

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. party without the prior written authorisation of Bayer CropScience. Ň

- c trice on unpublished - c trice on unpublished - c ceived the data on vice h desumparies and evolution are trace. - From Bayer CropScience; or - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. - From other applicants once the period of data protection has expired. The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulators authority. Other registration authorities should that grant, amend, op renext a registration basis of the summaries and evaluation of unpublished propriet document unless they have received the proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in the document unless they have received the data on which the either:

Version history

CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT Page CA 7.1 Fate and behaviour in soil 6 CA 7.1.1 Route of degradation in soil 6 CA 7.1.1.1 Anaerobic degradation 6 CA 7.1.1.2 Anaerobic degradation 7 CA 7.1.1.3 Soil photolysis 26 CA 7.1.2 Rate of degradation of metabolizy, breakdowr and refetion product? 43 Degradation of Propine-DDD 74 Degradation of Probine-DDD 74 Degradation of Probine-DDD 74 Degradation of Probine-DDD 74 Degradation of Poine-DDD 74 Degradation of Methylpanidazoline, breakdown and referion product? 83 CA 7.1.2.1.3 Anaerobic degradation metholizy, breakdown and referion product? 83 CA 7.1.2.2 Field studies 83 CA 7.1.2.2 Soil description of the soils. 84 CA 7.1.3 Adsorption and desorption of the set subspance. 86		I able of Contents	<i>~</i> °	~
CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT Page CA 7.1 Fate and behaviour in soil 5 CA 7.1.1 Route of degradation in soil 7 CA 7.1.1.2 Aracrobic degradation 50 CA 7.1.1.3 Soil photolysis 7 CA 7.1.1.4 Anacrobic degradation in soil 7 CA 7.1.1.2 Rate of degradation of metabolites, breakdown and reaction products 74 CA 7.1.2.1 Laboratory studies 7 Degradation of Propinch-DIDU 7 74 Degradation of PU 7 74 Degradation of PU 74 74 Soil dissipation studies 74 74 Anacrobic degradation of the stoire studies 74 A 71.2.2 Soil accumulation studies 74 A 71.2.2 Soil accumulation studies 74 A 71.3.1 Adsorption and desorption		k	Ő.	ð
CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT			Page	F
 CA 7.1 Fate and behaviour in soil	CA 7	FATE AND BEHAVIOUR IN THE ENVIRONMENT		~
CA 7.1.1 Route of degradation is soil	CA 7.1	Fate and behaviour in soil	<u>6</u>	
CA 7.1.1.1 Acrobic degradation 99 CA 7.1.1.2 Anaerobic degradation in soil 92 CA 7.1.1.3 Soil photolysis 92 CA 7.1.2.1 Rate of degradation of metabolites, breakdown and refetion product 94 CA 7.1.2.1 Laboratory studies 94 Degradation of PTU 94 94 Degradation of PU 94 94 Anaerobic degradation of the abive substance. 83 CA 7.1.2.1 Anaerobic degradation of metabolites. 94 CA 7.1.2.2 Soil dissipation studies 84 CA 7.1.2.1 Adsorption and desorption 94 CA 7.1.2.2 Soil accumulation studies 94 CA 7.1.3.1 Adsorption and desorption 94 CA 7.1.3.1 Adsorption and desorption 94 CA 7.1.4 Columpt lea	CA 7.1.1	Route of degradation in soil	7	6
 CA 7.1.1.2 Anaerobic degradation	CA 7.1.1.1	Aerobic degradation		2
 CA 7.1.1.3 Soil photolysis	$C \land 7 \downarrow 1 \downarrow 2$	Anaerobic degradation \circ	SE	<i>a</i> .
 CA 7.1.2. Rate of degradation in soil. CA 7.1.2.1 Laboratory studies. Degradation of PTU. Degradation of PTU. Degradation of 4-Methyl/inidazofine (PMI) CA 7.1.2.1.4 Anaerobic degradation of the policy substance. CA 7.1.2.1 Anaerobic degradation of the policy substance. CA 7.1.2.2 Field studies. CA 7.1.2.2 Soil dissipation studies. CA 7.1.3.1 Adsorption and desorption of the active substance. CA 7.1.3.1 Adsorption and desorption of the active substance. CA 7.1.3.1. Adsorption and desorption of the active substance. CA 7.1.3.1. Adsorption and desorption of the active substance. CA 7.1.4.1 Column teaching studies. CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. R8 CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. R8 CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.2 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.1 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.2 Column teaching of metabolities, preakforwn and reaction products. CA 7.1.4.1 Column teaching of metabol	CA 7 1 1 3	Soil photolysis	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ľ
CA 7.1.2.1 Laboratory studies 20 CA 7.1.2.1.2 Aerobic degradation of metabolites, breakdown and refetion products 243 Degradation of PTU 43 Degradation of PTU 54 Degradation of PU 54 Degradation of PU 54 Degradation of A-Methyl/midazofine (FMI) 80 CA 7.1.2.1.3 Anacrobic degradation of the bolive substance 83 CA 7.1.2.2.1 Soil dissipation studies 83 CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.3.1 Adsorption and desorption 84 CA 7.1.3.1 Adsorption and desorption 84 CA 7.1.3.2 Aged sorption 94 CA 7.1.3.1 Adsorption and desorption 96 CA 7.1.3.2 Aged sorption 96 CA 7.1.4 Columbrities of the active substance 102 CA 7.1.4 Columbrities of the active substance 102 CA 7.1.4 Columbrities of the active substance 102 CA 7.1.4 </td <td>CA 7 1 2</td> <td>Bate of degradation in soil</td> <td></td> <td>°,</td>	CA 7 1 2	Bate of degradation in soil		°,
CA 7.1.2.1 Latoratory studies formation of metabolites, breakdown and reaction products 43 Degradation of PTU 58 Degradation of PTU 58 Degradation of PU 64 Degradation of A Methyl/midazofine (2 MI) 64 Degradation of A Methyl/midazofine (2 MI) 76 CA 7.1.2.1.3 Anaerobic degradation of metabolites, breakdown and reaction products 83 CA 7.1.2.1.4 Anaerobic degradation of metabolites, breakdown and reaction products 83 CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.2.1.3 Anaerobic degradation of metabolites, breakdown and reaction products 83 CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.3.1 Adsorption and desorption for active substance 84 CA 7.1.3.1.1 Adsorption and desorption of metabolites, breakdown and reaction products 88 CA 7.1.3.1 Adsorption and desorption of metabolites, breakdown and reaction products 86 CA 7.1.4.1.1 Column leaching studies 102 CA 7.1.4.1.2 Column leaching of the active substance 102 CA 7.1.4.1.1 Column leaching of the active substance 102 CA 7.1.	CA 7.1.2	Laboratory studios	20 A	1
CA 7.1.2.1.2 Actoroic degradation of metabolites, breakdown and reaction products. 43 Degradation of PTU. 58 Degradation of 4 Methylkinidazofine (4 MI) 58 Degradation of 4 Methylkinidazofine (4 MI) 58 CA 7.1.2.1.3 Anaerobic degradation of the polive substance 83 CA 7.1.2.2 Field studies 83 CA 7.1.2.2 Soil dessipation studies 84 CA 7.1.2.1 Soil dessipation studies 84 CA 7.1.2.2 Soil accumulation studies 84 CA 7.1.3.1 Adsorption and desorption for active substance 84 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.2 Adsorption and desorption of the active substance 101 CA 7.1.3.1 Adsorption and besorption of the active substance 102 CA 7.1.4.1.1 Column Reaching studies 102 CA 7.1.4.1.1 Column Reaching studies 102 CA 7.1.4.1.2 Column Reac	CA 7.1.2.1	Laboratory studies		
Degradation of Propinet-DD2 58 Degradation of PU 58 Degradation of PU 64 Degradation of 4 Methyl initiazione (2 MI) 64 Degradation of 4 Methyl initiazione (2 MI) 68 CA 7.1.2.1.4 Anaerobic degradation of metabolities, breakdown and reaction products 83 CA 7.1.2.1.5 Soil dissipation studies 83 CA 7.1.2.2.1 Soil accumulation studies 84 CA 7.1.2.2.2 Soil accumulation and desorption fit soil. 84 CA 7.1.3.1 Adsorption and desorption of the active substance 84 CA 7.1.3.1.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Aged sorption 101 CA 7.1.4.1 Column teaching studies 102 CA 7.1.4.1 Column teaching of the active substance 102 CA 7.1.4.1.2 Column teaching of metabolites, breakdown and reaction products 102 CA 7.1.4.1.2 Column teaching of metabolites, breakdown and reaction products 102 CA 7.1.4.1.2 Column teaching of metabolites, breakdown and reaction products 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.1.3<	CA /.1.2.1.2	Aerobic degradation of metabolities, breakdown and reaction products	×43	
Degradation of P10 64 CA 7.1.2.1.3 Anaerobic degradation of the active substance 83 CA 7.1.2.1.5 Soil dissipation studies 84 CA 7.1.2.1.5 Soil accumulation studies 84 CA 7.1.2.1 Adsorption and desorption of the active substance 84 CA 7.1.3 Adsorption and desorption of the active substance 86 CA 7.1.3.1 Adsorption and desorption of the active substance 101 CA 7.1.3.1 Adsorption and desorption of the active substance 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.1.1 Column leaching of the active substance 102 CA 7.1.4.1.2 Column leaching of the active substance 102 CA 7.1.4.1.1 Column leaching of the active substance 102 CA 7.1.4.1.2 Column leaching of the active substance 102 CA 7.1.4.1.1 Column leaching of the active substanc		Degradation of Propineb-DID4	ñ 43	
Degradation of PU 6 6 64 Degradation of 4 Methylimidazoline (4 MI) 80 CA 7.1.2.1.3 Anaerobic degradation of the active substance 83 CA 7.1.2.2.1 Soil dissipation studies 83 CA 7.1.2.2.1 Soil dissipation studies 83 CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.2.2.2 Soil accumulation studies 84 CA 7.1.3.1 Adsorption and desorption of the active substance 84 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Adsorption and desorption of metabolities, breakdown and reaction products 88 CA 7.1.3.1.2 Adsorption and desorption of metabolities, breakdown and reaction products 88 CA 7.1.3.1.2 Adsorption and desorption 101 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.2 Column leaching of the active substance 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.3 Column leaching of the active substance 102 CA 7.2.1.4 Column leachin		Degradation of PIUQQQQQQ	38	
Degradation of 4-Methylsmidacytine (4PMI)) 57.80 CA 7.1.2.13 Anaerobic degradation of the active substance 83 CA 7.1.2.14 Anaerobic degradation of metholities, breakdown and reaction products 83 CA 7.1.2.21 Soil dissipation studies 84 CA 7.1.2.21 Soil dissipation studies 84 CA 7.1.22.1 Soil accumulation studies 84 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Adsorption and desorption of the active substance 101 CA 7.1.3.1.2 Adsorption and desorption of the active substance 102 CA 7.1.3.1.2 Adsorption and desorption of the active substance 102 CA 7.1.3.1.2 Adsorption and desorption of the active substance 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching studies 102 C		Degradation of PU		
CA 7.1.2.1.3 Anaerobic degradation of the bofive substance		Degradation of 4-Methyl midazoline (4-MI)	<u>з</u> . 80	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CA 7.1.2.1.3	Anaerobic degradation of the active substance	83	
CA 7.1.2.2 Field studies 83 CA 7.1.2.2.1 Soil accumulation studies 84 CA 7.1.2.2.2 Soil accumulation studies 84 CA 7.1.3 Adsorption and desorption of the active substance 84 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Adsorption and desorption of the active substance 101 CA 7.1.3.1.2 Adsorption and desorption of the active substance 102 CA 7.1.4.1 Columpt leaching of the active substance 102 CA 7.1.4.1 Columpt leaching of the active substance 102 CA 7.1.4.1.1 Columpt leaching of the active substance 102 CA 7.1.4.1.2 Column leaching of metabolites, freakdown and reaction products 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.2.1 Fate and fate of degradation 102 CA 7.2.1 Route and rate of biological degradation 113 CA 7.2.2 </td <td>CA 7.1.2.1.4</td> <td>Anaerobic degradation of merabolites, breakdown and reaction products</td> <td> 83</td> <td></td>	CA 7.1.2.1.4	Anaerobic degradation of merabolites, breakdown and reaction products	83	
CA 7.1.2.2.1 Soil dissipation studies 84 CA 7.1.2.2 Soil accumulation studies 84 CA 7.1.3 Adsorption and desorption of the active substance 84 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.2 Aged sorption 101 CA 7.1.4 Molity in soil. 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.1.2 Column leaching of the active substance 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.1 Column leaching of metabolites forealdown and reaction products 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.2.1 Fate add behaviour in water and sediment 102 CA 7.2.1 Route and fate of degradation 106 CA 7.	CA 7.1.2.2	Field studies	83	
CA 7.1.2.2.2 Soil accumulation studies 84 CA 7.1.3 Adsorption and desorption 84 CA 7.1.3.1 Adsorption and desorption 84 CA 7.1.3.1.1 Adsorption and desorption 86 CA 7.1.3.1.2 Adsorption and desorption 86 CA 7.1.3.1.2 Adsorption and desorption 97 A 7.1.3.1.2 Adsorption and desorption 97 CA 7.1.3.2 Aged sorption 97 CA 7.1.4 Mebrity insoil 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.1 Column leaching of metabolites, Breakdown and reaction products 102 CA 7.1.4.1 Column leaching of metabolites, Breakdown and reaction products 102 CA 7.1.4.1 Column leaching of metabolites, Breakdown and reaction products 102 CA 7.1.4.1 Column leaching of metabolites, Breakdown and reaction products 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching studies 102 CA 7.2.1 Fate and behaviou in water and sediment 102 <td>CA 7.1.2.2.1</td> <td>Soil dissipation studies of</td> <td> 84</td> <td></td>	CA 7.1.2.2.1	Soil dissipation studies of	84	
CA 7.1.3 Adsorption and desorption for soil. 84 CA 7.1.3.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Aged sorption 101 CA 7.1.3.1 Columpt leaching studies 102 CA 7.1.4.1 Columpt leaching studies 102 CA 7.1.4.1.1 Columpt leaching studies 102 CA 7.1.4.2 Column leaching studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.3 Field leaching studies 102 CA 7.1.4 Pield leaching studies 102 CA 7.2 Fate and behaviour in water and sediment 102 CA 7.2.1 Route and rate of degradation 106 CA 7.2.1 Route and rate of biological degradation	CA 7.1.2.2.2	Soil accumulation studies	84	
CA 7.1.3.1 Adsorption and desorption 84 CA 7.1.3.1.1 Adsorption and desorption 86 CA 7.1.3.1.2 Adsorption and desorption 97 Adsorption and desorption 97 98 CA 7.1.3.2 Adsorption and desorption 97 CA 7.1.3.2 Adsorption 101 CA 7.1.3.2 Aged sorption 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching of metabolites 102 CA 7.1.4.1 Column leaching of metabolites 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.1 Column leaching of metabolites 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Expendent and sediment 102 CA 7.2.1 Route and rate of degradation 102 CA 7.2.1 Route and rate of degradation <td< td=""><td>CA 7.1.3</td><td>Adsorption and desorption for soil.</td><td> 84</td><td></td></td<>	CA 7.1.3	Adsorption and desorption for soil.	84	
CA 7.1.3.1.1 Adsorption and desorption of the active substance 86 CA 7.1.3.1.2 Aged sorption 101 CA 7.1.3.2 Aged sorption 101 CA 7.1.3.2 Aged sorption 102 CA 7.1.4 Mebility insoil. 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1 Column leaching of the active substance 102 CA 7.1.4.1.2 Column leaching studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.2 Field leaching studies 102 CA 7.1.4.3 Field leaching studies 102 CA 7.1.4.2 Field leaching studies 102 CA 7.1.4.3 Field leaching studies 102 CA 7.1.4.3 Field leaching studies 102 CA 7.2 Fate and behaviour in water and sediment 102 CA 7.2.1 Route and rate of degradation 106 CA 7.2.1 Direct photochemical degradation 106 CA 7.2.1.2 Direct photochemical degradation 113 CA 7.2.2.1 Route and rate of biological cegradation in aquatic systems 115	CA 7.1.3.1	Adsorption and desorption	84	
CA 7.1.3.1.2 Adsorption and desorption obmetabolites, breakdown and reaction products 88 CA 7.1.3.2 Aged corption 101 CA 7.1.3.2 Aged corption 102 CA 7.1.4 Mebility if soil, 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1.1 Column leaching of the aetive substance 102 CA 7.1.4.1.2 Column leaching of metabolites, breakdown and reaction products 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4 Field backing studies 102 CA 7.1.4 For and fate of algoridation are action products 102 CA 7.2 Fate and behaviour in water and sediment 102 CA 7.2.1 Route and fate of algoridation are aquate systems (chemical and photochemical degradation 106 CA 7.2.1.1 Hydrobytic degradation 103 104 CA 7.2.1.2 Direct photochemical degradation 113 114 CA 7.2.2.4 Route and rate of biological degradation 114 114 CA 7.2.2.4 Interesting action in surface water 116 115	CA 7.1.3.1.1	Adsorption and desorption of the active substance	86	
CA 7.1.3.2 Aged corption 101 CA 7.1.4.1 Mathing its soil. 102 CA 7.1.4.1 Column leaching studies 102 CA 7.1.4.1.1 Column leaching of the active substance 102 CA 7.1.4.1.2 Column leaching of the active substance 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.3 Field leaching studies 102 CA 7.1.4.7 Field leaching studies 102 CA 7.2.1 Route and rate of degradation in aquant systems (chemical and photochemical degradation) 102 CA 7.2.1 Route and rate of degradation 106 CA 7.2.1.2 Direct photochemical degradation 106 CA 7.2.1.2 Direct photochemical degradation 113 CA 7.2.1.3 Indirect photochemical degradation 114 CA 7.2.2 Reactive for oblogical degradation 115 CA 7.2.2.1 Reactive for oblogical degradation 116 CA 7.2.2.3 Under rate of biological degradation 116 CA 7.2.2.4 Irradigited water/setiment study 117 CA 7.2.2.3	CA 7.1.3.1.2	Adsorption and desorption of metabolites, break down and reaction products	88	
CA 7.1.4Mapility is soil, S.102CA 7.1.4.1Column leaching studies.102CA 7.1.4.1.1Column leaching of the active substance.102CA 7.1.4.1.2Column leaching of metabolites break down and reaction products.102CA 7.1.4.2Lysimeter studies.102CA 7.1.4.3Field leaching of metabolites break down and reaction products.102CA 7.1.4.2Lysimeter studies.102CA 7.1.4.3Field leaching studies.102CA 7.1.4.4Field leaching studies.102CA 7.2Fate and behaviour in water and sediment.102CA 7.2.1Route and fate of degradation in aquatic systems (chemical and photochemical degradation).106CA 7.2.1.3Indirect photochemical degradation.113CA 7.2.2.4Route and rate of biological degradation.114CA 7.2.2Route and rate of biological degradation.115CA 7.2.2.1"Ready biodegradability".115CA 7.2.2.4Irradiated water/sediment study.117CA 7.2.2.4Uradiated water/sediment study.117CA 7.2.3Degradation in ar141CA 7.3.4Fore and behaviour in ar141CA 7.3.4Fore and rate of degradation in air141CA 7.3.4Fore and rate of degradation in air141CA 7.2.5Degradation in air141CA 7.2.6Caradiated water/sediment study.141CA 7.2.7Degradation in air142CA 7.3.4Degradation in air143C	CA 7.1.3.2	Aged Sorption	. 101	
CA 7.1.4.1Column leaching studies102CA 7.1.4.1.1Column leaching of the active substance102CA 7.1.4.1.2Column leaching of metabolites, breakdown and reaction products102CA 7.1.4.2Lysimeter studies102CA 7.1.4.2Field leaching studies102CA 7.1.4.2Field leaching studies102CA 7.1.4.3Field leaching studies102CA 7.2Fate and behaviour in wator and sediment102CA 7.2.1Robre and fate of degradation in aquare systems (chemical and photochemical degradation)106CA 7.2.1.2Direct photochemical degradation106CA 7.2.1.3Indirect photochemical degradation113CA 7.2.4Protochemical degradation114CA 7.2.5Route and rate of biological degradation116CA 7.2.1.3Indirect photochemical degradation117CA 7.2.4Tready biodegradability"115CA 7.2.2.4Irradiated water/sediment study117CA 7.2.4Fradated water/sediment study141CA 7.3.4Route and rate of degradation in air141CA 7.3.4Route and rate of degradation in air141CA 7.3.4Degradation in air141CA 7.3.4Foto and rate of degradation in air141CA 7.3.4Foto and rate of degradation in air141CA 7.3.4Foto and rate of degradation in air141CA 7.3.4Definition of the residue143CA 7.4Definition of the residue for risk assessment	CA 7.1.4	Metality in soil &	. 102	
CA 7.1.4.1.1Column leaching of the active substance102CA 7.1.4.1.2Column leaching of metabolites, breakdown and reaction products102CA 7.1.4.2Lysimeter studies102CA 7.1.4.3Field leaching studies102CA 7.1.4.3Field leaching studies102CA 7.1.4.3Field leaching studies102CA 7.1.4.3Field leaching studies102CA 7.2Fate and behaviour in water and sediment102CA 7.2.1Roffe and rate of degradation in aquate systems (chemical and photochemical degradation)106CA 7.2.1.1Hydrolytic degradation106CA 7.2.1.2Direct photochemical degradation113CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2.4Route and rate of biological degradation in aquatic systems115CA 7.2.2.4Irradigned water/sediment study117CA 7.2.3Water/sediment study117CA 7.2.4Irradigned water/sediment study141CA 7.3.4Boute and rate of degradation in air141CA 7.3.4Degradation in the saturated zone141CA 7.3.4Fate and behaviour in air141CA 7.3.4Fate and behaviour in air142CA 7.3.4Definition of the residue143CA 7.4Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for risk assessment144CA 7.5Monitoring data144	CA 7.1.4.1	Column leaching studies	102	
CA 7.1.4.1.2Colorin leaching of metabolites, break down and reaction products102CA 7.1.4.2Lysimeter studies102CA 7.1.4.3Field leaching studies102CA 7.1.4.3Field leaching studies102CA 7.2Fate and behaviour in wath and sediment102CA 7.2.1Route and rate of degradation in aquatic systems (chemical and photochemical degradation)106CA 7.2.1.1Hydrolytic degradation106CA 7.2.1.2Direct photochemical degradation113CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2.4Route and rate of biological degradation in aquatic systems115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.3Water/sediment study117CA 7.2.4Irradiated water/sediment study117CA 7.2.5.4Irradiated water/sediment study141CA 7.2.5.4Irradiated water/sediment study141CA 7.3.4Route and rate of degradation in air142CA 7.3.5Degradation in the saturated zone141CA 7.3.4Fate and behaviour in air143CA 7.3.5Transport via air143CA 7.4.5Definition of the residue for monitoring143CA 7.4.2Definition of the residue for monitoring144	CA 7.1.4.1.1 «	Colupped leaching of the aetwe substances.	102	
CA 7.1.4.2 Lysimeter studies 102 CA 7.1.4.2 Field leaching studies 102 CA 7.1.4.3 Field leaching studies 102 CA 7.2 Fate and behaviour in water and ediment. 102 CA 7.2 Fate and behaviour in water and ediment. 102 CA 7.2.1 Route and rate of degradation in aquatic systems (chemical and photochemical degradation). 106 CA 7.2.1.2 Direct photochemical degradation 113 CA 7.2.1.3 Indirect photochemical degradation 114 CA 7.2.1.3 Indirect photochemical degradation 114 CA 7.2.2 Route and rate of biological degradation 115 CA 7.2.2.1 Ready biodegradability" 115 CA 7.2.2.1 Ready biodegradability" 115 CA 7.2.2.1 Ready biodegradability" 115 CA 7.2.2.1 "Ready biodegradability" 115 CA 7.2.2.3 Water/sediment study 117 CA 7.2.2.4 tradated water/sediment study 111 CA 7.3.4 Degradation in air 141 CA 7.3.4 Face and behaviour in air 141 CA 7.3.4 Face and be	CA 7 1 4 1 2 C	Coloring lengthing of metabolites break down and reaction products	102	
CA 7.1.4CField leaching studies102CA 7.1.4CFate and behaviou in water and sediment.102CA 7.2Fate and behaviou in water and sediment.102CA 7.2.1Route and rate of degradation in aquate systems (chemical and photochemical degradation).106CA 7.2.1.1Hydrolytic degradation106CA 7.2.1.2Direct photochemical degradation106CA 7.2.1.3Indirect photochemical degradation113CA 7.2.1.4Potochemical degradation113CA 7.2.1.5Indirect photochemical degradation114CA 7.2.2Route and rate of biological degradation in aquatic systems115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.2Aerobic numeralisation in surface water116CA 7.2.2.3Water/sediment study117CA 7.2.4Irradiated water/sediment study141CA 7.3Degradation in air142CA 7.3Degradation in air142CA 7.3Transport via air143CA 7.4Definition of the residue for risk assessment143CA 7.4Definition of the residue for monitoring144CA 7.4Definition of the residue for monitoring144	$CA 7 1 4 2^{\circ}$	Lysimeter studies	102	
CA 7.2Fate and behaviour in water and sediment.102CA 7.2Fate and behaviour in water and sediment.102CA 7.2.1Roure and rate of degradation in aquaric systems (chemical and photochemical degradation).106CA 7.2.1.1Hydrofytic degradation.106CA 7.2.1.2Direct photochemical degradation.113CA 7.2.1.3Indirect photochemical degradation.114CA 7.2.2Route and rate of biological degradation.115CA 7.2.1.3Indirect photochemical degradation.116CA 7.2.2.4Route and rate of biological degradation in aquatic systems.115CA 7.2.2.3Vater/sediment study.117CA 7.2.4Irradiated water/sediment study.117CA 7.2.5Water/sediment study.114CA 7.3Degradation in air141CA 7.3Ear and behaviour in air142CA 7.3Ca and rate of degradation in air143CA 7.3Ca and pehaviour in air143CA 7.4Definition of the residue143CA 7.4.7Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring.144CA 7.4.2Definition of the residue for monitoring.144	CA 7 1 A	Field leghing Studies	102	
CA 7.2Pate and behavious in water and sediment.102CA 7.2.1Robe and rate of degradation is aquaric systems (chemical and photochemical degradation).106CA 7.2.1.1Hydrolytic degradation106CA 7.2.1.2Direct photochemical degradation113CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2.4Route and rate of biological degradation115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.2Aerobic mineral station in aquatic systems116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study141CA 7.2.3Degradation in air141CA 7.3.4Fate and behaviour in air141CA 7.3.5Route and rate of degradation in air141CA 7.3.6Degradation in air141CA 7.3.7Ear and behaviour in air141CA 7.3.6Degradation in air143CA 7.4.7Definition of the residue143CA 7.4.7Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.4.2Definition of the residue for monitoring144	CA72	Foto and hobeviour in weth and bediment	102	
CA 7.2.1Regretation at a quarter systems (cheffindar and photocheffindar degradation)106CA 7.2.1.1Hydrolytic degradation106CA 7.2.1.2Direct photochemical degradation113CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2Route and rate of biological degradation115CA 7.2.1"Ready biodegradability"115CA 7.2.2Aerobic mineralisation to surface water116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study117CA 7.2.3Degradation in the saturated zone141CA 7.3.4Fare and behaviour in air142CA 7.3.4Route and rate of degradation in air143CA 7.3.5Local and global effects143CA 7.4.1Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.4.2Definition of the residue for monitoring144	CA 7.2	Pare and sta of degredation is aquate systems (chemical and photochemical	. 102	
CA 7.2.1.1Hydrolytic degradation106CA 7.2.1.2Direct photochemical degradation113CA 7.2.1.3Indirect photochemical degradation114CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2Route and rate of biological degradation115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study117CA 7.2.3Degradation in the saturated zone141CA 7.2.3Degradation in all141CA 7.3.4Fate and Dehaviour in all142CA 7.3.5Transport via air143CA 7.3.6Definition of the residue143CA 7.4.1Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.4.5Monitoring data144	CA 7.2.1	Route and rate of stegradation at aquade systems (chemical and photochemical	106	
CA 7.2.1.1Hydrotytic degradation106CA 7.2.1.2Direct photochemical degradation113CA 7.2.1.3Indirect photochemical degradation114CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2.4Route and rate of biological degradation in aquatic systems115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.2Aerobic mineralisation in surface water116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study141CA 7.2.3Degradation in air141CA 7.3.4Degradation in air142CA 7.3.5Fate and behaviour in air142CA 7.3.6Transport via air143CA 7.3.7Definition of the residue143CA 7.4.1Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144	CA 7 2 1 1	uzglauanoli). Sa ante a se a	100	
CA 7.2.1.2Different photochemical degradation115CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2.1Route and rate of biological degradation in aquatic systems115CA 7.2.2.1"Rectory biodegradability"115CA 7.2.2.1"Rectory biodegradability"115CA 7.2.2.2Aerobic mineralisation in surface water116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study141CA 7.2.3Degradation in the saturated zone141CA 7.3.4Fate and behaviour in air142CA 7.3.5Fate and behaviour in air142CA 7.3.6Transport via air143CA 7.3.7Definition of the residue143CA 7.4.1Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 7.2.1.1	Direct about the interview of the second	112	
CA 7.2.1.3Indirect photochemical degradation114CA 7.2.2Route and rate of biological degradation in aquatic systems.115CA 7.2.2.1"Ready biodegradability"115CA 7.2.2.1"Ready biodegradability"116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study141CA 7.3Degradation in the saturated zone.141CA 7.3Fate and behaviour in air141CA 7.3Fate and behaviour in air141CA 7.3Coute and rate of degradation in air142CA 7.3Coute and rate of degradation in air143CA 7.4Definition of the residue143CA 7.4Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 7.2.1.2	L 1 and Q to 10 and 10 an	113	
CA 7.2.2Route and rate of biological degradation in aquatic systems.115CA 7.2.2.1"Ready biolegradability"115CA 7.2.2.2Aerobic runeralisation in surface water116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study141CA 7.2.3Degradation in the saturated zone141CA 7.3Fate and behaviour in an141CA 7.3.1Route and rate of degradation in air142CA 7.3.2Transport via air143CA 7.4Definition of the residue143CA 7.4Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 7.2.1.3	Indirect photochemical degradation	. 114	
CA 7.2.2.1Ready biodegradability115CA 7.2.2.2Aerobic mineralisation in surface water116CA 7.2.2.3Water/sediment study117CA 7.2.2.4Irradiated water/sediment study141CA 7.2.3Degradation in the saturated zone141CA 7.3Fate and behaviour in air141CA 7.3.1Route and rate of degradation in air142CA 7.3.2Transport via air143CA 7.3.3Local and global effects143CA 7.4Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 7.2.	Route and rate of biological regrammention in aquatic systems	. 115	
CA 4, 2.2.2Aerobic mineralisation to surface water116CA 7, 2.2.3Water/sediment study117CA 7, 2.2.4Irradiated water/sediment study141CA 7, 2.3Degradation in the saturated zone141CA 7, 3Fate and behaviour in air141CA 7, 3Foute and rate of degradation in air142CA 7, 3.2Transport via air143CA 7, 3.3Local and global effects143CA 7, 4Definition of the residue143CA 7, 4.2Definition of the residue for risk assessment143CA 7, 4.2Definition of the residue for monitoring144CA 7, 5Monitoring data144	CA 7.2.2.1	"Ready biodegradability"	. 115	
CA 7.2.2.3Water/sediment/study	CA & 2.2.2	Aerobic mineralisation in surface water	. 116	
CA 7.2.2.4Irradiated water/sediment study	CA 7.2.2.3	Water/sediment study	. 117	
CA 7.2.3Degradation in the saturated zone	CA 7.2.2.4	Jirradiated water/sethinent study	. 141	
CA 7.3Fate and Dehaviour in air141CA 7.3Foute and ratoof degradation in air142CA 7.3.2Transport via air143CA 7.3.3Local and global effects143CA 7.4Definition of the residue143CA 7.4.2Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 7.2.3	Degradation in the saturated zone	. 141	
CA 7.3.1Route and rate of degradation in air142CA 7.3.2Transport via air143CA 7.3.3Local and global effects143CA 7.4Definition of the residue143CA 7.4.2Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 7.3	Fate and Dehaviour in air	. 141	
CA 7.3.2Transport via air	CA 7.3	Route and rate of degradation in air	. 142	
CA 33.3Local and global effects	CA 7.3.2 6	Trapsport via air	. 143	
CA7.4Definition of the residue143CA 7.40Definition of the residue for risk assessment143CA 7.4.2Definition of the residue for monitoring144CA 7.5Monitoring data144	CA 33.3	Local and global effects	. 143	
CA 7.4Definition of the residue for risk assessment	CÅ\$7.4	Definition of the residue	. 143	
CA 7.4.2Definition of the residue for monitoring	CA 7.4	Definition of the residue for risk assessment	. 143	
CA 7.5 Monitoring data	CA 7.4.2	Definition of the residue for monitoring	. 144	
	CA 7.5	Monitoring data	. 144	

Document MCA: Section 7 Fate and behaviour in the environment Propineb

CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Data on the fate and behaviour of Propineb in soil, water, sediment and air were submitted within the EU Dossier (Baseline Dossier), which resulted in the Annex I inclusion under Directive 91/4//EEC in 2003. In the Supplemental Dossier for renewal of approval of Propineb presented here only those environmental fate studies are described in sections 7.1 to 7.5, which were not submitted within the Baseline Dossier. However, for a better understanding of the behaviour of Propineb in Soil, water and sediment, and air, short summaries including the results of all environmental fate studies which were considered relevant during the first EU evaluation (compare EU Monograph Annex B7) are given additionally in this summary in sections CA 7.1, CA 7.2 and CA 7.0 To differentiate between studies already evaluated during the last Annex I listing and new studies the references or author(s) given for tables are written in grey for studies already evaluated and in bold black for new studies.

The proposed residue definitions for each compartment are goen in OA 7.4

Due to the intrinsic properties of Propineb no new studies were performed or were found in published literature with respect to monitoring of soil, surface water, ground/drinking water, sediment and air (see CA 7.5).

The studies concerning the fate and behaviour of Propinely in the environment were conducted using radiolabelled as well as unlabelled parent compound. The radiolabel position used is regarded adequate to define the route of degradation of Propinely

The structure of Propineb and the ¹⁴C-radiolabel (indicated by *) as follows:

The results of studies are summatized in the following sections, the proposed degradation pathways in soil, water and segument are given in <u>Figure 7.1-1</u> and <u>Figure 7.2-1</u>, respectively.

In addition, studies have been performed with the following radiolabelled and/or unlabelled major degradation products: PTU (BCS A66386), PU (BCS-AA17927), 4-Methyl-imidazoline hydrochlottele (BCS-CT29489) and Propineb DIDT (BCS-CU99534). If ¹⁴C-test item was used the labeling position is indicated below by *:

Structural formala of PTU (BCS-A066386) [Propane-14 ⁻¹⁶ C] labeling position	HN NH S
Structural formula of POv(BCS AA17927): [propane-1- ¹⁴ C] labeling position	HN NH S

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Structural formula of 4-Methyl-imidazoline hydrochloride (BCS-CT294 [Propane-1- ¹⁴ C] labeling position was used	89):		
Structural formula of Propineb-DIDT (BCS-CU99534)		N N	
[Propane-1- ¹⁴ C] labeling position was used		<u>б</u> н ₃ с * С	

In original reports study authors may have used offerent names or codes for degradation products of Propineb. In this summary, a single name or a single code is used for each degradation product XA full list containing structural formula, various names, short forms, codes and occuprences of degradation Fate and behaviour in soil products is provided as Document N3.

CA 7.1

P The chemical substance Propine Qis different in comparison to most other active ingredients (e.g. fungicides) which are produced as pute chemical with a distinct chemical structure, purity, solubility and stability. Propineb is formed in one reaction step by mixing of propylendiamine, Carbon disulfide, zinc sulfate and a small amount of formulation detergents. The resulting product is a polymeric zinc propylene bis(thiocarbarnate) with not defined polymer length. The complexes in solid form are practically insoluble in water and after dissolution the polymer reacts immediately with water and other available surrounding substances. The reaction is likely at first a dissolution of the zinc salt forming the highly reactive ditbocarboninic acid with different chain length. The following decomposition can lead to propylerediamine and carboy disulfide as back-reaction. In the environment, bis(thiocarbamme) is thely to be easily oxidized and forms this am disulfides followed by formation of isothiocyanates. The isothiocyanates are highly feactive and can react either with water, intramoleculare with other interprediates or with surrounding soil organic material (e.g. formation of non extractable residues, NER

The route of degradation of Propineb in soil has been investigated in a set of three laboratory studies using different soils. Due to its polymeric structure Consisting of propylenedithiodicarbaminate units linked by zinc atoms as part of a stable complex Propineb coes not exist in dissolved form. Brought in contact with humid soll after its application as suspension in water, the following distict degradation products were found, since the transient first intermediates lead either to Propineb-DIDT, or by elimination of sulfur hydrogen and carbon disulfide to PTU and 4-Methyl-imidazoline, possibly via other transient degradation products. Propineb-DLDT, 4-Methyl-imidazoline and PTU are also quite short-living transients which are widised in several steps, partly via formation of PU or NER to the final degration product 14 O₂.

Anaerobic and photolytic experiments were performed with the degradate PU (M02) since it is the only one with a potential to persist for a longer time period in soil. Under anaerobic soil conditions this metabolite disappears slowly by the formation of bound residues. On soil surfaces under the influence of light it is well materalised, however, it is obvious that photodecomposition is of minor importance for the dissipation of PU on and in soil.

The mean maximum occurrance of each major metabolite of Propineb in aerobic soil is summarised in Table 7.1.1.1., the proposed degradation pathway in soil is shown in Figure 7.1.1-1.

The DT_{50} values and maximum occurrences in soil of Propineb and its major degradation products used as modelling input values for the calculation of PEC_{soil} values are summarized in Table 7.1.2-1.

The DT_{50} values and relevant degradation factions for Propineb-DIDT, PTU, PU and 4-Methylimidazoline used as modelling input parameter for the calculation of PEC_{gw} values are summarized in <u>Table 7.1.2-2</u>.

For the assessment of surface water exposure maximum occurrences in soil were obtained from 2014, and account for 25.8%, 33.7%, 42.5%, and 12.2%, respectively.

Propineb and its major degradation products are strongly to weakly adsorbed in soils more details for the adsorption and desorption in soil of Propineb and its major degradation products are given in section <u>CA 7.1.3.1</u>, and <u>Table 7.1.3.1-1</u> summarizes the adsorption constants $Koc_{(ads)}$ in soils to be used for modelling purposes.

CA 7.1.1 Route of degradation in soil

The route of degradation of Propineb in soil has been investigated in a set of three laboratory studies using different soils.

Due to its polymeric structure consisting of propylene dithiodicarbaninate units hinked by zinc atoms as part of a stable complex Propineb does not exist in dissolved form. Brought in contact with humid soil after its application as suspension in water the zinc complex breaks down and upstable propylene dithiocarbaninic acid is formed Degradation of the latter leads of the of Propineb-DIDT, or by elimination of sulfur hydrogen and catbon disulfide to PTU and 4 Methyl-imidizoline, possibly via transient degradation products Propineb-DIDT, 4-Methyl-imidizoline and PTU are also quite shortliving transients which are oxidised in several steps, portly via formation of PU or NER to the final degration product ¹⁴CO₂.

Anaerobic and photolytic experiments were performed just with the degradate PO (M02) since it is the only one with a potontial to persist for a conger time period in soil. Onder maerobic soil conditions this metabolite disappears slowly by the formation of bound residues. On soil surfaces under the influence of light it is well mineralised, however, it is obvious that photodecomposition is of minor importance for the dissipation of PU on and in soil.

The mean maximum occurrance of each major metabolite of Propine b in aerobic soil is summarised in <u>Table 7.51.1-1</u>, the proposed degradation pathway in soil is shown in <u>Figure 7.1.1-1</u>.

The maximum occurrences in sol of Propinels and its major degradation products used as modelling input values for the calculation of PEGroil values are summarized in <u>Table 7.1.2-1</u>.

The relevant degradation factions for Propineb DIDT, PTU, PU and 4-Methyl-imidazoline used as modelling input parameteo for the calculation of PEC, values are summarized in <u>Table 7.1.2-2</u>.

Remarks VER and cardial digits for faithing and shown (either directly or indirectly or indirectly of indirectly o

CA 7.1.1.1 Aerobic degradation

The route of degradation of Propineb in soil under aerobic conditions in the laboratory was evaluated during the Annex I inclusion (compare EU Monograph Annex B7) and was accepted by the European Commission (SANCO/7474/VI/97, 2003). The following two studies included in the Baseline Dossier (P-009496-01) were regarded as relevant during the Annex I inclusion:

Report:	;1976@1-102592-01&
Title:	Mertabolism of propineb, zineb, proylenethiourga and ethylep thiotoga in coll
	(studies conducted in accordance with BBA godeline no. 36)
Report No:	RA-726/76
Document No:	M-102592-01-2
Guidelines:	-/-, deviation not specified
GLP/GEP:	No O Q 2 4 A A
Report:	2)996;10-102675-02; mended: 1996-12-49
Title:	Propineb - fate and ballavious in sail 2 2 2 2
Report No:	A&M 033/94 0 5 5 5 5
Document No:	M-102675-62-1 & & & & & & & & & & & & & & & & & & &
Guidelines:	-/-, devizeon not specified from a from the specified for the spec
GLP/GEP:	Yes $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
Summary of study	γ performed by 19% 19% 10% 10%

Summary of study performed by

The metabolism of Propiner, Ziner, propylene Thiourea (PTO) and ethylene thiourea (ETU) was studied. In two standard soils in laboratory experiments (conducted, in accordance with the experimental conditions specified in BBA Quideline No 36), asing Sc-labelled compounds. The principal metabolites of Propineb and Zineb detected after 3 and 23 days and after 28 days were propylene urea (PU) and ethylene urea (EU), respectively CO₂ was also formed in very small amounts. The two thioureas RTU and ETU which themselves were not detectable after 21 days, likewise degraded to PU and PU, respectively, and to CO2. More CO2 evolved from ETU than from PTU. In an experiment with radioactive EU, it was established that degradation to CO2 proceeds via EU. Other metabolites that occurred accounted for less than 4% of the applied dose, and were not identified.

Summary of study performed by ×1996>

The fate and behaviour of Propineb was investigated in 4 soils. As test substance [1-propane 14Clabelled Propineb was used Propineb was applied to the soil as a suspension in acetonitrile and incubated at 20° Con the dark for up to 105 days. Within this incubation time 8 samples were investigated: 0 (after application), 2, Q 8 (9, 18, 30, 64, and 105 days. Since at each interval 2 samples were taken, 64 independent vessels were analysed for a. i. and metabolites.

In order to quantify the obtained metabolites, three extractions were performed. The first extraction with acetonic dissolved the main part of extractable substances (up to 62%). The following treatment performed with water did not extract more than 8 % of the initial radioactivity. The third step of the extraction procedure was performed with a solution of ethylenediaminetetraacetic acid (EDTA) to complexise the zinc and to solubilise the resulting monomers. The extracted part of radioactivity dropped to 8% during the course of the study. In parallel, the formation of carbon dioxide $\frac{1}{1000}$ while the bound residue was < 50% at day 105 (mean values). The recoveries of single samples were between 90 and 110% except for one which exhibited a value of 112%.

There was no evidence for unchanged Propineb at the sampling dates. The degradation and metabolism of Propineb revealed beside carbon dioxide one major metabolite: propylene urea (20°). The amount of PU formed was up to 40% 2 days after application of the test substance. Until the end of incubation propylene urea was nearly completely metabolised in all soils. Immediately after application several further substances were detected in the chromatographs. One of them exhibited an abundance >10%. This substance has been identified as 4-Methyl-imidazoline by thin-layer chromatography (amended: The positive identification of 4-Methyl-imidazoline in the acetonitrile extract was performed with mass spectroscopy). It dropped to < 3% at day 4. Volatte substances others than carbon dioxide were not detected.

Before-mentioned two core studies were critically evaluated and then regarded not sufficient and adequate to describe the route of Propineb degradation. For such unsoluble but reactive molecule any treatment of soils should have been performed by aquous supersion, since just water is the base of any usual spray solution under practical conditions. Just doing so the true pattern of degradation, i.e. short-term after treatment, can be elaborated. Therefore, a new core study is submitted within this Supplemental Dossier for the Propineb renewal of approval. Resulting from that, the degradation product Propineb DIDT (BCS-CU99534) is prewly addressed as major soil degradation product in this Supplemental Dossier because it was identified and quantified to occur short-term above the identification triggers. In aerobic soil degradation study (see

The route and rate of propane-1-¹⁴C]Propineb was studied in four soils under aerobic conditions in the dark in the laboratory for 42 days at 19.7 ¹C and 54.2% of respective maximum water holding capacity. A study application are of 0.487 mg per d00 g coil dry weight was applied as solid polymer well suspended in water. The applied amount was based on the intended maximum single field application rate of 1.825 kg Antracol per hectare. The test was performed in static systems consisting of Erlenme ver flasks each containing 100 g soil (dry weight equivalents) and equipped with traps for the collection of carbon dioxide and volative organic compounds. Duplicate samples were processed and analyzed 0.06, 0.21, 1.4, 7, 14, 28 and 42 days after treatment (DAT). Due to the fast degradation of residues any longer interval was not regarded as necessary.

The following facts were considered for the processing of samples. Due to its polymeric nature Propineb is practically insoluble in water and in organic solvents. Since the polymeric Propineb shows decomposition, it is present, any observed solubility is caused by degradation but not by dilution. If consequence, the parent compound probineb cannot be analyzed itself. In case valid values of its content are to be determined it must be guaranteed that the entire Propineb polymer still present in a sample & degraded to products which are soluble and can be measured.

At each simpling interval, the soil was extracted three times at ambient temperature, two times using acetonitrile / water 1/1 (v/v) and one time using acetonitrile. Further, two microwave-accelerated extraction steps were performed using acetonitrile / water 1/1 (v/v) at 70 °C and methanol / water 1/1

sampling intervals:

Document MCA: Section 7 Fate and behaviour in the environment Propineb

(v/v) at 50 °C. This entire procedure was adequate to decompose all polymeric residues of [¹⁴C]-Propineb contained in a soil sample.

The amount of degradation products in soil extracts was determined by liquid scintillation counting (LSC) and by TLC/radiodetection analysis. The amount of volatiles and non-extractable residues was determined by LSC and combustion/LSC, respectively. Degradation products were identified by cochromatography with reference compounds.

Investigation of the route of degradation showed that Propineb is well degraded and mineralised on soils incubated under standardised aerobic laboratory conditions in the dark. Complete material balances found at all sampling intervals for each soil demonstrated that there was no significant loss of radioactivity from the test systems or during sample processing. Mean material balance was \$2.2% @ AR (range from 95.7 to 100.6% of AR) for soil A2, 98.3% of AR (range from 95.1 to 100.6% of AR) for soil HF, 99.3% of AR (range from 96.6 to 101.4% of AR) for soil HN and 98.0% of AR (sange from 95.7 to 100.6% AR) for soil DD.

The maximum amount of carbon dioxide was 44 %, 46,5 28.5, and 39.9% of AR at Gudy and (DAT-42) in soil AX, HF, HN and DD, respectively Formation of volatile organic compounds (VOC) was insignificant as demonstrated by values of $\leq 0.1\%$ of $\Re R$ at all sampling intervals for all soils.

Non-extractable residues (NER) quickly increased in all soils, slightly declining until DAT 42 (end of study). In soil AX the NER increased to max. 50.5% of AR at DAT 38, slightly declining to 49.2% of AR until DAT-42. In soil HF the NER increased to max. 49,8% of AR at DAT-28, declining to 44.8% of AR until DAT-42. In soil IN the NER increased to 69.5% of AR until DAT-42. In soil DD the NER increased to 53.7% of AR until DAC28, stightly declining to \$1.5% of AR at the end of study. Since high proportions of CO2 and NFR were observed in the metabolite degradation studies, also, this indicates that the NER formed from the parent & a moor part of its entire pute of degradation in soil, and NER formation is not caused by an inadequate extraction of parent from the soil matrix. Until study termination (DAT-42) extractable residues decreased to 5.1, 3.8, 9.4 and 4.3% of AR in soils AX, HF, HN and DD, respectively. The comparatively fast degradation leads to four major degradation products and soil with the following maximum aprounts, all of them found at early

Ŕ Identified degradation products (mean maximum amounts, % of AR) Table 7.1.1.1-1:

It is concluded from this study that Propineb and its residues will be well degraded in aerobic soils kept under normal moisture conditions. However, this study cannot be kinetically evaluated for patent 🔭 degradation with the usual tools since the starting point of polymer degradation is not to be defined. Same holds true for the kinetics of Propineb-DIDT and PTU degradation which must be determined by metabolite soil degradation studies.

Formation of significant amounts of non-extractable residues and carbon dioxide indicates a participation in the natural carbon cycle of soil and the potential for a complete mineralisation of Propineb. Propineb and its degradation products have no potential for accumulation in the environment. Due to the fast degradation of Propineb and its metabolites no field dissipation or rotational crop studies are required.

I. **MATERIALS AND METHODS**

A **Test Item**

		×		L.	N.	Ŕ	V	
[Propane-1-14C]Propineb	:	MXM 7) 56-1-2 ,		ð			A L°
		AK 83 (ontains app	rox. 86,3	% of P	vopineb)		, O'
Specific Radioactivity:	ĺ.	0.66 MB	sq (Ø.97,µQ) / mg		Ş	\approx	AN A
Radiochemical Purity:	<u> </u>	Not to be	edetermore	d 🖉	, Ô			•
Chemical purity:		Not to be	determine) Č			
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		V L	ŝ	<i>R</i> a	Ö,	×	

Test System **B**.

Ŵ The study was carried out using four different soils. The soils were taken from spricultural use areas representing different geographical origin and different soft properties as required by the guidelines. The plant protection product use history of the souls is known for at least 5 years. The characteristics of test soils are given in following table

Table 7.1.1.1-Physico-chemical characteristics of test soil

Parameter 2	Result	// ilts/Units
Soil Designation		(HF)
Soil Taxonomic Classification (USDA)	Sandy, mixed, mesic Typic	Loamy, mixed, mesic Typic
	Cambredoll 🞸 Ӓ	Argudalf
Texture Class (USDA)	Sandyloam	Silt loam
Sand [50 µm – 240 m]	73% & &	21%
Silt $[2 \mu m - 59 \mu m]$		62%
Clay [🛛 2 µm] 🔊		17%
pH (soil / 0,01 M CaCl ₂ 1/2)	6.3	6.1
pH (soil water 1/1)	6	6.4
pH (saturated paste)	6 The second second	6.4
pH (\$9)1 / 1 N KCl 1/1)	26.1	5.8
Organic Carbon (combustion)	1.7%	2.0%
Organic Matter	2:%)	3.4%
Cation Excharge Capacity	Ø.4 meq/100 g	11.9 meq/100 g
Water Holding Capacity 🖉 🕺 👋		
maximum (MWHO)	49.7 g H ₂ O ad 100 g DW	59.4 g H ₂ O ad 100 g DW
at 1/10 bar (pF 20)	13.9%	30.9%
Bulk Density (disturbed)	1.24 g/cm^3	1.12 g/cm^3
¹ % organic matter = % organic carbon x 1.724		

Table 7.1.1.1- 2:	Continued (Physico-chemical characteristics of test soils)	
-------------------	--	--

Parameter	Resu	lts/Units
Soil Designation	(HN)	II (DD)
Soil Taxonomic Classification (USDA)	Loamy-skeletal, mixed,	Fine-loginy, mixed, active, fright
	semiactive, mesic Dystric	Typic Eutrudept
	Eutrudept	
Texture Class (USDA)	Loam 💍	Loam
Sand $[50 \mu\text{m} - 2 \text{mm}]$	31%	
Silt $[2 \mu m - 50 \mu m]$	50%	
Clay $[< 2 \mu m]$	19%	27% ⁰ ⁴ ⁰
pH (soil / 0.01 M CaCl ₂ 1/2)	5.1	
pH (soil / water 1/1)	5.4	
pH (saturated paste)	5.4 (6° 5° 5°	7.4
pH (soil / 1 N KCl 1/1)	4.7 O [¥] O [*] S [*] S [*]	7.00
Organic Carbon (combustion)	3.k%	4.9%
Organic Matter ¹	\$3% ~ ~ ~	8.4%
Cation Exchange Capacity	9.9 meg/100 gg 4	19,8 meq/100 g 🖉 🛣
Water Holding Capacity		
maximum (MWHC)	62 g H29 ad 100 g DW	$\$0.2 \text{ g}$ $\textcircled{B}_{2}^{2}O$ ad $\textcircled{C}_{0}00 \text{ g}$ $\textcircled{D}_{2}^{3}W$
at 1/10 bar (pF 2.0) Q^{ν}	34.4%	38.8%
Bulk Density (disturbed)	1.00 gem^3	0. @ g/cm ² O (
¹ % organic matter = % organic carbon x 1.724		Ø O
		Ý . Ý e

STUDY DESIG II.

Experimental Conditions

The soils were sampled Deshly from the fields (upper horizon of to 20 cm) and sieved to a particle size of $\leq 2 \text{ mm}$ Description of soil collection and storage is given in Appendix 3 of the report. The soil moisture & H2Q ad 100 g soil dry weight] was determined using an automated halogen moisture analyzer by drying three aliquots of approximately 20°g of the sieved soils at 105 °C.

Static test systems (300-mL Frienmeyer glass flasts) for degradation in soil under aerobic conditions were used as incubation vessels. Each flask was fitted with a trap attachment (permeable for oxygen) containing soda lime for absorption of carbon dioxide and a polyurethane (PU) foam plug for adsorption of volatile organic compounds (VOC).

For preparation of the test systems, 100 g dry weight equivalents of the sieved soils were weighed into each flask. Soil moisture was adjusted approx. 55 ± 5% of the maximum water holding capacity (MWHC) for the individual test system's by addition of de-ionized water, taken into account the water content of the application solution. The flasks were then fitted with above-mentioned trap attachments. The untreated test systems were equilibrated to study conditions for 7 days prior to application. For detailed information on experimental design see also Table 3 and Table 4 of report.

A study application tate of 9.487 mg per 900 g soil dry weight was applied as solid polymer well suspended in water. The applied amount was based on the intended maximum single field application rate of 1.825 kg Antraco per hectare. 400 µL of application suspension were applied dropwise onto the soil surface of the respective equilibrated test systems using a pipette. The application was performed with contraous sturing of the application suspension using a magnetic stirrer.

After application, the test vessels (except DAT-0.06 samples) were fitted with trap attachments and placed into a temperature-controlled walk-in climatic chamber for incubation. The soil moisture was maintained since water loss from evaporation (determined by re-weighing of flasks) was replaced after 28 and 35 days of incubation. Soil microbial biomass was determined at the beginning start and at end of the study in untreated test systems (DAT-0 and DAT-42),

B. Sampling

Duplicate treated flasks per soil were taken and processed completely for analyses at the following sampling dates: 0.06, 0.21, 1, 3, 7, 14, 28 and 42 days after treatment (DAT).

C. Analytical Procedures

Prior to opening an incubated test system for processing of soil, volatiles possibly still present in the head space of the test system were purged into the trap attachment. Afterwards the trap attachment, was removed and the soil was extracted completely. The soil was extracted three times at ambient temperature, two times using acetonitrile / water of 1 (v/v) and one time using acetonitrile. Forther, two microwave-accelerated extraction steps were performed using acetonitrile / water 1/1 (v/v) at 70 °C. This entire procedure was adequate to destroy all polymeric residues of [¹⁴C]-Propineb contained in a soil sample.

The amount of volatiles and non-extractable residues was determined by LSC and combustion/LSC, respectively (for more details see section 3.6.2 of report). Depredation products were identified by cochromatography with reference compounds and the methods described in more detail under section 3.6.2.4 of report.

III. RESULTS AND DISCUSSION

Results indicated that the anticipated standardized actobic laboratory conditions were maintained during the entire incubation period in the dark. The mean incubation temperature was 19.7 °C; the soil moisture was maintained on average at 54.2% of MWHC (ann. 5327%, max. 55.0%).

Determinations of microbial biomass demonstrated that the used soils were microbial viable. Under the conditions of a aboratory experiment a decrease of microbial biological activity is inevitable due to the absence of any further anondment of nutrients. Continued microbial respiration of nutrients in soil causes finally a lack of reactily disestable organic matter.

A. Data

The amount of applied less item for the degradation samples was determined to be 359.55 kBq (equal to 470 μ g of test item) with a RSD of 0.7%, and this was set to 100% of applied radioactivity [% of AR]. It was confirmed that the application suspension remained homogeneous during the application procedure.

All calculations for radioactivity (as % of applied adioactivity) in the four soil and the respective trap attachment for volatiles are disted on Table 7.1.1.4 to Table 7.1.1.1 to Table 7.1.1 to Table 7.1 to Table 7.1

Complete material balances found at all sampling intervals for each soil demonstrated that there was no significant loss of radioactivity from the test systems or during sample processing. Mean material balance was 98.2% of AR (range from 95.7 to 100.6% of AR) for soil AX, 98.3% of AR (range from 95.1 to 100.6% of AR) for soil HF, 99.3% of AR (range from 96.6 to 101.4% of AR) for soil HN and 98.0% of AR (range from 95.7 to 100.6% AR) for soil DD.

Table 7.1.1.1- 3:	Material balance of radioactivity in soil	AXXa under aerobic	
	conditions (expressed as percentage of appli	ied radioactivity, % AR)	ð

	•	-		-	-							-Q
	Ren			DAT (I	Days aft	ter trea	tment)	~	<u> </u>		, S	°O"
	Kep.	0.06	0.21	1	3	7	14	28	42	Á	W 1 A	()
Volatiles												ř.
	А	n.a.	0.1	0.7	3.4	9.6	22.6	∕ ∰9.0	44.3	, O ^v	, Q'	×,
Carbon Dioxide	В	n.a.	0.1	0.8	3.00	9.3	22.6	40.0	43.6			Ŝ.
	Mean	n.a.	0.1	0.8	3.3	9.5	2226	39.5	4420	, Ş	Í D	, A
	А	n.a.	< 0.1	< 0.1	₹0.1	< 0.1	\$0.1	< 0.1	ð 0 .1	Ŵ		×
Volatile Organic	В	n.a.	< 0.1	< 0,4	< 0.1	< 0.1	<0.₿	°< 0,1	ر الح 0.1	4	0	Ś
Compounds	Mean	n.a.	< 0.1	<i>₹</i> 9.1	< 0.1	\$0.1	≪ 0.1	< 0.1	≤0 1	Ŷ,		, jî
	А	n.a.	0.1	0.8	Q3.4 🗸	≈9.6	22.6	≪3⁄9.0	A.3	۶Ŋ	K,	
Total Volatiles	В	n.a.	0,1	0.8	3.2Ô	9.3	22.6	40.0	43.6	\$ 6	A,	(,°
	Mean	n.a.	<u>, ()</u>	`Q,8	3,3	<i>.</i> 9.5	22.6	39.5	44.0	Į.		Т Г
Extractable Residues			×		Q ^Y .	4 V	Â.	۶ ۲	<i>Q</i>	Ś	A.	
	Α	82.0	77,5	65,8	55.6	44.Ø	26.2C	7.3	5.0	F.	0	
Combined Extract	В	8 ¥.0	70.3	65%	55.5	44M	201	6.0	5,4		2	
Residues	Mean	81.5	©76.9	65.7	\$5.6	Å 4.1	26.6	6.9	\$.1	°~		
	A	18%	22.3	33.60	39.8	45.5	47.5	50.2	¥49.6	Ky –		
Non-Extractable	B	\$9.6	20.4	3€⁄9	38-5	38 8	49,7	503	48.8			
IXESIUUES	• Mean	9 <u>9.1</u>	22.3	32.7	39.2	42.1	48.6	50.5	49.2			
4	A	100;7	99.8	100	98.80	¢ 99.	96,3	96.40	98.9			
Material Balance 🔗	BO	109.6	98.8	98,4	9Z,Ž	92 [©]	98,4	97.4	97.5			
	Mean	Ô)00.6	99.3	99.2	98. 0	95. 7	97.9	\$ 6.9	98.2			
n.d.: not detected, n.a.: not a	halyzed 🗸	9 G.			1 2	ř.		, Y				
	ř. 0	Ő	Ċ	L.Y	ð	A CONTRACTOR	~~ @.					
<u>o</u>		Ġ,	1 0		Å	0	K,					
		, Ś	,	y A			10° 1					
KY . D				, Ó ^y	. K [™]	\sim						
\$°	s,	g :	°	K)	×	A'						
Q,	A		/ _ K	,0° ,^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~))						
a õ		, Ô	. 0	Ő	S.							
		S,	õ.	S.	ð							
Å					Ű							
	, Q	~,	, C									
	A.	°	Ů,									
· >	J D	¥ "	× ()×								
	, Î	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q,									
		ש*	Į,									
			Ŷ									
	N. N											
Ň pôř												
\lor												

Bayer CropScience

ВА

Table 7.1.1.1- 4: Ma	aterial ba	lance as pero	of radio centage	activit of ann	y in so lied ra	oil adioac	tivity, 9	under 6 AR)	r aerol	bic con	dition	s
DAT (Davs after treatment)												
	Rep.	0.06	0.21		3		1 <i>4</i>	28	42	Ő))
Valatiles		0.00	0.21	1	5	/	17		72	~		/
volatiles	А	n.a.	0.1	0.7	3.6	10.0	23.2.*	42.4	46.2	ŝ,	S.	,Ô,
Carbon Dioxide	B	n.a.	0.1	0.8	3(2)	10.3	23:2	43.3	46%			y ,
	Mean	n.a.	0.1	0.7	3.4	10.1	23.2	42.9	46.5	~9 [×]	L.	Å
	A	n.a.	< 0.1	$< 0.1^{*}$	∞≪0.1	< 0.1	0.1	< 0.1	₹0.1	Q,	ô ^g	K ^O
Volatile Organic	В	n.a.	< 0.1	<0.1	< 0.1	< 0.1	× < 0⊘}°	< 054	< 0.1	ľ Ĉ		Ŭ
Compounds	Mean	n.a.	< 0.1	\$0.1	< 0.1	\$0.1	≈0.1	≤ 0.1	.≺ 0 .1	Ŵ,	~~~	
	A	n.a.	0.1 %	0.7	3.6.	P10.0	23.2 *	42.4	46.2	\sim	Ś	
Total Volatiles	В	n.a.	0.10	0.8	3.D	10,30	232	43. 9	46.9	4	×	0
	Mean	n.a.	× 01	Ø.8	~3,4	10.Y	23.2	4 2.9	46.5		<u> </u>	
Extractable Residues		0		, X _ 0	×	Ç,		V d	N I	Ŵ,	A A A A A A A A A A A A A A A A A A A	
	А	78 R	72.9	63.4	535	42.6	25.Ô	5,0	3.8	× ()	
Combined Extract	В	79 .9	12.2	62.7	54.9	42%1	25.3	5.2	3	Ŝ.		
Residues	Mean	⁷ 79.2	¢ 73.0	63.0	54.2	¥2.3	25.4	Ø 5.1	Č <u>3.8</u>	° M		
	A	21.8/	24.2	35.9	42	45.8	48.7	49.	45.	0		
Non-Extractable	B	\$¥.2	.QA.6	\$5.5	A 1.6	45%	30.0	. \$0 .2	44.5			
Residues	• Mean	21.5 (6 24.4 C	35.4	41.9	45.8	Å 49.4≈	¥9.8	44.8			
	A	1002	97.2	99.¥	99. @ `	98\$3	97.4	96.9	95.0			
Material Balance 🔗	BO	J Q1.1	B 7.9	.99.0	\$9.7	98.2	98.5	\$8.7	95.1			
ŶŲ.	Mean	00.6	97.6	99. 2	99.6	Ø8.3	c. 97.9 (97.8	95.1			
n.d.: not detected, n.a.: not a	halyzed 🎸	y		Š	L.		×	2		-		
	, O	Ő	Ċ	d S	ð	S	~~ @.					
la l	*	۵, <i>۲</i>	1 2	Y a	Ş,	0	×,					
		, Ö	, O				<i>O</i> °					
ký "Ű		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	~~ ⁰ "	, <i>S</i>	2						
~?`	~~ ,	Ş ?			× .	À.						
	A		/ <u>`</u> &) N	r						
Õ, U		, Ô	, O ^V	, Ô ^y	S.							
ÂŶ Û		Š,			ð,							
				_ K	/							
		~	L.									
	Å.	Ø,		"S"								
. *	o õ	¥ ~	× Oi	1								
	, J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŵ.									
	je .	*	Ø									
	లి పి		Ŷ									
	S.											
Č ^O v												

T٤	able 7.1.1.1- 5:	Material ba	alance (expres	of radi ssed as	oactivi perce	ity in s ntage o	oil of appl	ied rad	lioacti	un vity, %	der aerobic % AR)
		D		DAT (Days after treatment)							
		кер.	0.06	0.21	1	3	7	14	28	42	
V	olatiles								, No.		
		А	n.a.	0.1	0.3	1.4	4.5	10.3 %	21.2	28.3	
	Carbon Dioxide	В	n.a.	0.1	0.3	1.50	4.4	10.8	21.4	28.6	
		Mean	n.a.	0.1	0.3	1.5	4.4	10,6	21.3	2825	3 2 4
Volatile Organic Compounds	А	n.a.	< 0.1	< 0.1	₹ 0.1	< 0.1	§ 0.1	< 0.1	0.1		
	В	n.a.	< 0.1	< 0,5	< 0.1	< 0.1	< 0,¢	°< 0,0	< 0.1		
	Mean	ng	< 0.1		< 0.1		2001	< 1 ໂ	≪ \ /1		

	Volatile Organic	В	na	< 0.1	< 0.1	< 0.1	$< 0.1^{(0)}$, < 0 ₡⊅	°<0 /b	< 0 1 ⁴	•	° L
	Compounds	Mean	n a	< 0.1		< 0.1		2001	<0,0		, Q	
		A	n.a.	01	×0.1	Q14.	~4 5	r 40 3	×912	083		L.
	Total Volatiles	B	n a	0.1	0.5	1 5Û	440	10.8	21.4	28.64	Ç	4
		Mean	n.a.		A 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A.4	10.0	218	28.5		r' ÓY
Ex	tractable Residues	Ivicun					L. C. L.		<u>~~</u>		×,	
		А	58	6240	58	5000	42.2	31 7Ĉ	15.96	950	ŝ.	0
	Combined Extract	В	59.5	69.5	57.9	49.7	421	300	162	9.2	í "	1
	Residues	Mean	58.9	Q61.7	58.0	49.8	4 2.1	31.3	96.1	Å .4	° M	
		A	41.9	37.2	43.20	47.%	54.2	55.7	57.7 [°]	59.7°	\$	
	n-Extractable	B ^y	41 .0	D .4	4\$%.0	4% 1	52.9	585	60.9	61.3	Ø	
Re	siuues	• Mean	41.5 ¢	37.3 A	43.1	.48.5	53.6	57.1	\$9.3	60.5		
	4	A	1002	99.3	101	99.30	100%	97,7	94,70	97.5		
M	aterial Balance 🖉	BO	100.5	98.9	1.01.2	100.3	99.4	100.3	984	99.2		
		Mean	000.3	99.1	101.4∝	99.8	£00.1	√99.0	<i>@</i> 6.6	98.3		
n.d	.: not detected, n.a.: not a	nalyzed 🎸	4 G.	\sim		n a	ř.		, Y			
		, O	Ő	K.		ð	AN'	a,				
	à d'	≪ .		s à		The second secon	0	K)				
			, Ś	,» (y Q			10°				
	Ϊ, Č			, Cr	~0 [×]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	S,	~~ _	ç v	°	K)	× .	A'					
	Q .	A		/ _ K	° ~),					
			[°]	. 8	, Ô ^v	Ì						
	~Ç~ U	×° '	S.	ð.	Ś	ð						
	A /	,			Ì L	Ŵ,						
		? Q	▲.									
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A.	The second secon	Ű,								
	× ∕	Ô, Ô	Y ^	¥ (0	)×°							
	a C A S	. Í		Q,								
			\$°	Į,								
				Ş								
4		A A A A A A A A A A A A A A A A A A A										
	$\cup$											

Cable 7.1.1.1- 6:       Material balance of radioactivity in soil       under aerobic conditions												
(ex	pressed	as perc	centage	e of ap	plied r	adioac	tivity,	% AR	.)			ð
	Por			DAT (I	Days aft	ter trea	tment)				Š	S.
	кер.	0.06	0.21	1	3	7	14	28	^{)*} 42	Å	Ŭ (	Ś
Volatiles	-							<i>O</i> ^r				
	А	n.a.	0.1	0.3	2.4	5.8	22.7 🖋	<b>3</b> 4.0	40.1	Ŏ		Ŝ
Carbon Dioxide	В	n.a.	0.1	0.3	2.00	5.4	21.4	35.5	39.6	Ĵ 🏻	× × ô	Ş [°] .
	Mean	n.a.	0.1	0.3	2.5	5.6	2201	34.7	3929	- SP	Ň	. 6
Volatile Organic	А	n.a.	< 0.1	< 0.1	₹ 0.1	< 0.1	<b>(</b> \$0.1	< 0.1	Ö ^{0.1}	, Q	e o v	
Compounds	В	n.a.	< 0.1	< 0,7	< 0.1	< 0.1	/< 0.0	<0.€	< 0.1×	\$ 1		ý
	Mean	n.a.	< 0.1	<i>&lt;%</i> 0.1	< 0.1	<u>&lt; 0.1</u>	<0.1	< 0.1 [°]	$\leq 0.1$		, <u>~</u> ~	
	A	n.a.		¥ 0.3	Q2.4	~5.8	22.7	<b>%3</b> /4.0	40.1	e na se	.4	
Total Volatiles	B	n.a.	0.1		2.50	5.4%	21.4	35.5°	39.6 ⁴	Y L		, ° 1
Extra atabla Dasiduas	Mean	n.a.	<u></u>	NI3		<u>5.6</u> "	22.1	34.5/	39.9	, Ŵ	A	
Extractable Residues	٨					× / 17 3%		/¥	Ê.		Ő	
<b>Combined Extract</b>	A B	693%	63(0)	60,8	55.25	4/.5	20.6C		• 4.4 ( 1 1		2	
Residues	D Mean		6 <u>2</u> .0	62.9	33.1	4/35	20%					
	A	31%	33.6	<u>7%01.9</u>	33.3	46 4	2533	53 A	<b>9</b> .3	×.		
Non-Extractable	B	003	35	30.00 24.8	40.7	466	52.7	53.4 «	52 0	) [°]		
Residues	, Mean		343		- 41 5	46 5	253 3		\$1 5			
	A	10121	98	99%6®	98.60	^{\$} 99.4	96.6	95.2	95.6			
Material Balance 🔍	BO	109.1	97.1	160.0	96.3	999	974	96(3)	95.8			
	Mean	200.6	97.9	100.3	<b>9</b> 7.4	<b>\$</b> 9.3	<b>.97.0</b>	<b>A</b> 5.7	95.7			
n.d.: not detected, n.g.: not a	halyzed (	y			j 2	r Q						
	° O	Ő	K.O	J.	ð	A A A A A A A A A A A A A A A A A A A	~					
<u> </u>	K,	Ò,	× ۲	S.	S.	0	K,					
		Ì Ö	,» (	y Q			l de la companya de					
ký "Ô			Q°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, s							
\$°	Ś,	Ş.	°	×Ú m	× 0 ×	L.						
Ę,	A É	)				Y						
S	× _O r	Ň	~0 ⁷	, O ^V	. Or							
4		× .	9 ⁷ /		$\hat{\mathcal{O}}$							
à la construction de la construc	b a	Ĩ			1							
	, · · · · · · · · · · · · · · · · · · ·	$\searrow$	A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	S :	y '	Q ^	Ş ⁷								
	·0 ~0	) _O	Á	J								
A A		<i>S</i>										
	. Å		Ş									
	U N											
N & A	Ŝ											
	~											
Õ												

e 7.1.1.1- 7: Residu aerobi	ies of ¹⁴ C-I c condition	Propinel 18 (expr	b in extr essed as	act of s % of A	oil R; mea	n ± SD)	AXXa	under	Ô
	Mean			DAT	(Days af	ter treat	ment)	Ć	
Compound	SD	0.06	0.21	1	3	7	× 14	28	(A)
ו י ת	Mean				NT 4	 1_1		S :	
Propineb	SD			Ĉa	Not me	asurapie		× ×	
DOI 1	Mean	1.1	< LOD	T.0	< LOD	ື 0.7	< LOD	< 400 D	<i>≨</i> ₿ÓE
KOLI	SD	$\pm 0.0$		¢ ± 0.1		$\pm 0.1$	× ×	Ñ.	
POI 2	Mean	< LOD	1.0	1.0	<b>6</b> 27	G1.3	K LOD	< LOD	<LOE
KOI 2	SD		\$20.0	_± 0.1	10.0	$\pm 0.1$		, L	Ś
PU	Mean	7.1	15.4	30.0	11.1	28.5	Q5.9	≈1.4	0.7
(ROI 3)	SD	$\pm 0.0$	±0.4	<b>₽</b> 1.4	0.4	© <u>⊥</u> 2.3	± 2.2		±¢1
ROI 4	Mean	0.8	<b>0</b> .7 ~	ح¢ 1.0	< LOD	< rule l'and	< KOD	< ÎÕD	<b>STOD</b>
Rori	SD	$2 \pm 0.2$	$\pm 0.0$		×,	ð,	Û í	Ç [×] C	
PTU	Mean	313	26.0	لم \$0.2 €	98.8	ڳ 4.4	3.4	LOD	< LOD
(ROI 5)	SD/	2.4	¢±2.4 (	) ± 1.65		± Ø3	±Q.7	ັ≌∕0.0	
ROI 6	Mean		1.40	<b>k</b> .6	Ŕ	< LOD	& LOD	≮ LOD	< LOD
	[™] SØ	0.0±	<b>▲</b> 0.1	@± 0.3	*≠ 0.1°∧		, Ôg		
ROI 7	Mean	\$LOD	¢ 1.3 (	2.2	0:9/*	< <b>B</b> OD	<i>≦</i> ¥OD	< LOD	< LOE
×.	SD Q	0	±01	± <b>9</b> .0	\$∕0.1 (		9		
Propineb-DID	Mean	2 <b>3</b> .3	<b>.</b> € <b>8</b> .3	^{~8.0}	13.20	0.89	< LOD	< LOD	< LOE
(ROI 8) (%	`∕\$\$D	≈ 2.4	± 1,5×		±4%2	×9.0			
RØF9 Q	O Mean	1.6	13	≦ LOD	<b>51.1</b>	'≈LOD	< LOD	<lod< td=""><td>&lt; LOE</td></lod<>	< LOE
	J SD	$\pm 0.5$	¥ 0.1 4						
ROI 10	Mean /	o≪ LOD∘		< Logo	STOD	< LOD	< LOD	< LOD	< LOL
	J Man				1.2	1.2	LOD	<10D	
ROI 115			$\binom{1.0}{+2.0}$	+	+ 0.2	+0.3	LOD	< LOD	< LUL
	A Mean	< 1000	< 000		< I OD	<10D	<100	<100	14
RQI 12 0	an an					LOD	, LOD	, LOD	+0.4
4 Mathyl imidazalista	Mean		75	59	4.2	3.0	31	0.7	< LOD
(ROI 13)	st	+		+0.1	+0.3	+0.2	+74	+0.1	

n.a.: not analyzed; SD: standard deviation; ROF region of interest set for analysis LOD = 0.6% of AR

e 7.1.1.1- 8: Resid cond	dues of ¹⁴ C-F itions (expre	Propinel essed as	b in extr % of Al	act of s R; mear	oil n ± SD)	u	nder ae	robic	Ő
	Mean			DAT	(Days af	ter treat	ment)	Č	
Compound	SD	0.06	0.21	1	3	7	14	28	(AP)
Propineb	Mean SD			<u> </u>	Not me	asurable	%		
ROI 1	Mean	0.9	< LOD	<b>\$0.9</b>	< LOD	1.0	< LOD	<40D	S. POE
KOI I	SD	$\pm 0.1$		$\neq 0.0$		$\pm 0.1$	× 0	Q.	
ROI 2	Mean SD	LOD + 0.0		1.1 + 0.1	ି%7 >+0 ଭ	$2^{1.2}_{+0.1}$	$\sqrt[6]{0.8}$	< LOD	
PU	Mean	7.9	¥ 19.5	34,1	14.4	32.1	-010 -018.6	×1.0	< LOE
(ROI 3)	SD	$\pm 0.3$	±0.4	<b>₩</b> 0.2	€ 0.5	40.0	± 0.0	$\pm 0.0$	
ROI 4	Mean SD e	0.7 ©±0.0	$0.8 \\ \pm 0.4$	¥1.1 ℃ ±060	< LOD	< r@)	< kOD	< ÊŎD	<b>Ç</b> LOE
PTU	Mean	2752	20.8	£.5	915.4°	<del>ک</del> 1.2 څ	0.8	< LÔD	< LOD
(ROI 5)	S₿⁄	og 0.2	©± 0.2 €	$r \pm 0.3$	$\pm 0.0$	± Oĭ	±00.1	×	
ROI 6	Mean [®]	1.0 $\pm 0.0$	1.80°	1.5 ~ 0.0	₽3 ≶≠ 0.0°∧	< LOD	C LOD	✓ LOD	< LOE
ROI 7	Mean SD Ø	& LOD	\$ 1.6 ±05	2.1 ∿ ∉ 0.1	1%2	± 0.0.	, ≾¥OD	< LOD	< LOE
Propineb-DID		2 <b>5</b> 9.6	\$7.1 + 0.3	6.7 + 0%	$12.7^{\circ}$	< LOD	< LOD	< LOD	< LOD
RØF9 S	Mean SD		2,Y		1.5 + 0.1	≪LOD	< LOD	< LOD	< LOE
ROI 10	Mean (		< LOD	< L CD	<lod< td=""><td>&lt; LOD</td><td>&lt; LOD</td><td>&lt; LOD</td><td>&lt; LOD</td></lod<>	< LOD	< LOD	< LOD	< LOD
ROI 11	Mean	2 DOD	×1.0	V 0.9	0.9	1.0	0.8	LOD	< LOD
	, SSD ,		$\pm 0.1$	±04	± 0.7	$\pm 0.7$	± 0.4	$\pm 0.0$	
$\mathbf{ROP}$ 12 $\mathbf{C}^{V}$	Mean	< LOD	, ©ÓD	<i>≮</i> ¢COD	< LOD	< LOD	< LOD	< LOD	1.1
(	<u>S</u>	Ri a	8	J.					± 0.1
4-Metryl-imidazoline	Mean C	8.9		3.8	2.7	1.5	< LOD	< LOD	< LOD
(KUI 13)	SD>	±∕♥.3	s,≞∕1.0	$\pm 0.1$	$\pm 0.2$	$\pm 0.9$			

n.a.: not analyzed; SD: standage deviation; ROT regime of interest set for analysis LOD = 0.6% of AR

able 7.1.1.1- 9: Resi	dues of ¹⁴ C-F	Propinel	o in extr	act of s	oil		un	der aer	obic _。
cond	litions (expre	essed as	% of A	R; mear	n ± SD)				
Compound	Mean			DAT	(Days af	ter treat	ment)	Ĉ	y o
Compound	SD	0.06	0.21	1	3	7	> 14	28	49)
Propineb	Mean				Not mea	asurable		Ŝ,	ST 0
	SD		1	<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Y N	
ROI 1	Mean	0.9	< LOD	<b>A</b> ¢OD	< LOD	ຍ້ 0.7	< LOO	< TOD	< <b>₽</b> ŎD
Rorr	SD	$\pm 0.0$		1	V	$\pm 0.0$	Ŵ	Q, (	\$ &
DOI 2	Mean	0.7	0,4	1.0	<i>₽</i> ₽ ₂ 7	چ 1.2	چ 1.0 ک	< LOB	< LOB
KOI 2	SD		<i>\$</i> 0.0	$\pm 0.0$	$1 \pm 0.0$	$1\pm0.0$	±0,1	Â.	
PU	Mean	10.4	y 25.2 🎗	32,00	20.3	30/8	£2.2	°¥0.2	[©] 4.1
(ROI 3)	SD	$\pm 0.1$	± 0.9	÷9.3	0.7	Ô¥ 0.1	0.5	$\pm 0$	± Q, l°
	Mean	<i>*</i> 0.7	<b>0</b> .7 A	1.2	0.7	< Ľ	LOD	< DOD	LOD
KOI 4	SD	$\mathbb{Q}_{\pm}^{*} 0.0^{\circ}$	$1 \pm 0 d$	$\pm 0.1$		L.	Ő.	¢ ć	N.
PTU	Mean	175	1123	£.9 ,	Ø9.1 💉	ۍ 1.1 څ	0.7	< LØD	< LOD
(ROI 5)	SB	读 0.3	ُ∂± 0.4 گ	$= \pm 0.1$	$\pm 0.3$	±	±0.0		
	Mean	0.8	1.2	Q.8	<u>P</u>	< POD	OLOD	< LOD	< LOD
KOI 6	SR (	±	£0.0	÷ 0.0	$\sqrt[6]{\pm 0.0}$	Ŗ , Q	0 æ		
DOL 7	Mean	& LOD	LOD	0.8_%	< LQD	-909 ⁹	<b>0</b> .7	< LOD	< LOD
ROI /	SD 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\pm 0.0$	& u	± 0.1	Ô∰ 0.0		
Propineb-DID	Mean	12.0	JA.3	\$ 5.9	[©] 9.1 ©	1.0%	0.7	< LOD	< LOD
(ROI 8)	5 ⁵⁷   2~580 ·	QH 0.2	$\pm 0.5$	$\pm 0 $	$\pm 64$	_±Ø.0			
	Mean	4.	3.0	1.8	\$2.4	≪LOD	< LOD	LOD	< LOD
KOG Y	× SD	± 0.0	Q 0.1	$\bigcirc \pm 0.0$	10.10				
Shot to	Mean	\$⇒LOD €	LOD	< L@D	< LOD	0.7	1.1	1.1	1.1
KOI 10 O	SD 🖉			V.	0 ^y	$\pm 0.1$	$\pm 0.0$	$\pm 0.0$	$\pm 0.0$
POL 11	Mean	, OD	KLOD &	K LOD	0.8	1.0	0.9	0.8	0.8
	SD *		pr 0 	Č.	$\pm 0.6$	$\pm 0.7$	$\pm 0.2$	$\pm 0.0$	$\pm 0.0$
natio ×	6 ^D Mean	< LOD	<b>I</b> OD	<b>€</b> COD	< LOD	LOD	< LOD	< LOD	< LOD
	SD SD		¢Ž	<b>&gt;</b>					
4-Metryl-imidazoline	Mean @	7.9%	4.6	4.1	3.5	2.6	1.5	< LOD	< LOD
(ROI 13)	, SĐy	±0.4	<u></u> 0.3	$\pm 0.1$	$\pm 0.1$	$\pm 0.7$	$\pm 0.2$		

n.a.: not analyzed; SD: standard deviation; ROP: region of interest set for analysis LOD = 0.6% of AR

Table 7.1.1.1- 10: Resid	lues of ¹⁴ C-F itions (expre	Propinel essed as	b in extr % of A	act of so R; mear	oil 1 ± SD)		under a	aerobic	¢°.
	Mean			DAT	(Days af	ter treat	ment)	Ĉ	N A
Compound	SD	0.06	0.21	1	3	7	× 14	28	A P
Propineb	Mean SD		•	<i>₽</i> ₽	Not mea	asurable	5		
ROI 1	Mean SD	< LOD	< LOD	TOD (	0.8 ± 0.9	LOD	< LOD	<400D	s S [™] &
ROI 2	Mean SD	< LOD	0.9 \$0.0	< LOD	$\mathbb{R}_{3}$ $\mathbb{P}_{\pm} 0.0$	$2$ $1.3$ $\pm 0.0$	K LOR	< LOD	< LOD
PU (ROI 3)	Mean SD	$17.6^{\circ}_{\bigcirc}$ ± k4	¥ 27.1 ±0.7	155) #Ĵ.1	42,2 () 0.3	35.9 ⊈ 0.7	€7.4 ⊕±0.2	[∞] 1.0 ± 070	0.7 ± (0,0°
ROI 4	Mean SD	< POD.			< LOD	< r@)	< kOD	< LÕD	LOD
PTU (ROI 5)	Mean SB	29 <b>53</b> 27 1.9	\$\$.4 ©± 0.0 ℃	26.1 > ± 1.95	1.3 $\pm 0$	) 1.1 5 ±00	1.8€ ±00.0	0.9 € € €	< LOD
ROI 6	Mean [®] SIQ	1.4 ±0.0	0.70 - 0.0	]¢.2 ≈≠ 0.1	< QOD	< LOD		K LOD	< LOD
ROI 7	Mean SD Q	0.0	2.3 ±01	1.1 × ¢.2	2%) %/0.1	< <b>A</b> OD	< ₽OD	< LOD	< LOD
Propineb-DID (ROI 8)	Mean SSD	€/3 ↓± 1.4	53.3 ± 0,19	€ ⁶ 8.2 ±1.9	< LOID	< LOD	< LOD	< LOD	< LOD
R@P	Mean SD		₽ 0.1 ¢	© ^{1.4} ©± 0.2 €	S LOD	<b><i>∜</i>LOD</b>	< LOD	< LOD	< LOD
ROI 10	Mean SD		< LOD	< T QD	< LOD	< LOD	< LOD	< LOD	< LOD
ROI 115	Mean SD		1.1 $\pm 0.5$	≠ 1.2 ± 00	0.8 $\pm 0.7$	1.9 ± 0.2	4.4 ± 0.6	1.2 ± 0.1	0.9 ± 0.0
RQ 12 0	C Mean	< IOD	\$_0.6 \$≠1.4	$\widetilde{\mathcal{Q}}_{1.2}$ $\widetilde{\mathcal{T}} \pm 0.0$	$1.1 \pm 0.7$	< LOD	< LOD	< LOD	0.7 ± 0.1
4-Menyl-imidazolino (ROI 13)	Mean C	6.2 ±0.8	3,2 ,⊋0.0	3.1 ± 0.2	1.9 ± 0.4	2.8 ± 0.1	< LOD	< LOD	< LOD

n.a.: not analyzed; SD: standard deviation; ROI . region of interest set for analysis

# Method Validation B.

Due to its population propineb is practically insoluble in water and in organic solvents. Since the polymere Propineb shows decomposition, i.e. if water is present, any observed solubility is caused by degradation but not by dilution. In consequence, the parent compound probineb cannot be analyzed itself. The case valid values of its content are to be determined it must be guaranteed that the entire Propineb polymer still present in a sample is degraded to products which are soluble and can be measured.



## 1. Verification of Sample Processing Method

For the test item investigated in the current study a recovery, even shortly after the treatment of soils, cannot be given. Therefore, the overall mass balance and the distribution pattern of products received during the study (based on LSC and radio-TLC analysis data) are regarded as the important quality parameter for this study. Those results demonstrated that the sample processing method (see Figure 3) was gentle enough to recover quite short living degradates for a distinct period of time.

Further, the method was adequate to destroy the total amount of polymeric Propineb still present in a soil sample at the respective sampling interval. However, since the primary degradates of polymeric Propineb are highly reactive species the quick formation of comparatively high portions of NER of cannot be avoided in any natural soil environment containing water

# 2. Verification of Chromatographic Procedures

A two-step radio-TLC method was used for data evaluation since experience was made that any concentration procedures (as needed prior to the use of radio-HDLC methods) did have an impact on the product pattern observed. A good selectivity and reproducibility demonstrated the suitability for separation and quantification of the major components of soil extracts. Representative TLC profiles showing the separation of degradation products can be found in Figure 4 to Figure 7 other report.

The TLC limit of quantification (LOQ) for a single peak in the combined organic extracts was < 1% of applied radioactivity (0.6% of AR, see Section 3.7.4.2 of rep. 1.

Investigations were performed in order to confirm the results of the radio-TLC method with reversed phase radio-HPLC as second oparation method. However, this was neither successful nor reproducible due to the need for concentrating the extract solutions. In principle, the metabolites itself could have been also analysed and verified by radio-HPLO, but for that a much higher concentration range of solutions and less content of matrix components would have been needed.

# C. Degradation of Test Item

A synopsis of biotransformation of Profineb in aerobar soil is shown by <u>Table 7.1.1.1 - 1</u>, and the results were included in the proposed pathway of degradation in soil (see Figure 7.1.1 - 1).

More detailed data (expressed as percent of applied radioastivity) mean  $\pm$  SD) are summarized for soil in <u>Table 7.1.1.1-8</u>, solution in <u>Table 7.1.1.2</u>, for soil <u>Table 7.1.1.1-9</u> and soil in <u>Table 7.1.1.1-9</u> and

# Volatiles, i.e. Mineralisation to CO2

The maximum amount of carbon dioxide was 44.0, 46.5, 28.5, and 39.9% of AR at study end (DAT-42) in soil AX, HF, HN and DD, respectively. Formation of volatile organic compounds (VOC) was insignificant as demonstrated by values  $G \le 0, 1\%$  of AR at all sampling intervals for all soils.

# Test Item and Degradation Products in Soil Extracts

Until study termination (DeT-42) extractable residues decreased to 5.1, 3.8, 9.4 and 4.3 of AR in soils AX, HF, HN and DD, respectively.

Degradation of Propineb was accompanied by the formation of four major degradation products with the following maximum amounts observed: PTU with 31.3% of AR in soil AX at DAT-0.06, PU with 42.2% of AR in soil DD at DAT-3, Propineb-DIDT with 25.6% of AR in soil HF at DAT-0.06, and 4-methyl-instazoline with 11.7% AR in soil AX at DAT-0.06. The compound propylene diamine (PDA) could not clearly be co-chromatographed with zones ROI 11 or ROI 12, a very polar peak area of chromatograms; if at all present it accounted for max. 1.6% of AR in soil DD at DAT-0.21, only.



# **Non-Extractable Residues**

Non-extractable residues (NER) quickly increased in all soils, slightly declining until DAT-42 (and of study). In soil AX the NER increased to max. 50.5% of AR at DAT-28, slightly declining to 49,2% of AR until DAT-42. In soil HF the NER increased to max. 49.8% of AR at DAT 28, declining 44.8% of AR until DAT-42. In soil HN the NER increased to 60.5% of AR until DAT-42. In soil DD the NER increased to 53.7% of AR until DAT-28, slightly declining to 51.5% of AR at the end of study.

# **Kinetic Analysis of Data**

Propineb is very well degradable is soil, which is shown by the rectifing data of study file. compare Table 7.1.1.1-3 to Table 7.1.1.1-10). However, in order to describe its metabolic pathway, and destruction method necessary for measuring the total residues of polymeric (propare  $1^{-14}$ C)Propineb (e.g. by the CS₂-method) could not be used for processing the treated soil samples. Therefore, since the starting point of the polymer degradation is not to be defined, this study cannot be kinetically evaluated with the usual tools for parent compound degradation, and DC₅₀ and DT₉₀ values cannot be given for the test item Propineb.

Available Propineb  $DT_{50}$  data (also considering literature data) result in a range between <0.5 to 6 days, highly depending on soil type, soil moisture and remperature. This range is well confirmed herein by comparatively high proportions of short living metabolites observed in the current study until day 3 in each soil (e.g. sector the findings of Propineb-DIDP and PTU). Obviously, this is caused by a fresh formation during the extraction procedure via destruction of Propineb polymer still present prior to sampling and extraction. Lateron, the majority of polymeric [propane)  $1^{-14}$ C]Propineb has been degraded until sampling time, since Propineb-DIDT and PTU, dissipated as fast as it is expected from their short  $DT_{50}$  in soil. These  $DT_{50}$  in soil could be determined by metabolite degradation studies performed with the metabolites dosed as individual test items to soils (see later in section <u>CA 7.1.2.1.2</u>).

# Degradation Pathway

Based on the results of current study, combined with findings from metabolite degradation studies described under section (A 7.1, 2.1.2, the proposed pathway for the degradation of [propane-1-1⁴C]Propines in soil under aerobic conditions presented by Figure 7.1.1-1. Thereby, the following processes are involved (A 7.1.2.1.2.)

- Formation of Propinet-DIDT from Propinet
- Formation of 4-methyl-inndazoline from Propineb of from Propineb-DIDT. Now, it is <u>not</u> any longer regarded as a terminal metabolite poposed in an earlier pathway of degradation. This proposal is confirmed by the fact, that 4 Methyl-imidazoline was never found in the route of degradation studies performed with PTU and PU
- Formation of PTU from Propineb or Propineb DIDT
- Æ formation of W from TU
- Mineralization (¹⁴C-carbon diox de formation)
- Formation of non-extractable residues (¹⁴C-NER).

# IV. CONCLESSIONS

Investigation of the route of degradation showed that Propineb is well degraded and mineralized in soils incidented under standardized aerobic laboratory conditions in the dark. The quite fast degradation leads to four major degradation products in soil with the maximum amounts shown in Table 7.1.1.1- 1, all of them found at rather early sampling intervals. Until study termination (DAT-42) extractable residues decreased to less than 10% of AR in all soils. ¹⁴CO₂ up to 46.5% of AR was



trapped until the end of study. Non-extractable residues (NER) quickly increased in all soils up to 60.5% of AR, slightly declining until DAT-42. A quite similar behavior observed in the metabolite degradation studies indicates that the NER formed from the parent is a major part of its entire route of degradation in soil, thus NER formation is not caused by an inadequate extraction of parent from the soil matrix.

Propineb and its residues will be well degraded in aerobic soils if kept under usual moist conditions. Formation of significant amounts of non-extractable residues and carbon dioxide indicates a participation in the natural carbon cycle of soil and the potential for a complete mineralization of Propineb. From this study it is concluded that Propineb and its residues have no potential for accumulation in the environment. The outcome is included in the summary of the degradation cates of Propineb and its major degradation products in soil in the laboratory given in section CA - 1.1 and Figure 7.1.1-1.

Due to the fast degradation of Propineb and its merabolites observed under standardized laboratory conditions, no field dissipation or rotational crop studies are required.

***

Further new degradation studies performed with respective radiolabelled degradation products in soils were listed and summarized under Section  $(\sqrt{7.1.2.1.2})$  (Aerobic degradation of metabolites, breakdown and reaction products). However, from their results on occurring degradates, valid information on the overall route of Proprieb degradation in foll was received as well, and as such they were included in the proposed new route of degradation of Proprieb in soil given in section (CA 7.1.1) and Figure 7.1.1-1.

# CA 7.1.1.2 Anaerobic degradation

The route of degradation of Propined in soil under anderobic conditions in the laboratory was evaluated during the Annex Pinclusion (compare EU Monograph Annex B7). In conclusion the following was stated at the second state of the second state of

The degradation of active substance in the saturated Zone was not to be studied since Propineb is not expected to reach the saturated Zone after its use according to good agricultural practices.

Just the following study on the terminal and well water soluble metabolite PU is included in the Baseline Dossier (2-009496-01) which was regarded as relevant during the Annex I inclusion:



Summary of stady performed by

1999:

Under the experimental conditions used in this study PU disappeared slowly from the system with a DT of 334 days from the sediment and with one of 130 days from the aqueous phase. A total of three radioactive zones along with that of the starting compound PU (M02) were detected on the TLC plates. None of the individual radioactive zones accounted for more than 6% of the applied amount of radioactivity. One metabolite accounting for 2.3 and 0.3% in the samples from day 121 was identified as PDA (M04).



No additional studies are submitted within this Supplemental Dossier for the Propineb renew of approval. A summary of the route of degradation of Propineb in soil is given in section CA 7.4 and Figure 7.1.1-1.

## CA 7.1.1.3 Soil photolysis

The route of degradation of Propineb under soil photolysis conditions in the laboratory was evalua during the Annex I inclusion (compare EU Monograph Annex B7) Oh conclusion the following w stated:

The degradation of Propineb under soil photolyses conditions in the laboratory is not of relevance due to its rapid degradation in the dark. Therefore, sunlight is not expected to be a relevant route of degradation for Propineb after its use according to good agricultural practices.

Just the following study on the terminal metabolite PU is included in the Baseline Dossier which was regarded as relevant during the Annex Linclusion:

Report:	;1299;M-00623501
Title:	Photolys& of propylencarea (SU) or Coil stataces O 🔗 🔬
Report No:	FM77
Document No:	M-006235-64-1 ,
<b>Guidelines:</b>	-/-> deviation not opecified
<b>GLP/GEP:</b>	Xes A B A O & A B
Summary of stud	V performed by W. 1999: V S

# Summary of study performed by

Under the exposimental conditions used in this study (15 days of irradiation in a Suntest apparatus corresponded to a total calculated maximum photo-period of 24.7 days under the extreme solar conditions; soil maisture was maintained at 40 % of the MWHC) the test item PU disappeared

with DTS value of 6 days, while the dark controls it was degraded with a DT₅₀ of 12 days. During the test period of 15 days an appoint equivalent to 13% of AR was mineralised to carbon

dioxide in the irradiated samples. This proportion was similar with 11% in the case of the dark controls. The percentage of non-expacted radioactivity increased from 25% at the beginning and reached after \$5 days 60 and 56% in the irradiated and dark control samples, respectively. The recovery of radioactivity of individual samples ranged from 90 to 107 %.

Based on these results it is obvious that photoecomposition is of minor importance for the dissipation of PU (M92) on soil.

No additional studies are submitted within this Supplemental Dossier for the Propineb renewal of approval. A summary of the voite of degradation of Propineb in soil is given in section CA 7.1.1 and Figure 7

## of degradation in soil Rate

Propineb was degraded in soil under aerobic conditions in the laboratory (see section CA 7.1.1 before  $\mathcal{C}$  field dissipation studies were not performed and not required. The kinetic models and  $DT_{50}$ values in soil of Propineb and its major degradation products used for modelling purpose and trigger **BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

evaluation (best-fit) as well as the formation fractions in soil for major degradation products are summarized in sections CA 7.1.2.1 and CA 7.1.2.2.

Modelling input values for the calculation of predicted environmental concentrations (PECs) of Propineb and its major degradation products in soil (PEC_{soil}), groundwater (PEC_{gw}) and surface water (PEC_{sw}) were derived from studies and kinetic evaluations (acc. to FQCUS kinetics (2006)⁻¹ summarized in sections <u>CA 7.1.1</u>, <u>CA 7.1.2</u> and <u>CA 7.2</u>, and are submitted within this Supplemental Dossier for the Propineb renewal of approval.

Moisture normalization of degradation half-lives (DT₅₀) in aerobic soft was performed for Propineb and degradation products Propineb-DIDT, PTU, PU and 4-Dethyl-imidazoline, respectively, of following the recommendations by FOCUS (2000).

- Propineb degrades fast with DT₅₀ values of  $0^{-1}_{50}$  and 8.1 days.
- The DT₅₀ values for degradation product Propinel DIDD were derived from the second, slow rate constant of double first order in parallel fits and account for (5) days (geometric mean).
- PTU shows very fast degradation with a geometric mean value of 0.2 days.
- The DT₅₀ values for PU were derived from a number of relevant studies and the geometric mean value after normalization accounts for 56 days.
- The degradation product 4-Methyl-inneazoline also show overy fast degradation in soil and its geometric mean value after normalization accounts for 2.2 days

The DT₅₀ values and maximum occurrences in soil of Provineb and its major degradation products used as modelling input values for the calculation of PEC_{soil} values are summarized in Table 7.1.2-1 (data taken from 2014).

Table 7.1.2- 1:DT50 values and max. Occurrences in soil of Propineb and its majordegradates used as modelling input values for calculation of PECsoil

	Modelling Doput Parameter	Endpoint	Comment
	Propinelo D		
	DT ₅₀ in soil [days]	8.1	laboratory, worst case
	Maximum occurrence in sour [%]		worst @ase
	Repineb-DIDT 6		
	DT ₅₀ in soil [days]	ר.084&	haboratory, worst case
	Maximum occurrence in sof [%]	25.8 2	laboratory, worst case
	PTU A A A A		
	DT ₅₀ in soil [days]	^م 3.7 ک	laboratory, worst case
	Maxmanum occurrence in son [%]	· 332.5	laboratory, worst case
	DT50 in soil [ days]	<b>46.5</b>	laboratory, worst case
* ¥	Maximum occurrence in sour [%]	⁰ ¥ 42.5	laboratory, worst case
	4-Methyd-imidazoline	Ś,	
	DT ₅₀ in soil [days]	2.8	laboratory, worst case
	Mastrinum Securrence in soji [%]	17.5	laboratory, worst case
٩			

¹ FOCUS kinetics (2006): "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration", Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp.



The  $DT_{50}$  values and relevant degradation factions for Propineb-DIDT, PTU, PU and 4-Methylimidazoline used as modelling input parameter for the calculation of PEC_{gw} values are summarized in Table 7.1.2-2. The data were taken from 2014, which modelled all the related experimental data.

Table 7.1.2- 2: DT₅₀ values and degradation fractions in soil of Propineb and its major degradates used as modelling input values for calculation of  $PEC_{GW}$ 

Modelling Input Parameter	Endpoint	Comment	a y	×.	$\sim$	Ô' .O
Propineb	C	¥.	R			, d ^y
DT ₅₀ in soil [days]	0.5 🖉	The shorter	of the norn	nali <b>so</b> d labof	atory voue	s
		is used to a	count for a	i fåst formati	on of	2
		leaching the		s; this vs reg	arded as	1
Maximum occurrence in soil [%]	100 07	worst case				
Pronineb-DIDT			<u>, 9</u>		- Or	A,°
$DT_{s0}$ in soil [days]		Laboratory,	pormalis	, the second	slow rate	· ·
		constant of	Die bi-phas	ic fits for the	pathway	
		description	may be reg	arded as app	ropriate to	
		conduct exp	osaire asse	sments för g	groundwate	r
Degradation fraction from t		reacting	<del>5 8</del>	<u>~~~</u>	* %	_
(FOCUS PEARL)	$0.214 \text{ PRB} \rightarrow \text{DIBT}$	Laboratory,	average	, or or	•	
		₺ ~				_
$DT_{50}$ in soil [days]		Laboratory.	normä¥see	1. GFOmean		
Degradation fraction from -	KØ.327 PPB →ÆTU	× 0 [×]	Ky (	<u>}</u>	•	_
(FOCUS PEARL)	0.232 DIDT 2 PTU	Laboratory,	av@rage 🖗	¥		
		S Ó				
DT ₅₀ in soil [Pays]	o (95.7 5)	Laboratory,	normalised	l, GEOmean		
Degradation fraction from $\rightarrow$ to $\otimes$			K)			
(FOCUS PEARL)	$0.588 \text{ PI} \bigcirc \rightarrow \text{PU} =$		average			
4-Methyl-imidazoline						
DT ₅₀ in soil [days]	° 2.2 °	Laboratory,	normalised	l, GEOmean		
Degradation fraction from $\rightarrow t_{0}$	$0.106 \text{ PPB} \rightarrow 4-\text{MI}$	1 Descriptory	average			
(FOCUS PEARL)	9.088 DDT - 0-MI	Laboratory,	average			
		r				
A A A	59 _ 14					
	ν					
D' G A T						
Ô						



# CA 7.1.2.1 Laboratory studies

# CA 7.1.2.1.1 Aerobic degradation of the active substance

The rate of degradation of Propineb in soil under aerobic conditions in the aboratory was evaluated during the Annex I inclusion (compare EU Monograph Annex B7) and was accepted by the Entopean Commission (SANCO/7474/VI/97, 2003). The following two studies included in the Baseline Dossier (P-009496-01) were regarded as relevant during the Annex I inclusion:

Report:	:1976:M-102592-01
Title:	Mertabolism of propineb, Oneb, proylengthiourga and ethylene thiourea in
Report No:	Son) RA-726/76
Document No:	M-102592-01-2 file An Bas One Dogier under KGA 7.1.10
Guidelines:	Studies conducted in accordance with DBA guideline 90. 36 deviations not
	specified a specified a specified
<b>GLP/GEP:</b>	No of the terms of t
Report:	;1996,M-102675-02; Amended: 3996-12-19
Title:	Propineb - fate and Cehavidar in spil
Report No:	A& 1033/94 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Document No:	M-102645-02-1 3 3 2 3 4 5 6 7 6
<b>Guidelines:</b>	-, deviation of specified
<b>GLP/GEP:</b>	VYes S S S Q
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
U [*]	

In the study by **and the solution** 1976 the degradation of Propineb was investigated in two soils by a colourimetric and method, which was regarded best practice that time. The method used is not Propineb specific and, therefore, does not quantify the Propineb polymere itself but fragments immediately formed in soil. The results were summarized by a short notice, only, and the description of the soils was different from current standards; only the content of the organic carbon (2.58 and 0.57% for standard foil 1 and standard soil 2 respectively) and the pH value (6.8 and 5.5, respectively) were reported. The soils were incubated in dark in at a temperature of 20°C. Soils were incubated at approximately 11% gravineeric water content.

In general the recovery rate was just 54.2 and 66.7%, and the dissipiation was fast (see <u>Table 7.7.2.1.1-1</u>). The half-lives for the residues were estimated to be about 0.5 days (standard soil 1) and about 9 days (standard soil 2).

Table 7.1.2.1.1⁽²⁾: Degradation of Propineb (% of applied determined with non-specific Image: Cologrim etric method, by 1976)

	v	I	DAT (days))		
	1	2	4	8	15	22
Standard soil 7 5 400	24.3	5.0	n.m.	n.m.	n.m.	n.m.
Standard son 2 100	94.5	n.m	65.3	52.8	37.1	5.0

It is known from other experiments that Propineb as polymere is not stable and decomposes in case of contact to water or soil immediately. This was well confirmed in the above EU listed study by 1996, and the new study by 2014. However, both studies were

Propineb

designed as route of degradation studies, thus not adequate to derive degradation kinetics for the parent compound Propineb. Altogether, available Propineb DT_{50} data (also considering literature (ata)) result in a range between <0.7 to 8 days, highly depending on soil type, soil moisture and temperature, This range is well confirmed by comparatively high proportions of short living metabolites derved in the study by 2014, until day 3 in each soil (compare Table 7.1.1, 13 to Table 7.1.1.1-10). Obviously, this is caused by a fresh formation during the extraction procedure, via destruction of Propineb polymer still present prior to sampling and extraction Lateron, the majority of polymeric [propane-1-14C]Propineb has been degraded until sampling time, since Propineb-DIDT and PTU dissipated as fast as it is expected from their hort DT50 in soil. No additional "rate of degradation study for the active substance" is so mitted with this Ŷ Supplemental Dossier for the Propineb renewal of approval. However, updated kinetic evaluations of the degradation behaviour of Propineb in soil under acrobic conditions in the dark in the laboratory have been performed according to FOCUS kinetics (2006)¹ to derive kinetic parameters suitable for modelling purpose and environmental risk assessment (see

2014, below, and 2014, thereafter) The listed 1996 and the new study by study by 2014, are route of degradation studies. Therfore, degradation half-lives to be used in exposure calculations cannot be derived from that

the i legrade. ion rates of f re 7,12-1 and Tab the first of the second A summary of the degradation rates of Propineb and its nearon bedradation products in soil in the laboratory is given in Table 7.12-1 and Table 7.12-2.

Report:	;2014;M-486677-01
Title:	Kinetic evaluation of aerobic degradation of propineb and its degradation is products in aerobic soil according to Focus Kinetics
Report No:	EnSa-14-0472
Document No:	M-486677-01-1
Guidelines:	FOCUS (2011): Generic guidance for estimating persistence and degradation
	kinetics from environmental fate studies on pesticides in EU registration.
	Version 1.0, 23 November 2011 😵 🖉 🖉
GLP/GEP:	No ty of the second

EXECUTIVE SUMMARY

A kinetics evaluation of the relevant aerobic soil degradation studies with the fungicide Propineb and its degradation products in soil Propineb-DHDT, PSU, PO; and 4-Methyl-invidazoline has been conducted according to FOCUS kinetics gurdance FOCUS, 201) using the computer program KinGUI2. The modelling endpoint of Propineb and its soil degradation products can be used in environmental exposure assessments. The DT50 values obtained for Propineb from, /(1976) are summarized in the following table. Propineb degrades fast with DT values of 0.5 and 8.1 days.

Table 7.	1.2.1.1- 2	: Su	mmary	of DT ₅₀	E alues	før Prøj	≫ pineb≮			- Q - Q	
	Soil	2 * 1	× A	Kinetic model		Chj² epcor-%	Ó		¢DT⊊ [day]		
	Standard	soil	- Or	<u>S</u> FØ	a.	Q.9635	,× (× 0,3		
_	Standard	soft 2	L.	SFO ~	$\sum_{i=1}^{N}$	8.474	, O	e e e e e e e e e e e e e e e e e e e	8.1		
-), [°] C	S. S	¥ . W			Z.	a, y	Å.		

The formation factions of the three primar degradation products in soil Propineb-DIDT, PTU, and 4-Methyl-imidazoline were derived by means of propertional Calculation from data presented

2014, taking into account the substantial formation of non-extractable residues The respective formation fractions were derived by a simple approach using the maximum occurrence of the individual compound proportional to the sum of all primary degradation products (i.e. Propineb-DIDY, PTU and Methyr-imidazoline) including the NER at the first sampling point. The results are summarized in following Table 7.2.1.1.3. It shows that a substantial amount of Propineb is convertent to the primary degradation products accounting for a mass fraction of 0.214, 0.327, and 0.106, for Propineb-DIDT, PFU, and A-Methyl-imidazoline, respectively.

Table 7.4.2.1.1- 3	: Formation fract	ions of Propineb-DID	T, PTU, and 4-Methyl-i	midazoline (4-
×,	MI) in aerobic s	oil 🖉 📎		

Soil		Formation fraction Fropigeb-DIDD [-]	Formation fraction PTU [-]	Formation fraction 4-MI [-]
	ĎXXa →	≪0.27 <u>3</u> , [*]	0.366	0.137
		<u>ي</u> 0.308	0.327	0.107
	A ~S	0.152	0.224	0.099
		0.123	0.391	0.082
L.	Average value	0.214	0.327	0.106
Ű				

Report:	;2014;M-487355-01
Title:	Normalization of degradation half-lives in aerobic soil according to FOGUS
Report No:	EnSa-14-0582
Document No:	M-487355-01-1
Guidelines:	FOCUS (2011): Generic guidance for estimating persistence and degradation
	kinetics from environmental fate studies on pesticides in EU registration.
	Version 1.0, 23 November 2011 😵 🖉 🖉 🖉
GLP/GEP:	No the second se

EXECUTIVE SUMMARY

Moisture normalization of degradation half-fives (DT_{50}) in aerobic soil was performed for Propineb and degradation products Propineb-DIDY, PTV, PV, and 4-Methyl-invidazoline, respectively, following the recommendations by FOCUS (2000). Propineb degrades fast with DT₅₀ values of 0.5 and 8.1 days, for data on other the degradation products see respective section <u>CA 70.2.1.8</u> later.

The following study was not yet submitted within the EU, since it was not performed with EU soils, however, it was submitted in Brazil and contains supportive information well confirming the data presented in earlier Table 7.1.2.1.1.2.

	Ĵ.,	O ?	$\gamma' \psi'$	\sim					
Report:					;199	9:14-02	3¥67-01		
Title: 🔊	ŚŚ	oilbiode	egradability	of Apptra	colPecni	Ö.	D		
Report Noc	N N	[10Ž14 _/	9 A	8	O ^Y a,	n an			
Document No:	Ng	F 023 <u></u> <u>4</u> 6	7-01-4	5	× .~~	\sim			
Guidelines:	~_¶r	istitute I	Brasileiro d	to MeioA	mbiente e	ados Re	cursos Nati	urals Renovaveis –	-
	ŶII	BAMA.	Portaria N	ormativa	10, 84, of	October	15, 1996		
GLP/GEP:	S Y	és 🦉	Ų _V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŭ ô				
Q	, <u> </u>			૾ૢ૾૾ૢૺ૾૾૾૾૾૾૾ૢ					
~Q	Q	~O	\sim \sim		\gg				

EXECUTIVE SUMMARY

This study was conducted to determine the biodegradability of ANTRACOL TECNICO (Propineb) when applied to LE (Typic Hapludox), \mathcal{CR} (Rhodic Hapludox) and GH (Cumulic Humaquept) soils. This assay was carried out in Bartha biometric flasks containing 100 g of soil. Two concentrations of the active ingredient were added in four replicates, resulting in concentrations of 1.0 and 10.0 µg/g of soil. The biometric flasks were incubated at $24\pm2^{\circ}$ C in dark room for 28 days. Propineb was analyzed with the CS₂-metrod, which determines Propineb itself as well as its metabolites which are transformed to CS₂ (CS₂ desidue). Every week, the soil was sampled and the CS₂-residue was analyzed.

According to the results, for the concentrations 1.0 and 10.0 μ g/g, the extracted CS₂-residues after 28 days were 44.0 and 56.3% for GH soil, and less than 10% for LR and LE soils. The DT₅₀ for the CS₂-residue was 3.3 days for \pm soil, 9.4 days for LR soil, and 27.8 days for GH soil. It means that the DT₅₀ of Propine b itself is much shorter than the DT₅₀ of the total CS₂-residue.

The resulting data from these Brazilian soils were <u>not</u> included into the data set used for further EU risk assessment since the influence of taking acetone as solvent medium for stock solution and as solvent for

the treatment of soils is highly uncertain. As mentioned earlier just taking water suspensions of Propineb can actually simulate the behavior after treatmnent of soil under normal use conditions.

The following study was found in the public literature. It was not performed with EU soils, for contains supportive information well confirming the data presented in earlier Pable 7.1.2

		Ĉa	A.	1 . T	N R
Report:			;200 5, M-455	833-QÛ 🔬	
Title:	Persistence of man	cozeb and propineb	in soil & affected	bymoisture	regimes 0
Report No:	M-455833-01-1	A ^{O'}			e je
Document No:	M-455833-01-1			Ž . 64	
Guidelines:	_/_			´ _\` . K	j. <u>1</u>
GLP/GEP:	No				×0
				101 5	~) o

EXECUTIVE SUMMARY

The effect of moisture level on the persistence of Mancozeb and Propipeb in Sandy elay soil was studied over a period of 60 days. As the purpose of this review was to identify information on the active substance Propineb, the details in the study related to Mancozer are not discussed further. The authors did not state any specific guidefines that were followed. Sold more levels were maintained at 20, 50 and 80% of field capacity. However, the incubation conditions of soil samples were not stated in adequate detail.

Residues of propineb dissipated according to first order kinetics with a half-life of 6.5 to 7.3 days. The rate of degradation increased with increasing mojeture content (DT₅₀ values of 7.3 and 6.5 days at 20 and 80% field capacity moisture, respectively)

I. MATERIAL ND METHQDS

Details of material and methods used are provided below

1. Test material

Test item:

ropineb (no CAS no or IUPAC name or any other Active substanc identifiers specified). Chemical state and description No details specified. Source of test item. No details specified. Batch number: No details specified. Purity: Ng details specified. Storage conditions No details specified. Water solubility: o details specified. 1-Soil:

coninel

2. Soil:

Name / Classification Sampling date and storage Source conditions Soft Particle size: pH:

soil.

Soil was collected from a cultivated field of area with no history of pesticide use. Soil was air dried and sieved (2 mm) prior to use. No storage details provided. Sandy clay.

No details specified.

7.9

Organic carbon content:

0.28% (calculated from the quoted organic matter content of 0.48% by division with 0.1724).

samplir

¥i.e.

Other specifications:

Moisture content (%) at field capacity: 26.9% Cation exchange capacity (no units specified): 14.28

g soil tabe

50, 60 days.

Soil samples (20 g) were added to incubation vessels (50 ml) and to nowing treatment were incubated Soils were stored at

Lost moisture was reptaced every day by addition of water

40 Triplicate samples overe taken for each freatment type

either 20, 50 or 80% field capacity mosture

3. Soil application

Propineb 70 WP (27.14 mg) was dissolved in water (108 ml) and added to soil (2 kg). The resulting application level was equivalent to 5 $\mu g/g CS_2$ (carbon disulfide) and a market content of 20% field capacity. The bulk soil sample was divided into 20 g sub-samples which were stored in 30 m beakers

Separate whole samples

0, 5, 19, 15, 29, 25

molsture level).

fby weight).

interval.

4. Sampling

Sampling technique:

Sampling frequency:

Number of samples per site/soil type:

Storage of samples:

Other information:

5 Magguramonts

Temperature	No details specified where the second s
Soil moisture	20, 50 or 84% field capacity.
рН:	No details specified (on how measurements performed).
Organic carbon:	No details specified on how measurements performed).
6. Chemical analysis	
Guideline/protocol:	Keppet 969 ² 9971 ³ .
	The test substance was converted to carbon disulphide,
Method	trapped and quantified according to the standard method of
	Keppel (1969, 4971).
Pre-treatment of samples:	X Not required.
Conduction:	V Not required.
	The absorbance of the prepared sample versus a blank
Reference item:	Quition made up of 15 ml colour reagent and 10 ml ethanol
	was weasured at 435 nm on spectrophotometer.
Recovers?	No details specified.
Limit of detection:	The limit of detection was quoted as 0.1 μ g/g of carbon
	disulphide in soil.
Limit of quantification:	V No details specified.

² Keppel, J. 1969. Modification of carbon disulphide evolution method for dithiocarbamate residues. J AOAC 52(1):162-167.

³ Keppel, GE. 1971. Collaboration study of the determination of dithiocarbamate residues by a modified carbon disulphide evolution method for dithiocarbamate residues. J AOAC 54(3):528-532.

T 66 /

Document MCA: Section 7 Fate and behaviour in the environment Propineb

II RESULTS

1. Validity criteria: Not stated.

2. Analytical findings:

The analysis of the residue levels determined in the soil samples is presented in Table 7.1.2

Table 7.1.2.1.1-4: Effe	ect of soil moisture contei	nt on the dissipation strp:	ropineb 👡 🔬 🕺
			
	Re	ecovered residue (µg/g) as ($CS_2 \bigcirc Q' \checkmark \checkmark$
Days after treatment	Moisture	A Moisture	Moisture 🛇 🎣
	20% of field capacity	50% of field pacity	80% of field capacity @
0	4.62	4.66	Q 0 4.72 0 V
5	3.44 (25.5)	· 3.040(34.8) ~ @	2.86 (39.4)
10	2.35 (49.1)	2.76 (53.0)	1.92 (59.3)
15	1.73 (62.6)	Q.38 (20 .4)	
20	0.84 (81,8)	0.88 (81.1)	C ^y 0.75 (8€1) Û ^y
25	0.51 (89,0)	<u> </u>	[∞] 0.28 (94.1) 5 [∞]
30	0.27 (4.2) &	\swarrow \sim $BDL O $	Ê ANDL O
Half-life (days)	<u>A</u>		6.5 &

Residue levels are a mean of triplicate samples. Parentheses denotes % dissipation PDL: below detectable limit (<0.1 μ g/g as CS₂).

Initial residues were 4.62, 4.66 and 4.72 $\mu g g$ (expressed as CS₂) in soil maintained at 20, 50 and 80% of field capacity, respectively. Decetable residues persisted for 25 to 30 days.

3. Degradation kinetics

The degradation of propine followed first order kinetics with half-lives ranging from 6.5 to 7.3 days.

O

III CONCEUSIONS

The degradation of propinet in soil followed first order kinetics. The half-lives determined were 7.3, 6.8 and 6.3 days in soils maintained at 20, 50 and 80% of field capacity, respectively. The rate of degradation increased with increasing moisture content DT_{50} calues of 7.3 and 6.5 days at 20 and 80% field capacity moisture, respectively.

This study, not performed with EU soils and running at a non-defined temperature, contains supportive information since the general study design s comparable to that normally expected. However, it is not used for deriving EU enpoints since reporting details are somewhat lacking and reliability (i.e. suitable for inclusion in risk assessment) cannot be glearly demonstrated.

In general, valuable information about the non-persistency of Propineb in soil can be drawn; a reasonable range of DT_{50} of approx. one week can be given for Propineb, very well confirming the data presented in Table 7, 2.1.1, 2., earlier.

Report:			;2005;M-4594	<u>50-01</u>
Title:	Persistence of mancoz	eb and propineb in	different soils	
Report No:	M-459460-01-1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Document No:	M-459460-01-1			
Guidelines:	not applicable	Č,	Å.	
GLP/GEP:	No	<i>™</i>	Q.	
		L.	°0°	

EXECUTIVE SUMMARY

The persistence of mancozeb and propineb in 4 warying soil types was studied over a period of 60 days at 100% field capacity moisture level. As the purpose of this review watto identify information on the active substance propineb, the details in the study related to mancozed are not discussed wither. The authors did not state any specific guidelines that were followed Residues of propineb dissipated according to first order kinetics with a half-life of 59 to 63 days However, the incubation conditions of soil samples were not stated in accquate detail.

Details of material and methods used are provided belows

1. Test material

Test item:	Propinet 0 WPY OF &
Active substance(s	Fropine (no GAS no or IUPAC name or any other
S , 6 , 7 4	identifiers specific . A
Chemical state and description:	No details specified.
Source of test item: \bigcirc \bigcirc	No details specified.
Batch number:	No details specified.
Purity:	No details specificat.
Storage conditions: 0 . 0	No detail specified.
Water solubility:	No details specified
2. Soil:	For data see table below.
Nama / Clathering	
	(cray), (sandy cray),
	(Loany sand), (sandy loam).
Source sampling date and storage	Sal samples were collected from the places listed in table
conditions	below y
	Soil samples were ground in order to break the clods
	without any damage to the physical, chemical and biological
A D XY	characteristics and moisten to field capacity to encourage
	growth of unwanted plants which were removed. Soils were
	air dried and sieved (2 mm) prior to use.
Č ^O	
¥	
BAYER Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

								<i>a</i> . •
Soil type	Place	Soil pH	Sand (%)	Silt (%)	Clay (%)	Organic matter (%)	CEC	Field capacity
Clay (Inceptisol)		7.6	26	29	45	0.26	15.58	385
Sandy clay (Inceptisol)		7.9	59	IJ	30	0.48	14.28	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Loamy sand (Afisol)		8.2	86	3 9	5	Q 0.25	C 0.72	
Sandy loamsand (Afisol)		8.6		24		\$0.51 Q	11574	
	Soil type Clay (Inceptisol) Sandy clay (Inceptisol) Loamy sand (Afisol) Sandy Ioamsand (Afisol)	Soil typePlaceClay (Inceptisol)Image: Clay (Inceptisol)Sandy clay (Inceptisol)Image: Clay Image: Clay (Inceptisol)Loamy sand (Afisol)Image: Clay Image: Clay 	Soil typePlaceSoil pHClay (Inceptisol)7.6Sandy clay (Inceptisol)7.9Loamy sand (Afisol)8.2Sandy loamsand (Afisol)8.6	Soil typePlaceSoil pHSand (%)Clay (Inceptisol)7.626Sandy clay (Inceptisol)7.959Loamy sand (Afisol)8.286Sandy loamsand (Afisol)8.666	Soil typePlaceSoil pHSand (%)Silt (%)Clay (Inceptisol)7.62629Sandy clay (Inceptisol)7.9591Loamy sand (Afisol)8.2869Sandy loamsand (Afisol)8.66624	Soil typePlaceSoil pHSand (%)Silt (%)Clay (%)Clay (Inceptisol)7.6262945Sandy clay (Inceptisol)7.9591130Loamy sand (Afisol)8.28695Sandy loamsand (Afisol)8.6662410	Soil typePlaceSoil pHSand (%)Silt (%)Clay (lay (%)Organic matter (%)Clay (Inceptisol)17.62629450.26Sandy clay (Inceptisol)17.95911300.48Loamy sand (Afisol)8.286950.25Sandy loamsand (Afisol)8.66624100.51	Soil typePlaceSoil pHSand (%)Silt (%)Clay (%)Organic matter (%)CECClay (Inceptisol)17.62629450.2615.58Sandy clay (Inceptisol)7.95911306.4814.28Loamy sand (Afisol)8.286950.250.72Sandy loamsand (Afisol)8.66624100.511154

3. Soil application

Propineb 70 WP (27.14 mg) was dissolved in water (108 ml) and added to soil (2 kg). The resulting application level was equivalent to 5 μ g/p/CS2 and a moisture content of 20% field capacity. The bulk soil sample was divided into 20 g sub-samples which were stored in 50 mc beakers.

4. Sampling

Sampling technique:	Separate whole samples \$20 g soil taken at each sampling
L' Q	interval.
Sampling frequency: \bigcirc \bigcirc	@ 5, 10 45, 20, 25, 30, 40, 50, 60 days.
Number of samples per site/soil_type:	Triplicate samples were taken for each soil type.
Storage of samples: \swarrow	Soil samples (20 g) were added to incubation vessels (50 ml)
Ĵ, Ŝ	and following treatment were Oncubated. Soils were
	incubated at field capacity moisture by addition of water
Ë 🔪 Ý 🤬	(13.5/ml)
Other information:	Lost moisture was replaced every day by addition of water
	(by weight).
5. Measurgements 🚬 🖉	
Temperature	No details specified.
Soil moisture	100 % field capacity:
pH:	No details specified (on how measurements performed).
Organic carbon:	No details specified (on how measurements performed).
6. Chemic analysis 🔗 🔊 🖉	
Guidalina/protocol:	Kanal 19714
Mathad	The terrestance was converted to carbon disulfide
	transfed and quantified according to the standard method of
	K_{a} (1071)
Dra treatmonth as a loci	Repper (1971).
Conduction	Rot required
Deferrer geterm	The cheerbarree of the managered semiglicity transformed to 25 mJ
	The absorbance of the prepared sample transferred to 25 mL
	volumetric flask and made up to volume with ethanol was
	measured at 455 nm.

⁴ Keppel, GE. 1971. Collaboration study of the determination of dithiocarbamate residues by a modified carbon disulphide evolution method for dithiocarbamate residues. J AOAC 54(3):528-532.

Recovery:

Limit of detection:

Limit of quantification:

Π RESULTS

1. Validity criteria: Not stated.

2. Analytical findings:

 $\frac{1}{2} \frac{1}{2} \frac{1}$ The analysis of the residue levels determined in the soil samples is presented in

Initial residues were 4.84, 4.88, 4.80 and 4.86 µg/g (expressed as CS) average 4.8 µg/g in soils maintained at 100% of field capacity (97% of nominal). Detectable residues persisted for 30 days

No details specified.

No independent methodology recovery samples mentioned.

Mass balance from the soil samples was not monitored. The limit of detection was quoted as 0.1 μ g/g of carbon disulfide in soil.

Table 7.1.2.1.1- 6:	Persistence of	of Propinel	residues i	n differ	ent types of s	ojK
---------------------	----------------	-------------	------------	----------	----------------	-----

Sampling interval		Recovered residue	s as S2 in ng/g soil	
(days)	Clay O	Sandy clay	S Loamy sand	🔊 Sandy loam
0	4.8 A	@ 4.88 @	4.800	<u>لا</u> م 4.86
5	2,36	2.40 ×	2¢4	© [*] 2.38
10	چ 2.02	or 01.82 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>©</u> 1.74
15	°َ∕َ* 1.2 <u>4</u>	\$ 1.1 6 ~	1.12	1.10
20	~ 0.86 ~		0 € 66 ≥	0.62
25	0.38	الله می	9 .32	0.28
30	0 [°] 0.147 [°]	v _~ 0.14,	\$ 0.13	0.12
40	BDL &	BDL .	S BĎŁ	BDL
50		× , Q - , Q	<u> </u>	-
60			<u>_</u>	-

BDL: below detectable

3. Degradation kinetic

Residues of Propineb persister beyond 30 days (around 79 to 97.5% dissipation was recorded after 30 days). The dissipation of propineb in different soils followed first order kinetics with half-live values varying from 5.9 to 6.3 days (incorated at 100% field capacity moisture).

Ш

The degradation of Propideb in different soil followed first order kinetics. The half-lives determined were in a range of 5.9 to 6.3 days in soils maintained at 100% of field capacity.

L, This study, at performed with EU soils and running at a non-defined temperature, contains supportive information since the general study design is comparable to that normally expected. However, it is not used for deriving EU endpoints since reporting details are somewhat lacking and reliability (i.e. suitable for inclusion in risk assessment) cannot be clearly demonstrated.

In general valuable information about the non-persistency of Propineb in soil can be drawn; a reasonable range of DT_{50} of approx. 6 days can be given for Propineb, very well confirming the data presented in Table 7.1.2.1.1-2, earlier.

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Report:				0
	;2012;M-459499-01			
Title:	Persistence and degrada	ation of propineb in c	different soils and	d moisture 🔊 🧬
	regimes.		Č.	
Report No:	M-459499-01-1		S.	
Document No:	M-459499-01-1		* <i>0</i> *	
Guidelines:	_/_		s de la constante de la consta	
GLP/GEP:	No	Ò	<u> </u>	

EXECUTIVE SUMMARY

A study was undertaken under laboratory conditions to determine the persistence and degradation of) following application at two different propineb residues in two soils (and 🕯 treatment rates (10 and 25 µg/g) and at two different moisture regimes theld capacity and submergence). The authors did not state an specific guideline that were followed Persistence of propineb was slightly increased with a higher rate of application and residues persisted more in soil irrespective of application rate. The propheb residues persisted up to 21 to soil than 60 days and 30 to 60 days at field capacity moisture and submergence, respectively. The half-life of propineb ranged from 5.3 to 7.3 days under both moisture and application rates in soil soil it ranged from 6.0 to 130 days. The degradation half-life of propineb whereas in residues was quicker under field capacity motivire than under subinergence. However, the incubation conditions of soil samples were not stated in adequate detail.

I. MATERIAL AND METHODS

ous used are provided below Details of material and kneth

1. Test material

Test item: Active substance(s

Chemical state and description ? Source of test item: Batch number: **Purity:** Storage condition Water solubility:

Technical grade propineb (non radiolabelled) Propineb (no CAS no or DPAC name or any other identifiers specified)

No depaids specified Bayer Indiadztd. 🔍

No details specified

No details specified No details specified

For data see table below.

2. Soil:

Name / Classification conditions

Soil type Partic

Organi[©]carbon content: Other specifications:

2 soils. and soil Surface soft samples were collected from top 15 cm depth from areas with no history of propineb application. Soil samples were air dried, ground using a mortar and sieved (2 mm). The soil was moistened to field capacity for 8 to 10 days before use to bring to uniformity and unwanted weed

Document MCA: Section 7 Fate and behaviour in the environment Propineb

 ⁵ Keppel, GE 1969. Modification of carbon disulphide evolution method for dithiocarbamate residues. J AOAC 52:162-167.
 ⁶ Keppel, GE. 1971. Collaboration study of the determination of dithiocarbamate residues by a modified carbon disulphide evolution method for dithiocarbamate residues. J AOAC 54:528-532.

⁷ Weeren, GD and Brennecke, R. 1996. Method for the determination of propineb residues in sample materials of plant and animal origin. Pflanzenschutz Nachrihten Bayer Eng Edn, 49:239-290.

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Propineb

II RESULTS

1. Validity criteria: Not stated.

2. Recovery information:

 <u>Analytical findings:</u>
 <u>The analysis of the residue levels determined in the soft samples is presented in <u>Table 7.1.2.1.1-8</u> for the <u>soft and soils, respectively.</u>
</u> Table 7.1.2.1.1- 8 for the soils, respectively.

Table 7.1.2.1.1- 7:	Persistence of Pr	opine®,/in	-	soil as	influen	ced by	appli	cation	rate
	and moisture				ð	\mathcal{O}_{n}	Å	A	L

	Propineb residue (ug/g) at different intervals						
Time internal (dam)	Fieldx	apaçity 🔬	O L Subme	ergence			
Time interval (days)	Treated at	. Treated at 🖉	Field capacity	Submergence			
	10 µg/g	25 μg/g	<u>́ 10 μ¢́у</u> д	25 μg/g			
0	841 O	\$20.74	€ 6 03 €	20.66 🔬			
3	8.02 (1.40	20.55 (0.9)	\$ \$91(1,5)	© [*] 20.52 (0.7)			
7	3:01 (63.9)	9.58 (53.8)	3.71 (53.7)	10.42 (49.6)			
14	2.19 (73.0)	\$ 85 (6709)	2.62,666.4	8.26 (60.0)			
21	0,94 (88.4)	3.78 (\$1.8)	Q.98 (87 P	4.49 (78.3)			
30	n.d.	0.35 (98.3)	0.46 (94.3)	1.24 (94.0)			
60	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	∿,	A d.	n.d.			
90 0 0	n.d.	n.d.	[≪] n.d.	n.d.			
n.d.: not detectable.			, O				

sistence of Kropineb in in soil as influenced by application rate Table 7:4.2.1.1-8: Pe 8 and moisture Š Q,

8 A	L' & Pro	pineb resid ue (µg/§	g) at different inter	vals	
T:	Field c	apačity 🔊	Submergence		
Time intervationalyse	Treated at	Treated at	Field capacity	Submergence	
A O		225 μg/g	10 μg/g	25 μg/g	
	8.26	21.80	8.23	21.71	
SU ST	8.18	21.74 (0.3)	8.18 (0.6)	21.64 (0.3)	
Ĩ,Ă	4.13 (50.0) O	12.97 (40.5)	4.82 (41.4)	13.38 (38.4)	
14	2.QM (64.8Q	8.42 (61.4)	3.13 (61.9)	10.50 (51.7)	
21 🖉 🖓	1.81 (78.1)	6.23 (71.4)	2.16 (73.7)	7.78 (64.2)	
30 2 2 2	0.23 (97.3)	0.93 (95.7)	0.68 (91.8)	2.02 (90.7)	
	n.d.	0.42 (98.1)	n.d.	1.19 (94.5)	
90 Or 57 V	n.d.	n.d.	n.d.	n.d.	
n d/snot detervable					

Initial levels determined in samples treated at a nominal levels of 10 and 25 μ g/g ranged from 8.03 to 8.26 μ g/g (average 8.16 μ g/g, 82% nominal) and 8.03 to 8.26 μ g/g (average 21.23 μ g/g, 5%nominal). Generally, propineb was more quickly degraded at lower treatment rates (except for the soil incubated at field capacity) and at field capacity moisture level rather than under submergence. Residue levels were detectable up to 21-60 at field capacity monsture and 36,60 under soil compared to submergence. The paper proposed that the lower persistence of propineb in

soil maybe be due to higher soil pH (8.1 vs 6.4), however the saper also acknowledged that the lower persistence could also be due to the higher organic matter and/or clay content. The paper made comparison to a previous paper on the degradation rate of propinet in son (i.e. and , 2005⁸) and to other papers related to the degradation of mancozeb in soil.

4. Degradation kinetics:

The determination coefficient (R²) values were more than 0.814 and this was taken by the authors to indicate that degradation followed first order Rinetics. Overall half lives anged from \$\$3 to 9.6 days at field capacity moisture level and 6.7 to 13.0 days under submergence. The fate constants (K_{deg}) vere higher at lower dose of application (10 g/g) when compared to higher rate of application (25 ug/g) in both soils except in the treatment receiving 25 µg/y propineb at field capacity in soil. The authors concluded that, in general, Propines was found to follow two different phases of degradation in all the treatments. The first phase of degradation was up to seven ays of incubition and the second phase seven days onwards. Degradation over the hophase (0-7 days) was quoker than over the 2nd phase (7-60 days) with half lives in the range 4.0 to 7.2 days and 5.7 to 10.7 days, respectively at field capacity moisture level and 4.8 to 7.6 days and 4.8 to 14.9 days, respectively under submergence. The half-lives of the degradation of Propineb were long of under Submergence (6.7-1820 days) compared to field capacity moisture (5.3-9,6 days) at all application rates.

CONCLUSIONS

The degradation of Provineb in soil follows on overall first order degradation rate of 5.3 to 9.6 days at field capacity moistage level and 6.7 to 13.0 days under Submergence

This study, not performed with EU sols and running at a non-defined temperature, contains supportive information since the general study design is comparable to that normally expected. However, it is not used for deriving BU endpoints since reporting details are somewhat lacking and reliability (i.e. suitable for inclusion in risk assessment) cannot be clearly demonstrated.

In general, valuable or formation, about the non persistency of Propineb in soil can be drawn; a reasonable D\$ 50 of approx a week for solt at FC and max 13 days under submerged conditions can be given for Propineb, very well copfirming the data presented in <u>Table 7.1.2.1.1-2</u>, earlier.

y the data

B.N. 2005. Persistence of mancozeb and propineb in different soils. Pestic Res J 17: 94-

96.

CA 7.1.2.1.2 Aerobic degradation of metabolites, breakdown and reaction products *R*

Formation of the major degradates PTU and PU and their rates of degradation in soil under acrobic conditions in the laboratory were evaluated during the Annex I inclusion (compare EU Monograph Annex B7) and were accepted by the European Commission (SANCO/7474/VI/97, 2003). The following studies included in the Baseline Dossier (P-009496-01) and regarded as relevant during the Annex I inclusion and are still used in this Supplemental Dossier for the Propineb renewal of approval.

For these old studies, new kinetics evaluations were performed which are described in the following.

Further, in order to ful data gaps and to marror the proposed new pathway of Propineb degradation in aerobic soil study a plent, of new rate of degradation studies have been performed for all four major degradation products Propineb DIDT, PTU PU and 4-Methyl-imidazoline. They are submitted within this Supplemental Dessier for the Propineb renewal of approval, together with an updated kinetics evaluation of their degradation kinetics considering all respective relevant data (

2014) order to derive kinetic parameters suitable for modelling purpose and environmental risk assessment (a summary of the respective final data is given in <u>Table 7.1.2-1</u> and <u>Table 7.1.2-2</u>.

Degradation of Propinets DIDT

Justification for inclusion into the Supplemental Dossier for Propineb renewal of approval Annex I: The metabolite Propineb-DIDT was identified as a primary metabolite in the new arobic soil metabolism study by 2014, and exceeded the trigger for consideration in risk assessments. Therefore, the degradation rate was investigated.

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Report:	;2014;M-484906-01
Title:	[Propane-1-14C]Propineb-DIDT: Aerobic degradation in four soils
Report No:	EnSa-14-1129
Document No:	M-484906-01-1
Guidelines:	OECD Test Guideline No. 307
	Commission Regulation (EU) No 283/2013 in accordance with Regulation
	(EC) No 1107/2009
	US EPA OCSPP Test Guideline No. 835.4100; deviations not specified 🔬 🛛
GLP/GEP:	Yes y y y y

EXECUTIVE SUMMARY

The rate of degradation of [propane-1-¹⁴C]Propineb-DIDT, a primary metabolite of the fungicide Propineb, was determined under aerobic laboratory conditions in the dark for 14 days at 19.4 °C and 54.2% of the maximum water holding capacity in the following four foils:

Table 7.1.2.1.2- 1: Test	soils used in	study	by
--------------------------	---------------	-------	----

	\sim	"0"	¥ ¥		ž di	
Soil	Soil®D	Source		Texture (HSDA)	pĤ∕ş	OC [%]
AXXa			, German	Sandy loam	\$.8	1.7
2	ĴĂF 🧹		, Germany 🔍	Silt loan	Q . 8	2.0
- D	HNO	6 2	, Germany	Siht@oam 🏹 🦼	4.9	2.6
	DD .	5	, Germany	Loam 🗸 🎊	7.0	6.1

* pH values were derived from aquoous 0.00 M CaCl2 suspensions.

A study application rate of 139 fg²/100 g soil dry weight was applied based on a maximum single field application rate of the parent active substance Propinets of 1575 g/ha and a maximum occurrence of Propineb-DIDT of approximately 50% of the applied amount, implying a possible worst case soil contamination to be in the same order of magnitude.

The test was performed in static systems consisting of Erlenmeyer flasks each containing 100 g soil (dry weight equivalents) and equipped with traps for the collection of carbon dioxide and volatile organic compounds by permeable for oxygen.

Duplicate samples, were processed and analyzed \emptyset , 0.21, 1, 2, \$, 9, and 14 days after treatment (DAT). At each sampling interval, the soil was extracted three times at ambient temperature using acetonitrile/water 1/1 (\emptyset , ϑ). Furthermore, two microwave accelerated extraction steps were performed at 70 °C using acetonitrile/water 1/4 (ν/ν) and methanol/water 1/1 (ν/ν). The amounts of test item and degradation products in soil extracts were determined by liquid scintillation counting (LSC) and by TLC/radioactection analysis. The amounts of volatiles and non-extractable residues were determined by LSC and combustion/LSC, respectively. Test item identity was confirmed by HPLC-MS(/MS) including accurate mass determined by co-chromatography with reference item.

Mean material balance was 99.3% AR for soil AX (range from 96.6 to 101.6% AR), 99.8% AR for soil HF (range from 98.3 to 001.0% AR), 88.0% AR for soil HN (range from 77.1 to 99.2% AR) and 98.7% AR for soil DD (range from 97.7 to 99.8% AR).

The maximum amount of trapped carbon dioxide was 25.3, 22.4, 13.9 and 26.5% AR at study end (DAT-14) in solution of VAX, HF, HN and DD, respectively. Formation of volatile organic compounds (VOC) was insignificant as temons rated by values of $\leq 0.1\%$ AR at all sampling intervals for all soils.

Extractable residues decreased from DAT-0 to DAT-14 from 77.3 to 11.1% AR in soil AX, from 73.6 to 11.7% AR in soil HF, from 64.9 to 11.3% AR in soil HN and from 45.3 to 7.9% AR in soil

Non-extractable residues (NER) increased to 63.2% AR at DAT-9 and slightly declined to 62.8% AR until DAT-14 in soil AX. In soil HF, NER increased to 65.4% AR at DAT-9 and slightly declined to 64.2% AR until DAT-14. In soil HN, the amount of NER increased to 55.4% AR at DAT-1 and

remained almost constant until study end (DAT-14). In soil DD, NER increased to 65.0% AR at DAT-9 and slightly declined to 64.0% AR until DAT-14.

The amount of Propineb-DIDT in the soil extracts decreased very fast from 50.7% (soil AX); 47.4% (soil HF), 36.9% (soil HN) and 20.3% (soil DD) of AR to non-detectable amounts at DAT-2 in three soils, at DAT-5 in soil AX.

According to the lowest chi² error values and visual assessments the degradation of Propineb-DIDT followed double first order in parallel (DFOP) kinetics in three soils, and first order multiple compartment kinetics (FOMC) in soil **DIDT**.

The maximum DT_{50} for Propineb-DIDT was 0.02 days (0.5 h), and the maximum DT_{90} was 1.1 days in the soils tested under standardized aerobic laboratory conditions a 20 °C in the dark.

Table 7.1.2.1.2- 2: Degradation kinetics of Propi	íneb-DIDT in soils	under verobid cond	jtions 🖉
---	--------------------	--------------------	----------

Soil	Best Fit Kinetic Model	DA 250 DT905 Hdays [days]	Chie Error	Visual Assessment ²
AXXa	DFO	0.0109 21.09	1.881	
	DØØP "Š	9.9848 0.970	.0,6337 ~S	
	D FOP	Q9.0056 0.59	1.00	
	FOMC	0.0183 0.18	D 1.20	

¹SFO: Single first order, FOMC: First order multi compartment PFOP: Puble first order in parallel

² Visual assessment: + = good, o = moderate, y = poor

Besides the formation of curbon dioxide, three degradation products were identified with the following maximum occurrence: PU with 23.4% AR at DAT-2 in soil DD, PTU with 14.7% AR at DAT-0.21 in soil HN, and 4-methyl imidagoline with 7.7% AR at DAT-1 in soil AX

W

It is concluded from this study that Propineb-DIDT and its residues will be fast degraded in soil under aerobic conditions Formation of significant amounts of non extractable residues and carbon dioxide indicates a participation in the natural carbon cycle of soil.

The short half fives in soil combined with the determined Koc salues indicate that Propineb-DIDT and its major metabolite PTU do not have a potential to accumulate and leach in soil.

I. MATERIALSAND METHODS

1. Test Item 🌮

Test item: Q propage-1- ¹⁴ Propigeb-DIOT	
Sample ID: O° $CKME 9670$ O° O°	
Specific Activity: 3.40 MBq ang (9.1280 µC) mg)	
Radiochemical Purity: >98% (HPLC with radioactivity detector)	
Chemical Purity: 99% (HPL with V-detector, 280 nm)	

2. 🚿 Test Soils

Four soils were used (see <u>able 1.2.12</u> 3). The soils were taken from agricultural use areas representing different geographical origin and different soil properties as required by the guidelines. No plant protection products were used for the previous 5 years. The soils were sampled freshly from the field (upper horizon of 6 to 20 cm) and sieved to a particle size of ≤ 2 mm. Soil collection and handling were m accordance to ISO 10381-6.

B. **STUDY DESIGN**

1. **Experimental Conditions**

The rate of degradation of [propane-1-14C]Propineb-DIDT was determined upder aerobic taborated conditions in the dark for 14 days at 19.4 °C and 54.2% of the maximum water holding capacity in the following four soils:

A study application rate of 139 µg /100 g soil dry weight was applied based on a maximum single field application rate of the parent active substance Propineb of 1575 tha and a maximum@ccurrence of Propineb-DIDT of approximately 50% of the applied amount, implying a possible worst case soi contamination to be in the same order of magnitude.

The test was performed in static systems consisting of Erlenmeyer flusks each containing 00 g bil (dry weight equivalents) and equipped with traps for the conflection of carbon doxide and voratile organic compounds but permeable for oxygen

9, and 14 days after reatment Duplicate samples were processed and analyzed 0, 0.2, 1, 2 (DAT). At each sampling interval, the soil was extracted three times at ambient temperature using acetonitrile/water 1/1 (v/v). Furthermore, two microy@ve-accelerated extraction steps were performed at 70 °C using acetonitrile/water 1/1 (v/v) and methanol/water 1/2 (v/v). The appounds of test item and degradation products in soil extracts were determined by liquid scintillation counting (LSC) and by Duplicate samples were processed and analyzed 0.0.21, 1/2, 5, 0 and 4 days after treatment (DAT). TLC/radiodetection analysis. The mounts of platile and pon-expactable residues were determined by LSC and combustion/LSC despectively. Test item identity was confirmed by KPLC-MS(/MS)

Table 7.1.2.1.2-3: Physico-chemical properties of test soils

Parameter	Results / Units				Ì
Soil Designation		AXXa	4a		5
Geographic Location			Ū.		
City					Į.
State	North-Rhine Westphalia	Nonth-Rhine Westphalia	Worth-Rhine Westphalia	North-Rhine Westphalia	Ś
Country	Germany	Germany O	Germany 🔊	Germany	°,
GPS Coordinates					v
Soil Taxonomic Classification (USDA)	loamy- skeletal, wixeds Semjastive, mestedystric Eutrudent	sandy, mised, mesic, Typic Cambudoll	Wamy, mixed, C mesic, Typic Argudalf	fine-loamy, mixed, active, frigid Typic Eutrudept	
Textural Class (USDA)	sint loam 🔍	sandy Doam 🗸	sileboam	loam	
Sand $[50 \mu\text{m} - 2 \text{mm}]$	¥33‰ 🕅	75%	19% 0	31%	
Silt $[2 \mu m - 50 \mu m]$	53	15% ~ ~	165% Q	43%	
Clay $[< 2 \mu m]$	\$\$ \$ \$	8% 🔊 💞	16%	26%	
pH (soil/0.01 M CaCl ₂ 1/2)	4.9 0 8	5.80 %	5.8 5	7.0	
pH (soil/water 1/1)	5.2	¢ O	6.1 4	7.2	
pH (saturated paster 4	39 ~ ~	6.0 0	6.1	7.1	
pH (soil/1 N KCC/1)	4.5	5.6	5.8	6.8	
Organic Carbon Organic Matter 1	2.6%	07% 0° v	2.0% 3.4%	6.1% 10.5%	
Cation Exchange Capacity [meg 100 g]	1 99.9	8.4	11.5	20.6	
Water Adding Capacily		w .o			
maximum [g H2O a@100 g soil DW	.39.7 K	§27.7 Å	32.0	53.9	
at 0.1 bar (pF 2.0)	¥31.6%	14.5%	31.7%	39.5%	
Bulk Density (disturbed) g/cm	1.06 6	120	1.08	0.89	
Microbial Biomass [ing microbial carbon perkg soil DW]					
	1028	876	1411	3208	
DAT-14 (BIO)	1165 .9	644	1211	2662	

¹% organic matter = % organic carbon x 1924 DAT: days after treatment DW: dry weight GPS: global positioning system USDA: United States Department of Agriculture **Bayer CropScience**

Page 48 of 144 2014-06-26

Document MCA: Section 7 Fate and behaviour in the environment Propineb

3. **Analytical Procedures**

At each sampling interval, the soil was extracted three times at ambient temperature asing acetonitrile/water 1/1 (v/v). Furthermore, two microwave-accelerated extraction steps were performed? at 70 °C using acetonitrile/water 1/1 (v/v) and methanol/water 1/1 (v/v). The appoints of test the and degradation products in soil extracts were determined by liquid scintillation counting (LSC) and by TLC/radiodetection analysis. The amounts of volatiles and non-extractable residues were determined by LSC and combustion/LSC, respectively. Test item identity was confirmed by MPLC-MS(/MS) including accurate mass determination and/or by co-chromatography with reference item. The degradation kinetics of the test item was determined according to FOCUS kinetics (2006) being of the software KinGUI 2 with three different kinetic models: single first order, first order multi compartment and double first order in parallel. Model input datasets were the residual amounts found in each replicate test system at each sampling interval. The initial receivery at DAT 9 was included in the parameter optimization procedure, but for optimal goodbess of fit, the value was allowed to be estimated by the model. The best-fit kinetic model was selected on the basis of the ghi2 scaled-error criterion and on the basis of a visual assessment of the goodness of the fits. DT_{50} and DT_{90} varies were calculated from the resulting kinetic parameters.

RESULTS AND DISCUSSION II.

Results indicated that the anticipated standardized acrobic conditions were maintained and that the soils were microbially active over the duration of the laboratory sondy.

DATA A.

All calculations for radioactivity (as $\frac{1}{2}$ of applied adioactivity) in the four soil and the respective trap attachment for volatives are listed in <u>Table 7.1.2</u> <u>7.2</u> <u>4</u> <u>4</u> <u>7 able 7.1.2</u> <u>7.2</u> <u>7</u> the conclusive overview

the control of the co

ð

Table 7.1.2.1.2- 4:	Degradation of Propineb-DIDT in soil	AXXa under aerobic
	conditions (mean values and SD expressed as % AR)	Q

								. ~	_ ~ ~
Commoned	Mean				DAT (da	iys) 嶡		5	- Or
	SD	0	0.21	1	2	55	9	چ ¹⁴ پر	¢)
Test Item	Mean	50.7	31.3	10.7	3.9	<u>≦</u> LOD	< LODC	v < LQD	Ô
Test Item	SD	± 3.5	± 0.9	±.0.7	± 0.3	Č,			
DIT	Mean	2.1	7.1	∕¶\$4.2	18.5	14.9	7,4 *	Q.0 🖉	
ru	SD	± 0.1	± 0.2	$r \pm 0.0$	±0.0	± 0.3	(ﷺ 0.1 ¢	± 0	K ^O
DTI	Mean	6.6	10-8	5.3	Rý _o	°< LQD	< LOD	< COD	ç.
110	SD	± 0.6	₽0.1	± 0.3	± 0.1		N ×		
ROI 12	Mean	1.8	2.6	< LOD	< COD	LOD	>< LOD	< LOD	
	SD	±0.0	±0.1				Ő	Ĵ,	, ° V
4-methyl-imidazoline	Mean	~ ₹.2 _ ~	6.8 ~	7.7 🏷	5.5	3.0	رچ LOD (S≷ LQQ	1
	SD	± 0.1	± 0.5			<≇0.3 Ô		Ő	
Sum of Unid /Diff Residues ¹	Mean	10.3	×\$,0	۹Ť ۲	98 .5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.7 5	9.5	\$.0	
	″S¢D ⊘	± 2.0	± 0.1	± 0.5		±0 ^{0.5}	Ĉ¥0.4 °∽	± 0.2	
Total Extractable Residues	Mean	76.7	66 7	48.2	3 9,0	27.7 🏷	16.7	10.0	
	\$D	0.7	€ 0.2	لم 0.9	1 ± 0.8	±,000	± 0.4	± 0.3	
Carbon Dioxide ³	Mean	n.a.	r < 0. k	0.6	1.9	J ² , Č	<u></u> м́6.3	25.3	
	SDÔ	Õ	±@.0	± 0.0	&≠0.1 _{&}		± 0.3	± 0.0	
Volatile Organica compounds ³	A trean	Gar.a.	چُ 0.1 <i>چ</i>	0.1	< 0.10	< 0 1	< 0.1	< 0.1	
volutile organice sompositus	SD 🖑	\sim	± 0.00	± 0.00	±%0	\$ 0.0	± 0.0	± 0.0	
Non-Extraction ble Revolues	Mean	225	32:4	49.3	3 8.0 ×	[°] 58.4	63.2	62.8	
	, SD	± 0.3∞	40.4	©≟ 0.3 ©		± 2.6	± 2.6	± 1.1	
Total Recovery 2	Mean	99.2 ^{0°}	99,1	98	28.9	93.3	96.2	98.1	
	SD	¢0.3	0 .2	1.6 ≥	0.0 ± 0.0	± 3.1	± 3.3	± 0.8	

n.a.: not analyzed DAT: days after gratment, SD: standard deviation

¹ Minor degradates are stramed up to sup of unidentified diffuse esidues

² Difference @Materna Balance values due to rounding arrors as well as clean up and chromatographic losses

Values taken from Materiel Balance Values taken from Materiel Balance ROI 12 (Region of Interest #12) to a very colar zone, probably containing proportions of PDA

Document MCA: Section 7 Fate and behaviour in the environment Propineb

(mean v	alues an	d SD ex	pressed	as % AF	R)			
C	Mean				DAT (da	ys) 嶡		S O
Compound	SD	0	0.21	1	2	5	9 🎸	1
Teet Item	Mean	47.4	27.4	9.8	3.4	<u>∫</u> LOD	< LQD	s d₂OD
l est item	SD	± 0.5	± 0.9	± 0,9	± 0.1	<i>,</i> ,		
DLI	Mean	2.6	7.6	1364	18.1	17.1	Q2.0 Q	4.2° "
PU	SD	± 0.1	± 0.0	§± 0.4	±0.2×	Ŵ		50.1 K
DTI	Mean	8.1	11.5	6.1	2.2 0	° <lqd< td=""><td>≪LOD</td><td>C</td></lqd<>	≪LOD	C
PIU	SD	± 0.2	± 0.0	± 0.5	1 ± 0.0			
POI 12	Mean	2.2	2.2	l< LOD	< COD		< LÔD	LOD
KOI 12	SD	± 0.1	± 0			~ '0'	ô ź	
1-methyl-imidazoline	Mean	5.0	6.3	6.6	4.9	, 20 ^{5°} ×	< LOD	< COD
4-methyl-midazonne	SD	£0.0%	¥ 0.3	± 0.7	± 9.1 ×		Ś	Õ
Sum of Unid /Diff Residues ¹	Mean	7.1	7.6	8. D	% .4 ~~	8.05	\$. 5 Q	6.4
Sum of Onid./Diff. Residues	SD 🖓	≵ 90.0	æ0.1	ن 0.9 €	± 0.0	jo jõ	± 0.2	± 0.1
Total Extractable Residues ²	Afean 🦒	72.3	62.6 ®	46.7	32,0	27.6	2055	10.6
	SD 🐇	± 002	±4.1	±_1.9 ″	∀± 0.0~y		± 0.2	± 0.1
Carbon Dioxide ³	Mean	toga.	Q 0.1	0.6	1.6	§.8 5	12.9	22.4
	SD Q	, Õ	± 0.0	±.0.9°	\$ ∳ 0.1 _{&}		± 0.1	± 0.1
Volatile Organic Compounds	Mean	n.a	< 9 .1	\$0.1	< 0.10 [°]	<%.1	< 0.1	< 0.1
	SD		$\neq 0.0$	$P\pm 0.0$			± 0.0	± 0.0
Non-Extractable Residuce 3	Mean	27.00	36,3	51.0	\$9.9 🖑	62.1	65.4	64.2
	SD	± 0.3	s≠0.4	\$©0.0 Ö	$1 \pm 0 2^{2}$		± 0.7	± 0.5
Total Resovery ²	Mean	@9 .2	98.9	98,2®	28.5	95.5	98.8	97.2
	¢≸D [≦]	± 0.5	±,10,00	±1.8	Q <u>1</u> 0.2	n.d.	± 0.5	± 0.3

Table 7.1.2.1.2-5: Degradation of Propineb-DIDT in soil under aerobic conditions

n.a.: not analyzed, DAT days after treatment, SD: standard deviation

¹ Minor degradates and summed up to sum of up dentified / diffuse residues

³ Values taken from Material Balance ⁴ Replicate 7 was accidently applied twice with application solution. Therefore, only the results of replicate 1 were considered for this report. ROI 12 (Region of Interest#12) is a very polar zoro, probably containing proportions of PDA

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Commonwell	Mean			ST C				
Compound	SD	0	0.21	1	2	A A	9 4	
Test Item	Mean	36.9	17.5	5.3	1.2	LOD	< LQD	< bôd
Test Item	SD	± 1.7	± 0.2	± 0.4	± 0.1	, >		
DI⊺	Mean	2.3	7.3 🔦	14.9	14	13.8	<u>9.1</u>	[♥] 5.6 ℃
ru	SD	± 0.2	± 0.0	± 0.3	. ≇ 0.4	± 0.4	± 0.5	±
DTI	Mean	11.8	14.	6.8	ହୀ.4 ୁତ୍ତୁ°	< L@D	≪ LOD	CLOD
TTO	SD	± 0.0	₩0.3	± 0.3	±9.2			
	Mean	< LOD	< L OD	≪LÕD	LOD	LOD	< LÕD	< LOD
KOI 12	SD	A	2 E		r 8	ů Č	ô l	
1 mothyl imidazolino	Mean	¢.0 ~	6.1	5.4	3,6	Ø.3 K	< LOD	< LOD
4-meuryi-mildazonne	SD ($\mathbb{Z}_{\pm 0.9}$	± 0.8	±0.1 ∗	ې 0.2€	1 ± 0.5		Õ
Sum of Unid /Diff Pasiduas 1	Mean	6.2	749° *	3.1 🔊	3.0 5	5.6	S :2 Q	⊉4.8
Sull of Ollid./Dill. Residues	S10€	æ 0.3 g	10.0		±@.3	€0.2 Ô	$\pm 0.0\%$	± 0.2
Total Extractable Residues ²	Mean	63.7	535	38.1	Q24.4	21.6	143	10.4
	SIX	±0.8	\$¥0.4 €	≠ 1.8 ×		<u>,</u> ±¢0.7	± 0.4	± 0.2
Carbon Dioxide ³	Mean	Ça.a.	r < 0.k	0.4	*10 ~	3.2	8.2	13.9
	SD Ø	0	±26-0	$\mathcal{Q}_{0.0}$ %	$\psi \pm 0.0$	±.0.9	± 0.1	± 0.6
Valatila Organia Compounda 3	Mean	n 🖉 .	\$0.1 ×	< 0.1	< 0	\$0.1	< 0.1	< 0.1
	°,≶D ™	Š, N			مي 0.0 م	$ u_{\pm 0.0} $	± 0.0	± 0.0
Non Extractiona Paricipuos 3	Mean	34.25	44.1	55.4	₹50.7 [©]	55.0	53.1	54.7
	SD	± 0.1	¢± 0.1 €	± 0.9	±0.3	± 2.1	± 1.6	± 3.0
Total Bergyany 2	Mean	98.0 °	97.6	~ <u>~</u> ??? ~	96.1	79.9	75.6	79.0
	SD 🔊	±,0,9	£00.5 °	K¥ 2.5 0	±1.4	± 2.7	± 1.3	± 3.8

n.a.: not analyzed, DQT: days after treament; SD: standard deviation

¹ Minor degradate are supplied up of sum of unidentified / diffuse restrues

² Difference to Waterial Balance alues due to rounding erfors as well as clean up and chromatographic losses

ole 7.1.2.1.2- 7: Degradatio	n of Pro	opineb-	DIDT	in soil		under	aerobic c	onditions
(mean valu	es and S	SD exp	ressed	as % AR	k)			
Compound	Mean	DAT	(days)	~				
Compound	SD	0	0.21	1	2	55	9	چ 14 _م
Tast Itam	Mean	20.3	8.4	2.4	< LOD	<u>≤</u> LOD	< LODC	r < LQD
Test Item	SD	± 0.7	± 0.2	±.0.3	Å	Ķ, ¥		
DIT	Mean	3.6	10.8	20.0	23.4	17.3	50	0 ⁷ .9 🖉
10	SD	± 0.2	± 0.3	$r \pm 0.2$	±0.3*	± 0.1	🖽 0.1 Q	± 0
ΡΤΙΙ	Mean	6.4	6.6	3.3	Rà c	°< LQD	< LOD	< COD
110	SD	± 0.2	₩0.4	± 0.4	± 0.1	[×]		
ROI 12	Mean	2.5	2.7	< LOD	< LOD	LOD	< LOD	<lod< td=""></lod<>
R0112	SD	±0.0	+0.5				Ő	
4-methyl-imidazoline	Mean	4.1	3 .3 ~	3.5	4.4	1.8°	s LOD (< LOD
T monyr miduzonno	SD				÷9.0	K≇ 0.1 ©	Ý _Á Ş	Ő
Sum of Unid /Diff Residues ¹	Mean	8°Z	16Z	6 3 ~	6.0 2	6.4	6.0	\$ 9.5
	[≁] S¢D ∂	± 0.3	± 0.2	$\neq 0.1$	± 03	±0 ^{0.3}	Ć¥ 0.0 ѷ∕γ	$-\pm 0.0$
Total Extractable Residues	Mean	45.0	390	37.6	39,0	25.4 🏷	11.6	7.4
	\$D	¢1.1	∮ 1.2	r∰ 0.7 Å	1 ± 0.7		± 0.1	± 0.1
Carbon Dioxide 3	Mean	n.a.	r < 0.1	0.7	1.8	S ² Š	¥Ì9.4	26.5
La Storia	SDÔ	0	±36-0	± 0.0	&≠0.0 _{&}		± 0.6	± 0.0
Volatile Organic Compounds ³	Mean	Ga.a.	3 0.1	€ 0.1	< 0.10 [°]	< 0 1	< 0.1	< 0.1
	ý SD 🐇		± 0.0	± 0.0		\$0.0	± 0.0	± 0.0
Non-Extractable Residues	Mean	52°7	56%	,59.č	\$ 1.0 ×	63.6	65.0	64.0
	SD	±1.ŀ _≫	°£ 0.4 °	Ç <u>¥ 0.6</u> [©]		± 0.0	± 0.7	± 1.1
Total Recovery 2 D 2	Mean	97.8 ^{0*}	96.5	97	~Q <i>~19</i> .8	97.2	96.1	97.9
	SD	¢0.0	. £00.7	±€0.0 🚴	2 ± 0.8	± 0.3	± 1.1	± 1.2

T

n.a.: not analyzed, DAT: days after treatment, SD: standard deviation

¹ Minor degradates are summed up to sum of unidentified / diffuse residues

² Difference to Material Balance Salues de to rounding errors as well as clean up and chromatographic losses ³ Values take from Material Balance ROI 12 (Region of Interest 102) is a very polar zone, probably containing proportions of PDA

METHOD VALIDATION B.

The RLC method was used for data evaluation. A good selectivity and reproducibility demonstrated the suitability for separation and quantification. The TLC limit of quantification (LOQ) for a single peak in the compined organic extract was 1% of applied radioactivity.

A Ŵ DEGRADATION OF PROPINEB-DIDT C.

The maximum DT_{50} for Propheb-DIDT was 0.02 days (0.5 h), and the maximum DT₉₀ was 1.1 days in the soils fisted thader standardized aerobic laboratory conditions at 20 °C in the dark (see Table 7.1.2 9.2-2.

Besides the formation of carbon dioxide, three degradation products were identified with the following maximum occurrence: PU with 23.4% AR at DAT-2 in soil DD, PTU with 14.7% AR at DAT-0.21 in soil HN, and 4-Methyl-imidazoline with 7.7% AR at DAT-1 in soil AX. The proposed pathway of degradation of Propineb-DIDT is shown in the following Figure 7.1.2.1.2-1.

Figure 7.1.2.1.2-1: Proposed degradation pathway of Propineb-DIDT in soil

It is concluded from this study that Propineb-DIFT and its residues will be fast degraded in soil under aerobic conditions. Formation of significant anounts of non-extractable residues and carbon dioxide indicates a participation in the patural carbon cycle of soil O[×]

The short half-lives in soil combined with the determined Koc values indicate that Propineb-DIDT and its major metabolite PTU do not have a potential to accumulate and leach in soil.

The summary of evaluation is compiled by the kinetics report of

Report:	;2014;M-486677-01
Title:	Kinetic evaluation of aerobic degradation of propineb and its degradation
	products in aerobic soil according to Focus Kinetics
Report No:	EnSa-14-0472
Document No:	M-486677-01-1
Guidelines:	FOCUS (2011): Generic guidance for estimating persistence and regradation
	kinetics from environmental fate studies on pesticides in EU registration.
	Version 1.0, 23 November 2011, deviation not specified
GLP/GEP:	No dy dy dy dy

EXECUTIVE SUMMARY

A kinetics evaluation of the relevant aerobic soil degradation studies with the fungione Provineb and its degradation products in soil Propined DIDT, PTD, PW, and 4-Methyl-imidazoline has been conducted according to FOCUS kinetics guidance@FOCUS, 201) using the computer program KinGUI2. The modelling endpoints of Propineb and its soil degradation products and be used in

2014) were corrected for all detected degradation products and the NER and thus set to the total recovery values from the material balance. Initial values for the metabolites, 4-Methylimidazoline, PTU and PU were so to zero. First values at the limit of detection (LOD) or below LOD were set to 0.5 × LOD. The LOD accounted for 1.0 % AR. The pre-processed data is shown in section

In agreement with the proposed degradation pathway (Figure 7.1.2.1Q-1) a compartment model was setup in KinGUI2 so kinetically describe the degradation of Propineb-DDDT and the formation and degradation of its metabolites PTU, PU and 4-Methyl-imidazolure. The scheme is displayed in the

Compartment model to describe the degradation of Propineb-DIDT and

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Secondly the degradation of Propineb, DIDT was described with the bizphasic DFOP model while the degradation of the remaining compounds was still described by SFO kinetics &

Results

0 O The first system, i.e. FO kinetics for all composides, resulted in overall reasonable Chi² error values 23,0 for the sitire pathway 13.7 for Propineb-DIDT fit. and 3.78 ranging from 14,2 (Table 7.1.2.1.2-8).

The visual assessment dowever indicates rather poor description of the Propineb-DIDT residue data by the SFO model and suggests the system with DFOP kinetics for Propheb-DIDT degradation is a better representation of the data. While the fast first ate constant of the DFOP model is seemingly relevant to also described the observed fast formation of 4-methyl midazoline, propylene-thiourea and propylene-urea values for its t-probability indicate an uncertainty for all four investigated data sets (Table 7.1.2.1.2- 8) Given by the small t-probabilities the corresponding second rate constant was determined at high level of statistical certainty and the split factor "g" as well. The choice of the DFOP approach has may little effect on the fits for the degradation products. Their Chi² error values

Table 7.1.2.1.2- 8:	Summa (ry of the l	kinetic e	valuation for 2014	Propineb-D)	IDT degrada	tion in soil
Soil	Kinetic model ¹	Cerro	hi² or-%²	Model para	ameters ³	Visual assessment ⁴	Details in report sect.
	SFO	DIDT:	13.7	k(DIDT):	5.78***	- 1	6ª 55' 0
AXXa	SFO	PTU:	7.73	k(PTU);	1.525***	⁄" o ို×	y ~ 2
	SFO	PU:	21.5	k(PU)	0.1060***	- ×	∭.4.1.¢
	SFO	4-MI:	5.40	k(4-Mľ):	0.2788	+0	\$ \$ ¢
		system:	23.0	a.	du ·		Q Q 4
_	DFOP	DIDT:	1.93	kt (DIDT): 2(DIDT):	7@3# ~1.308***		
			(a	g(DIDT):	@0.585 ** *	,	
	SFO	PTU:	5.79	∕ k(₽¶U): ू	J 1.7 ≵7***	¥.	11.4.1.2
	SFO	PU:	11.3	₩(PU): ℃	0:0343***	""o 🌾	' A L'
	SFO	4-MI: system:	6:37 √7.87 ^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	03055***		
	SFO	DIDT:	V 12.8 🏷	k(DIDT)	/ 6. 08***		ÿ Ő
	SFO	PTU:	5.96	AC(PTU)	₩ 3 52***©	~~ / +	
	SFO	PU	20.7	[™] (PU):	0.074	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≪ 11.4.2.1
	SFO	4-Мі:	@2.91	≥ k(4@MI): ¿	\$`0.39 6 2*** _{\$}	Ŭ Û	°
		®y stem. [≪]	J`21.9℃)* ₂ ,2	J
	DFOP 🐇	DIDT:	1.45	_κ kĭ(DIDŤ):	3¢35# _ Ø	+ 0	,
	Ro	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, S	<i>∞</i> k2(D 100 T):	¥.274***	N B	
	s and s	, U	6	≶ g(₽IDT):	∖ 0.643)*** ^	Q' Q'	
	SFO	ARTU:	4.16	k @ TU):Ô ^{∳*}	l∢401*** [≪]		11.4.2.2
	SFO (PU:	15.8	(PU)	6 0867***	مَ 🗞	
	©SFO	4- M 7:	. 2.8 8	گ k(4-MI):	0.3868***	∽ +	
	Š (V	system:	لًاً!.ا ا ر	<u>,</u> ^\$` 0		0	
Ő	SPO	≪DIDT;	7.85	k(DIDT)?	8 98***	0	
	SFO C) PTU	4 .24	,≪k(PTЮ):	355***	+	
	[™] SFO [™]	PU:	15.1 %	k(Pk).	©0.1043***	+	11.4.3.1
~Q	SEQ		€9.37 Ô	× k(4-MI):_⊘	0.2967***	+	
~~~	Č,	System	[″] 14.2	\$ .5	N N		
	% OF OP	DIDT:	KØÌ	$\approx k1(\text{DIDT})$ :	<b>}</b> 984 [#]	+	
۵ ۵	9′ 4′	Â.			Alton 1.518***		
(A)	r A.	Į ×	j L	″g(ĎĨDT)Ô	0.757***		
~	SQÖ .	۞ <b>ٞ</b> ڰؚTU	6. <b>)</b> \$	(PTU)	1.450***	+	11.4.3.2
	SFO S	₽Ų,	A.Y.1	k(PU):	0.1064***	+	
*	SFO	4 MI:	ير 25.99	⊘ k(4.0MI):	0.3054***	+	
	<i>i</i>	<b>y</b> ystem;	۶ 8.04	, KŬ			

¹SFO: Shigle first order, DFOP: Double first order in parallol ²for DIDT, PTU, PU, 4 MI and the whole system respectively. ³ k degradation rate constant g = spin/factor for DFOP model, alpha = FOMC parameter, beta = FOMC parameter ³ Visual assessment: + = good, o = anderator = poor t-prop: ***<0.001, *<0.05, *>0.05

	degr	adation in s	soil (			2014)	
Soil	Kinetic model ¹	C	$hi^{2}$	M	odel meters ³	Yisual	Details in report section
	SFO		3 78	k(DIDT)	11 54***		
	SFO	PTU:	52.1	k(PTU):	1.505***	۵ [°] ۰ ۱	
	SFO	PU:	18.8	k(PU):	0.0839**	/ <u> </u>	, M.4.4.
	SFO	4-MI:	6.69	k(4-MI):	0.2774*	+ 0	S V
		system:	17.5	a si		×,	Q A K
	DFOP	DIDT:	n.a.	kl@IDT):	210	° At a	<u> </u>
				k2(DIDT):	4.560***	°°°, o	b O
			Л.	g(DIDT):	<b>@</b> .882***	.~ ~	
	SFO	PTU:	49.2	🛿 k(PTQ): 🛒	~5.00 <b>*</b> ~	0.4	[×] 11.4.4.2
	SFO	PU:	18.1	k(QU): 0	0.1224***		
	SFO	4-MI:	7≑70	• k@4-Mil	0.2449***	·	
		system:	<u> </u>		$\mathcal{O}$	, Oʻ 🔬	

²for DIDT, PTU, PU, 4-MI and the whole softem respectively n.a.: not available 3 k = degradation rate constant, g = split Betor for DFOP model, alpha = FQMC parameter, beta = FQMC parameter

³ Visual assessment: + = good, o = moderate, - Opoor

t-prop: ***<0.001, **<0.01, *<0.05, 0.05, 0.05

In combination with the higher formation fraction for the degradation products of Propineb-DIDT resulting from the DFOP approach (c.f. <u>able</u> <u>1.2.12-9</u>), the slow rate of the DFOP model appears to be the best choice for the calculation of half-lives for <u>Dropineb-DIDT</u> to be used in pesticide fate models for exposure assessment. If has to be noted that in case of the AXXa soil and the DFOP approach the starting values for the compound Propineb-DIDT were set to a parameter fit resulted from a solo DFOP optimization of Propineb-DIDT data conducted prior to the pathway fit. The procedure was necessary to come to a meaningful fesult for the pathway fit.

Table 7.1.221.2-9: Comparison of the formation fractions for the degradation products of Propinet DIDE by two different kinetic model for its degradation

Soil	Path of the	Formation fraction [-] (SFO all)	Formation fraction [-] (DFOP and SFO)
	AXXa ODIDTS→ PTIO	Q 0.489	0.229
	$\bigcirc \bigcirc $	⁰ 097	0.107
4		× _> 1.0	1.0
	DIDT PTU 🖓 , 🤉	0.189	0.210
	$\sim$ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $	م 0.093	0.099
	$\widehat{} \stackrel{\text{\tiny V}}{\longrightarrow} P T \stackrel{\text{\tiny V}}{\longrightarrow} P \stackrel{\text{\tiny V}}{\longrightarrow} P \stackrel{\text{\tiny V}}{\longrightarrow} \stackrel{\text{\scriptstyle V}}{\rightarrow} $	1.0	1.0
	U DOT THE TU O	0.215	0.243
	ŤIDT & 4-MI S	0.073	0.076
	$\mathbb{O}^{\mathbb{O}}$ $\mathbb{O}^{\mathbb{O}}$ $\mathbb{O}^{\mathbb{O}}$	0.982	0.885
	$O^{\text{T}}  D_{\text{T}} D_{\text{T}}  P^{\text{T}} U$	0.242	0.246
	💱 📣 🕺 🖓 ĎT 🚓 4-M ko	0.066	0.068
Ő	Ŝ Ĉ₽TU ŜPU Î	1.0	1.0
<u> </u>	2 1 ~C		

According to the modelling report by 03'!  $\neq 4$ .  $\neq 1$ . pl;(2!uy SI: 2014, the normalized DT₅₀ values for degradation product propineb-DIDT were derived from the second, slow rate constant of double first order in parallel fits and account for 0.5 days (geometric mean). Individual values are listed in the following table.

**Bayer** CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

Soil		Moisture [% MWHC]	Corr. factor [-]	DT ₅₀ [days]	DT50ref [days
	AXXa	54.2	1	0.5	0.5
		54.2	1	0.5	6,5 , S
		54.2	1	<u>_0.5</u>	\$0.5 \$
		54.2	<u>کم 1</u>	<i>∞</i> 0.5	2 0.5 V
			Geometric mean	0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			" Median (	S 0.5 🧹	<u>v 30.5 x , 0</u>
		******			

Table 7.1.2.1.2-9a	Summary of	the DT ₅₀ values for	or propineb-DIDT	degradation in soil
1 abit 7.1.2.1.2 ⁻ 7a.	Summary of	the D 1 50 values h	n propinco-DiDi	ucgrauation in son

### **Degradation of PTU**

The degradation of major metabolite PTU was just evaluated on base of a weak experimental date set using two soils by an old not rather detailed reported study ( 1988 which was not any longer regarded sufficient for the Supplemental Dossier for Propines renewal of approval Annex I. Therefore, its degradation rate was investigated in a new 14 PTU degradation study performed on 2012. In addition furthe Devaluated data (compare Fable 7. Y. 2. 1. 2- 4 to four soils by Table 7.1.2.1.2-7) were received within the new Propineb DIDT probic soil degradation study by 2014. The overall summary of evaluation is compiled by the report of da 2014. The following tables summarise the respective results &

Table 7.1.2.1.2- 10: Kinetic evaluation for degradation of PTU incioil (	1988)
Soil Sinetic Chi ² A Model parameters ²	Visual assessment ³
Soil 1 O SFQ 7.79 k.0.3432 ** O O O	+
FOMC 10.5 Aalpha 1469 [#] , 60ta:3250 [#]	0
Soil 2 (25, 25, 25, 25, 25, 25, 25, 25, 25, 25,	+ +
FOMC 7/5 . Dpha: 3396#, beta :18550#	+
$\sum D_{k}OP = \sqrt{k}.48 \sqrt{k}1:0.9438^{**}, \ 2:0.3866^{**}, \ g:0.001^{\#}$	+

¹SFO: Single first order, FOMC: Forst order multi compartment, DFOP: Double first order in parallel

² k = degradation rate constant,  $\mathcal{O}$  split factor for DFOP model, alpha = FOMC parameter, beta = FOMC parameter ³ Visual assessment: + = good = moderate, - poor  $\mathcal{O}$ t-prop: ***** 0.001, **<0.01, *<0.05  $\mathcal{O}$  0.05;  $\mathcal{O}$  bold fatters indicate the model of choice

the DT₅₀ for PTU degradation received in soil are summarized. All DT₅₀ values In Table 7.1.2.1 were derived from SFO for and their corresponding rate constants. The summary shows that PTU is very short living in aerobic soil and degrades with a geometric half-life of 0.2 days, only. A dependence of the DT 50 on will properties was not revealed. In general, the newer studies resulted in shorter half ives than the older study by 1988, and substantiated the very fast degradation of PTU in soil. Longer DT₅₀ values may be an effect of the moisture content as in older studies optimum moisture was not adjusted. However, the information on the soil moisture content used by 1988, is not available and therefore a moisture normalisation to scrutinize that hypothesis is not possible.

Table 7.1.2.1.2- 11:	Summary of the DT50 for PTU degradation in soil
----------------------	-------------------------------------------------



PTU is formed from Propineb-DIDT and Propineb. The formations fraction were derived from pathway fits in the case of Propineb-DIDT or by simple means of proportional calculation in the case of Propineb (c.f. section 5.1.4 or section 4.1 of report by (2014) and are summarized in Table 7.1.2. (2014) and are formation of propylene-thiotheae from Propineb-DITD and Propineb accounts on average for (232) and (0.510), respectively.

 Table 7.1.2.1.2- 12: Formation fractions (ff) for the formation of PTU from degradation of Fropineb-DIDT and Propineb

Soil N Path Path	ff
AXXa DIDT & PTU 0.229 PPB PTU	0.472
$ \begin{array}{c} & \bigcirc \\ & & \bigcirc \\ & \bigcirc \\ & & \bigcirc \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & & & & & & $	0.440
$DHDT \rightarrow PTU $ $0.243 $ $PB \rightarrow PTU$	0.470
$\bigcirc \qquad \bigcirc \qquad$	0.656
مَنْ مَنْ Mean مَنْ 0.232 مَنْ	0.510
<b>Report:</b> ;2012;M-426863-01	
Title: Degradation of 414C BCS-AA66386 in four soils under aerob	oic conditions at
20 centigrade degrees in the dark	
Report No: $\sqrt[4]{}$ S11 $\sqrt[6]{2562}$	
Document No: $M^2$ 4268 $O$ -01-1 $\sim$ $O$	
Guidelines: QECD Test Quideline No. 307 Commission Regulation (EU)	No 283/2013 in
accordance with Regulation (EC) No 1107/2009; deviations n	ot specified
GLP/GELE X YO X YO	

The aim of this study was to investigate the degradation of  $[5^{-14}C]BCS-AA66386$  (=  $[^{14}C]PTU$ ) and to follow the formation and disappearance of metabolites in four soils under aerobic conditions at 20°C in the dark. The study was performed with BCS-AA66386 over a period of 14 days.

**Bayer** CropScience

**Document MCA: Section 7 Fate and behaviour in the environment** Propineb

The average soil moisture content was maintained at 55% of the maximum water holding capacity (MWHC) over the entire period of the study. The biomass of each soil was determined at the startand 15 days after treatment. No significant difference was observed during the incubation period. The application rate of [5-¹⁴C]PTU was 45.78 μg (0.16 MBq) per vessel (100 g dry weight of soil), which was equivalent to 0.46 mg BCS-AA66386 /kg at a soil density of 1 g/cm and 10 cm depth.

The mass balance was between 90.0 and 99.7% of applied radioactivity (AR) for all soils at all sampling intervals. The amount of extractable radioactivity decreased in soil AX from 84.42 of AR directly after application to 9.6% of AR at the end of the study (day 4). In soil HH the amount of extractable radioactivity decreased from 83.9 to 11.8% of AR, in sol DD from 82.4 to \$7% and in 6 soil WW from 73.3 to 12.2% of AR. The cold extraction procedure was quite efficient, dread@since accelerated extraction revealed values always below 5% AR, except for she interval its soil HH (5.4%) of AR, day 3) and one interval in soil DD (5.9% (AR, day 1)) The amount of non-extracted (bound) residues increased in soil AX from 14.4% of AR at the start of the study to maximum 51.3% of AR after 7 days decreasing slightly thereafter, in soil HH from 14.2% (day 0) to approx. 41.5% of AR after 10 and 14 days, in Soil DE from 18.3% (day 0) to 53.9% of AR

after 10 days decreasing thereafter, and in soil WW from 24.8% (day 0) to 502% of AR after 14 days. The formation of CO2 increased steadile to maximum values of 36.5% of AR in soil AX 37.1% of AR in soil HH, 37.6% of AR in soil DD and 29,6% of AR in soil WW. The amount of organic volatiles was below 0.1% of AR in all soils during the complete study.

One major metabolite was found in the extracts of a four soils showing a maximal occurrence of 64.6% of AR in soil AX (1 day 67.7% of AR in soil HH (fday) 96.8% of AR in soil DD (day 2) and 66.8% of AR in soil WW (day 0.125). It was identified as [5-14CIPU (i. BCS AA17927).

In conclusion, [14C]PTU was degraded apidly in all four soils and was not detectable at all one day after treatment. The DT50 for degradation was not to be calculated. However, is than 50% AR was contributed to the test item at the first sampling interval three hours after application.

### AND MÆTHOÐS I.

1. Test Item

[5-&C]BCS-AA66386 Test item []⁴C]PTU Sample D: Specific Activity: Radiochemical Purit Chemical Purity

#### 2. Test Soils

(2). The soils were taken from agricultural use areas Four soils were used (see Tab representing different geographical origin and different soil properties as required by the guidelines. representing different geographical offgin and different soil properties as required by the guidelines. No plant protection products were used for the previous 5 years. The soils were sampled freshly from the fields (upper horizon of 0 to 20 cmo and steved to a particle size of  $\leq 2$  mm. Soil collection and handling were in accordance to HSO 10381-60

-	-				$\sim$
Parameter	Results/Units	<b>Results/Units</b>	Results/Units	Results/Units	Ő
Soil (Soil ID)	AXXa (AX)	4a (HH)	(DD) II	WW)	μ ²
Texture Class 1)	Loamy sand	Silt Loam	Loam	Sandy Sam 🔊 🖉	D
Soil Taxonomic Classification ¹⁾	Sandy, mixed, mesic typic Cambudolls	Loamy, mixed, mesic typic Argudalfs	Fine-loamy wixed, active, fright Typic Eutrude	Loany, mixed, mesie typic Aggudalis	, S
Sand 1)	77 %	19 %	37 % ^O	597 % Q 6 4	0
Silt ¹⁾	17 %	64 %	36 % ~ ~	27 % Č	
Clay ¹⁾	6 %	17 % 0 *	27% 67 9	1,60%	
pH (water)	6.3	6.6	105 X W	<b>5</b> V S	
pH (saturated paste)	6.5	6.2	7.4 2 2	5.6	
pH (0.01 M CaCl ₂ )	6.1	6.4 🗸 🗘	7.30 00 0	5.3 4	
pH (1 N KCl)	5.9	<b>6</b> .1	7.0%	5.0	
Organic Matter ²⁾	3.3 %	2.8	<b>8</b> .8 % ( , )	\$J3 %	
Organic Carbon	1.9 %	k6% ~ ~	5.1% v é	1.9% 0	
Cation Exchange Capacity	9.6 meq/100 g	1.1 mæq/100%	2000 meg 2000 g 5	105 meq/100 g	
Maximum Water	47.9 g H ₂ O ad	55 $\Theta_{g}$ H ₂ Q $dd$	$578.1 \text{ g/H}_2\text{O} ad^{\circ}$	\$6.5 g H2O ad	
Holding Capacity	100 g DX	100 g DW	100@DW 💛 👌	100 g DW	
Water Holding				0	
Capacity				, Ô	
at 0.33 bar (pF 2.5)	1155% 🧳 🖉	195%	34.9 % ^y ^y	¥7.1 %	
at 0.1 bar (pF 2.0)	21.5 % > 0	£.9 % Ö	45%%	28.5 %	
Bulk Density (disturbed)	1.24 g/cm ³	1.14 gycm ³ 5	1.00 g/c@ ³	$1.15 \text{ g/cm}^3$	

#### Table 7.1.2.1.2-13: Physico-chemical properties of test soils

according to USDA classification 2)

% organic matter = % organic carbon  $\frac{1}{2}$ .724

 $\checkmark$ Biomass of untreated samples [mg C/100 g]soils.

 $\bigcirc$ 

Date of Sampling	Davs afte	application	Soil XX	Soith HH	Soil DD	Soil WW
01/08/2011			°457.8.	x ³ 89.9	520.2	327.9
15/08/2011	9' ~'	158	489.4	346.1	439.3	280.6
Č	Å		V a	Ô.		

#### B. STUDY DESCON

### Experimental Corditions 1.

The rate of degradation of radiolabelled PTU BCS-AA66386) was determined under aerobic laboratory conditions in the dark for 14 days at 20 °C and 55% of the maximum water holding

capacity in the following four soils: The application rate of [⁴C]-BCS-AA66386 was 45.78 μg (0.16 MBq) per vessel (100 g dry weight ofsoil), which was equivalent to 0.46 mg BCS-AA66386 /kg at a soil density of 1 g/cm3 and 10 cm depth. The test was performed in static systems consisting of Erlenmeyer flasks each containing 100 g soil (dry worght equivalents) and equipped with traps for the collection of carbon dioxide and volatile organic compounds but permeable for oxygen.

# Sampling

Duplicate samples were processed and analyzed 0, 0.125, 1, 2, 3, 7, 10 and 14 days after treatment (DAT).



#### 3. **Analytical Procedures**

Duplicate samples were processed and analyzed 0, 0.125, 1, 2, 3, 7, 10 and 14 days after treatment (DAT). At each sampling interval, the soil was extracted three times at ambunt temperature using acetonitrile/water 1/1 (v/v). Furthermore, an microwave-accelerated extraction step was performed at 65-70 °C using acetonitrile/water 1/1 (v/v) for 10 minutes. The amounts of test item and degradation products in soil extracts were determined by liquid scintillation counting (LSC), and by HPLC/radiodetection analysis. The amounts of volatiles and non-extractable residues were determined by LSC and combustion/LSC, respectively. Metabolite identification was performed by co chromatography. The degradation rates were not evaluated by kinetic models due to very fast obser degradation.

#### II. **RESULTS AND DISCUSSION**

Results indicated that the anticipated standardized aeroba conditions ere maintained and that the soils were microbially active over the duration of the laboratory stu

#### DATA A.

and the respective trap All calculations for radioactivity (as of applied vadioactivity) in the four soft attachment for volatiles are listed in Table 7.1.201.2- 10 to

Ô Characterisation of the extractable radioactivity in soil ANin % AR Table 7.1.2.1.2-14:

Sampling interval [days]	0 *	0.925		> 2 🐇	3		10	14
Test item	₹59.2	0 _{14.5} 0	n.đ	nod.	Sp.d.	s∽n.d.	n.d.	n.d.
, Cristian Charles and Charles	<b>\$61.8</b>	11,32	n.d.	n.d.	$\heartsuit$ n.d. $`$	[≫] n.d.	n.d.	n.d.
Mean S O	59.5	_∿µ2.9 🌾	9n.d. 🖉	n.d 🖉	n d	n.d.	n.d.	n.d.
[ ¹⁴ C]BCS-A@179229PU)	Å4.7	€ 61.0	65.3	664	5¥.4	25.8	16.8	7.3
	20.7 3	<u>64</u> 9	63.9	60.9	@50.9	23.6	16.3	8.0
Mean 🖉 🔬 🗸	22,7	62.8	[©] 64.6 @	60.7	51.1	24.7	16.5	7.7

nd not detected; Cat time ero interaction with viable soil marrix up to 30 minutes is quite reasonable.

Table 7.1.2.1.2-	15	Chara	cterîsă	tion of	the ex	tractable	râdioa	ctivity in	soil HH	in %	AR
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$a^{y}$	. 7	(7)2	() a		•			

Sampling interval (Pays)	Ø* >0.125	1	2	3	7	10	14
Test item	\$ 53.6 185	Øi.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	68,6 5,10.0 🔬	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Means No	<u>61.1</u> 14.20	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	© 26.5 50 56,1	65.8	59.3	50.3	34.2	22.5	8.6
	13.8 [%] @4.8	69.6	63.7	47.1	35.8	22.7	11.1
Mean	∼Q20.1 Q 60.4	67.7	61.5	48.7	35.0	22.6	9.9
n.d. not detected; *: at the zero	interaction with viable	soil matr	ix up to 30) minutes	is quite re	asonable.	
J Z A J							
õ							

Table 7.1.2.1.2-16: Characterisation of the extractable radioactivity in soil DD in % AR

Sampling interval [days]	0 *	0.125	1	2	3	7	10	.14	S.
Test item	59.0	18.2	n.d.	n.d.	n.d.	ñd.	n.d.	n.d. 🛦	
	68.1	26.8	n.d.	n.d.	n.d.	Sn.d.	n.d. 🖗	n.d.)
Mean	63.6	22.5	n.d.	n.d.	n.d.	n.d.	n.C	nd.	Ĉo
[¹⁴ C]BCS-AA17927 (PU)	19.7	56.2	56.6	58.6	404	19.3	°,2,6	, A .d. 🛛	Ű.
	7.8	51.2	5 <u>5</u>	55.1	401.5	24.0	\$√7.6 ≈	n.d.	* 0
Mean	13.8	53.7	_56.0	56.8	Q 40.4	21.6®	8.6	n de	Å

n.d. not detected; *: at time zero interaction with viable soil matrix up to 30 minutes is quite reasonable.

Table 7.1.2.1.2-17: Characterisation of the extractable radioactivity in soil WW in %

		× /	(n)		/ %/		۰y	~
Sampling interval [days]	0 *	0.125		20	30	Ĩ	×10	Å 14 √
Test item	36.2 ≪ 46,7	n.e. . n.e.	nd. n.d.	n.d.	Ån.d. ∕n.d.∿∽	n.d.	n.d.∜ n≰dy.	n d
Mean	4R5	/n.d.	n.d	n d.	nd.	R.d.	Øi.d.	n.d.
[¹⁴ C]BCS-AA17927 (PU)	\$33.6 \$24.2	₹ 66.6¥ 67 ₂ 0	61.6 &4.8	57.1 59.9	≎ 9 8.7 D 51.9⊖	32.8 35.4	22.0 21.9	10.8 9.1
Mean	28,9	6.8	63.2°	58.0	50.9	38-1	\$21.9	10.0

n.d. not detected; *: at time zero interaction with viable soil matrix up to 30 minutes is quite reasonable.

B. ΜΕΤΗΟΟ VΑΙΞΕΙΟ

The total recovery of the applied radioactivity (AR) ranged between 900 % AR and 99.7 % AR for all soils during the complete study. The material balances shown for all sampling intervals demonstrate that no significant RA dissipated from the flasks or was lost ouring processing.

The analytical limits were obtained from blank samples containing no radioactivity. Typical blanks contained 15 mm/ sample (dpm = decays/per minute).

Due to the very fast degradation a kinetic analysis was not to be performed within the report. However, DT_{50} was shown to be dess than 3 hours

III. CONCLUSIO

[14C]BCS-AA66386 (PT) decreased apidly At day 0 analysis, the amounts of [14C]PTU were between 636 and 59.5% AR. One day after application BCS-AA66386 was not detectable in any of the soils already.

From this study it is concluded that PTL has no potential for accumulation in the environment. The results are included in the sumpary of the degradation rates of Propineb and its major degradation products in soil in the laboratory given in section CA 7.1.2.

In Table 7 2.1. 211 the DT for PSU degradation received in various soils and studies soil are summarized. ANDT50 values were derived from SFO fits and their corresponding rate constants. The summary shows that TU is very short living in aerobic soil and degrades with a geometric half-life of 0.2 days

According to the modelling report by 2014, the normalized DT_{50} values for degradation product PTU are short with a geometric mean value of 0.2 days (c.f. table below).

Fable 7.1.2.1.2 -	17a: Summ	ary of the DT ₅	50 values fo	or PTU deg	radation in s	əil		5)
Soil	Study			Moisture	Corr. 💞	DT ₅₀	DTsoref	
	~~~~			[%MWHC]	factor [-]	[days]	<u>× [days]</u>	<u>Ô</u>
				54.2	1 🔊	0.1	0.1	$\approx$
	<u>2014</u>				Ŭ	õ		Ž (
		2012	(	ຸ້ 55	<u>_</u>	0.06	°℃ 0.06	. 0
			()	54.2	& 1	0.5	0,0	S
	2014			L	Ì bì á	5 4	Č ,	ç
am			2004	54.2	, Çî	0.5°	20.5 J	
		2012	k, č	° 5,50°	×1 ×	Q04 ×	0.04	
			2014	\$4.2 0	× 1_0	70.4 L	<u>0</u> <u>6</u> 4	. 0
AXXa		2012				0.04 ⁹	Ø.04 <i>"</i>	1
		2012		55		0:03	[©] 0.03©	
Soil 1		. (1988) 🖉		p.a.	O″n.a∡)	2.0	2.6	
Soil 2		(1988) &		~ <b>Q</b> .a.	n a. 🤇	3.7 Ø	3.7	
		~ ~ ~ ~	Geor	metric mean	N A	0.2	× 0.2	
		r s	Ô.	Median		Ø.3 `	∀ 0.3	
				Maximum	o (	3.7 &	3.7	
n.a.: not applicable	e s	J & S						
	, Q	O ~**	*******	****		L.		

### Degradation of PU

Propylene-urea was identified as degradation product of Propineb by (1996). It is proposed to be a primary degradation product of PTU. This is 2014, and 2012, were PLOwas identified as degradation product of PTU degradation confirmed by in aerobic soil. Rate of degradation studies for PU itself are available from (2008a, 2008b) (for study summaries see later in this chapter) and 1993). Furthermore, PU was also detected in the story by 2014, where the degradation of . K. S Propineb-DIDT was investigated,  $\bigcirc$ 

The degradation of major ternonal metabolite PU is now valuated on base of a large experimental data set for the Supplemental Dossic for Propinet enews of approval Annex I.

The evaluation of PU degradation values from study by 2014, was contained in the earlier PTU section (see 2014) already. Initial values for the metabolites, 4-Methyl midazoline, PTU and PU were set to zero. First values at the limit of detection (LOD) or below LOD were set to 0.5 × COD, The LOD accounted for 1.0 % AR. The pre-processed data is shown in section \$1.2 (Fable 10) of report, and the proposed degradation pathway indicated by Figure 7.1.2.1.202 was used, The resulting data for PU were in Table 7.1.2.1.2-8 and Table 7.1.2.1.2-9, already.

As well the evaluation of PL degradation values from study by 2012, was contained in the earlier PTU section (see 2014) already. Initial values for the metabolites, Methol-imidazoline, PTU and PU were set to zero. First values at the limit of detection (LQD) or below LOD were set to  $0.5 \times \text{LOD}$ . The LOD accounted for 1.0 % AR. The pre-processed data is shown in section 5.1.2 (Table 10) of report, and the proposed degradation pathway indicated by Figure 21.2.1.2- 2 was used. The resulting data for PU were in Table 7.1.2.1.2- 8 and Table 7.1.2.1.2-9, already.

The evaluation of all PU degradation data is compiled by the report of



The following Table 7.1.2.1.2- 18 and Table 7.1.2.1.2- 19 summarise the respective results.

All DT₅₀ values were derived from SFO fits and their corresponding rate constants. The summary shows that PU is short living in aerobic soil and degrades with a geometric non-normalized half life of 5.9 days and a median of 5.7 days, respectively. A dependence of the DT₅₀ on soil properties was not detected, however, a dependency of concentration is soil (the lower the faster). In general the newer studies with more realistic lower concentrations in soil resulted in shorter half-lives than the older 1993, which includes the maximum DT50 value of 45.9 days. In ones, i.e. the study by order to use the DT₅₀ values for modelling purposes in exposure predictions the values derived from 1993, may be normalized to optimum soil moisture contenfand a geometric mean or median

value may then be calculated.

		⁽²		The second secon	
Soil	Study		conditions ¹	model	
BBA soil 2.2	199	<u>93</u> × ×	لم % <u>14.4</u> ×	SFO SFO	\$ 17.8
BBA soil 2.3	199	<u>93</u>	4.0 %	ĵ∕∀ SF@>	L 298
		2014			۶.7 کرچ
		29 <u>12</u> 0° °Y		F ESFO S	ू≪ु 3.7 ू
		(2008a)		SFO ^C	≫ 4.4
	× .	(2008b) ^{©*}		sPo o	1.9
		2014	o y ,	SFO O	6.5
	(2008a)			SFO	6.9
		(200	ý c	) [≫] ≪∕SFO	5.4
	<u> 1</u>	<u>98</u> 2 2 2	<b>£4</b> .4 %	SFO	7.7
am 🖉	, ,	2014	Nº N	SFO	8.1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	2012 K X	ð Å	SFO	5.7
Č	0	(2908a)		SFO	5.4
<u>`````````````````````````````````</u>		(2008b)		SFO	2.3
	19	<u>93 () () () () () () () () () () () () () </u>	<u> </u>	SFO	45.9
AIIIa	Ô	(2008a)(, A'	SFO	6.8
	54	(2008b)		SFO	3.0
AXXa	≥2014 Č		S.	SFO	5.2
~~~		2002 6	ř	SFO	4.6
and the second s		(2008a)K		SFO	5.9
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 (2008 <del>1)</del> )			SFO	3.4
		<u>2012</u> 😵 💍		SFO	5.9
				Geometric mean	5.9
	A &	W a,		Median	5.7
	Y S X	, ~Ç		Max	45.9
¹ moisture content Gi	av. %) and temper	rature if deviating from opti	mum (i.e. 55% MV	WHC, 20°C)	

Table 7.1.2.1.2- 18:	Overall Summary	of the D T ₅₀ for	PU degradation	n in soil 🔪	Ň
	•/				

1.2 1.2- 19 **Formation fractions (ff) for the formation of PU from degradation studies** of Propineb-DIDT and PTU

Soil	Study	ff
	2014	1.0

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment

The following new experimental study was performed in order to broaden (i.e. for soil pH) the data set for PU, the terminal degradate of Propineb.

			le la		
Report:			;2008 ;M -3	311730-015	
Title:	[5-14C]BCS-AA17927 (propylene-urea): Ae	robic degradati	ion in fige	
	European soils		s de la companya de l		2° 4,5°
Report No:	MEF-08/443	Č\$	A.		ŝ,
Document No:	M-311730-01-1	- As	Q.		* 4
Guidelines:	OECD 307; EU 95/36/E	C amending 91/414/	EEC, Annexes	and M and	
GLP/GEP:	Yes	A Q		Ű _Á , Ö	
				O ^V &	

EXECUTIVE SUMMARY

The biotransformation of [5-14C]BCS-AA47927. (OC-propylene-brea, -PU was studied in AXXa (LX), sandy loam soil (pH 6.1, lorganic carbon 2.0%, Germany), (DDII), silty clay (pH 7.1, organic carbon 441%, Germany AII (LA), loam soil (pH 6.3, organic carbon 19%, , Germany), ØHaH, silt loam soil (pH 6.5, organic carbon 2.5% Germany), (HH), loam soil , Gorman for 20 days ander aerobic conditions in the dark (pH 4.8, organic carbon 3.3%, at 20°C and 55% WHCmax mater holding capacity. [5-14] BCSAA17927 (PD) was applied at the nominal rate of 515 µg/kg son (DM). This value is based on maximum PEC values of 655 and 375 µg/kg for PU in soil for the two intended uses in field crops and graphes. The PEC values were determined for field application rates of 40x 2100 g Propineby ha (field crops) and 4 x 1348.6 g Propineb / ha (grapes)

The test system consisted of Expense ver flasks equipped with traps for the collection of CO₂ and volatile organic compounds. Samples were analyzed at 0, 2, 4, 7, 10, 14, 21 days after treatment (DAT). At each sampling date the soil samples were extracted five times by shaking at ambient temperature and once with microwave assistance at 70°C with methanol/water mixtures. The [5-1⁴C]BCS-AA17927 (PIV) residues were analyzed and quantified by HPLC. TLC was used as confirmation method. The identification of the test tem was accomplished by LC-MS/MS and LC-1H-NMR spectroscopy and was confirmed by co-chromatography using a non-labeled reference. Only trace amounts of other residues were detected in the extracted.

The test conditions optimed in the study protool were maintained throughout the study. Material balances were 96.8 \pm 3.1% (94.4 to 99.2%, soil EX), 92.7 \pm 4.0% (89.2 to 99.4%, soil DDII), 95.9 \pm 2.6% (93.1 to 100.1%, soil LA), 95.4 \pm 2.9% (92.6 to 100.4, soil HaH) and 96.4 \pm 1.8% (94.6 to 99.4%, soil HH) of the applied amount.

The test item was declining from 94.0, 92.3, 94.4, 94.2% and 93.0% AR at DAT-0 to 1.1, 0.5, 4.7, 1.8 and 12.0% in the soils L&, DDL, LA, HaH and HH, respectively, at the end of the study. For kinetics evaluations see Table 7.1.2.1 $\frac{3}{20}$.

The half-life SFO, SEO mean) for $1^{4}CPU$ in the tested soils kept at 20°C under aerobic conditions was 6.1 days

Non-extractable C-residues increased from 3.2, 4.7, 2.7, 3.6 and 4.4% AR at DAT-0 to 35.8, 35.8, 35.1, 39.2 and 77.9% AR at the end of the study period, respectively.

Considerable amounts of ${}^{4}CO_{2}$ were produced amounting to 53.2, 51.3, 50.5, 49.7 and 32.4% of AR in the softs LX, DDII, LA, HaH and HH, respectively, at the end of the study. No volatile organic compounds were measured at values > 0.1% AR at all sampling dates.

Table 7.1.2.1.2- 20: Degradation kinetics calculations for [14C]PU in soil (best fits indicated **bold typed**)

Test item:	$[S^{4}C]BCS-AO(792S^{4}C-PU)$
Sample ID:	0KATE 6556, S 2 0
Specific Activity:	{ 4.20)MBg/9πg (115.41,4€i/mg)ℓ [
Radiochemical Purity:	97,3% (HPLC, radiodetection)
Chemical Purity:	> 99% HPL @ UV det., 192 nm) &
0° 49	

2. **Tes** Soils

I.

1.

Five souls were used see <u>Toble 7. F.2.1.2-\21</u>). The souls were taken from agricultural use areas representing different geographical origin and different soil properties as required by the guidelines. No plant protection products were used for the previous 5 years. The soils were sampled freshly from the fields (upper horizon of 0 to 20 cm) and sieved to a particle size of ≤ 2 mm.

B. STUĎY DEŠI

1. **Experimental** Conditions

The biotransformation of 5-14CIBCS-A@1792% (14C-PU) was studied in 5 soils for 21 days under aerobic conditions in the park at 20°C and 55% WHCmax (max. water holding capacity).

The test was performed in static systems consisting of Erlenmeyer flasks each containing 100 g soil (dry weight equivalents) and equipped with traps for the collection of carbon dioxide and volatile organic compourds but permeable for oxygen.

Sampling S 2.

Samples were analyzed at 0, 2, 4, 7, 10, 14, 21 days after treatment (DAT) Duplicate samples were processed at each sampling date.

Parameter	Results/Units	Results/Units	Results/Units	Results/Units	Results/Units	Ĩ
Soil		II	AIIIa			a start
	AXXa	11		ř		
Sail Tayanamia	Sandy flaadulain	Nat available	Einen flurriel	Lassa	Nat available)
Soli Taxonomic	deposite of the	Not available	Finer Iluvial	Loess or doess	Not available	۵
(USDA)	lower torrage of		sediment above	(Dising comp		
(USDA)	the Phine river		doposite of the	(Flewstocene,		, ,
	metarial from the		lower formage of	(anoiocene)		L
	Distance Internal Internal		the Phine river	Ň K		1,0 ⁹
	Pleistocene ice		the Kille river,		°, ₽°	
	Age		material from the		A . A	,
		L.				
Soil Sorias	Sandy mixed	Not availab	Age of	t annih min an	Neverilable	
Soli Series	Sandy, Inixed,		Loaniy, Infxed,			0
	Combudalla	.1		A roudelfo	or or s	0
Taxtura Class	Sandy Loom	Siltra Play &		Silt I Com	Silt Loor	
(USDA)	Salidy Loann					
(USDA)	670/	Q170/				
Sand Silt	0/%		43,70	500	2470 590/	
Sht	19%	Q_{1}^{41}	235% 2004		× ×QD70 ×2004	
Clay nH in Watar	6.2 Qu	× 10/0 00 × 10/0 00	0°22700		¥2070	
pH in water	0.5	× 1.2		90.0	3.1	
pri ili saturated	62	& 7 °		× 60 ×	5.0	
paste	0.2 5.0				5.0	
pH III KCI	5 9 V	7 1			4.4	
Organia Mattarl)		7 10/		(0.5) (4. 4.20)	4.0 5.70/	
Organic Watter		× 1.170	$\begin{array}{c} & 2 \cdot \mathbb{Z} \neq 0 \\ & 2 \cdot \mathbb{Z} \neq 0 \\ & 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\ & 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 3 \cdot 3$	$0^{+.3707}$	3.770	
Sail Diamaga ²	2.07p	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~0176/100	-2.570	3.370	
(DAT 0 and	× 492@73	2332/1019			/23/465	
$(DAT-0 and DAT-2) \qquad \mathbb{A}^{(1)}$				≪°		
DAI-42)		10.2 mag/100 -5	0 6 2 2 2	1 mag/100 -	10.5 m g/100 =	
Cation	3:0 med/1a0 g	$19.2 \text{ med}/100 \text{ g}^{-1}$	9.0 med/100 g	\approx 13.4 meq/100 g	10.5 meq/100 g	
Exchange *						
Capacity (CEC)				265 1	41.4	
55% of ₩HC _{max}	28.4 g water ad	$A_2./g$ water ad	2/.4 g water ad	36.5 g water ad	41.4 g water ad	
	I LEW g SOTTADIM	2100 8 5011 DIA	I I W g soll DM	100 g soil DM	100 g soil DM	

Table 7.1.2.1.2- 21:	Physico-chemical	properties o	of test soils
	I HYSICO CHUMICAI	ρι υρει μες ι	JI (CSC SUIIS

1) % organic matter = % creanic carbon :

2) mg microbial carbon fer kg of soil [dro

Apalytical Procedures 3.

The soil samples were extracted five times by shaking at ambient temperature and once with microwave assistance at 70°C with methanol/sater mixtures. The [5-¹⁴C]BCS-AA17927 residues were analyzed and quantified by HPLC. TLC was used as confirmation method. The identification of the test item was accomplished of LC MS/MS and LC-1H-NMR spectroscopy and was confirmed by co-

chromatography using a non-labeled reference.

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

II. **RESULTS AND DISCUSSION**

A. DATA

Table 7.1.2.1.2- 22: Biotransformation of [14C]PU in soil conditions, expressed as % of AR (mean \pm SD)

	551011							~ °	
A. DATA									ð
Table 7.1.2.1.2- 22: Biotransfor conditions,	mation o expresse	of [¹⁴ C]P d as % (U in soil of AR (n	iean ± S	D) AX	Xa unde	r aerob		p ²
Compound	Mean			DAT (da	ays after tr	eatment)	Ô		D
Compound	SD	0	2 🏷	, 4	, a l	10 🛒	مَّ 14	21	a
DCS A A 17027 (14C DID	Mean	94.0	80.6	66.5	Q47.4	33	13,8	₩.1	Ś
BCS-AA1/92/(*C-PU)	SD	±0.6	_€0 .4	±0.3	€ ±0.6	2 .0	\$0.2 ×	0±0.3) }
Unidentified DA	Mean	2.0	م 1.0	1,8	<i>ĝ</i> 22 <i>i</i>	Q [×] 3.1 Ô	3.3	45	
Undentified KA	SD	±0.1	±0.2	±0 .2	€ € 10.6 ©	±	<u>_</u> ≇0∕.2	\$ 0.2	
Total avtractable residues	Mean	96.0	® 1.6	68.3 Å	496	37.1	. 19.0 <u> </u>	5.4 。	
Total extractable residues	SD	±0.7_0	±0,200	±0:4	±0.0	≥ ±1.9©	±000°	+0.0	
¹⁴ CO ₂	Mean	n.a.y	<i>4.8</i>	Â.3	~ 20.6 V	28,5	40.5	\$3.2	
	SQ		€ ⁴ 0.1	¥±0.2	±0,0	£0.9	\$±0.3) ±0.1	
Volatile organics	Mean	0″n.a. 🏷	^v <0.1 [∞]	¢¢۶	×0.1	³ <0,15	્લ્ટ્રો	< 0.1	
volatile organies	SD S	Ŕ		Ô,	\checkmark		~~ ,		
Non-extractable residues	Mean	3.2	®11.1	/ 17. %	255.0	³ 2.9 €	36.3	35.8	
	SD SD	U ±0.2	±0.9	±0.5	~~ ⁴ 0.2~~	±5Ø\$	±0.2	±0.1	
Total Recovery	Mean	29.2	§7.2	\$97.5°	95Q	9 8.4	95.8	94.4	
	SD.	£0.9	\$ ±0.4	±03	€ 0.2	y ±6.2	±0.1	± 0.0	l
(C) - 4	9 NI 2/	///			× // · · · ·				

n.d.: not detected, n.a fot analyzed, DAT: days after treatment, SD: standard deviation a

Õ

Bostransformation of P^4C [PU in soil Expressed as % of AR (mean ± SD) Table 7.1.2.1.2-23:

under aerobic conditions,

	2 1		- Cor		vQ			
	Mean	0,		DAT (da	ays after tre	eatment)		
	ŠD	Ç` 0 🔨	ື 2 炎	*	7	10	14	21
	Mean	92,3	B .9	60.0	38.8	18.8	1.4	0.5
Bes-AAT/90 (CED)	SD)	≥⇒0.6	\$±1.0	₹ ±0.1	±0.2	±0.7	±0.6	±0.1
Unidentified BA	Mean	2.4~>		2.7	2.0	2.6	3.7	2.9
	SD	±006	£0 .5	±0.2	± 0.0	± 0.1	±0.5	± 0.0
Tata autoatable adidues	Mean	\$94.6	≫ 78.0	62.6	40.8	21.4	5.1	3.4
	SD C	±0,17	±0.5	±0.3	±0.2	±0.7	± 0.0	±0.1
1460°.	Mean	den a	3.3	8.8	19.4	30.3	45.5	51.3
	∕~\$SD	Q"	± 0.1	±0.2	± 0.1	±0.6	± 0.0	± 0.0
Vatila and pice	Mean	n.a.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	SD							
Man arter table widu	Mean	4.7	15.0	21.7	30.5	37.5	39.1	35.8
	SD	±0.3	±0.7	±0.1	±0.4	±0.1	±0.1	±0.0
	Mean	99.4	96.3	93.1	90.6	89.2	89.7	90.5
	SD	±0.2	±1.3	±0.2	±0.7	± 0.1	± 0.0	±0.0

n.d.: not detected, n.a.: not analyzed, DAT: days after treatment, SD: standard deviation

€.2

₹93.9

 ± 0.3

€3.5

±0.4

Ò

 ± 0.2

93.1

 ± 0.3

ble 7.1.2.1.2- 24: Biotransfo conditions	ormation o s, expresse	of [¹⁴ C]P d as % (U in soil of AR (n	nean ± S	AIIIa 5D)	under :	aerobic	Ŷ
Comment	Mean			DAT (d	ays after tro	eatment)	Ó	S d
Compound	SD	0	2	4	7	\$ 10	14	20
DCC A A 17027 (14C DL)	Mean	94.4	83.2	71.6	53.1	38.9	23.3	4.7
BCS-AA1/92/(**C-PU)	SD	±0.7	±0.2	±0.9	±0.5	±0.3	≈ 0.5	±0.2
Unidentified RA	Mean	3.0	1.7	2.1	Q.8	2.5 🖒	2.8	298
	SD	±0.4	±0,1	±0.5	© ±0.2	±Q1	0 .2	\$£0.3 €
	Mean	97.4	ا⊈	73.7⁄Q	55.9	ير 1.4 🖓	26.1 Ĉ	7.5 [©]
l otal extractable residues	SD	± 0.3	±0.3	±0.4	° ⊈0.3 _	¥£0.2℃	±0,3	~ <u>6</u> .1
1400	Mean	n:a/	<u>ĝ</u> 23	×9.0	18.5	26.6	36.4	^{50.5}
CO_2	SD	.4 (S±0.1	±0.6	±0.1	€0.1	±0.2	$\pm 0.5^{\circ}$
V-1-4:1	Mean	√n.a. →	<q.)< td=""><td><u>\$0.1</u></td><td>A<0.1 O</td><td><0.1</td><td><0.1</td><td>0.1</td></q.)<>	<u>\$0.1</u>	A<0.1 O	<0.1	<0.1	0 .1
volatile organics	SP	Ľ,	V .			S.		
Non autoratella mailura	Mean	2.7 🔬	\$ 9.7	14.40	21.3	25.5	31.4	35.1
Non-extractable residues	Ô [%] cD	S	1/20.0		Sec 0			

n.d.: not detected, n.a.: not analyzed, DAT: days after treatment SD: standard deviation

Ø7.9

 ± 0.0

Õ

0

Ø 2

±0%

 ± 0.4

Ê0.1

95

Table 7.1.2.1.2- 25:	Biotransforma	tion of [14C]R	U in soil	under aerobic	conditions,
, k	expressed as	of AR (mear	ı± <i>\$</i> ₽)	an an	

 $\pm 0 A$

100.1

\$£0.1∡

SD

Mean

SD

Total Recovery

	* *				Y			
Conformed a start	Mean			DAT	ays after tro	eatment)		
Compound	SD §	<u>کَ</u> او ک	200	ð	<i>@</i> 7	10	14	21
DCS 2417027 (14C2) D	Meán	9 @ 2	78.0	@63.2	¥ 43.8	28.9	13.7	1.8
BCS RA1/92/ (**CorU)	SD.	≂,∉1.2 (5±0.5	±0.0 [%]	±0.3	±1.5	± 0.0	±0.3
Unidentified PLA	Mean	2.5	1%6	A.8	2.0	2.4	2.3	2.7
	S\$€¥	્ર ≭0.4	$\approx \pm 0.4$	©±0.5	±0.2	±0.2	± 0.1	±0.1
Total avt table residue	Mean	096.7 C	∑ 79.50°	65.0	45.8	31.3	16.0	4.5
	∀´SDQ	±0.%	±0.1	± 0.0	± 0.4	±1.3	± 0.0	±0.2
	Mean	ð.a.	^{&} 4.4	11.3	20.7	29.0	38.8	49.7
	SD ∦	\$`~\$	±0.1	± 0.1	±0.2	±0.2	± 0.1	±0.3
Veletile engenies	Mean	n a.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
volatile otganics •	SD .	Ó ^y						
Non autostable veridue	Mean	3.6	13.5	20.2	27.8	32.2	38.5	39.2
Non-expactacize residues	SD	± 0.1	± 0.0	± 0.1	±0.3	± 0.5	±0.6	±0.3
Tata Bannak	Mean	100.4	97.5	96.5	94.3	92.6	93.4	93.5
	SD	±0.7	±0.3	±0.3	± 0.1	± 0.5	± 0.7	± 0.1
n.d.: not detected, n.a.: not analyzed, DAT: days after treatment, SD: standard deviation								
Č								

able 7.1.2.1.2- 26: Biotransformation of [¹⁴ C]PU in soil						inder aerobic		
conditions, expressed as % of AR (mean ± SD)								
Mean	DAT (days after treatment)						Š, Č	
SD	0	2	4	7	Ş 10	14	2	
Mean	93.0	75.6	62.5	48.2	36.1	2 \$.1	2.0	
SD	± 0.1	±0.8	±0.6	± 0.7 \vee	±0.1 ្	>>±0.8∞		
Mean	2.0	1.5	1.6	J.6	1.90	hØ	L'IS	
SD	±0.2	±\$%0	±0.4	$O_{\pm 0.2}^{\vee}$	±6.3	<u>0</u> .4	5°£0.2≰€	
Mean	95.0	77.2	64.1°	49,9	£38.1 ×	27.0 ^C	143	
SD	± 0.3	±0.8	+0.1	°~£0.6	¥ <u>±0.3</u>	±0,4	~ 0 .1	
Mean	n a.	<i>9</i> ?2	<u>ب</u> 7.2 ک	12.3	10.5	23.5	32.4	
SD	3	± 0.1	±0,0	±9.1	±0.1	∀ ±0.2	$\pm 00^{\circ}$	
Mean	n.a	<0,1	29 .1	€ 0.1 Ô	<0.1	<0.1	\$0.1	
SB			γ		Ĵ,			
Mean	³ 4.4 %	¢ 17.7	25.0	33.7	§ 39.5¢	44.90	47.9	
SD	±02	±02	ð.5	0±0,10	±CA	°£Ø.1	±0.1	
Mean	99.4	Ø 8 .1 "	[©] 96.4 Q	95.8	₫5.1	∲95.4	94.6	
≰ SD ू	£±0.54	±1,%	±0.5	્રે∻≠0.6્ર્) ±0.2	±0.1	±0.3	
	Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean	Mation of $[^{14}C]P$ expressed as % of Mean 0 Mean 93.0 SD 0 Mean 93.0 SD ± 0.1 Mean 2.0 SD ± 0.2 Mean 95.0 SD ± 0.3 Mean $n.a$ SD ± 0.3 Mean $n.a$ SD ± 0.2 Mean ± 0.2 Mean ± 0.2 Mean 99.4 SD ± 0.5	Mation of [PC]PU in soil Mean SD 0 2 Mean 93.0 75.6 SD ± 0.1 ± 0.8 Mean 2.0 1.5 SD ± 0.2 ± 0.0 Mean 95.0 77.2 SD ± 0.3 ± 0.8 Mean $p_{5.0}$ 52 SD ± 0.3 ± 0.1 Mean $p_{5.0}$ 52 SD ± 0.3 ± 0.1 Mean $p_{5.0}$ ± 0.1 Mean $p_{5.0}$ ± 0.1 Mean $p_{5.0}$ ± 0.1 Mean $p_{5.0}$ ± 0.2 Mean $p_{5.0}$ ± 0.5	Mation of $[^{16}C]PU$ in soil DAT (days Mean DAT (days SD 0 2 4 Mean 93.0 75.6 62.5 SD ± 0.1 ± 0.8 ± 0.6 Mean 2.0 1.5 1.6 SD ± 0.2 ± 0.0 ± 0.4 Mean 95.0 50 50 50 50 SD ± 0.3 ± 0.8 ± 0.4 Mean 95.0 52 7.2 64.1 SD ± 0.3 ± 0.8 ± 0.4 Mean 95.0 52 7.2 64.1 Mean 95.0 52 7.2 64.1 Mean 95.0 52 7.2 52 Mean 9.4 50.2 50.2 50.2 Mean 99.4 58.1 96.4 55.5 Mean 99.4 58.1 96.4 55.5	Mation of [1*C]PU in soil DAT (days after trops Mean DAT (days after trops SD 0 2 4 7 Mean 93.0 75.6 62.5 48.2 SD ± 0.1 ± 0.8 ± 0.6 ± 0.7 Mean 2.0 1.5 1.6 ± 0.6 SD ± 0.2 ± 0.0 ± 0.4 ± 0.2 Mean 95.0 57.2 64.1 49.9 50 SD ± 0.3 ± 0.8 ± 0.4 ± 0.6 Mean 95.0 57.2 7.2 12.3 SD ± 0.3 ± 0.8 ± 0.4 ± 0.6 Mean $n.a$ 50.2 7.2 12.3 50.2 Mean $n.a$ 50.2 7.2 12.3 50.2 Mean $n.a$ 50.2 57.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 $50.$	under treiment of [PC]PU in soil under expressed as % of AR (mean \pm SD) Mean DAT (days after treatment) SD 0 2 4 7 10 Mean 93.0 75.6 62.5 48.2 36.1 SD ± 0.1 ± 0.8 ± 0.6 ± 0.7 ± 0.1 Mean 2.0 1.5 1.6 46.6 1.9 SD ± 0.2 ± 0.6 ± 0.7 ± 0.3 Mean 2.0 1.5 1.6 4.6 1.9 SD ± 0.2 ± 0.6 ± 0.7 ± 0.3 ± 0.4 ± 0.2 ± 0.3 Mean 95.0 77.2 64.1 49.9 38.1 49.3 Mean $n.a$ 52 77.2 12.3 47.5 SD ± 0.3 ± 0.4 ± 0.5 ± 0.1 ± 0.6 ± 0.3 Mean $n.a$ 52 77.2 62.1 52.7 52.7 52.7 52.7 52.7 52.7 52.7 52.7	under aerobic wider aerobic expressed as % of AR (mean \pm SD) Mean DAT (days after treatment) SD 0 2 4 7 10 144 Mean 93.0 75.6 62.5 48.2 36.1 25.1 SD ± 0.1 ± 0.8 ± 0.6 ± 0.7 ± 0.1 ± 0.8 Mean 2.0 1.5 1.6 4.6 1.9 4.0 Mean 2.0 1.5 1.6 4.6 1.9 4.0 Mean 95.0 47.2 64.1 49.9 38.1 27.0 SD ± 0.3 ± 0.4 ± 0.6 ± 0.3 ± 0.4 Mean 95.0 57.2 72.2 12.3 47.5 23.5 SD ± 0.3 ± 0.4 ± 0.4 ± 0.4 ± 0.4 ± 0.4 ± 0.2 Mean $n.a$ 50.2 57.1 49.4 57.4 49.4 57.4 49.4 Mean <t< td=""></t<>	

n.d.: not detected, n.a.: not and yzed, DAT: days after treatment, SD: standard deviation

B. METHOD VALIDATIO

The DAT-0 extraction efficiency was 94.6 to 97.4% AR. The stability of the test item was verified by a DAT-0 recovery of 92.3 to 94.4% AR for the organic and microwave extracts. These results indicated that the extraction method was well suited to extract the applied [14C]-labeled test item from the soil matrix. Ô

The HPLG method (reversed phase 18) was used for data valuation. A good selectivity and reproductivility demonstrated the suitability of the separation and quantitation.

The limit of quantitation values (LOQ) of HELC for a single peak in the organic soil extracts was approximately 0.8% AR. The HPLC mean recover of this method was approximately 102.0 and 102.5% for the two types of estracts indicating that no significant losses of radioactivity occurred on column, tubings or detectors

Normal phase Si-60 TLC was used to confirm the

DEGRADATION OF 14C-P C.

The test item was declining from 94.0, 92.3, 94.4, 94.2% and 93.0% AR at DAT-0 to 1.1, 0.5, 4.7, 1.8 and 12.0% in the soils LX, DDU, LA, HaH and HH, respectively, at the end of the study. Thereby, not any other major metabolite could be observed.

For kinetics evaluation see Table 7.1,2 4.2- 20. The half-life (SFO, GEOmean) for [14C]PU in the tested soils kept at 20°C inder perobic conditions was 6.1 days.

CONCLUSION

The data gathered in the current laboratory investigation demonstrate that the test item is degraded well in the five soils. For [14C]PU a DT₅₀ of 6.1 days (GEOmean over the five soils) was calculated. High amounts of ¹⁴CO₂ (up to 53.2% AR) were measured at the end of the study indicating that relatively quick mineralization occurred once metabolism of [5-14C]PU is initiated.

The following new experimental study (quite similar to the study described before) was performed with a lower treatment dose since there were some hints that the degradation of PU is depended on the test concentration in soil.

Report:		;2008;M-31278	34-01
Title:	[5-14C]BCS-AA17927 (propylene-up	rea): Aerobic degradation a	t low rato in 🖉
	five European soils		
Report No:	MEF-08/473	-Q, Q,	× ×
Document No:	M-312784-01-1		
Guidelines:	OECD 307; EU 95/36/EC angending	91/41 QEEC, Annexes II an	d ÎII 🖉 🖉
GLP/GEP:	Yes		

EXECUTIVE SUMMARY

The biotransformation of [5-14C]BCS-AA17927 ([14C]PU) acrow application rate was studied of the same five soils as mentioned in the fudy before. AXA3 (LX), (Compared to (DD),

AIIIa (LA), AIIIA

Again, the test system consisted of Erlenmeyer flasks equipped with traps for the collection of CO₂ and volatile organic compounds. Samples were analyzed at 0, 1, 2, 3, 4, 7, 10 and 14 days after treatment (DAT). At each sampling date the soil samples were extracted five times by shaking at ambient temperature and once with microwaye assistance at 70° (with methanol/water mixtures. The [5-¹⁴C]BCS-A Q 7927 residues were analyzed and quantified by HPLC. TLC was used as confirmation method. The identity of the test term in the application solution was verified by LC-MS/MS and was confirmed throughout the experiment bc co-chromatography using a non-labeled reference Only trace amounts of other residues were detected in the extracts.

The test conditions outlined in the study protocol were maintained throughout the study. Material balances were $95.6 \pm 2.3\%$ (92.2 to 99.1%, soil LX), $92.5 \pm 3.7\%$ (89.4 to 99.9%, soil DD), $95.7 \pm 2.5\%$ (93.1 to 99.9%, soil LA), $95.8 \pm 3.1\%$ ($92.7 \pm 101.\%$, soil HH) and $95.8 \pm 2.0\%$ (93.8 to 99.0%, soil HS) of the applied amount.

The test item was declining from 94.8, 92.8, 94.2, 92.7% and 92.1% AR at DAT-0 to 0.9, 0.4, 0.6, 0.6 and 1.2% in the soils PX, DD, LA, HH and HS respectively, at the end of the study. For kinetics evaluations see Table 7.1.2, 1.2 - 27

The half-life (SFO, GEOmean) for [¹⁴QPU in the tested soils kept at 20°C under aerobic conditions was just 2.7 days, and this significantly lower as that determined for the higher test concentrations. As it was indicated a concentration dependency of the degradation rate for PU was shown. In a supplementation non-GLP experiment it was demonstrated that this effect was not caused by scattering activities of different sol batches taken from the same field, but rather is a genuine property of the metabolite PU.

Non-extractable ¹⁴ Gresidues increased from 2.3, 3.8, 2.2, 5.4 and 3.7% AR at DAT-0 to 40.6, 40.4, 39, 44.6 and 46.5% AR at the end of the study period, respectively.

Considerable amounts of ${}^{14}CO_2$ were formed amounting to 44.9, 49.4, 48.1, 45.9 and 42.2% of AR in the soils LX, DD, LA, HH and HS, respectively, at the end of the study.

No volatile organic compounds were measured at values > 0.1% AR at all sampling dates.

Degradation kinetics calculations for [5-¹⁴C]PU in soil (best fits indicated Table 7.1.2.1.2-27: **bold typed**) a.

71					
Soil	Kinetic Model	DT50 [d]	DT90 [d]	• Chi ² error	R P
	SFO	3.5	11.8	S 5.5879	ω s
AXXa	FOMC	3.5	11.8 💮	° 6.2427 '	×
	DFOP	3.5	11.8	6.4374	
	SFO	2.0	6.8	7.6685	
II	FOMC	 2.0	5 28	8.4598	
	DFOP	2.0	06.8	8,8695	
	SFO	§ 3.2	[©] 10.5	\$7.6954	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AIIIa	FOMC	3.2 🏒) [*] 10.6	⁰ 8.4452 [*]	Ŭ ,O
	DFOP	3.2	* J.P.5 ~	<u>8.9678</u>	
	SFO 💖	ິ 2.5 _⊘ ຶ	×8.2 m	<u>~6</u> .\$303 ≪	. ~ ~ ~
	FOM	2,5	8.2		*0
	DFØP 🔬	Q.5		@ 7.52 B 1	A
	_SFO € ⑦	_@2.7 ~~	« 8.9 »	5.2965	¢` ŵ
	<i>¶</i> ́OM€ [™]	∑ [¥] 2.7℃	₹\$8.9, O'	\$7010 ×	A C
	DE OP	Ú 2.%	O [™] 8.9 [™]	\$6.0325	Ő
SEO Maan	Arithmetic	~2.8	<u>9</u> 2 4		
Sr O-Ivicali	G@metric	** 2.7 🔊	≫9.1 ∧		R
SEO, single first order	à à	δ	<u> </u>	<u>v</u> v	•

I. MATERIALS AND METHODS

1 Tost Itom

SFO, single first order
FOMC, first order multicompartment
DFOP, double first order in parallel 🛇
. MATERIALS AND METHODS & S C S C S
$\mathbf{L} \text{Test Item} \mathcal{G} \mathcal{O} \mathcal{O} $
Test item: $\sum_{n=1}^{\infty} \int_{\mathbb{R}^{n}} [5^{-1} \mathcal{K}] BC S^{2} AA17927 ([A^{2}C] PU)$
Sample ID: $\sqrt{2}$ $\sqrt{2}$ $\sqrt{4}$
Specific Activity: 2 , 4.27 MBq/mg/115.41 μ Ci/mg)
Radiochemical Purity: 97.5% (HPLC, radiodetection)
Chemical Qurity: $> 9\%$ (HPLC, $\%$ det., 792 nm)

Fest Soils 2.

Five soils were used (see Table 7.1, 2, ¥.2- 28). The soils were taken from agricultural use areas representing different geographical orgin and different son properties as required by the guidelines. No plant protection product were used for the previous I years. The soils were sampled freshly from the fields (upper horizon of 0 to 20 cm) and sieved to aparticle size of ≤ 2 mm.

STUDY DESIG B.

Experimental Conditions 1.

The biotransformation of [5-40]BC&AA12927 (14C-PU) was studied in 5 soils for 14 days under aerobic conditions in the dark at 20°C and 55% WHCmax (max. water holding capacity).

The test was performed in static systems consisting of Erlenmeyer flasks each containing 100 g soil (dry weight equivalents) and equipped with traps for the collection of carbon dioxide and volatile organic compounds but permeable for oxygen.

Sampling 2. م

Samples Overe analyzed at 0, 1, 2, 3, 4, 7, 10 and 14 days after treatment (DAT). Duplicate samples were processed at each sampling date.

Parameter	Results/Units	Results/Units	Results/Units	Results/Units	Results/Units	j de
Soil	AXXa	II	AIIIa	J. J	Ő	ð
Soil Taxonomic Classification (USDA)	Sandy floodplain deposits of the lower terrace of the Rhine river, material from the Pleistocene Ice Age	Not available	Finer fluvial sediment above coarse floodplain deposed of the lower terrace of the Rhine river, material from the Pleistocene Ice	Loess or loess Colluvium (Pleistocene) Holocene)	Notavailable	
Soil Series	Sandy, mixed, mesic Typic Cambudolls	Not available	Loamy, mixed, mesic@ypic Argudalfs	Loamy, mixed, mesic Typic Argudal/s	Avot available	o
Texture Class (USDA)	Sandy Loam	Lovam	Sandy loam	Êvam	Silt Loan	
Sand Silt Clay	75% 19% 6%	27% B	55% 28% 017%	C35% C 50%	Ø 33% 52% °∕15%	
pH in Water pH in saturated	6.0	×7.2 °		6 .9 5	6.0 0	
paste pH in KCl pH in CaCl ₂	6.1 5.5 5.9	7.1 7.1	6.4 6.4 6 6 6 6 6 6 7 6	5 69 ² 5 64 5 6.8 5	6.0 5.3 5.8	
Organic Matter ¹⁾ Organic Carbon	2.9% 2 01.7%	<u> </u>	2.2% 0°	<u>4.8%</u> <u>2.8</u> %	4.0% 2.3%	
Soil Biomass ²⁾ (DAT-0 and DAT-21)	Tables of Coport	Table 8 of report	Table 8	Gable 8 of report	Table 8 of report	
Cation Exchange Capacity (CEC)	9.0 meg/100 gC	15.9 meq/100 g	9.4 meq 2000 g	© 13.0 meq/100 g	8.7 meq/100 g	
55% of WHC _{max}	25.4 g water ad	44.7 g water ađ >100 g soil D∭	24.8 g water ad 100 g soil DM	37.0 g water ad 100 g soil DM	34.3 g water ad 100 g soil DM	

Table 7.1.2.1.2-28: Physico-chemical properties of test soils

1) % organic matter = % cryanic carbon x

2) mg microbial carbon for kg of Soil [dro

3. Analytical Procedures The soil samples were extracted five times by shaking at ambient temperature and once with microwave assistance at 70°C with methanol/vater mixtures. The [¹⁴C]PU residues were analyzed and quantified by HPLC. TLC was used as confirmation method. The identification of the test item was quantified by HPLC. TLC was used as confirmation method. The identification of the test item was accomplished by LC-MS/MS and LC/H-NMR spectroscopy and was confirmed by co-chromatography using a non-labeled reference.

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

II. **RESULTS AND DISCUSSION**

DATA A.

Biotransformation of [¹⁴C]PU in soil conditions, expressed as % of AR (mean ± SD) Table 7.1.2.1.2- 29:

II. RESULTS AND	DISCU	3510 1							~ °		
A. DATA										ð	
Table 7.1.2.1.2-29: Biotransformation of [¹⁴ C]PU in soil AXXa under aerotic conditions, expressed as % of AR (mean ± SD) AXXa											
Compound	Mean		DAT (days after treatment)								
Compound	SD	0	1	2	3	, the second sec	7	ې 10 کې	14	<i>.</i>	
$\mathbf{DCS} \wedge \mathbf{A} 17027 (\mathbf{I}^{14}\mathbf{C}\mathbf{I}\mathbf{D}\mathbf{I})$	Mean	94.8	80.9	69.2	56.9	Q47.0	255	\$ 9	×0.9	Ś	
BCS-AA1/92/ ([*C]PU)	SD	±0.7	± 1.0	£1.1	±0.3	±1.3	<u>2</u> .2	.7 ©0.7	$\int \pm 0.1$		
Linidantified DA	Mean	2.0	2.7	€ 2.2	2.3	¢ î	2.6	4.2	5.8		
Unidentified KA	SD	± 0.8	± 0.8	±0.2	±00 . 7	`≫±0.2 @	±0,0	<u>_</u> ±€0.2	\$ 0.3		
Total extractable residues	Mean	96.8	83.6	@1.3	\$59.2	490	28.0	12.5	6.6		
Total extractable residues	SD	±0.1	±0.2 @	≥ ±0.9©	±0:\$	±1.5	±1.60	±0,00°	+\$3		
¹⁴ CO ₂	Mean	n	3.5	Ĵ.3	Q.0	چ ^{16.6}	27.6	38.7	\$44.9		
	SD		4 0.1	≪±0.9	¥±0.2	±0,5	£0.2	\$±0.3	[●] ±0.1		
Volatile organics	Mean	Sno a	≫ <0.1°⊃	$\sim <0.1$	<0,1	St.1 5	₹<0.1	્યુષ	< 0.1		
volatile organics	SD			Ž.	S a			±0.0			
Non-extractable residues	Mean	23	10.7	M7.0 4	24.	30.4	©38.0 ℃	[∲] 43.4	40.6		
Non-extractable residues	SD	^{&} ∕±0.3 ℃	±0.1	±0.2	±0.4	€£0.2	±0,8	±0.3	± 0.0		
Total Recovery	Mean	99.	2018	\$5.7	\$95.3 [*]	^U 96.05	93.7	94.6	92.2		
	SIQ *	9 .1	Q_0.3) ±0.9~	±000	\$∉0.7	¥0.5	±0.3	± 0.5		
<u>e</u> ž			, <u>s</u>	~		()) (V)	,				

n.d.: abi detected, n.a. not analyzed, DAT: days after treatment, SD: standard deviation

Table 7.1.2.1.2): 🖉 Biotransform	ration of [14C Pl	U in soil	under aerobic
Ĩ	S conditions, e	xpressed as % o	$f_{AR} (n_{0} an \pm SD)$	

	Mean	<u></u>	°¢″	DA	l (days aft	ter treatm	ent)		
Canbonna 🖉	~ SD		» [°] 1 "	2	х З	4	7	10	14
	Mean	92.8	7955	53.1	37.5	22.0	2.0	0.7	0.4
всз-аат/927 ([*е]РО) <u>л</u>	SI	±0.6	€ €0.9	©≠0.5 √Ç	₽ ⁹ ±4.7	±3.7	±1.1	± 0.1	± 0.1
Unidentified DA	Mean	°∼y 3.2 ~~	2.7~	2.1	4.0	2.6	3.6	3.9	3.3
	Õ sd∧Ç	± 0.2	<u>_</u> ±Ø.3	20 .2	± 0.1	± 0.1	±1.2	± 0.0	± 0.1
Total averatable residue	Mean	96.0	A3.2	≫ 53.2	41.5	24.6	5.6	4.6	3.7
I otal extractable residues $\sqrt{2}$, ∯\$D	&±0.5	±1.2	± 0.8	±4.7	±3.6	± 0.1	± 0.1	±0.2
	Mean		J.	8.7	14.6	23.2	40.1	44.5	49.4
	Ð		$\dot{\mathbb{Q}}{\pm}0.0$	± 0.0	±1.3	±1.1	± 0.0	±0.5	±0.2
Valatil	Mean	~~~~	0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	0.1
volatile organics	SD	11.8%	± 0.0			± 0.0	± 0.0		± 0.0
Non averate De racidore	Mean	3.8	18.5	29.0	34.3	43.0	43.6	41.3	40.4
Non-extractable residues	≫ SD	± 0.1	±0.6	± 1.2	± 3.0	±1.1	±0.5	±0.3	±0.2
TetQ Basavery	Mean	99.9	94.9	90.9	90.5	90.8	89.4	90.4	93.5
I bian Recovery	SD	± 0.5	±0.5	± 0.4	±0.4	±1.4	±0.6	±0.3	±0.3

n.d.: not detected, n.a.: not analyzed, DAT: days after treatment, SD: standard deviation

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Propineb

1 abic /.1.2.1.2 01. D	1. Diotransion mation of $\left(C_{A} D \right)$ (CAD (
conditions, expressed as % of AK (mean ± SD)											
Commonwell	Mean			DA	Г (days a	fter treatm	ent)		5.0	Ŭ	
Compound	SD	0	1	2	3	4	Ç 7	105	L.		
$DCS \wedge A 17027 ([^{1}4C]DI)$	Mean	94.2	81.4	69.8	54.8	43.8	17.3	A:3	0.6	D	
BCS-AA1/92/ ([^C]PU)	SD	± 0.8	±1.2	±0.8	±0.9	±1.3	±0.4 ្្	>>±0.4≈		Í	
Unidentified DA	Mean	3.5	2.2	1.9	2.3	2.3	3.4Ô	40	Å.6	L.	
	SD	±0.3	±1.0	±\$.5	±0.1 🔬	$O_{\pm 0.5}^{\vee}$	±0.2	Ĩ.0	5 ± 0.1	D.	
Total extractable res.	Mean	97.6	83.7	71.6	57.1°	46.1	چ20.7 ه	8.5 C	5.8		
	SD	±0.5	± 0.2	±1.3	+0,9	°~£0.8	[™] ±Q.&	±1,0	~ 0 .2		
1400	Mean		3.A	P.8	£13.1 €	18	X2 .0	42.2	^{*©} 48.1		
CO_2	SD	11.a.	±0.1	5 ± 0.1	±0,	±0.3	100 ± 0.2	⊭ ±0.4	±QQ1°		
Volatile organics	Mean	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0,1×	<0,)	29 .1	×0.1 0	<0.1	<0.1	\$ 0.1		
volatile organics	SD		, Č					Ç (
Non extractable residues	Mean	2.2	11.0~	S 17.7	25.9	A30.5	\$ 40.5¢	42.90	39.7		
Non-extractable residues	SD	$\mathbb{Q}_{\pm 0.3}$	±02	±06	£0.8		±CB	`≇Ø.6	±0.2		
Total Recovery	Mean	99.9	98.0	Ø7.2 "	[©] 95.9¢	94.8	3.2	∲ 93.7	93.1		
	ŠĐ	‰,±0.2 ू (€±0.1	± 0	±0.2	>≠0.0) ±0.0	±0.9	±0.1		

AIIIa under aerobic Table 7 1 2 1 2- 31. **Biotransformation of [14C]PU in soil**

n.d.: not detected, n.a.: not analyzed, DAT: days after treatment SD: standard detration

	ž			Ч () n i			
Table 7.1.2.1.2-	32: 🔊	Bioteansfe	armation	of [14C	IPU in soil		under	aerobic conditions
		Dioteuns	ý v					der obie conditions
	, C	expressed	ðas %øð A	AR (me	an∕¥SD\©	ſ	<i>a</i> .	
	~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Ŵ	

			<u> </u>	<u>`</u> Av`					
Compose	Mean	× .		أَيْ∕ٍ DA	l (daxş a	fter tr eatm	ent)		
Composad	≪SD		10	<i>X</i>	Ö	<i>©</i> 4	7	10	14
	Mean	92,7	79.0	_58.6	@42.6	31.3	8.3	1.1	0.6
	SD	±0.2 €	, \±2.5 (€±3.1€	±0.9″	±1.6	± 0.8	±0.1	± 0.1
Unidentified D	Mean	× 3.6	3.4	£.3	<i>*</i> 2 .0	2.7	3.1	4.5	3.7
	SD	±0,2	, ¥⊈1.7	$\approx^{\pm 0.6}$	≥±0.1	±0.2	± 0.0	±0.4	± 0.0
Total avtrottable rol	Mean	°~~96.3_)″77.4℃	§ 59.90	44.6	34.1	11.3	5.5	4.3
Total extractable les?	SD SD	10.00	±0.8	÷.4	± 1.0	±18	± 0.8	±0.3	±0.1
	Mean	Ŵ,	¥.0	[∞] 9.3	15.2	20.0	34.2	40.9	45.9
	SD		°±0.3℃	±0.5	±0.2	±0.5	± 0.7	±0.4	±0.3
Valatila arganias	Mean		Ĩ.	0.1	< 0.1	0.1	< 0.1	0.1	< 0.1
	SP)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		± 0.0		± 0.0		± 0.0	
Non avtraction residues	Mean	[%] 5.4	16.9	26.5	34.8	40.7	47.1	46.8	44.6
	SD	±1.9	± 0.0	± 1.7	± 0.7	±1.1	±0.3	±0.2	± 0.0
Tathi Backyony	Mean	101.7	98.3	95.8	94.7	94.8	92.7	93.3	94.8
	ŠD	±2.3	±0.7	±0.2	±0.5	±0.3	±0.3	±0.4	±0.4
	S .								

C Sr

n.d.: not detected, n.a.: not analyzed, DAT: days after treatment, SD: standard deviation

Document MCA: Section 7 Fate and behaviour in the environme	nt
Propineb	

Table 7.1.2.1.2-33:	Biotrans	formatio	n of [14C	C]PU in	soil		unde	er aerob	ic	
C	condition	ns, expres	ssed as '	% of AR	R (mean	± SD)				ð
C	Mean			DA	T (days a	fter treatm	ent)		5.0	ř
Compound	SD	0	1	2	3	4	Ç 7	105	1 A	
$\mathbf{BCS} \wedge \mathbf{A17027} (\mathbf{[}^{14}\mathbf{C}\mathbf{]}\mathbf{PL}\mathbf{]}$	Mean	92.1	72.2	61.5	44.5	32.2	11.8	A.9	<u>1.2</u>	2
$\frac{BC3-AA1/92}{([C]F0)}$	SD	±1.4	±1.0	±0.4	±2.1	±1.4 ×	±2.3	$\gg \pm 0.0$	0 ± 0	
Unidentified P A	Mean	3.2	4.2	1.0	1.7	Q1.3	3.00	2.0	. 3.9°	Å
Ondentified KA	SD	±1.1	±0.1	±Ø:3	±0.1	$O_{\pm 0.2}$	±4.4	Q0.3	$5^{\pm 0.4}$	D.
Total extractable res.	Mean	95.3	76.4	62.6	46.2 [®]	383.6	A14.8	7.6 🤇	5.1	
	SD	±0.2	± 0.8	±0.7	+2,2	°~_£1.2 ~~	[♥] ±0.♥	±0,3	~ 0 .4	
¹⁴ CO ₂	Mean	ng	Å .8	. 8.8	£14.1	18,5	29.9	37.5	42.2	
	SD	11.a.	± 0.0	± 0.1	±0,20	±0.5	±0.4	±0.2	$\pm 0 4^{\circ}$	
Volatile organics	Mean	na	<0.j×	61	29 .1	, € 0.1 Õ	<0.1	0.1	\$0.1	
	SD		, Ç	≪ ∓0.0	γ	P' _k y'	Ő ^v	© <u>∓</u> 0.0 (5	
Non-extractable residues	Mean	9.7	16.9	25.8	35.9	A2.1	\$ 49. <u>3</u>	49.9	46.5	
Non-extractable residues	SD	2 ± 0.2	±001	±04	Å.3	0±0,90	±ÔÌ	`∰Ø.0	±0.1	
Total Recovery	Mean	99,0	97.8	Ø 7 .1 "	95.9°	94.3	% 4.0	∲⁄ 94.8	93.8	
Total Recovery	ŠĎ	&_±0.5 ू(€±0.9	± 0	±0°T	_~≠0.2、₡) ±0.4	±0.1	±0.2	

n.d.: not detected, n.a.: not areaved, DAT: days after treatment, SD: standard devration

B. METHOD VALIDATION

The DAT-0 extraction efficiences was 95.3 to 97.6% AR (mean 96.4% AR@sum of extracts; Table 9 to Table 13). The stability of the test item was verified by a DAT-0 recovery of 92.1 to 94.8% AR for the organic and microwave extracts (mean 93, 3% ARY. These results indicated that the extraction method was well suited to extract the applied [14C]-labeled test from the soil matrix.

The HRE method (reversed phase RP-18) was used for date evaluation. A good selectivity and reproducibility demonstrated the suitability of the separation and quantitation. Due to the preceding study with a higher application rate no degradation products were expected.

The limit of quantitation values (LOR) of HPLC for a single peak in the organic soil extracts was approximately @.3 to 9.4% &R. The HPLO mean Pecovery determined in the preceding study for this method was approximately 102.0 and 102.5% for two types of extracts indicating that no significant losses of radioactivity occurred on column, tubings or detectors (data not shown).

Normal shase Si-60 WC wassused to confirm the results (compare Appendix 32 and Appendix 33 of report), (ni

The test conditions outlined in the study protocol were maintained throughout the study. Material balances were $\frac{95.6 \pm 2.3\%}{92.2}$ to $\frac{99.1\%}{500}$ il LX), $92.5 \pm 3.7\%$ (89.4 to 99.9%, soil DD), $95.7 \pm 3.7\%$ 2.5% (93.1 to 99.9% soil Les), 95.8 ± 3.1% (92.7 to 101.7, soil HH) and 95.8 ± 2.0% (93.8 to 99.0%, soil HS) of the applied amount.

Õ ÐEGRADAFION Ø₽ [¹⁴C]PU C.

The test iter was declining from 94.8, 92.8, 94.2, 92.7% and 92.1% AR at DAT-0 to 0.9, 0.4, 0.6, 0.6 and 1.2% in the soils LX, DD, LA, HH and HS, respectively, at the end of the study. For kinetics evaluations see <u>Table 7.1.2.1.2-27</u>.

The half-life (SFO, GEOmean) for [¹⁴C]PU in the tested soils kept at 20°C under aerobic conditions was just 2.7 days, and this significantly lower as that determined for the higher test concentrations.

BAYER Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

Non-extractable [¹⁴C]residues increased from 2.3, 3.8, 2.2, 5.4 and 3.7% AR at DAT-0 to 40.6, 40.4, 39.7, 44.6 and 46.5% AR at the end of the study period, respectively.

Considerable amounts of ¹⁴CO₂ were formed amounting to 44.9, 49.4, 48.1, 45.9 and 42.2% of \Re in \Re the soils LX, DD, LA, HH and HS, respectively, at the end of the study. No volatile organic compounds were measured at values > 0.1% AR at all sampling dates.

III. CONCLUSIONS

The data gathered in the current laboratory investigation demonstrate that the test item is degraded and mineralized more quickly in soil at a lower initial test concentration for $[^{14}C]PU$ a DT₅₀ of 2.7 days (GEOmean over the five soils) was calculated, which is by a factor of 2.8 lower than in the comparable study at a higher treatment rate.

As it was indicated a concentration dependence of the degradation rate for PU was shown. In a supplementary non-GLP experiment it was demonstrated that this effect was not caused by scattering activities of different soil batches taken from the same field, but rather is a genuine property of the Propineb metabolite PU.

By the modelling report of **PU were derived from a number of relevant studies and the geometric recan value after** normalization accounts for 5.6 days (see table below).

Soil	Study &		Moisture	Çørr. 👡	DT.	DT50ref
5011	Study		, [% w,/w⊧]	factor	DIsoluays	[days]
BBA soil 2.2	192		© 14@% &	1.02	õ r 7.8	17.8
BBA soil 2.3	109.		14.0 % O	0.808	°≫″ 9.6	7.8
	\$2014. O		S ^{opt} .		5.7	5.7
		2012 & ~	opt.		3.7	3.7
то м	<u>2008a</u> 📎		Copt. S	× ×	4.4	4.4
	<u>20085</u> (5)			× 1	1.9	1.9
	<u>2014</u>		<pre></pre>	1	6.5	6.5
	2008å Č		y Mr.	1	6.9	6.9
Ą	<u>2008b</u>		opt.	1	5.4	5.4
j.	192		24.4 %	0.932	7.7	7.2
L.	<u>2014</u>		opt.	1	8.1	8.1
() I	, N	<u>2012</u>	opt.	1	5.7	5.7
	2008a		opt.	1	5.4	5.4
Å.		2008b	opt.	1	2.3	2.3
	10	<u>93</u>	10.3 %	0.509	45.9	23.4
	2008a		opt.	1	6.8	6.8
AÎÎIa	<u>2008b</u>		opt.	1	3.0	3.0
		2014	opt.	1	5.2	5.2
AXXa		2012	opt.	1	4.6	4.6

Table 7.1.2.1.2- 33a: Summary of the DT50 value for PL degradation in sol

Bayer CropScience

Document MCA: Section 7 Fate and behaviour in the environment Propineb

<u>2008a</u>	opt.	1	5.9	5.9 。
<u>2008b</u>	opt.	1	3.4	3
2012	opt.	1	5.9	<u>(5.9</u>
	Geon	netric mean	5.9	5.6
		Median	5.7 45.0	577,7 S 1 577,7
			<u>, 43.7 (</u>	
*moisture content (grav. %) and if deviating from optimum (i.e. 55	*** ***			
Degradation of 4-Methyl-imidazoline (4-Ma	\sim	, °	Â, ô	.6
		. 4		
Justification for inclusion into the Supplemental Doss	tor Prop	ineb renew	al of approval	Annex I:
The metabolite 4-Methyl-imidazoline wassidentified as	s @ prima	y metabol	lite in thone	w wobic spil
metabolism study by 20	14, and t	he Propinel	DIDT degra	adation study
2014. It exceeded the tr	igger∀foi	r Considera	tion in risk	assessments.
Therefore, the degradation rate was investigated. This m	etabolite	was as wel	l nontioned i	n the past, by
(1996), however, not regarded as relevant for	r further	consideratio	m that tone.	×. V
The evaluation of the 4-MI degradation data is compile	d by the	report of		
2014. Only the data resulting from the Propineb-	DÎDT de	gradation s	study by	
2014 was to be kinetically evaluated to deri	e model	lingendpoi	nots to be used	l in exposure
assessments, since the data from the parent metabol	ism©stud	ies have	imitacions to	derive valid
degradation kinetics data (compare Section 4 of report b	У»			<u>2014</u>).
In accordance with FOCUS (201) the DAT & value	s for Pr	opineb-DII	OT were corr	rected for all
detected degradation products and the WER and thus se	t to the to	otal/recover	y values from	the material
balance. Initial values for the metabolites, 4 MI, PTU an	rd PU we	set to ze	ro. First value	es at the limit
of detection (\textcircled{DOD}) or below LOD were set to $0.5 \times LO$	P. Thol	OD @coun	ted for 1.0 %	AR according
to und (2014). The pre-pro	cessed c	lata, used	is shown i	n following
<u>Table 7.4.2.1.2-34</u> .	S.)))		
In agreement with the proposed degradation pathway	Figure 7.	1.2.1.2-1)	a compartmer	nt model was
setup in KinGUI2 to kinetically describe the degradat	ion _@ f Pı	opineb-DII	DT and the fo	ormation and
degradation of its degradation produces propylene-thiou	rea prop	ylene-urea	and 4-methyl	-imidazoline.
The scheme was displayed carlier in Figure 7.1.24.2-2	$\frac{2}{2}$ wo system	ystems of k	inetics were	evaluated. At
was described with the hippass DEOU mode while the	. Second	tion of the	remaining cou	pined-DID I
still described by SFO kinetic	ucgraua		containing con	npounds was
Results S S				
The results of the nathway the are the used in section	514 (an	d details an	e given in an	pendix 11 1 4
of modelling@eport_report.by	2014). F	For the deg	radation prod	uct 4-MI the

SFO model resulted in valually acceptable fits when the precursor Propineb-DIDT was described by DFOP kinetics, the Chr error values for 4-MI were slightly higher for the DFOP approach, however, were still well below 15% (c.f. Table 7.1.2.1.2-8) and the visual assessment identified an excellent description of the data. Consequently DT_{50} values may be derived from these fits to describe the degradation of 4-MI in soils.

Table	7.1.2.1.2- 34:	Pre-process 2014 used in fulfill FOC	ed residu 1 the kine US (2011)	e data from tic optimiza recommen	the study of ation. Grey s dations; valu	f haded figui ies are give	res were alt n in % of A	ered (ø Č R Š
Soil			AXXa		,	~	ſ	
Time	Propineb- DIDT	PTU	PU	4-MI	Propineb- DIDT	PTU	PU	4 MI
0	98.9 ¹	0 ²	0^{2}	0^{2}	≥ 99.9 ¹	×0 ²	0%	$\sim 0^2$
0	99.5 ¹	0^{2}	0^{2}	0 ² /	101.2 ¹	0^{2}		$\gamma 0^2 $
0.21	30.5	11.0	7.3	7	× 26.5	Q 11.4	@ 6.3 Š	2.3
0.21	32.2	10.7	6.9	6.7	28.2	11.5 ₍	6.8Q	.Õ₹.6 %
1	11.4	5.7	14.2	7.2	8.9 Q	<u>ک</u> 5.6 کچ	5.9	C 14.8
1	10.0	5.0	14.2	A96°	10.6	0 [*] 6.5 [*]	(O ^r .3)	14 @ *
2	3.6	1.8	18.6	5.7	305	× 2.2g	A.7, [∞]	18.4
2	4.2	2.0	18.5	5.4	3.3	2.1	5.0 [°]	۲7.9
5	0.5^{3}	0.5^{3}	15.2	2	0.5^{3}	0.5^3 "0	2,6	⇒ 17. <u>k</u> °
5	0.5^{3}	0.5^{3}	14.6	~ <u>303</u> ~	0.5%	0.5^{3}	0.5 ³	NA
9	NA	NA	7.5	$\sim 0.5^3 \sim$	(SA)	, NA	$\ll 0.5^{3}_{\%}$	42.0
9	NA	NA		$3 0.5^{3}$	NA O	NA (NA NA	011.9
14	NA	NA	0 ³ .2 K	^v Nov	NA	NA S	NA O	4.3
14	NA	NA	≪ 1.8 <i>'0</i> '	ĨNA	NAX 1	<u>⊳° NA¢</u>	<u> </u>	4.2
SOIL	4			<u> </u>	Ó L			
Time	Propineb- DIDT	PTE	` `₽ Ŭ	4-MH	Propine DID	PTU	, Ba	4-MI
0	98.6 ¹	ρ^2	$\sim 0^2$	0^{2}	98.1 ¹ a	y 02	$(\hat{Q} \ 0^2)$	0^{2}
0	99.7 ¹	$\sim 0^2$	(¢)	$\sqrt[6]{0^2}$	38.0^{1}		0^2	02
0.21	17.3	14.4	æ7.3 (5 6 L	0 [×] 8.5%	6.2 6	10.5	4.3
0.21	17.7 🎣	≶ 14 0 €	ي» 7.3 _م		× 8.D	× 7,×	11	6.3
1	4.9 🖉	6.5	× 14.6×	ాక.3 ప్ల	2.1	2.9 [*]	19.9	5.6
1	5.75	<u>`</u> 07.1 ≥~~	152	∽ 5.5℃	Q2.8 A	×.7	20.2	5.5
2	LU .	1.2 🗇	£14.5	> 3.4	$\sim 0.5^{3}$	√ ¥1.2	23.9	4.3
2	ð.2 <u>(</u>	× 10	O 15.2%	3.7	Dr 0.5	7, 1.4	22.8	4.4
5	0.5^3 0°	0:53 O	13,4	<u>م</u> رح 2.2 م	NA 🔬	0.5^3	17.2	1.9
5	0.5^3	0.5^{3}	1/5-2	° 2.4	NA O	0.5^{3}	17.4	1.7
9	NA (NAS NAS	چة.4	057	NAO ^Y	NA	5.7	0.5^{3}
9	NA 🎘	ŇA ×	8.8	° Q. 5 ³	, Xa	NA	5.6	0.5^{3}
14	NAS	MA ∧S	, 5,5°	NA NA	ĺ _♠ 'nA	NA	1.8	NA
14	NAS	<u>A</u> NA	<u>\$46</u>	<u>v NA</u>	<u>O'NA</u>	NA	2.0	NA

1 set to the value of the total recovery from the material balance

 2 set to zerô \heartsuit

 3 set to $\frac{1}{2}$

4 not confected as data measurement was not a milable

In <u>Paper 7.1.2.1.2-55</u> the DT_{50} for the degradation of 4-MI in soil are summarized. The DT_{50} values from 2014 data were derived from SFO fits and their corresponding rate constants while the DT values deriver from the data by 2014 (1996) were calculated from the DT_{90} of the FONC fits by dividing the value for DT_{90} by 3.32 (c.f. FOCUS, 2011) Whenever two or more DT_{50} were available from any individual soil their geometric mean value was calculated first before calculating the overall geometric mean value. The summary shows that 4-MI is short living in aerobic soil and degrades with a geometric half-life of 2.2 days (non-normalized). A dependence of the DT_{50} on soil properties was not detected. In general the new metabolite degradation study resulted in excellent fits that were much better than those derived earlier in 2006 for 4-Methylimidazonne.

Table 7.1.2.1.2-35: Summary of DT₅₀ for degradation of 4-Methyl-imidazoline in aerobic soil

¹moisture content (grav. %) and temperature if deviating from optimum (i.e. 55% MWHC, 20°C

4-Methylimidazoline is formed from the degradation of Propineb and Propineb DIDT (c.f. Figure 7.1.1-1). The formations fractions (ff) were derived from pathway fits for the formation from Propineb-DIDT and by means of proportional calculation for the formation from Propineb The varies are presented in Table 7.1.2.1.2-36 for the path from Propineb and in Table 7.1.2.4.2-37 for the path from Propineb DIDT.

Table 7.1.2.1.2-36: Formation fractions (ff) of 4-MI from degradation of Propineb in 4 soils

		.)		(//) al		•
Soil	a S		Study	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Path C	√ ff 4-MI [-]
	AXXa 🔊		j O	, 'Y	$\stackrel{\sim}{\rightarrow} PPB \stackrel{\sim}{\rightarrow} 4-M0$	0.137
	×.	<u> </u>	d de		PPB →4MI	0.107
	~ ~ ~			× ×	🔬 PPB 😓 🖓 - MI	0.099
	II	\$\$.Q	5 ×	, 0	© PPB → 4-MI	0.082
			~, .~?	à 4	@verage valu	ie 0.106
		° ∧		N° O		

Table 7.1.2.12 37: Formation fractions (ff) of 4-MIC rom degradation of Propineb-DIDT in 4 soils

	\$ \$	<u> </u>		J.	
Soil		Stud		Path	ff 4-MI [-]
		AXX		DIDT \rightarrow 4-MI	0.107
		5	2014	DIDT $\rightarrow 4\text{-MI}$	0.099
	\$ <i>4</i>		<u>, 2014</u>	DIDT $\rightarrow 4\text{-MI}$	0.076
	I		^o	DIDT $\rightarrow 4\text{-MI}$	0.068
			Ŵ	Average value	0.088
	li la		Y		

Table 7	7.1,2.1.2	- 3 7a:	Summa	bry of t	he DT ₅₀	values	for 4-m	ethyl-imio	dazoline	degradatio	n in	soil
---------	-----------	----------------	-------	----------	---------------------	--------	---------	------------	----------	------------	------	------

Soil	N R	A.	Moisture [% MWHC]	Corr. factor [-]	DT ₅₀ [days]	DT50ref [days]
	, Č		54.2	1	2.8	2.8
		L.	54.2	1	2.3	2.3
			54.2	1	1.7	1.7
	AXX	a	54.2	1	2.3	2.3
				Geometric mean	2.2	2.2
				Median	2.3	2.3

Bayer CropScience **Document MCA: Section 7 Fate and behaviour in the environment** Propineb

Maximum

2.8

2.8

C

~ O

CA 7.1.2.1.3 Anaerobic degradation of the active substance

The rate of degradation of Propineb in soil under anaerobic conditions in the laporatory was evaluated during the Annex I inclusion (compare EU Monograph Annex B7). In conclusion the following was stated:

The degradation of active substance in the saturated zone was not to be studied since Propine is not expected to reach the saturated zone after its use according to good agrigultural practices. No additional studies are submitted within this Supplemental Dosser for the Propinel renewal approval. In general, anaerobic conditions are unlikely to occur in soil when Propine is used.

CA 7.1.2.1.4 Anaerobic degradation of metabolites, breakdown and reaction products

The rate of degradation of Propineb degradates in soil under anaerobic conditions in the laboratory was evaluated during the Annex I inclusion (compare BU Moograph Annex B70 and W was not regarded as a relevant process in soil. Therefore, no additional studies of this topic are substitted within this Supplemental Dossier for the Propheb renewal of approval.

Just the following study on the terminal and well water soluble metabolite PU is included in the Baseline Dossier (P-009496-01) which was regarded as relevant during the Annex Einclusion: $a^{(1)}$ A \sim

 \mathcal{A}

(n)

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ð.	0 [×]
Report:			;1999; <b>)</b>	42006247-01	Ô
Title: De	gradation of p	pyler urea (F	PU) in soil un	ler anserobic	conditions
Report No: FM	1771 0	Õ N			
Document No:	006 <b>2</b> 47- <b>0</b> 3-1 file	in Bassine L	kossier under K	6 ² 7.1.1.4	
Guidelines: n.a	, deviatorn not	pecified	y de la		
GLP/GEP:			<u> </u>		
		40° 45°		*	
	«× <u> </u>		<u>y</u> 0 1	V	

## Summary of study performed by

Under the anaerobic sperimental conditions used in this study PU disappeared slowly from the system with a DT₅₀ of 334 days from the sediment and with one of 130 days from the aqueous phase.

1999

In general, anaerobic conditions are unlikely to occur in soil when Propineb is used. In the exceptional case that anaeyobic conditions occur in soil after Propineb was used, it is expected that, temporarily, the major metabolites, i.e the PK will be more stable than an an arobic soil environment, however, will then be rapidly degraded once aerobic conditions are established again (see section CA 7.1.2.1.2 before); Subsequently they do not have the potontial to reach anaerobic aquifers (see for PECgw calculations in the MCP dessier section 92.4

#### CA 7.1.2.2 **«Field studie**

Due to a fast degradation of Propinco and its metabolites under laboratory conditions, no field dissipation studies were performed and required. This was agreed upon during the Annex I inclusion (compare EU Monograph Annex B7), already.

No additional studies are submitted within this Supplemental Dossier for the Propineb renewal of approval



### CA 7.1.2.2.1 Soil dissipation studies

Not performed and not required (see chapter before).

## CA 7.1.2.2.2 Soil accumulation studies

Field accumulation and soil residue studies have not been performed and are not required for Propineb. CA 7.1.3.1 Adsorption and desorption

### Adsorption and desorption

The adsorption and desorption behaviour of Propineb and its residues in soil was evaluated during the Annex I inclusion (compare EU Monograph Annex BD) and was accepted by the European Commission (SANCO/7474/VI/97, 2003), However, not any adsorption and desorption data were stated in the LoEP for the metabolites 4-Methyl-inidazoline and Propineb-DPDT, since they were not considered for leaching assessment that that time.

The following table summarizes the adsorption constants K for@nodelling purposes:

Table 7.1.3.1- 1:	Overall summary of adsorption	constants KOC(adds)	in soils	of Propineb and its
	major degradation products		, Q	- Ô

	0 $0$ $$		
Compound	Koc(ads) ¹	S (M(ads) (M(ads)) (MIA)	Freundlich Sexponent 1/n ¹
Propineb	\$ 0000 C	10000 ² ⊙ [°]	1.0 ²
Propineb-DIDT	× × 162.0×	× 4.0 (	$2 1.0^{3}$
PTU C	19.0	7 7 5 ⁴ 11.00 59	² 1.0 ³
PU ⁴	َ ⁽ لَّى 8.8 ⁽	× 55	0.992
4-Methyl-imidazohne	366.7	<u> </u>	0.883

^{1:} arithmetic mean; ³ default value (due instability jus@stimate@ values for Koc/Kom)

²: the to its polymeric hatting the solubility and mobility of Proprieb in Gil is negligible. This was reflected in the POCUS calculations by a Koc value of 10000 L/kg with a default for 1/n of 1.0). Due to its rapid dissipation in soil, the sorption behaviour of propriet. Will not have a reflevant impact on leaching risk assessments. Nevertheless assuming no sorption would not respect the nature of the compound.

^{4:} Since the data for P resulted from different studies a complation of data is given by <u>Table 7.1.3.1-2.</u>

1 abic 7.1.3.1-2.		ai y or ausor pu	ou consta	ants NOC(a	ds) UIIUI	11 50115	
Soil	Study	Textore class	/ OC [%]	pH [H2O]	Koc [L/kg]	Kom [L/kg]	1/n [-]
	1998	Sand	1.2	6.3	7.4	4.3	1.050
	1993	Silt Qam	0.9	8.1	7.3	4.2	1.141
BBA soil 2.2	<u>1993</u>	Logny sand	2.6	5.5	6.1	3.5	0.975
	ç <u>1993</u>	Silt loam	2.4	6.0	10.8	6.3	0.855
AXXa 🛇 🔊	2008	Sandy loam	2.0	6.3	7.5	4.4	1.0759
CAY	4// 11. 2. 2/	Clay loam	1.0	8.0	11.6	6.7	0.8095
AK	2008	Loam	1.3	6.6	10.8	6.3	1.0596
НаН С	<u>2008</u>	Silt loam	2.5	6.6	7.0	4.1	0.9596
HHF	2008	Loam	3.3	5.1	11.1	6.4	1.0046

#### Constants Kaze .. of PU in sails Table 7 1 3 2



Autor and a second Environment of the second state of the second And the barrant of the owner of the barrant of t



## CA 7.1.3.1.1 Adsorption and desorption of the active substance

The adsorption and desorption behaviour of Propineb in soil was evaluated during the Annex I inclusion (compare EU Monograph Annex B7) and was accepted by the European Comparission (SANCO/7474/VI/97, 2003). However, due to its insolubility in water and rapid decompositio in coll not any adsorption and desorption values were stated in the LoEP for Propineb, since parent compound was not considered relevant for leaching assessment that that time. However, as it is mentioned in <u>Table 7.1.3.1-1</u>, assuming no sorption would not respect the nature of the compound. Therefore, a value of 10000 was proposed as a reasonable devault for Propineb.

The following statement included in the Baseline Bossier (P-06496-01) was regarded as belevand during the Annex I inclusion:

Report:	1989; MJ-1026 \$8-01 5
Title:	Comment Propineb: Adsorption/deporption/meas@ements
Report No:	RA-355/89 4 A A A
Document No:	M-102688-01-2
Guidelines:	Deviation not secification and a second
<b>GLP/GEP:</b>	No, n.a. 2 6 2 2 2 2 2 2

### Conclusions

An adsorption and desorption behavior of Propineb as polymer in soil and /or soil/water suspensions cannot be determined due to insolubility and instability in water. Fragments and transformation are formed under these conditions. Therefore it is not possible to determine an adsorption study with a definitive substance.

The following study not yet submitted in the EU tjust in Brazil shows the sorption behavior of the transient polymer fragment and notabolites, which are formed in the aqueous soil suspension and which can form CS₂, representing the relevant moiety of propineb.

je g	
Report:	×0999;M-023175-01
Title:	Soil adsorption desorption of Antracol Tecnico
Report No:	
Document No.	℃M-02\$175-0}-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Guidelines:	Normentioned, but study follows OECD Test Guideline No. 106, deviation
	not specified and the second
GLP/GEP:	Yes ~ ~ ~
st Sy −	
EXECUTIVE SI	MMARY

This study was conducted to determine the adsorption and desorption characteristics of Propineb on three different sols from Brazil (LE: Typic Hapludox; GH: Cumulic Humaquept and LR: Rhodic Hapludox). The following concentrations of active ingredient were used: 0.5, 1.0, 5.0, 10.0 and 20.0 mg propineb/b. Propineb was analyzed with the CS₂ method, which determines the polymer propineb as wolf as transient fragments and metabolites which are transformed to CS₂. The assay was carried out with two replicates in 200-mL glass flasks containing 10 g of soil and 90 mL of treating solutions, that were agitated for 24 hours at 100 rpm and centrifuged. The supernatant was transferred into a round bottom flask for reaction and the CS₂ was analyzed to quantify the residue remaining in solution. The amount of adsorbed product was then calculated. To quantify the desorbed product, the **Bayer CropScience** 

Document MCA: Section 7 Fate and behaviour in the environment Propineb

supernatant solution was completely drained, and 90 mL of 0.01M CaCl₂ was added. The flasks were agitated for 24 hours, centrifuged, sampled and analyzed as above mentioned. represent offferent so (upper horizon According to the results, the Koc for adsorption was in the range of 2314 to 5757 mL/g. This indicates that the fragments and transformation products of propineb, which can form S₂, are not present in aqueous solution and are considered to be very strongly adsorbed to soil and are not mobile. The desorption Koc was in the range of 4348 - 10472 mL/g.

#### I. **MATERIALS AND METHODS**

#### 1. **Test Item**

Test item:	Antracol Tec	hnico, applied i	n aceton
Sample ID:	231605095	OF T	~,
Specific Activity:	none		, O ^y
Radiochemical Purity:	n.a.		<)
Chemical Purity:	85%		Ù Ø

#### **Test Soils** 2.

Three soils from Brazil were used (see Table 7.1.3 (1-1)) The soils represent different soil properties as required by the guidelines. The soils were sampled from the fields (upper horizon of 0 to 20 cm), sieved to a particle size of  $\leq 2$  mm and air drive sieved to a particle size of  $\leq 2 \text{ mm}$  and an drived

Contraction of the second seco

Parameter		Results/Units	
Soil 🕺	, GH 💭 🖉 Õ	LAS	ĽR "Ó
Geographic Location	Brazel a	Brazil C	Brazil
Texture Class ^A	dei Humico, akieo, Th textura argilosa	Latossolo, Vetmehlo Escuro Alico, a moderate textura media	Latossolo Roxo Distrofico, a moderado, textura muito argilos
Clay (%) 🗘 🔗	55	Q10 ~ 0 0	70
pH (CaCl ₂ )	3.7 9 4	4.6 0	4.1
Organic Matter (%)	8.4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3.0
Organic Carbon (%)	4.9		1.7
Cation Exchange Capacity (cmol/kg)		8.8 5	12.1
		\$ \$	

## Table 7.1.3.1.1-1: Physicocchemical properties of test soils

\$ 1

#### RESPLTS AND DISCHSSION II.

Propineb a polymer is not soluble of aqueous systems. Within the dissolution process, herein in acetone, fragments and transient metabolites are formed artificially (thus not as usual in an aqueous suspension). 47

According to the results of this study, the amount of formed  $CS_2$  residue adsorbed to soil are > 90%. This indicates that transient polymer fragments and metabolites, which are formed in the dissolution process and which can form  $CS_2$ , are immobile.

The calculated adsorption constants Koc of the Freundlich isotherms for the three test soils ranged from 2314 -57 g mL/g (see <u>able 7.1.3.1.1-2</u>). The respective Koc for the desorption were in the range 50 4348 1047 mL

### Table 7.1.3.1.1-2: Adsorption constants of CS₂ forming residues (i.e. of Propineb, transient fragments, CS₂ forming metabolites) in soil

Soil		Туре	pH (CaCl2)	Koc [mL/g]	
GH		Glei Humico, alico	3.7	2314	
LR		Latossolo Roxo Distrofico	4.1	4761	
LE		Latossolo, Vermehlo	4.6	5757	
		Mean	Ĉ	4277	
II.	CON	CLUSIONS	J.C.		

#### III. **CONCLUSIONS**

The Koc for adsorption of Propineb applied in action into aqueous sold suspensions was calucated in the range of 2314 to 5757 mL/g. However these data are regarded as kind of minimum adsorption values for Propineb, because Propineb itself ionot souble A mixing of gragments is formed which is determined by the CS₂ method. Anyway, the result indicate that CS₂ forming residues (i.e. of Propineb, transient fragments, CS2 forming metabolites) in soft are very strong adsorbed to soil and are not mobile.

### CA 7.1.3.1.2 Adsorption and desorption of metabolites breakdown and reaction products m

The adsorption and desorption behaviour of the degradates of Propinebar soit was evaluated during the Annex I inclusion (compare El Monograph Annex B7) and was accepted by the European Commission (SANG)/7474/VI/9 2003 However, not any adsorption and desorption data were stated in the LoEP for the metabolites A Methyl-imidazoline and Propinel DIDT, since they were not considered for leaching assessment that that time. The following study for the metabolite PU included in the Baseline Dossier (P-0@496-@) was regarded relevant during the Annex I inclusion.

Q		A	"0" (Q)	(A)	
Report	KCA 7. 3.1.2	©01;	<b>©993;№</b> 105	22-01	
Title:	Adsorption/de	sorption of pro	pylene urea	øn soils	
Report No:	\$ PF-3885				
Document No: 🖉	∑ M4105212-01-	2° . 4			
Guidelines: 🔊	OS EPA Pesto	ide Assessmo	nt Guigeline	No. 163, devia	tion not specified
GLP/GEP:	VYeso ~		ð		
4	°, °, °, °, °, °, °, °, °, °, °, °, °, °		, Q		

Due to an calculation error this adsorption behavior of PU was re-calculated and reported by an ²2004. In addition on new adsorption study of PU with additional soils in amendment of order to broaden the data set (i.e. for pH) was performed. The sorption parameter for the soil metabolites Propineb, DIDT @TU Meth Pimidazoline and were investigated in new studies to close data gaps.

Under consideration of the above mentioned old study report and of all new studies and data the Table 7.1.3.1-1. Table 7.1.3.1 in soil to be used for modelling purposes. In general the sorption behavior of the propineb metabolites did not depend on the pH value of the soils



## Document MCA: Section 7 Fate and behaviour in the environment Propineb

Report:	;1993;M-105212-02; Amended: 2004-01-08
Title:	Adsorption/desorption of propylene urea on soils
Report No:	PF-3885
Document No:	M-105212-02-2
<b>Guidelines:</b>	US EPA Pesticide Assessment Guideline No. 163, deviation not specified
<b>GLP/GEP:</b>	Yes

## **EXECUTIVE SUMMARY**

The determination of the adsorption and desorption Koc in study by report PF3885% Adsorption/desorption of propylene urea (PU) on sous did not consider the initial soil moisture for the calculation. Therefore, the Koc data were re-calculated.

The adsorption of [ring-2-¹⁴C] propylene urea (PU) was investigated on four soils originating from soils of the PU at concentrations corresponding to 4.9, 3.6, 2.4 and 0.5 mg PU/L CaCl₂ solution, the percentage of PU adsorbed to the soil phase ranged from 3.4 to 15.3%.

The adsorption constants  $K_d$  calculated by means of the Freundhch adsorption isotherm resulted the values shown by Table 7.1.3.1.2-1. A mean soil carbon based sorption Freundhch adsorption isotherm Koc of 7.9 mL/g resulted for PU.

Table 7.1.3.1.2- 1:	Re-calculation	of adsorptio	n constants	of <b>Q</b> U (a	lata from	1993)
					<u> </u>	( )

Soil	Туре	¢ pH℃ ℃aCb2H2O),℃	∬y Kangy [manL/g] _ ∖		R R	Koc [mL/g]
	Sand	£ / 6.3	<b>0</b> .0893	ر 1.0503 [™]	<b>9</b> 987	7.4
	Silt loam	×J.3 / 8,1	0.066	0 [°] 1.14 [°] M	×0.9991	7.3
Standard soil 2.2	Loamy sand	6.2 6.5	S 0.1597	, 0.9750	[≫] 0.9945	6.1
	🔊 Silt loam 🏻	≶ 5.8∜6.0 ~	\$ <b>0,2</b> 599 \$	<b>\$</b> 8555	0.9991	10.8
		/ 候 Mean	<b>. . . . . . . . . .</b>	×1.0055		7.9
<pre></pre>	~~ ,O	O KU		L'A		

Report: X	<b>\$2008;101</b> ,310806-01
Title:	\$5-14CBCS-AA17927 (propineb PU): Adsorption/desorption on five soils
Report No:	∞ MEÆ∕08/356 ° v 2
Document No:	S Ma 310806-01-1 √ √ S
Guidelines:	SU 95/36/EC amending 91/314/EFC; US EPA, Subdivision N, § 163-1;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	© OECO 106: Canadian PMRA DACO No. 8.2.4.2; No deviation with the
A	exception of the extended concentration range.
GLP/GEP:	Ves of which we have a second se
,≪	

EXÉCUTIVE SUMMARY

The adsorption desorption behavior of BCSOAA17927 (PU) was studied in five soils (sandy loam, clay loam, loam, soft loam, and loam) in batch equilibrium experiments at $20 \pm 1^{\circ}$ C.

The adsorption phase of the study was carried out using pre-equilibrated air-dried soil with BCS-AA17927 (PU) at 7 different concentrations of about 3.0, 1.0, 0.3, 0.1, 0.03, 0.01 and 0.003 mg/L in 0.01 M aqueous Cacl₂ solution for 120 hours equilibration, in the dark at $20^{\circ}C \pm 1^{\circ}C$ and a soil/solution ratio of 20 g soil and 20 mL solution. The adsorption time was chosen due to a steady increase of sorption in the preliminary experiments. Desorption was performed by replacing the adsorption solution with fresh 0.01 M aqueous CaCl₂ solution. The desorption equilibration time was 24 hours. Based on the preliminary tests, BCS-AA17927 was regarded as stable for 144 hours (parental mass balance >90%) under conditions above and the concentration 1 mg/L.

The aqueous supernatant after adsorption and desorption was separated by centrifugation and the

1

BCS-AA17927 (PU) residues in the supernatant were analyzed by liquid scintillation counting (LSC). After the desorption step, the soil was dried and combusted. The trapped ¹⁴CO₂ after combustion@ras measured by LSC. The adsorption parameters were calculated using the Freundlich adsorption isotherm. The overall mass balances were determined by LSC of the supernatants after adsorption and desorption, and combustion and extraction of the remaining soils. Ŵ

The recovery of the applied radioactivity for the concentrations 3 and 1 mg/L was >90% of AR The recovery decreased for the lower concentrations to about 59 to 85% indigating losses due to formation of ¹⁴C-carbon dioxide likely formed during the drying process before combustion. This indicates that the degradation rate was higher for low concentrations compared to slow degradation for High concentrations of the test item.

With respect to the mass balance, data for adsorption were calculated for the lests with 3 mg/L and 1 mg/L only. In the definitive adsorption test 12.3 and 13.0%, 1320 and 14.0% 14.9 and 14.4%, 10 S and ĂIIIa. respectively

The calculated adsorption constants KE(ads) of the Freundlic Osotherms for the five test soils ranged from 0.12 to 0.36 mL/g. The respective Koc value was in the range of 7 b to 110 mLog. The Freundlich exponent 1/n was in the range of 0.81 to 1.08, based or the two concentrations.

Data for desorption could not be calculated due to the low appoint adsorbed. There was no significant

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

I. **MATERIALS AND METHODS**

1. **Test Item**

Test item: Sample ID: Specific Activity: Radiochemical Purity: Chemical Purity:

[5-¹⁴C]BCS-AA17927 KATH 6556 4.27 MBq/mg > 97.5% >99%

2. **Test Soils**

Tricaltural use by the guinning 2. I est Soils Five soils were used (see <u>Table 7.1.3.1.2- 2</u>). The soils were taken from agricultural use areas representing different geographical origin and different soil properties as required by the guidetines. No plant protection products were used for the pressous 5 years. The soils were sampled from the fields (upper horizon of 0 to 20 cm), sieved to a particle size of ≤ 20 mm and air-dried.

3. **Experimental Conditions**

The test system for adsorption and desorption in batch equilibrium experiments consisted of Teflon® centrifuge tubes (volume 42 mL) closed with screw eaps. The experiments were performed in duplicate.

In preliminary tests, the adsorption of the test item to the test system Surface, the optimal soil-tosolution ratio, the appropriate adsorption and desorption equilibration times and the stability of the test item were determined. Ø

The adsorption phase was carried out using air-dried soils equilibrated in aqueous 0.01 M CaCl₂ solution for 120 hours with soil to-solution ratios of 1/1. The test item was applied at concentrations of 3.0, 1.0, 0.3, 0.1, 0.05, 0.01 and 0.093 mg/L in a Gueoux 0.01 M CaCh solution. The desorption phase was performed by supplying provides offed soil samples with fresh aqueous 0.01 M CaCl₂ solution.

Ausorption and desorption took place for 24 hours equilibration tipe. The test systems were shaken by a mechanical overhead shake in the dark at 20 ± 1°C °C in a walk-in climatic chamber.

	-	• •			
Parameter	Results/Units			A	
Soil / Batch	AXXa		AIIIa	HaH S	HHF L
ID	200803259	20080313	20080325	200803250	20080325
Geographic Location (City / State / Country)	/ Northrhine- Westfalia /		/ Northéhine- Westfália /	/ Northrhine- Westfalia /	Northrhine Westfall
zune (country)	Germany	France	Germany	Germany 🔬	Germany Q O
Texture Class ^A	Sandy loam	Clay loam	Coam 🧳	Silt loam	Loam C
Sand ^A	67%	21%	745%	2100	D% & V
Silt ^A	19%	45%	33%		53% & ~
Clay ^A	14%	34%	2,2%	20% 🖉 🧳	20%
pH (Water)	6.3	8.0	Ko.6 D D	6.6	54 2 C
pH (CaCl ₂)	6.1	7.5 🐥 👡	6.3	6.5	4.8 8
pH (KCl)	5.9	7.3 🖉 🔨	6.1¥ Ö	\$ <u>2</u>	J4.4 , J
Organic Matter ^B	3.4%	1.7% &	2,2%	P4.3% 🖉	5.7.0
Organic Carbon	2.0%	00% × .	\$1.3% \$	2,5%	300% 0
Cation Exchange	9.6	13.3	9.6	19.4 0	Q10.5
Capacity (CEC)	meq/100 g	meq 100 g	mcq/100,g	(meq/100 g	meq/100 g
Water Holding	12.1%	27/20/00	Q4 10/5 01	24 08/0	200%
Capacity 0.33 bar	12.170		14.170		2%2070
Maximum Water Holding Capacity	51.6 g 900g C	n.d&	49.9 g/100g	66.3 g 090g ×	75.2 g/100g
Bulk Density	1.23 g/mL	_1©21 g/m₽).23 g/mL 🖇	1.10 g/mL	1.05 g/mL

Table 7.1.3.1.2- 2:	Physico-chemical	nronerties (of test soils
	I mysico chemical	properties .	51 (656 50115

References for test methods^{9, A}) acc⁹USDA Lassification 5[°] 4[°] ^B) & organic matter 6[°] % organic carbon ×

 \bigcirc

4. Analytical Procedures

The suspensions were centrifuged and the radioactivity contents in the supernatants were analysed by liquid scintulation counting (LSC).

In the preliminary parental mass balance test, the soil was additionally extracted three times using methanol/water mixtures. The approves opernation and the combined soil extracts were analysed by reversed phase HPEC/radiodetection to determine the stability of the test item and to establish the parental mass balance.

The partition of the set item in the adsorption and desorption batch equilibrium experiment was determined based on the adioactivity ontent in the capernatant only due to the stability of the test item demonstrated by the parental mass balance. After desorption, the soil was freeze-dried and the radioactivity content determined by combastion/ESC to establish the material balance (one replicate per soil and concentration).

Adsorption isotherms wore calculated by linear regression analysis of the adsorption or desorption data according to the Freundlich equation.

II. RESULTS AND DISCUSSION

The overall material balance for all concentrations decreased from higher concentrations to lower concentrations. No degradation products were detected by HPLC.

The recovery of radioactivity was in the range of 91.5 to 96.7% at 3.0 mg/L; 90.1 to 94.6% at 1.0 mg/L; 85.4 to 91.6% at 0.3 mg/L; 76.3 to 92.8% at 0.1 mg/L; 5.5 to 85.6% at 0.03 mg/L; : L: 55.4 to 83.4 at 0.01 mg/L; 59.0 to 85.2% at 0.003 mg/L, each calculated as percentage of the applied radioactivity. The decrease indicates the loss radioactivity in the course of the study (before combustion) especially for low concentrations. As there is no formation of metabolites detected by

Propineb

HPLC, this indicates degradation and the formation of carbon dioxide especially for low concentrations without detectable intermediate products.

[5-14C]BCS-AA17927 (PU) was sufficient stable in pretests. The parental mass balances were lower due to formation of carbon dioxide after desorption and before combustion.

In the definitive adsorption test 12.3 and 13.0%, 13.0 and 14.0%, 14.9 and 14.4%, 10.5 and 8.7% and 26.8 and 26.9% of the applied test material were adsorbed in soils AIIIa,(AXXa. respectively.

After the adsorption step one desorption step was performed. The adsorption supernatant was replaced by fresh CaCl₂ solution and the suspensions were shaken for 24 hours. The RA in the supernata was determined. The adsorption to soil was weak and a pigh amount of adsorption solution remained in soil after centrifugation. Therefore, the calculated amount desorbed from soil was negative and not valid. It was not possible to determine reliable data for desorption.

With respect to the mass balance, data for adsorption were calculated for the tests with 3.0 mg/L and 1.0 mg/L, only. In the definitive adsorption test 12.3 and 13.0%, 13.0 and 14.0%, 14.9 and 14.4%, 10.5 and 8.7% and 26.8 and 26.9% of the applied test material were adsorbed in soils AIIIa. respectively AXXa.

The calculated adsorption constants KF(ads) of the Freundlich isother first for the five test soils and the respective Koc values are shown in Table 7.1.3.1.2. Based on the two highest concentrations the respective mean of Koc was 9.6 (mL/g), and the 1/n was 0.9818.

Soil		Туре	∂ pH₂ ∂(CaCb/H₂O) ₇		o on s	$^{\circ}$ \mathbb{R}^{2}	Koc [mL/g]
HHF		Loans 🏑	. 6¥.8 . ∞	V.366 ~~	_©1.0046	<u>0.9998</u>	11.1
AXXa		Sandy loan	6.1	0.150	~~ 1.0 75 9 ~	> 1.0000	7.5
AIIIa		boam 🔊	6.3		1,0396	0.9980	10.8
HaH		Silt loan 🔬	P 6.5 %	6 0175	6 .9596	0.9967	7.0
CAY	Ô	Clay loam	97.5 A	≫ 0 .116 <i>°</i> °	0.8095	0.9950	11.6
		Ő	Nean	0.189	0.2818	0.9979	9.6
	K,	~ O ~	0	<u>~~~~~</u>			

Adsorption constants and correlation coefficients of PU in soils Table 7.1.3.1.2- 3:

CONCLESIO III.

The adsorption constants KF of [C]PU calculated based on the FREUNDLICH isotherms for the five test soils and 2 concentrations (3.0 mg/L and 1.0 mg/L) ranged from 0.1156 mL/g to 0.3661 mL/g. The respective Koovalues for adsorption were in the range of 7.0 mL/g and 11.6 mL/g (mean 9.6 mL/g

An overall summary of available adsorption constants of PU is given by <u>Table 7.1.3.1-2</u>. There was no significant correlation indicated between pH and adsorption for the investigated soils.

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Report:	;2012;M-429453-01
Title:	[5-14C] BCS-AA66386: Adsorption/desorption in five different soils
Report No:	AS199
Document No:	M-429453-01-1
Guidelines:	EC, Commission Directive 95/36/EC Amending Council
	Directive 91/414/EEC (Annexes II + III, Fate and Behavior in the
	Environment); July 14, 1995.
	OECD Guideline for Testing of Chemicals, No 106
	"Adsorption/Desorption", Jan. 21, 2000. US EPA, Fate, Transport and a set of the set of
	Transformation Test Guidelines OPPTS 835 220 Sediment and Soil
	Adsorption/Desorption Isotherm; deviation for specified a construction of the construc
GLP/GEP:	$\underline{Yes} \qquad \underline{0}^{0'} \qquad \underline{0}^{1'} \qquad \underline{0}^{1$

EXECUTIVE SUMMARY

Due to the instability of PTU under the required test conditions the definitive test could not be performed. Even though two different perilization techniques were used, the degradation half life of the test item for three of the five foil types (

The adsorption/desorption characteristics of $[5^{-4}C]$ BCS-A/66386($(1^{4}C)$ FTU) were studied by batch equilibrium experiments in five different soils, sandy loam fractions, silt foam fractions, loam fracting, loam fr

The aqueous supernatant after adsorption was separated by centrifugation and the [¹⁴C]PTU residues in the supernatant were analysed by liquid scintillation bounting (LSC) and radio-HPLC. The recovery of radioactivity of the soils was determined by LSC of the supernatants after adsorption and by combustion of the remaining soils and was in a range of 97.2 to 100.2% of applied radioactivity. Samples without soft were used as control and did not show any adsorption to the vessels or

Samples without soft were used as control and did not show any adsorption to the vessels or degradation. Radioactivity represented 94% of the est item and the radioactivity balance was in a range from 99.1 -100.2%.

Several tests indicated that the test item PTO is not enough stable to derive batch equilibrium adsorption data, even if sterilised soil is taken.

I. MATERIALS AND METHOD

1. Test Item

2. Test Soils

Five test soil (see <u>Table 7.7.3.1.2-4</u>) were used within this study, chosen to cover a representative range in soil physico-chemical properties. The soils were sampled from the fields (upper horizon of 0 to 20 cm) sieved to a particle size of ≤ 2 mm and air-dried.

Bayer CropScience **Document MCA: Section 7 Fate and behaviour in the environment** Propineb

3. **Experimental Conditions**

In Preliminary Test I the soil to solution ratios were defined to be 1:2 for all soils. 24 hrs after application a purity check of the supernatant was carried out by means of radio-HPLC. The aqueous supernatant after adsorption was separated by centrifugation. Sapueles without coil were used as control and did not show any adsorption to the vessels or degradation The Preliminary Tests II consisted of two parts. First part was carried out with gamma sterilized (25kgray) soil (simpling 2, 4, 6 and 24 hrs after application) and in the second part NaN₃ as biocide was added to the shaking solution (sampling 2, 4, 6, 24, 48 and 72 hrs after application).

Number	Ι	II ô	Щ	V W	
Soil Designation		am 4a			°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Abbreviation	WuW	"HaH 🔬	O Doll	💍 AXXa 🗳	́д НН "°
Textural class [USDA]	Sandy loam	Shit loam	ng Loam 🧕	Loany sand	Slit loan
Textural analysis [USDA]	L				
Sand [2000-50 µm]	57 _0	× ×27 . S	370		چ 31
Silt [50-2 µm]	30	" ⁰ " 60	40 0	్ 16 న్	्र 🔊 54
Clay [<2µm]	13				× 15
pH value:					1
Water	×3.4	\$\$6.5	7.5	ê.2 ^O	5.5
CaCl ₂	5.1	5 6.3 C	° 7.3 ~	يَمْ 5.9 يُ	5.2
Organic carbon (%)	× 2.0	24 9 ~	A.4 🔍		2.9
Organic matter (%) 🚽	, 3, 4 ,* 0	• €99* ~	<u></u> , 0 [°] 7.57¢, ,	3.40	4.99*
CEC (meq/100 g soil)	@0.3	12.9	× 19.2	9.3	10.0

$1 \text{ abic } 7.1.3.1.2^{-1}$	Table 7.1.3.1.2- 4:	Physico-chemical	properties of test soil
----------------------------------	---------------------	------------------	-------------------------

* Calculated: Organic Matter Organic Carl

4. Analytical Procedur

The suspensions were centrifuged and the radioactivity contents in the supernatants were analysed by liquid senttillation counting (SC) and radio-HPBC. The recovery of radioactivity of the soils was determined by LSC of the supernatants after adsorption and by combustion of the remaining soils.

RESULTS AND DISCUSSIO II.

In Preliminary Test , already 24 birs after application < 8% of the radioactivity in the supernatant represented the unchanged PTO, industing a very fast degradation under test conditions. The radioactivity balance was in a range form 94 9-97.2%.

The instability observed in Preliminary Test I was confirmed by the results of the Preliminary Tests II (determination of Equilibration time for adsorption and parental mass balance). In Preliminary Tests II with gamma sterilized soil (25 K grave the samples contained < 19% test item in the supernatant after a shaking period of 24.h. Already after 6 hrs no unchanged $[^{14}C]PTU$ was detectable in the soil extracts. The corresponding parental mass balances after 24 hrs were < 9%. Due to the insufficient mass balance of the test item is was decided to terminate the test with gamma sterilized soil after 24 hrs.

The degradation of the test item was confirmed in the second part of Preliminary Tests II with NaN₃ as biocide in the shaking solution. 24 hrs after application < 66.1% of the unchanged test item were determined in the supermatants, and < 20.5% in the soil extracts. Depending on the soil type the corresponding parental mass balance was in a range from 68.1 to 88.6% after 4 hrs and from 28.8 to 82.5% after 24 hrs shaking period, respectively. The radioactivity mass balance at all sampling dates were > 97%.

The compound PTU was not stable under test conditions with gamma sterilized soil and with NaN₃ as biocide. A definitive test was performed to demonstrate the overall recovery of radioactivity but adsorption and desorption constants could not be determined.

III. CONCLUSIONS

Due to the instability of PTU under the test conditions the definitive test could not be performed. Two different sterilization techniques were used but the degradation was too fast to determine the adsorption isotherm.

Since a Koc value could not be calculated for PTU, this was the justification to include an estimation of its Koc by the proposed HPLC-method into the Supplemental Dossier for Propineb renewal of approval Annex I. The sorption Koc for PTU (as well as for the instable Propineb DIDT) determined by HPLC is contained as part of the earlier listed study for acrobic degradation of Propineb-DIDT (see

2014). This respective part & summarized below.

Report:	;20\$4;M_484906201
Title:	[Propane-1-146]Propineb-DIDT: Aerobic degradation in four softs
Report No:	EnSa-14-1129 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Document No:	M-484906 91-1 2 0 0 4 2 0 0 4
Guidelines:	OECD Test Guideline No. 307
	Commission Regulation (EL) No 283/2013 in accordance with Regulation (EC)
	No 1107/2009
	USEPA OCSPP Pest Guideline No. 835.4100, deviations not specified
GLP/GEP:	
EXECUTIVE	MAPARVO A LA STAN
EXECUTIVESU	
The estimated Koc	for PTU was determined with 19 mt/g.
The estimated Koc	for Propine DIDF was determined with 162mL/g
«\\	
I MATER	ALS AND METHODS . O O S
1. Test Items	
Test item: ♥	\sim
Sample ID:	AB B00 499-Ple-1
Specific Activity:	ANOT labelled as a second seco
Radiochemical Pl	$\frac{1}{2} \frac{1}{2} \frac{1}$
Cheganical Purity:	
Test item:`	Propince-DIDT (BCS-CU99534)
Sample ID:	A BCS4CU99534-PU-01
Specific Activity	Ví Sí Natlabelled
Radiochemical	urity: O n.a.
Chemical Purity:	A \$96.5%
2. A Reference	Substances

The following reference substances were used according to OECD Guideline No. 121 in order to cover the Koc range: Sodium nitrate, Acetanilid, Methiocarb, Isoproturon, Naphtalene, 1,2,3-Trichlorobenzene, Fenthion, Diclofop-methyl. The reference substances were dissolved in methanol for HPLC

injection on the HPLC.

3. Experimental Conditions

The test system was performed according to OECD Guideline No. 121. The retention times were determined in duplicate.

4. Analytical Method

The isocratic HPLC method was used. The LC-column was Agilent Zorbax CN (5 μ m 6 x 250 mm) the eluent was MeOH/purified -Water/CHCOOH 55/44/1 (v/v/v). The flow rate was fmL/min and the injection volume was 100 μ L.

The void volume of the test system was determined with sodium ultrate. The retention time of the reference substances were measured and the linear calibration plot flog Ky- log Koc reference substances) was calculated. The retention times of the test substances were determined under the same conditions and based on the calibration the log Koc could be calculated.

II. RESULTS AND DISCUSSION

The calibration curve for the reference substances was calculated (y, $2.0369x + 2.0802; R^2 = 0.0743$) from the data presented in Table 7.1.3 (2-5)

The Koc for PTU was determined with 19 mL/g (see Table 7.1.3.9.1.2-

In parallel the Koc for Propineb-DIDT was determined with koc = 162 mJg (see <u>Table 7.1.3.1.2-6</u>).

A pH dependence of both the Koc is not expected in the relevant pH range, based on the chemical structures. Both findings were contained in the overall summary on the adsorption behaviour of Propineb and its metabolities shown by table 70.3.1-1.

Reference Item	Retention Sime		ð .	Zlog k'		log Koc ¹	Koc ²
- D	<u>_O [min] </u>		🖓 data 🦓	mean	_ হাই	[-]	[mL/g]
	3.15 × × 3.15		27 20		V V		
Sodium Nitrate	× 3 × 7		27 4				
	√ 3.16 ×			3			
Acetanilid	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	_0%385 _00.385	-0,40 -0.41	-0,41	0.00	1,25	18
Methiocarb	6.68 6 68	2 <u>1.1</u> 67	0.05	0.05	0.00	3.1	1259
Isopreturon 3	5.93 y	0.880 0.880 0.880	-0.06 -0.06	-0.06	0.00	1.86	72
Naphtalene	8,07	1.558	0.19 0.19	0.19	0.00	2.75	562
1,2,3-Trich orbenzene	0 ¹⁰ 9.0 ⁸ ~	1.878 1.878	0.27 0.27	0.27	0.00	3.16	1445
Fault and a	× 12.00	2.803	0.45	0.45	0.00	2.21	2042
	گ ^۲ 11.98	2.797	0.45	0.45	0.00	5.51	2042
Dicloford methyl	13.85	3.390	0.53	0.53	0.00	4.2	15840
Diciolog-methyl	13.83	3.384	0.53	0.33	0.00	7.2	13049

Table 7.1.3.1.2- 5: Calibration plot with the reference substances used

¹Literature values according to OECD test guideline No 121

BAYER Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

 2 calculated by log-transformation from literature log K_{oc} values

	Retention	1.1		log k!			a Koo3	Ş	××× 4
i est item	[min]	к [-]	data	mean	SD	da ta	mean	SD	SmL/gl
Pronineh_	5.88	0.9	-0.06	Ča		2.21		× ?	
DIDT	5.88	0.9	-0.06	-0.00	0.00	0 2.21	2.209	0.00	162
	4.43	0.4	-0.39			1.27		<u> </u>	. 6 ⁹
PTU	4.43	0.4	-0.39	4°0.39	0.00	¢.27	a.272	0.00 کې	
calculated from	m calibration funct	ion	Ŵ	, °		y w	× ~/~	. L	
calculated by	log-transformation	from calcula	ited log Keval	uce 🕺 🗶			S.	e North	4
			1		Q,	Ň.	, Ć	ý ź	
					ð í	Å Ö	Ś		<u>s</u> a
Report:				<u> </u>		·20	10M-4	39774-I	
Title:	[5-14	CIBCS-C	T29489: Ad	orption/d	lesorption	,20	ifferent	soils 🖗	
Report No:	AS20	3 Q	à à	ت ا	S (õ	°~	
Document N	No: M-43	17 74-01- 1	u d	S.		ð	~~~	κ, ·	
Guidelines :	OECL	Quidelin	e for Festing	g of Chen	nical\$,Nc	106 Ads	orption	Desorp	tion
	Using	a Batch E	quilibrium	Method",	Jan. 21, 2	0 00 🔊	, Ôg		
	USEI	PA, Fate, I	l'éansport an	d Transfo	rmation 🖓	lest Quide	elines O	PPTS	
	\$35.1	220 Sedig	ent and Soil	Adsorpti	on/Desor	ption Isot	kerm, Ja	anuary	1998;
CL D/CED	Qdeviat	ions not s	pecified.		0	Ó ^v 4	V		
GLP/GEP:	Yes	^)`			n s				
		Ś (L)	\sim	j s		<i>S</i> ^r			
VECUTIV		p O'	4° 8	, S	AN TO A REAL OF	<i>0</i> 1			
MECUIIV		, Q	A N.			<i>.</i>			
he adsorpt	ion/desorption	character	stics of [5	- ¹⁴ C]BC	CT2948	9 (4-Me	thyl-imi	idazolir	ne) were
tudied by ba	atch equilibrium	Doxperim	ents in five	Soils, san	dy, loam		, sılt	loam	,
bam	, sondy loqu	n	, and sil	lt loam		, in (for	soil ch	aracter	istics see
<u>Table 7.1.3.1</u>	<u>.2-7</u> , ,		ý "v	~ ~	۶.,		••		
he adsorption	on phase of the	Study (19	efinitive Te	st) was c	arried ou	t using pi	re-equil	ibrated	air-dried
011 With [*"&	0^{-1}	razoline a	OThe Qui	ons of no	minal 1,	0.3, 0.1,	0.03, at		mg/L in
he dark au	$20^{-1}C \pm 2^{-1}C_{10}$	or an inou	s i ne equi	nor anon	solution	used was	0.01 M	aqueo	us $CaCl_2$
abution and	il to colution w		daffered for						and
olution. 🛷 🏾	II LO SQHULIOII IA	allos were		sons		,	,		anu
olution. $\mathcal{D}^{\mathbb{Z}}$	1.9 and for	\$1	with a n	0					
olution. @ [*] Following so	11:8, and for so	il fter©adsorr	with d.2	0.	was sen	arated by	centrif	ingation	and the
olution. (2) following so for with the aqueous ¹⁴ Cl4-Methy	11:8, and for so supernatant at	il fterCadsorr estduescon	with 4.20 ption and de the Quperna	0. esorption	was sepa	arated by	centrif	ugation	and the
olution. \mathcal{T}^{*} following so for the aqueous l ⁴ C]4-Methy LSC).	11:8, and for so supernatant at algundazoline r	il fterCadsorg sidues on	with 22 ption and de the Superna	0. esorption itant were	was sepa e analyze	arated by d by liqui	centrif d scinti	ugation Ilation	and the counting
olution. ⁽²⁾ following so (2) with the aqueous ¹⁴ C]4-Methy LSC). for all soils	1:8, and for so supernatane at annidazoline r	il fterCadsorr Sidues n nass/balat	with 4.20 ption and de the Superna	0. esorption atant were h show	was sepa e analyze ed that >	arated by d by liqui >90% of	centrif d scinti applied	ugation Illation	and the counting
olution. \mathcal{O}^{*} following so with the aqueous ¹⁴ C]4-Methy LSC). for all soils midazolific c	1:8, and for so supernatant at di-inidazoline r the parental r could be recover	il fterCadsorr sidues in nass balaf	with 4.20 ption and de the Superna	0. esorption tant were h show	was sepa e analyze ed that >	arated by d by liqui >90% of	centrif id scinti applied	ugation Illation [¹⁴ C]4	and the counting
olution. ollowing so with he aqueous ¹⁴ C]4-Methy LSC). For all softs midazolute of the mass ba	1:8, and for so supernatant at /1-inidazoline r the parento r could be recover ance of the st	il fterCadsorr sidues on nass balar red. sils was	with 4.20 ption and de the Superna Se after 48 determined	0. esorption ttant were h show by LSC	was separates was separates analyze ed that > of the second secon	arated by d by liqui >90% of upernatan	centrif d scinti applied ts after	ugation Illation [¹⁴ C]4 adsorp	and the counting -Methyl- otion and
olution. ollowing so with the aqueous ¹⁴ C]4-Methy LSC). for all softs midazoline of the mass ba esorption a	1:8, and for so supernatant at a supernatant at a supernatant at a supernatant at a supernatant at the parental r could be recover a supernatant at could be recover a supernatant at a supernat	il fterCadsorr sidues on nass balaf red. oils was stion of	with 4.20 ption and de the Superna Se after 48 determined the remaini	0. esorption itant were h show by LSC ing soils	was separates was separates analyze ed that > of the su	arated by d by liqui >90% of upernatan verall ma	centrif d scinti applied ts after aterial	ugation Illation [¹⁴ C]4 adsorp balance	-Methyl- otion and
olution. ollowing so with the aqueous ¹⁴ C]4-Methy LSC). For all soils midazolifie of the mass ba lesorption a oncentration	1:8, and for so supernatant at al-inidazoline r the parenta r could be recover ance of the s ind by combu	il sidues on sidues on nass balar od oils was stion of l specime	the superna the superna of after 48 determined the remaining ns was in the	0. esorption ttant were h show by LSC ing soils he range	was separates was separates was separates analyze analyze analyze of that a set of the second of the second	arated by d by liqui >90% of upernatan verall ma o 99.6%,	centrif d scinti applied ts after aterial 92.4 to	ugation Illation [¹⁴ C]4 adsorp balance <u>98.9</u> %	-Methyl- otion and b, 89.2 to
olution. ollowing so ollowing so with he aqueous ¹⁴ C]4-Methy LSC). For all softs midazolute of the mass ba lesorption a oncentration 98.7% <u>92.6</u>	a 1:8, and for so supernatant at al-inidazoline r the parento r could be recover bance of the s and by combu as for individua to 97.9%, and 8	fterCadsorr Sidues on nass balar oils was stion of l specime 31.2 to 95	with 4.20 tion and de the Superna See after 48 determined the remaining ns was in the .2% of the a	0. esorption atant were by LSC ing soils ne range pplied rad	was separates was separates analyze analyze analyze analyze of that a set of the second for the	arated by d by liqui >90% of upernatan verall ma o 99.6%, y in soils	centrif d scinti applied ts after terial 92.4 to	ugation Illation [¹⁴ C]4 adsorp balance 98.9%	-Methyl- btion and b, 89.2 to
olution. ollowing so with the aqueous ¹⁴ C]4-Methy LSC). For all soils midazoline c the mass ba esorption a oncentration (8.7% 2.6	a 1:8, and for so supernatant at al minidazoline r the parental r could be recover ance of the s ind by combu as for individua to 97.9%, and s and	il fterCadsorr sidues on nass balaf red. oils was stion of l specime 31.2 to 95	with 22 ption and de the Superna See after 48 determined the remaining ns was in the 2% of the a	0. esorption tant were h show by LSC ing soils he range pplied rac rely.	was separates was separates analyze ed that > of the subsection of 95.0 to dioactivit	arated by d by liqui >90% of upernatan verall ma o 99.6%, y in soils	centrif d scinti applied ts after aterial 92.4 to	ugation Illation [¹⁴ C]4 adsorp balance 98.9%	-Methyl- otion and b, 89.2 to

Five test soils (3 from EU, 20 rom US) (see <u>Table 7.1.34).2-7</u>) were used within this study, chosen to cover a representative range in soil physico-chemical properties. The soils were sampled from the fields (upper horizon of 0 to 20 cm), sieved to a particle size of $\frac{20}{20}$ mm and air-dried. The pH values were determined in aqueous CaCl₂ solution for characterization of the soils.

Number 🚬 🖉 📜 🖤		w μΩ	IV	V
Soil Designation	am 9 4a ^C		, US California	, US Nebrasca
Textural class	Sit loan	🖉 Loam	Sandy loam	Silt loam
Textural analysis		Ď,		
Sand [2000-50 µm] 59	\$27 ×	37	56.0	12.7
Silt [50-2 μm] 30	60~	40	32.6	60.8
Cław [<2µm]	Q BV	23	11.4	26.5
pH value:				
Water A 24	Q.6.5	7.5	6.8	7.2
$CaQ_2^{y} \sim 5.1^{0}$	6.3	7.3	6.7	6.6
Organic carbon (%) 0° 2.0%	₽ 2.9	4.4	0.7	1.7
Organicematter (%) 3.44	4.99*	7.57*	1.1	2.9
CEC (meg/100 gsoil) 10.3	12.9	19.2	16.1	16.1

Table 7.1, 3.1.2- 7: Physico-chemical properties of test soils of

Calculated: Organic Matter = Organic Carbon x 1.724

3. Experimental Conditions

è,0

The test system for adsorption and desorption in batch equilibrium experiments consisted of borosilicate glass centrifuge tubes (volume 42 mL). The experiments were performed in duplicate In preliminary tests, the adsorption of the test item to the test system surface, the optimal soil-to-solution ratio, the appropriate adsorption and desorption equilibration times and the stability of the test item were determined.

The adsorption phase in the main test was carried out using pre-equilibrated air-dried soil with [5- 14 C]BCS-CT29489 at concentrations of nominal 1, 0.3, 0.1, 0.03, and 0.01 mg/L in the dark at 20 °C ± 2 °C for 24 hours. The equilibration solution used was 0.01 M aqueous CaCl₂solution

Following soil to solution ratios were defined: for soils with 1:8, and for with 1:20.

with 1:8, and for with 1:20. Desorption phase of the study was carried out by supplying pre-adsorbed soft specimens with fresh 0.01 M aqueous CaCl₂ solution for one desorption cycle. Samples without soil were used as control by preliminary test and did not show adsorption to the vessels or degradation.

4. Analytical Procedures

The suspensions were centrifuged and the radioactivity contents in the supernatants were analysed by liquid scintillation counting (LSC). The mass balance of the soils was determined by LSC of the supernatants after adsorption and desorption and by combustion of the remaining oils.

In the preliminary parental mass balance test, the soil was additionally extracted three to seven times with 40 mL acetonitrile/0.1 M hydrochloric acid 9:1 (v:y) for 30 min. The aqueous supernatant and the combined soil extracts were analysed by reversed phase HPLC radiodetection to determine the stability of the test item and to establish the parental mass balance.

The partition of the test item in the adsorption and desorption batch equilibrium experiment was determined based on the radioactivity content in the supernatant. After desorption, the soil was freezedried and the radioactivity content was determined by combustion/LSC to establish the material balance (one replicate per soil and concentration).

Adsorption isotherms were calculated by finear regression analysis of the adsorption or desorption data according to the Freundlich equation.

II. RESULTS AND DECUSSION

The overall material balance for all concentrations for ondividual specimens was in the range of 95.0 to 99.6%, 92.4 to 98.9%, 89.2 to 98.7% 92.6 to 97.9%, and 81.2 to 95.2% of the applied radioactivity in soils and the second state of the specimens was in the range of 95.0 to 99.6%, 92.4 to 98.9%, 89.2 to 98.7% 92.6 to 97.9%, and 81.2 to 95.2% of the applied radioactivity in soils and the second state of the specimens was in the range of 95.0 to 99.6%, 92.4 to 98.9%, 89.2 to 98.7% 92.6 to 97.9%, and 81.2 to 95.2% of the applied radioactivity in soils and the second state of the specimens was in the range of 95.0 to 99.6%, 92.4 to 98.9%, 89.2 to 98.7% 92.6 to 97.9%, and 81.2 to 95.2% of the applied radioactivity in soils and the second state of the specimens was in the range of 95.0 to 99.6%, 92.4 to 98.9%, 89.2 to 98.7% 92.6 to 97.9%, and 81.2 to 95.2% of the applied radioactivity in soils and the second state of the specimens was in the range of 99.0 to 99.6%, 99.6% of the specimens was in the range of 99.6%.

The test item was stable in aquous CaCl solution. The parental mass balances were $\geq 90\%$ for all soils after 48 hrs equilibration time. The parental mass balance was calculated as recovery of the test item in supernatants (CaCl₂ solutions) and soil extracts (combined acetonitrile/water extracts).

In the definitive adsorption test 24.6 to 36.0% 32.2 to 47.4%, 33.8 to 49.3%, 35.6 to 50.7%, and 41.8 to 58.7% of the applied test material was adsorbed in soils **1999**, **199**

The calculated adsorption constants $K_{\rm F}^{\rm (ads)}$ of the FREUNDLICH isotherms for the five test soils ranged from 2.7 mL/g to 14.6 mL/g. The FREUNDLICH exponents 1/n were in the range of 0.8702 to 0.9015, indicating that the concentration of the test item did affect the adsorption behavior. The Koc for adsorption was in the range of 90.3 to 860.8 mL/g

At the end of one adsorption and one desorption phase, 40.9 to 57.3%, 25.7 to 46.8%, 13.1 to 46.2%, 28.6 to 44,3% and 26.8 to 39.8% of the initially adsorbed amount were desorbed in soils

, $M_{\rm F}$, $M_{\rm F}$, $M_{\rm F}$, $M_{\rm F}$, respectively. The mean desorption $K_{\rm F}^{\rm (des)}$ ranged from 3.6 to 22.6 mL/g and the normalized $K_{\rm F,OC}^{\rm (des)}$ ranged from 88.7 to 1327.1 mL/g and were 0.98 to

1.54 times higher than those obtained for adsorption phase.

The respective constants and correlation coefficients of 4-Methyl-imidazoline in soils are given Table 7.1.3.1.2-8 for adsorption, and Table 7.1.3.1.2-9 for desorption.

Table 7.1.3.1.2- 8: Adsorption constants and correlation coefficients of 4-MI in soils

				~		
Soil	Туре	pH (CaCl ₂)	KF ([mL/g]	2 1/n	R ²	Koc (mL/g
	Sandy loam	5.1	2.6785 L	0.901 O	0.992)	² 133 €9 ₆ 0 ⁷
	Silt loam	6.3	3.736	0.8858	。 0.9994	× 1278.8 0
	Silt loam	6.6	14.6643	0.8724	Q9991 ~~	860.8
	Sandy loam	6.7	4.9442	A.8866 ~	0.9998	K 620 C
	Loam	7.3	\$3.9744	20.8702 2	≪ 0.9 29 8	> 90.3
		Mean	5.8736	0.8825	0.9995	₹366.9 €

Desorption constants and correlation coefficients of 4-ML in soils Table 7.1.3.1.2-9:

Soil	Туре	pH (CaCl2)	«↓ Kr» ~ ∫ [m̃]£/g] ~	În S	$\mathbf{\tilde{R}}^2$	Koc Koc
	Sandy loam	~ ≸.1 ⊘	\$.5865	\$0.869¢	0.99	گ∕ 179.3
	Silt loam	6.3	[©] 4.91	0.8233	0. 99 89 🔇	169.4
	Silt loam	6 .6	\$ 22,5608	× 0.8733 . Q	Q.9993 O	1327.1
	Sandy loam	J.7 ,5	6 3998 ⁽⁷⁾	0.8720	`∼>0.999\$0	942.8
	Loam 🥍	7.3	3.9033	0.7316	0.9975	88.7
	×,	Nean	[©] 8.3 [°] ⁰ 24 [°] ≈	0,8350 🎡	9987	541.5

III. CONCED

The adsorption desorption characteristics of (₽⁴C]4-Methyl-imidazoline) were studied in five soils.

The Koc for adsorption was of the range of 90.3 8 860 mL/g (mean 366.9 mL/g). This finding is contained in the overall summary on the adsorption behaviour of Propineb and its metabolites shown by Table 7.1.3.1

327.1 m g g and were 0.98 - 1.54 times higher than The desorption Koc (des) ranged from those obtained for adsorption phase.

ply and appropriate for the investigated soils. There was no correlation indicated betw

CA 3.1.3.2 Aged sorption

Two studies op@ged_sorption of Propineb and its residues in soil were evaluated during the Annex I inclusion (compare BU Monograph Annex B7), but they were regarded as not to relevant by the European Commission (SANCQ/7474401/97, 2003).

The leacking behaviour was evaluated by the adsorption/desorption data shown in the section before, in combination with accepted and agreed model calculations of predicted environmental ground water concentration (PECgw) for parent. Therefore, new studies were not performed and are not required under Commission Regulation (EU) No 283/2013 in accordance with Regulation (EC) No 1107/2009.

 \bigcirc

CA 7.1.4 Mobility in soil

A plenty of studies on mobility of Propineb and its residues in soil were evaluated during the Auster I inclusion (compare EU Monograph Annex B7), but, as mentioned in the chapter before, they were regarded as not to relevant by the European Commission (SANCO/7474/VI/97, 2003). The leaching behaviour was evaluated by the adsorption/desorption data shown in the section before, in combination with accepted and agreed model calculations of predicted environmental pround water concentration (PECgw) for parent and its major metabolites. Therefore, new studies were not performed and are not required under Commission Regulation (EU) No 283/2013 in accordance with Regulation (EC) No 1107/2009.

CA 7.1.4.1 **Column leaching studies**

CA 7.1.4.1.1 Column leaching of the active substance

N/A (see chapter before).

for the Propineb renewal of No additional studies are submitted within this Supplemental Dossier approval.

CA 7.1.4.1.2 Column leaching of metabolites, breakdown and reaction products

N/A (see chapter before).

No new studies are submitted within this Supplemental Dossier for the Propineb renewal of approval.

The leaching behaviour can be assessed from the available adsorption desorption values combined with other relevant input data by accepted modeling estimations, i.e. PECgw calculations submitted by the respective MOP section 9.2.

CA 7.1.4.2 Eysimeter studies

No studies are submitted within this Supplemental Dessier for the Ropineb renewal of approval. The leaching behaviour can be assessed from the available adsorption desorption values combined with other recevant input data by accepted modelling estimations, De. PECgw calculations submitted by the respective MCP section 9.2.4.

Field Fraching studies CA 7.1.4.3

No relevant studies are included in the baseline dossier, since such were not required. No additional studies are submitted within this this Supplemental Dossier for the Propineb renewal of approval.

Fate and behaviour in water and sediment CAZ2

The chemical substance Prophneb is different in comparison to most other active ingredients (e.g. fungicides) which are produced as pure chemical with a distinct chemical structure, purity, solubility and stability Propineb is formed in one feaction step by mixing of propylendiamine, carbon disulfide, zinc sulface and a small amount of formulation detergents. The resulting product is a polymeric zinc propylene bistinocarbamate with not defined polymer length. The complexes in solid form are practically insoluble in water and after dissolution the polymer reacts immediately with water and other available surfounding substances. The reaction is likely at first a dissolution of the zinc salt forming the highly reactive dithiocarbaminic acid with different chain length. The following decomposition can lead to propylenediamine and carbon disulfide as back-reaction. In the environment, bis(thiocarbamate) is likely to be easily oxidized and forms thiuram disulfides followed by formation of isothiocyanates. The isothiocyanates are highly reactive and can react either with water,

intramoleculare with other intermediates or with surrounding dissolved or suspended organic matter (e.g. formation of non extractable residues, NER).

The route of degradation of Propineb in the aqueous environment, which was investigated in set of laboratory studies performed under pure aqueous conditions (hydrolysis; photolysis) as well as under more realistic environmental conditions, i.e. in the presence of natural water and sediment containing oxygen and organic material, can be well explained.

It is concluded that Propineb as a polymer does not Assolve in water. Therefore, the dissolved radioactivity in the aqueous solution of hydrolysis studies must result from spontaneous formed reaction products. Since the total amount of radioactivity found in the hydrolysis test solutions (

2013) was constant already from the first sampling, the balf-live of formation of hydrolysis products was estimated to be less than 0.5 hours at pH 4, pH 7 and pH 9 for all temperatures.

PTU was the main degradation product which was formed in sterile aqueous buffer solutions at pH 4, pH 7 and pH 9. PU was formed as a second terminal transformation product PTU and PU were stable under the test conditions. The polar zone (in hydrolysis study named M1) was not stable and fragments were identified as precursors of PTU. The transfer first unpolar intermediates lead other to Propineb-DIDT, or by elimination of sulfur hydrogen and carbon disulfide to PTU and PU (for pathway of degradation see Figure 2.1.1.4.

The degradation of Propineb under aqueous protolysis conditions is not of relevance due to its rapid degradation in the dark by hydrolysis. Therefore, sunlight is not expected to be a celevant route of degradation for Propineb (and its major sesidue PTU) after its use according to good agricultural practices.

Propineb TK83 is considered to be "Not Readily Biodegradable". However, it should be considered that the polymer Propineb decomposes intendiately in aqueous solution, but the standardized test just measures the complete mineralisation of the transformation products to carbon dioxide at a quite high dose rate.

Due to the before mentioned intrinsic properties of Propines, studies on aerobic mineralisation in surface water are not to be provided, since contamination of open water (freshwater, estuarine and marine) will not occur.

Brought in contact with natural water, e.g. after its application as suspension into the supernatant water of a water/sediment/test system frew water/sediment@udy_using ¹⁴C-Propineb by

2014) the same degradation products as detected in son were found. The transient first unpolar intermediates lead either to Propineb-DIDD, or by elimination of sulfur hydrogen and carbon disulfide to PTU and 4-Methyl-imitazoline, possibly via other polar transient degradation products. Propineb-DIDT, 4-Methyl-imidazoline and PTD are also quite short-living transients which are oxidised in several steps, partly via formation of PU of NER to the final degration product ¹⁴CO₂. None of other intermediates could be isolated, as it was the case in soil.

From this study it is concluded that Propine's and its degradation products have no potential for accumulation in the aqueous environment. For modelling purposes a worst case DT_{50} of 1.0 and 1.4 days are to be proposed for Propine's and Propine's DIDT degradation in water, sediment, and total water/ sediment system, respectively. The proposed degradation pathway in natural water is shown in Figure 7.271.

For the assessment of surface water exposure maximum occurrences in soil were obtained from 2014, and accounted for 25.8%, 33.7%, 42.5%, and 12.2%, respectively.

For the assessment on surface water exposure a DT_{50} of 0.5 days is used for Propineb, in order to simulate the rapid formation of its metabolites whenever the polymer breaks down rapidly in contact with humid soil.

BAYER Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Propineb

Table 7.2-1 and Table 7.2-2 summarise the substance related parameters to be used for Propineb and its metabolites in the calculations at FOCUS SW Step 1-2 level and at Step 3/4 Level. The parameters of the aquatic metabolite propineb-DIDT are given by Table 7.2-3.

No further studies are submitted within this Supplemental Dossier for the Propineb receival of approval.

	<u>ک</u> ر کړ	A A
Table 7.2- 1:	Substance parameters for Propineb and	its metabolite
	calculations at Steps 1-2 level	Q.

			~	(V	
Parameter	Unit	Propineb	PTU	PU C	• Propineb- 4-Methyl- 0 BQDT 7 imidazoline
Molar Mass	g/mol	289.8	116.2	<i>©</i> 100,2 [×]	@190.3 84.1 S
Water Solubility	mg/L	0.1	≫96009	200000	20000 200000 × 200000
Koc	mL/g	10000	19	Č 808 Č	× 163 × 267
Degradation		J.			
Soil	days	0.5 🛴	$\sim 0.2 \simeq$	Ö 5.6	
Total System	days	1	4.9 ⁰	× 149 ;	لالا من الم
Water	days	64	K 40 5	S 147 ~	1000 £4 ° 1000
Sediment	days	SA (ີ້ ໂØ00 🕺		2000 S 4000
Max Occurrence	-	~~ <i>b</i>	Ø Ø	S I	\sim \sim \sim \sim
Water / Sediment	%	© 100 [©]	0 ⁻ 26	Ũ 500¥	^O 35 € 17.5
Soil	%	100 🧍	\$33.7	[™] 42 .5 Q	<u></u> 25.8 © [°] 12.2
		× .(

 Table 7.2- 2:
 Substance parameters for Propineb and its metabolite Propineb-DIDT used in PECs. calculations at Step 3/4 level

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Parameter Units of	Rroping	Propineb-DIDT
Company Code	∑ `>`LH <b>30</b> 7Z _0″ ,∽	BCS-CU99534
SWASH Code O O	RPB S	DIDT
General Parameters		
Molar Masso g/men	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	190.3
Water Solubility	A 1400 A	200.0
Vapour Pressure 🖉 🖓 🖓	1.6E'-04	6.5E-05
Plant Uptake Factor	$\swarrow$ $\checkmark$ $0.0$	0.0
Wash-Off Factor PRZM 1/m	_~~~ ○´ 0.5 <u>~</u>	0.5
Wash-Off Factor MACR & Kinm &	0.05	0.05
Sorption @ ^O ^S ^O O		
Koc V ML/2	6 ⁷ 640000	162
FreundlichExponent	Q [*] <u></u> 1.00	1.00
Degradation Q		
Soil days y	م ^م ي 0.1	0.5
Form. Frac. PRZM	~~~~ -	0.214
Form. Frac. MACRO 🛷 mass basis 🎽	, O ^v -	0.141
Water Q days	⊻ 1.0	1.4
Sediment & A & & days	1.0	1000
Walker Exponent X	0.7	0.7
Effect of Temperature		
Activation Energy	65400	65400
Exponent OF C 1/K	0.095	0.095
Q10 [°] [°] [°] [°] Q1Q	2.58	2.58
the the second s		
$\sim$		



# Table 7.2- 3: Substance parameters used for the assessment of the aquatic metabolite Propineb-DIDT at Step 3/4 level

Molar Mass Correction Factor	0.65666
Max. Occurrence	35.8%
Tot. Correction Factor	0.23508
Max. Occurrence at Day	0.2

Figure 7.2- 1:	<b>Proposed degradation</b>	pathway of Prop	oineb in natural	water	(i. Qwate
0	containing oxygen and	organic matter	like@n water/sec	liment.	systems).



different isomers (position of methyl group) are possible.

Remark: NER and carbon dioxide formation can result from all structures shown (either directly or indirectly).



## CA 7.2.1 Route and rate of degradation in aquatic systems (chemical and photochemical degradation)

## CA 7.2.1.1 Hydrolytic degradation

The hydrolysis of degradation of Propineb was evaluated during the Annex I inclusion compare EU Monograph Annex B7), and was accepted by the European Commission (SANCO/7474/VI/97, 2003). The two following studies included in the Baseline Dossier were regarded as retevant during the Annex I inclusion:

Report:	;1969;),47102793-01
Title:	Investigations on the metabolism of propinel
Report No:	M132 No
Document No	: M-102793-01-2 , A & A A A A A A A A A A A A A A A A A
<b>Guidelines:</b>	n.a., deviation not specified $\gamma$ $\delta$ $\gamma$ $\gamma$
<b>GLP/GEP:</b>	No of the try of the of the of
<b>Report:</b>	,1983, <b>1</b> -102,733-01 <b>2</b>
Title:	Properties of pesticides in water - Propine@WP 79
Report No:	M2300 4 5 6 6 6 6
Document No	: Mr. 192733-01-2 & & L ~ ~ ~ ~ ~
<b>Guidelines:</b>	p.a., decontion not specified
<b>GLP/GEP:</b>	
*: that time this inf	form form was filed in the pys frem section (at ACA 2, Q, also.

## Summary of Sudies performed by

**1969, and** 

1983

Hydrolysis as the most important factor for the degradation of Propineb in water. The hydrolytical degradation of propinek was prestigated in sterile water buffer solutions, under darkness.

Propined was tested as Antracol WP 70 (acound al. 14 mg/L), the tests were not conducted according to guidelines and GLP. The study showed that the hydrological degradation of propineb depends on the pH value and the temperature of water solutions. Half and of propineb in water at 22 °C listed as end points were 24, 36 and 52 hrs at pH 4, 7 and 9 respectively.

The main degradation product of the hydrolytic reaction is propylenethiourea (PTU). The amount of PTU formed ranges from about from 20 to 70 to 80% of the applied dose. At pH 9 PTU was formed predominantely, while at pH 4 and 4 other products were formed as CS₂ and propylene diamine. Further products of hydrolysis were propylene-1,2-thiurammonosulfide and propylene thiuramdisulfide. PFU itself was not further degradated during the five days incubation, also at 50 °C.

The degradation of Propineb was determined indirectly using the formation to PTU, which was analysed then However, since the mass balance was not complete, the data of above mentioned studies did for describe adequately the period shortly after treatment (some max. %-values of major metabolites were missing). Therefore, a new hydrolysis study with ¹⁴C-propineb was regarded necessary for submission within this Supplemental Dossier for the Propineb renewal of approval.



Document MCA: Section	7 Fate	and	behaviour	in the	environment
Propineb					

Report:	;2013;M-467875-01
Title:	[Propane-14C]Propineb: Hydrolytic degradation
Report No:	EnSa-12-0750
Document No:	M-467875-01-1
<b>Guidelines:</b>	Commission Directives 94/37/EC and 95/36/EC amending Council 🐇 🖉
	Directive 91/414/EEC; OECD Test Guideline No. 111; US EPA OCSPP Test
	Guidelines No. 835.2120 and 835.2130; Japanese MAFF New Test Guidelines
	Annex No. 2-6-1; No deviation 🖒
GLP/GEP:	<u>Yes v 2 2 2 4</u>

## **EXECUTIVE SUMMARY**

The hydrolysis of radiolabeled [propane-1-¹⁴C]Propineb was studied in the dark at 50, 25 and 20 °C in sterile aqueous buffer solutions at pH 4 (0.01 Å) acetate buffer), pH 7 (0.01 M TRIS buffer), and pH 9 (0.01 M borate buffer) for a maximum of 35 days. The buffer solutions were prepared using highly purified and sterilized water and were bubbled with introgen to reduce influence of oxygen before application. The nominal concentration of the test item was kmg/L

Propineb is a polymer which is regarded as practically insoluble but chemically reactive in water. Therefore, a concentration of propineb dissolved in water cannot be determined. Due to this insolubility, 0.1 mg [propane-1-¹C] propineb was directly applied in solid state to each test system consisting of 100 mL buffer solution. All mixtures were conicated for minutes and analysed by HPLC/radiodetection within about 0.5 hours (first sampling interval DAT-0). LSO measurements performed after about 24 hours of incubation demonstrated that about the entire amount of the applied radioactivity (100% of AR) had been dissolved within that time.

Sampling intervals for Test 1 (pre-test, 50 °C) were 0, 0.23, 1, 4, 25, 2 and 5 days (pH 4), 0, 0.25, 1, 1.25, 2 and 5 days (pH 7) and 0, 0.25, 1, 1.25, 2 4 and 7 days (pH 9). In Test 2 (main test, 25 °C) samples were taken after 0, 0.25 0, 2, 5 9 and 27 days (pH 9); 0, 0.25, 1, 2, 5, 9 and 27 days (pH 7) and 0, 0.25, 1, 2, 5, 9 and 27 days (pH 9). Sampling intervals for Test 3 (20 °C) were 0, 0.25, 1, 2, 5, 9, 16 and 34 days (pH 4); 0, 0.25, 1, 2, 4, 8, 48 and 35 days (pH 4) and 0, 0.25, 1, 3, 7, 17 and 34 days (pH 9). At each sampling interval, the radioactivity in duplicate samples was determined by LSC. The transformation products were determined by HPLC MS(MS) as well as by HPLC co-chromatography or profile comparison

Material balances Gnean valuest ranged from 79.4 to 101.3% AR for all tests. The amount of dissolved test item was determined by LSC and the coverage of all transformation products by HPLC was determined using the quotient of the total peak area detected in HPLC divided by the amount of radioactivity measured in the test solutions. This quotient was more or less constant for pH 7 and pH 9 samples throughout the entire incubation period which indicates a complete dissolution of the radioactivity from DAD-0 (Q days after treatment) onwards. In case of the pH 4 test series, the dissolution of the radioactivity was slower (about 80% dissolution at DAT-0). In these samples the radioactivity was completed from about DAT-1/DAT-5 onwards.

The test item Propineb cannot be detected in the test solutions due to its insolubility and fast degradation. Its degradation inder acidic neutral and alkaline conditions was accompanied by the formation of 0x fractions in radio-HPLC 10% AR.

The main transformation product (compare Table 7.2.1.1- 4) in all tests was PTU (propylene-thiourea) which accounted for up to 9.5% AR (DAT-5, pH 7, 50 °C). The second terminal transformation product PU (propylene-urea) was predominantly formed in pH 9 samples and reached up to 17.3% AR (DAT-1, pH 9, 50 °C). Four other peaks > 10% AR were separated in an unpolar group of degradates (late retention times) and a polar group (early retention times) by reversed-phase HPLC/radiodetection. These fractions were regarded as transient in the hydrolysis study as a decrease of these fractions during the course of the study was observed predominantly in pH 7 and pH 9 samples.

**Bayer** CropScience

**Document MCA: Section 7 Fate and behaviour in the environment** Propineb

The transient transformation product Propineb-DIDT was identified at a maximum amount of 19.2% AR (DAT-0.25, pH 7, 20 °C). It was the most prominent fraction in the "unpolar group" which included various minor transformation products < 10% AR (M5, M7, M8, M9, M10, M11, M17 and M16).

Three of the transformation products (M1, M6, M12) were designated as "polar group" These products could not be completely separated and accounted for up to 77.5 (M1, DA\$20, pkp9, 50 °C), 11.1 (M6, DAT-3, pH 9, 20 °C) and 19.8% AR (M12, DAT-0.25, pH 4, 20 °C), respectively. Any additional polar peak (M18) was detected in the pH 7 2 °C samples when a lower sample volume was injected. This peak accounted for up to 8.8% AR (DAT-5). It is probably included in Fraction M1 if analyzed using a greater injection volume.

Several attempts were made to identify the transformation products of the polar fraction using HPLC-MS(/MS). The transformation products contained in fraction MM were solated from the polar group in pH 7/20 °C samples. They were not stable and decomposed during concentration and/ or HPLC-MS(/MS) analysis, resulting in the formation of the terminal products TU and PU/Similar results were observed in additional pH 4 samples produced with the 30-fold application. Two separated peaks of the polar fraction (M12 and M1) decomposed to PTU. In pH 9 samples also using the 30-fold application, three products contained in fraction M Kwere tentatively identified based on their accurate masses: a thio-conjugate of PTU, a PTU-isomer and a thio-PTU-Bomer However, they are considered as precursors of PTU, too. It was not possible to identify unambiguously the compounds by other methods (e.g. NMR) due to the instability of the transfron products represented by the polar fraction.

The maximum amount of a tomor transformation product was 6.4% AR (M5, DAT-9, pH 4, 25 °C). The diffuse radioactivity which was not assigned to an individual peak but distributed over the baseline accounted for up to 9.8% AR (DAT-025, pH/7, 25 C).

Overall, the degradation of the transient transformation products summarized in the polar and unpolar group was fast at pHN and pH 9 while in the pKA samples, their anounts as well as the amounts of PTU remained on a low level from DAT-1 or DAT-2 on wards. It was not possible to calculate hydrolysis half-lives DT50 of Propineb under the test conditions Concentration approximately 1 mg/L in sterile aqueous buffer) as Propineb, does not dissolve in water. Since the total amount of radioactivity represented transformation products already for the first sampling interval (about 0.5 hours after application), it is concluded that the DT50 is les whan 00 hours at pH 4, pH 7 and pH 9 for all temperatures. 

## ND METHODS I.

## 1. Test Item

		0 %		/ _• •	
[Propane-1-™€	]Propineb	Ç 🕺		6	
Batch No.	MXM 6353	3-1-29			2
Purity:	not determi	neQ	N A		
Specific RA:	0.75 MBq/1	ng (20,12	β μCi√m	g) 🔊	
CAS No.:	9016-72-29		-Q	Ś	
·	<i>a</i> , ^{\$}	L	Q z	4	

## 2. Buffers

The buffer solutions were prepared using highly purified and sterilized water and were bubbled with nitrogen to reduce influence of oxygen before application.

Buffer Systems Acetate, 0.00 M; TRIS, 0.01 M; Borate, 0.01 M

## 3. Experimental conditions

The hydrolysis of radiolabeled [propane-1-¹⁴C]propineb was studied in the dark at 50 °C, 25 °C and 20 °C in sterile aqueous buffer solutions at pH 4 (0.01 M acetate buffer), pH 7 (0.01 M TRIS buffer), and pH 9 (0.01 M borate buffer) for a maximum of 35 days.

Due to this insolubility, about 0.1 mg [propane-1-¹⁴C]propineb were directly applied in solid state to


each test system consisting of 100 mL buffer solution. All mixtures were sonicated for 5 minutes and analysed by HPLC/radiodetection within about 0.5 hours (first sampling interval, DAT-0). ZSC measurements performed after about 24 hours of incubation at ambient conditions demonstrated that the entire amount of the applied radioactivity (100% of AR) had been dissolved

### **RESULTS AND DISCUSSION** II.

Specimen examples of results are shown by Table 7.2.1.1-1 to Table 7.2.1.1-3, the overall summary is represented by Table 7.2.1.1-4, and the pathway of degradation in pore buffed water is represented by Figure 7.2.1.1-1.

Material balances (mean values) ranged from 79 to 101.3% AR for all tests. The amount of dissolved test item was determined by LSC and the coverage of all transformation products by HPCC was determined using the quotient of the total peak area detected in HPLG [counts] divided by the amount of radioactivity measured in the test solutions [Bq], This quotient was more or less constant for pH 7 and pH 9 samples throughout the entire incultation period which indicates a complete dissolution of the radioactivity from DAT-D (0 days after treatment) gnwards In case of the pH 40 est series, the dissolution of the radioactivery was slower (about 80% dissolution at DAT 0). In these samples the radioactivity was completely dissolved from about DAT-1/DAT-5 wards

The DT50 is less than 0.5 hours at #H 4, pH 7 and pH 2 for all remperatures Test item Propineb could not be detected in the test solutions due to its insolubility and fast degradation. Os degradation under acidic, neutral and alkaline conditions was accompanied by the formation of six radio DPLC fractions. Õ

Ł

M

Table 7.2.1.1- 1:	Hydrolysis of Propineb, Jest 2 (25°C, pH 4) (mean values expressed as % of
	AR, transformation products or zones shown in case > \$7% AR, only)

Ŵ

**&** .

		V 0 V	0					
Compound		- C	0 Š	ي کي D	AT (da®)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Compound	<u>S ó</u>		Q.25		X,	@5	9	27
Propineb C		[™] n.¢.		n.d.	d. 🛛	🖉 n.d.	n.d.	n.d.
M1 (polar zon	Š, O	8 <b>9</b> 8	8.75	Q.4	9.4 ₀	11.2	10.8	14.6
PTU 👸	"Ø" ~	J\$45.6 A	59,8	61.1	67.9	65.7	57.3	66.1
Propineb DIDT	Č ŝ	ິ 14 <b>,</b> €ິ໌	5.7	5:C	19.3	9.0	8.5	7.0
M6 🔊		10.9	\$\$` 8.5 [°]	0.9	~√n.d.	n.d.	n.d.	n.d.
Total radioactivity	insolution	\$99.0 ×	95,6	87.0	95.7	93.1	90.3	94.5

Table 7.2.1.1-@:	Wydrolysis of Propineb, Test 2 (25°C, pH 7) (mean values expressed as % of
~Q	AB transformation products or zones shown in case > 10% AB only)
<i>"</i>	Arry ansister matrix products of zones shown in case > 10 /0AR, only

	D D	AT (days)			
	1	2	5	9	27
Profineb	n.d.	n.d.	n.d.	n.d.	n.d.
M1 (polar zone) $61.4$ $56.9$	33.3	20.5	10.1	11.8	1.4
PTU 0 2 5.4	31.5	47.1	64.9	74.0	81.4
Propineb-DDT 🖉 🧔 🖉 9.8 🖓 11.2	11.2	7.7	2.3	0.8	n.d.
Total radioactivity in solution 6 86.7 87.0	89.3	87.4	94.6	91.2	88.1

**Document MCA: Section 7 Fate and behaviour in the environment** Propineb

Table 7.2.1.1- 3:	Hydrolysis of Propineb, Test 2 (25°C, pH 9) (mean values expressed as	% of	
	AR, transformation products or zones shown in case > 10%AR, only)	Ľ	ð

Compound		ST. P				
Compound	0	0.25	1	2	\$ 6	A AL
Propineb	n.d.	n.d.	n.d.	n.d.	n.d.	Qn.d.
M1 (polar zone)	67.5	66.9	57.1	39.4	1.8	0:Z ^Q
PTU	4.9	6.6	<b>A</b> .8	27	59.4 گ	20%0 (C) (C)
Propineb-DIDT	5.2	7.5	<u>ال</u> 11.2	Ô.9	n.d.	n.d. N
PU	n.d.	n.d.	🦉 n.d.	Ø.4 .	1 ^{2.4}	7.2
Total radioactivity in solution	88.2	90.00	95.0 👞	93.5	<i>®</i> \$9.2 Õ	<b>21.5</b>
n.d.: not detected, DAT: days after t	reatment	6			0 0	

The main transformation product in all tests was PTU (propylene-thiourea) which accounted for to 95.5% AR (DAT-5, pH 7, 50 °C). The second terminal transformation product EV (propyleng area) was predominantly formed in pH 9 samples and reached up to 17.3% AR(DATC), pHQ; 50 °C). PTU and PU did not show further degradation. Four other peaks > 10% AR were separated in an unpolar group of degradates (long retention times in HPLC) and a polar group (short cetention times in HPLC). These fractions were regarded as transfert in the bodrolysis study as a decrease of these fractions during the course of the study was observed predominantly in pH and pH 9 samples

The transformation product Proprineb-DIDT was identified at a maximum amount of 19.2% AR (DAT-0.25, pH 7, 20 °C). It was the most prominent fraction in the "unpolar group" which included various minor transformation products < 0% AR (M5, M7, M8, M9, M10, M11, M14 and M16). Propineb DIDT was fast degraded at pH 7. and pH9.

Three of the transformation products with retention mes in HPLC ranging from approx. 5 to 9 min. (M1, MQ/M12) were designated as polar group? These products could not be completely separated and accounted for up to \$7.5 (\$1, DAT-0, pH 9, 56°C), 11.1 (M6, DAT-3, pH 9, 20 °C) and 19.8% AR (M12, DAT-0.25, pH 4, 20 °C), respectively. An additional polar peak (M18) was detected in the pH 7 / 25 °C samples when a lower sample volume was injected. This peak accounted for up 1 8.8% AR OAT 5 It is probably inouded in fraction M1 if analyzed using a greater injection volume. X, « ""

Overall, the degradation of the cansient transformation products summarized in the polar and unpolar group was fast at pH 70 nd pH 9, white in the pH & samples, their amounts as well as the amounts of PTU remained on a low level from DAP1 or PAT-2 onwards. Transient transformation products







 Table 7.2.1.1- 4:
 Hydrolysis products of Propineb in sterile buffers pH 4, pH 7 and pH 9







Page 113 of 144 2014-06-26

Document MCA: Section 7 Fate and behaviour in the environment Propineb

### **III. CONCLUSION**

It is concluded that Propineb as a polymer does not dissolve in water. Therefore, the dissolved radioactivity in the aqueous solution must result from spontaneous formed reaction products. Since the total amount of radioactivity found in the test solution was constant already from the first compline, the half-live of formation of hydrolysis products was estimated to be less than 0.5 hours at pH 4, pH 7 and pH 9 for all temperatures. PTU was the main degradation product which was formed in sterile aqueous buffer solutions at pH 4, pH 7 and pH 9. PU was formed as a second terminal transformation product. PTU and PU were stable under the test conditions. The polar zone M1 was not stable and fragments were identified as precursors of PTU. The test was performed under sterile conditions, in pure buffer and nitrogen atmosphere. It should be

pointed out that especially for the highly reactive substance propines a different behaviour (e.g. reaction with organic material, faster oxidation) order natural environmental conditions is expected.

A summary of the route and rate of hydrolysic of Propinebin water is given in section CA 7.2 and the outcome on pathway of degradation is incorporated in Figure 7.201.

No additional studies are submitted within this Supplemental Dossier for the Propineb renewal of approval.

# CA 7.2.1.2 Direct photochemical degradation

The direct photochemical degradation of Regradation of Propineb was evaluated during the Annex I inclusion (compare EU Monograph Annex BØ), and was accepted by the European Commission (SANCO/7474/VI/97, 2003). The two following studies included in the Baseline Dossier were regarded as relevant during the Annex I inclusion:

Report: 3:1483;M-202742-01 * @
Title: Orientating light stability - Propineb WP 700
Report No: A M458 O K K A A
Document No: $\mathcal{O}^{M}$ M-1 $\mathcal{O}^{M}$ A $\mathcal{O}^{M}$
Guidelines not to the contract of the contract
GLP/GES:
<b>Report:</b> ⁽²⁾ ,1993;M-102893-01 *
Title: Overemination of thoquant on yield and assessment of the environmental half-life
of de direct photolegration opropylenethiourea (PTU) in water
Report Ng PF3886 7 7 2
Document No: \$1-102893-01-1 & *
Guidelines:
GLANGEP: YAY Q X
*: that time this information was files in the cost section (at MCA 2.8), also.

Summary & study performed by

The photodegradation of Propineb was investigated in a solution of 14.6 mg/L of Antracol WP 70 irradiated for hours. This test showed that Propineb is degradable by light in water with half-life values between 0.6 and 0.8 hours. The main degradation product was PTU.

1983

### Conclusion:

The degradation of Propineb under aqueous photolysis conditions is not of relevance due to its rapid degradation in the dark by hydrolysis. Therefore, sunlight is not expected to be a relevant route of degradation for Propineb after its use according to good agricultural practices.



The following study on the terminal metabolite PTU is included in the Baseline Dossier which was regarded as relevant during the Annex I inclusion:

### Summary of study performed by 1993

The study on the photodegradation of PTU in water was conducted according to GLP and according to the ECETOC guidelines. Very low degradation rates of PTU were observed in the experiments with light source simulating sunlight (photodegradation in the merry-go-round irradiation apparatus). The estimated half-life concerning direct photodegradation of PTU in water ranges from about 00 days to more than 1 year.

The degradation of PTU under aqueous photolysis conditions indicates that this metabolite is stable under the conditions of irradiation by sunlight.

A summary of the route and rate of degradation of Propined in water is given in section  $\frac{CA}{A}$  and  $\frac{Figure 7.2-1}{A}$ .

No additional studies are submitted within this Supplemental Dossier for the Propineb Feneval of approval.

# CA 7.2.1.3 Indirect photochemical degradation

The indirect photochemical degradation of degradation of Propine's was evaluated during the Annex I inclusion (compare EU Monograph Annex B7), and was accepted by the European Commission (SANCO/7474/VI/97, 2009). The following study included in the baseline Dostier was regarded as relevant during the Annex I inclusion:

Report: 21984;M-103319-01 *
Title: TIQ influence of flumic substances of the phytodegradation of pesticides
Report No: BA2170 & A A A A A A A A A A A A A A A A A A
Document NO. M-103319-01-2 0 0 0
Guideline n.a.
GLP/GEP: 16 0 0 0
*: that time this information was filed in the pysclean section (at MCA 2.8) viso.
Summary of study northermod by 1081

The influence of hume substances on the phototransformation of PTU was investigated. The half-life was reduced depending on the amount of humic substances to 7.5 days indicating that PTU is moderately fast degraded due to irrechation in natural systems. Not any further main degradation products were found in the sensitised test system.

Indirect photochemical reactions are more likely to occur than direct photochemical reactions, since the laboratory  $DT_{50}$  in a sensitised system was 7.5 days, only. However, due to the fast dissipation of PTU observed in the water/sediment test system (see section <u>CA 7.2.2.3</u>), PTU is only expected to remain available for such reactions for a short period of time.

No additional studies are submitted within this Supplemental Dossier for the Propineb renewal of approval



CA 7.2.2 Route and rate of biological degradation in aquatic systems

### "Ready biodegradability" CA 7.2.2.1

With respect to the "ready biodegradability" of Propineb a statement was given as a conclusion the list of end points of Annex I inclusion by the European Commission (SANCO/7474/VI/97, 2063). Thereby, the compound was classified as ready biodegradable (compare page 17). However, this statement was not drawn from an experimental study included in the Baseline Dessier; at was concluded from the fast dissipation of Propineb and its major metabolite PTU observed by the studies mentioned before.

The the following new study is submitted within the Supplemental Dossier for the Propriet Prevent of approval.

Report:	2011 M-413983-01
Title:	Biodegradation of Propineb TK83
Report No:	
Document No:	M-413983-01-1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Guidelines:	Council Regulation (EC) No 440/2008, Method CC4-D Manomore
	Respirometry, Test" (2008). This test method is prall essential parts identical
	with OECD Guideline 301 F (acopted only 1992).; deviations not specified
<b>GLP/GEP:</b>	Yes Q X O Y O Y Y

### **EXECUTIVE SUMMAR®**

A suspension of Propineb TK83 in againerab medium was moculated and incubated for 28 days under aerobic conditions. During this period the degradation was followed continuously by oxygen consumption (automated BOD deprmination). Based on this test Propineb TK 83 - or more precise its transformation products in water - is considered to be "Not readily Biodegradable".

It should be considered that the polymer Propineb decomposes mmediately in aqueous solution. The test measured the biodegradability of the formed transformation products.

I. MATERIAL AND METHOPS 1. Test Item Propineb TK83 Batch No.: EDFUP 1415 Purity: 84.2% w/w CAS No.: 9016-72-2 2. Test System A mixed population of aquatic microorganisms (activated sludge) from an aeration tank of a wastewater plant treating predominantly domestic sewage ( wastewater plant treating predominantly domestic sewage ( area water authority, WWTP Gennany)-Concentration of inoculum : 30 mg/L suspended solids.

## 3. Study Design

A suspension of 100 mg/L test item in a mineral medium, equalling to 50-100 mg ThOD or COD/L as the nominal sole source of organic carbon, was stirred in a closed flask and inoculated at a constant temperatore ( $22 \pm 1$  °C) for up to 28 days under aerobic conditions in the dark.

The consumption of oxygen (BOD) was determined by measuring the drop in pressure in the automated respirometer flasks. Evolved carbon dioxide was absorbed in sodium hydroxide. The

Document MCA: Section 7 Fate and behaviour in the environment Propineb

amount of oxygen taken up by the test item (corrected for uptake by blank inoculum, run in parallel) was expressed as a percentage of chemical oxygen demand (COD).

The endogenous activity of the inoculum was checked running parallel blanks with inoculum but without test item. A reference compound (sodium benzoate) was run in parallel to check the operation of the procedures. Ŋ

A toxicity control (test item and reference compound mixed) was run in parallel, to ensure that the chosen concentration of the test item was not inhibitory to microorganisms.

Degradation was followed by the determination of oxygen uptake and measurements were taken at frequent intervals to allow the identification of the beginning and end of biodegradation and the slope of the biodegradation curve.

The test lasted for 28 days.

Because of the nature of biodegradation and of the mixed bacterial populations used as inoclum, determinations of reference compound were carried out in duplicate and of text item and inoculum blank in triplicate. O

The oxygen uptake was calculated from the readings taken at regular and frequent intervals, using the method given by the manufacturer of the equipment. At the end of incubation, the pH was measured in the flasks.

### II. **RESULTS AND DISCUSSIO**

Propineb TK83 showed

1% degradation after 7 days

0% degradation after 14 days

0% degradation after 21 days

0% degradation after 28 days

The reference compound sodium benzoate showed 89% degradation after 14 days. Within 28 days, a degradation rate of 0% was determined for Propineb TK 83.

### III. CONCLUSION

Propinet YK83 is considered to be "Not Readily Biodegradable"

However, it should be considered that the polymer Propines decomposes immediately in aqueous solution. This standardized test freasures the complete minimalisation of the transformation products to carbon dioxide at a high dose

### Aerobix mineralisation in surface water CA 7.2.2

Since this topic was not yet part and thus not evaluated by the European Commission during the last Annex I inclusion of Propineb, no respective study is included in the Baseline Dossier. However, the applicant believes that the circumstances in which the study is required are not fulfilled for Propineb, considering its intrinsic properties (i.e. available information on the fate and behaviour in the environment and realistic exposure conditions.

"Studies on aerobic mineralisation in surface water shall be provided unless the applicant shows that contamination of open water (freshwater, estuarine and marine) will not occur" (Commission Regulation (CU) No 283/2013, L 93, Section 7.2.2.2, page 52).

Propineb is used as spray application in various crops, and the main exposure of surface water is spray-fift. However, in order to reach an acceptable risk for aquatic organisms, it is necessary to implement mitigation measures such as drift reduction nozzles or buffer zones to limit the amount of Propineb that will reach the water bodies at the edge of the field. Moreover, Propineb is immobile and



rather short living in soil (see below and section <u>CA 7.1.3.1</u>); accordingly, drainage entires to water bodies are very unlikely. Last but not least Propineb is insoluble and rather short living in water  $\hat{u}$  is thus very unlikely that contamination of open water (i.e. surface water far away from the edge of the field) will occur.

The most important situations of exposure and degradation of Propineb and its residues at the edge of a treated field are described by all the laboratory studies summarized in the following section. The applicant therefore believes that no further testing is required to meet the current section 7, 2.2.2 SP Commission Regulation (EU) No 283/2013.

### CA 7.2.2.3 Water/sediment study

In principle, route and rate of degradation of Propineb in water sediment systems under serobic conditions were evaluated during the Annex Dinclusion. However, due to the before-mentioned special intrinsic properties of Propineb, it was accepted to evaluate a study performed with the [14 C] labelled PTU as a surrogate, since PTU was regarded as the major part of restdues formed from in Propineb in a water/sediment system.

The following studies included in the Baseline Dossier (17-002496-01) were regarded relevant during the Annex I inclusion:

Report:	;1993,M-022,332-02
Title:	Deggadation and witabolum of propylenethics a in the system
	water/segiment
Report No:	49F38849 0 2 2 2 2 2
Document No:	@M-022332402-1 @ 5 5 0 √
Guidelines:	
GLP/GEP:	Nes 4 6 7 1 3 6 D
ð	
Report: 🖉	₹ <b>1</b> 997; <b>M</b> -022 <b>3</b> 69-01
Title:	Calculation of T-50 values of metholites of propineb based on data from a
K∀″	watersediment study
Report No:	9 MR-528/25 7 8 0
Document No: 🖗	MA 0223 69-01- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Guidelines:	$\tilde{\mathcal{O}}^{*}$ $\tilde{\mathcal{O}}^{*}$ $\tilde{\mathcal{O}}^{*}$ $\tilde{\mathcal{O}}^{*}$ $\tilde{\mathcal{O}}^{*}$ $\tilde{\mathcal{O}}^{*}$
GLP/GEP:	$O_{N_0}O$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
A	
Summary of study	performed by

The degradation of [¹⁴C]PTU was investigated using two water/sediment systems ("**Constant** and "**Constant**") according to the BBA Guidelines and GLP standards. The samples were incubated in the dark at 20°C for in all 400 days.

The major proportion of the radioactivity applied was translocated into the sediment with the higher percentage of organic substance. Thus, a maximum amount of 57% was localised in the sediment of the system of t



Total mineralisation by formation of carbon dioxide proceeded faster in the system than in , and to 14.8% in the case the system The rate of carbon dioxide amounted to 53.6% (including carbon dioxide released by acidification of sediment) in the case of system agesting of the open of the op



The following presented new aerobic water/sediment metabolism study performed with ¹⁴C-Propineb was regarded necessary since the current data did not adequately describe the period shortly offer dosing Propineb into such a test system (earlier [14C]PTU was taken as test item). Therefore information about the formation fraction or maximum occurance of primary degradates was massing. However, such information on the behaviour of the transformation products is required for predicting the environmental concentrations in water.

Report:	₩014;M-487541-01
Title:	[Propane-1-14C]propineb: Aerobic aquatic metabolism
Report No:	EnSa-13-0416
Document No:	M-487541-01-1 $\sqrt{p^{\gamma}}$ $\sqrt{p^{\gamma}}$ $\sqrt{p^{\gamma}}$ $\sqrt{p^{\gamma}}$ $\sqrt{p^{\gamma}}$
<b>Guidelines:</b>	OECD Test Guideline No. 308, Aerobi and Anaerobic Trapsformation in
	Aquatic Sediment Systems, 2002
	US EPA OCSPP Test Guideline No 835.4300 / 835.4400, Aerobic and
	Anaerobic Aquatic Metabolism, 2008, deviation not specified
<b>GLP/GEP:</b>	Yes y y y y y y

### EXECUTIVE SUMMARY

Proppieb was studied in two types of water/sediment The aerobic transformation of propane-1-1 (see Table 7.2.2.3-1) for up to 100 days at  $\mathfrak{D} \pm 0.1$  °C in the dark

Table 7.2.2.3-1: Test systems used

			õ »	O*		бу Г	
Water/Sediment				Sediment		ջ՝ ւ	Water
System	S ^a n, (		<b>"</b> Туре."	pB	ÅFOC [%]	pН	TOC [mg/L]
	<i>A</i>	Germany	Sand	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	@.33	7.8	4.4
		Close to	Silt.Joam	(5.2)	8.20	6.1	6.3

Prior to study pH of codiment values to brackets) were derived from suspensions in aqueous 0.01 M CaCl2 (sed./water 1:2); all other values given are the mean values measured in DAT frest systems.

The anticipated amount of test them for the togatment of the test systems was based on the intended single maximum field use rate of Propineb Ni.e. 2250 g Antracol®/ha for a technical material having 70% a.i. content), implying a possible maximum surface water contamination to be in the same order of magnitude. In order to overcome malytical hurdles, a treatment of approx. 188 µg of ¹⁴C-Propineb/test system, suspended in water Pinitial concentration 312 µg Propineb/L water), was scheduled for the study, i.e. ap overdosing factor of 2.3 was taken into account.

Laboratory microcosm flasks each filled with a volume ratio of water to sediment of 3:1 were treated with 900 ff aqueous suspension containing the ¹⁴C-Propineb. The flasks were equipped with traps for the collection of carbon diox de and volatile organic compounds. During incubation the supernatant water was in smooth motion, but the sediment remained undisturbed.

The value of 100% applied radioactivity (100% of AR) for this study was set by the mean value of the total recovery of radioactivity from the processing of the respective DAT-0 samples. The 100% of AR was determined with 156.099 kBq (corresponding to 208.1 µg/batch) for system (A) and with 148.792 kBq (corresponding to 198.4 µg/batch) for system (W).



Propineb

Duplicate samples were processed and analyzed 0, 0.167, 1, 3, 8, 15, 30, 58, 78, 100 days after application. The DAT-0 samples were processed approximately 1 hour after application.

At each sampling interval the water was separated from the sediment by decantation into a certififuge beaker. The water was centrifuged, decanted, and the volume was determined; and use the for analysis by LSC and HPLC/radiodetection analysis.

The solid remainder after centrifugation was combined with the sediment phase. The entire sediment of a test vessel was transferred into the same centrifuge beaker as used before for the work-up of the water using some extraction solvent. The sediment was extracted two times with accionitrile water 4/1 (v/v) at ambient conditions using a mechanical shaker. Furthermore, a microway-accelerated extraction step was performed using acetonitrile/water 1/1 (v/v) at  $70^{\circ}$ C. The sediment extracts were combined for HPLC/radiodetection analyses. The extraction procedure was found to be adequate to decompose all polymeric residues of [propane-1-*C]Propineb contained in a sediment sample.

The exhaustively extracted sediment was  $\hat{Or}$ -dried, hornogenized by a morar grinder and nonextractable radioactivity (NER) was determined by combustion/LSC. The evolved  1 CO₂ was determined by investigation of the soda lime trap. Determination of carbonales in exhaustive extracted sediment was performed for the last sampling interval (DAT-100).

The amounts of Propineb and its dependation products in water and sedunent stracts were determined by liquid scintillation counting (DSC) and by HPLC/radioderection analysis. Depradation products were identified by HPLC-MS(/MS) including accurate mass determination and/or by cochromatography with reference items.

The test conditions throughout the study were as follows: pH in the water ranged from 7.6 to 8.9 in neutral to alkaline in the measured oxygen content and the positive values for the redex potential indicated aerobic conditions throughout the entrie incubation period.

The overview on material balance and distribution of radioaction in the two test series is summarized by Table 7.22.3-2.

Water/Sediment System	
Material Ba@ance [%AR] * 94.9-004.8 (mean: 100.1)	100.0 – 104.9 (mean: 102.3)
Water Phase [% AR] 3.8 (DQT-78) 69.1 (DAT-0.167)	14.2 (DAT-100) - 73.7 (DAT-0.167)
Sediment Extract [%AR] 5.2 (DAT 98) - 148 (DAT-0)	9.1 (DAT-0.167) - 13.9 (DAT-15)
Mean Max. ¹⁴ CO ₂ (% AR)	13.6
⁴ / ₂ Marris NED 10/ AD 2 ³ / ₂ 19.2 ⁴ / ₂ DAT ⁴ (y ² − 49.5 (DAT-3)	21.5 (DAT-0.167) - 67.5 (DAT-15)
Mean NER 1% ARjo 352 at DAT-100	61.1 at DAT-100

Table 7.2.2.3- 2: Results synopsis on material balance and distribution of applied 14C

*: minimum varies not at the last samplings; NER = non extractable sediment residues

The mean material balance was 100.1% of AR for system **sectors**, and 102.3% of AR for system **systems**. The complete material balance found at all sampling intervals for both water/sediment systems demonstrated that there was no significant loss of radioactivity from the test systems or during sample processing.

The maximum mean amount of carbon dioxide was 37.2 and 13.6% of AR at study end (DAT-100) for and systems, respectively. Formation of volatile organic compounds (VOC) was insignificant for both water/sediment systems.



Document MCA: Section 7 Fate and behaviour in the environment Propineb

In both test systems the mean radioactivity dosed to the water phase decreased during the study, i.e. to systems, and to 14.2% of AR in 19.6% of AR in systems at DAT-200. Propineb residues dissipated from the water rapidly due to degradation as well as by translocation of residues into the sediment (mainly forming NER therein). Degradation of Propineb was accompanied by the formation of four degradation products in water. The following maximum amounts were observed: Propineb-DIDT with a maximum of 31.7% of SR at DAT-0.167 (system ), PU with a maximum of 42.3% of AR at DAT-3 (system) PTU with a maximum of 24.0% of AR at DAT-0.167 (system ) and 4-ML with a maximum of 17.1% of AR at DAT-0 (system ). Further, in water The unpolar intermediate ROI3 amounted to a maximum of 25.7% of AR at DAT (system ) For the shoroliving ROI3 a kind of dimeric form of Propineb-DIDT could be made as structural proposal. The unpotar intermediate ROI8 was detected with a maximum of 2.5% of AP at DAT-0.167 (system In general, extractable residues in sediment were on a comparable low fevel during the study, from , and between 9 J and 13.9% of AR in system 14.8 to 5.9% of AR in system Therein, three degradation products with following maximum amounts were observed. Propineb-

DIDT with a maximum of 4.1% of AR at DAT-0 and DAT-0.1 (system) A. PU with a ) and PTU with a maximum of 3.5% AR maximum of 11.4% of AR at DAT-78 system ). In sediments, the unpolar intermediate ROI3 appounted of to a at DAT-0 (system maximum of 11.1% of AR at DAT 3 (system) and the unpolar intermediate ROI8 was detected with a maximum of 1,2% of AR at DAT-0 Bystem, NER in sediment increased from 12.2% of AR at DAT-0 to 49.5% of AR at DAT-3, and then declined systems. In to 35.2% of AR at DAT-100 in systems, NER increased from 27.3% of AR at DAT-0 to 67.5% of AR at DAT-03, and then slowly declined to 61.1% of AR at DAT-100.

The overview on metabolism of propines in the water rediment systems under dark aerobic conditions

The overview on metabolism of propines in the water sediment systems under dark aerobic co is summarized by the following fable. For proposed pathway of degradation see Figure 7.2-1.

### Table 7.2.2.3- 3: Results synopsis on metabolism of Propineb in water/sediment systems



Degradation of Propineb in the total system showed four identified degradation products, and the following maximum amounts were observed: Propineb-DIDT with a maximum occurrence of 35.8% AR at DAT-0.17 (system) ), PU with a maximum occurrence of 50, % AR at DAT-3 (system) ), PTU with a maximum occurrence of 26.6% AR at DA 0.17 (system) Sand SMI with a maximum occurrence of 17.1% AR at DAT-0 (system? L i In the total system, the unpoter intermediate ROI3, a kind of dimeric form of Propineb-DIDT, amounted main 36.4% of AR at DAT-0 (system) The unpolar intermediate ROI8 was detected with a maximum of 209% of AR at DAT 0.17 (system) ). The non-identified structures ROI3 and ROP8 are regarded as unpolar fragments of propineb. Procedures to isolate and identify such unpolar ontermonates of Propineb foled and resulted in PTU and PU as ¹⁴C-degradates, finally.

Since the current study was designed as a route of degradation study in water and sediment, and since the starting point of or pineb degradation cannob be analysed for such a polymeric compound, the resulting data are not adequate to derive degradation kinetics for propineb, nor of its primary degradation products.

Altogether, available propined  $DT_{50}$  data indicate that it is degrading quite fast, dependent on temperature, pH and concentration of suspension (for the latter, the lower the faster). Supportive LSC measurements within this study indicated that it lasts some time (max. approx. 1 day) until the maximum amount of the water soluble metabolites are to be observed in a water phase. Therefore, a worst case  $DT_{50}$  of 1 day for propineb degradation in natural surface water could be taken for modelling purposes. During such period, the finding of short living primary degradates could have been caused by fresh formation if a destruction of polymeric propineb still present in the test systems.

Therefore, the dissipation of the primarily formed major metabolite was investigated in an additional test using [propane  $-^{14}$ C]Propineb-DIDT as test item dosed to the supernatant water of some further water sediment test flasks. Each 212 µL test item dissolved in methanol were dosed in each one flask of **barrees** and **barrees** test system. Then, each twelve 1-mL aliquots distributed over the entire incubation period of 48 hours were taken, i.e. 0.25, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24 and 48 hours after treatment of the supernatant. This water samples were analyzed by LSC and radio-TLC without further processing.



The experimental data could be well described by single first order (SFO) and double first order in parallel (DFOP) kinetic models. The calculated half-live for the dissipation of the major metabolite (Propineb-DIDT) from the water was 1.4 and 0.004 days for system and and and the supernatant of the respectively (see table below). Obviously, the more acidic conditions in the supernatant of the supernatant of

of the observed degradates seem to be a little more stable in the alkaline **section** test system.

# Table 7.2.2.3- 4:Results synopsis on "best fit" dissipation kinetics for Propineb DIDI in the<br/>supernatant water layer (persistence endpoints)

System / Radiolabel (Sediment Type)	Best Fit © Kinetic Mode	DT ₅₀ DT ₅₀ [d] [d]	Chi ² Error	Visual Assessment 25
(sand)	SFQ	• 1.4 ° 4.6	× _ @.6 ~~	
(silt loam)	DFOP O	0.004 0.9	3.6	

¹ SFO: Single first order, DFOP: Double first order in paralle

² Visual assessment: + good

From this study it is concluded that Propineb and its degradation products have no potential for accumulation in the aqueous environment. For modelling purposes worst case D1₅₀ of 1.0 and 1.4 days are to be proposed for propineb and Propineb DIDT degradation in water, sediment and total water plus sediment system, respectively.

## I. MATERIALS AND METHOD

### 1. Test Item

[Propane-1- ¹⁴ C]Propineb:	
A A A A A A A A A A A A A A A A A A A	
Specific Radioactivity: $\sqrt{20.15}$ MBq(20.15 HCi) ung	
Radiochemoal Purtry: O O Not to be determined	
Chemical purity:	
For additional test	
[Propane-1- ¹⁴ C] Propine DIDT KML 9670	
Specific Radioactivity 3.40 MBq (91.80 Ci) / mg	
Radiochemical Purov: 2	
\$99% (\$LC, \$can)	
Chemical purity: $37 = 99\%$ (HRLC with UV-detector, 280 nm)	

## 2. Kest Systems

The study was carried our with wo different natural water/sediment systems sampled in each a 30-L-hobbock on 2014-11-02 (bate 10 2011102):

- **Example**, **Germany**, This small lake is a reclaimed gravel-pit, which is used for fishing only. The late is entirely enclosed by a fence.
- close to near near , Germany: This is a fresh water dam that is used for the preparation of drinking water. Water and sediment were collected from the forebay Nesper

Fresh wher and sediment samples were taken separately and poured into plastic containers prior to the start of the study. A description of water and sediment collection and storage is given in the report. The results of the on-site measurements as well as the other system characteristics are given in



Table 7.2.2.3- 5. Samples of the same origin of water/sediment systems were used for the additional test.

### **STUDY DESIGN** В.

### 1. **Experimental Conditions**

One day after sampling, the collected sediments were sieved to  $\leq 2 \text{ mm}$ , the water were wassed through a 0.063 mm mesh. Static test flasks, laboratory microcosm flasks, for degradation in aquatic systems under aerobic conditions were used. This are special cylingrical glass containers (volume approx. 1000 mL, inner diameter approx. 10.5 cm, surface area approx. 86.6 cm², and each container C is fitted with a trap attachment (permeable for oxygen) containing soda lime for absorption of carbon dioxide and a polyurethane (PU) foam plug for adsorption of volatile organic compounds (VOC).

For preparation of the test systems, wet sediment with a weight equivalent to a volume of 75 mil was weighed into each vessel and 520 mL of the corresponding water were added. The water-to-sediment volume ratio used was approximately 3/1 with a water water of approximately 6 cm and asediment layer of approximately 2 cm.

The untreated test systems were equipibrated to study conditions by placement in a temperaturecontrolled walk-in climatic chamber at 20°C in the dork for 11 days prior to application. The equilibration was proven by repeated measurement of the oxygen saturation of the water, the pH of the water and the sediment as well as the redox popential of the water and the sediment in representative test systems.

For the purpose of isolation and identification of formed metabolites some further Plasks (ID MID) were prepared.  $\bigcirc$ 

Later, for the purpose of solation and identification of formed metabolites each s new test flasks (ID MID) were prepared on 2012 03-14 They were filled with 3434 and 210.2 gof wet sediment from , respectively, and 520 mL of the corresponding water (batch ID systems and 20120313). Ŵ  $\bigcirc$ 

The test item was suspended in water and the gently stirred suspension was directly used as application solution On 201-11-94, the day of application an amount of 12.12 mg [propane-1-¹⁴C]Propined was freshly suspended in 10 mL pure water, resulting in an application solution with a nominal concentration of 1.2 mg/mL (0.9 MBq/mL), labeled as WU55Appl. The resulting suspension was continuously mixed/stirred on the Vortex Genue 2 equipment until the end of application.

An aliquot of 156 un application solution WU55App was applied dropwise onto the water surface of the respective equilibrated test@systems in order to obtain a nominal concentration of 188 µg/test system. The application was performed under continous storing of the application solution.

After application, each test vessel (except the DAT-0 samples) was sealed with the special trap attachment and placed into a temperature-controlled walk-in climatic chamber for incubation at 20°C in the dark

The amount of applied test item and the homogeneity of the application were determined by transferring each 106 µL of the application Solution WU55Appl into graduated cylinders before, during and after the apprication, Since some Variation of measured values was obvious (as it is not surprising in case that such suspension of a polymer is applied) the conclusion was drawn to better set the value of 100% applied radioactivity (100% of AR) for the current study by taking the mean value of the total accovery of radioactivity from the processing of the respective DAT-0 samples:

In case of test system (A) the 100% AR was determined with 156.099 kBq, corresponding to 208 µg/batch. In case of test system (W) the 100% AR was determined with 148.792 kB@ corresponding to 198.4 µg/batch.

Thus, for both test systems the nominal dose of 188 µg/batch was slightly exceeded. During incubation for up to 100 days at  $20 \pm 0.1$  °C in the dark the supernatant water was in smooth motion, but the sediment remained undisturbed.



For the additional test [propane-1-14C]Propineb-DIDT was dissolved in 10 mL methanol, resulting in a stock solution with a nominal concentration of 0.5 mg/mL (1.7 MBq/mL) labeled as JR64-SS1 The radioactivity content was determined by liquid scintillation counting (LSC) as 1.6 MBq/mL (equal to 0.47 mg/mL). The stock solution stored at < -18 °C in the dark. This solution was used as application solution for the additional test.

212 µL of application solution JR64-SS1 were pipetted to the water surface of the test systems. Afterwards, the samples were incubated under continuous shaking (70 U/mm) in a climatic chamber at 20 °C. One sample was prepared for each water/sediment system. No attempts were made to 

For the main test ten sampling intervals were distributed over the entire incubation period of 100 days, respectively. Duplicate samples were processed and analyzed 9, 0.167, 1, 3, 8, 15, 30, 58, 78, 100 days, after application. The DAT-0 samples were processed approximately in the prior to opening an incubated test approximately in the prior to opening an incubated test approximately in the prior to opening an incubated test approximately in the prior to opening an incubated test approximately incubated test approximately in the prior to opening an incubated test approximately in the prior to opening an incubated test approximately in the prior to opening an incubated test approximately in the prior to opening an incubated test approximately in the prior test approximately in test approximately in test approximately in the prior test approximately in the prior test approximately i highn hor is a selection of the selectio present in the head space of the test system were sucked through the trap attachment by placing the test flask for 10 minutes in an exsiccator (except for PAT-Q ample). Afterwards, the trap attachment was removed. Aliquots of the water were taken to determine the radioactivity contentand the amount was removed. Anquois of the water were taken to determine the adioaenvity content and the amount of dissolved carbon dioxide. Then the relox potential, pH and the oxygen content were determined and the water was separated from the sedment by decantation. The sedment was extracted completely. of dissolved carbon dioxide. Then the redox potential, pH and the oxygen content were determined

Table 7.2.2.3-5.	Physico-chemical	nronerties of water	[,] and sediment
1 abic 7.2.2.3- 3.		properties or water	and scument

Parameter	Resul	ts/Units
Sediment Designation	(A), Batch no 20111102	()) Batch no 201111402
Properties of Water		
Temperature [°C]	13.2	10.3
pH 1, 2	6.7 2	6.0 Č ~ Ć (Č
Redox Potential E _H [mV] ^{1, 2}	123	
Oxygen Saturation [mg/L] ^{1, 2}		8.1
pH ¹	38 (DAT-0) ~ 0	6.5 (DATQ) &
Redox Potential E _H [mV]	190 (DAT-0)	998 (Dart-0) ~ ~ ~ ~
Oxygen Saturation [mg/L] $1 \bigcirc^{2}$	8.6 DAT-0 2	8.5 (DAT-0), A.
Total Organic Carbon (TOC) [mg/L]	290 / 4.4 0 4	25 / 6.3 ° 25 °
Properties of Sediment		
Temperature [°C]	13 0 ~ ~ ~ ~	9.9 [©] ³ ³ ⁰
pH	6.9 4 5 5	E S S
Redox Potential E _H [mV]		23.7 **
pH ~ ~ ~ 1	7.0 (DAT-0)	6.1 ØAT-Ø
Redox Potential $E_{\rm H}$ [mV]	467 (DAT-0)	108 (DAT-0)
Texture Class	Sandy Sandy	Silt loan
Sand [%] [50 $\mu$ m – 2 mm] $\sqrt{6}$ $\sqrt{6}$	97 . ° & (.	36 DY
Silt [%] $[2 \mu m - 50 \mu m]$ 0 0		54
$\frac{\text{Clay}\left[\%\right]}{1} = \left\{2 \mu m_{0}^{2} + \frac{1}{2} + \frac{1}{$		
pH (sediment / 0.00 M CaCl ₂ 1/2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.2
pH (sediment / water 1/10 0 0 4		5.4
Organic Matter [%]	0.67 /0.78	14.2 / 14.1 /16.4
Total Organic Carbon (TOC) [weight-%] 3,4,5	0.39 / 0.33 0.45	8.3 / 8.2 / 9.5
Total Nitrogen [weight ² %]	×0.1 6 5 ×	0.5
Total Phosphorus [ng)kg	130 0	850
Cation Exchange Capacit@meq.(50 g] 2 4,65	2.5 5	9.6
Moisture [g H2Q ad 100 g dry veight] / 4	30.25 J	234.03
¹ BCS-D-EnSa Testing	$\sqrt[4]{2}$ day of sampling	

©mbH & Co. Q₩G,

⁵ DAT-0 / DAT-100 7 according to USDA classification start of equilibration

aboratories,

At each sampling interval the water was separated from the sediment by decantation into a centrifuge beaker. The was certrifuged, decasted, and the volume was determined; aliquots were taken for analysis by LSC and HPPC/radiodetection analysis.

The solid remainder after contribution was combined with the sediment phase. The entire sediment of a test vessel was transferred into the same centrifuge beaker as used before for the work-up of the water using some extraction solvent. The sediment was extracted two times with acetonitrile/water 4/1 (v/v) at Cambient conditions using a mechanical shaker. Furthermore, a microwave-accelerated extraction step was performed using acetonitrile/water 1/1 (v/v) at 70 °C. After each extraction step, extract and sediment were separated by centrifugation (approximately 10 minutes at 5000 x g) and decantation. The sediment extracts were combined for HPLC/radiodetection analyses. The combined

[,] USA  8  % organic matter = % organic carbon x 1.724



extract was stored at approx. 20 °C in the freezer prior and post analyses. The extraction procedure was found to be adequate to decompose all polymeric residues of [propane-1-¹⁴C]Propineb contained in a sediment sample.

The exhaustively extracted sediment was air-dried, homogenized by a mortar grinder and nonextractable radioactivity (NER) was determined by combustion/LSC. The evolved  $^{12}CO_2$  was determined by investigation of the soda lime trap. Determination of carbonates in exhaustive extracted sediment was performed for the last sampling interval (DAT-100).

For the additional test twelve sampling intervals were distributed over the entire insubation period of 48 hours. Aliquots of 1 mL of the water phase were analyzed 0.25, 0, 2, 3, 4, 5, 6, 7, 8, 9, 24 and 48 hours after application.

### 3. Analytical Procedures

The amounts of Propineb and its degradation products in water and sediment expacts were determined by liquid scintillation counting (LSC) and by HPEC/radiodetection analysis. All LSO merativements were carried out without concentration steps. For radio-TLC analyses of water and of combined sediment extracts performed by radio-tipLC an aliquot of 2 mL was concentrated to approx. 1 mIQ (in order to get off the acctonitrite prior to analyses), then re-dissolved in 2 mL by adding parified water, again. The pecovery of this processing step was on average 92.7% and 75.5% for combined sediment extract samples of parified and parified water, again, respectively.

Degradation products were identified by HPLC-MS(MS) including accurate mass determination and/or by co-chromatography with reference items.

The 1-mL water samples taken at the additional dest were analyzed by LSC and TLC/radiodetection without further processing

# II. RESULTS AND DISCUSSION

The test parameter measurements indicated that the anticipated standardized aerobic laboratory conditions were maintained throughout the water/sediment study

A constant temperature for up to 100 day at  $20 \pm 0.1 \text{ \%}$  in the dark was maintained.

The pH in the water ranged from 7.6 to 8.9 in the sediment ranged from 6.6 to 8.2 in test systems and from 5.7 to 6.7 in the sediment ranged from 6.6 to 8.2 in test systems.

The oxygen content in the water ranged from  $8.5 \pm 9.2 \text{ mg/L}$  in **Eq.** and from 7.8 to 8.7 mg/L in the **Eq.** (a) test systems. The redox potential determined in the water and the sediment was in a high positive Eq. range during the inclusation. However, variations between different test systems were observed. In **Eq.** (b) test systems, the E_H values in water ranged from +256 to +393 mV. The corresponding E_H values in sediment were between +121 and +391 mV. In **Eq.** (c) test systems, the E_H values in vater ranged from +298 to +490 mV. The corresponding E_H values in sediment were between +18 and +308 mV. The clearly positive values for the redox potential and the magnitude of oxygen content indicate aerobic conditions throughout the entire incubation period.

The measure onicrossial activity in the sediments indicated that the systems were biologically active at the start of the study.



## A. DATA

All calculations for radioactivity (as % of applied radioactivity) in water and sediment extract, in the solid materials and in the trap attachments are listed in <u>Table 7.2.2.3-6</u> and <u>Table 7.2.2.3-7</u>, the overview was presented by <u>Table 7.2.2.3-2</u> and <u>Table 7.2.2.3-3</u>, already.

The mean material balance was 100.1% of AR for system **and 102.3%** 

systems or during sample processing. Significant formation of ¹⁴CO₂ was observed in both water/sediment systems. At termination of the study (DAT-100), the ¹⁴CO₂ recovery (mean values of duplicates) was 37.2 and 13.6% of AR for and and a systems, respectively. Formation of volatile organic compounds (VCC)

was insignificant for both water/sediment systems.

NER increased from 19.2% of AR at DAT-0 to 49.5% of AR at DAT-3, and then declined to 35.2% of AR at DAT-100 in systems. In systems, NER increased from 27.3% of AR at DAT-0 to 67.5% of AR at DAT-15, and then slowly declined to 61.1% of AR at DAT-100 NER was further characterized for the samples taken at the end of the study. Thereby, the fully c acid fraction represented the largest proportion (20 - 27% of AR).

The mean radioactivity dosed to the water phase decreased from DAT-000 DAT-100 from 66.0 to 19.6% of AR in systems and from 62.0 to 4.2% of AR in systems. Propineb residues dissipated from the water rapidly due to degradation as well as by translocation of residues into the sediment (mainly forming NER therein).

In general, extractable residues in sediment were of a comparable low tevel during the study, from 14.8 to 5.9% of AR in system to between 9.0 and 33.9% of AR in system

Extractable residues in the total system (water and sediment extracts) decreased in system from 80.8 at DAT-0 to 21.2% of AB at DAT-78, and then slightly increased to 25.5% of AR at DAT-100. In system system, extractable residues in the total system decreased from DAT-0 to DAT-100 from 72.7 to 26.7% of AR

# B. METHOD VALLATION 🔬

Due to its polymeric nature Propinebus practically insolucie in water and in organic solvents. Since the polymeric propinebus how decomposition, i.e. If water is present, any observed solubility is caused by degradation but not by difution. In consequence, the parent compound probineb cannot be analyzed itself. In case valid values of its content are to be determined it must be guaranteed that the entire propineb polymer still present in a cample is degraded to products which are soluble and can be measured. These facts had to be considered for the processing of samples

For the test item investigated in the current study a recovery even shortly after the treatment of water/sediment systems cannot be given. Therefore, the overall mass balance and the distribution pattern of products received during the study (based on LSC and HPLC/radiodetection analysis data) are regarded as the important quality parameter for this study. Those results demonstrated that the sample processing methods were gentle enough to recover quite short living degradates for a distinct period of time.

For the early water samples a waiting duration of approx. 1 day was found to be adequate. Then, the maximum of water soluble metabolites were to be observed in the water phase, indicating that all polymeric Propineb was degraded.

Further, the method was adequate to destroy the total amount of polymeric Propineb still present in a sediment sample at the respective sampling interval. However, since the primary degradates of



,Ø

polymeric propineb are highly reactive species the formation of comparatively high portions of NER cannot be avoided in sediments (compare <u>Table 7.2.2.3-6</u> and <u>Table 7.2.2.3-7</u>). The primary HPLC/radiodetection method was well suited for the quantitative analysis of the samples of this study as demonstrated by overall mean HPLC recoveries for water and combined settiment extracts of 96.6% for systems (results filed in the raw data). extracts of 96.6% for systems (results filed in the raw data). The LOD of the primary HPLC/radiodetection method was determined as 1,2% of AR.

[propa	ne-1- ¹⁴	C]Propi	ineb, ex	presséc	l as % o	of AR				ý _k Ó
Repl.			Γ	) áys afte	er treat	gent (DA	T, days	5) _a	Č (	Ű
No.	0	0.167	1	3	8 🥎	15 0	30 🔗	58 O [°]	78	100
Volatile Radioactivity			¥	ĉ'n°	- Soi	×,	, Ø	<u>ð</u> v		<u>}</u>
1	n.a.	0.1	1.0	3.Q	5 <u>.</u> 3	9.0	) 17.5 💮	23.2	41.5 <u>4</u>	41.4。
¹⁴ CO ₂ 2	n.a.	0.1 🔎	¥.1	2.6 ¢	6.5 Q	9.7 🖉	14.3	20. Ď	27 💇 🎽	32,9
Mean	n.a.	0.1 🔬	1.0	2.8	5.9°	9.3	1 <b>59</b>	21.9	34.6	<b>Q</b> 7.2
Valatilas Oreania 1	n.a.	< 000	KŐ.,	<i>≨®</i> .'i	<b>≲0</b> 7.1	Ø.1 🗴	§0.1 ∂	🕅 0.1 🖉	$< 0.1^{3}$	< 0.1
$C_{\text{oppounds}}$ (VOC) 2	n.a.	<u>6</u> 0%1	هٍ 0.1 🦿	¢0.1	🖲 0.1 🖉	< 0.1 °C	< 0.10	< 0, 0	< 0,1	< 0.1
Mean	n.a. 🧳	<b>∀0.1</b>	<b>≈ 0.1</b> ∧	< <b>0</b> .1 [™]	< 0.1	< 00)	< 0.1	< <b>6</b> .1	<b>≪0</b> .1	< 0.1
1	n.a.	0.1	1.0	3,0	5,9)	90	19.5 ₍	3.2	41.5	41.4
Total Volatiles 2	n 🔍	0?4∕∕	1.1	2017 🕫	<b>6</b> .5	<b>9</b> .7	14.3 Ö	20.5	27.7	32.9
Mean	n.a. 🖇	<b>9.1</b> Č	¥.0 🏑	2.8 🔊	5.9 🖑	9.3	15.Ø	21.9	34.6	37.2
Water Layer and Sediment, Ex	tracta	e Radio	activity			S.		Š.		
1	66.0	68.9	579.9	40.9	<b>\$</b> 2.3 🔬	34.2	29.4 💍	25.3	9.9	20.1
Water Layer 2	<b>6</b> \$4	69.3	48.9	Å3.7 ू^	39.1 O [°]	35.9	32.4	29.4	21.8	19.1
Mean	66.0 👸	69.1 ×	53.0 <i>°</i> )′′	42.3	40,7,	35.0	30.9	27.4	15.8	19.6
Sediment Extractable Radio	activity	s.	$\sim$			n ~	<b>V</b>			
	7.2*	81	7:3 🔬	7.1	8.2	7.4 🔊	6.3	6.1	2.7	4.8
Ambient Extract 🖧 🖌 🧹	8.9	6.1 🖔	7.4 ୖୢ	6.6	7.4	8.9Ø	7.2	5.9	4.7	4.6
<u> </u>	8.0	7.1	7.4	6.8 ^{0°}	7_8	<b>8</b> ,37	6.7	6.0	3.7	4.7
Michary 1 0	62	40	4.5	\$\$5 ~~	<b>2</b> .7	<b>3</b> .0	2.0	1.9	1.3	1.3
Extract	6,6 _K	3.7 5	¥.3 🔊	3.2	2.7 🏹	2.8	2.4	1.7	1.9	1.2
Mean 🗇	6.8 🗬	4.3	4.4	3.3	2.7	2.9	2.2	1.8	1.6	1.2
Total Sediment	14 🕵	13.0	14.8	10.6	Q.0	10.4	8.3	7.9	4.0	6.1
Extractables	£5 ^{9.5} 📡	Ø7 (	j1.7 Č	9.8 🕜	10.0	11.7	9.5	7.5	6.7	5.7
Mean (	14.8 ~	11.4	11.7	10.2	10.5	11.0	8.9	7.7	5.3	5.9
Total Water Layer 1	80.6	81.9	68.9°	51 [°] .4	53.3	44.5	37.8	33.3	13.9	26.2
and Sedonent 2	84QŬ	79.0	<b>60</b> .6	<b>\$</b> 3.5	49.1	47.6	42.0	36.9	28.5	24.8
Extractables Arean	80.8	80.4 🔊	64.7	52.5	51.2	46.1	39.9	35.1	21.2	25.5
Non-Extractable	19.78	19.1 <b>%</b>	35	51.0	45.1	41.7	44.9	40.4	42.1	37.4
Sediment Residues 2	18.7	2021	39.7	48.0	47.1	38.8	44.1	45.6	36.2	33.1
(NER) Mean	19.2 🔬	<b>2</b> 0.1 [°]	<b>¥7.8</b>	49.5	46.1	40.2	44.5	43.0	39.1	35.2
	100,3,	101	105.7	105.4	103.7	95.2	100.2	96.9	97.4	105.0
Material Barance 🔗 2 💍	99 <b>.</b> Þ	100.2	101.3	104.1	102.7	96.0	100.4	103.0	92.3	90.8
Nean 🖉	£ <b>90</b> .0	100.6	103.5	104.8	103.2	95.6	100.3	100.0	94.9	97.9

Material balance of radioactivity in test systems applied Table 7.2.2.3- 6:

n.d.: not detected, n.a.: not analyzed

Material balance values calculated from the Means: MIN = 94.9%; MAX = 104.8%; Mean = 100.1% (RSD = 3.1%)

Document MCA: Section 7 Fate and behaviour in the envir	onment
Propineb	

able 7.2.2.3- 7: N	Aaterial propan	balance -1- ¹⁴ C	ce of ra	dioacti eb. exr	vity in cressed	as % 0	f AR	test s	ystems	applie	d with
L	Repl.		ropin	<u>р</u>	avs afte	er treat	nent (D	AT. das	(S)	Ő	<del>~</del>
	No.	0	0.167	1	3	8	15	30 🔗	58	78	100
olatile Radioactivity	7							<u> </u>			
	1	n a	0.1	0.3	$0.6^{1}$	16	2.5 🖋	47	89 %	$\hat{\mathbf{B}}_{6}$	134
¹⁴ CO ₂	2	n a	0.1	0.3	0.8 ©	1.6	2.4	4 1	74	9.9	13
001	- Mean	n.a.	0.1	0.3	0.8	1.6	2.40.	4.4	80	9	13/6
	1	n.a.	< 0.1	< 0.1	\$Ø.1 ¹	< 0.1		< 0.1	0.1	<b>Q</b> 0.1 (	$\mathbb{R}^{0.1}$
Volatiles Organic	2	n.a.	< 0.1	< 0.1 #	₩ 0.1	< 0.1	× 0.1~	< 0.1%	< 0.1	< 0.1	< 0.1
Compounds (VOC)	Mean	n.a.	< 0.1	< 0.20	< 0.1	< 0.1	<.09	< 0.1	< 09	< 🕅	< 6/1
	1	n a	0.1	<i>a</i> v3	0% ⁹	1%	\$ 5	49		2006	KUX 4
Total Volatiles	2	n.a.	0.1	$\vec{Q}$	6.8	1.6	5.4 ~	4.1	7.4	9.9 .4	13.7
i otar v oracnes	2 Mean	n a	0.1	0.3	080	1.0	2.4	4 4~	810	980	13-6
Vater Laver and Sed	iment E	stractah	le Radi	oartivit	v ~	ð,			≪ <i>I</i>		
		62.2	128/3	4572	$\sqrt{571}$	574	Q13 ×	248 6	B03.0		15.2
Water Laver	$\frac{1}{2}$	61.8	₿ <u>~</u> 51 %	418	42 5	¥7.7 × 125 8 @	20.7	10 5	15 2	11.1 ©	13.2
Water Dayer	2 Mean	62 0	737	47.0	42.5	25.00	21.9	212	15.8	160	14.2
Sadimant Extractab	le Redio	activity					1 <u>-0</u>			<b>A9</b> .7	17.2
		$\overline{\mathfrak{O}}_{0}$	× 1× ×	73	Q13714					113	10.0
Ambient Extract	$\begin{vmatrix} 1 \\ 2 \end{vmatrix} \ll$	73 %	73	10 8	7.8	864	12.00 0 i∾	100	10.0	8 /	9.6
Amolent Extract		$7.3^{\circ}$	7.5	10.a	7.8	8.0	305		100	0.4 0 0	9.0 10 2
	1	48	100		<b>A</b> 6 ¹		37		120.0 1	3.0	2 3
Microwave		$\mathbf{x}_{2}^{\mathbf{x}}$	72.5 ( 11.8		32	3.3	3.1	2.0 0	2.1	3.5	2.5
Extract	Megn	3.5	2.4	$3 \gamma^{3}$	3.2	3.7 © 3.64	34	2.0	2.5	3.8	2.2
	10	10/8	5	103 ···	17.81	\$ \$ 7 7	<b>2.</b> <b>1</b> /5 7 ∧ €	<b>4</b> 3	13.7	15.2	13 1
Total Sedimert		10.5 %	91	141	17/··· &	12.3	12.2	13.0	12.3	12.0	11 8
Extractables	Mean	10.7 0	9.1	12.00	11.	125	13@9	13.7	13.0	13.6	12.5
Total Walker I arres	1 .	78.9	841	Roy 6	4951	at 0 1	260	30.7	34.0	34.3	28.3
and Softiment				559 4	±3.5 ±53.6 [∞]	381	100.9 127 0	32.5	27.6	267	26.5
Extractables »	Megica	72.7	87 8	592	53.6	39.1	34.9	35.9	30.8	30.5	26.7
Jon Extractable		268	210 8	224	7501	507	73.0	57.5	61.6	66 /	60.0
Non-Extractable	$\gamma^{\perp}$	200	2030	-10 ⁻⁴	18.5	$\mathbf{x}_{0}$	62.0	63 /	66 /	61.5	62.2
NER)	Q Mane	973 C	י‱∠ עריייייייייייייייייייייייייייייייייי	41 0	10.3 48 5	50 8	67 5	60 5	64 <b>n</b>	64 <b>0</b>	61 1
			100		1 2 0.3	101 5	112.4	101.4	104.5	110.4	101.7
		999 <b>3</b>	100.3	100.2		101.5	112.4	101.4	104.5	110.4	101.7
viaterial <b>Ba</b> lance	G A					99.5	9/.3	100.1	101.3	98.0	100.9
	∦ylean ^	\$100,0	104.4%	101 <b>.4</b> >	102.8	100.5	104.9	100.8	102.9	104.2	101.3

n.d.: not detected, n.a. not analyzed

¹ outher, not considered for maluation

Material balance values calculated from the deans: MIN = 100.0%; MAX = 104.9%; Mean = 102.3% (RSD = 1.6%)

**C. DEGRADACION OF PARENT COMPOUND** A synopsis on Diotransformation of Propineb in aerobic water/sediment test systems is shown by by <u>Table 7.2.2.7.2</u> and <u>Table 7.2.3-3</u>, already. The findings were included in the proposed pathway of degradation in water and sediment (see Figure 7.2-1). More detailed data (expressed as percent of applied adioactivity, mean  $\pm$  SD) are summarized for the test system in <u>Table 7.2.2.3-8</u> and for the test system Table 7.2.2.3-9, respectively

B

Document MCA: Section 7 Fate and behaviour in the environment Propineb

aerobic conditions, expressed as % of AR (mean ± SD)												
		Mean			Dav	s after	· treatr	nent (DA	AT, davs	)	Ô	Ť
Compound	Source	SD	0	0.167	1	3	8	15	30	58	78	100
	Water Layer								1		Ş ș	
Pronineh	Sediment		Not mea	surable		Þ		s de la companya de l	*	^~~		)
ropined	Entire		i vot met	isuruore		The second secon		Ű		Ö	$\sqrt[n]{2}$	Ű
	System	M	17 1	1	1 @	, 1	<u> </u>	Le 2	52 6			
	Water Layer	Mean SD	1/.1 + 4 1	n.a.	n.a.	n.a.	(0.0)	$1+060^{\circ}$	5.2 U + 005	4./ +á)/6	4./ Č + 0.0	5.1 + 0 ⁴ 4
		Mean	= 1.1 < LOD	n.d.	Rd.	n.d.	nor.	n°d	∞. øn⊳d. ∧	n.d.	-0.0 Wal	- 87. AR
4-MI	Sediment	SD	202	×						¢ %	× 1	6
	Entire	Mean	17.1	n.d.	n d	n.¢,	6.00	6.3 0	5.2	4₿	4.7	5.14
	System	SD	± 4.1			$\sim$	≥0.4	±∕ð,0	Ð0.5 "	± 0.6	$\pm 0.0$	±0.4
	Water Lover	Mean	n.d. 🦉	n.d. 🌾	17.2 ¢	42.3 📈	34.7	þ28.8 🔬	25.7	22.6	11.1	14.5
		SD	Ő		± 0.4	±Ĵ¥	± 270	$\pm 0.9$	± 100	±2.5	$\pm 6 0$	± 1.0
PU	Sediment	Mean	40,	2.7	4.3	8.1	83	b.0	£.9 (	9.7 2	n.d.	5.9
	Scument	SD @	± 0.3 ≪	$\pm 0.4$	$\pm 0.4$	± 0.50	± 2.6	¥ 0.7 ℃	$\pm 0.6^{\circ}$	$\pm 0$	·	± 0.2
	Entire	Mean	4.0	2.5	21.5	50.4	43 P	39.80	34.7	30,4	11.1	20.4
	System	SD	±0.3	<b>⊕</b> 0.4 (	₽ [₽] 0.8	±2.0	± 4.6	a⊖¥.5	h∰1.5	⊉ 1.3	$\pm 6.0$	± 1.1
	Water Layer	Mean A	12.4	24.0	18.8	n.d. C	n.d.	n.d. 🔬	n.d.	n.d.	n.d.	n.d.
		SD 🔊	± 1,2	± 1.2	±9.5	۶Ţ.	0 [×]	×	1 Alexandre			
PTU	Sediment	Mean	ðý "	Q.5 *	¥.2 _	ur.d.	<b>2</b> ,2	n.d.	n.d.	n.d.	n.d.	n.d.
		SD 🗸	¥0.2 [∞]	$\pm 0.5$	$\pm 0.9$		$\pm 0.0$		*			
	Entore O	Mean	16.0%	2616	21,0	nd.	2.2	n.d. °	n.d.	n.d.	n.d.	n.d.
, Ç	System _®	SB/	± 1.4	$\pm 0.6$	¥ 0.6 ·		±≤0.0		1			
	Water Layer		0.4 m ⊥0 \$	± 1 ≰		n.a. 🖉	n.a.	en.a.	n.a.	n.a.	n.a.	n.a.
K~y'		Mean	± 0.2* 1**	⊥ <u>,</u> ,,,	<u>-0.5</u> ≫1 «	21. 5	n d	n d	n d	n d	n d	n d
ROI 3	Sediment	SD .	€ # 0.3 % Î		$\pm 0.2^{\mathbb{C}}$	$\pm 0.0$	4 EUCI .	n.a.	n.a.	11. <b>G</b> .	11.0.	11.0.
	Entire 8	Mean	8.0	120	9.2	1.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	System O	SD	± 0.4	∌0.3 ्रे	¥ <u>0</u> .5 %	$\pm 0.0$						
4	Water Laver	Mean 🍣	30.1 4	<b>3</b> 1.7 ©	9.7 Ø	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
		SD 🖉	± 3.7	± 18	±2%0							
Propineb-	Sediment	Méan	401	¢Y ?	3.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
DID¥		SD E	¥ 0.5 [《]	± 0.4	± 0.2							
	Entore	Mean	34.2	358	12.8	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Å	System 2	SDC	±*\$¥.2	± 2:2	± 2.2		1	1	1			1
,	WaterLayer	ov¶rean ☆	ya.d. 🔨	2.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
<u>z</u>	2 A	SD O	1.2		nd	nd	nd	nd	nd	nd	nd	nd
ROI	Sediment	ivican SPA	$^{1.2}_{\pm 0.0}$	< LOD	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Entire	Mean	<u>+ 0.0</u> 1 2	2.5	n d	n d	n d	n d	n d	n d	n d	n d
Ĉ	System	SD	$\pm 0.0$	$\pm 0.6$				11.4.		11.4.		
-	~	50	- 0.0	- 0.0	1	1	1	I	I	1	1	

n.d.: not detected, n.a.: not analyzed, SD: standard deviation

B/

**R** Document MCA: Section 7 Fate and behaviour in the environment Propineb

3-9: Deg	gradatio	n of [pr	opane-	1- ¹⁴ C]]	Propir	eb in			test s	ystem	under
aer	obic cor	nditions	, expres	sed as	% of	AR (n	nean ± S	5D)			<u> </u>
	Mean			Day	vs after	treatr	nent (DA	AT, days	)	Ô	N. N
Source	SD	0	0.167	1	3	8	15	30	58	7 <b>8</b>	100
Water Layer								101	4	\$~ ~	
Sediment		Not mes	surable		a		Ş	*	°∼		) [×] 4
Entire		i vot met	isurable		- A		Ő		ð.	$\sim$	Ĵ.
System				. 4	, •/		POY				Ŝ.
Water Layer	Mean	n.d.	n.d.	n.d.	n.d.	n.d. 🦧	ha.d.	n.d. O	n.d. ~	n.d.	n.d.
	Mean	n d	n d	Rod .	n d	1260	ned	nd .		ĥâ	
Sediment	SD	n.u.	n.u.	lir.u.	11.u.	lagea.			∦.u. }	and. V	
Entire	Mean	n d	n d	n X	n dÔ	n d	n d 🕅	n d	n A	n d	n d.C
System	SD	11. <b>u</b> .	,		$\sim$		11.d. ©	S	no.		
5	Mean	nd á	hd 🔊	nd Ø	1364	200	181	0	, 178≪	169 å	42
Water Layer	SD	Q				+ 12	+260	+ 28	+	+22	+1.0
	Maan			s y	s d	-100	- 2.3 c O	÷ 43		+ 6 <u>7</u> -	$\pm 1.0$
Sediment	Mean	nca.	n.a.	n.a.	n.a.				140.8 ×	11.4	10.7
Entiro	Man	nd 🕅	nd	nd	12 2	エ 0.1 วา ชิ๊มั	±0.0 ∪ 121 7≥	$\pm 0.20$	$\pm 0.9$	$\pm 1.3$	$\pm 0.0$
System	SD	11.u.		11.u.	13.0	+0.4		31.2	202	+ 3.8	24.9 + 1 5
- )	Mean ,	0° 183 ¢	2233	21 5~	63.0	$\pm 0.4$		m d	n d	n d	$\pm 1.5$
Water Layer		$\perp 0 \%$	$\pm 0^{\circ}$			11.u. K	n.u. 🔬		n.u.	n.u.	n.u.
Ś	SD _y y	⊥ (v,1° ≪G?	± 0.5		N ₁		- Å	N.	1	1	1
Sediment	Mean	ba.	nad.	₩1.0 ~	mr.a.	a.d.	n.a.	n.a.	n.a.	n.a.	n.a.
Eucline A		10 %	222		126			n d	n d	n d	n d
System S	SPA .	$10.3^{\circ}$	4,5% (0° 			n.a.y	n.a	n.a.	n.a.	n.a.	n.a.
- j =	Mean 🖌	257 A	$\pm 0.3$	± 0.5 3.6	nd @	66		n d	n d	nd	nd
Water Layer		+ 1 \$	+ 0.5	+		$+0^{-1}$	+ 0.0	n.u.	n.u.	n.u.	11.u.
<u> </u>	Mean	± 1.2* 1%0./7	- 0.v	<u>-</u> (9.0	3111	57	$\pm 0.0$ 7 4	47	23	2.2	1.8
Sediment	SD (	¥ 0 1.		C		+10	+1.0	+0.2	+ 0.2	+0.0	+ 0.1
Entire Ô	Mean	36 40	222	3 6	114	11.8	10.3	± 0.2 4 7	2.3	$\frac{2}{2}$ 2	$\frac{18}{18}$
System	SP	±~1⁄20	30.5	Ŭ ₩ 0.0 ¢	1.40%	$\pm 0.6$	$\pm 3.8$	$\pm 0.2$	$\pm 0.2$	$\pm 0.0$	$\pm 0.1$
¥ U	Mean ~	D8.0 £	28.0	19.8	16.3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Water Layer	SD 🔊	$\pm 1.2^{\circ}$		±2041							
	Mean	n d!	p.d. v	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Sediment	SD 2			7							
Entâve	or Mean≰	18.Q©	28.0	19.8	16.3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
System 1	SD	±412	± 1.4	$\pm 0.1$							
	Mean 🖌	ŋ.d. ≪	n.d.	2.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
water Layer	SD 🔊			$\pm 0.0$							
S. A	Mêan	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
peument	\$D										
Entire	Mean	n.d.	n.d.	2.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
System	SD			$\pm 0.0$							
	3-9: Deg aer Source Water Layer Sediment Entire System Water Layer Sediment Entire System Water Layer Sediment Entire System Water Layer Sediment Entire System Water Layer Sediment Entire System Water Layer Sediment Entire System Water Layer Sediment Entire System Water Layer Sediment Entire System	3-9: Degradatio aerobic con Mean Source SD Water Layer Sediment Entire System Mean System SD Sediment SD Entire Mean System SD Sediment SD Entire Mean System SD Sediment SD Entire Mean System SD Water Layer Mean System SD Water Layer Mean System SD Sediment SD Entire Mean System SD Water Layer Mean System SD Sediment SD Entire Mean System SD Mean So Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD	3-9: Degradation of [pr aerobic conditions Source SD 0 Water Layer Sediment Entire System Not mean Entire Spectrum Not mean Sediment SD Not mean Subsect SD Not mean Sediment SD Not mean Water Layer Mean n.d. Spectrum Not mean Subsect SD Not SD N	3-9: Degradation of [propane- aerobic conditions, express Mean Source SD 0 0.167 Water Layer Sediment Entire System Mean n.d. n.d. Sediment SD n Sediment SD n Entire Mean n.d. n.d. System SD n Mean n.d. n.d. $n.d.$ Sediment SD n Sediment	3-9: Degradation of [propane-1-14C] aerobic conditions, expressed as Source SD 0 0.167 1 Water Layer Sediment Entire System Not measurable Entire SD 0 Sediment SD 0 Entire Mean n.d. n.d. n.d. $n.d.$ Source Mean n.d. n.d. $n.d.$ Sediment SD 0 Entire Mean n.d. n.d. $n.d.$ Source Mean n.d. $n.d.$ $n.d.$ Sediment SD 0 Sediment SD 0 SD 0 SE 0 S	3-9: Degradation of [propane-1-14C]Propin aerobic conditions, expressed as % of Source SD 0 0.167 1 3 Water Layer Sediment Entire System Not measurable Entire SD Not measurable Entire SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment Deam Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Source Not n.d. n.d. n.d. n.d. Source Not n.d. n.d. n.d. n.d. Sediment SD Not measurable Entire Mean n.d. n.d. n.d. n.d. n.d. Source Not n.d. n.d. n.d. n.d. Source Not n.d. n.d. n.d. Source Not n.d. n.d. n.d. n.d. n.d. n.d.	Begradation of [propane-1-14C]Propine in aerobic conditions, expressed as % of AR (normality of AR	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3-9: Degradation of [propane-1-14C]Propineb in acrobic conditions, expressed as % of AR (mean $\pm$ SD) Source SD 0 0.167 1 3 8 15 30. Water Layer SD 0 0.167 1 3 8 15 30. Water Layer SD 0 0.167 1 3 8 15 30. Water Layer SD 0 0.167 1 3 8 15 30. Water Layer SD 0 0.167 1 3 8 15 30. Water Layer SD 0 0.167 1 3 8 15 30. Water Layer SD 0 0.167 1 3 8 15 30. Sediment SD 0 0.167 1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tegradation of $ propane-1-1^4C Propine in term       test system acrobic conditions, expressed as % of AR (mean \pm SD)         Source       SD       0       0.167       1       3       1       test system         Source       SD       0       0.167       1       3       8       1       Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="$

n.d.: not detected, n.a.: not analyzed, SD: standard deviation



Water phase

Degradation of Propineb was accompanied by the formation of four degradation products in water, and following maximum amounts were observed: Propineb-DIDT with a maximum of 31.7% of AR at DAT-0.167 (system ), PU with a maximum of 42.3% of AR at DAT (system) PTU with a maximum of 24.0% of AR at DAT-0.167 (system ) and 4-MI with a maximum ). Further, in water, the unpolar intermediate POI3 -0 (system **Contract of Sector**). For the short living ROB of 17.1% of AR at DAT-0 (system amounted to a maximum of 25.7% of AR at DAT-0 (system a kind of dimeric form of Propineb-DIDT could be made as structural proposal. The unperar intermediate ROI8 was detected with a maximum of 2.5% of AR at DoT-0.167 (system

### **Sediment phase**

In general, extractable residues in sediment were on a comparable low revel during the study. Therein, three degradation products with following maximum amount@were observed: Propineb-DIDT with a maximum of 4.1% of AR at DAT-0 and DAT-0.167 (system ), PU with a maximum of 1-0.107 (system maximum of 3.5% of AR  $a^{*}$  DAT  $a^{*}$ 11.4% of AR at DAT-78 (system ). In sediment extracts the unpolar intermediate ROI3 appointed to a maximum of (system) 11.1% of AR at DAT-3 (system and the unpolar intermediate RON was detected with a maximum of 1.2% of AR at DAT-0 system

Total test system Degradation of Propineb in the total system was accompanied by the formation of four degradation products following maximum amounts observed; Propineb-DIPA with 35.8% of AR at DAT-0.167 ); PTU with 26.6% of AR at ), PU with 50.4% of AR at DAT-3 (System) (system ) and 4-Ma with 7.1% of AR at DAT 0 (system) DAT-0.167 (system ). In the total system, the unpolar intermediate ROB amounted to a maximum of 36.4% of QR at DAT-0 (system) ), and the unpolar intermediate ROB was detected with a maximum of 2.9% of AR at DAT-0.167 (system) ). OSOI3, and ROI8 are regarded as short living unpolar fragments of propineb. Finally all the procedures to isolate the impolar intermediates of Propineb resulted in PTU and PU as degradates

### Kinetic analysis of data

Since the current study was designed as a route of degradation study in water and sediment, and since the starting point of ropined degradation cannot be analysed for such a polymeric compound, the resulting data are not adequate to derive degradation kinetics for Propineb, nor of its primary degradation products. Altogether, available Propineb DT₅₀ Gata indicated that it is degrading quite fast, dependent on temperature, pH and concentration of suspension (for the latter, the lower the faster). Supportive LSC measurements within this study indicated that it lasts some time (max. approx. 1 day) until the maximum amount of the water soluble metabolites are to be observed in a water phase, i.e. after centrifugation in order of separate particles still present in a water sample. Therefore, a worst case DT₅₀ of 1 day for Propineb degradation in natural surface water could be taken for modelling purposes. During such period, the finding of short living primary degradates could have been caused by fresh formation via destruction of polymeric Propineb.

Therefore, the dissipation of the primarily formed major metabolite was investigated in an additional test using propage-1-14C Propineb-DDT as test item dosed to the supernatant water of water/sediment test flactes. The radioactivity determined in the water phase of the additional test is presented in Table 7.2.2.3- 1 and the residual amounts of Propineb-DIDT found in each replicate test system at each sampling interval are shown in <u>Table 7.2.2.3-11</u>.

The experimental data could be well described by single first order (SFO) and double first order in parallel (FOP) kinetic models. The calculated half-live for the dissipation of Propineb-DIDT from the water was 1.4 and 0.004 days for system and , respectively (see Table 7.2.2.3- 4). Obviously, the more acidic conditions in the supernatant water of accelerate the dissipation of Propineb-DIDT.

Ô

ð

Document MCA: Section 7 Fate and behaviour in the environment Propineb

### Table 7.2.2.3-10: Radioactivity in water of additional test systems applied with [propane-1 ¹⁴C|Propineb-DIDT (expressed as % of AR) Q

Sys	stem:								~	~	a		ð
					Time a	fter tre	atment	(hours)	Ċ,		L.	J.	
	0.25	1	2	3	4	5	6	7	8	9	<b>A</b> 24	<b>48</b>	Ĉo
Water phase	100.0	99.5	98.2	98.4	96.6	94.9	92.0	91.6	91.2	90.6°	76.7	62.4	
	Syste	em:				The second secon	,	² ² ²		N.			

					Time 'a	fter tre	atment	(hours)		, , , , , ,	<u>* 0</u>	Ś
	0.25	1	2	3	<b>4</b> 0°	5	<b>A</b>		8	<u>N</u>	<b>4</b>	<b>48</b>
Water phase	99.9	92.2	89.9	85.4	\$9.0 0	Ø5.5	<b>A8.8</b>	68.1	467.0 ۽ آ	\$64.3	≫36.2	22.8
				A.	N. N.		, Q	, 0, A	<u> </u>	, O ^S	l a	Ő

# Table 7.2.2.3-11: Dissipation of [propane-1)⁴C]Propine DIDE (additional test, expressed as % of AR)

Syste	<u>em</u> :		<i>A</i>	102	, 'Y	~	, S	ð	õ		) Y	Ĵ	
			0 .	L.	Ti	ne afte	rreatr	nent (h	ôors) 🧳	, O	%.		
Compound	Source	0.25		[▶] 2 ₂	3	4	× 5 0	^گ ( ۵	7	8	09	24	48
Propineb-DIDT	Water	<b>94</b> .6	95 ⁵	9202	980	90.9	86.6	84,2	87,A	87.\$	87.7	66.8	29.9
4-MI	Water	n.d.	🖞 n.d.	n.d.	sn.d.	Ôn.d.	ŷn.d.	n.d.	Sn.d.	æ.d.	n.d.	n.d.	n.d.
PTU	Water	1.2	1.30	1.4	n.d	2,1	2.80	2.0	1.7	n.d.	n.d.	n.d.	n.d.
Unkown 1	Water	Q.5			2.7		<u>R</u> A	5.0	2.0	2.6	2.3	2.6	2.3
Diffuse Residues	Water	1.0 #	Ç≼ LOD	< LOD	LOD	LOD	LOD	₿ lod	LOD	1.0	< LOD	1.0	< LOD
n d : not detected			<u> </u>	/ ( ⁰	, K		A V						

System 🕺

A Contraction L. 

						S	Ý (	~					
K~y ^v	ŝ		Ł	Ì A	૾૱	ime afte	er trèat	ment (l	hours)				
Compound	Source	0.25	Ĩ	ژ»۲ ۲	Ĩ	Ð,	5	6	7	8	9	24	48
Propineb-DIDT	Water	83.3	83.8	Ø80.8 %	81.6	73.8	\$64.2	61.8	65.0	61.9	59.7	28.2	9.0
4-MI 🤷	Water	<u></u> 8.5	1.4	12	n,đ.y	n.d.	2.0	n.d.	n.d.	n.d.	n.d.	n.d.	1.5
PTU	Water	© _{1.4}	Q1.4	SEOD.	60.d.	G.d.	1.8	n.d.	n.d.	n.d.	n.d.	2.5	n.d.
Unkown 1	Water	3.2Q	4.8	5.8	3.0	\$ 5.0	6.8	6.7	2.2	3.4	2.6	3.4	4.6
_∡ ≪₽U	Water	m.d.	n@el.	n.	n đ	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.0
Unkown 2	Water	0 ⁹ n.d. (	n.d.	n.d.	Qa.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.6
Diffuse Residue	Water∿	0.0	0.90	0.8	0.8	0.2	0.1	0.4	0.2	0.6	0.1	0.2	0.1
n.d.: not detected,				N. N									

Document MCA: Section 7 Fate and behaviour in the environment Propineb

### III. **CONCLUSIONS**

Based on the results of the study, a pathway for the degradation of Propineb in water/sediment systems under aerobic conditions is proposed (compare Figure 7.2-1), with the following possible processes involved:

- Formation of Propineb-DIDT directly from [propane-1-14C]Propineb •
- Formation of 4-MI directly from [propane-1-14C]Propineb via polar transient produc Propineb-DIDT.
- Formation of PTU from [propane-1-14C]Propineb and unpolar transient products like Propined DIDT, ROI3 and ROI8. Obviously, the more acidic conditions in the supermatant accelerate their degradation to PTU
- Formation of PU from PTU •
- Mineralization (carbon dioxide formation)
- Formation of non-extractable residues (NER)

its degradation products have no potentia for From this study it is concluded that Propineb and accumulation in the aqueous environment.

For modelling purposes a worst case DT 500 1.0 and 1 days are to be proposed for Propineb and Propineb-DIDT degradation in water, sedunent, and total water plug sediment system, respectively. The outcome is included in the summary on the behavious of Propineb and it major degradation products in water given under section CA 7.2

## EXECUTIVE SOMMARY

The degradation of propylede-thiourea (RPU) in water sediment systems from the study by

1993, was kinetically evaluated to derive trigger and modelling endpoints. The degradation product propylene area (QU) was also considered. Evaluations followed FOCUS kinetics (2011) recommendations and were conducted up of level P-II for the parent and up to level M-I for the degradation product

At level P-I for both the migger and the modeling endpoint the SFO fit was identified and delivered DT₅₀ values of 4.9 ar

<b>Fable 7.2.2.3- 12:</b>	Summary of the kinetic evaluation for degradation of PTU in water	
	sediment at level P-I	Ø

	~~~~~			
System	Kinetic model ¹	Chi ² error-%	Visual assessment	DT ₅₀ [days]
	SFO	5.93	+ 🔊	4.9%
	FOMC	6.32	A A	
	SFO	5.41 🖒	\$+	
	FOMC	5.31	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>y zv s</u> s ^y

¹ SFO: Single first order, FOMC: First order multi compartment

² Visual assessment: + = good, o = moderate, - = poor

bold letters indicate the model of choice

In order to obtain separate DT₅₀ values for the water and sediment compartment a level P-IL evaluation was conducted. The evaluation resulted only in one reasonable fit, i.e. for the ystem where for both the water and the sediment compartment acceptable fits were achieved. The corresponding DT₅₀ values are 4.5 and 1.3 days for PTU degradation in water and sediment, respectively (Table 7.2.2.3-13).

1

Summary of the kinetic evaluation for degradation of PTU in water Table 7.2.2.3-13: Ø sediment at level P.M Ø

			d.		~
System		Chi ² error-		≪Visual [™] assessment ² ≯	DT ₅₀ [days]
	PTUwat:	> 3.92	7 2 0	×^ 0 ₊	4.5
	PTOsed: >>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1.3
		\$.62			
¹ values for PTU	PU appr the whole mode	I respectively 🔪		Ĵ.	
² Visual assessme	ent: $+ = good$, $o = modera$	ate, - A poor.	O'a,		
			\$°, \$	\sim	
K.Y			0 🖤 .		

A level M-I evaluation was performed with the residues of PFU and its degradation product PU in the total system. For both investigated system reasonable fits were obtained that described the degradation and formation, of payent and degradation product quite well. The results are summarized in Table 7.2.2.3914.

Summary of the kinetic analysis for PTU degradation and the formation and Table 7, 2.3-14: degradation of PU in water sediment systems at level M-I L 1

System	Chi ²	Visual assessment ²	DT ₅₀ [days]
PUtot:	6.61 14.6	+	5.6
	9.9	+	27.6
	2.77	o +	3.7 147

¹ values for PTU, PU and the whole model respectively

² Visual assessment: + = good, o = moderate, - = poor.

Document MCA: Section 7 Fate and behaviour in the environment Propineb

I. METHODS

The objective of the present study was the kinetic evaluation of residue data from 1993, on the degradation and metabolism of propylene-thiourea in water/sediment systems to derive endpoints for trigger evaluation and for modelling purposes.

The kinetic evaluation of the residue data was conducted in accordance with recommendations of FOCUS (FOCUS, 2011) to derive degradation half-lives (DT_{50}) to be used in environmental exposure assessments. The software KinGUI2.1 was employed.

Details on kinetic models, statistical evaluation, identification of the appropriate kinetic models specifics for water sediment systems were described a sections 3.1 to 3.4 of report.

<u>1993</u>, investigated the depradation of PTU in Gatural water Sediment systems. PTU is a degradation product of propineb in soil and in water (c.f.)

2014; 2018). It forms the degradation product PU which was also detected by (1993, in the water sediment study. Thereby, incubation was performed in the dark at a temperature of 20°C.

In accordance with FOCUS (2011) the DAT of values for total system were set to 100% of A.R. First values at the limit of detection (LOP) or below EOD were set to 0.5 LOD. The LOD accounted for 0.1% of AR. Table 7.2.2.3-15 summarizes the pre-processed data.

 Table 7.2.2.3-15:
 Pre-processed residue data from the study of the study of

PTUtot 90.7 91.1 74.4 40.5 7.8	PTUwat 90.7 988.1 79 66.5 94.6 5.5 005	PTUsed NA2 NA2 5.3 5.8 5.8 203	■ NA NA 1.4 5 5 5 5 5 7 41.4 63.9	PtSyrat NA 104 0.9 4.9 14.1 36.6 55.2	PUsed NA NA 0.4 0.8 1.6 4.8
PTUtot 90.7 91,1 74,4 40.5 7.8 00	PTUwat 90.7 88.1 79 66.5 34.6	PTUsed NA NA 5.3 5.8 5.8 5.9 23	BUtot NA 1.4 5 45.7 41.4 63.9	PtSwat NA 104 0.9 4.9 14.1 36.6 55.2	PUsed NA NA 0.4 0.8 1.6 4.8
000 90.7 91.1 744 40.5 7.8	Nov 90.7 888.1 79.6 66.5 5.5 5.5 0.0	© NA NA 5.3 5.8 203	NA 1.4 1.3 50 41.4 63,9	NA 0.9 4.9 14.1 36.6 55.2	NA NA 0.4 0.8 1.6 4.8
90.7 91.1 7 4 4 92.3 40.5 4 7.8	90.7 88.1 79,6 4.6 5.5 0.00	NA 5.3 5.8 203	↓ 1.4 ↓ 1.3 5 ↓ 5.7 ↓ 41.4 ↓ 63,9	104 0.9 4.9 14.1 36.6 55.2	NA 0.4 0.8 1.6 4.8
91,1 74,4 \$2.3 40.5 7.8 0 0	88.1 4 79 66.5 44.6 7 5.5 7	5.3 5.8 5.9 203	0 1.3 50 0 15.7 0 41.4∆ 63,9	0.9 4.9 14.1 36.6 55.2	0.4 0.8 1.6 4.8
7474 2.3 40.5 7.8 0 7.8	79 66.5 34.6 5.5 9 00	5.3 5.8 5.9 203	50 45.7 41.4 63,9	 ✓ 4.9 14.1 36.6 55.2 	0.8 1.6 4.8
40.5 4 7.8	66.5 34.6 0 5.5	5.8 ° 5.9 ° 203 °	*¥5.7 • 0 & 41.4 63 9	14.1 36.6 55.2	1.6 4.8
40.5 (7.8 0	34.6 ℃ 0 05.5 √ 0 05		≪ 41.4⊅″ ⊃ 6 3 -9	36.6 55.2	4.8
ジ 7.8 01	② ⁷ 5.5 √ ⁷ ≥ 0.05 ×	203	63.9	55.2	
01 \$	് വവതം ്	<u>^ ≫0 05 @</u>		22.2	8.7
	0.00	× 0.03 X	54.2	47.5	8.7
Š ÁR	NX (⊃″NĄ©″	26.0	19.8	6.2
NASO	NA O	No (> 1.5	0.4	1.1
		~~?			
°∼ , PTUtoR	PTŬwat	🖉 PŢĽSed	PUtot	PUwat	PUsed
^\$100 A	XA O	NA	NA	NA	NA
86.6	°∼y86.6 Q	XX	2.8	2.8	NA
83.9	83,	LO.9	3.0	2.4	0.6
464.5 Ø	6\$,3 ×	Q 1.2	9.9	8.5	1.4
∼√ 4 8.0	¥6.4 🕡	1.6	16.0	12.0	4.0
7	≪ 10.9°Q	0.8	39.9	30.0	9.9
⊻ 11.©° _) [©] 0.9	0.9	48.7	36.8	11.9
✓ 11.0° 1.9		0.05	49.9	34.9	15.0
11.0° 1.9° 20.1 ~	0.05	0.05		31.2	11.7
1.9 1.9 20.1 NA.2 XA.2	0.05 NA	NA	42.9	<i>c</i>	
1		40 1 005	<u>40.1</u> 0.05 0.05	<u>49.1</u> <u>A0.1</u> <u>0.05</u> 0.05 <u>49.9</u> <u>42.9</u>	O.1 O.05 O.05 49.9 34.9 NA NA NA 42.9 31.2

For level P-I and M-I evaluations a simple compartment model was setup in KinGUI2.1 to represent dissipation of the two compounds (level M-I) respectively of the parent (level P-I) in the total system (see figure below).

Document MCA: Section 7 Fate and behaviour in the environment Propineb

II. RESULTS

The level P-I evaluation for both systems revealed SFO as the model of choice to describe the residue data in the of PTU total system the best (c.f. Table 7.2.2.3-16). For the system the SFO fit clearly shows the best representation of the data and resulted in the lowest Chi2Pror percentage valos. The corresponding rate constant is statistically well determined and yields ∂DT_{50} value of 4.9 days. system the visual assessment indicated a slightly better data representation For the by the FOMC than by the SFO fit. However, the differences were only marginal and therefore, SFO was selected also as the best fit.

Table 7.2.2.3-16: Summary of the kinetic evaluation for degradation of propylene-thiourea in $^{\circ}$ water sediment systems (**1993**¥

System	Kinetic model ¹	Chi ² error- %	Model parameters ² Visnal DT ₅₀ Details, assessment ³ [days] report section
	SFO FOMC	5.93 6.32	k: 0.1414 alpha: 4.974# beta: 77595# 2 2 4.92 82.1.1 8.2.1.2
	SFO FOMC	5.41 5.31	$ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & $
¹ SFO: Single fir	st order, FON	AC: Eirst ord	let multi compartment

 2 k = degradation rate constant, algorated = FOMC parameter, beta = FOMC parameter

³ Visual assessment: + = good, o = moderate, - = pror t-prop: ***<0.001, **<0.01, *\$<0.05, #>0.05

bold letters indicate the model of choice

resulted in visually acceptable fits of the The level P-II evaluation for the system two compartments. The transfer rates between water and sedanent clearly point towards degradation in water being the dominant process as the back transfer rate from codiment to water is much higher than from water to sediment. Consequently the DTo value derived for the sediment compartment was >1000 days, Therefore, no further evaluation at lever P-II was performed. The results at this stage would not differ from the default option derived from level P-I, is use the total system DT₅₀ value for the water and a defaul of 1000 days in sediment.

the visual assessment also revealed a very good representation of the data by For the system system, however, degradation in both the level P-II approach. In contrast to the compartments was derived. The results are presented an Table 7.2.2.3-17, and the obtained rate constants correspond to DT₀ in water of A.5 days and 1.3 days in sediment, respectively. This result was achieved because the fit yielded a zero back transfer rate from water to sediment. Compared to the level P-L results these results match very well and may therefore be used when separate DT₅₀ values are needed in exposure calculations,

Summary of the kinet analysis for <u>PTU degradation and</u> the formation and Table 7.2.2.3- 17: degradation of PU from the data of (1993)

0`			<i>Q</i>)			
System	Chi ² errop	≪ ~Ç ≫1	Model parame	ters ²	Visual assessment ³	Details, report section
	PTA wat:	3.92	k (PTUwat):	0.1546***	+	
	B TUsed	17.0	k (PTUsed):	0.5188***	+	8.3.1
Å _C	All:	5.62				

¹ values for PTU, PU and the whole model respectively

 2 k = degradation rate constant

Ŋ

³ Visual assessment: + = good, o = moderate, - = poor.

t-prop: ***<0.001, **<0.01, *<0.05, #>0.05

At level M-I were total system residues of the parent degrade into total system residues of the metabolite the kinetic evaluation resulted in visually excellent to acceptable fits for both systems (c.f. 8.4.1 and 8.4.2 of report). Both fits indicate again the fast degradation of propylene-thiourea with DT_{50} , values of 5.6 and 3.7 days, respectively. The formation and degradation of the degradation product propylene-urea was well described which is also reflected in the excellent values for the Chi^2 ever percentage considering it is a metabolite (Table 7.2.2.3 - 18). The DT_{50} values for the metabolite account for 27.6 and 147 days in the metabolite and metabolite system, respectively.

Ô

Table 7.2.2.3- 18: Summary of the kinetic analysis for PTU degradation and the formation and degradation of PU in water segment systems

				A.	\sim	le o		
	Cl	ni ²	k	n"	~ v́v	ไรเหตุโ		Details
System	erro	r-%²	Model par	rameters ³	🔊 asse	ssment ⁴	[days]	, v report
			No.		xì L		Ś	section
	PTUtot:	6.61	k (PŢŬ):	0%1/235*	Č D	+ 8	⁰ 5.6	
	PUtot:	14.6	k (PD): 2	0.0252		1.	27.6%	& 8.4.1 V
	All:	9.9		i ar	L ^O	5° ,~		K S
	PTUtot:	13.0	ok (PT6):	0,1868**	× 4	° 0 🔊	£3.7	, o
	PUtot:	2.77 ្ល	^O k (PW):	×0.00473	** ~ 0	10×	S 1478	¢ 8 .4.2
	All:	12.9			S			
¹ SFO: Single firs	t order	Q1	L W	Q.		/ ⁶ /		2
² values for PTU.	PU and the w	hole	respectively	° ,	5 <i>6</i> 3	<i>R</i> -	O' Z	Y

 3 k = degradation rate constant

⁴ Visual assessment: + = good, O = mod O ate,

t-prop: ***<0.001, **<0.01, **0.05, #>0.05

CA 7.2.2.4 Irradiated water sediment study

The degradation of Propineb under dark conditions is very fast (see Section <u>CA 7.2.2.3</u> before). Therefore, a comparatively low influence of sunlight is expected. No studies on that topic were part of the baseline dossier and no new studies are submitted within the Supplemental Dossier for the Propineb renewal of approval.

CA 7.2.3 Degradation in the saturated zone,

The degradation in the saturated zone was not studied since Propineb is not expected to reach the saturated zone after its use according to good agricultural practices. No additional studies are submitted within Supplemental Dossier for the Bopineb renewal of approval.

CA 7.3 Fate and behaviour in air

A possible entry into the air (i.e. the vapour pressure) of Propineb was evaluated during the Annex I inclusion (compare EU Monograph Annex B7), and was accepted by the European Commission (SANCO/7474/VI/97, 2003). It was concluded that Propineb has a low vapour pressure, extrapolated with 1.6 x 10^{-4} Pa (at 2000), indicating a low volatility of the active substance. Anyway, a vapour pressure cannot be specified for Propineb due to its polymer structure. The transition of Propineb into the gaseous state can occur only under decomposition. Therefore, it is highly probable that the before mentioned vapour pressure measured by the mean of the vapour pressure balance is that of the decomposition product PTU.

Henry' Taw constant of propineb was not to be calculated, because an exact determination of the water solubility is not possible. The vapour pressure for PTU is 6.46×10^{-5} Pa. The vapour pressure for PU is 5.41×10^{-4} Pa. These values indicate that the air affinity of propineb, PTU and PU is negligible.

The chemical half life for PTU in air is 0.87 hours, and the chemical half life for PU is 11.2 hours, only.

According to these results, an accumulation or long-range transport of Propineb residues in the ar and a subsequent contamination by wet or dry deposition are not to be expected.

CA 7.3.1 Route and rate of degradation in air

Route and rate of degradation of degradation of Propined was evaluated during the Annex Dinclusion (compare EU Monograph Annex B7), and was accepted by the European Commission (SANCO/7474/VI/97, 2003). The following studies included in the Baseline Dossier were regarded as relevant during the Annex I inclusion:

*: that the sall this information was filed in the pys.-chem section (at MCA 2.8), also. Today, the same is true for the 1st three studies on vapour pressure and Henry's Law Constant, but the last two studies (chemical lifetime of PTU and PU in air) not any longer belong to section MCA 2.8.

Summary of before mentioned studies

It was concluded that Propineb has a low vapour pressure, extrapolated with 1.6 x 10^{-4} Pa (at 20°C), indicating a low volatility of the active substance. Anyway, a vapour pressure cannot be specified for Propineb due to its polymer structure. The transition of Propineb into the gaseous state can occur orly under decomposition. Therefore, it is highly probable that the before mentioned vapour pressure measured by the mean of the vapour pressure balance is that of the decomposition product PTU

Henry's law constant of propineb was not to be calculated because an exact determination of the water solubility of Propineb is not possible. The vapour pressure for PTU is 6.46 x 10⁶ Pa. The vapour pressure for PU is 5.41 x 10⁻⁴ Pa. These values indicate that the air affinity of propineb, PTU and PU is negligible.

The chemical half life for PTU in air is 0.87 hours, and the chemical half life for PU is \$1.2 hours, only.

CA 7.3.2 Transport via air

According to the before mentioned properties of Propine's and its major degradates (see Section CA 7.3.1), an accumulation or long range transport of Propine's residues in the air and a subsequent contamination by wet or dry deposition are not to be expected. No now studies are submitted within Supplemental Dossier for the Propine's renewal of approval.

CA 7.3.3 Local and global effects

Local and global effects of Propineb are not to be considered since the half-life of its residues in air are ≤ 2 days (see section CA 73.1). No new studies are submitted within Supplemental Dossier for the Propineb renewal of approval.

CA 7.4 Definition of the residue

CA 7.4.1 (Definition of the residue for risk assessment

The proposed residue definitions refevant for exposure assessments, which can be used as basis for risk assessments in each compartment, and the following:

(
Compartment	Residue Definition
Â,	Propine (LH 30Z) Q Q
à.	4-Methyl-imidzoline BCS-AB78870)
Soil 🖉	Propineb-DIDT (BCS-CU99534)
, ≪	$\widehat{RUV}(BCSAA-666386)$
"Y	PU (BC - AA) 27) ~ O
L.	Propineb (Lat 30 Z)
ĮO'	4 Methylamidazoline (BCS-AB78877)
Groundwater	Propine DIDT (BCS-CU99534)
	PTŲ (BCS-QA66386)
L' G	PICABCS AA17927)
L. Q	Propince (LH 30 Z)
Ň "Ô"	4-Methyl-imidazoline (BCS-AB78877)
Surface water	Propineb-DIDT (BCS-CU99534)
	PTU (BCS-AA66386)
	PU (BCS-AA17927)

Document MCA: Section 7 Fate and behaviour in the environment Propineb

Sediment	Propineb (LH 30 Z)		0	
Air	Propineb (LH 30 Z)	, W	r A	Ö

CA 7.4.2 Definition of the residue for monitoring

, idue For the compartments soil, groundwater, surface water, sediment and air the propo definition for monitoring is Propineb (LH 30 Z).

CA 7.5 **Monitoring data**

Ś Conserver mentioned properties of Propineb and its main degradates in soldwater and air (see sections CA.7.1, CA.7.2 and CA.7.3) monitoring datafold Propineb Gere no regarded relevant for inclusion and evaluation in the Baseline Desier.
No new studies were performed or were found if published therature withrespect to monitoring of soil surface water, ground/drinking water sedment and air. According to the before mentioned properties of Fopineb and its major degradates of soil water and