

OWNERSHIP STATEMENT

<section-header><section-header> the second and the se authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained.

Version history Document identifier and A comparing the providence of Data points containing amendments or additions¹ and Date Sversion number brief description Ì version pro-T is suggested that applicants adopt a similar approach to showing revisions and version bistory as sufficient of the standard version bistory as sufficient of

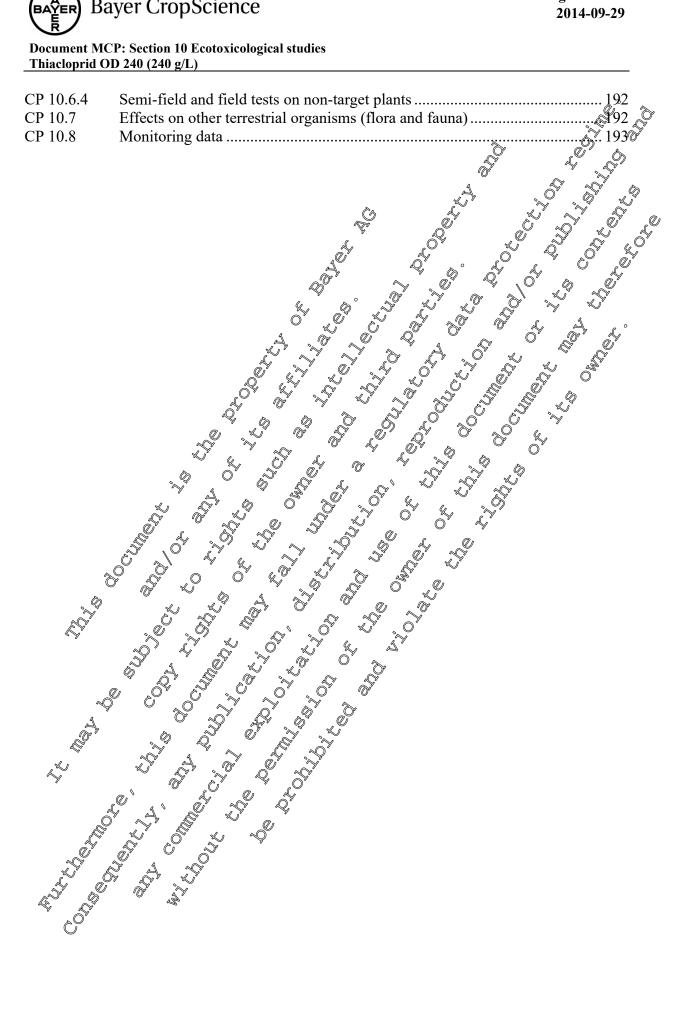


Table of Contents

Table of Contents							
	. &						
		Page					
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION	Ô					
	PRODUCT	×6					
CP 10.1	Effects on birds and other terrestrial vertebrates	ž					
CP 10.1.1	Effects on birds						
CP 10.1.1.1	Acute oral toxicity	<u></u> 9					
CP 10.1.1.2	Higher tier data on birds	ž 9 0 [°]					
CP 10.1.2		26					
CP 10.1.2.1	A guto anal toxicity to mammak 0°						
CP 10.1.2.2	Higher tier data on mammals	28					
CP 10.1.3	Effects on other terrestrial vertegrate whether replines and amphipians)	28					
CP 10.2	Effects on aquatic organismsQQQQQQ	.28					
CP 10.2.1	Acute toxicity to fish, aquatic invertebrates, or effects of aquatic algae and	¥.					
	Effects on aquatic organisms	39					
CP 10.2.2	Additional long-term and chronic toxicity studies on fish, squatic invertebr	rates					
	and sediment dwolling organisms.	40					
CP 10.2.3	i arther testing on advance of annotas	42					
CP 10.3	Effects on aithropods	42					
CP 10.3.1	Effects on bees.	42					
CP 10.3.1.1	Acute toxicity to bees	47					
CP 10.3.1.1.1	Acuteoral togacity to bees bees bees bees bees bees bees bee	47					
CP 10.3.1.1.2	Effects on bees.	50					
CP 10.3.1.2	Chronic foxicity to bees	51					
CP 10.3.1.3	Effects on hopey bee development and other boney bee life stages	51					
CP 10.3.1.4 🕷	Sub-tethal effects a construction of the suggestion of the suggest	51					
CP 10.3.1.5	Cage and tunnet tests A	52					
CP 10.3 16	Field tests with honeybees	64					
CP 10.5.2	Effects on pon-target arthropods other than bees	73					
CP 10.3.2.1	Standard faboratory testing for non-target arthropods	89					
CP 10.3.2.2	Extended laboratory testing, aged residue studies with non-target arthropod	ls					
		. 112					
CP 10.3.2.3	Senfi-fiel Ostudies with non-target athropods	. 141					
CP 10.3.2	Field studies with non-targer arthropods	. 145					
CP 10.3 2.5	Other routes of exposure for non-target arthropods	. 177					
CP 10,4	Effects on hon-target soil meso- and macrofauna Earthworms	. 177					
CP 10.4.1	Earthworms.	. 178					
CP 10.4.1.1	Earthworms sub-leffal effects	. 179					
CP 10.4.1.2	Earthworns field studies	. 180					
CP 10.4.2	Effects of non-target soil meso- and macrofauna (other than earthworms)	. 181					
CP 10.4 2.1	Species level esting.	. 182					
	Higher tier festing	. 185					
CP 19.5	Effects on soil nitrogen transformation						
CP 10.6	Effects on terrestrial non-target higher plants						
CP 106.1	Summary of screening data						
CP 10.6.2	Testing on non-target plants						
CP 10.6.3	Extended laboratory studies on non-target plants						

Document MCP: Section 10 Ecotoxicological studies

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT

Introduction

The representative formulation submitted in the first Annex I listing process is no longer considered as a representative formulation for the renewal of thiacloprid. One of the representative formulation will be presented of the approval of thiacloprid is the spray formulation.

Ecotoxicological endpoints used in the following risk assessment were derived from studies with the formulated product Thiacloprid OD 240, the active substance thracloprid and the metabolites listed in the residue definition for risk assessment.

In this Dossier only endpoints used for the risk assessment are presented. For an overview of all available endpoints for thiacloprid and its metabolites please refer to the respective section of the MCA document. In order to facilitate discrimination between new and information submitted during the Annex I inclusion process, the previously evaluated information is written in grey letters.

Use pattern considered in this risk assessment Table CP 10- 1: Intended application pattern

Crop F		Remarks:
Oil Seed F	r de la construction de la const	
Oil Seed F Rape	Appliar BBCH 30- F-2 10 24752 100- 72 Spray Spray </td <td>Product label rate: Max. 0.3 L/ha</td>	Product label rate: Max. 0.3 L/ha

Definition of the residue for risk assessment for this cloprid

Due to changes in triggers for metabolites to be further assessed as well as new studies on the route of degradation in various environmental compartments, additional metabolites are proposed to be included in the residue definition for the tisk assessment. Accordingly, studies have been prepared to describe the ecotoxicological profile of these metabolites in the relevant environmental compartments. The residue definition is included in Table CP 10- 2.

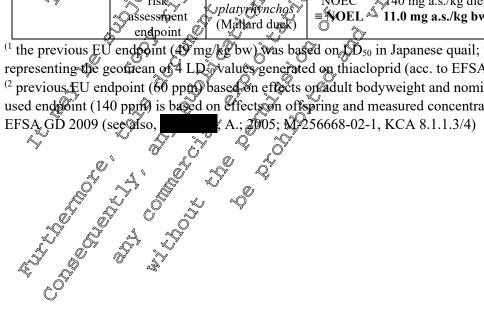
The residue definition is included in Table CP 10- 2.

Compartment	Residue Definition for Risk Assessment
Soil	Thiacloprid, Thiacloprid amide, Thiacloprid sulfonic acid, Thiacloprid des-cyano 🔊 🖗
Groundwater	Thiacloprid, Thiacloprid amide, Thiacloprid sulfonic acid, Thiacloprid des-cyan
	Thiacloprid sulfonic acid amide, Thiacloprid thiadiazine
Surface water	Thiacloprid, Thiacloprid amide, Thiacloprid sulfonic acid, Thiacloprid des-gano
Sediment	Thiacloprid
Air	Thiacloprid

Table CP 10- 2: Definition of the residue for risk assessment^{*}

*Justification for the residue definition for risk assessment is provided in MCA Sec@, Point 7.4.1 and MCA Sec. 6, Point 6.7.1.

A list of metabolites, which contains the structures, the synonyms and code numbers attributed to compound thiacloprid, is presented in Document N3 of this thessier


Effects on birds and other terrestrial vertebrates **CP 10.1**

The risk assessment has been performed according to European Rood Safety Achority Guidance Document on Risk Assessment for Birds & Mammals on vequest from FFSA (EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438), referred to in the following as "FFSA (D 2009". CP 10.1.1 Effects on birds Table CP 10.1.1- 1: Endpoints ased in Vier 1 risk assessment.

	- ×.	~~~ ·	9	, Q	Ö	
Table CP 10.1.1- 1:	: Endpoint	søsed i	n≰vier.	l risk as	sessme	ot "

Test substance	Exposure 🔬	Species	Endpoint Q	Reference
Č				
This to Bid	Geute risk Gissessment endpoint	Geomean LD from 4 spectes	$\mathbf{U}_{50} = \mathbf{U}_{50} = \mathbf{U}_{50} $	See Table CA8.1-1
Thiacle prid	Reproductive risk	Anas C	NOEC $40 \text{ mg a.s./kg diet}^2$	1997 M-002265-01-1
Ő	assessment endpoint	Cplatythynchosy (Mattard duck)	■ NOEL ^(A) 11.0 mg a.s./kg bw/d	KCA 8.1.1.3 /03

⁽¹ the previous EU endpoint (49 mg/kg bw) was based on D₅₀ in Japanese quail; used endpoint representing the geofrean of 4 LD5 values generated on thiacloprid (acc. to EFSA GD 2009) ⁽² previous, EU endpoint (60 ppp) based on efforts or adult bodyweight and nominal concentrations; used endpoint (140 ppm) is based on effects on offspring and measured concentrations according to

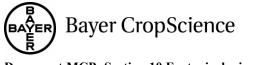
Table CP 10.1.1-2: Relevant generic avian focal species for risk assessment on Tier 1 level according to EFSA GD (2009)

	EFSA GD (2009)			
Crop scenario	Scenario	Generic focal species	Representative specie	Short cuto alues for reproductive RA based or RUD0 RUDm &
	late – late (with seeds) (BBCH 30- 99)	Small insectivorous bird "dunnock	Dunnock (Prunella m@dularis)	2.75
OSR 2 × 0.072 kg/ha BBCH 30-59 10d interval	BBCH 30 - 39	Small omnivorous bird "lark	Woodlark (Lullula & arborea)	7,2 37.3
	$BBCH \ge 40$	Small omnivorous bird	Woodlark (Luthula	6.0 2.7
	BBCH 30 - 39	Medium ^o herbiyorous/granivorous bird "bigeon"	Nood plgeon & (Columba) palambus)	2.4 1.1
	BBCH≥40	Arerbiyotous/granivorous	Wood pigsón (Columba palimibus)	2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

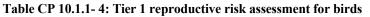
Bold: Species considered in risk assessment (only worst case for each

ACUTE DIETARY RISK ASSESSMENT

Table CP 10.1.1- 3: Tier 1 acute risk assessment for birds


	<u> </u>	S O	0				
Crop scenario	Generic focal species	Appl. rate [kg a.s./ha]		F ₉₀	(192) a.s./kg [w] bw]	TERA	Trigger
Thiacloprid					•		
OSR late – late (with seeds) (BBCH 30, 99)	Small insection of the section of th			0.7 0.7		449	
OSR BBCH 30 - 39		0.072 Å	7.2 .0	0.7	311	461	10
OSR BBCH 30 - 39	Medium herbiyorous/genivorous Ord "pigeon"			0.2		1384	

The TER alues calculated in the acute risk assessment on Tier 1 level exceed the a-prioriacceptativity trigger of 10 for all evaluated seenarios. Thus, the acute risk to birds can be considered as low and acceptable without heed for further, more realistic risk assessment.


Õ Õ Acute risk assessment for birds driftking fontaminated water from pools in leaf whorls

In the EFSA OD (2009), section 5.5, steps the following guidance is given on the selection of relevant scenarios for assessing the risk of pesticides via drinking water to birds and mammals: Leaf scenario: Brids taking water that is collected in leaf whorls after application of a pesticide to a crop and subsequent rainfattor irrigation.

Puddle scepario. Birds and mammals taking water from puddles formed on the soil surface of a field when a (beavy) rainfall event follows the application of a pesticide to a crop or bare soil. For the crop under assessment in this evaluation (oilseed rape) the leaf scenario is not considered relevant. The risk for birds from drinking water in puddles is addressed in Table CP 10.1.1-5.

LONG-TERM REPRODUCTIVE ASSESSMENT

			DDD)	-		SOEL	
Сгор	Generic focal species	Appl. rate [kg a.s./ha]	SVm	MAFm	ftwa	DDD	(mg a.s./ kg bw/d]	TERLT Trigger
Fhiacloprid				Ô		ć	×,	
OSR late – late (with seeds) (BBCH 30- 99)	Small insectivorous bird "dunnock"		2.70	\$ 7		0.2		71.2 5 0 0 V
OSR BBCH 30 - 39	Small omnivorous bird "lark"	0.072	₹ ₹3.3 ©	° 1.5 5	0.53	0.2		×38.2
OSR BBCH 30 - 39	Medium herbivorous/granivo rous bird "pigeon"		201 24.1					

The TERLT values calculated in the reproductive risk assessment on Tier 1 level exceed the aprioriacceptability trigger of 10 for all evaluated scenarios. Thus, the risk to bird can be considered as low and acceptable without need for further, more realistic risk assessment

Long-term risk assessment for birds drinking confaminated water in paddle Table CP 10.1.1- 5: Evaluation of potential concern for exposure of Ords drinking water (escape clause)

Crop	Koc [O/kg]	Applic Fate *	cation MAF /ha]&	NO(A)ED /[mg as/ kg by/d]	(Application (MAF) NO(rate 🥻	, "Escape clause" No concern if ratio	Conclusion
Thiacloperid	- 	* ?	A	8 0		J		
QSR	© 15	2 1.5	92	11	8 28		≤ 3000	No concern
K-y v			, ô ^g					

RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds feeding on contaminated prey like fish or earthworms. For organic chemicals, a log $P_{OW} > 3$ is used to trigger an indepth evaluation of the potential for bioaccumulation. Thiacloprid, however has a log Pow of 1.4 indicating a very low risk of bioaccumulation and, hence, secondary poisoning. A risk assessment is not deemed necessary.

CP 10.1.1.1 ute oralitoxicit

No additional studies are available or required as the toxicity can be derived from the studies on the active substan

Higher tier data on birds

The risk assessment indicates no risk at Tier 1; hence no higher tier studies are triggered. However additional data is presented to support the shorter half-life of thiacloprid on plant matrices following spray treatment. During the Annex I inclusion a half-life of 5.8 days was concluded based on a study

on alfalfa foliage, and this data was used for refinement of the bird risk assessment, the following studies broaden the database for the half-life determination and show that the half-life is lower than previously concluded. This data has previously been used for national registrations for refinement of previously concluded. This data has previously been used for national registrations for refinement of the risk assessment and is also used for refinement of the non-target arthropod risk assessment and may be required for additional crops.

 Report:
 Image: Statement on residues of thiacloprid in leafy vegetables: kinetic evaluation

 Report No.:
 MEF-11/835

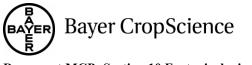
 Document No.:
 M-416527-02-1

 Guidelines:
 not applicable; not applicable

 no
 Objective:

 This statement provides kinetic evaluation of the residues of thracloprid in leafy vegetables as available from various plant residue studies

 Methods:
 Kinetic evaluation was conducted using SFO kinetics. The best futurg values of the kinetic parameters were determined by a numerical optimization process. Using non-linear feast square fitting algorithms


were determined by a numerical optimization process. Using non-linear least square fitting algorithms the parameter values leading to the smallest devertions between observed and calculated residues were determined. Apart from the kingtic rates k also the initial appoint was fitted. Dissuration half-lives (DT_{50}) were calculated from the dissipation rates k as $DT_{50} = \ln(2) / k$.

The model fit was evaluated by visual inspection A statistical measure of the quality of a fit was given by a χ^2 -test. A t-test was@mployed to identify the probability that a parameter is not significantly different from zoro

Results: 🔬 🖗

In cases where the original restrue data contained the value of < 01, the following procedure was employed. In the first occurrence, the value was replaced by 0.01. In the second occurrence, the value

employed. In the first occurrence the value was replaced by 0.92% In the second occurrence, was replaced by 0.95. All subsequent occurrences were replaced by the value of zero.

Findings:

r mungs.	2
Table CP 10.1.1.2- 1: DT50 values for thiacloprid and results of the statistical analysis - scaled error (E) and	- A
significance of the dissipation rate (t-prob) for single first-order kinetic model	"Or

-		-		os) for single		
Trial code [#]	Trial Study number - Country	Сгор	DT50 [days]	ε [%]	t-prob.	Study reference
R01	RA-2036/03 Germany	Round cabbage	8.04	7.74	\$9.0178	My091154-01-1
R02	RA-2036/03 France	Red cabbage	2.13	8.46	^(۲) 0.0099	M-09 34-01
R03	RA-2506/04 France	Red cabbage	3.76 👻	4.61	0.0033 🧋	M-262857-02-1
R04	RA-2506/04 Germany	Round cabbage	0.88	5.97 🔊	0.0089	M-262857001-1
R05	RA-2507/04 Germany	Curly kale	A21	10.78	0.0203	M-262958-01-1
R06	RA-2560/05 France	Lettuce head	A.03	8.92	0.01 19	©M-27₿640-01@r
R07	RA-2560/05 UK	Lettuce head	° 1.05 ∘	9.77 J	0.0268 📎	M-273640-01-1
R08	RA-2560/05 Germany	Lettuce head	561	∞ 2.51√	0.0291	M-273640-01-1
R09	RA-2560/05 Belgium	Lettuce head	% .70	2.9	0.0353	M-273640-01-1
R10	RA-2038/03 Germany	Curly kale	3.46	13.96	0.0249	M-240697-0101
R11	RA-2515/04 Germany	Head cabbage	0.97	6.36	0.0085	M-257513-01-1
R12	RA-2515/04 Germany	Headcabbage	KØ2	6.36 2.75	~0.0014Q	x 257519-01-1
R13	RA-2554/05 Portugal	Red cabbage	s‰¥.95 ≪	× 1,Q.971 "	స్ 0.033 కో	M-284299-01-1
R14	RA-2554/05 Italy	Round cabbage,	4.20	5 :61	° 0,044Ž1 ≶	^{©°} M-284299-01-1
R15	RA-2535/06 France	, Red cabbage	7.00	0.00	%9 .00010	М-289566-01-1
R16	RA-2535/06 Spain	Round cabbage	4010 ·	§ 5.58	0.003	AV-289566-01-1
R17	RA-2561/05 France	& Letture	£ 2.96	9.27 2	0.0000	M-277957-01-1
R18	RA-2561/05 Italy	O Lettore	1.55	.4.47 <u>~</u>	00027 v	M-277957-01-1
R19	RA-2555/05 Italy	Chinese cabbage	1657	\$ 3.03 ×	×0.005t	M-284167-01-1
R20	RA-2555/05/Italy	Chinese cabbage	Q¥.77 °∧		🔬 0.03 49	M-284167-01-1
		Minimam	\$¥0.70		D [×] ⁴	
		Maximum	\$0.70 8: 09		<u> </u>	
		Average 🗡	\$,04		S S	
		Median	2.55	<u>s</u>		
# Code us	ed in the kinotic evaluation	nestatement 🕺 🗞				

^{*} Code used in the kinetic evaluation statemen

Conclusion:

The mean DT_{50} is 362 days, the median D63 days.

 Report:
 Image: Second Seco

Objective

This statement provides kinetic evaluation of the residues of thiacloprid in green parts of monopotyle conous plants (wheat, barley).

Material and Methods:

Residue decline data were evaluated using the following kinetic models: Single First-Order (SFO), and Dual First Order in Parallel (DFOP).

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

The best fitting values of the kinetic parameters in the equations were determined by a numerical optimization process. Using non-linear least square fitting algorithms the parameter values leading to the smallest deviations between observed and calculated residues were determined. Apart from the kinetic rates k also the initial amount was fitted.

Degradation half-lives (DT₅₀) were calculated from the degradation rates $k_{5,0}$ as DT₅₀ = ln(O

In cases where the original residue data contained the value of <0.01, the following proceedine was employed. In the first occurrence the value was replaced by 0.01. In the second occurrence, the value was replaced by 0.005. All subsequent occurrences were replaced by the value of zero χ

The model fit was evaluated by visual inspection. A statistical measure of the quality of a fit was given by a χ^2 -test. A t-test was employed to identify the probability that parameter is not significantly different from zero

Results:

Evaluation of biphasic kinetic models was wither not deened necessary or lead to insignificant degradation rates. Results are presented below of the second degradation rates are presented below of the second degradating degrad

Table CP 10.1.1.2- 2: DT₅₀ values for thiacloppid and results of the statistical analysis - scaled error (ε) and significance of the dissipation rate (t-prob) for single first-order kinetic model

Trial code	Trial description	N ^a Crop	↓ DT50 & Adays		t-prob.	Study reference
R01	11-2937-01	wheat green p		20.9	0.007	
R02	1132957 ₇ 00″ 🏷	wheat green pl	lant 332	× 10,34	0.001	
R03	JP-2957-03	barley green p	lant 4.84 🖉	8%69 7	0.001	
R04	©ĭ1-29\$₹-04 0	Barley green p	ant 0 2.25	<i>@</i>]10.06	< 0.001	
	à "0" ~	🤉 geometrie 🕅	ean 🔗 2.90	\sim		

Conclusion

The geometric mean DT of is 2.90 days O 4

Plant residue studies eferred to in M-416527-02-1 and M-453083-01-1

The kinetic evaluation considered data from a number of plant residue trials which are summarised below, only data included in the kinetic evaluation is summarised.

The following residue studies are used for the determination of the half-life of thiacloprid as described above. As the studies do not concern the representative use they are not included in the residue chapter of this supplemental cossier, hence brief summaries of the data relevant for the half-life determination of thiacloprid are presented here.

The presented is

in the second se **Report:** ; 2004; M-091154-01-1 Determination of the residues of thiacloprid in/on round cabbage and red cabbage after Title: spraying of Calypso (240 OD) in the field in northern France and Germany Report No.: RA-2036/03 Document No.: M-091154-01-1 **Guidelines:** Not available **GLP/GEP:** yes **Objective:** The purpose of the presented study was to determine the magnitude of residues of this loprid in on round cabbage and red cabbage harvested after spray application with Calypso (240, OD) to cound @ cabbage and red cabbage in Northern France and Germany. Only the residue data relevant for the determination of the half-life of this of prior of heafy vegetables . is summarised.

Material and methods: For spray application the formulation Calypso (240 OD) was used. Calypso (240 OD) is an opt-based dispersion concentrate, containing 240 g/L this loprid The product was used twice with an application rate of 0.4 L/ha and 400 - 600 L water per ha, corresponding to a spray concentration of 0.067 – 0.1% and 0.096 kg/ha active substance (a.s.) thiacloprid, The applications were carried out at growth stages 44 to 49 (corresponding to intervals of 10 days).

For residue analysis, samples were taken from the treated and the control plots. In order to obtain representative samples of the raw commodity, headsamples were taken at random from various parts of the treated and the control plot

In the trials R 2003 02856 and R 2003 0288/6 heads were sampled before the last spray application and on day 0, day 3, day 7 and day 14 after the last spray application.

Residues of thaclopfed in/on round cabbage (head) and red cabbage (head) were determined according to method 00548/E004. The Limit of Quantitation (LOQ), defined as the lowest validated fortification level, was 0.01 mg/kg for thia oprid in/on round cabbage (head) and red cabbage (head).

Results:

The single recovery values range from 91 to 100% and the overall recoveries are 98 (round cabbage) and 92% with celative standard deviations of 2.2 and 1.2% (n = 6). All results of the method validation are in accordance with the general requirements for residue analytical methods, therefore the method was validated successfully.

No residues of thiacloprid above the LOQ of 0.010 mg/kg were found in any of the control samples. On day 0 after the last appreciation the residues of this cloprid in/on round and red cabbage (head) are in the range from 0.03 to 0.22 mgAig and declined to < 0.01 to 0.05 mg/kg after 14 days.

ð

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Table CP 10.1.1.2-3: Residue values determined following spray application of Thiacloprid 240OD on cabbage in study RA-2036/03

Trial No.	DALT [#]	Sample Material	Residues of Thiacloprid Rounded Values [mg/kg]	
	0*	Head	0.04 × ×	
D 2002 0205/1	0	Head	↑ 0.22 S [×] S [×]	
R 2003 0285/1	3	Head	× 0.19× × ×	
Germany (Round Cabbage)	7	Head		
(Round Cabbage)	14	Head		
	0*	Mead	20° 2001 Q Q Q	
R 2003 0288/6	0	Head A		
France	3	Head A		
(Red Cabbage)	7	Head O		
· · · · · · · · · · · · · · · · · · ·	14	Head		
# DALT: days after last	treatment, *: Before the la	st treatment		
_				
Report:				
Title:	01-1 le: Determina@on of the resid@es of XRC 28@ in/oncred cabbage appround cabbage after			
Thue: I	Determination of the residu	es of x x 2889 in/or	fred cabbage and round cabbage after	
Report No.:	RA-2506/04 🖉		many and Northern-Fance	
Guidelines:	uidelines: FU Raf: Council Directive 01/19/FFC of July 15, 1984 Anna II part A section			
o and Annex IV. nart A. section 8: Residues in or on Treated Products. Food and				
GLP/GEP:				

Objective:

The purpose of the presented study way to determine the magnitude of residues of YRC 2894 in/on heads harvested after two spray applications with Calypso (240 OD) on red cabbage and round cabbage in Northern Europe (Germany and Northern France)."

M

Only the residue data relevant for the determination of the balf-life of thiacloprid on leafy vegetables is summarised

Material and methods:

The first application at 0.4 L/ha and 400 - 600 L water per ha about 17 days before the expected harvest, the second application at 0.4 L/he and 400 - 600 L water per ha about 7 days before the expected harvest (desired) waiting period). Satoples were taken before the second applications and at 0, 3, 7 and 14 daysafter the second application?

Ľ

YRC 2894 (that loping) restrictes were extracted from 5 g of sample material with a mixture of acetonitril (Water (10/30, 0/v). After centrifugation and dilution of the extract, the residues were quantified by reversed phase EPLC with Electrospray and MS/MS-detection. The quantification was done using YOC 2897 D2 as stable-labelled internal standard.

The Dimit of Quantification (LOQ) for YRC 2894 (thiacloprid), defined as the lowest validated fortification level was 0.01 mg/kg for red cabbage and round cabbage (head).

2005; M-262958-01-

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Results:

Table CP 10.1.1.2- 4: Application and Residue Summary in Red cabbage in Region Northern Europe, Study RA-2506/04)

	101 2000/01)		۲ ک	
Country	Portion Analysed	DALT	Residues [mg/kg]	cloprid)
Trial No.			YRC 2894 (Thia	cloprid)
Northern	head	0*	0.03	
France	head	0	م 0.16	
R 2004 0223/6	head	- Star	0.10	
	head	L 7	_0 [×] Q(04	
	head	₄© ^ν 14	Q0.01	
Germany	head	0*	Q Q 0.01Å	× ,
R 2004 0224/4	head			
	head 《			× v
	head C			r. A o
	head 🔬		Q O < 0.06	

* = Before the last treatment, DALT = Days After Last Treatment, a.s. = Active Substance

The mean of the concurrent recoveries were for all matrices and for all fortification levels, within the acceptable range of 70 - 110%. Consequently, all the results are considered as valid.

Report:

Title:

Report No.: Document No.: (Guidelines: [©]

M-262958 01-1 CU-Ref: Council Directive 91/414/EEC of Jury 15, 1991, Annex II, part A, section 6 and Annex III, part A, section 8; Residues in or on Treated Products, Food and Feed; not specified

etermination of the residues of YRC 2894 in on curls kale after spraying of Calypso

Objective:

GLP/G

The purpose of this study was to determine the magnitude of residues of YRC 2894 in/on curly kale harvested after two spray applications with Calopso (200 OD) : the first and second applications at 0.4 L/ha and 600 L water per ha about 17 days and 7 days (desired waiting period) before the expected date of harvest.

The study comprises one field triatin Northern Europe (Germany).

(240 OD) in the field of Germany

\$07/04[©]

Only the residue data relevant for the determination of the half-life of this cloprid on leafy vegetables is summarised $\sqrt[n]{2}$

Material and Methods:

One field trial was conducted with Calypso (240 OD). For spray application the formulation Calypso (240 OD) was used an oil-based dispersion concentrate formulation, containing 240 g/L of active substance (a.s.) YRC 2894. The product was used two times with an application rate of 0.4 L/ha and 600 L water per ha, corresponding to a spray concentration of 0.067% and 0.096 kg/ha of active substance (a.s.) YRC 2894.

The applications were carried out at growth stages 46 - 47 (corresponding to interval of about 10 days) with the last application 7 days prior to the expected date of harvest (desired waiting period).

For residue analysis, samples were taken from the treated and the control plots. In order to obtain representative samples of the raw commodity, samples were taken at random from various parts of the treated and the control plot.

Samples were taken from the treated plot on day 0 before the last application and on day 14 after the last spray application, only treated samples were taken.

Residues of YRC 2894 (thiacloprid) were determined by LC-MS/MS according to method 00548/M001.

YRC 2894 (thiacloprid) residues were extracted from 5 g sample material with a mixture of acetonitrile/water (70/30, v/v). After centrifugation and dilution of the extract, the esidues are quantified by reversed phase HPLC with Electrospray and MS/MS detection. The quantification was done using YRC 2894-D2 as stable-labelled internal standard

Results:

Results: The Limit of Quantification (LOQ) for YR[®] 2894 (thias oprid), defined as the lowest validated fortification level, was 0.01 mg/kg in/on ourly kale (whole plant without roots). The obtained recovery values show the validity of the methods used. Residues of YRC 2894 in/on curly kale were 1.3 mg/kg ou day after the last application. The residues decreased then to 0.12 mg/kg at the proposed date of harves 07 days after the last application.

Table C1 10.1.1.2- 5. A	narytical Restars of Treated somples of TRS 2094 timacioprility
Trial No.	DALT Sample Material Residues of YRC 2894 (thiacloprid)
	0*0 whole plant without roots 0 0 0 0.05
	0 Swhole Plant without roots 0 1.3
R 2004 0227/9	$\sqrt{3}$ whole plant without boots $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ 0.21
Germany, VG99	7 / whole plant with out on a with a
	7 whole plant with out roots 0.12 14 whole plant without roots 0.05
DALT: days after last tre	eatment. Q A A O A
$0* \cdot 0 day$ before the last	t treatments of a second se
Demont	image image 0.12 image image 0.05 eatment. image image image image image image image image
~	
, St	
Report:	χ; 2006; M-273640-01-1
	Determination of the psidue's of YRC 2894 and Deltamethrin in/on lettuce after
	spraying of Proteus (10 0) in the field in Northern France, Germany, United
	Kingdom and Belanim
Report No.:	RA-2560005
Document No.:	Kingdom and Belgium A-2560/05 M-272640-01
Guidelines:	EU Ref: Council Directive 91/414/EEC of July 15, 1991, Annex II, part A, section
	6 and Armay III mart A saction 8. not specified
GLP/GEP:	ves a section of not specified
GLP/GEP:	
Objective:	

Table CP 10.1.1.2- 5: Analytical Results of Treated Samples for YRC 2894 (thiaclogrid)

Residues of YRC 2894 in the control samples were below the LOO

The purpose of the presented study was to determine the magnitude of residues of thiacloprid (YRC 2894) and beltamethrin (AE F032640) in/on lettuce harvested after three spray applications with Proteus Q10 OD). The study was comprised of four field residue trials carried out in Northern Europe (Northern France, Germany, United Kingdom, and Belgium).

Only data relevant for the calculation of the DT_{50} for this cloprid is summarised below.

Material and methods:

Three applications were scheduled to be done 21, 14, and 7 days prior to the expected date of harvest, @ each with a product application rate of 0.75 L/ha and a water rate of 600 L/ha. Samples were taken at 0,3 and 7 days after the last treatment at all sites as well as before last treatment and 14 days after treatment in France and the UK.

Residues of YRC 2894 (thiacloprid) were determined by HPLC-MS/MS according to method 00548/M001/E006.

YRC 2894 (thiacloprid) residues were extracted from bg of sample material with mixture of acetonitrile/water (70/30, v/v). After filtration and adding of the internal standard by dilution of the sample, the residues were quantified by reversed whase HPLC on a TUKBO ODS-3 COLD column with Electrospray and MS/MS-detection (Applied Biosystems API 4000 Triple Quadruple Mass Spectrometer). The quantification was done using XRC 2894-D2 as stable labelled internal standard, . The Limit of Quantification (LOQ), defined as the gowes, validated fortification level was set at 0.01 mg/kg for thiacloprid in lettuce (head). was 0.0 Pmg/kg The Limit of Quantification (LOQ), defined as the low dated fortific in/on lettuce (head).

Results:

The mean of the concurrent recoveries were for all matrices and for all fortification levels, within the acceptable range of 70 – 120%. Consequently, all the results are considered as valid

Table CP 10.1.1.2- 6: Application and residue summary in lettuce in Northern Europe				
Country	Portion Apatysed	- DALT	ر (Residues [mg/kg]	
Country Trial No.		y in leftuce in DALT	Diacloprid (YRC 2894)	
France 7	head head head head head	/ @0* ·	0.44	
France 🔗	head wo	~~0 O	2.0	
R 2005 0391/1	K K head		↓ 0.44 ↓ 2.0 ↓ 1.4 ↓ 0.50	
Jettuce	🕼 🔊 hgadi 🦉		0.50	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	head head head head head head head head		0.14	
United Kingdom R 2005 0948/0	head head head head head head head head		0.15	
United Kingdom			3.0	
R 2005 0948/0 Lettuce	👷 🔊 head 🔊 🤌	× 39	0.38	
Lettuce C	i jon inpead of the	°9'	0.21	
A	head Q' Q'	O 14	0.07	
Germany	head head head head head head head head	K 0	2.5	
R 2005 0393/8 🔌	head &	≱ 3	1.8	
R 2005 0393/8 %	A Fread of the	7	1.0	
📎 Belgium 👋	head y y	0	1.4	
R 2005 0949/9	head 1	3	0.07	
Lettuce	head head head head Treatment	7	0.03	
ALT = Days After Dest	Treament *=	Before the La	st Treatment	
	, 0 ^{°°} , xy ~9 [°]			
J & A				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	Å.			
Lettuce ALT = Days After Dast				
Ű				

Report:		; 2004; M-241697-01-1
Title:		e residues of thiacloprid in/on Chinese cabbage and curly kale after \bigcirc (240 OD) in the field in Great Britain and Germany
Report No.:	RA-2038/03	
Document No.:	M-241697-01-1	ST & S
Guidelines:	Not available	
GLP/GEP:	yes	
Objective:		to determine the magnitude of maiduae of this local articles
The purpose of the	e presented study was	to determine the magnitude of residues of this cloprid in on
Chinese cabbage a	and curly kale after spi	raying of alypso (240 QD) to Chinese cabhage and curly kale
plants in Great Bri	tain and Germany.	
Only the residue d	ata relevant for the de	termination of the half-life of this to price on leafy vegetables
(curly kale) is sum	marised.	etermination of the light-life of this clopric on leafy vegetables alypso (240 OD) was used. Calvipso (240 OD) is an oil-based
Material and met	thods:	
For spray applicat	ion the formulation	alypso (240 OD) was used. Calypso (240 OD) is an oil-based
dispersion concent	trate, containing 240 g	21. thiscioprice is the product was used twice with an
		ater per ha, corresponding to a spray concentration of 0.067%
		hia toprid. The applications were carried out a growth stages
		(baays) with the ast application 7 days price to the expected
date of harvest (de	sired waiting period).	
For residue analys	is, samples were taker	n from the treated and the control plots. In order to obtain
		ourly with Chinese cabbage and curly kale samples were taken
at random from va	prous parts of the treat	ted and the control ptot.
In the trial R 2009	0290/8 curly kales wh	hole plant without roots was sampled before the last spray
application and on	the days 0, 3, 7 and 1	4 after the last spray application.
	oprid were determined	Aaccording to method 00548 E004.
Results:		
The individual rea	Dary values range fri	on 86 to 100% and the overall recovery is 95% with a relative
standard deviation	of $5 \frac{1}{2}$ (n ≈ 7) Δk	results of the method validation are in accordance with the
general requireme	nts Par residue analyti	cal methods, therefore the method was validated successfully.
The Limit of Ouar	ntitation OO define	as the lowe validated fortification level, was 0.01 mg/kg
for thiacloprid in/o	on Chinese cabbage@f	d cůrlý kales
No residues of this	acloprid no on curly ka	(whole plant without roots) at or above the LOQ of 0.01
mg/kg were found	in any of the control	samples.
On day 0 after the	last trantmant the main	$du \hat{\mathbb{Q}}$ of thiacloprid in/on curly kale 1.4 mg/kg and declined to
0.1 mg/kg after 14	darys.	Ø.
19 D	A. ~	
0.1 mg/kg atter 14	Ĭ.	
Č [°]		
-		

Table CP 10.1.1.2- 7: Residue values determined following spray application of Thiacloprid 240OD on curly kale in study RA-2038/03

Trial No.	DALT	Sample Material	Sample Weight [g]	Residues of T Rounded Valu	
	0	Whole Plant without Roots	5	0 1.4	
R 2003 0290/8	3	Whole Plant without Roots	5		
Germany	7	Whole Plant without Roots 🔇	> 5	5 <u>1</u>	
	14	Whole Plant without Roots	5 &	@0.10	

Report:	
Title:	Determination of the residues of XRC 2894 (This longity and Doltamethrin in/an
	lettuce after spraying of Proteut (110, OP) in the field in Germany, United Kardom \mathcal{O}_{μ}
	and Northern France
Report No.:	RA-2515/04 🖉 🖓 🖉 🖓 O' 🖓 🖉 🖉
Document No.:	M-257513-01-1 Council Directive 91/41/EEC, Annex II, part A, section of and Appex III, part A,
Guidelines:	M-257513-01-1 Council Directive 91/424/EEC, Annex II, part A, section and Aprex III, part A,
GLP/GEP:	yes a section 8; Not specified by the section 8; Not specified

Objective:

The purpose of the presented study was to determine the magnitude of residues of YRC 2894 (thiacloprid) and detramethrin in/on lettuce heads harvested after three pray applications with Proteus (110 OD) in Northern Europe, more specifically in Germany, United Kingdom and Northern France. Four field trials were conducted with Proteus (110 QD).

Only the residue data relevant for the determination of the half \mathcal{F} is summarized.

Material and methods:

For spray application the formulation Proteus (10 OD) was used, an oil-based dispersion concentrate formulation, containing 100 g/L of YBC 2894 and 10 g/L of deltamethrin. The product was used three times with an application rate of 0.75 L/ha and 600 L water per ha, corresponding to a spray concentration of 0.125% and 0.073 kg/ha of active substance (a.s.) YRC 2894 and 0.008 kg/ha of active substance (a.s.) deltamethrin. The applications were carried out at growth stages between 16 - 43, 43 - 46 and 46 - 48 (corresponding to interval of about 7 days) with the last application 7 days prior to the expected date of harvest (degred waiting period).

For residue analysis, samples were taken from the treated and the control plots. In order to obtain representative samples of the aw commodity, lettuce head samples were taken at random from various parts of the treated and the control plot.

For trials K 2004 0096/9 and R 2004 0268/6 lettuce head samples were taken from the treated and the control plot before the last treatment) and on day 0, 3, 7 and 13 or 14 after the last spray application. Residues of SRC 2894 (thiadoprid) were determined by LC-MS/MS according to method 00548/M004/E006.

YRC 2804 (thiacloprid) residues were extracted from 5 g of sample material with a mixture of acetonitrile/water (70/30). After centrifugation and dilution of the sample material, the residues are quantified by reversed phase HPLC with Electrospray and MS/MS-detection. The quantification was done using YRC 2894-D2 as stable-labelled internal standard.

Results:

The Limit of Quantification (LOQ) for YRC 2894 (thiacloprid), defined as the lowest validated fortification level, was 0.01 mg/kg in/on lettuce (head).
The Limit of Quantification (LOQ) for YRC 2894 (thiacloprid), defined as the lowest validated fortification level, was 0.01 mg/kg in/on lettuce (head). Results: Residues of YRC 2894 (thiacloprid) on day 0 after the last application were between 0.98 and 1.5 mg/kg in/on lettuce samples. No residues of YRC 2894 (thiacloprid) and deltamethrin ator above the tespective LOQ were found in any of the control samples. Table CP 10.1.1.2- 8: Analytical results of treated samples for YRC 2894 (thiacloprid) in lettace
Table CP 10.1.1.2-8: Analytical results of treated samples for YRC 2894 (thiscloprid) in lettace
Trial No. DALT Sample Material Y & Residues of Y & Trial No. DALT Sample Material Y & TRC 2894 (thiacloprid)
R 2004 0096/9 0* head 0.05 0 Germany, VG08 0 1 0 0.05 0 Lettuce 70 head 0 0.05 0 0.05 0.05 0 0 0.05 0 0.05 0 0 1 0 0 0.05 0.05 0.05 0 0 0.05 0.05 0.05 0 0.05 0.05 0.05 0 0.05 0.05 0.05 0 0.05 0.05 0.05 0 0.05 0.05 0.05 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DALT: days after last treatment*: before the last treatment Report: Title: Determination of the residues of YRC 2894 and detamethrin in/on red cabbage and round catbage after spraying of Proteus (P10 OD) with additive biopower (026.6 SL) if the field in Portugatend Ital Report No.: RA-2554/05 Document No.: M-284299 01-1 Guidelines: EU-Ref: Council Directive 91/41/4/EEC of July 15, 1991, GLP/GEP yes Objective: Yes The purpose of the presented study was to determine the magnitude of residues of YRC 2894 and deltamethrin in/on red and gound cabbage harvested after two spray applications with Proteus (110
OD) with the additive Biopower (026.6 SL). The study was comprised of two field trials carried out in Portugal and Italy. Only the residue databelevant for the determination of the half-life of thiacloprid on leafy vegetables

			all a
Table CP 10.1.1.2-8: Analytical results of treated	l samples for YRC 289	4 (thiacloprid) in le	effrice
···· · · · · · · · · · · · · · · · · ·	- 4/4/		(-)

Ŧ is subimarised.

Material and methods:

Two applications were scheduled to be done 28 and 14 days prior to the expected date of harvest each with a product application rate of 1 L/ha containing 0.1% of the additive Biopower and a water rate of 800 L/ha.

Samples were taken before the last treatment and at 0, 7 and 14 days after least treatment for both trials and at 21 days after last treatment only in Portugal.

YRC 2894 (thiacloprid) residues were extracted from 5 g of sample material with a mixture of acetonitrile/water (70/30, v/v). After centrifugation and dilution of the sample material, the residues were quantified by reversed phase HPLC on a TURBO ODS-3 GOL D column, with Electrospray and MS/MS-detection (Applied Biosystems API 4000 Thiple Quadruple Mass Spectrometer). The quantification was done using YRC 2894-D2 as stable-labelled internal standard. The Limit of Quantification (LOQ), defined as the lowest valuated fortification level , was 0.01 mg/kg in/on red and round cabbage (head).

Results:

The mean of the concurrent recoveries were for all matrices and for all fortification levels, within the acceptable range of 70 - 110%. Consequently, all the results are considered as valid.

Country	Formplation	Portion Analysed	DALT	"Residues [mg/kg]
	Type	Q Q X X X		
Trial No.		n a a a a a a a a a a a a a a a a a a a		YRC 2894
		head* O		0.02
Portugal 🖉 🖉		\sim Ligrad $_{\mathcal{O}_{n}}$	0 %	0.14
R 2005 0378	Dy Ma OD	A contract of the second of th	l 2	0.01
Red cabbage			_√] ¥	0.01
	$0 0^{\prime} \%$	head 2	21	< 0.01
Italy O		j∿ koad* 0		0.07
R 2005 0379/2		head a	¥ 7	0.02
Rostord cabbage		head in	14	0.01
DALT Days After Last T	reatment, " "= Befor	e Last Treatment		
	reatment, "* "= Befor	e Last Treatment		
Report: VKC	R. 00.1.1.2.10	,; 2007; M-289	566-01-1	
		doos of Y&C 2894 and de		
roo	nd cabbage after sprat	ing of Proteus (110 OD)	in the field ir	Southern France,
	-2535/06 0			
Document No.: M-4	2089566601-1	, O ^V		
Guidelines: C EU	-Ref: Council Direct	we 91/414/EEC of July 1	15, 1991, Ani	nex II, part A, section
Á a a	nd Anney JIJ nart X	, section 8 Residues in o	r on Treated	Products, Food and
Fee JFee	eds not specified			
GLP/GE				
GLP/GEP				

Table CP 10.1.1.2- 9: Application and residue summar on red cabbage

The purpose of the presented study was to determine the magnitude of residues of YRC 2894 and Deltamethrin in/on red cabbage and round cabbage harvested after two spray applications with Proteus (110 OD) on red cabbage and round cabbage in Southern Europe.

Only the residue data relevant for the determination of the half-life of thiacloprid on leafy vegetables. is summarised.

Material and methods:

Two applications were scheduled to be done between BBCH 41 and 47 with 4 day interval. application was scheduled to be 14 days before the anticipated harvest date. In the red cabbage trial (France) and one of the round cabbage trials (Spain) samples were taken before the last treatment and at 0, 7 (8), 14 and 20 days after least treatment. In the Italian that sample Residues of YRC 2894 (thiacloprid) were determined by HPLC-MS/MS according to method 00548/M001. YRC 2894 (thiacloprid) residues were extracted from 5 g of sample material with mixture of acetonitrile/water (70/30, v/v). After centrifugation and dilation of the sample material the residues _ • were quantified by reversed phase HPLC on a TURBO OBS-3 GOLD column with Electrospray and MS/MS-detection (Applied Biosystems API 3000 Triple Quadruple Mass Spectrometer), The quantification was done using YRC 2894-D24as stable-labelled internal standard

The Limit of Quantification (LOQ), defined as the lowest validated for fication level was 0,01 mg/kg in/on red cabbage and round cabbage (head).

Results

The recoveries were, for all matrices and for all cortification levels, within the acceptable range of 69 -117%.

(1) n°	ucoummary in red and cound ca		· ¥
	Portion Analysed	<u> </u>	Residues [mg/kg]
Trial No.		<u> </u>	YRC 2894
Southern France R 2006 0174/3	o o chead x o	% Σ Ο¥	0.01
Southern France	head 5	Õ QU	0.04
	\swarrow $\stackrel{\circ}{\rightarrow}$ hea $\stackrel{\circ}{\bullet}$	O S	0.02
R 2006 0174/3	head 5		< 0.01
	the ad the ad	21	< 0.01
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	head a start	-0*	< 0.01
Spain 🔊 🦼	head of head	0	0.04
Spain 5 R 2006 0175/1	head to head t		< 0.01
Round earbbage	head to head t	14	< 0.01
¥ ~ ^	Pead of the fead o	20	< 0.01
ALT = Days After Last Tre	atment * = Davs Before Last Trea	tment	
ALT = Days After Last Tre			
s, S			

· · · · · · · · · · · · · · · · · · ·	
Report: [©] KCP	P 10 1.2/1 mar ,; 2006; M-277957-01-1
Title:	repnation of the residues of YRC 2894 and Deltamethrin in/on lettuce after
spra	ing of Proteus (\$2.5 OD) in the field in Southern France and Italy
	2561/05
Document No M-2	779\$7-01-1
Guidelines: Ov & EU-	Ref: Council Directive 91/414/EEC of July 15, 1991, Annex II, part A, section
Gangenics. Constraints of 6 and 5 Gangen	Annex III, part A, section 8 Residues in or on Treated Products, Food and
	l; not specified
GLP/GPP: yes	



# **Objective:**

The purpose of the presented study was to determine the magnitude of residues of YRC 2894 and Deltamethrin in/on lettuce (head) in the field harvested after two spray applications of Proteus (82.5 OD) on lettuce, done in Southern Europe (Southern France and Italy). Only data relevant for the determination of the  $DT_{50}$  of this cloprid is summarised.

# Material and methods

Two applications were scheduled to be done at 1.33 L/ha and 600 L water per ha with intervals of 7 days with the last application, 7 days prior to the expected date of harvest. Samples in all trials were taken 0, 3 and 7 days after ast treatment additionally in one trial in France (R 2005 0394/6) and one trail in Italy (R 2005 0950/2) samples were taken before the last treatment

and at 14 days after the last treatment.

Residues of YRC 2894 (thiacloprid) were determined by HPLC-MS/MS according to method 00548/M001/E006.

YRC 2894 (thiacloprid) residues were extracted from 3% of sample thaterial with a mixture of acetonitrile/water (70/30, v/v). After contribusation and adding of the internal standard by dilution of the sample, the residues were quantified by reversed phase HPLC on a PURBO ODSS GOLD column, with Electrospray and MSMS-detection (Applied Bigsystems API 000 Tople Quadruple Mass Spectrometer). The quant@cation was done using YRC 2894 D2 as stable abelled internal standard.

The Limit of Quantification (LOQ), defined as the lowest validated for tification level was set at 0.01 mg/kg for thiacloprid in/on lettuce (head)

# **Results:**

The mean of the concurrent recoveries were for all matrices and for all forthication levels, within the acceptable range of 70 110%. Consequently, all the results are considered as valid.

Table CI 10:1.1.2-11.			
Country O	Dirtion Analysed		Residues [mg/kg]
Trial No 🤿 🤇		, k. A	⁷ Thiacloprid (YRC 2894)
	head bead by head by head by head	O0* 🏷	0.06
France 🖓 🧔	head w		2.8
R 2005 0394/6 ≥	brad O .	0° 3°	1.6
Lettuce	head by Q	y ôf	0.39
	head head head head head head head head	× × 14	0.01
Italy	Q head	مَحْ 0*	< 0.01
Italy $\sim 1$	A Dead	<b>V</b> 0	3.0
x <b>K</b> 2005 0950/2 √	head of	3	0.74
Lettuce	C head S O	7	0.23
	bead Q	14	0.02
DALT = Days After Last Ti	rezoment 👋 🔭 Befor	re the Last Treatr	nent
DALT = Days offer Last Tr	reactionent * * Befor		

Residuesummary in lettice in Southern Europe Table CP 109.1.2-11:



Report:	KCP 10.1.1.2/12 ,; 2007; M-284167-01-1
Title:	Determination of the residues of YRC 2894 and deltamethrin in/on Chinese cabbage
	after spraying of Proteus (110 OD) in the field in Italy
Report No.:	RA-2555/05
Document No.:	M-284167-01-1
Guidelines:	EU-Ref: Council Directive 91/414/EEC of July 15, 1991, 🖉 🔬 🕺
	Annex II, part A, section 6 and Annex III, part A, section 8
	Residues in or on Treated Products, Egod and Feed; not specified 🚿 🖓
<b>GLP/GEP:</b>	yes a ward of ward of ward of the second sec

# **Objective:**

The purpose of the presented study was to determine the magnitude of residues of XRC 2894 and deltamethrin in/on Chinese cabbage harvested after two spray applications with Ptoteus (110 QD) and the additive Biopower (026.6 SL). The study was comprised of two field trials carried out in faily.

# Material and methods:

Two applications were scheduled to be done 28 and 14 days prior to the expected date of harvest, each with a product application rate of 1 L/ba and a watef ate of 800 L/ba. Sampling in trial R 2005 0380/06 was at 0 days before last treatment, and 0, 7/14 and 21 days after last treatment. In trial R 2005/0381/4 sampling was at 0, 7 and 14 days after last treatment. Residues of YRC 2894 (thiacloprid) were determined by HDLC-MS/MS according to method 00548/M001.

acetonitrile/water (70/30, v/v). After centrifugation and dilution of the sample material, the residues were quantified by reversed phase HPLC on a TURBO ODS-3 GOLD column, with Electrospray and MS/MS-detection (Applied Biosystems API 4000 Triple Quadruple Mass Spectrometer). The quantification was done using XRC 2894-D2 as stable-labeled internal standard. The Linut of Quantification (DOQ), defined as the Dowest validated fortification level, was 0.01 mg/kg in/on Chines cabbage (head).

# **Results:**

Country	🏷 Portion Adalysed	S DALT	Residues [mg/kg]
Triål No.		V	Thiacloprid YRC 2894
		-0*	0.02
Italy	$\mathcal{O}^*$ $\mathcal{O}^*$ head $\mathcal{V}_{\mathcal{O}}^*$	0	0.23
R 2005 0380%	Le head	7	< 0.01
K 2003 0380/0	highd V	14	< 0.01
	head head	21	< 0.01
Joan S	head the head	0	0.03
I@Ay 5 R 2095 038-04	head	7	< 0.01
K 2003 03804	head	14	< 0.01

Table CP 10.1.1.2- 12: Application and residue summary of Chinese cabbage

DAL = Day After Dast Treatment, *= Days Before Last Treatment



Report:	KCP 10.1.1.2/13 ;; 2012; M-439731-01-1
Title:	Determination of the residues of thiacloprid in/on barley and wheat after spray application of Thiacloprid OD 240 in Germany, southern France and the Netherlands
	application of Thiacloprid OD 240 in Germany, southern France and the Netherlands
Report No.:	01/11/2957
Document No.:	M-439731-01-1
Guidelines:	EU-Ref: Council Directive 91/414/EEC of July 15, 1991, Annex II, part A, section
	6 and Annex III, part A, section 8; Residues in or on Treated Products Food and
	Feed; EC guidance working document 7029/VI/95 rev. 5 (1997-07-22) US EPA
	OCSPP Guideline No. 860.1500.SURP, not specifie
GLP/GEP:	yes

# **Objective:**

The purpose of the study 11-2957 was to determine the magnitude of the relevant esidues of thiacloprid in/on wheat or barley (green material) after one spraying application with Thiacloprid OD ° 240 an OD formulation containing 240 g/L thiacloprid.

# Material and methods:

The actual application data are presented in the following table. This data reflects the intended application scheme, or, if minor deviations occurred, these were within the acceptable range.

		<b>%</b>			″ ()	N C	· ¥	
	Û,		Ø a	Î Î	a. A	pplication	1	
<u>A</u>	Formeration	Ro I	No.7 Pf appl.	Growth stage BBCI code	CTest item rate (LPha)	Water rate CL/ha)	a.s.	Appl. rate (kg a.s./ha)
11-2957-01 ² Germany	240 🌮	SPO		29 A	0.4	300	thiacloprid	0.096
11-2957-02 France	Thiactoprid (90)	SPI (		× 29%	Â.Ă	300	thiacloprid	0.096
11-2957-03 Netherlands	Tanacloprid OD	SPA	1. Contraction of the second s	\$29	0.4	300	thiacloprid	0.096
11-2957-04≪ Germany∢	C Thiacoprid B 240 C ~	SPI C		200	0.4	300	thiacloprid	0.096
a.s.: Activesul	stance, Appl.: Appl	ation		ing	•			

Table CP 10.1.1.2- 13: Application summary

Sampling was performed at 0, 1, 395 7 and 10 days after last treatment.

Residues of Thiacloprid were determined by fPLC-MS/MS according to method 00548/M001. Thiacloprid residues were expacted from 50 of sample material with a mixture of acetonitrile/water (70/30, v/v). After contribution and dilation of the sample material, the residues were quantified by reversed phase HPLC on an Uptisphere ODB C18, (150 x 2.0 mm, 3  $\mu$ m) column, with Electrospray and MS/MS-detection. The quantification was done using stable-labelled internal standard of thiacloprid.

The Limit & Quantification (LOQ), defined as the lowest validated fortification level, was 0.01 mg@g.

# **Results:**

The average recoveries were within the acceptable range of 70 - 110%.



The level of residues of thiacloprid in the treated samples are summarised in the table below. No residues above the LOQ were found in the control samples. Results were not corrected for concurrent recoveries.

T. • 1 N		DALT	
Trial No.	Crop /	DALT	Residues fing/kg
Country	Sample material		thiacloprid 2
	Wheat / green material	0	Kesidues fng/kgł           Kesidues
11-2957-01	Wheat / green material		
Germany	Wheat / green material	3 3	6° 5 0.74 £
Wheat	Wheat / green materia	5 🕎	2.6 2.6 0.74 0.97 0.97 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Wheat	Wheat / green material		0.18 × v
	Wheat / green matorial	<u>o</u> no	x . @ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Wheat / green material		
11-2957-02	Wheat / green material	$\gamma 1 \gamma$	
France	Wheat / green material		× × × 1.3 × ×
Wheat	Wheat / green material		
Wheat	Wheat /green material	× × 17 ~	
	WheatQ green material	<u>&gt; 10 5 </u>	
	Barley / green material		
11-2957-03	Barley / green material		<u>6</u> 4.5 ⁵
Netherlands	Barley green material		2.6 2.6 2.7 2.8
Barley	Barley green material	5	
2	Barley / green material		<u> </u>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Barley (green material		<u>k</u> <u>y</u> 1.4
Ũ	Barley green material		[○] [→] 3.3
11-2957-04	Barley green material		2.6
11-2957-00 German Barloy	Bakley / green material		1.6
	Barley Green material		0.42
	Barley / green material		
	Bartey / green material	100 00 5 2 2 0	0.23

. . ~ 10 1 1 2 14. n • 1

Effects on terresteral vertebrates other than birds **CP 10.1.2**

Table CP 10.1.2- 1: Endpoints used in risk assessment

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AP O			
Test substance		species/oxigin	2 2	Endpoint	Reference
Thiacloprid	Acute	Rat C	D LD _{50 (female)}	315 mg a.s./kg bw	See MCA Table CA 8.1.2- 1 M-495876-01-1
	Long term rok assessment	^y [©] [©] Rat	NOEC NO(A)EL	$300 \text{ ppm} \\ \equiv 21 \text{ mg a.s./kg bw/d}$	See MCA Table CA 8.1.2- 1 M-495876-01-1



# Table CP 10.1.2- 2: Relevant generic focal species for Tier 1 risk assessment

				Shortcut yaque
Crop	Scenario	Generic focal species	Representative species	Long- term RA based on RUD ₉
	$BBCH \ge 40$	Small herbivorous mammal "vole"	Common vole (Microtus	18.1 7 34.1
OSD	All season	Large herbivorous mammal " "lagomorph"	Rabbit (Opyctolagus cymculus)	( ^{14.3} ) 25.1 ( ¹
OSR	BBCH 30 - 39	Small omnivorous mammal "mouse"	Wood nouse (Apodemus	\$.3 C 5.24
	$BBCH \ge 40$	Small omnivorous mammal 。 "mouse"	Wood mouse (Apodemus	1.9 4.3

**Bold:** Species considered in Tier 1 risk assessment (only

ACUTE DIET.	ARY RISK ASSESSMENT (and TER calculation for mampfials	0
Сгор	Generic focal@pecies Appl?rate SV90% MAF DDD [mg/kg & TERA Trigg	er
$\begin{array}{c} \text{OSR} \\ \text{BBCH} \geq 40 \end{array}$	Small herbivorens manapal "vole" 34.1 34.1 93.2 99 10	
OSR All season	Large nerow or ous $0.72$ $354$ $1.27$ $2.3$ $345$ $0.6$ 10	
OSR BBCH 30 - 39	1 $315 $ $10$	

The TERA values calculated in the acute risk assessment on Tio 1 level exceed the a-priori acceptability trigger of 10 for all evaluated scoparios. Thus, the acure risk to mammals can be considered as low and acceptable without need for further, more realistic risk assessment.

# LONG-TERM BEPRODUCTO ASSESSMENT

Table CP 10.1.2-4: Tien long ferm DDD and TER alculation for mammals

Crop	Generic focal species	Appl. rate [kg/tra		MAFm	ftwa	DDD	NO(A)EL [mg kg/bw/d]	TERLT	Trigger
	Small herbivorous mamma "vole"	80. 23. s	⁹ 18.1			1.0	21	20	5
OSR All season		0.002	14.3	1.5	0.53	0.8	21	26	5
OSR BBCH 30439	Small omervorous		2.3			0.1	21	160	5

The TERLT values calculated in the reproductive risk assessment on Tier 1 level exceed the a-prioriacceptability trigger of 10 for all evaluated scenarios. Thus, the risk to mammals can be considered as low and acceptable without need for further, more realistic risk assessment.

# Long-term risk assessment for mammals drinking contaminated water

The puddle scenario is relevant for the long-term risk assessment.

Thiacloprid OD 240 (240 g/L)

# Table CP 10.1.2- 5: Evaluation of potential concern for exposure of mammals drinking water

		1	1		8	
Сгор	Koc [L/kg]	Application rate * MAF [g as/ha]		Ratio (Application rate * MAF) / NO(A)EL	"Escape clause" No concern if ratio	Conclusion
Thiacloprid				4 /=		
OSR	615	1.5 * 72	21	5.1 🔊	≤ 3000 [°] √	No concern
					<b>%</b>	

# **RISK ASSESSMENT OF SECONDARY POISOMING**

Substances with a high bioaccumulation potential bound theoretically boar a rise of secondary poisoning for mammals if feeding on contaminated prevolike fish or earthworms. For organic chemicals, a  $\log_{POW} > 3$  is used to trigger an indepthevaluation of the potential for bioaccumulation. Thiacloprid, however, has a logPOW of 1.4 indicating a very low ask of broaccumulation and rence secondary poisoning. A risk assessment is not deemed neces

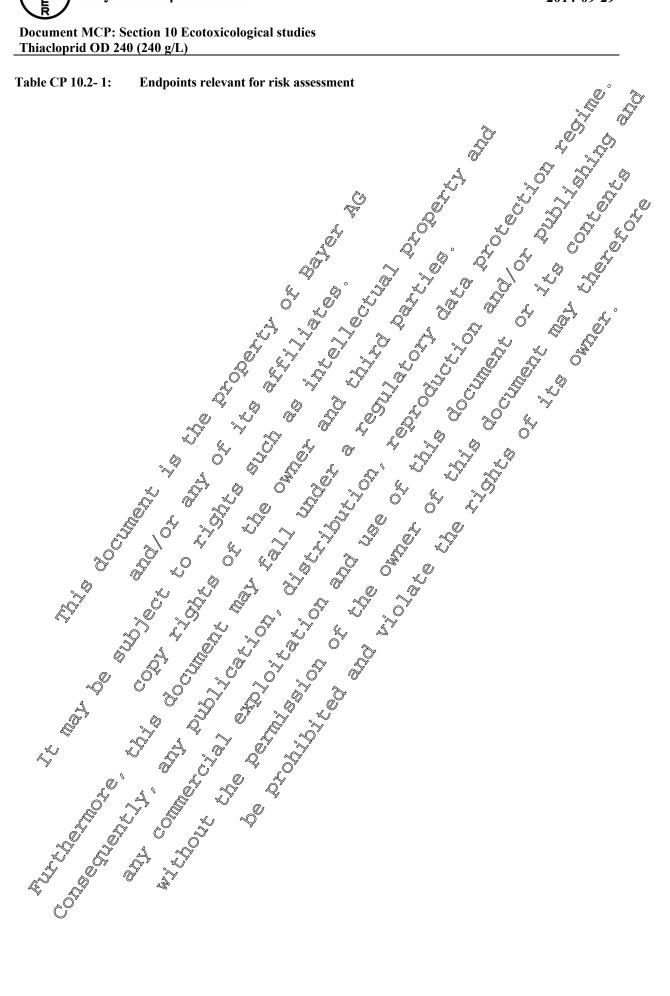
### Acute oral toxicity to mammals **CP 10.1.2.1**

The acute oral toxicity of the Thiacloprif OD 200 in rat was studied by Krollinger 2002 M-064983-01-1, the study is summarised in the MCA 5 document (toxicology). Observed mortalities were 0%, 0% and 100% at 200, 50% and 2000 mg product/kg bw, respectively According to OECD guideline 423 this corresponds to LD50 \$00 < 00 mg pr/kg bw. LD₅₀ estimation by non-linear interpolation filds a poin Stimate of 1043 mg Wkg bw.

### Higher Ger data on mammals **CP 10.1.2.2**

No additional studies are available of required, the risk assessment indicates no risk at Tier 1.

## Effects on other terrestrial vertebrate wildlife (reptiles and amphibians) CP 10.1.3


No additional studies are available or required under the data requirements of EC 1107/2009.

### Effects on aquatic organisms **CP 10.2**

The risk assessment has been performed according to "Guidance Document on Aquatic Ecotoxicology in the context of the Directive 96414/EBC" (Senco/3268/2001 rev.4 (final) 17 October 2002).

Ecotoxicological endpoints used in visk assessment







Test substance	Test species	Endpoint	Reference
	Marine fish, acute <i>Cyprinodon variegatus</i> (sheepshead minnow)	LC ₅₀ 19.7 mg a.s./L	(1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1998) (1
	Fish, chronic <i>Pimephales promelas</i> (fathead minnow)	NOEC 0.17 mg a.s./L	(1999) M-009649-01-1 KCA 8-2,2.1/1
	Invertebrate, acute Daphnia magna (cladoceran)	$EC_{50}$ $\geq$ 85.1 mg@s./L	M-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-600738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700738-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-700758-61-1 K-7007
	Invertebrate, acute <i>Ecdyonurus</i> sp. Larvae (mayfly)	EØ ₅₀ 0.007 mg a.s./L	K 8.2.4.2/6
Thiacloprid	Sediment dweller, acute <i>Chironomus riparius</i> (chironomid)	EC50 0.0077 mg a.s./L EC57 0.00108 mg a.s./L	(2014) M-491257-01 KCA 8.2.4,2/7
	Invertebrate, chronic		(199۩ 3M-000€\$2-01-3 © KCA\$2.2.5,140
	Sediment dweller, chronic Chironomus parius (chironomic)	NOE	(2014) 10-493340-01-1 KCA 8.2.5.3/1
	Desmodesmus subspicatus (Scenedesmus subspicatus, green,algae)	6,C ₅₀ 44.7 mg a.s./L Er _c C ₅₀ 66.7 mg a.s./L	(1995) M-000731-01-1 O A 8.2.6.1/1 (1007)
	Lontic freshwater	NOEAE 0.00157 mg a.s./L	KCP 8.2.8/1
	(bluegill sunfish)		(1997) M-003825-01-1 KCA 8.2.1 /3
	Invertebrate acute Dadania magna (Gadoceran)	ECO ^S ² 103 mg p.m./L	(1998) M-002382-01-1 KCA 8.2.4.1/2
Thiacloprid-	Phvertebrate, agite Hyatella aztesa (amphipod) Sedimen dweller, chronic		(1997) M-000997-02-1 KCA 8.2.4.2/8 (1997)
	Chironomus riparius (chironomicQ, Psqudokibchneriella	$PEC_{1sc} \ge 0.1 \text{ mg p.m./L}$	M-000999-01-1 KCA 8.2.5.3/3 (1998)
~~~~	(green algae)	$\dot{E}_{r}C_{50} > 100 \text{ mg p.m./L} \\ \dot{E}_{r}C_{50} > 100 \text{ mg p.m./L}$	M-004001-01-1 KCA 8.2.6.1/2 (1995)
	The function of the function o	LC ₅₀ > 90.1 mg p.m./L	M-001013-01-1 KCA 8.2.1/4 (1995)
Thiacloprid	Dephnia magna Apladočevan) Sediment dweller, chronic	EC ₅₀ > 96.1 mg p.m./L	M-001002-01-1 KCA 8.2.4.1/3
	Chironomus riparius (chironomid)	EC ₁₅ > 100 mg p.m./L	(2002), M-051861-01-1 KCA 8.2.5.3/4

Test substance	Test species	Endpoint	Reference
	Desmodesmus subspicatus (Scenedesmus subspicatus, green algae	$ \begin{array}{ll} E_b C_{50} & > 100 \mbox{ mg p.m./} \\ E_r C_{50} & > 100 \mbox{ mg p.m./} \end{array} $	L (1996) V (1996)
Thiacloprid- descyano	Sediment dweller, chronic <i>Chironomus riparius</i> (chironomid)	NOEC 0.00625 mg p.r	KCA 8,2,3.3/5 ×
Thiacloprid OD 240	Sediment dweller, chronic Chironomus riparius (chironomid)	© 0.0080 mg ps EC15 (~0.0019) س mg a.s./≦γ	M-1 1299-91-1 KOP 10.2.2/2

Selection of endpoints for risk assessment (<u>Invertebrates</u> <u>Endpoint used in risk assessment (Invertebrates</u>) Based on findings on biological effective at the set of the s Based on findings on biological effects and fate of miaclo Fid in an out or mesocose studya NOEAEC of 1.57 µg a.s./L (measured peak concentration after 2 applications with target concentration 1 µg a.s./L) could be derived for the cosimunity, particularlo for invertebrates as the , F.; 2001 M-001 191-02-1, KGP 8.2.801). The value was further most sensitive group (supported by expert statements reviewed in the Monograph and the endpoint was agreed.

As recommended by the expect, four acute toxicity studies fincluding Ephemerophera) were performed on indigenous insects (Sericostoma persolutum, Ecdyonthrus sp.) and macro-brustaceans (Asellus aquaticus, Gammanus putex) to enhance the database and to dispel the only reservation mentioned in the expert statement regarding an EAC of 1.57 µg a.s./L. The studies were submitted during the Annex I process. The results of these studies as summarised in the MCA document and they indicate that macro-orustaceans (represented by Asellus aquaticus and Gammarus pulex) as well as Trichoptera (Sericostorna personation) are less sensitive than the other lested aquatic invertebrate species. Chironomids appearing be similarly sensitive as Ephemeroptera. Thus, in agreement with the expert statement (Brock, 2002), the final conclusions frawn from the outdoor mesocosm study are confirmed and a concentration of 157 µgs.s./L was regarded as a peak concentration EAC in water. This conclusion was supported in the Monograph and subsequent amendments.

Because transient effects of some Yew species were observed at that concentration, it is justified in sensu HARAP (Guidance Document on Higher-tier Aquatic Risk Assessment for Pesticides)¹ to use the NOFAEC of 1.57 pg thiacroprid/L determine on the outdoor mesocosm study with an assessment factor of three.

Predicted envoronmental concentrations used in risk assessment

Full details of the predicted environmental concentrations are given in MCP 9.2.5, M-492014-01-1

, D.J.S., , T.C.M., , N.J., , W., . S.J.. , M. 1999. Guidance Document on Higher-tier Aquatic Risk Assessment for Pesticides (HARAP).

SETAC-Europe publication, 179 pp

Compound	FOCUS Scenario	Oilseed rape (spring, winter 2 × 72 g a.s./ha	
		PECsw, max	
	STEP 1	<u> </u>	
Thiacloprid	STEP 2 - North	1.127° ~ ~	
-	STEP 2 - South		
	STEP 1	33004	
Thiacloprid-amide	STEP 2 - North	L 2:304 Q 0	
	STEP 2 - South	Q ^° ~ 3.964 C	
	STERI	0 [°] ¹ 12,44 [°] 0 0 [°]	
Thiacloprid sulfonic acid	STEP 2 - North	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	STEP 2 - South 🔬	S.159	
	STEP U	9.607	
Thiacloprid-descyano	STEP 2 North	A & 0.552 & Q	
	STEP 2 - South	1,103 × 2	
values considered in risk ass	essment 4 4		

Table CP 10.2- 2: Initial max PEC_{sw} values – FOCUS Step 1, 2

Table CP 10.2- 3: Initial max PEC, w values? FOC VS Step 3

		Dilseed rane Onringto	OilseedPape (winter)
	FOCUS Scenario	Oilseed rape (Spring) 2 72 g as/ha PECsw, max (jug/L)	💞 2≥x 72,σas/ha
Compound	FOCIO Scenario	PECsw max X ~	PEC _{sw, max}
		w mg/L	ν μg/L]
	D1 (ditch, 1st)	N 10.020 N	× -
Į, O ^v	D1 (stpeam, 1st)	<u> </u>	-
S.	D2 ditch, 4st)		0.462
Č į	D2'(stream, 1st)		0.411
	OD3 (ditch, 1st)	→ → → → → → → → → → → → → → → → → → →	0.457
This Apprid	D Topolia, St)		0.021
Thia@oprid	t D4∜(stream 1st) ♥	M/304 . "O"	0.392
R ^{A1} B	🔊 🔊 (poner, 1st) 🕔	<u> </u>	0.020
	D5 (stkgam, 1st)	× 6 0.3-88	0.406
Ĵ.	R1 (pond, 1st)	0.049 0.426	0.047
¢.	Re(stream, 1st),	9 .426	0.501
Ø .C	V DQ (stroom lota)	<u> </u>	0.424
~Q° Ü	D1 (sitcani, 1st)	0.144 0.090	-
	Df stream 1st)	0.090	-
	D2 (ditch, 1st)		0.251
	D2 (stream, 1 sty	-	0.157
	D3 (ntch, bt)	< 0.001	< 0.001
This clonrid decovers	De (pond, 1st) A De (stream, 1st)	0.027	0.022
	$\sqrt{D4}$ (stream, 1stQ)	0.045	0.044
j ^y A	D5 (pend, 1st)	0.019	0.010
	D5 (stream, Q st)	0.033	0.019
	(pond, 1st)	0.019	0.019
J Z A	(stream, 1st)	0.125	0.102
Thiacloprid-descýano	R3 (stream, 1st)	-	0.144
	J.		
í "Ôř			

Table CP 10.2-4: Initial max PECsw values for thiacloprid – use in spring oilseed rape FOCUS Step 4

			Drift Reduction						
			0%		50%		75%		90% 🖉 🤇
	D1 (ditch, 1st)	М	0.161	М	0.080	М	0.040	Μ	0,0%
	D1 (stream, 1st)	S	0.147	S	0.074	S	0.03	S	9 ,015
	D3 (ditch, 1st)	S	0.124	S	0.062	S	0.0\$1 0.004	S	~0.013~ ⁰
5	D4 (pond, 1st)	Μ	0.017	Μ	0.009	Μ	0.004	M	0.002
5 m SD*	D4 (stream, 1st)	S	0.144	S	0.072	S	<i>⊶</i> 9.036	SÔ	0,014
5D	D5 (pond, 1st)	Μ	0.017	Μ	0,009	M	0.004	SO MY SS	°€⁄002 ~~
	D5 (stream, 1st)	S	0.141	S	0.071	S	0.035	ÔS .	0.014
	R1 (pond, 1st)	Μ	0.048	Μ	° 0.042	MR∕	0.039	M 🖌	0.037
	R1 (stream, 1st)	Μ	0.426	M	0.426	ЩM	0.426	MA	Q.@26

S and M denote whether single or multiple application lead to the maximum value SD denote spray drift buffer Acute Risk Assessment For Aquatic Organisms

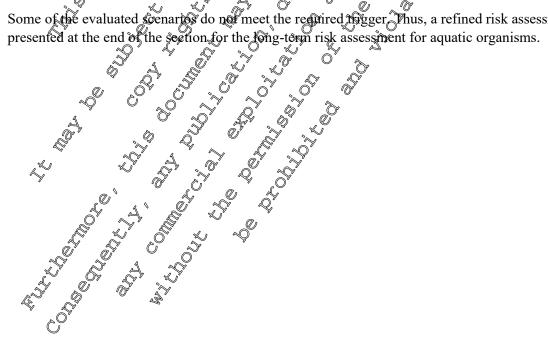
Table CP 10.2- 5:	TERA calculations based on FOCUS	Step 2
Table CP 10.2- 5:	TERA calculations based on FOCUS	Step

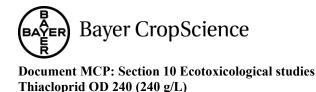
Table CF 10.2- 5:	I EKA calculations waser				Q
Compound	Species	Enchooint S		YERA N	Trigger
OSR (spring, winter			N O		
	Fish, acture Cyprinodon variegous	LC30 99700	~ (1.732 ~) .732 ~)	J9 374	100
Thisslamid	Invertebrate, acute Daphnia magna	$O_{\text{EC}_5} \xrightarrow{\circ} 289100^{\circ}$	k 732	⁶ 49 134	100
Thiacloprid	Invertebrate acute	EC ₅₀ 7.5	1.73 2	4.4	100
			J.732	6.2	100
	Fishcacute	C ₅₀ > 78,600 ~	3.964	> 19 828	100
Thiacloprid-amide	S Invertebrate acute Daphniq magna	EC50 \$ 103 000	3.964	> 25 984	100
	Trivertebrate, aquite	× LC 56 × 45 600	3.964	12 008	100
Thiaclopsid sulfonic	Grish, acute Q Qncorhynchus mskiss	50° 50° $> 90^{\circ}$ 100°	1.159	> 77 739	100
arcid	Invertebrate, acute	ECQ > 96 100	1.159	> 82 916	100
Bold values do not m	eet the trigger				

Bold values do not meet trigger

The TER trigger was exceeded for all organisms for the metabolites thiacloprid-amide and thiaclopridsulfonic actor. For Phiaclorid the trigger was exceeded for all organisms except the aquatic invertebrates E. and Chironomus riparius. For these species a refined risk assessment is required, this presented below considering the more realistic Step 3 FOCUS simulations.

Species	Endpoint [µg/L]	PECsw,max [µg/L]	FOCUS scenario	TERA	Trigger
Thiacloprid, spring OSR				ð.	
		0.625	D1 (ditch, 1st)	12.32 🔊	100 à
		0.404	D1 (stream Ist)	19.00	\$100 K
		0.45	D3 (diter, 1st)	16.85	× 100×
T 1 1 1		0.020	D4 (pond, 1st)	<u>س</u> 385 ک	
Invertebrate, acute <i>Ecdyonurus</i> sp.	EC ₅₀ 7.7	4 0.394	D4 (stream, 1st)	_ ^O 19.54 ♥	C ¹⁰⁰
Deuyonarus sp.		0.020	D5 (popd, 1st)	3395 (100
		& <u>8</u> ,388 5	D5 (stream, 19t)		× 300
	(Rat (pond Of st)	\$ 157	<u>م</u> 100 。
	, , , , , , , , , , , , , , , , , , ,	0.426	1 (stream, 1 st)	18.08	1007
		0.025	D1 (ditch, 1st)	417.3 ×	\$700
		× 0.404 ×	Dr (stream, 1st)	<u> </u>	0 100
	EC. 10.8	°√ ^y 0.457 ^v	D3 (ditch, 1st)	<u></u>	100
Sediment dweller, acute			D4 (pond, 1St)	Č540.0 °∽	100
Chironomus riparius		0 00.394	Destream, 1st)	<u>े 27</u> ≱∕	100
		0.020	D5 (pond, 1st)	540.0	100
%	X A A	0.388	D5 (stream, Ost)	≪ž7.8	100
No.		0.0490	R 1 (pond, 1st)	<u>> 220.4</u>	100
			R1 (stream, 1st)	25.4	100
Id values do not meet the trigger		, , , , , , , , , , , , , , , , , , ,			
	S O A				
			No		
KY . N			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
.\$°		w o a.			
Id values do not meet to trigge					
Ø″ Ø	N U À				


Table CP 10.2- 6: TERA for spring oilseed rape calculations based on FOCUS Step 3



Species	Endpoint [µg/L]	PEC _{sw,max} [µg/L]	FOCUS scenario	TERA	Trigger
Thiacloprid, winter OSR				ÿ ı	
		0.462	D2 (ditch, 1st)	16.67	~100 ~
		0.411	D2 (stream , 1st)	18.73 ^O	<u>، 100 من</u>
		0.45	D3 (ditch, 1st)	16.85	× 100 ×
		0.021	D4 (pond, 1st)	ي 367 ڪ	(100 , C
Invertebrate, acute	EC ₅₀ 7.7	<u>3</u> @.392	D4 (stream, 1st)	⁰ 19.64 [°]	2 100 av
Ecdyonurus sp.	1.1	0.020	D5 (popd, 1st)		
	%	* <u>0,406</u>	D5 (stream, 10t)	₩8.97	×)00
	^k y			S 164	<u> </u>
		0.504	181 (stream, 1st)		<u> </u>
		0,#24	R3 (stream; 1 st)	¥18.16	£900
		~0.462 [~]	BQ (ditch, 1st)	234	© 100
		י¥ 0.4°₩	102 (stream, 1st)	26.3	2 100
		0457 6	D3 (entch, 191)	Č23.6 ×	100
8		*00.02 k	De (pond, 1st)	o 514.37	100
Sediment dweller, acute	ECO D9.8	0.392	D4 (střeam, 1st)	27.6	100
Chironomus riparius.		0.020	D5(pond, (St)		100
			BS (stream, 1st)	∑ 26.6	100
		0.04/7	R1 (pond, 1st) R1 (stream st)	229.8 21.6	100
			RT (stream, 1st)	21.6	100
old values do not meet the				23.3	100

Table CP 10.2-7: TERA for winter oilseed rape calculations based on FOCUS Step 3

Some of the evaluated scenarios do not meet the required togger Thus, a refined risk assessment is

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

able CP 10.2- 8: 1 ER	LT calculations based on l	FOCUS Step 2		<u>y</u>	
Compound	Species	Endpoint [µg/L]	PECsw,max [µg,4]	TERLE	Trigger
hiacloprid, (spring,	winter) OSR	Ì	A	× ×	
	Fish, chronic	NOEC 170	Q1.732	98 \$	
	Invertebrate, chronic	NOEC 580	1.732	[∞] 335 Q	O ⁹ 10 &
Thiacloprid	Sediment dweller, chronic	NOF 0.56	,	6 72	
	Green algae, chronic	\$E _μ C ₅₀ & 44 €	1.732	25 8089	≪ji0
Thissland amida	Sediment dweller, chronic	EC 100	Q 3.964		
Thiacloprid-amide	Green algae, chronic	$E_{\rm F}C_{50} > 1000$ $E_{\rm r}C_{50} > 1000$		\$ 25 2 5 7	0 ¹ 10
Thiacloprid sulfonic	Sediment dweller, 🔗	EČ75 >100 0		> 86 281%	10
acid	Green algae, chronic	$E_{r}C_{50} > 100 0$ $E_{r}C_{50} > 100 0$		0 > 86 281	10
[°] hiacloprid-descyano	Sediment Weller	NGEC 6.25		5.67	10

For thiacloprid and therefore redured the consideration of the more realistic FOCUS Step 3 surface water concentrations is presented below.

Imacloprid, spring OSR Imacloprid, spring, spring OSR Imacloprid, spr	Species	Endpoint	PEC _{sw,max}	FOCUS	TER _{LT}	Trigger
0.625 DI (ditch, 1st) 0.90 00 0.404 DI (stream, 1st) 1.39 10 0.404 DI (stream, 1st) 1.39 10 0.457 D3 (digh, 1st) 1.23 10 0.457 D3 (digh, 1st) 1.23 10 0.457 D3 (digh, 1st) 1.23 10 0.457 D3 (digh, 1st) 1.42 10 0.020 D4 (stream, 1st) 1.42 10 0.020 D5 (stream, 1st) 1.44 10 0.0426 R4 (stream, 1st) 11.43 10 0.426 R4 (stream, 1st) 1.91 16 0.0426 R4 (stream, 1st) 1.91 10 0.0426 R4 (stream, 1st) 62.50 10 0.0427 D4 (pond, 1st) 2.35 10 0.0445 D4 (stream, 1st) 62.50 10 0.045 D4 (stream, 1st) 139 10 0.045 D4 (stream, 1st) 139 10 0.045 <td< th=""><th>-</th><th>[µg/L]</th><th>[µg/L]</th><th>scenario</th><th>~I</th><th>6, 38, 10</th></td<>	-	[µg/L]	[µg/L]	scenario	~I	6, 38, 10
Sediment dweller, chronic NOEC 0.404 D1 (stream, fst) 1.39 404 NOEC 0.454 D3 (dight, 1st) 423 10 0.020 D4 (bond, 1st) 423 10 0.020 D4 (bond, 1st) 423 10 0.020 D4 (bond, 1st) 423 10 0.020 D5 (pond, 1st) 2800 10 0.0426 R4 (stream, 1st) 11.43 10 0.0426 R4 (stream, 1st) 131 10 0.0426 R4 (stream, 1st) 134 10 0.090 D1 (stream, 1st) 6250 10 0.090 D3 (ditch, 4t) 6250 10 0.0027 94 (pond, 1st) 23 10 Sediment dweller, chronic NOEC 605 0.045 04 (stream, 1st) 139 10 0.019	Thiacloprid, spring OSR				× 1	
Sediment dweller, chronic NOEC 0.56 0.404 D1 (stream, Fst) 1.39 10 Sediment dweller, chronic NOEC 0.56 0.404 D1 (stream, Fst) 1.42 10 Sediment dweller, chronic NOEC 0.56 0.394 D4 (stream, 1st) 1.42 10 Sediment dweller, chronic 0.020 D5 (pond, 1st) 2800 10 Sediment dweller, chronic 0.426 R4 (stream, 1st) 1.44 10 Sediment dweller, chronic 0.020 D5 (pond, 1st) 2800 10 Sediment dweller, chronic 0.026 R4 (stream, 1st) 1.91 10 Sediment dweller, chronic NOEC 0.55 0.144 BU (ditch, 1st) 43.49 10 Sediment dweller, chronic NOEC 625 10 0.027 D4 (pond, 1st) 23.4 10 Sediment dweller, chronic NOEC 625 10 0.045 0.44 (stream, 1st) 139 10 Sediment dweller, chronic NOEC 625 0.45 D4 (stre			0.625	D1 (ditch, 1st)	0.90 🖉	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sediment dweller, chronic NOEC 0.56 0.457 D3 (dight, 1st) 1.23 10° WOEC 0.56 0.394 D4 (stream, 1st) 1.42 10° WOEC 0.56 0.020 D5 (pond, 1st) 2000 10° WOEC 0.56 0.020 D5 (pond, 1st) 2000 10° WOEC 0.649° B2 (pond/1st) 1.42 10° WOEC 0.426° R4 (stream, 1st) 1.44° 10° WOEC 0.426° R4 (stream, 1st) 1.31° 10° WOEC 0.426° R4 (stream, 1st) 43.49° 10° WOEC 0.426° R4 (stream, 1st) 43.49° 10° WOEC 0.90° 0.144° 90° 10° 0.090° 11.43° 10° Sediment dweller, chronic NOEC 0.90° 0.144° 90° 0.090° 10° 0.090° 10° 0.090° 10° 0.090° 10° 0.090° 10°			0.404		1.39	م ² 10 م
Sediment dweller, chronic NOEC 0.56 Q020 D4 00nd, 1st) 28.00 10 0.394 D4 5tream, 1st) 1.42 10 10 0.020 D5 (pond, 1st) 2000 10 0.388 D5 (stream, 1st) 1.44 10 0.426 Re (stream, 1st) 11.43 10 0.426 Re (stream, 1st) 1.91 10 0.426 Re (stream, 1st) 1.91 10 0.090 D1 (stream, 1st) 1.91 10 0.090 D1 (stream, 1st) 6244 10 0.090 D1 (stream, 1st) 6250 10 0.027 D4 (pond, 1st) 23 10 0.027 D4 (pond, 1st) 23 10 0.027 D4 (stream, 1st) 139 10 0.033 D5 (stream, 1st) 189 10 0.033 D5 (stream, 1st) 189 10			0.45	D3 (dit@h, 1st)	123	× 10
Sediment dweller, chronic NOEC 0.56 0.394 D4 [stream, 1st) 1.42 10 0.020 D5 (popd, 1st) 2800 10 0			¥	D4 (pond, 1st)	× 28.00 N	
0.388 D5 (stream, fot) 1.44 10 0.049 R4 (pond/1st) 11.43 10 0.420 R4 (stream, 1st) 1.91 10 0.420 R4 (stream, 1st) 1.91 10 0.420 R4 (stream, 1st) 1.91 10 0.420 R4 (stream, 1st) 43.49 10 0.090 P1 (stream, 1st) 69.44 10 0.090 P1 (stream, 1st) 69.44 10 0.090 P1 (stream, 1st) 62.50 10 0.027 P4 (pond, 1st) 23 10 0.0145 P4 (stream, 1st) 139 10 0.019 D5 (pond, 4t) 329 10 0.030 P5 (stream, 1st) 189 10 0.049 R1 (pond, 1st) 329 10	Sediment dweller, chronic	NOEC 0.56	÷¥			
0.388 D5 (stream, fot) 1.44 10 0.049 R4 (pond/1st) 11.43 10 0.420 R4 (stream, 1st) 1.91 10 0.420 R4 (stream, 1st) 1.91 10 0.420 R4 (stream, 1st) 1.91 10 0.420 R4 (stream, 1st) 43.49 10 0.090 P1 (stream, 1st) 69.44 10 0.090 P1 (stream, 1st) 69.44 10 0.090 P1 (stream, 1st) 62.50 10 0.027 P4 (pond, 1st) 23 10 0.0145 P4 (stream, 1st) 139 10 0.019 D5 (pond, 4t) 329 10 0.030 P5 (stream, 1st) 189 10 0.049 R1 (pond, 1st) 329 10	,					h 100/
Mail Control Mail Contro Mail Contro		la la		a		× ¥0
Thiacloprid-descyano, spring OSR 0.4.96 R4 (stream, 1stor 1.91 10 Model 0.144 DW (ditch, 1st) 43.49 10 V 0.144 DW (ditch, 1st) 43.49 10 V 0.090 D1 (stream, 1st) 69.444 10 V 0.090 D1 (stream, 1st) 69.444 10 V 0.090 D1 (stream, 1st) 62.50 10 V 0.090 D3 (ditch, 1st) 62.50 10 V 0.016 D3 (ditch, 1st) 62.50 10 V 0.027 D4 (pond, 1st) 23.5 10 V 0.019 D5 (pond, 1st) 32.9 10 V 0.033 B5 (stream, 1st) 189 10 V 0.649 B1 (nond, 1st) 32.9 10		Ň			a 11.43	a 10
Thiacloprid-descyano, spring OSR 0.144 EW (ditch, 1st) 43.49 10 0.090 D1 (stream, 1st) 62.44 10 0.090 D1 (stream, 1st) 62.44 10 0.090 D3 (utch, 1st) 62.50 10 0.027 D4 (pond, 1st) 23 10 0.0145 D4 (stream, 1st) 139 10 0.019 D5 (pond, 1st) 329 10 0.0330 B5 (stream, 1st) 189 10		2				
Image: constraint of the second s	Thiaclonrid-descyano snr	ing OSR			No 1	
Sediment dweller, chronic $\sqrt{0.090}$ <	Tinaciopi iu-uese yano, spi			R(l) (ditals dat)	Q 12 AQ	0 10
Sediment dweller, chronic $\sqrt{9}$		Ó¥ 🖓 .	0.144			6
Sediment dweller, chronic NOEC 605 0.045 D4 (stream, 1st) 223 10 0.045			× 0.090	D2 Quel 10		
Sediment dweller, chronic NOEC 605 0.045 D4 (stream, 1st) 223 10 0.045					~ 0230 ·	
10		NOECC C	00.02		<u> </u>	
10	Sediment dweller, chronic					
S = 0 $S = 0.649$ R1 (nond, 1st 329 10	\$~					
old values do not meet the trigger & a b b b b b b b b b b b b b b b b b b					¢ *	
old values do got meet the trigger & a got	Į,		× 0.049	RI (pond, 1st)		
old values do det meervhe trigger & , , , , , , , , , , , , , , , , , ,	, Ó		Q125 6	RI (stream.(#st)	50.00	10
	old values do not meet th	e triğger &				
			, S	j (v		
			, ¹⁰	A.O.		
	Â ^Ŷ . Û		O ^T V	[°] O _Å		
			Y & 2	Š ^V		
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		° è			
		S & N	S S			
	Ý Ô,		Y 🛼			
	Š A	∑ ₂ 0 [×] 4 ² 6 ³	.C			
			Ş"			
			7			
	& A`					
		J. X				
	X P A					
		© *				
$c_{I}^{O^{\nu}}$		<i>«</i>				
	¢0 ^v					

Table CP 10.2- 9: TERLT for spring oilseed rape calculations based on FOCUS Step 3

Species	Endpoint [µg/L]	E PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	Frigger
Thiacloprid, winter OSR				y y	
		0.462	D2 (ditch, 1st)	1.21	Ň
		0.411	D2 (stream, 1st)	1.36	<u>، ۲</u> ۳10 م
		0.45	D3 (ditch, 1st)	1.23	× 100×
		0.021	D4 (pond, 1st)	€6.67 € 1.43	
Sediment dweller, chronic	NOEC 0.	.56	D4 (stream, 1st)		
seament awener, emonie	NOLC 0.	0.020	DŠ (poprd, 1st)	28000	16
		§ <u>0</u> ,406	D5 (stream, 19t)	1.38 , 📈	JÎO
		0.047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R (pond@rst)	° 11.91	<u> </u>
	1	A . 0 0.504	RI (stream, 1st)		¢, 10,
	Ś	0.#24	R3 (stream; 1st)	32	£910
Thiacloprid-descyano, wi	nter OSR	0 0.254		<u>g</u> ás	0
	4	T 0.254	D2 (ditch, 1st)	24.90	P 10
	~~ <i>Q</i>		D2 (stream, Ost)	39.81 ≫	10
		× 0.004	DS (ditch, 1st)	0 > 6250	10
		25 5 0.004 25 5 0.004 25 5 0.004 0.044 0.0100	D4 (popd, 1st)	284	10
Sediment dweller, chronic		25.	D4 (stream, Ost)	<i>‱</i> [*] 142	10
		25 <u>2</u> <u>0.0100</u>	🛛 🕸 (pond, 1st)	625 ő	10
Ĵ,		2 2 0.643	D5 (stroam, 1st)	329	10
Ó, É,		~	Rl (pond, @st)	329	10
ald value@lo not meet th		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		61.27	10
ð S.	e trigger	<u>v</u> <u>0</u>	R3 (stopam, 1st)	43.40	10

Bold value do not meet the trigger

Ś The trigger is exceeded for all scenarios considering the metabolite thiacloprid-descyano. For thiacloprid, the trigger is not exceeded for some of those narios. Thus, a refined risk assessment for Ô these scenarios is presented below.

ô Refined Risk Assessment of aquatic invertebrates/insects exposed to thiacloprid

As discussed under "Selection of endpoints for risk assessment" the end-point for the refined risk

As discussed under "Selection of endpoints for risk assessment" the end-point for the refine assessment for aquatic invertebrate communities in 1.57 μ g/L with a TER trigger of three.

Table CP 10.2-11: TERLT calculations for spring oilseed rape for aquatic invertebrates based on FOCUS

St	ep 3					
Species	Endpoint [µg/L]		PEC _{sw,max} [µg/L]	FOCUS scenario	TER LT	Prigger
Thiacloprid, spring OSR	•			Ő	, .(~	
Aquatic invertebrate population	NOEAC	1.57	0.625 0.404 0.457 0.394 0.388 0.426	D1 (ditch, 1st) D1 (stream, 1st) D3 (stream, 1st) D4 (stream, 1st) D5 (stream, 1st) (R1 (stream, 1st)	2.51 0 389 0.44 3.98 405 3.69	

Bold values do not meet the trigger

Table CP 10.2- 12: TERLT calculations for svinter oilseed rape for aquatic inverter rates based on FOCK Step 3

	step 5					0
Species	Endp Gug/	ointô" (>"P" Lita o	ECsw,max [jag /L]	FOCUS 5 scenario	TO RILL N	Trigger
Thiacloprid, winter OS	SR Q x		Ş jû	Q ^Y O	8 %	
	w w		0.462	D2 (ditch, 1st)	3.40	3
			0.411	D2 (spream, (st)	\$.82	3
		45 0	0.457	D3 (ditch, 1st)	3.44	3
Aquatic invertebrate	NOTAC	1,57	~	D4 (stream, 1st)	4.01	3
population			\$Å06 Ø	D5 (stream, 1st)	3.87	3
	N 4 ⁴ «.		\$406 © 0.501~5	R (stream, 1st)	3.13	3
Aquatic invertebrate population				3 (stream, 1st)	3.70	3
8- O	N (A	4 °Y		×,		

The trigger is meet for all evaluated scenarios and crops, except for the D1 (ditch) scenario for the use in spring oilseed rape. A risk assessment for this crop and scenario based on FOCUS Step 4 calculations considering a 5 m buffer zone is presented below

Table CP 10.2 43: TERT calculations for aquatic invertebrate based on FOCUS Step 4:

Species S Q [µg/L] S he	L] scenario TER _{LT} Trig	ger						
Thiacloprid, OSR, Sm buffer zone, 0% drift reduction								
Aquatic invertebrate NOFAC 1.57 0.1	61 D1 (ditch, 1st) 9.75 3							

The TER trigger is exceeded considering a 5 m buffer with no drift reduction.

Hence for winter oil-seed rape no mitigation would be required, while for spring sown oilseed rape a small non-sprayed puffer zone of 5m is indicated.

CP 10.2.1 Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and

macrophytes

No additional acute toxicity studies are available or required. Of the standard species tested Chironomus species are clearly most sensitive to thiacloprid, hence testing in fish, algae and daphnia, is not required. The testing of Chironomus species has been covered by chronic toxicity testing with the formulation.

CP 10.2.2 Additional long-term and chronic toxicity studies on fish, a invertebrates and sediment dwelking organisms JU.

Report:	d; 2003; M-11 299-01 4
Title:	Chironomus riparius 28-day chronio toxicito text with Thiadoprid 240 OD in a water-
	sediment system using spiked water & a a a
Report No.:	$DOM 23040$ (a^{2} a^{2} a^{2} a^{2})
Document No.:	M-111299-01-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guidelines:	Proposal for a new DECD Guidenne 219, December 2002; nine
GLP/GEP:	yes Q L L L L L L L L

Objective:

The aim of the study was to determine the influence of the test item on emergence and development of Chironomus riparius for 28 days @ a static water-sediment-system, expressed as NOEC, LOEC and EC_x for emergence ratio and development rates

Material and methods:

Test item: Thiacleprid 240 OD; Batch no.: 07690/0086(0082); TOZ No. 66171-01; Development no.: 3000266399; Content of a.s.; 244.18 g/L.

Larvae of Chilonomia riperrus (1st instars <2-3 days otd, 4 beakers per test concentration and control with 20 animals each) were exposed for 28 days in a static test system to concentrations of 4.29, 7.72, 13.7, 24 V and 42.9 µg formulation/L (nominal initial) in the overdying water of a water-sediment system (spiked water)

Dissolved oxygen concentrations ranged from 7.0 to $88 \text{ mg} \Omega_2/L$ (7.0 mg $\Omega_2/L = 78\% \Omega_2$ - saturation), the pH values ranged from 8.4 to 8.7 and the water temperature ranged from 19.7°C to 20.0°C measured from parallel beakers of each test concentration over the whole period of testing. Recoveries of Thiaclopric 240 @ were measured three times during the study: 1 hour, 7 days and 28 days afte Capplication of one additional test container of each nominal initial test concentrations of /L and control (only on day 0) of the overlying water and the pore water 4.92, 13.70 and 42.9 mg form. of the sediment.

Findings:

Validity criteria: Test conditions met all calidity criteria, given by the mentioned guidelines.

Analytical findings

Since the measured amount of a.s. of the test concentrations 4.29, 13.7 and 42.9 µg form./L on day 0 were only 61 to 67% (on average 63.5%), all five nominal concentrations of 4.29, 7.72, 13.7, 24.0 and 42.9 µg formulation/L were related to mean (63.5% of nominal) initial measured concentrations of i.e. 2.72, 4.90, 8.70, 15.2 and 27.2 µg formulation/L corresponding to 0.635, 1.14, 2.03, 3.56 and 6.35 µg

a.s./L. These calculated concentrations were used for statistical calculations and for the reported results.

Table CP 10.2.2-1:Analytical results for the nominal test concentrations of 4.29, 13,70 and 42.9 upformulation/L in the overlying water on average% over the test duration.

		% of nominal on averag	e «	A.	
	day 0	day 7	day 28		
overlying water	63.5	1800	5.8	*	Ĩ, Ĉ
pore water	0.2	0.4	Q. 0.2		
		.6	O v v		

Biological findings:

Start of emergence was on day 14 for the control and the test bevels from $2\sqrt{2}$ to 8% µg form./L. The start of emergence was postponed for 7 days at the test concentration of 3%.2 µg form./L. At the test evel of 27.2 µg form./L no midges emerged, 80% of the inserted tarvae maturated to adults in the % control after 28 days, fulfilling the guideline requirements.

Table CP 10.2.2-2: Influence on the emergence and development after 28 days (based on mean initial measured concentrations of the formulation in the overlying water)

Concentration	Emengenc	e ôf⁄inserte	d larvæ	4 .04	Develo	pment	
			Å 1	poole	d'ssex 🔇 🖗	male	female
mean initial	storal O	made	Temale	Time 🖌	Rate	Rate	Rate
measured	(%)	(%) 4	r (%)	(d)	(1%d)	🔊 (1/d)	(1/d)
μg form./L		<u> </u>		\sim \sim	<u> </u>		
Control	80.0	≫ 35.0	A 5.0 A	17,11	© <u>0.058</u> ∛∕	0.064	0.056
2.72	& Ø.0 %	3000 ⊳	<u>50,0</u>	\$ 7 .17 L	∕ 0.0	0.064	0.057
4.90	<u>83.8</u> √	<i>&</i> 35.0 ∧	48.8	≈16.40	0.061	0.066	0.057
8.70	61.8	<u>0</u> 27.5&	3 3.8 (y 17.46	0.058	0.062	0.055
15,2 0	6.9	2.5 "	3.8	23.30	0.043	n.c.	n.c.
2,1,2					· -	-	-

n.c.: not catentiable Some dead larvac/pupae or matters which failed to emerge could be observed at test levels of 4.90 and 8.70 μg formulation/L.

Conclusion:	<i>(</i>))						
measured μg formulation/L	NOEC	LOFC	ÉCs O		EC15	EC20	EC50
emergence ratio (pooled sex)	°¥.90	^Q 8.70		7.5	8.0	8.4	10.5
≪95% c.l. ×			Q.8 - 80	6.5 - 8.7	7.0 - 9.1	7.5 - 9.5	9.7 - 11.4
development rate (pooled sex)	8.70	×15.2		11.2	12.7	14.0	21.3
95% c.Õ [×] 🔉	I) - S	ÿ _₩`	_Ø n.c.	n.c.	n.c.	n.c.	n.c.
development rate (note)	8.50	55.2	∼\$ [™] 8.6	10.6	12.2	13.6	22.1
95% c.l.S	J - ~	≫ -	n.c.	n.c.	n.c.	n.c.	n.c.
development rate	8.70	15.2	10.4	12.1	13.4	14.5	20.4
95% c.l.	-	-	9.8 - 11.0	11.5 - 12.8	12.6 - 14.3	13.6 - 15.7	18.4 - 23.5

c.l.: confidence limits; n.c.: not calculable

The emergence ratio was a more sensitive endpoint than the development rate.

Effects on arthropods CP 10.3.1 Effects on bees The risk assessment has been performed according to the existing guidance in force at the time of the preparation and submission of this dossier namely the EU Guidance Document on Terrestrial Ecotoxicology (SANCO/ 10329/2002 rev 2) and OPPO Standard PP 3 10 (3) Environment Assessment Scheme for Plant Protection Products - Chapter 10: honory b Commission Regulations (EU) 283/2012

conducted. Consequently in addition to the standard toxicity studies performed with addit bees (OECD 213 and 214) the following additional studies are also provided?

- Acute oral and contact &xicity of thialopric amide metabolite of thia pridk
- Acute contact toxicity of thiaclopric to adult bumble bees (Bonibus terrestris) ٠
- Chronic 10 day toxicity toadult bees upper laboratory conditions of thiacloprid
- Chronic 10 day toxicity to adult bees under booratory conditions of this borid-amide • (metabolite of thiacloprid)
- Acute toxicity to larval bees under laboratory conditions of thiacloprid
- Tunnel test according to the guidance document EPPO 176. In this test honey bee colonies were exposed @ 73.91 g a.s ha as spray application on a bowering bee-attractive crop (Brassica napus, oil-seed rape).
- Tunnel test to OECD guidance document 75. This test expected honey bee colonies to a spray application of 2 g a sha on a flowering, bee attractive grop (Phacelia tanacetifolium).
- Field test with hone bee colonies exposed to three seguential foliar spray applications on Phacelia tonacetifolium with a nomine application rate of 96 g a.s./ha.
- Field test with boney be colonies exposed to two sequential foliar spray applications on oilseed rape (Brassica dapus) with a nominal application rate of 72 g a.s./ha.

Details of the honey begetesting with thaclopyid and ecotoxicological endpoints are presented in MCA, Section 8, Point 8.3.1, as well as within the existing Review Report for thiacloprid (SANCO/4347/2000 – Final, 2004). Furthermore, data on the contact toxicity of Thiacloprid OD 240 indicated that based on laboratory toxicity data there is no evidence to suggest that non-Apis bees were at greater risk consequently the risk assessment for honey bees was considered to protect other bees.

 \sim The tests conducted with the formulation Thiacloprid OD 240 are presented in this MCP document.

A summary of the product Thiacloprid, thiacloprid-amide and formulated product Thiacloprid OB 240 are provided in the following tables. Endpoints shown in bold are considered relevant for risk assessment.

Thiacloprid OD 240 (240 g/L)

1	Table C1 10.5.1-1. Critical endpoints for tinactopril – acute toxicity to adult bees $p_{\mu}^{2} \sim p_{\mu}^{2}$								
	Test substance	Test species		Endpoint	Reference				
		Honey Bee (oral 48 h)	LD ₅₀	17.32 µg a.s./bee 🃎	(9 95)				
	Thiacloprid	Honey Bee (contact 48 h)	LD ₅₀	38.82 µg a.s./be	M-000856-014 KCA 3.3.1.1571				
		Honey Bee (oral 48 h)	LD ₅₀	> 108.1 µg p.m. bee	(2 009), (
	Thiacloprid-amide	Honey Bee (contact 48 h)	LD ₅₀	> 100 µg @m./bee	M-360293-01-15 KCA \$3.1.122				
		Honey Bee (oral 48 h)	KD 50	6.0Qµg a.ş./bee	M-103506201-1 CP 103.1.1.1				
	Thiacloprid OD 240	Honey Bee (contact 48		5.92 ug a.s. dee	M-059157-01-1 KCP 10.5-1.2.4				
		Bumble bee (contact 48 h) (Bombus terrestris)		> 100 µg - a.s. bumblebee	(2019) M 480628501-1 K&A 8.3.1.1.2/1				
a.s. = active substance; p.m. = pure metabolite J Boldy values used in risk assessment									
a.s. = active substance; p.m. = pure metabolite Boldy values used in risk assessment Table CP 10.3.1- 2: Critical endpoints for thiacloprid – chronic toxicity to adult bees									
i i		<u> </u>							

Table CP 10.3.1-1: Critical endpoints for thiacloprid – acute toxicity to adult bees

				A())	
T 11 CD 40 3 4 8	Critical endpoint	·	• 4 M • • • • • • • • • • • • • • • • •		
Table CP 10.3.1- 2:	('ritical and noint	e for thiselor	arid chronic 1	tovievty t	osodult hose
1 ADIC CI 10.3.1-4.		34IUI LIAMALIUI	JIIU = UIIUMUU	LUMARIUV U	u auuit Dees

Test substance	Test species	Endpoint X	Reference
Thiacloprid	Honey bee Laboratory		(2010)
	Chronic (f0 d) (adots)	NODEC 7 8130 µg pm./kg	M-397536-01-1 KCA 8.3.1.2/1
Thiacloprid	Honey bee Laboratory chronic (10 d)	LCS 30 900 μg a.s./kg NOEC 29 000 μg a.s./kg	et al. (2013) M-475374-01-1
	adutts)	ADD ₅₀ 3.0 as /bee/day	KCA 8.3.1.2/2
0	Honey ber Laboratory		(2012)
Thiacloprid-amide	🔊 chronic (10 d)	NOEC 8130 ug p.m./kg	M-438963-01-1
Â.	adults		KCA 8.3.1.2/3
a.s. = active substance; p.m.	pure methoolite, LDD ₅₀ = median le	that dietary dose	

Table CP 10.3.1-3? Certical endpoints for thaclopror - toxicity to larvae

	0° \wedge° \wedge° 0°		
Test substance	O Test species	🔊 🏷 Endpoint	Reference
Thigeloprid	Honey bee Laboratory In vitro single exposure test design (larvae)	LD ₅₀ > 5.34 μg a.s./larva NOED 1.78 μg a.s./larva	et al. (2013) M-472283-01-1 KCA 8.3.1.3/1
		¥	
ČO*			

est substance	Test species	Endpoint	Reference
	Honey bee	No adverse effects at 📎	(2992)
	Semi-field study (EPPO 170)	73.19 g a.s./ha except for a slight	M-054090-01-1
	(colonies)	repellent effect	KCP 10.3.1.5
	Honey bee	No adverse effects at 72 g a.s./ha	2012)
Thiacloprid	Semi-field study (OECD 75)	excost for a slight repellent	M-442217-01-10
OD 240	(colonies)	effect	KCP 0.3.1.5
00210		No adverse effects at	
	Honey bee	2 x 72 Qa.s./ha •	et al 🖉
	Semi-field study (EPPO 170)	"No adverse effects on bee?"	(2014) M-495895-0C1
	· · · · · · · · · · · · · · · · · · ·	gisease and virus status	M-495895-0CA
	with overwintering	> No adverse effects on	KCP/10.3.1.3/3,
		Covervinteringperformance @	
	A		
	×."		
e CP 10 3 1- 5.	Critical and noints for diaclose	d-field studies	
	Critical endpoints for thiaclopy		
e CP 10.3.1- 5: Test substance	Critical endpoints for diaclosy Test species	S S Endpoints S	Reférence
	Test species	No activerse effects an	(2014)
	Test species Field study (EPPO 120)	No adverse effects af 3596 g age that except short-terard	(2014) M-492155-01-1
	Test species	No adverse effects ab 3 \$ 96 g ab that effect on bee behaviour	(2014)
Test substance	Test species Field study (EPPO 120)	No adverse effects at Wo adverse effects at	(2014) M-492155-01-1 CCP 10.3.1.6/2
Test substance	Test species Field study (EPPO 120) Colonids)	No adverse effects at No adverse effects at a \$96 g as the except short-term effect on be behaviour No adverse effects at 2 x 72 g a s the except short-term	(2014) M-492155-01-1 ©CP 10.3.1.6/2
Test substance	Test species	No adverse effects at No adverse effects at 2 x 72 g as tha except short-term effect on bee behaviour 2 x 72 g as tha except short-term effect on bee behaviour	(2014) M-492155-01-1 ©CP 10.3.1.6/2
Test substance	Test species	Entipoint No adverse effects at 3 96 g at 1 2 x 72 g a s 2 x 72 g a s effect on bee behaviour 0 no adverse effects at 2 x 72 g a s effect on bee behaviour 0 no adverse effects at	(2014) M-492155-01-1 ©CP 10.3.1.6/2 (2014) M-492158-01-1
Test substance	Test species	No adverse effects at 3,596 g as the except short-term effect on bee behaviour Wo adverse effects at 2 x 72 g a s the except short-term effect on bee behaviour No adverse effects at effect on bee behaviour No adverse effects on bee disease and virus status	(2014) M-492155-01-1 ©CP 10.3.1.6/2
Test substance	Test species	No adverse effects at No adverse effects at No adverse effects at No adverse effects at 2 x 72 g a s ha except short-term effect on bee behaviour No adverse effects on bee behaviour No adverse effects on bee	(2014) M-492155-01-1 ©CP 10.3.1.6/2 (2014) M-492158-01-1
Test substance Thiacloprid OD 240	Test species Field study (EPPO 120) Colonies) Field study (EPPO 170) (colonies)	No adverse effects at 3,596 g as the except short-term effect on bee behaviour Wo adverse effects at 2 x 72 g a s the except short-term effect on bee behaviour No adverse effects at effect on bee behaviour No adverse effects on bee disease and virus status	(2014) M-492155-01-1 ©CP 10.3.1.6/2 (2014) M-492158-01-1
Test substance Thiacloprid OD 240	Test species Field study (EPPO 120) (colonies) Fheld study (EPPO 170) (colonies)	 Ko adverse effects at 35,96 g as the except short-term effect on bee behaviour No adverse effects at 2 x 72 g as the except short-term effect on bee behaviour No adverse effects on bee behaviour 	(2014) M-492155-01-1 ©CP 10.3.1.6/2 (2014) M-492158-01-1 KCP 10.3.1.6/3
Test substance	Test species	 Ko adverse effects at 35,96 g as the except short-term effect on bee behaviour No adverse effects at 2 x 72 g as the except short-term effect on bee behaviour No adverse effects on bee behaviour 	(2014) M-492155-01-1 CP 10.3.1.6/2 (2014) M-492158-01-1 KCP 10.3.1.6/3

Table CP 10.3.1-4: Critical endpoints for thiacloprid – forced exposure conditions (tunnel tests)

The risk assessment for bees is based on the maximum single application rate of thiacloprid 72 g a.s./ha for application in oil-seed raps

A

Hazard Quotients

Risk assessment for bees

The risk assessment is based on Hazard Quotient approach (Q_H) by calculating the ratio between the application rate (expressed in g as./ha or in g total substance/ha) and the laboratory contact and oral LD_{50} (expressed in µg a.s./bee or in µg total substance/bee).

 Q_H values can be calculated using data from the studies performed with the active substance and with the formulation Q_H values higher than 50 indicate the need of higher tiered activities to clarify the actual risk to knew bees.

Hazard Quotient, oral:	Q _{HO} =	$=\frac{\text{max. appl.rate}}{\text{LD}_{50} \text{ oral}}$	=	a or g total subs e or μg total sub		
Hazard Quotient, contact	Q _{HC} =	$=\frac{\max. appl. rate}{LD_{50} \text{ contact}} =$		or g total subst	stance/beel	
Table CP 10.3.1- 6: Hazard	l quotient	s for bees – oral	exposure			
	Crop		Appli	cation rate	Hazard quo	tient Trigger

	Crop	[µg/bee] [g/ha] [g/ha]	ŕr
Thiacloprid OD 240	OSR	$6.01_{(1)}$	
Thiacloprid	OSR	17.32 2 2 2 2 2 2 2 50	
Thiacloprid-amide	OSR	> 108.1 2 720 0 0.7 500	0 1

The hazard quotient for oral exposure is below the validated trigger value for higher tier testing file. Q_{HO} < 50). Table CP 10.3.1- 7: Hazard quotients for bees – contact exposure

Table CP 10.3.1-7: Hazard quotients for	or bees –	contact exp	osure
---	-----------	-------------	-------

	Crop	L1950 [µg/bee] 0	Application rate [g/ha]	Hazard quotient	Trigger
Thiacloprid OD 240	°∕∕ǾSR ∢	\$5.92 \$	× × 72 × ×		50
Thiacloprid	SR OSR	38.8 O ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		s_0°1.8	50
Thiacloprid-amide	S OSR	<i>≫</i> 1,00 <i>S</i>		×۶ 1.4	50
. U				0	

The hazard quotient for contact exposure is below the validated trigger value for higher tier testing (i.e. $Q_{HC} < 50$)

Toxicology summary and further considerations regarding the risk to bees

According to the funding of the risk assessment (above) applications of Thiacloprid OD 240 at 72 g a.s./ha to flowering crops of oil seed rape (OSR) are not expected to pose a risk to honey bees. Even if the application rate were doubled (174 g as ha to cover both sprays) the resulting HQ values would be stiff well below the Annex VI trigger of 50 indicating low risk to bees.

Ľ The active substance thacloped either as technical material or formulated product (Thiacloprid OD 240) is of moderate toxicity to bees. The formulated product was of slightly higher toxicity compared to the schnigar material and the plant metabolite (thiacloprid-amide) was virtually non-toxic. A new study on the acute contact toxicity of thiacloprid to a non-Apis species (Bombus terrestris) has been conducted and indicated that this species is at least an order of magnitude (i.e. 10x) less sensitive than the hones bee to thiacloprid. The resulting HQ calculation for an application rate of 72 or 14 2 a.s./ha for bumble bees gives value of 0.72 and 1.44 which are far lower than the current Annex VI trigger of \$0.

When fed chronically to adult honey bees via ad libitum feeding of 10000 µg a.s./kg sugar solution there were no signs of intoxication or mortality for bees exposed to either thiacloprid or thiaclopridamide.

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

A further chronic laboratory feeding study with thiacloprid was undertaken using higher concentrations in order to derive an LC₅₀ (lethal concentration) and the corresponding LDD₅₀ (median lethal dietary dose). A LDD₅₀ of 3.0 μ g a.s/bee/day was observed indicating that bees could consume 30 μ g a.s/bee over a 10 day feeding period which is approximately 2 – 5x higher than the acute oral ϕ LD₅₀ values for technical and formulated thiacloprid. As such, there is no indication of delayed of chronic effects in honey bees. Moreover, a comparison of the chronic laboratory toxicity study with thiacloprid-amide with the corresponding acute toxicity study gives no indication that thiaclopridamide is of any higher toxicity regarding potentially delayed or chronic effects and is less toxic compared to the parent compound.

in-vitro honey bee larvae study was conducted according to the provisions of the OECD/Draft \bigcirc Test Guideline on Honey Bee (*Apis mellifera*) Larval Toxicity Test, Single Exposure (Version of 21 February 2013) and the current draft version of the Post-WA T25 Approved Larval Honey Bee Test, o dated April 2013, which complies with the requirements of the later finalised OECD 237 test guideline. In the study an acute LD₅₀ of $1/78 \ \mu g$ a.s./larva was measured. Given that larvae are smaller in size than their adult counterparts at the time of dosing there is no evidence to Suggest that larvae are any more sensitivity than adult bees in addition the exposure levels for foraging adult bees is far higher than that of larvae fed by mass bees within the five.

Further toxicity testing on the effects of this loprid at the colony level and to further investigate effects on colonies and larvae (brod) has been conducted under semi-field (pannel) conditions. Two independent semi-field (gauze tunnel) studies have been conducted using Thiachprid OD 240 as the test material applied to the highly be attractive surfagate crop *Phacelia tanacerifolia* during bee flight. One test followed the provisions of the EPPO 170 guideline and the other those of OECD 75 guidance document with Specific investigation of the development of eggs. young and old larvae by employing digital photo imaging technology. The studies were conducted at applications rates of 73.19 and 72 g a.s./ha for the EPPO 170 and OECD 75 compliant studies respectively. Results showed for both studies that for foliar applications to a full-flowering crop, applied while honey bees were actively foraging on the crop po adverse effects on mortality, foraging activity, behaviour and brood development as well as on overall hive vitality were observed. Purthermore; detailed assessment of brood undertaken in the OECD 75 compliant studies and verse effects on brood development when exposed to the test terms.

A third and more extensive semi-field test was conducted which also followed EPPO 170 which included in assessment of overwintering success, bee health factors such as disease and virus status. The critical GAP of 2 × 72 g a.s./ha made during boom and honey bee activity. Exposure of honey bee colonies placed in the minets to 2 application at 72 g a.s./ha not experience any adverse impact on mortality, foraging rate, colony strength, brood or food stored compared to the control. No effects the viability of the colonies or of any bee health factors such as disease and virus status were observed. The exposed colonies were also maintained so that overwintering performance could be measured. No difference between overwintering success of control or Thiacloprid OD 240 exposed colonies was observed.

Two field surdies (compliant with the provision of EPPO 170) are also available which confirm the finding of the two semi-field studies.

The first one covers the critical GAP of 2 x 72 g a.s./ha made during bloom and honey bee activity. Exposure of honey bee colonies placed at the edge of fields where 2 application at 72 g a.s./ha were made did not result in any adverse effects other than a short-term effect on behaviour observed as

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

lower foraging rate at one treated field site. This did not have any impact on the mortality, overall foraging rate, colony strength, brood or food stored were noted compared to the control or on the viability of the colonies or on any bee health factors such as disease and virus status. The exposed colonies were also maintained so that overwintering performance could be measured. No difference between overwintering success of control or Thiacloprid OD 240 exposed colonies was observed? These finding support those of a semi-field test conducted in a similar way heasuring the same parameters.

The second study investigated a higher use rate and pattern of 3 x 96 g a.s/ha, with 2 of the applications made during bloom. Except for a short term effect on bee behaviout (i.e. a transient reduction in foraging and a small number of bees or application bees observed on the days of application no adverse effects were noted on mortality, overall foraging rate, colony strongth, brood or food stored were noted compared to the control.

Overall conclusions for bees

The calculated Hazard Quotients for both technical and formulated thiackoprid and well below the validated trigger value which would indicate the need for a refined risk assessment; no adverse effects on honey bee mortality are to be expected. This conclusion is confirmed by the results of a range of additional tests (adult chronic fording study, larval toxicity fest, tunnel tests (EPPO 170, OECD 75) as well as field studies).

Overall, it can be concluded that thiscloprid, when applied at the maximum application rate of 72 g a.s./ha even during the flowering period of potentially bee-attractive crop and weeds does not pose an unacceptable risk to hone bees and honey bee colonies. Additionally there is no evidence to suggest that non-Apris bees were at greater risk

CP 10.3.1.1 Active toxicity to bees oral toxicity to bees CP 10.3.1.1.1

2002; M-050157-01-1 **Report:** Assessment of side effects of Thracloprod OD 240 to the honey bee, Apis mellifera L. Title: Cin the taboratory 2002)218/00-BLEV Report No. M=05915701-1 @ Document No.: OECD Guideline No. 213 and No. 214 yes A 7 2 2 Guidelines: GLR/GEP:

Materials and Methods:

Test substance: Thaclopfed OD 240 (YRC 2894 240 OD); Article No.:00-05683696; Batch: 07690/0086(0082); Tox-No.: POX06069-00; purity: YRC 2894 (thiacloprid): 243.95 g/L (240 g/L nominal).

The oral and contact toxicity of Thiacloprid OD 240 to the honey bee (Apis mellifera L.) was determined in a dose-response test according to the OECD guideline No. 213 and No. 214 (1998). In the laboratory, the bees were exposed to the following doses of Thiacloprid OD 240 by feeding and topical application (in brackets: actual intake of Thiacloprid OD 240 in the oral toxicity test):

Oral toxicity test (actual intake)	Contact toxicity test
1.7 mg a.s./10 g honey	(2.16 µg a.s./bee)	6.25 μg a.s. per bee
3.7 mg a.s./10 g honey	(2.61 µg a.s./bee)	12.50 @g a.s. per bee
8.1 mg a.s./10 g honey	(3.35 µg a.s./bee)	25.00 µg a.s. per bee
17.7 mg a.s./10 g honey	(5.70 µg a.s./bee)	50.00 μg a.s. per the set
39.0 mg a.s./10 g honey	(7.41 µg a.s./bee)	A00.00 μg a.s. per bee
85.8 mg a.s./10 g honey	(11.84 μg a.s./bee)	

Because in previous tests the test substance precipitated after the stock solution was diluted with sugar solution, the final feeding solution was prepared by mixing the stock solution with pure honey. The intake of test substance solution containing Thiactoprid OD 240 was low and at the maximum concentration level of 85.8 mg a.s./10 g honey an actual intake of only 11.84 μ g as bee was observed. At this dose a mortality of 60.0% was observed after 48 hours. At the highest dose of 100.00 μ g a.s./bee which was tested in the control group of the oral toxicity test (ted with pure honey) a mortality of 4.0% occurred after 48 hours. The control group fed with 5% (wv) sugar solution showed no mortality after 48 hours. No mortality was observed in the control group of the contro

Findings and conclusions:

In both, oral and contact toxicity test, the bees showed symptoms of poisoning at all dose levels immediately after start of feeding or topical application, respectively.

Table CP 10.3.1.1.1 1: LDS values in the toxicity test of Phiacloprid OD/240,

Thiaclop d OD 240		LD ₅₀ /48h
	A A A A A A A A A A A A A A A A A A A 	
Oral toxicity test*	V	6.98
Contact toxicity test		5.92
*the mortality which occurred in the centr	bl group was not included in the calculation of the LD50 values.	

the mortality which occurren in the control group was not included in the calculation of the LD50 values

Table CP 10.3.1.1.1. 2: Los values in the oral and contact toxicity test of the toxic standard (dimethoate).

Peter thion Peter	LD ₅₀ /48h
	a.s./bee]
Oral test O O O.14	0.12
Contact test	0.17
Contact test	

Report:		03506-01-1
Title:	Acute toxicity of thiacloprid OD 240 to the conditions	honeybee Apis mellifera L under laboratory
Report No.:	03 10 48 043	
Document No.:	M-103506-01-1	
Guidelines:	OECD 213 (1998), OECD 214 (1998)	
GLP/GEP:	yes	
	Č V	
	×	

Materials and Methods:

Test item: Thiacloprid OD 240 (Thiacloprid (YRC 2894); Article No.: 00 05683696; Bevelopment no.: 30-00266399; Batch: 07690/0131(0082); TOX no.: 6311-00; Density: 1046 g/L. Analysed content: 240.58 g a.s./L.

The insecticide Thiacloprid OD 240 was tested under laboratory conditions on the honeybee A. mellifera after oral and contact exposure. Endpoints were mortality and behaviour of the bees compared to control up to 48 h after application. Mortality values were used to provide a regression line and calculate the median lethal dose value (LD $_{0}$) expressed in μ g of active substance or product per bee.

Application rates for contact and oral togicity test (values in brackets based on the actual consumed amount of sucrose solution) were as follows:

	texicity \bigcirc \bigcirc	
μg product/bee	jug a.s./bee	jug product/bee 🗸 jug a.s./bee
174 🖉		174 (1265) & 40 (29.1)
87 _	\$20 Q A	∑ 57.0) O 20 (13.1)
43.5	10 × 10	<u>√</u> 43.5 <i>6</i> 7.9) <i>√</i> 10 (6.4)
21.7 🖉 🔊	× 5. ~	21.9(15.0) $5(3.5)$
10. 9 0		2.5 (1.6)

Toxic standard Dimethoate EC 400 was applied at the following doses.

Contac	et taxicity N 0 4	V & S Oral to	oxicity
µg product/bee	gig a.s./bre	ug product/bee	μg a.s./bee
0.663	0.2 3 0 ~	£ .663	0.250
0.33	0 10 125 ~ ⁰	0.332	0.125
0,166	0.062	0.166	0.062
0.083		0.083	0.031
		×	

Findings:

No statistically significant effects of the test item Thiacloprid OD 240 on survival were observed at the doses of 10.9, 24.7 and 43.5 µg product per bee in the contact toxicity test (0, 3.3 and 6.7% mortality, respectively) during 48 hours. For the tested doses of 87.0 and 174.0 µg product per bee statistically significant effects of the test item on survival were observed (43.3 and 100% mortality, respectively) during 48 hours. For the tested doses 32.7μ g product per bee in the contact toxicity test. In the oral toxicity test statistically significant effects of and 125.0 (48 h) was 82.7μ g product per bee in the contact toxicity test. In the oral toxicity test statistically significant effects on survival were observed at consumed doses of 6.9, 95.0, 28.0, 57.0 and 126.5μ g product per bee in the oral toxicity test (16.7, 26.7, 46.7, 70.0 and 100% mortality, respectively) during 48 hours. Therefore, the calculated LD₅₀ (48 h) was 26.2 µg product per bee in the oral toxicity test.

Before bees died in the test item treatments, apathy and immobility were observed shortly after application until the 24 hour assessment.

The LD_{50} of the reference item Dimethoate EC 400 was 0.233 µg a.s. per bee in the contact toxicity test after 24 hours. The LD_{50} of the reference item Dimethoate EC 400 was 0.139 µg a.s. per bee in the oral toxicity test after 24 hours.

All validity criteria according to the guideline were accomplished: the mortality in the control was $0 \le 10\%$ (being 0% in the contact and oral toxicity tests after 48 hours), the LDS values of the reference item after 24 h were in the range of 0.10-0.30 µg a.s./bee (contact test) and between 0.10-0.35 µg a.s./bee (oral test).

Test item	Thia toprid OD 246	
Test object	Honeybee Apis mellifera L. ?	
Exposure	Contact / ora	
Treatment		× ×
	contact toxicity test 🖉 🖉 🔗 oral toxicity	døst 🔿 🔬
Test item	time μg product stope b μg ptoduct slope b bee bee bee	μg a.s./
Thiacloprid OD 240	24 h 850392 2 2 2 2 9 9 2 100.488 4395 - 2 2 100.488 6 6.634 2 4 3 5 4 3 5 4 3 5 6	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŏ <u></u>
Reference item	$\begin{array}{c c} 24 \text{ fr} \\ 95\% \text{ c} \text{ lower} \\ 36\% \text{ c} \text{ c} \\ 36\% \text{ c} \text{ c} \\ 36\% \text{ c} \text{ c} \\ 30212 \text{ c} \\ 30212 \text{ c} \\ 30212 \text{ c} \\ 30212 \text{ c} \\ 30\% \text$	0.139 0.116 0.166
Dimethoate EC 400	3 48 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3	0.135 0.113
~(pper 0 40 27 0.201 5	0.162
confidence limits		
. Q		

Table CP 10.3.1.1.1-3: Oral and contact toxicity LD50 values of bees treated with Thiacloperid OD

Observations:

The observed behaviour of the test item opposed bees was different to those in the control, with bees observed as inactive and letharge up to 24 hours after exposure, depending on the dose applied. In the reference treatment apathy, uncoordinated movements and immobility were observed before bees died.

Conclusion:

The A8-hour LD₅₀ value was 82.7 α g product/bec (corresponding to 18.98 µg a.s./bee) in the contact toxicity test. The 48-hour LD₅₀ value was 26 β µg product/bee (corresponding to 6.01 µg a.s./bee) in the oral toxicity test.

CP 10.3 J.1.2 Scute contact toxicity to bees

The agure contact to are summarised in Point 10.3.1.1.1, therefore only the results are summarised below.

Report:	h; ; 2002; M-059157-0)1-1	e °
Title:	Assessment of side effects of Thiacloprid OD 24	0 to the honey bee,	Apis mellifera
	in the laboratory		
Report No.:	20021218/01-BLEU	ð	
Document No .:	M-059157-01-1	- Sa	
Guidelines:	OECD Guideline No. 213 and No. 214	10	
GLP/GEP:	yes	A	
		хо °	

Table CP 10.3.1.1.2	- 1: LD ₅₀ values in	the toxicity test of Thiac	cloprid OD 200.	, Ø	
Thiacloprid	OD 240	LD50/24	A	D50/481	
			[µg a.š./bee		
Contact toxi		7.04		\$.92	K
the mortality which occ	urred in the control group	p was not included in the galcu	lation of the EP50 va	ubles of	× ×
		0. 4	8 8 8	0° 0' 1.	Ac
		A . 0 . 0		í _A O'	
Report:		g; 100 ; 2003, M of the cloperid OD 240 to	1-103506-047	~ ⁰ ′ 🔬 .	der laboratory
Title:	Acute toxicity of	of theacloperid OD 240 to	the honey bee Ap	is mellifora L ut	der laboratory
	conditions	, ⁶⁴ , ⁶⁴ , ⁶⁴ , ⁶⁴	9° 0°		i i i i i i i i i i i i i i i i i i i
Report No.:	03 10 48 043			õ S	, L
Document No ·	M-103506-01×			. Õ Õ	×

Document No.: OECD 21% (1998), OECD 214 (4998) **Guidelines: GLP/GEP:** ves

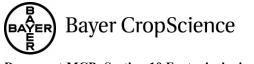
Table CP 10.3.1.1.2-2: contact toxicity LD50 values of bees treated with Thiacloprid

X/			
Thiacloprid OD 240		\swarrow \bigcirc \checkmark \checkmark \Box	8h
		الب @product bee]	
Contact toxicity test	\$5.392	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7

CP 10.3.1 Chronic toxicity to bees

A study with formulated product is not required. See Point CA 83.1.2 where studies on the chronic toxicity of technical thiacloprid and thiacloprid-amide are presented.

CP 10.3.1.3 Effects on honey bee development and other honey bee life stages


A study with formulated poduce not required See Bint CA 8.3.1.3 where a study on the toxicity of technical fracloprid to boney bee lar are is present

CP²**10.3.1.4** Sub-lethal effects

There is no particular study design fest gurdeline to assess "sub-lethal effects" in honey bees. However, in each laboratory study as well as in any higher-tier study, sub-lethal effects, if occurring, are described and peported.

Two publications are summarised at Point CP 8.3.1.4 which describe the well know initial and short terre repellence (foraging reduction) and influence on homing behaviour. In both cases these short term efforts, (when they occur) are not biologically significant in terms of pollination or for the colony as demonstrated under GLP and test guideline semi-field and field conditions (see; Thiacloprid OD

240	• ;	; 2002; M-054090-01-1,	2	; 2012; M-
442217-01-1,		; 2014; M-492158-01-1and	1	· ?

M-385049-01-1, and KCP 10.3.1.6/1 H.U.; 2010; M-373436-01-1

CP 10.3.1.5 Cage and tunnel tests

This section includes a number of tunnel studies. The studies include a highly detailed tunnel test which investigates the cumulative effect of two sequential applications of Thiacloprid OD 240 applied during full-blood to honey bee colonies under tunnel test conditions. Mortality, foraging, behaviour, colony strength, brood and food stores and colony health (disease and Varroa status) were monitored. Following exposure the colonies were followed through to the following year to assess over wratering success and colony health (disease and Varroa status) were monitored.

Report:	0; 2 ,002; № ,05409 0 -01-1, № №
Title:	Assessment of side affects of Thia doprid OD 240 on the honey bee (Apis, mellifera L.)
Report No.:	
Document No.:	
Guidelines:	
GLP/GEP:	

Material and methods

Test item: Thiacloperd OD 240 (PRC 2894 240 OD) Orticle to .: 00-05683696; Batch: 07690/0086(0082); Tox No.: TOX06069-00; Analysed purity: 24995 gas./L (240 g/L nominal). The effects of Thiackprid QD 240 were tested on the honey bo (Apj@mellifera L.) under semi-field conditions following the OEPP/EPPO guideline No. 190(3) (OEPP/EPPO, 2001): Guideline for the efficacy evaluation of plant protection products - Side effects on honey bees. This study included three treatment groups with three replicates each. The test substance was applied during full flowering of the oil-seed spring-rape (Brassica napus) at a rate equivalent to 0.3 L/ha (73.19 g a.s./ha) in 3000 water ha. A second group treated with tap water served as control. As toxic standard "Perfekthion" (dimethoate) was applied at a concentration of 650 g product/ha (251.97 g a s./ha) in 300 water ra. All applications were conducted during the morning while bees were actively foraging in the browning crop. The effect of the test substance was examined on small bee colonies containing approx. 4000 to 6000 becoin tunnel tents placed over the plots with flowering oil-seed spring-rape (Brassica napus). Mortality, behaviour, foraging activity, condition of the colonies and the development of the bee broad was assessed before and after treatment. The influence of the test subfance was evaluated by comparing the bees in the tents of the test substance treatments to the control bees freated with water and those treated with the toxic standard. The following pourts were assessed:

Mortality at the edge of the treated area and in the bee traps.

Foroging activity (number of foraging bees/m² flowering oil-seed spring-rape crop)
 Development of the bee brood

Findings:

Effect on honey bee mortality

No increase of the mortality was observed in the Thiacloprid OD 240 treatment group on day DAA_0. after application. A low mean number of 3.7 dead bees/replicate was found directly after the Ĩ application in the test substance treated tents. A significant increase of mortality was observed after application in the toxic standard with an average of 317.3 dead bees/replicate on the day of application compared to the control group (2.6 dead bees/replicate).

Almost all values of mortality per replicate and day which were calculated in the test substance treatment during the post-application period remained clearly below the values of the pre-application period and did not exceed 6 dead bees/replicate/day. In the toxic standard treatment the mortality was significantly higher during the post-application period compared to the control on almost all assessment days. 104

Effects on honey bee flight intensity

After the application the flight intensity in the lest substance treatment group decreased slightly and . . remained with a mean of 6.1 bees/m² below the values of the assessment directly before application (7.7 bees/m²) and below the values observed in the control group (140 bees/m²). Our the following four observation days (until DAA 4) the mean flight intensity in the test substance treatment group remained statistically significantly below the mean flight intensity observed in the control group and a repellent effect caused by the test substance on the first four days after application can be assumed. No remarkable differences could be observed regarding the flight intensity between the control and the Thiacloprid OD 240 treatment on the last three assessment days (DAA Sto 7). The mean flight intensity in the toxic standard treatment was statistically significantly ower compared to the control group during the entire post-application period

Effects on honey be trood development

Effects on honey be brood development and the bee brood development no differences attributable to the influence of the est substance were observed between the test substance groups and the control. Ľ

Effects on honey bee behaviour

Directly after application of Thraclopfed OD 240 and during the post-application assessments no behavioural differences were observed in the Thracloprid OD 240 treatment group compared to the

Õ

behavioural differences were observed in the Third lopzid OD 240 treatment group compared to control group and the bees continued with foraging on the treated oil-seed spring rape flowers.

Page 54 of 193

2014-09-29

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Test substand	ce		cloprid OD 240	r and	~ ~
Test object		A	pis mellifera 🔊		Ş,
Exposure		Spray treatment during		y in flowering oil	, ,
		see	d spring ₋ rape		d G
Trootmont are	un	Test substance	Control	Toxic standard	Ş
Treatment group		(Thiacloprid OD 240)	(water)	(Perfekthion) 🔬	D
Code		TSC	°O [™] C		4
Application ra	ate	0.3 L (73,19 g a.s.)		650 g	
[in 300 L water	/ha]	0.5 L (/a,19 g a.s.)			Ş
Average	pre:	6.6	× 8.8	8-3 ~	/
Mortality rate	post [0]:	& 3, \$\$ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.6	317.3	
[dead bees/ hive/day]	post [0-7]			× 4.84.3 Å	° °
	Q _{M(average)} :	A . 00.4 ~ A	v (0.5 (v)	0 ¹ 10.2	Y
Average	pre:	7.7×7 0	9.8°	<i>∞</i> 7.9 <i>§</i>	
Flight intensity	post [0]: 🖉	6. V 5	0 140	× 3.6 °	
[foraging bees/ m ² /day]	post [1-75	& Q.7 ~ V		Ø 0.9 a	

application divided by average mortality Q_{M(average)} =Average mortality per day before

Conclusion:

Thiacloprid OD 240 had no effect on the morality when applied to the bee-attractive flowering crop oil-seed spring-rape a an application rate of 0.3 1 tha in 300 L water / A slight repellent effect was observed at this test rate, indicated by a reduced flightontensily during the first four days after application. No impact of Thias oprid OD 240 on the brood development of honey bees was noticed.

Ø

(1) n

-	
, Q	
Report	s, 2012, M-44, 217-01-1
Title:	Determination of sideeffects of thiseloprid OD 240 on honey bee (Apis mellifera L.)
	Storogander Confined semi@eld conditions.
Report No.:	
Document No	\mathcal{A}^{442}
Guidelines: 🌱	OECD Guidance Document No. 75 (2007); not specified
GLP/GEP	yes y the second s
Ĩ,	
~	
Objective:	

The objective of the study was & determine the effects of Thiacloprid OD 240 on the honey bee, Apis mellifera under semi-field conditions in Phycelia tanacetifolia.

Material and methods»

Test item: Thiseloprid OD 240B G; Batch ID: EDE5100633; Material no.: 79674910; Specification no.: 10200002177401; Analysed content: 234.8 g a.s./L (22.6% w/w).

This study included three exposure groups with three replicates (tunnels) each: one control group (C), one test-item group (T) and one reference item group (R). In all exposure groups, the crop was sprayed 5 days after set-up of the hives in the tunnels at BBCH 64/65 during honey bee foraging activity on the crop under confined conditions. The target application rate of the test item Thiacloprid OD 240

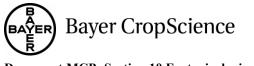
corresponded to 72 g a.s./ha, tap water was applied in the control group and Insegar 25 WG was applied at a target rate of 600 g product/ha in the reference item group (corresponding to 150 g fenoxycarb per ha). The spray volume was 200 L/ha for all groups. The colony size at set-up was in the range of 5188 – 8875 bees. The honey bees remained 12 days in the tunnels. The first colony assessment was performed before set-up of the colonies in the tunnel tents. Subsequently, six further colony assessments were conducted. The development of the bee brood in individual marked brood cells (BFD = Brood Area Fixing Day) was assessed in parallel with the colony assessments with the exception of the last one where only a colony assessment was fone. Overall, the colonies were assessed once before, twice during and four times after the end of the confined exposure phase at the monitoring side. Mortality assessments (in bee trop and on the linen sheets) started 4 days before the applications and continued on a daily basis for 7 days after the applications. Further mortality assessments were conducted at the monitoring site, after the end of the confinement period until the 28th day after application (in the deadbee traps only). Flight intensity assessments started 4 days before the applications and continued on a daily basis until the 7th day after the applications.

The influence of the test item was evaluated by comparing the results obtained in the test item treatment group to those of the control and the reference item group.

- Iowing endpoints were assessed:
 Total and mean number of dead bees on the linear sheets in tunnel tents and in the dead bee traps before as well as after the applications
- Flight intensity
- Behaviour of the bees in the crop and around the hive;
- Condition of the colonies and development of the bee
- Development of the bee brood assessed in maining brood cells.

Findings:

Biological findings:


Mortality of the second second

Treatment group	Control 2	Test Item	Reference item (R)
Spplication rate		x 72 g thiacloprid a.s./ha ∞ at BBCH 64/65	150 g fenoxycarb a.s./ha at BBCH 64/65
Mean mortality DAA-4 to ba [dead bees/day]	\$7.9 J	42.2	42.4
Mean mortality DAA0ba ([deadbees/day]	550	71.7	52.7
Mean mortality DAA0ar	~\$59.0	62.7	43.3
Mean mortality DAA0aa to D [dearbaces/day]	68.2	71.1	58.7
Mean montality De A0aa to 28 Dicad bees/day]	42.9	59.9	33.5
DAA Days after application			

Table CP 10.3.1.5 2: Mortality Thoney bees, semi-field test under confined exposure conditions

DAA Days after application

aa = after application

Flight intensity

Flight intensity of the test item treatment group T was statistically significantly (t-test, method pooled, one-sided, $\alpha = 0.05$) reduced in comparison to the control C on DAA0aa, 1, 6 and during DAA0a to DAA7 (mean). Although being statistically significantly different from control the values of 45.8, 10.5, 7.0 and 7.9 (mean) forager bees/m² in T are not biologically relevant, since foraging activity was overall on a still high level. Overall, although a slight repellent effect of the test item cannot be excluded, the slightly reduced flight intensity after test item application in T when compared to C, is well in line to the slightly reduced flight intensity in T when compared to C before the test fem treatment, and could as such also originate from the lower colony strength at set up in T when compared to C. In any case, the application of thiacterial did not result in an adverse effect on foraging activity.

Treatment group	Control	Test Dem Reforence dem (R) A (R) (R)
Application rate		2 g this clopric a.s./ha 150 g fenoxycarb as./ha at BBCH 64/65 at BBCH 64/65
Daily mean flight intensity		
DAA-4 to 0ba [bees/m ² /min]		
Daily mean flight intensity 🖉	× 215 0	\$ \$ 15.8Q \$ \$ \$ \$\$ \$\$ \$\$ \$\$ \$\$ \$
DAA0aa [bees/m ² /min]	× 21.5 ×	
Daily mean flight intensity		
DAA1 [bees/m ² /min]	\$ 11.20 (
Daily mean flight intensity		0 [°] 7.9 [°] 10.1
DAA0aa to 7 [bees m/min]		
DAA = Days Der application		
ba = befate application	\$ 5 ~ ^{\$}	
aa = after application		X S O S
	U %	

Table CP 10.3.1.5- 3: Flight intensity of honey bees, semi-field test under confined exposure conditions

Behaviour

Except for DAA0aa (a few bees were observed with infoxication symptoms (cramping, locomotion problems); moreover, faming bees at the hive entrance, motionless bees on flowers and in the trap, intensive flying over the crop coupled with an infrequent landing on the crop could be observed.) and DAA9 (some motionless bees were observed in the bee trap), honey bee behaviour in test item treatment T was comparable to the control treatment throughout the entire assessment period. In any case, the application of this logicity of not pesult in adverse behavioural effects.

Development of honey bee brood in individual cells (digital image analysis)

The control (C) and test item treatment (T) colonies showed a successful development, with rising broad indices throughout the entire assessment period, except for the assessment on BFD16, where stable values (due to the long development time of the sealed broad) compared to the previous assessment on BFD10 were observed in both, C and T, respectively. While no treatment-related adverse effects on honey be broad development were caused by the test item, the exposure to the reference item caused negative effects on the broad development typical for the used substance (fenoxýcarb). Detailed observations are provided in the table below.

	control	(C), test item tr	eatment (T) and	d reference item	(R) group		Ì
Donligato	Brood / Compensation indices at x days after brood area fixing day (BFD)				<i>A</i>	Termination rate (BFD+22)	N.
Replicate	0	+4	+10	+16	422)
Ca	1.00 / 1.00	1.73 / 1.85	3.14 / 3.56	🚕 3.11 / 3.59	3.89 / 4.32	× 22 13	
Cb	1.00 / 1.00	2.00 / 2.01	3.71 / 3.73 🦔	3.71 / 3.73	ې 4.64 / 4.70 گ	7.14	. (
Cc	1.00 / 1.00	1.88 / 1.94	3.48 / 3.67	3.47 / 3.67	4.33 / 4.4	\$13.32	ĉ
Mean Ca – Cc	1.00 / 1.00	1.87 / 1.93	3.44 / 3.65	3.43 / 2006	A.29 / 4.50	14 20	,
STD	0.00 / 0.00	0.14 / 0.08	0.2900.09	0.30 ₺0.07 @	° 0.38 [°] ∕0.19, [©]	Ø7.53 Û	
Та	1.00 / 1.00	1.69 / 1.79	3@30 / 3.42 °	3.50/3.42	4.93 / 4.O	× 17.50	
Tb	1.00 / 1.00	1.61 / 1.64	DI4 / 3.85	\$14/3.95	3 .92 / 4 07	21,58	
Tc	1.00 / 1.00	2.03 / 2.06	3.70 3.73	3.70.03.73	⁰ 4.63 / 4.76 C	× 6:47 4	
Mean Ta – Tc	1.00 / 1.00	1.78 / 1.83	3.387 3.50	3,08 / 3.50	4.93 / 4.30	15.52	
STD	0.00 / 0.00	0.22 / 0.2	29/29/0 ² 20	Ø.29 / Ø.20	0.36	7.49	
Ra	1.00 / 1.00	0.74 0.00	₩1.34° A 2.44 ×	1.32 2.71	1.65 3.12	66.95	
Rb	1.00 / 1.00	0.80Q1.28	0.62 / 1.42	0.02/1.00	0.97/1.87	م 84.55	
Rc	1.00 / 1.00	1,004 / 1.06	1/047/1.75	0,74 / 1,07	@.93 /2Q2	81.40	
Mean Ra – Rc	1.00 / 1.00	20.86 1.11	\$1.14 (1.87	0.89 1.62	Ů,	77.63	
STD	0.00 / 0.00 🧳		0.46/0.52	0.37 / 0.95	QA7/0x67	9.39	

Table CP 10.3.1.5-4: Summary of the brood indices, compensation indices and termination rates in the

BFD: Brood area Fixing Day, STD: Standard Deviation

Strength of the coloraes

Strength of the colores The development of colores strength was comparable between C and T throughout the study period and showed the fluctuations which are typical of this endpoint. As such, no test-item related adverse effects on colony strength were observed.

Development of brood wea

Ŝ Except for the colony Ta (no eggs on the fifth colony assessment and no eggs and larvae on the sixth and seventh colony assessment) the fluctuations of all brood stages were within the range of natural variation and typical for this kind of soudy

Development of the food for age frea

The observed de- and increase in food stores in both treatment and control, during confinement and thereafter can be considered as typical for this type of study.

Conclusion:

Overall, the application senario did not cause treatment-related adverse effects on mortality, on flight intensity, on honey be behaviour, on brood- and food development as well as on colony vitality under foreed exposure conditions.

A slight repellent effect of the test item might be indicated by reduced flight intensity on the day of the test item application as well as on some further days during the confined exposure period.

Report:	
	; 2014; M-495895-01-1
Title:	Semi-field tunnel study in Phacelia tanacetifolia, evaluating the effects of repeated
	foliar applications of thiacloprid on honey bees Apis mellifera L (Hymenoptera)
	Apidae) under confined conditions, followed by a post-exposure field observation
	period 0°
Report No.:	E 319 4375-2
Document No.:	M-495895-01-1
Guidelines:	M-495895-01-1 OEPP/EPPO Guideline No. 170 (4), 2010 (modified) No major deviations
GLP/GEP:	yes

Objective:

This study was designed to evaluate the acute, short-term and long-term effects of repeated foliar applications of Thiacloprid OD 240 during full-bloom of the highly bee attractive surrogate crop *Phacelia tanacetifolia*, on honey bees *Apis mellifera* L. (Hymenoptera: Apidas) under semisfield conditions.

Material and methods:

Test item: Thiacloprid (tech.); Specification No.: 102050021974 - 04; Material No.: 79674910; TOX No.: 09597-00; Batch-code: ECE7100937

Small honey bee colonies were exposed to two subsequent foliar applications during actively foraging on the full-flowering crop under confined exposure conditions in gauze tunnels. During the confinement period, lasting in total 16 days, mortality, foraging activity, behaviour, colony-, broodand food development were assessed regularly. Thereafter, the honey bee colonies were released from confinement and allowed to forage freely under ambient field conditions; during this period, the colonies were maintained as typical for Good Apicultural Practice and the development of the colonies and their overall health status was assessed in regular intervals intil overwintering. The study lasted until the overwintering performance had been assessed in the following spring. The first part of the study was conducted as a semi-field tunnel experiment, set-up in a full-factorial randomised block design, with five blocks (one block \neq 1 tunnel harbouring one honey bee colony) and three exposure groups. The opposite groups consisted of control (C) - treated with tap water, reference item (R) - treated with 400 g dimethoate/ha and test item treatment (T) - treated with 2×72 g thiach prid/ha. Apparently healthy, queen-right honey bee colonies, equalised for adult worker bees, brood- and food stores as to asonably possible were used for the purpose of this study.

In order to expose the know be colorides in the test item treatment group to two subsequent foliar test item applications during full bloom of a highly be attractive flowering crop under forced (confined) exposure conditions, Phaetia-seeds were sown during springtime in a staggered manner, i.e. in strips located directly adjacent to one another, with a time period of 10 days in-between the respective seed sowing.

The tunnels that were placed over theses trips were separated in the middle by a gauze barrier; honey bee colonies were placed first in the part that was flowering earlier and where the first application was conducted (during full-bloom), thereafter, once the Phacelia was at full-bloom on the second, later flowering part, the plonies were moved and the second application was conducted (during full-bloom) on this later flowering part. Colonies exposed to the reference item dimethoate were not moved, but replaced by new colonies. After the confined exposure period, the colonies in the control and in the test item treatment group were further regularly inspected and assessed under field conditions until the end of the season and for a last time after overwintering during springtime in the

following year. Colonies in the reference item group were discarded at the latest at the end of the confined exposure period.

The following assessments and observations were made during the study: Honey bee mortality – during the confinement period was assessed by means of dead bee traps, and on a piece of polyethylene-mesh (50 x 50 cm) laid out in front of each hive. Furthermore, dead worker bees and drones (as well as larvae and pupae, if any) were collected and counted on water-perineable polyethylene-mesh-sheets (width approximately 30 - 50 cm), which were installed along the walls of every gauze tunnel.

Flight intensity/flower visits – throughout the confinement period was assessed twice a day during one-minute lasting observation periods in an arbitrarily selected area of M m² at two different locations per tunnel. Additionally, the number of honey bees present on the gauze turnel roop and walls were counted in order to detect possible repellent/disorientation effects M and M

Colony condition and the development of colony strength and bee brood was checked repeatedly of throughout the entire duration of the study.

At each assessment, the comb area comaining adult honey bees and cells with neetar (beney), pollen (bee bread), eggs, larvae and capped cells was assessed. During each assessment, the colonies were inspected for bee diseases according to standard beek coping practice

Varroa infestation - each colon Qwas monitored throughout the study by the repeated installation of a board under the mesh-floor of each hive.

To investigate the health status of each colony samples of adult bees were collected for assessments of potential infections (e.g. Nosepia spp); bee virus analysis and the analysis for European foulbrood (EFB). For Americal foulbrood (AFB), several tablespoons of nectar/fresh honey were scratched from each colony. Samples were collected before confinement, after confinement, before overwintering and after overwintering.

Results: 🦿

Honey be mortality in front of the hive and at the annual walls arring confinement

For the colonies exposed to the test item as welk as the control, mortality was low throughout the entire confinement period. The colonies treated with the reference tem (dimethoate) showed a biologically and statistically significant increase of worker bees and domonstrated that the honey bee colonies and that test system was adequate to detect effects on honey bee survival. The treatment with the test item did not result in any detectable effects on mortality. Statistical analysis revealed no significant differences between the control and the test item group for any of the assessed mortality parameters. Overall, it can be concluded that sequential foliar spray applications of 2×72 g thiacloprid a.s./ha did not cause any adverse effects on worker bee, wone or larval/pupal mortality. Findings from the assessments of dead worker bees found in from to the hives are presented in the following figure.

... orker bees found in

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

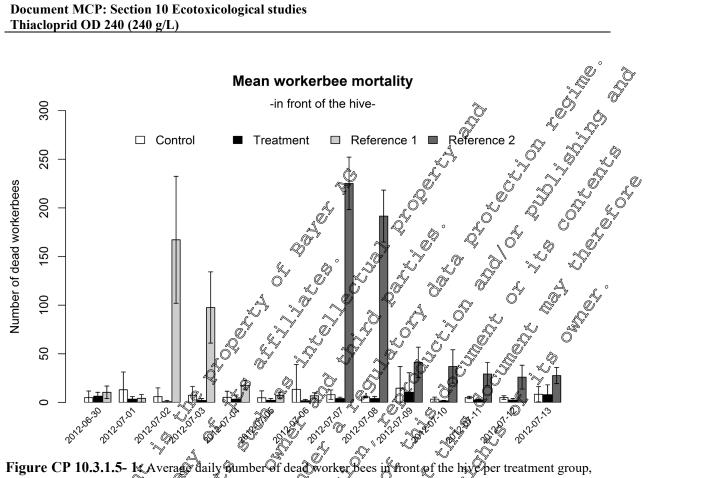
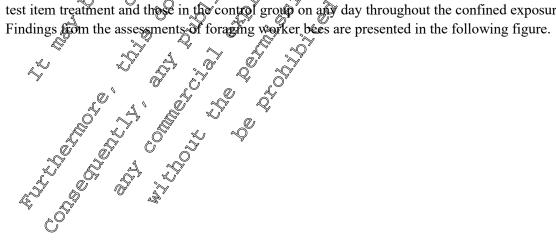
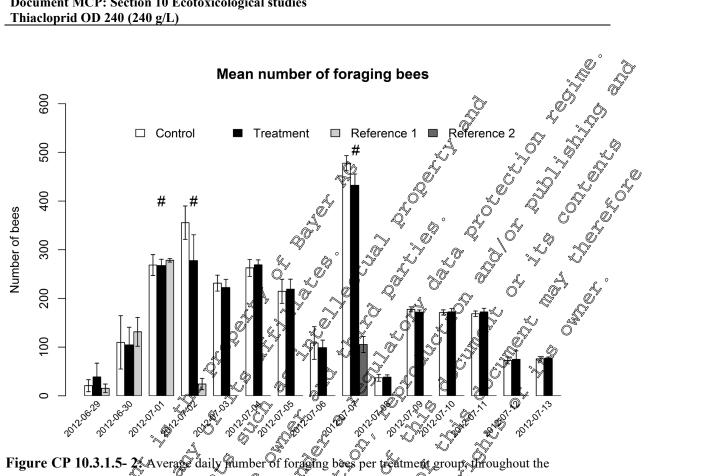



Figure CP 10.3.1.5- 1 Average daily aumber of deadworker Bees in front of the his per treatment group, (± Applications were hade on 2012 07-02 and 2012-07-07. throughout the confinement period


Foraging activit

Foraging activity Prior to the first application, Poraging activity for all treatment proups was very homogenous and no statistically@ignificant difference@wereidetected between the groups Application of the test item had a negative effect on foreging. Colonies exposed to the test them showed a tendency for slightly lower foraging activities on the day of the application but no statistically significant difference in comparison to the control could be detected. In parallel to the assessments of foraging activity, the number of bees sitting at the tunnel walls was also recorded in order to detect any repellent or disorientating effect caused by the lest iter no statistically significant aifferences were found between the colonies in the test item treatment and these in the control group on any day throughout the confined exposure period.

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

confinement period (±@D). Applications were made of 2012 07-02 and 2012 07-07. Averages presented here ar based on the sum of foraging bees found over the whole day, which may lead to an overestimation of the average number of foragers loccastons with more than one assessment per day are marked by # in the graph).

Colony strength

Ò

4 The development of the colonies throughout the entire experiment, in terms of the number of adult worker bees, was very homogeneous for the test item and control group. No adverse effects of the two sequential thiacloprid applications were observed. After the release of the control- and the test item colonies from their respective tunnels, the numbers of worker bees increased and colonies exposed to the test item showed a tendency of slightly higher numbers of worker bees. The results show that after the release from the tunnels, colony development in both, control and test item treatment continued as normal. Although colonies in the test item group bad a tendency to have slightly more worker bees there were no statistically significant differences between test item treatment and control. After overwintering, one colony each in the test item treatment and control was lost/non-vital. This observation is not treatment chated. Findings from the colony strength assessments are presented in the following figures the following figures the following figures the following figures the following figure is the following \sim

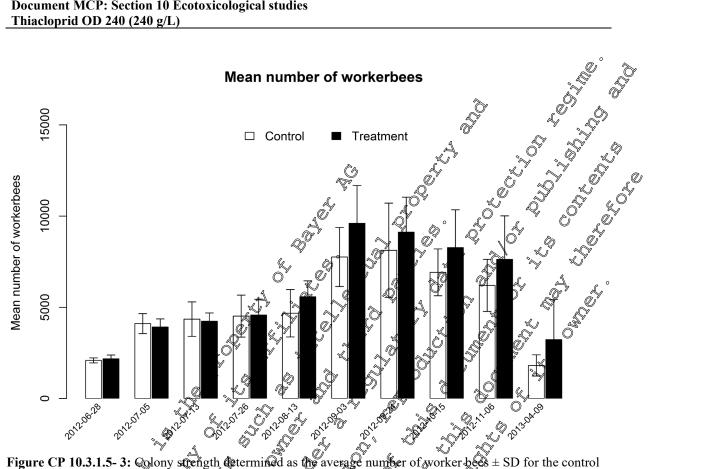
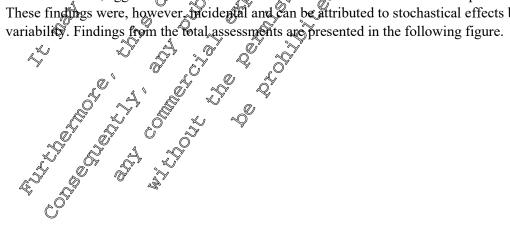



Figure CP 10.3.1.5- 3: Colony strength determined as the average number of worker bees ± SD for the control and treatment group evoluted during each colony assessment throughout the during each colony assessment throughout the during each study.

Colony brood status/brood development

Brood development was verophomogenous for the colonies in the control as well as in the test item treatment group. The data reflected very well the typical seasonality of brood development in honey bee colonies. No adverse effects of the sequential test item applications were recorded in terms of the average number of total brood cells (eggs tarvae pupae) present in the colonies. The number of total brood cells was generally slightly higher in the test iten treatment group compared to the control group. The same and enderey becomes visible when individual brood stages, i.e. eggs, larvae and pupae were assessed exparately. For some ustances, statelicall significantly higher average numbers of total brood cells, eggs or larvae were found in test itencireated colonies in comparison to control. These findings were, however, picidental and can be attributed to stochastical effects based on natural

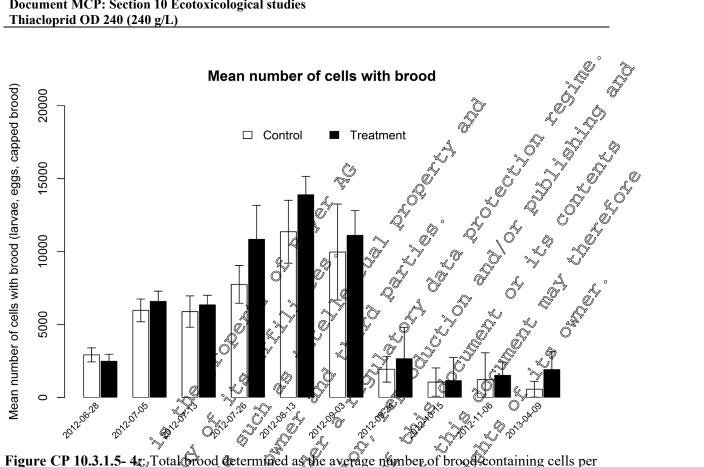
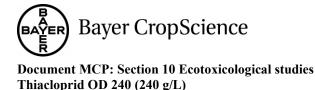


Figure CP 10.3.1.5- 4z: Total prood determined as the average number of brood containing cells per exposure group \pm SD evaluated during each colony assessment throughout the course of the study.

O Food stores (nectur, honey and pollen)


Storage of netrar/honey was an affected by the test-item deatment. The development of nettar/honey stores for the colonies in the control and in the lest item group was influenced by the environmental conditions and the change of sensors. The colonies were fed with supplemental syrup according to Good Apicultural Practice during late summer and autumn in proparation for overwintering. While the storage of pollen showed a certain heterogeneity between the individual colonies, colonies in test item group showed a tendence to slightly exceed the average number of cells filled with pollen as compared to the control @lonie@statistically signifi@ntly differention one instance).

Honey beg disease and virus analysis and Varroa 🔌

When assessing and comparing the colonies in the control and in the test item treatment group in terms of the presence (or absence) of diseases and viruses, the colonies showed typical infestation levels and no distinct differences at any point in time. There were no statistically significant differences in the number of mites dropped perday between the control and test item group, indicating that the exposure to the test item did not lead to a higher susceptibility to Varroa infestation.

Behaviour of the bees

There was no widence that the test item treatments resulted in adverse effects on behaviour. Neither symptoms of poisoning (s.g. twitching or cramping), nor aggressive behaviour, change in the cleaning behaviour of the bees were observed after the respective application of the test item and thereafter.

Conclusion:

In a full-factorial randomised block design, honey bee colonies were exposed in the test item treatment group to two sequential foliar applications, corresponding to 72 g thiacloprid/harespectively, and applied under confined conditions - due to the special set-up of the study - two fimes during fall bloom of the highly bee-attractive surrogate crop Phacelia tanacetifolia. After the confined semisfield exposure period, the colonies in the control and in the test item treatment were released from confinement to be repeatedly monitored under field conditions for the remainder of the season until overwintering, and were assessed for a final time after overwintering of the next spring. The exposure of honey bee colonies to two repeated acloprid applications during full bloom and not result in adverse acute, short-term and long-term effects on mortality, colony strength and -development, brood development, food storage, honey bee belowiour; overall hive stality and colony as on overwintering performance. health, as well as on overwintering performance.

CP 10.3.1.6

Report:	\$; 2000 M-03 \$44-01-2 \$
Title:	Effect of the application of Calypso 480 SC and BSN 2060 240 SC on pollinating bumblebees (Bombus) errest (B) on greenhouse tomages
	bumblebees (Bombus) errest (2) on greenhouse tomatoes
Report No.:	$\mathbf{P}\mathbf{F}\mathbf{k}\mathbf{k}^{T}$ $\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}$
Document No .:	M-036544-01-2 No stated
Guidelines:	Not stated a g a g a g
GLP/GEP:	
à	
0	
ð	
Objective: »	

The objective was to determine whether the application of Calypsy 480 SC as foliar spray of tomato crops grown in green houses has any influence of the activity of pollinating bumblebees (Bombus terrestris) and/or or the life and development of the colony

Material and methods

Test item: Calypso 480 S

Tomato plants grown in greenhouses in Span at different locations were used as crop. Four blocks consisting of control and treatment were stablished. Bumblebee hives were acquired from a commercial supplier and selected with a number of worker bees according to the plot size and a homogeneous hive stage. The hives were placed into the crop at flowering. Calypso 480 SC was sprayed twige with a spraying interval of 0 days, starting 5 days after the introduction of the bumblebee colonies. The spray solution consisted of 0.03% of the product and a volume of 800 L per ha was applied in all plots the hives were closed on late afternoon of the day preceding the insecticide application and opened the morning following application. During the trial, crop management was carried out with pesticides compatible with bumblebees.

Pollinating efficiency was checked weekly on a total of 40 plants from the day before application until 4 weeks after application, accounting 5 evaluations. Evaluations of pollination were made based upon the averaged percentage of fruits, aborted flowers, closed or non-marked flowers, and marked flowers from all flowers as well as the averaged percentage of the open marked flowers over the opened

flowers. Flight frequencies as assessed from the number of workers flying out and coming back to the hives with or without pollen were counted for 30 minutes on a weekly basis. Laboratory assessments on the final hive status were performed at study end, evaluating queen survival, number of larvae, new queens, drones, number of workers, larvae and pupae (alive and dead). Pollinating activity and parameters determined for hive status evaluation (e.g. mortality of worker bees, larvae and pupae, the number of laid eggs and number of cells with food stores, weight of boney storage) were subjected to statistical analysis for variance (\$\%5% confidence level)

Findings:

Three out of four plots were included in the final statistical evaluation. Format and ants in the third pl were not equally developed, presenting only a small number of flowers and thus, preventing the bumblebees from getting established under these crop conditions. The general results of this plot were assessed and reported to equal those of the three remaining blocks. Therefore, exclusion from statistical analysis did not impact the validity of the conclusions made

Biological findings:

Biological findings: Pollinating activity No statistically significant differences were found for pollinating activity. Bumblesee activity was high during the whole period maintaining a high percentage of polynated flowers (80% at study end). Pollination success as determined by pollinated flowers was similar in all blocks and during the overall course of the trial Also, the extent of aborted flowers, marked flowers from all flowers or open flowers only, and unmarked flowers/closed towers IId not how differences in the treatments when compared to the untreated control, Furthermore, fight intensity was not adversely affected by the test item.

Colony assessment

As can be expected for these uses under confinement, fives in general showed a significant larval mortality ranging from 24% - 5%, the latter value reported for an intreated plot. Worker and pupal mortality was low. Notreatment-related effect wasseen in any of the parameters examined. The queen was alive in all hives

Conclusion:

No treatment-related effection the pollingtion activity of bumblebees could be observed in the trial. Furthermore, there were no statistically significant differences between treatment and control for the

Furthermore, there were no statistically significant differences between treatment and co parameters recorded in the final colony assessment. The queen was alive in all colonies.

Report:	t; 2014; M-492158-01-1
Title:	Assessment of side effects on the honeybee (Apis mellifera L.), exposed to Phacelia tanacetifolia, sprayed sequentially with thiacloprid OD 240B G are
	Phacelia tanacetitolia, sprayed sequentially with thiacloprid OD 240B G ance 7
	before and two times during flowering in a long-term field study in Alsace,
	France 2012 and 2013
Report No.:	S12-00040
Document No.:	M-492158-01-1
Guidelines:	OEPP/EPPO Guideline No. 170 (12010); none specified
GLP/GEP:	yes

Objective:

The objective of the study was to determine the effects of sequential spray applications of Thiscloprid OD 240 on the honey bee, *Apis mellifera* under field conditions.

Material and methods:

Test item: Thiacloprid OD 240B & Batch ID: ECE7101227; Material No.: 79674910; Specification no.: 102000021774-01; Analysed content: 239 2 g a. E.

This study included two treatment groups: The test item group (1) and the untreated control (C). Each group consisted of six commercial honey bee colonies placed at two test fields (distance 4 km) near Saint Pierre and Stotzheim, both located in Alsace, France. The crop used for this field study was *Phacelia tanacetifolia*. Three sequential foliar spray applications (once at imminent pre-bloom and two times during full-flowering) of the test item target application rate: 96 g a.s./ha) were conducted. All applications were carded out with a spray volume of 30(4 /ha (farget)).

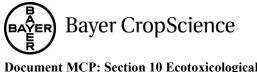
Seven days after the 1 boliar spray application and eight days before the 2nd foliar spray application, the colonies were placed at the field sites in the early morning at beginning of flowering (crop stage mainly in the range of BBCH 60-63 in Å, and mainly in the range of BBCH 61-63 in C), one day after the 1st colony assessment. The honey bee colonies in the test item treatment group T were exposed for a time period of in total 25 days to the treated crop. At the end of the flowering period at BBCH 69, the honey bee colonies were relocated to the monitoring site without agricultural crops attractive to bees, where the colony bealth, and strength was assessed (via colony assessment).

Samples of be hive products from the colonies and of *Phacelia tanacetifolia* flowers from the test fields were collected on scoreral dates for residue analysis of thiacloprid.

The conditions of the colonies fincluding bec disease analysis) were assessed once before and regularly after the applications until start of overwintering and once after overwintering of the colonies. In order to assess colony health samples for bee disease and bee virus analysis were collected on four occasions during the study.

The influence of Thiacloprid@D 240B G was evaluated by comparing the data of the assessments of the test item group to the control, and upfer consideration of the results of:

Total and prean pumbers of deat bees on the linen sheets and in the dead bee traps


Flight intensity mean number of forager bees / m²)

Behaviour of the bees in the crop and around the hive

Condition of the colonies (number of bees (colony strength), total values of the different brood stages per colony and assessment date)

Bee disease and bee virus analysis

Overwintering performance

Findings:

Biological findings:

Mortality:

The total daily mean mortalities during the entire exposure phase from set-up with field sites until relocation to the monitoring site (at BBCH 69) were calculated to be 17.0 dead bees/colony/day in the control and 15.8 dead bees/colony/day in T, respectively. These values can be considered as typical for colonies of the employed size and are well within the natural range of typical daily mortality

Table CP 10.3.1.6-1: Mortality

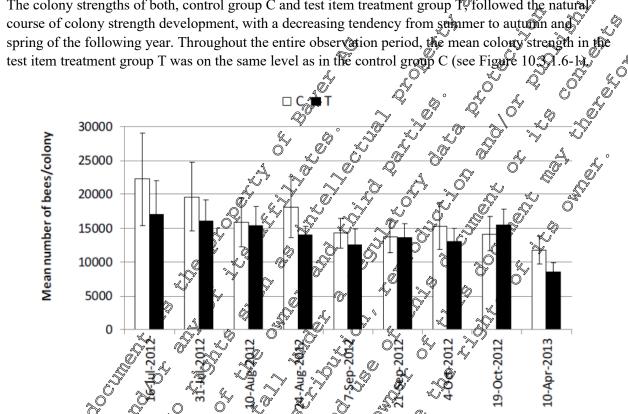
A gaogement timing	Daily mean mortality (lead bees/colony) ± STD
Assessment timing	Control (C)
Pre-application 2 (8DBA2 – 0DBA2)	$2 \neq 37.6^{\circ}$
Post-application 2 (0DAA2 – 0DBA3)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Post-application 3 (0DAA3 – 9DAA3)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Post-application total (8DBA2 – 9DAA3)	Q Q17.0 ± 23.8 Q Q D15.8 ± 11.0 Q
STD = Standard deviation	

Flight intensity:

The flight intensity of the honey bees in the crop was determined over a period of 25 days (8DBA2 (= 7DAA1) to 9DAA3). (DAA = Days after application, DBA = Days before application) During the first (8DBA2 (= 7DAAf) to 0DBA2) and the second (0DAA2 to 6DBA3) phase of flight intensity assessments, the mean flight intensity in control was slightly higher than in the test item group. However the lawer mean flight intensity values in F can still be considered to be within the range of natural variability. During the third phase (0DAA3 to 9DAA3), no notable differences were observed between the two treatment groups.

Assessment timing	Daily mean flight intensity (bees/m) ± STD			
Assessment tilling	Test Item (T)			
Pre-application 2 (8DBA2 $-$ 0DBA22) (30.5 ± 85.5)	5.3 ± 4.0			
Post-application 2 17.6 ± 9.9	8.9 ± 3.9			
Post-application 3 $(0DAA3 - 9DAA3)$ $(0DAA3 - 9DAA3)$ $(0DAA3 - 9DAA3)$	6.4 ± 5.2			
Post-application total $(8DB_{A}2 - 9DAA3)$ (11.8 ± 9.1)	6.8 ± 4.9			

Table CP 10.3.1.6- 2: Fight intensity

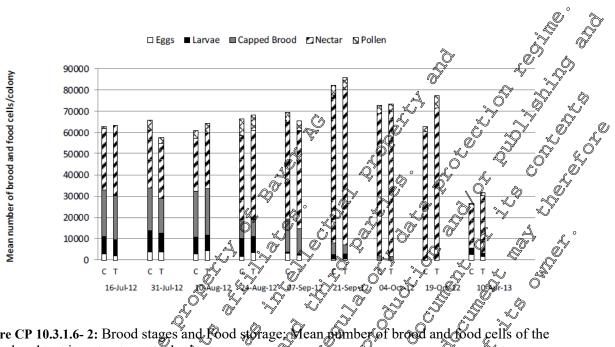

Behaviour

Around the hives, behavioural differences (cramping, locomotion problems, trembling, intensive cleaning, motionless bees) of the bees in the test item treatment group compared to the bees in the control group were observed in a small fraction of honey bees on the days of the 2nd (0DAA2) and 3rd foliar spray application (0DAA3). During the assessment period following the 3rd foliar spray application, a small number of cramping bees (maximum: 4 bees) were observed daily from 1DAA3 to 6DAA3. On 2DAA3, one trembling bee was noticed. However, cramping and motionless bees were also observed during the same time period in the control group at the same level.

On all other days during the exposure period, no relevant differences in behaviour were observed between the test item treatment group and the control.

Strength of the colonies The colony strengths of both, control group C and test item treatment group Ty followed the natural course of colony strength development, with a decrease in the statement of the statem

 $r = \frac{1}{2}$ strength: Mean number of be Figure CP 10.3.1.6- 19 treatment colonies.


Brood Stages and overwintering success Å,

Honey bee brood development and colony conditions in the dest item treatment T were comparable to control during the entire assessment period. No test item plated adverse effects on brood development

Ś

control during the entire assessment period. No test iter were observed (see Figure OP 10.3 1.6-2)

Food storage

In the colonies of the control group Cand the test is the treatment group T, respectively, the natural and typical changes and floctuations in the relative anount of nectar and polyen storage cells occurred during the observation period. Allooolonies of the study show approximately equal numbers of pollen and nectar storage cells in C and T, respectively, throughout the entire observation period (see Figure 10.3.1 (2).

Bee diseases / Viruses 🔬

No differences in the bee health status could be observed between the control and the test item treatment colonies in terms of infection with the pathogons Nosema sp., Malpighamoeba mellificae, Varroa destructor and Paeniba Alus lanvae.

Furthermore, the following bed viruses in ber samples collected at different time points of the year were determined: DWV (deformed wing virus), SBV (sacbrood virus), ABPV (acute bee paralysis virus), CBEV (chronic bee paralysis virus), KEV (Kashmir bee virus), IAPV (Israeli acute paralysis virus), and BQCV (black queen cell virus).

In this study the viruse's ABPV, CPPV, KPV and IAPV were not detected in any of the samples taken at any time point. DWV and SBV were detected at the time point 'end of exposure' in 2012 in the sample of one colony of the control group. A higher infestation BQCV level in samples taken from colonies of the test item group was only a temporary phenomenon and of no notable consequences for the affected colonies.

Conclusion:

Overall, it can be concluded that exposure of honey bee colonies to *Phacelia tanacetifolia*, sequentially sprayed with Thiacloprid OD 240B G at a target rate of 96 g a.s./ha (once at imminent pre-bloom and two times during full-flowering, respectively), did neither cause acute, short-term nor long-term adverse effects on mortality, flight intensity, colony strength, colony health and vitality, brood and food development and overwintering performance in the exposed colonies.

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Behavioural observations indicated a possible short-term correlation between the application of the test item during bee flight activity and the occurrence of cramping and motionless honey bees as well as honey bees with locomotion problems. However, these symptoms were transient and only observed in a small number of honey bees.

Report:

Title:

Report No.: Document No.: Guidelines: GLP/GEP: 4; 2014; M-492155-01-b Assessment of side effects on the heneybee (Apis pollifera L.) exposed to vinter oilseed rape after two applications of thiacloprid OD 240B G during flowering in southern Germany 2012 S12-00042 M-492155-01-1 OEPP/EPPO Guideline No. 170(4) (2010), SANCO/3029/99 rev. 4; not specified yes

Objective:

The objective of the study was to determine the effects of two sequencial spray applications of the comparison of the study on the honey bee, Apis methifera wider field complitions

Material and methods:

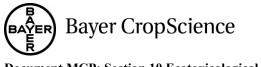
Test item: Thiacloprid OD 240B G; Batch ID: CE7100937; TOX-ro.: TOX09597 b0; Material no.: 79674910; Specification no.: 102000021774 01; Analysed Content: 242.2 g a.s. 0.

This study included two treatment groups. The test item group (T) and the unifeated control (C). Each group consisted of two fields; four confinencial hones bee colonies were placed at each field. The crop used for this field study was winter oilseed rape. The study was conducted near Tübingen, Germany. Two applications of the test item (target application rate 2 x 72 g a.s. tra) were conducted. The application were performed during flowering and after set-up of the honey bee colonies at the test fields with 7 days between the 1st and 2nd application. The applications were carried out during honey bee flight. Mortality flight intensity and behaviour of the bees were assessed 3 days before the 1st application until 12 days after the 2nd application. The conditions of the colonies were assessed seven days before the 1st application for day before the 2nd application and regularly after the applications. The influence of the test item was evaluated by comparing the results in the test item treatment group to the control group, and inder consideration of the results of:

Total and mean number of dear hone bees on the Inten sheets and in the dead bee traps,

Flight intensity (mean number of forager bes/m200 to 15 seconds),

Behaviour of the bees in the crop and around the hives,


Condition of the colonies (number of bees (colony strength), mean values of the different brood stages per colony and assessment date)

Findings;

Biological findings:

Mortolity:

The mean daily mortality per colony during the entire post application phase (0DAA1 to 12DAA2) was on the same level in the control groups compared to the test item groups (mean value: 11.6 (C1), 11.9 (C2), 10.8 (T1), 10.9 (T2) dead bees/colony/day). No notable differences between the control and the test item group were observed. Only one dead bee (in T1 on 5DAA2) was found throughout the

entire observation period on the three linen sheets within the crop area in the test item group and the control group, respectively. No test item-related adverse effects on mortality were observed. Results for the different phases (pre- and post-application) are presented in the table below.

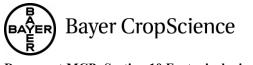
Table CP 10.3.1.6-3: Effects on honey bee mortality during the exposure phase of the study.

Treatment group		C1	s. C2	₩ [™] T1	_`∾ T2°~	
	Pre-application 1 (3DBA1-0DBA1)	8.9±5.7	7 18.8 ± 27.2	8.9 ± 7.1	11.999.1	
Daily mean mortality	Post-application 1 (0DAA1-0DBA2)	8.4 ± 9.4	6.6±57	7.4±6.4	7.8 ± 95	
(dead bees/colony) ± STD	Post-application 2 (0DAA2-12DAA2)	13.5 10.8	15.1 £ 15.0	12.8 ± 12.4	0 12.8 € 10.4 Ç	Ø ^v
	Post-application total (0DAA1-12DAA2)	Ŷ1.6 ± €0.4	0.9±03.0		0.9 ± 10.3	к,°

DBA: days before application; DAA: days after application; STD * standard deviation

Flight intensity

The flight intensity of the honey bees in the crop was determined over a period of 23 Gays (3DBA1 until 12DAA2). The total daily mean flight intensity during the entire post application phase (0DAA1 to 12DAA2) was calculated to be 0.8 bees/m²/day in C1, 1 Deces/m²/day in C2 and 2.3 bees/m²/day in T1, 2.5 bees/m²/day in T2 respectively. No test-item related adverse effects on flight intensity were observed. Results for the different phases tpre- and post-application) are presented in the table below.


Table CP 10.3.1.6- 4: Effects of hone bee flight intensity during the exposure phase of the study.

					· ¥	
Treat	ment group 🦕	9. J		с2 "	<i>⊘</i> /T1	T2
	Pre-applie (3DBA1-0)DBA1) 🌾 🖗	√ 0.6 £%0.8		2.3 ± 1.8	1.9 ± 1.9
Daily mean flight intensity	⊘ Post⊶appli @DAA k∉	cation 1 DBA21		2.4 ± 1.6	3.2 ± 2.0	3.7 ± 2.4
(bees/m ²) STD	Dost-appli 0DAA2-1		0.8 1.1	1.7 <u>0</u> .6	1.8 ± 1.8	1.8 ± 1.9
	Post applic: (@DAA1_€	ation total 2DAA2)	@:8±1.0	1.9 ± 2.3	2.3 ± 2.0	2.5 ± 2.3
DBA: days before applicat	ion: 🗛 A: days af	ter application?	TD = standard de	viation		

Behaviour 🔏

In the marked assessment areas and infront of the bives, slight differences in behaviour in the test item group compared to the control group were observed on 0DAA1 and 0DAA2 in a small fraction of bees. In T1, honey bees with locanoticoproblems were observed on 0DAA1 (altogether 13 to 24 bees) and 0DAA2 (altogether 8 to 32 bees). In T2, a few honey bees showing behaviour like cramping, locomotion problems or intersive cleaning and a few motionless bees were observed on 0DAA1. In addition, approximately 40 to 200 honey bees of one colony (T2d) were found to be clustering in the dead bee trap on this day. On 0DAA2, a few cramping bees and a cluster of bees in the dead bee trap of colony T2a were observed.

On all other days during the exposure period, no notable difference in behaviour was observed in the testitem treatment group compared to the control group (except for aggressive behaviour in colony T2d before the first application of the test item on 1DBA1).

Strength of the colonies

The colony strengths of both, control group and test item treatment group, followed the natural course of colony strength development, with an increasing tendency from spring to mid-summer. Throughout the entire observation period (except on 1DBA2, T2 where a reduction in colory strength in the test item comparison to the previous assessment was noticed), the mean colony strengths in the test item treatment groups were not notably different from the control colonies.

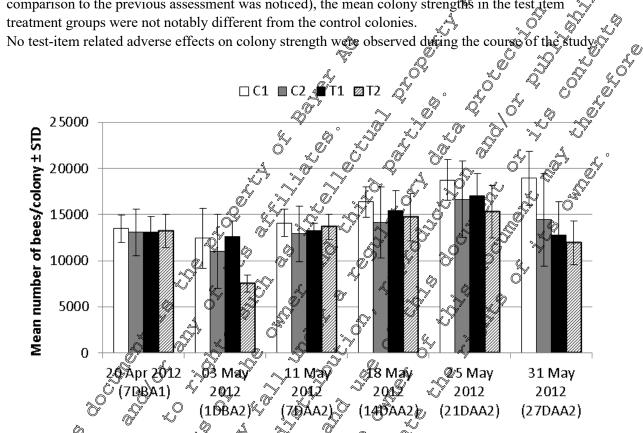
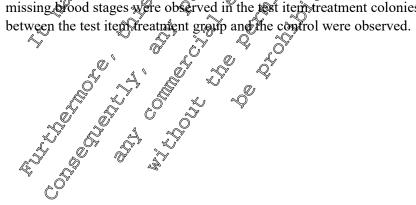
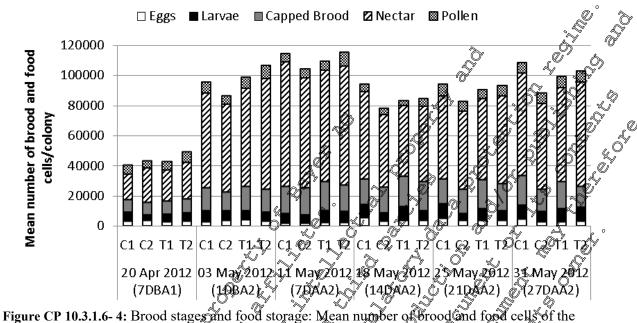



Figure CP 10.3.1.6- 3: Colony strength: Mean number of bees per colony in the control and test item treatment colonies (STD = standard deviation)


Brood Stages

In the colonies of the control proups C(C1,C2) and the test item treatment group T (T1, T2), respectively; the natural and typical charges and fluctuations in the relative amount of the different pre-imaginal stages, i.e. egg stage, larvar and papal stage, occurred during the observation period. No missing brood stages were observed in the test item treatment colonies. No notable differences between the test item treatment group and the control were observed.

Bayer CropScience

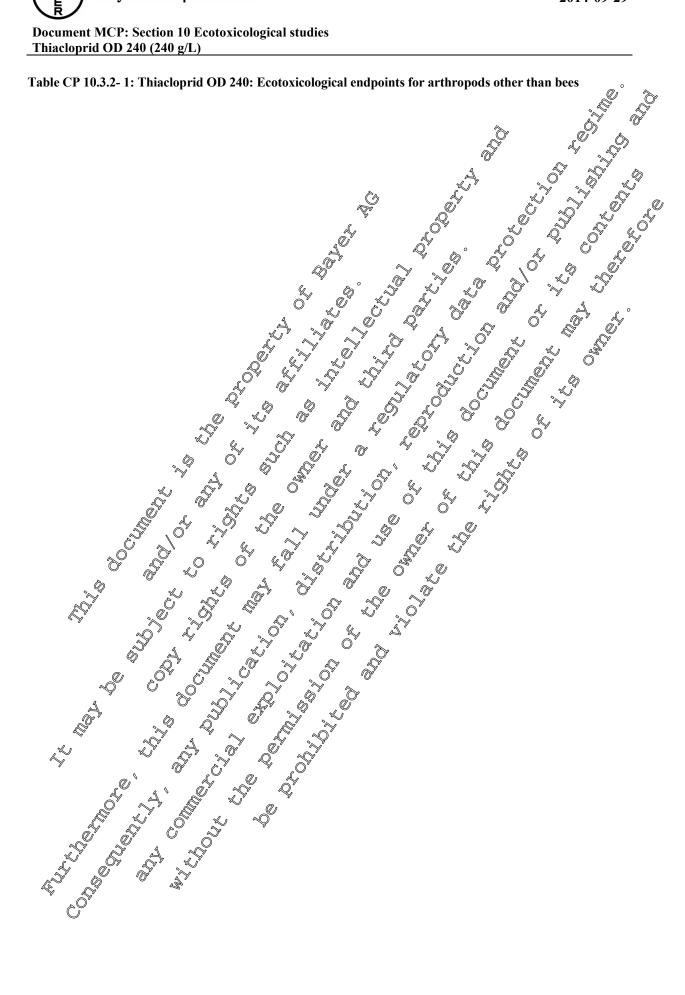
Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

control and test item treatment colonies."

Food Storage

In the colonies of the control group C (\mathcal{C}), C2) and the test item treatment group T (T1, T2), respectively, the natural and typical changes and fluctuations in the relative amount of nectar and pollen storage cells occurred during the observation period. All colonies of the study showed approximately equal numbers of pollen and nectar storage calls throughout the entire observation period in C and Trespectively.

Conclusion


Overall, ican be concluded that exposure of honex Bee colonies of winter oilseed rape, sequentially sprayed two times with Thiadoprid OD 240B G at a target rate of 72 g a.s./ha during flowering, did neither cause acute short-term nor long-term adverse offects on mortality, flight intensity, colony strength as well as brogd and food development.

Behavioural offervations indicated a possible short-term correlation between the application of the test item during bee flight ctivity and an intensified chaning behaviour together with some motionles honey bees as well as some intoxitation symptoms (cramping or locomotion problems). However, these observations were made only in a very small fraction of the honey bees in the test item treatment group

CP 10.3.2 Effects on non-targe arthropods other than bees

Toxicity tests on non-target arthropods have been performed with Thiacloprid OD 240 on the species Aphidius rhop dosiphi, Typhiodromus pyri, Coccinella septempunctata, and Chrysoperla carnea. Furthermore, two full-fauna off-crop field studies were conducted. A short summary of the study results is provided in the table below.

sure	1		<i>(n</i> . (<i>k</i>)
1 OD 240	$LR_{50} < 0.4 \text{ g a.s./ha}$		0 A
, glass plate	Corr. Mo	rtatûry [%] 🔍	
a.s./ha	8	30 ⁰	
a.s./ha		Ŵ ⁽ O')	
a.s./ha			Y Q
a.s./ha			
a.s./ha	<i>v v v v</i>		<u></u>
l OD 240	$LR_{50} = 0.331$ s a.s./ha		õ õ
, glass plate		rtality [%]	
a.s./ha		$n_2 \sim 1$	
a.s./ha			₩°
a.s./ha			1 00
u.s./ha			ř _O Y
l ODQ40	$DR_{50} = 0.33 \text{ g as ./ha ; }$	R ₅₀ > 0.9 5 g a.s./ha	
ab exposure on	♥ <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
The leaves		je je se	-
tion)	Corr. Mortality	Effect on Reproduc 28.0 26.0	tion [%]
u.s./Ka 🖉			
us ha		\$ \$6.0	
i.s./ha 🔊 👘	53.0 ^{°°} ¢	On.a.	
í.s./ha		💊 🚫 n.a.	
n.s./ba	<u>83</u> %0 🗸 🔨	n.a.	
1 QD 240	LR5 2.4% g a.s./ha ; H	ER 50 2 g a.s./ha	
ab., exposure on		L'Y'	
aize leaves 🔊	Sorr. Mortality [%]	Éffect on Reproduc	tion [%]
u.s.Ava 🥎 💡		6	
¢s/ha	85.9	n.a.	
s./ha		n.a.	
a.s./ha , , , , , , , , , , , , , , , , , , ,	0 ³ 98.9 2 Ø8.9 0	n.a.	
n.s, (5) a O' KOD 240, S	$LR_{50} = 10.232$ g a.s./ha	n.a.	advation
k@D 240	at 3.125 ga.s./ha	; No impact on repr	oduction
pple leaves	Corr. Mortality [%]	Fertile eggs/Fer	nale/Dav
		8.3	naie/Day
es/ha 🕉 🛇	17.9	3.7	
t.s./ha	15.4	0.9	
1.s./ha	71.8	n.a.	
i. Ana 💊 🐇	74.4	n.a.	
a.s./ha 🖉 🔊	100.0	n.a.	
OD240	$LR_{50} = 144.8 \text{ g a.s./ha};$	No impact on repro-	duction
ab.; exposure on	up to and including 124	.3 g a.s./ha	
ajze leaves	Corr. Mortality [%] E	ggs/Female/Day H	
F Q	-		37.3
a.s./ha	33.3		37.5
	10.6		35.0
			35.7
			90.8
a.s./ha	84.6	n.a.	n.a.
200	a.s./ba a.s./ha a.s./ha a.s./ha	a.s./ha 10.6 a.s./ha 20.5 a.s./ha 46.2	a.s./ha10.629.58a.s./ha20.536.08a.s./ha46.238.49

Test species,	Tested Formulation, study	Ecotoxicological Endpoint
Reference	type, exposure	
Dossier-file-No.		
Aphidius rhopalosiphi	Thiacloprid OD 240	
(2012)	Aged residue, spray deposits	
M-442296-01-1	on maize plants, 3 appl. (1 st	
	and 2 nd appl.: 96 g a.s./ha, 3 rd	A 67 29 .9
	appl.: 110 g a.s./ha), interval	Corr. Effect on Repellency ici.
	10 days	Mortality [%] (Reproduction] to control [%]
	Residues aged for 0 days:	100 🔗 n.a. 🖉 🌫 🗗
	Residues aged for 14 days:	50.0 4 -6.0 4 538.6 4
	Residues aged for 28 days:	3.3 Q ° 29 L 0 1.5
<u>Typh</u> lodromus pyri	Thiacloprid OD 240	
(2013)	Aged residue, spray deposits	
M-446548-01-1	on maize plants, 3 app. (1st @	
	and 2 nd appl.: 96 g a.s./ha, 3 rd	
	appl.: 110 g a.s./ha), interval	
	10 days	Corr. Mortality [%] Effect of Reproduction [%]
	Residues aged for 0 days: 🔬	84.3 J Z Q I Ra. O
	Residues aged for 14 days: §	J 7.8 0 J J 5 5.8
~	Residues aged for 28 days:	-2.2 -2.2
Coccinella	Thiacloprid OD240	
septempunctata	Aged residue, spray deposits	
(2013)	on maize plants, 3 appl. (1st	Com Mortality [%] For le eggs/female/day 1000 $11.6-25.9^{\circ} 17.6$
M-446545-01-1	and 2nd app1.: 96 g. a.s./ha, 3rd	
	appl.: 110 g a.s@ha), interval	Con Mortality [%] For le eggs/female/day
≪	10 dave	Corric vioritality [%] Fortile eggs/female/day
j.	Residues aged for 0 days:	1000 1000 11 11
J.	Residues aged for 14 days. Residues aged for 28 days:	$2^{-25.9^{\circ}}$ $2^{-25.9^{\circ}}$ $2^{-25.9^{\circ}}$ $2^{-25.9^{\circ}}$ $2^{-25.9^{\circ}}$
	Residues aged for Analys:	32.1° 32.1° 32.1° 32.1° 32.1° 32.1°
NTA off-crop field study	Residues aged for 42 days: 4 2 days: 4 2 days:	
(Netherlands)	NTA full fauna off-crop field	Conmunity level NOER = 4.7 g a.s./ha Sommunity level NOEAER = 10.2 g a.s./ha
(Inether failes)	study Spray application	Population le cel NOER = 1.2 g a.s./ha
	rates approximation	Population level NOEAER = 10.2 g a.s./ha
(2013) M-462228-01-1	0.56 1.2.4.7 10.0.27 0.07	NOLAEK - 10.2 g a.s./iia
MI-402228-01-1	as./ha	NOER: No Observed Effect Rate
		NOEDER: No Observed Ecologically Adverse
		Effect Rate
NTA off-crop field story	Thacloprint OD 240	Community level NOER = 0.56 g a.s./ha
(South-West France)	TA full faung off-crop field	Community level NOEAER = 27 g a.s./ha
O V	study Spray application	Population level NOER = <0.56 g a.s./ha
(2013)	rates	Population level NOEAER = 27 g a.s./ha
M-462231-01-1	0-56, 1, 2, 4.7. 10, 27 3	
	a.s./ha	NOER: No Observed Effect Rate
		NOEAER: No Observed Ecologically Adverse
L, 4 V		Effect Rate
Joint evaluation of the	Thiacloprid OD240	Regulatory Acceptable Rate (RAR) = 10.2 g a.s./ha
NTA off-crop field	ONTA full fauna off-crop field	
studies in The	stude Spray application	
Netherlands & South-A	rates: 0.56 - 27 g a.s./ha	
West France in this		
dossier		
	a higher reproduction rate in th	- 44

^A: A negative value indicates a higher reproduction rate in the treatment than in the control ^B: A negative value indicates a higher percentage of wasps found on plants in the treatment than in the control ^C: A negative value indicates a lower mortality in the treatment than in the control

n.a.: not assessed

The tier 1 laboratory data and the tier 2 extended laboratory data indicate a high sensitivity of A. rhopalosiphi, T. pyri, C. septempunctata whereas the toxicity to C. carnea was significant lower (R₅₀ = 144.8 g a.s./ha). Therefore, aged residue studies were conducted with the 3 species A. rhopalosiphi, @ T. pyri, C. septempunctata for the refinement of the in-field risk assessment.

Tier 1 risk assessment

In-field hazard quotient (HQ)

for the in-field scenario: The following equation was used to calculate the hazafd quotient (HQ

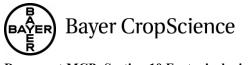
In field-HQ = max. single application rate * MAF DLR 50

The risk is considered acceptable if the calculated HQ is

Thiacloprid OD 240 is intended to be applied in OSR the field with an application state of set at 1.7 Generic value for 2 2 x 72 g a.s./ha. Therefore, the multiple application factor (NA applications according to ESCORT 20. Resulting HQ values are presented in Table CP 10.3

Table CP 10.3.2- 2: HQ for terrestrial non-target arthropods for the in-field scenari

Crop (field uses)	Species Species	Appl, rate	MAF	LR50 [ga.s./ba]	F HQ	Titigger	Refined risk assessment required
OSR	A. Ropalosiphi		J1.7 5	~ <u>9</u> ,4	©>306 ∾	2	yes
OSR	T. Syri of S		1,79	0 5331 A	370	2	yes
	Č N Ý	4. N	L'A	<i>N</i>			


ield HQ values are above the trigger of concern, Conclusion: For the standard species. indicating a need for refinement,

Off-field hazard quotient 4

late the hazard quotient (HQ) for the off-field scenario: The following equation was used

MAF * First factor/VDF)*correction factor / LR₅₀ max. single application gete * Off-field HQ

- Max single application rate = $\mathcal{A}2$ g a.s. ($\mathcal{M}a$ (\mathcal{OSR})
- MAF (multiple application factor) Q1.7 (generic value for 2 applications according to ESCORT 2)
- % (field crops, 1mpdistance, 2 applications; ESCORT2) Drift factor = 2.3
- VDF (vegetation distribution factor) = 10 (default value as recommended by the Terrestrial Guidance Document, to take into account the 3-dimensional structure of the off-field vegetation)
- Correction factor = 100 uncertainty factor for the extrapolation from indicator species to all offfield pon-target arthropods; default value for tier 1 risk assessment according to the Terrestrial Guidance Document)

The risk is considered acceptable if the calculated HQ is < 2.

Table CP 10.3.2- 3: HO	for terrestrial non-target arthropods for the off-field scenario
	for terrestriar non target artin opous for the ori neta secharia

				-			0.	
Crop	Species	Appl. rate	MAF	Drift	VDF	Corr.	1 / R 50	HQ Trigger
		[g a.s./ha]		[%]		factor	[g a.s./ha]	
OSR	A. rhopalosiphi	72	1.7	2.38	10	10	×0.4	≈7.4 ≈ 2 2
OSR	T. pyri	72	1.7	2.38	Â0	10	0.331	×8.8 × 2 ×

Conclusion: The HQ values for T. pyri and A. rhopalosiphi are abo intended uses in OSR, indicating a need for refinement.

Tier 2 risk assessment

Potential exposure

The exposure scenario is based on the offended use at

According to ESCORT2 and the Terrestrial Guidance Document the posure is calculated as: Application rate * MAD In-field:

drift factor / NDF Off-field: Application rate * MAF *correction factor

Application rates: 2 x 72°g/a.s./ha (OSR) 2.77% (field crops, 1 m distance, Copplication, 90th percentile; CORT2) Drift factor: MAF (multiple application factor) The Tier 1 risk assessment has been based on the generic MAF value for 2 applications ((57)). These values can be refined based on measured DT₅₀ values on leaves. Evaluations have been conducted for residues on leafy vegetable (DT₅₀2.55 days, . 2012. M-416527-02-1) and on Winter Pereals (DT50 2.9 days, [#] 2013, M-453083-01-1). Based & on the DT₅ value of 2.9 days and the application interval of 10 days a MAF of 1.1 can be calculated. VDF (vegetation distribution factor) \$10 (default value as vecon mended by the Terrestrial Guidance Document, to take into account the 3-dimensional structure of the off-field vegetation; in can only be applied in the context of 2D test systems Correction factor 5 (uncertainty factor for the extrapolation from indicator species to all off-field

non-target artheopods default value for tie 2 risk assessment according to the Terrestrial Guidance Document)

Table CP 10.3.2- 4: Exposure calculation for in-field assessment

Crop / no.	of applicati	ðns -	Applyrate [ga.s./ha	MAF	in-field PEC _{max} . [g a.s./ha]
Q2	R / 2 Å		× 72 ×	1.1	79.2

Table CP 40.3.2-8 Corrected exposure for off-field risk assessment

Appl. rate		Drift	Veg. distr. factor	Correction factor	off-field PEC _{max.} [g/ha]	Remark
72	1*	2.77*	-	5	10.0	in case of 3-D study design
70,	1*	2.77*	10	5	1.0	in case of 2-D study design

* The values for the off-field PEC_{max} based on two applications with a refined MAF of 1.1 (due to the rapid degradation of the active substance) and a drift rate of 2.38% [82nd percentile] are below the value for a single

application (MAF = 1.0, drift rate 2.77% [90th percentile]). To provide a realistic worst case, the higher drift values based on a MAF of 1.0 and a drift rate of 2.77% are considered relevant for the off-field risk off studies assessment.

Tier 2 in-field risk assessment

	In-field risk assessment based on study results	
Table CP 10.3.2-6:	In-field risk assessment based on study results	trom extended laboratory studies
	In neta Hist assessment based on stady position	i om engenaca insor assi j securs

Test Species	in-field PEC _{max.} ,	LR50; ER50	Trigger	Ref	ined assessment 🗸
	[g a.s./ha]	[g a.s./ha]			required? &
	Use in OS	R, 2 x 72 g a.s./l	าส์ผู้ 🔊	Å 4	
Aphidius rhopalosiphi	79.2	>0.95 🧠	Effeore are	<50% \0"	©yes 🖉
Typhlodromus pyri	79.2	× >2 ,0	Effects are	≽50%≳` ∝	yes yes
Coccinella septempunctata	79.2	<i>⊘</i> ≯3.12 ≴	Effects are	< 50%	yes
Chrysoperla carnea	79.2	>124,3	Effects are -	< 50%	à ca
			V 4		

The higher tier in-field risk assessment for and C. carrie a indicates that no unacceptable adverse effects are to be expected in the in-field area for arthropod species with a similar sensitivity as this species. However, the in-field risk assessment for A. rhopalosiphi, T. pyri, and C. septempunctata indicates that initial effects in the in-fiel@area cannot be exclosed. Therefore, further refinement is needed.

Refined in-field risk assessment^O

The results of the tier 2 risk assessment indicated that initial effects on species with a similar sensitivity as A. rhop dosiphie M-442296-01-1), Kpyri (M-446548-01-V), and C. septempunctata (M-446545-01-1) cannot be excluded According to the Terrestrict Guidance Document the potential for recovery needs to be demonstrated in such cases. As a consequence, ageogresidue studies were performed with all 3 species to demonstrate the petential for recovery. The test item was applied three times on potted maize plants, at the first and second application it was applied with 96 g a.s./ha and at the third application it was applied with 110 g a.s./ha. The application interval was 10 days between the three applications aging of the spray deposits of the test item on the potted maize plants took place under semi-field conditions with UD permeable fain protection during the first four weeks of the study. Three bioassays were performed, the first started on the day of the last application of the test item, the second 2 weeks after the last application and the third one four weeks after the last application. All three species indicated clear mortality in the bioassay that was started on the day of the last application (84.3 100%). The second bioassay that was started 14 days later resulted in 50% mortality of A. rhopalosiphi, 728% mortality of T. pyri, and 0% mortality of C. septempunctata. In this second bioassay the reproduction assessment indicated no adverse effects. In the third bioassay that started 28 days after the hast application to adverse effects on mortality (<4%) and no adverse effects on reproduction were observed. The study results indicate that even after 3 repeated applications with higher rates (%) and 410 g as /ha) the potential for recovery is given within 2 weeks after the last application

It can be concluded that no unacceptable adverse effects on non-target arthropods in the infield area are to be expected from the use of Thiacloprid OD 240 according to the proposed use pattern.

Tier 2 off-field risk assessment

Table CP 10.3.2	- 7: Off-field risk assessme	ent based on study results fr	om extended laboratory studies 🔬
14010 01 10001	i on neiu risk ussessine	me bused on study results m	om extended mooratory studies

Fier 2 off-field risk assessment Fable CP 10.3.2- 7: Off-field risk assessment based on study results from extended laboratory studies Track Specific Image: Specific results Image: Specific results						
Test Species	off-field PEC _{max.,} [g a.s./ha]	LR50; ER50 [g a.s./ha]	Trigger	Refined assessment		
		OSR, 2 x 72 g a.s.	/ha 🔬			
Aphidius rhopalosiphi	1.0	>0.95	Effects are \$50%	yes of w		
Typhlodromus pyri	1.0	>2 _0	Effects and < 50%	× 110 5 0		
Coccinella septempunctata	1.0	>3.125	Effect@are < 50%	a sho x		
Chrysoperla carnea	1.0	>124.3	Effects are < 50%	<u>no</u> o k		

The maximum PEC off-field for the use in OSR is calculated to be 1.0 ga.s./ha for 21 test systems For T. pyri, C. septempunctata, C. carnea no effects >50% norther on mortality norther production were observed in extended laboratory studies on natural substrate of a rate of 2 go.s./hg (T. pyti), 3.125 g a.s./ha (C. septempunctata) and 1243 g a.St/ha (C. carnea) (see Table CP 10.9.2-1) However, for A. rhopalosiphi, initial effects cannot be excluded, indicating a need for further refinement.

Refined off-field risk assessment,

The impact of simulated drift events on arthropod populations and some munities topicat of grassy field margins in two studies (Netherlands and Seothern France, M-462231-01-1 (KCP 10.3Q.4/2) and M-462228-01-1(KCP 10.3.2.4/1)) was evaluated for thiacloprid OD 240 (240 g/2) at exposures equivalent to 0.56, 1.2, 4.7, 10.2, and 27 g a.s. that A water treated control and toxic reference (Karate Zeon, lambda-cyhalothin 100g/L CSat 40 ga.s./ha) treatment were also included. The arthropod community was sampled using pittall trapping, weed/Berlese and suction sampling techniques which ensured that the whole range non-large arthropod tax were adequately saturpled. Samples were taken shortly before application and 1/ to 8 weeks thereafter. Key metrics and endpoints reported by the authors are summarized in the following table:

Table CP90.3.2-8 Comparison of Thiacoprid QD 240 non-target arthropod grassland habitat (off-field) 'studies ~ L,

Value reported by Author V V	> Netherlands	Southern France
No. arthropods counced a go a go	Approx. 1,000,000	> 2,000,000
No. taxa identified	<i>2</i> 07	312
No. taxa included in community level analyses	137	215
No. taxa included in population level analyses	54	95
Community NOEAER	10.2 g/ha	27 g/ha
Community NOER	4.7 g/ha	0.56 g/ha
Population NOEAER & &	10.2 g/ha	27 g/ha
Population NOER	1.2 g/ha	Not given

A difference related to geographical gradient is observed where a greater number of individual arthropods (approximately twice as many) were sampled in the study conducted in southern France compared with the Netherland's location. This also leads to a higher number of taxa identified and consequently more taxa included in the various community and population level analyses. Consequently the Netherland site is more likely to be dominated by a certain number of taxa whereas in southern France the community is more likely to be more diverse and less dominated. Therefore; given similar levels of population sensitivity to the test item one would expect at least twice as many affected taxa in the southern France location compared to the Netherlands. In terms of recovery or

Bayer CropScience

resilience to effect populations and communities in the more southerly location would be expected to be more tolerant. These considerations and observations are important as they represent two major trends in arthropod communities in agro-ecosystems which are often related to a North-South gradient.

Choice of endpoints for risk assessment

As data from two studies are available is necessary to review the findings in detail to define a robust Regulatory Acceptable Rate (RAR) to be used in risk assessment for the off-field environment and not to simply take the lowest value from the reports without full consideration of type of effects and the biological characteristics of the affected organism. For the reasons above careful onsideration is necessary before concluding on the most appropriate endpoint to use.


Due temporal variations in populations (e.g. density, activity and availability) and sampling error, which is present in all experimental studies, it is necessary to determine the background levels of variation present. This gives the chances of seeing an effect greater than 50% on the absence of treatment (a kind of type I error). Figures A8-1 of both study reports show the proportion of taxas where effects are above 50% in the tooc reference treatment as a measure of study performance as calculated by the equations given in appendix 7 of the study reports (Abbott calculations). It can be seen in both figures that even for the pre-treatment samples there is aproportion of axa which show a deviation by chance of at least 50% compared to the control 14.6% and 5.3% respectively in the Netherland and southern France studies). Although not presented in the peports it is estimated from the values in Appendix 8 (Abbatt values and P-values) in both study reports that for all plots compared to the control prior to treatment the proportion of axa with Abbott values above 50% is approximately 6% for the study conducted in the Netherlands (i.e. 9 out of 54 taxa) and 8% of the study conducted in France (i.e. 8 out of 95 taxa). Consequently there is a given proportion of taxa which by chance present at a given time point as showing Abbott values abox 50% which is independent of treatment effects. However, such chance effects must be considered in light of additional information such as population trends in the treatment and the control performance

Consideration of arthropod biology and ecological function

As with other areas of ecological risk assessment the effect and impact on certain taxa is not always of equal importance. For example an impact on a nighly mobile, dispersive species will have less of a consequence than an impact of a sedentary species. Likewise species with a high capacity for reproduction (i.e. r-shategists) can tolerate different impacts than those whose reproduction life history strategy is to produce very tew offspring (i.e. k strategists). The former may be well adapted to tolerate such stresses whereas the latter may not. In the studies these factors have not been considered by the author when concluding on the endpoints. Consequently when selecting the most appropriate RAR transient effects on certain taxa may not be biologically significant and recovery may be considered for these taxa when considering the selection of an endpoint.

Another important consideration is the cological function provided by the arthropods of a community. In ESCORT3 (Alix et al. 2012)² the following functions are listed:

Parasitiods
 Predators
 Herbivores

- Detritivores
- Coprophages
- Pollinators
- Food species for vertebrates

It is important that ecological function is protected when selecting a suitable endpoint. The non-briget of arthropods sampled in the studies fulfil these functions and there are often a collection of species which fulfil the function and there is a certain level of functional redundancy. In some cases a species can fulfil more than one function for example certain colleoptera have predatory larvae but an herbivorous adult stage.

Population level impacts and their relevance to the regulator face ptuble vale (R, R).

To assist in the derivation of a RAR from the two studies it is necessary to consider the taxa present in the studies, their biology, function and effects observed. Fables 2 to 10 compare and summarised the taxa present in the two studies and the impacts observed using the effect classes described by De Jong *et al.* (2010)³. In these tables a blank white square indicates that the taxa were present and unaffected by treatment throughout the study, i.e. class 1. A "2" (class 2) indicates that a statistically significant deviation from the control of greater than 50% was observed on a single occasion. Where the number "3a" or "3b" is present this indicates that a pronounced treatment rolated effect was observed but was of short duration and recovery occurred within the study period, for arthropods of low mobility and high reproductive capacity class 2 and 3 effects are considered acceptable when considering the RAR. Where the effect is classified as 8 this means that pronounced effects were observed and recovery was not apparent during the 8 week duration of the study. As mentioned above 6 – 8% of effects above 50% is expected to be observed by chance and may be not treatment related which particular applies to class 2 effects. A grey cell in the table indicates that the taxof was absent at one of the locations.

Population level impacts on mites

Table CP.10.3.2-9 summarises the tax present and the impact of the test item. In the Netherlands the mite community was dominated by tarsonemid mites whereas 8 mite taxa were identified in southern France.

	4			Oř 😽	, d	¥.	ALX .							
Sample method	Order			Ó	Net	ěrlanď	°			Franc	e			
method	Orden	C		\sim	0,36	12	4.7	10.2	27	0.56	1.2	4.7	10.2	27
W	A		Gamasida (emale	AN O	ð.	, Ũ								
W	Ø		Comasida other s	tages 🔊	°~	\sim								
W	*	\sim	Tarsonemidae	Å	, No.									
W.	Asami	Ś	Tydcoidea											
W	Acarı	\ \	Acaridida		\mathcal{D}'									
W	Ŵ	•	Oribatidae (ad) Oribatidae (juw)	į, j										
W	.Ő [¥]		Oribatelae (juv)											
S		(L) ⁷	Oribatidae	~Ő										
		ÿ	õ ð											

	~2			Con	0.
Table CP 10.3.2	0.000	my north of	in w loval	montal	(without)
1 able CF 10.3.2	- XaSumm	пуроделац		ипрастя (IIIII IIII IIII IIIII IIIIIII IIIIIIII
			~~~	× ·	

Mites are known to fulfil many ecological functions such as predators, herbivores, fungivores (detritus consumers) and are also prey for other arthropods. Due to their small size, high reproductive capacity

³ Jong, F. De, F.M.W., F.M. **1999**, K. Brown, C.J.T.J. Jilesen, C.J.A.M. Posthuma-Doodeman, C.E. Smit, J.J.M. van der Steen, G.M.A van Eekelen. 2010. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. RIVM report number 601712006/2010, ISBN/EAN: 978-90-6960-245-5



effects up to class 3 could be tolerated. However, none of the mite taxa sampled was adversely affected by any treatment rate up 27 g a.s./ha. Consequently for mites the RAR is 27 g a.s./ha.

### Population level impacts on spiders

Spiders are divided in Table CP 10.3.2-10 into two groups; hunting spiders and web spiders. Spiders are all predatory and tend to have (relative to other arthropods) long reproduction cycles. Due to this seffect classes 1 and 2 would be considered to be most appropriate and conservative.

C 1	$O_{1}$		NT @M	71 1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ô	о Г. (	<u>~</u>	~	C	,) /
Sample	Order/	Taxon		erland				Frank		0.	<u> </u>	
method	Group	7.1.	0.56	1.2	4.10	10.2	°¥1 1	0.56 K	1.2	4.7	<b>\$</b> .2	
P		Zelotes	¥	Ŷ	4.7%		- A	ð		C	4	-
P		Gnaphosidae others		1 C	$\mathcal{O}$	R.	Ö		-0	Ó		
P	Hunting	Pardosa (juv)		$\rightarrow$		×	4	<u> </u>	, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ş	
P	spiders	Pardosa (ad) Lycosidae others						$\sim$	<u> </u>	- 24	<i>.</i>	
P	1	Lycosidae others		<u> </u>	$\sim$	~~		$\frac{\circ}{}$	Ś	Ŷ	•	
P			- S	, {~~	y i	Ø	~			Š	ġ,	3b
S		Thomisidae (jux)	i de la companya de	~~~	~	,×	ð			)	$\langle \rangle$	
S		Pachygnatha (jữv)	<u>\$</u>	Č,	, Ô			<u>~</u>	8	l.	1	
Р		Pachygnather	9	ř	, O	- A	li co		Ĩ	×		
Р		Pachygnatha (juv) Pachygnatha Erigone (ad)/Erigoninae (ad) Erigônínae (ad)	Ś.	V	4	S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, Ø	4	0		
		(ad) (in the second sec	Q″			A	N N			2		
S		Erigônvînae (ad) 🛛 🖓	Y I	<u>\$</u>			/ s	S-	$\sim$			
S		Erigôninae (ad) Lepthyphanios tentis (juv) Lepthyphanies tentis (ad)	UN NOV			<b>%</b>	6		6)			
S		Lepthyphontes tenuis (ad)	S	K	V	0 [*]	No N	Ś	8			
Р	Web	Lepthyphantes tenuis ()	~		, O	ſ	Ŭ	<u> </u>				
Р	spiders	Meioneta N N			S.	Ĩ	~	¥				
Р	spiders \$	Octothorax (ad) y g	00 k				Ŕ	, v				
Р	٦ گ		Ô	-	°		Ø					
S	Ô	Liniphiinae (a@) 🔬 🔗	, N	- A			J					
S .	Y	Linyphiidae (juv)		8	D Ç	$\sim$						
P 🔊	v	Linyphiidae (juv)	0	×		, O						
S	~	Araneidae (juv) O		×,	Â	8						2
Р	Ĩ	Arancoidea odier <u>7</u>		°"								

Table CD 10 2 2	1 በ.	Summary population	loval	importe & Anidore)
1 able CF 10.3.2-	IU:	Summary Dobulation	i ievei	IIIIDacts (x/spiders)

Representative hunting and web spiders were present at both sites with the greater diversity observed in southern France. Out othe 25 spider axa present by were unaffected by treatment up to 27 g a.s./ha (class 1). However at the lighest rate of 27 g a.s./ha, adult Erigone spp. (small linyphiid spider) were affected in the Netherlands (class 8) and crab spiders (Thomisidae) were affected in France (class 3b). Web spicer jux eniles (Araneutae) were slightly affected at the same rate (class 2). Consequently the RAR for spiders is \$0.2 g 4.s./ha.

### Population level impacts of beetles

As would be expected advide range of beetle (coleopteran) taxa were present and identified (Tables CP 10,32-8 apd CP 10.3.2-9 A total of 30 beetle taxa (8 in the Netherlands and 26 in southern France) were present at numbers suitable for a population level evaluation. Coleoptera represent a diverse group in terms of ecological function and the life history strategy. Consequently different types of peetle can tolerate differing levels of disturbance or effects. Fourteen different beetle families were identified with the greater diversity found in southern France.

Table CP 10.3.2- 11: Summary population level impacts ( beetles; Carabidae, Staphylinidae and													
	Coc	ccinellidae)											, Andrew States
Sample	Order/	Taxon	Neth	erland	S			Franc			Ő	×	Q.
method	Group	1 4 X 011	0.56	1.2	4.7	10.2	27	0.56	Qĩ.2	4.7	10.0	″ 27 Ô	Б
Р		Bembidion spp.						Ĩ	r"		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Р		Loricera pilicornis					3b	1		4			Ô
Р		Poecilus cupreus					×	5				?	Ň
Р	Carabidae	Harpalinae/ <i>Harpalus</i> other			0				Ø	ŽO,			
Р		Harpalaus xanthopus		L'		al I	0 ×		$\mathbb{Z}$	Ő			K ^O
Р		Amara aenea	A			Ŵ,	A-	o .		۲ م	Ô	6	$\oslash$
Р		Microlestes minitulus	- A	ÿ	1			Q	ĺ,	Ŏ ^Ÿ	Ô	ŵ	1
Р		Carabidae other (ad)		~ °	2	۶	$\sim$	Ø	>		U [®]	, Ç	
Р		Staphylinidae (juv)	¥	Q.	×,	Ĺ	3a	S,	-Q		3b_	~2	
Р		Staphylinidae	×	ĵ,	Û	-Q-	8	<i>.</i>	6	Å.	À	2	0
Р	Staphylinidae	Aloecharine				$\sim$	1	Ś		0		Ű	
Р	Staphynnitae	Omaliinae 🔏	$\searrow$	Ň	Ő	۶ 0	$\langle \rangle$	$\sim$		1		S ^Y	
Р		Oxytelinae	۶ ،	S		× °		Ś	Ĩ	, Ç	Ó	)	
Р		Staphylinina	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ş	Ĩ			172.	Ĩ	Ĉ		
Р	Coccinellidae	Coccinellin (juv)	**				Š,	lo ^r o	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ř.,	Ś		
Р	Coccinentiae	Coccinellidae (ad)	Q.	ø	Ó	L		Ş		2	[⊮] 2	2	
				de la constancia de la		Ŗ	(Če)	9	õ	×			

# Table CP 10.3.2-11: Summary population level impacts (beetles; Carabidae, Staphylinidae and

Out of the 8 carabid taxa (ground beetles) & were located in the Wetherlands and 5 in southern France, with overlap of one taxon (Plarpalmae). Nost carabids are predatory and have 1 to 3 generations per year and typically breed in spring or autumn avoiding the hot summer months. On sequently in this study effect classes 1 and 2 are considered acceptable. All carabid taxa were unaffected by treatment up to 27 g a.s./ha with the exception of Boricera pilicornis where effects class 3b was observed at 27 g a.s./ha. Consequently for carabids the RAR is 10.2 g x.s./has

Six staphylinid axa were identified These tove beatles are usually predatory and some are parasitoids of other insects. Like carabids they tend toward the k-strategy end of the reproductive spectrum and generally effect classes of 1 and 2 are considered acceptable In the Netherlands Staphlyinindae were unaffected up and including the second highest treatment rate of 90.2 g a.s./ha. In southern France the Aleocharine, Omalimae, Oxytelinae and Staphylininae were unaffected by all treatments up to 27 g a.s./ha. However, Staphlyundae juveniles were affected but recovered before the end of the study (class 3b) in plotstreated with 0.2 g as./ha but only transient effects were noted for both juveniles and adults (class of at the highest rate of 27 g.a.s./ha. As the effect on Staphlyinindae juveniles was not consistent witter rate related response the 27 g a.s./ha was considered to be acceptable. Overall the RAR for staphylind beetles is considered to be 10.2 g a.s./ha. Coccinellidae (ladybud beetles) were present at both sites with larvae and adults both present in southern France and only parvae in the Netherlands. The adults are highly mobile and move quite frequently to different locations in order to find food for their voracious larvae and were unaffected (class 1) by all treatment rates up to 27 g a.s./ha in the Netherlands but transient effects (class 2) were observed at fates of 4.7, 10.2 and 27 g so. /ha in southern France. The larvae are not very mobile and were una dected by treatment. The overall RAR for ladybird beetles is considered to be 27 g a.s./ha. 



Thiacloprid OD 240 (240 g/L)

		• • •	-	`				<i>′</i>			C	71 2.
Sample	Onder/Carry	T	Neth	erland	S			Franc	ce		. \$	
method	Order/Group	Taxon	0.56	1.2	4.7	10.2	27	0.56	1.2	4.7	10.2 27	- O ^v
Р	Hydrophilidae	Hydrophilidae						S	Ò,		,Ø	۵ ک
Р	Corylophidae	Corylophidae						¢,	in the second			Ş"
Р	Lathridiidae	Lathridiidae						.1		20	₽>>	- m
Р	Silvanidae	Episthemus					¥			چ°		
Р	Nitidulidae	Nitidulidae			3		- A		,	Q.		â .
Р	Histeridae	Histeridae					Q		Ø	)_	*: ??	ĩ Á
Р	Byrrhidae	Byrrhidae					Ĵ		2	Q,		
Р	Chrysomelidae	Alticinae	1			Ŵ.	20	, ,		2	2 Ĉ 2	
S	Chirysonnenuae	Alticinae		/	~	, >	Ŵ	Ą		$0^{*}$	Ô (	Ũ
S		Apion		۰ ۵		, , ,	$\sim$	. O	ð	2	V2 🏈	1
S	Curculionidae	Curculionidae others	1		$\sqrt{2}$			2	ð			
Р		Curculionidae	×.		Û	Ø	ð	)	"O"	Å	🔿 3a	a °
Р	Dermestidae	Dermestidae				Ŷ	2	Ş		0	ja sa	ひ
Р	Elateridae	Elateridae 🔬 🤇	Ý	À,		2	;	\$	2	\$		
		Q. X	× 4			×	Č	ن پ	<u> </u>	S.	0~	

Table CP 10.3.2- 12: Summary population level impacts (beetles; other families)

The remaining beetle families (Table CP 10.3.2-9) were to stricted to the southern France study with the exception of the Hydrophilidae which were only found in the Netberlands study, Hydrophilidae, or water scavenger beetles which have predatory arval and her ivor as adultstages were unaffected by all treatment rates (class 1). In southern France effects did not exceed class 2 for any beetle family (Corylophidae, Lathridiidae, Silvanidae, Nitidulae, Hesterididae, Borrhidae, Chrysomelidae, , Dermestidae and Elateridae) except for the Curcurlion dae (weevils) where a class 3a effect was noted at 27 g a.s./ha. These families represent a wide range of ecological functions such as fungivores, detritivores, scavengers, predators and also herbivores, Several families such as Chrysomelidae, Elateridae and Current of dae contain species which are important pests of crops plants. Overall for this group of beetles the RAR is considered to be 10.2 g.a.s./ha. Å L

### Population level impacts on Hymenoptera

The majority of Hymeroptera taxa in Table CP 103.2- 13 (17 out of 18) were parasitic species belonging to a wide range of groups parastrzing different insect life history stages (e.g. egg and larval

belonging to a wide range of berous parasitizing different insect life history stages (e.g. egg and lar parasites). The remaining taxon was a social insect (Formicidae, ants) which is also predatory and were found at both locations.

		• • •	•	· •	-						Q1	
Sample	Order/	Taxon	Nethe	erland	S			Franc	e		, and a second s	<i>Q</i>
method	Group	Taxon	0.56	1.2	4.7	10.2	27	0.56	1.2	4.7	10.2 27	O ^v
S		Icheneumonidae							ð,		je b	
S		Aphidiinae						Ĩ			×	
S		Alysiinae						<b>A</b>		S.		Ô
S		Eulophidae					×	$\int^{\gamma}$		$\sim$		Ĵ
S		Mymaridae			Ş		ay		le l	Ķ,		G
S		Pteromalidae		· ¥	Ŷ		Q,		Ű			, 0 ⁹
S		Chalcidoidea other				L.	) ^r		2	, Ŵ		, O
S		Platygastridae	Å			Į Į	Ro	Æ	2	d.		Ĵ
S		Sceliondae	- Q	, V	~	•	Ŵ	Q		$\mathcal{D}^{\mathbb{V}}$	Ø Ø	
S	Hymenoptera			0			$\sim$	. O	Ŕ	, st		
S		Cynipoidea	¥	Ŵ	Č	چ ا		2	Ş	**		
S		Braconidae other	5%	//	Û	Ø	ð		U			1
S		Aphelinidae 🚽	₹ N			Ņ	A	- Sr		0		
S		Trichogrammatidae	Ň		Ő	~(		$\Delta n$	2	*		
S		Diapriidae	8	S		×,	le la	Ĵ,	Ĩ	2	O	
S		Ceraphronid				Ø		21D	₹ ₽₽.	D.	Ô	
Р		wingless pricro-	în În	<b>~</b> .						» ~		
S		hymenoptera 🖉 Formisidae 🔧		Ś		Q		) (	, P	\$ \$		
3			(	<u>p</u>	4 <u>,                                     </u>	, Ç		l (	)	0 ^y		

### Table CP 10.3.2- 13. Summary population level impacts (hymenoptera)

Eleven and 15 parasitic Hymenopteran taxa were identified at the Netherland's and southern France studies respectively. These arthropods are typically small in size and some are wingless. Of these only the Pteromalidae exhibited effects greater than class 1 (class 2) which are of minor importance to this group of arthropods. Consequently the RAR for Hymenoptera is 27 g a.s./ha.

### Population leven impacts on Homoplera and Heteroptera

These 7 taxa were at collected by suction sampling (Table CP90.3,2914). These taxa are all phytophagous and contain many important per species.

	.~"			$\bigcirc$	<u></u>							
Sample	Order	Faxon S	N N	etherland				Franc	e			
method			0 0	. 🞯 🖉 1.24	ð <b>4</b> .7	10.2	27	0.56	1.2	4.7	10.2	27
S	~0 U	Appodoidea										
S	A	Cicadelligae (jux)	» "	Ø			3b					
S	Promoptera	Cicadelligae (jux) Cicadelligae (ad)		Z,								
S, ~	~	Delphacidae (juv)		Ŷ.								
LS V	Ś	Detphacidae (ad)		7								
	Heteroptera	Wirrida (ad)	° د م									
S	Ĩ, Ĉ, Å	Cynidae	Ŵ.									
	j j		Ŷ									

# Table CP 10.3.2- 14 Summary population level impacts (homoptera and heteroptera)

Cicadellid fuveniles in the Netherlands were the most sensitive with an effect class 3b at 27 g a.s./ha. Overall the RAL for *Homoptica and Heteroptera* is 10.2 g a.s./ha.

# Den Articul : Restand

Populationslevel impacts on Diptera

Effects of Dipteran taxa are presented in Table CP 10.3.2- 15 although many true flies are strong flyers some such as the Drophophilidae (fruit flies) tend to remain in one place where there is a good supply of food.



			-		` -								$\mathcal{Q}_{1}$	
Sample	Order/	Taxon	1	Nethe	erland	s			Franc	ce		0		4200 00
method	Group	Taxon	(	).56	1.2	4.7	10.2	27	0.56	1.2	4.7	10.2	27	O ^v
S		Cecidomyiidae								<b>P</b>		,©″	Ó	
S		Chironmidae							ð			$\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
S		Sciaridae							.1			<b>X</b>		Ô
S		Lonchopteridae						8 🛒	<b>, *</b>		) *		<u>م</u>	J.
S		Phoridae				Ŋ,		Ő,		Ĩ	Į.		- Ô	. W
S		Chloropidae				,		Q,		Ŵ		N#/		
S	Diptera	Drosophilidae				2		3a		2	, Q		×	KU I
S		Sphaeroceridae		ľ.			Q''	<u>b</u>	Ĩ	Ş	L.	Ũ	¢	j.
S		Acalyptrata		Ô	/	F		Ű	R		$\mathfrak{D}^{\mathbb{Z}}$	Ô	Ĩ	
S		Empididae	/		~ 0	2	¢	$\sim$	.0	ð	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥ 🖌	Ş.	
S		Agromyzidae		1		×,	L		2,2	S S		A	9	
S	]	Ephydridae		1		Û	1 Contraction of the second se	ð	Í	0		A A	ala	>
S		Diptera (juv)	× ·	× V			-Ş	2	\$				<u> </u>	
			2. ~	×″	Ň	<i>"</i> 0	7 1	Č, V		Ś	/		(Sr)	

### Table CP 10.3.2-15 Summary population level impacts (diptera)

Out of a total of 13 taxa representing ovide range of ecological functions (e.g. predators, herbivores, frugivores, parasites) only two responded to treatment. Effects with no recovery within the study period was noted at 27 g a.s./ha for Longhopteridae (stear-winged files). For the Drophophilidae a transient effect (i.e. class 2) was noted at rates of 4.7 g a.s./ha above. As this is or minor importance to a fly with a high intrinsic reproductive rate and many generations per year the RAR for Diptera is 10.2 g a.s./ha.

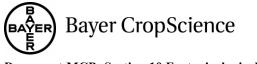

# Population level impacts on Sollembola

Table CP 10.3.2- 16 summarises the taxe present and the impact of the test item. Collembolans are omnivorous, free living organisms that prefer moist conditions. They contribute towards decomposition through the fragmentation of organic matter and are possibly the most abundant terrestrial macro-organisms group on the planet.

Sample	Order/ 🔊	Taxon &		erlands	2	, ,		Franc	e			
method	Order/		0.56	1.2	<b>D</b> 7	10.2	27	0.56	1.2	4.7	10.2	27
S		Śminthuridae			×2 -	3a	8	2	2	3a	2	3b
Р		Snanthuridae				3a	3a					
Р	Collembola	Symphy Deona	des 2	Ŵ					2	3a	3a	3b
P 🧃	F* 6	Entomobryida		$\varphi$								
Р 🗞		Isololinda					3a					3a
<i>"</i> «	4	2.00										

## Table CR 10.3.2- 16: Summary Dopulation level impacts ( Collembola)

In the two studies Collembola were among the most sensitive taxa to the test item and were found living on or in the top few car of soil and related habitat (e.g. leaf litter) and on foliage in the experimental plots. This is indicated by the sample methods which collected collembola specimens; pitfall (active at or near soil surface) and suction (on soil and on plant surfaces). Pitfall samples collect collembolan due to the activite (movement) of the animal and suction samples remove them directly from their location. Due to their small size, high reproductive capacity and low mobility effects up to class 3a could be tolerated when considering an appropriate and ecologically relevant RAR. In the two studies class 3a means that effects would be seen at the two sample points following application, i.e. during the first 4 weeks. After that there will be two consecutive sample points where population recovery had occurred.



In the two studies sminthurid collembola (globular springtails) were more associated with suction sampling indicating that they are not very mobile and prefer the dwell on foliage and are hence highly exposed to treatment. In fact compared with sminthurid numbers in pitfall traps approximately APX more were caught by suction sampling in the Netherlands study. Sminthurid responses were similar a both sites. None or only transient effects were noted at treatment rates of 0.56 and 1.2 g a.s./ha. At both locations test rates of 4.7 g a.s./ha the response was placed into class 34, (temporary effects with full recovery), however at the next rate of 10.2 g a.s./ha the responses were class 3a and class 2/in the Netherlands and southern France respectively. At the highest treatment rate (27 g a.s. ha) stornthurid populations failed to recover after 8 weeks in the Netherlands, whereas in France recover was pried & only at the final sample point. As collembola are of the mobility the recovery of populations must have come from the existing pool of eggs and young indicating that exposure up to 10.2 g a 9 ha have no ecologically relevant effect on the population. The maxon named Symphypleona Which is the order to which the family Smithuridae belong) presented a similar response to the Smithuridae in southern . France but were unaffected in the Netherlands. The highly active Entomobryidae (or stender springtails) were unaffected by all treatments, perhaps because they are more associated with the surface of the soil and hence less exposed compared to the Sminthuridae Isoton a less exposed compared to the Sminthuridae Entomobryomorphic taxon also more associated with the soil than foliage) were unaffected by treatments up to 10.2 g a.s./ha at both study locations. At the highest cate (20 g a.s. ha) impacts with full recovery was observed for the Isotomidae. Overall, taking interaccount the sensitivity, biology and ecology of the collembola present in the two studies the RAR is 10.2 g as /ha

# Population level impacts on miscellaneous tax

A range of taxa including insect and pon-insect species is presented in Table CP 10.3.2-17. These include isopods (crustaceans), chilopods (centipedes), Gillidae (crickets), Phalangia (harvest man) and Thysanoptera (Thops).  $\bigcirc$ 

Sample method	Órder/ ج	Taxân &	Neth	erland	ks (v	$\sim$	ř	Franc	e			
method	Group 🔬 🖉		Q.50	1.2 \$	¥4.7 «	<b>1</b> 0.2	27	0.56	1.2	4.7	10.2	27
Р	Isopoda	Isopoda (all)		×	a J	2						
Р	Chilopoda	Chilop@a (all)	Ŷ	0.	×							
	<b>T</b> 1	Thys propter a (juv)	Â	*	Č,							
S	Thysanopteras	Thýsanoptera (ad)			0°						2	2
Р	Orthoptera	Corllidae Q	Ô,	ð								
	Arachnida	Phalangida 🕂 ,	Ø									
, and the second			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1								

Table CP 10,3.2-17	Summary p	opulation	level impacts	(miscellaneous	taxa)

Out those only slight and transient effect aclass 2) were noted on adult thrips which is not considered to be biologically significant for these insects Consequently the RAR for this artificial assemblage of arthropods is  $2\pi g$  a.s./ha.

# Conclusion concerning the Regulatory Acceptable Rate (RAR)

The impact of stanulated drift events on arthropod populations and communities typical of grassy field margins was overtigate in two studies located in the Netherlands and in Southern France was evaluated for Thiadoprid OD 240 at exposures equivalent to 0.56, 1.2, 4.7, 10.2 and 27 g a.s./ha.

At the community level no consistent rate related response was noted and the NOEAER_{community} (No Observed Ecologically Adverse Effect Rate) was the highest rate test of 27 g a.s./ha. However, when considering the responses the individual taxa in relation to their biology a RAR (Regulatory



Acceptable Rate) suitable for an off-field risk assessment based on the findings of both studies was concluded to be 10.2 g a.s./ha.


### Off-field risk assessment based on the off-field non-target arthropod field studies

The evaluation of the two available off-crop field studies indicates that the regulatory acceptable offfield concentration of thiacloprid is 10.2 g a.s./ha. The corresponding off-fred exposure is calculated based on the in-field use rate of 72 g a.s./ha and the drift rate for field crops of 2.77% (1) m distance, 90th percentile⁴; ESCORT2). These values result in an off-field exposure rate of 2.0 g a.s./ha. Since this exposure values is below the Regulatory Acceptable Rate of 10.2 g a.s./ha it can be concluded that no unacceptable adverse effects are to be expected from the use of Thiacloprid OD 240 according to the intended use pattern.

# CP 10.3.2.1 Standard laboratory testing for non-target arthropods

Tier 1 laboratory studies on *Aphidius rhopales phi* and *Typhiodrontas pyti* have been conducted and summaries are provided in the MCA document under KCA 8.3.21/1 (M0451748-01-1) and KCA 8.3.2.2/1 (M0451718-01-1), respectively.

Supplemental information from the literature In addition to the studies performed by BCS in accordance with the requirement a literature search has been performed in accordance with the requirements. From the papers identified turing the literature search the following were identified as being potentially relevant for risk assessment. After further evaluation the literature data is considered to provide supplemental information and does not influence the risk assessment.



### Executive summary

Laboratory bioassay was performed to investigate effects of residues from 10 pesticides including thiacloprid on mortality of the *Dolichogenidea tasmanica* (Cameron) (Hymenoptera: Braconidae) over 7-days. Material and methods as well as cosults are summarised for thiacloprid only. A laboratory culture of *D. tasmanica* was established from parasitoids that emerged from leaf rollers field-collected collected in Hawke's Bay, an maintained on host larvae of *E. postvittana*. Experimental replicates of thiacloprid used Calapso 488C mixed with water at 288g a.s./ha (calculated based on 2000 L/ha). The

⁴ The values for the off-field  $PEC_{max}$  based on two applications with a refined MAF of 1.1 (due to the rapid degradation of the active substance) and a drift rate of 2.38% [82nd percentile] are below the value for a single application (MAF = 1.0, drift rate 2.77% [90th percentile]). To provide a realistic worst case, the higher drift values based on a MAF of 1.0 and a drift rate of 2.77% are considered relevant for the off-field risk assessment.



base and lid (inner facing surfaces) of 85 mm diameter Petri-dishes were sprayed in a Potter tower at. 103kPa using 2 ml solution with settling period of 12 seconds. These were dried (15-20 minutes) Controls used water. After drying, 15 randomly selected D. tasmanica adults added to each petric dish @ with transfer by sable-brush at cooled 8-12°C to reduce mobility. Petri-dishes were then held  $\frac{20}{3}$   $\frac{20}{3}$ for 7 days, and mortality assessed at 24 h intervals. Cotton wick with 1.7ml of 50:50 honey water was placed as a food source and replaced as necessary. Counts of mortality were adjusted using About correction where insects that did not respond to probing with a sable brush were considered dead. Toxicity levels were assigned using standard criteria of the International Organization for Bological and Integrated Control of Novious Animals and DI separate occasions when sufficient newly emerged parasitoids were available. Residues of thiseloprid were considered harmless (< 30% mortality) by KBC criteria.

### Material and methods:

Ay emerged parasitoids were available. Residues of thiaeloprid ality) by KOBC criteria. Londitions: Londitions: Londitions: Londitions: Londitions: Vehicle/solvent: Source of vehicle/solvent: Source of vehicle/solvent: Concentration of vehicle/solvent: Test organism(A) Vehicle/solvent: Londitions: Londitions: Vehicle/solvent: Londitions: Londitions: Londitions: Londitions: Vehicle/solvent: Londitions: Londitions: Londitions: Vehicle/solvent: Londitions: Londiti A. Material Hawke's bay New Zealand Adults Adult



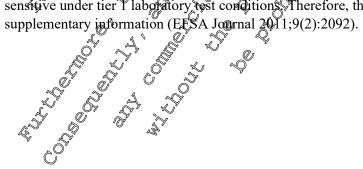
### **B.** Study design and methods

1. Test procedure Test system (study type):

Duration of study: Treatments: Test concentrations: Number of replicates:

# Dried residues on petri-dish (direct contact with adult wasps) 7 days Contact with dried residue 288g a.s./ha 4 per product, controls included but number of controls inst stated Number of replicates: 1 Individuals per replicate: 4 per product, corrols included but number of controls individuals individuals per replicate: Test units (type and size): Petri diskes Application / device / nozzles: Petri diskes Water volume: 2000 L/ha Calibration of sprayer: 2. Environmental conditions Patri-diskes Test medium: Patri-diskes Analytical parameters measured: Mortality Biological parameters measured: Mortality Aubit correction Patri-diskes Validity criteria: Patri-diskes No validity criteria Patri-diskes Biological findings:

treatment Actual mortanty after 7 days 0% as in the control. Ô


L,

Ó

Š

### Comment by the potifier:

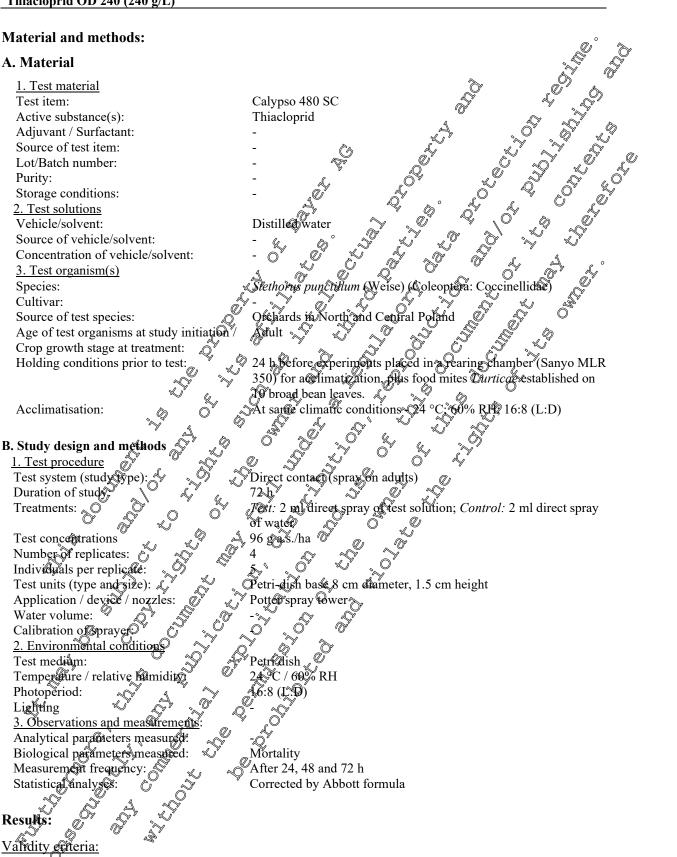
L. The author refers gives the target application rate with a value of 288 g a.s./ha and refers to an application rate of 2000 L/bg. It seems at least questionable that an application rate of 2000 L/ha was applied with the Potter to petri-dispes. The study results indicate a low toxicity of thiacloprid to the parasitoid Dolichogenidea asmartica (Hymenoptera: Braconidae). The data do not influence the outcome of the non-target arthropod/risk assessment since A. rhopalosiphi proved to be clearly more sensitive under tier I laboratory test conditions. Therefore, the information is classified as b)





Report:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	; 2012; M-465942-01-1	
Title:	Insecticide selectivity tests on spider mit (Coleoptera: Coccinellidae) in laboratory	e destroyer (Stethorus pund	ctillum) (Weise) 🖉 🖉
	(Coleoptera: Coccinellidae) in laboratory	conditions.	ctillum) (Weise)
Report No.:	M-465942-01-1	¹	
Document No .:	M-465942-01-1	J.	
Guidelines:	not applicable; not applicable	107	
GLP/GEP:	no		

### **Executive summary:**


Laboratory investigation assessed the selectivity of several insection as a carific including this control of the selectivity of several insection as a carific including the several insection as a cari Coccinellidae). Thiacloprid was applied by Potter spray tower and effects on ladybird mortality recorded. Material and methods plus results are summarised for three lopring only A laboratory colony of Stethorus punctillum was established with specimens from orchards in North, and Central Poland. Collected adults were kept in 6 isolators (10 x 85 x 85 cm) and fed Two-sported mite Tetranychus urticae established of Broad beans Wicia faba) reared in flower pots. At 2 weeks, beans inoculated with T. urticae were moved into isolators, then covered with whon gauze and placed in a glasshouse ( $24 \pm 5^{\circ}$ C,  $60 \pm 5^{\circ}$ C, RH and 16:8 (L:D) photoperiod. Thiacloprid was applied at 96 g.a.s./ha.from commercial formula Calypso 80 SC Distilled water was used as control treatment. Twenty-four hours before bioassays, S. pulsetillum adultovere kept in jars in a rearing chamber (Sanyo MLR 350) for acclimatization (24 °C, 60% RH and photoperiod of 16:8 (CD). For bioassays, adult ladybirds were collected by paintbrush, and placed in jars with Thyrticage established on 10 broad bean leaves. Jar tops were povered by gauze. After 24 badaptation, S. punctulum adults were transferred to petri dishes (8 cm dameter, 1.5 cm height). Each had adult adybirds in the dish bottom, sprayed with the insecticide in a Potter lower. Control was sprayed with water, and each treatment had four replicates. After application, adult ladybirds were fed with T.urficae on one Broad bean leaf, and Petri dish cages (& cm diameter, T.5 cm height) were closed by addition of Hid (10 cm diameter, 1.5 cm height, with a central 25 cm hole covered with a screp of gauze) and sides banded by parafilm (10 cm x 2.5cm). Mortality was assessed after 24,48 and 92 h, and percentages corrected according to Abott °, formula.

Control mortality was 0%, throughout Thiackoprid caused 20% mortality after 24 hours (h), 25% after 48 h and 35% after 72 h. This equates to the slight harmful (mortality 25-50%) category according to

And the stight of the stight o



### Material and methods:



No validity criteria were stated.

4701259-00

for applicable; not applicable

M-471259-01-1

### **Biological findings:**

Table CP 10.3.2.1-1: Toxicity of control versus thiacloprid on adults of *Stethorus punctillum* (Coleoptera: Coccinellidae)

	% m	ortality of adult <i>S. punctitiun</i>	
	after 24 h	after 48 h	after 72 h
Control	0	0	- <u>00, 0, 0, 0</u> ,
Calypso 480 SC (Thiacloprid)	20	Čg 25 4	<u>35 7</u> 6 0

Control mortality was 0% throughout. Thiacloprid caused 20% montality after 24 bours (4), 25% after & 25°-50 48 h and 35% after 72 h. This equates to the slightly parmful (mortality gory according to the IOBC evaluation criteria.

### Comment by the notifier:

Thiacloprid caused under laboratory conditions an 96 g a.s./have mortality of 35% of the lady Stethorus punctillum (adults). These findings indicated lower sensionity compared to larvae of Coccinella septempunctata that was tested for the regulatory data package. The information classified as b) supplementary information (EFSA Journal 20)

**Report:** Title:

Side effects of perticides on the prvae of the hoverfly Episyrphy balteatus in the laboratory.

Report No.: Document No .: **Guidelines: GLP/GEP:** 

### Ò Executive summar

The toxicity of dry osidues of several insecticides (including thiscloprid) was evaluated on hoverfly larvae Episyrphus baletatus (De Geer) weld in Drum-cells. Reproductive performance of adults then assessed sub-lethal effects in Perspectrearing cages Material and methods as well as results are summarised for thiaclopridonly.

Single dose of thiacloprid (Calyoso, 48 g/L SC, Bayer CropScience) was used on glass plates of Drum-cells. These consisted of two glass plates (90 mm diameter [dia] and 2 mm height) and a Plexiglas cylinder (90 mm dia and 12 mm height) with eight ventilation holes (5 mm dia) covered with nylon gauze. In test replicates, glass plates were treated with Calypso (96 g a.s./ha) using a Cornelis spray tower giving homogeneous coverage of  $1.58 \pm 0.06$  mg per cm². For controls, the plates were sprayed with distilled water Two hours after spraying, five E. balteatus larvae (2-3-day-old) from laboratory culture were confined in each drum cell and offered pea aphids ad libitum. Drum cells were incubate dat 23 @1°C, 60 ± 10% RH and 16 h: 8 h light:dark photoperiod. Eight replicate with 5 larvae were used for each test product (so total 40 larvae), plus controls. Survival was monitored daily antil adult entergence, and pupae failing to emerge after 9 days considered dead. Surviving pupae of the same treatment group were transferred to the same perspex adult rearing cage ( $60 \times 60 \times$ 60 cm with two nylon mesh sides and front opening ( $25 \times 25 \text{ cm}$ ) covered with nylon gauze. Each was placed into an environmentally controlled chamber at  $23 \pm 2^{\circ}C$  and  $70 \pm 20\%$  RH with neon lighting of ca 8,000 lux with a 16h : 8h light:dark photoperiod. Each had two plastic petri dish lids

Bayer CropScience

### Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

(diameter 90 mm, height 15 mm) containing bee-collected pollen and cotton wool soaked with honeywater (20% honey) offered ad libitum and replaced twice weekly. Sex was determined after emergence. 8-10 days after adult emergence, six pots of 15-20cm broad beans (*Vicia faba* L.) intested replaced three times a week. Egg collecting occurred 14 times over 6 weeks, at every count 90 eggs were collected at placed into petri dishes (00 and 11 and 15 with pea aphids (Acyrthosiphon pisum Harris) were introduced as oviposition sites. These work were collected at placed into petri dishes (90 cm dia × 15 mm height) to assess hatching, and apards added daily to prevent cannibalism. Larval and pupal mortality were transformed by arcsine square root, analysed by one way aNOVA Means separated by LSD multiple range test, (P=0.05) or by a Tamhane's T2 test when variances not homogeneous (P=0.05). For pupal mortality, a non-parametric Mann-Whitney U test was performed when assumptions of normality were volated. Preimaginal wortality was corrected and N. V/S. A. according to Abott formula. Total effect of an insecticide was assessed by calculating the reduction in beneficial capacity as Overmeer and Vanzon.[◎] √ (l) Thiacloprid did not affect hoverfly larvae significantly; with no significant sub-lethal effects revealed, OBC category 1, harmless and a reduction of only 24.9% in beneficial capacity of E. balleatus Material and methods: A. Material 1. Test material Thiacloprid Test item: Active substance(s): Thac - Star Boyer Croosc Adjuvant / Surfactant: Source of test item: Lot/Batch number: **Purity**: Storage condition Source of test species: Age of test species: Holding conditions prior to test Acetimatisation: 2. Test solutions Rearing cases with bean plants infested with pea aphids and bee-control with the provide the providet the provide the provide the providet the provid



### B. Study design and methods

1. Test procedure Residue on Drum-cells (Contact toxicity of larvae and Test system (study type): reproductive performance of adults) Duration of study: 8 weeks Treatments: Thiacloprid, control (distilled water) Test concentrations 96g a.s./ha Number of replicates: 8 drum-cells [for each product] and (8 further) water control Individuals per replicate: 5 Iarvai novernies per treatment  $23 \pm 1^{\circ}$ C, 60  $\pm$  10% RH and 16 h: 8 h (L:D) For larvae Drum-cells cases Perspex tubes 90 rhm diameter by 5 larval hoverflies per treatment Test conditions: 12mm beight) with two glass plates (90 mm dia, 2 mm height) Test units (type and size): For adults: rearing cages Application / device / nozzles: Compelis spory tower (1 Water volume: Calibration of sprayer: 2. Environmental conditions tube (dum cell) glas plates For addus: Test medium: larvaez 🖡 ersper Perspex cages (60  $\times$  60  $\times$  60 cm) with notion sides and point (25  $\times$ 25 cm)  $\mathbf{O} \pm 10$  RH; For adults: Temperature / relative humidity 🕲 For lavae: Incubatonat 2 Controlled hamber at 2  $70 \pm 20$  RH Photoperiod: 16h : 8 h (L:D) Lighting or langue: not specified; For adults? eon light providing ca 8,006 Jux 3. Observations and measurements Analytical parameters measured: Mortahy, fectuality, batching proportion of eggs Biological parameters measured: Measurement frequenc Darly, Ò About conjection, One-way ANONA, LSD or Tamhane's T2 mean Statistical analoses (separation, Man - Whitney U test **Results:** [°]criteria: No validity criteria

**Biological findings** 

Table CP 18.3.2.1- 2: Effect of insecticide on Episyrphus Galteatus: Preimaginal mortality, reproductive Î. performance and final expluation according to the IOBC standard (all treatments were started with 40 lat vae).

- A	~ \	ginalmorta			eproducti erforman		Final evalu	ation
Active ingredient	C Larval mortality (F SE))	Pupal mortality (#SE))	Q' M Q (Abott Corrected)	Eggs per female (± SE))	Egg hatch (%) (± SE)	Viable eggs per female (± SE))	Reduction in beneficial capacity E (%)	IOBC class
Control	15.0 5.0	2.5 ± 2.5 ^b	-	86.1 ± 7.9 ª	48.7 ± 3.4 ª	43.3 ± 4.5	-	-
Thiacoprid	5.0 ± 3.3 ^a	2.5 ± 2.5 ^b	-12.1	$\begin{array}{c} 66.9 \pm \\ 4.0^{a} \end{array}$	44.1 ± 5.1 ^a	29.0 ± 3.6	25.0	1 °

^a Do not differ significantly (ANOVA, P>0.05, LSD or Tamhane's T2 mean separation.

^b Do not differ significantly (Mann–Whitney U, P>0.05).

^cCategory 1, not affected.



The percentage mortality of larvae exposed to residues of thiacloprid (5.0%) was similar to the control group, and not significantly different. Fertility of adults treated as larvae with thiacloprid was not affected, although both number of eggs per female and egg hatching was lower than control, again did not differ significantly. Reduction of beneficial capacity in 1st instar larvae of *E. balteatus* was on 24.9% (IOBC category 1).

### **Comment by the notifier:**

The observed effects of the thiacloprid at an application rate equivalent to 96 g a ha on hover by larvae (*Episyrphus balteatus*) indicate a low sensitivity compared to some of the non-target arthroports as tested for the regulatory data package. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

Report:

Title:

Report No.: Document No.: Guidelines: GLP/GEP: Susceptibility of cocooned pupae and adults of the presitoid Microphils methator to selected insecticides M-465998@1-1 M-465998@1-1 not applicable not applicable

### Executive summary

This study examined the fithal and sub-lethal effects from contact exposure to dry residues of several insecticides (including miacloprid) the parasitoid Microplitis mediator. Material and methods as well as results are summarised for thiacloprid only. Momediator were cultiged in the laboratory from stock collected or Brassica fields in Bergium, using host larvae Mabrassicae (3-4 first-instar) for culture. For stock A-mated females of M. mediator (1-4 day old) favae were placed in a petri-dish (90 mm diameter × 15 mm height), each containing 20-x host larvae. After 4h contact, M. brassicae larvae were transferred to rearing cages of diameter 10 cm digh, with ventilated lids, where fed artificial diet ad libitum until parasitoid wasp cocoons formed. One day-old cocoons were transferred to larger 'Bugdorm-1' (30 × 30 × 30 × 30 m) adult rearing cage (MegaView Science Education Services Co., Taiwan), each with a plaster cup (F cm (Qa)) filled with cotton wool soaked with honey-water (20% honey in two water). Cultures were mantained and experiments conducted at  $23 \pm 1^{\circ}$ C,  $60 \pm 10^{\circ}$  RH with a 16.8h light:dark (L:D) photoperiod (Thiacloprid assay used a single dose fresh solution of Calypso 480 SC prepared at 96 g. e.s./ha and sprayed on two glass plates (90 mm dia) yielding a homogeneous spray coverage  $p \not = 1.58 \pm 0.06$  mg aqueous solution deposit per cm², which then dried for 1 day. For controls, the glass places were sprayed with distilled water and similarly dried. Glassplates were then joined to Plexiglas cylader (90 mm dia × 12 mm height) with seven ventilation holes (5 mm dia) covered with pylon gauze to form Drum cells. A plastic tube with cotton wool connected to water reservoir led through the cylinder provided drinking water, and a honey droplet on the nylon gauze as food (changed weekly). One virgin female and one adult male were confined to each drum-cell, with 12 plicates for each product and control. Adult mortality was recorded after 24h exp@ure. To oviposit, surviving females were each placed for 4h in a petri-dish containing 20 M. brassicae (first-instar) larvae, and the number of stings by the female parasitoids (parasitisation activity) in the 1st hour was recorded, before wasps were returned to Drum-cells and survival (of both sexes) recorded daily and longevity determined. Each group of exposed (and potentially parasitised)



caterpillars and any emerged/ cocooning wasp pupae were cultured as above. For effects on pupae, 1-2 day-old cocoons were stuck onto cardboard  $(4 \times 4 \text{ cm}^2)$  using honey-water (50% honey in tap water) and sprayed with product at same concentration as adults (or with distilled water in controls). were left to dry 2h then placed in petri-dishes (90 cm dia) until emergence. Sub tethal (parasidisation) activity, parasitism percentage and longevity) and lethal (percent mortality of cooned pupae) impacts were analysed with the Independent Samples T-test (P=0.05) and means compared with the ct conta hiaoloprid & per famale/h)-T. Antly reduced: Introl but not statistical of the other of the oth control. Percentages were transformed by arcsine square root. Adult survival of both sexes and mortality of cocooned pupae was not affected by direct confact with thiacloprid residue. There were no clear differences in development time of pupar Thiacloprid and have a slight effect on parasitism activity of surviving (reduced number of stings per female/h). The number of parasitised moth larvae per female was was not statisticall significantly reduced. Longevity of female offspring was statistically significantly lower than the control but not statistically significantly lower longevity for male offspring was observed Material and methods: Bayer FropScience N.V. A. Material 1. Test material Test item: Active substance(s): .utions: <u>solutions</u> nicle/solvent: Source of vehicle/solvent: Concentration of vehicle/solvent: <u>3. Test organism(s)</u> Species: ultivat purce of test sper-ye of test or p grr Adjuvant / Surfactant: Microplitis mediator (Haliday) (Hymenoptera: Braconidae) Collected in Brassica Fields, Belgium a stated at regument and conditions provide to test Acclimatisation: Host: H



### B. Study design and methods

1. Test procedure Test system (study type):

Duration of study: Treatments: Test concentrations Number of replicates: Individuals per replicate: Test units (type and size):

Application / device / nozzles: Water volume: Calibration of sprayer: 2. Environmental conditions Test medium: Temperature / relative humidity: Photoperiod: Lighting 3. Observations and measurements: Analytical parameters measured: Biological parameters measured:

performance of adults). Cocoons: Direct pray. Approx. 60 days Thiacloprid, control (distilled water) 96g a.s./ha 12 drum-cells [each product] and water controls 1 virgin female adult male Two glass plates (90 mm diameter) on 12mm High Dom Cells, or tichoo which (90 mm diameter × 15 mm height) Cornelis spray tower (1 bar pressure)

Adults: Residue on Drum-cells (Contact toxicity and reproductive

*ults:* Drum ce 8h (L:D

Individual counts, time (days) Mortality, parasitism activity (sting rate), varasitism (percentage stung larvad vielding wasp ocoons) and longevity of wasps (from Ô freated cocoons).

Measurement frequency:

For Mortality: After 24 h – then daily For papasitism activity: over Thour; For parasitism activity Not specified; Longevity: up to about 40 days (Once energed)

Independent Samples Toest, percentages arcsine square root Transformed

# **Results:**

Validity criteria: No validity criteria were

Statistical analyses:

**Biological findings** 

### Biological findings mumber of stings per tomale per hour? hour parasitism and longevity) of the wasp Ø

*	Q Microfitis mediat	or. V	× _>			
	Cocooned 5	or. Y	× A	dults		
	% % Mo	rtQity	Parasitism activity	%		ty (days) 5.E) °
Active ingredient		°₽ °+	(± S.E) ^c	Parasitism (± S.E) °	б	Ŷ
Control	©5.79 0 0 2 ± 1.83 0	0	13.56 ± 1.19	42.65 ± 3.20	$\begin{array}{c} 31.38 \\ \pm \ 0.88 \end{array}$	$\begin{array}{c} 37.85 \\ \pm \ 0.88 \end{array}$
Thiaeloprid	5.26 € 0	0	5.42 ± 2.19 °(*)	$\begin{array}{c} 32.50 \\ \pm \ 6.61 \end{array}$	$27.80 \pm 2.67$	30.80 ± 2.62 ^a (*)

^a (*) Significantly different from the control (Independent Samples T- test, p < 0.05)

^b Percentage of parasitism was calculated as: (Number of parasitoid cocoons formed / number of host larvae exposed)*100

° Standard error



M-470745-0991

not applicable; not applicable

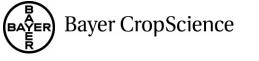
Adult survival of both sexes was not affected by direct contact with thiacloprid residue (0% mortality). Mortality of cocooned pupae (7.25% mortality) was also not significantly different from the control. There were no clear differences in development time of pupae, ranging from 4.7-6.3 days in treatments and control. Thiscoprid had a slight but statistically significant (P=0.05) effect on parasitism activity of surviving females with lower average number of stings per female/h from 9.56 in control to 3.42. The number of parasitised moth larvae per female wasp was not statistically significantly reduced compared to control (32.50% compared to 42.65% in the control). Longevity of female offspring was statistically significantly lower than the control (30.80 days in those from parental stock that had direct contact with thiacloprid versus 37.85), but no statistically significantly lower longevity for male offspring was observed.

### **Comment by the notifier:**

The observed effects of the thiacloprid at an application rate equivalent 696 g a.s./ha on the parasitoid Microplitis mediator indicate a low sensitivity compared to Aphidias rhopalosiphi as tested for the regulatory data package. Therefore, the information is classified as by supplementary information (EFSA Journal 2011;9(2)2092%

### **Report:**

Title:


Acute toxicity and safety valuation of neonicotinoids and macrosyclic loctones to actult wasps of four Trichogramma species (Hymenoptera:Trichogrammidae) M-470745-01€

Report No .: Document No.: **Guidelines: GLP/GEP:** 

# Executive summary:

This study assessed the side offects of multiple insectioides on beneficial trichogrammatid wasps (Trichogramma spp: Hymenoptera; Chateidoidea). Specifically, the pesticide membrane method was used to assess the acute toxicities of the insecticides, including this cloprid for adult T. japonicum , T. Confusion Viggiani and T. evanescens Westwood. This Ashmead, T. Astriniae Pang and study employed the dry film residue method under laboratory conditions. Material and methods plus results are summarised for this loprid only.

Four Trichogramma species (T. japonicum, T. osteiniae, T. confusum, and T. evanescens) were provided by Guangdong Provincial Insect Research Institute, from stock raised indoors for multiple years, and here raised in an artificial climate box (temperature  $25 \pm 1^{\circ}$ C, relative humidity 70-80%, light cycle 16L; 8D) using eggs of (Sercyrd Sephalonica Stainton (Lepidoptera; Pyralidae) as the host for reproduction. In the test adult Trichderamma were used at 24-48 h of eclosion from pupa. The host moth 2. ceptalonico were provided by the Nanjing Agricultural University (Ministry of Agriculture Huadong Crop Harmful Organism Integrated Pest Management Key Laboratory), and larva raised m commercial corn flour using a (20 cm  $\times$  15 cm  $\times$  6 cm) plastic container (temperature 25% I°C, relative humidin 70-80%, and the light cycle was 16L: 8D). All host eggs were irradiated for 30 minu@s (min) under a 30W ultraviolet bulb prior to wasp propagation to kill the moth embryos. Thiacloprid was prepared directly with acetone into a fixed concentration stock solution (See Table 1 for the active ingredient quantities, source, and recommended field doses). Here, they used slight



modification of the pesticide membrane method to measure acute toxicity of insecticides to adult Trichogramma spp. Pretesting precisely defined the basic effective concentration range and the active agent was mixed with acetone to form 5-7 dilution concentrations at geometric gradients. 0.5ms test solution aspirated into a finger-shaped tube (1.5 cm diameter  $\times$  8 cm length, 53.88 cm²) served as one treatment. The experiment used three repetitions for each treatment, and acetone as control. The take with the added treatment solution was then rolled horizontally on a table top to form a uniform membrane inside the tube, and acetone volatised. Each tube with residue then was inoculated with 800 100 adult Trichogramma spp. at 24-48 h eclosion stage, and wasps allowed to craw freely over treated internal surfaces (the entrance was likely closed). After 1 hour (1h), wasps were transferred into another clean untreated tube and fed 10% honey water, and a blackcloth sealed the opening. This tube was placed into an artificial climate box (temperature  $25 \pm 1^{\circ}$ C, relative humidity 70, 80%, out of the light). After 24h, tubes were checked and recorded the numbers of dead wasps (defined as did move after body contacted with a small pen) then mortality rate was calculated. If the mortality rate in the control group of Trichogramma spp. was \$10% then the fest was deemed value. Statistics and analysis: Probit analysis was used to calculate 59% lethal concentration (LC50) and 95% confidence interval. Presence or absence of JSC 50 and overlap in the 95% confidence interval between treatments and control was the standard for judging significance. Safety factor insecticide OR50 (mg/m²) to Trichogramma/thiaclopeid maximum recommended field dose (mg/m²); where ER50 was the half-lethal dose (dose causing a 50% mortality rate in Tftchogromma spp. in these conditions), expressed using the unit area of adhered active ingredient. Results of safety evaluation here for four Deneficial wasps (Trichogramma spp.) showed thiacloprid was generally ranked as moderate risk with lowest safety factor of 3.45 for T. ostimiae (and lowest LC50 of 371.91 mg a.s. L), intermediate but still moderate risk for T. japonicum and T. confusum, up to high risk with the safety factor 0. For *T. evanescens* (bighest LC₅₀ 17.36 mg a.s./L). 

### Material and methods:

A. Material

 in

 in
 Thiacloperd 97.75  $\bigcirc$ T. japonicum, T. ostriniae, T. confusum and, T. evanescens Adults at 24-48h of eclosion.

Artificial climate box (temperature  $25 \pm 1^{\circ}$ C, relative humidity 70-80%, light cycle 16L: 8D) using eggs of Corcyra cephalonica Stainton (Lepidoptera; Pyralidae Each species raised indoors for multiple years



### B. Study design and methods

1. Test procedure Test system (study type): Duration of study: Treatments: Test concentrations Number of replicates: Individuals per replicate: Test units (type and size): Application / device / nozzles: Water volume: Calibration of sprayer: 2. Observations and measurements: Analytical parameters measured: Biological parameters measured: Measurement frequency: Statistical analyses:

Pesticide membrane method (dry film residue) 24 h (plus additional setup time) Thiacloprid and control (acetone) 10.08 (See table 1) 3 per treatment 80-100 adult *Trichogramma* spp. at 24-48h eclosion stages finger-shaped tabe (1.5 cm dianteter × 8cm length, 53,38cm²) Aspirator 0.5mL -Mortality (IZ 50, LR 50) After 24 b

After 24 h Probit analysis for 50% lethal concentration (LC50) and 95% confidence interval; Safety factor = insecticide LR50 (mg/m²) (maximum recommended field dose (mg/m²)

### **Results:**

Validity criteria:

If the mortality rate in the control or oup of Trickogramma was < 10% then the test was deemed valid.

Biological findings: Acute toxicity of insecticides to adult of four *Trichogramma* spp. (*T. japonicum, ostriniae, confusum* and *evanescens*) varied vodely. For *T. japonicum*, this cloprid had a mean  $LC_{50}$  of 77.34 mg a.s./L For *T. ostriniae*, this cloprid had a mean  $LC_{50}$  of 371.91 ong a.s./L. For *T. confusum*, this cloprid had a mean  $LC_{50}$  of 175.90 mgg.s./L.

For *T. examples cens*, this opricitial a free  $LC_{50}$  of  $\mathcal{F}$ .36 mg a.s.  $\mathcal{E}$ .

roi 1. evenescens, unaropriorad a mean LC 50 01-7.50 mg a.s.

Table CP 10.3.2.1-2.	Acute	toxicity	of thia	cloprid t	o adult	: Trichog	<i>ramma</i> spp.
	<u></u>		1		$\sim$		

2	Shope (mg/ m ² )			<b>R@</b> ng/ n ² )	^{⊗y} ∂LC50	Slope	LR50 (mg/ m ² )	LC50	Slope	LR50 (mg/ m ² )
Trừch Sjap	ogramma 🖏 onicum 🔊	Tricho Tricho	gramma ining		Tric	hogramn onfusum	na		hogramn anescens	
75.34 (67.30	N Q	370091 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.93 3788.	Q 1.92 ↓ ± Q 34	¥ .84	175.90 (156.1 3  208.24 )	1.70 ± 0.13	16.51	17.36 (15.39 	1.42 ± 0.07	1.63

^a Slope is to presented as mean  $\pm$  SFC

The safety evaluation of macloprid indicated the safety grades were the same for adults of *T. japonicum* and *T. confusum*, as moderate risk (with safety factor 0.70- 1.64). Safely values were considerably lower for adult T. *ostriniae* (3.45) but again considered in same class as moderate risk, however this was one grade lower than their safety to *T. evanescens*, where thiacloprid was considered high risk to adults (the safety factor was 0.16).

able CP 10.3.2.1-5: Safety evaluation thiacloprid to adult <i>Trichogramma</i> spp.							
Safety grade	Safety factor (SF)	Safety grade	Safety factor (SF)	Safety grade	Safety factor (SF)	Safety S grade	
ramma	Trichog	ramma	Trichogr	amma 🙏	Trich	gramma 🚽	
icum	ostri	niae	aconfu:	sum 🎝	exa	hescens a	
Moderate risk	3.45	Moderate risk	1.64	Moderate Oisk	0.16	~ High	
	Safety grade ramma icum Moderate	Safety gradeSafety factor (SF)rammaTrichog ostri.Moderate3 45	Safety gradeSafety factor (SF)Safety graderammaTrichogrammaicumostriniaeModerate3.45Moderate	Safety gradeSafety factor (SF)Safety gradeSafety factor (SF)rammaTrichogrammaTrichogr ostriniaeTrichogr ostriniaeModerate3.45Moderate164	Safety gradeSafety factor (SF)Safety 	Safety gradeSafety factor (SF)Safety gradeSafety factor (SF)Safety gradeSafety factor (SF)rammaTrichogrammaTrichogrammaTrichogrammaicumostriniaeConfusumevalModerate3.45Moderate1.64Moderate0.16	

 $SF = LR_{50} (mg/m^2) / FMRD (mg/m^2)$ , where FMRD = Field maxemum recommended dose

### **Results summary:**

Results of safety evaluation here for four benchicial wasps (*Prichogrammus*spp.) showed thiackoprid was generally ranked as moderate risk with lowest safety factor of 3.45 for *T. ostrinica* (and arghest LR₅₀ of 34.84 mg a.s./m²), intermediate but still moderate risk for *T. faponicum* and *T. confusum*, up to high risk with the safety factor 0.16 for *T. evanescens* (lowest LR₅₀ 1.63 mg a.s./m²).

### Comment by the notifier:

The study results indicate clear toxicity of thiaclopric to the tested *Grichogramma* species (lowest LR₅₀ 16.3 g a.s./ha). The data do not influence the outcome of the non-target anthropod risk assessment since *A. rhopalosiphi* proved to be clearly more sensitive under tier. I faboratory test conditions. Therefore, the information is classified as b) supplementary information (EFSA) purnal 2011;9(2):2092).

Report: [©] [©] 9 [·] [·] [·] [·] [·] [·] [·]	
2013; M-468828-01-1 0 0 0	
Title: A Insecticide toxic effects on Trickogramina ostruaiae (Hymenoptera:	
Parent No.	
Report No.: $\Im M-46\$828-0\hbar$	
Document No $\cdot$ $\sim$ M-468828 $\mathcal{M}_{-1}$ $\sqrt{2}$	
Guidelines: not applicable; for applicable a	
GLP/GEP: A AND A A A A A	
Executive summary, A A A A A A	
Executive summary A A A A	

The present study examines the toxic effects of selected insecticides on *T. ostriniae* under laboratory conditions. Material and methods as well as results are summarised for thiacloprid treatments only. The host *Core ra cephalonea* was obtained from the Guangdong Entomological Institute (Guangzhou, China). *Tricogramma ostiniae* was mass maintained on the eggs of the host, *C. cephalonea*. After the parasitism period (24 h), parasitised eggs were kept in a chamber with 50% honey solution until the emergence of the adults. All insects were maintained at  $25 \pm 1$ °C temperature,  $70 \pm 10\%$  RI and 10.10% photoperiod. Parasitoid adults at a uniform age of 24–48 h after emergence, were used in the experiment.

Thiacloprid (97.75%) was purchased from Tianjing Xingguang Chemical Co., Ltd and used for the dry film residue method. Six concentrations with a twofold increase in geometrical ratio were tested. Therefore, thiacloprid was dissolved with acetone and pure acetone was used as control. 500 µL



solution was introduced into a glass tube (height 8.0 cm; diameter 2.0 cm; Internal surface area 53.38 cm²). After complete evaporation (1 h), 80-100 adult parasitoids were introduced and in each tube small plastic strip with two honey drops were placed. Then, the tubes were maintained at  $25 \pm \sqrt{2}$  $70 \pm 10\%$  RH and 14:10 h (L:D) photophase. Three replicates were conducted for each dose After 10 h of exposure, the wasps were transferred into a clean insecticide-free tube that contained a honey solution. After 24 h, dead parasitoids were counted. Wasps showing no movement when prodded were

solution. After 24 h, dead parasitoids were counted. Wasps showing no movement when brodder were counted as dead. The mortality percentage of each insecticide for *T. ostrinice* was corrected using the Nobol's formula. The data were then subjected to probit analysis, as described by Finney. The LS₀ value to *T. ostrinice* was 376.3 (308.2–489.1) mg a.s.L.4 **Material and methods: Naterial methods: Naterial and methods: Naterial and methods: Naterial method** 



### **B.** Study design and methods

1. Test procedure Test system (study type): Duration of study: Treatments: Test concentrations Number of replicates: Individuals per replicate: Test conditions:

Test units (type and size):

Application / device / nozzles:

Water volume: Calibration of sprayer: 2. Environmental conditions Test medium: Temperature / relative humidity: Photoperiod: Lighting 3. Observations and measurements: Analytical parameters measured: Biological parameters measured Measurement frequency: Statistical analyses:

dry film residue method (contact acute toxicity)

Six concentrations with a twofold increase in geometrical ratio

glass tubes (height 8.0 cm; diameter 2.0 cm; internal Surface area

 $25 \pm 1^{\circ}$  C,  $70 \pm 40^{\circ}$  RH and  $14^{\circ}$  10 h (L :D) photoperiod

### **Results:**

Validity criteria:

No validity criteria were stated

Biological findings:

Ø Table CP 19.3.2.1- 6: Median lethal concentration of thiscloprid to Trichgramma ostriniae

24 h

3 replicates

Thiacloprid and control

80-100 wasps per-treatment

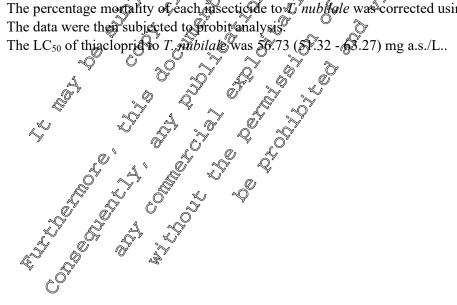
				N O	
Treatment	Stope (SE)	LC50 (95%	% FI},mg a,s./È	$\int \mathcal{D} f(\chi^2)$	LC95 (95% FI) mg a.s./L
Thiacloprid	2.12 (0.11)	376,3 (3	308.2-489.19	4 (14.7)	2240.5 (1429.6–4366.6)
				~	

(5)8.2-489.1) mg a.s./L after 24 h. The LC50 value to T. Otriniqe

# Comment by the notifier:

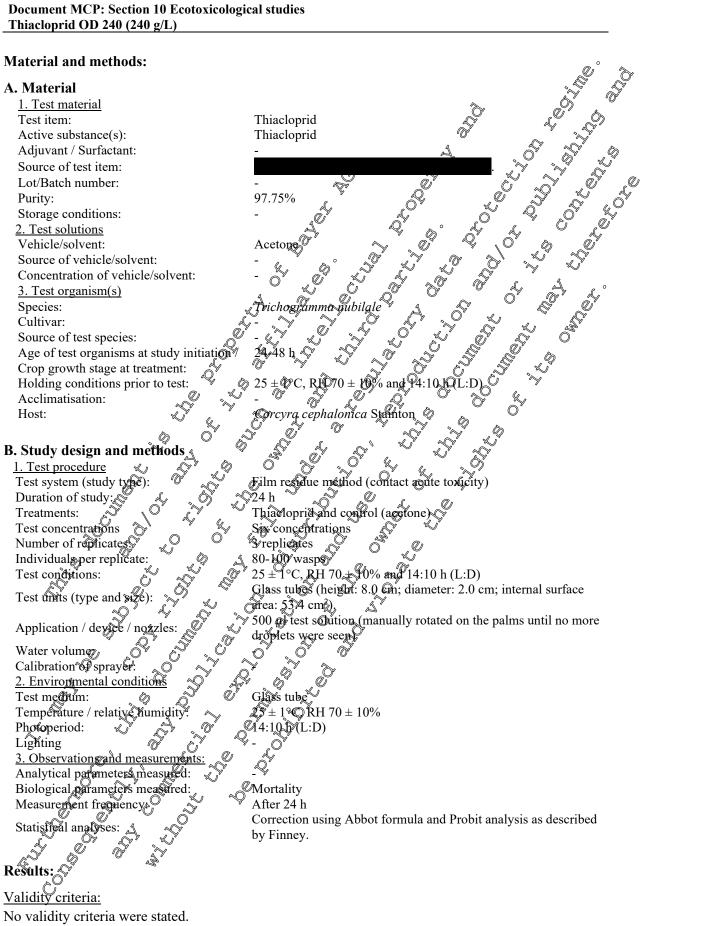
The study results indicate a low toxicity of hiacloprid to T. ostriniae (376.3 mg a.s./L, considering 0.5 mL application volume and 53.38 cm² this is equivalent to 352 g a.s./ha). The data do not influence the outcome of the non-target arthropod risk assessment since A. rhopalosiphi proved to be more sensitive under tier 1 laboratory test conditions. Therefore, the information is classified as b) supplementary

information (EFSA ) Yournal 2011;9(2):2092).




Report:	
	; 2013; M-468834-01-1
Title:	Susceptibility of adult Trichogramma nubilale (Hymenoptera: Trichogrammatidae) to
	selected insecticides with different modes of action
Report No.:	M-468834-01-1
Document No.:	M-468834-01-1
Guidelines:	not applicable; not applicable
GLP/GEP:	no co de construction de la cons
<b>T</b> 4	
<b>Executive summary</b>	
The objective of this	Susceptibility of adult Trichogramma nubilale (Hymenoptera: Trichogrammatidae) to selected insecticides with different modes of action M-468834-01-1 <b>not applicable; not applicable</b> <b>no</b> study was to assess toxicities of several insecticide including this cloprid with tion to <i>T. nubilale</i> and provide pest managers with specific information for
	time to T and ital and a second several insection destine to information of the
	don to 1. montate una provide pesemanagers with spectre incominaçãos for
implementing compa	tible biological and chemical controls for correcepidopteran IPM. Material and
methods as well as re	sults are summarised for thiagleprid fully.
	tained in the eggs of the rice moth. Corcyca cephalonic Stainton (Lepidoptera:
Duralidae) og hagt De	trasitised eggs and adults were maintained at $25^{\circ}C \pm 1^{\circ}C$ and $70\% \pm 10\%$ relative
ryranuae) as nost. Fa	Tasitised eggs and additis were manifalled at 20 C $\pm 4$ , C and 70.78 $\pm 40.78$ charve
	h (L:D) photoportod. Adult wasps that emerged from the hosts were maintained
in a glass tube contain	ning a small prece of thick paper that had been proviously dipped in a 40% honey
solution. Adult wasp	s, 24-48 h after emergence, were used in the experiments.
	Tianjing Qringguang Chemical Co., Ltd.) was used as test substance.
<b>1</b>	Iry film residue method was used to assess the toxicities of insecticides on T.
mubilala Adults war	e exposed to 6 concentrations with 2-fold increases in geometric ratio. Acetone
solutions of insecticio	des were prepared in glass tube (height x diameter, 8.0 cm) 2.0 cm; internal

surface area, 53.4 cm? Pure acetone was used as a control. To obtain homogeneous deposition, we introduced 500 µl of solution, which completely covered the laternal surface of the tube. After complete evaporation, 80-100 parasitoids with 2 honory drops wer introduced. they were maintained at 25 °C  $\pm$  1 °S and 7.  $\pm$  16% relative humidity with a 4:10 k (L:D) photoperiod.


Three replicates were conducted for each dose. After 1 h of exposure, the wasps were transferred into a clean insecticide-free tube that contained a honey solution. After 24 h, dead parasitoids were counted Wasps, showing no movement after a probing, were counted as dead.

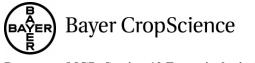
The percentage monthly of each insecticide to I nubitale was corrected using the Abbott's formula.





### Material and methods:




### **Biological findings:**

Biological findings	<u>8:</u>								
Table CP 10.3.2.1- 7: Median lethal concn of thiacloprid to T. japonicum									
Treatment	Slope (SE)	LC ₅₀ (95% CI)	$Df(\chi^2)$	LC95 (95% CI)					
Treatment	Slope (SE)	mg a.s./L		mg as./L					
Thiacloprid	1.81 (0.09)	56.73 (51.32-63.27)	4 (6.24)	461.2 (\$62.0-6(8.3)					
	The LC ₅₀ of thiacloprid to <i>T. nubilale</i> was 56.73 (51.32 $\cancel{53.27}$ ) mg a.s. $\cancel{57}$ $57$								
Comment by the	notifier:	A							
The study results in	ndicate moderate tox	icity of this loprid to	T. nubilale (56.73 m	g a.9./L, considering					
0.5 mL application	volume and 53.4 cm	n ² this is equivalent to	53.1 g.a.s./ha). The	data do not influence					
		l risk assessment sipc							
	ormation (EFSA Jour	rat 201 + 9(2):2092).	e information is clas						
supprenientary mit									
	, Ó ^s								
				S S					
Report:	i		<b>.</b>						
1.00001	2013; M=462301-0	l-1		, , , , , , , , , , , , , , , , , , ,					
Title:		eleçted Insectricides and I	Risk Assessment in the	Insect Egg Parasitoid					
	Trichogramma con	fusum (Hymenoptera: T	richogrammaticae)	K .					
Report No.:	M-462301-01-1								
Document No.:	NI462309-01-1 not applicable no		ON SA SY	,					
Guidelines:	not applicable no	t applicable $\sim$							
GLP/GEP:	S ^{ino} o ^x y ^y y								
Ö									
Executive surpma	ry v	t applicable 5	Ő. U						
Tanisita de la se			e the a Brune of a trader of						

Toxicity effect of insecticides to *T. confusum* was evaluated in the dirrent study. The objective was to provide pest managers with specific information for implementing compatible biological and chemical control methods for epidopterous pests. Material and methods as well as results are summarised for thiacloprid only.

*T. confusum* was maintained in parasitised ergs of the rice moth, *Corcyra cephalonica* Stainton (Lepidoptera Pyralidae). Parasitise d ergs and adult parasitoids were kept at  $25 \pm 1^{\circ}$ C and  $70 \pm 10\%$  RH with a photoperiod of 4:10 C.:D) is They were fed with 10% honey solutions. Adult wasps (24-48 h old) were used in the experiments.

Thiacloprid (tech., 97,75%, Tianjing Xingguang, hemical Co., Ltd.) was dissolved with analytical grade acetone to obtain the desired concentrations and was used directly for contact toxicity study. Six different concentrations of each insecticide with two-fold increases in the geometrical ratio were tested. 500 µl acetone solutions were applied to the inner surface of glass tubes (height x diameter, 8.0 cm x 2.0 cm, internal surface area, 53.38 cm²). Pure acetone was used for the controls. After complete evaporation (1 h) adult parasitolds (80-100) were placed in each tube and two drops of honey were added. In the following, they were maintained at  $25 \pm 1$  °C and  $70 \pm 10\%$  RH with a photoperiod 14:10 (L:D) h. Three repletates were used for each dose. After 1 h of exposure, the wasps were transferred into a clear insecticide-free tube that contained a honey solution. After 24 h, the number and percentage mortality of dead parasitoids in the tubes post exposure to insecticides were counted. Wasps showing no movement on probing were considered dead.



The percentage of mortality for each insecticide to *T. confusum* was corrected by using the Abbott formula. Moreover, the mortality in the controls should not exceed 10% at the end of either test. The data were then subjected to probit analysis using the EPA Probit Analysis Program (version 1.5). The LC₅₀ of Thiacloprid to *T. confusum* was 176.5 (157.6-200.4) mg a.s./L.

	Thiacloprid Thiacloprid Thiacloprid 7.75%, Acetone T. confusure $T. confusure T. confusureT. confusure T. confusure T. confusure T. confusureT. confusure T. confusureT. confusure T. confusureT. confusure T.$
Material and methods:	
A. Material	
1. Test material	
Test item:	Thiacloprid
Active substance(s):	Thiaclopzid Q & L C
Adjuvant / Surfactant:	
Source of test item:	
Lot/Batch number:	
Purity:	97.75%, L C C C C L L C
Storage conditions:	
2. Test solutions	
Vehicle/solvent:	Agetone L by A C A O
Source of vehicle/solvent:	
Concentration of vehicle/solvent:	
3. Test organism(s)	
Species:	T. confusing
Cultivar:	
Source of test species:	
Age of test organisms at study initiation 🖉	Adut 24-48 h
Crop growth stage at treatment	
Holding conditions prior to tot:	$25 \pm 1^{\circ}$ and $70 \pm 10^{\circ}$ RH with a photoperiod of 14:10 (L:D) h
Acclimatisation:	
Host: $(5^{\circ}, 6^{\circ}, 5^{\circ}, 4^{\circ})$	Corcyra cephalonica
Acclimatisation: Host: B. Study design and methods <u>1. Test procedure</u> Test system (study type) Duration of study:	
B. Study design and methods	Acute contact toxicity 24 h Thiacloprid and control (acetone) Six concentrations with twofold increases in geometrical mean 3 replicates 0-100 individuals per treatment Glass tubes (height x diameter, 8.0 cm x 2.0 cm; internal surface area 53.38 cm ² ) 500 µl test solution (manually rotated on the palms until no more droplets were seen)
1. Test procedure	
Test system (study type)	Acute contact toxicstv
Duration of study:	$24\%$ $0^{\circ}$ $\sqrt[4]{}$ $0^{\circ}$
Treatments:	Thiacloprid and control (acetone)
Test concentrations	Six concentrations with twofold increases in geometrical mean
Number of replicates:	3 replicates
Individuals pareplique.	<b>60</b> -100 individuads per treatment
Tast units (types and size)	Glass ubes (reight x diameter, 8.0 cm x 2.0 cm; internal surface
Test units type and size).	area(53.38, Qm ² )
Application / device prozzles Q.	$500 \mu$ l test solution (manually rotated on the palms until no more
Application / device / Apzzies.	droplets Overe seen)
Water volume: 📣 💭 💭	
Calibration of sprayer: The sprayer of the sprayer	′ - ₆ 0 [°]
2. Environmental conditions	
Test medium Temperature/ relative hundity:	Glass tubes
Temperature / relative humodity:	$25 \pm 1^{\circ}$ C and $70 \pm 10\%$ RH
Photopenson: A b b	14:10 (L:D) h
Lighting	-
3. Observations and ineasurements:	
Analytical parameters measured:	- Mart Pas
Biological parameters measured:	Mortality
Measurement frequency:	After 24 h
Statistical analyses:	-



### **Results:**

### 1. Validity criteria:

### 2. Biological findings:

1. Validity criteria	<u>1:</u>		
The mortality in th	he controls shou	ald not exceed 10% at the end	of either test.
2. Biological findi	ings:		1) mg as $\mathcal{A}$ infler 24 h $\mathcal{A}$
The LC ₅₀ of Thiac	cloprid to T: cor	<i>ufusum</i> was 176.5 (157.6-200.4	
	-	concentrations of insectivides to	
Insecticide	Slope (SE)	LC50 (95% CI) mg a.s./L	LC95 (95% CD mg a QL
Thiacloprid	1.77 (0.09)	1765 (1576 ( 1000 1)	
Thiacloprid	1.77(0.09)	176.5 (157.6 200.4)	Q 1,507 (1,144 - 2,106) U (ℓ
Thiactoprid	1.77 (0.09)		$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{507}{2} \frac{11}{2} \frac{144}{2} - 2 \frac{106}{2} \frac{10}{2} \frac{10}{$
Results summary	v:	fusum was 176.5 (¥57.6 200.4)	

### **Results summary:**

### Comment by the notifier:

The study results indicate low toxicio of the cloped to To Fonfustion (175.5 mga.s./L considering 0.5 mL application volume and 53.38 m² this is equivalent to 165 g a.s. (ha). The data do not influence the outcome of the non-target arthropod risk assessment since Anhop to siph proved to be more sensitive under tier 1 laboratory test conditions. Therefore, the information as b) supplementary information (EFSA Journal 2011;9(2):2092).

Report: 🔊 🕱 🤅 ; ; ; ; ; ; ; ;
2013; M-468833-01-1y 2 2 2
japomeum, and egg parasiteid of rice Pepidoprerans
Report No.: $M_{-46883}$ $M_{-1}$ $M_{-46883}$ $M_{-1}$ <
Guidelines: "what analicable: not anoticable"
GLP/GEP: Sno 4 5 5 5 6 5
Executive summary of the the the the

This study assessed, the toxicity of insecucides on a bological control agent, Trichogramma japonicute Ahmead (an agg parasitoid of right repidenterans) by using a dry film residue method. Material and methods as well as results are summarised for Thiacloprid treatments only. T. japonicum was maintained on sggs of the host, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae). Parasitised eggs were and @ merged adults were maintained at 25 °C ± 1 °C, RH of 70 ± 10% and 14:10 h (L:D) photoperiod. Age of adult parasitoids was standardised at 24-48 h postemergene for peripents. ~0

Thiaclopica (tech, 97.75%, Tianjing Xingguang Chemical Co., Ltd.) was dissolved with analytical grade acctone to obtain the desired concentrations and was used directly for contact toxicity study. 500 µl Acetone solutions of insecticide were made in glass tubes (height: 8.0 cm; diameter: 2.0 cm; internal surface area: 53.38 cm²). Six concentrations increasing with a geometrical ratio of two-fold were tested. Pure acetone was used as control. After complete evaporation of acetone (ca. 1 h), adult parasitoids (80-100) were placed in each tube containing a small plastic strip with two drops of honey. The tubes were covered with fine nylon mesh to allow air circulation, and were maintained at  $25 \pm$ 



the data the da  $1 \circ C$ ,  $70 \pm 10\%$  RH, and 14:10 h (L:D) photophase. Three replicates were conducted for each dose and each insecticide. After 1 h of exposure, the wasps were transferred into a clean insecticide- free tube containing honey solution. Parasitoid mortality was determined at 24 h post-treatment. The waspe without any movement when prodded were counted as dead. The percentage of mortality of thiacloprid to *T. japonicum* was corrected by Abott formula. The were then subjected to probit analysis as described by Finney. The LC₅₀ of Thiacloprid to *T. japonicum* was 75.26 (65.95%7.50) mg a.s.L. Material and methods: A. Material 1. Test material Thiacloprid Q Test item: Thacloprid Active substance(s): Adjuvant / Surfactant: Ø Source of test item: Constant of the constant of th Lot/Batch number: Purity:



### B. Study design and methods

D. Study design and methods	
1. Test procedure	Im residue method (contact acute toxicity) h iacloprid and control (acetone) x concentrations eplicates -100 wasps $\pm$ 1°C, RH 70 $\pm$ 10% and 1440 h (L:D) ass tubes (height: 8.0 cm; diameter: 2.0 cm (internal) surface a: 53.38 cm ² ). 0 $\mu$ l test solution (manually rotated on the palabs until no more oplete were seen) 4 $1$ $2$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$
Test system (study type): Fil	m residue method (contact acute toxicity)
Duration of study: 24	h 🖒 🦷
Treatments: Th	iacloprid and control (acetone)
Test concentrations Six	x concentrations
Number of replicates: 3 r	replicates
Individuals per replicate: 80-	-100 wasps $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$
Test conditions: 25	± 1°C, RH 70 ± 10% and 14 00 h (L:D)
Test units (type and size): Gla	ass tubes (height: 8.0 cm; diameter: 2.0 cm, Internal surface
are	ea: $53.38$ gm ² ).
Application / device / nozzles: 500	0 µl test solution (manually rotated on the pales until no more,
dro	opletowere seen) $\sim$ $0^{\circ}$ $\sqrt{2}$ $\sqrt{2}$
Water volume: -	
Calibration of sprayer: -	
2. Environmental conditions	
Test medium:	ass tube no and a star a
Temperature / relative humidity:	$\pm$ TyC, RH 70 $\pm$ 10% $\swarrow$ $\checkmark$
Photoperiod:	(() [°] h (L:(0)) [*]
Lighting O ^V - X	
3. Observations and measurements:	
Analytical parameters measured:	
Biological parameters measured $\mathcal{Q}$ $\mathcal{A}$ Mo	ortality of a second
Measurement frequency:	ter 24 h
Statistical analyses:	prrecition using Abbot formula and Rrobit analysis as described
۶۶۶ 🔬 🖉 by	ass tubes (reight: 8.0 cm, maneter: 2.0 cm mitering) surface $a : 53.38 \text{ gar}^2$ . 0 µl test solution (manually rotated on the palates until no more poplets were seen) $a : 73.38 \text{ gar}^2$ . ass tube $\pm 1^{\circ}$ C, RH $70 \pm 10\%$ $40^{\circ}$ h (Ld) $a : 74^{\circ}$ h $a : 74^{$
Results:	
Validity criteria: S O N	
No validity criteria were stated.	
Results: <u>Validity criteria:</u> No validity criteria were stated.	Expine A control of the and record analysis as described

### **Biological fundings:**

# Table CE 10.3.2.1- 9: Median lenal concentration of Maclopeid to Tojaponicum

Treatment	Slope (SE)	LC56(95% (31)	$\mathbf{Df}\left(\chi^{2}\right)$	LC95 (95% CI) mg a.s./L
Thiacloprid	4.45 (0008)	7526 (6555-87.50)	4 (6.13)	1034.8 (727.5-1599.5)

### **Results summary:**

The LCs of Thiaclop the to T. Japonicum was 75.26 (65.95-87.50) mg a.s./L.

# Comment by the notifier:

The study results indicate moderate foxicity of thiacloprid to *T. japonicum* (75.26 mg a.s./L, considering 0.5 mk application volume and 53.38 cm² this is equivalent to 70.5 g a.s./ha). The data do not influence the outcome of the non-target arthropod risk assessment since *A. rhopalosiphi* proved to be more sensitive under tier Claboratory test conditions. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

# CP 10.3.2.2 Extended laboratory testing, aged residue studies with non-target



### arthropods

<b>Report:</b> Title:	l; An extended laboratory test parasitic wasp, Aphidius rh	; 2002; M-06601 to determine the		oprid OD 240	onthe	) )
Report No.: Document No.: <b>Guidelines:</b>	BAY-02-4 M-066016-01-1 <b>Mead-Briggs et al. (2000)</b> ,	۵. ۵.	extende <b>A</b> bor	atory te <b>st</b> desi		
GLP/GEP:	yes	A C F			$\vee$ $\ll$	

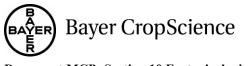
### Materials and methods:

Test item: Thiacloprid OD 240; Development no.: 30-00266399; Article no.200-05683696; Batch no.: 07690/0086(0082); TOX no.: 06069-00.

The test item was diluted in deionised water (200 P/ha) for application at rates equivalent to 22.9% 38.90, 12.30, 3.89 and 1.23 mL product ha (i.e. 30.0, 9,49, 3,00, 0.95 and 0.30 g as /ha, based on the measured content of a.s.).

A control treatment of deionised water (200 L/ha) and a toxic reference freatment of perfektion (nominally 400 g/L dimethoate, applied at a rate equivalent to 0.75 pL product/200 L water/ha) were also included in the experiment All treatments were applied to the upper (adaxid) surface of excised leaves of apple trees (*Malus domestica* var Bramley), using a calibrated laboratory sprayer. Prior to treatment application, a stripe of fuctose solution was drawn along the centre of each leaf to provide a source of food for the wasps. Following treatment, the leaves were allowed to div for approximately 1 h. They were then used to line the floor and ceiling of shallow atomas, with their treated surfaces facing inwards. They replicate a terms were prepared per treatment and 10 adult wasps (including a minimum of five females) were placed in each replicate arena (i.e. a total of 30 wasps per treatment). The wasps were also provided with a supply of tap water to drink. Assessments of treatment effects were made after 2, 24 and 48 h. To assess any sub-lethat effect on the relative fecundity of the insects, surfiving females (n = 15 per treatment) were taken from the control and from all treatment rates of the test item that resulted in 50% mortality. These wasps were individually confined over aphid-infested plants (untreated) and removed after a further 24 h. The aphid-infested plants were left for a further 10 days before the unmers of aphid mummies that had developed on them were recorded. The toxic reference freatment tresulted in 0% mortality.

for a further 10 days before the atmbers of aphrid mummies that ha recorded. The toxic reference treatment residued in 70% mortality.




### Findings and conclusions:

Test item	Thiacloprid OD 240 🔗 🖉 👌
Test object	Aphidius rhopalosiphi 🖉 🖓 🚀
Exposure	Apple leaves
	Mortality at 48 h (%) Mean mumeries per surviving female ##
Control	
Application rate#	Mortality at 48 h (%) Reproduction relative to control (%)
30.0 g a.s./ha	
9.49 g a.s./ha	
3.00 g a.s./ha	
0.95 g a.s./ha	7 7 0 74 5
0.30 g a.s./ha	
Observations	No adverse effects on behaviour with any of the test item treatments.
LR ₅₀ (95% c.l.)	493 g.a. 5/ha (2.08 & 9.05 g a.C.ha)
# Based on the measur	ed content of active ingredient. O & a so a so
<b>Conclusions:</b> The LR ₅₀ was calculated to b	No adverse effects on behaviour with any of the test item treatments. 433 g a s/ha (2.08 & 9.05 g a c/ha) ed content of active ingredient. I treatments were compared (33 g a/s./ha (2005; M-24712901-1) y to the ladybord beetle Coccipiella septempunctata L. (Coleoptera,
Report: Title: Coom	y to the ladybird beetle Coccinella soptempunctata L. (Coleoptera, elliçãe) using an extended aboratory test Phiacloprid, oil based suspension
Report No.: A W03/	rate a france and a france a f
Material and methods:	
Test item: Thiacloprid QD 2	105 Sample description: TOX05264-00; Product code: AE F158944 01
OD23 A101 Batch no.: 0769	0/0086(0082) Density: 1,046 g/mL; Analysed content: 239.53 g a.s./L.
v All	

The test item was applied to apple leaves at rates of 2 125; 6.25; 12.5; 25.0 and 50 g a.s./ha and the effects were compared to a toxic reference (a.s.: diffethoate) applied at 150 mL product/ha, and a water treated control. The pre-imaginal mortality was monitored over the duration of the study. The toxicity of the test item residues to the larvae and pupae are summarised below. The fertility and fecundity of the surviving hatched adults were then evaluated over the period of 14 days. Mortality and perioduction of each of the treatments are summarised below.

Mortality and eproduction in each of the treatments are summarised below.



### **Findings:**

r indings: Table CP 10.3.2.2- 2: Results from	m the ext. la	boratory	test with <i>C. sept</i>	empunctata	l		۶¢
Test item	Thiacloprid OD 240						ÿ
Test object	Coccinella septempunctaria						
Exposure			Apple	leaves	-0		
	Rate		Mortality [%]		Repro	Auction 2	1
Treatment	[g a.s./ha]	Uncor r.	Schurider- Örelli (corr.)	(*P- Oalue	Fertility (hatching rate)	Fertile eggs per fentale and day	Ś
Control (deionised water)	-	2.5	~ · .	¥_Q	Q 73.0	8.3	
AE F158944 00 OD23 A101	3.125	20.0	17.9	0,057	52.0	J 3.7 C	
AE F158944 00 OD23 A101	6.25	1765	چې15.4 ۲	<b>₩</b> 9.057		√ 0.9¥	
AE F158944 00 OD23 A101	12.5	72.5	× 71 × 1	¥.0000	÷** √	n_d.**	
AE F158944 00 OD23 A101	25.0		, 704.4 √Q	<.0001	" _{n.d.**} O"	@.d.**	
AE F158944 00 OD23 A101	50.0	100 [°]	~100 ~	₹.0001	Ô [™] n.d <i>&amp;</i> *	n.d.	
Reference item (ml prod./ha)	150	109	© 100 5		n 🕵 ** *	n.d	
LR50: 10.222 g a.s./ha ; 95% Co	nfidenceInt	erwał: (0.	000-27,629) 🌋	ý <mark>v</mark>		×	
LR50: 10.222 g a.s./ha ; 95% Co * Fisher's Exact test, two-sided, ** n.d.: not detected	p-values are	@djusted	according to Bor	ferron-Ho		~?	
** n.d.: not detected	<u>Q</u> `	Ĉa	<u> </u>	<u> </u>	<u> </u>	N N	

Ś In this extended laboratory study the effects of the test item residues of &E F158944 00 OD23 A101 to larvae of the ladybird beetle Coccinella septemplinctata were determined. The application was done onto detached leaves of apple trees (Malus communis). The dose rates of 3, 125 and 6.25 g a.s./ha had little influence on pre-imaginal mortality. At the test rates of 12.5, 25 and 50 g-s.s./ha there were significant effects on the preimagical mortality.

Reproduction was assessed in the two lowes rates of AE F158940 00 0023 A101, 3.125; and 6.25 g a.s./ha. The mean number of fertile eggs per female and day was 8.3 in the control and 3.7, respectivel \$20.9, in the 3,125 and 6.25 e a.s./horate. Because the reproductive performance was within the historical data base for control beenes (≥ 2 fertife eggs per viable female and day in the glass plate method) at 3.125 g a s ha, this parameter is considered as not impacted by this test item rate.

### **Conclusions:**

	e é	S .4	J.	Ĉĩ	<u> </u>	O Y
The ID.	was calculate	1 to 16	√.1∩ ຈ.	29 a	a Oha	, O [×]
$I \Pi C L \Lambda 50$	wassearculate	ມເບຼເໝ	z 10.44	‱∠g.	a. 5,711a.	× A

A	
· · · · · ·	
Report: *	,; <b>1</b> , <b>1</b> , <b>M</b> -419295-01-1
Title:	To active to the green lace wing Chrysoperla carnea STEPH. (Neuroptera, Chrysopidae)
	using an extended laboratory test on maize Thiacloprid OD 240 g/L
Report No.: 🖉 🗼	¢€W11€060 ≪
Document 🔊 : 🦼	⁷ M-499295-01-1
	VOGT EDAL. (2000) modified: Use of natural substrate (maize leaves) instead of
	glass place; CANDOLFI ET AL. (2001); For the duration of 36 h during the
	glass plate; CANDOLFI ET AL. (2001); For the duration of 36 h during the reproduction phase, the temperature was 22 - 25 °C (recommended range: 23 - 27
	glass place; CANDOLFI ET AL. (2001); For the duration of 36 h during the reproduction phase, the temperature was 22 - 25 °C (recommended range: 23 - 27 °C) and the relative humidity was 55 - 73% (recommended range: 60 - 90%).
Guidelines.	glass plate; CANDOLFI ET AL. (2001); For the duration of 36 h during the reproduction phase, the temperature was 22 - 25 °C (recommended range: 23 - 27 °C) and the relative humidity was 55 - 73% (recommended range: 60 - 90%). These minor deviations did not affect the results of the study as all validity criteria
Guideline?	elass plate; CANDOLFI ET AL. (2001); For the duration of 36 h during the reproduction phase, the temperature was 22 - 25 °C (recommended range: 23 - 27 °C) and the relative humidity was 55 - 73% (recommended range: 60 - 90%). These minor deviations did not affect the results of the study as all validity criteria were met
	glass plate; CANDOLFI ET AL. (2001); For the duration of 36 h during the reproduction phase, the temperature was 22 - 25 °C (recommended range: 23 - 27 °C) and the relative humidity was 55 - 73% (recommended range: 60 - 90%). These minor deviations did not affect the results of the study as all validity criteria



### Material and methods:

Test item: Thiacloprid OD 240 g/L; Sample description: FAR 01509-00; Specification no.: 102000021774 - 01; Batch ID: ECE5100633; density: 1.039 g/mL; Analysed content: 234.8 g as //L

The test item was applied to detached maize leaves (Zea mays) at rates of 22.1 39.3, 69.9, 124.3 and 221.0 g a.s./ha and the effects on the green lacewing Chrysoperla carnea were compared to those of a deionised water treated control. A toxic reference (active substance: Dimethoate) applied at 24.9 g a.s./ha was included to indicate the relative susceptibility of the test organisms and the test system. The preimaginal mortality of 40 larvae, 2 days old at study start (per test group), was assessed till the hatch of the imagines (up to 18 days). The fertility and fecundity of the surviving matched adult were then evaluated over the period of one week.

The climatic test conditions during the study were 23.5 - 26.5 % temperature and 63 74% relative humidity; for the duration of 36 h during the reproduction phase the temperature was 22 - 25 °C and the humidity 55 - 73%. The light / dark cycle was 19.8 h with a light intensity range of 1213 Lux during the mortality phase and of 1707 - 2770 Lux during the reproduction phase of the study

### **Findings:**

At the test item rates of 22.1, 39.3 and 69.9 g a.s. Ma, a corrected preimaginal mortality of 33.3%, 10.6% and 20.5% has been observed, respectively. At the highest rates of \$24.3 and 221.0 g a.s./ha, a corrected preimaginal mortalite of 46.2% and 84.6% was found.

	6. V					/
Test it	em: 🚿	A	Th	aclopsid OD 240	g/K/ 🔊	
Test organism: V V Chrysoperla carnea						
Exposure on Contraction Contra						
			🖗 Mortality		🖉 Reproo	luction
					^ <b>S</b> ∕Eggs	Fertility
~C		í 🎸			per female	[hatching
Treatment	g/a.s./ha	Uncorr.	Cort?	P-Valle(*)	and day	rate in%]
Contro	0 🔬	2.5			32.3	87.3
Test item	220	2° 35.0°	33.3	≪©001 sign.	33.6	87.5
Testitem	°3.9.3 °≈	12.8	~ 10.6 ^O	0.095 n sign.	29.5	85.0
Test item	~069.9 🗸	22.5 🔍	₽´2 <b>%5</b> ″		36.0	85.7
Test item	² 124. <u>3</u>	47.5 J	46.2	<0 <b>3</b> 901 sign.	38.4	90.8
Test item	224Q) ^y	\$ 85.00	≈>84.6	<b>≤9</b> .001 sign.	n.a.	n.a.
Reference item	24.0	1 <b>00,0</b> A	0 100 0	"O"	n.a.	n.a.
LR50: 144,8 g a	.s./ha (calcada	ted with Prob	t analysis)	<u>Ò</u>		
* Fichor' + voot	tast ana sida	1 No lugar	a diversal and	Judina to Donformo	ni II.alua	

Table CP 10.3.2.2- 3: Summary of the effects on mortality and reproduction for each treatment

Fisher's fixact test, one-sided, Walues are adjusted according to Bonferroni-Holm n.a. notassessed; n.sign , not significant; sign

# L 1

The LR₅₀ was calculated to be 144.85 a.s./h



Report:	j; 2012; M-436801-01-1
Title:	Toxicity to the predatory mite Typhlodromus pyri Scheuten (Acari, Phytoseiidae) userg
	Toxicity to the predatory mite Typhlodromus pyri Scheuten (Acari, Phytoseiidae) using an extended laboratory test on maize - Thiacloprid OD 240 g/L - TCP OD 240 g/L
Report No.:	CW11/055
Document No.:	M-436801-01-1
Guidelines:	EU Directive 91/414/EEC, Regulation (EC) No. 1107/2009
	BLÜMEL ET AL. (2000) modified, CANDOLFI ET AL (2001), 🔗 🔗 🖉
	US EPA OCSPP Not Applicable; not specified
<b>GLP/GEP:</b>	yes a d'a d'a d'a

Materials and methods: Test item: Thiacloprid OD 240 g/L; Sample description: TOX09597-09; Specification no. 102000021774 - 01; batch ID: ECE7100937; density, P.044 g/mL; Analysed content: 242.2 g a.s.

The test item was applied onto detached maize leaves (Zew mays at rates of 2, 0, 4.0, 0.0, 12 0 and 0.022.0 g a.s./ha and the effects on the predatory mite Typhiodropous pyti were compared to those of deionised water treated control. A toxic reference (active substance, Dimethoate) applied at 20.0 g a.s./ha was included to indicate the relative susceptibility of the test organisms and the test °~ system.

Mortality of 100 predatory mites, protentymphs at study start (10 replicates with 19 individuals per test group), was assessed 7, 10, 12 and 14 days after exposure by counting the number of Wing and dead mites. The number of escaped mites was salculated as the difference from the total number exposed. Due to the known repellent effects of the test item, the mortality part of this study was performed in closed but actively ventilated cells (Manger Pages) On day 7 after application the surviving mites were transferred on mitreated open@xposure units (glass plates) and the reproduction rate of surviving mites was then evaluated from day 7 until day 14 after reatment by counting the total number of offspring (eggs and large) produced

The climatic test conditions during the study were 24.0 25.5 & temporature and 62 - 81% relative humidity. The light / dark cycle was 1648 h with a light intensity range of 1790 - 2870 Lux.

 $\bigcirc$ 

# Findings:

The mortality / escoping rate in the control group up to day 7 after treatment was 8.0%. The mean corrected mortality of the mites and the mean reproduction ate of the surviving females exposed to

corrected mortality of the mites, and the mean reproducti the test item and the toxic reference is given below.

Test item:		Thiacloprid OD 240 g/L							
Test organi		Thiacloprid OD 240 g/L							
Exposure	on:	Detached maize leaves (day 0 to day 7 after application)							
		Mortali	ty after 7	days [%]	Reproduction				
					Rate	Red. rel. to		Ĉn	
Treatment	g a.s./ha	Uncorr.	Corr.	P-Value(*)	(eggs per	Control	P-Value(#)	Ĵ	
				S	female)	/ [%]		() i	
Control	0	8.0		-¥r	6.1 Q	Ŵ		Å	
Test item	2.0	34.0	28.3	<0.061 sign.	5,8 ^{0 v}	6.0 🖑	00,74 n.sign. 🖇		
Test item	4.0	87.0	85.9	<0_001 sign.	Qa.	∘ n. <b>4</b> .		1	
Test item	7.0	97.0	96.7	@.001 sign.	🔍 n.a. 🎧	n Raí.	S & M		
Test item	12.0	99.0	98.9	[≪] 0.001₀sign.	⊘″n.a,^∽∕	pn.a. 🔊			
Test item	22.0	99.0	98.9	<0.001 sign.	n.a.	n.a.C			
Reference item	20.0	98.0	97.8	x, Ö	na. 🖗	n.a			
R50: : 2.49 g as/	ha; 95% Co	nfidence Int	erval, 0.62	03.89; calcul	atedwith	bit analysis			

### Table CP 10.3.2.2- 4: Results from the ext. laboratory test with T. pyri

* Fisher's Exact test (one-sided), p-values are adjusted according to Bonfarroni-Hom

# Wilcoxon test (one-sided), p-values are adjusted according to Bonferrow Hold

n.a. not assessed; n.sign. not significant sign. significant

### **Conclusion:**

In this extended laboratory test the effects of Thiacloprid GD 240 gL residues on the survival of the predatory mite *Typhlodromus pyri* were determined at the rates of 2.0 4.0, 7.0, 12.0 and 22.0 g a.s./ha applied to detached maize feaves (*Zea mays*). At the test item rate of 2.0 g a, tha a corrected monthly of 28.3% has been observed. 85.9% and

At the test item rate of 2.0 g a s ha a corrected monthlity of 28.3% has been obsorved. 85.9% and 96.7% corrected monthlity, respectively, occurred in the 4.0 and 9.0 g a s ha rate. In the higher rates of 12.0 and 22.0 g a s ha the corrected monthlity was 98.8% eacle

The LR₅₀ was calculated to be 2,49 g.a.s./ha

Reproduction was reduced by 6.0%.

The figures obtained	£.1% h	41	. 1:4 A	Ô	, f 41 1.	1		f	1 1
The figures/obtained	IUUTH	the kan	iaity@ri	teria o	i ine ja	iboratory	method	for exposure of	i glass plates.
in the second se		S.		<	Ň	4 X	0		
	$\sim$		1	Q'	°		~		

<b>Report:</b> ; 2012 M-442296-01-1
Title: Toxicity to the parasity d wasty Aphidius rhopalosiphi (DeStephani-Perez)
(Hypenoptera: Braconidae) using an extended laboratory test with aged residues on
maize - the cloprig OD 249 g/L Anal report
Report No.:
Document No.: $\sqrt{M-442296-0}$
Guidelines: MED-BRIGGS ET AL 2000), MEAD-BRIGGS ET AL. (2009), CANDOLFI
<i>𝑘𝑘</i> ET AL. (2001),;@one 🖑
GLP/GEP: J we's J G

# Material and methods:

Test item: Thaclopfid OD 240 g/L; Sample description: TOX 09597-00; Specification no.: 102000024974-01; batch D: ECE7100937; Density: 1.044 g/mL; Analysed content: 242.2 g a.s./L.

The text item was applied three times on potted maize plants; at the first and second application it was applied with 96 g a.s./ha each in 400 L deionised water/ha and at the third application it was applied

BAYER Bayer CropScience

### Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

with 110 g a.s./ha diluted in 400 L deionised water/ha. The application interval was 10 days betweenall applications. The control was treated with deionised water in the same way as the test item. A toxic reference (active substance: Dimethoate) was applied at 3 g a.s./ha diluted in 400 L deionised water/ha on the third application day of the test item on potted maize plants as well. For the further exposure dates it was applied directly on detached maize leaves (with 3 g a.s./ha diluted in 400 L deionised water/ha). It was included to indicate the relative susceptibility of the test organisms and the test system.

Aging of the spray deposits of the test item on the potted maize plants ook place under semplifield conditions with UV permeable rain protection during the first four weeks of the study. These bioassays were performed, the first started on the day of the last application of the test item (0DAT3 = 0 days after treatment 3) and the last one four weeks late (28DAT3).

Parasitoid wasps (*Aphidius rhopalosiphi*) were exposed to these residues on the treated leaf surfaces. Mortality of 30 female wasps, not older than 48 h at study start (6 peplicates withos wasps per test group), was assessed 2, 24 and 48 h after exposure in all bloassays.

Repellency of the test item was assessed during the initial 3 h after the release of the females. Fixe separate observations were made at 30 minutes intervals starting 13, 30 minutes after the introduction of all wasps.

The reproductive performance was assessed in the bioassays started on day of and a after the third application of the test item. For this 15 impartally chosen females from the water control and the test item group were each transferred to a cylinder containing untreated barley seedlings infested with nem group were each transteried to a cylinder containing untreated barley seedling *Rhopalosiphum padi* for a period of 24 b.3 he number of mummies was assessed 1 second bioassay and 11 days later in the third bioassay. Rhopalosiphum padi for a period of 24 h The number of mummies was assessed 12 days later in the

### **Findings:**

Test item:		Thiacloprid OD 240 g/L						
	2 x 96 g a.s./ha (1 st and 2 nd application) and $\sqrt{2}$							
Application:		a (3 rd application) with an int						
Test organism:		Aphidius rhopalosiphi 🚔						
Exposure on:	Dried spray depo	sits on maize leaves (from tre	ated maize plants 2					
Start bioassay:	0DAT3 ^a	T4DAT3 ^a						
		Martality (%) after 48 h						
Control:	0.0	0.0						
Test item:	100.0	5Q.0 × Q						
Reference item:	100.0		100.0 ~~					
	X	Corrected Mortality (%)						
	100.0	\$ 50.00° 6°						
Test item:	(p-value	@ (p-value	(pvalue \$00 not					
	< 0.001, significant ^o )	0.001, Significant)	significant ^b					
Reference item:	<u>100.0 0 v v v</u>	1 100.0 0 ⁷ 2 ³	5 St00.0					
		Repellency (mean values)	<u> </u>					
	\V \V	🔌 % Wasps on plant	<u>~~~</u>					
Control:	49.7 G G	$\delta 1.8$ $\delta$	<u>2</u> 244.0					
Test item:	U	<u>31.8.0</u> ²	43.3					
Reference item:	67.3	43,30 0	© 41.0					
		Reduction rel. to control (%)						
_ ·	·~~ -9.7 Q Q	38.6 p-value 0.031. significantly	1.5					
Test item	the value	Op-vakae	(p-value					
	0.13% not significant )		[™] 0.478, not significant ^c )					
Reference item:	5.6	₽ 5 16.4 • Perfeduction	× 6.8					
			1.					
Contro		Jumber of mummes per fema						
	<u>o</u> n. <u>o</u>		60.7					
Test item:		Reduction Fel. to control (%)	58.9					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.9 (a contra 0.500 met					
Test item:	The free the	(p-value 0566, not significant ^d)	(p-value 0.500, not significant ^d)					

n.a. = not assessed; a D ϕ = day each ter treatment; b Esher's Exact test (one-sided) Gone-way ANOVA, Williams test (one-sided); d Wilcoxon test (one-sided)

Conclusion:

In this extended laboratory test the effects of Thiaeloprid OD 240 g/L residues (aged under semi-field conditions, with rain protection during the first four weeks) on the parasitoid wasp *Aphidius rhopdosiph* were determined after three applications onto maize plants (*Zea mays*). The first two applications were done with 96 g a.s. that and the third application with 110 g a.s./ha with an application interval of 10 days.

In this study a corrected mortality of 100% of the test item was found in the first bioassay started at the day of the third application. A second bioassay was started 14 days after the last application and showed 50% corrected mortality in the test item group after 48 h of exposure. In a third bioassay (day 28), the corrected mortality decreased to 3.3%.

Novepellent effect of the test item (settling of the wasps on plants <30%) was observed in all bioassays.

In the second bioassay there was no reduction in reproductive success relative to the control (-6.0%). In the third bioassay a reduction of only 2.9% was detected.

The figures obtained fulfil the validity criteria of the extended laboratory method (Mead-Briggs et al., 2009).

Report:	k; 2013; M-446545-01-1	
Title:	Toxicity to the ladybird beetle Coccinella septempunctata (Coleoptera, Coccinellidae)	
	using an extended laboratory test with ged residues what are - Thiad prid of 240	,Ø
	g/L , Q , Q , Q , Q	¥
Report No.:	CW12/016	
-		
Document No.:	M-446545-01-1	
Guidelines:	SCHMUCK ET AL. (2000) modified: Use of treated maize plants, adybigd beetle	
	larvae were exposed to freshly applied and under semi-field conditions aged 2	
	residues on detached leaves and the second	
	CANDOLELET AL (2001) \mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{3} \mathcal{A}_{3}	
	CANDOLFI ET AL. (2001); none	
GLP/GEP:	yes the second sec	

Material and methods:

Test item: Thiacloprid OD 240 g/Ly Sample description: TOS 09597 00; Specification no. 102000021774-01; Batch ID: FEE7100937; Density 1.044 g/mL; Analysed coment: 242.2 g a.s./L.

The test item was applied three times on potted maize plants; at the fust and second application it was applied with 96 g a.s./ha each in 400 L deionised water/ha and at the third application it was applied with 110 g a.s./ha diluted in 400 L deponised water a. The application interval was 10 days between each application. The control was treated with detonised water in the same way as the test item. A toxic reference (active substance. Dimethoate) was applied at 10, g, a.s./ha diluted in 400 L deionised water/ha on the third application day of the test item on potted make plants as well. For the second, third and fourth bioassay, thotoxic @ference was applied directly on detached maize leaves (with 10 g a.s./ha diluted in 200°L deionised water/ha). It was included to indicate the relative susceptibility of the test organisms and the test system

Aging of the spray deposits of the test iten on the potted maize plants took place under semi-field conditions with Uxpermeable rain protection during the first four weeks of the study. Four bioassays were performed, the first started on the day of the last application of the test item (0DAT3 = 0 days after treatment and the last one sit week later (2DAB).

Larvae of the adybird been (Coccinella Septempunctata) were exposed to these residues on the treated leaf surfaces and the prephaginal mortality was assessed. In the second, third and fourth

treated lear surfaces and the previnging mortarity was assessed. In the second, third and for bioassay the fertility and fecundity of the surviving hatched adults were evaluated as well.

Findings:

		Ø1°						
Results from the ext. lab	boratory test with C. se	eptempunctata						
	Thiacloprid	I OD 240 g/L 🔗						
1 x 110	2 x 96 g a.s./ha (1 st and 2 nd application) and 1 x 110 g a.s./ha (3 rd application) with an interval of 10 days							
		eptempunctata North Star						
Dried spra	ay deposits on majze le	eaves (from treated maize plants)						
0DAT3 ^a	14DAT3	SDAT3 ^a 32DAT3 ^a						
	Preimaginal mortality (%) 🗸 🖉 🖉							
0.0	35.0 °	38.5 ° (, , , , , , , , , , , , , , , , , ,						
100.0	35.0	22.5 Q 7.5 V						
100.0	×100.0	100 Q 100 C						
	Corrected preima	ginal mortality (%)						
100.0 (all larvae were dead a	↓ 0.0 č	(p-value) (p-value)						
after 2 days of	0.593, not	0.964, Qot & 0.956 not						
		Significant ^b significant ^b						
100.0								
n@		19.9 % 14.3						
v n.a.	Q 11.6 ×	Ø <u>9.7</u>						
	1 x 110 Dried spra 0DAT3 ^a 0.0 100.0 100.0 (all larvae were dead after 2 days of exposure)	2 x 96 g a.s./ha (1st an 1 x 110 g a.s./ha (3rd applicati Coccinella se Dried spray deposits on maize le 0DAT3 ^a 14DAT3 ^a 0.0 35.0 100.0 100.0 0.0 35.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.593, not 0.593, not 0.593, not 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00						

n.a. = not assessed

0 Ò a DAT = days after treatment b Fisher's Exact test (one-sided), p-values are adjusted according to Bonferroni-Helph

Ô

c Control mortality exceeded 30% (validity oriterion from the lass place laborated test guideline)

Conclusion:

In this extended aboratory study the effects of Thiactoprid OD 240 g/L residues (aged under semifield conditions with gain protection during the first four weeks on the ladybird beetle Coccinella septempunctata were determined after three applications onto maizeplants (Zea mays). The first two applications were done with 96 g a.s./ha and the third application with 110 g a.s./ha with an \bigcirc application interval of 0 day

In this study a corrected mortality of 100% of the test from was found in the first bioassay started at the day of the third application. A second bioassay was started of days after the last application and showed no corrected portality in the test item group. In a hird bioassay (after 28 days) and fourth bioassay (after 42 days) no mortality was found as well,

Reproduction was assessed in the second, third and fourth bioassay. Since the reproductive performance in all bioassays was within the range of the historical data base for control beetles (≥ 2

performance in all bioassays was within the same of the historical data base for control beetles (≥ 2 fertile eggs per female and day, Schmuck et al. 2000) this parameter is considered as not affected.

Report:	t; 2013; M-446548-01-1
•	
Title:	Toxicity to the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) using an extended laboratory test with aged residues on maize Thiacloprid OD 240 g/L
	extended laboratory test with aged residues on maize Thiacloprid OD 240 g/L
Report No.:	CW12/017
Document No.:	M-446548-01-1
Guidelines:	BLÜMEL ET AL. (2000) modified: Use of treated maize plants; mites exposed to
	freshly applied and under semi-field conditions aged residues on detacted leaves
	in Munger cages for the mortality assessment;
	CANDOLFLET AL (2001): \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
	During the mortality phase in the third bioassay the temperature increased for
	the duration of 3 hours to 27.2 °C \mathcal{F} This had no negative impact on the study \mathcal{O}
	results as all validity criteria were met. 🔗 🎸 🎸 🏑
GLP/GEP:	ves \mathcal{Q}^{\prime} \mathcal{Q}^{\prime} \mathcal{Q}^{\prime} \mathcal{Q}^{\prime} \mathcal{Q}^{\prime} \mathcal{Q}^{\prime}

Material and methods:

Test item: Thiacloprid OD 240 g/L; Sample description; TOX@9597(00; Specification no.: 102000021774-01; Batch ID: ECE710(937; Density, 1.044 g/mL; Analysed comput: 242.2 g a3./L.

The test item was applied three times on ported marze plants; at the first and second application it was applied with 96 g a.s./ha each in 400 L deionised water/ha. The application interval was 10 days between each application. The control was treated with deionised water in the same way as the test item. A toxic reference (active substance). Dimethoater was applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied at 15 g a.s./ha diluted in 400 L deionised water/ha applied directly on defacted maize plants as well. For the second and third bioassay, the toxic ofference was applied directly on defacted maize heaves (with 20 g a.s./ha diluted in 200 L deionised water/ha). It was included to indicate the relative susceptibility of the test organisms and the fest system.

Aging of the speak deposits of the test item on the potted maize plants took place under semi-field conditions with UV permeable rain protection during the first four weeks of the study. Three bioassays were performed, the first started on the day of the last application of the test item (0DAT3 = 0 days after treatment 3) and the last one four weeks later (28DAP3).

Predatory mites (*Txpfilodramus pyrt*) were exposed to these residues on the treated leaf surfaces. Mortality of 100 predatory mites protonymphoat study start (10 replicates with 10 individuals per test group), was assessed 7 days in all bioassays and 10,12 and 14 days after exposure in the second and third bioassay by counting the number of living and dead mites. The number of escaped mites was calculated as the difference from the total number exposed.

Due to the known repetient effects of the test item, the mortality part of the bioassays was performed in closed but actively ventilated cells (Munger cages). On day 7 after application (in the second and third bioassay) the surviving mites were transferred on untreated open exposure units (glass plates) and the reproduction rate of surviving mites was then evaluated from day 7 until day 14 after treatment by counting the total number of offspring (eggs and larvae) produced.

From these data the endpoints mortality after 7 days) and effects on reproduction were calculated and summarized below.

.

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

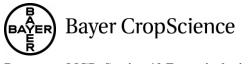
Findings:

Test item:	Thiacloprid OD 240 g/L 🔗 🖉 🔊									
Application:	2 x 96 g a.s./ha (1 st and 2 nd application) and									
Application.	1 x 110 g a.s./ha (3 rd application) with an interval of 10 days									
Test organism:	Typhlodromus pyri 💭 🔊 🖉									
Exposure on:	Dried spray deposits on maize leaves (from treated maize plants)									
Start bioassay:	$0DAT3^{a} \qquad \qquad \textcircled{7} 14DAT3^{a} \qquad \qquad \textcircled{9} 280AT3^{a} \\ \swarrow \qquad \qquad \swarrow \qquad \qquad \swarrow \qquad \qquad \swarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$									
	Metrality (%) after 7 days 🔬 🔊 🖉 🖉									
Control:	11.0 10.0^{5} 10.0^{5} 10.0^{5}									
Test item:	$86.0 \qquad \qquad$									
Reference item:	55.0									
	Corrected Mortanty (%)									
	84.3									
Test item:	(p-value ,) (p-value ,) (p-value ,)									
	< 0.001, significant ^b) < 107 , not significant ^b) 0 0.770 , not significant ^b)									
Reference item:	$49.4^{\circ} \bigcirc {}^{\circ} \bigcirc {}^{\circ} \bigcirc {}^{\circ} \bigcirc {}^{\circ} \bigcirc {}^{\circ} \otimes 84.4 \bigcirc {}^{\circ} \bigcirc {}^{\circ} \bigcirc {}^{\circ} \bigcirc {}^{\circ} \otimes 90.0 \bigcirc {}^{\circ} \odot {}^{\circ} $									
	Keproduction &									
	Number of eggs perfemale?									
Control:	ma. $ma.$									
Test item:	\mathbb{Q} n.a. \mathbb{Q} $$									
	Reduction rel to control (%)									
	5.8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									
Test item:	\mathcal{A} n.a. \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} (p-value)									
	20.323 not significant ^o) (5 0.124, not significant ^c)									

a DAT = days after treatment

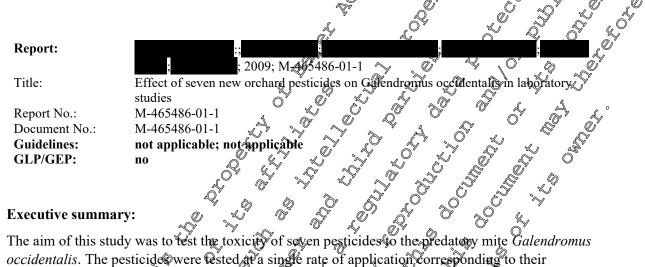
b Fisher's Exact test (one and one provided), p-values are of justed according to Bonferioni-Hold

c Corrected mortality of Sterenec Gem was below 50% (validity criterion from the glass plan d Wilcoxon test (one-sided), p-values are adjusted according to Bonfertoni-Holm e one-way ANOVA Williams test, one-sided test guideline) Children of the second se


.oh.

Conclusion:

In this extended labor mory story the effects of The cloprid OD 240 g/L residues (aged under semifield conditions, with rain protection during the first four weeks) on the survival of the predatory mite Typhlodromus pyp were deterned after three applications onto maize plants (Zea mays). The first two applications were one with 96 ga.s./ha and the third application with 110 g a.s./ha with an application interval of 10 days.


In this study a corrected mortality of 84,3% of the test item was found in the first bioassay started at the day of the third application A second bioassay was started 14 days after the last application and showed a corrected portality of 7.8% in the test item group. In a third bioassay (28 days after the last application) no corrected prortality (-2.2%) was found any more.

Reproduction was assessed in the second and third bioassay. In the second bioassay there was a reduction in reproductive success relative to the control of 5.8% and in the third no reduction (-4.7%) occurred at all.

Supplemental information from the literature

In addition to the studies performed by BCS in accordance with the requirement a literature search has been performed in accordance with the requirements. From the papers identified during the literature of search the following were identified as being potentially relevant for risk assessment. After further of evaluation the literature data is considered to provide supplemental information and does not influence the risk assessment.

Executive summary: The aim of this study was to test the toxicity of seven pesticides to the predatory mite *Galendromus* occidentalis. The pesticides were tested at a single rate of application corresponding to their recommended label rate (and multiples thereof). The oxicity of these compounds to eggs and adults of *G. occidentalis* by residual contact was investigated. The effects on eggs were recorded after 144 h, mortality and fecundary of adults was recorded 24, 48 and 72 after treatment. Furthermore, the repellence of the product was investigated. In the following, the results for the formulation containing the active substance thracloprid are summarized. Rosults showed a corrected mortality of eggs of *G. occidentalis* treated with 0.460 g thiacloprid/L of 5.8%. The mortality of adults at the highest concentration used (0.640 g a.s./L) was 5.8%. There was a statistically significant effect on fecundity of females treated with 0.160 g thiacloprid after 48 ft, no statistically significant effect was found after 24 and 72 h. Furthermore, thacloprid have statistically significant repellent effect after 48 and 72 h.

Thiacloprid (applied at 0.160 g a.s./L) caused a corrected mortality of eggs of 1.9%. Average mortality of eggs if the control was 0.7% (± 0.5). The corrected mortality (Henderson and Tilton) of adults treated with 0.160, 0.320 and 0.640 g a.s./L was 2.8, 2.3 and 5.8%, respectively. For the control it was 5.8% (± 3.4). The average number of eggs per female per day treated at a rate of 0.1333 g a.s./L recorded 24 h, 48 h and 72 h after exposure was 1.64, 1.26 and 1.58 per day, respectively. For the control the numbers were 2.11, 2.15 and 2.23 eggs per female per day 24 h, 48 h and 72 h after

exposure, respectively. Statistical analysis (ANOVA and Tukey-Kramer test, $\alpha = 0.05$) revealed statistically significant differences between treatment and control for the measurement only after 48 h. Repellence of thiacloprid, expressed as the percentage of individuals outside the treated leaf disc, was 12.2, 44.9 and 49.4% after 24, 48 and 72 hours after exposure, respectively. For the control the numbers were 3.6, 5.8 and 16.1% 24 h, 48 h and 72 h after exposure, respectively. There was a statistically significant difference (ANOVA and Tukey-Kramer test, $\alpha = 0.05$) between the control and treatment for the measurements after 48 and 72 h.

Conclusion

The corrected mortality of eggs of *Galendromus occidentalis* treated with 0.160 g thiadoprid/L was 1.9%. The mortality of adults at the highest concentration used (0.640 g a.s./L) was 5.8%. There was a statistically significant effect on fecundity of females treated with 0.4333 g a.s./L thiadoprid after 48 h. Furthermore, thiadoprid had at 0.1333 g a.s./L a statistically significant repellent effect after 48 and 72 h.

Comment by the notifier:

The study results indicate that thiachoprid caused under extended laboratory conditions a low mortality of the predatory mite *Galendromus occidentalis* at application rates up to 385 g a.s. ha. Effects on reproduction at 80 g a.s. ha were in the range of 22-47%. Since the predatory mite *T. pyri*, indicated a significant higher sensitivity under extended laboratory conditions, the information is classified as b) supplementary information (EFSA) Journal 2011(9(2):2092).

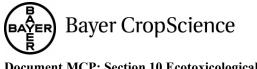
Report: 3; Y2010; M-464(112-01-) Piffects of six selected orchard insecticides on Neoseiulus fallacis (Acari: Phytoseiidae) in the faboratory M-464112-01-1 M-464112-01-1
2010; M-464112-01 N K 2 K 2 K 2
Title: Ti
in the laboratory a style with the laboratory
Report No.: $M = 464112 = 01 - 1$
Guidelines: not applicable: not applicable
$(TLP/(TLP)) = a^{\gamma} n 0$
GLP/GEP: J NO J J J J J J J J J J J J J J J J J

Executive summary:

The aim of this study was to test the to ficity of six insecticides to the predatory mite *Neoseiulus fallacis*. The pesticides were tested at a single rate of application corresponding to their maximum recommended labelerate. The toxicity of these compounds to eggs and adults of *N. fallacis* by residual contact was investigated. The effects on eggs were recorded after 120 h, mortality and fecundity of adults was recorded 24, 48, 72 and 96 h after treatment. In the following, the results for the formulation ontaining the active substance thiacloprid are summarised. Results showed a corrected mortality of eggs of *Neoseiulus fallacis* treated with 0.178 g thiacloprid/L of 3.4%. The mortality of adults at the highest concentration used (5.696 g/L) was 33.8%. There was a statistically significant effect on the feeundity of females exposed to 0.178 g/L thiacloprid.

Materiad and methods:

A. Material



of eggs in the control was stated as 0.9 ± 0.6 .

The corrected mortality of adults treated with 0.178, 0.356, 0.712, 1.424, 2.848 and 5.696 g a.s./L thiacloprid was 2.2, 6.6, 11.0, 20.6, 32.4, and 33.8%. The control mortality was 5.6%. The LC₅₀ value could not be estimated.

The number average number of eggs of female treated at a rate of 0.178 g a.s./L was 0.48, 0.42, 1.15 and 1.17 as recorded 24 h, 48 h, 72 h and 96 h after exposure, respectively. For the control the

numbers were 1.80, 2.01, 2.57 and 2.50 eggs per female per day 24 h, 48 h, 72 h and 96 h after exposure, respectively. Statistical analysis (ANOVA and Tukey-Kramer test, $\alpha = 0.05$) revealed statistically significant differences between treatment and control for each point of measurement.

Comment by the notifier:

The study results indicate that thiacloprid caused under extended laboratory conditions a low mortality of the predatory mite *Neoseiulus fallacis* at application rates up to 3075 ga.s./ha. Effects on preproduction at 96 g a.s./ha were in the range of 53-79%. Since the predatory mite *Ppyri* indicated a significant higher sensitivity under extended laboratory conditions the information is classified as b) supplementary information (EFSA Journal 2011;96):2092).

Report:	KCP 10.3.2.2/10
1	
Title:	The response of N@seiulus fallaci@Garman) and Gialendromus geidentals (Nespitt)
	(Acari: Phytoseijdae) to six reduced risk insecticides in Canada
Report No.:	; 2012; M-465941-01-1 The response of Neoseiulus fallacic (Garman) and Galendromus occidentalis (Neobitt) (Acari: Phytoseiidae) to six reduced risk insectic des in Ganada M-465941-01-1 M-465941-01-2
Document No .:	M-465941-01Q & & & & & & & & & & & & & & & & & & &
Guidelines:	M-465941-014 not applicable; not applicable
GLP/GEP:	

Executive summary 🔬

This study reports the impact of insecticides to the two elosely related predators *Galendromus* occidentalis and *Neoseiutus fallacis*. Material and methods as well as results are summarised for thiacloprid treatment only.

Treatment was made with a thin-layer chromatography sprayer set at \$0.34 kPa (1.5 psi). The chemicals were applied to *N. fallacis*, *Acceitentalis*, the prey, *Tetranychus urticae* (Koch) and the leaf disc. Test substance was Calypson 480 SC.

A 48-h-old adult female predatory mite was placed on the abaxial side of an apple leaf disc (20mm). Each treatment contained 52 discorreplicated three times for a total of 156 predators per concentration. Following treatment, the survival of adults and the number of eggs laid were recorded at 72 h post treatment. Specimens were considered dead when they were unable to move a distance of 1 mm when probed with a camel-hair brush


Adult morality data were corrected according to Henderson and Tilton.

Average adult female *Galendromus occidentalis* foortality in the laboratory at 0.160 g a.s./L was 2.8%. The average adult female *Neoseiulus fallacis* mortality at 0.178 g a.s./L was 2.2%. Reduction in egg production compared to control was 27% for *Galendromus occidentalis* (0.133 g a.s./L) and 54% for *Neoseiulus fallacis* (0.178 g a.s./L).

for Neoseiulus tallacis (0.17 eg a.s. 12).

Material and methods:

Thiacloprid OD 240 (240 g/L) Average adult female *Galendromus occidentalis* mortality in the laboratory at 0.160 g a.s./L was 2.8%. The average adult female *Negazithus fallagis* mortality at 0.178 g a.g./L was 2.2%. Beducti

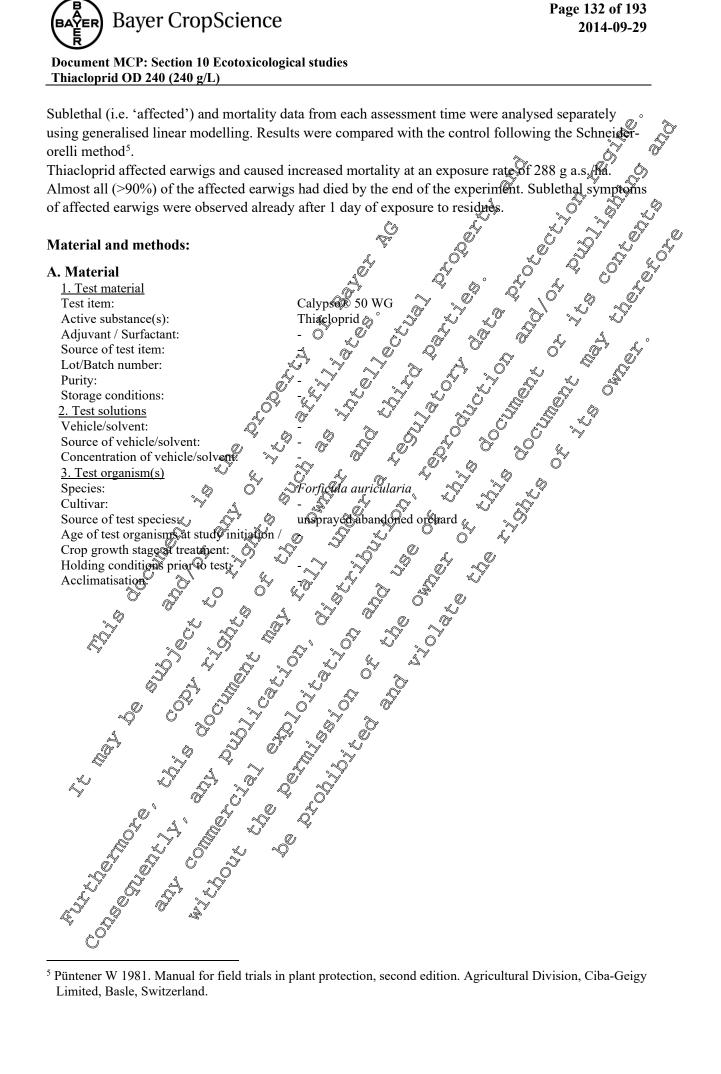
2.8%. The average adult female *Neoseiulus fallacis* mortality at 0.178 g a.s./L was 2.2%. Reduction in egg production compared to control was 27% for *Galendromus occidentalis* (0.133 g a.s./L) and 4% of for *Neoseiulus fallacis* (0.178 g a.s./L).

Comment by the notifier:

The study results indicate that thiacloprid caused under extended laboratory conditions a low mortality of the predatory mites *Galendromus occidentalis* and *Neoseiulus fallacis* at application rates of 86 and 96 g a.s./ha, respectively. Effects on reproduction of *Galendromus occidentalis* were 27% at 72 g a.s./ha and of *Neoseiulus fallacis* were 54% at 96 gas./ha. Since the predatory mite *Topyri*, indicates a significant higher sensitivity under extended laboratory conditions, the information is classified as b) supplementary information (EFSA Journal 2014;9(2),2092).

Report: Title:

Report No.: Document No.: Guidelines: GLP/GEP: KCP 10.3.2.2/1


Executive summary

This paper presents results from a laboratory bioassay to determine the residual effects of registered IFP insecticides and a new candidate insecticide (spirotetramat) of European earwigs. Material and methods as well as results are summarised for threelopping treatments only.

Thiacloprid (Calypso® 480SC) and water as a control freatment were sprayed at 14.4 g a.s./100 L onto well separated, tagged apple shoots on previously this prayed apple trees in the field. Treatments were applied on 18-19 January 2000 (with separate water controls on each day) with a small hand pump pressure sprayer (Cates Plassay Maxi 2) to achieve an even fine spray cover to the point of run-off (water rate equivalent to 2 2000 litres that). After drying, the stems of three individual leaves were inserted directly into moistened floral foam, which was then placed inside a ventilated clear plastic container (100 mm high x 100 mm diameter). This procedure was repeated for five replicates. Six adult carwigs, collected previously from an unsprayed abandoned orchard, were placed onto treated leaves in each plastic container. The earwigs maintained prolonged contact with the leaves as they provided sheltering sites for the earwigs in the containers. No food was provided in the containers.

Earwigs in the containers were kept in the laboratory and exposed to natural light during the trial (light:dark of 15:9 h). Temperature during the experiment was maintained at 20°C. Earwigs were assessed for mortality and sublemal effects on four occasions at 1, 3, 7 and 10 days after treatment (DAT). The floral foam was moistened with distilled water during these examinations. In the analysis, dead or mortality and individuals were combined together and affected individuals are presented separately.

B. Study design and methods

1. Test procedure Test system (study type): Duration of study: Treatments: Test concentrations Number of replicates: Individuals per replicate: Test units (type and size):

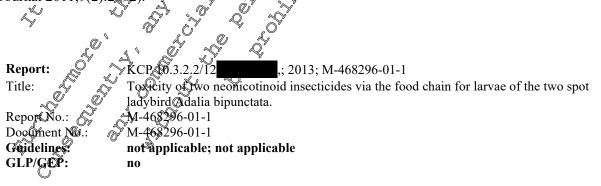
Application / device / nozzles: Water volume: Calibration of sprayer: 2. Environmental conditions Test medium: Temperature / relative humidity: Photoperiod: Lighting 3. Observations and measurements: Analytical parameters measured: Biological parameters measured: Measurement frequency: Statistical analyses:

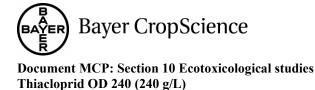
Alive affected moribuid or dead 1.3. Rand 10 days after treatment Generalised Incarmodelling and Schneider-Orethumethod while the treatment Generalised Incarmodelling and Schneider-Orethumethod

Results:

Validity criteria:

No validity criteria were stated


Biological findings:

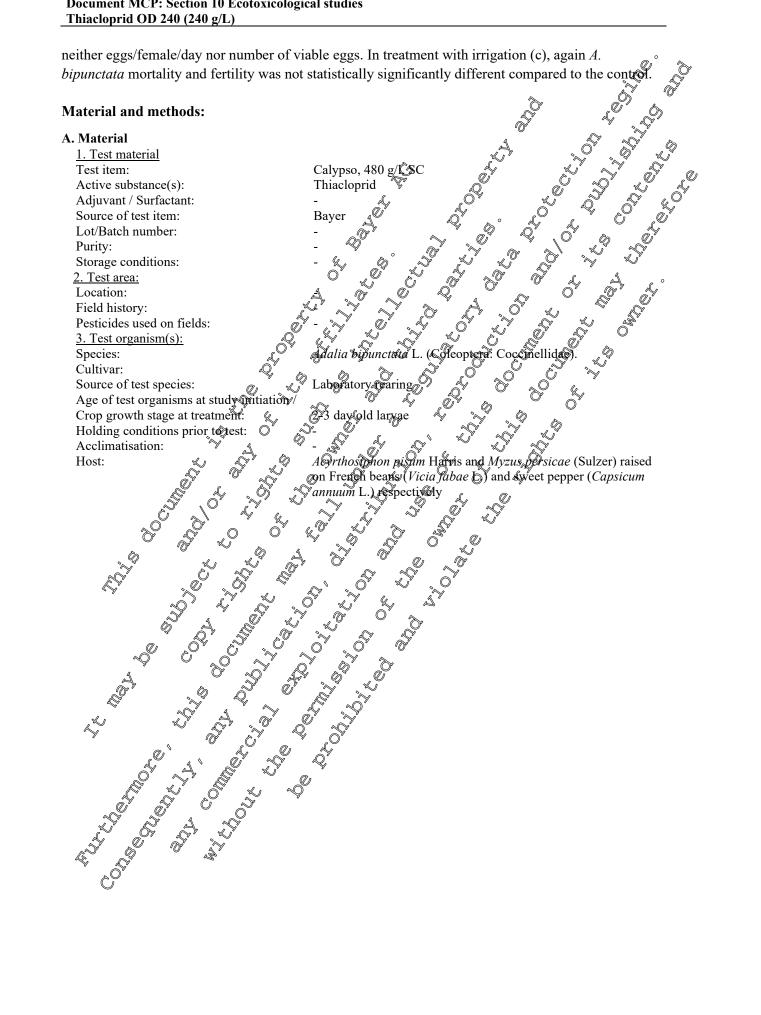

Thiacloprid affected carwig and caused in feased mortanty at an exposure rate of 288 g a.s./ha. Almost all (>90%) of the affected earwigs had died by the end of the experiment. Sublethal symptoms of affected earwigs were observed already after 1 day of exposure to residues.

Comment by the notifier:

The study results indicate that hiacloprid caused under excended laboratory conditions at 288 g a.s./ha clear mortalits of the Duropean earyig Forficula Quricularia. Since other tested non-target arthropods that were tested for the regulatory data package indicated a significant higher sensitivity under extended boratory conditions the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092

 \bigcirc

Executive summary:


The toxicity by ingestion of aphids (Hemiptera: Aphididae) contaminated by 2 insecticides including thiacloprid (Calvoso) was laboratory assessed for largely the second for largely assessed for larg thiacloprid (Calypso) was laboratory assessed for larval two-spot ladybirds Adelia bipunctata Linnaeus (Coleoptera: Coccinellidae). Material and methods as well as results are summarised for thiacloprid only. Adult A. bipunctata were reared in groups of 15-20 in plastic cages, fed with honeybee pollen and aphid Acyrthosiphon pisum Harris and Myzus persicae (Sulzer) harvested from Rench beans (Fabales: Fabaeae; Vicia faba L.) and sweet pepper Solanales: Solanaceae: Capsicum annuum experiment, 4 x 10 larvae of A. bipunctata were used per product and for control Three experimental contamination of aphids methods were used. Driplant water water L.) respectively. Synchronised patches of eggs laid on crumpled paper were removed daily For each contamination of aphids methods were used. Drinking water was used for the control groups, Calypso was used at 0.25 L/ha (120 g a.s./ha thiacloprid). Yoxicity was assessed using 2-3 days old A. bipunctata larvae isolated in exposure units of glass plate surrounded by plastic connder (height 3 cm, diameter 5 cm) treated with Fluon GPI to prevent escape. Farvagovere fed contaminated (or control) aphids until pupation, then pupae isolated in plastic petrix dishes and adult emergence recorded. Firstly, in treatment (a) direct spray, aphids in petri dispes were directly treated using a Burgerjon/Sprag Tower apparatus at $2001 \pm 10\%$ spray mixture, before dried for 1/2 h and part used to weed A, bipunctata larvae. Remainder were kept 2-8°C to for 1-2 days. Freatment was repeated every 2-3 days to maintain stock of freshly treated aphies. Secondly in (b) spray on plants Prench beans infested with aphids were treated outside using a knapsack 'boom sprayer connected to a sprayer range with Azo 110 flat-fan nozzles at a rate of 400 L spray mixture/ha +10%. Mants were left to dry for 1-2 h before aphids were harvested to feed A. bipunctata largae, orkept at 2-8°G to for for 2 days. Again, treatment was repeated every 23 days, Thir (b) (c) if igation, aphids were confined to French beans treated by irrigation a 5 different test concentrations. This experiment used 5 containers of 50 x 35 cm plastic trays with 75 bean seeds in vernifulite per consentration and 5 controls. Trays were pierced with holes, and put in larger water filled trays to humidify the substrate. Water was initially added ad lib to start germination during first 6 days then excess water removed and substrate left drying 24 h to then promote absorption of the insecticide added to outer plastic trays in one litre of water. After 24 h, 600 mg applieds were added to each and kept at $20 \pm 2^{\circ}$ C. After 7 days, applieds were collected and weighted. Aphids use to fee adybird larvae were produced with same procedure, and new rearing containers were produced every 23 days for continuous stock of aphids. Aphid population growth was reduced by 50%, 75% and 90% compared to the control within one week by adding 3 µL 2 µL and 25 µL of Calypso volumes determined by preliminary dose-range trials) to one plant rearing container. Any pupal mortality was combined with larval mortality, and time required to reach adulthood calculated. For each experiment/test conditions, emerged adults of A. bipunctore from the same treatment were possed in rearing cages at least one week after the first egg laying. Then mature female were isolated in plastic petri dishes with aphids as food and transferred every 24 h to new petri dishes. Emergence per day of eggs and numbers laid per day were assessed over 6 successive 24 h periods Adults were fed untreated food (aphids) only during the pre-fertility and fertility phase. Mean development time was calculated for each replicate. Fertility was assessed on all living adult female ladybirds Percentages were arcsin transformed, and observed mortalities calculate on the basis living farvae and pupae found, and corrected according to Abott formula. High prortality of A, bipunctula was observed reaching 100% after 4 days of feeding with thiacloprid sprayed applies (a). Feeding aphids from thiacloprid sprayed plants (b) resulted in 5.5% corrected mortality which was not statistically significant different from the control treatment and no effect on fertilits performance was observed. Development time (until adult emergence) was near identical and not statistically significantly different. Fertility (of emerged adults) was also not significantly affected,

neither eggs/female/day nor number of viable eggs. In treatment with irrigation (c), again A. bipunctata mortality and fertility was not statistically significantly different compared to the control.

Material and methods:

Thiacloprid OD 240 (240 g/L)

B. Study design and methods

1. Test procedure Test system (study type):

Duration of study: Treatments: Application rate:

Number of replicates:

Individuals per replicate: Test conditions: Plot size: Application / device / nozzles:

Water volume: Verification of dispersion: Sampling technique: Sampling frequency: Transport/storage of samples: 2. Environmental conditions Test medium:

Treatment: 'Exposure units' of plass plate surrounded by plastic cylinder (height 3 cm diameter 5 cm) treated with Fluon GPI to prevent escale Pure worker for the first state of the fi Exposure units' of grass plate surrounded by plastic prevent escape. Pupar were isolated in petri-dishes. Rearing:

(a) Direct spray on aphid prey; (b) Spray on plants/aphid prov; (c) Plants uptake through Irrigation then prefeeding

 \bigcirc

Rearing 18-23 days, breeding ca. 25 days [inferred]

(c) thiacloprid was applied vio the irrigation water (1) with

per test concentration and 5 controls, for each of 5* test concentrations (*NB: results of only Dtest corcentrations given)

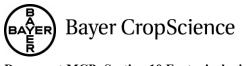
(a-c) 4 x Harvae per product and control (c) 5 planted containings

(a) Burgerjon spray tower; (b) Boom sprayer, Azo 110 flatstan nozzles (c) 50 x 35 m trave with 75 seed on verage ulite placed in

larger water-filled rays (with varying concentration of greatment

Thiacloprid, control (drinking water)

(a) 120 g a.s./ha (200 L spray mixture/ha);


(b) 120 g a.s./ha 400 L spray maxture/ha)

25 μL Calypso/plant rearing container)

1 larya

of untreated water as control)

(a) 200 L/ha: (b) 4000 /ha

Biological findings:

Table CP 10.3.2.2- 8: Effects of ingestion of aphids contaminated by thiacloprid on A. bipunctata. Survival rate, development time to reach adult stage, total and viable egg production by temale and number of females assessed (n).

	Mortality (%)			4	Fertility 🔊	
	Observed ± sd	Corr- ected ²	Development time (days) ± sd	Egg/female day ± St	Viable eggs/female/d & & sd	j iciliance l
	Ap	hids contai	minated by direct sp	oray (method a)	Ô Â .	
Control	$10.0\% \pm 8.2\%$	-	2 K +0.5			
Thiacloprid	$100.0\% \pm 7.5\%$	100.0%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			₩ ^v -
	Ap	ohids harve	ested on sprayed pla	nts (method b)	Ĩ.	1
Control	$17.5\%\pm5.0\%^{\mathtt{a}}$	- 🐇	20.9° ± 0.8°	Q7.6% ±	5^{*} $\frac{13.5^{*}}{6.8^{*}}$	0 11
Thiacloprid	$22.5\% \pm 12.6\%^{a}$	5.5	20.9% ±0.4%*	2% ^a 0	8.4%	0 ¹ 1

ANOVA (one-way) and Tukey test (P=0.05). Numbers followed by the same tester are not different in a significant vor.

Table CP 10.3.2.2-9: Toxicity of thiacloprid for larvae of *A. bipunctate* by ingestion maphids reared on plants treated by irrigation (method c). Survival rate development time to reach adult stage, total and viable egg production by female and number of females assessed (n).

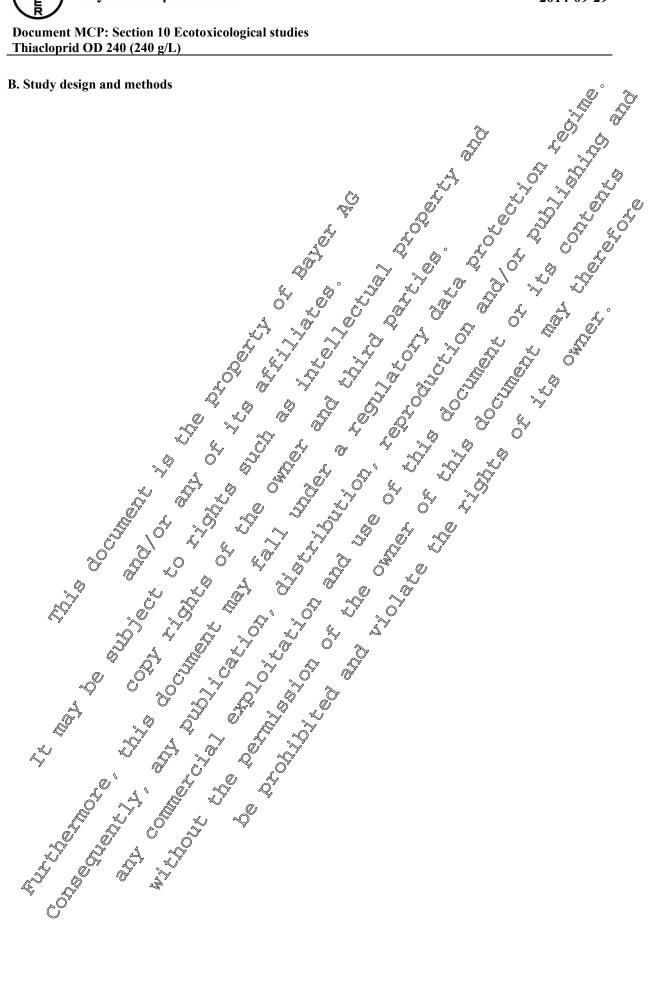
		/o)	development		Fertility	
	% sd) 🎽 👷	∑C orr ≫ected©	time@days)~∕ ∑¥sd	Eggs/female/ day ±©d	Vable eggs/female/ day (± sd)	n
Control	5 22 % · · · · · · · · · · · · · · · · ·		22.4 ± 0.8ª	2 18 J¥ 7.9°	$8.7\pm7.1^{\rm a}$	13
Thiacloprid LD ₅₀	\$27.5% \$\vee\$ ± 5:\$\$	06.5		39.2 ± 38^{a}	$8.2\pm7.5^{\rm a}$	11
Thiaclopeid	27,5% 5% £15.0°		21.7 ± 0.4 ^a	₽ 17:9₽ 10.1ª	$10.1\pm7.3^{\rm a}$	9
Thiaeloprid LD ₉₀	30.0% ×	9.7	$2\hat{1}8 \pm 0.6^{a}$	گُلُ9.6 ± 8.1ª	$10.0\pm5.6^{\rm a}$	8

ANOVA and Tukey test $\beta = 0.05$, results (plowed by the same letter are not statistically different.

High mortality of *A. bipunctata* was observed reaching 100% after 4 days of feeding with thiacloprid sprayed aphids (a). Feeding aphids from thiacloprid sprayed plants (b) resulted in 5.5% corrected mortality which was not statistically significant different from the control treatment and no effect on fertility performance was observed. Development time (until adult emergence) was near identical and not statistically significantly different. Fertility (of emerged adults) was also not significantly affected, neither eggs/female/day nor number of viable eggs. In treatment with irrigation (c), again *A. bipunctata* mortality and fertility was not statistically significantly different compared to the control.

Comment by the notifier:

Exposure to thaclored treated aphids (120 g a.s./ha) caused 100% mortality of the ladybird *Adalia bipurctatae* These Findings are in line with the effects observed for *Coccinella septempunctata* that was tested for the regulatory data package. The information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).



Report:	KCP 10.3.2.2/13	ヌ;	;	; 2014; M-48 \$ 02-
	01-1	_		<u> </u>
Title:	Lethal and behavioural effects	s of pesticides on	the insect prede	for Macrolophus
	pygmaeus		1	
Report No.:	M-485102-01-1		s,	
Document No.:	M-485102-01-1	Ô	a start	* ~ ~ ~
Guidelines:	not applicable; not applicab	le 🕅	D.	
GLP/GEP:	no	L.	.O×	
		A	Q [×] ~ °	

Executive summary:

The lethal effects of thiacloprid on Macrolophus pygmaeu were waluated. M. Bygmaeus nymphs were exposed to the pesticides via the following three combined exposure routes: direct, restaual (on leaves) and oral (each treated with 144 mg a.s. (D, 2.55 mg/cm). Thiseloprid caused 100% mortality to M. pygmaeus. The behavioural effects overe assessed following a combined residual and oral exposure. Residual and oral exposure was derived by praying tomato seedings and food separately tilf run-off (144 mg a.s./L). This exposure scenario gaused within 4 h 48% mortality, Eurtherin ore showed M. pygmaeus on control plants specif a lower amount of time preening compared to plants sprayed with thiacloprid. M. pygmaeus on control plants spent significantly longer time feeding from the plant than

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

1. Test procedure Test system (study type): Lethal effects; Behavioural effects Duration of study: Lethal effects: 72 h Behavioural effects: 72 h Lethal effects: M. pygmaeus nymphs were exposed to thaclopred Treatment: through a combined triple exposure: diffectly through contact with spray droplets, orally through their food (Ephestia kyehnietter eggs), and residually through walking on spayed plant leaves. Both sides of the formato leaflet were sprayed with 144 mg a.sol (spray volume 2.55 mg/cm²). Wmphs were placed in cm Petri dishes in groups of fifteen and were also sprayed with 1440 a.s./ha. E. Ayehniella eggs vere placed in \$9 cm Petri dish and in the same way. Control treatment was sprayed with distilled water. M. pygmaeus nymphs and E. kuehnietta eggs were allowed fordry, and the predators were transferred individually to the containers containing the leadets with an abondance of sprayed eggs as prey? Behavioural effects: Nymphs were exposed by combined residual and one exposure. Towato see dings were sprayed till run of with a handheld sprayer with pesticide (A44 mg as./L) or distilled water for the control. E. kyehnielle eggs vere placed in a 9 cm till rupoff (10 mg g/L) using the and he are so the plants and the eggs were allowed to dry and 2 hours latter 15 kachniella eggs were transferred on the first leafet of the first true feaf of the tom to plant. A M pygmaeue nymph (not sprayed) was blaced at the bottom of the main steep of the plant. Application rate: Lethal effe@s: Poter spray tower; 144 mg a.s./L spray deposit of 2.55 mg/sh² [36.9 g a.s (ha] on to both sites of the leaves Chstilled water was applied to the control Behavioural offects, Handhold sprager; 144 mg a.s./L; spraying tomato seguings the run-off tomato seedlings till run-off Spraying *E. kueppiella* ogs in a petri dish till run-off (144 mg Lether effects. 5 replicates of Behavioural effects Individuals per replicate: Exposure: Number of Peplicates: Behavioural effects: 21 replicates Dethal effects: Insects were kept individually. Lethal offects M. pygmaeus nymphs were exposed to pesticides through a combined exposure method: directly through contact with sprachroplets, orally through their food, and residually through walking on spayed plant leaves. Beha oural effects: The two routes of combined pesticide exposure 🔬 walking on treated surfaces and consuming treated egg prey or 2.Ænvironmental conditions plant material. Lethal effects: The insects were kept at 25 ± 2 _C, 16:8 L:D and Behavioural effects: The insects were kept at 25 ± 2 _C, 16:8 L:D $\sqrt{2}$ and 65% RH. 3. Observations and measurements: Biological parameters measured: Lethal effects: Mortality Behavioural effects: Mortality; resting, preening, plant feeding and walking

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Statistical analyses:

Lethal effects: Comparison of percentage of mortality in controls, for day 1 and day 2 using a t-test (R version 2.14.2, R Development Core Team, 2006). One-way analysis of variance (ANOVA) (aov). Post hoc Tukey HSD tests (TukeyHSD) used for multiple pairwise comparisons before analyses, all date were transformed using the arcsine square root transformation to achieve normality and homoscedasticity of variance Behavioural effects: Behavioural data were expressed as time in seconds allocated to each different activity over the 11 min observation period. An ANOVA model (aov)@ras used to compare the time allocated to each activity in the different treatments in R 2.14.2. An ANOVA was also used to compare the egg consumption rate at 24 h among treatments. Data on consumption rate were transformed using the arcsine square root transformation to active normality and homoscedasticity of variance. Dead individuals were excluded from the egg consumption rate analysis. Post hoc Tukey HSD tests (Tukey HSD) were used for multiple

wise comparisons

Results: <u>Validity criteria:</u> No validity criteria defined. <u>Biological findings:</u> Lethal effects Thiacloprid caused 100% montality to *M. pygmaens* nymphs. *Behavioural effects* Ten out of the D insects (48%) in the thiacloprid treatment died after 24 h. No modeter 1 d. Ten out of the D insects (48%) in the this oprid treatment died after 24 h. No predator deaths were recorded on control plants at 24 h. No additional deaths were recorded at 72 h. There were no significant differences in walking time of M Gygman between treatments. The percentage of E. kuehmella eggs consumed by M. Dygmacus nymphs was significantly higher on control plants than plants treated with this loprid no predation in this cloprid treatment).

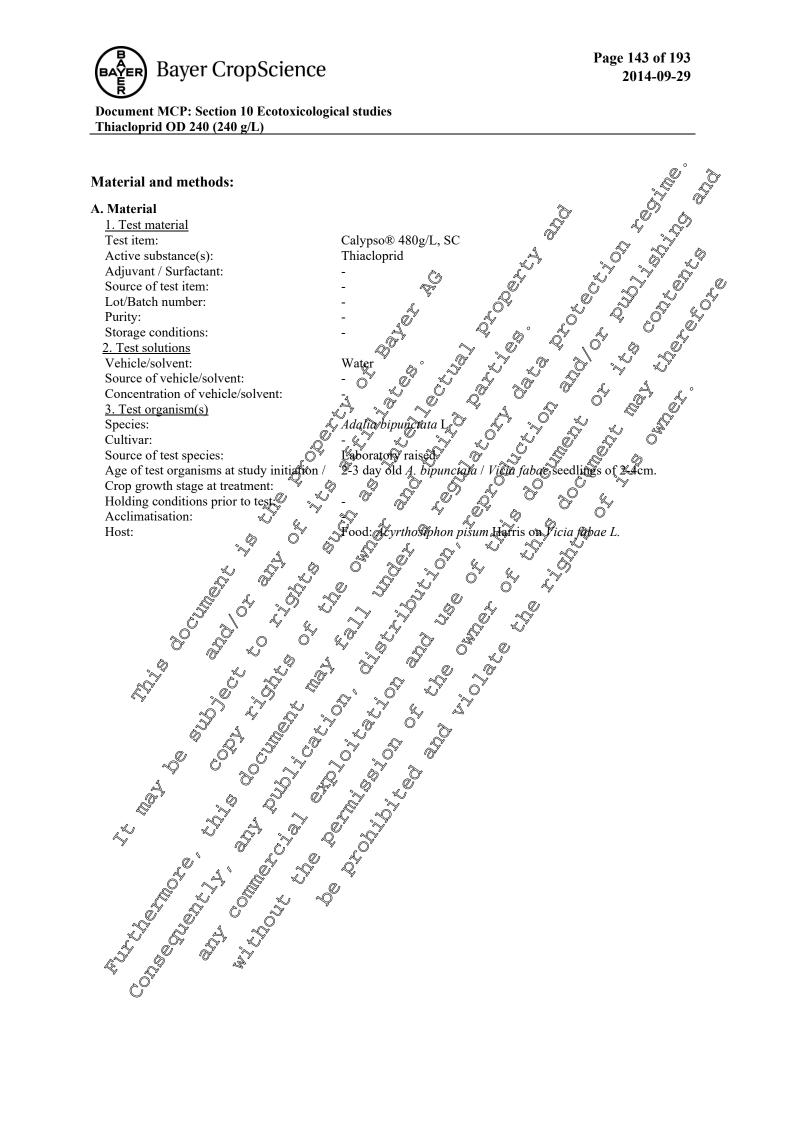
Comment by the notifier:

The thiaclopred caused under extended laboratory conditions with a combined overspray, residual and oral exposure at 36.7 g a.s./ha 100% mortality of the predatory bug Macrolophus pygmaeus. These findings are in line with the effects observed for other non-target arthropods that were tested for the regulatory data, the information is classified as by supplementary information (EFSA Journal 2011,9(2):2092).

CP 10.3.2 Semi-field studies with non-target arthropods

Supplemental information from the literature

In addition to the studies performed by BCS in accordance with the requirement a literature search has been performed in accordance with the requirements. From the papers identified during the literature search the following were identified as being potentially relevant for risk assessment. After further evaluation the literature data is considered to provide supplemental information and does not influence the risk assessment.



real a sing a sing a sing a sing a sing a sing a single study of development a single study of single study of development a single study of single **Report:** ; 2010; M-466778-01-1 Effects of four insecticides on the two-spotted ladybird Adalia bipunctata using a Title: microcosm test design Report No.: M-466778-01-1 Document No.: M-466778-01-1 **Guidelines: GLP/GEP:** no

Executive summary:

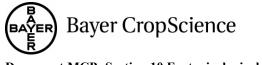
The effects of four insecticides including thiacloprid were assessed through study of development time, fecundity and fertility of Two-spot ladybirds Adalia bipunctata Linnaeus (Coleoptera: Coccinellidae) in an extended-lab test on their farvae fed on Pea aphids Act withosiphon pistum Harris (Hemiptera: Aphididae). The aim was to adapt the "microcosm' type semi-field test for the lact bird A." bipunctata, combining a realistic exposure mode in 'exposure units' with the simplicity/advantages of laboratory trials for repeatability and interpretation. Material and methods as well as results are ý, summarised for thiacloprid only. Larvae of A. bipunctata (15 individuals, introduced when 2-3 day old were placed of each replicate of aphid infested French beans (Vicia fata L. - Pabales Fabasse) in exposure units of 20-25 seedlings, surrounded by a Fluon GP1 treated metal frame 10-12 cm height. These larvae were released 48 h after 600 mg of A. pisum had been added to the J. fabde seedlings (of 2-4 cm height in 35 x 55 cm plastic trays) within each 'exposure unit' Larvae were allowed to disperse for 2-4 hours before units were transferred outside for application of thiaclopfid (120/g a.s. fra) via knapsack sprover with a flat-fan nozzle (2 m wide spraver ramp with 4 Teejet flat fan nozzle (XR series 10, 50 cm spacing). Pressure/ramp was adapted to delover 400 L/ha \pm 10% Pour replicates were made of each object, each tested in two groups in the same time as the water treated control. Whits were placed outdoors in a 10 m x 2 m are while Preated, then left to doy (under rain protection if needed) for 1-2 h, before kept 8-9 days in the laboratory (randomly distributed in a climatic chamber) without food addition. Replicates were dismantled and larvae and pupae counted in each whit when the first larvae started to pupate in the control. For each replicate, larvae and pupat of A. Dpunctata were counted and surviving larvae kept individually in petrodished, fed aphids harvested from the same exposure units until pupation. Mortality was calculated on the basis living brvae and pupae, and corrected according to Abott formula. Emerging adults were transferred to breeding containers (15 x 15 x 25 cm) and fed honeybee polon and aphids from cut French beans. Crumpled paper was added to rearing chambers to stimulate oxiposition. Date of first egg-fay was noted Fertility was assessed in the second week by counting number of eggs individual isolated females (eggs/female/24 h) over 6 successive 24 h periods (each time transferred), plus calculating hatching rate (viable eggs/female/24 h). Those not hatching in 7 days were discarded. To determine food availability in exposure units, 10-12 plants infected with 300 mg of aphids were previously grown and treated to test product and protocol of those units with ladybirds. Living aphilds were weighed (and 100 mg subset counted) from 3 sets of 4 replicates per product/control, dismantled 2, 5 and 8 days post treatment. The method combines various aspects of toxicity, direct from spray, contact with treated plants, ingestion of contaminated aphids and starvation by elinunation or reduction is food availability. For the ladybird A. bipunctata, thiacloprid treatment significantly (corr. 80%), development time to reach adulthood (+12%), but total egg fooduction/ viability of surviving A. bipunctata was not affected compared to a control.

B. Study design and methods				a,°	~
<u>1. Test procedure</u>					Ő
Test system (study type):	Semi-field test / labo 15-20 days - 120 g a.s./ha 4 15 ladybirds 35 x 35 cm tray of 2 Knapsac sprayer 2m 400 L/ha - Planting substrate sa 22-25 50-95% R 16/8 day/night Sodulm lamp (Son -	oratory	~		O S
Duration of study:	15-20 days		Â.		>
Treatments:	-		10 ⁴		
Test concentrations:	120 σ a s /ha		1	\$ \$\$	Ò
Number of replicates:	120 g u.s./ma	×	ر» ^{الا} ل		U [°]
Individuals per replicate:	15 ladybirds	a de la companya de l	×.		, D
individuais per replicate.		Q,	Ŵ		Å
Test units (type and size):	25 x 25 cm the y of 2	0.25 conditions	with 600 mg a		«°
Application / device / nozzles:	Vinanga a chavan 2m		flat for mage	$(\mathbf{V}\mathbf{D} + \mathbf{V}\mathbf{D})$	U
Water volume:	Anapsac sprayer 2m	ramp, # Teeper		(AR 110).	
Water volume:	400 L/Ma		a'al	N N	
Calibration of sprayer:		SI N .		$\sim \sim \sim$	
2. Environmental conditions) Ö 1	A	0
Test medium:	Planting substrate sa	ina coverea 🙂	~~ O'		
Temperature / relative humidity:	√2/2-25 ℃ 50-95% R	H i A			
Photoperiod:	16/8 day/night		Y	to s	
Lighting	Socium lamp (Son	Agro, 7000-1	9000 lox. 🖉	ça O	
pH: O [♥]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S &	, Q	
Organic matter (C _{org}):					
CaCO ₃	Planting substrate a 22-25 50-95% R 16/8 day/night Sochum lamp (Son - - - - - - - - - - - - - - - - - - -	, , , , , , , , , , , , , , , , , , ,		<i>¥</i>	
Cation exchange capacity:	- 01 4			¥	
Soil textural fractions / extractable		~~~?	Ô.		
micronutrient concentrations [mg per kg					
soil]:					
Fertilization:	- 0 2 .0		. 5		
3. Observations and measurements:		O' ×	L'Y'		
Conditional (eg weather) parameters	y ~ ~	Q .	. %		
3. Observations and measurements: Conditional (eg weather) parameters Biological parameters measured	Mortality, developm	ontal time, fecu	hidity, hatchin	g rate and	
Measurement Prequency:	proportion of viable	eggs 🗸 🗸	ŕ		
Measurement Prequency:	24 h – 6 days.	ST O.			
Statistical analyses: 🖉 🖉 🔬 🐧	Arcsin transformatio	on, One-way Aı	nova (Minitab)	, and Tukey test	t
	⁷ multiple comparison	U O			
		ON CONTRACT OF CONTRACT.			
Results:	S' N I	2 N			
Validity criteria: S A S		r			
No validity criteria were state					
Biological fundings:					
Measurement Prequency: Statistical analyses: Results: Validity criteria: No validity criteria were stated. Biological fundings: Table CF 10.3.2.3-1: Effects of thiacloprid	W Brygh Dinuncta	ta			
Larva Larva	Developmental	Total egg	Hatching	Viable egg	
	fime to adult	i utai egg	matching	v lable egg	

49	su su		, unit to adult	Total egg production ± sd	Hatching rate ± sd	Viable egg production ± sd
Control	×16.7%	Š Š	22.59	22.80	63.8%	15.04
Comp	©±15.3%a	~ -	$\pm 0.46a$	± 7.04a	± 11.9%a	$\pm 4.20a$
Thiacloprid	∑ 8≩3%,∿∽	80%	25.33	19.50	65.6%	12.17
Timaciopitio	7.5%b	8078	±0.76b	± 11.81a	± 10.6%a	$\pm 6.84a$

sd \neq standard (Giation Anova test (Gie-way) followed by Tukey multiple comparison at P=0.05 level. Arcsin transformation for percentage before analysis. Numbers for both we have been before analysis.

On day 8 aphid population in the thiacloprid treatment was reduced by 80% compared to the control . treatment, staying at the same level as initially added. Thiacloprid increased larval toxicity (corr. 20%) and developmental time to adulthood (+12%) statistically significantly compared to the control Fecundity and fertility were not affected (measured through egg production, hatching rate, and viable) egg production).


Comment by the notifier:

The thiacloprid caused under semi-field conditions with a combined residual and or a exposure at 20 g a.s./ha 80% mortality of the ladybird Adalia bipuncata. These findings are in line with the effects observed for Coccinella septempunctata that was tosted for the regulatory datapackage, the

g a.s./ha 80% m	ortality of the ladybird Adalia bipunctata. These figurings are in fine with the effects \mathcal{Q}
observed for Co	ortality of the ladybird Adalia bipunctata. These functings are in the with the effects ccinella septempunctata that was tested for the regulatory datapackage, the lassified as b) supplementary information (EFSA Journal 2011;9(2):2092)
information is c	lassified as b) supplementary information (EFSA Journal 2011;9(2);2092)
CP 10.3.2.4	Field studies with non-target arthropods
	Field studies with non-target arthropods
	Field studies with non-target arthropods
Report:	2013 3 ⁴ -4622 ⁵ / ₂ -01-4 ⁵ / ₂ 2 ⁷ / ₂
Title:	A field study to assess the effects of thiaclost d ODQ40 (20 g/L) on the non-target,
	surface- and plant dwelling arthropod fautra of a grassland habiter (off grop) in The
	Netherlands during spring/summer 🔗 🖉 🔗 🚬 O
Report No.:	B162FFN 4 5 4 6 4 6 2228-0 1 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Document No.:	M-462228-01-1 & a a a a a a a a a a a a a a a a a a
Guidelines:	B162FFN M-462228-0 -1 IOBC (Hassan, 1992), Astonymous (1993), Brown (1998), IOBC, BART and EPPO
	frint Infrative (Candolfi et al 2000, 2001), Be Jong et al., 2010; US EPA OCSPP
	Not Applicable; not applicable
GLP/GEP:	$ \begin{array}{c} 5 \\ 5 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
~	Not Applicable; not applicable

This field study was designed to assess the potential adverse effects on Non-Target Arthropods (NTA) in off-crop habitats that might occup at various distances from a treated area for current and future use patterns of the test item. By analogy to regulatory studies in e.g. aquatic environments (SANCO 2002) the study was set up to mable an assessment of community and population level ecotoxicological standards, in particular the NOER (No Observed Effect Rate), the NOEAER and the LOEAER (No and Lowest Observed Ecologically Adverse Effect Rate, respectively).

The study was performed in a frue of Crop Kabitat, re. a meadow habitat with little agricultural input in The Netherlands. This approach has the dvantage that the observed response would pertain to a representative off-crop NTA community i.e. a community not previously under selection in an agricultural regime. For this reason the study outcome represents a realistic worst case situation. The study was designed as a OER type (, 2007 and et al, 2010). The choice for a NOER approach makes the results applicable to any product use pattern. At the same time the assessment of a NOEARR/LORAER avoids the caveats of assessing the acceptability of certain effect levels at given drift rates (Backer, 2012; Miles and Bakker, 2012). The finding that the NOER or NOEAER may be expected to occur at a certain distance from a treated area will be unambiguously interpretable. The approach was fully in line with the ESCORT 3 proposal (Alix et al, 2012). To enable a refined assessment of NOEAER/LOEAER, sampling was continued until 8 weeks postapplication. Recovery within this time frame was considered to be ecologically acceptable, even when initial effects would have occurred.

Material and methods:

Test item: Thiacloprid OD 240B G; Batch ID: ECE7101227; Material no.: 79674910; Specification no.: 102000021774-01; Sample description: TOX09758-00; Density: 1.040 g/pL; Analysed content 239.2 g a.s./L (23.0% w/w).

Thiacloprid OD 240 was applied once to a grassland meadow on 5 June 2012 at nominal rates of 0.56 1.2, 4.7, 10.2 and 27 g a.s./ha, equivalent to typical drift values for different use patterns of the test item. Average application rates per treatment deviated 8.5% or less from intended rates. A water control treatment and a toxic reference treatment (lambda-cyhalothin at a rate of 40 g a s./ha) were run in parallel. Nominal application volumes were 200 L/ha. The soil-surface- and plant-dwelling arthropod communities were monitored shortly before and one, two, four and eight weeks after application. Abroad spectrum of arthropods was sampled with a combination of sampling methods, viz. pitfall trapping, Betlese-Pallgren extraction from wed samples and suction sampling.

The trial had a randomised complete block design with 4 replicates treatment. Each block had seven treatment plots of 24 x 24 m. To minimise interference among plots, the trial was laid out in a checkerboard design. During treatment of the second half of the last plot of each treatment (all plots in one block), air was observed to enter the sprayliquid resulting in potentially inaccurate spray rates. These plots were therefore reduced in size. Defore the first post-application sample pitfalls were re-installed in the centre of the 12 x 24 m area that did receive the correct spray volume. Additional analyses were performed to confirm that smaller plot size in this block had no influence on recovery rates of arthropod taxa in comparison to recovery tares in large plots.

The effects of Thiactoprid OD 240 were expressed in terms of population and community changes relative to the water control. The No Observed Effect Rate (MOER) was defined at the community level and at the population level as the highest rate at which adverse responses were not significantly different from the water control at any time point. The No Observed Ecologically Adverse Effect Rate (NOEAER) was defined at the community level and at the population level as the highest rate at which statistically significant adverse responses were observed, but recovery was demonstrated within two months after application. By analogy the KOEAER (for community and population responses) was defined as the lowest test rate at which adverse effects were statistically significantly different from the water control without recovery occurring.

Statistical significances were in principal onsidered at an alpha level of 5%. Statistical significances at an alpha level of 10% were also indicated as additional information to evaluate potential trends

Findings

Test performance

Average application rates per treatment deviated 8.5% or less from target rates.

Both univariate and multivariate analyses of pitfall- and suction sample data demonstrated acute and persistent statistically significant adverse effects in plots treated with the reference item, indicating that the test system was sufficiently sensitive and adequate to detect statistically significant and distinctly different responses in case these occurred.

For several taxa nonecovery was seen in the reference treatment within the time frame of the study, indicating that test design parameters, such as plot size, were adequate to demonstrate persistent adverse treatment related effects. This was also true for the smaller plots in block 1.

Due to high dominance of one single mite taxon (98% of all mites identified) multivariate analysis of the weed sample dataset was considered of low value for effect evaluations at the community level.

Biological findings:

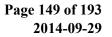
Biological system

The experimental field was a humid to wet, nutrient rich grassland meadow with high coverage and C low plant species diversity. There was a homogeneous vegetation and soil constitution, without structures potentially causing irregular microclimates. Poa trivialis (Roughbluegrass), Lolium perenne? (Perennial Ryegrass), Alopecurus pratensis (Meadow fox(a)) and Agrostis stolonifera (Fiorin Crass) were the most dominant grass species. The coverage of non-graminae plants was lower that 91% on estimation.

The arthropod community sampled in this study was diverse and the for grassland regetation, and representative for an off-crop non-target arthrop community. The tinking of the experiment was such that a high number of abundant taxa were present during the sampling period. In addition timing coincided with typical use patterns for the test tem, fitfall and suction data were appropriate for community analyses using ordination techniques. The mile community extracted from weeds amples was entirely dominated by one taxon (Tersonemidae;)8% of all mites identified) and therefore not included in effect evaluations. A total of 54 fax a were sufficiently abundant to be subjected to O population level evaluations. A number of avaluations were performed at the family level, but several taxa occurred at sufficiently high members to allow for an evaluation of genus or species level. The taxonomical analysis was performed in great depail. Despite the restrictions caused by the inevitable categorization of specimens at different taxonomic levels, it was felt that the number of taxa together with the choice of axonomic level used for analysis did provide a sufficiently detailed and valid ecological analysis.

Sampling

Sampling The entire arthropod community occurring in the off-crop habitat was montored using pitfall-, weed/Berlese and suction sampling techniques. In total almost 1 million specimens from 207 taxa were identified, 137 of which were included in community analyses and 54 in univariate analyses. Highly abundant taxa were Collembola. Thys propters and the micro hymenopteran wasp family Mymaridae.

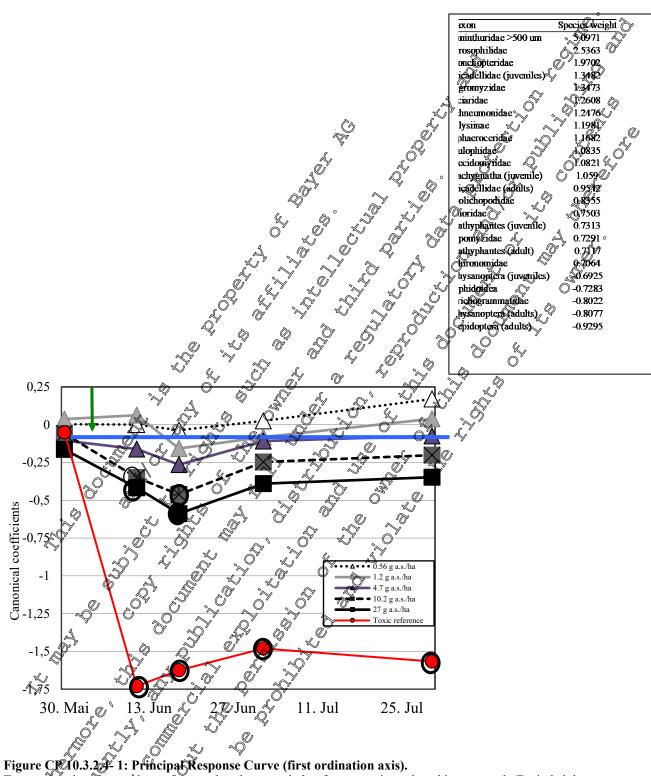

Results test item

Treatment with the insecticide Thiac oprid OD 240 in an off-field grassland habitat in the Netherlands led to statistically significant adverse effects on prevailing arthropod communities for the highest test rates of 10.2 and 27 g a.s. Ora. Community analyses of the suction dataset revealed moderate and transient adverse community responses in the two highest test item rates one and two weeks after application. A weak adverse effect in the putiall dataset was not statistically significant at $\alpha = 0.05$ shortly after application, but at the end of the two-week sampling period an adverse response had developed which was statistically significant in the highest test item rate. In the combined dataset, a statistically significant adverse response was observed at the highest test rate of 27 g a.s./ha two weeks after application.

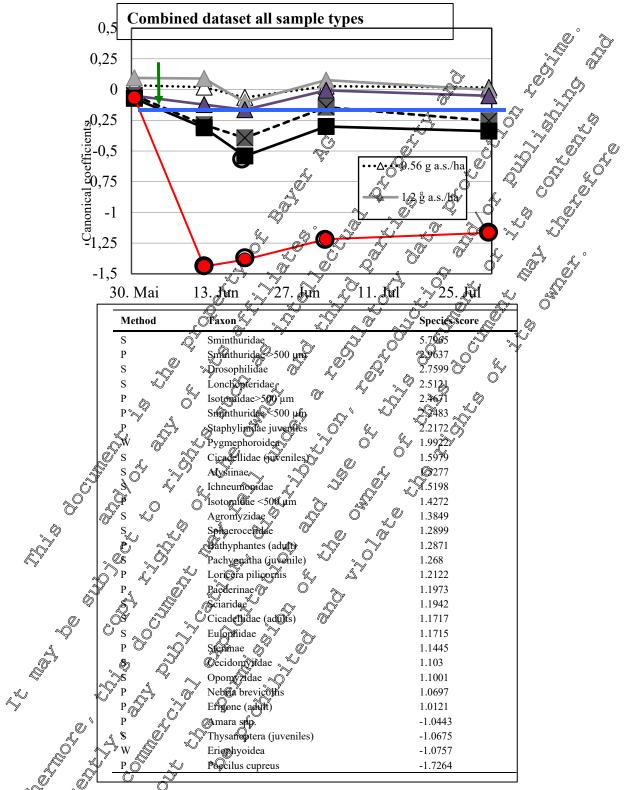
Nine taxa showed statistically significant adverse responses that were considered related to the test item treatment (based on magnitude and duration in relation to dose and timing). At the highest test item rate of 27 g a.s. ha, the collembolan taxon Sminthuridae, the linyphiid web spider Erigone, the colopteran family Staphylinidae and the dipteran taxon Lonchopteridae (Aschiza) were moderately affected and did not recover within the two months study period. Loricera pilicornis (Carabidae, Coleoptera), juvenile Cicadellidae (Homoptera), Drosophilidae (Diptera) and another collembolan taxon (Isotomidae) also showed statistically significant adverse effects at the highest test item rate,



with full recovery occurring latest two months after treatment. Transient and moderate but statistically 10.2 and 4.7 g a.s./ha of Thiacloprid OD 240. At these rates, recovery occurred within two weeks after treatment for Drosophilidae and one month after treatment for Surjetter to the state of the state 10.2 and 4.7 g as. and 1 interoprint OD 240. At these rates, recovery occurred within two weeks after treatment for Drosophilde and one mount after treatment for Smithuridae. For few other taxa reductions compared to the control occurred incidentally, bit differences were not statistically significant at σ =0.05, or no consistent trend in time or relation to the dose ratewas bound t A comparing the provide and the state of the For few other taxa reductions compared to the control occurred incidentally, but differences were not statistically significant at $\alpha=0.05$ or no consistent trandim time.



Summary community level effects



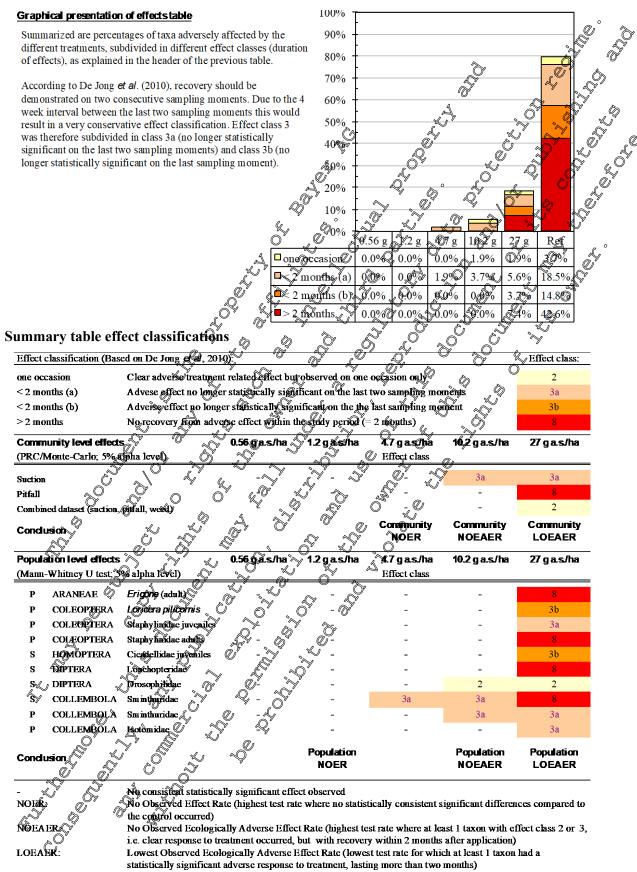
Test- and toxic reference items were analysed separately but for comparison plotted in one graph. Encircled data points are statistically significant (Monte-Carlo Permutation test, alpha = 0.05 thick circle; alpha = 0.1 thin circle). The 24 largest species scores of the test item treatments are presented (i.e. these species had the largest influence on the shape of the PRC curves of test item treatments). The arrow indicates the application day.

Figure P 10,62.4- 2 Principal Response Curve (first ordination axis)


Test, and toxic reference items were analysed separately but for comparison plotted in one graph. Encircled data points are datistically significant (Monte-Carlo Permutation test, alpha = 0.05 thick circle; alpha = 0.1 thin circle). The 30 argest species scores of the test item treatments are presented (i.e. these species had the largest influence on the shape of the PRC curves of test item treatments). The arrow indicates the application day. Method: S=suction; P=pitfall; W=weed

Results community analyses

Treatments	% Variance			explained by		
included in	for l	by		regime in	ð	\mathcal{O}
analysis	time	treatment	axl	ax2	P-value ax1	P-value ax2
			PITFALL			
all	29.2	27.6	46.8	16.2	0.001	0.001
Test item rates	36.2	13.3	18.2	10.0	0.310	0.692 0.692 0.668
0.56 g a.s/ha	40.4	7 <i>.</i> 9	37	26.4	0.627 V	°°° 0.72\$≉
1.2 g a.s./ha	39.9	7.2	33.7	» 21.7	Q 0.901 @	0.970 ×
4.7 g a.s./ha	40.2	7.5	33.8	24.2	0.810	(0 .692
10.2 g a.s/ha	41.3	8.8	30.5	27.4 Q″	·0.691	0.3210 0.668
27 g a.s./ha	39.4	9.2	39.30	23,1	0.44Q	0.668
Reference	30.4	35.2	66.4	<u> </u>		0(023
			SUCTION			× ×
all	44.6	27.9	0 _{62.3}	9.6	~0.001 <i>°</i>	£ 0.001
test item rates	57.6	9.5			0.238	0.920
0.56 g a.s./ha	60.3	4.8				0.920
1.2 g a.s./ha	63.0	5.1			0.829 ×	×0.920 ×
4.7 g a.s./ha	63.9 60.0	4.3	40.3	18.20	0.02	♥ 0.913 ♥ 0.8 9 7
10.2 g a.s./ha 27 g a.s./ha	60.5	Q E	0 ^{. 44}			Q.670
Reference	39.6	38.3				0.027
Kelefellee			ABINED DATA		Q.023 0	0.027
all	38.4	26.8	\$ 53.9		0.001	0.001
test item rates	48.3 Ø	01.0 S	186	° 9.0 ≪	0.199	0.937
0.56 g a.s/ha	51.9	4 6.0 Q	888 4	23.0 ×	AY 485	0.800
1.2 g a.s./ha	52.7	6.0	30.5	<u>0</u> 24.0%	0.882	0.713
4.7 g a.s./ha	5 8.2 0	× 56	33.4	20.D	0.806	1.000
10.2 g a.s./ha	\$1.8	A ~	363 ~	× 2018	0.303	0.742
27 g a.s./ha	S 51.30	× 83 V	~46.8 · ~ ?	Ø7.6 🕎	9.088	0.517
Reference	36.0	35%6	₹ 74.5	~~14.4	0.023	0.027
values at individu			, <i>10° , 10°</i>	O T A	 @~	
PITFAL	0.56 g a,s/ha		4.7 ga.s /ha	Non Test⊱gompar	son to control) 27 g a.s./ha	Reference
29-May 312	0.00 g a s/la	$\frac{1.22}{0.6460}$	0.873	10.2 g a.s./ha	0.800	0.202
12- Jun -12	07548	0.969	0.073 0.73	× 0.772	0.807	0.023
19-Jun-12		1 368 Å	0.176	0 301	0.068	0.030
03-Jul-12			A 743	0.466	0.647	0.030
31-Jul-12	0.00	0.882	<u>,</u> ≪1.000 <u>,</u>	0.095	0.038	0.030
	0.56@a.s/ha	<u>~</u>	A.7 g a ha	100.2 g a.s./ha	27 g a.s./ha	Reference
31-May-12	Ø.180 O	0,856	/ 0,657 %	0.363	0.379	0.922
12-Jun- <u></u> ∦2	0.588	~0.796	ag:459	0.096	0.045	0.029
19-Jun 12	0.645	X 0.819	`≫0.287∜	0.043	0.024	0.024
03- J ¥-12	1:900	0,158	S 0.972	0.734	0.186	0.024
34 ₇ Jul-12	9 .412	A 376 🖉	y 0°.5 8 3	0.630	0.439	0.024
COMBINED	0.56 g a s ha	12/g a.s./ha	4.7 g a.s./ha	10.2 g a.s./ha	27 g a.s./ha	Reference
31-May-12	,∿ 0.66 4	0.756	L 0.897	0.611	0.751	0.442
12-Jun-12 🎺	୍ର ହ .700 ୁ//	0,975	<i>°</i> Q° 0.692	0.127	0.233	0.022
19-Jun-120	~ 0 .546	0.856	0.472	0.152	0.035	0.035
03-Jul-12	2 1.000	‱0.433 ∳	0.732	0.708	0.369	0.035
<u>31-Jul 2 2</u>	0.393	² 0.336	1.000	0.351	0.315	0.035
AN R	All treatments (* (test- and refer	ence item) anal	vzed together		
Test item rates	All test item tre			JENG INGUINA		
1.56 g, 1,2 g, etc	One test item tr					
Reference	Reference item					
G	Statistically sig			(Monte Carlo pe	rmutation test)	


Statistically significant at alpha = 0.05

Summary population level effects

	· · ·	on De Jong et al, 2010): Effect class; 🖉 🧳
		Clear adverse treatment related effect but observed on one occasion only
	nths (a)	Advese effect no longer statistically significant on the last two sampling moments Adverse effect no longer statistically significant on the the last sampling moment No recovery from adverse effect within the study period (= 2 months)
	nths (b)	Adverse effect no longer statistically significant on the the last sampling moment
> 2 то	nins	
		Based on 10% significance level and visual consideration/of trends
		Based on 5% significance level and visual consideration of trends
	: S=suction:P=pitfall; V	Based on 10% significance level and visual consideration of trends Based on 5% significance level and visual consideration of trends
nethod	d Order	Based on 10% significance level and visual consideration of trends Based on 5% significance level and visual consideration of trends <u>V-weed</u> <u>Thiacloprid OD 240 (g/L) 05% g 1.2 g (7.7 g 10.2 g 27 g Ref</u>
W	ACARI	Tarsonemidae
Р	ARANEAE	Pardosa (juv.)
Р	ARANEAE	Pardosa (adult)
Р	ARANEAE	Lycosidae others
S	ARANEAE	Pachygnatha (juvenile)
Р Р	ARANEAE	Pachygnatha
P P	ARANEAE ARANEAE	Ocdothorax (adult)
P P	ARANEAE	Bathyphantes (adult)
S	ARANEAE	Linyphildae juvenites (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Р	ARANEAE	Juvenile Linyphildae
Р	COLEOPTERA	Ocdothorax (adult) Bathyphantes (adult) Linyphiidae juvenite Juvenite Linyphiidae Bernbidion spf Loricera pilicomis Poecilus cupreus
Р	COLEOPTERA	Loricera pilicomis
Р	COLEOPTERA	Poccilus copreus
Р	COLEOPTERA	Harpalinac other Staphy linidac juveniles Staphy linidac juveniles Staphy linidac Staphy li
Р	COLEOPTERA	Staphylinidae juveniles 2 0 " " Charles 2 3a
P	COLEOPTERA COLEOPTERA	Staniy linidae 3a Coccine lini (juveniles) 3b
S P		Coccinellini (juveniles) Hydrophyddae 9 0 0 9 4 6 7 5 <u>3b</u>
r S	HYMENOPTERA	Information in the second se
S	HYMENOPTER	Aplindinae A A A A A A A A A A A A A A A A A A A
S	HYMENOPTERA	All stime a start and a start and a start a st
S	HYMENOPÜERA &	Rulophidae & Y & Y & B
S	HYMENOPTERA	Mymanidae 🖉 🌾 🦾 🖓 🔜
S	HYMENOPTER	Ptenomalidae
S	HYMENOPTERĂ	Chalcidoidea other
S	HÝMĚNOPTERA	Platygastridae
P	HYMENOPTERA	Scelionade 2 Procident for a 2
S S	HYMENOPTERA HYMENOPTERA	Proclation of the second secon
S	HOMOPTERA	Aphidoidea 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
S	HOMOPTERA	Orcadelliare (juvenites) 2 2 2 2
S		Cicade(I)idae (adults)
S	HOMÔRFERA Ü	Delmacidae (suveniles)
S	HOMOPTERA	Dephacida (Jadults)
S	HEFEROPTERA	Miridae (hereniles)
S		Cecidomyidae
SK	DIPTERA	Chinghonidac 3a
×	DIPTERA	Schartdac 3a
S″ S	DIPTERA	Phoridae S
S	DIPTERA	Chlorepidae
S	DIPTERA S	Drosphilidae 2 2 3a
S	DIPTERA	Spacroceritize
S	DIPTERA	Acalypta other 3b
S	<u>^</u> ÇOLLEMBOLA	Based on 10% significance level and visual consideration of trends Based on 5% significance level and visual consideration of trends Verect Tarsonemidae Pardesa (duk) Trasonemidae Pardesa (duk) Lycosidae others Pardesa (duk) Lycosidae Pardesa
P _	COLLEMBOLA	
P	COLLEMBOL	Symphypleona (other)
Ľ₿	CONLEMBOLA	Entomobryidae
P		Isotomidae 3a
P '	USOPODA	Isopoda (all)
Р	CHILOPODA	Chilopoda (all)
S	THYSANOPTERA	Thysanoptera (juveniles)

P-pitfall; S-suction

Thiacloprid OD 240 (240 g/L)

Conclusion:

It is concluded that Thiacloprid OD 240 applied at a rate of 27 g a.s./ha in an off-crop grassland meadow in The Netherlands is the community LODADD (T meadow in The Netherlands is the community LOEAER (Lowest Observed Ecologically Adverse Effect Rate). Moderate adverse effects found in the suction dataset were no longer observed one month after treatment, but a gradually increased adverse effect in the pitfall dataset was staristically significant on the last sampling moment two months after application. Thiacloprid OD 240 applied at a rate of 10.2 g a.s./ha is the community OEAER (No Observed Ecologically Adverse Effect Rate). Moderate adverse effects were stanstically significant one and the weeks after treatment, but the community as a whole that recovered one month after treatment No statistically significant adverse community effects were found in the 4.7 g as /ha rate. This rate classified as the community NOER (No Observed Effect Rate) At the population level nine taxa were considered adversely affected by treatment with Thiacloprid OD 240 applied at a rate of 27 g a.s./ha, of which four taxa did no recover within the wo-month sampling period. This rate is therefore the population LOEAER. In the 4.7 g and 10.2 g a.s./ha rate of Thacloprid OD 240 one and too taxa, were setversely affected but recovered within one month after the attractif. The 10.2 gas, sharate is there the consultation <u>NDEAER</u>. No statistically significant adverse population effects were found in the 1.2 gas, the rate. This rate is classified as the population NOER. but recovered within one month after reatment. The 10.2 ga.s./ha rate is therefore the population

; 2013; M-462231-01-1 **Report:** Title: A field study to assess the effects of thiacloprid OD 240 (240 gD) on the non-taget, surface- and plant-dwelling, arthropod fauna of a grassland havitat (off-crop) in SV France during spring/summer Report No.: B163FFN Document No.: M-462231-01-1 chemial adverse effects on Non The IOBC (Hassan, 1992), Anonymous (1992), Brown (1998), IOBC, BART and EPPO **Guidelines:** Joint Initiative (Candolfi et al., 2000, 2001), De Jong et al., 2010, US EPA O Not Applicable; not applicable « yes

GLP/GEP:

Objective:

This field study was designed to assess the potential adverse effects on Non-Farget Arthropods (NFA) in off-crop habitats that might occur at parious distances from a treated area for current and future use patterns of the test item. By analogy pregulatory studies of e.g. aquatic environments (SANCO 2002) the study was set up to enable an assessment of community- and population level ecoroxic dogical standards, in particular the NOER (No Observed Effect Rate the NOEAER and the LOEAER (No and Lowest Observed Ecologically Adverse Effect Rate, respectively). The study was performed in a true off-crop habitat, i.e. a meadow habitat withdittle agricultural input in the South-West of France. This approach has the advantage that the observed response would pertain to a representative off-grop NTA community di.e. a community not previously under selection in an agricultural regime. For this reason the study outcome represents a realistic worst case situation. The study was designed as a NQER-type Bakker and Miles, 2007; De Jong et al, 2010). The choice for a NOER approach makes the results applicable to any product use pattern. At the same time the assessment of PNOE AER/LQEAER avoid the caveats of assessing the acceptability of certain effect levels at given drift rates (Bakker, 2012; Miles and Bakker, 2012). The finding that the NOER or NOEAER pray be expected to decur at a certain distance from a treated area will be unambiguously interpretable. The approach was fully in line with the ESCORT Sproposal (Alix et al, 2012). To enable a refined assessment of NOEAOR/LOFAER, sampling was continued until 8 weeks postapplication. Recovery within the time trame was considered to be ecologically acceptable, even when initial effects would have occurred.

Material and methods:

Test item Thiacloprid OD 240B G; Batch ID: ECE7101227; Material no.: 79674910; Specification no.: 102000021774 01; Sample description: TOX09758-00; Density: 1.040 g/mL; Analysed content: 239.2/g a.s./L (23.0% w/w).

Thiacloprid Op 240 was appred once to a grassland meadow on 29 May 2012 at nominal rates of 0.56, 1.2, 4.7 10.2 and 27 Sa.s./ha, equivalent to typical drift values for different use patterns of the test item. Average application rates per vest item treatment deviated at maximum 1.5% from intended rates. A water control treatment and a toxic reference treatment (lambda-cyhalothrin at a rate of 40 g a.s./ha) were fun in paraller Nominal application volumes were 200 L/ha.

The soil-sufface- and plant-dwelling arthropod communities were monitored shortly before and one, two, four and eight weeks after application. A broad spectrum of arthropods was sampled with a combination of sampling methods, viz. pitfall trapping, Berlese-Tullgren extraction from weed samples and suction sampling.

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

The trial had a randomised complete block design with 4 replicates/treatment. Each block had seven . treatment plots of 24 x 24 m. To minimise interference among plots, the trial was laid out in a checkerboard design.

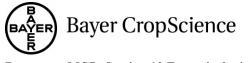
The effects of Thiacloprid OD 240 were expressed in terms of population and community changes relative to the water control. The No Observed Effect Rate (NOER) was defined at the community level and at the population level as the rate at which adverse responses were not significantly different from the water control at any time point. The No Observer Ecologically Adverse Effect Rate (NOEAER) was defined at the community level and at the population devel as the highest the at which statistically significant adverse responses were observed, but recovery was demonstrated within wo months after application. By analogy the LOEAER (for community and appulation responses) was defined as the lowest test rate at which adverse effects were statisticall significantly different from the water control without recovery occurring.

Statistical significances were in principal considered at an appha lovel of 5%. Statistical significances . at an alpha level of 10% were also indicated as additional information to evaluate potential trends.

Findings:

Test performance

Average application rates per test them treatment deviated 1.5% or less from arget tates. Both univariate and multivariate analyses of pitfall-suction and weed sample data demonstrated acute and persistent statistically significant adverse effects in plots treated with the reference item, indicating that the test system was sufficiently sensitive and adequate to detext statistically significant and distinctly different responses in case these occurred. and distinctly different responses in case these occurred. So the second state of the study, For several taxa no recovery sas seen in the reference treatment within the time frame of the study,


indicating that test design parameters, such as plot size, were adequate to demonstrate persistent adverse treatment related effects.

Biological System

Vegetation structure in Acated that the experimental field was a humid, moderately nutrient rich grassland with high coverage and low plant species diversity. There was a homogeneous vegetation and soil constitution, without structures potentially causing irregular microclimates. Holcus lanatus (common velvet grass) Dactiffs glomerata (Cocks foot), and Festuca pratensis (Meadow Fescue) were dominant grass species. White clover (Trifatium repens) and ribwort plantain (Plantago lanceolata), were common plant species?

The arthropod community sampled in this study was diverse and typical for grassland vegetation, and representative for an off-crop non-target atthrop of community. The timing of the experiment was such that a high number of abundant taxa were present during the sampling period. In addition timing coincided with typical use patterns for the text item. The entire dataset was appropriate for community analyses using ordination techniques. In addition, a total of 95 taxa were sufficiently abundant to be subjected to population level evaluations. A number of evaluations were performed at the family level, but several taxa occurred at sufficiently high numbers to allow for an evaluation at genus or species level. 🎢

The taxonomical analysis was performed in great detail. Despite the restrictions caused by the incutable categorization of specimens at different taxonomic levels, it was felt that the number of taxa together with the choice of taxonomic level used for analysis did provide a sufficiently detailed and valid ecological.

Page 158 of 193 2014-09-29

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Sampling

The entire arthropod community occurring in the off-crop habitat was monitored using pitfall-, weed/Berlese and suction sampling techniques. In total more than two million specimens from 3/2 taxa were identified; 215 of which were included in community analyses and 95 in univariate analyses. Highly abundant taxa were Collembola, Thysanoptera, Oribatida, aphids, cicadellids and mosquitoes of the family Sciaridae.

Results test item Treatment with the insecticide Thiacloprid OD 240 in an off-field grassland habitar in South-West France led to moderate but statistically significant effects on prevailing asthropod communities for all but the lowest test rate of 0.56 g a.s./ha. Community analyses of the subtion dataset revealed transient community responses one week after application onlyan rates equal to or higher than 1.2 gras./ha, and one and two weeks after application in the 279 a.s. that rate Recovery of the community had taken place two weeks after treatment in the rates of 12, 4.7 and 10.2 g a.s./ha and one month after treatment in the highest rate of 27 g a.s./Ka. No statistically significant adverse community effects were detected in arthropole communities sampled with pitfalls and with weed extraction methods. Community analysis of the combined dayaset resealed transient community response one and two weeks after application at the 102 g a stha rate, while at the rate of 27 g a.s./ha statistically significant community response was only observed one week after application, Fourteen taxa showed statistically ignificant adverse responses that were considered related to the test item treatment (based on magnitude and duration in relation to dose and thining). Several collembolan and coleopteran taxa, two spider taxa, one hymenopteran taxon and addit Thysanoptera were moderately affected by the highest test item rate of 27 ga.s./ha and in few cases also by lower test item rates, but all populations recovered within two months after treatment. The lowest test rate showing an adverse treatment related response was 9.56 g a.s./ha At this rate, the collembolan family Sminthuridae, Sampled with suction, was adversely affected only one week after application, and had For few other taxa reductions compared to the control occurred incidentally, but differences were not

statistically significant at $\alpha \neq 0.05$, or no consistent trend in time or relation to the dose rate was found.

way 0.56 g ... adversely affreter ... at one week later. ... compared to the control occur ... at a 0.05, or no consistent trend in tin ... the control occur ... at a 0.05, or no consistent trend in tin ... at a 0.05, or no consistent trend in t

Summary community level effects

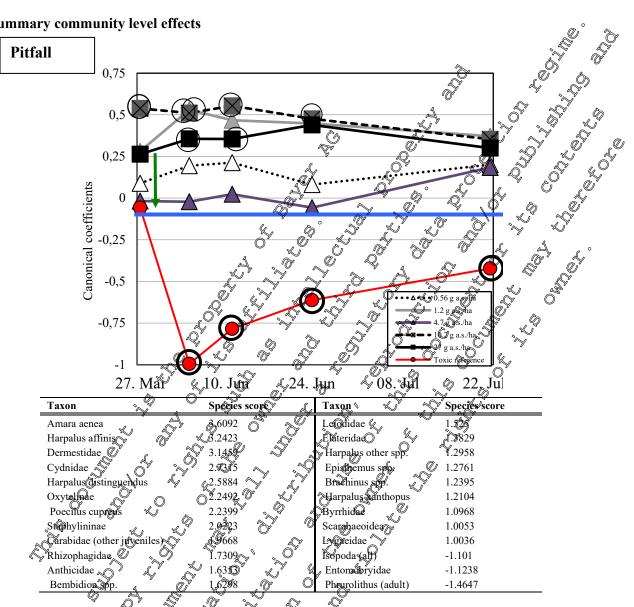
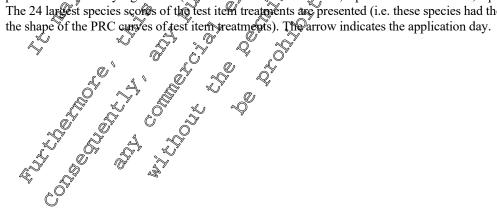
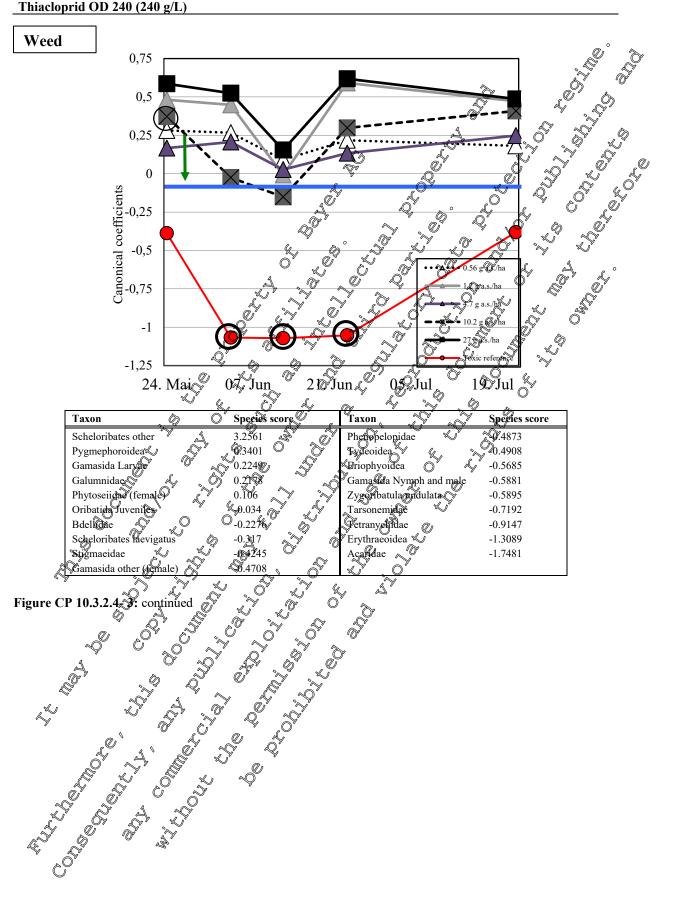
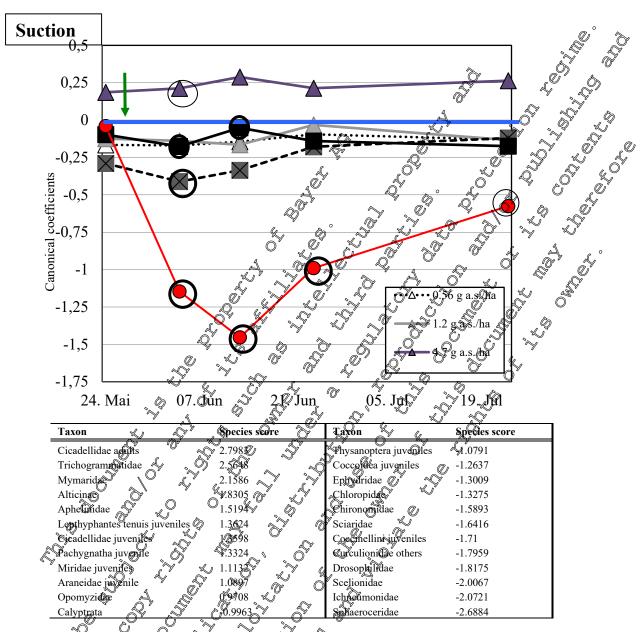
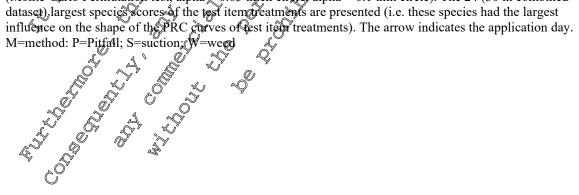
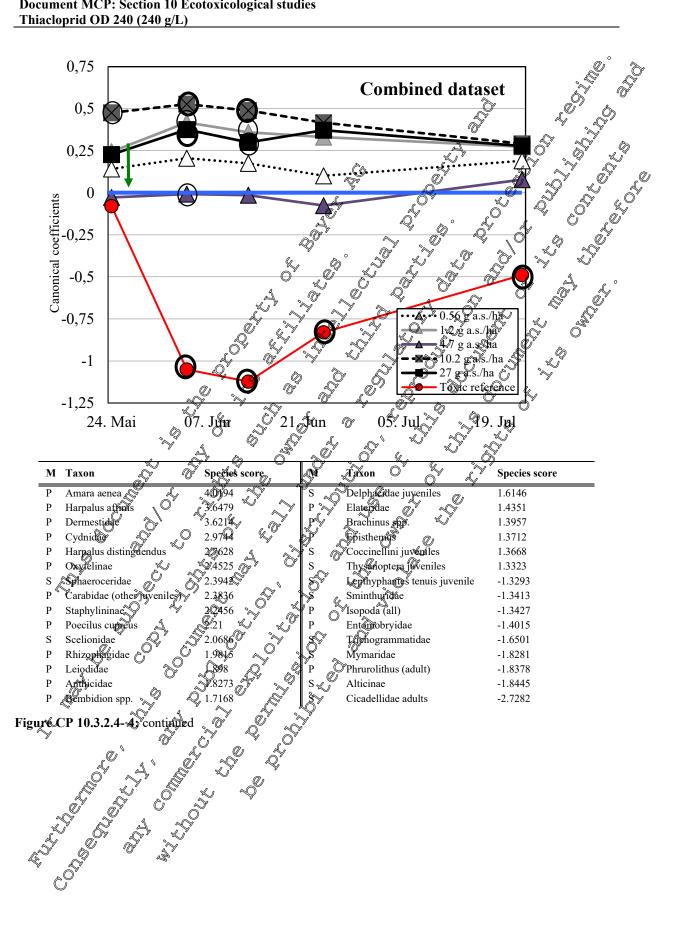
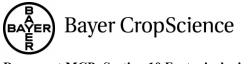




Figure CP 10.30.4- 3; Principal Response Curves (first ordination axis)


Test- and toxic reference item overe analysed separately but for comparison plotted in one graph. Encircled data points are statistically significant (Monte-Carlo Permutation est, alpha = 0.05 thick circle; alpha = 0.1 thin circle). The 24 largest species scores of the test item treatments are presented (i.e. these species had the largest influence on






Figure CP 10.3.2.4- 4: Principal Response Curves (first ordination axis) Test- and toxic reference items were analysed separately but for comparison plotted in one graph. Encircled data points are statistically significant (Monte-Carlo Permutation test, alpha = 0.05 thick circle alpha = 0.1 thin circle). The 24 (30 in combined dataset) largest species scores of the test item treatments are presented (i.e. these species had the largest influence on the shape of the PRC curves of test item treatments). The arrow indicates the application day. M=method: P=Pitfall: S=suction: W=weed

Page 162 of 193 2014-09-29

0 ໍ ∕≫

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Results community analyses

							. Č
Treat	ments included in	% Variance ac	counted for by	% Variance (treatm	ent) explained in	<u>Р-ч</u>	value 0
	analysis	time	treatment	axl	ax2	ax l	aluc $ax2$
	y			PI TFALL		10 7	
	all	28.4	21.3	28.3	16.1 .4	0.010	0.201
	Test item rates	30.9	16.2	26.7	12.0	0.218 💊	0.9809
	0.56 g a.s./ha	35.6	6.8	46.2 (Å	18.5 🏑	0.793 🔊	¥.000 √
	1.2 g a.s./ha	36.6	12.2	65.4	12 <i>.5</i> 0	0.05	×0.759 Ø
	4.7 g a.s./ha	33.1	9.8	44.4 [®]	2ØS	0,509	\$ 0.649
	10.2 g a.s./ha	34.7	13.5	£7/3	153	9 089 4	Q 0,0001 &
	27 g a.s./ha	37.6	11.7	\$ 53.6	Q17.7 . •	0.113	0100 0
	Reference	32.6	19.7	60.9	×18.1	0.023	0.023
				SUCTION			
	all	37.5	21.7 🐇	4 5. 8		0001 3	0.693
	test item rates	44.1	12.2	× @\$8.4 🔊	×16.4	02674	Q.643
	0.56 g a.s./ha	48.8	6.1	سٍ 43.4 [©]	28.9 8	⁶ 0.583	
	1.2 g a.s./ha	51.8	7.5	44,8	[™] 24,8	<i>"</i> ⊘ 0.296 ⁽⁾	0.571 V
	4.7 g a.s./ha	45.8	8,2	્ર આ ે	¢ 1,752 ₪ ()″ 0,409	0.840
	10.2 g a.s./ha	46.2	8 ,8 , %	√ <u>66</u> 3 √√	3 .7	′_ £ , 0 996 ≴	🗸 ૦,9થેડે
	27 g a.s./ha	50	Q 8 (V)	×52.5 ×	م 17 .6 ک		0.880
	Reference	37.6		<u> </u>	<u>0 7.5</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.023	<u>ک</u> 0.735
			Å '0	WEED	Y O (Č <u>Š</u>	<u>v</u>
	all	27.5	× 2,640 (\$ 38 5 6	19.4		≫ 0.002
	test item rates	31.2		× 21.2 0	<u>63</u>	98 77 (k)	0.875
	0.56 g a.s./ha	36.3	°~>8.3	037.0 K	Q ^{\$28.5}	0.763	0.222
	1.2 g a.s./ha	32.2 🖤		51.9		© 0.186	0.232
	4.7 g a.s./ha	33.4	O [*] 6.6 [*]	35.2		y 0.997	0.222
	10.2 g a.s./ha	35.0	14056	\$ \$5.4	235	0,685	0.248
	27 g a.s./ha	32.8	20.6 ^{12.4}		23.4 ×	01144	0.255
	Reference	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>			0.023	0.238
	all d	32.5		COM BINED		0.001	0.311
	test item rates					0.358	0.838
	0.56 g a.s./ha	41.8 ×				0.538	0.874
	1.2 g a.s./ba	42.8	6.6 10.1	\$ 55 6	15.3	0.079	0.798
	4.7 g a.s./ha	₩ 39.%	8.7	β <u>Λ</u> εαν () 1897	0.439	0.854
	10.2 g 🎝 /ha	36.6	ື່ ນ້ຳ 🛸	∑° 907 -		0.063	0.542
	27 g a/s/ha	Kin K		a.50.7	~ 17.1	0.120	0.663
					¥		
	Reference	34.7	21.4	[™] 70.2% [™]	\bigcirc 11.9		0.039
	Reference	34.7 5 34.7 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>0`11.9</u> Zarra ta arratanD	0.023	0.039
J	P-values at individua		ts Monte Esto Pe	un utation Test-comp	arison to control)	0.023	
]	P-values at individua PITFALL	≫0.56 g å.\$/ha 🍏	ts (Monte Gatlo Pe 7 1.2 grays /ha	un dation Test-comp 4.7 gas Jha	arison to control) 10.2 g a.s./ha	0.023 27 g a.s./ha	Reference
	P-values at individu PI TFALL pre-treatment		ts (Monte Éailo Pe 1.2 gras Jha 1.2 gras Jha	nn Matation Test-comp 4.7 gpt.s./ha 0.469	arison to control) 10.2 g a.s./ha 0.087	0.023 27 g a.s./ha 0.248	Reference 0.632
	P-values at individua PI TFALL pre-treatment 1 week	0.56 g a 3.7ha 0853	ts (Monte Gatlo Pe 7 1.2 grays /ha	un attation Test-comps 4.7 gr/s/ha 0.469	arison to control) 10.2 g a.s./ha 0.087 0.087	0.023 27 g a.s./ha 0.248 0.056	Reference 0.632 0.027
	P-values at individua PI TFALL pre-treatment 1 week 2 weeks	0.56 g a 3/ha 0.853 0.763 0.787	12 grass/ha 0.12 grass/ha 0.12 grass/ha 0.122 0.074 0.102	1.195 0.195 0.362	arison to control) 10.2 g a.s./ha 0.087 0.087 0.087 0.062	0.023 27 g a.s./ha 0.248 0.056 0.056	Reference 0.632 0.027 0.027
	P-values at individua PI TFALL pre-treatment 1 week 2 weeks 1 month	0.56 g a 3/ha 0.853 0.763 0.787	12 grass/ha 0.12 grass/ha 0.12 grass/ha 0.122 0.074 0.102	1.195 0.195 0.362	arison to control) 10.2 g a s./ha 0.087 0.087 0.062 0.091	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198	Reference 0.632 0.027 0.027 0.027
PIFALL	P-values at individue PITFALL pre-treatment 1 week 2 weeks 1 month 2 months	0.56 g a.3/ha 0853 0.763 0.950 0.950 0.996	ts(Monte €arlo Pe √ 1.2 ĝra,s./ha 0.074 0.102 0.102 0.497 0.497 0.497	1.7 g p s/ha 0.469 0.195 0.362 0.362 0.398 0.667	10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689	Reference 0.632 0.027 0.027 0.027 0.027 0.034
MIFALL	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-togationent	0.56 g a 3/ha 0.853 0.763 0.950 0.936 0.994	Contraction Period Contraction Period Contraction Period Contraction Period Contraction	militation (lest-comps 4.7 g m/s/ha 0.469 0.195 0.362 0.398 0.398 0.656	10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942	Reference 0.632 0.027 0.027 0.027 0.027 0.034 0.839
PIFALL	P-values at individue PITFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment \$ week	20.56 g a 3/ha 02853 0.763 0.950 0.950 0.9904 0.904 0.904	1.2 grays/ha 40/122 0.074 0.102 0.407 0.407 0.407 0.407 0.439 0.022 0.457 0.457	ni ilation lest-com s 4.7 gris/ha 0.469 0.195 0.362 0.398 0.656 0.054	It is on to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022
PIFALL	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-to-atment \$ week 2 weeks	20.56 g a 3/ha 02853 0.763 0.787 0.950 0.936 0.9904 0.176 0.904 0.176 0.780	Monte Erio Pe 1.2 grass/ha 0.122 0.074 0.102 0.107 0.107 0.107 0.527 0.439 0.022 0.457	1.7 gr/s/ha 4.7 gr/s/ha 0.469 0.195 0.362 0.362 0.362 0.365 0.656 0.054 0.214	It is on to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022
PIFALL	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 2 week 2 weeks 1 month 2 weeks 1 month	0.56 g a.X/ha 0.853 0.763 0.787 0.950 0.936 0.904 0.176 0.780 0.883 (1076	Monte Erio Pe 1.2 grass/ha 0.122 0.074 0.102 0.107 0.107 0.107 0.527 0.439 0.022 0.457	1.7 gr/s/ha 4.7 gr/s/ha 0.469 0.195 0.362 0.998 0.656 0.054 0.214 0.624	10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.022 0.393	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022
MIFALL	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 2 weeks 2 weeks 1 month 2 months	0.56 g a.X/ha 0.853 0.763 0.950 0.936 0.936 0.904 0.176 0.780 0.883 0.883 0.076 0.257	Monte Erio Pe 1.2 grassina 0.122 0.074 0.102 0.107 0.107 0.107 0.527 0.439 0.022 0.457 0.457 0.459 0.459	1.7 gr/s/ha 4.7 gr/s/ha 0.469 0.195 0.362 0.362 0.362 0.365 0.656 0.054 0.214	It is on to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022
	P-values at individue P-values at individue pre-treatment 1 week 2 week 2 week 2 month pre-treatment Week 2 weeks 1 month 2 month 2 month 2 month 2 month	0.56 g a.X/ha 0.853 0.763 0.950 0.936 0.936 0.904 0.176 0.780 0.883 0.883 0.076 0.257	Monte Erio Pe 1.2 grassina 0.122 0.074 0.102 0.107 0.107 0.107 0.527 0.439 0.022 0.457 0.457 0.459 0.459	Initiation lest-comps 4.7 gr/s./ha 0.469 0.469 0.362 0.362 0.362 0.469 0.362 0.362 0.362 0.054 0.054 0.054 0.624 0.510 0.846	arison to control) 10.2 g a.s./ha 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.022 0.393 0.764 0.184	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.022 0.022 0.022
	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 2 weeks 2 weeks 1 month 2 months	0.56 g a.X/ha 0.853 0.763 0.787 0.950 0.936 0.904 0.176 0.780 0.883 (1076	Monte Erio Pe 1.2 grass/ha 40/122 0.074 0.102 0.102 0.107 0.102 0.102 0.103 0.104 0.105 0.102 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.105 0.104 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105	1.7 gr/s/ha 4.7 gr/s/ha 0.469 0.362 0.362 0.3656 0.054 0.054 0.214 0.624 0.510 0.846 0.488	10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.022 0.393 0.764 0.184 0.327	Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.0257
	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month	0.56 g a.Z/ha 0.853 0.763 0.936 0.936 0.904 0.176 0.780 0.883 0.257 0.874 0.624 0.677	Control Carlo Pec Control Pec Co	Initiation lest-comps 4.7 gr/s./ha 0.469 0.469 0.362 0.362 0.362 0.469 0.362 0.362 0.362 0.054 0.054 0.054 0.624 0.510 0.846	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.022 0.393 0.764 0.184	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.022 0.022 0.022 0.023
	P-values at individue PI TFALL pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month	0.56 g a.Z/ha 0.853 0.763 0.936 0.936 0.904 0.176 0.780 0.883 0.257 0.874 0.874 0.62% 0.677 0.267	Monte Erio Pe 1.2 grass/ha 40/122 0.074 0.102 0.102 0.107 0.102 0.102 0.103 0.104 0.105 0.102 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.104 0.105 0.105 0.104 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105	1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.022 0.022 0.023
	P-values at individue P-values at individue pre-treatment 1 week 2 weeks 1 month 2 month pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 2 weeks 1 month 2 month 2 months pre-treatment 1 week 2 weeks 2 weeks 1 month 2 months 2 months 2 week 2 weeks 1 month 2 months 2 week 2 weeks 1 months 2 week 2 weeks 1 months 2 week 2 week 2 weeks 1 months 2 week 2 week 2 week 2 weeks 1 months 2 week 2	0.56 g a.Z/ha 0.853 0.763 0.936 0.936 0.904 0.176 0.780 0.883 0.257 0.874 0.874 0.62% 0.677 0.267	Content Content <t< td=""><td>1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1</td><td>arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.504 0.204</td><td>0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168</td><td>Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.022 0.022 0.023 0.023 0.023</td></t<>	1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.504 0.204	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.022 0.022 0.023 0.023 0.023
	P-values at individue P-values at individue pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week	0.56 g a.Z/ha 0.853 0.763 0.936 0.936 0.904 0.904 0.176 0.780 0.883 0.874 0.874 0.874 0.624 0.624 0.677 0.4267 0.881	Content Content <t< td=""><td>A.7 g r.s./ha 0.469 0.362 0.362 0.3656 0.556 0.510 0.846 0.488 1.000 0.677 0.823 0.705</td><td>arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745 0.504 0.204 0.087</td><td>0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670</td><td>Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.024</td></t<>	A.7 g r.s./ha 0.469 0.362 0.362 0.3656 0.556 0.510 0.846 0.488 1.000 0.677 0.823 0.705	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745 0.504 0.204 0.087	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670	Reference 0.632 0.027 0.027 0.027 0.034 0.839 0.022 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.024
	P-values at individue P-values at individue pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week	0.56 g a.Z/ha 0.853 0.763 0.936 0.936 0.904 0.904 0.176 0.780 0.883 0.874 0.874 0.874 0.624 0.624 0.677 0.4267 0.881	Content Content <t< td=""><td>A.7 g rs./ha 0.469 0.362 0.362 0.3656 0.054 0.624 0.510 0.846 0.488 1.000 0.677 0.823 0.705 0.079</td><td>arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745 0.504 0.204 0.087 0.087 0.087</td><td>0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670 0.022</td><td>Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.035 0.176 0.641 0.022</td></t<>	A.7 g rs./ha 0.469 0.362 0.362 0.3656 0.054 0.624 0.510 0.846 0.488 1.000 0.677 0.823 0.705 0.079	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745 0.504 0.204 0.087 0.087 0.087	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670 0.022	Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.035 0.176 0.641 0.022
	P-values at individue P-values at individue pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 2 weeks 1 month 2 months 1 week 2 weeks 2 weeks 1 month 2 months 1 week 2 weeks 2 weeks 1 month 2 months 1 week 2 weeks 2 weeks 1 month 2 months 2 weeks 2 weeks 1 month 2 months 2 weeks 2 weeks 2 weeks 2 weeks 1 month 2 months 2 weeks 2 weeks 2 weeks 3 months 2 weeks 4 months 4 months 2 months 4 mont	0.56 g a.X/ha 0.853 0.763 0.950 0.936 0.904 0.904 0.176 0.780 0.883 0076 0.874 0.874 0.6257 0.874 0.6257 0.874 0.6257 0.874 0.6257 0.874 0.874 0.881 0.456 0.808	Content Content <t< td=""><td>A.7 g rs./ha 0.469 0.362 0.362 0.3656 0.054 0.624 0.510 0.846 0.488 1.000 0.677 0.823 0.705 0.079 0.327</td><td>arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.022 0.022</td><td>0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670 0.022 0.022 0.067</td><td>Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.035 0.176 0.641 0.022 0.024</td></t<>	A.7 g rs./ha 0.469 0.362 0.362 0.3656 0.054 0.624 0.510 0.846 0.488 1.000 0.677 0.823 0.705 0.079 0.327	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.022 0.022	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670 0.022 0.022 0.067	Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.035 0.176 0.641 0.022 0.024
	P-values at individue P-values at individue pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week 2 weeks 1 month 2 months pre-treatment 1 week	0.56 g a.Z/ha 0.853 0.763 0.936 0.936 0.904 0.904 0.176 0.780 0.883 0.874 0.874 0.874 0.624 0.624 0.677 0.4267 0.881	Content Content <t< td=""><td>A.7 g rs./ha 0.469 0.362 0.362 0.3656 0.054 0.624 0.510 0.846 0.488 1.000 0.677 0.823 0.705 0.079</td><td>arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745 0.504 0.204 0.087 0.087 0.087</td><td>0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670 0.022</td><td>Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.035 0.176 0.641 0.022</td></t<>	A.7 g rs./ha 0.469 0.362 0.362 0.3656 0.054 0.624 0.510 0.846 0.488 1.000 0.677 0.823 0.705 0.079	arison to control) 10.2 g a.s./ha 0.087 0.087 0.062 0.091 0.449 0.414 0.022 0.173 0.332 0.805 0.087 0.708 0.745 0.504 0.204 0.087 0.087 0.087	0.023 27 g a.s./ha 0.248 0.056 0.056 0.198 0.689 0.942 0.022 0.022 0.393 0.764 0.184 0.327 0.725 0.207 0.168 0.670 0.022	Reference 0.632 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.035 0.176 0.641 0.022

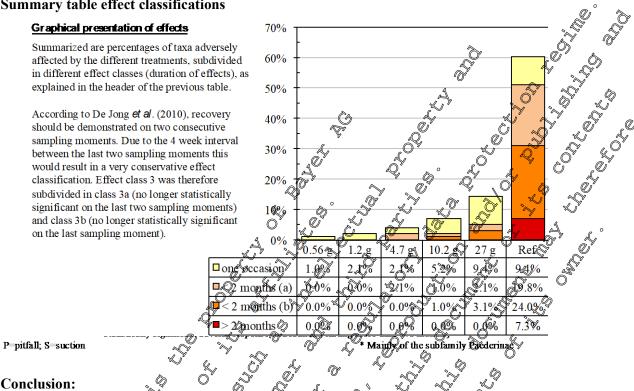
All

Test item rates All test item treatments analyzed together

0.56 g, 1.2 g, etc One test item treatment analyzed separately Reference Reference item analyzed separately

Statistically significant at $\alpha = 0.1$ Statistically significant at $\alpha = 0.05$ (Monte Carlo permutation test)

Page 164 of 193 2014-09-29


Summary population level effects

Thiacloprid OD 240 (240 g/L)

		m De Jong et al, 2010): Effect class: Clear adverse treatment related effect but observed on one occasion only 2 Advese effect no longer statistically significant on the last two sampling moments 3a Adverse effect no longer statistically significant on the last sampling moment 3b No recovery from adverse effect within the study period (= 2 months) 2 Based on 10% significance level and visual consideration of trends 2 Based on 5% significance level and visual consideration of trends 2 Thiacloprid OD 240 (g/L) 0.56 g 1.2 g 4.7 g 10 g g 27 g Camasida female 3b 3b 3b 3b 3c Camasida female 3b 3b 3b 3b 3c Oribatida Juveniles 4 4 4 4 3b 3c Pardosa juvenile 4 4 4 4 3b 3c 3c Pardosa juvenile 4 4 4 4 3c ac 3c 3c a
		Clear adverse treatment related effect but observed on one occasion only 2
	ıths (a) ıths (b)	Advese effect no longer statistically significant on the last two sampling moments Adverse effect no longer statistically significant on the the last sampling moment 33
2 mor		No recovery from adverse effect within the study period (= 2 months)
2 1110	1013	
		Based on visual consideration of trends <u>2</u>
		Based on 10% significance level and visual consideration of trends Based on 5% significance level and visual consideration of trends
		Based on 5% significance level and visual on solar double about of using the second se
	S-suction:P-pitfall: V	
	Order	Thackopnd OD 240 (g/L) 0.56 g 1.2 g 4.7 g 10.35 g 27 g Ref
W	ACARI	Gamasida lemale
W W	ACARI ACARI	Cambridge Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
w	ACARI	Vibatia inveniles
s	ACARI	Oribatida
Р	ARACHNIDA	Phalangida & Ø J & W
Р	ARANEAE	Zelotes O ^V O A A O A 2
Р	ARANEAE	Chaphosidae others
Р	ARANEAE	Themisidae $A \rightarrow A $
S	ARANEAE	Themisidae juvenile
Р	ARANEAE	Pardosa juvenile
Р	ARANEAE	Pardosa adult Q X X Y X Y X Y X Y X Y X Y X Y Y X Y Y X Y
Р Р	ARANEAE ARANEAE	
P S	ARANEAE	
ъ Р	ARANEAE	Meioneta
s	ARANEAE	Linyphiinae adult w "O" a "O"
s	ARANEAE	Linyphildae After juvenile
S	ARANEAE	Pachygnatha juveniley O' A or A or Q
S	ARANEAE	Arancidio juvenile
Р	ARANEAE	Aranesijata other
Р	COLEOPTERA	Staphylinidae effer
Р	COLEOPTERA	Staphylinida piveniles
S P	COLEOPTERA	
Р Р	COLEOPTERA	
Р	COLEOPTERA	Lathridiae A A A A A A A A A A A A A A A A A A A
Р	COLEOPTERA	Nijidulidae
ъ	COLEOPTERA	
Р	CODDOI 10101	Wisteridae U V V V V V V V V V V V V V V V V V V
Р	COLEOPTERA	Bynthidae 5 2 2 3 3 3 3 3 5 3 5 3 5 3 5 3 5 3 5 5 5 5
P P	COLEOPTERA COLEOPTERA	Alticinae A A A A A A A A A A A A A A A A A A A
Р Р S	COLEOPTERA COLEOPTERA COLEOPTERA	Alticinae Alticinae
P P S S	COLEOPTERA COLEOPTERA COLIOPTERA COEOPTERA	Alticinae Alticinae Alticinae Byons spp. 6 Construction at the second se
P P S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA	Alticinae 3b Alticinae 3b Alticinae 3b Quon spp. 2 Surculionfide others 3b Consultation 3b
P P S S S P	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA	Histeridae Byrnhidae Alticinae Alticinae Gurculionfdae Curcul
P P S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA	Histeridae Bymbidae Alticinae Alticinae Gron spp. Curculionidae Curculionidae Litaeridae Litaeridae Curculionidae Cu
P S S S P P	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOOTERA	Alticinac 3b Alticinac 3b Alticinac 3b Alticinac 3b Automotive others 3c Ourculionidae 3a Curculionidae 3b Alternac 3a Curculionidae 3a Bab 3b Curculionidae 3a Bab 3b Bab 3b Curculionidae 3a Bab 3b Bab 3b Bab 3b Bab 3a Bab 3b Bab 3a Bab <td< td=""></td<>
P S S P P S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Histeridae Bymbidae Alticinae Alticinae Alticinae Gron spp. Curculionidae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Curculionidae Alticinae Curculionidae Curculion
P S S P S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Histeridae Byrnhidae Alticinae Alticinae Gron spp. Curculionidae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Curculionidae Alticinae Curculionidae Curculionidae Alticinae Curculionidae Curculion
P S S P S S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Image: Second
P S S P S S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Image: Second
P S S P S S S S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Histeridae Bymitidae Alticmae Alticmae Alticmae Gurculionidae office Curculionidae Hateridae Hateridae Bracentae office Hulophidae Bracentae office Curculionidae Curculionid
₽ ₽ ₽ ₽ ₽ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Histeridae Bymhidae Alticmae Alticmae Alticmae Curculionde others Jacenidae Mina solution Alticmae Curculionde others Alticmae Curculionde others Alticmae Curculionde others Alticmae Curculionde others Alticmae Curculionde other Bracedide other Eulophidae Paromalidae Mina solution Alticmae Alticmae Curculionde other Eulophidae Paromalidae Mina solution Alticmae Alt
P P S S S P P S S S S S S S S S S P	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Histeridae Bymitidae Alticinae Alticinae Alticinae Curculionde others Curculionde others Hateridae Hateridae Hateridae Curculionde other Physicae Alticinae Curculionde other Physicae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae Mignaridae Physicae
₽ ₽ ₽ ₽ ₽ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA	Histeridae Byminidae Alticinae Alticinae Alticinae Alticinae Curculionde others Curculionde others Hateridae Hateridae Hateridae Hateridae Hateridae Hateridae Alticinae Curculionde others Alticinae Alticinae Curculionde others Hateridae Hateridae Hateridae Curculionde other Hateridae Hateridae Curculionde other Hateridae Hateridae Curculionde other Hateridae Curculionde other Hateridae Hateridae Curculionde other Hateridae Hateridae Hateridae Curculionde other Hateridae Hateridae Hateridae Curculionde other Hateridae Hateri
P P S S S P P S S S S S S S S S S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA	Histeridae Bymitidae Alticinae Alticinae Alticinae Alticinae Curculionde others Curculionde others Hateridae Hateridae Hateridae Hateridae Hateridae Hateridae Hateridae Curculionde other Buophidae Minari
P P S S S S S S S S S S S S S S S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA HOMOPTERA HOMOPTERA	Instantidae 3b Byrnhidae 3b Alticinae 3b Alticinae 3b Orion spp. 2 Surculication date 3a Curculication date 3a Curculication date 3a Curculication date 3a Christeridae 3a Curculication date 3a Christeridae 3a Bracendae 3a Minitiae 3a Minitiae 3a Minitiae 3a Sib 3b Sib 3b Cicadellidae inveniles 3b Sib 2 Sib <
P P S S P P S S S S S S P S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S S P S P S S P S P S S P S P S S P S P S S P S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA HETEROPTERA HETEROPTERA	Instantiae 3b Byrnhidae 3b Alticinae 3b Alticinae 3b Orion spp. 2 Surculication date 3a Curculication date 3a Curculication 3a Christeridae 3a Curculication 3a Christeridae 3a Christeridae 3a Christeridae 3a Christeridae 3a Christeridae 3a Bracendae 3a Alticinae 3a Alticinae 3a Bracendae 3a Bracendae 3a Bracendae 3a Bracendae 3a Minimidae 3a Minimidae 3a Minimidae 3a Vinglowidea 3b Cicadellidae juconles 3b Vinidae 3b Cicadellidae juconles 3b Vinidae 3b Cicadellidae juconles 3b Sib
P P S S S P P S S S S S S P S S P S S P S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA HOMOPTERA HETEROPTERA HETEROPTERA HETEROPTERA HETEROPTERA	Histeridae 3b Byrnhidae 3b Alticinae 3b Alticinae 3b Alticinae 3b Oron spp. 2 Curculión/dae 3a Chranitónicae 3a Alticinae 3a Curculión/dae 2 Hateridae 3a Lehachtnonidat 3a Altysinae 3a Bracoñdre other 3a Altysinae 3a Bracoñdre other 2 Justinae 3a Miniae 3a Altysinae 3a Bracoñdre other 2 Justinae 3b Minianidae 3b Miniae inveniles 4 Vinidae inveniles 4 Cradellidae inveniles 3b Vinidae inveniles 3b Cradellidae inveniles 3b Oronalidae 3b Sibo 3b Sibo 3b Sibo 3b Sibo 3b </td
P P S S S P P S S S S S S S S S S S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA HOMOPTERA HETEROPTERA HETEROPTERA DIPTERA	Histeridae Bymitidae Alticinae Alticinae Alticinae Alticinae Curculionidae Curculionidae Unventionidae Histeridae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Alticinae Alticinae Curculionidae Alticinae Alticinae Alticinae Braconidae Alticinae Braconidae Alticinae Curculionidae Alticinae Braconidae Alticinae Curculionidae Alticinae Braconidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Alticinae Curculionidae Curcul
P P S S S P P S S S S S S P S S S P S S S P S S S S P S S S S P S S S P S S S P S S S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA HETEROPTERA DIPTERA DIPTERA DIPTERA	Histeridae Bymidae Alticinae Alticinae Curculionidae Curculionidae Unventionade Curculionidae Histeridae Curculionidae Alticinae Curculionidae Alticinae Alticinae Alticinae Curculionidae Alticinae Alticinae Curculionidae Curculionidae Alticinae Alticinae Curculionidae Curculionidae Alticinae Curculionidae Cur
P P S S S P P S S S S S S P S S S P S	COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HYMENOPTERA HOMOPTERA HOMOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA	Histeridae Bymitidae Alticinae Altic
P P S S S P P S S S S S S P S S S S S P S		
P P S S S P P S S S S S S P S S S S S P S	DIPTERA	Alistericate 3b Byrnitička 3b Aliticinae 3b Aliticinae 3a Ourculionfisie othere 3a Batacinae 3a Aliticinae 2 Aliticinae 3a Batacinae 3a Braconfishe other 3a Braconfishe other 3a Aphrifitinae 3a Mysianiae 3a Braconfishe 3a Braconfishe 3a Braconfishe 3a Mysaaridae 3a Mysaaridae 3a Mysaaridae 3b Mysaaridae 3b Mysaaridae 3b Mysaaridae 3b Mysaaridae 3b Mysaaridae 3b Oradellidae fiveniles 3b Controlopteritie 3a Jato other 3a
P P S S S P P S S S S S S P S S S P S		Historicale 3b Byrniciale 3b Altignae 3b Altignae 3b Altignae 3a Garculicaptitie otherse 3a Lohgicamonidet 3a Aphilosinae 3a Hateridae 3a Ispace 3a Aphilosinae 3a Mysinas 2 Braconside 3a Mysinae 2 Aphilositae 3a Mysinae 2 Aphilositae 3a Cadellidae inconstar 3b Cadellidae inconstar 3b Cadellidae inconstar 3a Aphilositae 3a Cadellidae inconstar 3b Cadellidae inconstar 3a Aphilositae 3a Sob 3b Cadellidae inconstar
4488888888888888888888949888949 4488888888	DIPTERA COLLEMBOLA	Aligense 3b Aligense 2 Aligense 2 Aligense 3a Bracefinder
A A A B B B B B B B B B B B B B B B B B	DIPTERA COLLEMBOLA COLLEMBOLA	Alticinae 3b Alticinae 3b Alticinae 3b Alticinae 3c Bracolitale 3c Bracolitale 3c Bracolitale 3c AphiOplica 3c Condechlicate 3d Mindue inveniles 3c Condechlicate 3d Condechli
ч така и и и и и и и и и и и и и и и и и и	DIPTERA COLLEMBOLA COLLEMBOLA COLLEMBOLA	Dipter juveniles Isotomidae Sminthwidae Symphypicona 2 2 3 a 3 a 3 a 3 b 3 b 3 b 3 b 3 b b b b b

Summary table effect classifications

Conclusion:

Based on statistical analyses and considerations described in the results chapter, offects of Thiacloprid OD 240 applied to an off-crop grassiand athropod faund in South-West France are classified as follows: No statistically significant adverse community effects were found at the 0.56 g a.s./ha rate. This rate is classified as the community NOER (No Observed Effect Rate).

Thiacloprid OD 240 applied at the rate of 27 g a sha is the community NOEAER (No Observed Ecologically Adverse Effect Rate. This is the highest fate tested in this study where statistically significant adverse community effect were observed, followed by recovery of the community within one month after treatment. At the test rate of 27 ga.s./ha statistically significant adverse population effects occurred for fourteen taxa all of which recovered within the two-month sampling period. Therefore, this rate is classified as the population NOEAER

The community and population LQFAER @ high@ than 29 g a.s./ha.

Supplemental information from the literature

In addition to the studies performed by BCS in accordance with the requirement a literature search has been performed in accordance with the requirements. From the papers identified during the literature search the following were identified as being potentially relevant for risk assessment. After further evaluation the literature data is considered to provide supplemental information and does not influence the risk asses

E C C

Report:	i;	; 2006; M-45588	8-01-2
Title:	Influence of some pesticides on nu (Phytoseiidae). Wpyw wybranych	mber of predatory mite Typ	ohlodromus pyri 🖉 🖉
	(Phytoseiidae). Wpyw wybranych	srodkow ochrony roslin na	liczebnosc drapieznego
	roztocza dobroczynka gruszowca T	Typhlodromus pyri (Phytoso	eijdae).
Report No.:	M-455888-01-2		S & S
Document No .:	M-455888-01-2	4	
Guidelines:	not applicable; not applicable	2	
GLP/GEP:	no		
		T O	

Executive summary:

This work presents the results of field tests relating to the impact of plane protection agents on Typhlodromus pyri. Material and methods as well as results are summarised for this doprid treatments × only.

A field experiment was conducted in a 16-year-old orchard, on Ide red apple trees (rootstock M-7 spacing 2.5 × 4). in a random block system. One experimental plot comprised of 4 trees growing in a single row. The plant protection agents as devere tested in 4 repetitions. The control trees were sprayed with water. 120 leaves were taken at random from rach plot at four times: before the treatment, a week after the treatment and three and five weeks after the treatment. The chemical treatment (Calypso 480 SC, test concentration; 9.2 1/he) was corried out using a Stahl SR 420 powered backpack mistblower. The number of predatory mites on the leaves was checked in the laboratory using a Nikon SMZ-1 stereoscopic microscope with 7 to 30 times magnification.

The results obtained were subjected to statistical verification using variance analysis and the

B. Study design and methods 1. Test procedure Test system (study type): Field experiment Duration of study: 5 weeks 120 leaves were taken for each par Before application and 1/3 and weeks after application Treatments: Control (water) and Calypso 480 SC jor of the set of the Application rate: Number of replicates: Plot size: Application / device / nozzles: Water volume: Verification of dispersion: Sampling technique: Sampling frequency: Transport/storage of samples: 2. Environmental conditions Soil at study site: pH: Organic matter (Corg): CaCO₃ Cation exchange capacity: Soil textural fractions / extractable micronutrient concentrations [mg per soil]: BU Ch Fertilization: 3. Observations and measurements: Before application and D3 and Weeks after application -Nomber of . pyrio Conditional (eg weather) parameters: Ĵ, Biological parameters measured j³ an j⁴ an t⁴ a t⁴ Measurement frequency: Statistical analyse **Results:** Validity criteria: No validity criteria were sta Weather conditions(No weather conditions

Biological findings: Calypso 480 SC had no significant impact on lowering predatory mite numbers on apple tree leaves treated with this product when compared to predator numbers on the control trees.

<i>⊾</i> ₩		A. or	Ű			
Table CP 10.3.2.4	. 1: Selecti	vity of thiac	oprid t	predatory	mite Typhlodrom	<i>us pyri</i> – field test

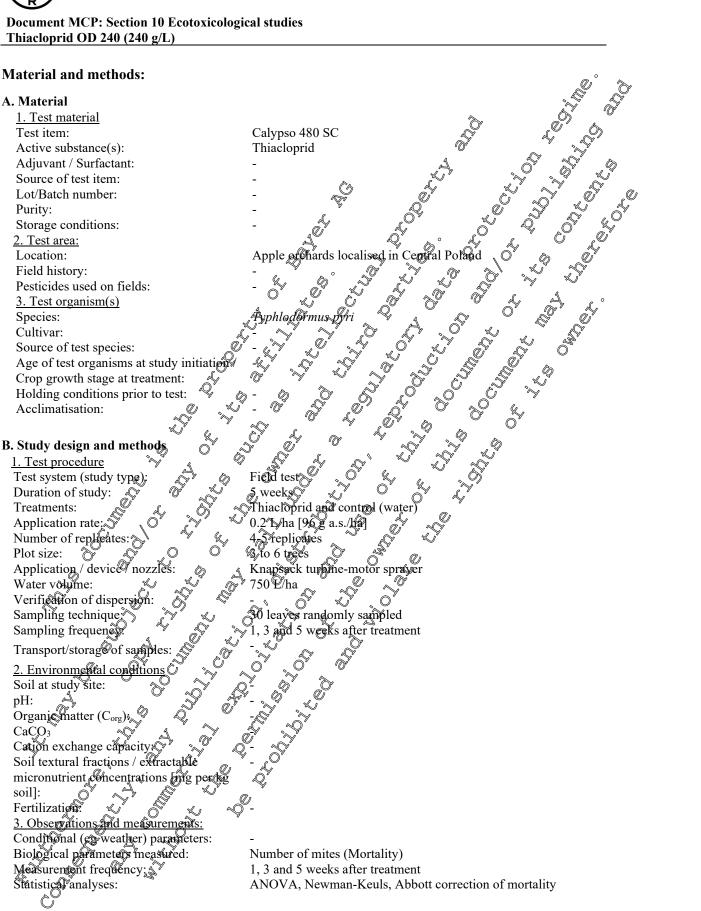
		<u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Number of <i>T. pyri /</i> leaf			
Pesticides (activezubstause)	Dose (QL/hal)	B efore application	One week after application	Three weeks after application	Five weeks after application	
Contro	» Q2	0.4 a	0.5 c	0.3 b	0.5 cd	
Galypso 480 SC		0.4 a	0.5 c	0.6 d	0.6 d	

Means in Manns followed by the same letter do not differ at 5% level of significance (Newman-Keuls's multiple range test)

Calypso 480 SC had no significant impact on lowering predatory mite numbers on apple tree leaves treated with this product when compared to predator numbers on the control trees.

The study results indicate a low toxicity of thiacloprid to the predatory mite *Typhlodromus pyp* under field conditions. The information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

	A A	
Report:	1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	; 2 012; M -
	468254-01-1	
Title:	Influence of some insecticides and acaricides on benefic	ial mites and on Cocernella
	septempunctata (Coleoptera: Coccipellidae) arvaez	
Report No.:	M-468254-01-1	
Document No .:		
Guidelines:	not applicable; not applicably 🔨 🔬 🕺	
GLP/GEP:	no the second se	
T (1	arv:	
Executive summa	arv:	


Several experiments have been conducted under laboratory and field conditions passess the influence of a range of insecticides and acaricides on different predatory makes and on Coccinella septempunctata. However, material and method are summarised here only for this doprid treatment, which was only assessed concerning its effects on Typhlodromus pyri under field conditions. The tests were conducted in three apple orchards localised in Central Poland. Experimental plots were fixed for each tested product and for the control Divery plot (replicate) had 3 to 6 trees growing in one row (depending on orchard). Thirty leaves were randomly sampled from each plot and then analysed in the laboratory by Henderson McBurnie method by counting the numbers of mites present on them. Every tested product was applied in 4-5 replicates, depending on the experiment. Control trees were treated with water. The treatment were accomplished using a knapsack turbine-motor sprayer and a spray volume equivalent to 750 L/ha Thiacloprid (Calypso A80 SC) was applied with 0.2 L/ha. Mortalities of Typhlodromis pyri was assessed 1,3 and 5 weeks after treatment. The results of the experiment were analysed by mean of ANOVA and Newman-Keuls test. The percentage of miles mortality was calculated from results of the treatments and then corrected according to Abbott.

Thiacloprid revealed low exicitly to predatory mate in comparison to the control trees. After 1, 3, and 5 weeks, the difference in mortality between treatment and control was 0% (IOBC class 1), 50% (IOBC

weeks, the difference in mortality between treatment and control class 2), and 17% (IOBC class 1), respectively. IOBC class 1-2.

Material and methods:

Contraction of the second seco

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Results:

<u>Validity criteria:</u> No validity criteria were stated

Weather conditions: No weather conditions were measured.

Conclusion:

Thiacloprid revealed low toxicity to predatory mite in comparison the control trees. After 1, 3, and 3 weeks, the difference in mortality between treatment and control was 0% (IOBC class 1), 50% (IOBC class 2), and 17% (IOBC class 1), respectively, IOBC class 1.2.

Comment by the notifier:

The study results indicate that thiacloprid caused under field conditions (96 g a.s. ba) a low more lity of the predatory mite *Amblyseius andersonic* The information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

 Report:
 466066-0142

 Title:
 Hapact of heonic stinoid insecticules on beneficial phytoseiid intes

 Report No.:
 M-466066-0142

 Document No.:
 M-466066-0142

 Guidelines:
 N-466066-0142

 GLP/GEP:
 O

 Additional applicable;
 Additional applicable;

 Additional app

The study includes data for several insecticides, only the this cloprid data is summarised.

Executive summary

Three insecticide? inclusing that clopped were tested on their side effects towards phytoseiid mites, specifically *Autolyseiis andersoni* (Chant) (Mesosfigmata, Phytoseiidae). Material and methods plus results are summarised for thiacloprid only.

Selectivity tests were conducted at the Agratian Institute of San Michele all'Adige (Fem-Iasma, Trento, Italy in 2006 and 2007) by the same operational methods on both vines and apple trees. Different doses of the reference substance etofonorox were used on vines versus apple trees, while the reference substance flufenoxuron dosage was equal between field experiments, as was thiacloprid. Treatments on both crops used a hand-held nozzle attached to a spray tank, performed when the population of phytoseiid notes was deemed sufficiently high (> 1.5 mobile stages/leaf).

Field tests on vines used plots with the black Pinot variety grafted on Kober 5BB stock, grown on a double "pergola trentina" with layout of 0.80 x 4.2 meters. The vineyard was divided randomly into plots with 4 × 81 m repeats (24 vines) for each of the chemical treatments/controls with a single exposure for each insectivide on 13-7-2006 for vines. Samples (of phytoseiid *A. andersoni*) were collected one day before treatment (T -1) then T +4, T +7, T +14, T +21, T +28 and T +42 days after treatment. An untreated plot provided a control.

Field tests on apple trees used Red Delicious variety grafted on 6-year-old M9 rootstock. Again, was experimental randomisation, with four repeats of 16 plants for each treatment including an untreated

control. A single exposure event was made on 2-7-2007. Samples (of phytoseiid A. andersoni) were collected one day before treatment (T -1), then at day T +7, T +14, T +29 and T +46 afterwards. For both field experiments, phytoseiid population (of A. andersoni) was quantified by microscopic examination of mobile stages, from specimen samples on 25 leaves per repetition (100 leaves/treatment). Values from phytoseiid mites per leaf underwent variance analysis (ANQVA) and Duncan test for P < 0.05. Abbott's formula was used for corrected mortality compared with the control QResults were sorted into IOBC field toxicity classes (N = Abbott mortality 0-50% - selective of mildly toxic; M = 51-75% - moderately toxic; T = 76-100% - toxic). & Joriatti, 1994) with povtosend Further laboratory trials adopted published methodology (maintained in a climatic cell and fed mobile stages and eggs of Telkanychus urticae Koch (Trombidiformes, Tetranychidae). Female pairs of the same age (10-13 days) of A. and ersofa were tested with the active substances. Treatments were made by Potter tower, distributing a mixture % quantity equivalent to 1.7 ± 0.1 mg per cm². Nortality and certility revel (eggs/female) were recorded \circ at T+2 hours, T+1, T+3 and T+7 days with, 4 repetitions for each theory (80 females/treatment). An additional water treatment (control) was used. Results were sorted to OBC aboratory toxicity classes (1 = Abbott mortality 0.30% - selective; 2 = 31-79% weakly toxic; 3 = 89-99% toxic; 4 = 992100%- highly toxic). Toxicity levels were alculated by the Toxicity for the toxic ity fo (where M = Abbott corrected mortality and R = fertility). As regards the selectivity of this elopric towards physics eiid wites, the investigations in the apple orchard, in the vineyard and in the Jaboratory showed that the formulation investigated, did not cause acute toxicity effects of particular everition the mobile stages of phytoseiits, either as juveniles or as adults. Interference with the fertility of the fertilies and with egg release also proved to be limited. The selectivity levels were statistically comparable to the reference growth regulator substance flufenoxuron and statistically better (with less mortality) than those of the toxic reference etofenprox.

Material and methods:

A. Material

calypso SC Thiacloprid All the set of the set Lefti Storage conditions: Other specifications if trated: <u>Advisas</u>. <u>Advisas</u>. <u>Amblyseius ander</u> Concentration of vehicle/solvent: <u>Amblyseius ander</u> Concentration of vehicle/solvent: <u>Amblyseius ander</u> Litvar Lefti Lef 1. Test material Amblyseius andersoni (Chant) (Mesostigmata; Phytoseiidae) Agrarian Institute of San Michele all'Adige (Fem-Iasma, Trento, Italy in 2006 and 2007 of test organisms at study initiation / Mobile adults, reproducing

Acclimatisation:

B. Study design and methods

1. Test procedure Test system (study type):

Duration of study:

Treatments:

Test concentrations

Number of replicates:

Individuals per replicate: Test units (type and size):

Application / device / nozzles:

Water volume:

Calibration of sprayer:

2. Observations and measurement Analytical parameters measured: Biological parameters measured

Measurement frequency:

Mortality (# Texicity Index: E : Fertility

Field vines: Direct spray application; Field apple: Direct spra

Field vines: 44 days (T-1 to T+42); Field apple: 46 day

Thiacloprid: 25 mL/hL [15 hL/ka => 180 g a.s. (ba; 1.7

Thiacloprid, control (untreated) and reference (fluf oxurg

mg/cm² => 20.4 g a.s./ha]; flutenoxuron 150 mL/hL; tofenproz apple 50 mL/hL, vine 100 mL/hL, laboratory 100 mL/hL Field vines A repeats with 24 vines; Field apple A repeats of 16

Field vines: 25 leaves Field apple: 29 leaves Labs 20 mite pairs Field vines Vine plants in situ; Field apple Apple trees; Lab: climatic cell and fed mobile form and eggs of 5 urtical Field vines/Field apple: hand-held norse attached to a spray wink,

application; Lab: Direct spray application

trees; Lab. 4 repeats (of 20 mit)

T+44); Lab: 20 days

etofenprox)

Ľ/Ma:

Field vines: T-Vday, T+4, T+7, T+14, T+21, 5+28, T+42 days; © Field apple: I-1 day, T+7, F#14, T 29, T+36 days; Lab: T+2 hoors, T+1, T+3 and T+7 days (ANOVA) and Dungar test; Toxicity Index: E Varianc*e* anal

Statistical analyses:

Results:

Biological findings:

In field trials with vmes, thiacloped interferes seakly with populations of the useful phytoseiid mite within first the two weeks after application (Table OP 10.3 .4- 2) phasing through class M of moderate toxicity (moderately harmful) around day 7 (T+7) then falling at day 14 (T+14) into class N for non-toxicity and or weak toxicity (harmless or slightly harmful).

1 able CP 10.5.2.4-	2: afodne sta	iges on Amon	seius angerso	<i>ni</i> iouna per	lear (on aver	age) on the p	iants (vines)			
×	A Dates of findings (*)									
	12 <i>2</i> 5.06 (0) - 1 (2) day)	0 17.7.96 (T+4 (Days)	20.7.06 (T+Ø days)	27.7.06 (T+14 days)	3.8.06 (T+21 days)	10.8.06 (T+28 days)	24.8.06 (T+42 days)			
Untreated control _@	175	^C 1.85a	3.05a	1.85 <i>a</i>	1.12 <i>a</i>	0.92 <i>a</i>	0.63			
Thiacloprid	A.77 &	1 ≪60a	[™] 1.15 <i>b</i>	0.93 <i>b</i>	1.02ab	0.72 <i>a</i>	0.62			
Flufenoxucon ^a	1.77	1.25a	1.18 <i>b</i>	0.93 <i>b</i>	0.38 <i>bc</i>	0.75 <i>a</i>	0.45			
Etofenprox a	2.05	گ [*] 0.22 <i>b</i>	0.12 <i>b</i>	0.15 <i>c</i>	0.08c	0.08b	0.25			
Significance	Q.326	0.007	0.031	0.000	0.017	0.041	0.353			

a reference substances X i Values followed by the same letter (matrice) are not significantly different in ANOVA and Duncan Test P < 0.05.

Thiacloprid offers selectivity levels comparable to the reference growth regulator substance flufenoxuron and significantly better compared to the known toxic reference substance etofenprox.

Table CP 10.3.2.4- 3: Mobile stages of the phytoseiid mite A. andersoni found per leaf (on average) on the apple trees

	Dates of findings (*)							
	30.6.06 (T – 1 day)	7.7.06 (T+7 days)	14.7.06 (T+14 days)	31.7.96 (T+29 days)	1738.06 (T+46 days)			
Untreated control	1.13	1.12 a	3.52 a	2.02 a	\$ 0.65 a			
Thiacloprid	1.38	1.07 a	2.90 a	🔊 1.13 b	₩ 0.35 ⁹ b W			
Flufenoxuron ^a	1.17	0.91 ab	©1.90 ab	🧳 0.97 b 🎽	∮ 05,02 c 🔊			
Etofenprox ^a	1.28	0.13 c	0.42 c	0.83 c 🖉				

Note, those values followed by the same letter (italics) are not significantly different in ANOVA and Duncan Test 4 < 0.00

In field trials with apples, thiacloprid interferes weakly with populations of the phytoseiid mite within first week following the application, falling into class M of moderate toxicity (moderate) harmful) around day 7 (T+7), then falling after day 29 (T+29) into class N for non-exicity and/or weak toxicity, (harmless or slightly harmful). Thiacloprid offers levels of selectivity comparable and or selective (less lethal, less persistent) than the toxic reference substance Etofenprox.

In laboratory trials (Table CP 10.3Q.4-4), thiscloprid fell into class 2 and 5 proved weakly toxic. There was zero mortality with thiscloprid, but pertility was reduced to 36.02% compared to the control. The reproductive suppressant action of the pyrethroid expension was confirmed.

Table CP 10.3.2.4- 4: Laboratory evaluation of the selectivity of the active substance issted

Active substance	Mortali	ty: Abbott	(%)	Fertility (%)	OToxicity (%) E	IOBC class ^b
Thiacloprid 🖉	Å		Ş. ~.	 		2
Flufenoxuro		\$5.00	\sim	ير).74 ^{مي}	29.39	1
Etofenprox ^a	× ,	100	K		2 ² 2 ¹⁰⁰	4

^a "reference substances" ^a (<30%) ^b IOBC toxicity was: Class 1 selective (<30%) ^c = slightly harmful (30%) ^c = harmful (80-99%); c4 = very harmful (>99%).

Conclusion:

As regards the selectivity of thacloped towards phytoseid mites, the investigations both in the apple orchard and in the vineyard and in the laboratory showed that, of the formulation investigated, was not causing acute toxicity effects of particular sevenity on the mobile stages of phytoseiids, either as juveniles or as adults. Interference with the certility of the females and with egg release also proved to be limited. The selectivity levels were statistically comparable to the reference growth regulator substance flufenoxuron and statistically better (with less mortality) than those of the toxic reference etofenprox.

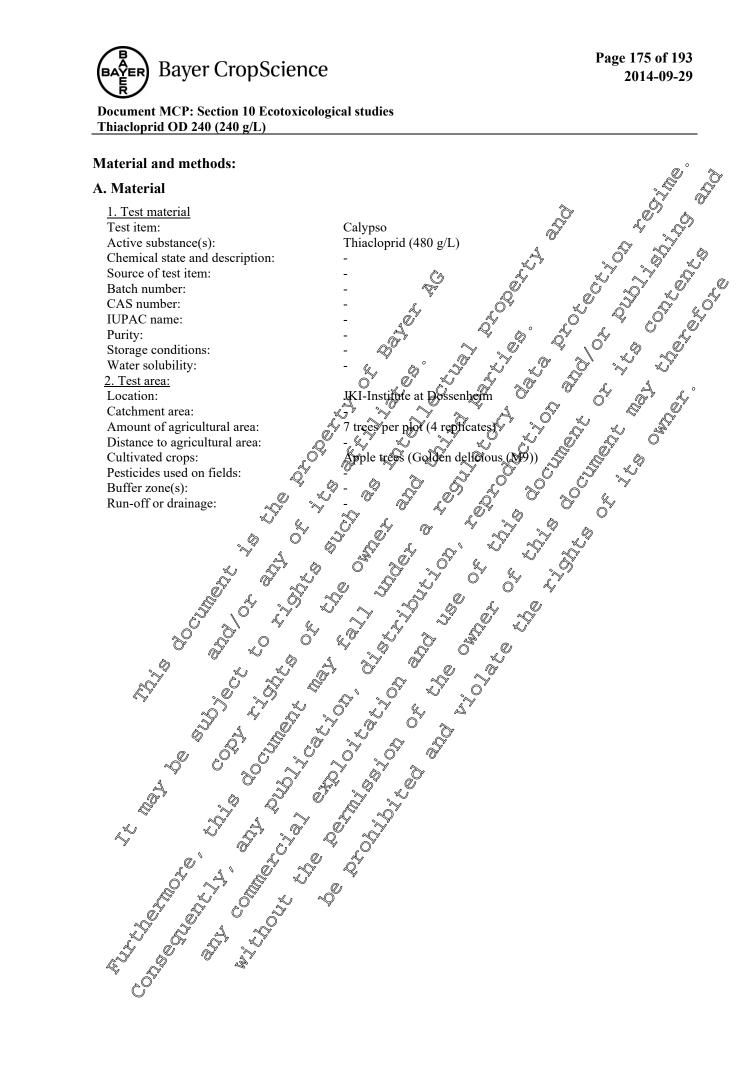
Comment by the notifier

The study results indicate that this cloprid caused under field conditions (180 g a.s./ha) a low mortality of the predatory mite *Ambiveeius andersoni*. No mortality and moderate effects on reproduction (37%) were observed under extended laboratory conditions (20.4 g a.s./ha). The information is classified as b) suppl@nentary information (EFSA Journal 2011;9(2):2092).

Report:	i;	,	; 2012; M-	-468250-01-1
Title:	Side effects of modern insecticides	in fruit growing	ng on the Europea	n earwig, Forficulta
	auficularia Effiliuss von miscruziur	en im Obstbau	auf den Ohrwurm	n earwig, Forficulta
	auricularia		ð	
Report No.:	M-468250-01-1		Â	
Document No.:	M-468250-01-1		Ū.	
Guidelines:	not applicable; not applicable		A	
GLP/GEP:	no	Ö		

© summarised This study includes data on several insecticides, only data relevant to thiacloprid is

Executive summary:


A field test was carried out in 2008 with four insectiones (including thiacloprid) ased in apple production, to study their effects on earwig populations. Material and methods as well as results are (, ° Ő summarised for thiacloprid only.

The test was conducted at the JKI-Institute at Bossenheim (Golden Delicious apple variety, M9 rootstock, planting year 1994. Planting system: slender spindle, planting distance. 1.20x 4 metres). For sampling purposes, bamboo tubes were installed as artificial sheltors at the end of May Once the shelters were clearly occupied by earwigs, and when earwigs were in the 4th instan, the insecticides were applied (4 replicates of 7 press per plot); Čalypso (480 g/l This cloprid) was used as test and control plots were left untreated. The numbers of farwigs in the shelters of 5 fees per plot were assessed for up to 10 weeks post-application, by knocking the earwigs out of the tabes, collecting them in a plastic bag and photographing them for after counts from the digital images immediately afterwards, the earwigs were deleased back to the appropriate tree. The effect to the earwig population was calculated according to Henderson & Tilton.

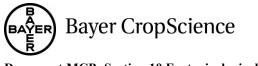
Thiacloprid caused up to weeks after the application a statistical dignificant reduction in the earwig numbers as compared with the control population. Within two weeks post-application, the earwig number was reduced by 60%. Six week post-application, the effect according to Henderson & Tilton

number was reduced by 60%. Six week post-application, the effect according to Henderson & T were still about 50% for this clopfid. After 10 weeks the effect deer ased to ~28% and was not anymore statistical significant.

B. Study design and methods:

	Thiacloprid 🔏 60.53(sign.) 🖉	
	gn. = statistically significant	
51	ot sign. = statisticate significant	A
	st sign. statistically hotesignificant	Ň

Thiack prid cansed up to 6 weeks after the application a statistical significant reduction in the earwig numbers as sompared with the control population. Within two weeks post-application, the earwig number was reduced by 60%. Six week post-application, the effect according to Henderson & Tilton were sull about 50% for thiacloprid. After 10 weeks the effect decreased to ~28% and was not anymore statistical significant.


41.8 (sign.)

49.4 (sign.)

 ~ 28 (not sign.)

51×3 (sign.¥

~Ô

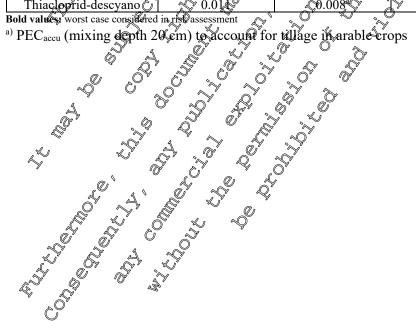
Comment by the notifier:

The observed effects of the insecticide thiacloprid at an application rate equivalent to 144 g a.s. Appendix Forficula auricularia (up to 60%) are in line with the Forficula auricularia (up to 60%) are in line with the results of the available regulatory non-taget arthropod data. The information is classified as b) supplementary information (FFSA Journal) 2011;9(2):2092).

CP 10.3.2.5 Other routes of exposure for non-target arthropods

No further studies or risk assessment are presented or required.

Effects on non-target soil meso- and maerofauna


The risk assessment procedure follows the requirements as given in the EUR Regulation 1107/ the Guidance Document on Terrestrial Ecotoxicology. /2009 and s, John Star

Predicted environmental concentrations used in visk assessment reported om MCP Predicted environmental concentrations in sold (PECSii) values 9.1.3.

The relevant PEC values considered for TER calculations are sumparised in the tables below. Maximum values are used for risk assessments.

Table CP 10.4- 1: max PEC^{soil} values

X			
Compound 5		Wilseed rape	
	PEC soil, ini	PEGsoil, accu	J. PEC Pil, max
	[mg/kg]	PEGroil, accu	PEC _{(jil, max} [ng/kg]
Thiaclowid 🖉	0.031		0.031
Thiacloprid-amide	n 0.035 N		0.043
Thiaclopri sulfonic acid	× 9.010 -		0.010
Thiacloprid-descyano	2 0.01 k	Q0.008	0.019
Bold values, worst case considered	l in rist assessment		

CP 10.4.1 Earthworms

C	.P 10.4.1 Earti	nworms	nent or of the second
T	able CP 10.4.1- 1: End	lpoints used in risk assessi	nent
	Test substance	Test species	Endpoint 🖉 Reference
	Thiacloprid OD 240	Earthworm, reproduction	$\begin{array}{c} 0.8 \text{ mg prod/kg dws} \\ \text{NOEC} \bigcirc \triangleq 0.185 \text{ mg axs./kg dws} \\ \swarrow & \swarrow & (20+2) \\ \bigcirc & (12+2) \\ \odot & (12+2) \\ \bigcirc & (12+2) \\ \odot & (12+$
	Thiacloprid-amide	Earthworm, reproduction	NOPC 60 mg/p.m. /kg dws KCA 8.4.1/14
	Thiacloprid sulfonic acid	Earthworm, reproduction	(2010) NOEC° ≫9.49 mg p.m./kg dws M÷369557≪01-1 KCA 84.1/2
	Thiacloprid- descyano	Earthworm,	NOEC 3.1 mg p.m./kg tws KCA 8.43/3
ď B	ws = dry weight soil; a.s. = a old values: endpoints used f	ctive substance; p.m. Fure metal	Notice 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
F	Risk assessment for	earthworms c	
E	Based on the endpoint	ts in the table above the T	TER values are calculated using the following equations:
Τ	$ER_{LT} = NOEC / PEC$		TER values are calculated using the following equations:
Τ	he risk is considered	accoptable of the DERIA	js >5, ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~

Risk assessment for earthworms

For lipophilic substances (log Pow >2) all result from the laboratory studies are corrected by a factor 2 even where the organic matter is less than 10%.

The log Pow does not exceed this trigger (refer to Section 2 of the MCA document, CA 2.7), for any component hence an additional assessment factor is not required.

Compound	Species of	Endpoint [mg/kg]	PEC _{soil,max} [mg/kg]	TERLT	Trigger
OSR &		1			
Thiacloprid OD 240	Earthwoom, reproduction	NOEC 0.185	0.031	5.97	5
Thiacloprid-amide	[©] Earthworm, reproduction	NOEC 60	0.043	1395	5
Thiacloprid sultonic acid		NOEC ≥ 9.49	0.010	≥ 949	5
Thiaclopric descyaro	Garthworm, reproduction	NOEC 3.1	0.019	163	5

Table CP 10.4.1-2: TER valculations for earth worms

All TER value Scalcutated with the worst case PEC_{soil, max} values exceed the trigger value of 5 indicating that no unacceptable adverse effects on earthworms are to be expected from the intended use of the product.

CP 10.4.1.1 Earthworms sub-lethal effects

Report:	°; 2012; M-426431-01-1 ↔
Title:	Thiacloprid OD 240B G: Effects on survival, growth and reproduction on the
	earthworm Eisenia fetida tested in artificial soil
Report No.:	KRA-RG-R-107/11
Document No.:	M-426431-01-1
Guidelines:	ISO 11268-2: 1998 (E) and OECD 222. April 13, 2004; none
GLP/GEP:	yes

Material and methods:

Test item: Thiacloprid OD 240B G; (Sample description: FAR01509-00; Batch ID: ECE5100633; Material No. 79674910; Specification No. 1020000217742 01; Content: 234.8 g thiacdoprid/fo density: 1.039 g/mL).

Principles of the testing procedure: Addit *Eisenta fetida* (approx. 5 montheold, 8×10 animals for the control group and 4 x 10 animals perfect concentration of the treatment group) were sposed in an artificial soil (with 5% peat content) to the nominal test concentration of 0.2,0.4, 98, 1.6, 9.2 and 6.4 mg test item/kg dry weight artificial soil. The lost item was mixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

Findings:

Validity criteria:				√y″
Validity criteria 🔊 🔍 🔿			Recomm	ended Obtained
Mortality of the adults in the	he control 🖉		©	6 0
Rate of reproduction of juy	endles (earthworn	as per control ves	sel) $\overset{\text{sel}}{\bigcirc} 230$	194.9 (160 – 245)
Coefficient of variance of	reproduction in the	e control	$\swarrow \leq 30\%$	/ 14.0

The validity criteria of the test according to the guideline were fulfilled.

Effects on mortality and changes in body weight of the adults after an exposure period of 28 days and the number of offspring per test vessel after 56 days are shown in the following table (values in this table are rounded values).

Table CP 10.	4.1-1:	Effectson	mortality a	nd changes	in body weight

Test object Q Q Eisenia fetida							
Cest item	Cost item Schol TCP OD 240B G						
Amg test item/kg dry worght artificial Qil	×	0.2	0.4	0.8	1.6	3.2	6.4
Mortality of adult earthworms [%] after 28 days	0	0	0	0	0	0	0
Mean change of body weight of the saults from day (% day 28 [%] *	53.87	57.63	56.95	52.59	51.50	55.39	53.75
Standard Deviation	4.75	4.14	5.36	5.34	6.03	2.14	5.50
Mean pumber @offspring per@st vessel after 56	194.9	203.0	173.5	200.5	144.0 **	155.3 **	169.3 **
Standard Deviation	27.4	20.6	20.9	19.5	21.5	24.1	34.6
Coefficient of Variance (%)	14.0	10.1	12.1	9.7	14.9	15.6	20.4
% of control		104.2	89.0	102.9	73.9	79.7	86,9

* no statistical significance compared to the control (Williams Multiple Sequential t-test, two-sided, $\alpha = 0.05$)

statistical significance compared to the control (Williams Multiple Sequential t-test, one-sided smaller, $\alpha = 0.05$)

The results of the reference test item indicated that the test system was sensitive to the reference test . item.

Observations and conclusions:

Mortality

After 28 days of exposure no worms died in the control group and no mortality was observed test item concentration.

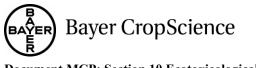
Effects on growth

Statistically significant different values for the growt relative to the ntrol weren ŕ concentration. EC_{50} could not be calculated.

Therefore, based on biological and statistical significance: NOEC related to growth: $\geq 6.4 \text{ mg test item}$ mg test LOEC related to growth: eight artificial soil

Effects on reproduction

Effects on reproduction No statistically significant different values for the number of juvenile oper test vesses fielative to the control were observed at the test concentrations of 0.2, 0.4 and 0.8 mg test tem/kg dry weight artificial soil. Statistically significant different values for the number of juveniles per test vessel relative to the control were observed at the three Highest test concentration of up to 6.4 mg test item/kg dry weight artificial soil. EC 50 could not be calculated.


Therefore, based on bological and statistical significance; NOEC related to reproduction: 00 mg test item/kg dry weight artificial soil LOEC related to reproduction: 41.6 mg test item/kg dry weight art dicial soil

Overall conclusions of the study:

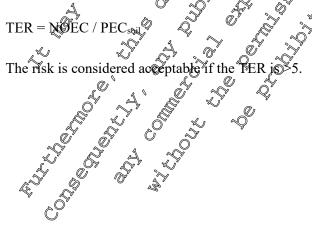
Ô Overall, based on the biological and statistical significance of the effects observed on growth and reproduction, it is conduded, that the NOEC for this study is 0.89mg test item/kg dry weight artificial soil. Thus, the overal LOEC is determined to be 1.6 mg/test item/kg dry weight artificial soil.

CP 10.4.1.2 @Earthworths field studies

Not required as the risk to earth forms is acceptable.

CP 10.4.2 Effects on non-target soil meso- and macrofauna (other than earthworms) Ä

Table CP 10.4.2- 1: Endpoints used in risk assessment


Test substance	Test species		Endpoint	ð	Reference
Test substance	Test species		Enupoint		
			14 mg prod./k	g dws	(20QT)
	Folsomia candida	NOEC	\triangleq 3.2 mg a.s./		M-406014-01-1
Thiacloprid			¥	<u></u>	KCP 10,42.1/1 K
OD 240			🖉 316 mg pro	g dws	
	Hypoaspis aculeifer	NOEC	≙ 71 mg a.s./ l		M-41921-0k-1
		- A		9	KCB10.4.297/2 (
		4	Q'	° A	(2001)@
	Folsomia candida		I u mg p.m. v	g dwQ	M-070983-01-
Thiacloprid-amide					KCR08.4.2.40
	11 · 1 · C		č≥ 10 mg p.m.s	». <i>S</i>	(2010)
	Hypoaspis aculeifer	O NQEC	$C \ge 10$ mag p.m.	xg dws∅	M-364270-01-1 ° CA&4.2.1/5
			Y & A	<u> </u>	ACA 64.2.1
	a start		×100	N.	
	Folsomia cança	NO S			1 2002) 1 2002)
Thiacloprid				Ĵ.	M-043981-01-1
sulfonic acid	- Q A	ja ja			(2011)
	₩ Hypoastus acuteifer	NOF		kg dwo	Nt-420081-01-1
	Trypouspes dealerjer			ng ungy	CA 8.4.2.1/5
		Å (x 4 X	<u></u>	â
					ر (2012)
	Folsontia candida	NOFC	10 mg/kg d	lws S	M-432536-01-1
Thiacloprid-			N ON S		KCA 8.4.2.1/7
descyano		S S		al a construction of the second secon	(2011)
	Bpoaspis aculeifer	NOEO	یم 100 mg p.m.	ke dws	M-419836-01-1
õ			S OT		KCA 8.4.2.1/6

dws = dry weight soil; c.s. = ac@ve sub@ance; p.m. = pre me@bolite Bold values: endpoints used for risk assessment R

Ş Risk assessment for other non-target soll meso- and macrofauna (other than earthworms) Ĩ

Ecotoxicological endpoints and PEC values used for TER calculations for soil non-target macrovalues were calculated using the equation: organisms are summarised belo **PER**

 \bigcirc

Compound	Species		ndpoint mg/kg]	PEC _{soil,max} [mg/kg]		Trigger &
OSR				Å	×.	
Thiacloprid	Folsomia candida	NOEC	3.2	0.031	103	
OD 240	Hypoaspis aculeifer	NOEC	71	0.031	2290	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This share i da anai da	Folsomia candida	NOEC	A.	00043	282	50
Thiacloprid-amide	Hypoaspis aculeifer	NOEC	$\lambda \geq 10$	07.043	232 Ñ	
Thiacloprid	Folsomia candida	NOEC		0.010	£100,000	6 ⁵ , 0 [×]
sulfonic acid	Hypoaspis aculeifer	NOEC 🖉	Ø [™] ≥ 100 ~	0 010 ⁴	$2 \ge 100000$	6 50 [°]
Thiacloprid-	Folsomia candida	NOEC	6°10 5	0.019		- S
descyano	Hypoaspis aculeifer	NOE	$\mathcal{Q} \geq 100^{\mathcal{Y}}$	× 0.000	@≥ 5263	<u> </u>

Table CP 10.4.2- 2: TER calculations for other non-target soil meso- and macrofauna

All TER values calculated with the worst case PEC x values clearly exceed the trigger value of 5 indicating that no unacceptable adverse effects on seil macro-organisms are to be expected from the intended use of the product.

CP 10.4.2.1 Species level

Report:	h; 2011, M-416014-01-1
Title:	Thiacloprid QD 240B : Influence of the reproduction of the collembolan species
A	Folsenia caterida tested in artificial soil
Report No.:	FRM-COLL-128/11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Document No.:	M -416014-01-1 () () () () () () () () () (
Guidelines: 🏷	OECD 232 adopted, September 07, 2009: OECD Guidelines for Testing Chemicals
Ô	🦉 - Collembolan Reproducțion Testăn Soil; none 💭
GLP/GEP*	yes an an an an
<u></u>	
~ <i>V</i>	

Material and methods:

Test item: This lopric OD 200B G analytical findings: 22.6% w/w Thiacloprid (YRC 2894) equivalent to 234.8 g/L; density: 1.039 g/mL (20°C) batch iD: ECE5100633, sample description: FAR 01509-00, specification no.: 102000021774 - 01@haterral no.: \$9674910.

10 collembolans (10972 days old) per replicate is replicates for the control group and 4 replicates for each treatment group) were exposed to control (water treated), 4.4, 7.9, 14.0, 24.9 and 44.3 mg test item/kg artificial soil dry weight (corresponding to 1.0, 1.8, 3.2, 5.6, and 10 mg a.s./kg artificial soil dry weight) at $20 \neq 2^{\circ}$ C, 400 - 800 lux 16h light : 8h dark. During the study, they were fed with granulated dry yeast.

Mortality and reproduction were determined after 28 days.

Findings:

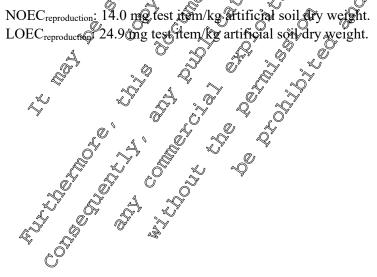
Mortalito

In the control group 8.8% of the adult *Folsomia candida* died which is below the allowed maximum of \leq 20% mortality. A LC₅₀ could not be calculated due to mathematical reasons. The adult mortality of 50% in the treatment group with 7.9 mg test item/kg artificial soil is not considered test item related.

Reproduction

Concerning the number of juveniles statistical analysis (Williams' test, one-sided smaller, $\alpha \approx 0.05$) revealed statistically significant differences between control and the treatment groups with 24, Pand mg test item/kg artificial soil dry weight.

Therefore the No-Observed-Effect-Concentration (NOEC) for reproduction is 14.0 mg test dem/kg artificial soil dry weight. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is 24.9 mg test item/kg artificial soil dry weight. The EC₁₀, EC₂₀ and EC₅₀ values determined by Provit analysis are 15.9, 19.5 and 28.8 mg test item/kg artificial soil dry weight, respectively.


			ř 💫 Kř
Test item		Thiscloprid OD 240	BG
Test object		Folsomia candida	
Exposure		Artificial soil	
mg test item (mg a.s.)/kg soil dry	weight Adult mortality	Mean number of 💍	Reproduction
nominal concentration		juveniles±SD	S(% of control)
Control	0° × ×	1,409.3 , € 1,16.2	Q -
4.4 (1.0)	20.0	\$284.3 ± \$59.6	91.1 ^{n.s.}
7.9 (1.8)	× 50.0 ×	1421.8 ± 180.30	100.9 ^{n.s.}
14.0 (3.2)	مَنْ 219 مَنْ 219	13699.5 ± 61.9	92.9 ^{n.s.}
24.9 (5.6)	& \$ \$0.0 m	887.0 ×± 107.0	62.9*
44.3 (10.0)	⊃´40.0	240, 3 ± 44.5 ×	17.0*
A A		Adult mortality	Reproduction
LC10/EC10 (mg/test item/k	g son dry weight) 🖉 🛯 😽	6 kg.d. 2	15.9 ¹⁾
LC ₂₀ /EC ₂₀ fing test item/k	🖉 soil dr@weight)	Gi.d. 🔗	19.5 ¹⁾
NOEC reproduction (mg test itern	kg solf dry weight)		14.0
LOEC _{reproduction} (ing test item	/kg soil dry weight) 🗡 🏻 🍣	ř O ^v N	24.9
NOEC _{reproduction} (mg test item LOEC _{reproduction} (mg test item	kg solf dry weight)		14.0

The calculations wer perform with un-rounded values 1) Probit analysis 🔘 n.d. = could not be determined due to mathematical reasons * = statistically significant (William's-t test one-sided smaller, O = 0.05)

sided-smaller. n.s. = statistically not significan@William&t test

Conclusions:

NOEC reproduction: 14.0 mg test them/kg artificial soil dry weight.

Report:	t; 2011; M-417921-01-1
Title:	Thiacloprid OD 240 G: Influence on mortality and reproduction on the soil mite species
	Hypoaspis aculeifer tested in artificial soil
Report No.:	KRA-HR-55/11
Document No.:	M-417921-01-1
Guidelines:	OECD 226 from October 03, 2008: OECD guideline for the Testing of Chemicals -
	Predatory mite (Hypoaspis (Geolaelaps) aculeifer) reproduction test m soil; 🔊 15, 🖗
	days of exposition instead of 14 days
GLP/GEP:	yes a way of a way

Material and methods:

Test item: Thiacloprid OD 240 G; (Batch ID ECE5 00633; Specification No.: 702000021774 - 01; Sample description: FAR01509-00; Material No.: 79674910; content: 034.8 g thiacloprid/L, density 1.039 g/mL)

Ten adult, fertilised, female *Hypoaspis aculatier* per replicate (8 control replicates and 4 replicates for each test item concentration) were exposed to control and freatments. Concentrations of 100,178, 316, 562 and 1000 mg test item/kg dry veight artificial soil were tested. In each est vessel 20 g dry weight artificial soil were weighed in. The *Hypoaspis aculefer* were of a uniformage and differing more than three days (28 days after start) of egg laying. During the fest, they were fed with cheese mites bred on brewer's yeast. During the study a temperature of $20 \pm 2^{\circ}$ °C and light regime of 400 – 800 Lux, 16 h light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 4.8° time quartz sold, 5% Sphagnum peat, air dried and finely ground, 20% Kaolin clay and approximately 0.2% Calcium carbonate (CaCO₃). After a period of 15 days, the surviving adults and the living juvebiles were collected in a fixing solution (20% ethylene glycol, 80% deionised water, 2 g detergent) L fixing solution were added). All *Hypoaspis aculeifer* were counted under a binocular,

Findings

Mortality

In the control group 110% of the adult Hypoaspis aculeifer died which is below the allowed maximum of $\leq 20\%$ modality. The LG₀ for the test stem could not be calculated and is considered to be ≥ 1000 mg test item/kg dry weight artificial solution of $\leq 20\%$ modality.

Reproduction

Concerning the number of juveniles statistical analysis (Williams t-test, one-sided smaller, $\alpha = 0.05$) revealed significant differences between confrol and the two highest concentrations of the test item. Therefore the No-Observed-Effect-Concentration (NOEC) for reproduction is 316 mg test item/kg dry weight artificial soil. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is 562 mg test item/kg dry weight artificial soil. EG-values could not be calculated.

weight arbricial

Test item Test object Exposure	_	Hypoasp	id OD 240 G <i>is aculeifer</i> cial Soil	
mg test item/kg dry weight artificial soil	% mortality (Adults)	Mean number of test vessel ± st	0	Reproduction (% of Control)
Control	11.3	224.4 <u>±</u>	46.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
100	5.0	175.3	36	č 78 v v
178	22.5	176.5 ±	₹ 1 ≈3	JO 18.7
316	2.5	18300 ±	\$17.7	0 81.6 O
562	0.0	118.3 * ±	18,00	52,7
1000	13.3	191.7 * ± 💞	18.00 m	85.4 S
	· · · · · · · · · · · · · · · · · · ·			Reproduction
	g test item/kg dry wei g test item/kg dry vei	ght attificial soil)		
LOEC (mg * Statistical significance (Williams t-t Conclusions: NOEC: 316 mg test item/kg LOEC: 562 mg test item/kg	est, one-sided smaller, $\alpha =$	78,05) was found.		
Conclusions:				
NOEC: 316 mg test item/kg	dry weight artifici	al soil	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
LOEC: 562 mg test item/kg	dry weight artificia	al soil. A		Ô ^r ^N Y
CP 10 4 2 2 Higher	r texting			
CP 10.4.2.2 Higher the	r testing			

Table CP 10 4 2 1.2. Effects of Thiscloprid OD 240B C on Hypogenis aculaitar

Conclusions:

Ó^{LJ}` CP 10.4.2.2 Higher ther testing Not required as the risk for other non-target soil meso- and macro-organisms is acceptable.

CP 10.5

Effects on soil nitrogen transformation Table CP 10.5- 1: Endpoints used in risk assessmen

Test species	Endpoint	Reference
Thiacloprid	$\bigcirc \bigcirc_{\mathbf{N}_{a}}^{\mathbf{v}} \checkmark \ge 6.93 \text{ mg prod./kg}$	dws (2013)
OD 240	\swarrow INO $\swarrow \ge 1.56 \text{ mg a.s.}/$	kg M-462791-01-1
	dws	KCP 10.5/1
Thiacloprid	Au A	(1995)
Thiadoprid Of C	$\geq 2.57 \text{ mg a.s./kg c}$	lws M-001022-02-1
		KCA 10.5/1
A Nitrogen .	No sta	(2008)
Thiscloprid-amide Oransformation	$\geq 16 \text{ mg/kg dws}$	M-301378-01-1
	- Mindeliee	KCA 10.5/2
Thriacloprid sulfonic acid	No	(2008)
(Na salt)	$\geq 4 \text{ mg/kg dws}$	M-301383-01-1
(Na salt)		KCA 10.5/3
	No	(2012)
Thiaclopyid-deroyano	$\geq 5 \text{ mg/kg dws}$	M-422083-01-1
	Influence	KCA 10.5/4

dws = dy weight soil; a.s. = active substance; p.m. = pure metabolite Bold values: Appoints used for risk assessment

Risk assessment for Soil Nitrogen Transformation

Compound	Spacios	Endpoint	PE soil,max	Refineme
Compound	Species	[mg/kg]	[mg/kg]	Fequive
Thiacloprid OD 240	Soil micro- organisms	≥ 1.56 mg a.s./kg dws	0.031	X XV
Thiacloprid	Soil micro- organisms	$\geq 257 \text{ mg a.s./kg dws}$	0.03	Q NO
Thiacloprid-amide	Soil micro- organisms	$\geq 16 \text{ mg/kg/dws}$	0.043	No S
Thiacloprid sulfonic acid (Na salt	Soil micro-	$\mathcal{Q} \geq 4$ $\mathcal{M} = \frac{1}{2} \mathcal{M} = \frac$	0.000	
Thiacloprid-descyano	Soil miero v organisms	mg Re dws	ک ک 0.019 ک	No

mineralisation at the recommended application rate of a compound/product $s \le 25\%$ after 100 days.

In no case did deviations from the control exceed the threshold level of 25% at 28 days after application. The tested concentrations by far exceeded the maximum predicted environmental concentrations in soil of the respective components. This indicates acceptable rise to soil microorganisms for the intended uses.

Report: Thiacloprid OD 240 G: Effects on the activity of soil microflora (nitrogen transformation test) Report No.: 3 10 48 044 N Document No.: M-462/91-04 1 Guidelines: OECD 21 (22000); none GLP/GEP: Vest

Objective:

The purpose of this study was bo determine the effects of the test item on the activity of soil microflora with regard to nitrogen transformation in a aboratory test. The test was performed in accordance with OE@D guideline 216 (2000) by measuring the pitrogen turnover.

Material and methods:

Test item: Thiacloprid OD 240 G; Batch D: ECE7101227; BCS-code: BCS-AA56362; Specification No.: 102000021774 – 00 Material No.: 79674910; Density (20 °C): 1.040 g/mL; Purity: 23.0% w/w.

A loany sand foil (DTN 4229) was exposed for 28 days to 0.69 and 6.93 mg test item/kg soil dry weight. Application rates were equivalent to 0.5 and 5.0 L test item/ha. The nitrogen transformation was determined in soil enriched with lucerne meal (concentration in soil 0.5%). NH₄-nitrogen, NO₃- and NO₂-nitrogen were determined by an Autoanalyzer at different sampling intervals (0, 7, 14 and 28 days after treatment).

Findings:

Validity criteria:

The coefficients of variation in the control (NO₃-N) were maximum 5.4% and thus fulfilled the demanded range ($\leq 15\%$).

Reference test:

In a separate study the reference item Dinoterb caused a stanulation of neurogen transformation of +33.7% and +42.6% at 16.00 mg and 27.00 mg Dinoterb per kg soil do weight, respectively, determined 28 days after application.

Thiacloprid OD 240 G caused a temporary inhibition of the darly nitrate rate at the gested concentration of 0.69 mg/kg dry soil at time interval 9-14 days after application. However, no adverse effects of thiacloprid OD 240 G on mitrogen transformation in soil could be of observed at both test concentrations (0.69 mg and 6.93 mg test item/kg dry soil) at the end of the rest, 28 days after application (time interval 14-28), Differences from the control of +06.2% trest concentration 0.69 mg/kg dry soil) and -14,4% (test concentration 6.92 mg/kg dry soil) were measured at the end of the 28-day incubation period (time interval 14

		~~ (Y	•		
Table CD 10 5 3. Effects on	· ·····			4-12 - 4-14 - 54 - 54-41	
I ADIE UP 10.5-2: Effects of	1 nitrogen/tra	пรтоя таттов л	1 Sollatter	tresitmenik witi	1 Igniacionria (JIJ 240 (†
Table CP 10.5- 2: Effects or	oge				

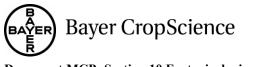
Time			olications rates				
Interval (days)	Control 5	0.69 mg test item/kg s convivalent to 0.5 k	nil dry weight	6.93	mg test	item/kg soi t to 5.0 L te	il dry weight est item/ha
	Nitrate N ¹⁾	Nitrate-N ¹⁾		<i>(</i>)	Nitrate-		% difference to control
0-7	3.00 ± (0.18	Ø3.16 ∰± 0.17 (+5 3 n.s.	3.28	±	0.26	+9.4 ^{n.s.}
7-14	1.88 ± 0.26	1.29 ± 0.15	-91.2 *s.	1.55	±	0.25	-17.5 ^{n.s.}
14-28 Q	0.91 ± 0.1±	1.05 0.21	@16.2 n4	0.78	±	0.10	-14.4 ^{n.s.}

The calculations were performed with unfounded whees

Ray? Nitrate-N in medig soil de weight/time intersyal/day, wan of 3 replicates and standard deviation

= No statistically significant difference to the control (Student's t-test for homogeneous variances, 2-sided, $p \le 0.05$) n.s.

= statistically significantly different to control (Stadent's piest for more previous variances, 2-sided, $p \le 0.05$)


Conclusion: _@

Thiacloprid OD 240 G caused no adverse effects (difference to control < 25%, OECD 216) on the soil nitrogen transformation (measured as)03-N production) at the end of the 28-day incubation period. The study was performed in a held soil at concentrations up to 6.93 mg test item/kg soil, which are equivalent to application rates up @ 5.0 Lest item/ha and equivalent to 1.56 mg a.s./kg dws.

ffects on terrestrial non-target higher plants **CP 10.6**

Risk assessment for Tereestriat Non-Parget Higher Plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations, as non-target plants are defined as non-crop plants located outside the treated area. Spray drift from the treated areas may produce residues of a product in adjacent off-crop areas.

A post-emergence screening test and Tier 1 seedling emergence study have been conducted with the offormulation Thiacloprid OD 240. The endpoints relevant for the risk assessment are compiled in the table below.

Table CP 10.6-1: Endpoints used in risk assess
--

	1	1	A	
Test organism	Study type, tested rate	Max. effects	Most sensitive species	References
Terrestrial non- target plants;	Post-emergence screening, 17 days,	0% phytotoxicity	Not applicable	- 0002)
11 species	0.814 L prod./ha			RCP 1066.1/1
Terrestrial non-	Seedling emergence,	115% reduction of		2012)
target plants;	Tier 1 single dose,	shoot dry weight	Allium cepa	S M-440266-01-1
10 species	14 days, 0.4 L prod./ha			KCP 10,62/1 L
	*		A S	

In the case of Thiacloprid OD 240, no ther the post-emergence screening test, nor the ter 1 seedling emergence study showed phytotoxic effects >50% at the tested rates of 0.814 and 0.4L proc. ha, respectively.

To demonstrate the low risk of the formulation to terrestrial non-target plants. TER calculations have been performed for the representative use in oilseed rape. The test rates given in Table 10.6-1 were used as most conservative endpoint estimates (i.e., $R_{50} > 0.814$ and > 0.4 L prov/ha, respectively).

Table CP 10.6- 2: Deperministic risk assessment based on the ERS > 0.814 L prod./ha (vegetative vigour)

Сгор	Use pattern	Bistance from field edge	Drift Control	^{≪」▼} PER* , [L prod./ha]	TER (Trigger = 5)
Oilseed rape	2 × 0.3 L prod./ht (10 d interval)		2.380	0.011 2)	> 74

^{*}Predicted environmental rate

¹⁾ Basic drift value of two applications in fueld crops

²⁾ Considering MAF = 1.50 rom EPSA GD Birds & Marginals (2009)

Table CP 14.6-3: Deterministic risk assessment based on the ER50 > 0.4 L prod./ha (seedling emergence)

Crop	Use pattern Distance from Field edge (*) (m]	Drift [%]	PER* [L prod./ha]	TER (Trigger = 5)
Oilseed rape	2 [©] 0.3 L prod./ba	2.38 ¹⁾	0.005 ²⁾³⁾	> 80

* Predicted environmental rate

¹⁾ Basic drift value for two applications in field crops

²⁾ Considering M_{0} F = 15 from FSA GD Birds & Mammals (2009)

³⁾ Considering 90% in Orception by off-crop vegetation

From the calculations above, it is concluded that effects of the product on non-target terrestrial plants are not to be expected.

CP 10.6.1 Summary of screening data

CP 10.6.1	Summary of screening data	
Report: Title:	x; 2002; M-071045-01-1 Thiacloprid OD 240: Post-emergence screening for herbicidal activity	
Report No.:	LKC NTPscr 06/02	
Document No.:	M-071045-01-1	
Guidelines:	Not specified	
GLP/GEP:	no 😴 🖉 Č Č V V	
	Not specified no	
Objective:		
The purpose of	this herbicidal screening test was to evaluate potential phytofoxic effects of $\sqrt{2}$	
Thiacloprid OE	240 on the vegetative vigour of eleven non-target errest al plant species following a	

Objective:

The purpose of this herbicidal screening test was to evaluate prential phytofexic effects of Thiacloprid OD 240 on the vegetative vigour of eleven non-target terrestral plant species following a. post-emergence application of the product to the plant folloge.

Materials and methods:

06069-Content of a.s.: No.20769070086(008 Test item: Thiacloprid OD 240; Batch , B 243.95 g/L.

A total of eleven species were rested in this post-emergence screwing test including so dicotyledonous and five monocotyledonous species representing seven plant (see table below).

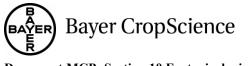

			× ·		
		Test speci	es o		
Plant family 🔬	EPPO Code	Specites	Plant a	EPRO Code	Species
		× . ~ . ×	family	Ś	-
<u> </u>	Dicotyledonae			Monocotyled	onae
Malvaceae	ABUTH &	Abitition the phrasti	P@aceae 0	* ALOMY	Alopecurus myosuroides
Amaranthaceae	AMARE	AmaxanthuO roroflexus &	Poaceae	AVEFA	Avena fatua
Chenopodiaceae	BEAVA	Beta valgaris	Portceae	ECHCG	Echinochloa crus- galli
Rubiaceae 🖉	CGALAR .	Galiun apartae	Poaceae	SETVI	Setaria viridis
Convolvulaceae Brassicadeae	IPHOE SINAL S	/ Ipomola hederacea		ZEAMX	Zea mays
(D					

Table CP 10.6.1- 1: Species tester

Seeds of the eleven species were planted in 420 sm² greenhouse pots. The pots were filled with a sandy loam soil with an arganic matter onten of 2.5-3.0%. Ten seeds per species were sown. Plants were grown for period of about 14 days before application. Test conditions: temperature 22°C during day, 15°C at hight; 14h photoperiod with light intensity of 8 klux; relative humidity 50%.

Spray treatments were applied in an automatic spray chamber for primary screening tests. The spray chamber was adjusted as follows: pressure 3 bar; height of spray boom 45 cm; nozzle type: 8003E; water application rate to the target area 1000 litres/ha. The test item was applied at rates of 400 and 814 mL formulation ha, equivalent to 96 and 195 g a.s./ha.

The final evaluation was done 17 days after treatment. Assessment of phytotoxicity was done by visual observations using a rating scale of 0 to 100%, where 100% represented complete destruction of above ground parts and 0% represented no visual damage (normal growth) as compared to untreated plants.

Findings:

None of the eleven species showed phytotoxic effects at the two application rates tested. The results of the final assessment are summarised in the table below.

Table CP 10.6.1- 2: Phytotoxic effects of Thiacloprid OD 240 at different application rates

-		
		Thiacloprid OD 240 Post-Emergence Test ty ratings in% at different application rates (17 days after application)
		Thiacloprid OD 240 Post-Emergence Test ty ratings in% at different application rates (17 days after application)
	Phytotoxici	ty ratings in% at different application rates 🖉 🖉 🖉
Species		400 mL Formulation/ha 🐄 🔏 14 mL Formulation/ha 🛒
Zea mays		
Beta vulgaris		
Alopecurus myosuroides		
Avena fatua		
Echinochloa crus-galli		$\sqrt{7}$ $\sqrt{90}$ $\sqrt{7}$ $\sqrt{7}$ $\sqrt{9}$ $\sqrt{7}$ $\sqrt{9}$
Setaria viridis		
Abutilon theophrasti		
Amaranthus retroflexus	لم	
Galium aparine	, Q	
Ipomoea hederacea	a.	
Sinapis alba	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Ŵ K	

Conclusion:

Following a foliar application of Thiaelopric OD 200 at rates up to 0.844 L product/ha to eleven nontarget terrestrial plant species, no phytotoxic effects reaching or exceeding the 50% level were observed in this post-emergence screening test.

CP 10.6.2 Testing on non-target plants
Report:
Title: This cloped OD 40B F Effects on the seedling emergence and growth of ten species
Cof non-farget torrestrial plants (Tiers)
Report No.4 SE120003
Document No.: Mod 4026 $01-1 $
Guidelines:OECD 208 Guidelines for the resting of chemicals, Terrestrial Plant Test: Seedling
Guidelines: OECD 208 Guidelines for the testing of chemicals, Terrestrial Plant Test: Seedling C Emergence and Seedling Growth Test.; not specified GLP/GEP: yes
GLIMGEP: yes
GLIMGEP: yes
Character Character
GLIMGEP: yes
Character Character

Materia and methods:

Bayer CropScience

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Test item: Thiacloprid OD 240B G; Batch ID: ECE7100937; Material no.: 79674910; Specification ... no.: 102000021774-01; Sample description: TOX09597-00; Analysed content: 242.2 g a.s./L (23.2% w/w).

A total of ten species were tested in this seedling emergence and growth test including six dicotyledonous and four monocotyledonous species representing eight plant families. Five seeds of each species were sown in 10.5 cm pots in the glasshouse. The soil surface of the pots was treated with 0.4 L/ha Thiacloprid OD 240B G using a laboratory track sprayer. The water volume rate was 200 0 maintained under glasshouse conditions with a temperature control regulated toget $25 \pm 8^{\circ}$ C during day and $18 \pm 8^{\circ}$ C at night with a 16 h photoperiod. Emergence was assessed daily and 1700 recorded 7 and 14 days once 70% emergence had been achieved gainst the dejonised water meated controls. The study was terminated 14 days after 50% emergence in the controls of each species. Parameters measured were emergence, sirvival of the emerged see ofings, visual phytotoxicity, fant growth stage and shoot dry weight.

Findings:

This study is valid as the validity Griteria of 70% emergence and 90% survival of the emerged seedlings at the end of the test in the untreated controls were achieved for all species.

 \bigcirc

Document MCP: Section 10 Ecotoxicological studies Thiacloprid OD 240 (240 g/L)

Species	Emergence (% inhibition)	Survival (% inhibition)	Phytotoxicity	Shoot Dry Weight (% inhibition)	BBCH (control / treated) min - max
Dicotyledonae					
Beta vulgaris	11.1	6.3	0	×-0.4	× 12-14/12-14
Brassica napus	0	0	<u> </u>	-2.2	13-14/13-14
Cucumis sativus	0	0	0	S 2.2	13-14/13-145° 13-13/12=13
Glycine max	5.3	0		° -3.2 K	12-13Q2-13 Q [°]
Helianthus annuus	-6.3	0		3.9	14-96/14-16
Lycopersicon esculentum	5.3	0 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13-14413-14
Monocotyledona	ie			4	
Allium cepa	11.1			↓ 9.5 ×	11-12/10 22
Avena sativa	0			×, √, 7.3 ×	£12-13/£2-13
Triticum aestivum	-5.3			-5.00 A	13-22/13-21
Zea mays	0		Ì 05 1	Q.5 0	13-14/13-14
Negative figures indica	te that there was an arc	ease compared to the co	jangan		×

Table CP 10.6.2-1: Summary of the effects of Thiacloprid OD 240B G on terrestrial plants

Emergence for Beta vulgaris, Glycine may, Lycopersicon esculentum and Altium cepa was reduced by 11.1, 5.3, 5.3 and 11.1% compared to the control, respectively. Survival for Beta Sulgaris was reduced by 6.3% compared to the control. Shoot dry weightfor Cucumis Sativus, Helianthus annuus, Lycopersicon esculentum and Alltum cepe was reduced by 2.2, 3.9, 2. Pand 11.5% compared to the control, respectively. None of the shoot dry weight reductions was statistically significant. The study revealed no adverse effects of the test item of growth stage development and the plants exhibited only normal variation in growth, No symptoms of phylotoxicity were observed.

Conclusion:

Following a soil application of Thisclopra OD 240B & at a rate of 0.4 L product/ha to ten non-target terrestrial plant species, no adverse effects on emergence, scedling survival, visual phytotoxicity, growth and shoot dry wight waching or exceeding the 50% effect level were observed in this seedling emergence and growth study

Extended laboratory studies on non-target plants CP 10.63

In view of the results presented above, no further studies are deemed necessary.

Semi-field and field tests on non-target plants **CP 10.6.4**

Please ref Point CPCIO.6

Effects on other terrestrial organisms (flora and fauna) No studies are required.

of the boundary of the boundar

and the state of t where and and a start of the st **Document MCP: Section 10 Ecotoxicological studies** Thiacloprid OD 240 (240 g/L)