥ 2.782	1.728	
		D2, ditch	7.223	4.646	√ 3. 7,5 0	
		D2, stream	4.517 📞	2 .905	2,343	
		D3, ditch	0.011		_@0.006 C	W .
	20m SD & RO;	D4, pond	1.228	>> 0.80 1	° 0.4₽9 ₂	
Flufenacet	90%	D4, stream	1,892 ~	1.228	0.603	Ũ -
Tutchacct	9070	D5, pond	1,161	© 766 ₆ ○	0 9 67	7
		D5, stream	_ ∱1.347 ∜	0.886	∂0.656 @	
		D6, ditch, 1st	ິ∀໌6.0 2 ¶	© 3.9 69 √	" © 2.950	
		R1, pond	° 0.006 €	U 0, 9 11 🐒) 0. 99 9	
		R1, stream	^y 482 ^{^y}	0,968 ~	Q .716	
		R3, stream	ŎĬ.861 Ø	Q1.215	9 ² .000 کی	
		R4, stream	× 1.402	0.928	0.272	

BOLD - values considered in risk assessment

Risk assessment for aquatic organisms

The risk assessment is based on the current Guidance Document on Aquatic Ecotoxicology, SANCO/3268/2001, ov 4 final, 17 October 2002. Some implications of the new aquatic guidance document (EFSA Journal 2013;114):3290/268 pp. doi:10/2903/j.efsa.2013.3290), which is not yet noted, have been taken into consideration as well.

Toxicity exposure ratios (TER values are calculated based on the most sensitive species and worst-case PEC_{sw} values are calculated based on the most sensitive species and worst-case PEC_{sw} values.

The TER-values have been calculated based on the following equations:

 $TER_{A} = LC_{50} \text{ of } EC_{50} \text{ max PEC}_{SW}$ $TER_{LT} = \text{choosic NOEC } (EC_{50} / E_{b}C_{50}) / PEC_{W}$

The risk is considered acceptable if the TERA values are ≥ 100 , and the TERLT values ≥ 10 .

ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

Risk assessment based on formulation endpoints

Endpoints measured for the formulation are compared with the acute mixture to getty calculated according to the formula of Finney (Finney, GIFAP, 1990):

1 / LC₅₀ expected =
$$\sum$$
 ct as / LC₅₀ ct as = w/w fraction of active substance in $\frac{0}{2}$

Table 10.2-8: Calculation of the acute mixed toxicity of the formulation according to Finney

		Measuredendpoint		Calculated endpoint
	Diflufenican	Eth fenacet y	DFF+FFA SC 600	DFF+FFA SC 600
Content in the product	17.4 %	32.2 % 7		
Algae, EC ₅₀	0.00025 mg as/L	N SOUTH HIS/L	√ 0.0 0 063 mg/L [©]	©.0014 mg/L
Aquatic plant, EC ₅₀	0.039 mg as/L _s	0.0139 mg/L	0.307 mg	© 0.0362 mg/L

Based on Finney's formula, the maximum deviation of the expected toxicity of the formulated product from the measured toxicity is 0.00140.00663 and as such about a factor of 7.7 from the measured toxicity values. This variation is within the experimental variability of biological systems and below the factor of 10 used in the Aquatic Guidance Document as indication for significant differences. Moreover, the endpoints determined in studies with the formulated product are higher than the predicted values for the considered species. Thus, the risk assessment for the formulated product can be safely based on the datagenerated on its active substances.

Table 10.2-9 TER Calculations based on FQCUS Stop 2

1 able 10.2-9 1	En Scalculations based	OH INC	ob yeep 2	,		
Compound	Species		ndpoint \$\int\text{Qg/L}	PEC _{sw,max} [μg/L]	TERA	Trigger
Winter cereals,	x 240 g.a.s/ha		· ~~			
	L. macrochinus &	LC560	2130		98	
Elufanaat	ČŽvariegatus	LC5	Ø 310	21.00	152	100
Flufenacet	D. magya	$\widetilde{\mathbf{C}}_{50}$	\mathbb{Q}_{3090}	21.80	142	100
	M. bghia	EC ₅₀ \$	5600		257	
FOE sulfonic acid	© mykissO C	LĈ%	>86700	5 152	16828	100
S' W	D. magna 🛴 🔌	EC50	>87300	5.152	16945	100
TFA	B. rerio	LC ₅₀	>1 200 000	7.651	156842	100
	D. magna 🕝	EC ₅₀	>1 200 000		156842	
ν	O. owkiss	LC ₅₀	9100		9333	
FOE-thiadone	C. variegatus	LC ₅₀	15300	0.975	15692	100
1 012 tilludollo	D. magna	EC ₅₀	31700	0.715	32513	100
	M. bahia	EC ₅₀	>15100		15487	

Table 10.2-10 TERA calculations based on FOCUS Step 3 – winter cereals

T 1 ' /	DEC	FOCUE		
Endpoint [µg/L]	PEC _{sw,max} [μg/L]	scenario	TERA	trigger
eals 1 x 240 g.a.s/ha			Ď	
	6.762	D1, ditch	315 。	
	4.230	D1, stream	504	
	7.223	D2, ditch	\$29 5	
	4.517	∘D2, stream	472	
	1.513 @	D3 ditch	1408	
	1.245	DA, pond	1701	
1.0 2120	1.892	≼ D4, str@m	⊅ 126 ♣	
LC50 2130	<u>1</u> 076 €	D5 pond	1811	1 000 0 0
	J.419	D5, stream	1501	
	6.020	Øø, ditch;∮st	\$ 54	<u>V</u>
* * * * * * * * * * * * * * * * * * *	0,616	R1, sond	183620	
	6.341	R.J., stream		
	O 7.887	₽, stream	% 90	
	5.943	≪R4, ştr Q m	\$358	
	eals 1 x 240 g.a.s/ha LC ₅₀ 2130	[μg/L] [μg/L] eals 1 x 240 g.a.s/ha 6.762 4.230 7.223 4.517 1.513 1.245 1.899 1.76 1.419 6.020 0.66 6.341 7.887	[μg/L] [μg/L] scenario eals 1 x 240 g.a.s/ha 6.762 D1, ditch 4.230 D1, stream 7.223 D2, ditch 4.517 D2, stream 1.513 D3, ditch 1.245 D4, stream 1.892 D4, stream 1.419 D5 stream 6.020 D6, ditch st 0.06 R1, stond 6.341 R1, stream 7.8872 C7, stream 7.8872	[μg/L] [μg/L] scenario TERA eals 1 x 240 g.a.s/ha 6.762 D1, ditch 315 4.230 D1, stream 504 7.223 D2, ditch 295 4.517 D2, stream 472 1.513 D3, ditch 1408 1.245 D4, stream 126 1.892 D4, stream 126 1.892 D5, stream 126 1.892 D6, ditch 181 7.419 D5, stream 1501 6.020 D6, ditch 13 6.341 R1, stream 336 6.341 R1, stream 336 7.8872 10, stream 270

Except for the acute risk to fish all acute TER values for the use in cereals meet the trigger based on the FOCUS Step 2 values. For fish further refinement using FOCUS step 3 values were necessary. The calculations show that for fish all LER values for the use in cereals meet the trigger based on the FOCUS Step 3 values. Therefore, no unacceptable acute risk to aquatic organisms is expected following the application of this product in cereals.

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

Table 10.2- 11 TERLT calculations based on FOCUS Step 2

Compound	Species	Endpoin [µg/L]	t	PECsw,max [μg/L]	P RLT	trigger
Winter cereals, 1 x 24	40 g.a.s/ha	•		2/		4 2
	C. variegatus	NOEC	49		2.2	
	D. magna	NOEC 3	260		© 149	
Flufenacet	M. bahia	NOEC 2	221	21.80 °	y 10.1 O	× 10
ridicilacet	C. riparius		600		22	\$\times 10
	S. costatum		7.49		0.44	
	L. gibba	())	3.9		0.64	
FOE oxalate	P. subcapitata	$E_rC_{50} > 10$	00000	3.967	25208	(F) 10
roe oxalale	L. gibba	E_rC_{50} $\gg \mu$	0000	3.967 ·	25 \$ 08	10
FOE sulfonic acid	D. subspicatus	EC% >8	6700	5.452 s	\$\$28 £	10
FOE sullonic acid	L. gibba	₽ C ₅₀	759000	3:15/2	7 1473 2 0	/ 10
FOE41-1-16.1-	P. subcapitata	E _r C ₅₀ 82	3800°	© 0.167 [©]	50 <i>1</i> 796	10
FOE methylsulfide	L. gibba	E_rC_{50}	6000	0.167	634731	10
FOF411516	P. subcapitata	©C ₅₀ ©> 1	0000		© 7686	10
FOE methylsulfone	L. gibba	$EC_{50} > 10$	00000		76864	10
	B. rerio	NOEC 30	0000	Ô .	39211	
TTE A	P. subcapitata	EQ50 .46	0000		20912	10
TFA	L. gibbo	EC ₅₀ 61	8300	. 7.651	80813	
	M .specatum &	EC50 3/2	3 900		40897	
FOE 5043-	P Subcapitua		0000%	Y	166667	
trifluoroethane sulfonic acid	L. gibba	$\mathbb{E}C_{50}$ $\mathbb{C}>1$	0000	0.600	16667	10
Ö	P. subcapitato		100	0.075	4205	1.0
Thiadone	L. gibba (EC,50 \$18	3300	0.975	18769	10
Winter cereals, 1 x 4	60 g.a.s/160 0	O V			•	
	C. varjegatus 🕡 🛴 💍	NOEC/	49		3.4	
Flufenacet "	S. Fostatum	4d-E _r C ₅₀ 9	.49	14.53	0.65	10
	🗓 gibba 🍃 👸	C ₅₀ 1	3.9		0.96	
Winter cereals, 1 x 🕽	ž0 g.a.@ha 🔎 🔭	4				
A 0	C. pariegatus	NOEC	49		3.4	
Flufenacet	S. Costatum	4d-E _r C ₅₀ 9	.49	14.24	0.67	10
	L. gibba	E _r C ₅₀ 1	3.9		0.98	

For flufenacet the TER_{LT} for all use rates in cereals meet the trigger for aquatic invertebrates based on the FOCUS Step 2 values. Therefore, for these species an unacceptable risk is not expected following the application of flufenacet in cereals.

For fish, algae and lemna the triggers were no passed based on FOCUS Step 2 values. Therefore further refinements using FOCUS Step 3 values are necessary.

For the metabolites of flufenacet all TET_{LT} for the highest use rate in cereals meet the trigger based on the FOCUS Step 2 values. Therefore, an unacceptable risk of the metabolites to aquatic organisms is not expected following the use of flufenacet in cereals, even to the highest application rate. Hence, no TER calculations are presented here for the lower application rates.

Table 10.2- 12 TER $_{LT}$ calculations based on FOCUS Step 3 – cereals – 0.6 L/ha

Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	trigger
Flufenacet, winter cereals,			•	Ĉ	
·		6.762	D1, ditch		
		4.230	D1, stream 💸	11.6	°
		7.223	D2, ditch	6.8	0"
		4.517	D2, stre@m	7 0.8	4
		1.513	D3, dixch	×32.4	Y 1
		1.245	D@pond ~	39.≇€	,**\f
		1.892	∘ D4, stream	25,9	
C. variegatus	NOEC 49	1.176	D5, polit	2 1.7	\$10
		Q19 (D5, Stream	34.5 C	
		6.021	D6, ditch, 1st	821	
		0.140	≪R1, pond√	ADD	W.
	***	6.34	R1, stream	7.7	
		7 887	R3, stream	6.2	
		5 943	Ry, stream	82/	
		6.76%	D1, ditely	1.4	
	R' &	0:702/ 42330	D1, stream	2.2	
S. costatum		. \$ 223 .	Da, ditch	1.3	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 5 1 7	\$2, stream	2.1	
		4.317	D3, dôsh		
		1 5 1 5	D4 Frond	6.3	
		1 243	DA stream	7.6	
S. costatum	4d-E _r C ₅₀ 9.49	0 1.17	D4 stream	5.0	10
		1.1	D5, pond	8.1	
		1.019	D5, stream	6.7	
0		68021	D6, ditch, 1st	1.6	
, Q %		0.116	R1, pond	82	
		9 6.3 4 /y	R1, stream	1.5	
		2.3887	R3, stream	1.2	
		5.943	R4, stream	1.6	
L L		O" 6.762	D1, ditch	2.1	
L. gibba		4.230	D1, stream	3.3	
		7.223	D2, ditch	1.9	
		4.517	D2, stream	3.1	
		1.513	D3, ditch	9.2	
A K Z		1.245	D4, pond	11.2	
L gibba	E _C 50 213 9	1.892	D4, stream	7.3	10
2. 8.000		1.176	D5, pond	11.8	10
₽	O'	1.419	D5, stream	9.8	
		6.021	D6, ditch, 1st	2.3	
Ø'		0.116	R1, pond	120	
		6.341	R1, stream	2.2	
		7.887	R3, stream	1.8	
		5.943	R4, stream	2.3	

Table 10.2-13 TER $_{\rm LT}$ calculations based on FOCUS Step 3 – cereals – 0.4 L/ha

Species	Endpoint [µg/L]	PEC _{sw,max} [µg/L]	FOCUS scenario	TERLT	trigger
Flufenacet, winter cereals, 1		•	•	Ĉ	
·	-	4.460	D1, ditch	Ø 1.0	
		2.782	D1, stream 💸	17.6	°
		4.646	D2, ditch	10.5	0"
		2.905	D2, stre@m	% 6.9	
		1.010	D3, dixch	¥48.5	
		0.812	D@pond ~	60.3	
		1.228	∘ D4, stream	39,9	
C. variegatus	NOEC 49	0.77	D5, polit	3.1	\$10
		Ø46 (D5, Stream	51.8 C	
		3,969	D6 ditch 1st	12.3,	
		0.0770	≪R1, pond√	4G36	.W
		4.4	R1, stream	11.8	Y
		5.148	R3, stream	9.5	מן ש מ
		3.936	Ry, stream	1224	
		4.466	D1, ditely	2.1	
		22782	D1, strseam	3.4	
S. costatum		\$4646 &C	Da, ditch	2.0	
		2 905	2, stream	3.3	
		1.016	D3, dôch	9.4	
		0812	D4 Fond	11.7	
		\$ 1.228	DA stream	7.7	
S. costatum	4d-E _r C ₅ 9.49	0 776	D5, pond	12.2	10
Ô		0.78	D5, pond D5, stream	10.0	
		2060	D6, ditch, 1 st	2.4	
O		2007 T	R1, pond	123	
		4 100	R1, stream	2.3	
		4.14/2	D2 stream	1.8	
		3 026	R3, stream		
		3.330	R4, stream	2.4	
		2 792	D1, ditch	3.1	
L. gibba		4.182	D1, stream	5.0	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2.040	D2, ditch	3.0	
4 0 .		2.905	D2, stream	4.8	
		1.010	D3, ditch	13.8	
		0.812		17.1	
L. gibba 👋 🔬	ÉrC50 \$13.9	1.228	D4, stream	11.3	10
S, A	$\Phi$	0.776	D5, pond	17.9	
"Y"	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	0.946	D5, stream	14.7	
		3.969	D6, ditch, 1 st	3.5	
		0.077	R1, pond	181	
			R1, stream	3.4	
		5.148	R3, stream	2.7	
		3.936	R4, stream	3.5	

Table 10.2-14 TER $_{LT}$  calculations based on FOCUS Step 3 – cereals – 0.3 L/ha

Species	Endpoint [µg/L]	PEC _{sw,max} [µg/L]	FOCUS scenario	TER _{LT}	trigger
Flufenacet, winter cereals, 1		•	•	Ĉ	
		2.767	D1, ditch	<b>W</b> 17.7	
		1.728	D1, stream 🔌	[₹] 28. <b>4</b>	°
		3.750	D2, ditch	13.4	7 7 9 6 0 0 0 7 7 8 4 5 8 4 5 8 4 10 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9
		2.343	D2, stre@m	<b>20</b> .9	4
		0.758	D3, đượch	×64.6	Y 2'
		0.417	D@pond ~	118	
		0.658	∘ D4, stream	74,3°	
C. variegatus	NOEC 49	0.575	D5, polit	\$5.2	\$10
		<b>©</b> 10	D5, Stream	69 C	
		₹ 950. ×	D6 ditch 1st	16.6,	
		0.0570	≪R1, pond√	-860	W.
	*	3.00	R1, stream	16.0	Y
		4 73	R3, stream	11.7	
		1 156	Ry, stream	42/24	
		2.76%	D1, ditely	3.4	
		12728	D1, strseam	\$ 5.5	
S. costatum		750	Da, ditch	2.5	
		2 3.730	2, stream	4.1	
		2.343	D3, dôsh	12.5	
		0 (3)3 0 (117	D4 Frond	22.8	
		0.417	DA stream	14.4	
S. costatum	4d-E _r C ₅ 9.49	0.038	D5, pond	16.5	10
رُ		0.5	D5, pond		
<u> </u>		2050	D6, ditch, 1st	13.4 3.2	
O _x	S'A &	23930 (7	Do, uncil, 1"		
, Ö %		0.037	R1, pond	166	
	1 (, "	3.00/4	R1, stream	3.1	
		1 150	R3, stream	2.3	
		1.156	R4, stream	8.2	
, L		0 2.767	D1, ditch	5.0	
		1.728	D1, stream	8.0	
``````````````````````````````````````		3.750	D2, ditch	3.7	
4		2.343	D2, stream	5.9	
		0.758	D3, ditch	18.3	
		0.417		33.3	
L. gibba	É _r C ₅₀	0.658	D4, stream	21.1	10
		0.575	D5, pond	24.2	-
L. gibba	10°	0.710	D5, stream	19.6	
		2.950	D6, ditch, 1st	4.7	
(Q)		0.057	R1, pond	244	
		3.062	R1, stream	4.5	]
		4.173	R3, stream	3.3	
		1.156	R4, stream	12.0	

# Refined Risk Assessment

# Long-term risk to fish

For the long-term risk to fish, when using the lowest of three available chronic endpoints, the trigger was not passed based on FOCUS Step 3 calculations for the highest application rate of 240 g a.s./ha and the D1, D2 and D6 ditch scenarios and the R1, R3 and R4 stream scenarios. For the lower application rate of 160 g a.s./ha, the D1, D2 and D6 ditch scenarios did not pass the trigger of 10. Therefore, a refined risk assessment based on FOCUS Step 4 calculations presented below for those scenarios not passing based on FOCUS Step 3 calculations.

Table 10.2-15 TERLT calculations based on FOCUS Step 4 including maitigation measures – fish

Endpoint [µg/L]	Buffer [m]	Drift reduction	[μg/L] 👌	TERG	Trigger
Fl	ufenacet, wii	nter cereals, I x 2	240/g/ha 🎺		
		D1 ditch		Z, O	
NOEC 49	10	0-90%	6.962	7.5	10
		D2 ditch		0	
NOEC 49	10	O-90%	7.22%	<b>@</b> 6.8	10
		R6 ditch 🕅 🦼			
NOEC 49	010 0	<b>J</b>	6.021	8.1	10
ĺ		R1°stream 0			
NOEC 49 🦠	W W	L 0-9 <b>0%</b> L	2.845	17.2	10
W					
NOEC 49	J 10	0-90% 🤝	3.562	13.8	10
		<u> </u>			
11000 17	£10 ×		2.683	18.3	10
% FI	u <b>fe</b> nacet Wi		160 g/ha		
		Di ditch			
NOSC 49	\$40 ~	Q-96%	4.460	11.0	10
[40] O	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	D2 ditch			
NOEC 49	7) 1 <u>0</u>	<b>№</b> 0-90%	4.646	10.5	10
		Do ditch 1st			
NØEC 49	<b>\$10</b> \$	0-90%	3.969	12.3	10
	[μg/L]   FI     NOEC 49     NOEC 49	[μg/L]   [m]   Flufenacet, win   NOEC 49   10   NOEC 49   NOEC 49   10   NOEC 49   NOEC 49	Flufenacet, winter cereals, x 2    NOEC 49   10   0.90%     NOEC 49   10   0.90%     NOEC 49   10   0.90%     NOEC 49   10   0.90%     R1 stream   0.90%     R2 stream   0.90%     NOEC 49   10   0.90%     NOEC 49   10   0.90%     R6 stream   0.90%     NOEC 49   10   0.90%     NOEC 40   10   0.90%	[μg/L]   [m]   [μg/L]     Flufenacet, winter cereals, x 240 g/ha     NOEC 49	

Flufenacet passes the risk assessment for all FOCUS scenarios with exception of the drainage scenarios D1, D2 and D6, when using the lowest of three available chronic endpoints. For these scenarios no unitigation via suffer zones (FOCUS Step 4) is possible. Thus some drainage scenarios may require refinement or risk mitigation on a national level.

# Long-term risk to Algae and aquatic macrophytes

Due to the high sensitivity of green algae and aquatic plants to flufenacet, a microcosm study has been conducted over 84 days involving phytoplankton, zooplankton, periphyton, aquatic macrophytes and macrofauna. The study resulted only in minor adverse trends in the highest test concentration. No statistical significant differences compared to the controls were evaluated for any of the investigated

endpoints. An evaluation of this complete and more relevant study is presented in KCA 8.2.8/04 and defines a NOEC (No Observed Effect Concentration) of  $12 \mu g$  a.s./L.

The relevance of the results of this microcosm study is supported by an expert statement (Bruns, 2009, M-329959-01-1, see ref: KCA 8.2.8/04). In the statement it was concluded: "No adverse long term effect on the investigated biocoenosis was observed and could be expected in the environment based on the outcome of this microcosm study. Due to the fact that several phytoplanktonic algae species, periphyton and three aquatic macrophytes have been investigated, the study was suitable to investigate potential direct adverse effects on aquatic plants. The testing of a biocomosis mables the use of this study as well for the determination of indirect effects on zooplankton and/or the macrofiguna.

The highest test concentration of 24 µg/L showed only minor, nor significant, differences compared to the control and can be seen as EAC."

This EAC value is to be considered as more relevant and representative to the actual sensitivity of algae and macrophytes to flufenacet. However, as a conservative approach the derived NOEC of  $12 \mu g/L$  is used for the refined TER calculation. The obtained TER is compared to trigger value of 5. A refined trigger value is considered to be justified, as the endpoint of the microcosm study is a NOEC and not an  $E_rC_{50}$ , and the study as such is higher tier than a standard laboratory study.

Therefore in a first refinement step the NOEC of 2 µg az./L from the microcosto study ( \$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex

Table 10.2-16 TERLT calculations based on FOCUS Step y- cereals - 0.6 L/ha

	- 4	<b>~</b>		@. ^v		
Species	ON THE	Endovint (	PFO _{sw,max} (	FOCUS scenario	TER _{LT}	trigger
Flufenacet, winter cei	eals, 1	x 240 g.a.s/ha	Q			
			6762	D1, ditch	1.8	
	**		<b>4.230</b>	D1, stream	2.8	
			O 7.223	D2, ditch	1.7	
	100		4.517	D2, stream	2.7	
			1.513	D3, ditch	7.9	
	>,		1.245	D4, pond	9.6	
algae and aquadic plants	NAI	, (C. 180)	1.892	D4, stream	6.3	5
argae and aquasic prants	NØI	EC 1000	1.176	D5, pond	10.2	3
			1.419	D5, stream	8.5	
.4		<b>~</b>	6.021	D6, ditch, 1st	2.0	
			0.116	R1, pond	103	
0,			6.341	R1, stream	1.9	
			7.887	R3, stream	1.5	
			5.943	R4, stream	2.0	

**Document MCP: Section 10 Ecotoxicological studies DFF+FFA SC 200+400** 

Table 10.2- 17 TER $_{LT}$  calculations based on FOCUS Step 3 – cereals – 0.4 L/ha

Species		ndpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	trigger
Flufenacet, winter ce		.(	, W			
			4.460	D1, ditch	2.7	
			2.782	D1, stream	4.3	4
			4.646	D2, ditch	<b>2</b> .6	
			2.905	D2, stream	<b>4.1</b>	
			1.010	ditch()	1109	
			0.812	D4, pond	4.8	L.
algae and aquatic plants	NOEC	12.0	1328	D4, stream	چ 9.8 (م	5 🔎
			<b>9</b> .776 <b>%</b>	Da pond	15.5	
		*	*0.946/	D3, stream	102.7	
		Ş	3.969		3.0	<b>)</b>
			0.077	R1, pond	156 0	
			5.148/	KOV, stream	20y 2.3	
			3.148 3.936	R3, stream R4, stream	3.0	

Species	Endpoint			TERLT	trigge
Flufenacet, winter ce	peals, 1 x 420 g a.s/ha	[μg/L]	scenario		
		20767	D1, ditch	4.3	
O*		\$1.728\$	D1, stream	6.9	
		Q 3.750	D2, ditch	3.2	
		2.Q43	D2, stream	5.1	
"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\		0.758	D3, ditch	15.8	
		0.417	D4, pond	28.8	
	NOTC 120	0.658	D4, stream	18.2	_
igae and aquatre plants	NOEC 150	0.575	D5, pond	20.9	5
lgae and aquatic plants	NOEC 120 C	0.710	D5, stream	16.9	
		2.950	D6, ditch, 1st	4.1	
		0.057	R1, pond	211	
		3.062	R1, stream	3.9	
	<b>P</b> ~	4.173	R3, stream	2.9	
·¥″ _4_	, w	1.156	R4, stream	10.4	

# Refined risk assessment for algae

For further refinement of peak exposure in stream scenarios for algae a 3d PEC_{twa} is used against the lowest algal endpoint (*S. costatum*, marine diatom). This is justified because the algal flow-through experiment and recovery studies have shown FFA to be algistatic (not algicidal and thus fast recovery is possible and because exposure was maintained in algal toxicity tests.

Because only run-off scenarios showed significant differences between PEC_{max} and PEC_{twa}, only for these scenarios (R1-R4 stream) the PEC_{twa} approach was applied.

Table 10.2- 19 TERLT calculations based on FOCUS Step 3 vereals

Species	Endpoint [µg/L]	PECton 3d [µg/L]	FOCUS scenario	T)ERLT	frigger
Flufenacet, winter cereals	s, 1 x 240 g.a.s/ha			7, C	
S. aastatum	4d-E _r C ₅₀ 9.49 %	20.993	Ry, stream	96	
S. costatum	4u-E _r C ₅₀ 9.49	1.3 <b>9</b> 1. <b>9</b> 60	R4, stream	<b>⊘6.2</b> 5.7 ⊘	
Flufenacet, winter cereals	s, 1 x 160 g.a.s/ha			an and an	
		0.649	And stream	<b>Q</b> .6	10
S. costatum	4d-E _r C ₅₀ 9.49	1,002 1,105	R3, stream R4 stream	₹9.5 8.6	10
Flufenacet, winter cereals	, 1 x 120 g a.s/ha	e &-			
		V 0.480	R1, stream	19.8	
S. costatum	4d ErC50 9Q9	Î.7/60 🔪	R3 stream	5.4	10
4		<b>₹</b> 0.318	R4 stream	29.8	

For those scenarios that did not pass based on FOCUS step 3 calculation, a further refined risk assessment based on FOCUS step 4 calculations is presented below:

Table 10.2- 20 YERLT calculations based on FOCUS Step 4, including a 10m buffer zone – cereals

Species	Endpoint Dug/L		PEC _{twa, 3d} [μg/L]	FOCUS scenario	TERLT	trigger
Flufenacet, win	ter cereals, 1 x	240 g.a.s/ha/	O			
		E _r C ₅₀ (9.49	0.993	R1, stream	21.4	
S. costatum 🗪		ErC ₅₀ (9.49 )	1.536	R3, stream	13.7	10
			1.660	R4, stream	12.7	
Flufewacet, with	ter cercals, 1 x	160 g.a,s/17a				
S. costatum		E _r C ₅₀ 29.49	0.453	R3, stream	21.0	10
S. Costatum	A 10-11	CrC50239.49	0.498	R4, stream	19.0	10
Flufenacet, win	ter cereals, 1 x	1 <b>20</b> g a.s/ha				
S. costatum	4d-E	E _r C ₅₀ 9.49	0.809	R3, stream	11.7	10
	10					

Table 10.2-21 Overview of the outcome of the chronic risk assessments for algae

		0.6 (240 g f	6 L/ha lufenat	t/ha)	(	0.4 160 g fl	L/ha ufenat/	ha)		0.3 (120 g t	3 L/ha flufenat	t/ha)
	tier 1 RA	micro cosm	3d- twa	3d-twa+ 10m buffer	tier 1 RA	micro cosm	3d- twa	3d-twa+ 10m buffer		ĝgiero Leosm	3d- twa	3d-twa+ 10m buffer
D1, ditch									Ž'	& D	. C	V W
D1, stream										<b>%</b>		
D2, ditch								~~			þ» "	
D2, stream											*	7
D3, ditch		~				<b>✓</b> @	) / *		<b>Y</b> • 1	J.V		Î,
D4, pond		<			>		. 8	z.	<b>*</b>	) v (		W
D4, stream		<			d				, *\forall	<b>&amp;</b>	Ŵ.	
D5, pond		<			<b>%</b>	<b>\</b>	)		y 🗸 (		Y	
D5, stream		<				Q,		. *	<b>\$</b>	<b>✓</b> @	<b>(</b> )	
D6, ditch, 1st						\$				,W		
R1, pond	~	<b>✓</b>				<b>√</b> <<			× 🗸			
R1, stream											<b>&gt;</b>	~
R3, stream				6 <b>v</b>	J %	y	Õ	Q ,	Y			<b>&gt;</b>
R4, stream					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		)	R' v ô	,	<b>&gt;</b>	<b>&gt;</b>	~

Flufenacet passes the risk assessment for all FOCUS scenarios with exception of the drainage scenarios D1, D2 and D6. For these scenarios no mitigation via buffer zones (FOCUS Step 4) is possible. Thus some mainage scenarios may require refinement or risk mitigation on a national level.

# Refined risk ussessment for run-off streum scenarios with short-term peak exposure for macrophytes

No inhibition was observed at any treatment level up to 126  $\mu g$  a.s./L in the peak exposure study with Lemna (2013); M=52567-91-1). Therefore, a peak EC₅₀ of >126  $\mu g$  a.s./L can be derived from this study. In those cases where the drainage peak in the FOCUS scenario was equal or shorter than the peak exposure considered in the study, the endpoint will be used for refinement. The reasoning for the use of such studies with variable exposure is based on SETAC Europe workshop ELINK . The study was performed based on the ELINK document. The peak EC₅₀ is compared with peak concentrations in combination with standard assessment factor of 10.



¹ Brock TCM, Alix A, Brown CD, Capri E, Gottesbüren BFF, F, Lythgo CM, R and Streloke M (Eds), 2010a. Linking aquatic exposure and effects: risk assessment of pesticides. SETAC Press & CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 398 pp

Table 10.2-22 TERLT calculations based on FOCUS Step 3 – cereals – 0.6 L/ha

Species		point g/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TERLT	trigger
Flufenacet, winter cere	eals, 1 x 240	g.a.s/ha		.(	, W	
	,		6.341	R1, stream	19.9	
Lemna	peak E _r C50	>126	7.887	R3, stream	16,0	₄ 10
	LICSO		5.943	R4, stream	<b>©</b> 1.2	

# Table 10.2- 23 TERLT calculations based on FOCUS Step 3 recreals 0.4 L/ha/

Species	Endpoint [µg/L]	PEGAN, FOCUS  [http://linear.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.org.new.o
Flufenacet, winter cere	eals, 1 x 160 g.a.s/ha	
Lemna	peak E _r C50 >126	4 42 CR1, stream 30.4 5.148 CR3, stream 24.5 10

Table 10.2-24 TERLT calculations based on FOCUS Step 3 - cereals 13 L/ha

		. ***	, S.		
Species	Endpoint [µg/L]	PECsw,max	FOCUS	TER _{LT}	trigger
Flufenacet, winter cere	eals x 120 g a.s/ha				
		0 3.062 _€	stream	41.1	
Lemna	$E_rC50$ $>126$	4.13	R3, stream	30.2	10
		Q 56	R4, stream	109.0	
Flufenacet, winter cere					

Table 10.2-25 Overview of the outcome of the chronic risk assessments for aquatic plants

	0.6 L/ha (240 g flufenat/ha)		(10	0.4 L/ha (160 g flufenat/ha)		0.3 L/ha (120 g flufenat/ha)		a)	
	tier 1 RA	microcosm	peak	tier 1 RA	microcosm	peak	tier 1 RA	microcosm	peak
D1, ditch							. 4	0 @	
D1, stream								<b>\</b>	Ď
D2, ditch								4	
D2, stream					ð	·			Ď
D3, ditch		•		~	<b>,</b>	Ş			
D4, pond	~	~		~					«L 1°
D4, stream		<b>&gt;</b>		<b>~</b>					
D5, pond	<b>&gt;</b>	<b>&gt;</b>		<b>v</b> 6	Y <b>Y</b>		47	•	
D5, stream		<b>&gt;</b>		<b>*</b>					
D6, ditch, 1st				Ş	Q. Q		<u>~</u>	Š	
R1, pond	~	•	,		, * <b>•</b>	W		<b>*</b> ***********************************	
R1, stream			<b>~</b>	<u> </u>	<u> </u>				<b>&gt;</b>
R3, stream									>
R4, stream		i i i	<b>\</b>				<b>&gt;</b>	>	>

Flufenacet passes the risk assessment without mitigations for all FOCUS scenarios with exception of the drainage scenarios D1. D2 and D6. For these scenarios no mitigation via buffer zones (FOCUS Step 4) is possible. Thus some drainage scenarios may require refinement or risk mitigation on a national level.

# CP 10.2.1 Acute toxicity to fish aquatic invertebrates, or effects on aquatic algae and

Report: CP 10 2/1/01, H. (2001)

Title: FOE 5043 & Oriflufenican SC 600 - Influence on the growth of the green

alga, Selenastrum capricornutum

Document No: 073137-01-13

Guidelines: Directive 92/69 EEC, C.3 (1992), OECD 201, ISO 8692, ASTM E 1218

GLP yes (certified laboratory)

Dates of work: Start of experimental work: March 23, 2001

Completion of experimental work: July 11, 2001

# Material and methods:

FOE 5043 & Diffuserican SC 600, an SC formulation of Fluseracet (401.5 g/L) and Diffuserican (217.0 g/L), Formulation-No.: 07205/0024(0006), Article-No.: 3000248463, TOX-No.: 5454-00;

Selenastrum capricornutum was exposed under static conditions (shake cultures) for 72 h. Algal growth in the controls was exponential over the entire test period. The following concentrations of nominal: 0.938, 1.88, 3.75, 7.5, 15 and 30 µg test item/L were tested. The



quantities of FOE 5043 found at the beginning of the test (day 0) in reference to the nominal concentrations, were 45 to 178 % (average 103 %). The quantities of FOE 5043 found at the end (day 3) were 62 to 99 % (average 84 %). The calculations are based on nominal concentrations of the test item.

The pH values ranged from 7.81 to 8.13 at test start and 8.10 to 8.71 after 72 h. The incubator was illuminated with 6888 lux. The incubation temperature ranged from 21.5 °C to 23.8 °C measured over the whole period of testing.

Samples were analyzed for the actual concentrations of FOE 5043 only. day 0 and day 3.

# **Findings and Observations:**

The quantities of FOE 5043 found at the beginning of the test in reference to the drominal concentrations, were 45 to 178 % (average 103 %). The quantities of FOE 5048, found in the two lowest test levels were inconstant. This could have been a handling mistake which did not influence the results, because the E_rC₅₀ is mainly based in higher test levels of this study. The quantities of FOE 5043 found at the end (day 3) were 62 to 99 (average 84 )

Effects on algal average growth rate based on nominal concentrations the formulation):

Test item	FOE 5043 & Diffyrenican SC 600
Test object	Selenastrum Lapricornutum
Exposure	Ø h, stat@
E _r C ₅₀ (0 - 72 h)	6.63 μg/L
LOE _r C (0 - 72 h)	\$\tilde{\psi} 0.9\text{\$\text{\$\gamma}\$} \psi \text{\$\psi\$} \psi \text{\$\gamma\$} \$\gamm
NOE _r C (0 - 72 h)	© 40.938 μg/L O C

# **Conclusion:**

continuation Fluteracet + Difluterican SC 600 was determined to be

CP 10.2.1/02 , M., L., 2001 The E_rC₅₀ for th  $6.63 \mu g/L$ .

FQ 5043 Diflufenican SC 600 - Toxicity (7 days) to Lemna gibba G3

in a Static Test M-073160-01-1 Document N

OECD 221 "Lemna sp. Growth Inhibition Test", Revised Draft Document Guidelines:

(October 2000)

yes (certified laboratory) **GLP** 

# **Objectives:**

The objective of the study was to estimate the toxicity of FOE 5043 & Diflufenican SC 600 to *Lemna gibba* G3 in a 7 day toxicity test under static conditions. The results are expressed as NOEC, LOEC and EC_x for growth rate of the response variables, frond number and total frond and of plants.

### Materials and methods:

FOE 5043 & Diflufenican SC 600 (HEROLD® SC 600) an SC formulation of Flurenacet (405.3 %L) and Diflufenican (204.5 g/L), Formulation-No.: 07205/0024 (0006), Development-No.: 0000248463, TOX-No.: 5454-01;

Lemna gibba G3 (duckweed), 3 x 12 fronds per test concentration were exposed in a chronic multigeneration test for 7 days under static test conditions to nominal concentrations of 10 0, 20.0, 40.0, 80.0, 160, 320 and 640 μg test item/L in comparison to control.

The pH values ranged from 4.87 to 6.18 and the incubation temperature ranged from 25.6 °C to 26.6 °C measured over the whole period of testing.

Samples were analyzed for the actual concentrations of OE 5043 and offluserican present in the test medium with exception of the two lowest concentrations of Diffuserican and additionally in the control on day 0 and day 7.

## **Results:**

Test conditions met all validity criteria, given by the mentioned guideline.

83 (81-86) fronds were reached after a 7-day cultivation in the controls, corresponding to approximately an 7-fold increase in fronds (biomass) within Q days (initial frond number: 12) or corresponding to a doubling time ( $T_d$ ) of 2.5 days, respectively.

Based on analytical findings of FOE 5043 in all test levels on day obetween 44 and 100 % (average 74 %) of nominal were found. On day 7 there were analytical findings between 38 and 92 % (average 67 %) of nominal. Based on analytical findings of Diffusenican of all test levels (except the two lowest test concentrations. Once were below the limit of quantification of the analytical method) on day 0 between 73 and 91 % (average 82 %) of nominal were found. On day 7 there were analytical findings between 54 and 69 % (average 62 %) of nominal these results of both active substances show a slight decrease under static test conditions. This could be due to the adsorption to glass or plants. All results are based on nominal

The static 7 day growth inhibition test provided the following tabulated effects:

Nominal test	nu <b>m</b> ber	Doweight	% inhibition ¹ of aver	rage growth rate of
FOE 5043 &	mean 4 S day V	mean	frond numbers	Dry weight
	ay W	O day 7		
[μg/L] ^{[[]}		(g)		
control	[™] 083	0.00868		
10.0	92	0.0107	-5.1	-28.0
20.0	₩ 80	0.0084	2.2	3.2
40.0	72	0.0075	7.6*	14.9
80.0	37	0.0057	41.6*	39.7*
160	28	0.0052	55.8*	46.9*
320	27	0.0043	58.2*	58.2*
640	27	0.0047	28.8*	53.7*

¹negative values mean growth stimulation

^{*} Results which were significantly different (based on Dunnett's and Williams  $\alpha = 0.05$ ) from the control(s)

# **Observed visual effects:**

Test level (µg/L FOE 5043 & DFF SC 600)	Observations
Control	no visual effects observed
10.0	no visual effects observed
20.0	no visual effects observed  Slight chlorosis on day 5+7  Slight chlorosis on day 2-7  Slight chlorosis on day 2
40.0	Slight chlorosis on day 5+7
80.0	Slight chlorosis on day 2-7
160	Middle to strong chlorosis on day 50° ( )
320	Middle to strong chlorosis on day 5  Slight-middle chlorosis on day 5  Middle to strong chlorosis on day 5  Middle to strong chlorosis on day 5+7
640	Slight-middle chlorosis on day 2
	Middle to strong colorosis or day 5+7

# Results are based on nominal concentrations of FOE 5043 & Diflufenicar SC 600

Test item	EQE 5043 & Diflutenican & 600
Test object	Gémna Bba GZ
Exposure	7 d, static
(0 - 7day)-ErC50 (fronds counts)	30Φ μg/L
(0 - 7day)-LOE _r C (fronds counts)	Φ0.0 μgΦ , 🎺 , 🗳
(0 - 7day)-NOE _r C (fronds counts)	20.0 μg/L

Conclusion: The most resultive response variable was fotal frond number of plants resulting in (0-7-day)- $E_rC_{50}$  of 307  $\mu$  CD. FOE 5043 CD iffluremean SQ 600 and a lowest (0-7-day)-NOE_rC of 40.0  $\mu$ g test item/L.

# CP 10.2.2 Additional long-term and chronic toxicity studies on fish, aquatic invertebrates and sediment divelling organisms

No additional studies were considered necessary with the formulation.

# CP 10.2.3 Kurther testing on aquatic organisms

No additional drudies were considered recessary with the formulation.

# CP 10.3 Effects on arthropods

Only endpoints used for the risk assessment are presented here. For an overview of all available endpoints available for flufenacet please refer to the respective section of the MCA document.

# **CP 10.3.1 Effects on bees**

The summary of the toxicity profile of the active substances flufenacet and diflufenican and the representative formulation Diflufenican + Flufenacet SC 600 (200+400) G to bees is provided in the

following tables.

For the second active substance in the representative formulation, diflufenican, references is made to the EU agreed endpoints according to the EFSA Scientific Report (2007) 122.

Table 10.3.1-1 Endpoints of the mixing partner Diflufenican

Test substance	Test species	EU agreed endpoints acc. to EFSA Scientific Report (2007) (122, 1-84)
Diflufenican	Bee (oral 48 h)	LD _{50 (9} ) 112.30 kg as/bee
Diffutefficall	Bee (contact 48 h)	LD ₅₀ (contact) > 100 µg as be

Table 10.3.1-2 Honey bee toxicity data generated with rechnical flufencet

Test substance	Ecotoxicological endpoint Reference	L.					
Acute oral and contact toxicity (laboratory) in thoney bees							
Flufenacet, tech.	LD ₅₀ -oral, 48 h LD ₅₀ -contact, 48 h  > 100 µg a s bee    M-4,4687   K   8.3.1	(2011) -01-1 .1.1/03					
Acute contact toxicity	(laboratory) in bumble wes						
Flufenacet, tech.	LD ₅₀ -contact, 48 h > <b>100 μg a s/bee</b> M-478561 KCA 8.3.1						
Chronic toxicity in add	ult homey bees (Paboratory)						
Flufenacet, tech.	10 a chronic adult	-01-1					
	considered relevant for His calcufation						

Table 10.3.1-3 Honey bee toxicity data generated with formulated flufenacet

Test	Ecotoxicological endpo	oint	Reference
Substance Acute oral and contac	 t toxicity (laboratory) ii	n honey bees	
Diflufenican + Flufenacet SC 600 (200+400)	48 h-LD ₅₀ -oral 48 h-LD ₅₀ -contact	> 217.87 μg product/bee > 200 μg product/bee	(2002) M-056881, 01, 1 CP 10.3. 1, 101
Bee brood feeding test	;		
Flufenacet SC 508.8	Honey bee brood feeding (Oomen et al., 1992)	No adverse effects on mortality, bee brood development (eggs) young lawae, old brivae, pupae) and colony development by feeding honey bee colonies sugar syrup with a flufenacet - concentration typical for/exceeding the concentration of flufenacet in the spring tank (1500 ppm).	(20)2) M-456504-001 KOA 8.3.12/01

**Bold values**: Endpoints considered relevant for H 

# Risk assessment for bees

# Hazard Quotients

An indication of hazard (Hazard Quotient or QH) can be derived according to the EPPO risk assessment scheme, by calculating the ratio between the application rate (expressed in g a.s./ha or in g peoduct/ha) and the Caboratory contact and Mal LD (expressed in μg a.s./bee or in μg product/bee).

QH values can be calculated using data from the studies performed with the active substance and with the formulation. Qualities higher than 50 indicates the need of higher tiered activities to clarify the actual risk to hone bee

Hazard Quotient, oral 
$$Q_{HO} = \frac{\text{maximum application rate}}{\text{ID}_{50} \text{ oral}} = \frac{[\text{g a.s./ha or g product/ha}]}{[\text{µg a.s./bee or µg product/bee}]}$$

$$\text{Hazard Quotient, contact.} \qquad Q_{HO} = \frac{\text{maximum application rate}}{\text{D}_{50} \text{ contact}} = \frac{[\text{g a.s./ha or g product/ha}]}{[\text{µg a.s./bee or µg product/ha}]}$$

$$\text{[µg a.s./bee or µg product/bee]}$$

The maximum label rate of Diffusenican + Flusenacet SC 600 (200+400) is 0.6 L (600 mL) product/ha in cereals (BBCH 182-22). With the content of diffusenican and flusenacet within the formulation being 200 g diffurenican/L and 400 g flufenacet/L, respectively, this accounts to a maximum application rate of 240 g flufenacet a.s./ha. Considering a realistic worst case density of Diflufenican + Flufenacet SC 600 of 1.26 g/mL, 600 mL product/ha corresponds to 760 g product/ha.

# ACUTE RISK ASSESSMENT FOR BEES

Table 10.3.1-4 Hazard quotients for bees – oral exposure

Test item	Oral LD50	Max. application rate	Hazard Prigger	A-priori acceptable		
	[µg a.s./bee] / [µg product/bee]	[g a.s./ha] / <i>[g product/ha]</i>	Онбо	risk for adult bees		
Max. application rate = 240 g flufenacet a.s. / ha via 0.6 L Diflufenican + Flufenacet SC 600 ha, which corresponds to 760 g Diflufenican + Flufenacet SC 600 / ha						
Flufenacet, tech.	> 109.2	240	5 < 2.0 × 5	yes		
Diflufenican + Flufenacet SC 600 (200+400)	>217.87	<b>360</b>	<3.5	) Ves		

The hazard quotient for oral exposure is below the valuated trigger value for higher for testing (i.e.  $Q_{HO} < 50$ ).

Table 10.3.1-5 Hazard quotients for bees ∠ contact exposure

Test item	Oral LD50 [µg ax./beelD [µg product@ee]	Max application rate  [g a.s. Ana] /   [g product/hap	Hazard quotient	Trigger	A-priori acceptable risk for adult bees
Max. application rate = corresponds to 760 g Dis			n ¥ Flufenac	et SC 600 /	ha, which
Flufenacet, tech.	100		< 2.4	50	yes
Diflufenican + Flufenacet SC 6000 (200+400)		760	<3.8	50	yes

The hazard quotient for contact exposure is below the validated trigger value for higher tier testing (i.e.  $Q_{HC} < 50$ ).

# Further considerations for the Fisk assessment

In addition to Cacute Jaboratory studies with adult honey bees, flufenacet was further subjected to topical acute bumble bee testing. The study did not reveal sensitivity differences between honey bee and bumble bee to ragers.

Moreover, flufenace was subjected to chronic laboratory testing with adult honey bees. This chronic study was designed as a limit test by exposing adult honey bees for 10 consecutive days to a concentration of nominally 120 mg flufenacet a.s./kg in aqueous sugar solution. As flufenacet is only slightly soluble in water (53 - 56 mg/L at 20 °C at pH 4-9), the test was conducted by using technical flufenacet in a combination with 3% acetone in the respective feeding solutions, as flufenacet is highly soluble in acetone and because acetone is of low toxicity to honey bees. The nominal test



concentration as such equals about 2× the water solubility of flufenacet. No adverse lethal-, sub-lethal, behavioural or delayed effects were found by exposing adult honey bees for ten consecutive days exclusively to sugar solution, containing 120 ppm flufenacet (nominal).

In order to reveal whether flufenacet poses a risk to immature honey bee life stages, a kee brood feeding study has been conducted by following the provisions/method of comen, A., de Ruijter, A. & van der Steen, J. (OEPP/EPPO Bulletin 22:613-616 (1992)), which require, amongst other parameters to "...use formulated products only... products are fed at a concentration recommended for high-volume use...". The honey bee brood feeding test, of a worst-case screening test, by feeding the honey bees directly in the hive with a treated sugar solution which contains the test sobstance at a concentration typically present in the spray tank (and as such at a very high concentration) and by investigating the development of eggs, young and Od larvae by maploying digital photo maging technology.

This particular study was conducted by mixing formulated flutenacet as Flutenacet 50 508.8 into 1 litre of aqueous sugar solution, and the tested concentration corresponded to a typical concentration of flufenacet via Diflufenican + Flufenacet Sc 600 (200+40%) present in the pray tank. The actual test concentration of flufenacet was 1500 mg/L. The administration of 1 litre sugar solution per colony, containing 1500 ppm flufenacet has not resulted in adverse effects. There were neither adverse acute or chronic effects on adult honey bees nor adverse effects of immediate honey bee life stages (eggs, young larvae, old larvae, pupae or on the colony itself. Neither mortality of worker bees and larvae/pupae (as assessed via dead bee maps) nor the termination rate of eggs, young larvae and old larvae (as assessed via digital imaging of individual marked cells) was statistically significantly different from the untreated control

Conclusion

Flufenacet has a low acute poxicity to hong bees with LP% (oral and contact) values always above the highest tested dose levels (or LD₅₀  $\approx$  109.2  $\approx$  a.s./bee, contact: LD₅₀ > 100  $\approx$  a.s./bee).

The calculated Pazard Quotients for both, flufenacet and Diflufenican + Flufenacet SC 600 (200+400) are well below the waitdated trigger while h world indicate the need for a refined risk assessment; no adverse effects on honey bee mortality are to be expected. This conclusion is confirmed by the results of the bee brood feeding trudy.

The acute laboratory study conducted with bomble bees revealed no sensitivity differences between honey bee and bum be bee foragers

Regarding potential side effects of fluferacet on immature honey bee life stages as well as on colony development, 1500 ppen flufenacet, a concentration which corresponds to/exceeds a typical concentration of flufe pacet v@ Diflutenican + Flufenacet SC 600 (200+400) present in the spray tank, has not resulted in adverse statistical significant effects on mortality of worker bees and pupae nor in adverse/statistically significant effects on the termination rate of eggs, young larvae and old larvae (as assessed via digital imaging of individually marked cells) in the bee brood feeding study on colony level. Even at this very high concentration under the worst case conditions of the honey bee brood feeding test, no adverse effects on immature honey bee life stages were found; the findings in this study regarding the absence of chronic/delayed effects on adults honey bees are in line with the absence of adverse chronic effects on adult bees in the chronic 10 day laboratory feeding test with adult honey bees under laboratory conditions (at 120 ppm).



Overall, it can be concluded that flufenacet, when applied at the maximum application rate of 240 g a.s./ha in cereals, even during the flowering period of potentially bee-attractive weeds inside the cropping are, does not pose an unacceptable risk to honey bees and honey bee colonies.

# **CP 10.3.1.1** Acute toxicity to bees

Report: CP 10.3.1.1/01, S., S., 2009

Title: Effects of diffuserican + fluserican + fluserican

on Honey Bees (Apis mellifera L.) in the Lab Patory

Document N°: M-356881-01-1

Guidelines: OECD 213: OECD Guideline for the Testing of Chemicals on Hone Dee, Acute

Oral Toxicity Test, (adopted 21st September 1998)

OECD 214: OECD Guideling for the Desting of Chemicals on Doneybee Scute

Contact Toxicity Test, (adopted 21st September 1998)

GLP yes (certified laboratory)

# **Objective:**

Honey bees (A. mellifera) can be affected by pesticide residues as a result of indirect contact on plant surfaces, via oral intake of contaminated food or water, via inharation of vapour or by direct overspray in the course of an application in the field according to normal agricultural practice. If the proposed use pattern of Diflufenican + Flugenacet \$600 (200+400) G indicates such a possible exposure of honey bees, acute contact and oral toxicity data is necessary for the registration of the pesticide use in question. This study provides

- the acute toxicity levels of the test item to hopey bees;
- toxicity information comparable to expected residues from standard rates, for assessment of the potential hazard to honey bees;
- information to support precautionary label statements;
- information to indicate the need for further testing e.g. semi-field or field studies.

# Material and methods:

Test item: Diflufencem + Flafenacet SC 600 (200+400 g/L) G (diflufenican (AE F088657) 15.6 % w/w, 191.4 g/L, flufenacet (FOE 5043) 32.1 % w/w, 394.5 g/L according to certificate of analysis), Specification Nov.: 102000007948, Batch ID.: EV56001418, density 1.229 g/mL.

Reference item. Dimethoate. Test organism. Honey bee (Apis mellifera L.), female worker bees, obtained from a healthy and queen bight colony, bred by IBACON, collected on the morning of use. Under laboratory conditions Apis mellifera (50 worker bees per dose; 10 individuals in 5 replicates per test item dose level, controls and reference item doses) were exposed for 48 hours for topical application (contact) with a single dose of 200.0 µg product per bee and to a single dose of 217.8 µg product per bee for feeding (oral value based on the actual intake of the test item).

# Oral toxicity study

Aqueous stock solutions of the test item and reference item were prepared in such a way that they had the respective target concentration of the test item once they were subsequently mixed with sugar syrup at a ratio of 1 + 1. After mixing of these test solutions with ready-to-use sugar syrup (composition of the sugar component: 30 % saccharose, 31 % glucose, 39 % fructose) the final concentration of sugar syrup in the test item solutions offered to the bees was 50 %. For the control water and sugar syrup was used at the same ratio (1 + 1). The treated food was offered in syringes,



which were weighed before and after introduction into the cages (duration of uptake was 1.0 hour for the test item treatments). After a maximum of 1.0 hour, the syringes containing the treated food were removed, weighed and replaced by ones containing fresh, untreated food. The target dose levels (e.g. 200.0 µg product/bee nominal) would have been obtained if 20 mg/bee of the treated food was ingested. In practice, higher dose levels were obtained as the bees had a higher lower uptake of the test solutions than the nominal 20 mg/bee.

The measured dose level was 217.8 µg product/bee. The test was conducted in darkness, temperature was 25°C and humidity between 42 and 76%. Biological observations including mortality and behavioural changes were recorded at 4, 24 and 48 hours after dosing. Results are based on preasured concentrations of the product per bee.

# Contact toxicity study

A single 5 µL droplet of Diflufenican + Flufenacet \$C600 (200 + 400) G in an appropriate carrier (tap water + 0.5 % Adhäsit) was placed on the dorsal for thorax. For the control one \$\text{µL}\$ droplet of tap water containing 0.5 % Adhäsit was used. The reference item was also applied in 5 µL tap water (dimethoate made up in tap water containing \$\text{µS}\$ % Adhäsit). A 5 µL droplet was chosen in deviation to the guideline recommendation of a 1 µL droplet, since a higher volume ensured a more reliable dispersion of the test item. The test was conducted in darkness, temperature was \$25°C and humidity between 42 and 76%. Biological observations, including mortality and behavioural changes were recorded at 4, 24 and 48 hours after application. Results are based in nominal concentrations of the product per bee.

# **Findings:**

The results can be considered as valid, as all validity criteria of the test were met: control mortality is 0% in the oral and 0% in the conact test  $LD_{50}$  (24 h) of the toxic standard in the oral test equals  $0.10~\mu g/bee$ , the  $LD_{50}$  (24 h) of the toxic standard in the contact test equals  $0.16~\mu g/bee$ .

A summary of effects of the test item on mortality and behavioural abnormalities of the bees is given below for both tests.

Mortality and behavioural abnormalities of the bees in the oral toxicity test

	afte	74 hours	Vafter	24 hours	after	48 hours
consumed dosage	mortality	kehaviou@l	**************************************	behavioural abnormalities	mortality	behavioural abnormalities
	man %	mean %	mean %	mean %	mean %	mean %
test item [μg prop./bee]		0.00	0.0	0.0	0.0	0.0
water control	0.0	<u>₹</u> >0.0	0.0	0.0	0.0	0.0
reference item [µg a.s./bee]		8				
0.33	\$90.0	10.0	98.0	2.0	100.0	0.0
0.16	24.0	62.0	96.0	0.0	96.0	0.0
0.08	4.0	4.0	48.0	0.0	60.0	0.0
0.06	0.0	0.0	8.0	0.0	8.0	0.0

results are averages from five replicates (ten bees each) per dosage / control



Mortality and behavioural abnormalities of the bees in the contact toxicity test

	after 4 hours		after	24 hours	after 48 hours		
dosage	mortality	behavioural abnormalities	mortality	behavioural abnormalities	mortality	behavioural abnormalities	
	mean %	mean %	mean %	mean %	mean %	mean %	
test item				L			
[μg prod./bee] 200.0	0.0	0.0	0.0			0.0	
water control	0.0	0.0	0.0	0.90	0.0	\$ 0.0	
reference item [µg a.s./bee]							
0.30	4.0	26.0	92.0	2.00	\$ 92.0 C	<b>W</b> .0	
0.20	0.0	0.0	<b>%</b> 4.0 ^		90,00	0.0	
0.15	0.0	0.0	\$\text{42.0}		<b>60</b> .0	2.0	
0.10	0.0	0.0	0.0	6.0	҈0 18.0 °	2.0	

results are averages from five replicates (ten boes each per dosage / control

# **Observations:**

At the end of the contact toxicity test (48 hours after application), there was 2.0 % mortality at 200.0 µg product/bee. No mortality occurred in the control (water + 0.5% Adhasit).

In the oral toxicity test the maximoto nominal test fevel of Diflutonican + Flufenacet SC 600 (200+400) G (200.0  $\mu$ g product/bee corresponded to an actual intage of 217.8  $\mu$ g product/bee. This dose level led to no mortality after 48 fours. No mortality occurred in the control (50 % sugar solution). No test item induced behavioural effects were observed at any time.

# **Conclusion:**

Toxicity to Honey Bees: laboratory tests

Tomesty to morely bees, grading tests							
Test Item Difluterican + Flufenacet SC 600 (200+400) G							
Test object	Apis mellifera						
Application rate (fig product/bee) 217.8	200.0						
Exposure of oral (sagar solution)	contact (solution in Adhäsit (0.5 %)/water)						
LD ₅₀ µg product/bee  > 217.8	> 200.0						

The toxicity of Diflutenicary Flutenacet SC 600 (200+400) G was tested in both an acute contact and an oral toxicity test on honey bees:

The LD₅₀ (48 h) value was  $> 217.8 \mu g$  product/bee in the oral toxicity test.

The LD₅₀ (48 h) valor was  $> 200.0 \mu g$  product/bee in the contact toxicity test.

# **CP 10.3.1.1.1 Acute oral toxicity to bees**

For details on the study please refer to the MCA Section 10.3.1.1/01.

# **CP 10.3.1.1.2** Acute contact toxicity to bees

For details on the study please refer to the MCA Section 10.3.1.1/01.

#### **CP 10.3.1.2 Chronic toxicity to bees**

A 10 day chronic oral toxicity study was conducted with technical flufenad summary is filed under KCA, point 8.3.1.2/01.

### Effects on honey bee development and other honey bee life stag **CP 10.3.1.3**

A honey bee brood feeding study (Oomen et, al.) has Obeen conducted with formulation and is included in the MCA document (see MC

#### **CP 10.3.1.4 Sub-lethal effects**

There is no particular study design / test guid the to assess "sub-lethal effects in honey bees. However, in each laboratory study as well as in any higher-her study sub-lethal effects, if occurring, are described and reported.

#### **CP 10.3.1.5** Cage and tonnel tests

Not necessary when considering the outcome of the risk assessment provided above and the results of the lower-tiered studies.

# **CP 10.3.1.6**

g the outcome of the Not necessary when considering the outcome of the risk assessment provided above and the results of the lower-tire d studies.

#### **CP 10.3.2** Effects on non-target arthropods other than bees

The risk assessment was performed according to Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods (ESCOR 2, Candolfi et al.

In the first Annex I listing process non-target arthropod data for a different formulation, of fluferacet were submitted and evaluated. The formulation FFA WG60 is no longer considered to be the representative formulation, therefore only data on the new representative formulation Flurenacet + Diflufenican SC 600 (Herold SC 600) for the Annex I repewal process will be presented with this dossier. For the Annex I listing process of diflufenican also the formulation Fluferican SC 600 (DFF+FFA SC600, Herold SC 600) was submitted as representative formulation. Hence some formulation studies (e.g. on non-target arthropods and non-target derrestrial plants) were already

data for a different for.

A WG60, is no fonger, et ...

An enew representative formul, ...

anex I renewal processoral be apreciated as submitted as appresentative formulation. ...

A horpods and non-target (crestrial plants) v. ...

SS.

² Candolfi et al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

Table 10.3.2-1 Flufenacet + Diflufenican SC 600: Ecotoxicological endpoints for arthropods other than bees

Test species,	Tested Formulation,	Ecotoxicological endpoint
references	study type, exposure	2000 Medical chapolitic
Typhlodromus pyri	DFF+FFA SC 600	LR ₅₀ 81.8 mL prod./ha
M-058604-01-1	Laboratory, glass plates	Corr. Mortality [%] Preserve on Reproduction [%]
Rep.No.: 9352063	22.5 mL prod./ha	1.9 Sheet of Reproduction [7]
	45 mL prod./ha	0.20
, A.; 2001	90 mL prod./ha	
KCP 10.3.2.1/01	180 mL prod./ha	92.6 % % m.a. %
	360 mL prod./ha	0 100
Trumbalo duo mang mangi	DFF+FFA SC 600	
<i>Typhlodromus pyri</i> M-034242-01-1	Extended lab., exposure on	LR 110.24 ph L prod ha  BR 50 > 83.2 mL prod./ha
	· · ·	Com Matality (0/1) Effect on Down do Sin [0/1]
Rep.No.: 01TYBYL12	detached bean leaves	Corr. Mortality [%] Effect on Reproduction [%]
, M.P.; 2002	9.9 mL prod./ha	
KCP 10.3.2.2/01	28.7 mL prod./ha 🗸	
	83.2 mL prod./h	
	241.4 mL prod ha	1 14.3 Wh.a.
T 11 1 ·	700 mL prod ha	n.a.
Typhlodromus pyri	DFF+FFA SC 600	
M-355238-01-1	Aged residues stray deposits	
Rep.Nr.: CW09/026	on maize plants, 1 appoof	
, D.; 2009	0.7 L prod./ha	Corr. Mortalit [%] Exfect on Reproduction [%]
KCP 10.3.2.2/04	Residues aged for Odays:	98.9 n.a.
	Residues aged for 14 days	87. R n.a.
	Residues aged for 28 days:	<b>9</b> 5 <b>8</b> .4
Aphidius rhopalosiphi	DEFFFA &C 600	LR ₅₀ 700 mL prod./ha
M-058618-01-1	Laborator glass plates	ER ₅₀₀ > 700 and prod./ha
Rep.No.: 9351001		Con. Mortality [%] Effect on Reproduction [%]
, M.;	500 mL ptod./ha 🗸	9.0
2001	600 mL prod./hg	<b>2</b> .0 14.0
KCP 10.3.2.1 /02	700 mt prod. ha	2.0 3.5
. Q		
Chrysoperla carriea	DFF&FFA SC 600	Jok 50 > 600 mL prod./ha
M-352372-04		No effect on reproduction
Rep.No.: CW09/010		I =
J.; 2009	detached maize leaves Control	- 26.4 79.9
KCP 10.3.2.2/02	30 mL prod./ha	0.0 24.1 81.4
	63 mL grod./ha	7.7 23.9 80.7
	¥34 ml Frod./ha	2.6 27.5 83.4
	284 m prod/ha	7.7 28.4 82.5
	600 mL pro@ha	20.5 27.6 82.7
Aleockara bilikeata	DFF±5FA SC 600	$ER_{50} > 600 \text{ mL prod./ha}$
Aleocuara biliwata Aleocuara M-353760-05-1	Extended lab, spray deposits	
Rep.No.: 09 10 48 027 A	on soil (LEFA 2.1)	Effect on Reproduction [%]
U.: 2009	© 60 mL prod./ha	4.3
KCP 10.3.2.2/03	107 mL prod./ha	-2.3 ^A
KCF 10.3.2.2/03	190 mL prod./ha	1.7
	337 mL prod./ha	5.8
10	600 mL prod./ha	7.9
	in prod./na	1.7

A: A negative value indicates a higher reproduction rate in the treatment than in the control.

n.a.: not assessed

# RISK ASSESSMENT FOR OTHER NON-TARGET ARTHROPODS

# Potential exposure

The product DFF + FFA SC 600 is intended to be used as a foliar spray (BROH 10-13) on cereals, with a maximum application rate of 0.6 L product/ha corresponding to 0.12 kg as/ha Diflufencian and 0.24 kg as/ha flufenacet, a maximum of 1 application.

# In-field risk assessment for other non-target arthropods

The following equation was used to calculate the hazard quotient (HQ) for the in-field scenario

In field-HQ = max. single application rate * MAF /  $LR_{50}$ 

The risk is considered acceptable if the calculated HQ is

The product is intended to be applied once with an application rate of 600 mL/ha therefore, the multiple application factor (MAF) was set to 0

Table 10.3.2-2 HQ for terrestrial non-target arthropods for the in field scenario

Crop	Species	And rate	MAF	LR ₂₀	HQ	Trigger
Caraola	T. pyri	\$ 60 <del>0</del> 0;	→ 0	\$1.8 ~	7.33	2
Cereals	A. rhopalosiphi 🥎	Q 600	C 'B	√2×700, "	0.86	2

The in-field HQ for A. rhoperosiph (HQ = 0.86) indicates an acceptable risk, for T. pyri (HQ = 7.33) the HQ indicates the need for a refreed in field risk assessment.

# Off-field hazard quotient (HQ) tier 1 risl@assessment

The following equation was used to calculate the Pazard quotient (Q_H) for the off-field scenario:

Off-field HQ maximum single application rate * MAF * (drift factor/VDF)*correction factor / LR₅₀

MAF = multiple pplication factor

Drift factor = 160.0277, 90th percentile for one application (according to Ganzelmeier)

VDF = vegetation distribution diactor

regetation distribution factor = 10 to take into account the 3-dimensional structure of the off-field regetation; only applied by the context of 2D test systems)

Correction factor = 10 (ner 1)

The risk is considered acceptable if the calculated HQ is < 2.

Table 10.3.2-3 HQ for terrestrial non-target arthropods for the off-field scenario

Crop	Species	Appl. rate [ml/ha]	MAF	Drift [%]	VDF	Correc- tion factor	LR ₅₀ [ml/ha]	HQ	Trigger
Caraola	T. pyri	600	1	2 77	10	10	81.8	0.203	2
Cereals	A. rhopalosiphi	000	1	2.11	10	10	> 700	< 0.024	₂ 2

The off-field HQ for A. rhopalosiphi (HQ =0.024) and T. pyri (HQ = 0.203) indicates an acceptable risk for non-target arthropods.

# Refined In-field risk assessment

Based on the results of the tier 1 in-field risk assessment extended laboratory studies were conducted for *T. pyri*, *C. carnea* and *A. bilineata*.

Table 10.3.2-4 Refined non-target arthropod in field risk assessment

Crop	Species	Appl. rate [mL/ha]	MAR	<b>P</b> EC _{in-filed} Q[mL/ha]	LR ₅₀ ; ER ₅₀ © mL/ha]	Refinement required?
	T. pyri	600 💉	Ñ @	600	√ >83.②	Yes
Cereals	C. carnea	600	1	<b>600</b>	/ >,690	No
	A. bilineata	6600	1	600	600	No

The tier 2 in-field risk assessment indicates an acceptable risk on non-target arthropods with sensitive species like *C. carnea*, and *A. bilineata*, whereas the fesults for *T. pyri* indicate that initial effects cannot be excluded and that the potential for recovery needs to be demonstrated.

An aged residue studies has been conducted for DFF+IVA SC 600 with *T. pyri* to demonstrate the potential for recovery. The study was conducted on posted made plants with a single application rate of 700 mL product by 2009, M355238 01-1) by this study the mites have been exposed to fresh residues of DFF + FFA SC 600 and to residues aged for 12 and 28 days. Freshly dried residues of the test item resulted in 98.9% corrected mortality. A corrected mortality of 87.1% was observed after an aging time of 24 days. An aging time of 28 days resulted in a low corrected mortality of 9.5% and no statistically significant effects on reproduction occurred (8.4% reduction relative to control). Therefore a potential for recovery was shown 28 days after application and no unacceptable adverse effects on non-target arthropods are to be expected from the use of DFF+FFA SC 600 according to the proposed use pattern.

# CP 10.3.2.1 Standard laboratory testing for non-target arthropods

Report: KCP 40.3.2.1/01; A., 2001

Title: Effects of Flufenacet & Diflufenican SC 600 on the Predatory Mite Typhlodromus

pyri Scheuten (Acari, Phytoseiidae) in the Laboratory -Dose Response Design.

Document N°: M-058604-01-1
Guidelines: Blümel et al., 2000

GLP Yes

## **Material and Methods:**

Flufenacet & Diflufenican SC 600 (active ingredient: Flufenacet (FOE 5043), Diflufenican (DFF 200) Article No.: 3000248463, formulation No.: 07205/0024 (0006), purity: 401.5 g/L Flufenacet, 217.0 g/L Diflufenican); under laboratory conditions approximately 1 day old protonymphs of *Typhlodromus pyri* (20 individuals per test unit) were exposed to dried spray deposits of 22.5, 45.0, 90.0, 180 and 360 mL/ha (diluted in 200 L deionised water/ha) on glass parties (5 replicates per treatment group).

Deionised water was used as a control treatment and 8 mL Perfekthion EQ 417.5 L Dimethoates in 200 L water/ha as a reference treatment. The duration of the mortality part was days. The corrected mortalities at day 7 were used to determine the LR₅₀ of the test item. The reproductive performance was examined for another 7 day period in the control and in the test item rates were corrected mortality was < 50%. The toxic standard treatment cause 100% mortality.

# Findings:

Test item		Flucienacet & Difluse macan SC 600							
Test Species		Tophlodromis pyriL & C							
Exposure				y glas Cpla	te 🗸 🔘 🔭	W Z	,		
Test Formulation	Control	Ô	Flufenace	t & Distufen	ican SC 600	7	Toxic Stand.		
	water				<u>~                                    </u>		Perfekthion		
Application (ml/ha)	(200 L/ha)	22,5	<b>@</b> \$	_@``90 <i>_</i> \$	1869	<b>3</b> 60	8		
Mortality (%)	10.0	4Q.7	©18.3 °	65 8	\$99.3 <i>[</i>	100	100		
(1 week after applic.)	10.0	O*./	d' 🥝	65,0	\$30.5	D" 100	100		
Significance		n.s&	ñr.sz			*	*		
(Fisher test, $\alpha = 0.05$ )			14.5%						
Corrected Mortality (M)	- **	, 19	√9.2 ₂	🖏 61.1 <b>.</b> Qʻ	92.6	100	100		
LR ₅₀ (Probit Analysis)	<b>L</b> 1	8Û% mL√l	P(95% co	nfidense lim	its: \$1.4 - 93	.8 mL/ha)			
Reproduction Rate	Q .		<b>-</b>	no∕r¢pro-	🎢 pro repro-	no repro-	no repro-		
(Mean of Total No. of	<b>8</b> .0	7.9G	9(9	duction	. "	duction	duction		
Eggs per Female)			0	Evaluated	evaluated	evaluated	evaluated		
Significance		n.s.				_	_		
(Student-test, $\alpha = 0.05$ )	_ \	WII.S.	n.s.			-	-		
Quotient of treated and	S	0.90	1 12	<i>\$\frac{1}{2}\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarr</i>					
untreated Series (18)		0.3	\( \tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilie{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde		_	-	-		

* significant compared to the control

n.s. not significant

- not applicable

## **Conclusion:**

The results of this study do not indicate statistically significant lethal effects on the predatory mite *Typhlodromus pyri* exposed up to 45 mL/ha Flufenacet & Diflufenican SC 600 in 200 L water/ha on a glass plate surface. Significant acute lethal effects were observed at dosages of 90 mL/ha Flufenacet & Diflufenican SC 600/ha and higher (Fisher-exact-test,  $\alpha = 0.05$ ). The LR₅₀ value was determined to be 81.8 mL/ha Flufenacet & Diflufenican SC 600/ha with 95% confidence limits of 71.4 mL/ha to 93.8 mL/ha Flufenacet & Diflufenican SC 600/ha (Probit analysis). The reproduction was statistically not affected at rates up to 45 mL/ha Flufenacet & Diflufenican SC 600/ha (Student-t-test,  $\alpha = 0.05$ ).

****



Report: KCP 10.3.2.1/02;

Title: Effects of Flufenacet & Diflufenican SC 600 on the Parasitoid Aphidius rhopalosiphi

in the Laboratory - Limit Test.

Document No: M-058618-01-1

Guidelines: IOBC/WPRS 1988, Mead-Briggs et al. 2000

GLP Yes

### Material and methods:

Effects of Flufenacet & Diflufenican SC 600 (active ingredients; Flufenacet (FQE 5043), Diflufenican (DFF); article-no.: 3000248463, formulation no.: 07205/0024(0006), tox, no.: 05454-00, analytical content: Flufenacet 401.5 g/L, Diflufenican 217.0 g/L) of Aphida rhotal osiphi were tested under laboratory conditions. Approximately 48 h old adult Aphydius rhopalosiphi (3 males and Females per test unit) were exposed to dried spray deposits of 500,600 and 700 mL product/ha (Quited in 200 L deionised water/ha) on glass plates (5 replicates per treatment group). Deionised water was used as a control treatment and Perfekthion EC (0.3 mL/ha diluted in 200 Decionised water ha) as a reference treatment. The duration of the mortality part was approximately 8 hours. The reproductive performance of the survivors was examined for another 24 hour period using females from the control and from the test item concentrations where corrected nortality was 80 %. The toxic standard treatment caused 100% mortality. 

# **Findings:**

Test substance	Flufernacet & Di	lufeniçan SC 600
Test object	J, O , Aphidjus ř.	hopa Piphi
Exposure	Glass	Plates
Treatment	Mortabity after 48 h [%]	Mummies per female
Control		20.0
Application rate	Corrected mortality	Reproductive capacity [%]
	after 48 h [90]	
500 mL product/ha		91.0
600 mL product/160		86.0
700 mL product ha	2.0	96.5
LR ₅₀	> 700 pl product/ha (the highest rate	tested in this experiment).
	The exact Like value could not be det	ermined due to the low effects of the
, L, " &	te Witem.	

All validity criteria of the study were met, the control mortality should not exceed 13% (0% in this study), the toxic standard mortality hould result in at least 50% mortality (100% in this study) and the control reproduction rate should be > 5 pummies per female (20 in this study) and there should be no more than 2 pasitoids producing zero values (0 in this study).

# **Conclusion:**

The LR₅₀ and  $\mathbb{R}_{50}$  was estimated to be > 700 mL product/ha.

### **CP 10.3.2.2** Extended laboratory testing, aged residue studies with non-target arthropods

This study was already submitted and evaluated for the Annex I listing process of diflufenican. Nevertheless, a full study summary will be presented below.

KCP 10.3.2.2/01; , M.-P., 2002 Report:

The effects of Flufenacet & Diflufenican SC 600 on Tophlodromus pyri (Aca Title:

Phytoseiidae) on natural substrate in laboratory (extended laboratory test).

Document No: M-034242-01-1

IOBC guideline (Blümel et al., 2000), Guidelines:

**GLP** 

### Material and Methods

Flufenacet & Diflufenican SC 600 (Batch No. 07205/0024,0006) Development No. 30-00248463, TOX No. 05803-00, containing 406.52 g/l Flutenacet and 20576 g/l Diflutenican according to analysis, was diluted in deionised water and applied at rates equivalent to 700 mil product/ha (corresponding to 284.6 g flufenacet/ha) 144.0 g flufenican/ha 241.4 ml product/ha (corresponding to 98.1 g flufenacet/ha + 49.7 g diffufenicarcha), 832 ml product/ha (corresponding to 33.82 g flufenacet/ha + 17.1 g diflutenican/ha) 28 7 ml product/ha (corresponding to 11.7 g flufenacet/ha + 5.9 g diflufenican/ha) and 9.2 ml product/ha corresponding to 4.0 g flufenacet/ha + 2.0 g diflufenican/ha). Deionised water was applied as control and the toxic reference Danitol (100 g/l fenpropathrin) was applied at 0.54 product ha at 2001/ha. Test units consisted on detached secondary French bean leaves (Oxinel variety) with no stalk. A sticky barrier (Tangle-Trap Insect Trap Coating) enclosing an arena of 10-13 cm² area was applied on each lead before the distinction and arena of 10-13 cm² area was applied on each lead before the distinction of the distinction mites from escaping. After the application, each leaf was placed on top of a tissue covered sponge, lower side upwards. Each sponge was placed of a plastic box tilled with mineral water solution (commercial name "Organe") closed with a mesh lid. A cotton wool pad covered the base of the stalk and the wet tissue covered sponge. Postic beses were labelled individually with the study number, the treatment, the replicate and the application date. There were 4 replicates for each treatment group. 20 T. pyri protonymphs were introduced on each test unit together with 1 spot of walnut-apple (50:50) pollen. Assessments of direct treatment effects on mortality (dead + trapped in the glue barrier + trapped in the water + escapees) were made 1, 3 and 7 days after the application. Assessments of fecundity (number of exgs and Juveniles / female) were made 7, 10, 12 and 14 days after the application. The sex-ratio was at least a male for 5 females on each fecundity assessment except the last one. Policy was renewed 1, 3, 5, 10 and 12 days after the application.



# **Findings:**

	Mortality aft	er 7 days (%)	Fecu	ndity
Treatment	Total	Corrected	Absolute ¹	Relative ²
Control	12.5	•	4.5	-
9.9 mL product/ha (4.0 g flufenacet/ha + 2.0 g diflufenican/ha)	7.5	0.0‡	<b>4</b> .3	95.6
28.7 mL product/ha (11.7 g flufenacet/ha + 5.9 g diflufenican/ha)	10.0	0.0‡	3.9	86.7 Q
83.2 mL product/ha (33.82 g flufenacet/ha + 17.1 g diflufenican/ha)	27.5	, 17.1 °	503 503 503	1158
241.4 mL product/ha (98.1 g flufenacet/ha + 49.7 g diflufenican/ha)	95.0*	94.		````\
700 mL product/ha (284.6 g flufenacet/ha + 144.0 g diflufenican/ha)	100.0*	¥100 0		

¹ Mean cumulative number of eggs / female from day 7 to Q

Mortality in the toxic reference treatment was 100% day after the application

# **Conclusion:**

The LR₅₀ (p=0.05) value was 110.2 mD/ha (30.2 < LR₅₀ < 402.2). The ER value was >83.2 mL prod./ha.

****

Report: KCP 10.3,2,2/02; J., 2009

Title: Coxicity the green lacewing Chrysoperla cannea Steph. (Neuroptera, Chrysopidae)

using an extended laboratory test on Zea may's Flufenacet + Diflufenican SC 400 +

200 g/L.

Document N°: M-352372-₩-1

Guidelines: Sigt et al. (2001) modified Candolff et al. (2001)

The aim of the story was to determine the toxicity of freshly dried residues of Flufenacet + Diflufenican SC 400 + 200 g/L applied onto detached maize leaves, to the green lacewing *Chrysoperla carnea*.

# Material and methods:

Test item: A suspension concentrate formulation of Flufenacet + Diflufenican SC 400 + 200 g/L was tested, specified by sample description FAR01403-00; specification no.: 102000007948; batch ID: EV56001418, analysis content of active ingredient: Diflufenican 15.6% w/w, Flufenacet 32.1% w/w; date of completed analysis. 11 Nov 2008, BCS-D-FT Analysis & Services D-65926 Frankfurt); density: 1.229 grail. Test organism: the green lacewing *Chrysoperla carnea*, 2 days old larvae. The experiment was performed in a controlled environment room at a temperature of 23.5 - 25.5°C and a relative humidity of 60 - 80% (with a short decline < 2 hours to 41%). The climatic conditions are continuously recorded with thermohygrographs. The light / dark cycle was 16:8 hours. The light intensity was 1285 - 2830 Lux during the mortality phase and 3080 - 3144 Lux during the reproduction phase (measured once per phase using a Luxmeter). The test item was applied to maize leaves at rates of 30, 63, 134, 284 and 600 mL product/ha and the effects were compared to a toxic reference (as: dimethoate) applied at 53.2 mL product/ha (21 g as/ha), and a water treated control. The

² Fecundity relative to the control (%)

^{‡:} Corrected mortality was negative and thus corrected to 0%.

^{*:} Values statistically different from the control

preimaginal mortality was monitored over the duration of the study. The fertility and fecundity of the surviving hatched adults were then evaluated over the period of one week.

# **Findings:**

Test item			Flufenac	et + Diflufenican	SC 400/+ 200 g/L	L .		
Test organism			Chrysoperla carried V O Q					
Exposure on		Maize leaves						
			Mortality	[%] & &	Reproch	iction		
Treatment	mL product/ha	Uncorr.	Corr.	P@alue (**)	Figgs pet	~Færtility		
					female and day	hatching		
			(			rate in %]		
Control	0	2.5	4		<b>26.4</b> 0°	<b>19</b> .9		
Test item	30	2.5	0.0	1.0000 n. sig€2/	©24.1 U	<b>%</b> 1.4		
Test item	63	10.0	7.0	√0,718 n. sign.	23.9	® 80.7		
Test item	134	5.0	2.6	(1.000 <b>x</b> €sign.	270	© 83.4		
Test item	284	10.0	7.7	7 0.718 ⊈al. signa, ⊆	28.4	82.5		
Test item	600	22.5	Ø 20.5 ♥	0,036 sign.	°€27.6 °€	82.7		
Reference item	53.2	87.5	¥ 87 <b>.L</b>		Ø n.d	n.d.		
$LR_{50}$ : > 600 mL pr	<u> </u>	, O,						
		Ŏ,	_ 4	~~ ,~	1 2			

^{*} Fisher's Exact test (one-sided), p-values@e adjusted according to conferron; Holm @ 

The results can be considered as valid as all validity criteria of the test were met. The control mortality was  $\leq 20\%$  (25% in this study), the corrected mortality in the reference item was  $\geq 50\%$ (87.2% in this study) the average number of eggs per female per day in the control group was  $\geq 15$ (26.4 in this study) and the orean land all hat rate in the control group ≥ 70% (79.9% in this study). When the preimaginal mortality was corrected for control mortality, the corrected figures for all rates of the test item were below 21%. For the rates of \$10, 134 and 600 mL product/ha the corrected mortality was 0, 2 and 205, respectively For the rates of 63 and 284 ml product/ha it was 7.7% each. The mean number of eggs per female and day for the 30 mL product/ha rate was 24.1 with a hatching rate of \$1.4% For the rate 63 mL product/ha 23.9 eggs were laid with a hatching rate of 80.7%. The mean number of eggs for the 134 mL product/ha and 284 ml product/ha rates were 27.5 and 28.4, respectively with hatching rates of 83.4% and 82.5%. In the highest rate of 600 mL product/ha 27.6 eggs per female and day were laid with a hatching rate of 82.7%.

# Conclusion:

The dose rates of 30, 63, 34 and 284 mL product/ha had no statistically significant influence on mortality. Only sight Corrected mortality of 20.5% occurred at the highest dose rate of 600 mL product/ha. There were no adverse effects of the test item on the reproductive performance at all rates tested. The LR₅₀ was estimated to be > 600 mL product/ha.

n.d. = not detected

n. sign. = not significant

sign = significant



Report: KCP 10.3.2.2/03; U., 2009

Title: Chronic toxicity (ER₅₀) of Diflufenican+Flufenacet SC 600 g/L to the rove beetle

Aleochara bilineata GYLL. under extended laboratory conditions.

Document N°: M-353760-01-1

Guidelines: IOBC Guideline (GRIMM et al. 2000)

GLP Yes

The purpose of this study was to determine possible effects of the test item (regarding a chronic dose response toxicity) on the reproductive capacity of the rove beetle *Algochara bilineata* GYLL in an extended laboratory test. Adult beetles were exposed to dried spray residues of different application rates of the test item applied onto sandy soil (LUFA 2.1). The reproductive capacity was used as test endpoint.

# **Material and methods:**

Test item: Diflufenican + Flufenacet SC 600 g/L (analysed active ingredients: 15 % w/w 491.4 g/L) Diflufenican (AE F088657); 32.1 % w/w (394.5 g/L) Flufenacet (FOE 5043), Specification No.: 102000007948, Batch ID: EV56001418, density: 1.220 g/cm³ sample description: FAR 01403-00) Control: The control was treated with deionised water (400 f/ha) only. Reference item: Dimethoate EC 400 (1.5 L product/ha in 400 L water ha). Test organism: Adults of Aleochara bilineata GYLL. (1-7 days old) were exposed in 4 replicates of 20 beetles (per treatment group) to the spray residue of the test item, reference item and control treatments, respectively. During the assessments, the beetles were fed with deep frozen larvae of Chir nomus spp. Test conditions: Diffufenican + Flufenacet SC 600 g/L was tested under extended laboratory conditions after contact exposure of adults of the rove beetle Aleochara bilineata GYLL. to dried spray residues of the test item with rates of 60, 107, 190, 337 and 600 mL product/ha in 400 L deionised water/ha applied on sandy soil (LUFA 2.1). The number of hatched beetles of the 11 generation was recorded over a period of 65 days. From these data the endpoint reproductive capacity was calculated.

# **Findings:**

	<u> </u>		2					
Test item		Diflufenican	Flufenacet S	C 600 g/L				
Test organism		🌣 🎺 Aleoch	ara bilineata Gʻ	YLL.				
Exposure								
Reproductive capacity								
	-187	Mean number of	Mean		Reduction of			
11 Cutility	beetles of the	natemed beetles	number of	Parasitisation	capacity			
	<b>6</b> -generation	You are tion man	beetles/host	P (%)	(relative to			
	group 3	replicate	pupa		R (%)			
	Total Rumber of Natched bestles of the	Reprint Mean number of harehed beetles of the F1-generation per	Mean number of hatched beetles/host	Parasitisation rate	reproductive capacity (relative to control)			



Control	2644	661	0.441	44.1	-
Application rate [ml product/ha]					
60	2530	633	0.422	42.2	4.3
107	2705	676	0.451	45.1	-2.3
190	2600	650	0.433	43.B	。 1,7
337	2490	623	0.415	41%5	5.8 B
600	2434	609	0.406	<b>3</b> 0.6 <b></b> €	7.9 @
ER50		> 60	00 mL product/	hay y	
Reference item Dimethoate EC 400 1.5 L product /ha	8	2	0.0013	0.13	99.74°

No statistically significant differences between the control and the lest item treatments were calculated.

By the end of the reproduction phase (day 65) the mean number of hatched beetles per replicate in the control was 661 and the mean number of hatched beetles per replicate in the reference group was reduced to 0.3 %, compared to the control group. Thus, the test accomplished the validity enteria according to GRIMM et al. (2000) for conducting the extended lateratory test with Alectuara burneata (control group: average number of hatched beetles of the F-generation > 400, reduction of the reproductive capacity in the reference item treatment group, relative to control  $50 \, \%$ . The results of the control group indicated that the test organisms were in a good condition (average number of hatched beetles of the F1-generation per replicate: 661). The results of the reference item group indicated that the test system was sensitive to harmful substances (99.7% reduction of reproductive capacity). Statistical analysis of reproduction DUNNOUTT smultiple t-test  $\phi \leq 0.05$ ; 1-sided) revealed no significant difference concerning the reproductive capacity between the control and all test item treatment groups. A calculation of the ER₅₀ for reproductive capacity was not possible, because the reduction of reproductive capacity was below 54% in an test item treatment groups.

### Conclusion;

The ER₅₀ is empirically estimated to exceed the highest tested application rate, i.e. 600 mL product/ha.

# CP 10.3.23 Semi-field studies with non-target arthropods

Report: , C KCP 103.2.3/01, D., 2009

Title Toxicity to the predatory mite Typhlodromus pyri SCHEUTEN (Acari,

Phoseiidae using an extended laboratory test (under semi-field conditions aged

residues on Zea mays) Flufenacet + Diflufenican SC 400 + 200 g/L.

Document N°: M-355238-01-1

Guidelines: Blüm@et al. (2000) modified, Candolfi et al. (2001)

GLP Ye

The objective of this study was to investigate the lethal and sublethal toxicity of residues of Flufenacet + Diflufenican SC 400 + 200 g/L that were aged under semi-field conditions to the predatory mite *Typhlodromus pyri* when exposed to these residues on treated leaf surfaces.

# Material and methods:



Test item: A suspension concentrate formulation of Flufenacet + Diflufenican SC 400 + 200 g/L was tested, specified by sample description: FAR01403-00; specification no.: 102000007948; batch ID: EV56001418 [analysed content of active ingredient: Diflufenican 15.6% w/w, Flufenacet 32.1% w/w; date of completed analysis: 11 Nov 2008, BCS-D-FT Analysis & Services D-65926 Frankfurt]; density: 1.229 g/mL. Test organism: the predatory mite *Typhlodromus pyri_e* Protonymphs. Control: deionised water only. Toxic reference: Dimethoate was applied at 0.1014 Laproduct/ha (40 g/as/ha) in 400 L water/ha on the application day on potted maize plants as well. The lest item was applied with 0.7 L product/ha in 400 L water/ha on potted maize plants. For the curther exposure dates it was applied directly on the maize leaves (with 0.1014 L/ha in 2005 water/ha). It was included to indicate the relative susceptibility of the test organisms and the test system aging of the spirely residives of the test item on the potted maize plants took place under natural semi-field conditions with rapin protection during the whole study. Mortality of 100 protonymphs was assessed on several days after exposure by counting the number of living and dead mites. The Pumber of escaped miles was Calculated as the difference from the total number exposed. This assessment was done on day 1, 4 and 7 after exposure for the first bioassay started on the application day antiQthe second bioassay started at day 14 after application. For the last bioassay initiated at \$\frac{1}{2}\$ after application the mortality was assessed 1, 4, 7, 10, 12 and 14 days after exposure. The reproduction rate of surviving mites was evaluated over the period of 7-14 days after treatment for the thick bioassay started at day 28 after application by counting the total number of offspring (eggs and larvae) produced. From these data the endpoints mortality (after 7 days) and effects on reproduction were calculated,

-			
ΗΊ	nd	ın	gs

Findings:			,				
Test item	Flufenavet + Didlufenican SC 400 + 200 g/L						
	(0)7 L product/ha) (5)						
Test organism		Typhlodromus pyri					
Exposure	Dyjed spraydepo	ositson mai@ leave\$ from treat	ted maize plants)				
Start of bioassay	$0  \text{BAA}^{2}$	24 DA.€¥	28 DAA ^a				
		Mortality (%) Iter 7 days					
Control	12.0	\$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	5.0				
Test item	99,00	₹8.0	14.0				
Reference item *	100.0	<b>2</b> 100.0	100.0				
Test item	098.9 0	87.1	9.5				
A	/	(p-value < 0.001,	(p-value = 0.026,				
Ü	significantb)	significant <u>b</u> )	significant ^b )				
Reference Item 🗐	<b>190</b> .0 <b>2</b>	100.0	100.0				
		Reproduction					
		Number of eggs per female					
Control		-	7.5				
Test item?		-	6.9				
	Reproduction rel. to control (%)						
Test item	5 - 5 T	-	8.4				
Ĺ			(p-value = 0.376, not)				
	(		significant ^{<u>c</u>}				

^a Days after application

In all three bioassays the control mortality was below 20% and the mortality of the toxic reference group was 100%. Furthermore the cumulated number of eggs per female for the reproduction

b Fisher's Exact test, re-sided, p-values adjusted according

^c one-way ANOVA, Williams test (one-sided)



assessment in the third bioassay was above 4 eggs per female (7.5 after 28 days in this study). Therefore the results of this study can be considered as valid.

# **Conclusion:**

In this extended laboratory test the effects of Flufenacet + Diflufenican SC 400 + 200 g/L residues (aged under semi-field conditions) on the survival of the predatory mite *Typhlodromus fivri* were determined after application of 0.7 L product/ha onto *Zea mays*. In this study 98.9% corrected mortality of the test item was found in the first bioassay started on DAA 0. A second bioassay was started 14 days after the application and still showed a corrected mortality of 87.1%. A third bioassay was initiated on DAA 28 and resulted in a low corrected mortality of 9.5% In this assay no statistically significant effects on reproduction occurred (84% reduction relative to control).

# CP 10.3.2.4 Field studies with non-target arthropods

No field studies were deemed necessary.

# CP 10.3.2.5 Other routes of exposure for non-target arthropods

No relevant exposure of non-target arthropods is expected by other routes of expessure.

# CP 10.4 Effects on non-target soil meso and macrofauna

Only endpoints used for the risk assessment are presented here. For an overview of all available endpoints for flufenacet and its metabolites please refer to the respective section of the MCA document.

For the second active substance in the representative formulation, diflufenican, references is made to the EU agreed endpoints according to the FESA Scientific Report (2007) 122.

The risk assessment procedure follows current regulatory requirements and the Guidance Document on Terrestrial Ecotomicology.

Based on most gensitive endpoints the ER values are calculated using the following equations:

The risk is considered acceptable, if the TER_{LT} is >5.

For lipophilic substances ( $\log P_{OV} > 2$ ) all results from the laboratory studies have to be corrected by a factor 2 when the organic matter is higher or equal to 5% (PRAPER decision, April 2012).

# Ecotoxicological endpoints used in risk assessment

Table 10.4-1 Endpoints for the representative formulation used in risk assessment

Tuble 10:1 1 Enapoints for the representative formulation used in risk assessment							
Test substance	Test species	Eı	ndpoint	Reference			
DFF + FFA SC 600	Earthworm, reproduction (5% peat in test soil)	NOEC NOEC	2.6 mg as/kg 1.3* mg as/kg	° (2010) M-363809-0181 KCP 10.4.1.201			
DFF + FFA SC 600	Earthworm field study	NOEÆŘ	1.8 L/ha	2014) M-478092-01-1 √ KCP 19.4.1.2/01			

^{*} endpoints corrected to allow for log Pow > 2

Table 10.4- 2 Endpoints used in risk assessment for fulfenact and its metabolites

Test substance	Test species 🖓		Endpoint	Reference
Flufenacet WG 60	Earthworm, reproduction (10% peat in tests)	Q NOEQ	12* mg as/kg	(2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011) (2011)
FFA SC 500	Earthworm field study	MOEAER NO A	1.21 prod/leg	(2008) M-307211-01-1 KCA 8.4.1/11
FOE oxalate	Earthworm, reproduction (10% peat in test soil)	NÔEC	100 mg p.m./kg	(2010) M-398163-01-1 KCA 8.4.1/02
FOE sulfonic acid-Nasalt	Farthworm reproduction > (5% peat in test soil)	y nqe@	560 mg p.m./kg	(2009) M-358264-01-1 KCA 8.4.1/03
FOE methylsulfone	Earthworm, reproduction (5% peatrin test sail)	NOEC S	62.5* mg p.m./kg	(2010) M-362081-01-1 KCA 8.4.1/04
TFA	Earthworm, reproduction (100) peat in sest soil	NOEC	320 mg p.m./kg	(2005) M-251328-01-1 KCA 8.4.1/05
trifluoroethane sulfocia	Earthworse reproduction (5% peat in test soil)	NOEC	≥100 mg p.m./kg	(2012) M-436340-01-1 KCA 8.4.1/06
FOE-Thiadone	Earthworm, seproduction (5% peat in test soil)	NOEC	3.2 mg as/kg	(2012) M-442579-01-1 KCA 8.4.1/07

^{*} endpoints corrected to allow for log Pow 🔿

Table 10.4- 3 Endpoints of mixing partner diflufenican

Test substance A Test species	EU agreed endpoints		
	acc. to EFSA Scientific Report (2007) 122, 1-84		
Diflufenican  Diflufenican  Diflufenican  Diflufenican  Diflufenican  Diflufenican	NOEC	500 mg as/kg dws*	

^{*} endpoints corrected to allow for  $\log P_{ow} > 2$ 

# Predicted environmental concentrations used in risk assessment

**Table 10.4-4** Initial max PEC_{soil} values

Compound		cereals		cereals		er cereals	
	PECod may			g a.s./ha PEC _{soil accu}	PEC _{soil} ,	PECson accu	o d
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	max [mg/kg]	[mag/kg]	
DFF + FFA SC 600	$0.748^{1)}$	1	$0.498^{2)}$	-	$0.498^{2}$	~ C	
Flufenacet	0.240		0.160		<b>©</b> 160	~/	
FOE oxalate	0.039		0.026	&	$^{\prime\prime}$ $0.026$ $^{\circ}$	<u>~</u> ~∀	
FOE sulfonic acid- Na-salt		0.077		0.05		© 051 S	
FOE methylsulfone		0.015		0.010		0.010	
TFA		0.275		Ø.183 ⋅	) 1	0.183	
FOE 5043- trifluoroethane sulfonic acid	0.007		0.004	Q	0504	\$ 6	
FOE-Thiadone	0.007	-	0.004		$\bigcirc 0.004$	ľ - <u>-</u> Ö	

¹⁾ Calculated product PECsoil, considering the PECsoil for fluftenacet (0.240 mg a.s./kg) and a concentration of 32.1 % flufenacet in DFF+FFA SC 600

2) Calculated product PECsoil, considering the PECsoil for fluftenacet (0.160 mg a.s./kg) and a concentration of 32.1 % flufenacet in DFF+FFA SC 600 1) Calculated product PECsoil, considering the PECsoil for flutenacet (9,240 mg a s./kg) and a concentration of 32.1 %

#### **CP 10.4.1** Earthworms

#### Risk assessment for earthworms

The earthworm tier 1 risk assessment for the representative formulation DFF+FF SC 600, flufenacet, and the relevant metabolites is presented in the table below.

Table 10.4.1-5 TER calculations for earthworms

			<del>~ .</del>	
Species	Endpoint [mg/kg]	PECsonl,max/aecu	TERLT	<b>T</b> rigger
g a.s./ha			m sti	7
Earthworm, reproduction	NOEC 01.3* \$		7 1.7	√ 5°
Earthworm, reproduction	NOEC 1.2*	~ "	, D'	₹\$ 5
Earthworm, reproduction	NOEC ≥190	0.039	2564	5
Earthworm, reproduction	NOEC 500 X	0.077	64940	5
Earthworm, reproduction	NOEQ, 62,5	0.015	<b>A</b> 987	5
Earthworm, reproduction	NOEC 620	<ul><li>✓ 0.27€</li></ul>	1164	5
Earthworm, reproduction			9	5
	*************************************	Q.007	14286	
Earthworm, reproduction	NØEC 3.2	0.00%	457	5
g a.s./ha / Winter cereals –	1,20 g a.s. <i>∂</i> ha	y y		
Earthworm, reproduction	NOEC 1.3*	9.498 ²⁾	2.6	5
Earthworm, reproduction	NOEC 1.2*	ر آگ 0.160	7.5	5
Earthworm reproduction	MOEC <u>№</u> 100 ^	√ [®] 0.026	3846	5
		0.051	9804	5
	NOPC 63.5*	0.010	6250	5
Earthworm reproduction	<b>№</b> EC  320	0.183	1749	5
Farthwaym, reproduction	NOEC ≥100	0.004	25000	5
Farthworm, reproduction	NOEC 3.2	0.004	800	5
	Earthworm, reproduction	Earthworm, reproduction NOEC  2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100 Earthworm, reproduction NOEC 2100	Earthworm, reproduction NOEC 1.3* 0.748¹¹   Earthworm, reproduction NOEC 1.2* 0.240   Earthworm, reproduction NOEC 1.2* 0.039   Earthworm, reproduction NOEC 500 0.077   Earthworm, reproduction NOEC 500 0.077   Earthworm, reproduction NOEC 62.5 0.015   Earthworm, reproduction NOEC 2.0 0.27   Earthworm, reproduction NOEC 2.100 0.007   Earthworm, reproduction NOEC 2.2 0.00   Earthworm, reproduction NOEC 1.3* 0.498²¹   Earthworm, reproduction NOEC 1.2* 0.160   Earthworm, reproduction NOEC 1.2* 0.160   Earthworm, reproduction NOEC 1.2* 0.051   Earthworm, reproduction NOEC 3.20 0.051   Earthworm, reproduction NOEC 3.20 0.183   Earthworm, reproduction NOEC 3.20 0.004	Img/kg    Img/

^{*} endpoints corrected to allow for log Pow > 2.

For flufenacet and the recoant metabolites the TER values exceed the critical trigger value of 5, indicating a low risk to earthworm population if the product is applied up to 0.6 L DFF+FFA SC 600/ha (240 g flufenacet/ha) in winter cereals. For the representative formulation DFF+FFA SC 600 the critical trigger value of 5 is not passed indicating a potential risk of the mixture for earthworm populations. A refined risk assessment is presented below.

¹⁾ Calculated moduct PRCsoil, considering the PECsoil for flufenacet (0.240 mg a.s./kg) and a concentration of 32.1 % flufenacet in DFF+FEOSC 600

²⁾ Calculated product PECsoil, considering the PECsoil for flufenacet (0.160 mg a.s./kg) and a concentration of 32.1 % flufenacet in DFF-FFA SC 000



#### Refined Risk Assessment

A one-year earthworm field study is available with the representative formulation DFF+FFA SC 600 , 2014; KCP 10.4.1.2/01). The results of this field study give clear evidence that DFF+FFA SC 600 applied on an arable field site at applications rates of to 1.8 L/ha (720 g flufenacet/ha) has no effects on abundance and biomass of earthworm populations. Thus, a low risk for earthworm population can be considered if the product is applied up to 06 L DFF+FFAQC 600/a (240 g flufenacet/ha) in winter cereals.

Furthermore, a one-year earthworm field study is available with Flutenacet \$C500\$ KCA 8.4.1/11). This study demonstrates that natural earthworm populations are not affected if Flufenacet SC500 is applied on an arable field up to an application rate of 1/2 L/ha which is equivalent to 600 g Flufenacet/ha. Thus, it can be concluded that earth forms are not a risk it flufenacet is applied up to 240 g/ha in winter cereals.

# Earthworms - sub-lethal effects **CP 10.4.1.1**

CP 10.4.1.1/01 Report:

Diflufenican + flufenacet \$0.600 G. Effects of survival, growth and reproduction on the Title:

earthworm Eisenia fetido ested in artificial soil with 5% peaco

Document N°: M-362809-01-1

OECD Guideline No. 222 for the Testing of Chemicals Tarthworth Reproduction Test Guidelines:

(Eisenia fetida/Eisenia and et)" adopted April 13, 2004

International Standard ISO 11268 Q Part 2 (2098) "SQ Quality - Effects of Pollutants on

Earthworms (Eisenia fauta) - Paul 2: Determination of Effects on Reproduction"

**GLP** yes (certified aborators)

#### **Objective:**

The purpose of this study was to asses the effect of Dirlufenican + Flufenacet SC 600 G, on survival, growth, and reproduction of the earthworm disenial fetida during an exposure in an artificial soil at 5 different test concentrations.

#### Materials and Methods:

Test item: Difluterican + flufenacet SC 600 G Specification No.: 102000007948, Material No.: 05700094, Batch, D: EV\$6001418, FAR 0140300, content of a.s. (analysed): diflufenican: 191.4 g/L (15.6 % w/w); Quifenach: 394.5 g/L (32.1% w/w); density 1.229 g/mL.

Test organism. Adult earthworms (Esenia feuda), approx. 7 months old.

Ten Eisenia fetida per replicate (8 for the control group, 4 per test item concentration) were exposed in an artificial soil (with 5% peat content) to the nominal test concentrations of 4.8, 8.5, 15.2, 27.0 and 48.0 mg test nem/kg fry weight artificial soil in the 1st test run and 0.8, 1.5, 2.6, 4.7 and 8.4 mg test item/kg dry weight artificial soil in the 2nd test run. The test item was mixed into the soil. After 28 days the number of surroving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days (i.e. after 56 days), the number of offspring was determined.

The 1st test run was conducted at the test facility. A NOEC was not achieved in this test run. Due to capacity constraint the 2nd test run was conducted at the principal investigators facility.

#### **Findings:**

The results can be considered as valid, as all validity criteria of the test were met.

Validity anitonia	Recommended	Obtained	Obtained
Validity criteria	Recommended	1st run	2nd run
Mortality of the adults in the control	≤ 10 %	0 %	0 %
Mean rate of reproduction of juveniles	> 30	102.4	116.8
(Min – Max juveniles per control vessel)	≥ 30	(80 -121)	(98 - 149)
Coefficient of variance of reproduction in the control	≤ 30 %	14.9 % U	14.7 %

Effects on mortality and changes in body weight of the adults after an exposure period of 28 days and the number of offspring per test vessel after 56 days.

Test object			Eisenia	fetida .	<u> </u>	<b>*</b>
Test item	Control	∑ Di	iflutenican	#Flufena	et SC 600	G
	1 st test ru	in _{@/}	**************************************			× 1°
Test concentration (mg test item/kg dry weight artificial soil)	&	4.80	85 20		£ 0.0	§48.0
Mortality of adult earthworms [%] after 28 days	0~~			~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	) 0 V	0
Mean change of body weight of the adults from day 0 to day 28 [%]	7.9	+ 14.7	+ 166	+ 18.4	6.5	+ 12.6
Statistical comparison to the control*	y ( .	<b>8</b> 55	<b>₹.</b> §.	Ø s.	S.	S.
Mean number of offspring per test vessel after 56 days	102.4	\$4.0 	\$75.3 \h	82.5%	81.8	59.5
Standard Deviation	15.3 0	± 15.7	± 7/-8/1	± <b>®</b> .5	± 14.8	± 14.8
Statistical comparison to the control** $\bigcirc$	~ } %	<u>s</u> .O'		$\mathcal{S}_{s}$ .	S.	S.
	^{2nd} test ru	ın [©]		<b>y</b>		
Test concentration (mg test item/kg xary weight artificial soil)		چُ 0.8	1.50	2.6	4.7	8.4
Mortality of adult earthworms [%] after 28 days		ď	22.5	0	2.5	2.5
Mean change of body weight of the adults from day 0 to day 28 [%]	+ 63.1	64.0 Å	y + 64.5	+ 62.8	+ 62.8	+ 61.5
Statistical comparison the control*	Q Q	n. sO	n. s.	n. s.	n. s.	n. s.
Mean number of offspring per test vessel after 56 days	1163	HDF.0	113.8	104.3	83.0	68.0
Standard Deviation &	± 17.2	<b>©</b> ± 13.4	± 18.7	± 11.5	± 10.7	± 13.2
Statistical comparison to the control**	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	" n. s.	n. s.	n. s.	S.	S.

- Result of a Williams Multiple Sequential t-test, two-sided,  $\alpha = 0.05$
- ** Result of a Williams Multiple Semential t-cst, one-sided smaller,  $\alpha = 0.05$
- n. s. mean value not statistically significant different compared to the control ( $p \ge 0.05$ )
- s. mean value statistically significant different compared to the control (p < 0.05)

No mortality of acoust earthworms was observed after 28 days of exposure at the control group and all test concentrations of the 1st test run. Just one worm each died in the concentrations 1.5 and 4.7 mg test item/kg dry weight soil of the 2nd test run.

Statistically significant different values for the growth relative to the control were observed at all test concentrations of the 1st test run. Since there is no dose-response relationship these differences are not considered to be treatment related. No statistically significant different values for the growth relative to the control were observed at test all concentrations of the 2nd test run.

Therefore:

NOEC related to growth:  $\geq$  48.0 mg test item/kg dry weight artificial soil LOEC related to growth: > 48.0 mg test item/kg dry weight artificial soil



Statistically significant different values for the number of juveniles per test vessel relative to the control were observed at all test concentrations of the 1st test run.

In the 2nd test run statistically significant different values for the number of juveniles per test vessel relative to the control were observed at the test concentrations of 4.7 and 8.4 mg test item/kg dry weight artificial soil.

Therefore, based on statistical significance:

NOEC related to reproduction: 2.6 mg test item/kg dry weight a@ficial son 4.7 mg test item/kg droweight artificial so LOEC related to reproduction:

#### **Conclusions:**

Overall, based on the biological and statistical significance of the effects observed on reproduction, it is concluded that the NOEC for this study is 2.6 mg/est iten@kg dry@eight, @tificialGoil. The overall LOEC is determined to be 4.7 mg test item/kg dry weight artificial soil. Earthworms - field studies

CP 10.4.1.2/01

DFF+FFA SC 200+400 C A field study to investigate effects on the earthworm fauna in Southern Germany.

M 472002 C 1

#### Earthworms - field studie CP 10.4.1.2

Report:

Title:

Document No: M-478092-007-1

ISO Guideline 11268 Guidelines:

ISO Gundeline 256/11-1, 2006; KULAjet al., 2006 SANCO/3029/99 rev@/

Regulation (EC) No 107/2009 (EC, 2009)

Quideline 7029/xxx95 rev. Sto Directive 91/414/EEC and Regulations (EU) 283/2013 and

284/2013 implementing Regulation (EC) 1907/2009

US TPA OCSPP Guidene No \$60.1500

GLP ves (certified laboratory)

#### Material and methods:

The effects of DFF FFA SC 600 (content of Diflufenican (analysed): 209.5 g/L; Flufenacet. (analysed): 410.0 £, Batch-No.: 2011-005209, TOX-No.: TOX09504-00) on earthworm populations under field conditions were studied. The field study was carried out on an agricultural field in Southern Germany following ISO M268-3 (ISO 1999) and ISO 23611-1 (ISO 2006). The recommendations by KULA et al. (2006) were considered.

The study consists of three trials. \$12-03897-01 (field phase), \$12-03897-L1 (analytical phase) and S12-03897-L2 voil characterisation). The soil of the field site is characterised by the soil type silty clay loam with a silt sontent of 60.8 %, a clay content of 31.0 % and a sand content of 8.2 % (USDA). The study included treatment groups with four replicates per treatment group: the tap-water treated control (C), three test item treatment groups (a.s. diflufenican and flufenacet) and the toxic reference treated with Twist WP® (a.s. carbendazim). Diflufenican SC 500A G was applied once at a rate of 243.75 g a.s./ha to reach a target plateau application in soil of 0.325 mg diflufenican/kg soil (application 1). After application 1 diflufenican was incorporated into the top 5 cm of the soil and winter wheat was drilled. DFF+ FFA SC 200+400 G was applied once at different rates (application



2). Treatment group 1 was treated with 0.6 L product/ha, treatment group 2 with 1.2 L product/ha and treatment group 3 with 1.8 L product/ha. The applications were performed in autumn during a period of high earthworm activity.

The control plots were sprayed once with tap water, the toxic reference item plots were treated once with 17152.66 g product/ha Twist WP® (equivalent to 10000 g a.s. carbendazin/ha) at the same time as application 2 in the test item groups was performed. The spray applications were made with a boom sprayer calibrated to apply a spray volume of 300 L/ha on bare soil (applications 1 and 2).

Test organisms were naturally occurring field populations of earthworms in all infe stages (juxehiles and adults). A pre-treatment sampling was conducted before the first application on Y October - 02 October 2012 to determine the density, diversity and homogeneity of earthworm distribution at the field site. The field site selected contained representatives of the major earthworm groups and at a number that is recommended in the relevant guidelines.

Earthworm populations were assessed for their abundance and biomass prior to the first application (see above) and approximately 1, 6 and 12 months after the second application (21st/22nd) November 2012; 18th/19th April 2013 and 16th/17th October 2015 respectively). Additionally, daily surface-density counts of dead earthworms were performed within the first 3 days after the second application in the control and test item plots. Exposure of the earthworm population to the test item was enhanced through additional irrigation of the field site. The combined natural rainfall and in gration yielded soil moisture levels that ensured constant earthworm activity and thus exposure to the treatments.

Earthworms were sampled from four 90 cm 25 cm sampling areas per plot per sampling occasion. Earthworm surface monitoring took place between these sample areas with a minimum distance to the border of the plot of two metres. Additionally, areas for soft residue sampling (soil cores) for analytical verification were located in each plot

After application of Diflutencian SC 900A G (plateau application) mean residues as percentage of the target rate of 80 %, 100 % and 90 % were found for treatment groups T1, T2 and T3, respectively. After application of DFD+FFA SC 200+400 G (application 2) whean residues of DFF of 96 %, 115 % and 121 % as percentage of the target rate were determined in treatment groups T1, T2 and T3, respectively. Mean residues of FFA of 90 %, 98 % and 99 % as percentage of the target rate were determined in treatment group T1 T2 and T3.

## Findings and observations

#### Earthworm number and diversity in pre-sampling and in the control plots:

The mean earthworm abundance was 382 earthworms/m² across all plots at the start of the trial. The juvenile:adult atio was 0.7 (equivalent to 41.3 % adults). The initial earthworm population as % of adult earthworms of the field site was characterised by 87.3 % endogeic and 12.6 % anecic earthworms. The dominant endogeic species at trial start was *Aporrectodea rosea* (58 earthworms/m², 15.1 % of total earthworms, 39.0 % of adult earthworms) followed by *Aporrectodea caliginosa* (41 earthworms/m², 10.8 % of cotal earthworms, 27.9 % of adult earthworms). The dominant anecic earthworm species was *Lumbricus terrestris* (including juveniles: 23 earthworms/m², 6.1 % of total earthworms, 15.0 % of adult earthworms. The mean earthworm abundance (mean values from control plots only) was 375 earthworms/m² at trial start decreasing to 179 earthworms/m² at 35 DAA2 and 183 earthworms/m² at 183 DAA2. At the end of the trial 216 earthworms/m² (364 DAA) were found

#### Adult and juvenile earthworms, changes in numbers and biomass:

No significant reductions in numbers and biomass of total earthworms, juveniles and individual species occurred during the three post-treatment samplings in all test item treatments.

				SC 200+400	G		
Treatment	0.6 L product/ha  Mean number (Ind/m²) and change (%)**						
anasias / anaun	35 DAA2 183 DAA2 364 DAA						
species / group	16.5	(-8.3 %)	16.5	(-5.7 %)	4000	(+5.3 %)	
Aporrectodea caliginosa Aporrectodea rosea	6.0	(-8.3 %)	31.5	(-6.0 %)	\$4000 \$400.5 =	(+3.3 %) (-10.0 %)	
Allolobophora chlorotica	3.0	(-23.0 %) (-70.0 %)	5.5	(-8.3 %)	\$6.5 @		
Lumbricus terrestris	13.5	(+12.5 %)	10.5		70.5 7 10.5	(-16.0 %) _~	
Lumbricus terrestris adult		, , , , , , , , , , , , , , , , , , , ,		<i>(//)</i>	4// 11	<i>e b</i>	
+ juvenile	20.0	(+11.1 %)	15.5	(+14.8%)	16.8	J¥10.0 %)	
Octolasion lacteum	5.5	(-56.0 %)	14.00	(-3,4 %),	¥8.5	(+2.8)%)	
Tanylobous juvenile	14.5	(-47.3 %)	16.0	<b>(</b> ₩88.2 %)	25.0 V	(+422 %)	
Epilobous juvenile	84.5	(+9.7 %)	£15.0	+31.4 %	63.5	<b>₹</b> 5.8 % <b>€</b>	
Endogeic earthworms	32.5	(-33.0 %)	,067.5 C	(-6 _x <b>10</b> %)	<b>108</b> .0	©(-1.8 <b>%</b> )	
Anecic earthworms	14.5	(+20.8 %)	11,0	(+37.5 %)	<b>~1</b> 1.5 🏲	(-8.6%)	
Anecic earthworms adult + juvenile	22.0	(+22.3%)		J¥18.5	17.5	(£16.7 %)	
Total juveniles	99.0	(-50)%)	¥31.0 0	(+36.5%)	<b>8</b> 8.5	<b>(</b> +5.4 %)	
Total adults	47.0	(-23.0 %)	78.50	(=\$.9%) ,	\$19.5 @	(-2.4 %)	
Total earthworms	164.5	<b>4</b> (-7.8 %)	215,5	<b>6</b> 17.4 %)	222.00	(+3.0 %)	
	Ô	X Sean b	4	m²) and char	nge (%)**		
Aporrectodea caliginosa	2.7	(+12.6 %) ×	J 2.9 D	(+2 A %) «	9.6	(+14.3 %)	
Aporrectodea rosea	<b>\$</b> 0	74.8 %)	3.7	A(-8.4 %)	8.1	(+21.8 %)	
Allolobophora chlorotica	₹0.7 ×	112/	, <b>(20</b>	Q-16.0%)	1.7	(-13.9 %)	
Lumbricus terrestris 🖏	62.5	(+20.9%)	×48.4 6	(+23.Q*%)	55.5	(-4.8 %)	
Lumbricus terrestris adult + juvenile	78.3	<b>3</b> 27.2 % <b>3</b>	62.4	(+26.6 %)	66.4	(+2.8 %)	
Octolasion lacteum	, 3.8	(-54.3 %)	<u></u>	<del>(-11.0 %)</del>	18.5	(-13.4 %)	
Tanylobous juvenile	20.4	(+5,23%)	9.9 %	(+78.8 %)	16.5	(+48.1 %)	
Epilobous ju@nile	9.3	( <del>4</del> 2.5 %)		(+15.7 %)	7.4	(-2.4 %)	
Endogeic carthworms	<b>8</b> .8	\$47.2 %	20.1	(-8.5 %)	38.8	(-0.2 %)	
Anecic earthworms	65.4	(+26.5 %)	<b>&amp;</b> .9	(+25.0 %)	58.1	(-0.3 %)	
Aneque carthworms adult/ + juvenile	82.	(+30.8 %)	62.9	(+27.7 %)	69.0	(+6.9 %)	
Total juverfules	<b>29</b> .6	J48.5 %	30.1	(+51.0 %)	23.9	(+27.6 %)	
Total adults	74.2	( ( )	69.0	(+13.0 %)	96.9	(-0.2 %)	
, W	105	(+169%)	100.7	(+23.5 %)	123.2	(+5.0 %)	
Total earthworks		` // \)		SC 200+400			
Treatment,		<b>&amp;</b> "		product/ha			
		Mean nu	ımber (Inc	d/m²) and cha	nge (%)**		
Species / group	~	DAA2	18	3 DAA2	364	DAA2	
Aporrectodea caliginosa	125	(-2.8 %)	17.0	(-2.9 %)	44.0	(+15.8 %)	
Aporrecto dea rose	11.5	(+43.8 %)	40.0	(+19.4 %)	60.0	(+33.3 %)	
Allolobophora Alorotica	3.5	(-65.0 %)	4.0	(-33.3 %)	4.5	(-35.7 %)	
Lumbricus terrestris	18.0	(+50.0 %)	9.0	(+12.5 %)	8.0	(-36.0 %)	
Lumbricus terrestris adult + juvenile	22.5	(+25.0 %)	14.0	(+3.7 %)	15.5	(+3.3 %)	
Octolasion lacteum	7.0	(-44.0 %)	11.0	(-24.1 %)	12.0	(-33.3 %)	
Tanylobous juvenile	14.0	(-49.1 %)	14.0	(+64.7 %)	29.5	(+22.9 %)	
Epilobous juvenile	78.5	(+2.0 %)	104.0	(+18.9 %)	79.5	(+32.5 %)	
Endogeic earthworms	40.5	(-16.5 %)	74.0	(+2.8 %)	128.5	(+16.8 %)	



Anecic earthworms	18.5	(+54.2 %)	9.0	(+12.5 %)	10.0	(-20.0 %)
Anecic earthworms adult	23.0	(+27.8 %)	14.0	(+3.7 %)	17.5	(+16.7 %)
+ juvenile						
Total juveniles	92.5	(-11.5 %)	118.0	(+22.9 %)	109.0	(+29.8 %)
Total adults	59.0	(-3.3 %)	83.5	(+4.4 %)	139,0	(+13.5 %)
Total earthworms	164.0	(-8.1 %)	207.5	(+13.4 %)	271.5	(+26.0%)
		Mean b	iomass (g	g/m²) and chan	ge (%)**	
Aporrectodea caliginosa	2.5	(+3.5 %)	3.4	(+26.2	112	(± <b>3</b> 3.1 %) ₈
Aporrectodea rosea	1.6	(-57.3 %)	5.0	°(+21.7%)	7.9	<b>№</b> 17.9 <b>%</b>
Allolobophora chlorotica	0.8	(-58.2 %)	0.8		¥.4 🔏	<del>(-30.8%)</del>
Lumbricus terrestris	77.2	(+49.4 %)	40,4	<b>3</b> .4 %)	√°37.3 @	(-36.0/%)
Lumbricus terrestris adult	83.5	(+35.6 %)	\$4.0	(+3.4 %)	50.0	(\$\frac{2}{2}.6 %)
+ juvenile						
Octolasion lacteum	4.9	(-41.9 %)	11.0	<u> </u>	Ø1.2	^O (-47.4%)
Tanylobous juvenile	9.8	(-27.4 %Q)	15.1	(+35.2 %)	19.0	(+710)°%)
Epilobous juvenile	6.6	(+1.3 %)	<b>№</b> 0.0	25.2 %	12.2	(+60.6 %)
Endogeic earthworms	10.1	(-39,5%)	20.3	<b>⊘</b> (-7. <b>1</b> €%)	32.3	<u>(37.0 %)</u>
Anecic earthworms	78.4	(+ <del>3</del> 2.7 %)	40.4	(+3.4 %)		(-28.4 %)
Anecic earthworms adult	84.7	(+37.6 [®] )	5.10	3.4 %	54.4	(-15.7 %)
+ juvenile	16.4			(+30.8%)	25.2	
Total juveniles	16.45°	(-18 ⁽³⁾ %)	26.0	(+30,8 %)	W //	(+66.8 %)
Total adults		(+29.2 %)X	) 60.9 C	) ^y (-6Cy %) _{\(\sigma\)}	<b>4</b> .1	(-23.8 %)
Total earthworms	<b>19</b> 5.9	#17.1 %	87.5	7.3 %	109.6	(-6.6 %)
_				A SQ 200+400 ( product/ha	G	
Treatment &		- (		producytra		
	$\sim$	M	l As	3/2\	(0/)**	
	<i>y</i>	CA.	` *	d/m²) and char	• • •	
species / group	35/	DÂA2	@18	3 DAA2	364	DAA2
Aporrectodea caliginosa A	23.5	(+30,6 %)	<b>Q18</b>	3 DA 2 (±0.0 %)	<b>364</b> 38.0	DAA2 (±0.0 %)
Aporrectodea caliginosa A Aporrectodea rosea	23.5 8.5	(+30.6 %) (+6.5%)	<b>718</b>	3 DA 2 \$\pmu \pm 0.0 \%) \$(+11.9 \%)	<b>364</b> 38.0 61.0	(±0.0 %) (+35.6 %)
Aporrectodea caliginosa A Aporrectodea rosea Allolobophora chloratica	23.5 8.5 7.5	(+30,6 %) (+6,5%) (25.0 %)	1925 97.5 73.5	3 DA 2 (±0.0 %) (+11.9 %) (-41.7 %)	364 38.0 61.0 8.0	DAA2 (±0.0 %) (+35.6 %) (+14.3 %)
Aporrectodea caliginosa A Aporrectodea rosea Allolobophorochlorotica Lumbricus perrestris	23.5 8.5 7.5 7.5	(+30.6 %) (+6.5%)	718 105 37.5 73.5 16.5	3 DA 2 (±0.0 %) (+11.9 %) (-41.7 %)	<b>364</b> 38.0 61.0	(±0.0 %) (+35.6 %)
Aporrectodea caliginosa A Aporrectodea rosea Allolobophora chloratica	23.5 8.5 7.5 18.5	(+30,6 %) (+30,6 %) (+5,0 %) (-4.2 %) (+2.8 %)	1925 97.5 73.5	3 DA 2 (±0.0 %) (+11.9 %) (-41.7 %)	364 38.0 61.0 8.0	DAA2 (±0.0 %) (+35.6 %) (+14.3 %)
Aporrectodea calteinosa A Aporrectodea rosea Allolobophora chlorottea Lumbricutz terrestris Lumbricutz terrestris	35, 23.5 8.5 7.5 18.5 4.0	(+30,6%) (+30,6%) (+30,0%) (25.0%) (+28,%) (+28,%)	718 105 37.5 73.5 16.5	3 DAA2 \$\subseteq \pm (-0.0 \%)\$ \$\subseteq (+11.9 \%)\$ \$\subseteq (-41.7 \%)\$ \$\subsete (+106.3 \%)\$	364 38.0 61.0 8.0 12.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chlorotica Lumbricus terrestris Lumbricus terrestris adult + juvenide Octolasion tagteum Tanylobous juvenile	23.5 8.5 7.5 18.5 4.0	(+30,6 %) (+6,5 %) (25.0 %) (-4.2 %) (+2,8 %) (+2,8 %) (-29.1 %)	7.5 7.5 7.5 16.5	3 DA 2 (±0.0 %) (+11.9 %) (-41.7 %) (+106.3 %) (+66.7 %)	364 38.0 61.0 8.0 12.0 15.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %)
Aporrectodea caliginosa Aporrectodea rosea Allolobophorochloraciea Lumbricus terrestris Lumbricus terrestris Cumbricus terrestris Octolasion lacteum Tanylobous juvenite Epilobous juvenite	23.5 8.5 7.5 18.5 4.0 9.5 768.5	(+30,6 %) (+6 %) (+6 %) (28.0 %) (-4.2 %) (+28 %) (-29.1 %) (-11.0 %)	37.5 37.5 16.5 6.0	3 DA 2 (±0.0 %) (+11.9 %) (-41.7 %) (+66.7 %) (-58.6 %)	364 38.0 61.0 8.0 12.0 15.0 14.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chlorotica Lumbricus terrestris Lumbricus terrestris adult + juvenide Octolasion tagteum Tanylobous juvenile	23.5 8.5 7.5 18.5 4.0 45.9	(+30,6 %) (+65 %) (28.0 %) (-4.2 %) (+28 %) (+28 %) (-68.0 %)	3.5 16.5 6.0 12.0	3 DA 2 (+11.9 %) (-41.7 %) (+66.7 %) (-58.6 %) (+41.2 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %)
Aporrectodea caliginosa Aporrectodea rosea Allolobophorochloraciea Lumbricus terrestris Lumbricus terrestris Cumbricus terrestris Octolasion lacteum Tanylobous juvenite Epilobous juvenite	23.5 8.5 7.5 18.5 4.0 9.5 768.5	(+30,6 %) (+6 %) (+6 %) (28.0 %) (-4.2 %) (+28 %) (-29.1 %) (-11.0 %)	18 105 17.5 16.5 16.5 12.0 127.5	3 DA 2 (+11.9 %) (-41.7 %) (+66.7 %) (-58.6 %) (+41.2 %) (+45.7 %) (-8.3 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chloratica Lumbricus terrestris Lumbricus terrestris adult + juyende Octolasion lacteum Tanylobous juvenite Epilobous juvenite Endogric earth corms Anecic earth corms Anecic earth worms adult	23.5 8.5 7.5 18.5 4.0 45.0 1.5 45.0 1.5 45.0 1.5 45.0 1.5	(+30,6 %) (+6,5 %) (28.0 %) (-4.2 %) (+28,%) (-68.0 %) (-29.1 %) (-11.0 %) (-7,2 %) (+0.0 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5	3 DA 2 (+11.9 %) (-41.7 %) (+66.7 %) (-58.6 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %)
Aporrectodea caliginosa Aporrectodea rosea Allolobophorochloratica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Octolasion lacteum Tanylobous juvenile Epilobous juvenile Endogene earth corms Anecic earth worms Anecic earth worms adult Fjuvenile	23.5 8.5 7.5 18.5 4.0 9.5 68.5 45.0 19.0	(+30,6 %) (+6 %) (28.0 %) (+28 %) (+28 %) (-11.0 %) (-72 %) (+5.6 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5	3 DA 2 (+11.9 %) (+11.7 %) (+41.7 %) (+66.7 %) (+66.7 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophorochlorotea Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Octolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endogene earthworms Anecic earthworms Anecic earthworms adult Juvenile Total juvenile	23.5 8.5 7.5 18.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	(+30,6 %) (+6,5 %) (28.0 %) (-4.2 %) (+28,%) (-68.0 %) (-29.1 %) (-11.0 %) (-7,2 %) (+0.0 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5	3 DA 2 (+11.9 %) (-41.7 %) (+66.7 %) (-58.6 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophorochlorotica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris adult + juyanie Octolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endograc earthworms Anecic earthworms Anecic earthworms adult  juvenile Total oveniles Total adults	23.5 8.5 7.5 18.5 4.0 9.5 68.5 45.0 19.0	(+30,6 %) (+6 %) (28.0 %) (+28 %) (+28 %) (-11.0 %) (-72 %) (+5.6 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5	3 DA 2 (+11.9 %) (+11.7 %) (+41.7 %) (+66.7 %) (+66.7 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chloratica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris adult + juvenile Octolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endogeic earth corms Anecic earth corms Anecic earth worms adult Juvenile Total tuvenile Total adults Total earth corms	23.5 8.5 7.5 18.5 4.0 9.5 68.5 19.0 19.0 88.0 157.0	(+30.6 %) (+30.6 %) (+30.6 %) (+30.6 %) (-4.2 %) (+2.8 %) (+2.8 %) (-32 %) (-11.0 %) (-72 %) (+5.6 %) (-15.8 %)	18 105 37.5 16.5 16.5 2.5 6.0 12.0 127.5 66.0 17.5 23.5 139.5	3 DA 2 (+11.9 %) (+11.7 %) (+106.3 %) (+66.7 %) (-58.6 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %) (+45.3 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %) (+20.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chloratica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris adult + juvenile Octolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endogeic earth corms Anecic earth corms Anecic earth worms adult Juvenile Total tuvenile Total adults Total earth corms	23.5 8.5 7.5 18.5 4.0 9.5 68.5 45.0 19.0 88.0 5.7	(+30,6 %) (+6,5 %) (25.0 %) (-4.2 %) (+28,%) (-429.1 %) (-11.0 %) (-7,2 %) (-15.6 %) (-15.8 %) (-6.6 %) (-12.0 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0	(+11.9 %) (+11.9 %) (+11.7 %) (+106.3 %) (+66.7 %) (+5.0 %) (+41.2 %) (+45.3 %) (+45.3 %) (+45.3 %) (+5.0 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 143.5 273.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %) (+20.0 %) (+38.7 %) (+17.1 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chloratica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris adult + juvenile Octolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endogeic earth corms Anecic earth corms Anecic earth worms adult Juvenile Total tuvenile Total adults Total earth corms	23.5 8.5 7.5 18.5 4.0 9.5 68.5 19.0 19.0 88.0 157.0	(+30,6 %) (+6,5 %) (25.0 %) (-4.2 %) (+28,%) (-429.1 %) (-11.0 %) (-7,2 %) (-15.6 %) (-15.8 %) (-6.6 %) (-12.0 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0	3 DA 2 (+11.9 %) (+11.7 %) (+41.7 %) (+66.7 %) (+66.7 %) (+5.0 %) (+41.2 %) (+41.2 %) (+41.2 %) (+41.2 %) (+41.2 %) (+41.2 %) (+41.2 %) (+45.3 %) (+74.1 %) (+5.0 %) (+24.6 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 143.5 273.5	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %) (+20.0 %) (+38.7 %) (+17.1 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chlorotica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Augustia de la como de	23.5 8.5 7.5 18.5 4.0 9.5 68.5 19.0 88.0 157.0	(+30.6 %) (+30.6 %) (+30.6 %) (+30.6 %) (-4.2 %) (+28.%) (+28.%) (-11.0 %) (-11.0 %) (-15.8 %) (-6.6 %) (-12.0 %) Mean b	18 105 17.5 16.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0 iomass (g	3 DA 2 (+11.9 %) (+11.9 %) (-41.7 %) (+66.7 %) (+66.7 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %) (+45.3 %) (+24.6 %) g/m²) and change	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 143.5 273.5 ge (%)**	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (+17.9 %) (+35.0 %) (+17.3 %) (+16.0 %) (+38.7 %) (+17.1 %) (+26.9 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chloratica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris adult + juvenile Octolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endogeic earth forms Anecic earth forms Anecic earth forms Anecic earth forms Total juvenile Total juvenile Total juvenile Total adults Total earth forms Aporrectodeg caliginosa	23.5 8.5 7.5 18.5 4.0 9.5 68.5 19.0 19.0 88.0 157.0	(+30,6 %) (+6,0 %) (+28,%) (+28,%) (+28,%) (+28,%) (-11.0 %) (-72,%) (+5.6 %) (-15.8 %) (-6.6 %) (-12.0 %) Mean b (+48.8 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0 iomass (g	3 DA 2 (+11.9 %) (+11.9 %) (+11.7 %) (+106.3 %) (+66.7 %) (+58.6 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %) (+45.3 %) (+5.0 %) (+24.6 %) g/m²) and change (+6.7 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 143.5 273.5 ge (%)**	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %) (+20.0 %) (+17.1 %) (+26.9 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chlorotica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Ault + juvenile Cottolasion lacteum Tanylobous juvenile Epilobous juvenile Epilobous juvenile Endograc earthworms Anecic earthworms Anecic earthworms Anecic earthworms Total adults Total earthworms  Aporrectodea adiiginosa Aporrectodea rosea Allolobophora chlorotica	35, 23.5 8.5 7.5 18.5 4.0 4.0 4.0 4.0 4.0 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	(+30.6 %) (+30.6 %) (+30.6 %) (+30.6 %) (+2.8 %) (+2.8 %) (+2.8 %) (+30.0 %) (-11.0 %) (-15.8 %) (-15.8 %) (-12.0 %) (-12.0 %) (-48.8 %) (-69.6 %) (-23.1 %)	18 105 17.5 16.5 16.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0 iomass (g 2.9 4.2 0.8	3 DA 2 (+11.9 %) (+11.9 %) (-41.7 %) (+66.7 %) (+66.7 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %) (+45.3 %) (+24.6 %) 2/m²) and change (+6.7 %) (+3.4 %) (-38.3 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 273.5 ge (%)** 10.4 8.0 2.6	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+35.0 %) (+17.3 %) (+16.0 %) (+20.0 %) (+20.0 %) (+26.9 %) (+23.4 %) (+19.4 %) (+30.0 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophora chlorotica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Ault + juvenile Epilobous juvenile Epilobous juvenile Epilobous juvenile Endogric earth forms Anecic earth forms  Anecic earth forms  Anecic earth forms  Anecic earth forms  Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Allolobophora chlorotica Lumbricus terrestris Lumbricus terrestris	35, 23.5 8.5 7.5 18.5 4.0 9.5 68.5 45.0 19.0 88.0 53.0 157.0 3.6 1.2	(+30.6 %) (+6 %) (28.0 %) (-4.2 %) (+28,%) (-68.0 %) (-11.0 %) (-11.0 %) (-15.8 %) (-6.6 %) (-12.0 %) Mean b (+48.8 %) (-69.6 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0 iomass (g	3 DA 2 (+11.9 %) (+11.9 %) (-41.7 %) (+66.7 %) (+66.7 %) (+58.6 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %) (+45.3 %) (+5.0 %) (+24.6 %) g/m²) and change (+6.7 %) (+3.4 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 143.5 273.5 ge (%)** 10.4 8.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (±0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+17.3 %) (+16.0 %) (+20.0 %) (+17.1 %) (+26.9 %) (+23.4 %) (+19.4 %)
Aporrectodea calseinosa Aporrectodea cosea Allolobophoro chlorotica Lumbricus terrestris Lumbricus terrestris Lumbricus terrestris Ault + juvenile Epilobous juvenile Epilobous juvenile Epilobous juvenile Endograc earthworms Anecic earthworms Anecic earthworms adult  juvenile  Total oveniles  Total adults Total earthworms  Aporrectodea galiginosa Aporrectodea rosea Allolobophora chlorotica Lumbricus terrestris	35, 23.5 8.5 7.5 18.5 4.0 4.0 4.0 4.0 4.0 4.0 18.5 4.0 19.0 19.0 157.0 157.0 1.2 1.5 47.9	(+30.6 %) (+6 %) (+6 %) (28.0 %) (+28,%) (+28,%) (+28,%) (-4.2 %) (-11.0 %) (-11.0 %) (-15.8 %) (-6.6 %) (-12.0 %) Mean b (+48.8 %) (-69.6 %) (-7.2 %)	18 105 17.5 16.5 16.5 12.0 127.5 66.0 17.5 23.5 139.5 84.0 228.0 iomass (g 2.9 4.2 0.8 74.1	3 DA 2 (+11.9 %) (+11.9 %) (-41.7 %) (+66.7 %) (+66.7 %) (+58.6 %) (+41.2 %) (+45.7 %) (-8.3 %) (+118.8 %) (+74.1 %) (+24.6 %) g/m²) and chan (+6.7 %) (+3.4 %) (-38.3 %) (+89.4 %)	364 38.0 61.0 8.0 12.0 15.0 14.5 35.5 81.0 129.0 14.5 18.0 116.5 143.5 273.5 ge (%)** 10.4 8.0 2.6 56.0	(±0.0 %) (+35.6 %) (+14.3 %) (-4.0 %) (-4.0 %) (-19.4 %) (+47.9 %) (+35.0 %) (+16.0 %) (+16.0 %) (+20.0 %) (+17.1 %) (+26.9 %) (+19.4 %) (+30.0 %) (-3.9 %)

Tanylobous juvenile	23.1	(+71.5 %)	12.6	(+12.8 %)	14.0	(+26.2 %)
Epilobous juvenile	5.2	(-19.7 %)	9.9	(+13.2 %)	11.1	(+45.7 %)
Endogeic earthworms	9.2	(-44.9 %)	14.9	(-31.9 %)	37.0	(-4.8 %)
Anecic earthworms	48.0	(-7.0 %)	75.5	(+93.0 %)	60.5	(+3.8 %)
Anecic earthworms adult + juvenile	64.4	(+4.5%)	85.8	(+74.1 %)	67 <b>9</b>	(+4.9 %)
Total juveniles	28.3	(+41.8 %)	22.5	(+13.0 %)	<b>2</b> 25.1	(+34.5%)
Total adults	57.2	(-16.4 %)	90.6	(+48.4 %)	[™] 97.5√	(+0.4 %)
Total earthworms	86.4	(-4.5 %)	113.6	(+39.2	124.4	(± <del>0</del> .0 %)

^{*} significantly different from control ( $p \le 0.05$ )

DAA2: days after application 2

The toxic reference reduced total earthworm abundance significantly by 71 % at 35 DAS2, 69.4 % at 183 DAA2 and 45.2 % at 364 DAA2, thus confirming the validity of the test system. Total earthworm biomass in the plots treated with the toxic reference was statistically reduced by 85.1 % at 35 DAA2 and 72.7 % at 183 DAA2.

Treatment		<i>, , , , , , , , , ,</i>	wist W	® (1	reference 10 000 g a.s.		
	Q (		ge (%)**	e (%)**			
species / group	(	DAA2\$			DAA2		4 DAA2
Aporrectodea caliginos	2.0	( <del>*</del> 88.9 %)%	3.0* Ø		(-80,9%)	19.5	(-48.7 %)
Aporrectodea rosea	45	(-43.7 %)	9.0		(-73.1 %)	24.5	(-45.6 %)
Allolobophora chloretica	<i>6</i> .0 €	(-100	<b>Ø</b> ,5	^	_√ (≥91.7 %)	1.0	(-85.7 %)
Lumbricus terrestris &	1.5*	(-87.5 %)	<b>23</b> .0	a.Y	(-62.5 %)	3.0	(-76.0 %)
Lumbricus ternotris adult + juvenile	1.50	<b>9</b> 1.7 %)	3.0	<b>)</b>	(-77.8 %)	5.0	(-66.7 %)
Octolasion Jacteum O	9.5 £	\$(-72.0%)	6.3		(-55.2 %)	19.0	(+5.6 %)
Tanyloboas juvenile	5.0	(-81.8%)	<b>@</b> 1.5*		(-82.4 %)	7.5	* (-68.7 %)
Epilobous juvenile	29,50 *	( <del>-6</del> 1.7 %) ₄	<b>29.0</b>	*	(-66.9 %)	26.5	* (-55.8 %)
Endogeic earthworms	10.5*	78.4%)	20.0*		(-72.2%)	69.5	(-36.8 %)
Anecic earthworms	\$4.5 \$	(-87.5%)	3.0		(-62.5 %)	3.0	(-76.0 %)
Anecic carthworms adult	1.5	(-91,7%)	3.0		(-77.8 %)	5.0	(-66.7 %)
Total juveniles	34.5 *	%(767.0 %)	30.5	*	(-68.2 %)	34.0	* (-59.5 %)
Tatal adults	©2.0 <b>*</b>	<b>√</b> (-80.3 %)	23.0	*	(-71.2 %)	74.0	(-39.6 %)
Fotal earthworms	51.5	(-71.1 %)	56.0	*	(-69.4 %)	118.0	* (-45.2 %)
		Mean	biomass	(g/m	n ² ) and chang	ge (%)**	· · · · · · · · · · · · · · · · · · ·
Aporrectodes, caligin dsa	△ <del>0</del> .4 *	(-84.4 %)	0.6	*	(-76.4 %)	7.1	(-15.6 %)
Aporrectoriea rosea	<b>№</b> 0.7	(-81.9 %)	1.1		(-74.1 %)	3.3	* (-50.0 %)
Allolobophora enlorotica	0.0	(-100.0 %)	0.1		(-88.9 %)	0.4	(-79.9 %)
Lumbricus terrestris	6.1	(-88.1 %)	10.1		(-74.3 %)	11.3	(-80.7 %)
Lumbricus terrestris adult + juvenile	6.1	(-90.0 %)	10.1		(-79.6 %)	14.5	(-77.5 %)
Octolasion lacteum	2.7	(-67.9 %)	5.0		(-64.0 %)	24.6	(+15.5 %)
Tanylobous juvenile	0.5	(-96.3 %)	1.6	*	(-85.6 %)	4.9	* (-56.4 %)
Epilobous juvenile	2.6 *	(-59.4 %)	3.2	*	(-63.2 %)	3.3	* (-56.4 %)
Endogeic earthworms	3.8 *	(-77.3 %)	6.9	*	(-68.7 %)	36.8	(-5.5 %)

^{**} negative values indicate decrease in earthworm numbers compared to the control positive values indicate increase in earthworm numbers compared to the control

Anecic earthworms	6.1	(-88.1 %)	10.1	(-74.3 %)	11.3	(-80.7 %)
Anecic earthworms adult + juvenile	6.1	(-90.0 %)	10.1	(-79.6 %)	14.5	(-77.5 %)
Total juveniles	3.1	* (-84.3 %)	4.8	* (-75.7 %)	8.2	* (-56.3 %)
Total adults	9.9	* (-85.5 %)	16.9	* (-72.3 %)	#8.8	(-49.8 %)
Total earthworms	13.4	* (-85.1 %)	22.3	* (-72.7 %)	√ 59. <u>1</u>	。 (-49.6 %)

significantly different from control ( $p \le 0.05$ )

DAA2: days after application 2

Conclusions:
No statistically significant reductions of total earthwarm numbers and biomass nor cological groups and single species occurred at any of the post treament samplings after application of the test item.

negative values indicate decrease in earthworm numbers compared to the control positive values indicate increase in earthworm numbers compared to the ontro

## CP 10.4.2 Effects on non-target soil meso- and macrofauna (other than earthworms)

Table 10.4.2-1 Endpoints for flufenacet and its metabolites used in risk assessment

Test substance	Test species		Endpoint	Reference
DFF + FFA SC 600	Folsomia candida	NOEC NOEC	178 mg/kg dws <b>89* mg/kg dws</b>	(2011) M-415903-01-1 KCP10.4.23/02
DIT + ITA SC 000	Hypoaspis aculeifer	NOEC NOEC	≥ 65.3 mg prod/kg dws > ≥ 32.65* mg prod/kg dws >	(2002) (M-061660-04-1) (KCP (9.4.2.1/0)
Flufenacet	Folsomia candida	NOEC	3(5* mg.a.s./kg dws	(2010) VI-3947 2-01-1 ° KCA & I.2.1/04
	Hypoaspis aculeifer	NOEC	2817 mg a 5-kg dws	(2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2013) (2
FOE oxalate	Folsomia candida	NOEC V	2 100 mg p.m./kg dws	(2010) M-394712-01-1 KCA 8.4.2.1/04
POE Oxalate	Hypoaspis aculeife	NOEC		(2010) M-393634-01-1 KCA 8.4.2.1/03
FOE sulfonic acid-	Folsomia candida	NOEC	≥ 190 mg pr.m./kg dw.s	(2010) M-396039-01-1 KCA 8.4.2.1/05
Na-salt	Hypoassis aculesfer	NOEC	≥ 100 mg p.m. Teg dws	(2013) M-455654-01-1 KCA 8.4.2.1/13
FOE methylsulfone?	Folsomia Candida	NOEC	50* mg p.m./kg dws	(2010) M-392345-01-1 KCA 8.4.2.1/14
TOE memyisunone	Hypoaspis aculeifer	NOE	250* mg p.m./kg dws	(2009) M-357707-01-1 KCA 8.4.2.1/01
TFA S	Folsomia candida	NOE C	≥ 100 mg p.m./kg dws	(2012) M-436127-01-1 KCA 8.4.2.1/06
	Hypodspis aculesfer	ØOEC	≥ 100 mg p.m./kg dws	(2012) M-436326-01-1 KCA 8.4.2.1/09
FOE 3043-	Polsomia gandida	NOEC	$\geq$ 100 mg p.m./kg dws	(2012) M-436128-01-1 KCA 8.4.2.1/07
sulfonic acid	Hypoaspis aculeifer	NOEC	$\geq$ 100 mg p.m./kg dws	(2012) M-436315-01-1 KCA 8.4.2.1/08
FOE-Thiadone	Folsomia candida	NOEC	1.8 mg p.m./kg dws	(2012) M-440372-01-1 KCA 8.4.2.1/10
1 OE-1 madone	Hypoaspis aculeifer	NOEC	32 mg p.m./kg dws	(2012) M-442897-01-1 KCA 8.4.2.1/11

^{*} endpoints corrected to allow for log P_{ow} > 2

Table 10.4.2-2 Endpoints for the mixing partner diflufenican

Test substance	Test species	EU agreed endpoints acc. to EFSA Scientific Report (2007) 122, 1-84	
Diflufenican	Folsomia candida	NOEC	≥ 438 m@as/kg dws

### Risk assessment for other non-target soil meso- and macrofauna (other than earthworms)

The tier 1 risk assessment on non-target soil macro-organisms (other than earthworms) for the representative formulation DFF+FFA SC 600, flufenacet, and the relevant metabolites is presented in the table below. The tier 1 risk assessment on non-target soil macro-organisms (other than earthovorms) for the

Table 10.4.2-3 TER calculations for other non-target soil meso- and macrofauna

Compound	Species	Endpoint [mg/kg]	PECsoil,max/accu [mg/kg]	TER _{LT}	Trigger
Winter cereals – 240	g a.s./ha		W.	,	
DFF+FFA SC 600	Folsomia candida	NOEC 89*	0.749	719	\$ 5 kg
DFF+FFA SC 000	Hypoaspis aculeifer	NOEC ≥32.65*	0.748	<b>4</b> 44 🔏	
Flufenacet	Folsomia candida	NOEC 31.5 [*] ∘	\$\tilde{\psi}.240 \tilde{\psi}	131	y .
Fiutenacet	Hypoaspis aculeifer	NOEC 281	9.240	1,191	
FOE oxalate	Folsomia candida	NOEC \$400	0 0028	<b>3</b> 564	<b>%</b>
roe oxalate	Hypoaspis aculeifer	NOEC © 100		⁹ 2564	
FOE sulfonic acid-	Folsomia candida	NOEC ≥ 1000	@10.077. @1	1299	05
Na-salt	Hypoaspis aculeifer	NOE© ≥400	©0.077	1299	
EOE mothylaulfana	Folsomia candida	NOEC 50* &	0.5	3333	D 5
FOE methylsulfone	Hypoaspis aculeifer	*OEC \$\infty 250*	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (	1666	3
TFA	Folsomia candida 👡 💍	NOEC > 100		364	5
IFA	Hypoaspis aculeifer	NOTEC Z100	Q 0.2790	<b>©</b> 364	3
FOE 5043-	Folsomia candida	NOEC ≥ 100		14286	
trifluoroethane sulfonic acid	Hypoaspis aculetter	NOEC > 100	Ø.007 ©	14286	5
FOE-Thiadone	Folsomia cardida	NOEC 1.8	0.007	257	5
	Hypoaspis aculeife	OEC 32		4571	
Winter cereals – 160		120 g a.s./11a 🦠			
DFF+FFA SC 600	Folsophia can@da 💍	NOTIC 89*	$0.498^{2}$	179	5
	Hypoaspis aculeifer	NOEC \$32.65*	, *	66	
Flufenacet %	Bolsomia candida 🗸	NOEC 31.5	0.160	197	5
	Hypodspis acuteifer V	NOFE 28		1756	
FOE oxalate	Folsomia condida	NQEC ≥ 100	0.026	3846	5
	Apoaspis aculeifer	NOEC ≥ 100		3846	
FOE sulfonic acid-	Folsomia candida 🔻	NOEC ≥ 100	0.051	1961	5
Na-salt	Hypogspis achleifer O	N <b>O</b> EC ≥ 100	0.001	1961	
FOE methylsulfene	Fossomia Landida	NOEC ≥ 50*	0.010	5000	5
TOE memyistanone	Hypoaspis aculeffer 💍	NOEC 250*	0.010	25000	
TFA A	Folsomia candida	NOEC $\geq 100$	0.183	546	5
	H@oaspis aculeifer 🕜	NOEC $\geq 100$	0.165	546	,
FOE 5043-	Kolsomi@kandid@	NOEC ≥ 100		25000	
trifluoroethand sulfonic acid	Hypoaspis aculteifer	NOEC ≥ 100	0.004	25000	5
FOE-Thiadone	Folsomia Andida	NOEC 1.8	0.004	450	5
roe-imadone	Hypoaspis aculeifer	NOEC 32	0.004	8000	3

^{*} endpoints corrected to allow for log Pow > 2

1) Calculated product PECsoil, considering the PECsoil for flufenacet (0.240 mg a.s./kg) and a concentration of 32.1 % flufenacet in DFF+FFA SC 600

²⁾ Calculated product PECsoil, considering the PECsoil for flufenacet (0.160 mg a.s./kg) and a concentration of 32.1 % flufenacet in DFF+FFA SC 600



For DFF+FFA SC 600, flufenacet and the relevant metabolites the TER values exceed the critical trigger value of 5, demonstrating a low risk to Collembola and soil mites if the product is applied up to 0.6 L DFF+FFA SC 600/ha (240 g flufenacet/ha) in winter cereals.

#### **CP 10.4.2.1** Species level testing

Report: CP 10.4.2.1/01 , R.; 2002

Title: Flufenacet & Diflufenican SC 600: The effects on survival and reproduction of the predactous

mite Hypoaspis aculeifer Canestrini (Acari: Laelapidae) in standard soll (LUF 2.1)

Document N°: M-061660-01-1

Guidelines: SECOFASE, Final Report. Development, improvement and standardisation of test systems for

assessing sub-lethal effects of chemicals on a una in the soil ecosystem (Løkke & van Gestel 1996) Guidance document on regulatory testing procedures for pestiones with non-target

arthropods (Barrett et al. 1994)

GLP Yes (certified laboratory)

#### **Materials and Methods:**

Flufenacet & Diflufenican SC 600 (active incredient FOE 5043 and Diflufenican, 32.6 and 16.5 % respectively: 612.28 g/l, TOX no.: 03803-06 Batch no.: 07205/024(0006)) was mixed homogeneously through standard soil (LHFA 2.1) at five nominal rates, viz. 3.2 56, 10, 18 and 32 mg a.s./kg dry soil. The control was treated with definised water. Dimethoate at a rate of 4.50 mg a.s./kg dry soil was used as toxic reference.

The bioassay was initiated within hour after application by confining 20 protonymphs of *Hypoaspis aculeifer* per mortality unit (inert glass material). Five units were prepared for the water control, 4 units for each test rate of Fluteriacet & Diflutenican \$\circ{C}\$ 600 and 3 units for the toxic reference.

Fourteen days after initiation mortality was assessed. Reproductive success was determined for mites of the deionised water control and the 2 highest lest rates below the expected LR₅₀ (viz. 18 and 32 mg a.s./kg dry soil). Hereto all surviving mites of these treatments were transferred to untreated mating units (keeping replicate groups together). After a 7-day mating period 20 females, of the 18 and 32 mg a.s./kg dry soil-treatment and the water treatment, were transferred to reproduction units (1 mite/unit) to determine egg production. After 3 days all females were transferred to a second series of identical reproduction units and 4 days later the females were removed. In this way there were two oviposition assessments in a 7-day period. Reproduction units were kept for egg hatch determination for an additional 4-5 days.

Mortality in the treatment groups was compared pair-wise to the water control group using Fisher's Exact test. Fig. production (fertile eggs/femare/7 days) was compared to the water control group using ANOVA techniques.

#### Findings:

Low control mortality (10%) and frigh reproductive performance (24.2 fertile eggs/female/7 days) in the control treatment indicated that test animals were in good condition. The toxic reference, dimethoate, caused 100% corrected mortality. This showed that test animals were sufficiently sensitive and that potential adverse effects of exposure to test item residues could be detected with the set-up used in this experiment.



#### **Summary of findings**

Test item	Flufenacet & Diflufenican SC 600				
Test organism	Hypoaspis aculeifer				
Test substrate		sandy soil	(LUFA 2.1)		
Nominal application volume		150 ml/k	g dry soil		
	Mortality after 14 days		Reproduction (feetile eggs/female/Jdays)		
Deionised water control	10 9	%	\$\times_24.2		
Application rates of Flufenacet & Diflufenican SC 600:	Corrected mortali		Reproduction after 7 days (% reduction relative to control)		
3.2 mg a.s./kg dry soil	-3 %	P= 0.608	Not assessed 7		
5.6 mg a.s./kg dry soil	3 %	P=0,639	Mot assessed .		
10 mg a.s./kg dry soil	1 %	P=0.811 <	o sot assessed		
18 mg a.s./kg dry soil	10 %	P= 0.1280°	(24.0 (99)) P = 6.843		
32 mg a.s./kg dry soil	1 %	P= 0.8 P	\$24.4 (100.6 %) P\$0.898		
Toxic reference	100 %	Q P <0.001* °≈	Notassesse		
	$LR_{50} > 32 \text{ mg a}$	.s./kg drey soil 📈	NOEC > 32 mg a.s. kg dry soil		

^{*} Statistically significantly different from deionised water control

Statistical analysis: Fisher's Exact test for mortality data and ANOVA/Fisher

#### **Conclusion:**

The NOEC for Hypoaspis aculeifer base calculated to be  $\geq 32 \text{ mg}$ a.s./kg dry soil.

Report:

Diffusenican + flufenacet SC 600 (200+400) G: Instead on the reproduction of the Title:

collembolan species disomid candida tested in artificial soil.

M-415903-01-1 Document No:

Guidelines:

Collembolan Reproduction Test in Soil

**GLP** Certified laborator

#### **Objective:**

The purpose of this story was to asses the effect of Diflufenican + Flufenacet SC 600 (200+400) on survival and reproduction of the collembolar species Folsomia candida during an exposure of 28 days in an artificial soil Comparing control and treatment.

### Materials and Methods:

Diflufenicato + Flufenacet \$C 600 (200+400) G (analytical findings: 16.4 % w/w diflufenican (AE F088657) equivalent to 03.8 g/L; 32.7 % w/w flufenacet (FOE 5043) equivalent to 407.5 g/L; density: 1.246 mL (20°C), batch ID: EV56002670, sample description: FAR 01538-00, specification no.: 102000007948-03, material no.: 05700094.

Toxic standard: Boric acid.

Control: same application as test item but with deionised water only.

Ten collembolans (9-12 days old) per replicate (8 replicates for the control group and 4 replicates per treatment group) were exposed to control (water treated), 100, 178, 316, 562 and 1000 mg test item/kg artificial soil dry weight at 18 - 22°C, 400 - 800 Lux, 16h light: 8h dark, 5 % peat in the artificial soil. During the test they were fed with granulated dry yeast.

Mortality and reproduction were determined after 28 days.

#### **Findings:**

The results can be considered as valid, as all validity criteria of the test were met. Mortality in the control was  $\leq 20\%$  (5.0% in this study), reproduction of the control was  $\geq 100$  juveniles per control vessel (1539.3 juveniles in this study) and the coefficient of variation of reproduction in the control was  $\leq 30\%$  (7.6% in this study).

Test item	Diflufenican + Parfenacet SC 600 (200+490)
Test object	F <b>O</b> lsomia@andida~y & ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Exposure	Artifi@al Soil V O V
mg test item/kg soil dry weight	Adult mortality Mean number of Reproduction
nominal concentration	(%) juneniles±SD (% of control)
Control	5.0 1569.3 ±2117.0 - 2
100	7.5 $\mathbb{Q}^{7}$ $1.566.0 \div 110.1^{7}$ $101.70^{3}$
178	7.5 $(1490.0)$ $\pm$ 129.3 96.8 n.s.
316	30.0 ± (160.7
562	2795 3393 ± 87.6° 0°21.8 *
1000	42.5 × 35.0 × 59.3 0 10.1 *
NOEC (mg test item/kg soil dry weig	ght) 4 0 2 178
LOEC (mg test item/kg soil dry weig	tht) 2 316

^{*} Statistically significant (William's -t-test one-sided-smaller, a 0.05) n.s. = statistically not significant (William's -t-test one-sided-smaller, a 0.05)

#### **Observations:**

Concerning the number of juvenites statistical analysis revealed statistically significant difference between control and the treatment groups from 316 up to 1000 mg test item/kg artificial soil dry weight.

Therefore the No-Oserved-Effect Concentration (NOEC) for reproduction is 178 mg test item/kg artificial soil dry weight. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is 316 mg test item/kg artificial soil dry weight.

#### **Conclusions:**

NOEC_{reproduction}: 178 mg test item/kg artificial soil dry weight. LOEC_{reproduction}: 316 mg test item/kg artificial soil dry weight.

## CP 10.3.2.2 Higher tier testing

In view of the risk assessment presented above, no higher tier testing is necessary.

## CP 10.5 Effects on soil nitrogen transformation

Only endpoints used for the risk assessment are presented here. For an overview of all available endpoints for flufenacet and its metabolites please refer to the respective section of the MCA document.

For the second active substance in the representative formulation, diflufenican, references is made to the EU agreed endpoints according to the EFSA Scientific Report (2007) 122.

Table 10.5-1 Endpoints for flufenacet and its metabolites used in risk assessment

Test substance	Test species	Endpoint	Reference
DFF+FFA SC 600		No influence 0.6 and 3.0 L/ha	, 2009, M-357934-01-1 KCP 10.5/01
Flufenacet		No influence 0.62 and 3.1 kg a.s./ha	, 1994 M-003871-0123
FOE oxalate		No influence 1.86 kg 7.m./ha	- 25051 V1-1 KCA& 5/04
FOE sulfonic acid		No influence 2.05 kg p. m./ha	M-250265-01-1 ACA 8.503
FOE methylsulfone	Nitrogen transformation, 28 d	No influence 0.451 and 4.51 p.m./ha	(2010) M=39856\$ 01-1 K (2A 8.5/05
TFA	Ĉ	No influence 0.24 and 1.2 kg/p.m/./ha	(2013) M-444423-01-1 WKCA 8.5/06
FOE 5043- trifluoroethane sulfonic acid		No influence 0.123 and 06015 k	(2013) M-457331-01-1 KCA 8.5/08
FOE-Thiadone		No influence 0.112 and 0.560 k	(2012)

Table 10.5-2 Endpoints for the mixing partner diffutenican

Test substance	Test Test	Ö	El ag	reed endpoints tific Report (2007) 122, 1-84
Diflufenican	N-vycle	1. ×	no influence	test rate not mentioned
AE B107137	N-cycle@	, _Q	Do influence	test rate not mentioned
AE 0542291	O' N'-cycle		no influence	test rate not mentioned

#### Risk assessment for Soil Nitrogen Transformation

According to the current regulatory requirements the risk is considered acceptable if the effect on nitrogen transformation at the recommended application rate of a compound/product is  $\leq 25\%$  after 100 days.

In none of the above presented studies the deviations from the control exceed 25% 28 days after application of the recommended application rate. Therefore the risk from the representative formulation DFF + KPA SC 600, flutenacet and its degradation products in soil can be considered to be low.

Report: KOP 10.5/01; W., 2002

Title: Diflufenican + flufenacet SC 600 (200+400) G: Determination of effects on nitrogen

transformation in soil

Document No: M-357934-01-1

Guidelines: OECD Guideline 216, Adopted January 21, 2000, OECD Guideline for the Testing of

Chemicals, Soil Microorganisms: Nitrogen Transformation Test.

GLP yes (certified laboratory)

#### **Material and Methods:**

Diflufenican + Flufenacet SC 600 (200+400) G (analytical findings: diflufenican, 191.4 g/L, flufenacet, 394.5 g/L; specification No.: 102000007948, batch No.: EV56001418, TOX-No.: FAR 01403-00), Density: 1.229 g/mL was used in the test. A loamy sand soil (according to DIN 'mittel lehmiger Sand') was exposed for 28 d to 0.8  $\mu$ L and 4.0  $\mu$ L test item/kg dry weight soil. Application rates were equivalent to 0.6 L and 3.0 L test item/ha. Lucerne-grass-green freal was added to the foil (5 g/kg dry weight soil) to stimulate nitrogen transformation.

The coefficient of variation in the control at the end of the study was 10 %. Therefore the validity criteria for the

#### **Results:**

During the 28-day test,  $0.8~\mu L$  Diflufenican + flufenicet SC 600 (200+400) & kg dr weight soil and the 5-fold dose of the test item had no relevant in the foldowing transformation in a board soil supplemented with Lucerne-grass-green meal. In note of the time intervals analysed during the 28 day exposure the difference in the daily nitrate. Trates exceeds the trigger value of 25 %

#### Effects on non-target soil micro-organisms

Time Interval	Application fares  Diflufencan + stuffenacer SC 600 200+400 G  Control  0.8 yL/kg dry weight soil							
(days)	Nitrate-N ¹	Nitrate N	difference to cootrol	Nitrate-N ¹⁾		% difference to control		
0-7	-1.86 ± 0.11	± 0.04	4 ² h.s	⁹ -1.80	± 0.09	<b>3</b> n.s		
7-14	1.16	1.12 ± 0.07	@ 2 n.s ~	1.03	± 0.15	11 n.s		
14-28	1.83	$1.79^{\circ}$ ± 0.08	2 3 n.s	1.68	± 0.01	<b>8</b> n.s		

Rate: Nitrate-Nyn mg/kg dry weight soil/time interval/day bean of 3 replicates and standard deviation n.s. = No statistically significant difference to the control (Student-t Test, two-sided,  $\alpha = 0.05$ ).

Conclusion: If used as recommended, Diflufenican + Flufenacet SC 600 (200+400) G should not have an impact or nitrogen transformation in soils

# CP 10.6 Effects on terrestrical non-target higher plants

In the first Annex Disting Process non-target plant data for a different formulation of flufenacet were submitted and evaluated. The formulation FFA WG60 is no longer considered to be the representative formulation. Therefore only data on the new representative formulation Flufenacet + Diflufenican SC 600 (Herold SC 600) for the Annex I renewal process will be presented with this dossier. For the Annex I listing process of diflufenican also the formulation Flufenacet + Diflufenican SC 600 (DFF+FFA SC 600, Herold SC 600) was submitted as representative formulation. Hence, some formulation studies (e.g. on non-target arthropods and non-target terrestrial plants) were already evaluated during this Annex I listing process.

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations, as non-target plants are non-crop plants located outside the treated area. Spray drift from the treated areas may lead to residues of a product in off-crop areas.

#### Flufenacet & Diflufenican SC 600 (Herold SC 600)

Test organism	Study type	Test duration	Lowest ER50	Most sensitive species	References
Terrestrial non- target plants; 6 species	vegetative vigour; Tier 2 dose response	21 days	23.82 g a.s./ha	Allium eepa	, 2002; M-07169\$-01-1 CKCP 106.2/01
Terrestrial non- target plants; 6 species	seedling emergence; Tier 2 dose response	21 days	190.43 g a ha	Lecopersion esculentian	, 2005 M-07230&-01-1 AGCP 10:6-2/02

### RISK ASSESSMENT FOR TERRESTRIAL NON-TAKGET DIGHER PLAN

For herbicides and plant growth regulators, it is considered unprofitable to conduction 1, studies as it is inevitable that these will lead to tier 2 or dose response studies in order to generate data suitable for deterministic or probabilistic risk assessments i.e. ER values for 6-10 species, representing a broad range of plant species.

Survival, shoot length and fresh weight were assessed. In all species the EC50-figures based on fresh weight were the lowest. These endpoints are used for the risk assessment. In both studies the rates and endpoints are reported as g sum of active ingredients/ha n order to a world any confusion these endpoints were not converted to not product ha.

Crop	Timing of application	Number of applications	Maximum label rate	Maximum aj	pplication rate, atment (ranges)	g sum of DFF + FFA/ha
	(range)		(range)	· [9	(ha)	TTA/IIa
		, \$\forall \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \ti}\\\ \tint\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\\ \ti}\\\ \tinttitex{\text{\text{\text{\text{\text{\text{\ti}\til\titt{\text{\text{\text{\text{\texi\}\exitit{\texi}\til\titil\titt{\ti}\tinttitex{\tiint{\text{\tiin}\text{\texit{\t	[ <b>K</b> /ha]	Diflufenican /	<b>Flufenacet</b>	
Cereals	11-13		0.6	120	240	360
Cereals	11-13			80	160	240
Cereals	Ø 22 Z	5 1 [©]	0.3	<b>\$</b> 60	120	180
In course sum of I	e of the isk a	assessment fres	se endpoints wood of the second secon	ere compared to above).	o application rate	s converted in g

DFF+FFA SC 600			
Plant species	Lowest ER50 [ sum of g a.s./ha]	Parameter	Reference
Vegetative vigour			Ď
Oilseed rape	92.07		, 2002, M-071692-01-1
Cucumber	27.75		KCP 10.62/01
Soybean	55.14	Shoot fresh weight	KCP 10.62/01
Oat	227.54	Shoot fresh weight	
Tomato	23.82		
Onion	>332.3	Shoot fresh want	M-071692-01-1 KCP 10 2/01
HC ₅ [sum of g a.s./ha]	11.549*		
Seedling emergence			
Oilseed rape	214.22		, 2002;
Cucumber	218.41		M-072308€51-1 CCP 10%2/02 ©
Soybean	>332.3		
Oat	207.	Shoot Firesh weight	\$CP 10.6.2/02
Гomato	\$ <b>9</b> 2.3		
Onion	190.43		
HC5 [sum of g a.s./ha]	7 185.6 <b>§</b> 5*		

Bold letters: Values considered relevant for wisk assessment

Effects on non-targe plants are of concern in the off-field environment, where they may be exposed to spray drift. The amount of spray drift reaching of crop habitats is calculated using the 90th percentile estimates derived by the BBA (2000)³ from the spray-drift predictions of Ganzelmeier & Rautmann (2000)⁴. Only a single application was considered as factors such as plant growth will reduce residues per unit area between multiple applications for a single application to a variety of arable crops, 2.77% of the application rate was assumed to reach areas at the edge of the crop (0 meter buffer zone; worstcase semario) For a 5 m buffer zone a drift rate of 0.57% is assumed.

³ BBA (2000) Bundesanzeiger Jg. 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain.

^{*}calculated based on ALD, BERG AWORSKA (2000); greater than figures were omitted

⁴ Ganzelmeier H., Rautmann D. (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2000, Pesticide Application. Public domain.

#### Deterministic Risk assessment

According to the Terrestrial Guidance Document⁵, the risk to non-target plants is evaluated by comparing the lowest ER₅₀ observed in the laboratory studies with the drift rates PER_{off-field}) including a safety factor of 5. In addition, the usage of drift reducing nozzles is considered.

Table 10.6- 1: Deterministic risk assessment for DFF+FFA SC 600 based on effects on seedling emergence

arable fie	arable field crops, one application, <b>360.0 g sum of a.s./ha</b> ; lowest ER50 = 10.430 sum of a.s./ha						
Distance	Drift	PER	S° THE				
[m]	(%)	no drift reduction [g sum of a.s./ha]	No drift 50% difft reduction 5	78% drift reduction	90% drift reduction		
1	2.77	9.972	19.10 38.19	7639	Ô 190.9 <b>6</b> 7		
5	0.57	2.052	92,80 0 185.60	\$71.21	928 92		
10	0.29	1.044	182,40 364.81	729.60	1.824.04		

The calculations above clearly show that already for the highest use rate of DFF FFA SC600 an acceptable risk (i.e. TER>5) can be demonstrated. Hence, to calculations for the lower dose rates are presented here, as they can as well be considered to demonstrate an acceptable risk.

Table 10.6- 2: Deterministic risk assessment for DFE+FFA S6 600 based on effects on vegetative vigour

arable fi	arable field crops, one application, 360.0 g/sum of s.s./ha; @west ER30 = 23.820 g sum of a.s./ha						
Distance	Drift	PER		Q TASA	<b>X</b>		
[m]	(%)	g drift reduction g sum a a.s./ha	No drift reduction	50% drivit reduction	75% drift reduction	90% drift reduction	
1	رِّم 2.77	\$ .972 °	2.39	<b>%</b> 4.78	9.55	23.89	
5	0.570	2.050	7 11, <b>6</b> Q	23.22	46.43	116.08	
10	0.29	9 1.0744 S	22.82	45.63	91.26	228.16	

arable fi	arable field crops one application <b>230.0</b> g sum of a solia; lowest ER50 = 23.820 g sum of a.s./ha						
Distance	Dright	PER		TEF			
[m] .	\$\tag{\%}\tag{\psi}	no drift redu@on [g sum of as./ha]	No drift reduction	50% drift reduction	75% drift reduction	90% drift reduction	
1 4	207	O 6 Q 8	3.58	7.17	14.33	35.83	
5	0.57 @	1.368 %	17.41	34.82	69.65	174.12	
10	© 0.29	0.696	34.22	68.45	136.90	342.24	

⁵ Anonymous (2002b). Guidance Document on terrestrial ecotoxicology under council directive 91/414/EEC. SANCO/10329/2002. 17 October 2002.



arable fi	arable field crops, one application, <b>180.0</b> g sum of a.s./ha; lowest ER50 = 23.820 g sum of a.s./ha							
Distance	Drift	PER	TER					
[m]	(%)	no drift reduction [g sum of a.s./ha]	No drift reduction	50% drift reduction	75° Carift reduction	90% drift reduction		
1	2.77	4.986	4.78	9.55	\$\frac{19.11}{}	47.77 @		
5	0.57	1.026	23.22	46.43	92.97	232.16		
10	0.29	0.522	45.63	91.26		0″ 45 <u>6</u> <mark>§2</mark>		

According to EU requirements the risk for non-target to restrial plants of considered acceptable, if a 5 m buffer zone is kept without drift reduction or no buffer zone and a 75% drift reducing spray equipment, if 600 mL product/ha (360 g sum of DFF + FFA ha) is applied. At lower application rates (400 and 300 mL product/ha; 240 and 180 g sum of DFF + FFA ha) a 5 m buffer zone without drift reduction or no buffer zone and 50% drift reducing spray equipment is sofficient in order to protect the non-target flora on field margins.

#### Probabilistic Risk assessment

In addition to the deterministic risk assessment the Terrestrial Guidance Document recommends the use of the  $HC_5$  (the concentration below which less than 5% of the species will be harmed above the  $EC_{50}$  level) which can be calculated from the data sets of  $EC_{50}$  growth inhibition levels. The EU guidance document for terrestrial economical states. If the  $ED_{50}$  for less than 5 % of the species is below the highest predicted exposure level, the risk for terrestrial plants is assumed to be acceptable. Thus, the  $HC_5$  itself (TER=1) can be regarded to be protective.

The  $HC_5$  was calculated from the datasets of  $C_{50}$ -growth inhibition levels. As the  $EC_{50}$  of shoot fresh weight was the lowest endpoint in all species of both studies,  $HC_5$  calculations were conducted with the two datasets of growth inhibition from the seedling emergence and vegetative vigour.

The HC₅ is calculated according to the following equation (Aldenberg, T. & Jaworska, J.S.; 2000⁶):

 $HC_5 = 10 \exp(akg - ks * s t \Omega)$ 

With

avg=mean of log 0 transformed BC₅₀ values std=standard deviation of log 10 transformed EC₅₀ values ks = extrapolation favor

The HC₅ calculation for the seedling emergence and vegetative vigour studies leads to mean values of **185.685** and **11.549 g.sum of DFF** + **FFA/ha**, respectively. The probabilistic risk assessment has been conducted for the lower vegetative vigour endpoints only. The TER calculation is summarised in the following table.

⁶ Aldenberg, T. & Jaworska, J.S.; 2000: Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety 46: 1-18 (M-047079-01-1)

Table 10.6- 3: Probabilistic risk assessment for DFF+FFA SC 600 based on effects on vegetative vigour

ara	arable field crops, one application, <b>360.0</b> g sum of a.s./ha; HC5 = 11.5490 g sum of a.s./ha								
Distance	Drift	PER		TER					
[m]	(%)	no drift reduction [g sum of a.s./ha]	No drift reduction	50% drift reduction	75% desit reduction	90% drift reduction			
1	2.77	9.972	1.16	2.32	4.63	1658			
5	0.57	2.052	5.63	11.26	22.5	<u>₹</u> 56.28 €			
10	0.29	1.044	11.06	<b>22</b> .42 《	44.35	\$\frac{1}{10.62}			

According to EU requirements the risk for non-target terrestrial plants based on the probabilistic risk assessment is considered acceptable even without any risk midgation measures, if 600 mL product/ha (360 g sum of DFF + FFA/ha) is applied.

#### **CP 10.6.1** Summary of screening data

For herbicides and plant growth regulators, it is considered unprofitable to conduct tier 1 screening studies as it is inevitable that these will lead to the 2 or dose response studies in order to generate data suitable for deterministic or probabilistic lisk assessments, i.e.  $ER_{50}$  values for 6-10 species, representing a broad range of plant species. Therefore, no screening studies were conducted for flufenacet or its representative formulation.

### CP 10.6.2 Testing of non-target plants

This study was already submitted and evaluated for the Annex Listing process of diflufenican. Nevertheless, a full sody summary will be presented below.

Title: Fluferacet & Diffufenican SC 600: Vegetative Vigour Test on terrestrial non-target plants of

6 families (2 Monocot Dedoneae).

Document No: M-971692-91-1

Guidelines: OECD Quideline for the Testing of Chemicals, Proposal for updated Guideline 208:

Terrestrial (Non Targett) Plant Test 208 B: Vegetative Vigour Test", Draft Document, July

2000°

GLP ves certified laboratory

#### Materia and Methods

Seeds of two monocotyledonous species (*Allium cepa, Avena sativa*) and four dicotyledoneous species (*Brassica napus, Curumis sativus, Glycine max, Lycopersicon exculentuni*) were planted in a standard loamy sand, LUFA Sp2.2, and were allowed to emerge and grow until the two-leaf stage was reached. Then Tufenacet & Diffusenican SC 600 was sprayed at concentrations corresponding to 3.2 - 10.0 - 32.15 - 103.4 332.3 g a.s./ha and a water application rate of 300 L/ha on the test containers. The concentration of the test item in the highest test solution was analytically verified. Following application of the test substance, the development of the plants was observed for 21 days.

The test was performed in a growth chamber at a temperature of  $22 \pm 3$  °C and lighting of  $13000 \pm 2000$  lx (16 hours per day). The test containers were placed randomly at the beginning and were re-arranged several times during the incubation period. At day 7, 14 and 21 a visible inspection

of the plants was made. In addition, the plants were harvested at day 21 and their length and biomass were determined.

Deviations: Steinberg nutrient solution was used instead of Hoagland solution as proposed by the draft guideline. The organic carbon content of the soil was higher than the recommended value and the number of plants per species and treatment level was reduced (30 - 32 instead of 40).

#### **Findings:**

The validity criterion was met. Mean number of control plants that died during the test should be < 10% (0% in this study). All calculations were based on nominal concentrations. Analytical verification of the highest test solution resulted in recoveries of 96% – 99.5% (sum of active ingredients).

			٨.		~ U	
			Plan	t species.	~ ~	
	Monocotyledoneae		Dicotyledoneae V			(Q)
21 days after 50					),	Z
% emergence of	Allium	Avena	Brassica/	Lucumis "	Hycine 🕝	Lycopersicon
controls	сера	sativa 🥍	∕* napys	& sativus )	@max	esculentum
	Flufenace & Diflorenicap & 600 g a.s./ha in 300 g ha)					
Shoot length		, , , , , , , , , , , , , , , , , , ,				
EC ₅₀	> 332.3 1)	> 30.3 1)	332.3%	<b>2</b> 79.30 🤝	1 <b>0</b> 2.44	> 332.3 1)
NOEC	$\geq$ 332.3 ²⁾	\$\frac{9}{2.1} \cdot \infty	32×4/	©"10.0°°	<i>≈</i> ≥3/32.3 ²⁾	32.1
LOEC	n.d.	© 103.4 €	103/.4	$\bigcirc$ 32,1 $\bigcirc$	n.d.	103.4
Fresh weight	%		L Ö	Q, ,	V	
EC ₅₀	> 332.3 1)	22054	092.07∜√	27.75 Q	55.14	23.82
NOEC	≥ 332.3 2 ×	<b>©</b> 2.1	32.1	3.2	3.2	32.1
LOEC	n.d.	€ 103.4 Cm	103,4	10.04	10.0	103.4

EC₅₀ could not be calculated by a use of less than  $\mathfrak{D}^{8}$ /6 effect therefore estimated to be > 332.3 g a.s./ha.

In summary the NOEC for the promocoty redone our species was 32.1 g a.s./ha and the LOEC 103.4 g a.s./ha. Among the two species, *Aventosativa* was more sensitive. Its fresh weight was reduced by 50 % at 227.5 Å g a.s./ha, whereas a 50 %inhibition of *Allium cepa* was not observed within the range of concentration tested.

Among the dicot ledoneae, Cucumis sativus and Glycine max were the most sensitive species. The NOEC on the Besh weight was 3.2 g as./ha and the LOEC 10.0 g a.s./ha. The other species, Brassica napus and Evcoperation esculentum were less sensitive: the NOEC on the fresh weight was 32.1 g a.s./ha and the LOEC 103.4 g a.s./ha. The  $EC_{50}$  for the fresh weight ranged from 27.75 to 92.07. Thus, the dicotyledoneae were more sensitive than the monocotyledoneous species tested. The fresh weight was the more sensitive endpoint compared to the shoot length.

#### **Observations:** $\mathcal{L}$

Effects were observed soon after application. At day 7 following application the dicotyledoneous species were stronger affected than the monocotyledounous ones. Chlorosis was the most frequently observed effect. Even at 3.2 g a.s./ha, the lowest application rate one third of *Lycopersicon esculentum* and two third or even more of the other dicotyledoneous species showed chlorosis. Leaf deformations or wilting was most pronounced with *Cucumis sativus*. The monocotyledoneous species showed only chlorosis with *Avena sativa* being the more sensitive species.

At day 14 and 21 chlorosis as well as deformations or wilting were both observed frequently. The monocotyledoneous species showed different patterns: *Allium cepa* had mostly wilted leaftips,

²⁾ no significant effect within the range tested.

n.d. not determined.



whereas chlorosis was more frequent with Avena sativa. At 32.1 mg a.s./ha or higher most plants of the dicotyledoneous species were affected. At lower rates, chlorosis was more often observed than wilting or deformations of the leaves.

In general, effects on the fresh weight were more pronounced than on the shoot length. An EC₅₀ for the fresh weight could not be determined for Allium cepa because inhibition was less than 50%. It could be determined for all other species with Cucumis sativus being the most sensitive one (27.75 g a.s./ha). The lowest NOEC and LOEC were observed for Cucura satisfies and Glycine max (3.2 and 10.0 g a.s./ha).

#### **Conclusion:**

Most sensitive parameter was the fresh weight followed by shoot length. The most sensitive species was Lycopersicon esculentum with an EC50 of 23.82/g a.s./ha (fresh Weight) followed by Cocumis sativus (EC₅₀ of 27.75 g a.s./ha – fresh weight). Phytowxic effects appeared a mainly chlorothe spots.

This study was already submitted and evaluated for the Anne Nevertheless, a full study summary will be presented below.

Report:

Flufenacet & Diffugenican SC 600: Seedling Emergence and Seedling Growth Test on Title:

terrestrial non-target plants of 6 families (2 Monocov ledoneae, 4 Dicotyledoneae).

Document No: M-072308-01-1

OECD Guite ine for the Testing of Chemicals Groposal for updated Guideline 208: Guidelines:

"Terrestrial (Non-Torrest) Cont Test 008 B: Vegetative Vigour Test", Draft Document, July

GLP yes (certified laboratory

## Materials and Methods:

Seeds of two monocolytedonesis species (Alliam cepa, Avena sativa) and four dicotyledoneous species (Brassica napus, Cultumis satiyus, Glycine max, Lycopersicon esculentum) were planted in a standard loanly sand LUFA \$p2.2. Immediately after sowing, Flufenacet & Diflufenican SC 600 was sprayed at concentrations corresponding & 3.2 = 10.0 - 32.15 - 103.4 - 332.3 g a.s./ ha and a water application rate of 300 has on the soil surface. Following application of the test item, the plants were allowed to enverge and grow for 25 days following 50% emergence of the control plants under laboratory conditions. Soil were sopplied with water or nutrient solution by glass fibre wicks. The test was performed in a growth chamber at a temperature of  $22 \pm 3$  °C and lighting of  $13000 \pm 2000$  lx (16 hours per day. The lost containers were placed randomly at the beginning and were re-arranged several times during the incubation period. At day 7 and 14 after 50% of the control seedling had emerged, a visual inspection was done. At day 21 the plants were counted and, visually inspected and harvested to determine their shoot length and biomass (fresh weight).

Deviations: Steinberg nutrient solution was used instead of Hoagland solution as proposed by the draft guideline. The organic carbon content of the soil was higher than the recommended value and the number of plants per species and treatment level was reduced (30 - 32 instead of 40).

#### **Findings:**

As less than 10 % of the control plants died and most control plants developed healthily, the quality criteria of the draft guideline and the study plan have been fulfilled.

All calculations were based on nominal concentrations. Analytical verification of the highest test solution resulted in recoveries of 92.8 – 97.4 % (sum of active ingredients).

			Diagram in the second s			
	Plant species					
	Monocotyledoneae		Dicon ledongae 🔬 🗸			
21 days after 50						
% emergence of	Allium	Avena	Brassica Cucumis Glycine Lycopersicon			
controls	сера	sativa	napus 🗸 sativus 🗶 maz 🗸 esculentum			
	Flufenacet & Diflufenican SC 600 (g a.s./ha in 300 L/ha)					
survival 1)						
$EC_{50}$	331.52	> 332.3 2)	> 33Q3 ²⁾   3323 ²⁾   3323 ²⁾   3323 ²⁾   323 ²⁾			
NOEC	103.4	$\geq$ 332.3 ³⁾	$\geq 32.3^{3}$ $\geq 322.3^{3}$ $\geq 332.3^{3}$ $\geq 332.3^{3}$			
LOEC	332.3	n.d.	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Shoot length		5				
EC ₅₀	308.96	210.99 🚿	> 3,00°.3   0° 332.5°   > 332.3°   > 332.3°			
NOEC	32.1	32.1	32.1 32.3 103.4			
LOEC	103.4	103.4	10.0 10.0 10.4 1 n.c. 332.2			
Fresh weight						
$EC_{50}$	190.43	2 <b>6</b> 7.88	$> 214.22$ $> 218.41$ $> 332.3^{2}$ $> 332.3^{2}$			
NOEC	32.1		$32$ $32.3^{3}$ $\geq 332.3^{3}$			
LOEC	103.4	103.4	√√0.0 0 100.4 √ n.d. n.d.			

- 1) no. of surviving plants.
- EC₅₀ could not be calculated because of less than 50 % effect, therefore estimated to be > 332.3 g a.s./ha
- 3) estimated value, no significant effect within the range tested.
- n.d. not determined, no significant effect within the range tested.

The NOEC for both monocotyle doneous species was \$2.1 g als./ha and the LOEC 103.4 g a.s./ha. Among these two species, *Allium cepa* was slightly more sensitive and its fresh weight was reduced by 50 % at 190.43 g a.S./ha.

Among the dicoryledoneous species *Brassica napus* was the most sensitive one. The NOEC on both fresh weight and shoot length was 3.2 ca.s./ha and the LOEC 10.0 g a.s./ha. The EC₅₀ could only be determined for the fresh weight of *Brassica napus* and *Cucumis sativus* and was in a similar range as for the two monocopyledonous species.

#### Observations.

The test item had no significant effect on the emergence of the seedlings. At day 7, some effects were observed Avena sativa was the least sensitive species: only at the highest application rate some chlorotic, and abnormal plants were found. Allium cepa showed chlorotic leaves even at 103.4 g a.s./ha. The deotyle cheous species showed symptoms at 32.1 g a.s./ha and above (typically chlorosis of cotyledons or first leaves). Only very few dead plants of Allium cepa and Cucumis sativa were found.

At day 14 effects on *Avena sativa* were observed at 103.4 g a.s./ha and above (chlorosis and abnormalities) and very few plants had chlorotic leaves even at 10.0 g a.s./ha. *Allium cepa* showed effects at 32.1 g a.s./ha and above (mainly chlorosis). The dicotyledoneous plants showed effects mainly at 10.0 g a.s./ha and above. The typical symptom was chlorosis except for *Glycine max* which in contrast showed wilted or deformed leaves. Few additional dead plants of *Allium cepa* were found at the highest concentration and of *Glycine max* at 10.0 and 103.4 g a.s./ha.



At day 21, the observed pattern was similar to day 14 except that some plants of Glycine max had recovered and chlorosis of Lycopersicon esculentum was now observed more often. Few dead plants of *Allium cepa* and *Avena sativa* were found at the highest application rate.

Effects of the test item on the shoot fresh weight were more pronounced than on the shoot length. An EC₅₀ could not be derived for all species and endpoints when effects were lessen 50%. The NOEC ranged from 3.2 to 332.2 g a.s./ha, the highest concentration tested and the lowest LOEC 10.0 g a.s./ha.

#### **Conclusion:**

The most sensitive parameter was the fresh weight followed by shoot length, then survival Effects of the test item on seedling emergence and growth were not severe and an EC50 could not be derived for all species and endpoints where effects were less than 50 %. The most sensitive species was allium cepa with an EC₅₀ of 190.43 g a.s./ha (fresh weight) followed by @vena witva (EC₅₀ of 20.99 g a.s./ha). Phytotoxic effects appeared as mainly chlorotic spots.

#### **CP 10.6.3** Extended laboratory studies on non-target pl

In view of the results presented above, no further studies are deemed necessar

#### Semi-field and field tests on non-carget Plants **CP 10.6.4**

In view of the results presented above, no further studies are deemed necessary.

#### Effects on other teorestrial organisms (flora and fauna) **CP 10.7**

No studies are required.

CP 10.8 Monitoring data

No ecotoxicological monitoring data available.