

OWNERSHIP STATEMENT

ence g This document, the data contained in it and copyright therein are owned by Bayer Crop See No part of the document or any information contained therein may be disclosed to any third

Ine summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant amend or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this document unless they have received the data on which the summaries. either:

From Bayer CropScience; or
From other applicants once the period of data protection has expired.

Version history

	Version history	
Date	Data points containing amendments or additions ¹ and brief description	Document identifies and
2014-07-10	Initial dossier	
2015-03-20	Amended subsection 10.1.2.2, page 28 and 46	(Version 2)
1 It is suggested to SANCO/10180/2	Initial dossier Amended subsection 10.1.2.2, page 28 and 46 hat applicants adopt a similar approach to showing revision on 1013 Chapter 4 How to revise an Assessment Report	d version history as outlined in

Table of Contents

		് വസ്ത
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION	agu
	PRODUCT	\$.6
CP 10.1	Effects on birds and other terrestrial vertebrates	7 <i>e</i>
CP 10.1.1	Effects on birds	. D
CP 10.1.1.1	Acute oral toxicity	® 5
CP 10.1.1.2	Higher tier data on birds	. 15.
CP 10.1.2	Effects on terrestrial vertebrates other than birds	. 17
CP 10.1.2.1	Acute oral toxicity to mammals	<i>a</i> 30
CP 10.1.2.2	Higher tier data on mammals	.31
CP 10.1.3	Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)	. 54
CP 10.2	Effects on aquatic organisms	.∕\$5°
CP 10.2.1	Acute toxicity to fish, aquatic invertebrates or effects of aquatic algae and	
01 10.2.1	macrophytes at a way of the state of the sta	. 77
CP 10.2.2	Add, long-term and chrosic tox studies on figh, aquatic invert Sediment	, ,
	Add. long-term and chronic tox studies on fish, aquatic invert. Sediment dwelling org. Further testing on aquatic organisms.	. 82
CP 10.2.3	Further testing on aquatic organisms	. 82
CP 10.3	Effects on arthropods	. 83
CP 10.3.1	Effects on bees.	
CP 10.3.1.1	Acute toxicity to bees	
CP 10.3.1.1.1	Acute oral toxicity to been	
CP 10.3.1.1.2	Acute contact toxicity to bees S	
CP 10.3.1.2	Chronic toxicity to beer	
CP 10 3 1 3	Effects on howev hee develonment and other Winey we life stages	90
CP 10.3.1.4	Sub-lethal effects	.91
CP 10.3.1.5	Cage and tunnel tests	. 91
CP 10.3.1.6	Field tests with honey bees	. 94
CP 10 3 2	Field tests with hongobees. Effects on non-target arthropods other than bees.	. 95
CP 10.3.2.1	Standard laboratory testing far non-target arthropods	103
CP 10.3.2.2	Extended laboratory testing, aged residue studies with non-target arthropods	6
		107
CP 10.3.2.3	Semi field studies with non-target arthropods	114
CP 10.3.24	Field studies with non-targe parthropods	
CP 10.3 2.5	Other foutes of exposure for non-target arthropods	114
CP 10.4	Effects on non-target soft meso and macrofauna	115
CP 10.4.1	Earthworms Sub-Lethal effects	116
CP 10.4.1.1	Earthworms & sub-lethal effects	117
CP 10.4.1.2	Earthworms - field studies	117
CP 10.4.2	Effects of non-target foil meso- and macrofauna (other than earthworms)	118
CP 10.4.2.1	Species Developering.	119
CP 10.2.2.2	Higher tier testing	119
CP 169.5 @	Effects on soil nitrogen transformation	120
CP 0.6	Effects on terrestrial non-target higher plants	
CP 10.6.1	Summary of screening data	
CP 10.6.2	Testing on non-target plants	
CP 10.6.3	Extended laboratory studies on non-target plants	
	· · · · · · · · · · · · · · · · · · ·	

110 // 0 //		<u> </u>
CP 10.6.4	Semi-field and field tests on non-target plants	129
CP 10.7 CP 10.8	Monitoring data	

0.0		
~		
	Semi-field and field tests on non-target plants Effects on other terrestrial organisms (flora and fauna) Monitoring data	

ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **CP 10 PRODUCT**

Use pattern considered in this risk assessment

Table10-1: Intended application pattern

Document MCP: PPB WG 70	Section 10 Ecot	oxicological st	udies	
	ECOTOXICO PRODUCT	OLOGICAL	STUDIES (ON THE PLANT PROTECTION
Use pattern co	nsidered in t	his risk asse	ssment	F F
Table10- 1:	Intended ap	plication pat	tern	
Сгор	Timing of application (range)	Number of applications	Application interval [days]	Maximum application rate
Orchards (Apple)	BBCH 40-59 BBCH 60-73	1 1	© 14	Z.25
Grapes I	BBCH 40-59	2		1.12
Grapes II	BBCH > 70	2	10	2.0
Tomato (greenhouse use)	-			

Definition of the residue for risk assessment

Justification for the residue definition for risk assessment is provided Section 7, Point 7.4.1 and MCA Section 6, Point 6.7

Definition of the residue for risk assessment **Table10-2:**

Compartment	Residue Definition
***************************************	Propineb (LH 30/Z) 4-Methyl-imida Zeline (BCS-AB788770) Propineb-DIDT (BCS-CU99534) PTU/BCS-QA-66386) PH/BCS(AA17927) Propineb (LH 30/Z)
, Ø	4-Methyl-imida Foline (BCS-AB) 8877) 78877
Soil	4-Methyl-imidazeline (BCS-AB/88//)0 Propine - DIDT (BCS-CU99534)
	PT(CBC\$-\(\hat{P}\)\(\hat{A}\)-663\(\hat{8}\)\(\hat{b}\)\(\hat{O}\)\(\hat{V}\
	PH (BCS(AA17927) O J J & A
	Propineb (LH 10/Z) 4-Mothyl-imidiazoline (BCS AB78877) Propineb DDT (BCS-CU9534) PTU (BCS-AA 1927) Propineb (LIQ 30/Z) 4-Methyl-imidazoline (BCS-AB7877) Propineb DIDT (BCS-CU99534) PTU (BCS-AA 66386) PU (BCS-AA 66386) PU (BCS-AA 66386) PU (BCS-AA 7927)
	Propine (LH 30/Z) (1/2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2
Groundwater @	Propheb-DDT (BCS-CU99534)
4	PTU (BC\$-AA \$6386)
	PU (BCS-AAR)927)
	Proprieb (LID 30/Z)
	4-Methyl-imidazólme (BCS-AB/88//)
Surface water	Propined DID (BCS-00)995949
	DIL (DCS A \$470278
	FU (BCS-1971/920)
Sediment S	Propinet LH 30/Z)
P →	
Air S	Propineb (LaP 30/Z)
Air S	Propineb (LP 30/Z)

CP 10.1 Effects on birds and other terrestrial vertebrates

The risk assessment has been performed according to "European Food Safety Authority; Guidance Document on Risk Assessment for Birds (2.3) Document on Risk Assessment for Birds & Mammals on request from EFSA (EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438), referred to in the following as "EFSA GD 2009".

CP 10.1.1 Effects on birds

Table 10.1.1- 1: Endpoints used in risk assessment

Test substance	Exposure	Species	Endpoint V Reference V
	Acute risk assessment	Japanese quail	LD ₂
Propineb	Daniel Institut	Opanes 4	MOAIQ 4720pm KVA 8.1.13701 reproduction 552 mg (5./kg b 2d M-0178)14-01-1
	Reproductive risk assessment	Japanese quail	OAEL
		(3 3 wk) ○	

- studies written in Sey type are referring to studies in the corresponding Paseline dossier, whereas studies in black type are studies of the Supplemental dossier

st of Endpoints (200°

Table 10.1.1- 2: Relevant generic avian focal species for risk assessment on Tier 1 level according to EFSA GD (2009)

	according to Er Si	- ()			, &
Crop scenario	Most critical window of relevance for generic focal species scenario	Generic focal species	Representative species	Ŕ	t values Ouctive A d on RUDm
Orchards	Spring, Summer	Small insectivorous ird "tit"	May tit	A6.8	18,20
2 × 1.575 kg/ha BBCH ≥ 40	BBCH ≥ 40	Small insectivor sus/worm feeding bird thrush"	Robin	2.2	O .8 Q
14d interval	BBCH ≥ 40	Small graph orous bird "Inch"	Serin	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.80
Grapes I	BBCH ≥ 20	Small meective ous bird "redstart"	Black rodstart	25.7	3 9.9
2 × 1.12 kg/ha BBCH 40 -59	BBCH≥40	Small grant vorous bird	ALinnet &	7.4	3.4
10d interval	BBCH≥40	Small smniyofous brid	Wood lark		03.3
	BBCH≥20 Q	Small insectivorous bird	Black reditart	\$\frac{1}{25.7}	9.9
Grapes II 2 × 1.4 kg/ha BBCH >70 10d interval	BBCH ≥46	Small@raniy@ous b@d / 🔷 "finch"	Linnet O	% 4	3.4
	BBCH 40	Small om vivorow brid	Wood lark	7.2	3.3
	Ripening	Engivorous bird	Song thrush	28.9	14.4

Identical focal species are relevant for the tisk assessment in grapes I and grapes II, except for frugivorous birds which occur only in the tate growth stages (BBCH > 0) in grapes II. Additionally, the application rate in grapes II is higher and covers the use in grapes I. Therefore, only the use in grapes II (besides the use in orchards) is addressed in the risk assessment presented below.

ACUTE DIETARY RISK ASSESSMENT

Table 10.1.1-3: Tier 1 acute risk assessment for birds

							Or	<u></u>
			DDD			ŞLD ₅₀	4	
Crop scenario	Generic focal species	Appl. rate	SV90	MAF90	DDD	mg a.s./kg	TERA	Trigger
		[kg a.s./ha]				bw]	<u>O</u> . (þ ^v 🚜
Propineb			Ö					
Orchards	Small insectivorous bird		@16 Q		^Q 89	, Ø	\$ 57	
Spring, Summer	"tit"		L46.8	4	09		Q - 23 / (
Orchards	Small insectivorous/worm	1 575	2.2] , Q'	Ĉa o	4 4	> 1202	
$BBCH \ge 40$	feeding bird "thrush"	1.575	> 2.2	1.2	Q .2	Q \0'	>1203	Ů,
Orchards	Small granivorous bird	(n	& °0 2		~		\$\\\ \n^222	
$BBCH \ge 40$	"finch"		8.2 7		15.5		*\>323	
Grapes	Small insectivorous bird	4			0,7	> 5000	- OH	ala °
$BBCH \ge 20$	"redstart"		2301	~~	4/	f≫*	\$199 /	Ø,0
Grapes	Small granivorous bird				12 2		& h 271	
$BBCH \ge 40$	"finch"		7.4		13,0,"	W S	»>3/E)
Grapes	Small omnivorous bad	& r.4	45		~ D 1		· Øa	
$BBCH \ge 40$	"lark"	, O. , A.	79.2		Q13.1	t ji l	~ 3 582	
Grapes	Frugivorous bird		(N) 20 0 @	Ď L) 53)		>05	
Ripening	"thrush/starking"	- O	7 28.9W		39		, >95	

The TERA values calculated in the acute risk assessment on Ter 1 level sceed the a-prioriacceptability trigger of 10 for all evaluated scenarios. Thus the acute risk to birds can be considered as low and acceptable without rood for further, more realistic risk assessment.

LONG-TERM REPRODUCTIVE (ASSESSMENT

Table 10.14-4: Tier 1 reproductive risk assessment for birds

Crop	Generic foral		%~ (C	MAF	o f _{TWA}	DDD	NOAEL [mg a.s./ kg bw/d]	TER _{LT}	Trigger
Propineb			- S						
Orchards Spring, Summe	Small insection ous bird "tit"	1.575	18.2			21.3		3.0	
Orchards BBC1 ≥ 40	insectivorous worm of feeding bird thrush	1.575	\$0.8	1.4		0.93		70	
Orchards BBCH ≥ 40	Small granivorous bird "" "Sinch" "		3.8		0.53	4.4	>64.7	15	5
Grapes BBCH ≥ 20	Small insection ous bird "restart"	Ž	9.9		0.55	11.0	≥64.7	5.9	3
Grapes 40	Small granivorou Dird	1.4	3.4	1.5		3.8		17	
Grapes BBCH≥40	Small@mniv@wus bird "lark"	1.4	3.3	1.3		3.7		18	
Ripening	Frugivorous bird "thrush/starling"		14.4			16.0		4.0	

Bold values do not meet the Tier 1 TER trigger

The TER_{LT} values calculated in the reproductive risk assessment on Tier 1 level do not exceed the appriori-acceptability trigger of 5 for the small insectivorous bird scenario in orchards and the frugivorous bird scenario in grapes. Thus, a refined risk assessment for these scenarios is presented below.

Refined risk assessment – small insectivorous birds in orchards

More realistic exposure parameters were considered in the refined risk assessment.

(KCP 10.1.1.2./01,

:; 2013; M-460299-01) aiming to measure the propine residue decrine on Pasect of DT₅₀ value of 1.97 days (combined for propine and PTU) was calculated.

With that DT_{50} , refined $MAF_m = 1.01$ and 21-d $f_T = 0.26$ are calculated with a moving time window calculator, for 2 applications with a 14d interval, which can be used to refine the default values in the reproductive risk assessment for the small insective outs by "tit".

TWA Residue Calculato	or veo 2	
Enter data into the yellow tells	s oxfly	<u> </u>
		<u> </u>
SFO calculation of residue concentration (PPB—PTU) on Miage dwelling invert	tebrates in orchands (DT50	¥¥⁄.97d)
(2x 1.575 kg as/ha; 14d int, RUD 21) C(ini) = 1.575 x 21 = 33.08 mg/kg		
MAF: 1 007: 21-d faur: 0 257		
		4
C(max) = 33.08 x 1.007 = 33-31 mg/kg		<u> </u>
DT50 Type SFO days	TWA interval (days):	21
DTSB (SFO) 197 O days		
D150(P50P, slow)		day
DT50 (DEOP, slow) (B 405 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d	max PWA start:	0
B (DEOR) B 87601 O	🖒 🧷 🔞 📆 TWA end:	21
RUD Ng/kg/ kg/ha	max residue at:	14
	A	
Effective application rate Application interval	Residue increase by	DAT1
(mays)	잔 (mg/kg)	(days)
Application 1 O575 V P	33.075	0
Application 2 1.575 44	33.075	14
Application 2 1.575		
MAF 1.007 mg/gs		
Residue may a 33 31 S. Omalka &		
A A A A A A A A A A A A A A A A A A A		
21d TWA C \$ 8.50 \$ mg/kg		

Table 10.1.1-5: Refined reproductive risk assessment for small insectivorous birds in orchards

Crop	Generic focal species	Appl. rate SV	Mar _m frwa	Ø,DD Ø,DD	NOAEL Jung a.s./ kg bw/d]	TER _{LT}	Trigger
Propineb							
Orchards Spring, Summer	Small insectivorous bod "tit"	1.575	1,007 a 6257 a	© 7.4	≥ 64.7	≥ 8.7	5

^a with geometric mean field DT₅₀ of 1.97 days for propines and TVU on foliage dwelling insects

Additional refinement potential can be employed by incorporating PT values for the blue tit in orchards as reported by Finch et al. (2006); inean PT = 0.21 for all birds (0.27 for "consumers"), 90th percentile PT 0.55 for all birds (0.58 for "consumers");

A recalculation of the data already expluated by Finch et al (2006) has been provided in Prosser (2010): 90 percentile 10 for blue tits in ordards: 0.53 for all birds (0.57 for consumers).

The documents with these PT values are accessible on the internet:

Finch et al: 2606:

http://www.pesticides.goouk/ResourceQCRD/Migrated-Resources/Documents/P/PTFeb06.pdf

Prosser 2010

http://randc/defra.gov.uksDocument.aspx?Document=10258_ConsolidationofbirdandmammalPTdataforuseintOkassessment.pdf

For illustration, below the screenshot of Table 3 on page 13 of Prosser 2010, providing highly conservative PT – value recommendations for blue tits in orchards.

Screenshot Table 3 on page 13 of Prosser 2010:

Table 3 PT values for passerine birds in orchards, with modelled 90th and 95th percentiles and their confidence limits. Consumers only.

Season	Species	No. of individuals	90 th percentile PT value (95% CL	PT value (99%) CLs)
	Blackbird		0.73 (0.61 – 0.56)	0.85 5(0.71 - 0.93)
Summer (April	Blue tit		0.5 ° 0.75 ° 0.43 € 0.75 ° 0.43 € 0.75 ° 0.43 € 0.75 ° 0.43 € 0.75 ° 0.43 € 0.75 ° 0.43 € 0.75 ° 0.43 € 0.75 ° 0.43 € 0.43 € 0.43 € 0.75 ° 0.43 € 0.43 € 0.75 ° 0.43 € 0.	0.66 0.84 0
– September)	Chaffinch	24	0.8 (0.69 – 9.91) \$	(0.87) (0.7 – 0.96)
	Robin	24 0	0.54 (0.45 – 0.59)	0.65 0(0.52 – 0.80)
				0′

Refined risk assessment – fragivorous birds in sineyards

For the refined risk assessment for forgivorous birds in grapes, an expert evaluation has been conducted (KCP 10.1.12/02; 2014; M-483363-01) primarily based on the egg-laying phase corresponding to the exposite in the aviant reproduction test) in the reproductive season of the bird species considered as focal species for the scenario of frugivorous birds in European vineyards (Song thrush (Turdos philamelos), Blackbird (F. merula) and Common starling (Sturnus vulgaris).

Evaluating the temporal match of the reproductive cycles of these species with the vine berry ripening phase in various European vine growing areas and also the nutritional need profile of the birds over the reproduction phase, it is considered that exposure of birds before or during egg-laying from residues on vine beroes an be considered negligible, because of two fundamental ecological biological mematches:

- a) the <u>temporal</u> mismatch of egglaying with potential exposure from berry-eating: egglaying is finished before vine berries thening
- b) the <u>nutritional</u> mismatch of egglaving with berry eating: laying birds primarily require protein-rich diet for egg production and chiek feeding, which cannot be obtained when eating vine berries.

Therefore reproductive risk for birds from exposure by eating grape berries with residues of propineb can be calculation.

Uncertainty analysis

Refine point of the Tier 1 risk assessments is only triggered for two scenarios in the reproductive risk assessment: small insectivorous birds ("tit") in orchards, and frugivorous birds ("thrush") in vineyards.

For each of these two scenarios, a single refinement element is introduced in the sections above. Therefore it is considered appropriate and acceptable to focus the uncertainty analysis on these wo elements instead of a tabular approach as recommended in the EFSA GD (2009).

For the scenario of **small insectivorous birds ("tit") in orchards**, a targeted field study was conducted with residue measurements on foliage dwelling and and flying invertebrates (

thus in a comparable exposure situation (application into the canopy of a high crop). It total 6 applications have been made with the relevant propineb formulation (3 plots, all with a first of application at 1 kg pr/ha and a second application with 2 kg pr/ha. Based on residues measured and various time points after these applications, 6 individual DT50 values for foliage dwelling invertebrates have been established. Additionally, 2 DT50 values are available for residues on flying inserts. All these DT50 values are based on combined residues of PPB and PTI.

The risk assessment is conducted with the DT₅₀ of 1.97 days as geometric mean of the 6 DT₅₀ values for foliage dwelling invertebrates. DT₅₀ on flying insects is even lower. Taking into account that geometric mean DT₅₀ values are usually considered appropriate in the drinking water assessment for human consumers, it should also be considered as conservative estimation for the residue dissipation of propineb and its metabolite PTU or food feems of small insectivorous birds. TER_{LT} calculations with the maximum of the DT₅₀ values would still exceed the a-priori acceptability trigger, demonstrating sufficient additional margins of safety even under worst case conditions. However, the exposure assessment presented in Tab. 20.1.1.13 is considered sufficiently conservative even without employing the worst case DT₅₀ value, where even higher margins of safety could be demonstrated when employing the PT value from radiotracking blue tits, the representative of the generic focal species in the scenario of concern.

All other elements of the exposure assessment remain unchanged in refined risk assessment. The uncertainty in the sense of overlooking an unducrisk for small insectivorous birds in orchards can be considered as low.

For the scenario of **frugivorous birds** (Chrush") in vineyards, an expert evaluation identified the lack of any significant overlap of the critical toxicological phase in the avian reproduction studies (egg-production phase) and the exposure of frugivorous birds to residues of propineb on vine berries. This lack of overlap (mismatch) is due to many constraints of the avian reproduction in the field, first of all the need to forage on protein-fich died during egg production, and the need to finish chick-rearing well in time before autumn so that the young birds can grow up before winter and/or migration. Since the time window for the critical reproduction phase is before the time window for exposure in the field, there is basically zero exposure from vine berry eating in the TER calculation for fruigvorous birds. Exposure during egg-laying (mainly through foraging for invertebrates) is addressed with the other generic focal species seenarios calculated at the EFSA Tier 1. Though not needed, additional marging of safety could also be provided for insectivorous birds in vineyards by employing the measured residue DT_{50} (1) \$\frac{1}{2}\$ (2013; \frac{M-460299-01-1}{2})\$ which has been included and discussed in the risk assessment for small insectivorous birds in orchards.

Exposure of frugivorous birds prior to or during egglaying to residues on vine berries can be considered as negligible. Exposure from ingesting residues on other food items is addressed in the Tier 1 assessment showing low risk for insectivorous, granivorous and omnivorous birds without any

refinement. Thus the risk to birds from the use of propineb in vineyards can be considered as low and acceptable without undue uncertainty in the risk assessment.

Acute risk assessment for birds drinking contaminated water from pools in leaf whorks

In the EFSA GD (2009), section 5.5, step 1 the following guidance is given on the selection of relevant scenarios for assessing the risk of pesticides via Lanking water to birds and trainmals.

- Leaf scenario: Birds taking water that is collected in leaf whorls after application of pesticide to a crop and subsequent rainfall or arrigation.
- Puddle scenario. Birds and mammals taking water from puddle formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop of bare soil.

For the crops under assessment in this evaluation (grapevine, orchards) the lead scenatio is not considered relevant. The risk for birds from drinking water in puddles is addressed in Table 10.1 \$2.6.

Long-term risk assessment for birds dripking contaminated water in puddles

Table 10.1.1-6: Evaluation of potential concern for exposure of birds drinking water

Crop	Koc application rate application rate [L/kg] For MAT [ga.s./ha] WO(A)EL [mga.s./ kg/bw/dl/ MAF)/NO(A)EL (Application cate × No concern fratio	Conclusion
Propineb		
Orchards ^a	$(>500^{\text{b}})$ $(>500^{\text{b}})$ (>61.5) (>64.7) $(>661.6/64.7 = 10.2)$ (>3000)	No concern

^a the use in orchards (including 70% interception) is considered as worst case and covers the use in grapes ^b the active substance propines \odot practically insoluble and its corption caracteristics cannot be determined, therefore the threshold of ≤ 3000 is used which applies to all compounds with Koc ≥ 500 .

RISK ASSESSMENT OF SECONDARS POISONING

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if beding on contaminated previlike is h or earthworms. For organic chemicals, a $\log K_{ow} > 3$ is used to trigger an in Jepth evaluation of the potential for bioaccumulation.

Table 16.1.1-7: Log Kow values of propine bond its metabolites

Substance	S Nog KW	compartment	Reference
Propine V		Soil, surface water	
PLO A	Ø.26 _@ ,	Soil, surface water	
roju 💥 🛴	Ď	Soil, surface water	MCA, Section 2, point 2.7
A-IM, V	-3.4 (pH 7)	Soil	
Propinel DIDT	1.9	Soil, surface water	

a not determinable

Propine is a macro-molecule and not available for bioconcentration. For the degradation products, the $\log K_{ow}$ values are below the trigger value of 3, indicating a very low risk of secondary poisoning.

CP 10.1.1.1 Acute oral toxicity

Study already evaluated during the first Annex I inclusion (see Table 10.1.1- 8). No new studies were required.

CP 10.1.1.2 Higher tier data on birds

Title: Residue decline of propineb and PTU on arthropods after pray application in

vines in the Czech Republic

Report No: P12017

Document No: M-460299-01-1

Guidelines: No official test guideline avallable at present type of stody. The study was

conducted under consideration of the ERSA Guidance Document on Rist

Assessment for Birds & Mammals (FFSA 2009)

GLP/GEP: yes

Objective:

The purpose of the study was to determine residue decline of propines and PPU in oblige dwelling and flying arthropods following application with the formulated product Propines WG 70 (containing 700 g a.s./kg) at the application rate of $0 \times 1.0 \text{ kg}$ and $1 \times 2.0 \text{ kg}$ product ha in vineyards in the Czech Republic.

Materials and Methods

Study site:

The study was conducted in vineyards in southern Moravia in the Grech Republic. Three vineyards were selected and in each vineyard one plot with a size > 1 km was established.

Test item and application:

The tested item was profined, water dispersible fungiciale. Propineb was applied as WG 70 formulation on each plot at a nominal application rate of 700 g active substance = 1.0 kg product per ha with a spray volume of 500 L/ha first run) and was repeated at nominal 1400 g active substance = 2.0 kg product per ha and 700 L water ha (second run) according to Good Laboratory Practice and Good Agricultural Practice. Time between first and second run was 13 days on all plots. (The mean actual application rate was 1.008 kg product per ha at the first run and 2.011 kg prod/ha at the second run).

Arthropod sampling

Foliage dwelling arthropod were collected by inventory spraying and flying insects were collected with Malaise traps. In order to collect foliage dwelling arthropods from the canopy of grapevines, whole plants within the inevert were sprayed with a 'knock down' insecticide (Aquapy®) at approx. 25 mL production 1.4 water with a motor driven knapsack sprayer from Stihl (SR 430) (NON-GLP application) Malaise traps consisted of a large, tent-like structure. Insects which flew into the tent wall were functed into a collecting vessel attached to the highest point. One trap per plot was placed between the rows. The trap was emptied approx. after 24 h. Targeted minimum biomass per DAT and plot was 1 g.

Sampling period was 10 days after the first application (1st run). The application was repeated and sampling took place for 21 days after the second application (2nd run). After identification and quantification of the main taxonomic groups, the samples were stored deep frozen until assidue analysis.

Residue analysis:

All samples were analysed for their content of propineb and metabolite PTU residues via PPLQ MS/MS. Residues are reported in terms of mg active substance/kg fresh weight (mg/a.s./kg/hw). The Limit of Quantification (LOQ) value was 1.0 mg/kg for propineb and 20.05 mg/kg for PTU

Calculations and statistics:

The residue decline (DT₅₀) of propineb and PTU in leaf dwelling arthropod and fiving insects was determined to assess the time course of potential exposure of insectivorous pirds. It was assumed that the residue decline followed a first-order kinetic.

Results:

The DT_{50} of propineb on foliage-dwelling arthropods was very consistent over the two run with 3 replicates each, resulting in a geometric mean DT_{50} of 1.94 days for propineb and 1.90 days for propineb and PTU combined. Although heavy cainfall occurred on different days after applications, no pronounced effect on residue decline was visible. The geometric mean DT_{50} for propineb on flying insects was 1.26 days.

DT50 of propineb (PPB) and the sum of propineb + PTW on forage-dwelling arthropods in vines

		(U)
SFO kinetics	DI 50 PPB days	~
SFO kinetics	Splot Splot Splot 2	Plot 3
1 st run (1 kg prod. 🗖	\$\frac{1}{2} \frac{1}{2} \frac	1.55 ²
2 nd run (2 kg prod./ha)	© Q37 4 0 3,9 0 0	1.89
Geomean (n 6)		
	DT 50 PRB + PTU [days]	
1st run (1 kg prod./ha)	2.24 \$\frac{1}{2}\$	1.56 ²
2 nd run (2 kg prod./ha)	3.04	1.93
Geomean (n = 6)	\$\frac{1.37}{2} \text{0} \text{3.04} \text{1.97}	

Simulation conducted excluding an outlier on DAT +2

DT50 of propineb on flying insects in vines

SFO kinetics		DT59	B [days]
Y		Plots 1	+203 1
1st run (1 kg prot	l/ha) 🐧 🔪	V 28 1.5	86
2 nd run (2 kg	d./ha) 🗸 🔘	9	72
Geomean (2)		٦٠. × 1	26

¹ Samples of flying insects were pooled because individual sample weights in Malaise trans were not sufficient for analysis.

² Simulation performed starting with maximum value on DOT +2

Conclusion:

The study provides realistic field data on the time course of residue decline of propineb in foliagedwelling arthropods. These data provide a reliable basis for use in higher tier risk assessments of insectivorous birds.

Report:

Title: Expert statement - Frugivorous birds in vineyards in Europe

Report No: R14153

Document No: M-485363-01-1

Guidelines: No official test guideline available at present type of study. The study was conducted under consideration of the EFSA Guidance Document on Risk Assessment for Birds & Mammals (EFSA 2009)

GLP/GEP: n.a.

The aim of this expert evaluation based on interature and additional data survey is to provide information on the typical duration of the egg-laying period and of the proportion of fruits (especially grapes) within the diet during this period in three frugitorous bird species bequently recorded in European vineyards, the song thrush (*Turdus philomelos*), blackbird (*T. merlita*) and common starling (*Sturnus vulgaris*). The main sources used in the compilation of the current survey were literature reports detailing various aspects of the breeding biology and/or diet composition of the relevant species. In addition, the availability and development of grapes in different regions of Europe were investigated.

The main egg-laying periods (95% of clutches found) lie between March and June (song thrush), late March and May (stating) and late March and early July (blackbird) depending on region, initiation of replacement and multiple clutches. The consumption of fruits is of low importance during this period and all three species mainly by rage on invertebrates during the breeding season to satisfy their high demand of proteins. The ripening of grapes varies in different regions of Europe depending on climate and time of harvest. Ripening grapes are available from mid-July until early September (Spain), mid-August until mid-October (France) and September until early November (Germany) for three different countries in Central and Southern Europe.

During these ripening periods traits can form a large portion of the diet. However, the main breeding period, i.e. egg-producing and laying phase hardly overlaps with the time period of frugivorous food consumption in these species and in particular it does not overlap with the ripening period of grapes as potential fruits taken by these species. In conclusion, reproductive effects to song thrushes, blackbirds or starlings feeding on grape treated with pesticides are very unlikely.

CP 10.1.2 Effects on terrestrial vertebrates other than birds

Reference is made to baseline and supplemental dossier KCA 5.2.1 and KCP 7.1.1

Table 10.1.2-1: Endpoints used in risk assessment

Test substance	Exposure	Species/Origin	Endpoint 💨	Reference &
	Acute risk assessment	Rat	2000 1050 a.s./kg bw	KGA 5.2.17/01; 57 2010; M-370055-957
Propineb	Long-term risk assessment	Rat 🗳	NOAEL 200° ppm NOAEL color to 16.0° mg a.s./k@bw/d	KCA 5.6. (5)1 (7) . ;1 (7); M-078 529-040

a) dose conversion based on generic factor 0.08 provided in EFS (GD (2009) Table 2

The risk to wild mammals from the artiful metabolite PTI as considered to be overed in the studies conducted with the parent substance. Therefore, the residues of PTU are included in the DT_{50} applied in the refined risk assessment.

Table 10.1.2- 2: Relevant generic focal species for risk assessment on Tier 1 level acc. to EFSA

. 🖔	Most critical window of relevance for generic focal species scenario	Generic focal species	Representative Ospecies	Short cu for repro RA bas RUD ₉₀	ductive
Orchards 2 × 1.575	BBCH ≥ 6	Small herbivosous monmal	Common vole	40.9	21.7
kg/ha BBCH 40-73	SBBCH ≥ 40	Large hechivorous mammal	Rabbit	10.5	4.3
14d interval	BECH 200 C	Small omnivorous mammal "mouse"	Wood mouse	5.2	2.3
	BBC 1 ≥ 400	Jarge herbivorous mammal sagomorph"	Brown hare	8.1	3.3
Grap 1 2 × 1,12 kg/ha	BBCH≥20	Small in sectivorous maramal "shrew"	Common shrew	5.4	1.9
BBCH 40 -59 10d interval	$BBOH \geq 40$	Small hobivorous mammal "vole"	Common vole	40.9	21.7
Ő	ABBCH 40	SmaQ omnivorous mammal "mouse"	Wood mouse	5.2	2.3
	$\mathbf{B}\mathbf{B}\mathbf{C}\mathbf{H} \geq 46$	Qarge herbivorous mammal "lagomorph"	Brown hare	8.1	3.3
Grapes II 2 × 1/4 kg/ha	BBCH 20	Small insectivorous mammal "shrew"	Common shrew	5.4	1.9
BBCH > 70 10d interval	BBCH≥40	Small herbivorous mammal "vole"	Common vole	40.9	21.7
CŤ	BBCH ≥ 40	Small omnivorous mammal "mouse"	Wood mouse	5.2	2.3

⁻ studies referring to KCA are filed in the dosser for the active substance

⁻ studies written in grey type are referring to studies in the corresponding Baseline-dossies whereas studies in black type are studies of the Supplemental dossier

For the uses grapes I and grapes II identical focal species are relevant for the risk assessment. pes I, only the use in grapes II However, since the application rate in grapes II is higher than in grapes I, only the use in grapes II (besides the use in orchards) is presented below.

ACUTE DIETARY RISK ASSESSMENT

Table 10.1.2-3: Tier 1 acute risk assessment for wild mammals

				9	@.º	~ ~	· 💜	00.5
			DDD 🌋		Q.	LD ₅	\$°	
Crop	Generic focal species	Appl. rate [kg a.s./ha]	SV 90	MAF ₂	DDD O	mg acs./kg Obw	FERA	Trigger
Propineb		% .	W B°					Z
Orchards BBCH ≥ 40	Small herbivorous mammal "vole"	O T	40 .9		7%		/> 25.9 ⁴	Š.
Orchards BBCH ≥ 40	Large herbivorous mammal "lagomorph"	(j.575)	10.5		(79.8 ₀		2131	
Orchards BBCH ≥ 40	Small omnivorous mammal "mouse"		\$5.2 \$		2,8		101	
Grapes BBCH ≥ 40	Large herbivorous warmal "lagomorph"				14.7	> 2000	>776	10
Grapes BBCH ≥ 20	Small insectivorous mammal "shrew" 📞	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.4		~ 9 .8		> 204	
Grapes BBCH ≥ 40	Small her vorous mammal "vole"		409	5 %.	74. 4 \$		> 35	
Grapes BBCH ≥ 40	Small omnivorous & marcimal "mouse"		\$ 5.2 \$		©9.5		> 136	

Bold values do not speet the rigger

The TERA values calculated on the acute risk assessmen con Ties 1 level for wild mammals exceed the a-priori-acceptability trigger of 10 for all evaluated scenarios. Thus, the acute risk to wild man can be considered as low and acceptable without need for further more realistic risk assessment. a-priori-acceptability trigger of to for all evaluated scenarios. Thus, the acute risk to wild mammals

LONG-TERM REPRODUCTIVE ASSESSMENT

Table 10.1.2-4: Tier 1 reproductive risk assessment for wild mammals

								,^>	1 mi
			DDE)			NOAEL		. O
Crop	Generic focal species	Appl. rate [kg a.s./ha]	SV _m	MAFm	fTWA	DDD	Omg a.s./kg bw/d]	TERLT	Trigger
Propineb				8.					
Orchards BBCH ≥ 40	Small herbivorous mammal "vole"		21.7	Ţ		©25.4		3 0.6	
Orchards BBCH ≥ 40	Large herbivorous mammal "lagomorph"	1.575	4.30	1.4	Q,	5.0		3.20	
Orchards BBCH ≥ 40	Small omnivorous mammal "mouse"	//-	©2.3			, [©] 2.7		J8.0 &	
Grapes BBCH ≥ 40	Large herbivorous mammal "lagomorph"		3.3		Q533	3 07	\$16.0 ₅	4.4	.5°
Grapes BBCH ≥ 20	Small insectivorous mammal "shrew"		**************************************			2,10		7 .6	© "
Grapes BBCH ≥ 40	Small herbivorous mammal "vole"		247	7 2 ×		2 4.2		0.7	
Grapes BBCH ≥ 40	Small omnivorous mammal "mouse"		2.3			2.6		∜ 6.3	

Bold values do not meet the trigger

The TER_{LT} values calculated in the reproductive risk assessment on Tier. Develop not exceed the apriori-acceptability trigger of 5-for the small berbix trous mammal and the large perbivorous mammals scenario in both crops. Thus, a refined risk assessment for these scenarios is presented below.

Refined risk assessment

Since there is a need for refinement highlighted in the Tier 1 risk assessment, more realistic exposure parameters were considered in the risk assessment.

The geometric mean DT₅₀ for the residue decline on Oliage is 2.92 days (for the sum of propineb and PTU), according to field trials evaluated by (2014) (KCP 10.1.2.2 /01; S; 2014; M-486419-01).

This value is used to refine the MAP_m and 1-d Y_{WA} values in the reproductive risk assessment for small and large her by orough mammals.

The calculation with a moving time and on according to the minimum inter-application interval of 14 days in **orchards** is demonstrated below resulting in MAF = 1.036 and 21-d $f_{TWA} = 0.349$ which are employed in the refined FER_{LT} calculation in Table 10.1.2.5.

Residues [mg a.s./kg]

Document MCP: Section 10 Ecotoxicological studies PPB WG 70

The calculation with a moving time window according to the minimum inter-application interval of 10 days in **vines** is demonstrated below, resulting in MAF = 1.093 and 21-d $f_{TWA} = 0.352$ which are employed in the refined TER_{LT} calculation in Table 10.1.2.5.

Table 10.1.2- 5: Refined reproductive risk assessment for small and large herbivorous mammals in orchards and grapes

									- A
	Canania fa a l		DDD)			NOAEL	4	
Crop	Generic focal species	Appl. rate [kg a.s./ha]	SVm	MAFm	f _{TWA}	DDD	[mg a.s./ kg bw/d]	TER _{LT}	T rig ger
Propineb				Ö			Z.		
Orchards BBCH ≥ 40	Small herbivorous mammal "vole"	1.555	21.7	Ü		12.4		Q1.3	
Orchards BBCH ≥ 40	Large herbivorous mammal "lagomorph"	1.575	4.3	1.036	0.349	\$\frac{\partial}{\partial}\text{2.45} \tag{2.45}		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	54
Grapes BBCH ≥ 40	Small herbivorous mammal "vole"		21.70	7002	\$ 252 A	11.7			\$\frac{1}{2}\frac{1}{5}
Grapes BBCH ≥ 40	Large herbivorous mammal "lagomorph"		3.3	Ø1.093	V0.3520	198		9.0	

Bold values do not meet the trigger

TER_{LT} are ≥ 5 either already at Tier Φ (small insectivorous mammals, shrew, small omnivorous mammals "mouse") of after refinement with the measured Φ of PPB+PTU on foliage (large hervivorous mammals "lagomorph" indicating low risk without need Φ a more refined assessment.

However, a further refined evaluation remains riggered for the scenario of "small herbivorous mammals" represented by the Common vole (Microtus arvalis).

This further refined assessment is provided with a "weight-opevidence approach", based on

- 1) lower sensitivity of voles determined in targeted toxicity studies with propineb in the Common vole,
- 2) general knowledge of the biology and ecology of Common voles in the agricultural landscape.
- 3) generic field studies in orchards and vineyards, and their evaluation
- 4) non-generic studies on the Common voice
 - 4.2) field effect study
- 1) Lower sensitivity of common voles to toxic effects from propineb: The TER_{LT} calculation that resulted in the need for further refinement of the generic focal species scenario "small herbivorous mamma" vote was based on the NOAEL of 200 ppm in the rat reproduction study by et al. (1973) (baseline cossier KCA 5.6.1 /01; et al.; 1973; M-075529-01). In this study treatment at the LOAEL with 600 ppm provoked severe clinical signs in the females, which were affected by myasthenia of the hind extremities with mobility impairment: the affected animals could hardly reach their feed bowl and feed adequately. As a consequence body weights were decreased and survival was affected during the 70-day premating period.

a recalculation with DT50 of 2.92 days for the sum of propine and TU on foliage

Of the F0 generation at 600 ppm, only 14/20 female rats were still alive at the first mating and only 13/20 after the second mating. The main consequences of the toxic effects were the reduction of mating success (percent pregnant females) and of live pups per litter at the highest concentration of 600 ppm. Males are much less sensitive than female rats.

The effects on the hind limbs were also observed in other toxicity studies with rat. The lowest treatment level at which this effect was observed was 300 ppm (21.21 mg/as/kg bw/d in the females), the 90-d neurotoxicity study in rat (supplementary dossier 2004;M-066913-01).

In the second reproductive toxicity study (supplementary dossier: KCA \$6.1 02; D.;2010;M-370252-01) the test concentrations were selected in order to avoid the order of the clinical signs even after multi-generation exposure, and there were no effects of any of the reproductive parameters and pup development in both sexes in any generation.

Therefore, it can be assumed that reproduction in a sit is hindered at concentrations provoking severe systemic toxicity and affecting the possibility of adequately feeding.

Whilst high sensitivity to myopathic effects after exposure to propine has consistently been reported at moderate treatment levels in rats 200 ppm), with females being more susceptible than males, this high sensitivity has not been observed in oxicological studies with other mammals like mice (Brune et al. 1980: baseline dossier KCA 5.3.2/04 (et al., 1980; M-056652-02) or dogs (Jones 1999: baseline dossier KCA 5.3.2/04)

Also in targeted studies on the focal species common vole, these kinds of effects were not observed up to concentrations of 1050 ppm, equivalent to ca 100 ng/kg 6 w/day (supplementary dossier KCA 8.1.1.2.2 /01; 2013 M-476238-01; supplementary dossier KCA 8.1.1.2.2 /02; 2014; M-487500-01;).

Therefore it is considered appropriate to accept a lower safety factor than 5 for Common voles in reproductive risk assessments when based on the rat endpoint of 200 ppm = 16 mg as/kg bw/d, since Common voles are at least 5x less sensitive to the dominating effect driving the endpoint selection in the rat reproduction studies.

2) General knowledge of the biologo and scology of Common voles in the agricultural landscape:

Additional to the low individual toxicological sensitivity of the representative species behind the EFSA generic focal species scenario "small herbivorous mammals – vole", the Common vole is also of limited relevance as scal focal species since it typically occurs in orchards and vineyards only under particular circumstances.

These particularities of the Common vote scenario is depicted in a recent comprehensive yet targeted expert overview on the role of the Common vote in agriculture in Europe provided by (KCP 10.1.2.0/02 10.1.3. M-476622-01):

Common voles (*Microtys arvalus*) are common in Central European landscapes. They can be a major rodent post in European agriculture and at the same time they are also a representative generic focal small berbiverous remman species used in risk assessment for plant protection products.

Common coles are a component of agroecosystems in many parts of Europe, inhabiting agricultural areas (secondary habitats) when the carrying capacity is exceeded in adjacent prime habitats (grassland, multi-annual leafy crops like alfalfa). Colonisation of secondary habitats therefore typically occurs during multiannual outbreaks, when population sizes can exceed 1000 individuals

ha⁻¹. In such cases, in-crop common vole population control management has been practised to avoid significant crop damage. The species' status as a crop pest, high fecundity, resilience to disturbance and intermittent colonisation of crop habitats are important characteristics that should be reflected in risk assessment. Based on the information provided in the scientific literature, it seems justified to modify elements of the current risk assessment scheme for plant protection products, including the use of realistic food intake rates, reduced assessment factors or the use of alternative focal rodent species in particular European regions. Some of these adjustments are already being applied in some for member states. Therefore, the authors suggest to apply such pragmatic and realistic approaches in risk assessments for plant protection products across the form.

Particularly the option to consider the high resilience and recovery potential of the common volcat the population level (by eg accepting a lower margin of safet (in this scenario) is of relevance for the evaluation in this dossier.

3) Generic field study results, and their evaluation:

Using general ecological knowledge on the common volcand the results of the field study (2009) concluded that the common volc long-term population level does not depend on the individuals that may be adversely affected by various kinds of agricultural operations in modern orchards (including ground vegetation management, or intoxication after eg. rodenticide use).

Therefore the common vole does not appear as Oppical Focal Species' significantly depending on orchard habitats. In contrary, the species occur only secondary in those modern orchards with rich ground vogetation, with permanent grassland in vicinity that serves as source habitat. Even then, established populations would be expected only in gradation years. In gradation years, Common voles are typically target of active control strategies (like rodenticide use), the effects of which would largely override any hypothetical effect from exposure to propineb.

Therefore, orchards (or vine ards) with appropriate ground vegetation management are not considered as natural habitat for voles (to some extent similar to non-permanent waterbodies in the aquatic area). Only orchards (or vine ards) with well developed and permanent understorey can harbor viable vole populations, which is not typically the case in modern plantations that are protected against diseases with Propine b WO.

Therefore the risk for Common vole populations is very low in most plantations where Propineb WG70 is used. The relevance of the Common vole scenario would be limited to at most a small subset of plantations (those with well developed and permanent understorey), which are addressed in the following evaluations.

Equivalent conclusions can be drawn from field study work conducted in vineyards in Germany (e.g. **KCP 10.1.2.2** /07 :; et al.; 2004; M-298157-01): local common vole populations can be expected only in vineyards with well developed and continuous ground vegetation, but only single individuals are observed in vineyards without or with only partial ground vegetation.

For plantations with suffifciently developed ground vegetation to harbor local populations.

4) Non-generic studies on the Common vole

4.1) Population model

assessment.

evaluation was conducted with a <u>individual based population model</u> simulating population dynamics of common voles in the computer (KCP 10.1.2.2/05 2014; AP-488425-01) in this evaluation the virtual voles were forced to "live" in a landscape consisting only of a hypothetical pome fruit orchard, in order to provide a worst case ecological and exposure scenario.

In agreement with the general ecology of the species, and the evidence from the generic field studies, that sustainable vole populations can only persist in habitats with sufficiently well developed permanent ground vegetation, the ortual "model orchard habitat" had to be provided with a continuous grass layer that was only moderately managed over the season. No untreated habitat at all was included in the model, i.e full exposure of all simulated voles without any refugia or exchange with populations in untreated meas. According to the recommendations from the Modelink-Workshop, the effect assessment was based on the population density during the minimum phase in winter, since this population constitutes each time the founder generation for the following year, and thus for the sustainability of the population which is considered as main protection goal in the long-term

Over 10 years, the simulated votes in this worst case schard cenario were exposed to residues from 2 annual applications at 1.575 kg a.s./ha of propinely (interval 14 days). Daily dietary exposure was calculated for each vote according to the Tier 1 settings in the EFSA GD scenarios for "small herbivorous mammals—"vote", with the DT 30 of 2.92 days which was also employed in the refined TER_{LT} calculation for herbivorous mammals.

Based on the effect profile obtained from studies with propineb in rat, the following effects were imposed on the voles in the nodel: The effect of the myasthenia of the hind extremities was simulated assuming inneediate mortative (Effect A) under field condition if mobility is reduced.

Additional indirect effects were simulated by reducing the mating success (effect B) and the number of live paps per litter reflect C.

Various effect type combinations (A+B+C, B+C) were simulated for application scenarios of 1x, 2x or 5x application rate (2x or 5x application rate).

The high sensitivity of female rats for myopathy after treatment with propineb (effect A) has not been observed at much higher doses in female voles, and also effects (B) and (C) are considered secondary to myopathy. Therefore the effect condition combination B+C, i.e. without the mobility effect, is only slightly more elevant than a+B+C for this species of concern which is simulated in the population model. For B+C, wither the 1x, 2x nor 5x application rate led to significant effects on the local population level of the common vole (max: 5.6% at 5x).

Equall@simulating the effect condition C (reduction of litter size) alone resulted in negligible effects at the 1x, 2x and 5x application rate on the local population level of the common vole (max: 5.1% at 5x). A 5x application rate is equivalent with a TER of 5.

Difference of population density in control vs. treatment simulations (vole population modo)

Szenario	Simulated application rate	Max. difference of compared to control 1)
All effects (A, B, C), 1x	1x	1.0%
All effects (A, B, C), 2x	2x	100%
All effects (A, B, C), 5x	5x	100%
Mating & Litter size (B, C), 2x	2x	28%
Mating & Litter size (B, C), 5x	5x 🖁	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Litter size (C), 2x	2x 🔊	2.0% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Litter size (C), 5x	5 2	6° 5.4%

¹⁾ Measured on 1st of January of each year, in which applications were simulated.

Thus the population model conducted under very worst case ecological and itions, with a hypothetical isolated but permanent vole population in an archard with continuous and insufficiently managed ground vegetation, indicates that even yole populations with a sensitivity profile fully identical to the worst case species (rat) would not be a risk at the long-term population level when proprine is applied over 10 years at the maximum accommended application rate (1575 kg/ha) and the minimum recommended application interval (14 days).

Since the Common vole, the representative species behind the EFSA 3D scenario "small herbivorous species" are not sensitive to myopathy at much higher dose levels. Wan rate KCA 8.1.1.2.2 /01; 2013; M-476238-01 RCA &1.1.22/02; ; 2014; M-487560-01-1), the effect scenarios with my wathy (A) as the primary driver of the modelled population effect (100% effect at 2x \$\infty\$ 5x in all effect somerios with A) are clearly overestimating the risk to Common vole populations Also the effect B (successful mating) and (litter size after successful mating) appear to be directly linked to the poor physiological condition of the Temales at 600 ppm In et al. (baseline dossier: .; et (1973) M-005529-01) caused by myopathy and therefore of little if KCA 5.6.1701; any relevance for the Compon vole. Nevertheless, even assuming comparable sensitivity of the Common vole and rad and thus comparably required mating success and reduced litter size after longterm treatment with propineb, were only negligible differences without repercussions on the long-term population sustainability after 10 years of continuous product use at up to 5x the maximum recommended application rate.

Thus, no long-term effects on population level would be expected in common vole populations exposed at the maximum recommended application rate in an orchard scenarios, even if a worst-case exposure scenario and unrealistic worst-case effect scenario (A+B+C) is assumed.

For more realistic worst-case effect scenarios, no long-term effects on the vole population sustainability were predicted even at the maximum recommended application rate.

The difficulties to conduct this experiment reflect many of the constraints also established in the generic field study (2006) and the evaluation of by encountered in the model simulations:

- vole populations in modern orchards are untypical and unpredictable, so that the study must be conducted in a meadow as surrogate habitat
- vole population development is characterized by large inter-annual variation, so that the study originally initiated for 2013 had to be canceled after crash of the vole populations in the selected area after severe spring weather conditions including flooding.

In order to reduce the risk for another failed study attempt due to population crashes after after heavy rainfalls, the study site for the 2014 work has been re-considered and elected in a more slowy area. This ongoing study is designed to study the effect of propineb application in orchards and vine on the population level of Common voles under realistic worst case field conditions. In The interim report is provided in KCP 10.1.2.2 /06).

The final report is scheduled for end of 2014 provided in KCl 10.1.2.2/11. The aim of this field study was to investigate the potential long term effects of spray applications of Antracol WG70 (a.s. propineb) on wild populations of anall herbivoreus manimals common voles) living in managed meadows in France.

Managed meadows (4 treated plots, 4x untreated controls) were selected a study fields as surrogate for grassy ground vegetation in arable fields, or charges or vaneyards where vole populations might be exposed to propine after use as agricultural fungicide.

The application scenario was designed to represent realistic worst case exposure of ground vegetation resulting from residue deposition after a capopy of ay treatment at 2½ 1.575 kg as/ha with 70% interception and a 7-d inter-application interval.

A live trapping campaign, was carried out from May to September 2014 in order to assess the occurrence, abundance and population dynamics of common voles in the treated study fields compared to the control fields. A total of eleven trapping sessions in each of the study fields (one trapping session = two consecutive nights of trapping were carried out. The first and the second trapping session were conducted before moving and the first application, the third and further eight trapping sessions were conducted after the second of the two applications.

The trapping data were evaluated and presented as abundance values and population parameters as follows:

Abundance Values Include the following paragreters:

- Captures and Trapping Pficiency (captures per 100 trap nights)
- Minimum Number Affive (MNA)
- , « Recapture «

Population parameters include the following parameter:

- Body Oveight
- Reproductive status
- Sex ratio
- Age@tructure

Neither the abundance values nor the population parameter revealed any evidence for treatment-related differences between populations of the common vole on control or treatment fields.

Uncertainty assessment (refined risk assessment for small herbivorous mammals - "vole")

C of	Dodondialda	E-mlanation	Datamiral &	Elanati@
Sourc of	Potential to	Explanation	Potential to	Exbianation 2
uncertainty	make true		make tr o ë	
	risk lower		risk higher	
Reproductive		Critical species voles tested and		
risk assessment		found not susceptible to Myopathy at	Q.	
endpoint for voles		> 5x the dose used as productive)	
		risk assessment endpoint; no effect Q		
		of propineb on reproductive		Explanation 6
		parameter in rat at doses without		
		myopathy O C		
Exposure		In reality ochards and vineyards are	1 2	
assessment:		only populated by voles in phases of		
voles assumed to		high population density when toxic		
be present in		effects below the magnitude of		
orchard &				
vineyard		the population dynamics & O		&
Exposure	- J	Cannot be worse		0
assessment			9 3 4	
PT/PD = 1.0	~ 4			
Exposure		Geometric mean estimate with some		Geometric mean
assessment		pariability in both directions	0 ~	estimate with some
DT50 = 2.92 d				variability in both
	\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		₩ W	directions
Population level		In silico-experiment under several	(C+)	Reliability of
risk assessment		worst case as comptions (consider &	♥ }	population model
		alse specific uncertainty analysis		prediction in risk
* *		included in the model report)		assessment not yet
	J 4 (agreed
Effect field study	Q \$	Condiucted under worst case	+	Experimental
		conditions &		variability

CONCLUSION

Taking into account the elements introduced into the weight of evidence evaluation in the refined risk assessment for small herbivorous mammals (voles), the risk from application of propineb in orchards and vineyards on the population level of voles can be considered as low and acceptable.

Long-term risk assessment for mammals drinking contaminated water

The puddle scenario is relevant for the long-term risk assessment.

Table 10.1.2- 6: Evaluation of potential concern for exposure of mammals drinking water

Crop	K _{oc} [L/kg]	Application rate * MAF [g a.s./ha]	[mg a.s./ kg bw/d]	Ratio Application rafe * MAF) / NO(S)EL)	"Escape" clause No concern if catio	*/ . \\ \ \ \ \ \
			Propine	b Q &	\$ &	
Orchards a	10000 ^ь	$1575 \times 1.4 \text{ x}$ 0.3 = 661.5	1690	661.5.16 = 41.3	≤ 3.000	No concern

^a the use in orchards is considered as worst case and cover the use in graphs

RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high bioaccumulation potential could theoretically Dear Frisk of secondary poisoning for mammals if foeding on contaminated prey like fish or earthworms. For organic chemicals, a log $K_{\rm ow} > 3$ is used to trigger an in-depth evaluation of the potential for bioaccumulation.

w the trigger value indicating a very low risk of As presented in Tab. 10.1.1-7-log K secondary poisoning

Acute oral toxicity to manimals

Reference is made to supplemental dossier KCP & 1.1/0 C

			<u> </u>	
Test item	Species TG	Endpoint [mg/kg by	Source	
Propineb WG70	Rat OPCD 423 0	1950 > 2500	KCA 7.1.1./01 20 M-030439-01	00
			M-030439-01	
~				
		¥		

athe use in orchards is considered as worst case and cover the use in graphs

b the active substance propined is practically insoluble and ist sorbtion caracteristics cannot be determined, therefore a highly conservative value is used

CP 10.1.2.2 Higher tier data on mammals

The residue trial studies mentioned in KCA 10.1.2.2/01 are partly included in this Supplemental Dossier (see KCA 10.1.2.2/10). The other residue trial studies are included in the Baseline Dossier and therefore no study summaries need to be presented here.

Report:	t; ;2014;M,486413-01
Title:	Statement on residue dissipation of propineb in treated foliage of different
	plants: kinetic evaluation
Report No:	EnSa-14-0580
Document No:	<u>M-486413-01-1</u>
Guidelines:	Calculation under consideration of FOCUS guidance for DT50
	calculation , , , , , , , , , , , , , , , , , , ,
GLP/GEP:	no A A A A A A A

This statement provides a kinetic evaluation of the residues of propineb (PPB) and its metabolite propylene-thiourea (PTU) in green parts of mono- (barley) and dicovyledonous plants (kentuce, selery) that may represent food items for leaf-eating herbivorous birds of mamorals, respectively. The single-first-order (SFO) DT₅₀ of propineb derived in this evaluation are summarised below.

SFO- DT₅₀ values for propineb and results of the statistical analysis scaled error percentage (ε) and significance of the dissipation rate (t.prob) for single first-order kapetic model (PBB only)

	(2) (1)	<i>y u</i>			
Trial code	Trial description	of Copp of s	DT (ξ ε [%]	t-prob.
R01	11-2956-01 11-2956-02 11-2956-03 11-2956-04	barley green plant	2.32	31.65	0.013
R02	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	boularr another along	\$\times 2.47\$\times 2.47\$\times 1.47\$\times 1.47	15.24	0.001
R03	© 11-2956-83 &	Darley green plant barley green mant battuce kand	2.43	19.65	0.005
R04	¹ √11-29 5 6-04 ○ [*]	& barley green Dant	2.64	18.85	0.004
R05	<u>0M-103915-01-2</u>	, iograce, goda	2.17	6.811	0.001
R06 R07 R08	M-1403321-441-2		© 2.23	10.95	0.007
R:007	M-\(\psi\)3321-\(\psi\)-2 M-\(\psi\)0332\(\psi\)1-2	celety, leaf	2.68	2.390	< 0.001
R08	2 <u>103328-01-2</u>	🧳 celery, leaf 🧳	2.10	1.556	0.002
R09	SM-103930-01€2 ×	cellery, leaf	2.41	2.861	0.003
R10	M-103339-09-2	&celery, leaf	3.33	0.693	< 0.001
R11	MQ03342501-2	celety, leaf	4.54	4.077	< 0.001
		Geom. mean	2.66		
4		Median	2.47		
A .	W) .				

Only in trials R01 to R04 and R10 to R11, respectively, residue analysis was targeted on both propineb and its metabolite propylene-thiourecand thus a kinetic evaluation of the combined residue data (PPB + PTL) could also be conducted.

SFO-DT₅₀ values for propineb and results of the statistical analysis - scaled error (ϵ) and significance of the dissipation rate (t-prob) for single first-order kinetic model (total residue of PPB and PTU)

Trial code	Trial description	Crop	DT ₅₀ [days]	© [%]	torob.
R01	11-2956-01	barley green plant	2.33	31.34	0.012
R02	11-2956-02	barley green plant	2.52	b 15.46 _%	O' 0. 0 01
R03	11-2956-03	barley green plants	2.49	19.58	0.005
R04	11-2956-04	barley green plant	2.84	18.75	0.005 W
R10	M-103339-01-2	celery, leaf,	3 ⊘ 3∕	0.693	₹0.00€
R11	<u>M-103342-01-2</u>	celery, 10af	₩ .54	40 077	× 0.00P
		Geom	2.92		
		M®∂ian "	2:6	* 10	, Q ~ Q

Report:	
	;2013;M-476622-01 Common vote (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products M-476622-01-1
Title:	Common voje (Microtus arvalis) ecology and management: implications for
	risk assessment of plant protection products & & O &
Report No:	M-476622-01-17
Document No:	M_{i}
Guidelines:	-/-not applicable
GLP/GEP:	n.a. S S S S S S S S S S S S S S S S S S

Abstract:

Common voles (Microtus arvalis) are common small marginals in some European landscapes. They can be a major roden pest in European agriculture and they are also a representative generic focal small herbiyorous mammal species used in risk assessment for plant protection products. In this paper, common vole population dynamics mabitat and food preferences, pest potential and use of the common vole as a model small wild marninal species in the risk assessment process are reviewed. Common voles are a component of agroecosystems in many parts of Europe, inhabiting agricultural areas (secondary habitats) when the carrying capacity of primary grassland habitats is exceeded. Colonisation & secondary labitats occur oduring multiannual outbreaks, when population sizes can exceed 1000 individuals in . In such cases, in crop common vole population control management has been practised to avoid significant closp damage. The species' status as a crop pest, high fecundity, resilience to disturbance and intermittent colonisation of crop habitats are important characteristics that should be reflected in risk assessment. Based on the information provided in the scientific literature, it seems justified to modify elements of the current risk assessment scheme for plant protection products, including the use of realistic food intake rates, reduced assessment factors or the use of alternative focal rodent species of particular European regions. Some of these adjustments are already being applied in som EU member states. Therefore, it seems reasonable to apply consistently such pragmatic and calistic approaches in risk assessments for plant protection products across the

Report: Small mammal monitoring in pome orchards of Baden-Wuerttemberg and Thuringia ;2006;M-291201-01

Title:

RC05-021 Report No: Document No: M-291201-01-1

Gurnell and Flowerdew (1990) **Guidelines:**

GLP/GEP:

Objective:

Investigation of whether modern pome orchards colonised by small mammals, and determination of the focal small mammal species. Determination of the population dynamics of the cocal species during the growing season.

Material and methods:

A capture-mark-recapture study was conducted in two spical pome growing regions in Central Germany (Thuringia) and in Southwest Germany (Baden-Württemberg). For each region three study plots were investigated where the trapping grids were set up. The six study plots consisted of large modern pome fruit orchards directly bordered on affeast one side by a traditional meadow, where the meadows were considered 'prime habitats of common coles. In addition, two control plots consisting of orchards inside or bordered by other orchards, and thus not adjacen to meadows or any other 'prime habitat' for the compon vote. The small manufal populations were monitored using the capture - mark - recepture method between March and August 2009. The live-traps were installed every second week for two successive hights, arranged in a 5 x s meter grid area, activated in the evening, and checked in the morning. Except for shrews (legal restriction), all captured individuals were individually marked with a passive integrated transponded (PIT)

Results

The most abundant species in modern some archards was found to be the common vole. The two study regions proved to have clearly different common vote population dynamics, covering scenarios with low densities (Basen-Wijfttemberg) and high densities (Thuringia) of common voles.

Marked in dividuals								
	Raden-Wärttemberg Thuringia							
Species	Study of plot 10	Stud	Fudy plot 3	Control plot 4	Study plot 5	Study plot 6	Study plot 8	Control plot 7
Apodemus flavicolls			₹ 13	-	22	12	30	-
Apodemus sylvaticus		6 W	10	1	2	3	2	-
Apodemus agrarius	r) - 5	»,	ı	-	1	2	-	-
Apodemus aggarius Cricetus cricetus		ı	ı	-	1	2	-	-
Clethriosomys gareolus		1	9	-	ı	1	-	-
Arvicala terresiris	3 1	ı	ı	-	1	2	-	-
Microtus aryalis	27	87	55	3	319	331	281	207
Total	34	95	87	4	343	353	313	207

The common vole's colonisation of traditional meadows and modern pome orchards did not seem to depend primarily on the different habitat type but rather on ground vegetation height. Populations decreased when the ground vegetation was mowed, mulched or pastured in both habitat types. In undisturbed traditional meadow habitats recapture rates and the rate of non-adult individual were in general higher which indicates a stable population and reproduction. High ground vegetation provides shelter and better protection against predators. Therefore, traditional meadows with high ground vegetation were probably preferred when spring reproduction started. Begular mulched modern point orchards provide less protection against avian predators and consequently less shelter. Therefore, they were probably not very attractive in spring and only used on a small scale. In summer when primary habitats like traditional meadows were well occupied the modern some orchards were used as secondary habitat to a larger extent – including reproduction.

<u> </u>							o w			
		Captı	ires on st u	dy plots in			s 🖓	0.		
D. J.	\$	Study plot 1	Ş		tudy plot 2	\$ "				
Baden- Württemberg	Captures	Meadow[%]	Or Qard	Captures	Meadow[Ovchard [%] &	Captures	Madow [%] Q	Orchard [%]	
Sorex sp.1	3	100.0	\$\int_0.0_{\mathcal{O}_0}	B '	> 100.0♥	90	0 4 Ĉ	50:9	50.0	
Apodemus flavicollis	0	-~\$			100.0	Q0.0	360	©\$70.6	69.4	
Apodemus sylvaticus	9	100.0	0.0		©100.0 (~ 314	92.9	7.1	
Clethrionomys glareolus	1 🐇	100.0	0.0		1000	& 0.0 ×	38	0.0	100.0	
Arvicola terrestris	1	0.0	\$100.0 ©	.(\infty	Z'-	-0	\$-	-	-	
Microtus arvalis		94.3	5.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	925	Ø.4 S	7 170	58.2	41.8	
Total	O 49 F	29 .9	06.1	275	99.6	0. 4	255	49.0	51.0	
		Mudy plots		Study Wet 6			Study plot 8			
Thuringia	Captures	Meadow [%]	Orchard	Captures	Meadow [%] s	Orchard [%]	Captures	Meadow [%]	Orchard [%]	
Sorex sp.1		4 100.0 ®	0.0	701	100.0	0.0	-	50.0	50.0	
Apodemus flavicollis	W 43 0	90	3 .3	200	\$ 3.0	5.0	115	34.8	65.2	
Apodemus sylvaticus	3	33.3	× 66.7		100.0	0.0	3	33.3	66.7	
Apodemus O agrarius	- %)Q		3.0	100.0	0.0	1	1	-	
Apodenius sp.	4	£0.00.0	o.0_&		0.0	100.0	5	0.0	100.0	
Cricetus cricetus	<i>@1</i> /8			€ ^{©*} 2	100.0	0.0	-	-	-	
Clethrionomys glareolus		100.0	\$\oldots\text{0.0}	∛ 3	100.0	0.0	-	1	-	
Arvicola (final)) - Ž	-	2	100.0	0.0	-	-	-	
Microtus J	2741 A	.71%	28.2	964	68.3	31.7	640	54.4	45.6	
arvalis C	799	\$.0								

¹Sorex so individuals were not individually marked, due to nature conservation requirements.

Population dynamics of the dominant species, the common vole

	Common vole (Microtus arvalis)								
Investigated parameter	Habitat	Study plot 1	Study plot 2	Study plot 3	Control plot 4	Study plot 5	Study plot	Study plot	©ontrol P plot 7
First capture of common vole	orchard	July 27 CW ¹ BBCH ² 74	June 25 CW BBCH 72	June 25 CW BBCH 72	June 23 CW BBCH 72	April 14 W BROH 54	April \$\circ\$ 14CW BBCH\(\frac{1}{2}\circ\$3	April 14 ©W BBCH 53	March 212 CW BBCH 90
	meadow	May 21 CW	May 21CW	May 21	- A	March 12 ØW	Morch 2 CW	June 22 CW	W -
Time of population	orchard	no	no (July \$27 CW BBCH 4		Study 30 CW BBCW >70	July 30,5 W BB@H >74	Haly 30 CW BBCH	July 30 CW BBCH & \$>74
increase	meadow	August 33 CW	Max 21 EW	July ^ 27 CW		May SCW	June 22 CW	Suly 28 CW	V -
Maximum density	orchard	4 July 27CW BBCH 74©	Q9 June 25 CW	52 Awy 27 CW BBCH 74	July O 29 CW BB H 274	August 30CW BBCH O	286 0 August 34 0 BB(t) >74	Appust **270 Appust **2°CW **BBCH **>74	178 August 34 CW BBCH >74
individuals/ha	meadow %	August 33 CW	254 June 236 W	75 August 6		258 June > 24 CW	337 August 32°CW	369 August 34 CW	-
Recapture [%]	orchard		Ø 0	500	_ O 0	36	\$ 52	44	40
Non adult [9/.]	meadow orchard	~ 0 , Ô	46 Q	19		32 18 Q	52 9	8	- 11
Non-adult [%]	meadow \	48()	w Ž	15 7	<i>S</i> - 2	335	18	25	-

positive correlation between ground vegetation height and population density								
₹	H-1-2	Baden Würt	temberg 🥻	Thur	ingia			
C	Habitat	R N	y op ~	R	p			
Spearman rank	of hard	1 69 %// 1/1/-	< 0.00	0.6532	< 0.001			
	Imeado 🔎	0,3 9	~ O. O.	0.6391	< 0.001			

¹ CW = calendar week

Common volopopalations require sufficient ground vegetation (cover, height) as feature in permanent primary habitats. Hence, Common vole populations in agricultural landscape characterized by modern pome orchards are probably not at risk by plant protection products because the population resources are located mainly in primary habitats like e.g. meadows.

the **B** or stwirtschaft, **B** undessortenamt und ²BBCH = Plant stage codes defined Chemische Industrie

Report: ;2009;M-355596-01

Title: Field study on small herbivorous mammals in modern pome fruit orchards

Evaluation in support of regulatory submissions

Report No: 2009/1100344 Document No: M-355596-01-1

Guidelines: not applicable (expert evaluation)

GLP/GEP: n.a.

Objective:

This expert evaluation evaluates in detail, and in the context of the general biology and ecology of the species, the results of the field study KCP 10.1.2.2 /03 with regard to common vole trappings in pono fruit or charge and adjacent habitats.

The objective was to evaluate to which extent the study results corroborates the view that orchards with managed ground vegetation are considered as secondary habitats for the common vole, whilst source populations of the species live in primary habitats characterized by perential vegetation over. Prime habitats for the common vole are considered to present a minimum permanent vegetation height of ca. 20 cm. Secondary vole habitats can be occupied during high phase of the population cycles, but populations there regularly decrease of even go extinct after vegetation management (moving, harvest) and during the low phases of the vole population cycles. The prime habitats harbor permanent vole populations and hence are essential strongholds (source habitats) for the survival of common vole populations.

Evaluation:

The field study **ECP 10.1.2.2** 103 gradation year and also the secondary habitate were increasingly copulated over the season. The spatial/temporal analysis of the trapping data was considered to support the hypothesis that the voles trapped in the orchards were in fact disperser from the surroundings, colonizing the orchards during phases of good ground regetation cover. Population density, proportion of recapture and the proportion of non-adults are recasures for corrying capacity, stable populations and reproduction. These parameters always scaled higher for the meadows than for the orchards, which indicates the relevance of the meadows to prime habitat.

Conclusions:

The population sources of common voics (*Microtus arvalis*) are located in prime habitats like the traditional meadows evaluated in the field (**RCP 10.1.2.2** /03 ; 2006; M-291201-01). Common voices day occur in modern orchards as secondary habitats during summer when the following factors combine: (i) gradation year (every 3 - 5 years), (ii) inconsistent orchard ground vegetation management with resulting periods of high vegetation, and (iii) proximity of orchards to prime grassland habitats, which all combined for the plots in Thuringia.

Using ecological knowledge on the common vole and the results of the field study it can be concluded that the common vole long-term population level does not depend on the individuals that may be exposed to adverse effects of whatever kind (including also mowing or other kind of vegetation management, intoxictation after rodenticide use), in modern orchards.

ink habitat) where adation years Therefore the common vole does not appear as typical 'Focal Species' for orchard uses, because from its ecology it would only occur secondary and only in those modern orchards (sink habitat) where adjacent permanent grassland serves as source habitat, typically expected only in gradation years

			((*))	- * */	w)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Report:	d;)9;M ₂ 355944-01		
Title:	Letter of Access for C	Generic Behavio	ural Ecology	Data: Study Rep	oct BASI	PocID\$
	2006/1039467 and Ev	aluation Docum	ent BASF D	\$1D 2009/1100	394 - Gro	ouping: Pome @
	fruit orchard, foliar st	ages: - Small ma	ammal monito	ring in modern	pome Tru	it orchards of
	Baden-Wuerttemberg					
	modern pome fruit or	chards: Eyaluati	ôm in support	of regulatory su	lberission	isy W
Report No:	M-355944-01-1	o'	' 🐥 a			4
Document No:	M-355944-01-1	4 6	, o Q		Ö	
Guidelines:	-/-			A . Ô	×L 1	
GLP/GEP:	n.a.		v, k			

Report:

Propineb: Population-level risk assessment for the common vole - Use in Title:

orchards in Europe

Report No: ⅓068∌**B**CS ≪ Document No:

Guidelines:

Opinion on good modelling practice)

GLP/GEP:

Objective:

In order to connect the risk assessment of the individual level (TER calculation) to the protection goal for higher tier risk assessment of "no visible mortality and no long-term repercussions for abundance and diversity" (EFSA 2009), a population devel risk assessment has been conducted for the substance propineb with an individual based population model for the Common vole (*Microtus arvalis*).

Material and methods:

Simulations were conducted with the copulation model for the common vole (Microtus arvalis) implemented in the commercial software COLARIS (software version 1.5, common vole model version 2.0, WSC Scientific Embili. This model is an updated version based on the model described (2013 2). In this publication a detailed model description following the ODD protocol (Grimm Wal., 2006³) is given together with a description on the calibration and validation process as well as sensitivity analyses?

^{2013.} From home range dynamics to population cycles: validation and realism of a common vole population model for pesticide risk assessment. Integr. Environ. Assess. Manag. 9: 294 – 307

³ Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand T., Heinz, S., Huse, G., et al. 2006. A standard protocol for describing individual-based and agent-based models. Ecol.

Population dynamics of the common vole emerge due to the interaction of the individual voles which each other. The sublethal effect measured on individual level in rats can be directly integrated into the model, so that the individual voles are affected according to their dose calculated according to the standard EFSA approach. Due to the effects on individual level the population dynamics change and effects on population level over time is the outcome of the model. As a simulation end point population density on 1st of January was used to compare control populations, and treatment populations, as recommended in the proceedings of the MODELINK WORKSHOP, case study group "wild mammals" (Schmitt et al. in press 4).

The population modelling approach was conducted following EFSA "Scientific Opinion of good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products" (EFSA Journal 2014;12(3):3589) and a summary table of the model development, testing and regulatory question is provided with the report acrequested.

All simulations were conducted in a very worst-case exposure scenario? only treate Dorchard without refugia, small landscape size of only 5 ha, no immigration considered. Simulations were conducted for 1x, 2x, or 5x the application rate of porte fruit orchards (2x 2575 kg a.s./ka; 14 4 interval, 70% interception), in order to provide different margins of safety" in this risk assessment.

Based on the effect profile obtained from studies with propined in rat, the following effects were imposed on the voles in the model. The effect of the myasthenia of the hind extremities was simulated assuming immediate mortality (Effect A) under field condition it mobility is reduced. Additional indirect effects were simulated by reducing the matrig success (effect B) and the number of live pups per litter (effect C). For all these effects a dose response relationship was established and within the model the three different effects are imposed on the individual voles based on the TWA of the ingested dose.

Expected effects were calculated based exposure from Petary intake according to appendix G of the EFSA guidance (2009).

Results:

Combining all worst-case effect conditions (A+B+C) no impacts on population dynamics of the common vole were observed for the proposed application rate (1x). Pronounced effects on the population viability under these conditions were observed after application at 2x or 5x the intended application rate, demonstrating the sensitivity of the model when severe toxic effects were imposed. However, these effects on mobility were not observed in targeted experimental studies with the common vole as the species of concern (KCA-8.1.1.2.2 /01; 2013; M-476238-01, KCA-8.1.1.2.2 /02)...; 2014; M-487560-01): no effects on mobility (and also no mortality) were observed following 4 weeks of exposure to an average dose of ca. 100 mg/kg bw/d.

Mødel. 198: 115-126.

Population-level effects on small mammals. Case study 2, Modelink workshop,

in press.

Therefore the effect condition combination B+C, i.e. without the mobility effect (which is translated into mortality in the model), is clearly more relevant than A+B+C for this species of concern which is simulated in the population model.

However, also effects B or C are considered secondary to the myopathy in the rat studies underlying the effect parametrization. For B+C, neither the 1x, 2x nor 5x application rate led to significant effects on the local population level of the common vole (max: 5.6% at 5x). A 5x application rate is equivalent with a TER of 5.

Equally, simulating the effect condition C (reduction of litter size in rat studies along resulted in negligible effects at the 1x, 2x and 5x application rate on the local population revel of the common vole (max: 5.1% at 5x). A 5x application rate is equivalent with a TER \$65.

Difference of population density in control of treatment simulations

Szenario	Simulated application rate Max difference compared to
	Control ¹
All effects (A, B, C), 1x	
All effects (A, B, C), 2x	
All effects (A, B, C), 5x	\$x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Mating & Pups (B, C), 2x	©2.8%
Mating & Pups (B, C), 5x	510 510 510
Pups only (C), 2x	2x 2x 2.0%
Pups only (C), 5x	5x 5x 5x.1%

¹ Measured on 1st of January of sach year, in which applications were simplated.

Conclusion:

It could be clearly demonstrated that no long-term effects on population tevel would be expected in common vole populations exposed at the maximum recommended application rate in an orchard scenarios, even if a worst-case exposure scenario and unrealistic worst-case effect scenario (A+B+C) is assumed for more realistic worst-case effect scenarios, no long-term effects on the vole population level were predicted even at 58 the maximum recommended application rate.

Report:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	488499-07
Title:	Non-GOP interim report - Proliminary results of field study to monitor the
×,	potential effects of a fungicide on small mammal populations in meadows in
4	Central Enrope Q S
Report No:	N R 12238-Y & S
Document New	
Guidelines	No gaideline at the time of study conduct (recommendations in EFSA GD
GLP/GFP.	Ş 2999) Ş Y
GLP/GEP:	Yes (study is conducted under GLP, however interim-report non GLP)

Objective

The objective of the study is the evaluation of potential effects of spray applications of Antracol WG70 on Common vole (*Microtus arvalis*) populations based on the comparison of live trapping data from treated plots and untreated control plots in meadows. This interim report provides an overview of

the initial phase of the study, i.e site selection and first application of the test item. The study protocol is included as Appendix to the interim report.

Material and Methods:

Study site

Study site selection was piloted in the federal states Thuringia, Baden-Württemberg, Hesse (in Germany), and the provinces Alsace (France), Ardennes Luxembourg, and Luxembourg Belgium. Based on pre-trapping in spring 2013 and 2014, a suitable study site was identified in the Asace.

Methods

The work included searching for collaborating farmers, live trapping of small maximals to check for local distributions of common voles on coveral study plots and application for all necessary permissions needed for the realisation of the study trapping, amenal marking product applications on meadows etc.).

'Ugglan' multiple capture live traps were used for live trapping. Each trap was baited with rolled oats which served as food for captured animals. Between 20 and 80 traps were placed per potential study plot. Traps were activated for trapping in the evening and checked in the morning. Pre-trapping was performed in spring 2013 and spring 2014.

Results:

A total of six study sites were examined for the Casibility of a long-term effect study of Antracol WG70 on populations of the compion vote in meadows. The suitability of the study sites comprising different parameters are summarized in the table below.

Suitability of study sites for a Common vole long-term effect study with Antracol WG70

Sultubility of styley sit	~	, 8,							
	Potential study sites avestigated for suitablity								
Parameter		Baden Württemberg (Germany)		XIsace (France)	Ardennes (Luxembourg)	Luxemburg (Belgium)			
Collaborating farmers in 2013 or 2014		Yes	Y Yes	Yes	Yes	No			
All permistrons in place	YesQ Y	Yes	Yes	Yes	Yes	Yes			
Population size of common voles	Moserate in spring	LQw in spring 2014	Low in spring 2014	High in spring 2014	Low in spring 2013/14	n.d.			
Overall suitability of the study site in 2013 and or 2014	Fot &	Sot suitable	Not suitable	Suitable in 2014	Not suitable	Not suitable			

Population compsed in June 2013 after heavy rain falls throughout Central Europe (Study was cancelled); n.d. Foot determined Belgium was just an option in 2013

The first application of the test item was conducted on 13 June 2014 by the Test Facility in cooperation with local farmers in compliance with GLP in the study site of Alsace (France). The actual application rate was within +/- 5% of the nominal target rate.

Report:

Title: Small mammals in vineyards of southern Germany basic data for ro

assessment of pesticides

Report No: M-298157-01-1 Document No: M-298157-01-1

No guideline at the time of study conduct to **Guidelines:**

2009)

GLP/GEP: n.a.

Objective:

The objective of this poster published presented at the SETAC Europe Annual Meeting in Lille 2005 was to summarise the qualitative and quantitative evaluation of a study (KCP 101.2.2/08 et al.; 2003; M-237095-01-2; German language) conducted on the suffill manmal cauna inhabiting vineyards in southwestern Germany with a particular focus on the occurrence of horbivorous species (voles).

Materials and Methods:

A capture-mark-recapture study has been conducted between April and Aug trapping. Three study sites were selected which differed in ground cover;

- (I) a vineyard devoid of any ground cover
- (II) a vineyard characterized by grassy strips alternating with bare soil (
- (III) a completely grass-covered untended whey are

Traps were set in an area of 0.25 ha in the centre of the vineyards. A total of 15 trapping series consisting of 9600 trap units was conducted. At every study site traps were set once a month for four were, marked individually at the first catch. days. Trapped small mammals

Results:

During the investigation period 53 small mammals were detected belonging to 2 species of 2 different families: common vole Micronis argalis-Arvicologae) and wood mouse (Apodemus sylvaticus-Muridae Common were only recorded in the vineyard (III) in densities reflecting a local population (28.8 Incha). This vuneyard was characterized by an untended grassy ground cover on 100% of the area.

No voles were ought in the wheyard (1) which did not possess any contiguous soil cover vegetation (0 voles/ha), and only ondividual (0.8 Ind/ha) in the vineyard with grass strips alternating with bare soil. Wood mice were aught on every vineyard in low numbers of 1 to 4 individuals per site and probably comprised also dispersing individuals since the recapture rates proved low.

Trapping results of comman vole and wood mouse at the three study sites (average of 5 trapping series)

Site	Coverage of ground vegetation	Common vole		Wood mouse	
		Individuals	Population	Individuals	Population
		[#]	[Ind./ha]	[#]	[Ind./ha]
(I)	No area with contiguous soil cover vegetation	0	0	0.8	3.2

					Q° (°
(II)	Grassy strips alternating with bare soil	0.2	0.8	0.8	3 .2
(III)	Full area with untended grass cover	7.2	28.8	1.6	6,4

Conclusion:

Southwestern German vineyards without full area ground vegetation vover represent a suboptimal habitat for common voles since population densities proved well below the densities found in other habitats. The existence of an untended grass cover in vineyards is considered to be caucial for the regular occurrence of small mammal populations, particularly vole populations.

Report:	KCP 10.1.2.2 /x8: vet al 2003; 4-237045-01-4
Title:	Kleinsäugercoene en sjid Vestdetijscher Weinberge V Ø S © n.a. (Carolineg ØY: 1914) 96). S S S S S
Report No:	n.a. (Carolinea 07: 19196). 9 5 5 5 5 5
Document No:	<u>M-237093-074</u>
Guidelines:	
GLP/GEP:	No S S S S

Background:

This publication provides more detailed information (material methods, results and discussion) on the study behind the poster subnified as RCP LOL 2.2/06 (material methods, 2004; M-208157-64).

The information relegant for the examination in this dossicos included in the summary to KCP 10.1.2.2/06 and therefore not repeated here. The original publication is primerily submitted to permit tracking poster and translation backs to the content of the original sublication.

For EU review the study translated in Edish is provided, see Study mentioned below. This German original can be provided upon request.

Background

This in-house translation aims to provide access for non-German language readers to the more detailed information (moterial, methods, results and discussion) on the study behind the poster submitted as KCP 10.1.2 2707, et al.; 2003; M-237095-01-2.

The information relevant for the evaluation in this dossier is included in the summary to KCP 10.1.2.206 et al.; 2004; M-298157-01 and therefore not repeated here. The document is primarily submitted in order to permit cross-check of the poster with the original publication (in German language).

Determination of the residues of propine in/on parley after spray application of antracol in northern France, Germany, Spain and Italy 11-2956
Report includes Trial Nos:

11-2956-01

11-2956-02

11-2956-04

M-443162-01-1

EU-Ref: Council Directive 9/414/TEC of July (5, 199),

Annex II, part A, section 6 and Annex III, part A. section 8 Report:

Title:

Report No:

Document No(s):

Guidelines:

Annex II, part A, section 6 and Annex III, part A, section 8
Residues in or on Treated Products Exact Control of the Control o

EC Guidedance working document/1029/51/95 rev.5 (1997-07-22) US EPA OCSPP Guideline No. 868 150000 UDB

US EPA OCSPP Grideline No. 860.150@SUPP

GLP/GEP:

Summary:

The purpose of the stody 11-2956 was to determine the magnitude of the relevant residues of propineb (propineb (determined via CS2 and via PDA) and PTD) in on barley (green material) after one spray application with Antracol (WG 70% a water-dispersible granules formulation containing 70% w/w propineb. The study included four supervised residue mals conducted in Northern Europe (northern France and Germany) and Southern Forope Spain and Italy) during the 2011 season. The actual Dates of experimental works February 23 to April 09, 2014 in the following Table. This data reflects the intended application application data are

Application summary

						Applic	ation		
Trial no. Country	Formulation	Appl. mode	Treated area/ Reference	No. of appl.	Growth stage (BBCH code)	Test item rate (kg/ha) ₄	Water Cate CL/ha)	a.s. Z	Appl. © Rate (Kg as://ha)
11-2956-01	Antracol	SPI	GF	1	25	2.0 🖔	300 300 €	propineb	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
northern France					Š		(
11-2956-02 Germany	Antracol	SPI	GF	1	29	, O.O.	300	propineb	\$1.4 \(\text{\$1.4} \)
11-2956-03 Spain	Antracol	SPI	GF		30	2.00	300	Propineb	14
11-2956-03 Italy	Antracol	SPI	GF \$	1 (300	\$\frac{1}{2}.0 \times	300	propineb	√1.4

a.s.: active subs	tance, Appl.: Application, SPI: Spraying, GM: Whole Prea										
		, (A)									
The analysi	The analysis were conducted according to the following analytical method: Summary of analytical method of teria to this study.										
1110 0111011	The unarysis were conducted according to the photograph and yellow sections of the section of th										
Summary	of analytical method ofteria to this study, 🔑 🧬 🔑 😜	<i>i</i>									
		//									
Active	Analytes	Measurement									
substance		oprinciple principle									
		principie									
propineb	Propineb Q 099 0 0 0.06 0	HPLC-MS/MS									
propineb	(calculated as (S_2))										
propineb	Propined by 04099 G 0.12 0.12 S										

a) fortified as propineb, determined, calculated and expressed as CS

Propineb is determined via PDA (expressed as propine) and via CS (expressed as CS2) according to method 01099. The metabolity of profineb PTU is determined as PTU (expressed as PTU) according to method 01099.

The average recoveres were within the acceptable range of 70 - 110%. RSD values are below 20%. nent residues found in the The level of residues of propioeb (determined via CS₂ and via PDA) and its metabolite PTU in the treated sample are summarised in the table below. Some recoveries for propineb (determined via CS_2) were corrected for the apparent residues found in the control samples. Results were not corrected for concurrent recoveries.

Residue summary in/on barley

				Resid	lues	
				a.s. pro		
Trial No.	Sample	DATE	B 1 1 / 1 ~= 1	Propineb (via CS ₂)		Propineb @ia PDA
Country	material	DALT	Propineb (via CS ₂)	determined and	determined	determined as
5 5 5 5 5 5			determined and		and expressed	
			expressed as CS ₂ *	propineb**	as PTU	expressed as proping
		0	24	3 45	№ 0.21	1 35 S
		1	20	38	0.27	@ \$33 V
11-2956-01		2	17	32	0.19	Q 36 O
Northern	Barley green	3	3.0	5.7	© 0.08	₹ 7.9° %
France	material	5	2.5	4.7	0,07	Q4.4 ~ V
		7	1.8 🖔	3,34	*Q.08	3.3
		10	0.64	01.2	0.03	\$ 1.4 c
		0	0.04	23	0,16	
			12 Y	7 2	V (// (V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		1	12		0/20	18 2
1-2956-02	Barley green	2		16	0.26	15
Germany	material	3	6.4	127	0.19	Š
		5	§ Q 1.3 Q		Q07	2.3
		7	0.81	7 LJ1.5	0.06 0	1.6
		10	©#4 &	© 0.83 × 3	y 0.0 3 0	0.86
	٠,	9	617	233.	2 0,23 ×	33
	J.,	1	7.6	013 (0.15	15
		20	\$ 5,8 S	11 °	0.26	20
11-2956-03	Barley green	43 , E	5.6		9 ,16	13
Spain	material (5 4	3.6	× × × × × × × × × × × × × × × × × × ×	0.19	8.9
		70	0 48	3.4	0.10	3.4
		10 0	7 2	1.0	0.03	1.6
		0	16 b)	31	0.22	37 ^{a)}
ĘĢ (, Q)	1 0		20	0.17	17
* %		1		20 20	0.17	22
1-2956-04	Barley green	- 07	8.90	I(())	0.33	15
Italy	material Q	3	8.90° 0 62°	Q 17		
		50		© ^y 8.1	0.35	9.8
4	4		2.3 &	4.3	0.19	5.2
		10	2.2	4.3	0.26	4.7
DALT= Da a	fter last treatmest, a	10 J	2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.3	0.26	4.7
* Factor for con	iversion of CS2 into	propineb: R	estdue CS X 1.903			
b) mean of dupli	icate analyses (35.9	and 37. Ong	g/kg), S			
1	,					
Á			***	**		
Ü			•			
25	Ž A					
A.						
		*				
\bigcirc						
			ubstance due C 1.903 / ****	**		

Report: KCP 10.1.2.2/11 2015; M-513857-01-1 GLP field study to monitor potential long-term effects of Antracol WG Toon Title: M-513857-01-1
No guideline at the time of study conduct (recommendations in FSA (47)
2009)
-Yes Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

Aim

According to the Regulations (EC) 1107/2009 the possible adverse effects of crop protection products on wild vertebrates have to be assessed. Effects afterdepending on the inherent toxicity of those products and their exposure to wild vertebrates, as well as on the biology of those species.

The aim of this field study was to investigate the potential long-term effects of spray applications of Antracol WG70 (a.s. propineb) on wild populations of small herbiverous mampais (common voles) living in managed meadows in France

Managed meadows were selected as study field as surrogate for grassy ground vegetation in arable fields, orchards or vineyards where vale populations might be exposed to propine after use as agricultural fungicide.

The application scenario was designed to represent realistic worst case exposure of ground vegetation resulting from residue deposition after a canopy spray treatment at 2x01.575 kg as/ha with 70% interception and 47-d inter-application interval.

Material and Methods 🚕 🔎

The study was conducted on eight study fields in the Alsace, France. The meadows were selected based on results from explorative vote trapping sessions conducted in spring 2013 and 2014 (KCP) 10.1.2.2 \(^{9}07\).

The size of the study fields ranged from 0.6 to 1.1 ha. Four study fields (treatment) were treated with Antracol WG70 (a.s. propines) at an application rate of cominal 472.5 g a.s./ha in a spray volume of 200 L/ha according to Good Agricultural Practice (GAP) and in compliance with Good Laboratory Practice (GLP). Applications were conducted wice. The first application on 13 June 2014. The second application was carried out on 20 June 2004. The four remaining study fields served as control and were treated with 2000 L/ha of water (control). Control and treatment fields were selected pairwise in vicinity to each other to avoid spatial effects of microclimatic differences, predation, structures of meadows, vegetation, surrounding, etc.

The preparation of all eight study field used before application was similar in terms of fertilisation and management. The freids have been moved between 02 and 06 June 2014 before the applications. A live trapping campaign was carried out from May to September 2014 in order to assess the occurrence, abundance and population dynamics of common voles in the treated study fields compared to the control fields. A total of eleven trapping sessions in each of the study fields (one trapping session two consecutive nights of trapping) were carried out. The first and the second trapping session were conducted before mowing and the first application; the third and further eight trapping sessions were conducted after the second of the two applications.

A total of 80 Ugglan multiple-capture traps per study field were used to live-trap common voles. The captured voles (≥ 7.0 g) were individually marked with Passive Integrated Transponders (PITs) and released at the site of capture.

released at the site of capture.

The trapping data were evaluated and presented as abundance values and population parameters as follows:

Abundance values include the following parameters:

Captures and Trapping efficiency (captures per 100 trap nights)

Minimum Number Alive (MNA)

Recapture

Population parameters include the following parameters:

Body weight

Reproductive status

Sex ratio

Age structure

The study endpoint was the evaluation of possible long-term offects on vote populations; therefore the calculation of the "Minimum Number Alive" (MNA) was considered to be a most useful parameter. calculation of the "Minimum Number Alive" (MNA) was considered to be a most useful parameter. The MNA is an estimate based on the sum of all individuals known to be alive during a specific trapping session. According to this methodology an individual is known to have been alive during a specific trapping session if it was captured either during that session or both before and thereafter. The MNA can be considered as an Enumeration estimate and provides a conservative value for a population size which can be used to describe the dynamics of that population.

To assess whether the reatment with Antracol W570 had any offect on populations of the common Trapping Data (Tab. St)

The trapping data are presented as captures and trapping efficiency (captures per 100 trap nights) over the Field Phase (1760 trap nights).

Trapping data presented as number of captures and as trapping efficiency

	Study field no.						To	<mark>tal</mark>	
	$\mathcal{L}_{(C)}$	$\sqrt[3]{3}$ (T)	4 (C)	5 (T)	6 (C)	7 (T)	8 (C)	Treatment	Control
Captines 383	412	714	<mark>728</mark>	506	443	<mark>471</mark>	443	2074	2026
Traipping 21.8	23.4	40.6	41.4	28.8	25.2	26.8	25.2	29.5	28.9

(T = Treatment; C = Control)

Over the study, a total of 4.100 common vole captures was recorded within the treatment and control fields.

Minimum Number Alive (MNA) (Fig S1)

The Minimum Number Alive (MNA) is presented as minimum and maximum range for control fields (grey shaded) and the arithmetic mean for the control and treatment fields.

Over the trapping period the MNAs show a parallel population development in treatment and control with the treatment fields starting at a lower level than the controls (slightly outside the control range). This relative difference changed not remarkably during mowing and the two applications Following trapping session 6 (calendar week 29) until the end of the capping period the initial difference is compensated and the treatment populations remain within the range of the controls fields. The repeated measures ANOVA reveals no significant differences in population dynamics between the treatment and control fields over the course of the whole trapping period (F = 0.9, F > 0.05), during trapping session F = 0.9, and during trapping session F = 0.9, F =

Figure SQ: Minimum Sumber Alive (MNA) during the Field Phase in treatment and control

(AM = Arthmetic mean; M Mowing X1 = First Application; A2, Second Application; Calendar week (CW) 18 = Trapping Session (TS) 1; CM 21 = TS 2; CW 26 TS 37 stc.)

Recapture [%

The percentage of recaptured males and females are comparable for control and treatment fields (Table 32). In general the percentage of recaptured females is slightly higher than the percentage of recaptured males.

	T ₁	reatment fields (n =	Control fields $(n = 4)$			
Sex V	Capture [n]	Recapture [n]	Recapture [%]	Capture [n]	Recapture [n]	Recapture [%]
Males		230	35.1	623	234	37.6
Eemales	901	<mark>424</mark>	<mark>47.1</mark>	<mark>840</mark>	406	48.3

Fig. S2 and S3 indicate that the percentage of recaptured males and females is on a similar high level in treatment and control over the study.

Figure S2: Captures and recaptures of males in treatment and control

Figure S3: Captures and recaptures of females in treatment and control

The recapture of individual common voles over different phases of the trapping program is shown in Tables Sto So. A. ...

The percentages of the total recaptures reveal no indication of an adverse effect.

Table S3: Individuals during TS 1 – 2 (period before application) and recapture during TS 3 – 4 (period shortly after application

Sex	Treatment/ Control	Individuals [n] during trapping session 1 – 2	Recaptured individuals [n] during trapping session 3 –	Recaptione [%]
Males	Treatment	34	0	₹ <mark>0.0</mark> ¸ ₹
wrates	Control	<mark>75</mark>	2 🔏	2.7 0
Females	Treatment	<mark>40</mark>	3 4	
remates	Control	<mark>62</mark>		4.8 V
Total	Treatment	<mark>74</mark>	3 × 3	4. J
Total	Control	137	\$\frac{1}{2}\cdot \frac{1}{2}\cdot \frac	, <mark>ik</mark> C'

Table S4: Individuals during TS 1 – 2 (period before application) and occapture during TS 3 – 11 (whole period after application)

Sex	Treatment/ Control	Individuals [n] Auring trapping Recaptived individuals [n] during session 1 – 2 rapping session 0–11
Males	Treatment	
wrates	Control	54 7 7 7 7 7 6 6 5.3
Females	Treatment	
remates	Control	
Total -	Treatment	
	Control	337 Ø 9 388

Table S5: Individuals during TS 3 4 (period shortly after application) and recapture during TS 5 -41 (period towards the end of the Field Phase)

Sex	Treatment/ Control	Individuals in during trapping	Recaptured individuals [n] during trapping session 5 – 11	Recapture [%]
Males	Treatment () 4	<mark>44.4</mark>
Maies	Control		₩ <mark>11</mark>	<mark>64.7</mark>
Females	Treatment &	2 2 13 2	10	<mark>76.9</mark>
remates	Control %		13	50.0
Total	Treatment		14 2.	<mark>63.6</mark>
1 otal	Control O	\$\frac{\cappa_1}{\chi_2}\frac{\chi_2}{\chi_3}\frac{\chi_3}{\chi_2}\chi_2	24	55.8

Table S6: Individuals during TS 3 – 6 (period shortly after application) and recapture during TS 3–11 (period rowards the end of the Field Phase)

Sex	Treatment/Control	Individuals [n] during the pping	Recaptured individuals [n] during trapping session 7 – 11	Recapture [%]
Mala	Treatment O	38	13	34.2
Males	Control		<mark>20</mark>	32.8
Females	OTreatment S	, ₃₈	<mark>26</mark>	<mark>68.4</mark>
remaies	Control O	\$ \$9 \$9	<mark>37</mark>	<mark>41.6</mark>
T-4-1	Treatment	♥ 76	<mark>39</mark>	51.8
Total 🗸	Control	150	<mark>57</mark>	38.0

Overall the <u>abundance values</u> (trapping data, MNAs and recapture rate) did not reveal any evidence for treatment related differences between populations of the common vole on control and treatment fields.

Population parameter

Body weight (Fig S4 & S5)

The body weights of individual adult males and females are presented as minimum and maximum range for control fields (grey shaded) and the arithmetic mean for the control and treatment fields

Application; A2 = Second Application; Calendar week (CW) 18 =

uge S5: Body weights of adult females in treatment and control

= Arithmetic mean; M = Mowing; A1 = First Application; A2 = Second Application)

The mean body weights in the treatment fields are very similar to those in the control fields. The only instance of a seeming discrepancy between the average body weight of adult males in calendar week 26 (Trapping session 3) is based on a very low number of trapped individuals (Control: two individuals; Treatment: one individual).

Reproductive status (Fig. S6 & S7)

The reproductive status (as percentage of active males and females) is presented as minimum and maximum range for control fields (grey shaded) and as overall values for the control and treatment fields in.

Figure S6: Active males [%] Juring the Field Phase in treatment and control

(M = Mowing; A1 = First Application; A2 = Second Application; Capendar week (CW) 18 = Trapping session (TS) 1; CW 21 = TS 2; CW 26 = 53; etc.

Figure S7: Active females [%], during the Field Phase in treatment and control

(M = Mowing; A1 = First Application; A2 = Second Application)

The percentages of active mades and females calculated for the treatment fields is within the range of the minimum and maximum of the control fields (except slightly higher in trapping session 8, CW 33 for males, and in trapping session 10, CW 37 for females).

No significant differences between the percentages of active males and females between treatment and control fields can be detected (repeated measures ANOVA: Male: F = 2.5, p > 0.05; Female: F = 1.7, p > 0.05).

Sex ratio (Fig S8)

The percentage of females and males in the treatment and control fields is summarised in Fig S8.

Figure S8: Percentage of females and males on treatment and control

No differences were detected between reatment and control (Mann Whiteley Usest; 100 0.05)

Age structure (Fig. S9)

The number of adults and juveniles in the treatment and control fields are summarised in Fig S9.

Juveniles were found during the whole study in the treatment fields in comparable numbers to the control fields.

Figure S9: Number of adults and juveniles during the Field Phase in treatment and control

Overall the population parameters (body weight, reproductive status, sex ratio and age structure) of the current study did not show any evidence for treatment related differences between populations of the common vole on control and treatment fields.

Conclusion

No discernible long-term effect on wild populations of the common vole living in managed fields as surrogate for grassy ground vegetation in arable fields, orchards or vineyards) in France was found during the Field Phase of the current study, following two spray applications of Antracol WG (a.s.) propineb) at an application rate of nominal 472.5 g a.s./ha in a spray volume @ 200 L/ha according to Effects on other terrestrial vertebrate wildlife (reptiles and amphibians) Good Agricultural Practice (GAP) and in compliance with Good Laboratory Practice (GLP).

CP 10.1.3

Information on effects of propineb on reptiles or simphibians is not available. No applications of supplies and apphibians is not available, no misk assessment schemes are established so far. Information on effects of propineb on reptiles or amphibians is not available. No guidelines for stodies

CP 10.2 Effects on aquatic organisms

The risk assessment is based on the current Guidance Document on Aquatic Ecotoxic Togy. SANCO/3268/2001, rev 4 final, 17 October 2002. Some implications of the new Aquatic Condance Document (EFSA Journal 2013, 11(7):3290, 268 pp. doi:10.2903/j.efsa.2013@290), which is not set notified, have been taken into consideration as well.

Only endpoints used for the risk assessment are presented here. For an overview of all available endpoints on propineb and its metabolites please refer to the respective section of the MCA document.

Risk assessment for aquatic organisms

Ecotoxicological endpoints used in risk assessment

Table 10.2- 1: Endpoints used in risk assessment

Endpoints used in risk assessment

Test substance	Test specie		Endpoint		Keference
	Fish acras	LC ₅₀		uct/J	KCQ 10.2.1©02 (2011) 01-401,282-01-1
	Invertebrate, acute Daphnia magna	EC 50	4.10 mg prod	» <u> </u>	KCP (0.2.1 /03 (2010) (2010)
Propineb WG 70	Unverte Gate, ci Ponic Daphnia Gigna	NG EC	0.02 Omg pr	. %	XCP 10.2.2 /01 (1990) M-016882-01-1
	Algae, growth inhibition Pseudokirchneriella Subcapitata	E/Q 50	0.23 mg pro	duct/L	KCP 10.2.1 /04 (2010) M-397379-01-1
EG	Alt de, granth in Ortion Elesmode Sius subspicatus	E _b C ₅₀	9.67 m produ 2.4 n produ	uct/L ct/L	KCP 10.2.1 /02 (1989) <u>M-016881-01-1</u>
Ž	Fish Ocute To Corlos Ochics To Corlos		©.329 mg a.s.	/L ¹⁾	KCA 8.2.1 /01 LoEP <u>M-016891-01-1</u>
	Orish Oronic Concorn Chus Niss	NOL	0.0823 mg a.s	/T 1)	KCA 8.2.2 /01 LoEP <u>M-016895-01-1</u>
Propineb VM 80	Invertebrate, acuto Daphyiùn magna	EC ₅₀	1.50 mg a.s./	L 3)	KCA 8.2.3 /03 (2004) M-086995-01-1
	Investorate, hronic	NOEC	0.015 mg a.s.	/L ⁴⁾	KCA 8.2.5.1 /01 LoEP <u>M-016899-01-1</u>
	Algae, g@wth inhibition Pseudokirchneriella subcapitata	E _b C ₅₀ E _r C ₅₀	0.017 mg pro 0.055 mg pro	duct/L duct/L	KCA 8.2.6.1 /04 (2004) M-088372-01-1
Propin WP 70	Invertebrate, chronic Daphnia magna	NOEC	0.480 mg a.s.	/L 5)	KCA 8.2.5.1 /04 (2005) M-252129-01-1

Test substance	Test species	Endpoint	Reference
	•	•	KCA 8.2.8 /01
	Lentic freshwater microcosm	NOEC > 0.6 /L2)	
	Oncorhynchus mykiss	NOEC > 0.6 mg a.s./L $^{2)}$	(2005)
	,		M-246864-02-1
	C 1 4 1 11	<i>*************************************</i>	KCA 8.2,5,3 /03
	Sediment dweller	EC ₁₅ 0.89 mg a.s./ L_{*}^{6}	(20)
	Chironomus riparius		M-253817-01-1
			KC& 8.2.4 704 V
	Invertebrate, acute	EC ₅₀ 0.112 mg pm/L	(2014)
	Daphnia magna	0.112 lite pin/L	<u>04-481864-01</u>
Propineb-DIDT			
	Algae, growth inhibition	E _r C ₂ O 114 mg pm/L	KCA 8.2,6,9/05
	Pseudokirchneriella	F.C. 14 m/a nm/L	(2 9 14) *
	subcapitata subcapitata		<u>M-485275-0141</u> .
	suscapitata		0' & 2
	Fish, acute 4		K.C.A 8.2.1703
	Oncorhynchus muss	LC ₅₀	M-01-918-01-1
	<u> </u>		<u>MI-U 6918-U1-T</u>
	Fish, chranic		KC\$ 8.2.2
	Fish, chronic Oncorhynchus mylos	NOE'S ZNZ mgom/L	□
PTU			KCA 2.4.1/02
	Invexobrate, acute	\$\int_{50} 18.4 mg pink.	L of P
(propylene thiourea)	Inversionate, acute S Daphnia Jugna		M-016919-01-1
inioureu)			CA 8.2.5.1/02
	Inverted the, cloonic	NOEC ~3.2 pm ~	(1998)
	Daffinia nggna		M-016917-01-1
	Algay grow Pinhila Yon		KCA 8.2.6.1/03
Õ	Rseudo Lychngriella	EbCo, 2100 mgabm/2	LoEP
20	Subcapited & C	F. \$50 >100 crig pm	<u>M-016916-01-1</u>
Ů			KCA 8.2.1/04
	Heorhy Hus nortes	LC ₅₀ 0 00 mpm/L	LoEP
	G G G		<u>M-016922-01-1</u>
	A Ph. chronic A		KCA 8.2.2.1/01
DII	Oncorhyn Jus mytss a	UNOE(\$\ ≥\ \ell_0 mg pm/L	LoEP
PU (propylono uros)			M-016921-01-1
(propyrene urea)	Myergerate, Gronico	$50^{\circ} > 100 \text{ mg pm/L}^{7)}$	KCA 8.2.5.1/03 LoEP
	O Pophnia magna	MOE > 100 mg pm/L	M-016924-01-1
(propylene urea)			KCA 8.2.6.1/02
	Agae, growth in Voition	$E_{c} = 1000 \text{ mg pm/L}$	LoEP
	Jenedesmus subspicates	> 1000 mg pm/L	M-016920-01-1
No.	Fish, soute Q.	LC ₅₀ 393 mg pm/L	KCA 8.2.8 /02
4 MI	Inverte brate, as jute	LC ₅₀ 7.3 mg pm/L	
4-IVII	A long Pourth in this is	FC-2 40 mg nm/I	(2014)
"	Argae growing inition	EC ₅₀ 49 mg pm/L	<u>M-488533-01-1</u>
	Fish scute Invertebrate, agute Algae growth inhibition		
	Ö N		
Ĉ.			

a.s. = active substance, pm = pure metabolite, prod. = product

- 1) The EU agreed endpoint refers to the tested item Propineb VM 80. The endpoint used in risk assessment is @ calculated on a basis of 82.3% a.s. content (nominal initial with analysis)
- ²⁾ Endpoint of microcosm study used in the refined risk assessment
- 2004, <u>M</u>-086995-01-1) 3) Lower endpoint obtained with a new study (
- 4) The value of 0.026 mg as/L that appears in the EU Review Report for Propineb is mostakenly attributed to the NOEC but is in reality the EC₅₀ (see KCA 8 2 5). The NOEC of 0.015 means in the EU Review Report for Propineb is most akenly attributed to the NOEC but is in reality the EC₅₀ (see KCA 8 2 5). NOEC but is in reality the EC₅₀ (see KCA 8.2.5). The NOEC of 0.015 mg as/L is the endpoint used in the risk
- ⁵⁾ Endpoint of 35 d *Daphnia* population study used in the refine wisk assessment
- 7) The EU agreed endpoint refers to the NOEC from the chronic test, and this endpoint is also used for the cute with assessment.

Note:

- Studies referring to KCA are filed in the dossier for the active substance.
- Studies written in grey type are referring either to studies in the orresponding baseline dossies for the active of substance or to the dossier for the old representative formulation for Annex I inclusion (which is provided for renewal as well); whereas studies in black type are studies of the supplemental dossier for the active substance or this present dossier for the new representative formulation.

 Selection of algae endpoints for risk assessment

Selection of algae endpoints for risk assessment

Processes in ecosystems are dominantly rate driven and therefore the unit development per time (growth rate) appears more suitable to measure effects in algae. Also, growth rates and their inhibition can easily be compared between species, test durations and test conditions, which is not the case for biomass. After numerous discussions, the current test guidelines OECD TG 201, the EU-Method C3, the EC regulation for Cassification and Labeling (C regulation, 1272/2008) and the PPR Opinion (EFSA Journal 61, 134; 2007) list growth rate as the most suitable endpoint of the algae inhibition test. Therefore, E.G. values will be taken into account for TER calculations presented in this document. (EFSA Journal 61, 134; 2007) list growth rate as the most suitable endpoint of the algae inhibition

Predicted environmental concentrations used in risk assessment

Table 10.2-2: Initial max PEC_{sw} values – FOCUS Steps 1 and 2

Compound 2 × 1.575 kg a.s./ha, 14 d int., BBCH 40-73 2 × 1.12 kg a.s./ha, 2 × 1.12 kg a.s./ha, 2 × 1.4 kg a.s./ha, 14 d int., BBCH 40-73 10 d int., BBCH 40-59 10 d int., BBCH 40-59 PECsw, max pg/L			Orchards A	Grapes I	Grapes (I)
Compound FOCUS Scenario 14 d int., BBCH 40-73 10 d int., BBCH 40-59 10 d int., BBCH 40-57 70 d int., BBCH 70 PECsw, max PECsw, max PECsw, max PECsw, max PECsw, max Imp/L <					2 × 1.4 kg a.s./ha
Propineb STEP 1 189.9 36.10 70.92 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 153.3 10.08 37.46 13.50	Compound	FOCUS Scenario			10 d int BBCH 70
Propineb STEP 1 189.9 36.10 76.92	-		PECsw, max	PECsw, max	RLCsw, smax
Propineb STEP 2 - North B 153.3 10.08 37.46 STEP 2 - South B 153.3 Q.08 37.46 PTU STEP 1 171.1 100.0 13½0 STEP 2 - North B 16.35 1.237 4.410 STEP 2 - South B 16.35 112.0 148.6 PU STEP 2 - North B 50.61 5.648 14.21 STEP 2 - South B 57.17 8.266 45.81 Propineb-DIDT STEP 2 - North B 36.03 2.369 8.807 STEP 2 - South B 36.03 2.369 8.807			[µg/L]		. Ving/N
Propineb STEP 2 - North B 153.3 10.08 37.46 STEP 2 - South B 153.3 Q.08 37.46 PTU STEP 1 171.1 100.0 13½0 STEP 2 - North B 16.35 1.237 4.410 STEP 2 - South B 16.35 112.0 148.6 PU STEP 2 - North B 50.61 5.648 14.21 STEP 2 - South B 57.17 8.266 45.81 Propineb-DIDT STEP 2 - North B 36.03 2.369 8.807 STEP 2 - South B 36.03 2.369 8.807				36.10	0 70 P2 V
PTU STEP 2 - South B 153.3 40.08 37.46	Propineb	STEP 2 – North ^B	153.3	10.08	[≈ 27.46 o × 9
PTU STEP 1 171.1 100.6 13130 0	_	STEP 2 - South B		Q0.08 ° °	37.46° (°
Propineb-DIDT STEP 2 - South B		STEP 1	171.1	~√ 100.60° ~~	
PU STEP 2 - North B	PTU			Ø 1.237 Ø	4.410
PU STEP 2 - North B		STEP 2 - South B	1633	14237 m	\$ 4.4104
PU STEP 2 - North B			205.9	@ 012.0 °	148
Propineb-DIDT STEP 2 - South B 36.03 4.33 4.35 73.75 8.807	PU		. 1 50 61 °	2 5 6 1 6	14.21
STEP 2 - North B 2 36.03 2 2.36 8.367		STEP 2 - South B	57.17		
STEP 2 - North B 2 36.03 2 2.36 8.367			D 169.1	\$4.33 C	© 273.75 °
STEP 2 - South Step 2 - North Step 2 - South Step	Propineb-DIDT		36.03	2.369 S	8.800
STEP 1 40.78 1.89 20.7867 2.951 STEP 2 - South B C 11.89 1.024 2.951 3.95 Worst case values for early explication in applies 3.95 Worst case values for single or multiple application in	1	STEP 2 - South B &	0. 36.03 %	2.36	8.307
4-MI STEP 2 - North 1			40 M	@ 1 3 /77	0 4, 25,99
STEP 2 - South ⁹	4-MI	STEP 2 - North	10.89 V	% 00°867.2°	2 951
Worst case values for early application in apples worst case values for single or multiple application.		STEP 2 - South B	& O1 89 4 0	× *\ 1.024\ \ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.951
Worst case values for single or multiple application	Worst case value	es for early applicat	ion in apples		X) 2001
	Worst case value	es for single or pault	siple application		Z Ž
					? >
				. O	
		,0° ,°			
	8				
	Ž.				
	į Gʻ				
	« ¥			47	
		\$' \ K		A)	
		S A		%	
	Ø.				
				0	
	4				
		~~~ Q			
	SL n				
	Ay				
		".			
	L.		.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	O _x				
			~~~~		
	Ţ,		·		
	٥				
	-				

Table 10.2-3: Initial max PEC_{sw} values – FOCUS Step 3

Compound	FOCUS Scenario	Orchards 2 × 1.575 kg a.s./ha, 14 d int., BBCH 40-73	Grapes I 2 × 1.12 kg a.s./ha, 10 d int., BBCH 40-59	ັ int., BBÇØr≸>70 🏡
		PECsw, max A	PECsw, max A	PECsw, max A
		[µg/L]	[µg/L]	Jag/L]
	D3 (ditch, 1st)	121.3	- \(\sigma^\gamma\)	~ ~ ~
	D4 (pond, 1st)	7.378	<u> </u>	
	D4 (stream, 1st)	116.2	* -Q	
	D5 (pond, 1st)	7.377 117.6	<u> </u>	Q - 0 '
	D5 (stream, 1st)	117.6	Q'- , , , ,	<u> </u>
Propineb	D6 (ditch, 1st)	- 20	6.195	
	R1 (pond, 1st)	7.377		0.849
	R1 (stream, 1st)	98,5	4(381)	77.44
	R2 (stream, 1st)	1,30.0 ₂ ≪	© 6.085 °	23.36
	R3 (stream, 1st)	₹ 3 8.2° ~	6.085 0	24 . 55 V
	R4 (stream, 1st)	98.17	4.500	21,7.15
	D3 (ditch, 1st)	2,847,0	7 - 5 5	0
	D4 (pond, 1st)	748		
	D4 (stream, 1st)	0.001		
	D5 (pond, 1st)	1.74		- · · · · · · · · · · · · · · · · · · ·
	D5 (stream, 1st)	°> <0.001 °	·)
Propineb-DIDT	D6 (ditch, 1st)	4. B- L 6	\$\display 1.47\Q\display 6	<0.001
_	R1 (pond, 🏂t)	O N.748@	0.0\$7	√ 0.018
	R1 (stream, 1st)	0.0	0.062	0.467
	R2 (stream, 1st)	, © 0. © 70 °	© \$0.00 4 . ≥	0.465
	R3 (stream, 1st)	Ø28.09. ♥	1.53	< 0.001
	R4 stream 1st).	D 19.97 ~	0,081	0.321
		748 -0.001 -1.748 -0.001 -1.748 -0.007 -		

Table 10.2-4: Initial max FOCUS Step 4 PEC_{sw} values for propineb for the use in orchards (early) (2×1575 g a.s./ha) with mitigation options; SD denotes spray drift buffer

1 abie 10.2- 4	(2× 1575 g a.s./ha)			•	drift buffer		
			Single app	olication A			
Buffer Width		PEC _{sw} [µg/L]					
& Type	Scenario		Drift Re				
		0%	50%	75%	96% 9.532 0.831 0.831 0.831 0.831 0.832 0.832 0.832		
	D3 (ditch, 1st)	95.32	47 _x 66	23.83	9 .532 9		
	D4 (pond, 1st)	8.306	153	Ž .077	© 0.834 , ©		
	D4 (stream, 1st)	99.83	, 49.92	24.96	9.983		
	D5 (pond, 1st)	8.305	4.153	§ 2.076	0.831		
5 m	D5 (stream, 1st)	101.0	50.52	\$ 25.26 \$\frac{1}{2}\$	√10.10 €		
SD	R1 (pond, 1st)	8.306	4.153	δ _λ Θ Z.0 / 0	0.839		
	R1 (stream, 1st)	84.33	°42.16	21,08	8.432		
	R2 (stream, 1st)	111.	© 55,85 <i>(</i>	y <i>27</i> 0°93 🔊	e11.17 «		
	R3 (stream, 1st)	118.7	59 .36 Q	29.68	0 11.870 V		
	R4 (stream, 1st)	84.34	42.17	A 21.00 .	8.434		
	D3 (ditch, 1st)	6,58.54	29.2 ♥	14.63 L	8.434 5.854		
	D4 (pond, 1st)	Q 4. 55 5	© 2,277 &	£139 £	Ø.455		
	D4 (stream, 1st)	6431	30.65 ~ 0	₹ 15.33	£ 6.13 €		
	D5 (pond, 1st)	4.554	≥ 2.27 7	1.138	0:455		
10 m	D5 (stream, 1st)	[% ∫ 62.0 <i>5</i> 67	31.602	♥ 15051 √C	©6.205		
SD	R1 (pond, 1st)	4,554	l [©] 2 <i>≈</i> 9⁄77 @≀i	الاس الاسلام ا	Õ0.455		
	R1 (stream, 1st) \(\)	50 .78	% 5.89 ♣	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.178		
	R2 (stream, 18t)	50.78 88.60 72.91	34.30√	J 1708 &	ິ້ 6.860		
	R3 (stream, 1st) R4 (stream, 1st)	72.94 51.80		18.23	7.291		
	R4 (stream, 1st)	51.80	25 .90	%12.95°	5.180		
	D3 (digh, 1st)	31.80	6.692 0.726	© 3.346 ×	1.338		
	D i was one, a sac	√1.473 <u> </u>	. № 0.7 3%	0.36/8	0.147		
	DC (stream, 1st)	14.02	7.609	\$ 3,505	1.402		
<i>(</i>	95 (pond, 1st) (1	7.009 0:736 \$7.094	0.368	0.147		
20 m	D5 (stocam, 1st) R1 (pond, 1st)	14.19	\$7.094 [♥]	3.547	1.419		
SD 🦠	R1 (pond, st)	7°1.∓/3€	[0.7 % 6	0.368	0.147		
20 m SD	R1 (stream, 1st)	11.84	\$ 5 9 2 0	2.960	1.184		
* ¥		\$.69	7.843	3.922	1.569		
	R3 (stream, 1st) R4 (stream, 1st) D3 (ditch, 1st) D4 (pord, 1st)	16.67	8.336	4.168	1.667		
	R40(stream 1st)	11.84 5 19	5,922	2.961	1.184		
	D_3 (dite $f(x)$) st)	5 19	2559	1.280	0.512		
4	D4 (pord, 1st)	9:713 5:36 b	0.357	0.178	0.071		
4	D4 (stream, Pst)	\$5.36 by	2.681	1.340	0.536		
	D5 (pondol st)	© 0.718	0.357	0.178	0.071		
30 m 🐬	D5 (stream, 1st)	50426	2.713	1.356	0.543		
SD 🐥	R1 (pond, 1st)	Ø.713	0.357	0.178	0.071		
4	R1 (stream@ist)	♥4.52®♥ ♥ 5.900	2.264	1.132	0.453		
	Ro (stream, 1st)	1 J ₂ (0) y J	2.999	1.500	0.600		
	R3 (stream, 1st)	6.376	3.188	1.594	0.638		
	R4 (stream, 1st)	4.529	2.265	1.132	0.453		

A Single application value are worst case values and used for risk assessment

Table 10.2-5: Initial max FOCUS Step 4 PEC_{sw} values for propineb for the use in grapes I (2× 1120 g a.s./ha) with mitigation options; SD denotes spray drift buffer

			Single app	plication ^A	Ď			
Buffer Width	Scenario		PECsw	[μg/L]	S S			
& Type	Scenario	Drift Reduction O						
		0%	50%	75⊈⁄₀	26% 8			
	D6 (ditch, 1st)	6.195	3,298	£,540	√ % .620°√			
	R1 (pond, 1st)	0.214	107	Ø.054	© 0.022			
) m	R1 (stream, 1st)	4.581	Ž.290	\$\frac{1.145}{}	, © 0. 43 *8			
SD	R2 (stream, 1st)	6.085	3.043	√ 1.522	0.609			
	R3 (stream, 1st)	6.480	3.240	\$ 620 \$ \tag{1.322}	₹0.648 [©]			
	R4 (stream, 1st)	4.579	2.290	1.115	0.129			
	D6 (ditch, 1st)	3.693	©°1.846	≪ 0.929°	0.369			
	R1 (pond, 1st)	0.25© ^v	[@` 0. £ 25	y .00 63 &	0.025			
5 m	R1 (stream, 1st)	3.307		9.827	0.3310°			
SD	R2 (stream, 1st)	4394	2.197	1.098	0.439			
	R3 (stream, 1st)	4.679	2.330	o [™] 1,ì™ (9K4 68 4			
	R4 (stream, 1st)	Q 3.306°	₩ 1, 6,5 33 %	0.827 V	Ø.331			
	D6 (ditch, 1st)	().	*Q2650 ~ (C)	≈0.325 √0.325	0.136			
	R1 (pond, 1st) \mathbb{Q}	0.135	° 0.067°	0.325	0:2014			
0 m	R1 (stream, 1st)	√ 1.16 4 0°	\$\tag{9.582}	£∀ 0°0091 ∝C	©0.116			
SD	R2 (stream, 1st)	1°% 1.547	l [©] 0∕\$774 <i>@</i>	<i>⊗</i> 9.387 [⊕]	O0.155			
	R3 (stream, 1st) &	1.164 se values and use	<i>®</i> 9.824 ∜	~~0.41 <i>2</i>	0.165			
	R4 (stream, fst)	21.164×	0.582	0.201	0.116			
	R3 (stream, 1st) R4 (stream, 1st) ation values are workt ca							

Table 10.2-6: Initial max FOCUS Step 4 PEC_{sw} values for propineb for the use in grapes II <u>(2×</u> 1400 g a.s./ha) with mitigation options; SD denotes spray drift buffer

D6 (ditch, 1st)				Single app	olication A	 			
## Type Drift Reduction Definition Def	uffer Width	Caanania		PECsw	[μg/L]				
D6 (ditch, 1st)	τ Type	Scenario	Drift Reduction						
R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (ditch, 1st) R7 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (ditch, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (p			0%	50%	75₺	96% %			
R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (ditch, 1st) R7 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond]	D6 (ditch, 1st)	23.68	1,1,84	\$.921	2.368°×			
R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R7 (96 (38,979) R4 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R7 (96 (38,979) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R1 (stream, 1st)	[]	R1 (pond, 1st)	0.839	424	Ø0.212				
SD R2 (stream, 1st) 23.36 11.68 5.839 2 R3 (stream, 1st) 24.65 12.32 6.162 3 R4 (stream, 1st) 17.15 8.575 4.288 1 D6 (ditch, 1st) 14.32 7.160 3.580 1 R1 (pond, 1st) 0.985 0.493 0.246 6 SD R1 (stream, 1st) 12.70 6.352 9.176 7 R2 (stream, 1st) 12.70 8.509 4.255 1 R3 (stream, 1st) 17.96 8.979 4.490 1 R4 (stream, 1st) 12.50 6.248 3.124 3 R1 (pond, 1st) 0.543 0.271 0.126 6 R1 (pond, 1st) 0.543 0.271 0.126 6 R1 (stream, 1st) 4.600 2.360 1.541 6 R4 (stream, 1st) 4.526 6.263 1.434 6 R4 (stream, 1st) 4.526 6.263 1.434 6 R4 (stream, 1st) 4.526 6.263 1.434 6 R1 (pond, 1st)	m	R1 (stream, 1st)	17.44	. 8.718	♦ 4.359	, © 1. 73 4			
R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond,		R2 (stream, 1st)	23.36	© 11.68	§ 5.839 ©	2.3/36			
R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (pond, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st) R7 (pond, 1st) R8 (stream, 1st) R9 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9	[]	R3 (stream, 1st)	24.65	12.32	ø ₅ ,162 ♂	\$2.465			
R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R7 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R7 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st)	Ī	R4 (stream, 1st)	17.15		\$ @4.288 **	1.7,1%			
R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st)]	D6 (ditch, 1st)	14.32	∂°7.16€	3.580°	1:432 8			
R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 R5 R6 R7	Ţ.	R1 (pond, 1st)	0.985	© 0. 49 3	y .03 46 ~	﴾ 0.099ء			
R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (6248 R6 (ditch, 1st) R1 (pond, 1st) R2 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R4 (stream, 1st) R5 (644 R5 (6263) R6 (ditch, 1st) R6 (ditch, 1st) R7 (6464 R6 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R8 (ditch, 1st) R9 (ditch, 1st) R9 (ditch, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1s	m	R1 (stream, 1st)	12,70	6 ,352 Q		O*1.270°			
R3 (stream, 1st) R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 R6 R7 R2 S593 R6 R8 R9		R2 (stream, 1st)	47.02.	8.509	A.256	1.762			
R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (505 R4 (stream, 1st) R6 (ditch, 1st) R7 (2505 R8 (2505 R9 (2505	[]	R3 (stream, 1st)	@17.96	@ 8.97 9	° 4.490 ∠	₩ 1 %. 7 96			
D6 (ditch, 1st) R1 (pond, 1st) O.543 O.271 O.135 (R1 (stream, 1st) SD R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D6 (ditch, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (ditch, 1st) R9 (ditch, 1st) R1 (stream, 1st) R1 (pond 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (ditch, 1st) R1 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (ditch, 1st) R9 (ditch, 1st) R9 (ditch, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R7 (ditch, 1st) R7 (ditch, 1st) R7 (ditch, 1st) R8 (ditch, 1st) R9 (ditch, 1st) R9 (ditch, 1st) R9 (ditch, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R6 (ditch, 1st) R7 (ditch, 1st) R7 (ditch, 1st) R7 (ditch, 1st) R7 (ditch, 1st) R8 (ditch, 1st) R8 (ditch, 1st) R9 (ditch, 1st)	[]	R4 (stream, 1st)	Q 12,50°	9 62¥8 ×	1 2 Y24 W	€¥.250			
10 m R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (6,164) R6 (6,263) R6 (6,263) R6 (6,263) R7 (1,200) R1 (pond 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (6,263) R6 (6,263) R7 (9,704) R1 (pond 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R1 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (6,263) R6 (6,263) R7 (6,264) R7 (6,264) R7 (6,264) R8 (6,263) R9 (6,264) R9 (6,263) R9 (6,264)]	D6 (ditch, 1st)	5/187 ×	2,593 ~ T	№ 1.297 ॐ	0.51,90			
10 m	Ţ	R1 (pond, 1st)			0.136	0:054			
SD R2 (stream, 1st)	0 m	R1 (stream, 1st)	√ 4.604°	2.30	1.050 °C	©0.460			
R3 (stream, 1st)	D .		× 6 164	([©] 3√9×2 @)	/ A.541	0.616			
R1 (pond 1st)]		6505	₩3.252 ×		0.650			
R1 (pond 1st)	-		4.526	€ 6.263	2 1 AGA *	0.453			
R1 (pond 1st)			2.81	(1.4 6 9 (0.704	0.282			
15 m R1 (st@am, 1st) \$\frac{1}{2} \frac{1}{2} \frac{1}		R1 (pond 1st)	0.368	0.184	. (//)	0.037			
SD R2 \mathfrak{S} ream \mathfrak{S} t) \mathfrak{S} \mathfrak{S} 3.349 \mathfrak{S} 1.67 \mathfrak{S} 0.897 \mathfrak{S}		R1 (stopam, 1st)	£500 \$	10// 6		0.250			
Re(stream, 1st) 3.534 1.767 0.883 (Re4 (stream, 1st) 4.459 (229 0.615 (A Single application varies are worst case values and used for risk assessment	-	& A. ON		(A) (/// h		0.335			
A Single application values are worst case values and used for risk assessment		R& (stream, 1st)	a 3.534	1.967	.0.883	0.353			
A Single application values are worst case values and used for risk assessment		P4 (stream 1str)	2,259	229	0.615	0.246			
	Single applicat	ion values are worst gas	se values and use	d for risk assessn					
	4								
	· ¥								
			,						
			V						
	Č [°]								

Table 10.2-7: Initial max FOCUS Step 4 PEC_{sw} values for propineb-DIDT for the use in orchards (early) with mitigation options; S and M denote whether single or multiple application lead to the maximum value; SD denotes spray drift buffer

Buffer					PECsv	v [μg/L]			
Width &	Scenario					eduction	ı 🔊		``A.'
Type			0%		50%	7	75%	9	0% 🔊
	D3 (ditch, 1st)	S	22.55	S	11.28	S	≈ 5.638	.8/	~2, 2 55
	D4 (pond, 1st)	S	1.968	S	0.984	S	× 0.492	<u>\$</u> \$	% 0.197
	D4 (stream, 1st)	M	< 0.001	M	<0.001	MQ.	< 0.001	OM S	/<0.004
	D5 (pond, 1st)	S	1.967	S	$\sqrt[8]{0.984}$	S	0.492	SQ	0.£97
5m	D5 (stream, 1st)	M	< 0.001	M⊿	~	≪M (°<0.00¶	M	< ∅ .001_€
SD	R1 (pond, 1st)	S	1.968	S	0.984 ^	S		\OS	© 0.197©°
	R1 (stream, 1st)	M	0.057	M	0.057	M	90057		0.037
	R2 (stream, 1st)	M	0.070	УM (0.070	M	0.070		0.070
	R3 (stream, 1st)	M	0.357	M∜	0.397	OM O	0.357	M	50 357 (
	R4 (stream, 1st)	M	0.319	°M ^O	~0,319	[♥] M,	0.379	M &	0.31
	D3 (ditch, 1st)	S	13,85	Š Š	6.925°	Sy	3,463	$S_{\mathcal{L}_{\mathcal{J}}}$	1.385
	D4 (pond, 1st)	S	5.079	^y S ≼	0.00	₹ \$	0.270	S	0908
	D4 (stream, 1st)	M	©0.00 1	M	<0.001	O'M		M	Ø0.001
	D5 (pond, 1st)	S	1.079	S ["]	0.539	40	0070	S S	0.108
10m	D5 (stream, 1st)	M	≤0,001	M	<0.00P	AM Oc	0.0010	M	<0.001
SD	R1 (pond, 1st)		°≥1.079	S	0.25	ØS (0.270	S.	0.108
	R1 (stream, 1st)	VM ⟨	0.05	M,	0.057	M	0.057	M	0.057
	R2 (stream, 1st)	M O	0.000	ØM ♥M	0.070	M M	0070	M	0.070
	R3 (stream, 1st)	M	0.357 \$\frac{1}{2}\text{Q0.319}	[™] M	0.350		0.319	M	0.357 0.319
	R4 (stream, 1st) D3 (ditch, 1st)	S «	3.1	MO	4.583	^S M ⟨ S ○	0.3.97	M S	0.319
	D4 (ponderst)	\$ \$ \$ (0.349	S	0.174	<u>\$</u>	@0.087	S	0.317
	D4 (stream, 1st)	M	<0.001	M &	0.17 4 7 < 0.00	ØM	<i>y</i> .087 ≪0.001	M	<0.001
	D5 (pond, 1so)	S	0.3490	8	9.174	S	0.087	S	0.001
20m	D5 (stream 1st)	M _s	<0.001	. 901	©0.001 O	Ø 5	< 0.001	M	< 0.001
SD ,	$\mathbb{R}^{\mathfrak{D}}$ (pond, 1st) $_{\mathscr{A}}$	S.	Q-349 2	40	0.17		0.087	S	0.035
`	R1 (stream, 1st)	20M	3 .057	M _C	0.1707	M	0.057	M	0.057
	R2 (stream; 1st) %	\mathcal{O}_{M}	0.070	·M	0.070 %	M M	0.070	M	0.070
· ·	R3 (stream 1st)	M	0,397	≪M	\$0.357 ²	M	0.357	M	0.357
	R4 (stream, 1st)	Ŵ	3 19 4	O'M	0.37	M	0.319	M	0.319
	D3 (ditch, 1st)	ŠŠ	21.211°V	SS		S	0.303	S	0.121
	D4 Fond, Ist	√S, %	0.169	%\$ ⁰	© 0.085	S	0.042	S	0.017
	D4 (stream, 1st)	M	< 0.001	ØM	0.001	M	< 0.001	M	< 0.001
	D5 (pond, 1st)		Ø.169 °√	⁷ S _x ≪	0.085	S	0.042	S	0.017
	D5 (stream, 🏋	M _×	<0.00	My	< 0.001	M	< 0.001	M	< 0.001
SD 🔬	R1 (pondalst) 🛋	. S 🔊	0.169	`~\$	0.085	S	0.042	S	0.017
	R1 (stream, 1st)	M	0.057	M	0.057	M	0.057	M	0.057
	D2 (+ \ 1 +)	$\mathcal{L}M$	<i>®</i> 0.070 <i></i> √	M	0.070	M	0.070	M	0.070
	R3 (stream 1st)	ψ́м Д	50.357	M	0.357	M	0.357	M	0.357
	RA (stream) [st)	M	0.249	M	0.319	M	0.319	M	0.319
	R2 (stream, 1st) R3 (stream, 1st) R4 (stream) (st)		¥						

Table 10.2- 8: Initial max FOCUS Step 4 PEC_{sw} values for propineb-DIDT for the use in grapes I $(2 \times 1120 \text{ g a.s./ha})$ with mitigation options; S and M denote whether single or multiple application lead to the maximum value; SD denotes spray drift buffer

Type I I I I I I I I I I I I I I I I I I I	O6 (ditch, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R9 (stream, 1st) R9 (ditch, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (ditch, 1st)	S S M M S M S S M M S S	Q. 9 32	S S M M M S S S M	50% 0.025 0.062 0.001 0.768 0.495 0.440 0.30 0.062 0.001 0.554 0.554	S S S S S S S S S S S S S S S S S S S	9.369	S M M M M S M M M	
O m F SD F F SD F F F F F F F F F F F F F F	R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R6 (stream, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R9 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	M M S M S S M M S	1.470 0.051 0.062 <0.001 1.535 0.990 0.877 0.059 0.062 <0.001 0.108 0.708 0.310 0.932	S M M M S S M M S S	0.025 0.025 0.062 0.001 0.768 0.495 0.440 0.30 0.062 0.001 0.554	S S S S S S S S S S S S S S S S S S S	0.369 0.013 0.062 0.004 0.384 0.224 0.221 0.015 0.62	S M M M M S M M M	
0 m F SD F	R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R6 (stream, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R9 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	M M S M S S M M S	0.051 0.062 <0.001 1.535 0.990 0.877 0.059 0.002 <0.001 0.108 0.708 0.310 0.932	S M M M S S M M S S	0.025 0.062 0.001 0.768 0.495 0.440 0.030 0.062 0.001 0.55*	S Q M S Q M S S M M M	0.013 0.062 0.004 0.384 0.221 0.015 0.62 0.001	S M M M M S M M M	
0 m	R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (ditch, 1st) R6 (ditch, 1st) R6 (stream, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R9 (ditch, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (stream, 1st)	M S S M M S S M S S M M S M M S S M M S M M S M M S M M S M M M S S M M M S M M M S M M M S M M M M S M M M M M S M	0.062 <0.001 1.535 0.990 0.877 0.059 0.062 <0.001 0.108 0.708 0.310 0.932	M M M S S M M S M	0.062 <0.001 0.768 0.495 0.495 0.090 0.001 0.55*	M S S S S M	0.062 <0.004 0.384 0.221 0.015 0.062 0.001	MQ M OM S S M M	
SD F	R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st)	M S M S S M M S	 <0.001 1.535 0.990 0.877 0.059 0.062 <0.001 1.08 0.708 0.310 0.932 	M S S S S S S S S S S S S S S S S S S S	0.001 0.768 0.495 0.440 0.30 0.062 0.001 0.554	S S S M	0.004 0.384 0.248 0.221 0.015 0.62 0.001	M OM S S M	
5 m	R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R1 (pond, 1st) R1 (stream, 1st)	M S S M M S M	0.990 0.877 0.059 0.062 0.001 0.108 0.708 0.310 0.932	M S S M M S M	0.495 0.440 0.930 0.062 0.554 0.554	S Q My S O S MA M	0.248 0.221 0.015 0.062	S S M M	
5 m F SD F I I I I I I I I I I I I I I I I I I	06 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (stream, 1st)	S S M M S M S	0.877 0.059 0.062 0.001 0.108 0.708 0.310 0.932	M S S M M S M	0.440 0.930 0.062 0.001 0.55#	S M.A M	0.221 0.015 0.062 0.001	S M M	
5 m F SD F F F F F F F F F F F F F F F F F	R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	S M M S M S	0.059 0.062 0.001 0.108 0.708 0.310 0.32	S M M S M	0.030 0.062 0.001 0.55* 0.354	S MA M	0.015 0.062 0.001	M & M	(0 (0 (0
5 m F SD F F F F F F F F F F F F F F F F F	R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R1 (pond, 1st) R1 (stream, 1st)	M M S M S	0.002 <0.001 0.108 0.708 0.310 0.932	M S & M	0,062 0.001 0.55# 0,354	MA M	0.062 \$0.001	M &	© 0 <(
SD	R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	M S M S	<pre><0.901</pre>	M S M	20.001 0.55# 0.754	«M	×0.001	$M_{\mathcal{L}_{J}}$	<(
I I I I I I I I I I I I I I I I I I I	R3 (stream, 1st) R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	S M S S	0.108 % 0.708 9 0.310 0.932	S & M	0.55# 0.354	«M			
I I I I I I I I I I I I I I I I I I I	R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	M S Q S	0.708 0.310 0.932	M S	0.354		≈~().33 <i>6(/ji</i>		
I I I I I I I I I I I I I I I I I I I	D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st)	S Ç S	0.310 0.932	"S"					0
10 m	R1 (pond, 1st) R1 (stream, 1st)	S. T	Q. 9 32			O' M	0.1	M M M M S M M M M	© 0
10 m	R1 (stream, 1st)				0.156	S	0079		, U
				M C	0.016	\$	0.008	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	0
I I I I I I I I I I I I I I I I I I I	R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st)	° IVI ⊗	<0.062			ØM (0.062	S M M M S M M M M M M M M M M M M M M M	0
I I I I I I I I I I I I I I I I I I I	R4 (stream, 1st)		0,390	MJ. SM		y M ≫y Ny Sy	<0.0001 20.336 4	98.	<(
I I I I I I I I I I I I I I I I I I I	06 (ditch 1stå /	S O	0,390	M -	0.330	lyi≫ M	\$\times_0.08\text{\text{\$\infty}}	M M M M S M M M M M M M S S M M M M M M	0
15 m			©0.241 &	S IVI	0.124	S &	0.04		0
15 m	R1 (pond 187)	O S	0.107		%V011	$\frac{S \circ S}{S \circ S}$	0.005		0
115 111	R1 (stream 1st)	MÔ	0.062	M	0.062	M	Ø9.062	S S M M M S M M S M M M M M M M M M M M	0
SD F	R2 (stream, 1st)	M	, <0.001\square	M	<0.000	ØM	\$\sqrt{0.001}		<(
	R3 (stream, 197)	» M	0.3360	M	0.336 .8	♥ M	0.336	M M M M M M M M M M M M M M M M M M M	0
Ī	R4 (streamon st) &	M.	0.126	. ©	Ø 081 O	M®	0.081		0
	R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) R5 (stream, 1st) R6 (stream, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (strea								

Table 10.2- 9: Initial max FOCUS Step 4 PEC_{sw} values for propineb-DIDT for the use in grapes II $(2 \times 1400 \text{ g a.s./ha})$ with mitigation options; S and M denote whether single or multiple application lead to the maximum value; SD denotes spray drift buffer

SD R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 5.839 S 2.920 S 1.460 S R4 (stream, 1st) S 4.063 S 2.031 S 0.16 S R4 (stream, 1st) S 3.392 S 1.696 S 0.848 S R1 (pond, 1st) S 0.233 S 0.47 S 0.058 S R1 (stream, 1st) S 3.009 S 5.05 S 0.058 M R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 3.009 S 5.00 S 0.748 M R3 (stream, 1st) S 2.960 S 2.129 S 1.0640 S 0.748 M R4 (stream, 1st) S 2.960 S 0.614 S 0.748 M	i vv iatn X	Saanaria					w [μg/L]			,
R1 (stream, 1st)		& Scenario		00/	1			1 <u>4</u>	<u> </u>	00/
R2 (stream, 1st)	Type	D((1', 1, 1, 1)	C .		- C			/ 5 %0	<u>~</u> 9	U % <u>Q</u>
SD R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 5.839 S 2.920 S 1.460 S R4 (stream, 1st) S 4.063 S 2.031 S 10016 S R4 (stream, 1st) S 3.392 S 1.696 S 0.848 S R1 (pond, 1st) S 0.233 S 0.47 S 0.058 S R1 (stream, 1st) S 3.009 S 5.05 S 0.058 M R2 (stream, 1st) M 0.465 M 0.465 M 4.465 M R3 (stream, 1st) S 3.009 S 5.00 S 1.0640 S 1.0640 S R4 (stream, 1st) S 2.960 S 1.880 S 0.748 M R4 (stream, 1st) S 2.960 S 0.614 S 0.320 S								0.050	\$ 5 ×	0 0
SD R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 5.839 S 2.920 S 1.460 S R4 (stream, 1st) S 4.063 S 2.031 S 10016 S R4 (stream, 1st) S 3.392 S 1.696 S 0.848 S R1 (pond, 1st) S 0.233 S 0.47 S 0.058 S R1 (stream, 1st) S 3.009 S 5.05 S 0.058 M R2 (stream, 1st) M 0.465 M 0.465 M 4.465 M R3 (stream, 1st) S 3.009 S 5.00 S 1.0640 S 1.0640 S R4 (stream, 1st) S 2.960 S 1.880 S 0.748 M R4 (stream, 1st) S 2.960 S 0.614 S 0.320 S	0 m						30%	1.033		0
R3 (stream, 1st) R4 (stream, 1st) S 5.839 S 2.920 S 1.460 S R4 (stream, 1st) D6 (ditch, 1st) S 3.392 S 1.690 R1 (pond, 1st) S 0.233 S 0.47 S 0.058 R1 (stream, 1st) S 3.009 S 0.465 M R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) S 0.296 R4 (stream, 1st) R4 (stream, 1st) R4 (stream, 1st) S 0.296 S 0.614 S 0.907 S 0.032 R1 (pond, 1st) S 0.299 S 0.614 S 0.032							Д Д М			6
R4 (stream, 1st) B4.063 B4.064 B4.065 B4.0665 B4.0666 B4.06666	SD								OS	0 ان ف
D6 (ditch, 1st) S 3.392 S 1.696 S 0.848 S N R1 (pond, 1st) S 0.233 S 0.47 S 0.058 S N R1 (stream, 1st) S 3.009 S 5.05 S 0.058 M S N R2 (stream, 1st) M 0.665 M 0.465 M					2		S			0
R1 (pond, 1st) S 0.233 S 0.47 S 0.058 S R1 (stream, 1st) S 3.009 S 5.505 S 0.22 M R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 5.254 S 2.127 S 1.0640 S R4 (stream, 1st) S 2.960 S 0.614 S 0.307 S R1 (pond, 1st) S 0.29 S 0.614 S 0.32 S		, , ,				1 696	AS.			Q
5 m R1 (stream, 1st) S 3.009 505 S 0.52 M SD R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 2.254 S 2.129 S 1.0640 S R4 (stream, 1st) S 2.960 S 0.614 S 0.007 S D6 (ditch, 1st) S 0.29 S 0.064 S 0.032 S						0.497	S	0.058	- S≪	Ď
SD R2 (stream, 1st) M 0.465 M 0.465 M 0.465 M R3 (stream, 1st) S 0.254 S 2.127 S 1.0640 S R4 (stream, 1st) S 0.2.960 S 0.614 S 0.907 S R1 (pond, 1st) S 0.229 S 0.614 S 0.032 S	5 m	<u>u</u> , ,			\s\s\cdot\)	^\2505 _∞				© 0
R3 (stream, 1st) R4 (stream, 1st) S 2.960 R4 (stream, 1st) D6 (ditch, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) R5 R6 (stream, 1st) R6 (ditch, 1st) R7 (stream, 1st) R8 (stream, 1st) R9 (stream, 1st) R9 (stream, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 R6 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R9 (pond, 1st) R1 (pond, 1st) R1 (pond, 1st) R2 (pond, 1st) R3 (pond, 1st) R4 (pond, 1st) R5 (pond, 1st) R6 (pond, 1st) R7 (pond, 1st) R8 (pond, 1st) R9 (pond, 1st)										0
R4 (stream, 1st) S 2.960 S 1.280 S 0.740 M 0 D6 (ditch, 1st) S 1.229 S 0.614 S 0.007 S R1 (pond, 1st) S 9.29 S 0.064 S 0.032 S							«/S			C
D6 (ditch, 1st) S 1.229 S 0.614 S 0.007 S S R1 (pond, 1st) S 0.229 S 0.064 S 0.032 S		R4 (stream, 1st)						0.740	M	<i>گ</i> و(0
R1 (pond, 1st) S 9,929 S 0,060 S 0,032 S		D6 (ditch, 1st)	S &	1.229	s S		S		$S \sim$) (
R1 (stream, 1st)		R1 (pond, 1st)	S _i .	9 .929	SS	0.064	Æ.	7.032		0
SD R2 (stream, 1st)	10 m	R1 (stream, 1st)	~S	°≥1.090	S @	0.545	őМ,	0.46		0
R3 (stream, 1st)	SD	R2 (stream, 1st)	[©] M ∅	0.465	MI,	Q,465 A	√ M ‰	0.465	_{s.} M	0
R4 (stream, 1st)		R3 (stream, 1st) 🗞	s ©	″ 1, 5 �1	ØŚ.	。0.770、	<i>\$</i> \$	2385 ×	S	0
D6 (ditch, 1st)		R4 (stream, 1st)	<u> </u>	1.072	S	× 0.536	$\widetilde{\mathbf{M}}$	₹ 0.32 1 \$\$	M	0
R1 (pond, 18t) S 0.087 S 0.044 S 0.0467 M 0.467 M 0.467 M 0.467 M 0.465		D6 (ditch, 1st)	ŞS	√90.668 [©]	SÕ	0.334	[%] YS ⟨	0.167		0
15 m R1 (streagh; 1st) S 0.392 M 0.467 M 0.465 M 0.405 M 0.321 M		R1 (pond, 15t)	S of	× 0.087	.\$Y	Ø/044	S O	0:\$\delta \delta 2		(
SD R2 (stream, 1st) AM 0.465 M 70.465 M R3 (stream, 1st) S 70.8370 S 9.419 S 0.209 S R4 (stream, 1st) S 0.583 M 90.321 M 0.321 M	15 m	R1 (stream, 1st)	S _O	0.392	M	Õ0.46 7	M	2 0.467		(
R3 (stream 1st) S 0.8370 S 0.419 S 0.209 S R4 (stream 1st) S 0.583 M 0.321 M 0.321 M	SD	R2 (stream, 1st)	AM″	0.465	M	0.465	ØM ,	3 0.465		C
R4 (streams 1st)		R3 (stream, 1st)	S	0.83 <i>70</i>	S U"	9419	S S	0.209	M M S S M M M S M M S M M S M M S M M S M M S M M M M M M M M M M M M M	0

Risk assessment for aquatic organisms

ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

TER_A calculations based on FOCUS Step 2

	SESSMENT FOR AQ TER _A calculations bas	UATIC ORGANISMS ed on FOCUS Step 2	S	To go	
Compound	Species	Endpoint [µg/L]©	PECsocmax [µg/L]	TERA	Trigger
Orchards			Q,	W A	
D. ' 1	Fish, acute	LC ₅₀ 329	√ 152.2	2.1	
Propineb	Invertebrate, acute	EC ₅₀ 1500 °	153.3	\$ 9. 8 \$	
DTLI	Fish, acute	LC_{50} > 100000	\(\text{\tint{\text{\tin}\text{\ti}\\ \tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	> 6\116 _{\(\delta\)}	
PTU	Invertebrate, acute	EC 18400	¥6.35,0°	P125	. / . V
	Fish, acute	$LC_{50} = -200000$	5707	©> 17 4 9⁄	→ 100c.°
PU	Invertebrate, acute	EC ₅₀ >100000	A 7.17	>,1749	100¢°
Propineb-DIDT	Invertebrate, acute	E.C. V > 12	36.02	ॐ 3.1 ॐ	
•	Fish, acute	LC ₅₀ \$3000	1289 Å	3305	_
4-MI	Invertebrate, acute	EC ₅₀ 7300	[\$\frac{1}{2}1	, SA , S	
Grapes I			A 89		
Propineb	Fish, acuts *	LC_{50} $\sqrt[6]{329}$ $\sqrt[6]{EC_{50}}$ $\sqrt[6]{9}$ $\sqrt[6]{1500}$	// ()	330	
PTU	Fisht acute Invertebrate, acute	LC > 100000 10050 98400 %	1 23	80841 14875	
PU	Fish, acute (Inversebrate, acute (Inversebrate)	LC_{50} $\sqrt{2}$ 100000 EC_{50} $\sqrt{2}$ 100000	©206 \$\frac{1}{2}\text{8.206}	> 12186 > 12186	100
Propineb-DIDT	Invertebrate, acute	FC ₅₀ \$ 112,0	2.369	> 47	
4-MI	Fish, acute	LC _{\$0} \$3930	© 1.024	383789	
	Invertebrate acute	E C 300	0	7129	
Grapes AC		N. C. S.) "	0.0	
Propineb	Pish, acute & S Invertebrate acute	LC_{50} \sim 329 EC_{60} \circ 1500	37.46	8.8	
PTU 🕡	Fich, acute	LC ₅₀ > 100000	4.410	> 22676	
	Unvertebrate, acute	EC ₅₀ 18400		4172	
PU 🍣	Fish, acute V	LC > 100000	15.81	> 6325	100
	Invertebroe, acute	$\mathbb{C}_{50} > 100000$	15.81	> 6325	
Propineb-DIDT	Invertebrate, acute	EC ₅₀ > 112	8.807	> 13	
4-MI	Fish acute	L& 393000	2.951	133175	
4-MI	Invertebrate, acute	C_{50} 7300	2.931	2473	

Bold values do not pass the risk assessment

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

Table 10.2- 11: TER_{LT} calculations based on FOCUS Step 2

Compound	Species	Endpoint	PEC _{sw.max}	TER _{LT}	Trigger
0 1 1		[µg/L]	[μg/L] 💞		
Orchards	<u></u>	L 8		0'	
	Fish, chronic	NOEC © 82.3		0.5	
Propineb	Invertebrate, chronic	NOEC 5 15	153.3	Ø.1 S	
F	Sediment dweller	EC ₁₅ 890	4	5.8	
	Green algae, chronic	E_rC_{50} 55		94	
Propineb-DIDT	Green algae, chronic	EC50 . 44	36.03	3.2	, Ş
	Fish, chronic	ØEC ≥ 102000		S≥ 6239	~
PTU	Invertebrate, chronic	NOE 3206	16 35	198	10
FIU	Sediment dweller	NQBC ~ 3400	10.33	€ 6.1 €	
	Green algae, chroni	EC50 >100000	, P" _* L"	61 16	
	Fish, chronic	NOEC		[™] ≥35	Š
DI I	Invertebrate, Pronic	NQEC > ≥ 100000		749)
PU	Sediment deeller,	NOOEC \$ _@2100,	5/1	© ≥ 1 ⁄8 ,	
	Green algae, chronic	E _r C ₅₀ > 10000		> 1949	
4-MI	Green glgae, Oronic	E, Q 49,000	\$11.8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 121	
Grapes I					
	Fish, chronic	NOES 82Q		8.2	
	Invertebrate, Chronic	NOEC 20 15	- O *	1.5	
Propineb	Sediment dweller	EC ₁₅ 2 890	10.68	88	
	Green algae, chonic &	E _r C ₃		5.5	
Propineh DIDT	Green algae, chronic	ECO O 114	€ 2.369	48	
Fropineo-Diagra	Figh, chreoic	(//)	2.309		
	Anvertebyate, chronic S		<u>*</u>	≥ 82458	
PTU		NOEC 3290	1.237	2587	10
ropineb-DIDT "	Sediment dweller	NOEC 5 ≥100		≥ 81	
	Groen algae, chronic	E _r C ₅₀ 700000		> 80841	
Q (Fish, chronic	NOFC		≥ 244	
PU 🐴	Inventorate hronic	NSEC	8.206	≥ 12186	
	\	NOEC ≥100		≥ 12	
~	Green algae, chronic	E_r > 100000		> 12186	
4-Mh	Green algae, Phronic	\$650 49000	1.024	47852	
Grapes II 🛒 🧷 🦭		4			
	Fish, chronic V	NOEC 82.3		2.2	
	Inverte chronic	NOEC 15	27.46	0.4	
Grapes II Propineb	Sediment@weller	EC ₁₅ 890	37.46	24	
	Green algae, chronic	E_rC_{50} 55		1.5	10
Propineb-DIDT	Green algae, chronic	EC ₅₀ 114	8.807	13	10
	Fish, chronic	NOEC ≥ 102000		≥ 23129	
. ((п					1
PTU	Invertebrate, chronic	NOEC 3200	4.410	726	

Compound	Species		Endpoint [μg/L]		PEC _{sw.max} TER _{LT} [μg/L]	
	Green algae, chronic	E_rC_{50}	> 100000		> 22676	Trigger
	Fish, chronic	NOEC	≥ 2000		© ≥ 127	
DI I	Invertebrate, chronic	NOEC	≥ 100000	15.01	≥ 6325	
PU	Sediment dweller	NOEC	≥100	15.81	≥ 6,30	
	Green algae, chronic	E _r C ₅₀	\$400000		> 6325	
4-MI	Green algae, chronic	E _r C ₅₀	49000	2.951	16 605	

Bold values do not pass the risk assessment

The TERA values for fish and invertebrates and the TERA values for fish, invertebrates, sediment dweller and green algae do not meet the respective trigger values and further assessment is necessary.

Refined risk assessment for the acute and long-term risk to fish exposed to propineb

Since the TER-values in the tier 1 risk assessment for the active substance profine considering the use in grapes and orchards do not need the trigger values, a refurement is necessary. For that purpose, a 28-day higher tier study with rainbow troug in a pricrocosm exclosure had been performed (for details see KCA 8.2.8 /01; ..., 2005; M-246864-02). This chronic study with a NOEC greater than 600 µg as /L under natural field and exposure conditions including multiple applications demonstrates that the prionic exposure does not increase the toxicity of propineb.

An acute laboratory study with Propineb VM 80 Fesulted in a ΔC₅₀ endpoint of 329 μg a.s./L and a NOEC of 125 μg a.ΔL.

This acute/chronic ratio also underlines that the toxicity observed in the acute study does not increase in studies with prolonged exposure. Thus the 28 day outdoor exclosure study covers both exposures, chronic and acute. Space it has not been shown that the rainboo trout as the most sensitive fish species to propine the uncertainty of species sensitivity still remains and an assessment factor of 1-3 is not justified flowever, the chronic assessment factor of 10 can be used for the final risk assessment for fish based on the 28 day microcosm enclosure.

The refined risk assessment is prosented in Table 10. D-8 below.

Refined long-term risk assessment for Daphia exposed to propineb

The aquatic invertebrate *Daplinia magna* is the most sensitive aquatic organism to propineb. A comparison of chronic endpoints demonstrates that *Daphnia magna* (NOEC = 0.015 mg a.s./L) is almost 100 times more sensitive than *Chronomis riparius* (EC₁₅ = 0.89 mg a.s./L).

To further address the long-term risk for the most sensitive species, a 35-day *Daphnia* population study in a water-sediment system was performed in order to achieve a better simulation of field and exposure conditions for details see KC& 8.2.5.1 /04; ...;2005; M-252129-01-1). The study included 4 applications within the first 21 days of the exposure period and resulted in a NOEC of 480 wg a.s. A based on nominal initial treatment levels. At the highest concentration of 960 μg/L effects were observed but obviously recovery was possible at this concentration as well.

This chonic study with a NOEC of 480 µg a.s./L including multiple applications demonstrates that toxicity of propineb is not increased by chronic exposure.

This is further supported by the low acute-chronic ratio compared to an acute laboratory study with Propineb VM 80 that resulted in an EC₅₀-endpoint of 1500 µg a.s./L, and 0% immobilisation of daphnids at 500 µg a.s./L after 48 h.

Thus the 35-day Daphnia population study covers both exposures, chronic and acute. A chronic assessment factor of 10 can be used for the final risk assessment for aquatic invertebrates based on the 35-day *Daphnia* population study.

Table 10.2- 12: Refined TER calculations using endpoints derived from higher tier studies ba on FOCUS Step 2

G 1	G .	A DEC TENT
Compound	Species	Endpoint PECsw,max TER Trigger
Orchards		
Propineb	Microcosm (fish, chronic)	NOEC > 600 159.3
Гторшев	D. magna (pop. study)	NAEC 480 \$\frac{133.3}{2} 23.1 24
Grapes I		
Droningh	Microcosm (fish, chronic) &	NOE >600 1008 5 >600
Propineb	D. magna (pop. study)	NOEC > 480 \ 0.08 \ 30.08 \ 348 \ 30.08
Grapes II		
D 1	Microcosm (fish, chronic)	NOEC > 600 0 37.46 > 06
Propineb	D. magna (pop. study)	NOEC @ 480 37.46 0 13

Bold values do not pass the sisk assessment

The TER values for the uses in grapes (Vand II) meet the trigger value based on FOCUS Step 2 PECsw values. Therefore, an unacceptable tisk to aquative organisms as not to be expected following the application of the product in this crop.

For the uses in orchards, further refinement using FOCUS Step 3 values in necessary. It is presented below. The TER values for the uses in grapes (Vand II) meet the trigger value based on FOCUS Step 2 PECsw

Table 10.2-13: Refined TER calculations for propineb using endpoints derived from higher tier studies based on FOCUS Step 3

Orchards	<u> 1 </u>	[µg/L]	1	[μg/L] 🗬	γ -	Trigger
				O'	—————————————————————————————————————	- S
			D3 (ditch, 1st)	1243	> 40°	
			D4 (pond st)	J.378	81	
			D4 (stream, 1st)	Q 116.2	_@ > 5. 2	
	D' 1		D5 (gond, 1st)	§ 7.377 C) > 84	
	Fish, chronic	NOEC > 600	Do (stream, 1st)	2 017.6 2	5.1	
	(microcosm)	W	K1 (pond, 1st)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	> 8 K	
		Õ	R1 (stream (st)	9875	> 6.1 3/4.6	
			Ra (stream, 1st)	P30.0	Ø'4.6 Ø	
			R3 (stream, 1st)	138.0		
Propineb			R4 (stream; 1st)	9847	>0.1	0
			(diton, 1st)	3f21.35	2 4.0 © 2 > 65y	
			D4 (pond, 1st)	7.37	1	
			D4 Stream Vst) D5 (pond, 1st)	3.377	44.1 9 65	
	D. magna, 🛭	NOEC \$480 \$	5 (ctroom 1ct)	7 117 6	> 0.3	
	chronic 🦠	NOEC \$480	R1 Coond, 18t)	7.977	> 65	10
	(pop. study)		R (stream, 1st)	98.15	> 4.9	
		NOEC \$480 \$	R2 (stream, 16)	130,0	> 3.7	
			R3 (stream) st)	J\$8.2	> 3.5	
			K4 (stream, 1st)	98.17	> 4.9	
Bold values d	not pass the ri	sk assessment	R3 (stream, 1st) A (stream, 1st) The necessary and property of the stream of the str	Z)		
K,						
urther refine	ement using Fo	OCUSStep 4 values	jn necessary and pr	esented below.		
*						
4	'					
, W	J .					
			Y			
	Ž A	~G				
)				
ĈĴ						
\sim						

Table 10.2- 14: Refined TER calculations for propineb using endpoints derived from higher tier studies based on FOCUS Step 4 including mitigation measures

	I					
Species	Endpoint [μg/L]	Mitigation	FOCUS scenario	PEC _{sw,max} [μg/L]	TER	Prigger
Orchards				0	,	
			D3 (ditch)	47.66	> 130	
			D4 (stream	49.92	×1/2 ^	
Fish,		5 m buffer	D5 (stream)	5 Q52	Ø 12 D	
chronic	NOEC > 600	and 50% drift	R1 (stowam)	42.16	> 14 ^Q	0 10
(microcosm)		reduction	R2 (stream)	55 🔊 🔏	o ^y an	\$\frac{1}{2}\frac{1}{2
			R3 (stream)	59.36 _©	№ 10, №	
			R4 (stream)	42.17	\$ > 14	~
		4	D3 ditch)	Q 13.39	×45 2	
		Ž".	DA (stream)	y 17402 Q	√> 43	
Fish,			D5 (stream)	©14.19	7 > 407	O
chronic	NOEC > 600	20 drift	R4 (stream)	0 11.84 <u>.</u>		10
(microcosm)			R2 (stream)	D.69	©>38 ¾	
			R3 (speam)	2 16.67 °	> %	
	W.	4. S	R4 (stream)	2 11.84 O	>31	
	, Q		(ditch)	29.83 P	√\$> 20	
	,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	A	D4 (stream)	24.96 ²	> 19	
D. magna,	NOC >480	5.00 buffer	D5 stream	O 25 26	> 19	
chronic	NOEC >480	and 75% drift	RI (stream) @		> 23	10
(pop. study)		reduction	R2 (stream)	© 27.93\$	> 17	
(R3 (stream)	29.68	> 16	
\$	© 4805 © 0 4805		R4 (strom)	№ 1.09	> 23	
			D3 (ditch)	29.27	> 16	
\			D4 (stream)	≫ 30.65	> 16	
D. magna,		70 m buffer	5 (stream)	31.02	> 15	
chronic	NOEC → 480 \$	50% drift	R1 (stream)	25.89	> 19	10
(pop. study)		neduction	R2 (stream)	34.3	> 14	
4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9 4 .	R3 (stream)	36.46	> 13	
	,		R4 (stream)	25.9	> 19	
. 4	29" A		D3 (ditch)	13.39	> 36	
Y			D4 (stream)	14.02	> 34	
D. magna,		76 m dui 40.	D5 (stream)	14.19	> 34	
chronic	NOE > 480	buff@	R1 (stream)	11.84	> 41	10
(pop. study)			R2 (stream)	15.69	> 31	
	NOES > 480		R3 (stream)	16.67	> 29	
	ř Ş [†] ,Y		R4 (stream)	11.84	> 41	
A W 20	4(III A 3)					

According to the presented risk assessment based on FOCUS Step 4 calculations, the risk to aquatic organisms from the use of the product in orchards is unlikely if

- 5 m buffer and 75% drift reduction,
- 10 m buffer and 50% drift reduction or
- 20 m drift buffer are maintained during application of the product.

Refined assessment for algae exposed to propineb

As the TER_{LT} values for algae do not meet the respective trigger value a refined risk assessment for propineb based on FOCUS Step 3 values is presented below.

Table 10.2- 15: TER calculations for algae exposed to proping based on FOCUS step 3

				4 -		.
Compound	Species	Endpoint	FOCUS Scenario	PECsw, max	₩ TED	Figger
Orchards			Ş .79' ([µg/L]	0.5	0
			D3 (ditch)	921.3 D	0.5	
		v .∜ ′0°	DA (pond)	1.3 W	7,5	
	S	. %	D4 (stream)	106.2	7.5 0.5	
			D5 (pond)	~J.377~	, © 7.5	
Propineb	P. subcapitata	E ₁ C ₅₀ 555	195 (stream)	1176	0.5	10
Тюршев	1. subcupitata		Ř1 (pond) 💍	* \$\377	7.5	10
			R lostream		0.6	
			R2 (stream)	1300	0.4	
			R3 (stream)	138.2	0.4	
			R4 stream	§98.17	0.6	
Grapes I				To the second se		
Grapes Fy	P. subcapitata S		D3 (dirtch)	6.195	8.9	
	2 4		D4 (pond)	0.214	257	
Propineb	P subopitata		D4 (stream)	4.581	12	10
Propineb			D5 (pend)	6.085	9.0	10
4			Do(stream)	6.480	8.5	
			₩1 (pond)	4.579	12.0	
Grapes II		~ \$.Q	7			
4			D3 (ditch)	23.68	2.3	
,			D4 (pond)	0.849	65	
Propineb Q	P & Branita	E ₁ C ₅₀ 55, C	D4 (stream)	17.44	3.2	10
1 Topines	1. Superupuna		D5 (pond)	23.36	2.2	10
		· ·	D5 (stream)	24.65	2.2]
L 2 6	P. supcapitud		R1 (pond)	17.15	3.2	

Furthe refinement using FOCUS Step 4 values in necessary and presented below.

Table 10.2- 16: Refined TER calculations for propineb based on FOCUS Step 4 including mitigation measures

	· · · · · · · · · · · · · · · · · · ·	1	T	Ι		
Species	Endpoint [µg/L]	Mitigation	FOCUS scenario	PECsw,max [µg/L]	TER	Vrigger
Orchards				0		
			D3 (ditch)	3.346	16,40	
			D4 (pond)	0.368	≱ 50 ∼	
			D4 (stream)	3,905	25.7 3	
		20 m drift	D5 (p@d)	₹0.368	1500	
D 1 .	D.C. 55	buffer and	D5 (stream)	3.540	D 15.5	
P. subcapitata	E_rC_{50} 55	75% drift	RI (pond)	Ø:368 W	≈ 150, ≪	
		reduction	R1 (stægam)	£2.960	\$ 18,6	4
		25	R2/stream?	Q, 3.929	19.0	
			R3 (stream)	y 45,168 , O	√ 13.2	
			R4 (stream)	2.96 ×	18.6	
			D3 (ditch)	© 2,5 5 9	\$ 2\text{0.5}	
			24 (potas)	©357.	Ĉ 154 °√	
			D4 (stream) @	2.681 [©]	20/5	
	S	30 m drift	D5 (pond)	\$ 0.3\$7 B	194	
D 1 .	6	Ouffer and	(stream)	2713	£20.3	1.0
P. subcapitata	E _r C ₅₀ 55	500/ Juift 18	R1 (poind)	© 0.357	154	10
		reduction	R10stream	0 2.264	24.3	
		\$.T	R2 (stream) @		18.3	
			R3 (stream)	Ø 3.188	17.3	
			Ra (stream)	2,265	24.3	
Grapes I 💍	<i>(y *)</i>	, Q A ?				
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		D6 (ditch)	3.098	17.8	
			R4 (pond)	→ 0.107	514	
P. subcapitata	15 AS	50% drift	R1 (stream)	2.290	24.0	10
T. subcapitata		reduction	R2 (stream)	3.043	18.1	10
			R3 (stream)	3.240	17.0	
, a	\ \tag{\partial} \tag{\partial} \ \tag{\partial} \tag{\partial} \ \tag{\partial}	J 32 0	R4 (stream)	2.290	24.0	
	, Q		D6 (ditch)	3.693	14.9	
4 1			R (pond)	0.250	220	
P subcapitata	E.C. O	75 m buffer	R1 (stream)	3.307	16.6	10
1 . suocapiiaia		Zone S	R2 (stream)	4.394	12.5	10
			R3 (stream)	4.679	11.8	
	E _r C ₅₀ 55		R4 (stream)	3.306	16.6	
Grapes		<i>.</i>		-		
			D6 (ditch)	2.368	23.2	
	10° \$	000/ 1: &	R1 (pond)	0.085	647	
P. subcapitata	E _r C ₅₀ 55	70% arift reduction	R1 (stream)	1.744	32	10
		1044011011	R2 (stream)	2.336	23.5	
			R3 (stream)	2.465	22.3	

	Endpoint [µg/L]	Mitigation	FOCUS scenario	PEC _{sw,max} [μg/L]	TER	Trigger
			R4 (stream)	1.715	32.1	
			D6 (ditch)	3.580	15.4	
			R1 (pond)	0.246	224	
D 1	E.C. 55	5 m buffer zone and 75%	R1 (stream)	3.176	17.30	7 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 1
P. subcapitata	$E_r C_{50}$ 55	drift reduction	R2 (stream	4.255	129	
			R3 (stream)	4290	2.2	
			R4 (stream)	\$3.124	17.6	
			D6 (ditch)	2.81%	L`≫ 1 <i>0</i> L.5	ا ا
			RP(pond)	0.368	150 0	
D aubomitata	E.C. 55	15 m buffer	R1 (stægam) 🗳	2.500	150 22.0	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
P. subcapitata	E_rC_{50} 55	zone	R2 (stream)	3.349		
			R3 (stream)	3.3 34 0	€ 15.6	
			R4 (stream)	2.459C	€ 22. 4	0
According to th	na presented ris	k ossassii h		Storf I colleged	tions the risk	to aquatia
according to the	litrate if	assessment of		Sicp - calegrat	ilong, the risk	to aquatic
organisms is un	likely if					
use in orchard	S:					
- 20 m buffer ai	nd 75% dratt red	luction, of a	« » « » « »			
20 1 00	1.500/ 1:0			, · · · · · · · · · · · · · · · · · · ·		
- 30 m buffer ar	nd 50% drift red	the tions				
- 30 m buffer ar	nd 50% drift red	Tections 5				
- 30 m buffer an use in grapes I - 50% drift redu	nd 50% drift red	tiction of				
- 30 m buffer an use in grapes I - 50% drift redu	nd 50% drift red	Thetions of				
- 30 m buffer an use in grapes I - 50% drift redu - 5 m buffer z	nd 50% drift red	Tiction of				
use in grapes I 50% drift redu 5 m buffer zo	nd 50% drift red	Thetions of				
- 30 m buffer an use in grapes I - 50% drift reduced to 5 m buffer zonuse in grapes I - 90% drift reduced to 5 m buffer zonuse in grapes I - 90% drift reduced to 5 m buffer and 5 m buffer a	iction. Or action.	Tictions of				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zon	iction 75% drift red	t reduction, or				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo 15 m buffer zo	iction, or action of 75% drift red	t reduction, or				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo 15 m buffer zo	iction of Ariff red	treduction, or				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo 15 m buffer zo are maintained	iction, or and 75% drift red	treduction, or on of the produ				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained	iction, or a least of the and 75% drift one and	t reduction, or on of the produ				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo 15 m buffer zo are maintained	iction, or de and 75% drift red and 75% drift one and 75% drift on	it reductive, or on of the produ				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo 15 m buffer zo are maintained	iction, or a least of the analytication of the anal	t reduction, or on of the produ				
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained	iction, or drift red iction, or drift red iction of drift one and 75% drift one and	op of the produ	Exposed to prop	ineb-DIDT		
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assess As the TERA	iction, or least of the analysis of the analys	t reduction, or on of the production of the prod	EXPOSED TO PROPER LT Values for	ineb-DIDT algae both do	not meet the	respective
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assessi As the TERA	iction, or least of the and 75% drift one and 75	on of the produ	RY(stream) R4 (stream) A sed on FOCUS Exposed to proping the metabolite proping in the control of the contro	ineb-DIDT algae both do copineb-DIDT ba	not meet the ased on FOC	respective US Step 3
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assess As the TERA trigger values a values is oresen	iction, or de la comparation during application dur	on of the production of the pr	exposed to proping metabolite proping in the	ineb-DIDT algae both do opineb-DIDT ba	not meet the ased on FOCU	respective US Step 3
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assess As the TERA trigger value a values is gresen	iction, or a least of the latest of the late	on of the production of the pr	ERLT values for metabolite pr	ineb-DIDT algae both do opineb-DIDT ba	not meet the ased on FOCI	respective US Step 3
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assess As the TERA rigger value a values is presen	and 50% drift reduced by the state of the st	on of the produ	exposed to proping ER _{LT} values for metabolite pr	ineb-DIDT algae both do opineb-DIDT ba	not meet the ased on FOCU	respective US Step 3
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assess As the TERA rigger value a values is presen	iction, or a least of the analysis of the anal	t reduction, or on of the production of the prod	exposed to proping ER _{LT} values for the metabolite pr	ineb-DIDT algae both do	not meet the ased on FOCU	respective US Step 3
use in grapes I 50% drift redu 5 m buffer zo use in grapes I 90% drift redu 5 m buffer zo 15 m buffer zo are maintained Refined assess As the TERA rigger values a values is gresen	iction, or a least of the latest of the late	on of the produ	exposed to proping ERLT values for metabolite pr	ineb-DIDT algae both do opineb-DIDT ba	not meet the ased on FOCU	respective US Step 3

Table 10.2- 17: Refined TER calculations for propineb-DIDT using PEC_{sw} values based on FOCUS Step 3

	FOCUS Sto	ch 3				. Č .
Compound	Species	Endpoint [μg/L]	FOCUS scenario	PEC _{sw,max} [μg/L]	TER	Trigger
Orchards				. "	<i>∞</i>	
			D3 (ditch, 1st)	28:70	3.0	
			D4 (pond st)	A.748	64 √	
			D4 (stream, 1st)	Q<0.001	64 % 1120 8	
			D5 (cond, 1st)	§ 1.747 (C	° 64 €	
	Invertebrate,	EC > 112	Do (stream, 1st)	30 .001	¥2000	1800
	acute	$EC_{50} > 112$	R1 (pond, 1st)	~ 1.74%	64	
		<u> </u>	R1 (stream Lst)	0.057	1965	2
		4	R2 (stream, 1st)	©070	J 600 D	
			R3 (stream, 1st)	28.00	∠ 4.0 [∞]	
Propineb-			R4 (stream) st)	1997	5 6	
DIDT		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	D3 (ditch, 1st)	28.70 ♣	3.9	
			D4 (popd, 1st)	1.74	64	
			D4 Stream Vst)	~ <0. 9 01 %	>1922000	
			D5 (pond, 1st)	~ 3.747	©64	
	Green algae,		Ot)5 (stream 1st)	~ <0.00X	\$\frac{112000}{}	4.0
	chronic	EC 50 124	R1 (pond, 15t)	1.748	64	10
	chronic	ECso MA4	R (stream, 1st)	0.057	1965	
			102 (sterom 164)	0.07,0	1600	
			R3 (stream stst)	2 8.09	4.0	
			K4 (stream, 1st)	a. 19.97	5.6	
Grapes I 💍	10/	\$\frac{1}{2}\$\frac		V		
			Deceditch; (st)	1.470	76	
			Ryl (pond, 1st)	0.051	2196	
Propineb-	Invertebrate,		R1 (s@eam_1st)	0.062	1807	100
DIDT	Invertebrate, active	112.5° 0 112.5°	R2 (stream 1st)	< 0.001	>112000	100
			R3 (stream, 1st)	1.535	73	
, 1	9		R4 (gream, 1st)	0.081	1383	
Grapes 10	, Q					
*			(ditch, 1st)	< 0.001	>112000	
4			R1 (pond, 1st)	0.018	6222	
Propineb-	Invertebrate,		R1 (stream, 1st)	0.467	240	100
DIDT	acute A	EC ₅₀ > 11%	R2 (stream, 1st)	0.465	241	100
Į.		VEC SUST > 112	R3 (stream, 1st)	< 0.001	>112000	
			R4 (stream, 1st)	0.321	349	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ROT A		I		

Bold values do not pass the risk assessment

For the see in Grapes II, all TER values meet the required trigger of 100. For the uses in orchards and grapes I further refinement using FOCUS Step 4 values in necessary and presented below.

Table 10.2- 18: Refined TER calculations for propineb-DIDT based on FOCUS Step 4 including mitigation measures

D3 (ditch, 1st)		mitigation mea					
D3 (ditch, 1st)	Species		Mitigation			TER	Prigger
D3 (ditch, 1st)	Orchards		•		- C	7	
R2/stream 1st)				D3 (ditch, 1st)	0.792	>1410	
R2/stream2st 0.070 >1000 R3/(stream, 1st) 0.0357, >314 R4 (stream, 1st) 0.315, >350				D4 (pond, 🖎)	0.0\$7	>1287	
R2_stream_1st				***************************************	(0)	<i>></i> Ø 1200 0	
R2/stream 1st)			20 m buffer	D5 (p@d, 1st)	\$\times 0.087	€ >128°P	
R2/stream 1st)	Invertebrate,	FC > 112		D5 (stream, 1st)	<0,001	>112000	160
R2/stream2st 0.070 >1000 R3/(stream, 1st) 0.0357, >314 R4 (stream, 1st) 0.315, >350		$EC_{50} > 112$		RI (pond, 1st)		21287	
R2 stream st 0.090 >1600			reduction	Kl (stream, kst)	J 0.057	>1965	4
R4 (stream, 1st) 0.315 >350			4	R2/stream@ist)	0.090		
R4 (stream, 1st) 0.315 >350				R3 (stream, 1st)	£0.857. ○	≪>314	
Green algae, chronic EC ₅₀ 14 EC ₅₀ 14 EC ₅₀ 14 EC ₅₀ 15 10 10 10 10 10 10 10 10 10				R4 (stream, 1st)	0.319		Õ
Green algae, chronic EC 50 114 50% drift reduction 10 10 10 10 10 10 10 1				D3 (ditch, 1st)	© 11328 ¢	10 .1 / Q	
Green algae, chronic EC ₅₀ 14 5 m buffer, and 50% drift reduction R1 (pond, 1st) R2 (stream, 1st) R3 (stream, 1st) R3 (stream, 1st) R4 (stream) 1st) D6 (drich, 1st) R4 (pond, 1st) R3 (stream, 1st) R4 (stream) 1st) D6 (drich, 1st) R4 (pond, 1st) D7 (1000) R3 (stream, 1st) R4 (stream) 1st) D8 (drich, 1st) R4 (pond, 1st) D8 (drich, 1st) R4 (pond, 1st) R5 (pond 1st) R6 (drich, 1st) R7 (stream, 1st) R8 (pond, 1st) R9 (po				D4 (pond, 1st)	0 .984	© 116 %	
Green algae, chronic EC50 1/4 50% drift reduction				D4 (speam, 18t)	© <0.00P	114900	
R1 (pond, 1st) 0.984 116		Ü		D5 (pond, 1st)	0, 9 84 ₀		
R1 (pond, 1st) 0.984 116	Green algae,	EC %13	5 buffer and	(stream, 1st)		√¶4000	10
Ricstream, 1st)	chronic		20/0 willing	AN		3 116	10
Invertebrate, acute Do (drich, 1st)				R Kystream, 1st)	D 0 5 57 (y 2000	
Invertebrate, acute Do (drich, 1st)				R2 (stream, 1st)	. 0.070 _@ ,	1629	
Invertebrate, acute Do (drich, 1st)				R3 (střeam, Di	© 0.35¶	319	
Invertebrate, acute Do (drich, 1st)	~			R#(stream) 1st)	0,319	357	
Invertebrate, acute Do (drich, 1st)	Grapes I 💍	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			Ž		
Invertebrate, acute				D6 (ditch, 1st)		>152	
Invertebrate, acute				Rd (pond, 1st)	0.025	>4480	
R2 (stream, 0st) <0.001 >112000	Invertebrate,		50% drift	R1 (stream, 1st)	0.062	>1806	100
R3 (stream, 1st) 0.768 >146 R4 (stream, 1st) 0.495 >226 D6 (dich, 1st) 0.877 >128 R (pond, 1st) 0.059 >1898 R1 (stream, 1st) 0.062 >1806 R2 (stream, 1st) <0.001 >112000 R3 (stream, 1st) 1.108 >101 R4 (stream, 1st) 0.708 >158	acute	SC 50 2 112	reduction	R2 (stream, (st)	< 0.001	>112000	100
R4 (stream, 1st)	~			R3 (stream, 1st)	0.768	>146	
D6 (drich, 1st) 0.877 >128	<u> </u>			* 4 (stræam 1st)	0.495	>226	
Invertebrate, acute R	Ø*	, Ø . Ô		D6 (ditch, 1st)	0.877	>128	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 n			R (pond, 1st)	0.059	>1898	
acute R2 (stream, 1st) <0.001 >112000 R3 (stream, 1st) 1.108 >101 R4 (stream, 1st) 0.708 >158	Invertebrate,		5 1	R1 (stream, 1st)	0.062	>1806	100
R3 (stream, 1st) 1.108 >101 R4 (stream, 1st) 0.708 >158	acute	EC50 > 112	3 m buffer	R2 (stream, 1st)	< 0.001	>112000	100
R4 (stream, 1st) 0.708 >158	_ (R3 (stream, 1st)	1.108	>101]
				R4 (stream, 1st)	0.708	>158]

According to the presented risk assessment for propineb-DIDT based on FOCUS Step 4 calculations, the risk to aquatic organisms from the use of the product is unlikely if a 20 m buffer zone and 75% drift reduction in orchards and a 5 m buffer zone or 50% drift reduction in grapes I are maintained during application of the product.

Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and **CP 10.2.1** macrophytes

Report: ;2011;M-401282-01

Acute toxicity of propineb WG 70A W to fish (Oncorhynchus myxiss static - renewal conditions Title:

static - renewal conditions

Report No: EBLHL011 Document No: M-401282-01-1

EPA-FIFRA § 72-1/SEP-EPA-540/9-85-006 (1982/1985)
OPPTS 850.1075 (Public Sent 1992) **Guidelines:**

OPPTS 850.1075 (Public Fraft, 1996) Directive 92/69/EEC, C.1 (1992) OECD No. 203 (rev.1992)

JMAFF, 12 Nousam No. 81 7 (2000)1;none

GLP/GEP:

Objective:

The aim of the study was to determine the (Oncorhynchus mykiss), expressed as 96h

Materials and Methods

Test item: propineb WG 70A W analyzed content Pactive substance: 69.5 % www. specified by batch ID: EM20004026, specification no 402000004026, tox no.: 08694-00

Test organism: Rainbow frout (Oncorle achus mykiss), mean body length 3.8 cm, mean body weight 0.5 g. The biomass loading for this test was 0.725 g fish / Lest medium,

Ten fish in each test level were exposed for 96 h under static - renewal conditions to nominal concentrations of 0.958 (0.198), J. 14 (0.468), 3.66 (1.52), 11.7 (4.92), 37.5 (14.8) and 120 (52.7) mg test item (mean measured mg a s. / L) (L'against control.

During The test, fish were wamined after four Dours and then daily for mortalities and signs of poisoning. Within the study dissolved oxygen water temperature and pH values were determined daily in each aquarium water semperature was additionally measured in the control aquarium and recorded hourly with data logger Dissolved oxygen concentrations ranged from 90% to 101% oxygen saturation, the pH values ranged from 6.9 to 7 1 and the water temperature ranged from 10.9 °C to 11.7°C in all aquaria over the whole testing perfed. The photoperiod was 16 hours of light and 8 hours dark.

After 4, 24, 48, 72 and 96 hours of exposure the fish were inspected for the number of deaths, toxic symptoms or abnormalities. The mortality (%) after 4, 24, 48, 72 and 96 hours of exposure was calculated in each treatment group. Propinel was analyzed in all test levels after 0 h, on day 2 (old and new media) and on day 4 of the exposure period to confirm nominal concentrations.

Dates of experimental works October 18, 2010 to October 22, 2010

Results:

	Recommended	Obtained &
Validity Criteria Mortality in the control	≤ 10%	0% F
Constant water quality and environmental conditions during the test	Yes	Obtained 0% Yes 78 - 88 78 ranged between 567 % and 79.5 % of on wean measured concontrations:
Concentration of dissolved oxygen	≥ 60%	78 - 880
Analytical results: Mean measured concentrations for the o	different te@/leve	ranged between 567 % and 79.5 % of
ominal values for propineb. Therefore, a	all results are based	on measured concontrations:
nominal values for propineb. Therefore, a	easured) behaviou	ral changes were observed during the entire

LC50 values for rainbow trout exposed to Propineb WG 764 W based on nominal and mean measured concentrations

	Propineb WG 70A W
Test Orect: O O &	Rainboy trout (Qncorhynchus mykiss)
Exposure:	96 hours, static test design (limit)
LCso 96 h (95% C.L)	4.33 (2.84-7.90) ang (mean measured) test item / L

Conclusions:

The LC₅₀ (96kg of propinel to Rainbow Front (Oncorhonchus mykiss) in a static 96-hour-test was

Report: 8; ;2010;M-372880-01

Title: Acute toxicity of propineb WG 70A W to the waterflea Daphnia magna in a

static laboratory test system

Report No: EBLHL010
Document No: M-372880-01-1

Guidelines: OECD guideline 202,(2004); EEC Directive 92/69/EEC, part ©2 (1992);

U.S. EPA Pesticide Assessment Guidelines, Subdivision E, \$72-2 (1982); OPPTS Guideline 850.1010 public draft 1996 modified); MAPP 12

Nousan No. 8147 (2000)

GLP/GEP: yes

Objective:

The study was performed, to detect possible effects of the test tem on mobility of Daphton magnate caused by 48 hours of exposure in a static laboratory test system expressed as EC for immobilisation.

Materials and methods:

Test item: Propineb WG 70A₀W, batch no EM20004026, specification NO 102000006516-02, content: 49.5% w/w propineb TOX 0865400).

Daphnia magna (1st instars < 24 bold, 6 5 animals per concentration) were exposed in a static test system for 48 hours to nominal concentrations of 1, 0.63 1.25, 2.50 and 10.00 mg form./L without feeding.

The content of propines in exposure media was measured for verification of the test item concentrations at start and end of the exposure period.

After 24 and 48 hours, the behaviour of the water fleas was visually evaluated by counting mobile daphnids, defined as animals with swimming movements within approx. 15 seconds after gentle agitation of the test vessel. Additionally all visible features of the test item in water as well as possible signs on sublethal affected dappnids had to be recorded.

For verification of the prepared exposure concentrations, the ass component Propineb was analytically determined and quantified as propylenethioures (PTG) which is the hydrolysis product of propineb. Before measurement, Propineb residues were completely transferred into PTU by heating up to 65°C for 24 hours.

Dates of experimental work;

[™]October 05, 2009 to March 03, 2010

Results:

Analytical findings:

The accompanying chemical analysis of propineb in freshly prepared test solutions revealed measured concentrations between 87% and 102% mean: 95%) of nominal.

The corresponding concentrations in the aged test solutions at the end of the 48 hours exposure period ranged between 74% and 86% (mean: 81%) of nominal.

Due to the United water solubility of propineb under test conditions, the corresponding concentrations of the age test solutions at the end of exposure were dose-dependingly reduced. While concentrations up to 174 mg a.s./L revealed sufficient recovery rates (less than - 20% of nominal), the recovery rates for higher test concentrations fell below 80% of nominal. As the toxicity has to be attributed to the

tested formulation as a whole, all results submitted by this report are related to nominal test concentrations of the formulated product.

Nevertheless, since the discontinuous dose-response relation for the highest test concentration of 10 mg form./L may be affected by reduced bioavailability due to strong precipitation of the test item in the test vessels, this treatment group was excluded from 48h EC₅₀ calculation approximate EC₅₀ a "worst case" principle.

the test vessels, this	treatment gro	bup was excluded from 48h EC ₅₀ calculation σ approximate EC ₅₀ to a
"worst case" princip	le.	on behaviour occurred in the untreated control within 48 hours of
No contaminations of	of propineb w	rere detected in samples from untreated water control
District Co. 10.		
Biological findings:	.1 .00	
No immobilities or	other effects	on behaviour occurred in the untreated control within 48 hours of
exposure.		
Toxicity of propineb	WG 70A W to	o Daphnia magna Based on nominal concentrations):
Nominal test	Exposed	
concentration	daphnids	24kh. 48 h.
(mg p.m./L)	(=100%)	1 mmobilised daphhids 24kh. 48 h.
Control	30	Immobilised dapfinds 24h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.63	30	
1.25	30	
2.50	30	4 1 5 3 4 0 6 4 200 Q
5.00	\$90	5 16.7 19 63.3
10.00	30	8 26.7 7 19 63.3
excluded from EC ₅₀ calcu	lation 5	8 26.7 V 63.3 V
		8 26.7 V 619 (63.3**)
Conclusions:		s on behavious occurred in intreased control within 48 hours of
Na in a latit	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
NO immobilities or	Siner effect	as on behavious occurred in untreased control within 48 hours of
exposure. 🙋	0	

Based on mean-measured concentrations of Prophieb WG 70AW, the following EC50 values for immobilisation after 24 and 48 hours of static exposure were assessed:

Statistical results of probit analysis conducted for determination of EC50 values:

Probit analysis for data obtained after	mg pure metabolite / L/ (mean measured)	ower 95% cl mg dure metabolite / L mean measured) 7.25	upper 95% cl mg pure metabolite / L (mean measured) 57.4
48 hours	4.10	3.18	5.28
highest test concentration exclud	From FC ₃₀ calculation	****	

Report: ;2010;M-397379-01

Pseudokirchneriella subcapitata growth inhibition test with propineb W Title:

W

EBLHL009 Report No: Document No: M-397379-01-1

OECD Guideline 201: Freshwater, Alga and Cyanobacteria **Guidelines:**

Inhibition Test (March 23, 2006)

GLP/GEP: yes

Objectives:

The aim of the study was to determine the influence of the text item on exponentially growing Pseudokirchneriella subcapitata expressed as ONO (cells per volume).

Materials and Methods:

Test material: Propineb WG 70A W (analysed parity: 69.5 was tested specified by batch ID: EM200004026, sample description TOX08654500 and specification To: 10000006516-02).

Pseudokirchneriella subcapitate were exposed in Schronic multi-generation test for 3 days under static exposure conditions to the geometric mean measured concentration of 9,54, 30.5, 97.7, 313 and 1000 μg formulation/L in comparison to control. The test system consisted of three replicate vessels per test level and six replicate vessels per control. The initial cell number was 10,000 cells/mL.

The test system consisted of three replicate vessels per test level and six replicate vessels per control level. The initial cell number was 10,000 cells/mil.

Growth inhibition was calculated using algae biomass per volume. The sprogate for biomass was cell density (used a response parameter)

The pH values ranged from 7.7 to 8.2 in the controls and the incompation temperature ranged from 21.8°C to 22.0°C (measured in an additional incubated glass vessel pover the whole period of testing at a continuous illumination of \$33 lux

Quantitative amounts of Propineb were measured in all treatment groups and in the control on day 0 and day 3 of the exposur

ork: November 06 2009 to May 20 2010 Dates of experimental

Validity Criteria	Obtained in this study:
Increase of biomass:	Bromass increased in the control by more than 16-fold within the evaluation
	, Period & P
Sectional control fates:	Mean percent coefficient of variation of sectional growth rates from day 0-1, day
	1 2 and day 2-3 in the control did not exceed 35%
Control replicate rates:	Percent coefficient of variation of the average growth rate in each control
	replicate did not exceed 7%

In conclusion, it can be stated that the test conditions met all validity criteria given by the mentioned guideline.

Strain material of defined sensitivity was used, as shown by reference substance testing with 3,5-dichlorophenol or potassium dichromate. Reference tests are conducted event driven (i.e. in case of receiving new strains, introduction of new test conditions, apparatus, etc.). These tests are documented and archived together with strain protocols.

Analytical results:

Propineb WG 70A W could not be directly determined due to the low solubility and low hydrolytic stability in water. The hydrolysis product propineb propylenethioured (PTU) was analysed and the amount of propineb was recalculated. Recoveries of PTU were measured twice during the study day and 3.

The chemical analysis of propineb in the treatment levels resulted in 46.7 % to 901 % of nominal (average 57.4 %) on day 0. On day 3 39.8 % to 83.0 % of nominal (average 40.4 %) were found. Taking into account the physico-chemical properties of propineb under test conditions, nominal concentrations of the formulation are used for reporting and evaluation of results.

Biological results:

Effect of Propineb WG 70A W on Freshwater Algae (*Pseudokirchieriella subcaptuta*) in 72 h.growth inhibition test

Geom. mean measured	Cell number	©0-72h)-average	Inhabition of average
concentration	after 72 M	specific growth	specific growth rate
[µg form./L]	(means) per mL	rates [days-1]	
Control	844 900	1498 0	
9.54	89 6 000	10471	
30.5	, 780 000° ~	¥ 4525	a, 1.8
97.7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ 0.943° ~	38.1
313	58 000 &	0,5\%	£ 60. % 60. €
1000	3 4 000 3	4 09 3	72,3

test initiation with 10,000 cells mL

No morphological change in algae was observed in any test concentration.

Conclusions:

The (0 - 72h)- E_rC_{50} for Proponeb WG 70 AW is 239 μ g form./L and the (0 - 72h)-NOE_rC is 9.54 μ g form./L.

CP 19.2.2 Add. long-term and erronic tox. studies on fish, aquatic invert., sediment dwelling org.

No new studies were necessary based on the current data requirements. See the respective MCA document.

CP 106.2.3 Further testing on aquatic organisms

No studies were necessary based on the current data requirements. See the respective MCA document.

CP 10.3 Effects on arthropods

CP 10.3.1 Effects on bees

The risk assessment has been performed according to the exisiting guidance in force at the time of the preparation and submission of this dossier namely the EU Guidance Document of Terrestrial Ecotoxicology (SANCO/ 10329/2002 rev 2) and EPPO Standard PP 3/10 (3) Environmental Risk Assessment Scheme for Plant Protection Products - Chapter 10: honey bees.

Commission Regulations (EU) 283/2013 and 284/2013 require where bees are likely to be exposed, testing by both acute (oral and contact) and coronic toxicity, including sub-lethal effects, to be conducted. Consequently in addition to the standard toxicity studies performed with adult bees (OECD 213 and 214) the following additional studies are also provided:

- Chronic 10 day toxicity to adult bees under taboratory conditions
- Acute toxicity to larval bees under aboratory conditions
- Colony feeding studies (Oomen et al 2008). This is only triggered when the active oral LD50 for adult bees is less than 100 µga.s./bee which is not the studion for propinel. However a study has been conducted using a realsitie worse case spray solution concentration and covers exposure for effects on brood (eggs, young and old larvae) and their development, nurse bee on-going behaviour in brood care and colony strenght?
- Tunnel test to OECD guidance document 75 with methodological improvements). This test exposed honey bee cologies to a spray application of 1575 g a.s./ha (maximum use rate) on a flowering, bee advactive crop Phacella tanadetifolts).

Details of the honey be testing with propine and ecotoxicological endpoints are presented in MCA, Section 6, Point 8.3.1 as well as within the existing Review Report for propineb (SANCO/75/74/VI/97-Final, 2003). The tunnel test with Propineb WG 70 to OECD 75 is presented in this document (MCP Point 1003.1).

Table 10.3.1- 1: Scute toxicits of propinels (a.s.) to bees

Test substance	Test pecies study	C & Endpoint	Reference
	design 📏		
Propinel K 83	Honey by 48 h	LD - oral > 164.6 μg a.s./bee LD - contact > 164.6 μg a.s./bee	KCA 8.3.1.1.1/01 KCA 8.3.1.1.2/01 (1998)
Propineb TK 85	Honey bee,	LD ₅₀ – oral > 107.9 μg a.s./bee LD ₅₀ – contact > 100 μg a.s./bee	M-017002-01-1 KCA 8.3.1.1.1/07 KCA 8.3.1.1.2/07 (2012) EBLHN001 M-442120-01-1
Propineb TK 85			

Table 10.3.1-2: Honey bee toxicity data generated with Propineb WG 70

Test substance	Test species/study	Endpoint	Reference
A auto and and an	design ontact toxicity (laboratory		
Acute oral and co	The state of the s		KCP 10.3.7.1.1405
Propineb WG 70	Honey bee, 48 h	LD ₅₀ – oral >100 μg a.s./bc	M-01-013-012
Propineb WG 70A W	Honey bee, 48h	LD ₅₀ —oral >112.3 @ a.s./bee LD ₅₀ — contact >100 g a.s./bee	KCP 10.3 1.1/02 (2009) EBLHQ007 (2009) M-362507-04-1
Effects on larvae	(laboratory)		
Propineb WG 70A W	Honey bee brood (in vitro) Apis mellifera	NOSD >6.25 μg a.s./larva	KCA 8.3.1.2./03 (2014) S13-01495 M-488422-01
Bee brood feeding	g test		
Propineb WG 70A W	Honey bee Brood feeding (Nomen et al.,	Although a small but statistically significant effect on egy termination rate was observed. Propine WG 70A Weed at a concentration of 2.10 ga.s./L (typical thing) would not adversely affect overall honey bee brood development or success and did not increase the overall mortality rate of the colonies compared to the control.	KCA, 8.3.1.3/01 (2013) EBLHL033 (1-454682-01-1
Semi-field (tunne	l) test conducted to OEC		T
Propineb Wo	OEOD Guidance document 75 with current O recommendations of the AG Bienens Shutz and CPPR (2010)	No adverse offects on mortality, foraging, be brood development (eggs, young larvae, pild larvae, pupas) and colony development due exposure to sprayed test item onto a flowering crop under tunnel conditions at 15.77 g a.s. ha.	KCP 10.3.1.5/01 , (2014) EBLHN023 M-488039-01-1

- Studies referring to CA are filed in the assier for the active substance.
- Studies written in grey type are referring either to studies in the corresponding Baseline-dossier for the active substance or to the dosser for the old representative formulation for Annex I inclusion (which is provided for renewal as well); whereas stadies in black type are stadies of the Supplemental dossier for the active substance or this present dossier for the new representative formulation.

Chronic toxicity of propineb to adult honey bees

There is currently no harmonised and ring ested test guideline available in Europe to assess the chronic risk to adult honey bees. Nonetheress, there is to date some experience within the European honey bee testing community on conducting chronic studies in adult honey bees, by exposing honey bees orally to a created 30% (w/v) sugar solution as an exclusive food source for a period of 10 consecretive days by continuous and ad libitum feeding. Due to the very low water solubility of technical propineb the study was conducted with the representative formulation Propineb WG 70**♠**₩.

Table 10.3.1-3: Chronic toxicity of propineb to adult honey bees

Test substance	Test species/study design	Endpoint	Reference	Ŕ
Propineb WG	10 d chronic adult	NOEC > 120 mg a.s./kg sucrose	(2014)	Ô
70A W	feeding study	LC ₅₀ > 120 mg a.s./kg sucrose	M-487104-0-01	

Risk assessment for bees

The risk assessment for bee is based on the maximum label rate of propine 1575 g a.s. ha for applications in orchards which covers all uses and CAPs using the critical endpoints LD₅₀ values) in bold in the preceding tables for Propineb TK 83 of >107.5 and >100 µg a s/bee for oral and contact toxicity respectively.

Hazard Quotients

The risk assessment is based on Hazard Quotient approach (Q_H) by calculating the ratio between the application rate (expressed in g a.s./ha or in g total substance/ha) and the laborators contagt and oral LD_{50} (expressed in μg a.s./bee or in μg total substance/bee).

Q_H values can be calculated using data from the studies performed with the active substance and with the formulation. Q_H values higher than 30 indicate the need of higher tiered activities to clarify the actual risk to honey bees.

Hazard Quotient, organ:

Quotient, organ:

Quotient, contact:

Quo

Table 10.3.1-4: Hazard quotients for bees - oral exposure

Compound	Oral LDs () [[[]] [] [] [] [] [] [] [] [Max. application Fate ga.s./hap	Hazard Quotient Quo	Trigger	A-priori acceptable risk for adult bees
Propineb _	>107.9	1576	<14.6	50	yes

a maximum application rate in orchards covers to other intended uses

The hazard quotient for spal exposure \mathbb{R} below the validated trigger value for higher tier testing (i.e. $Q_{HO} < 50$).

Table 10.3, 5: Hazard quotients for bees – contact exposure

Compound	Contact Los	Max. application rate [g a.s./ha]	Hazard quotient Qнс	Trigger	A-priori acceptable risk for adult bees
Propineb	> 100	1575 a	<15.8	50	yes

^a maximum application rate in orchards covers all other intended uses

The hazard quotient for contact exposure is below the validated trigger value for higher tier testing (i.e. $Q_{HC} < 50$).

Toxicology summary and further considerations regarding the risk to bees

The active substance propineb either as technical material or formulated product (Propineb WG 70A W) is of low toxicity to bees. Both technical material and formulation exhibit acute LD₅₀ values for adult bees in excess of 100 prog a.s./bee for oral and contact routes of administration with HQ values considerably lower than the levels regarded to indicate a risk to bees.

When fed chronically to adult bees via ad libitum feeding of 120 mg as /kg sugar solution there were no signs of intoxication or mortality indicating that propineb does not cause adverse effects or is more toxic when administered chronically. This chronic study was designed as a limit test by exposing adult honey bees for 10 consecutive days to a consentration of cominally 120 mg propineb as /kg in aqueous sugar solution. As propineb is practically insoluble in water (>0.00 mg/L at 20 °C), the test was conducted by using the formulated product Propineb WG 70 The nominal test concentration as such equals about 12× the water solubility of propineb. When red chronically to adult bees via ad libitum feeding of 120 mg a.s./kg sugar solution there were no signs of intoxication or mortality indicating that propineb does not cause adverse effects or is more toxic when administered chronically. No adverse lethal, behavioural or delayed effects were found by exposing adult honey bees for ten consecutive days exclusively to sugar solution, containing 120 ppm propineb (nominal).

In a laboratory study honey bee darvae were sensitive to propine with an acute LD50 of 11.1 µg a.s./larva. The methodology for testing larval and adult bees differs in that larval exposure is both by dermal and oral (dietary) routes of exposure, whereas in the standard adult bee toxicity tests the two routes are investigated separately. Larval bees are also smaller than their adult counterparts when dosed in the studies if compared on a weight by weight basis. Consequently although the larvae appear to be more sensitive numerically than the adult bees the two test methods are not directly comparable. In addition the exposure levels for foraging adult bees is far higher than that of larvae fed by nurse bees within the live.

Further toxicity testing on the effects of propine at the colony level and to further investigate effects on larvae has been conducted under colony feeding and semi-field conditions.

A bee brood feeding study has been conducted by following the provisions/method of Oomen P.A., de Ruijter, A. & van der Steen, J. WEPP PPO Bulletin 22:613-616 (1992), which require, amongst other parameters to "Juse formulated products only... products are fed at a concentration recommended for high-volume use." The honey bee brood feeding test is a worst-case screening test, by feeding the honey bees directly in the hive with a treated sugar solution which contains the test substance of a concentration typically present in the spray tank (and as such at a very high concentration) and by investigating the development of eggs, young and old larvae by employing digital photo imaging technology. In this study fed with formulated Propineb WG 70A W at a concentration of 2.10 g as L (typical for high volume spray, see table below) experienced a small but statistically significant effect on egg termination rate compared to the control (fed on syrup only). However, there were no adverse effects due to exposure to propineb as the overall honey bee brood development and success mortality rates of the colonies showed better performance compared to the control even under the unlikely worse case conditions of direct consumption of spray solution.

Table 10.3.1-6: Intended application patterns relevant to bees and spray tank concentrations

Сгор	Timing of application (range)	Maximum label rate (range) [kg pr/ha]	Water volume (min – max) [L/ga]	Concentration of spray solution (min – max) [g a.s./L]	Maximum application rate, [g a, C/ha]
Orchards (Apple)	BBCH 40-59 BBCH 60-73	2.25	800 – 1500	1.05 - 97	1575
Grapes I	BBCH 40-59	1.6	600 – 800	1.9 - 1.87	\$\frac{1}{2}\frac{1}\frac{1}{2}\f
Grapes II	BBCH > 70	2.0	600 800	Q1.75 2.33 4	1460

In a semi-field (tunnel) test conducted to OECD guidance document 75 with recent methodological improvement) colonies exposed to propine at \$375 g. s./ha applied directly as spray and as residues on flowers (nectar and pollen) exhibited equivalent performance in terms of mortality, foraging rate, behaviour, brood development, colony strength and food stores compared to colonies exposed to only water. Overall, under worse case condition of use exposure to propine at the maximum application rate of 1575 g a.s./ha produced no deleterious offects on honey bees or honey bee colonies.

Overall conclusions for bees

The calculated Hazard Quotients for both rechnical and formulated propines are well below the validated trigger value which would indicate the need for a refined risk assessment; no adverse effects on honey bee mortality are to be expected. This consultance to confirmed by the results of a range of additional tests (adult chronic feeding study larval toxicity test, bee brood feeding study and tunnel test to OECD (5).

Overall, it can be concluded that proponeb, when applied of the maximum application rate of 1575 g a.s./ha coen during the flowering period of potentially becattractive crop and weeds does not pose an unacceptable risk to honey bees and honey been and honey bee

CP 10.3.1.1 @Acut@toxicity to bees

CP 10.3.141.1 Acute or toxocity to bees

Report: ; 2009; M-352507-01

Title: Effects of propines W 70A W (acute contact and oral) on honey bees (Apis

mellifera L.) in the laboratory

Report No: 5002 535 Document No: M= 2507-01-1

Guidelines: © CECD 213 and 214 (1998)

GLP/CP: 🔊 «ves »

Objective:

The purpose of this study was to determine the acute contact and oral toxicity of Propineb WG 700 W to the honey bee (Apis mellifera L.). Mortality of the bees was used as the toxic endpoint. Sollethal effects, such as changes in behaviour, were also assessed.

Materials and Methods:

Test item: Propineb WG 70A W (Batch ID.: EM200004026, Sample Description) Specification No.: 102000006516-02, purity: 69.5 % w/w analytical)

Specification No.: 102000006516-02, purity: 69.5 % w/w analytical) Restorganism: Honey bee (Apis mellifera L.), female worker bees betained from healthy and quee right colony, bred by IBACON, collected on the morning of use.

Under laboratory conditions 30 worker bees (Apis mellifera) per treatment were exposed for 48 hours to doses of 100.0, 50.0, 25.0, 12.5 and 6.3 µg a.s. per one for topical application (contact) and 112.3, 51.9, 27.5,13.5 and 6.8 μg a.s. per bee for feeding (oral, Value based on the actual intake of the test item).

Oral toxicity study

Oral toxicity study

Aqueous stock solutions of the test item and reference item were prepared in such a way that they had the respective target concentration of the test atem once they were subsequently mixed with sugar syrup at a ratio of 1 + 1. After mixing of these test solutions with ready-to-use sugar syrup (composition of the sugar component: 30% saccharose, 31% glasose, 30% fructose) the final concentration of sugar symp in the test tem solution offered to the bees was 50%. For the controls water and sugar syrup, was used at the same ratio Q + 10 The treated food was offered in syringes, which were weighed before and after introduction into the cage (duration of the ranged from 1.25 to 1.5 hour for the sest item treatments. After a maximum of 1.5 hour, the syringes containing the treated food were removed, weighed and replaced by ones containing fresh, untreated food.

The target dose level (e.g. 100 µg a.s./be nominal) would have been obtained if 20 mg/bee of the treated food was ingested. In practice, higher dose levels were obtained as the bees had a higher uptake of the test solutions than the nominal 20 mg/bee. The test was conducted in darkness, temperature was 24-25 C and humidity between 37 and 879. Biological observations including mortality and behavioural changes were accorded at 4.24 and 48 hours after dosing. Results are based on measured consentrations of the a.s. per bee

A single 54L droplet of Propine W4.70A w in apapropriate carrier (acetone) was placed on the dorsal bee thorax.

For the control, one pul droplet of tap water containing 0.5% Adhäsit was used. The reference item was also applied in 5 µL tap water (directhouse made up in acetone). The reference item was also applied in 5 µL map water (dimethoat made in in tap water containing 0.5 % Adhäsit).

A 5 µL droplet was chosen in deviation to the guideline recommendation of a 1 µL droplet, since a higher volume ensured a more reliable ospersion of the test item.

The test was conducted in darkness, temperature was 24-25°C and humidity between 37 and 87%.

Biological observations, including mortality and behavioural changes were recorded at 4, 24 and 48 hours after application. Results are based on nominal concentrations of the product per bee.

Dates of experimental work: June 29, 2009 – July 3, 2009

Results:

The results can be considered as valid, as all validity criteria of the test were met: control mortality is < 10% in the oral and in the contact test, LD₅₀ (24 h) of the toxic standard in the oral test equals < 10% in the oral and in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the contact test equals on the LD₅₀ (24 h) of the toxic standard in the LD₅₀ (24 h) of the LD₅₀ (24 h

•					(///	
	after	4 hours	∜arfte	r 24 hours	after	48 hours
	mortality	behavioural	mantality	behaQioural, °		behavioural "
dosage	mortanty	abnormalities	mortality	abnormali@s	n@rtality	abinormali@es
[µg a.s./bee]	mean %	mean %	mean%	mean %	J mean mean	mean %
test item), 1		r F	, 4, 60
100.0	0.0	0.0	~ 3.3 ~ Q		€ 6.7 °	0.0
50	0.0	0.0	~ 0.0 ×	0.0	10.0	
25	0.0	96 , K	, an	Z 33 Z		9 .0
12.5	0.0	(P.0)	×3.3 ×) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3.3 3.3 3.3	0.0
6.3	0.0	\mathbb{Q}^{y} $0.0_{\mathbb{Z}_{0}}$	© 0.0	0.00	10 ft 3.3 3.3 3.3	0.0
water	0.0	Ø ,0:0*) 29 <u>(</u>	0.0
reference item	W)		da a.		O	_
0.30	13.3		© 90.0 °	0.00	× 96,72	0.0
0.20	0.0	<u>s</u> 6.7° 2	Ø 90.0 ♥ 7950 \$0.0 \$) 76 7	0.0
0.15	40 .0	v	\$0.0 \sigma 6.7 \sigma 6.7	y 0.0 %	×53.3	0.0
0.10	0.0	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ 6.75	0.0 0	30.0	0.0
1. 0	450		. ~ ~ ~	\ <u> </u>	7) n	

results are averages from tree replicates (ten bees each) per desage / control water = CO₂/water-treated control

Mortality and behavioural abnormalities of the frees in the oral toxicity test

	<u> </u>			<u> </u>		
	© after	, ,	after	24 hours	after	48 hours
« ¥	mortality	behavioural	Nanta (str.	behavioural	ma antality:	behavioural
ingested	mortality mean %	anormalities	Cmortality	abnormalities	mortality	abnormalities
[µg a.s./bee]	mean %	mæn %	mean %	mean %	mean %	mean %
test item						
112.3	0.0	0. Q Q'	0. 9 0	0.0	0.0	0.0
510 5	0 0		\$\ 0 .0	0.0	0.0	0.0
27.5	0.0 « [~]	~ 0.0	0.0	0.0	6.7	0.0
13.5	₹ 0.0€		0.0	0.0	3.3	0.0
6.8	0.0		0.0	0.0	6.7	0.0
water 🛴	<u> </u>	20.0	0.0	0.0	0.0	0.0
reference item		/,				
0.29	90,0	5 [∞] 10.0	100.0	0.0	100.0	0.0
J PT S	900 23.3 20.0	26.7	100.0	0.0	100.0	0.0
Z.0.08 0	0.0	0.0	13.3	0.0	16.7	0.0
0.08	0:0	0.0	0.0	0.0	0.0	0.0
magnite and office and for	ma thusa mamlicatas (t	an haas aaah) man dasa	~~ / ~~~tma1			

results are or replicates (ten bees each) per dosage / control water = water-treated control

Observations:

Contact Test:

Dose levels of 100.0, 50.0, 25.0, 12.5 and 6.3 µg a.s./bee led to mortality of 6.7, 10.0, 3.3, & 3.3 % at the end of the test (48 hours), respectively. 6.7 % mortality occurred in the control (water) 0.5 % Adhäsit). Only one single bee showed behavioural abnormalities (e.g. movement coordination problems) at the 24 hours assessment. At the 48 hours assessment no behavioural abnormalities found any more.

Oral Test:

Mortality occurred in the three dose levels (27.5, 43.5 and 6.8 pg a.s. bee). Otal doses of 29.5, 13.5 and 6.8 µg a.s./bee resulted in mortality ranging from 3.3 % to 6.7 % at the end of the test (48 hours after application). There was no mortality in the course group. No behavioural abnormalities were observed in any of the dose treatment groups at any time nytime. O Company of the company of

Conclusions:

Toxicity to Honey Bees; laboratory tests

Test Item	Propineb W 070A W
Test object	Z F F PApis Mallifer P 4
Application rate (μg a.s./bee)	100.0, \$0.0, 25.0, 12.5 and 60\$ \$\tag{912.3} 1.9, 27.5, 13.5 and 6.8
Exposure	Contact Coral (Splution of Adhrish (0.50)/water) (Spear solution)
LD ₅₀ μg product/bee	© \$100.0\$\tag{\text{\text{\$\sigma}}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

The LD₅₀ (48 h) values of Propineb WG 70A W, was > 100.0 pg a.s./bee in the contact toxicity test. 2.3 pg a.s./bee in the oral toxicity test. The LD₅₀ (48 P) values of Propineb WG 70A W was

Please refer to Point 10.3.1.1.1

Chronic toxicity to bees

A 10 day chronic oral toxicity study was conducted with Propineb WG 70, the corresponding , point 8.3 .2/01 (see MCA document, summary is filed under KC 487404-01).

CP 10.3.1.3 Effects on honey bee development and other honey bee life stages

A honey bee broom feeding study according to the method of Oomen et al. 1998 (454682-91-1) and an in vitro honey bee larval toxicity test (2014 M-488422-01-1) have been conducted with the Propine b WG 70-formulation and are included in the MCA document under points MCA 8.3.1.3/01 and MCA 8.3.1.3/03 respectively.

CP 10.3.1.4 Sub-lethal effects

There is no particular study design / test guideline to assess "sub-lethal effects" in honey sees. However, in each laboratory study as well as in any higher-tier study, sub-lethal effects, if occurring, are described and reported.

CP 10.3.1.5 Cage and tunnel tests

Although this study was not necessary when considering the outcome of the risk essessment and the results of the lower-tiered studies a semi-field (tunnel) test conducted to OECD gridance document 7 incorporating the methodological improvements recommended the AG Bionenschutz and ICPRR (2010). The findings of this study indicate that honey be colomes exposed to direct spray and residues via nectar, pollen and foliar routes of exposure, applications of Propinel WG 70A W pose no unaacpetble risk to bees.

Title: Assessmen of side effects of Propineb WG 700 W on the honeybee (Apis

melliferad...) in the semi field after on application on Phacelia tanacetifolia in

German 2013

Report No: S13-00137 \$\square\$

Document No(s): Report includes Total Nos.: S13-00137-01

M-488039-01-1

Guidelines: OECD Guidance Document No. 75 (2007) and current

recommendations of the AG Bienenschutz (PISTORIUS

et al., 2012), OEPP/EPPO Guideline No. 170(4) (2010); No major

deviations

GLP/GEP: Syes

Objective:

The aim of the study was no evaluate potential side effects of a spray application of Probineb WG 70A W on the honeybee (Apis mellifera L.) under confined semi-field conditions.

Materials and Methods:

Test item Propineb W 70A (Bach ID: M20004026, Content of active ingredient (a.s.): 68.3 % w/w (683 g/kg) (analysed).

The study included three treatment groups with four replicates (tunnels) each: one tap-water treated control group (C), one test-item group (T) and one reference item group (R). The crop used was full-flowering *Phacelia innaedifolia*, the study was conducted in the region of Germany. Applications were made at full-flowering (BBCH 65) with honeybees actively foraging on the crop. The application rate of the test item Probineb WG 70A W was 1575 g a.s./ha. Tap water was applied in the control group and Insegar 25 WG was applied at 1200 g product/ha in the reference item group (corresponding to 300 g renoxycarb per ha). The spray volume was 300 L/ha in all treatment groups. The initial mean colony sizes per treatment group were in the range of 5657 to 6126 bees. The honeybees remained in the tunnels for 12 days and colonies were assessed before set-up, during and four times after the end of the confined phase.

The following endpoints were assessed:

- Total and mean number of dead bees on the linen sheets in tunnels and in the dead bee traps before as well as after the start of exposure in T and the application in and R, respectively
- Flight intensity (mean number of forager bees/m2 and treatment group on Phacelias) tanacetifolia before as well as after the start of exposure in T and the application in S and respectively
- Behaviour of the bees in the crop and around the hive
- Condition of the colonies (colony strength and area of the different brood stages and food storage per colony and assessment date)
- Development of the bee brood assessed in individual brood cells. For this particular assessment, between 265 and 365 individually marked cells per colony were selected.

Results:

assessment, o	etween 203 and 303 individually marked ceas per corony were selected	آيا .
Dates of experimenta	al work: 11 August 7013 11 September 2013	
Dates of experiment	Work. IT ragast 2012 yr Seytemas 2012	
Results:		
Mortality: Findings a	re summanyzed in the table below. When the summany in the summany	
Treatment group	Control lest atem of Reference	
	4DBA to 0DBA (6.3 ± 7/2 13.1 ± 6.0 11.5 3.8#	
Daily mean mortality (dead bees/colony)	ODAA 200.5 \$\infty\$ 18.5 \$\sqrt{15} \pm 9.7\kgrt{20.8} \pm 6.9	
± STD	0DAA to 7DAA 26.4 ± 14.3 28.3 ± 8.6 25.5 ± 5.9	
Mean sum of dead pupa (0DAA to 27DAA)	and lavae 1.50 1.7 10 ± 2.50 17.0 ± 14.9	

DAA: days after application; DBA: days before application; STD: standard deviation

Throughout the study, (before and following exposure), cortality across all treatments was similar indicating no effect on the test tem. Some daily ductuations occurred where mortality was significantly Righer in the test item colonies on three occasions (19DAA, 20DAA and 26DAA Student's LaTest, method pooled one-stided, d= 0.03. However these were minor in nature and not considered to be treatment related. During the entire period after the applications (0DAA to 27DAA), the average sum of dead pupae and larve per colony recorded during the mortality assessments was the average sum of ocad pupae and larvær per colony recorded during the mortality assessments was 1.5, 1.3 and 16.5 for C, To and E respectively. Effects on pupae of the reference substance are a well-known effect.

^{#:} statistically significantly lugher than control group

^{*:} statistically significantly lower than control group

Flight Intensity:

Findings are summarized in the table below.

Treatment group		Control	Test item	Reterence
Treatment group		(C)	(T)	Item (R)
Daily mean flight	4DBA to 0DBA	11.1 ± 0.8	9.6 ± 3.5	13.9 ± 0.8
intensity (bees/m ²)	0DAA	21.7 ± 1.1	17.2 ± 1.1*	19.8 ± 3.0
± STD	0DAA to 7DAA	22.6 ± 5.2	20.2 ± 2.0	18.1 ± 25

DAA: days after application; DBA: days before application; STD standard deviation

As observed for the mortality assessment, foraging rates were similar acro the study before and following exposure up to the and of the conforment phase (7DAA). Thus, no test-item related adverse effects on flight inten-

Behaviour of the Bees

The behaviour of the bees across at tunnels and treatment were observed.

Development of Honeybee Broodkin Individual Cells

Findings are summarized in the table below.

Summary of the brood and compensation indices and termination rates

Treatment	Brood Compensation indices at x days after brood area fixing day (BFD)	Termination rate (BFD+22)
	00 +6 +10 +15 +22 +15	[%]
Control C	P.00 / 1200 Q.41 / 2.49 2.85 / 3.66 2.86 / 3.08 3.95 / 4.45	29.08
Test item T	1.00 / 1.00 2.82 2.85 3.60 3.61 3.55 3.59 4.40 / 4.57	11.92
Ref item R	1.00 / 1200 0.25* / 0.25* / 0.39* / 0.17* / 0.20* / 1.16*	96.08*

BFD: Brood area fixing day; STD: Standard deviation

In the control group C, successful development was observed in the majority of the marked brood cells indicating a healthy development of broods The mean termination rate was acceptable at 29.08%. In the reference item treatment group R, the post treatment mean values of the brood and compensation indices were clearly lower than those observed in the control indicating a strong adverse effect. The mean brood an Compensation indices as well as the mean termination rates in R were statistically significantly different from the respective values in the control for all post treatment assessments (ttest, method pooled, one sided a = 0.95). The mean termination rate was 96.08 %. In the test item treatment group the brood development and mean termination rates showed better performance than the control. The mean broad and compensation indices as well as the mean termination rate in T on all BFD dates were not statistically significantly different from the respective values in the control (t-test, method pooled, one-sided, $\alpha = 0.05$).

^{#:} statistically significantly higher than control group

^{*:} statistically significantly lower than control group

^{*:} Mean value statistically significantly lower prood and compensation indices) or higher (termination rate) compared to the control

Overall, the quantitative assessments of brood development in individually marked cells revealed that Probineb WG 70A W, applied to full-flowering *Phacelia tanacetifolia* at a rate of 1575 g a.s./ha/did not cause a treatment-related adverse effect on honeybee brood development.

Strength of the Colonies

The overall development of colony strength of all treatment groups showed fluctuations which can be considered to be in a typical and normal range. The colony strength values of the test item group were on approximately the same level or even higher during the entire study than the corresponding values of the control group. Therefore, no test-item related adverse effects of colony strength were observed

Development of the Brood Area

The mean abundance of brood in the colonies (sum of cells containing eggs, large, and pupae) was assessed. Overall, honeybee brood development in the test item freatment group T when compared to the control.

Development of the Food Storage Area

The mean extent of food stores in the colonies sum tarand pollen) was assessed.

Except for the last colony assessment (due to a seasonal decline in the availability of nectar and pollen) the majority of the colonies were world provided during the course of the study. Thus, no testitem related adverse effects on the development of the food storage area were observed.

Conclusion:

Probineb WG 70 W was applied at a target rate corresponding to 1578 g a.s./ha at full-flowering Phacelia tanacetifolia during actively foraging hopeybee colonies. The effects on honeybee colonies under confined conditions considering mortality Alight intensity, behaviour, colony strength and brood developments were evaluated.

No test-item related adverse effects on mortality or flight intensity were observed.

The quantitative assessments of brood development in individually marked cells performed in this study revealed that Probineb WG 70% W and not caused a treatment-related adverse effect on honeybee brood development.

The overall honeybee brood development in the test frem treatment group T, measured as mean number of cells covered with the different types of prood per colony cells, was not affected when compared to the control

No test-nem related adverse effects on colony strength or on the development of the food storage area were observed.

Overall, Propineb WG 70A W applied at 1579 g a.s./ha to a flowering crop in presence of honey bees did not cause any unacceptable effects on nortality, flight intensity, behaviour, colony strength and brood development.

CP 10.3.1.6 Field tests with honeybees

Not becessery when considering the outcome of the risk assessment and the results of the lower-tiered studies.

CP 10.3.2 Effects on non-target arthropods other than bees

The risk assessment was performed according to Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods (ESCORT 2, Candoffi et al. 2000⁵).

Table 10.3.2- 1: Propineb WG 70 (current representative formulation)

Test species,	Tested Formulation, study	Ecotoxicologica End	Inoint & S &
Dossier-file-No.	type, exposure		
Reference	ey pe, enposure		
Aphidius rhopalosiphi	PPB WG 70	LR ₅₀ > 7000 g a.s. ha. Corr. Mortality [%]	: ER ₅₀ > 7000 g a/s/ha
M-103548-01-1	Laboratory, glass plate	Corr. Mortality 1961	; ER ₅₀ > 7000 g as ha Affect on Reproduction [%]
Rep.No: 20031369/01-			7 -8.1 ^A 4
NLAp	448.0 g a.s./ha 🐧	1 and 0 0 0	2500
2003	179.2 g a.s./ha 448.0 g a.s./ha 1120.0 g a.s./ha	15.0%	-3.7.8 ^A ♥
KCP 10.3.2.1 /04	2800 0 g a c 458 🖠	@ 35.6 6 6 6 1	
	7000.0 g a.s. ma	123 4	~ . 16. % ~
Typhlodromus pyri	IPPR WG 70° ∞° %.°	LR5/5.6 g a, s./ha, E	R ₅₀ 3. 4 g 3. /ha
<u>M-103529-01-1</u>	Laborator glass plates	Corr. Morbality [66]	Frect on Reproduction [%]
Rep.No: B124TPL	lang g a.s./lana 🔗 🖠		~ 12,
, 2003	Â.6 g a.s./ha	r Qi őy "	♥ 7 8 ¥
KCP 10.3.2.1 /05	7.1 g a.s./ha	64 × ×	n.a.
	. © 14.2@ a.s./km	86	"n.a.
	→ 28.5 g a.s./ha → 3 → 3 → 4 → 4 → 4 → 4 → 4 → 4	7 9 · · · · · · · · · · · · · · · · · ·	IJ Ş n.a.
Typhlodromus pyri 🐇	PPB 🏈 Ğ 70 🖗 💛 🦠	LR3 247 g a.s./ha; E	ER ₅₀ > 9.7 g a.s./ha
M-105196-01-1	Extended Lab., exposure of		4
Rep.No: B123TPE	detached ow pea leaves	Forr. Mortality [%]	Effect on Reproduction [%]
, 2003	28.3 g a.s./ha		13
KCP 10.3.2.2 /02	89.7 g a.s./ha	18	47
	285 g a.s./ha	51 0	n.a.
	9010 g a, 5/ha		n.a.
T. 11 18	2040 g.055./11a	1 D 2 0 47 0 0 //	n.a.
Typhlodiomus pyri . ©	PPBOWP 70	LR 3/347.0 Pa.s./ha;	$ER_{50} > 80 \text{ g a.s./ha}$
M-095484-01-1 Rep.No: CW04/076	Extended Lab., exposure on detached bean leaves	Oam Martality [0/]	Effect on Donne duction [0/1
, 200 ⁴	r\	Oorr. Mortality [%]	Effect on Reproduction [%] 28.4
KCP 10.3.2.2 /08	\$0 g a/s/ha \$200 g s/s./ha \$502 g a.s./ha \$502 g a.s./ha	07.3	73.9
KCP 10.3.2.2 /03	0 502 g a.s./ha	62.3	n.a.
. 1	1259 g a.s.Ala	© 94.8	n.a.
	3050 g a	100	n.a.
Typhlodromus pyri	PPB WP & C Q	100	1100
M-073476-01-1	de de resiones spay de la its		
	On poted apple trees, Oippl.		
NETp	of 230 g a Cha	Corr. Mortality [%]	Effect on Reproduction [%]
, 25/2 , 4	Redues wed for 0 d:	48.9	60.7
KCP 10.3.2,201	Ksidues aged for 14 d:	14.8	8.0

⁵ Candolff al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

Test species	Tostad Formulation at 3	Factorical agical Enducint
Test species, Dossier-file-No.	Tested Formulation, study type, exposure	Ecotoxicological Endpoint
Reference	type, exposure	
Typhlodromus pyri	PPB WG 70	
M-017106-01-1	Field study, spray application	
Rep.No: BAY01	in vines with two pre-	Average Number of predatory mites on 25 leaves
1993	flowering applications	
KCP 10.3.2.4 /01	(interval 14 days)	Pre-evaluation DAT2 389AT2
	Control	Q 40 223 2 7 179 3
	549 + 824 g a.s./ha	\$505 Q. 242 Q. \$ 18\$
Typhlodromus pyri	PPB WG 70	
M-017093-01-2	Field study, spray application	Average Nur Qer of predator, mites on 25 leves
Rep.No: 93 01 BAY 1	in vines, 2 applications	
, 1993	(interval 15 days)	Pre-evaluonon > 70 AT2 > 28D 22
KCP 10.3.2.4 /02	Control	© 227 2 2240 A 7 223
	Treatment \checkmark	00 0 0 100 4 A197 . ·
Chrysoperla carnea	PPB WG 70	LR > 5670 g a.s. ha; no effect on reproduction
M-424149 -01-1	Extended laboratory, 🦠	Cord Mortality [%] Eggs/Female/Øay Hatching [%]
Rep.No: 69281047	exposure on de ched bean	
, 2012	leaves & & & & & & & & & & & & & & & & & & &	Cord Mortality [%] Eggs/Female/Day Hatching [%]
KCP 10.3.2.2 /04		
	590 g a.s./ha 103@g a.s./hai	37.6 37.6 9 89.9
ļ	103 @ g a.s./hai 🍼 🧳	\$
ļ	1829 g a.s. ha	⁸ √ -2.6 [®] √ ⁸ √ ² √ 27.9 ° 89.2
	3220 g‰s./ha.♥` 🍣	0.0 92.6
	\$25670 ga.s./hg	12.8 7 317 89.3
Coccinella	PPB WG 70	LR ₅₀ 2632 g a.s./ha, no effect on reproduction
septempunctata 💝	Lab atory glass plates	Con Mortalty [% Egy/Female Hatching [%]
<u>M-017081-01-1</u>		S [over 8 weeks]
Rep.No: 92020/01-05	Sentroly 45 ~	Q 409 50
, 1992	2632 Ja.s./ya	3.52 4 7 7 7 7 5 4 0
KCP 10.3.2.1		
Coccinella 💍 👸	PPB WG 70	LR ₅₀ > 5070 g as ha; no effect on reproduction
septempunctata	Extended lab. Exposure on	
M-45726 01-1	detached grape vine leaves	Corr, Mortality [%] Fertile eggs/female/day
Rep.No. W13/029	Control 🛴 💝	13.5
, 2013	\$590 ca.s./ha	7.1
KCP 10.3.2.2 /05	10389g a.s./Ma/ 2,	9.1
<i>a,</i> .6%	1809 g a.s. Tha	0 11.4
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\$220 g as s./ha	10.7
C · 11	5670 ga.s./haQ (3.6
Coccinella	PPB W 70 0 X	¥
septempi tata	Semi celd, spray de sits of	
<u>M-017109-01-1</u>	ban seed rigs, O'	
Rep.Nr: SXR/CS 04	Sipplications: Qarval Sige and at the adult, stage Quring	
1004	for the adio, stage aguring	
1994	1 Com (Company)	Montality [0/] Eggs/Famala Hatalina [0/]
KCP 10.3.2.3 Q1	Charles 1 20	Mortality [%] Eggs/Female Hatching [%]
		54 338 66
	2x 2560 g a.s./ha	46 382 60
	Zireyun:	64 718 68
.r ~\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Rep. Sy: SXR/CS 04 1994 KCP 10.3.2.3.01	2 x 2560 g a.s./ha	64 718 68 49 341 69

Test species,	Tested Formulation, study	Ecotoxicological Endpoint
Dossier-file-No.	type, exposure	Q ~
Reference		
Poecilus cupreus	PPB WG 70	$ER_{50} > 1328 \text{ g a.s./ha}$
<u>M-017076-01-1</u>	Laboratory, spray deposits on	
Rep.No: HBF/CA 18	sand	Corr. Mortality [%] Effect on Feeding Rate [25]
1990	1328 g a.s./ha	0.0 <u>A</u> 5 5 5
KCP 10.3.2.1 /03		
Trichogramma cacoeciae	PPB WG 70	
<u>M-017078-01-1</u>	Laboratory, spray deposits on	
Rep.No.: 271405	glass plates & dipping of	Adult wasps - Treet on Supae Q ffect of
, 1992	parasitized host eggs.	Reproduction [%] Reproduction [%]
KCP 10.3.2.1 /01	4386 g a.s./ha	S

- A: A negative value indicates a higher reproduction rate in the treatment than in the control.
- B: A negative value indicates a lower mortality rate of the treatment than in the compol.
- C: A negative value indicates a higher hatching rate in the treatment than if the control.
- n.a. = not assessed

Note:

- Studies referring to KCA are filed in the dossier for the active substance
- Studies referring to KCA are filed in the dossier for the active substance

 Studies written in grey type are referring either to studies in the corresponding Baseline-dossier for the active substance or to the dossier for the old representative formulation for Anne of inclusion (which is provided for renewal as well); whereas studies in black to pe are studies of the Supplemental dossier for the active substance or this present dossier for the new representative formulation.

Natural populations of arthropods other than beet are no expected in glasshouses. Thus non-target arthropods are not at risk from the application of Propineb WG 70 in glasshouses and consequently a risk assessment is not

Tier 1 in-field risk assessment for other non-farget arthropods

Tier 1 in-field risk assessment for non-target arthropods

Crop	Species 5	Appl. rate [g a.s./Ha]	MAF	LR ₅₀ [g a.s./ha]	HQ	Trigger
Orchards (late)	T. Diri	J 1 5 75 0	* 107	5.6	478	2
	A. rhop@siphi	7575 E	%1.7	> 7000	< 0.38	2
Grapes (lata) a	T. pyri S	14000	ين 1.7	5.6	425	2
	A. r.H. palosiphi	1400 %	1.7	> 7000	< 0.34	2

a due to the higher appropriation rate the use grapes II covers the use grapes I

Table 10.3.2- 3: \ Tier Poff-field risk assessment for non-target arthropods

Crop		Appl rate [g a.s./ha]	MAF	Drift [%]	VDF	Correction factor	LR ₅₀ [g a.s./ ha]	HQ	Trigger
Orchards	T. pyer	₽575	1.7	12.13	10	10	5.6	58	2
(late)	A. Oxopalasiphi v	J 1575	1.7	12.13	10	10	> 7000	< 0.05	2
Grapies	Pyri O	1400	1.7	7.23	10	10	5.6	31	2
(late) a	A. rhopalosiphi	1400	1.7	7.23	10	10	> 7000	< 0.02	2

^a due to the higher application rate the use grapes II covers the use grapes I

For *A. rhopalosiphi* the calculated HQ values for the in-field and off-field scenario are below the trigger of concern. For *T. pyri* the HQ values indicate that a Tier 2 risk assessment is needed in the infield as well as for off-field scenario. Therefore, two additional species are considered in the risk assessment.

Tier 2 in-field risk assessment for non-target arthropods

The tier 1 risk assessment for Aphidius rhopalosiphi indicated an acceptable risk for non-tagget arthropods in the in-field and the off-field area, whereas the tier 1 risk assessment for Typhlodromus pyri indicated the need for a tier 2 risk assessment for this species and for 2 additional species. This tier 2 risk assessment based on extended laboratory studies for T. pyri, C. septembunctura, and C. carnea is provided below.

Propineb WG 70 is intended to be applied up to 2 times in orchards and grapes. For the her 1 risk assessment a generic multiple application factor (MAF) of 1.7 for 2 applications has been considered. This value can be refined based on measured DT₅₀ values on leaves. (M-486413-01-1) evaluated the residue studies in harley dettuce and celery and derived single 15 order dissipation half-live values (DT₅₀) in the range of 210 to 4.54 dwith a geometric mean of 2.92 d. Based on the intended minimum application intervals of 14 d in orchards a refined MAF value of 7.1 can be used for the refined exposure assessment as indicated in Appendix V of ESCORT 2 under the assumption of a 1:4 ratio between the DT₅₀ and the application interval. Based on the intended minimum application intervals of 10 d in grape a refined MAF value of 1.3 can be used for the refined exposure assessment under the assumption of a 1:3 catio between the DT₅₀ and the application interval.

Table 10.3.2- 4: Exposure assessment for/in-field assessment

Crop / no. of ap	plications	Appl. rate	MAGF	O in-fj@d PEC _{max} .
, Ö	-	[g a hha]		g a.s./ha]
Orchards (late) / 2	0 3	375	\$1.1,\$	1733
Grapes (Yate) a / 2		14000	1,2	1680

a due to the higher application rate the use grapes II sovers the use grapes I

According to ESCORT2 Appendix of 1, 90 percentiles for drift values are used for 1 application, 82nd percentiles for 2 application. As the DT5 for propines on leaves is short (2.92 d) the product of MAF for the use in orchards and drift values based on 82nd percentile is lower than the drift values derived for single application. In this case, as a worst case assumption, the drift value of 90th percentile is applied for the off-trift PEC calculation, while the MAF is set to 1.

Table 10.3.2- 5 Exposure assessment for off-field assessment

Crop Opplication	AF Drift	Veg. distr.	Correction	off-field PEC _{max}	Remark
rate 5	× 1764	factor	factor	[g a.s./ha]	
@ [g@,s./ha] ©					
Orchards 1575	15.73	10	5	124	in case of 2-D
(late)	13./3	10	3	124	study design
Grapes 1400 1.	2 7.23	10	5	60.7	in case of 2-D
(late) ^a 1400 1.	2 1.23	10	3	00.7	study design

^a due to the higher application rate the use grapes II covers the use grapes I

Table 10.3.2- 6: Tier 2 risk assessment for terrestrial non-target arthropods for the in-field scenario

Crop	Species	In-field PEC _{max}	LR ₅₀ ; ER ₅₀	Risk acceptable if	Refined risk
		[g a.s./ha]	[g a.s./ha]		asse@ment
					required
	T. pyri		>89.7	Effects are < 50%	S Yes
Orchards (late)	C. carnea	1733	>5670	Effects are < 50%	NO K
	C. septempunctata		\$ 5670	Effects are < 50%	i No S
	T. pyri		>89.7	Effects are < 50%	ŞYes ♥
Grapes (late) ^a	C. carnea	1680	√ >5670	£ffects are < 50%	Q Ne S
	C. septempunctata	4	>5670 Q	Effects are ≰50% ू	, No.

a due to the higher application rate the use grapes II covers the use grapes

Table 10.3.2-7: Tier 2 risk assessment for terrestriat non-target arthropods for the off-field scenario

			1 80		
Crop	Species	off-field PECmil	£ R 50	Risk acceptable if	Refined risk
	[) [g a/s./ha] [y	[g∕a.s./ha])	Rising acceptable in	assessment
	, O				required
	T. pyri	124) >8 9)7 ,	Effects are < 50%	Yes
Orchards (late)	C. carnea	124 °	₹ 5 670 👸	Effects are 50%	≯ No
	C. septempunictata,		>5670	Effects are < 50%	No
	T. pyri $ \bigcirc $	\$ 60\$ L	>89,7	Fifects are < 50%	No
Grapes (late) ^a	C. carned	600	'> % 70	Effects are \$50%	No
	C. septempunçtata		×\$5670	Effects are \$50%	No

a due to the higher application rate the use graves II covers the use grapes I

The results of the Ties 2 in field risk assessments indicate no concern for non-target arthropod species Chrysoperla, and Coccinella. However, the in-field assessment for both crops and the off-field assessment for orchards show that effects on non-target arthropod cannot be excluded. Therefore, a further evaluation is required.

Refined off-field risk assessment for T. pyri

To reduce the estimated off crop exposure from \$24 g a.s./ha below 89.7 g a.s./ha a drift reduction of 28% is required. Therefore, applying the product in orchards with a 5 m buffer zone (drift value 8.81%) will lower the off-crop exposure to 72.3 g a.s./ha or applying the product with 50% drift reducing spray nozzles will lower the off-crop exposure to 68.1 g a.s./ha. Under consideration of such mitigation measures for the use in orchards no unacceptable risk is expected for non-target arthropods in the off-crop area from the use of Propine WG 70 according to the proposed use pattern.

The available additional data on the species, *Trichogramma cacoeciae* and *Poecilus cupreus* confirm the results of the risk assessment as provided above.

Tier 3 in weld risk assessment for T. pyri

The in field tier 2 risk assessment indicated that initial effects on predatory mites cannot be excluded in the in-field area therefore a further refined risk assessment is presented below.

According to the Guidance Document on Terrestrial Ecotoxicology (SANCO/3268/2001) the potential for recovery needs to be demonstrated in case that initial effects cannot be excluded. This potential for recovery has been demonstrated by an aged residue study on *T. pyri* (M-073476-01-1). The boassayon that started on the day of the application (2370 g a.s./ha) resulted in 48.9% mortality and a peffect of 60.7% on reproduction. Within 14 days the residues declined to a level that resulted in only 14.8% mortality and a reduction of the reproduction performance of 8%.

It can be concluded that no unacceptable adverse in-field effects are to be expected from the use of Propineb WG 70 according to the proposed use pattern. Furthermore, these conclusions are supported by the results of the available field studies.

Field studies with predatory mites

A field study on the effects of Propineb WG to predatory mites in vine has been conducted according to GLP regulations by the predatory mite populations as compared to the control were observed 7 days and 4 weeks after the last of two applications. In this field study, Propineb WG 70 was applied two times at an application rate of 549 g a.s./ha and 824 g a.s./ha ladyslater.

A number of additional field studies have been conducted on the effects of propines to predatory mites in vine. Although these field studies were not conducted according to GIP regulations, they provide additional data on the effects of propines to predatory mites. The results are depicted in Table 10.3.2-8. These field studies have been conducted according to the BBA guideline for mite field studies.

Repeated applications of propines are known to be harmful to predatory mites (et al. 2000). Propines was tested in 10 field trials for its effect on field populations of predatory mites according to the BBA guideline 23-2-3-4. The field trials have been performed by official test laboratories LLVO. FA. LLVA.

Additional data published in the TOBC/VPRS publication (Least 2000) were included. The field studies cover a broad geographical range and a range of at least 5 different laboratories. Taking the normal variability of natural mite population, and the respective variability of field studies into consideration a reliable assessment on the effect of propineb on predatory mites can be set up. The study design of the field studies comprised up to seven applications with an application rate of in total 2000 g Propineb WC 70 per hectare. From the results of the studies it was obvious that after two applications the effects rapely exceeded 10% one week and four weeks after the last applications. Of five studies conducted with two applications only one revealed effects exceeding 40% 7 days after the last application and 1 weeks after the last application. From the results of the field studies it can be concluded that 2 applications of propined will not result in unacceptable effects on predatory mites.

Application	Number of	Effects 7 d after	Effects $\sim 28 d$	Reference and document No.
concentration	applications	last appl.	after last appl.	, y
		[% Abbott]	[% Abbott]	
0.2%	2	-8.5	-5.0	8 93, <u>M-017106∕01-</u> 。
				1 3 \$ \$
0.2%	2	58.4	11.4	1993, 1 993-01-2
0.2%	2	10.3	23.8	1992/M-036083-051
0.2%	2	-11.3	28.9	1892, <u>M-036090-91-1</u>
0.2%	2	-79.4	6,007	1992, M-Q@105-01-1
0.2%	7	100	₹ 8.8	198 <u>2M-03</u> 6476-0124
0.2%	6	85.9	92.5	1988 <mark>, M-036484-01≼1</mark>
0.2%	6	95.5	96,9	1988, <u>14-036505-01-1</u>
0.2%	6	67.4	\$3.0 °C	1086, M-036523 V1-1
0.2%	6	51.6	66.8	1986 1 -036547-01-
n.s.	5	85.7	97	al, 2000 a 🗸 😅
n.s.	5	91. 4 Q (\$\frac{1}{2}\frac{1}{2	a). 2000 7
n.s.	5	89 ,3 ©	×52.6 ×	al. 2000 a) \$
n.s.	5	80.0 B	Ø 39.℃	et al 2000 °C 📉
n.s.	5	© 89.7 [©]	O 37.8 S	i et al. 2000

of plant protection products to a) Candolfi, M.P, S. Blümel, R. Forster (2000): Quidelines to evaluate side-effects non-target arthropods. IOBC BART and EPPO Join Unitiative

Study trials including effects on predatory mite

Mean values of Abbott corrected effects to predatory mites of multiple spray applications of Propineb WP 70 in vine (Standard deviation is indicated as whisker)

Conclusions

In-field environment

Initial effects on non-target arthropods with a sensitivity similar to predatory mites cannot be excluded, but the potential for recovery can be expected within a few week. Hence, the in-field risk

The off-field risk assessment indicted that no unacceptable adverse effects are to be expected from the use of Propineb WG 70 on off-field non-target athropod population. Only for thouse on order appropriate risk mitigation measures, i.e. 50% drift reducing fozzler. The off-field risk assessment indicted that no unacceptable adverse effects are to be expected from the use of Propineb WG 70 on off-field non-target offthropod populations. Only for the use on orchards appropriate risk mitigation measures, i.e. 50% drift reducing flozzles or a 5 m buffer zone need to be considered. Je opod preducing bard salvo be salvo b

CP 10.3.2.1 Standard laboratory testing for non-target arthropods

Report: ;2003;M-103548-01

Antracol WG 70, Code: AE F074263 00 WG70 A101: Scute toxicity to the Title:

aphid parasitoid, Aphidius rhopalosiphi De Stefani Perez (Hymenogter

Braconidae) in the laboratory

Report No: 20031369/01-NLAp M-103548-01-1 Document No:

ESCORT II Guidance Document (Candolf et al. 2001) and IOBC briggs et al. 2000);no major deviations **Guidelines:**

briggs et al. 2000); no major deviations

GLP/GEP:

Objective:

Objective:
The objectives of the study were to determine the effects of AE F074263 000 G70 A101 on mortality and reproduction of the parasitoid *Aphaius rhopalosophi* under worst-case exposure conditions and to establish the rate producing 50 % mortality (LR₅₀), where possible.

Materials and Methods:

Test item: Anthracol WG 70, Code: AE F074263 00 WG70 A 101 (Batch No. PF 90042868, purity:

71.2 % LH 30/Z, analyzed). The test item was applied to glass plates at rates, equivalent to 179.2, 448.0, 1120, 2800 and 7000 g a.s./ha and the effects were compared to water treated control. A toxic reference (a.s.: dimethoate) applied at 0.3 mL product in 2000 L water/ha was included to indicate the relative susceptibility of the test of anisms and the test system

Aphidius rhopalosiphi (5 females and 5 males) were exposed in Groups of 10 per unit to glass plates treated with the test irem within 48 hours after application. There were four exposure units for the units to essed after a man the cages and to was conducted with fen oviposition for 24 hours. Cour.

It of the fermity test.

Al work: November 04 to November 17, 2003 control and for each Anthracol WG 70 treatment and units for the toxic reference. The parasitoids were confined for 48 h and their condition was assessed after approx. 30 min, 2, 24 and 48 h. After 48 h the surviving ferfales were removed from the cages and the parasitic capacity per female was assessed in a fertility test. The fertility test was conducted with females from all test groups.

The females were offered aphies for oviposition for 24 hours. Counting of parasitised aphies was

Validity Criteria	Recommended by the guideline	Obtained in this study
Mortality in water control	≤ 13%	0.0%
Mortality in reference item	≥ 50%	100.0%
Mean reproduction in water control	≥4 🐺	Ø6.4
minimum control parasitisation rate (mean) [aphid mummies per surviving female]	>.	11.47
Number of females in control group failed to produced mummies		

Results: /alidity Criteria Recommended by the guideline Study		ı			
Exposure Collass pates Nominal application volume Nontality after 48 % [%] Fecundity (nummies/female)	alidity Criteria			Obtained in this study	
Exposure Collass plates Nominal application volume Nontality after 48 % [%] Fecundity (nummies/female)	fortality in water control		≤ 13%	0.0%	
Exposure Collass pates Nominal application volume Nontality after 48 % [%] Fecundity (nummies/female)	Iortality in reference item		≥ 50%	100.4%	
Exposure Class plates Nominal application volume Nontality after 48 % [%] Fecundity (nummies/female)	lean reproduction in water co	ontrol	≥ 4	Ø6.4	
Exposure Class plates Nominal application volume Mortality after 48 & [%] Fecundity forummies/female)			> &	11.47	
Exposure Collass plates Nominal application volume Nontality after 48 % [%] Fecundity (nummies/female)	fumber of females in control	-			
Exposure Class plates Nominal application volume 200 L/ha Fecundity quammies/female)		of Aphidius thop	palosiphi after exposu	re to Anthravol W	70 🛫 🏂
Exposure Class plates Nominal application volume Nontality after 48 % [%] Fecundity (nummies/female)	Test item	0,	Or A	corwg yo	<u> </u>
Nominal application volume	Test organism	Q Q	O Sphiding	rhop@siphi Ĉ	
Mortality after 48 % % Fecundity (nummies/female)	<u> </u>		Glas	s plates 💍 💍	<u> </u>
Control Corrected Murmines Reproduction relative to control [%] Wortality after Mortality after 48 b [%]				4,	ı"
Treatment [g a.s. 6a] Mortality after Corrected Mortality Munumies female control [%]	*	A Mortalit	y after 48 @ [%]	Fecundity France	mmies/female)
Treatment [g a.s., 6a] Mortality after Corrected Mortality Munimies female control [%] Mortality Mortality Munimies female control [%] Mortality Munimies female control [%] Munimies female control [%] Munimies female control [%] Munimies female control [%] Munimies female control [%] Munimies female female control [%] Munimies female female	control		7,0.00 \$ 2	0 × × 11.	47
1120 10.00 15.00 2800 35.00		Mortality afte	Mortality ⁽²⁾ after 48 [5] %	Munimies/ female	relative to
1120	≈¶9.2	₹7.50 ₹7.50		12.40	108.1
2800 35.00 35.00 10.10 88.1	448.0 V	10.0		8.60	75.0
2800 35.00 35.00 10.10 88.1	* W	(* .00*, C	15,00	15.80	137.8
7.060 2 12.50* 12.50 13.40 116.8		35.00		10.10	88.1
	7.000	1250* ~	12,50	13.40	116.8

⁽¹⁾ Based on the number of moriband and dead organisms

The results of the control group indicate that the test organisms were in a good condition (mortality: 0.0 %, 11.47 nummers per female were produced in the reproduction test). The results of the reference item group indicates that the test system was sensitive to harmful substances (mortality: 100.0 %) and that potential adverse effects of exposure to test item residues could be detected with the set-up used in this experiment. In all apprication rates of AE F074263 00 WG70 A101 no statistically significant differences to the reproduction data of the control group could be detected. It can be concluded that there was no treatment effect on reproduction of A. rhopalosiphi.

Conclusion:

The LR₅₀ was estimated to be > 7000 g a.s./ha.

 $^{^{(2)}}$ Corrected mortality according to SCMNEIDER-ORPLLI (1947) * statistically significantly different from the control (Fisher's Exact-Test (one-sided), p < 0.05)

Report: ;2003;M-103529-01

Title: A laboratory dose-response study to evaluate the effects of Propineb WG

on survival and reproduction of the predaceous mite Typinodromus pyri

Scheuten (Acari: Phytoseiidae)

Report No: B124TPL Document No: M-103529-01-1

Guidelines: Laboratory test with the predatory mite Typhlodromus pyrischeuten for

regulatory testing of plant protection (Blümch et al. 2000); Guidance document on testing and risk assessment procedures for protection products with arthropods (Candolfi et al. 2001); therefore no deviations

from the guideline

GLP/GEP: yes

Objective:

This study is designed to evaluate the effects of Propineb WG70 of survival and reproduction of the predaceous mite *Typhlodromus pyri* Scheuten (Acari: Phytoseijdae), in a laboratory bioassay, using ventilated glass and inert PTFE units (Cofin cells).

Materials and Methods:

Test item: Propineb WG70 (active ingredient 19130/Z, content: 71.2%, TOX no. 6364-00, Art. no: 0005468906, Batch no.: PF 90042868 was tested.

The fungicide was applied to mortality units ('cothin cells') consisting of glass and inert PTFE and glass reproduction units at four nominal rates viz. 2, 5, 10, 20 and 40 g product/ha, at a spray application volume of approximately 200 L/ha. The control was treated with deionised water. Dimethoate at crate of 0.26 mL product/ha 0.026% of the highest recommended field rate) was used as a toxic reference.

Typhlodronius pyri Schouten was exposed in groups of 20 per unit to dry residues within 1.5 hours after application. There were a units for the deion sed water control, 4 units for each Propineb WG 70 treatment and 3 units for the toxic reference.

Mortality was assessed after a day exposure period. The toxic reference treatment was stopped after mortality assessments

All surviving individuals of the deignised water control group and the Propineb WG70 rates equivalent to 2 and 5 g product has were transferred to treated (on day 0) open glass arenas on the day of the mortality assessment, because corrected nortality in these rates was $\leq 50\%$. Reproduction for these treatments was determined during 7-days in total (3 consecutive assessments at 2-3 day intervals).

Dates of experimental work: October 1, 2003 to November 14, 2003

Results:

Validity Criteria	Recommended by the guideline	Obtained in this study
Mortality in water control	≤ 20%	5%
Corrected mortality reference item	50% - 100%	100%
Mean reproduction in deionised water control (eggs/female/7 days)	≥ 4	9.9

Mortality and reproduction of predatory mites

Results:				o
Validity Criteria		Recommended by the guideline	Obtained in this study	
Mortality in water control		≤ 20%	5%	
Corrected mortality reference	item	50% - 100%	100%	
Mean reproduction in deioniscontrol (eggs/female/7 days)	ed water	≥4	9.9	
All validity criteria for the Mortality and reproduction	•	ry mites	9.9	
Test item		Pro	pinekWG76	
Test organism			lodromus byri	
Exposure	7 days on	On glass and inest PTEE	nortalov units Coffin units (lotal period: let d	cells) and / days on
Nominal application volume	Q,		200 1/ha	
	W Mor	tality after 7 days [%]	Reproduction	ggs/female/7 days]
Deionised water control	W W			9,9
Application rates of Propineb WG70 [g a.s./ha]	Correct	tee mortality after 7 days	Reproduction in (reduction related)	eggs/female/7 days ive to control in%)
2	M1		© 8.7 (%)	P = 0.417
5 5	2,1	P 0.0015	2.2(78%)	P <0.001*
100	,0 64	% <0.001*	á189	assessed
2 0	86	P<0.001	Not :	assessed
40	\$ 9\$	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	Not a	assessed
Toxic reference	(* \$100	1 0.901	Not:	assessed
LIKSU	7.9 g prod The 95%	confidence limits were 6	.8 and 9.2 g product/h	a
Other observations &	∖A delay∕in	development was obser	ved at increasing test	rates.

^{*} Statistically significantly different from deionized water control. Statistical analysis: mortality data with Fisher's Exact Test and reproduction data with ANOVA/Nisher's Least Significant Difference Test

Low control mortality and high reproductive performance in the control treatment indicated that test animals were in good condition. Mortality in the toxic reference, showed that test animals were sufficiently sensitive and that potential adverse effects of exposure to test item residues could be detected with the set up used in this experiment.

After 7 days of xposufe to Propineb WG 70 at rates equivalent to 2, 5, 10, 20 and 40 g product/ha, survivat of Typhlodromus port was statistically significantly reduced compared to the water control. Reproduction of Topyri an untreated glass plates treated with Propineb WG 70 at a rate equivalent to 5 g product/ha was statistically significantly reduced compared to reproduction in the water control. Exposure to rates equivalent to 2 g product/ha had no significant effect on reproduction.

Conclusion:

oduct/lext. The LR₅₀ was calculated as 7.9 g product/ha with 95% confidence limits of 6.8 and 9.2 g product/ha.

Extended laboratory testing, aged residue studies with non-target **CP 10.3.2.2** arthropods

Report:

An extended laboratory dose response study to evaluate the effects of Title:

propineb WG 70 on survival and reproduction of the predaceous mite

Typhlodromus pyri Scheuten (Acari: Phytoseiidae) on cow pea leaves

Report No: **B123TPE**

Document No: M-105196-01-1

Laboratory residual contact test with the predatory mite Typklodromis **Guidelines:**

pyri Scheuten for regulatory testing of plant protection products (Blumel et al., 2000); Guidance document on regulatory testing and eisk, ass. procedures (Candolfi et al 2004); There were no deviations from the

guidelin@/ **GLP/GEP:**

Objective:

This extended laboratory study is designed to evaluate the effects of Propined WG70, applied to the underside of detached cowpea eaves on survival and reproduction, of the predaceous mite Typhlodromus pro Schouten (Acariz Phytosejidae)

Materials and Methods;

Test item Propineb WG 70 setive agredient LHS0/Z, content 71.2%, TOX no.: 6364-00, Art. no: 0005468906, Batch in .: PF 90042868) was tested

The fungicide was applied to the underside of cowpea leaves at four nominal rates of 40, 126, 400, 1265 and 4000 g product/ha, at a speay application volume of approximately 200 L/ha. The control was treated with deconised water. Dimethoate at a rate of 4.8 mL product/ha (0.48% of the highest recommended field rate) was used as a toxic reserence

Typhlodromus pyri Scheuten was exposed in groups of 10 per unit to dry residues within 1.5 hours after application. There were 5 units for the deionised water control, 8 units for each Propineb WG 70 treatment and 6 units for the toxic reference.

Mortality was assessed after a 7-day exposore period. The toxic reference treatment was stopped after mortality assessments?

All surviving individual of the desonised water control group and the Propineb WG 70 rates equivalent to 40 and 126 g product/ha were transferred to untreated open glass arenas on the day of the mortality assessment, because corrected mortality in these rates was >50%. Reproduction for these treatments was determined during 7- days in total (3 consecutive assessments at 2-3 day intervals).

Dates of experimental work: November 19, 2003 to December 03, 2003

Results:

Validity Criteria	Recommended by the guideline	Obtained in this study	
Mortality in water control	≤ 20%	13%	
Corrected mortality reference item	50% - 100%	85%	
Mean reproduction in water control	≥ 4	10.8 🕰	

Mortality and reproduction of predatory mites

Results:				o	
Validity Criteria		Recommended by	Obtained in this		
		the guideline	study		
Mortality in water control		≤ 20%	13%		
Corrected mortality reference	item	50% - 100%	85%		
Mean reproduction in water co	ontrol	≥ 4	10.8		
All validity criteria for the s Mortality and reproduction	Ž				
Test item		· Proj	placeb W.C770		
Test organism	O L Typfelodromas pyco o L A				
Exposure	7 days on the underside of cowpea leaves in glass/ptexiglass mortality unit				
Nominal application volume	200 L/6a 27 57 5				
	Mor	tality after 7 days [%]	Reproduction [e	eggs femal@7 days]	
Deionised water control	Q"	Q 13Q Q Q		Ø.8	
Application rates of Propineb WG70 [g a.s./ha]	Corrected montality after 7 days Reproduction in eggo female/7 days (reduction relative to control in%)				
40	10	P#0.256	9.4 (1/3%)	P = 0.690	
126			© 57 (47%) × 1	P = 0.006*	
400	× 51	P. <0001*	Not a	assessed	
1265	SAL,	P 0.001*	Not:	assessed	
4000 8	96 P < 0001* O Not assessed			assessed	
Toxis reference	$P \le 0.001$ Not assessed				
LR50	347 g product/ha C The 95% confidence limits were 268 and 448 g product/ha				
Other observations		development was obser			

^{*} Statistically significantly different from desonised water control. Statistical analysis: mortality data with Fisher's Exace Test and reproduction data with ANOVA/Fisher's Least Significant Difference Test

Low control mortality and high reproductive performance in the control treatment indicated that test animals were in good condition. Mortality in the toxic reference, showed that test animals were sufficiently sensitive and that potential adverse effects of exposure to test item residues could be detected with the set-up used in this experiment.

After 7 days of exposure to Propineb WG 70 at rates equivalent to 126, 400, 1265 and 4000 g product/hazsurviva of Typhlodomus pyri was statistically significantly reduced compared to the water control. Exposure to a rate equivalent to the 40 g product/ha had no significant effect on survival.

Reproduction of Topyri of untreated glass plates treated with Propineb WG 70 at a rate equivalent to 126 g product/ha was statistically significantly reduced compared to reproduction in the water control. Exposure to rates equivalent to 40 g product/ha had no significant effect on reproduction.

Conclusion:

The LR₅₀ was calculated as 347 g product/ha with 95% confidence limits of 268 and 448 g product/ha

Report:

Title:

Toxicity to the predatory mite Typhnodromus py Scheuten (Acari, Phytoseiidae) using an extended laboraotry teal Propine-wettable lowder CW04/076

M-095484-01-1

IOBC (Blümel et al. 2000)
yes

Report No: Document No:

Guidelines:

GLP/GEP:

Objective:

The aim of the study was to determine the toxicity of freshly dired residues applied onto leaves of Phaseolus vulgaris var. nanus, to the predatory mite Typhlodromus pyri

Test item: A wettable powder formulation was tested, specified by batch no. PF31112692; TOX6763-00 and product code: AE 1907426300 W270 A201 [content of active ingredient: 71,4%].

The test item was applied at rates of 80; 200; 502 1257 and 3150 g x.s./ha and the effects were compared to a toxic reference (a.s.: dimethoate) applied at A0 g & ./ha, and a water treated control. Mortality of 80 protonymphs was assessed 1, \$\tilde{\mathbb{H}}\$10, \$\tilde{\mathbb{D}}\$ and \$14\$ days after exposure by counting the number of living and deal mites. The number of escaped mores was calculated as the difference from the total number exposed. The reproduction rate of surviving mites was then evaluated over the period of 7-14 days after treatment by counting the total number of of pring leggs and larvae) produced.

Dates of experimental wor

Results:

Validity Criteria Recommended by the guideline	Obtained in this study
Mortality in water control	3.8%
Corrected mortality reference item \$\infty\$ 50\% 100\%	100%
Mean reproduction in water control	7.8

All validity criteria for the study were met.

Summary of effects of AE F074263 00 WP70 A201 on mortality and reproduction of *Typhlodromus pyri* exposed on *Phaseolus vulgaris* leaves

		Mortality [%]			Reproduction		
Treatment	g a.s./ha	Uncorr.	Abbot	P-Value (*)	Rate	Rel. to Control [%]	P-Value(#)
Control (deionised water)	-	3.8	0.0	Ĉ	7.8		
Test item	80	11.3	7.8	0.131	5. ©	28.4	\$ 0.029
Test item	200	30.0	27.3	₹.001	\$\frac{1}{2} \tag{2}	79.9	Q -501 2
Test item	502	63.8	62.3	<.001 ^	n.d.V	%i.d.**	
Test item	1257	95.0	94.8	.001 .001	"n "d.**	n d	Y 4V'
Test item	3150	100	400	~ (.000)1 ·	Q n.d,**	n.d.** 0	
Reference item	40	100	100	Ø.001 C	. B	y n.d.	

LD50: 346.993 g a.s./ha; 95% Confidence Interval: (275,902 17.486)

In the highest dose rate of 3150 g as./ha of the test item there was 100% corr. moreality. At the lower rates of 1257; 502; 200 and 80 g a.s./ha/94.8; 62.3; 24.3 and 7.8% corr. Mortality were found and the reduction of reproduction was at the rates of 200 and 80 g as./ha/3.9 and 28.4% rel. to the control.

Conclusion:

The LD₅₀ was calculated to be \$46.99 g a.s./ha

Report: \$\(\sigma\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{

Title: Effects of Proprieb WG 70% w/w on the lacewing Chrysoperla carnea,

Extended laboratory study - Jose response test -

Report No: © 6928 047

Document No: M-\@2414\@01-1_2

Guidelines: Vogt et al. 2000; this guideline was modified for exposure of

Chrysoperla carnes on matural substrate

GLF/GEP: Ves

Objective:

The purpose of the studo was to produce a concentration-response curve for mortality effects on the green lackwing (Chrysoperla Curnea). From these the LR₅₀ value was estimated.

Materials and Methods

Test item: Propineb WG 70% w/w (water dispersible granules formulation), specified by sample description: TOX08654-01; Specification No.: 102000006516-02; Batch ID: EM20004026, content of a.s.: 68.5% w/w propineb (LH 30/Z).

^{*} Fisher's Exact test, two-sided, p-values are adjusted according to Bonferrout-Holm # one-way ANOVA, p-values are adjusted according to Dimnett

not detected

Under extended laboratory conditions 2 - 3 day old larvae of the lacewing Chrysoperla carnea were exposed to dried spray deposits of 590, 1039, 1829, 3220 and 5670 g a.s./ha (diluted in 200 L deionised water/ha) on treated bean leaves (40 replicates each containing 1 larva per treatment group)? Deionised water was used as a control treatment and Perfekthion (100 mL product/ha diluted n 2005). deionised water/ha) as a reference treatment. Exposure time lasted until pupae were transferred to the reproduction units for development of adults. Mortality checks were carried out regularly until eclosion of adult lacewings (up to 21 days after test start) an addition, for the control and the test item treatment groups where the corrected mortality was < 50% the reproduction performance, i.e. egg deposition and larval hatching rate, was determined @checks/week 24 hours period each checks. The climatic test conditions during the study were 24.0 - 26.0 °C temperature and By - 83% relative humidity. The light / dark cycle was 16:8 h with a light-intensity range of study.

Results:

study.	O O E F F F F A .
Dates of armovimental words. Oct	
Dates of experimental work: Octo	ober 12, 2017 – Novembæ 18, 2011
Results:	
Q.	Validity criticia S Inding O S
Control Mortality	∑ ≤ 20%
Reference item Mortality	50% (Greferably 87.2%) corrected
Fecundity in the Control Group (nean number of eggs per female per dry)	
Fertility in the Control Group (mean)	70% \$ \$ \$91.7%
larval hatching rate	\$70%\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Treatment	¶Gte¹ ∜ [g a.s./h <u>å</u>]	Mortality	Mortality Corr. [%]	Reproduction [eggs/female/day]	Hatching rate [%]
Control				35.5	91.7
Test item	590	7.0 n.s	2 P	37.6	89.9
Test item	103%	2.5 %.	¥ %9.0	34.0	92.6
Test item	182 9 A	(n.s.	-2.6	27.9	89.2
Test item	3220	2.5 n.s.	0.0	33.1	92.6
Test item	© 5670	150 n.s. Q	12.8	31.7	89.3
Reference item	product/102	\$87.5 <i>*</i>	87.2	-	-
		© LR ₅	₀ : > 5670 g a.s./ha		

Application rate 1200 L (eignised water/ha

² Presidaginal portality after exposure to spray residue on leaf surfaces (Fisher's Exact Test, $\alpha = 0.05$: n.s. not significant, * significant

³ Convected programmer imaginal mortality according to Abbott and improvements by Schneider-Orelli; negative values indicate better survivorship compared control

The corrected mortality for all test item rates was below 13%. Reproduction was > 15 eggs per female per day and the mean hatching rate was > 70% at all tested test item rates. This indicates that there was no negative effect of the test item on reproductive performance of C. carnea up to and including 5670 g a.s./ha.

Conclusion:

Report:

The LR50 is estimated to be greater than 5670 g a.s./ha in 200 L water/has

;2013;M_2572**65**-01

Coleopte vine Propineb W Toxicity to the ladybird beetle Coccine na septempuratata L Coleoptera, Title:

Coccinellidae) in an extended aboratory test on grape vine Propineb WG 70 percent w/w

Report No: CW13/029 Document No: M-457265-01

EU Directive 91/4144F **Guidelines:**

Regulation (EC) No. 1107/2009 US EPA QCSPP Not Applicable

GLP/GEP:

Objective:

Objective:

The objective of this study was to investigate the Jethal and subjethal toxicity of Propineb WG 70% w/w to the ladybird seetle Coccine la septempune tata when exposed to treated leaf surfaces.

Materials and Methods:

Test item: Propine WG 70% w/w (water dispersible granules formulation), specified by sample description TOX 0944\$ 00; specification no.: 102000006\$16-02, batch ID: EDFL009304 [analysed content of active ingredients Propineb 69.6% w/w [-

The test item was applied to detached grape wine leaves (Vitis vinifera) at rates of 590, 1039, 1829, 3220 and 5670 g a.s. And and the effects on the ladybird beetle Coccinella septempunctata were compared to chose of a consist water treated control. A toxic reference (active substance: Dimethoate) applied at 25 g as ha was included to indicate the relative susceptibility of the test organism@and the test system

Coccinella septempunctata was exposed in group of 40 per unit to dry residues within 1.5 hours after apphoation. There were Minit for the water control, 5 units for the test item Propineb WG 70% w/w and 1 unit for the toxic reference. The preint ginal mortality of the 4 days old larvae at study start (per test group), was assessed till the hatch of the imagines (up to 16 days).

All exposure units were assessed dail and the condition of the ladybird larvae was recorded. The larvae were feeddaily with fresh aphids (A. pisum) ad libitum. At every feeding session dead aphids and extrine from earlier feeding sessions were removed. Once the larvae had pupated and the pupae hatched, the emerged beatles were transferred to glass jars per test group. The reproduction phase of the study started 7 days after the first eggs. The fertility and fecundity of the surviving hatched adults were then evaluated over the period of 17 days.

The climatic test conditions during th humidity. The light / dark cycle was 1 study.	e study were 23.0 - 2 6:8 h with a light inter	27.0°C temperature and 60 - 77% relative nsity range of 1329 - 5230 Lux during the
Dates of experimental work: March	n 12, 2013 – April 22,	2013
Results:	Ö	2013 Finding 30% 200%
	Validity criteria	Finding
Preimaginal mortality in water control	≤ 30% o	
Preimaginal mortality reference item	\$\\ 40% \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2 200% Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Mean number of fertile eggs per female and day in water control		13.5
All validity criteria for the study were Mortality and reproduction of Coccinelly	met.	
Test item:	, O .	exposure to Propinch NG 70 % w/w

Test item	ı:			₩G 70% w/w Ø	Ĉ.
Test organi	sm: 😽		CoccineHa	septempunctara	S Y
Exposure	on: 👟			rape vine leaves 🔊	,
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Trei	maginal mortality	/ _[%]	Reproduction
	g a.s./ha	Uncorr.	Örr. S	P-Value (*)	Fertile eggs per female and day
Control	~~~ ×	30.0			13.5
Test item	590∕	35.0	7.1	10000 n.sign.	12.5
Test item	1,039	30.0	0.0	1.000 n.sign.	9.1
Test item	\$\frac{1}{2}829	30.0		1.000 n.sign.	11.4
Test item	3226	37.6	\$10.7 \$ ⁹	1.000 n.sign.	13.9
Test item 🔷	5 670	32.5	3.6	1.000 n.sign.	13.0
Reference tem	21	\$100, \$	160.0		n.a.

LR₅₀: ×\$670 g a.s./hå

n.sign. not significant

Low control mortality and high reproductive performance in the control treatment indicated that test animals were in good Condition. Mortality in the toxic reference, showed that test animals were sufficiently sensitive and that potential adverse effects of exposure to test item residues could be detected with the see-up used in this experiment.

Preimaginal mortality:

In the control 29 larvae pupated of which 28 pupae developed successfully into adult beetles.

^{*} Fisher's Exact test (one-sided), p-values an adjusted according to Bonferroni-Holm n.a. prot assessed

In the test item rates of 590 and 1039 g a.s./ha, 27 and 30 larvae pupated, respectively. From these pupae 26 and 28 developed into adults, respectively. At the rates of 1829, 3220 and 5670 g a.s./ha/29, 28 and 31 larvae pupated, respectively. From these pupae 28, 25 and 27, respectively, hatched successfully. In the reference item no larvae survived.

At all test item rates no statistically significant different corrected preimaginal mortality compared to the control group was found.

In the lowest rate of 590 g a.s./ha, the corrected mortality was 7.1%. At the rates of 1039 and 18 a.s./ha, no corrected mortality occurred. At the highest rates of 3220 and 5670 mortality of 10.7% and 3.6%, respectively, was detended.

Reproduction:

The mean number of fertile eggs per female and day for the control during the test period was 13.5. The mean number of fertile eggs per female and day for the 590g a.s./ha rate was 10.5. For the pares of 1039 and 1829 g a.s./ha, the mean number of fertile eggo per ferrale and daywas 9.1 and 1.4, respectively. For the highest rates of 220 and 5670 g as ha, the mean number of fertile eggs per female and day was 13.9 and 13.0, respectively. Reproduction is considered as not affected at all test item rates.

Conclusion:

The LRso was estimated to be > 5670 g as

Semi-field studies with non-target arthropods **CP 10.3.2.3**

In view of the results presented above, no septi-field studies were deemed necessary.

Field studies with non-target arthropods

In view of the results bresented above, no additional field studies were deemed necessary.

CP 10.3.2.5 Other routes of exposure for non-target arthropods

No relevant exposure of non-target arthropods is expected by other routes of exposure.

CP 10.4 Effects on non-target soil meso- and macrofauna

The risk assessment procedure follows the requirements as given in the Council Directive 91/4148EEC (Annex III), Council Directive 97/57/EC (Annex VI) and the Guidance Decument on Ecotoxicology.

Exposure in greenhouses

Cultivation of vegetables or fruits in greenhouses is mostly conducted in natural soil substrates. In both cases, only a semi-natural soil community with low species variety and stimulation. of opportunistic, ubiquitous species is to be expected due to the highly artificial environment with respect to microclimate, pest management (e.g., Aerilisation of fumigation of soil) and high input of soil fertilisers. Since these species have no recologically of economically important function (soil fumigation) it is not deemed necessary to conduct a risk assessment for the time during cultivation in the greenhouse as it is required for wildlife associated with outdoor agriculture

Despite above mentioned restrictions. TER valculations were performed for the greenhouse use on tomatoes in order to highlight the brazard potential for earthworms and other soil fron-target macroorganisms. In this tier 1 approach, ecotoxicological endpoints were related to maximum PEC soil values calculated for greenhouse soils

Predicted environmental concentrations used indisk assessment

The PEC_{soil} values below are taken from MCP Sec. 9, Point 9.1.3.

Initial max PEC values (bold values were used in the tier 1 risk assessment)

(()P		
Compound	Orchards Grapes a	Tomato ^b
Compound	PECoil, max	PECsoil, max
	PECsoil, max PECsoil, max PECsoil, max Img/kg mg/kg mg/kg	[mg/kg]
Propineb WG 70 °	1.95%	4.80 ^f
Propineb 5	0,52 7 0 1,064	1.609
PTU 🖗	\$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac	0.189
PU _@	0.180° 0° 0°.204	0.407
4-Mľ [♥]	\bigcirc 0.041	0.071
Propineb DIDT		0.237
4-MI	0 0.037 0 0.041	0.071

bold values are worst-case

The tien risk assessments are based on the worst case PEC_{soil} values for the application in tomatoes. Since the PEC_{soil} values for all other uses are distinctly lower than those for tomates the risk assessment for the uses in orchards and grapes are covered by the risk assessment for tomatoes.

worst-case use in grapes (7.4 kg a.s./ha at BBCH stages 40059)

b greenhouse use only «

c calculated for a soil depth of 5 cm, a soll density of 1.5 cmL and the use pattern for dapples: 2×2.25 kg product/ha and 65% + 70% interception

e vines: 2×2.0 kg product has 60% interception for both applications f tomatoes: 4×30 kg product/has and 50% + 70% + 80% interception

CP 10.4.1 Earthworms

Table 10.4.1-1: Endpoints used in risk assessment

	-	
Test item	Test species, test design	Ecotoxicological endpoint Reference
Propineb WG 70	Eisenia fetida reproduction 56 d, mixed	NOEC 56 mg product/kg dys (2014) Solve the state of the
PTU	Eisenia fetida reproduction 56 d, mixed	NOEC 178 mg pm/kg dws (2014) 178 mg pm/kg dws (2014) EBL#N040 M\frac{78183-91-1}{78183-91-1}
PU	Eisenia fetida reproduction 56 d, mixed	NOEC ≥ 1000 mg pm/kg dws MPP/RG 3.29 M-033580-01-1
4-MI	Eisenia fetida reproduction 56 d, mixed	NOEC 90 mg pm/kg dws (2013) Kra Rg-Rc 18/12
Propineb-DIDT	Eisenia fertala reproduction 56 d, mixed	**CA & 4.1/08 (2014) **EPLHN051 **4-486083-01-1

Risk assessment for earthworms

				<u> 344-486083-</u>	<u>-01-1</u>		
dws = dry weight so	dws = dry weight soil; a.s. = active substance; put purconetaborite Bold values: endpoints used for risk assessment						
Bold values: endpo	ints used for risk assessment		* <u>*</u> *	7			
Risk assessmen		pure inetabolite					
Table 10.4.1- 2:	TER calculations for ear	rthworms	, V V				
Compound	Species, study type	Endpoint [mg/kg]	worst case PEC _{soil,max} [mg/kg]	TER _{LT}	Trigger		
Propineb WG 70	Earthworm Teproduction		4.80	11.7	5		
Propineb (tech	Farthworth, reproduction	NOEC \$9.1 a	1.609	24	5		
PTU	Earthworm, roproduction	SOEC 178	0.189	942	5		
PU 💮	Earthworm reproduction		0.407	>2457	5		
4-MI	Porthworm, reproduction	NOEC 90	0.071	1268	5		
Propineb-DIDT	Earthy orm, reproduction	NOEC 32	0.237	135	5		

^a The NOEC of PBB tech. given it mg a. Vkg soft was recalculated from the PPB WG 70 study

All TER values calculated with the worst case PECsoil, max values clearly exceed the trigger value of 5 indicating that no unacceptable adverse effects on earthworms are to be expected from the intended

A state of the sta The state of the s State of the state

Effects on non-target soil meso- and macrofauna (other than earthworms) **CP 10.4.2**

Table 10.4.2-1: Endpoints used in risk assessment

Table 10.4.2-1. Endpoints used in risk assessment						
Test item	Test species, test design	Ecotoxicological endpoint	Reference V			
Collembola, reprod	uction					
Propineb WG 70	Folsomia candida reproduction 28 d, mixed	NOEC 56 ang prod./kg days	KCA 8:4 2.1/01 (2014) EBIATL016 (2014) MATERIAL OUT-1			
PU	Folsomia candida reproduction 28 d, mixed	NOEC 90 mg pm/kg dws	FRM Coll-190/11			
PTU	Folsomia candida reproduction 28 d, mixed	NOEC 9.0 mg pm/kg dws	FRM-Cott 169/14 FA-4845 0-01-1			
4-MI	Folsomia candida reproduction 28 d, mixed	NOEC ≥100 ting proteg dws	KCA&4.2.1/07 (2013) FRM-Coll-168/13 M-473/243-01-1			
Propineb-DIDT	Folsonia candida reproduction 28d, mixed	NOES ≥100 mg pm/kg dws	KC& 8.4.2.1/09 (2014) (34 10 48 093 S (2014) (34 10 48 093 S			
Soil mites, reprodug			y			
Propineb WG 78	Happoaspis aculeifer reproduction 0	56 mg prod./kg dws 9.1 mgå.s./kgdws	KCA 8.4.2.1/02 (2011) EBLHL017 M-421441-01-1			
PTU S	Hypoaspis Sculeifer reproduction 14 d, mixed	©EC ≥100 mg/pm/kg dws	(2014) 14 10 48 096 S M-484793-01-1			
PU 🗳	Hypoaspis aculeifer Coproduction 14 d, Careed	NOEC 200 mg pm/kg dws	KCA 8.4.2.1/06 (2011) kra-HR-56/11 M-415889-01-1			
4-MI 😜	Hypoaspis aculaifer reproduction of 14 donixed	©OEC ≥100 mg pm/kg dws	KCA 8.4.2.1/08 2014) EBLHN054 M-487109-01-1			
Propineb-DID	Hypoasply aculetier reproduction 14 d Phixed	©NOEC 32 mg pm/kg dws	KCA 8.4.2.1/10 (2014) EBLHN049 M-487493-01-1			

dws = dr weight soil; a.s. = active substance; pm = pure metabolite

Bold values: propoints used for risk assessment

Risk assessment for other non-target soil meso- and macrofauna (other than earthworms)

Table 10.4.2-2: TER calculations for other non-target soil meso- and macrofauna

Compound	Species	Endpo [mg/l		PEC _{soil,max} [mg/kg]	TERLT	Trigger
Duaninal WC 70	Folsomia candida	NOEC	56	4.8	11.7 💍	
Propineb WG 70	Hypoaspis aculeifer	NOEC	5 6	4.000	11 . Z	
Duanin ala ta ala	Folsomia candida	NOEC	39.1 a	∰.609	2 0 .3	
Propineb tech.	Hypoaspis aculeifer	NOEC 💍	√ 39.1 ª	()1:009	24.3 Q	
DTII	Folsomia candida	NOEC	9.0		47 6	
PTU	Hypoaspis aculeifer	NOE	≥ 100	00/89 ~	× \$29 «	
DIT	Folsomia candida	NOEC	90	\$ 0.400°	\$221	_
PU	Hypoaspis aculeifer	NOEC	≥ \$00 €	0. 40 9	**** ≥ 2 4 ***	
4 MI	Folsomia candida	VNOECY ~	¥ 100 ₀	A 07. 0	≥1408	
4-MI	Hypoaspis aculeifer 🗪	NOEC Q	$r' \geq 1.00$	0.071	£ 1408	
Propineb-DIDT	Folsomia candid	NOEC	\$\frac{1}{2}\text{00} \ \tag{0}		§ ≥ 4 2) (2)
	Hypoaspis aculofer	NOEC >	32		£ 35 €)

^a The NOEC of PPB tech. given in mg a.s.kg soil was recalculated from the PPB of 70 Quidy

All TER values calculated with the worst case FEC set, max values clearly exceed the trigger value of 5 indicating that no unacceptable adverse effects on foil macro-organisms are to be expected from the intended use of Propine WC70.

CP 10.4.2.1 Species level testing
Studies are provided in CCA 8.4.2.1.

CP 10.4.2.2 Higher tier testing
In view of the results presented above no further testing is necessary. All TER values calculated with the worst case EC_{sql, max} values clearly exceed the trigger value of 5

b worst-case use in grapes (1.4 kg .s./ha av BBCH stages 40 - 59)

CP 10.5 Effects on soil nitrogen transformation

Table 10.5-1: Endpoints used in risk assessment

Test item	Test design	Endpoint		Reference
N-transformation				
Propineb WG 70A W	Study duration 70 d	no unacceptable ≥30 kg effects ≥40 m	g prod@na g prod./kg dws	©A 8.5 05 ©2012) M-425074-051
PTU	Study duration 28 d	no ≥8.48° unaccentable effects ≥11.34	kg/hag o mg/kg dws	KCA 8.5 /06
PU	Study duration 56 d	nov 27.26 unacceptable ≥9.68 effects	mg/kg dws	KCA 8.5 /07 (2043) ° (2-4727 (1-01-1)
4-MI	Study duration 280		g/kg divs	(2015) MA72708-01-1
Propineb-DIDT	Study duration 42 d	no ≥1387 unacceptable ≥1387 effects 28.49	kgAra May kg (hys	(2014) <u>M4485360-01-1</u>

Bold values are used in the risk assessment	
Studies are provided in KGA 8.5.	
Studies are provided in KGA 8.5.	
Studies are provided in 188/16.5.	
Disk assassment for Soil Nitrogo Transforms on) O' 🛷
Risk assessment top son Antrogen Transformation	
Risk assessment for Soil Nitrogen Transformation Table 10.5- 2: Risk Assessment for soil micro-orga	nisms & S
Endpoi	
[mg)kg	[mg/kg] required
Propineb WG 70 Soil micro Organism 49	4.80 No
Propine b tech. So micro organisms 27.9 a	1.609 No
PTU Soil micro-organisms 1101	0.189 No
PU Soil pricro Granisms 2.68	0.407 No
	0¥
4-MI Soil micro-organisms 8.13 Propineb-DIDT Soil micro-organisms 1839	0.071 No

^a The endpoint of this PPBWG 76 study & given in mg.a.s./kg soil

According to regulatory requirements the risk is acceptable, if the effect on nitrogen transformation at the maximum PEC_{soil} values is 25% after 100 days. In no case, deviations from the control exceeded 25% after 28 up to 70 days, indicating low risk to soil micro-organisms.

CP 10.6 Effects on terrestrial non-target higher plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations, as non-target plants are defined as non-crop plants located outside the treated area. Spray drift from the treated breas produce residues of a product in adjacent off-crop areas.

produce residues of a product in adjacent off-crop areas.				
Risk assessment	for Terrestrial Non-	Target Higher Plants		
Tier 1 limit tests	have been conducted v	with the formulation Propine	ÞOWG 70. ∠ J	KO,
Table 10.6- 1: E	ndpoints used in risk		powg 70.	" -
Test organism	Study type	Max. effects Most s	ensitive References A	o
Maximum applic	ation rate: 4.62 kg a.s.			
Terrestrial non- target plants; 10 species	Seedling emergences Tier 1 single doses 14 days	14.0% reduction of shoot dry weight	Rep. No.: SF 1/035 M-6/2289-01-1	
Terrestrial non- target plants; 10 species	Vegetative vigour; Tier 1 single dose		KOP 10.52 /03 (2011) Rep. No.: VV 11/034 M. 22277-01-1	
Maximum applic	ation≼cate: 1√3 kg a.⊊.	ha O S		
Terrestrial non- target plants; 6 species	Seedling emergence; Tier 1 single dose 21 days	22% reduction of short dry weight	(2004) Rep. No.: VV03/29 M-105257-01-1	
Terrestrial non- target plants; 6 species	Vegetarive vigour; Tier single dose 2 days	31% inhibition of sunf	KCP 10.6.2 / (2004) Rep. No.: SE 03/29 M-105248-01-1	

In the case of Propinet WG 70, neither the Ver 1 seedling emergence nor the vegetative vigour studies showed phytopoxic effects 50% at the tested rates of 1.75 and 4.62 kg a.s./ha, respectively.

To demonstrate the low risk of the formulation to terrestrial non-target plants, TER calculations have the performed for the representative uses given in Table 10-1 (excl. tomato greenhouse use). The test rate of 4.62 kg a.s./ha was used as a most conservative endpoint estimate (i.e., $ER_{50} > 4.62$ kg a.s./ha). been performed for the representative uses given in Table 10-1 (excl. tomato greenhouse use). The test

Table 10.6- 2: Deterministic risk assessment based on the $ER_{50} > 4.62$ kg a.s./ha

Crop	Use pattern	Distance from field edge [m]	Drift [%]	PER [kg a.s./ha]	TER (Trigger = 5)
Orchards (late)	2 × 1.575 kg a.s./ha (14 d interval)	3	12.13 1)	0.27 2)	
Grapes (late)	2 × 1.4 kg a.s./ha (10 d interval)	3	© 7.23 ³⁾	0.15 4)	30.8

¹⁾ Basic drift value for two applications in orchards late

From the calculations above, it is concluded that are not to be expected.

Summary of screening data

Not necessary as guideline studies for terrestrial non-target plants are available CP 10.6.2 Testing de reco

CP 10.6.2 Testing on non-larger plan

Report:		uş	;2010;M-412	289-0۲
---------	--	----	-------------	--------

Rropineb WG 70A W. Effects on the seedling emergence and growth of ten Title:

species of non-target terrestrial plants (Tier 1)

1/1/035 Report No: Document 🔊 :

ECD Quidebne for the testing of Chemicals, Terrestrial Plant Test Guidelines:

Seedling emergence and seedling growth Test, July 2006

GLP/GEP:

Objective: «

The purpose of this specific study was bevaluate potential phytotoxic effects of Propineb WG 70A W on the seedling emergence and growth of ten non-target terrestrial plant species following a preemergence application of 4.62 kg s./ha onto the soil surface.

Materials and Methods:

(purity 69.5 %; specification No.: 102000006516-02; Batch ID: Test item: Propinel WG OA EM20004\(\text{Q} \text{2} \text{6} \).

Ten species of terrestrial non-larget plants (4 monocots and 6 dicots) were treated with 4.62 kg a.s./ha. The species dested were Refa vulgaris (Sugar beet), Brassica napus (Oilseed rape), Cucumis sativus (Cicumbers, Glycine max (Soybean), Helianthus annuus (Sunflower), Lycopersicon esculentum (Tomate), Allium cepa (Onion), Lolium perenne (Ryegrass), Sorghum sudanense (Sorghum) and Zea mays (Corn). The seeds were introduced manually into the soil. The test continued for 14 days following the emergence of 70% of the control seedlings which occurred 4 to 10 days after sowing.

²⁾ Considering MAF = 1.4 from EFSA GD Birds & Mammals (2009)

³⁾ Basic drift value for two applications in grapes late

⁴⁾ Considering MAF = 1.5 from EFSA GD Birds & Maximals (2009)

The soil surface of the pots were treated with 4.62 kg a.s./ha Propineb WG 70A W using a laboratory track sprayer and a water volume rate of 200 L/ha. Each pot (replicate) contained 5 seeds and were were 20 seeds treated i.e. 4 replicates. Control pots were treated with deionised water. Emergence was assessed daily until 70% emergence of control seedlings was reached. Emergence, survival and viscosl phytotoxicity were then recorded 7 and 14 days once 70% emergence had been achieved against the water treated controls. The parameters measured were emergence, survivator of the emerged seculings, visual phytotoxicity, plant growth stage and shoot dry weight.

Pots were grown and maintained under glasshouse conditions with a temperature control set at 23 ± 8°C during day and 18 ± 8°C at night with a 16 h photoperiod.

Dates of experimental work: May 10 to June 01, 2011

Results:

In general this study revealed a very low level of kg a.s. Propineb WG 70A W/ha.

Emergence was not affected in *Brassica nopus* (Oilseed rape), Eucurus satisfus (Cucumbers, and *Zea*

mays (Corn). Emergence was increased in Glocine wax (Sosbean, Heliquithus Johnuus (Sunflower), Lycopersicon esculentum (Tornato), Allium cepa (Onion), Lolium perenne (Ryegrass), and Sorghum sudanense (Sorghum) by 5.3, 11.145.3, 56, 20.0 and 11,1%, respectively. Exacrgence was reduced in Beta vulgaris (Sugar beet) by 11.1%.

Survival was not affected in rune of the tested species. Survival was reduced in Allium cepa (Onion) by 5.3%.

There were no observed phytotoxic symptoms in any of the tested plant species.

Shoot dry weight was increased in Beta vulgaris (Sugar beet), Brassica napus (Oilseed rape), Cucumis sativus (Cucumber) Allium cepa (Onion) Lolium penerine (Regrass) and Zea mays (Corn) by 6.7, 0.2, 4.4, 60.2, 24.6 and 8.2%, respectively.

Shoot weight was reduced in Glycine max (Soybeam, Helianthus annuus (Sunflower), Lycopersicon esculentum (Tomato) and Sorghum sudanense (Sorghum) by 0.9, 1.0, 6.3 and 14.0%, respectively.

There were no statistically significant effects in any of the rested plant species.

The findings from a single application of 4.62 kg as ha to the 10 plant species tested are summarised in the following table.

Summary of effects of Propineb WG 70A W at test termination in the seedling emergence and seedling growth Test (Tier 1)

8 ()				
	Seedling emergence and seedling growth Test			
Plant	Emergence	Survival*	Phytotoxicity	Shoot Dry Weight **
Species	(% inhibition)	(% inhibition)	** 0	(% inhibiton)
Beta vulgaris	11.1	0	9-3	0 -6.7 °
Brassica napus	0	0	Ď	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Cucumis sativus	0		© '0	
Glycine max	-5.5	<u>(1)</u>	0	Ø 30.9 8 (C
Helianthus annuus	-11.1	4.0° 0		1.0
Lycopersicon esculentum	-5.3	0		$4 \qquad 6.3 \qquad 4 \qquad 6.3$
Allium cepa	-5.6	Q 5.3	0	√ 60.2 √
Lolium perenne	-20.0			♥ *>-24.6*\ [®]
Sorghum sudanense	-11.1 C		T DO Ô	14.0 .
Zea mays	0 4			0" <u>-</u> 802"

^{*} survival is a measure of treated plants that survived at the end of the startly and expressed as an inhibition compared to the untreated control

- negative values indicate that there was an increase when compared to the untreased control Bold figures for shoot dry weight are statistically significant (Pairwise Marin-Whoney-Uest, one sided smaller; $p \le 0.05$).

Conclusion:

Following a soil surface application of Propineb WG 70A Weat 4.62 kg as ha to ten non-target terrestrial plant species, no adverse effects on mergence, seedling survival, visual phytotoxicity, growth and shoot div weight reaching or exceeding the 50% effect level were observed in this seedling emergence and seedling growth study.

Title: Non-target terrestrial plants: An evaluation of the effects of Propineb WG 70 in

the seconing emergence and growth test (Tier 1)

Report No: © SE02-29

Document No: M-\$\Pi\$0524\$\Pi\$01-1.3

Guidelines: QECD 208 A Quly 2000, draft): seedling emergence and growth test (Tier

I);no major deviation

GLP/GEP: V no.

Objective:

The purpose of the studo was to evaluate the phytotoxic effects of Propineb WG 70 on six species representing nor target terrestrial plant species during the seedling emergence and growth following a pre-emergence application of the product.

^{**} see materials and methods for a desription of the phytotoxicity rating

^{***} inhibition or reduction is expressed on a peoplant basis

Materials and Methods:

Test item: Propineb WG 70 (Product: Antracol WG70; active ingredient: LH 30/Z; purity 71 Batch No.: PF 90042868; content 71.2%)

Six species of terrestrial non-target plants (2 monocots and 4 dicots) were prated with the highest nominal product application rate for Propineb WG 70 of 1.75 kg a.s./ha. The species tested were oilseed rape (Brassica napus), sunflower (Helianthus annuus), sugar beet (Beta vulgaras), curumber (Cucumis sativus), oats (Avena sativa), and corn (Zea mg). The seeds were introduced manually into the soil. All seeds were planted on the day of application and test furation was after emergence of the seedlings in the controls for each species.

The application of the spray solution was done by spraying two times 200 That to reach the target amount of 400 L/ha. Control pots were sprayed with doionized water. Four replicates with five seeds per pot for each species were tested. All potowere individually contained in sapcers and retained on benches within a greenhouse. Plants were assessed for entergence, survival and rated for photoxicity on days 7, 14 and 21. At study termination, biomass emploint determination, were performed for plant dry weights. The plants of one pot represent the replicate.

Pots were grown and maintained under glasshouse conditions with a temperature control set at 23 ± 5°C during day and 18 ± 5°C at night with a 16% photogeriod.

Dates of experimental work: October 22 to November 19, 2003

Jovember 19, 2003

Results:

5 kg a.scha on the six species tested are The effects of Propineb summarized in the able

Summary of effects of Propineb WG 70AW at test termination in the seedling emergence and growth test

Seedling emergence and grown test				
Plant	Gertaination	Mort@ity*	Phytotoxicity	Dry Weight**
Species	(% Tophibition)	(% of control)	(% of control)	(% growth inhibiton)
Oil seed rape	~ -20 <u>4</u>	\$\display +6 \display \display +6	O O	+43
Sunflower			0	-27
Sugar beet a	Ø 65 0		0	-4
Cucumber 4	-17 ° ~			+14
Oats 🔊	+5%		0	-7
Corn	*5° ~		0	+2

[&]quot;+" means an increase of the valuated endpoint compared to control

Conclusion:

The highest nominal product application rate of 1.75 kg a.s./ha for Propineb WG 70 showed no significant adverse effect (i.e. greater than 50%) to representative non-target crops in the seedling emergenee and growth test.

[&]quot;-" means a decrease of the valuated endpoint compared to control

^{*} Mortality is a measure of the sumber of those plants that germinated but failed to survive and effect of the treatment is presented at a percentage of the survival in the control.

^{**} on a per plant basis

Report: 2011;M-412277-01

Propineb WG 70A W - Effects on the vegetative vigour of ten species of Title:

target terrestrial plants (Tier 1)

Report No: Document No:

VV 11/034

M-412277-01-1

OECD 227 (July 2006): Guideline for the testing of chemicals, Textestrial Vagatative vigour test; Deviation not specified **Guidelines:**

GLP/GEP:

Objective:

The purpose of this specific study was to evaluate potential phytotoxic effects on the vegetative vigour of ten non-target terrestrial plant species following posternergence application of 4.62 kg a.s.//ha onto the foliage of plants at the

Materials and Methods:

Test item: Propineb WG 70A W (purity 695%; specification No EM20004026)

Ten species of terrestrial non target plants a morpocots and 6 dicots) were treated with 4.62 kg a.s./ha. The species tested were Bota vulgaris (Sugar Beet), Brassica napus (Oilseed raps), Cucumis sativus (Cucumber), Glycine max (Seybean), Heltanthu Cannua (Sunflower), Lycopersicon esculentum (Tomato), Allium cepa (Onion), Latium perenne (Ryegrass), Sorghum sudanense (Sorghum) and Zea mays (Corn). The seeds were introduced manually into the soil. To reach the 2 to 4 leaf stage for application, sowing was started prior to testing. At application the species had to be in 2 to 4 leaf stage and test duration was a day of ollowing application of the test substance.

At the 2-4 loaf stage plants were created with \$162 kg a.s./ha Propine b WG 70A W using a laboratory track sprayer and a water volume rate of 200 L/ha Each pot (replicate) contained 4 plants and there were 20 plants treated i.e. 5 replicates. Control pots were sprayed with deionized water.

Survival and visual phytotoxicity were recorded 7, 10 and 21 days after application and assessments were made against the water treated controls. The Gudy was terminated 21 days after application. The parameters measured were survival visual phytotoxicity, plant growth stage and shoot dry weight.

Pots were grown and maintained under glasshouse conditions with a temperature control set at 23 ± 8°C during day and 18 \(\pm\) 8°C an night with \(\pi\) 6 h photoperiod.

Dates of experimental work: Way 10 to Mey 31, 2011

In general this study revealed a very low level of phytotoxicity as a result of a foliar application of 4.62 kg s.s. Propineb WG 70 W/ha.

There were no effects on survival at any of the tested species.

Slight phototoxic symptoms were observed as chlorosis, necrosis or stunting in Glycine max (Soybean) and Allium cepa (Onion) only in a single pot in the two plant species. Shoot dry weight was increased in Beta vulgaris (Sugar beet), Glycine max (Soybean), Helianthus annus (Sunflower), Lolium perenne (Ryegrass) and Sorghum sudanense (Sorghum) by 16.9, 19.7, 10.4, 16.6 and 71.1%,

respectively. Shoot dry weight was reduced in Brassica napus (Oilseed rape), Cucumis sativus (Cucumber), Lycopersicon esculentum (Tomato), Allium cepa (Onion) and Zea mays (Corn) by 3.9, 10.6, 8.3, 22.7 and 6.7%, respectively.

There were no statistically significant effects in any of the tested plant species.

The findings from a single application of 4.62 kg a.s./ha to the 10 plant species tested are summarised in the following table.

in the following table.	
Summary of effects of Propi	neb WG 70A W at test termination in the vegetative vigour test Vier 10 Vegetative vigour est Survival* Phytotoxicity* Shoot Dr. Weight*
	Vegetative vigour@st
Plant	Survival* Phytotoxicity* Shoot DryWeight**
Species	(% inhibition)
Beta vulgaris	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Brassica napus	0 0 0 -169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cucumis sativus	0 0 4 0 0 0 0 0 0 0 0 0
Glycine max	
Helianthus annuus	7 00 7 -103
Lycopersicon esculentum	
Allium cepa	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lolium perenne	
Sorghum sudanense	\$\langle \langle 0 \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty} \text{\$\infty}
Zea mays 🔩	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

survival is a measure of treated plants that survived a the end of the study and is expressed as an inhibition compared to the untreated control

Conclusion:

Following a foliar application of Propine Wo 70A W at 4.62 kg a.s./ha to ten non-target terrestrial plant species at the 2 to 4 lead stage and adverse effects of survival, visual phytotoxicity, growth and shoot dry weight reaching of exceeding the 50% effect level were observed in this vegetative vigour study. plant species at the 2 to 4 lead stage, no adverse effects of survival, visual phytotoxicity, growth and

^{**} see materials and nethods for a description of the phytotoxicity rating *** inhibition or reduction is expressed on oper plant basis.

negative values indicate that there was an increase when compared to the universed control Bold figures for shoot des weight are startstically significant (Pairwise Mann-Whitney-U-test, one sided smaller; p ≤ 0.05). ×

Report: ;2004;M-105257-01

Non-target terrestrial plants: An evaluation of the effects of Propineb WC Title:

in the vegetative vigour test (Tier 1)

Report No: VV03/29 Document No: M-105257-01-1

OECD 208 B (July 1.750, draft): vegetative vigour test (Tier 1):00 major **Guidelines:**

deviation

GLP/GEP: no

Objective:

The purpose of the study was to evaluate the phytotoxic effects of Propineb WG 90 on six species representing non-target terrestrial plant species during vegetative vigour test following a post emergence application of the product onto the foliage of plants at the 2 to 4 -leaf growth stage.

Materials and Methods:

Test item: Propineb WG 70 (Product Antiacol WG70; active ingredient: LH 30/ Batch No.: PF 90042868; content 7\(\frac{1}{2}\)(2\)%)

Six species of terrestrial non-target plants (2 shonocots and 4 digots) were treated with the highest nominal product application rate for Propineb WG 70 of 1.75 kg a.s./ha. The species tested were oil seed rape (Brassica napus), lettuce (Lacfuca soliva), Coybean (Glicine max), cocumber (Cucumis sativus), corn (Zea mays) and oats (Avena sativa). Plants were treated at the 2-4-leaf stage with foliar spray application.

Spray treatments were applied one, at test initiation, with a sprayer let at the nominal spray volume of 400 litres/ha. Control pots were sprayed with deconized water Four replicates with five seeds per pot for each species were production and retained on benches within a greenhouse. Plants were assessed for mortality and phytotoxicity on days 7, 14 and 21. At study termination, endpount determinations were performed for plant dry weights. The plants of one potrepresent one policato

Pots were grown and maintained under Passhouse conditions with a temperature control set at 23 ± 5°C during day and 18 +5°C apaight with a 16 h photoperiod.

Dates of experimental ember 19, 2003

Results:

The effects of Propineb WG 70A W applied at a rate of 1.75 kg a.s./ha on the six species tested are summarized in the table below.

Summary of effects of Propineb WG 70A W at test termination in the vegetative vigour test (Tier 1)

Vegetative vigour test					
Plant	Mortality*	Phytotoxicity	Dry Weight**		
Species	(% of control)	(% of control)	(% growth inhibiton)		
Oil seed rape	0	0	+12		
Lettuce	0	0	+7		
Soybean	0	0	<u>چ</u> -2 يُرْ		
Cucumber	0	0	-22		
Oats	0	0	+8		
Corn	0	0	+1		
"+" means an increase of the evaluated endpoint compared to control					
"-" means a decrease of the evaluated endpoint compand to control					
* Mortality is a measure of the number of those plants that germinated but failed to survive and effect of the					
treatment is presented as a percentage of the survival in the control of the survival in the control of the survival of the su					
** on a per plant basis					

Conclusion:

The highest nominal product application rate of 1.75 kg a sha for Proposeb WG 70 showed no significant adverse effect (i.e. greater than 50%) to representative non-target crops in the vegetative

Extended laboratory studies of non-sarget plants **CP 10.6.3**

In view of the results presented above, no further studies are deemed neces

Semi-field and field texts on mon **CP 10.6.4**

Please referção Point 10.6.2

Effects on other terrestrial organisms (flora and fauna)

No studies are required based of current data requirements

No monitoring data

No mon