
Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

OWNERSHIP STATEMENT

<text><text><text><text> in bost on any pillible of the second since of authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data combined to the

Table of Contents

	Table of Contents	0
		À Page
CA 5	TOXICOLOGICAL AND METABOLISM STUDIES ON THE ACTIV	ØE og
	SUBSTANCE	
INTRODUC	TION	
CA 5.1	Studies on absorption, distribution, metabolism and excretion in mamm	nals13
CA 5.1.1	Absorption, distribution, metabolismend excretion by oral route	
CA 5.1.2	Absorption, distribution, metabolism and excretion by other outes	Q. 19 O'
CA 5.2	Acute toxicity	.;;
Summary	of acute toxicity studies	@ 2 0
CA 5.2.1	Oral	
CA 5.2.2	Dermal	<u></u>
CA 5.2.3	Inhalation	£,\$1
CA 5.2.4	Skin irritation	
CA 5.2.5	Eye irritation	. <u>.</u>
CA 5.2.6	Skin sensitization	,
CA 5.2.7	Phototoxicity	
CA 5.3	Short-term toxicity.	
Summary	of short-term toxicity studies	
CA 5.3.1	Oral 28-day stud	
CA 5.3.2	Oral 90-day study S S	
CA 5.3.3	Other routes 3	
CA 5.4	Generoxicity testing	
Summary	of genotoxicity testing, S	
CA 5.4.1	m vitro studies	
CA 5.4.2	In vive studies in Somatic cells	51
CA 5.4.3	In www studies in germ cells	58
CA 5.5	Long-term toxicity and carcinogenicity	58
Summary	of long verm studies	58
CA 5.6	Reproductive toxicity .O	-
Summary	of reproductive and developmental toxicity studies	
CA 5.6.1	Generational Studies	64
CA 5.6.2 🔌	Devélopmental toxicity studies	65
CA 5.7	Neurotoxicity studies	65
Summary	of neuroloxicito studies	65
CA 5,7.1	Developmental toxicity studies	66
CA 5.7.2	Delayed polyneuropathy studies	66
CA 5.8	Other toxicological@tudies	69
CA 5.8.1	Toxicity studies of metabolites	69
	of studies with metabolities	
	of Studie Swith Miacloprid-amide (M02)	
Summary	of studies with YRC 2894-sulfonic acid / sulfonic acid Na-salt (M30)	70
Summar	of studies with YRC 2894-sulfonic acid amide (M34)	70
Summary	of studies with 6-chloronicotinic acid (M03)	71
	of studies with thiacloprid-thiadiazine (Z5)	
Additional	H295R steroidogenesis assay with thiacloprid	
CA 5.8.2	Supplementary studies on the active substance	112

BAYI

Summary o	f supplementary studies	112
CA 5.8.3	Endocrine disrupting properties	\$15 °
CA 5.9	Medical data	233
CA 5.9.1	Medical surveillance on manufacturing plant personnel and monitoring stud	lies
011 5.9.1		233
CA 5.9.2	Data collected on humans	2350
CA 5.9.3	Direct observations	235
CA 5.9.4	Direct observations	.®36 €
CA 5.9.5	Diagnosis of poisoning (determination of active substance, metabolites),	
CA 5.7.5	specific signs of poisoning, clinical tests	236
CA 5.9.6	Proposed treatment: first aid measures, antidotes, medical reatment.	230
CA 5.9.7	Expected effects of poisoning.	3728
CA 5.9.7 CA 5.10	Overall conclusions	220
CA 3.10	f absorption, distribution, metabolism and excretion	239 200
Summary o	absorption, distribution, metabolism and excretion	639
Acute toxic	1ty	239
Short-term	ity	239
Genotoxicit	ty testing	240
Long-term t	toxicity and carcinogenicity	241
Reproductiv	ve Toxicity	242
Neurotoxici	ity studies in podents	243
Toxicity stu	idies of metabolites	244
Supplement	tary studies on the active substance.	245
Endocrine d	lisrupting properties	249
Calculation	of the accertable drily intake (ADI)	250
Accentable	Operator Exposure Level (AOFL)	251
Acute Refe	represented by $AR(D)$	251
		231
Ö		
, Ô		
<u>A</u>		
~Q		
A		
×.,	S A R O Y	
~~~~		
Ő		
, S		
Ű		
J L	A NY	
E S	ity	
CO ^V		
$\lor$		

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

#### CA 5 TOXICOLOGICAL AND METABOLISM STUDIES ON THE ACTIVE, SUBSTANCE

#### INTRODUCTION

Thiacloprid was included in Annex I of Directive 91/414/EEC on 01/01/2005 as notified in Directive 2004/99/EC dated 1 October 2004 wherein there is no specific provision under Part B which needs to be considered related to toxicological data.

The Monograph prepared by the Rapporteur Member State United Kingdom in the context of the inclusion of thiacloprid in Annex 1 of the Council Directive 91/914/EEC, the Review Report for thiacloprid (SANCO/4347/2000-Final – 13th May 2004), as well as the Evaluation table of thiacloprid (SANCO/4346/2000 rev.3.1 (11.03.2004) are considered to provide the relevant scientific information for the review of the active substance.

### Comments with respect to the Annex I renewal process

This supplemental dossier contains only summaries of studies, which were not available at the time of the first Annex I inclusion of thiaclogical and were therefore not evaluated during the first EU review of this compound. The summaries on the different toxicological endpoints (information is taken from the Monograph/Review Report (July 2003)/Evaluation table (March 2004)) were supplemented and adapted with the new information. In order to facilitate discrimination between new information and original paragraphs, the new information is written in field and italic letters. All other studies, which were already submitted by Bayer for the first EU review, are contained in the Monograph/Review Report (May 2004)/ Evaluation table (March 2004)) and in the baseline dossier provided by Bayer CropScience.

Synonymous names for this clopped used at several locations in this supplemental dossier is YRC 2894, AE F158944, BCS-AAS6362 or Calspoo Edech...

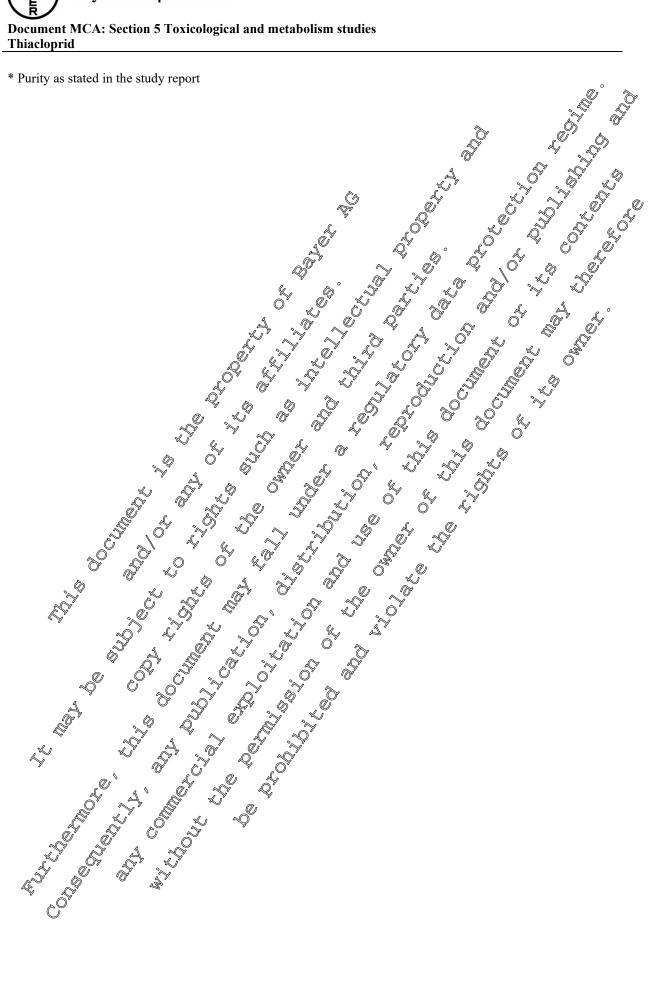
The following table provides an overview on the batches of this copy and it toxicological studies of this compound. Studies not evaluated during the first EU review are written in bold and italic letters. For the mixed batch 290894 the impurity profile is available.

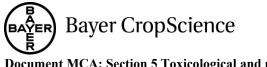
Annex Point	Report Document No.	Study of C	Thiacloprid – Batch No.	Purity [%]*
KCA\$.2.1/01	25276/ A 0 M-000796-01	YRC 2894 Study for acute oral toxicity Prats	290894	97.3
KCA 5.2.1/024	2380) M-000705-01-4	RC 2994 - Pilot toxicity study on rats - agree oral toxicity to non-fasted animals - subacute oral toxicity with gavage administration over 2 weeks	NLL-3351-3	98.3
KQ25.2.261	24879 / 🔊 M-000808-01-1	YRC 2894 - Study for acute dermal toxicity in rats	290894	97.3

### Table 5-1: Overview of this loprid batches used for toxicity studies

Annex Point	Report / Document No.	Study	Thiacloprid – Batch No.	Purity.	
KCA 5.2.3/01	24775 /	YRC 2894 - Study on acute inhalation	~290894	Ø.2	
	M-000815-01-1	toxicity in rats according to OECD no.			
		403	<u>S</u>		
KCA 5.2.4/01	24217 /	YRC 2894 - Study for skin and eye	2908	\$7.3	
	M-000708-03-1	irritation/ corrosion Wrabbits			
KCA 5.2.5/01	24217 /	YRC 2894 - Study for skin and gye	870894Q	Ø.3 ¥	
	M-000708-03-1	irritation/ correspon in rabbits			
KCA 5.2.6/01	24641 /	YRC 2894 - Study for the Kin	280894	9,7,9	
	M-003836-02-1	sensitizaton eff of in gunea pages to		.1	
		(guine apig motimizet on the method	A O'		
		according Nagnussyn an(OKligntan)		<u>s</u> s	
KCA 5.2.7/01	1609500 /	Thaclophid: Chetoxicity assay in vitro	PEQCA-2013-	98.9	
	M-480557-01-1	with BoyLB/c 3A3 cetts: Neutral rea	S 07501	þ	
		(NROtest during stimultaneous 20			
		irradiation with artificial sunfight	ð ð		
KCA 5.3.1/01	23861 /	WRC \$894 mlot toricity study frats	NLL6351-3	98.3	
&	M-000703-01-4	- acote or Foxicity to not faster			
KCA 5.2.1/02					
	Î L Ö	$gava Q$ adm $\mathfrak{A}$ istrat $\mathfrak{A}$ n over 2 wec $\mathfrak{Q}$ s	~Y		
KCA 5.3.1/02	23720 0 27	YRC 2824- Study for Boacu Foral	NLL 3351-13	98.6	
8	M-000785-02-1	Soxicit On rate fielding study over 2			
	Q ~ ~ Q	weeks) in the second			
KCA 5.3 1403	29674	YQC 2894 (c.n., Thia (pprid) Special	290894	96.8	
	M-030427-03-1	study for subacute oral toxis ty in rats			
	3 5	(feesing story foo weeks)			
KCA 5.3.1/04	260170 5	SORC 2894 - Story for Subacute oral	NLL 3351-13	98.6	
~\$	M-000821-91-1	noxies, in free (freeding study over 2			
A	°. 39'	WATS) OF O			
KCA 5.2 /05	23458	YRC 284 - Poot study on subacute	NLL 3351-13	98.6	
L.	M.000688-01-1 2	toxi by in ExC3F1 mice			
ν		(administration in feed over 3 weeks)			
KCA 5.3.1/06	271374	<b>S</b> RC 2894 - Subacute toxicity study in	NLL 3351-13	98.6	
	M-003816-02-1	Begene dogs (dose range finding study			
Â, Â,		by feed admixture over at least 10			
J B	LA S	weeks) - revised final version -	L		
E Z	271 ATV M-903816-02-1, 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
× , Ô ^y					

Annex Point	Report / Document No.	Study	Thiacloprid – Batch No.	Purity.
KCA 5.3.2/01	26239 /	YRC 2894 - Investigations of	NL 3351-13	\$3.6 ×
	M-000863-01-1	subchronic toxicity in Wistar rats	Å.	
		(feeding study over 12 weeks with a	<u> </u>	\$ \$
		subsequent recovery period over 5		
KCA 5.3.2/02	23834 /	YRC 2894 - Suberronic range-folding	NL\$3351.03	988 - KO
	M-000697-02-1	study for a two ear study in SC351°	á á	G8.7
		mice (adminipration in feedboyes, Bout		
KCA 5.3.2/03	27464 /	VRC 2894 - Salechronic toxing study	290854	\$ 6.8 L
	M-003814-01-1	in Basele dogs (feeding study for about		9702
		15 Ocekary L A A L		Ő
KCA 5.3.2/04	27563 /	PRC 2594 - Aroniz Oxicity study n	\$ 290\$4	96.8-
	M-003818-01-1			97.1
KCA 5.3.3/01	24248 /	YAC 2894 - Pilor study on supecute	Q908	97.2
	M-000725-02-1	inhalation to write in rats (exposure 5		
	× 4	x 6 gours fr y gr w g	ý vý 	
KCA 5.3.3/02	2768	VRC 2894 Succute inhalation toxicity	°∽290894	96.8 -
	M-221815-01-1	on ra@(Exporture 57.6 hour/weel@for 4-weeks)	~	97.2
KCA 5.3.3/03	D25950	RC2004 - Stildy for subasile dermal	290894	97.2
6	M-000824-01-1	toxicity in xx's (for week treatment		
	ð sý	ar www.week recovery.gerio		
KCA 54.1/01	237%	YRC 2994 - Salmonella/mayrosome	290894	97.2
	M5900694401-15	test state is orpootion and		
V.C.A. 5. 4. 1/00		provincupation recthod s		0.6.0
KCA 5.4.1/02	M-000909-01-10	WRC 3894 - Deverse mutation assay	290894	96.8
A CONTRACTOR	M-000903-01-49	(S Smone & typ) Onurium and Escherighia c(4)		
KCA5,4.1/06	NR97220	YRC 2894 DNA repair test in	290894	96.9
ν	M-009203-01	bacterial System		
KCA 5.4.1/03	251 <u>6</u> 37 °	RC 2894 - Mutagenicity study for the	290894	96.8-
L.	M-900799-01-1	det fion of induced forward mutations		97.2
		in the V79/HPRT assay in vitro		
KCA \$\$.1/04	24545/	YRC 2894 - In vitro mammalian	290894	96.8-
KCA Z. 1/045	MØ00732-01-1	chromosome aberration test with		97.2
		chinese hamster V79 cells		


Annex Point	Report / Document No.	Study	Thiacloprid – Batch No.	Purity.
KCA 5.4.1/05	25429 /	YRC 2894 - Test on unscheduled DNA	~290894	ØJ.2
	M-000790-01-1	synthesis in rat liver primary cell	-S -	
		cultures in vitro	10 A	
KCA 5.4.2/01	24515 /	YRC 2894 - Micronucleus test on the	290894	\$6.8
	M-000775-01-1	mouse 😽		Y Q
KCA 5.5/01	27480 /	YRC 2894 - Con Ined chronic	20894Q	68- 4
	M-003817-02-1	toxicity/carcing enicity study in 3°	A A	97.2
		Wistar rats (Setary administration over 2 years)		
KCA 5.5/02	27247 /	YRC 2894 - Cocce City sQdy in	290:04	0 96.84
	M-003819-02-1	B6Ccr 1-nice (administr; Oron incide		9752
		follover years in the		Ő
KCA 5.6.1/01	24084 (107043)/	A two generation reproduction rapie-	PLL 351-13	98.6
	M-000911-01-1	finding study with RC 394 to Annical		
		invats	8 \$	
KCA 5.6.1/02	BC8385	A two gener from dotary reproduction	298894	96.7 -
	(107628)	stute in r& using technical YIE 28		97.5
	M-004304-04		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
KCA 5.6.2/01	2622/ 2	YRC 894 Developmental toxicity in	290894	97.0 -
	M-000892-01-1	rats after val as inist flon	,	97.3
KCA 5.6.2/02			290894	97.3
Ū ^r	M-031344-01-1	study in rate after an administration		5740
		(Fort no. 26122 of March 25 1997) -		
in the second se		additional information on Applasia of		
		limeyoone in fetoes		
KCA 5.6.2/03	247090 5	C 2394 - Develop Sental toxicity	290894	97.3
~0	M-@0780-91-1	studyn rabiws after oral		
Å.		ad Amistraçion		
KCA 5.2 /01	BC8458/Q	An act or al curotoxicity screening	290894	96.8-
, K	M-000894-03-1	stud with technical grade YRC 2894		97.0
~~		in Fische 0344 rats		
KCA 5.7.1/02	107619/	Suberonic dietary neurotoxicity	290894	96.6 -
	M-903815-01-1	scrolling study with technical grade		97.5
Ű,	\$ 0 \$	YRC 2894 in Fischer 344 rats		
KCA 🔊.1/03	110534/ 59	Oral (diet) developmental	898013001	99.2
KCA 2.1/035	M088059-01-1	neurotoxicity study of YRC 2894 in		
	45	CRL:CD(SD) IGS BR VAF/PLUS		


Annex Point	Report /	Thiacloprid –	Purity.	
	Document No.		Batch No.	
KCA 5.8.1/	SA 13306	Thiacloprid / Thiacloprid-thiadiazine - 7-	EDFL021010	98.8
	M-495981-01-1	day toxicity study in the rat by dietary	Å Å	× . ~~
		administration	Š.	S S
KCA 5.8.1/25	SA 13334	Evaluation of thiacloprid in the $H29$ $R^{2}$	PFHCA-2013-	s, <b>9</b> 8.9 , € [®]
	M-490186-01-1	steroidogenesis assay	07-01	Y O
KCA 5.8.2/01	27717 /	YRC 2894 - Mecksnistic studie On	290894	962- y0
	M-003766-03-1	aromatase induction and toxicQkinetics		©7.2 ¢
		in rats (4-web feeding studies)		
KCA 5.8.2/02	27657 /	YRC 289 Specal study for moacut	290894	97.2
	M-003821-01-1	YRC 289 Special study for a bacut oral toxicity in the (Texicol fields of	O L	A s
		present and on-orgenary rats) A	\$\$ ,	
KCA 5.8.2/14		VP/ 280 Plane a proting highing of	500006	
120/13/0.2/14	M-075786-01-2	YRC 2894 Planna protein birding	290896	On.r.
KCA 5.0 2/15				
KCA 5.8.2/15	24572	YRC 2894 Concentration of YRC		97.2-
	M-000760-01	2894 in the plasma of dogs in a		96.8
		subchernic feeding study	QQ	
KCA 5.8.2/16	SA 103627	Thilacloprist - 28-slay immunotosicity, S	EDE0011099	98.7
	M-428958-04-1	study in the female Wistar rat by		
		dieta administration	~~	
KCA 5.8.2/05	2371600	YKC 2894- Mccranisticsstud on	290894	97.0 -
~	M-003764-01-1	or omatter induction in mices reeding		97.2
Ű	TO ST ST	study for 12 weeks O		
KCA 5.8.206	23495	Stodies on the inhibition of the oid	NLL 3351-13	98.6
1 de la companya de l	M-000690-02-1	peroxidase-callyzed reactions by		
		YRS 2894 and its metabolites in vitro		
KCA 5.8.2/07	296746 \$	YOC 2844 (c.10 Thia Oprid) - Special	290894	96.8
& 5.3.1/03	M-@0427_03-1	stud, or subscute oral toxicity in rats		9010
~Q 4		(feeling stady for weeks)		
KCA 5.82/17	SA 06252 / Q	Thiaclogrid - Evaluation in the	EDE0011099	99.0
11011 3.02/11/	Mz293202-01-1	Timmaure rat - Uterotrophic assay	EDE0011099	<i>99</i> .0
KCA ⁵ .8.2/18		Q,Y		
NCA 3.0.2/18	SA 07125 / Č	Thiacloprid - Investigation of effects	EDE0011099	99.0
	M-359235-@2-1	Sin hormone levels in adult female		
		wister rats following a single oral dose		
KCA 5.8 2/19	SA 07041 / ~	Thiacloprid - Evaluation of hormone	EDE0011099	99.0
	M-360362-91-1	levels in female rats 2 and 8 hours		
st g	Ŭ Ŝ	after 4 days exposure by oral gavage		
KCĂ 5.802/20	SA 07010 /	Thiacloprid - Evaluation of hormone	EDE0011099	99.0
$\bigcirc$	M-360349-01-1	levels in female rats 24 hours after 4		
		days exposure by oral gavage	1	



Annex Point	Report / Document No.	Study	Thiacloprid – Batch No.	Purity.
KCA 5.8.2/21	SA 08054 / M-360757-02-1	Thiacloprid - Exploratory 28-day toxicity study in the rat by dietary administration	EDE0011099	98.7 0 2 2 2 2 2 3 2 3 2 3 2 3 0 0 0 0 0 0 0
KCA 5.8.2/22	SA 08327 / M-359926-01-1	Thiacloprid - Exploratory 28-day toxicity study in the aged female rep by dietary administration	EDE001,1999	598.7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
KCA 5.8.2/23	SA 08351 / M-361492-01-1	Thiacloprid: Investigation of in vitros effects on steroidogenesis asing 14795R cells	EDE0014099	98.7
KCA 5.8.2/24	SA 09062 / M-361609-01-1	Thiacloprid: In vitro investigation of steroid sex hormone secrition in that overian preantral follicles	EDE0001099	98.75 98.75 0
KCA 5.8.2/09	BC8489 (107641) / M-003820-01	A one generation dictary reproduction study in radiusing dechnical grade WC 2894 to e chuatethe reproducibility of Dystocia and ary increase in stillbiths in the P generation of Wo-generative dietary reproduction study brats		96.7 - 97.0
KCA 5.8.2/10	B 860 0 (107 8) / M-09429 k-01-1	Arr xperspental Rudy @investigate we cauge of de Mocia and stig Births in rats treated with technical Grade PRC 28	290894	96.7 - 97.0
KCA 542/11	BC-\$61 (19640) \$1-002427-015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A reproduction study in rate of detachine Hudmin stration of technical VC 2844 from gestat on days 18 to Of will cause Oystocld (Study number II) Q	290894	97.0
KCA 5.8012	BC 8505 (10,039) / M-016564-02-17	Adeproduction study in rats to Aletergane it administration of technical YRQ 289 from gestation days 18 to Q will ause dystocia	290894	96.7 - 97.0
KCA 5.8.2/10	Be5604 5 508366 M-004253-09-1	Further examination of the increased occurrence of dystocia and stillbirths observed in a reproductive bioassay with an experimental cyanamide (YRC 2894)	290894	97.0
KCA 5 2/25	SA 10007 / M-403763-01-1	<i>Thiacloprid - A special one-generation dietary reproduction study in Sprague-Dawley rats</i>	EDE0011099	98.7







#### CA 5.1 Studies on absorption, distribution, metabolism and excretion in mammals

#### CA 5.1.1 Absorption, distribution, metabolism and excretion by gral route

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dossier of thiacloprid.

According to the new data requirements (COMMISSION REGULATION (EU) No 283/2013 of 1 March 2013; Official Journal of the European Union, L 93/1, 3.4.2013) (1), the conduct of a "comparative *in vitro* metabolism study shall be performed on animal species to be used in pivotal studies and on human material (microsomes or intact cell systems) in order to determine the relevance of the toxicological animal data and to guide in the interpretation of tindings and in further definition of the testing strategy". For this data requirement no test guideline is available yet. Therefore, the study described below was conducted as described in the Material's and Method's section to what the sponsor believes could be considered as the current state of scientific standard.

Report:	KCA 5.1.1 /01;	J. 2014;M4 <u>89772201</u>
Title:	[Methylene-14 7]	iacloprid Metabolic Stability and Profiling in Liver
	Microsomes from 1	Rats and Humans for Inter-Species Comparison.
Report No:	S48310 / EnSa-14	
Document No:	M-489775-01-1	
Data	Regulation (EC) N	No 1107/2009 amended by the Commission Regulation
Requirement:	(EU) No. 283/2013 US EPA QCSPP 8	
GLP/GEP:	Deviations: none	
, A	Deviations: none yes	No F107/2009 amended by the Commission Regulation
~0 	<u>ک</u> ، ^{بو} بھا. ا	Materials and methods
A. Materials		
1. Test materials:		
1. Test materials: Radiolabellec Chemical stor	kest item	Atethylene-14C Thiastoprid
Chemical stor	icture	
Ĩ,		
~~~~~ (		
4		
		* denotes position of radiolabel
∡∜Batch Num	A Sample ID9:	KML 9707
Radiochemica	al Purity:	99% (HPLC, radioactivity detector
Chemical pur	al Purity: O	∞ (HPLC, UV-detector, 210 nm)
Specific radie	activery:	\Im .77 MBq/mg = 102 μ Ci/mg
Total radioac	tivity: 🔊 🎽	31.45 MBq = 0.85 mCi
Non-radiolab	elled test item:	Thiacloprid
Company ex	berimental name:	YRC 2894 / BCS-AA56362
Let Batch coo	le:	AE F1 58944-PU-01
Methods of it	lentification:	MS, IR, ¹ H-NMR, ¹³ C-NMR, UV
Description:		Beige powder
Chemical pur	ity:	99.0%
•		

BAYI

2. Positive control:	68-hydroxytestosterone 0446800-2 White powder 99.7% Dexamethasone Vetranal SZBB118XV White coloredess powder 99.5% Pooled liver microsomes from male Wistar rats (RLM, batch 101026, pool of 200 individuals and humans (HLM, batch 1210097, pool of 50 donors from both genders) were purchased from Xenotech ELC (USA) Each microsome batch was characterised at least according
Identification:	6ß-hydroxytestosterone
Batch code	0446800-2
Description:	White powder
Purity:	99.7%
3. Internal Standard:	99.7% Dexamethasone vertaal SZBB118XV White coloredess powder 99.5%
Identification:	Dexamethasone Detranal
Batch code	SZBB118XV S S S S
Description:	White cologiess powder 2 2 2 2
Purity:	99.5% g g g g g g g g g g g g g g g g g g g
4. Test system:	
Liver microsomes:	Pootod liver microsomes from male Wistar rats (RLM,
	batch 10,026, pool of 200 individuals and homans of LM
	tatch 1210027, pool of 50 depors from both genders) were
, and the second s	purchased from Xenotech PLC (PSA) of the second
Microsome characterisation:	Each microsome batch was characterised at deast according
	batch number, microsomer protein concentration, storage
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	conditions total evice require P450 content, microsome drug
5 Experimental Presedutions	
S. Experimental Proceedinges:	4C A color d with a what d a shart i Swith act and human
incubation:	liver microsometry (n=30 st $37\%$ l°C in stinal volume of
	S00 µl Incubations were performed in a thermomixer device
S O I I	with shaking at 1000 rpm /
	After 2 minutes pre-heating at 3/±1°C with shaking at
ð Å v	1000 rpm, the feactions were started by the addition of 50 $\mu$ l
	of 10 m/M NoDPH and were stopped after 0.5 and 1 hour
	Final condentrations of the incubates were: 5 mM MgCla
	$\square$ mg/mL microsomal protein: 10 µM ¹⁴ C-thiacloprid
	$(0.129 \mu\text{Ci/mcubate}); 1 \text{mM}$ reduced NADPH.
	Triplicate samples at T=0 (not incubated) were prepared by
	adding the same components as test samples but in different
	Sorder G.e. Acron was added prior to NADPH and ¹⁴ C-
	Iniariopiics.
	290 uŽ of 100 mM sodium-phosphate buffer pH 7.4 with
	10 $\mu$ of 500 $\mu$ M ¹⁴ C-thiacloprid solution. These samples
	were also incubated for 0.5 and 1 h, respectively. As for the
	test samples, 500 $\mu$ L of AcN at room temperature was
	added at the end of the incubation period.
	Finally on reference sample was prepared mixing 450 $\mu$ L of 100 mM sodium phosphate buffer pH 7.4 with 50 $\mu$ L of
	0.1 mM unlabelled thiacloprid and 500µL of AcN. This
	sample was used to assess the correct performance of the
	HPLC system, and to determine the retention time of
	unchanged thiacloprid.
Sample processing for analysis:	batch 10,025, pool of 200 individuals and numans yrLM2 batch 12,10097, poolsof 50 depors from both genders) were purchased from Xenotech ELC (USA). Each microsome batch was characterised at deast according the batch number, microsomal protein codeentration, storage conditions total evochrome P450 content, microsome drug microsome variation of the protein codeentration in the pool of 200 µL factor of the protein code of the protein code microsome variation of the protein code of the protein code of 00 µL factor of the protein code of the protein code of 00 µL factor of the protein code of the protein code of 00 µL factor of the protein code of the protein code of 00 µL factor of the protein code of the protein code of 10 mM NoDPH and were started by the addition of 50 µL of 10 mM NoDPH and were started by the addition of 50 µL of 10 mM NoDPH and were stored after 0.5 and 1 hour incubation with 0.5 mL of AcN at room temperature. Final concentrations of the incubates were: 5 mM MgCl ₂ ; O mg/mL microsomal protein; 10 µM ¹⁴ C-thiacloprid (0, 129 µCi/mcubate); 1 mM reduced NADPH. Triplicate samples at T=0 (not incubated) were prepared by udding the same components as test samples but in different order, (i.e. AvN was added prior to NADPH and ¹⁴ C- thiacloprid). Two stability control samples were prepared by mixing 490 µL of 100 mM sodium-phosphate buffer pH 7.4 with 10 µC of 500 µL of AcN at room temperature was added at the end of the incubation period. Finally on reference sample was prepared mixing 450 µL of 100 mM sodium phosphate buffer pH 7.4 with 50 µL of 100 mM sodium phosphate buffer pH 7.4 with 50 µL of 100 mM sodium phosphate buffer pH 7.4 with 50 µL of 0.1 mM unlabelled thiacloprid and 500µL of AcN. This sample was used to assess the correct performance of the HPLC system, and to determine the retention time of unchanged thiacloprid. The microsomal incubates were centrifuged at 16.000 x g for 15 minutes at 20°C. After centrifugation, 100 µL of each

BAŶI

	supernatant were diluted with 250 µL of HPLC mobile phase A. The samples were directly analysed by HPLC without any further extraction procedure. For details of the chromatographic and radioactivity measurement conditions see report. The metabolic activity of the microsomes was determined by measurement of 6β-hydroxytestosterone that was formed from testosterone by testosterone 6β-hydroxytase. This biochemical reaction is well-known for CY/3A microsomal enzyme activity. In this measurement, dexamethasone was used as an internal standard. After 2 minutes pre-heating at 37±1°C with shaking at 1000 rpm, the reactions were started by the addition of 40 µl of 1 mM NADPH and were quenched after 5 minutes incubation with 0.4 mL of AcNat room temperature Final concentrations of the intubates were; 5 mM AlgCl ₂ . 0.15 mg/mL ancrosomal protein; 150 µM testosterone 1 mM reduced NADPH. After incubation, 32 µL of dexamethasone solution 32 µL MeOH was added to each incubate. The samples were put in a tray with ice until the end of the experiment and further stored at -80°C±10°C unil analysis. After thaving at room temperature, the samples were centrifuged at 16.000 x g for 15 minutes at 4°C. After centrifugation, 100 µL of each sample supernatant was placed into a conical 1 -mL glass HPLC viar and diffuted with 100 µL of 0.1 % acetic acid. Samples were analysed by LC-MS/MS without further
Expression of the results:	extraction process for 68-by droxy testosterone (details in the report).
Expression of the results.	radio promatographic profiles at the different incubation
	times according to
	Area Pi
	% Relative $PQ = \frac{1}{\sum P} x 100$
	where Area Pijs the mean area of the unchanged ¹⁴ C-
	where Area Pi is the mean area of the unchanged ¹⁴ C- thiactoprid (or metabolites) peak in the radiochemical chromatogram of a test sample, and $\sum$ Area P is the sum of
	the total radioactive mean peak areas in the chromatogram.
	Peak areas of compounds detected below the lower limit of
	quantitation (BLLOQ) were considered as zero for further
A A & T	calculations (mean peak area and relative percentages).
	The results from the HPLC-radioactivity analysis were
	Rexpressed also as percentage of unchanged ¹⁴ C-Thiacloprid transformed as a function of incubation time.
S & A N	The results from the positive metabolism control incubations
	are expressed as testosterone 6ß-hydroxylase enzyme
	activity (CYP3A):
Č ^O	

$$A = \frac{(6\beta - hydroxytestosterone conc.(\frac{pmol}{mL}))}{(t \times Pr)}$$

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

where A is the testosterone 6β-hydroxylase enzyme activity (pmol/min/mg), t is the incubation time (min) and Pr is the microsomal protein concentration (mg/mL).

#### **II. Results and discussion**

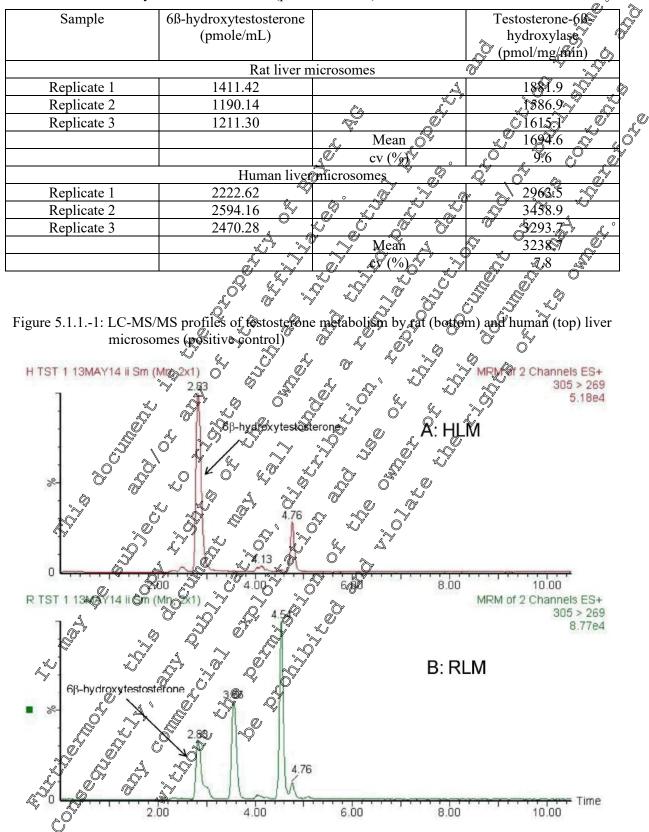
#### 1. Qualification of the HPLC-Method

Two aliquots of ¹⁴C-thiacloprid testing solution were analysed prior to the initiation of the experiments for linearity and lower limit of quantification (LLQQ) estimation and microsonial incubations. The retention time of the parent compound was found to be approximately 20.5 min and the radiochemical purity amounted to 99.23% (calculated from peak area values). The LLQQ value was set at the 293 dpm level for radioactivity detection ( $cv \leq 20\%$ ) These results indicate that after analysis of test samples, compounds showing radioactive peak area below the mean peak area value obtained for the LLOQ (peak area of 1245.1) were not considered for quantification

Although no upper limit of detection quantitation is actually defined, for radioactivity detection systems at the low activity levels used in the experiments of the present study (i.e. 0.281  $\mu$ Ci/incubate), which are considered mear the linearity of the methodology was determined as a tool to assess the correct performance of the radioactivity flowthrough detector. It was determined at the radioactivity levels above the LLOQ in terms of injected dpm *(i.e.* 7) levels for radioactivity detection). Mean peak area values at each level were plotted versus the respective nominal injected dpm, and linear regression was carried out. The correctation coefficient obtained was 0.099764 (see Table 5.1.1-1).

			Q S		° Oʻ	~	
Solution	Nommal			Peak area	C thiaclopre	l	
	injected dpm)		Repfizzate		S Mean	SD	cv (%)
STD-1	48832	¥78497	166435	\$75044	173325.2	6211.7	3.6
STD-2	24416	86673	@ ⁷ 88956	94834	~90154.0	4210.4	4.7
STD	9766 Ø	<b>39</b> ,410	° 34957 <u></u> €	) 37489 🦕	[©] 36518.5	1356.9	3.7
STD-4	488ð ^{&gt;}	20636	<u>م</u> 20349	\$\$ <b>9</b> 508 🗳	20164.6	586.0	2.9
STD-5	97) j	4246	× 36130°	⁰ 403	3965.3	322.5	8.1
STD-6	488 🔍	04 ~	2201	2206	2237.0	57.9	2.6
STD-7	~~~~293	901 <u>3</u> ~	277	1445	1245.1	217.9	17.5
2 0 00076	4			Or			

Table 5.1.1.-1: Qualification of the HPLC-RAD method: Lonearity of response and determination of


#### r²: 0.999764

LLOQ: 1245.1 (peak area)

#### 2. Positive Metabolism Controls

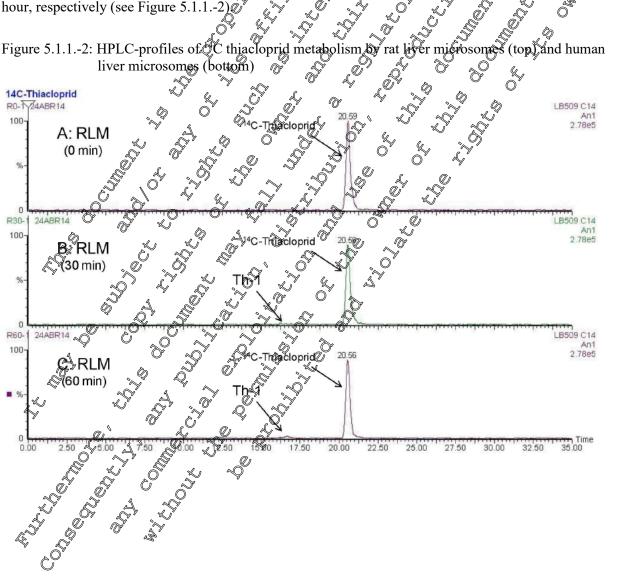
The results of the positive metabolism control incubations in human and rat liver microsoms are shown in Table 5.1.1.-2. Formation of 66-hydroxytestosterone from testosterone demonstrated sufficient metabolic capability of the microsome batches used in the study. Testosterone 66-hydroxylase activities were found to be 1694.6 pmol/mg/minute in male rat liver microsomes and 3238.7 phol/mg/minute in pooled human liver microsomes. Representative LC-MS/MS profiles of testosterone neglabolity by RLM and HLM are depicted in Figure 5.1.1-1.

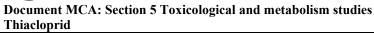
#### Table 5.1.1.-2: Activity in liver microsomes (positive control)

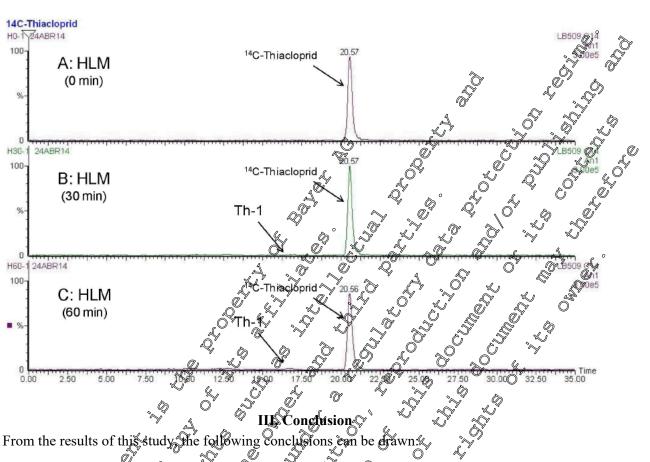




#### 3. Recovery of radioactivity


The mean recovery of radioactivity after microsome incubations and sample preparation (*i.e.* prefering precipitation with AcN and centrifugation) at T=0 hours was found to be 106.5% and 89.0% in rate (RLM) and human liver microsomes (HLM), respectively, after 0.5 hour incobation the recoveries were 91.3% in RLM and 94.9% in HLM, after 1 hour incubation the recoveries were 111.5% in RCM and 102.3% in HLM


#### 4. Metabolite profile of ¹⁴C thiacloprid


The in-vitro metabolite profile of 10 µM ¹⁴C-Thiacloprid was determined in poole@liver.microsomes (1 mg/mL) from male Wistar rats and humans (pool from both genders), incubated for 0, 0, Dand hour in the presence of 1 mM NADPH.

¹⁴C-Thiacloprid was found to be stable in the incubation buffer at 37± 0°C after 0.5 and 1 hancubation and in the rat and human microsome incubations at Ohours & small AC-labelled product (That) was found after 0.5 and 1 hour in RLM incubates and after 1 hour in HDM in the radioactive peak corresponding to Th-1 was found below the lower limit of quantification in RLM ncubated for 30 minutes, and accounted for 1.7% and 0.5% of the radioactivity in TLM and HkM incubated for 1 hour, respectively (see Figure 5.1.1.-2) Õ

Figure 5.1.1.-2: HPLC-profiles of C thiacloprid metabolism liver microsomes (bottom)







- ¹⁴C-thiaclopric is highly metabolically stable after *in-vibo* incubation with liver microsomes from either tats or humans 4
- The *in-vitro* metabolism of ¹⁴Chiackoprid when incubated with liver microsomes was found to be comparable between rats and humans, there is no indication of the formation of a unique human metabolite.
- Oray one metabolite was detected in very low amounts of the relative percentage (<1.7%) after ¹⁴C-thiacloprid n-vitra, incubations with both, rat and human liver microsomes.
- The results of this study depronstruct that phase I metabolism plays a very moderate role in the biotransformation of this borid in rat and human liver microsomes. In addition, no differences with respect to the metabolic pattern were found in both *in-vitro* test systems.

In the *invivo* rat metabolism studies (reported in the baseline dossier) thiacloprid is intensively metabolised. On average, only ca. 6% of the administered radioactivity was identified as unchanged parent compound, while more than one third of the given dose consisted of 6-chloronicotinic acid and its glycine conjugate. Altogether 13 metabolites were identified, but most of them at amounts below 5% of the administered radioactivity. These metabolites were either formed by ring-opening of the thiazolidine ring and or by conjugation, i.e. by a phase II reaction. This may be the reason that they were not found in the *in viro* microsonic system.

## CA 5.7.2 Absorption, distribution, metabolism and excretion by other routes

Norrequired because the toxicity following dermal exposure is lower compared to that following oral exposure (COMMISSION REGULATION (EU) No 283/2013 of 1 March 2013; Official Journal of the European Union, L 93/1, 3.4.2013) (1).

**Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### CA 5.2 Acute toxicity

#### Summary of acute toxicity studies

Thiacloprid displayed moderate acute oral toxicity in male and female Wistar rats, but was toxic after acute oral administration to Fisher 344 rats in a pilot study for the acute oral neurotoxicity study (LD₅₀: 177 mg/kg bw, calculated from 100% mortality after 244 mg/kg bw and 0% mortality after 109 mg/kg bw in both sexes). The results obtained with fasted and non-fasted Wistar rats suggest that dietary status can influence the toxicity of thiadoprid. Thiadoprid was moderately toxic after O inhalation (LC₅₀: > 2535 / ~ 1223 mg/m³ air in males / females) and of low toxicity after derma application (LD₅₀ > 2000 mg/kg bw). Sex differences are evident in rate when exposed viation or work inhalative route, females appear to be more sensitive than mores. This cloppid does not sause skin or , P eye irritation and is no skin sensitizer.

In addition, an acute oral toxicity study in mice conducted in 1999 for the registration of thiacloprid in Japan) as well as an acute or al toxicity study in rats and a skin irritation study in rabbits (conducted in 2004 for the registration in India) are avoilable, which were performed according to local guideline reguirements. Since the results of these studies confirm the results of the previously submitted studies on thiacloprid, they are - in agreement with the rapporteur - not part of this delta dossier.

puri of inis detta dossier.

Route/Study	Species	Sex		Results		Reference
			[mg/kg	bw or mg/m ³	air, resp.]	Reference
			NSD [#]	LLD ^{##}	LD50/LC 59	
Oral ¹⁾	Rat	M F	62.5 62.5	700 300	~ 8364	M-000796-01-1
Oral ²⁾	(Wistar) Rat	-	< 140	<b>\$600</b>		M-000/98-01-P
Ural ²⁹	(Wistar)	M F	< 140 < 100	370 × 800	0 ³⁹⁶	M-000703-01-4
Oral ¹⁾	Rat	М	11 🗳	244	Q 17 <b>7**</b>	, _L
	(Fischer 344)	F		244 ~> ©	Q [*] 177** 107** *	1997 and 1998, 1998 M-000894-03-1
Dermal	Rat	М	2000	> 000 4	~ > <u>~</u>	
	(Wistar)	F	A 2000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		M-000808-01 2 2
Inhalation (aerosol, 4h)	Rat (Wistar)				~ 125355 ~ 1253	×1996 ×
Skin irritation	Rabbit	§ §	Ô, N			
		F G		Oot irriging		M_000708-03-1
Eye irritation	Rabbit	°≫ ⊊ F	"(	Ngsirritatify		M-009708-03-1
Skin sensitisation	Guifiza pig	MÔ		vot sencitisin	g ^w _Q ^w	, 1996
M&K method		Ç,	õ õ		× 4, °	<b>W</b> -003836-02-1
In vitro 3T3 NRU	CBALB/c 3T3	× ~	ç . Ş	Not phototoxi	c O Ý	, 2014
phototoxicity test		"			á _s a	M-480557-01-1

#### Table 5.2-1: Summary of acute toxicity studies*

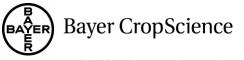
New studie i.e. studies previously not submitted, are written in hold and italic *:

**. Data stem from a range finding study for the acute neuropoxicito study. The LD50 of 177 mg/kg bw was calculated from 100% mortality at 244 mg/kg Bw and % mortality 109 mg/kg bw. male F: female ¹⁾ minimals were fasted (overnight) animals were not

animals were not fasted M: NSD. no-symptom dose 0 *** : LD: lowest lehal dose

in mg/kg bw; results for acute inhalation toxicity in mg/m³ Results for acute oral and dermal toxicity air.

### CA 5.2.1


° All necessary studies were presented and evaluated during the EU process for Annex I listing. Please eline dassier of Thiacloprid. refer to the Monograph and

#### L. CA 5.2.2 Dermal

were presented and evaluated during the EU process for Annex I listing. Please All necessary studies Monograph and the baseline dossier of thiacloprid. refer to the

#### Inhalation CA

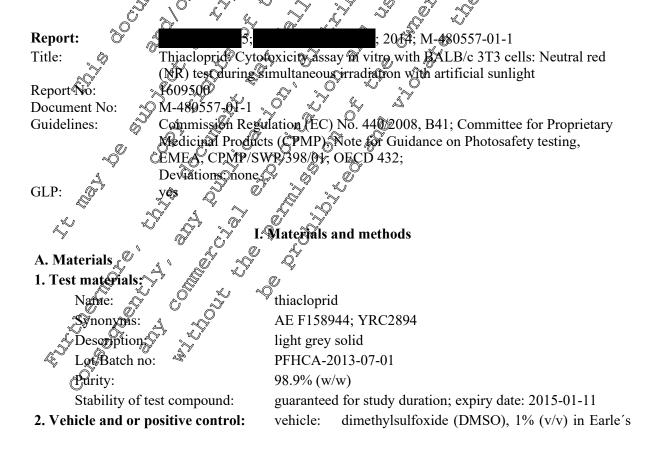
All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dossier of thiacloprid.



#### CA 5.2.4 Skin irritation

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dossier of thiacloprid.

#### CA 5.2.5 Eye irritation


All necessary studies were presented and evaluated during the EU process for Annex Klisting, Please refer to the Monograph and the baseline dossier of thiacloprid.

#### CA 5.2.6 Skin sensitization

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dossier of thraclopid.

#### CA 5.2.7 Phototoxicity

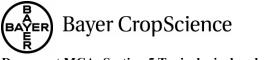
According to the new data requirements (COMMISSION RECULATION (EF) No 283/2013 of 1 March 2013; Official Journal of the European Union, L 93(2, 3.4, 2013) (5, the conduct of a phototoxicity study is required under certain conditions. As the utraviolet/visible motar extinction coefficient of thiacloprid of 98 L x mol⁻¹ x em⁻¹ at 290 nm (determined in the photodegradation study on thiacloprid by **European**, 1995, M-000677-01-2), exceeds the trigget of 10 L x mol⁻¹ x cm⁻¹ for the conduct of a photopoxicity study, a cytopoxicity assoc in vitro with BALB/c 3T3 cells has been performed.



BAY

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

	Balanced Salt Solution (EBBS)
	Solvent control: EBSS containing 1% (v/v) DMSO
	Positive control: chlorpromazine (Sigma) dissolved in BSS
3. Test system:	
Culture medium:	Dulbecco's Minimal Essential Medium (DMEM) supplemented with 10% (v/v) Newborn calf Serum (NGS).
Cell cultures:	BALB/c 3T3 celt-clone 31 (supplied by
	, Germany).
	Large stocks (Master Cell Stock) of the BALB (\$373 3) cell line are stored in liquid of trogen in the cell bank of Harlan
	CCR. A working cell stock is produced by multiplying from
	the master cell stock? Thawed stock contures were propa-
	gated at 37 2 1.5 C in 75 cm ² plastic flasks. Seeding was done with about 4 x 16 cells per flask in 18 mL DMEM,
	supplemented with 10°% NCS. Sells were sub-cultured
la l	twice weekly. The cell cultures were incubated at \$7 ±
, and the second s	1.5 C in $27.5 \pm 0.5\%$ carbon dioxide atmosphere.
B. Study design and methods	
1. Treatment:	
Dose:	Test item +/- W Final concentrations in mg/mL
. 6	Phiaclopfid @4/- 3.91, 7, 81, 15%, 31.3, 62.5, 125, 250, 500
	Positive 6.25, 12.5, 25, 37.5, 30, 75, 100, 200
	control 25, 0,25, 0.5, 0.75, 1.0, 1.5, 2.0, 4.0
1. Treatment: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dos: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose: Dose:	Solvent DHSO Control
	The test item thacloprice was dissolved in DMSO. The final
	concentration of the solvent in EBSS was 1 % (v/v). The
	highest applied concentration of the test item was
	500 $\mu/m^2$ in accordance with the OECD Guideline. At
	higher concentrations often false positive results are
	produced
Solar Smulator:	Avadiation was performed with a Dr. Hönle Sol 500 solar
	Simulator. The filter H1 was used to keep the UVB
	irradiation as low as possible. The produced wavelength of
	the solar simulator with the filter was $> 320$ nm. Due to the
	heterogenous distribution of irradiation intensity the UVA
A L Z	intensity was measured at the complete area with a UV-
	were irradiated in this area. The solar simulator was switched
	on about 30 minutes prior to the start of experiment. The
	absorption spectrum of the test item was determined in the
	range from 270-800 nm. The test item showed absorption
Solar Simulator:	maxima at 285.0 and 287.9 nm.
Seeding of cultures:	$2 \times 10^4$ cells per well were seeded in 100 µL culture medium
seeding of sultures.	in two 06 well plates


in two 96-well plates

2.

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Replicates:	2 (one for exposure to irradiation, one for treatment in the
	dark)
Treatment & irradiation:	24 h after seeding the cultures were washed with EBSS
	100 $\mu$ L of the dissolved test item were added/well and the $\delta$
	plates were pre-incubated for 1 hour in the dark. Afterwards
	one plate was irradiated at 1.65 mW/cm ² (4.95 Pcm ² ) of
	50 min at 26 °C the other plate was stored for 50 min at 25 0
	26°C in the dark. The test item was removed and both plates
	were washed twice with EBSS. Fresh cuture medium was
	added and the plates were incubated overnight at $37 \pm 1.5$
	$^{\circ}$ C and $7.5 \pm 0.5 \% CO_2$ .
Cytotoxicity determination:	For measurement of Neutral Red uptake the medium was
	removed and 0.10mL settem-free medium containing 50 µg
	Neutral Red / mL were added to each welk. The plates were incubated for another 3 hours at 37°, before the medium was
	reproved completely and the cells were washed with EBSS.
Q.	
_ سُنْیِلاً	deionized water, $50\%$ (v/Q ethanol and $7\%$ (v/v) acetic acid
	were added to each well. After approximately 10 minutes at
	goom temperature and a brief agitation, the plates were
	transferred 6 a moroplate reader (Vertamax®, Molecular
	Devices, equipped with a 540 nm filter to determine the ab-
	Sorbance of the extracted dye. This absorbance showed a
	linear relationship with the number of surviving cells.
Number of measurements:	Anacloprid and positive control: 6 times per concentration
. Evaluation	Thracloprid and positive control: 6 times per concentration Solvent control: 12 times
. Evaluation	
	Fre mean absorption (OD540) value per concentration was
	Calculated. The ED ₅₀ values were determined by curve fitting
	by software. The Photo-irritancy factor (PIF) ¹ , as well as the
	Mean Phototoxic effect (MPE) ² was calculated according to
	OECD guideline 432.
Evaluation criteria:	PIP $\approx 2$ or MPE $< 0.1$ => no phototoxic potential
	$\mathcal{D}$ if > 2 and < 5 or
	MPEO 0.1  and  < 0.15 =>  probable phototoxic potential
	PIQ 5 or MPE > 0.15 =>phototoxic potential
Evaluation criteria:	

¹ PIF: PhotoPrritancy-Factor, is calculated according to the following equation:
 ² MPE: Mean Phototoxic Effect, is based on the complete concentration response curves. It is defined as the weighted average across a representative set of photo effect values.



#### **II. Results and discussion**

In the range finding experiment (RFE) no cytotoxic effects were observed after exposure of the cells to the test item thiacloprid, neither in the presence nor in the absence of irradiation to artificial sunlight. Therefore, ED₅₀-values and PIF could not be calculated. The resulting MFE value was 9.003

restriction upper of the second of the secon

Include the presence of irradiation.

#### Table 5.2.7/01-1: Optical density at 540 nm (OD₅₄₀ values) in the Neutral Red assay of the range Q finding experiment (RFE)

	<b>OD</b> ₅₄₀ w	vith artificial	sunlight		<b>OD</b> 540 W	ith@rt artific	ial sumfight
Con- centration [µg/mL]	Mean	SD	% of solvent control	Con- centration [µg/mL]	Mean	SD	% of solvent
			Treatment wi	ith thiseloprid		Ď	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solvent control	1.0006*	0.0704	100.00	Solvent Control	19.467*	0:0836	
3.91	1.0612	0.0735	106.06	3.91 🔌	1,1909	~0.1QB	\$100.8 <b>6</b>
7.81	1.0029	0.0753	100.23	ې [°] 7.81	\$£2048∢	0,0796	y 10 <b>5.0</b> 7
15.6	1.0971	0.1513	109.65		@1.20 <b>%</b>	9.1116	4.71°
31.3	1.0774	0.1295	₩07.67 °~	31.3	1,2566	0.1639	\$ 109 <b>5</b> \$
62.5	1.0305	0.1408	Ø102.99	0 ¹ 62,5 ¹	0.1929 ×	<b>9</b> 9720	104.03
125.0	1.0523	0.1480	5 105.¥7 .	125.0	© 1.1961	\$0.078 [°]	<b>6</b> 103.79
250.0	1.0256	0.0951Q	102.50	~250.0 X	10627	0.0869	101.40
500.0	1.0782	0.06@5	₩107.7 <b>6</b> °	\$ 500.00	Q1.1163	~0.0578k	97.35
		Treatmer	nt with positive	control chlor	promazine	¢,	•
Solvent control	0.9786*	0.0869 ⁰	200.00 ×	Solvent Control	0,9984* %	0:0873	100.00
0.125	1.0175	020512	103.97	<u>_</u> 6.25 (	0.9926	0.0933 گ	99.41
0.250	0.9542	~0.0197	<b>\$</b> 99.54	~~12.50 [®]	Ø.4825 @	0.0538	48.32
0.500	©8497	0.0685 🖇	86.82	25:00	0.1158	0.0069	11.60
0.750	0.6390	0,1086 O	65.29	A.50 ô	0.0575	0.0024	5.76
1.000	≷ 0.5750 _≪	0.0675	58.7	© 50.00	<b>%</b> .0521	0.0017	5.21
1.500	0.1552	0.8249	15.86	7.5.00	0 0.0527	0.0064	5.28
2.000	0.0838	.0.0171	<u></u> 08.46	\$100.00 Å	0.0507	0.0027	5.07
4.000	069779	0.00	× 7.96	200.00	0.0498	0.0010	4.99
	050779 2 D56 out of 02						

ð

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

#### Table 5.2.7/01-2: Optical density at 540 nm (OD₅₄₀ values) in the Neutral Red assay of the main . experiment (ME) Ø

	схрег	intent (MIL)					. 4 .
	OD540 v	vith artificial	sunlight		<b>OD</b> 540 W	ithout artific	cial surdight
Con- centration [µg/mL]	Mean	SD	% of solvent control	Con- centration [µg/mL]	Mean	S SD	% of solvent
			Treatment wi	ith thiaeloprid		×,	
Solvent control	0.8315*	0.0450	100.00	Solvent ©control	0.9081*	0.0542	
3.91	0.8331	0.0322	100.19	3.91 🔍	0.9206	Q.0.0325	101.38
7.81	0.8200	0.0421	98.61	7.81	0.9495	0.0462	104.56
15.6	0.8514	0.0221	102.39	Ø 15.6	£0.95730	Ø.0474	105.41 °
31.3	0.8311	0.0238	99,95 、	2 <u>3</u> 3	0.9322	© 0.02 <i>3</i> 9°	£102.6
62.5	0.8555	0.0443	\$02.88 [°]	62.5 L	g 9292 ~	0,0501 -	10232
125.0	0.8455	0.0350	Q 10k67	125.0	~0.884Û	0.053	97.35
250.0	0.8306	0.0414	99.88	250.0	0.0057	0.0407	لا 100.83
500.0	0.8075	0.0406	√ ⁹ 97.1 <i>b</i>	\$00.0 ×	\$.9321°	0.0407 0.04077	102.64
Freatment with positive control chlorpromazme							
Solvent control	0.9282*	© 0.0470 >	100.00 U	Solvent	0.9590*`^	× 0.0753	100.00
0.125	0.8850	Ø0436		6.25	0.8463	يُم 0.0689	88.25
0.250	0.8650	0.03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 <b>2</b> .50	0.4726	[≫] 0.0429	49.29
0.500	059066 V	0,0330	76,127	\$25.00	Ø.318	0.0142	33.25
0.750	~0.4175	0386	45.00	37550	0.2952	0.0283	30.79
1.000	0.3597	0.0202	A 38.75	<b>\$0</b> .00	<b>6.3</b> 045	0.0243	31.75
1.500	0.3682	0.0119	39.66	C 75.90	∕∕0.3079	0.0223	32.11
2.000	0.3636	<u>مُنْ 0.0256</u>	<b>39</b> .38 ~~	100.00	0.3055	0.0256	31.85
4.000	0,40,34	0.0098	¥44.530	<b>20</b> 0.00	0.3091	0.0153	32.23
4.000	<u>∧(</u> )	0.0098					

Table 5.2, #01-3: Summary of the results of the Neutral Red assay

	Substance	ED ₅ (v–UV) Rg/mL]	PIF	MPE	% viability of solvent control of irradiated <i>vs.</i> non-irradiated plate
Range	Abiaclophid J	~		-0.003	87.3
finding experiment	Positive	12.18	11.48	0.396	98.0
Main	Thiaclophid ~~			0.015	91.6
Main ( experiment )	Positive 0.68 control	12.28	18.10	0.368	96.8

PIF: Rhoto-Irritancy-Factor

MPE: Mean Phototoxic Effect

No cytotoxic effects occurred after exposure of thiacloprid to the cells, neither with nor without --: irradiation with artificial sunlight. Therefore, ED₅₀-values or a PIF could not be calculated.



#### **III.** Conclusions

Based on the study results thiacloprid does not possess any phototoxic potential.

#### CA 5.3 Short-term toxicity

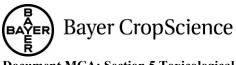
#### Summary of short-term toxicity studies

Short-term toxicity studies have been conducted in rats, mice and dogs

The main target in rodents proved to be the liver. There was no evidence of acounulation in the short term studies at dose levels that did not overload the metabolic paparity of the liver. A dose dependent liver enzyme induction occurred in rats and mice. This enzyme induction was associated with increased liver weight, centrilobular hypertrophy and changes in the cytoplasm of the patoevtes.

In rats, the enzyme induction was believed to be responsible for the secondary effects observed in the thyroid glands (e.g. increased weigh increased mutotic rate and hypertophy of follicular epithelium). A comparison of the enzyme induction seen at the top dose levels in the 14 day rac study and 13 week rat study indicate that some but not all of the enzyme levels increased with the duration of exposure. The cytochrome P-450 (males) and UDP & ucuronyl-transferase (males) and females) levels appeared to increase with time. Liver engine induction and the related inorphological changes were also observed in the inhalation and dermal studies. Following oral (13 weeks) and dermal administration (22 applications), the enzyme induction and increased liver weight were shown to be reversible or at least partly reversible. The thyrond follocular cell hypertrophy was also shown to be at least partly reversible following definal administration and a 2-week recovery period. There was evidence of an effect on circulating thyroid bormone levels and brocheroical parameters. Body weight and food intake effects were also observed in rate

In mice, the liver effects also included as increase in the light content of the hepatocytes. A doserelated increase in fatty vacuolation and hypertrophy of the adrenal X-zone was also detected in female mice. A NOAED was not established for this finding.


In dogs the liver was also a tagget, but the effects were less pronounced, and although an enzyme induction was observed, it was weaker than in redents. Re-evaluation of the thyroid hormone data in dogs with the addequate historical control data of the year of study conduct revealed, that there is no effect on the thyroid in this species. The mean prostate weights were increased in the 10- and 15week dog studies at dose levels > 1000 ppm. Microscopy revealed slight to moderate hypertrophy of the prostate and dose levels \$1000 ppm in the 15-week study only. In the 52-week dog study, there was no evidence of increased prostate weights at 26 weeks but the mean prostate weight was increased at 1000 ppp on termination. Microscopic and ultrasonographic investigations of the prostates did not detect any treatment related effects at week 26 or week 52. Therefore, the report regarded the prostate effects seen at 1000 ppm as incidental and possibly related to high individual variation in growing dogs. It was noted that six treated dogs had individual prostate weights that were noticeably higher than the cited historical control data.



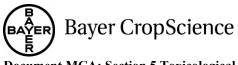

Based on a toxicokinetic evaluation of thiacloprid concentrations in blood plasma of dogs after sub-, 1995) 🔊 1998 and 5.8.2/15 an efficient absorption of thiacloprid was demonstrated. Therefore, the less pronounced dexicity observed in dogs as compared to rodents are not due to inefficient or low absorption of the fest substance. , S 19 19 19 19 , A

Table 5.3-1:         S	Summ	ary of sho	rt-term tox	icity studies	
Study	Sex	NO(A)EL	LO(A)EL	Main findings seen at LOA)EL	Reference
Doses tested		(mg/kg	bw/day)		Reference
Rat	М	20	60	↓ by food consumption & pretion of facos	7
2-weeks,	F	20	60	(F only), ↑ water consumption (F) ↑ alkaline	1995
oral (gavage)				phosphatuse (F) & cholosterol levels, lixer enzyme induction,↑ liver weight, changed	M-000703-01-4
0-5-10-20-60-120			2	structure of hepatocentralar cytoplasm/(F)	
ng/kg bw/day					
Rat	М	11.2	49.2	trend towards I bw gain (F), , Feholes Frol	
2-weeks, oral	F	9.6	<b>G</b> IY.5 🖉	levels M), liver enzyme induction, distinct	199 amended
(diet)		(100 ppm)	©300 ppm)	liver lobulation (F), I liver weights, hepator	1099
0-25-100-500-		. O	´_&	ceffular hypertrophy with slight Stoplasmatic changes thyroid. ↑ mistic index (M)	M-000785-02-1
2000 ppm				changes thyrong. I magne index (WI)	*
Rat	М	(à) ()	0 [°] 36.9 [°]	marked liver enzyme industion (LDP-GT), 1	, 2000,
3-weeks, oral	F	¥12.3 A	○ 36.9 44.6	her weight (MS minimal to should the should	amended 2000
(diet)	*	(100 ppm)	(400 ppm)	follicultur cell hypertrophy (M)	& 2000
0.05.100.000	Cliffe				M-030427-03-1
0-25-100-400- 1600 ppm 👘	S	, ô ^y , 'n			
Mouse		× 212	a 65 10.0	↓ water intate (M), fiver enzyme induction, ↑	
2-weeks, oral	M FO	84 <del>63</del> 1143.2	∂765.k 1201.2	liver weights, hypertrophy & slightly $\uparrow$ lipid	, 1997
(diet)		(200 ppm)		Content of hepat@cytes	M-000821-01-1
	. 0			5 2 . O	
0-50-200¥2000- 10000 ppm				LY & A	
	<u>у</u> ЭМ	2010	n n n n n n n n n n n n n n n n n n n	food consumption (F), ↑ liver weights	, 1994
3-weeks, oral $Q_{I}$	ØM F_Ć	63.9	. ©59.3 ∩	V lood consumption (F), T liver weights	M-000688-01-1
(diet)	Ó	(100ppm) (000ppm)	(1000  pom)		
4				v food consumption (F), ↑ liver weights	
0-100-100@* [*] 10000 ppm	*	Ŷ.Q			
	MP+	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Dog	Б		¥	↓ bw gain, slightly ↓ food consumption, Sightly ↑ ALAT, urea & creatinine levels	, 1998,
(diet)		(SUU ppm)	(up go 2500 ≈@mm 10©	(mostly in the 2-s range of HCD), marginal	amended 1999
Č V	$\sim$		weeks/	(mostly in the 2-s range of HCD), marginal liver enzyme induction, slight cytoplasmatic	M-003816-02-1
0-100-300-1 <b>99</b> 0* (1250-1606)	×″		2500 Am 4	changes in the liver in single animals, T	
(1250-1606) 2500)-2500 (4 🔊	× 4		weeks)	prostate weights	
weeks)					
Le 2	- <del>10</del> *	<u>i</u>			1
$\bigcirc$					

Table 5.3-1 Summary of short-term toxicity studies.



7 7 (100 p (100 p (100 p) (100 p)	3 6 ppm) 9.1 7.2 ppm)	(400 ppm) 102.6 27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Dypertrophy & gulargement of the adressal X-	M-000863-01-1
7 (100 p (100 p (100 p) (100 p) (20 p) (250 p) (250 p) (250 p) (250 p) (250 p) (250 p) (250 p)	6 ppm) .1 7.2 ppm)	35.6 (400 ppm) 102.6 27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy with cytoplasmatic changes 102.6 mg/kg bw (M): hver enzyme induction hepatocellular hypertrophy 27.2 mg/kg bw (F) 1 vacuolisation, bypertrophy & enlargement of the adressal X-	- <b>19</b> 95, antonded
(100 p (100 p (100 p (50 p) (50 p) (250 p (55 c) (20 c)	ppm) .1 7.2 ppm)	(400 ppm) 102.6 27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Dypertrophy & gulargement of the adressal X-	- <b>19</b> 95, antonded
19 < 2' (50 p) 8. (250 p) 65 (20	9.1 7.2 ppm)	102.6 27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
< 2' (50 p) 8. (250 p) 65 (20	7.2 opm)	27.2 (250 ppm M, 50 ppm	hepatocellular hypertrophy 27.2 mg/leg bw (F) 1 vacuolisation, Depretrophy & culargement of the adressal X-	- <b>19</b> 95, antonded
(50 p) 8. (250 p) 65 (20	opm)	27.2 (250 ppm M, 50 ppm	27.2 mg/leg bw (F) 1 vaevolisation, O Opertrophy & culargement of the adressal X-	
(50 p) 8. (250 p) 65 (20	opm)	(250 ppm M, 50 ppm	hypertrophy & enlargement of the adrenal X-	
8 (250 µ 65 (20	5	M, 50 ppm		
(250 p 65 (20	5		70ne - 6 6 6	1998
(250 p 65 (20	.5	H') ~/ ~ //		M-000697-00-1
(250 p 65 (20	.5	$F) \ll r$		
(250 p 65 (20	1	3409	Mr 34.9 mg/kg.pw: ↑ w@ght & Sight to	&
65. (20	ppm)	(1000 ppm)	moderate hypertrophy of the prostate (M)	,1998
(20	.3	65.3		M≰003814-01-1
``	000	Qi> 2000	modenate hypertrophy of the prostate (M)	× 000001 <del>1</del> -01-1
וממ	m) 🕡	ົ ຍຢຫາ້)	a a a a a a u	<i>v</i>
11				8
5	s,	%, E		
\$.8				&
°~\$.8	50 <u>1</u>	34.42	Food consumption (F), Vilver Weight &	م مربع مربع مربع مربع مربع مربع مربع مرب
*	Ś,		hepatocentular Cytoplasmatic change (09, 20	
S (250 )	(ppm)	Dweeks)	weeks, slightly 1 prostatic size & weights	M-003818-01-1
4	s. (	5 .9	without some graphical & histopathological	
<b>Q</b> 3.	.80	> 33.80	correlates (52 weeks)	
° (10	000 [°]	(k 1000		
S pp	(m)	Oppm)&		
r ~	, ¢	è s		
N.		D'Y		
ø.	65			
Ĵ. Č	¥″	~ ô ⁷	NY & NY	
19 m	g/m	$205.m^{2}/m^{3}$	conical sens, hypothermia, transient 1 in grin	, 1995,
A ai	ir S	anr o	strength: $\downarrow$ bw & food consumption $\uparrow$ liver	amended 1999,
Or led	No.	». Qa 570		M-000725-02-1
		moleo		11-000/23-02-1
hw/c	avi	bw Atory)		
, Ô		U L		
ž ^z	~~	~ 2		
× Ž		<del>0''</del> _'		1000
818	.2	/ 1434	connical signs, hypothermia, ↓bw, changes of	, 1998
mg/m	1° an			M-241815-01-1
<u>م ۲</u> 6.6 <u>م</u>	₩g/kg			
," by	lay)	bw/day)		
×0°	, K	4		
	Õ		hypertrophy (2/10 M)	
<u>~</u>	Ś			
J.				
	L9 m bw/c	bw/day	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ppmil       ppmil         19 mg/mil       205 mg/m3         inf       conical signs, hypothermia, transient ↑ in grip         inf       strength; ↓bw, food consumption, ↑ liver         (cd)       (cd)         mg/kg       mg/kg         bw/dayl       bw/dayl         finical signs, hypothermia, transient ↑ in grip         finical signs, hypothermia, ↓bw, changes of         mg/m3 and         (6.6 mg/kg         bw/dayl         bw/dayl



Study	Sex	NO(A)EL	LO(A)EL	Main findings seen at LO(A)EL	Reference
Doses tested		(mg/kg	bw/day)		
Rat	М	100	300	300 mg/kg bw, M: hepatocellular hypertrophy	&
4-weeks, dermal	F	300	1000	with cytoplasmic change,	, 199 ²
(2-week recovery)				1000 mg/kg bw/day, F: ↑ liver weight,	M-000824-01-1
				hepatocellular hypertrophy with sytoplasmic	ô' ^{so} g
0-100-300-1000,				change, thyroid folliclular cell hypertrophy	
0-1000 (rec.)					
mg/kg bw/d					
M: male	F:	female	<b>↑:</b>	increase(	

HCD: historical control data

rec.: recovery groups

*: Since no toxic signs were observed at 1000 ppm the high-dose was increased to 1250 from day 19 on wards, to 1600 ppm from day 26 onwards, and to 2500 ppm from day 38 onwards An additional 2500 ppm treatment group was added from day 38 to day 66.

- **: Due to vomitus, slight tremor, feed refusal and reduced body eights the high dose of 4000 ppm was set to 0 ppm from day 5 to 14 and then @ 2000 ppm from day 15 throughout the study.
- #: The study commenced with a high concentration of ca. 200 mg/m². Due to severe respiratory distress and reduced body weight it was teduced to ca. 100 mg/m² from the second exposure week onwards.

### CA 5.3.1 Oral 28-day study

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline doster of thacloped. (Mr.000703-01-4) M-000785-02-1, M-030427-03-1; M-000821-01-1, M-000688201-1

## CA 5.3.2 Oral 90-day s

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dessier of thiacloprid. M-000863-01-1; M-000697-02-1; M-003816-02-1)

## CA 5.3.3 Other routes

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dessier of thiacloprid. (M-000725-02-1, M-241815-01-1, M-000824-01-1)

### CA 5.4 Genotosicity testing

### Summary of genotoxicity testing

Guideling genotoxicity studies conducted with thiacloprid were consistently negative. They consisted of point mutation assays in bacteria and mammalian cells, an in vitro cytogenetic study, an unscheduled DNA synthesis assay on primary rat hepatocytes as well as a micronucleus test in vivo. BAYER Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Furthermore, an additionally available bacterial DNA-repair test (rec-assay) revealed no indication for a DNA-damaging effect of thiacloprid.

In addition, three publications emerged from public literature between 2012 and 2019, which described genotoxic effects of thiacloprid in different test designs in vitro and in vivo. All three of them were based on non-GLP studies, which according to different deficiencies were considered to be non reliable and, thus, not relevant.

al .

Study	Test system	Concentration Dose	Result	Réference
Bacterial reverse mutation assay	<i>S. typhimurium</i> TA98 TA100, TA1535, TA153 +/-S9 mix			M-000694-01 07
Bacterial reverse mutation assay	+/-S9 mix S. typhimurium PA98, TA100, TA1595, TA153 E.coli WP2/wrA +/-S9 mil			₩ % % % % % % % % % % % % %
Bacterial DNA-repair test	Bacillas subtilis H1 CR and M45 (Rec)	ec ⁺ ), up to % 6660 µg/disk	· negative	M-009213-01-1
Mammalian cell gene mutation test (HGPRT)	Chinese hamster lung fibroblasts V9 +/-\$9 mix	Cup to 500 μg/ml	( negative	, 1996 M-000799-01-1
Mammalian C chromosome aberration test	Chinese Hamster lung FibroDasts V 9 +/-S9 mix 2	↓ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	, O	, 1995 M-000772-01-1
Unscheduled DNA synthesis (UDS) assay		exp to 500 µg/mb	negative	- <b>1</b> 996 M-000790-01-1
	AZ	In vivo O		
Micronucleus test	Mouse Bone narrow	0 ⁶ 60 m <b>g</b> kg bw i.p.	negative	, 1995 M-000775-01-1

Table 5.4-1:Summary of genotoxicity testing*

*: New studies, i.e. studies previously not submitted / evaluated on EU level, are written in bold and italics.

## CA 5.4.1 In vitro studies

In addition to the genotoxical studies already contained in the Monograph and Baseline Dossier of thiacloprid a bacterial DSA-repair test, Rec-assay on bacillus subtilis is available, which had to be conducted for the registration of thiacloprid in Japan.

Demonte	1000 M 000012 01
<b>Report:</b> Title:	p; ;1998;M-009213-01
Report No:	YRC 2894 – DNA repair test in bacterial system NR 97220
Document No:	M-009213-01-1
Guidelines:	JMAFF 59 Nohsan: No. 4200 (1984);
	Deviations: none
GLP:	yes
	p: 1998;M-009213-01 YRC 2894 – DNA repair test in bacterial system NR 97220 M-009213-01-1 JMAFF 59 Nohsan: No. 4200 (1984); Deviations: none yes I. Materials and methods YRC 2894 thiaclopfid light yellow powder 290894 96:9% compound: compound: cuaranteed for study duration; excury dates not reported vehicles: Simethyl sulfoxide (DMSO) for selvent centrol, VRC 2894 and positive control 2-AA distilledayater for positive control MMC and negative control: Mitomycin C (MMC) 2-aninoanthracene (2-AA) Regative control:
A. Materials	
1. Test material:	YRC 2894
Synonym:	thiacloprid a set of the set of t
Description:	light volow powder is a straight with the second seco
Lot/Batch no:	290894
Purity:	96.9% ~ ~ ~ ~ A 6 ~ ~
Stability of test	compound: Equaranteed for study duration; expiry date not reported
2. Vehicle and/or p	ositive control: O vehicles: Timethyl sulfaxide (MSOF for selvent control,
	Q YRC 2890 and positive control 2-AA
	2 N M C and
	megative control K\$M positive controls:
	a o positive controls:
	A Mitomy m C (MMC) S
	negative control KM positive controls: Matomycin C (MMC) 2-aminoanthoacene (2-AA)
	Actomycin C (MMC) 2-aminoanthCacene (2-AA) kanamycin sulfate (KM)
<i>S</i>	Kanamyein sulfate (KM)
3. Test system	
Test strains:	ositive control: Vehicles: Aimethyl sulfoxide (DMSQ) for selvent control, VRC 2893 and positive control 2-AA distilled@vater for positive control MMC and negative control KM positive controls: Matomycin C (MMC) 2-aminoanthacene (2-AA) Acgative control: Kanamycin sulfate (KM) Bacillity subtities H17 (Rec ⁺ ) and M45 (Rec ⁻ ) The spores of both train which were pre-incubated with
Spore preparati	on: The spores of both trains which were pre-incubated with
₿ [™]	Mitomycin C (MMC) 2-amiroanthracene (2-AA) negative control: Kanamycin sulfate (KM) <i>Bacilliussubtibe</i> H17 (Rec ⁺ ) and M45 (Rec ⁻ ) The spores of both strains, which were pre-incubated with liquid broth medium, were shaked and cultured with the modified Schaffer's medium. The cultured spores were washed with minimal salt (MM) solution and treated with lysozyme and sodium lauryl sulfate (sodium dodecyl sulfate). Subsequently, the spores were washed and resuspended in distilled water to prepare suspensions of about 2 x 10 ⁷ / mL for storage at 4 °C.
Å Å	A modified Schaffer's medium. The cultured spores were washed
Q	with mining salt (MM) solution and treated with lysozyme
	and sodium lauryl sulfate (sodium dodecyl sulfate).
Å	Subsequently, the spores were washed and resuspended in
	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ distilled water to prepare suspensions of about 2 x 10 ⁷ / mL for
	S A storage at 4°C.
^A Metabolic activ	vation 2
Ô ^V Â	$\sqrt{2}$ of age)
B. Study design an	a me@iods 🛠 🛛 🔗
1. Treatment:	
Dose:	d methods 2416-833-1665-3330-6660 μg/disk
B. Study design ap 1. Treatment:	
Č ^O v	

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Positive controls:	Without meta	abolic activation: 0.005 µg/disk for H17 0.01 µg/disk for M45 lic activation: 5 µg/disk for H17 20 µg/disk for M45 abolic activation: 0.5 µg/disk for M45 (0.5 µg/disk for M45) (1.7 1 µg/d
	MMC:	0.005 μg/disk for H17
		0.01 µg/disk for M45
	With metabo	lic activation:
	2-AA:	5 μg/disk for H17
		20 μg/disk for M45
Negative control:	Without meta	abolicactivation:
	KM:	0.5 μg/disk for \$17
		ØĨ μg/disk fogM45
Application volume:	20 µL/disk	
Treatment without S9:	10 mL of sto	ck spore suspension foreach strain was added to
	1 L of molter	nutrient agar medium (about 45°C) and mixed
	well. Then 1	0 mV of these mixtures each waspoured into a
	sterilized pla	te and soldified at room temperature. Two sound
	paper disks	$\delta$ 8 mm), which were impregnated with 20 $\mu$ L of
Q.	the test subst	ance or control substance solution, were put on
	the plato.	
Treatment with S9:	$0.1 \text{ mL} \text{ of } S_{\epsilon}$	9-mix was poured into a storilized plate and then
	the same pro	cedure as for the non-metabolic activation system
	avas conducte	d. The plates were solidified in the refrigerator.
	Furthermore	each@oundpaper_disk wasfirst impregnated with
	20 L of co-f	actor solution, and then the same procedure as for
	the non-meta	Solic activation system was conducted.
Incubation fume:	24 hours, at	
Replicates and the second seco	1 plate per te	st substance concentration and controls
Measurements:	After the incl	Bation, the diameters of the inhibition zones
Incubation fune: Replicates Measurements:	appearing and	bund the disks were measured.
Evaluation:	Adutterence	of more than 5 mm between the diameters of the
	growthinhib	for zones between the two strains is indicative
	for DNA-dan	naging effects.
l est sontation analysis:	The test subs	tance solutions were analysed by high pressure
	riquid chrom	atograph (HPLC) for confirmation of the
	contained co	ncentrations, homogeneity after preparation and
The bread colutions:	Theorem	b hours at room temperature after preparation.
Evaluation:		oncentration: 20.2-80.7-323 mg/mL
	≪ I æesults and	discussion

## A. Analysis for achieved conceptration, homogeneity and stability of test solutions

The concentrations of the analysed dosing solutions were within  $94.6 \sim 98.1$  % of the theoretical concentrations (coefficient variances: within 1.0 %). These data show that the test substance distribution in the test solutions proved to be homogeneous.

Analysic of the dosing solutions kept at room temperature for 5 hours after preparation revealed remaining rates of minimum (20.8 mg/mL) and maximum (333 mg/mL) concentrations of 101 % and 99.7 %, respectively. These data indicate that the test substance was stable in the dosing solutions.



#### **B. Evaluation for DNA damage**

With regard to YRC 2894 growth inhibition was neither observed in strain H17 (Rec+) nor in strain  $\mathcal{W}$  M45 (Rec-) up to the highest concentration of 6660 µg/disk (limit dose for solubility) with and without metabolic activation.

In contrast, the positive control substances 2-aminoanthracene and Mitomycin C caused prowth? inhibition in strain M45 (Rec⁻), but not in strain H17 (Bec⁺), indicating that both positive control substances cause a DNA damaging effect.

The negative control substance kanamycin sulfate caused growth inhibition in both strains but the difference of the diameters of the growth inhibition zone was less than 5 mm. This result shows that the negative control substance does not have a DNA-damaging effect. Based on these results in control substances it was confirmed that the test system employed in this study was a proper system for detecting DNA-damaging effects.

		A NY	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Concentration (µg/disk)	Growth zone H17	-S9 mix nhibition (mm)	Difference * (mm)	້ <b>⊾∰</b> 217 _ຂ	IIII MENTLIOII	Difference* (mm)
416 🔵	Ű Ő	p Qor	0		L.F	0
833		Å Å	<u>Č</u>	0%	§ 0	0
1665				O [®] 4	× 0	0
3530	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0
26660	∱°́0 🔬	$\sim 0$ $\swarrow$			0	0
ð \$ L		0 9		0	11	11
20 🔬		<u> </u>	901	0	12	12
0.005	5 0 &	<u>11</u>	Î, ÎÎ, O			
<u>20</u> 20		0 [°] 18	& 17 Å			
6 ^{0.5} A			U D			
e so k	Ĵ [™] 12 C	0 ³ 15 0 ⁵	<u> 7</u> 3			
^Ϙ 20 μL _δ Ο			$\bigcirc 0$	0	0	0
	416 833 1665 2530 266660 20 20 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\mu g/disk) = 2 a \mu c (mm) + 17 + 145 + 1416 + 1417 + 1415 + 1416 + 1417 + 1415 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 1416 + 141$	Concentration ( $\mu g/disk$ )       Growth inhibition zone (mm)       Difference (mm)         416       0       0       0       0         416       0       0       0       0       0         1665       0       0       0       0       0       0         2830       0       0       0       0       0       0       0         2830       0       0       0       0       0       0       0       0         2830       0       0       0       0       0       0       0       0         2830       0       0       0       0       0       0       0       0         20       0       0       0       0       0       0       0       0         0.005       0       0       11       17       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Concentration ( $\mu g$ /disk)       Growth whibition zone (mm)       Difference (mm)       Growth i zone (mm)         416 $0$ $0$ $0$ $0$ $0$ $20e$ $107$ 416 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $107$ 833 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ 1665 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ 2330 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ 2330 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$	Concentration ( $\mu g/disk$ )       Growth inhibition zone (mm)       Difference * (mm)       Growth inhibition zone (mm)         416       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0

Table 5.4.1/06-1:	Results of the R	ec assay/on	Bacillus subt	ilis strains H17	7 (Rec ⁺ ) and M45 (Rec	c⁻)
-------------------	------------------	-------------	---------------	------------------	------------------------------------	-----

2-AA 2-antihoanthracene KM Kanamycin sulfate

*: *DNA damaging effects are indicated by a difference of the growth inhibition zones between H17 and M45 of > 5 mm.

#### **II.** Conclusion

Thiacloprid YRC 2894) and no DNA-damaging effect in this bacterial DNA repair assay.



In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

	cultured human peripheral blood lymphocytes
Reference:	Environmental Toxicology (2012 Jun 22); electronic publication
Document No:	M-491849-01-1
Guidelines:	None
	Deviation(s): none
GLP:	no A A A A A
	cultured human peripheral blood lymphocytes Environmental Toxicology (2012 Jun 22); electronic publication M-491849-01-1 None Deviation(s): none no I. Materials and methods thiacloprid (Fluka 37905) 111988-49-9 Interported of reported of reported
A. Materials	
1. Test material:	
Name:	thiacloprid
Description:	thiaclopric (Fluk 237905) 2 2 2 2 2
CAS No.:	$\frac{111988-49-9}{2}$
Source:	
Lot/Batch no:	notoreported a fraction of the
Purity:	mot reported & S & S &
Stability of test co	mpound: Onot reported 2 2 2 2 2 2 2
2. Vehicle / positive	control: vehicle: 59% ettanol 2 5 5 0
-	control: vehicle: 59% ethanol 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	without metabolic activation 2
	y ithout metabolic activation y g matomy in C (ATMC): 0.25 µg/mL
	S S - with metabolic activation:
¢.	² ζ ζ cyclophosonamide (CPA): 28.0 μg/mL
3. Test system:	² cyclephosphamide (CPA): 28.0 μg/mL human peripheral blood lymphocytes (PBLs)
Cell cultures	2.2 mD of whole blood from four healthy, non-smoking donors
3. Test system:	(21,23 years old two males and two females) were diluted in
27 ⁹	25 mL of chromosome medium PB Max (Gibco) supplemented
R. S.	with to ug/nL of bromodcoxyuridine. Cultures were incubated
a a a a a a a a a a a a a a a a a a a	$2^{\circ}$ at $37^{\circ}$ C for 72 h for the determination of chromosome aberrations
Į.	A (A) and sister chropatid exchanges (SCE) and for 68 h for the
Ø	<ul> <li>without metabolic activation</li> <li>without metabolic activation</li> <li>with metabolic activation:</li> <li>with metabolic activation:</li> <li>cyclophosphamide (CPA): 28.0 µg/mL</li> <li>human peripheral blood from four healthy, non-smoking donors</li> <li>0.2 ml of whole blood from four healthy, non-smoking donors</li> <li>(21-23 years old, two males and two females) were diluted in</li> <li>20 mL of chromosome medulin PB Max (Gibco) supplemented</li> <li>with 10 µg/mL of bromodeoxyuridine. Cultures were incubated</li> <li>at 37 C for 72 h for the determination of chromosome aberrations</li> <li>(A) and sister chromatid exchanges (SCE) and for 68 h for the</li> <li>cytokinesis-block micronucleus assay (CBMN).</li> </ul>
Â A	<ul> <li>cycrophosphamize (CPA): 28.0 μg/mL</li> <li>human peripheral blood lymphocytes (PBLs)</li> <li>0.2 mC of whole blood from four healthy, non-smoking donors</li> <li>(21-23 years old two males and two females) were diluted in</li> <li>20 mL of chromosome medium PB Max (Gibco) supplemented</li> <li>with 10 μg/mL of bromodcoxyuridine. Cultures were incubated</li> <li>at 37 C for 72 h for the determination of chromosome aberrations</li> <li>(A) and sister chromatid exchanges (SCE) and for 68 h for the</li> <li>cytokinesis-block micronucleus assay (CBMN).</li> <li>The PB Max medium contains the mitogen PHA.</li> </ul>
Culture	s: 6 2 30 C 2 2
Metabolic activati	$\hat{\mathbf{y}}$ $\hat{\mathbf{y}}$ $\hat{\mathbf{y}}$ $\hat{\mathbf{y}}$ S9 mig $\hat{\mathbf{y}}$
	Allono more rats (Rattus norvegicus var. albinos) weighing 200 g
	were pretreated with 80 mg/kg 3-methylcholanthrene dissolved
Å,	$A$ $\mathcal{I}$ $\mathcal{I}$ in sunflower oil for 5 days. For the preparation of the S9 fraction
	and the S9 mix, the method described by Maron and Ames
	ت (1983) was used.
Test concentration	The PB Max mechan contains the mitogen PHA. The PB Max mechan contains the mitogen PHA. So The PB Max mechan contains the mi
	reduction of the mitotic index (MI) of $\sim 50\%$ )
D Study Projan and	a mathada

B. Study design and methods

**Chromosome aberration (CA)** Without metabolic activation the cells were treated with 75, 150, and Sister chromatide exchange and 300  $\mu$ g/mL thiacloprid dissolved in 50% ethanol for 24 (SCE) test:

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

(thiacloprid was added 48 h after initiating the culture) and 48 h (thiacloprid was added 24 h after initiating the culture) An untreated control, a solvent control (50% ethanol, 4  $\mu$ L/m²) and  $\partial$ a positive control (MMC, 0.25 µg/mL) were also used.

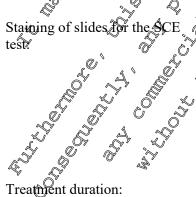
For treatment with metabolic activation the lymphocytes were cotreated with 75, 190, and 300 yg/mL thiacloped and 0.5 mL S9 mix for 3 h. Thiacloprid and S9 mix were added 48 h after initiating the culture. A control, a solvent control (50% chanol 4 µL/mL), and a positive control (CPAQ28 µg/mL) were also performed. Test chemical and \$9 mix were removed from the culture by centrougation for 4 minutes at 2500 rpm. The pellet of lymphocytes was washed twice with 2.5 mL RPMI 1640 medium (Bigchrom AG, F 1210) and resuspended in fresh complete medium / chromosome medium PB Max The cultures were

 $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$ 

Castest: Staining of the air-drived slides was performed following the Standard methods using 5% Giemsa stain for chromosome

aberration analysis (i.e., with 5% Giemsa in Sorensen Buffer, pH 6.8, 15 minutes).

Staiging: according to the modified Fluorescence Plus Giemsa method (PG) (Speit and Haupter, 1985): 1-day-old slides were vovered with Sorensen Buffer (pH 6.8) and subsequently irradiated with a 30 W, 254-nm UV lamp at 15 cm distance for 30 minutes. After irradiation, slides were incubated in 1 x SSC (standard saline citrate) at 58-60°C for 60 minutes and then stained with 5% Giemsa prepared with Sorensen buffer for 20 minutes.


With (+) S9 mix: 3 hours

Without (-) S9 mix: 24 and 48 hours (Thiacloprid was added 48 and 24 hours after culture initiation)

Slide preparation:

Staining of slides

forthe



B k

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Preparation interval:	72 hours after initiation of culture
Number of evaluated cells:	CA: 400 well-spread metaphases / concentration (100 / culture)
runder of evaluated cens.	SCE: 100 well-differented second-division metaphases /
	concentration (25 / culture)
Replicates:	4 parallel cultures / dose
Cytotoxicity assessment (CA):	The mitotic index (MI) was calculated from the number of
	metaphases in 3000 cells analyzed per culture for each doppr
	(12000 cells per concentration).
Cytotoxicity assessment (SCE):	A total of 400 cells (100 cells from each donor) were scored for
	the proliferation index (PI). PI was coculated according to
	formula as follows: PI 57 (1 x, $M1$ ) + ( $2 \times M2$ ) + ( $3 \times M3$ )/N,
	where M1, M2 and MS represent those metaphases
	corresponding to first, second and third divisions and N is the
	total number of metaphases scored (Lamberti et al., 1983).
Cytokinesis-block micronucleus	s 02 mL of fresh blood was used to establish the cutures, which
assay (CBMN):	were incubated for 68 h. The cells were treated with 75,9150 and
Â.	300 µg/mL thiacloprid for 24 and 48 horeatment periods
-G	(thracloprid was added 44 and 20 h after culture institution,
	respectively), Cytochalasin B (cytB) (final concentration:
× .1	6 μg/mL) was added after 44 h of incubation in order to block evtokines and obtain binu (leated (BN) cetts. After additional 24 h incubation at 37°C, the cells were harvested by centrifugation and the pellet was resuspended in a hypotonic solution of 0.4% KCl for 5 minutes at 37°C. The cells were fixed in a cold fixative
	eytokinesis and obtain binucleated (BN) colls. After additional 24
	n incapation at 3/ C, the cells were harvested by centrifugation
	and the pellet was resuspended in a hypotonic solution of 0.4%
	KCl for \$ minutes at \$7°C. The cells were fixed in a cold fixative
	centrifucation the cells were find further two times with
	$\Delta P$ than of $\cdot$ glassial accurc acid (5.1 v/v)
	For treatments with metabolic activation, the lymphocytes were
3	correated with 7\$150 and 300 µg/mL thiacloprid and 0.5 mL
	9 mix for 3 K which were both added 48 h after initiating the
	$\checkmark$ culture. A control, a solvent control (50% ethanol, 4 $\mu$ L/mL), and
	a positive control (CPA, 28 μg/mL) were also performed.
	Thiacloprid and S9 mix were removed from the culture by
	centerugation for 4 minutes at 2500 rpm. The pellet of
Y OF CY	lymphocotes was washed twice with 2.5 mL RPMI 1640 medium
	Biockoom AG, F 1215) and resuspended in fresh complete
	medium (chromosome medium PB Max). The cultures were
	incubated for a total of 68 h at 37°C. The cells were harvested
	and fixed as described above.
Singe preparation:	KCl for $f$ minutes at 37°C. The cells were fixed in a cold fixative (methanol : glacial acetic acid: 0.9% NaCl, 5:1:6 v/v/v). After centrifugation, the cells, were fixed further two times with methanol : glacial acetic acid (5:1 v/v). For treatments with metabolic activation, the lymphocytes were correated with 75, 150 and 300 µg/mL thiacloprid and 0.5 mL 99 mix for 3 h which were both added 48 h after initiating the culture. A control, a solvent control (50% ethanol, 4 µL/mL), and a dositive control (CPA, 28 µg/mL) were also performed. Thiacloprid and S9 mix were removed from the culture by centrifugation for 4 minutes at 2500 rpm. The pellet of lymphocytes was washed twice with 2.5 mL RPMI 1640 medium (blockform AG, F 1215) and resuspended in fresh complete medium (chromosome medium PB Max). The cultures were incubated for a total of 68 h at 37°C. The cells were harvested and fixed as described above. Slides were prepared by dropping and airdrying. The slides were stained with 5% Giemsa stain solution (diluted with Sorensen buffer, pH 6.8) for 15 minutes (Fenech, 2000; Kirsch-Volders et al. 2003)
	with Sorensen buffer, pH 6.8) for 15 minutes (Fenech, 2000;
igvee	Kirsch-Volders et al., 2003).
Treatment duration:	With (+) S9 mix: 3 hours
readment auration.	

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Preparation interval: Evaluation:

Number of evaluated cells: Replicates: Cytotoxicity assessment: Without (-) S9 mix: 24 and 48 hours (Thiacloprid was added 44 and 20 hours after culture initiation) all a 68 hours after initiation of culture Micronuclei (MNi), nucleoplasmic bridges (NPBs) and miclear buds (NBUDs) were scored in BN cells according to the scoring and identification criteria of Fenech et al. (2003) an PFenech (2007) to determine MN and other nuclear anomalies 4000 binucleated cells (1000/culture) 4 parallel cultur Cytostaticity was calculated by using the Quclear Trvision index (NDI). To this aim, 1000 bymphorytes per dopor were analyzed. The numbers of cells with one to four nuclei were determined in 1000 cells. Not was calculated using the following formula:  $NDI = [(1 \times M1) + (2 \times M2) + (5 \times M3) + (4 \times M4)]/N, where$ Mr through M4 represent the number of cells with one to four nuclei and Nos the total number of cells soored (Eastmond and Tucker, 1989; Fenech, 2000, 200 1. Results and discussion

#### A. Chromosome aberration assay

Thiacloprid increased the percentage (%) of cells with structural chromosome aberrations (CAs) and with chromosome aberrations significantly for all concentrations and freatment periods when compared with the control and solvent control in the absence and presence of S9 mix (p < 0.001). As shown in Table 54.1/074, both with and without S9 mix the chromatid type aberrations were more common than the chromosome-type aberrations. However, the aberrations were significantly lower when compared with the respective positive control. In addition, this cloprid generally did not induce the numerical CAs in human peripher (blood lymphocytes).

The mitotoc index (NH) decreased significantly at all thiscloped concentrations of the 24- and 48-h treatment periods when compared with the respective controls without S9 mix.

The test compound also significantly decreased the MI at 200  $\mu$ g/mL thiacloprid of the 48-h treatment period when compared with the positive control MMC. At this concentration cytotoxicity was approximately 80%. Similarly, with metabolic activation, thiacloprid caused a statistically significant reduction in the MI when compared with the control and the solvent control at all concentrations. Furthermore, 75 and 150  $\mu$ g/mL thiacloprid also decreased the MI to the same extent as or, at 300  $\mu$ g/mL, more than the positive control, in the presence of the S9 mix (Table 5.4.1/07-1). Thus, it can be said that the highest concentration of thiacloprid showed a higher cytotoxic effect than cyclophosphanide (after 3 h exposure) and also mitomycin C (for 48 h treatment period).

 Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

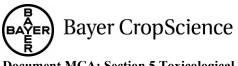

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of results of the *in vitro* chromosome aberration test (CA) in human

 Image: Summary of the *in vitro* chromosome aberration test (CA) in the *in vitro* chro

	Canaan	Struct	ural CA	Doly	% cell	s with	
Test substance	Concen- tration (µg/mL)	Chro- matid- type	Chromo- some- type	Poly- ploid cells	Structural CA (mean ± SD)	CA (mean ± SD)	Mitotic index (MI) (mean ± SD)



#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

	Concen-	Struct	Structural CA		% cel	s with	
Test substance	tration Chro- Chromo- ploi		Poly- ploid cells	Structural CA (mean ± SD)	CA (mean 🛧 SD)	Mitotic index (MD) (mean ± SD)	
			24 h ex	posure wi	thout S9 mix	0 ³	
Control		17	1		$4.50\ \pm 0.57$	4.50 ± 0.57	03.75 0.32
Solvent control	4 μL/mL	17	1	1	4\$30 ± 1.00	4.75 ± 0.50 ×	
MMC	0.25	100	17		25.00 ± 1.4%	25.25 ± 525	
ТСР	75	38	5		10.00 ¥.63 %	$10.00 \pm 1.63$	2,31 ±40,23
	150	58	5		13,95 ± 0,95 a3b3c3	03.75 ± 0.95	2.44 ± 0.12 °
	300	61			2 16.00 ± 0.86	16 00 ± 681	~1.88 4 0.15
			√48 h ex	posurewi	thout S9 mix		
Solvent control	4 μL/mL	17		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ 5.25 ₽ 0.95 \$ 0.95 \$ 0.95	\$25 ± 005	3.19 ± 0.15
MMC	0.25	890 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ 98 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		81.50 ± 3.00 a ³ k ³	81.50 [°] ± 3.00 [°]	$1.02 \pm 0.10$ a3b3
ТСР	75	پ 45 چې ۲	Lyca Ba		120 ± 129	11.75 91.70	$\begin{array}{c} 2.67 \pm 0.25 \\ {}_{a3b2c3} \end{array}$
	150	⁶⁴⁵			Q 13.26 ± 1.89 →36b3c3	1225 ± 1.89 a3b3c3	$\frac{1.33 \pm 0.20}{\text{a3b3c1}}$
8.	300 S	* *			2.25 52.50 a3b3c3	$22.25 \pm 2.50$ a3b3c3	$\begin{array}{c} 0.63 \pm 0.14 \\ \text{a3b3c1} \end{array}$
Į. Į	/		& 3 h e	xposureŵ	ith \$9°mix 🔿		
Control		jê	چ 2 5		& 4.00 <u>≠</u> ¥.41	$4.25\ \pm 0.95$	$4.71 \pm 0.38$
Solvent control	4 µLanL				[○] 4.25 ± 0.95	$4.50\ \pm 0.57$	4.70 ± 0.57
CPA	~Q28 Č				$15.75 \pm 1.25$	$15.75 \pm 1.25$ a3b3	4.28 ± 0.22
TCP	75	\$ 31Q A			9.75 ± 0.95 a3b3c3	$10.00 \pm 0.81$ a3b3c3	$4.14 \pm 0.50_{a1b1}$
<i>K</i>	150	\$31 E	× 99	³ ²	$10.00 \pm 2.30$ a3b3c3	$10.50 \pm 1.73$ a3b3c3	$3.99 \pm 0.35$ alb1
k			×14 , ~,		11.75 ± 2.75 a3b3c2	11.75 ± 2.75 a3b3c2	$3.39 \pm 0.13$ a3b3c2
Mean:	an value of	4 cultur®		CA:	chromosome abe	rrations	

TCP: Thiaclorid Solver control: 50% ethanol CPA: cyclophosphamide

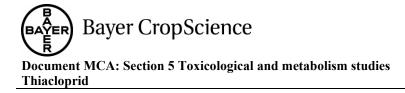
untreated cells

mitomycin C

p < 0.01

а

Significantly different from untreated control significantly different from solvent control (ethanol 50%) b


significant from positive control (MMC, CPA). с

alb1c1. p < 0.05 a2b2c2

control:

MMC:

a3b3c3. p < 0.001



Values in italics refer to > 50 % cytotoxicity

#### B. Sister chromatid exchange assay

Thiacloprid induced the SCE frequency significantly at all concentrations (75,150, and 300,  $\mu$ g/mL) when compared with the control and solvent control with and without S9 mix. The increase was concentration-dependent only for the 48 h treatment without S9 mix (r = 0,999, p < 0.05). Thiactoprid decreased the proliferation index (PI) dose-dependently at all concentrations both with and without S9 mix when compared with the control and solvent control. In addition, at the highest concentration (300  $\mu$ g/mL) thiacloprid decreased the PI as much as the positive control both with and without S9 mix (Table 5.4.1/07-2).

Table 5.4.1/07-2:	Summary of results of the m human peripheral blood lyn	vitro sister	chromatid ea	change tes	st (SČE) in
	human peripheral blood lyn	nphocytes wi	th thiaclopri	d	ô ĝ

Test	Concen-	S	CE	SCE rell	7.0			Proliferation
substance	tration (µg/mL)	Min	Max	©SCE reell © © (mean ± SD)		²⁶ M2 Č	MS	Sindex (PI) (mean ± SD)
			Ą.	24 h exposure w	ithout 🔊		ÓĆ	
Control		1	~LG	√4.00 £0.29 °		Q152	162	\$2.19 ± 0.15
Solvent control	$4 \ \mu L/mL$	1 、Q	^w 12 (k	$4.30^{7} \pm 0.14$			×23	2.11 ± 0.07
MMC	0.25	13	Ŕ	49.25 4.54 a3	્રસ્ત્ર્ય	155 🕺		$1.44\ \pm 0.08\ ^{a3b3}$
ТСР	75	2	015 🛒	$6.73 \neq 0.78$	×111 (	209	<u>~80</u>	$1.92\ \pm 0.08\ ^{a2b1c3}$
	150	<u>ر</u> گ	1×500 17	7.53 ± 0.66 alblo	178	A80	<b>@</b> 41	$1.65 \pm 0.21^{a3b3c1}$
	300	4	17	8.09 \$ 0.24 a2bbe3	251	Ç [™] 138∜	11	$1.40\ \pm 0.06\ ^{a3b3}$
	a 48 h exposure without S9							
Solvent	4 μL/mL		92.22	€4.81 ±0.14	Left .	~959 0	140	$2.09\ \pm 0.05$
MMC	0.25	35 🎝	×149	89.95 ± 4.23 a3b3	315	85	0	$1.21 \pm 0.12^{a3b3}$
ТСР	7 <i>5</i>	Â,		$71 \pm 0.39^{a2b1c3}$	192	186	82	$1.87 \pm 0.09^{a3b2c3}$
	~ ³⁶⁹⁰ ~	⊃ [¥] 2 (	گ 19 گ	9.32 £ 0.54 1 2 2 3	©245	146	9	$1.41 \pm 0.07^{a3b3c1}$
4	300	۵ ۵	HO Y	$1.2.95 \pm 1.21^{a3b3c^2}$	364	34	2	$1.09\ \pm 0.03\ ^{a3b3}$
ê Uş	2	N N	Ŷ,	3 de expositore v	with S9			
Control	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		8	3090 ± 0.14	51	176	173	$2.30\ \pm 0.04$
Solvent control	4 μL/mL	ⁿ P		4.28 0.05	70	234	96	$2.06 \ \pm 0.05$
CPA		10	47	$20.08 \pm 0.78^{a3b3}$	121	265	14	$1.73 \pm 0.10^{a3b3}$
TCP	75	ð	De la companya de la comp	$4.86 \pm 0.75^{a1c3}$	75	240	85	$2.02 \pm 0.12^{a3c3}$
J.			\$12	$6.65 \pm 0.33^{a3b3c3}$	105	219	76	$1.92 \pm 0.10^{a3b1c2}$
	©300 ®	, AND	16	$7.62 \pm 0.44^{a3b3c3}$	134	224	42	$1.77 \pm 0.04^{a3b3}$

Mean: Dean value of 4 cultures

A total of 100 cells were scored per concnetration for the SCE assay, 400 cells were scored for the PI. CA: chromosome aberrations TCP: thiacloprid control: untre

solvent control: 50 % ethanol

MMC:

thiacloprid mitomycin C control: untreated cells CPA: cyclophosphamide



p < 0.000 0 0 0

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

M1, M2, M3: metaphases corresponding to the first, second and third divisions

- significantly different from untreated control а
- b significantly different from solvent control (ethanol 50%)
- significantly different from positive control (MMC, CPA) c p < 0.01
- alblc1. a2b2c2. p < 0.05

Values in italics refer to > 50 % cytotoxicity

#### A. Cytokinesis-block micronucleus test (CBMN)

In the CBMN thiacloprid induced a statistically significant increase for micronucleated bioaclear cells (MNBN %) when compared with the control and solvent control at all concentrations tested both with and without S9 mix. However, binuclear (BN) cells could not be detected sufficiently in the highest concentration of thiacloprid (300 µg/mL) after 48 h treatment in the absence of S9 mix. In addition, the MN formation increased linearly as thiacloprid concentration increased in the absence (r = 0.999, p < 0.05 and r = 1.000, p < 0.001 for the 24 and 480h, respectively) as well as presence (r = 0.000 pc < 0.001) of S9 mix.

The results of the present study indicate that this toprid statistically significately increased the BN cells with nuclear plasmic bridges (NPBs, %) when compared with the control and the solvent control at all concentrations for 24 and 48 h (except 300 mg/mL: doe to the exceptive cytostaticity, BN cells could not be determined sufficiently) treatment perfods in the absence of S9 mix. However, the NPBs were significantly lower in comparison with the positive control MMC The increase of NPBs formation was concentration-dependent only for the 48-h treatment (r  $\leq 1.000$  p < 0.001). In the presence of S9 mix, the test compound induced a concentration dependent in the ase in BN cells with NPBs (%) when compared with the controls at the all concentrations (r = 1.000, p < 0.001). Furthermore, a statistically significant correlation was observed between micronucleated, binucleated cells (MNBN, S) and BN cells with NPBs % for the 48-h peatment period in the absence and presence of SOmix (p = 1.000, p < 0.001 in both cases) Õ

Thiacloprid also induced a statistically significant increase in BN colls with nuclear buds (NBUDs, %) when compared with the control and solvent control at 300 µg/mJ for 24 h and at 150 µg/mL for 48-h treatment periods in the absence of the merabolic activator. In addition, NBUD formation

Table 5.4.1/0723:	Summary of results of the cytokinesis-block micronucleus test (CBMN) in
× *	human peripheral bood lymphocotes with thiacloprid

Test 🖑	Concen- 、	Øistrik	otion o	fBN ce	dis acco	rding	Mean of bi	nucleated cel	lls with (‰)	
substance	tration (µg/mE)		to no.y		nuclê P					
V		N Q		2 [°]		>3	MN	NPBs	NBUDs	NPB / MN
	24 Fexposure without S9 mix									
Control	¥ 5	<b>19</b> 84	ŵ٦6	ů 0	0	0	4.00	0.50	1.50	
Solvent	4 mL	<b>}</b> 3982€	18	0	0	0	4.50	0.75	1.25	
control	N N	<u>ک</u>								
MMC C	0.25	3881	109	10	0	0	29.75 ^{a3b3}	$3.50^{a3b3}$	5.00 ^{a3b3}	
тср 🗸	75	3971	28	1	0	0	7.25 ^{a1b1c3}	1.50 ^{a1c3}	2.00 c3	0.20
	150	3968	28	4	0	0	8.00 ^{a2b1c3}	2.00 ^{a2b1c2}	2.50 °2	0.25

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Test substance	Concen- tration (µg/mL)	Distribution of BN cells according to no. of micronuclei			rding	Mean of binucleated cells with (‰)				
		0	1	2	3	>3	MN	NPBs 🔗	NBUDs	NPB MN
	300	3961	30	8	1	0	9.75 ^{a3b3c3}	2.25 ^{a2b2c1}	3.50 art 2c1	<b>\$</b> 0.23 ¢
				48 h ex	posure	withou	t∕\$9 mix	Å.		
Solvent control	4 μL/mL	3985	15	0	0		3.75	0.75	1.25 2	
MMC	0.25	3746	222	30	2	$\Rightarrow 0$	63.50	3.75 a3b	10Q25 a3b3	
ТСР	75	3958	38	4	00	0	10.50 ^{2(3b3c3}	1.75 ^{alblc3}	2.00	~0×16
	150	3939	53	8	Åø.	Ø	15.25 a3b3e3	2 50 a3b2c1	3.25 allo1c3	0.16
	300	#		4			y #Q	, ⁰ #	0 ⁴ 2	
				3 th e	xposure	with S	59 mõr 🛴			
Control		3991	9	Q ⁰	\$0	×0	× 2.25	A.50 D	° 0,975	Õ
Solvent control	4 μL/mL	3989		0 0 &	× 0 ×	°		2 0.25 0.25	\$1.25, C *>	
СРА	28	3960	<b>\$3</b> 5	×4	Ô	Ñ	40.00 °C	3.00 a3kg	4.60 a3b3	
ТСР	75	3982 🖗	176	1	0 2	0	4.50 ^{4261c3}	1.25 ^{chl c2}	1.75 ° ³	0.27
	150	3982	19	6 S	<b>R</b>	0	5.00 a1b2c3	1.50 albic2 *	€ 2.25 ^{a2c2}	0.30
	300	3976	<del>2</del> 23	ôj 1	0°0 ?		6.00 at 3c3	2.00 a2b2	3.00 ^{a3b2}	0.33

Mean: mean value of A cultures Control Contro A total of 4000 cells were scored per concentration for misconuclei and other abnormalities in binuclear cells. TCP: thiacloprid, control: MMC: mitomy@in C CPA:

micronucleated cells MN: NPB: significantly different from untreated control

- а significantly different from solvent control (ethanol 50%) b
- significant from positive control (MMS, CPA с
- (43b3c3: Ś alb1c1. p < 0.001 p < 0.05

insufficient Binuclear cel #:

Cytotoxicity assessment for the CBMIN

Cytostatic effects of thiadopte were measured by calculating the nuclear division index (NDI). Thiacloged decreased the NDI significantly for all concentrations and treatment periods when compared with the control groups both in the absence and presence of the S9 mix. In addition, at the highest concentration (300 µg/mL) for 24 h and two higher concentrations (150 and 300 µg/mL) for 48-h treatment periods, this prid aused a significant reduction in the NDI to the same extent as positive control, MMC, in the absence of the S9 mix. Similarly, in the presence of the S9 mix, at all concentrations (75, 150 and 300 µg/mL) of thiacloprid reduced the NDI to the same extent as the positive control CPA. In addition, the decrease of the NDI was concentration-dependent in the presence of the S9 th  $(r \neq 0.997, p < 0.05)$ .

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### Table 5.4.1/07-4: Effect of thiacloprid on the nuclear division index (NDI) in human peripheral Ø blood lymphocytes

	Diood	lymphoc	ytes					(Å		
Test substance	Concen- tration	Distrik	oution of c number		ding to	NDI	CBPI*	RI*O		
	(µg/mL)	1	2	3	4	$(\text{mean} \pm SD)$	(mean)			
	24 h exposure without \$9 mix									
Control		3253	661	38	¥8	1.22 0.02				
Solvent control	4 μL/mL	3429	507	40	24 🖓		0 1.14 Q	05.7		
MMC	0.25	3808	189	20	1	1.04 ± 0.01 ^{a3b3}	<u>_105</u> ≪	23,5		
ТСР	75	3437	526	017	20		\$ 1.14	71.4		
	150	3450	523	80	209	$R_{14} \pm 0.00^{a3c3}$	1.03	68.6		
	300	3802	188		~ 5 L	1.05 0.01	¥1.05	29.8		
				posure N	ithout \$9	mix 🖉 🦼		<u>0</u>		
Solvent control	4 μL/mL	3567	\$ 395 °C	23 Q	15	7 1.12 0.02 °		ັ 56.2		
MMC	0.25	3870	°1529		04	$1.03 \pm 0.01^{a3b3}$	©_1.05	15.7		
ТСР	75	3 ⁷²³	¥ 272 Q		01 5	1.07 # 0.00 varbaci	\$03	33.8		
	150 ملي	3861 3949 2	\$ <b>\$</b> 69	00	20°	$1.004 \pm 0.00^{a3b3}$	1.07	20.0		
	3000	3949 ĉ	51 °	dî î	50	$1.01 \pm 0.00^{a3b3}$	1.04	6.19		
		) jy	3 h e	xpøsure v	with S2 mi	ix 0 5				
Control	8° 8°	3406	0878 €	100	ð	£1.22±0.03	1.22			
Solvent control	4 μL/mL	3211	778		*4	1.20 ± 0.06	1.20	87.7		
CPA	28 %	-3479	520		¹ O ¹	$13 \pm 0.03^{a2b1}$	1.13	57.5		
ТСР	15° ,	3385	595	<u></u> #	0 [×] 6 ~	$1.16 \pm 0.01$ ^{a1}	1.15	69.7		
	150	3451	<b>6</b> 41 °	y 5 L	3	$1.14 \pm 0.02^{a2c1}$	1.14	61.0		
	~\$ 300 [°]	0552	444	<u>i</u>	°∂, Î	$1.11 \pm 0.02 \ ^{a3b2}$	1.11	49.6		
4		$\bigcirc$ $\triangleleft$	4 1	Co	$(\Omega n)$					

NDI: nuclear division index CBPI*: Stokinesis-block proliferation index (Sculated from reported values; not provided in publication) RI*: Replication index (calculated from reported values; not provided in publication)

For the evaluation of cytotoscity QECD 48Q recommends to calculate the CBPI or RI.

CBPI = the proportion of second division cells in the treated population relative to the untreated control. The CBPI indicates the average number of nuclei percell, and may be used to calculate cell proliferation. It is calculated according to the following formula,

(2 x No. of binucleated cells) + (3 x No multinucleated cells)No. menonuctrated cells) 🔊 🍳 CBPI % cytostasis =  $100 - 100 \{(CBPGreated-1)/(CBPI_{Control}-1)\}$ Total number of cells

RIz the proportion of cell division cycles completed in a treated culture, relative to the untreated control, during the exposite period and recovery

The RI maticates the relative number of cell cycles per cell during the period of exposure to cytoB in treated cultures compared to control cultures. Calculation according to:

DI		{(No. binucleated cells) _T	+	$(2x \text{ No multinucleated cells})_T$	/	(Total No of cells) $_{T}$	100
KI	_	{(No. binucleated cells)C	+	(2x No multinucleated cells) _C }	/	(Total No of cells) _C	100

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

T = treated; C = controlCytostasis = 100-RI

Mean:	mean value of 4 cultures						
A total of 4000 cells were scored per concentration for the NDI.							
TCP:	thiacloprid	control:	untreated cells				
MMC:	mitomycin C	CPA:	cyclophosphamide				
а	significantly different from	untreated	control				
b	significantly different from	solvent co	ontrol (ethanol 50%)				
c	significant from positive co	ontrol (IVIIVI	IC, CPA).				
alb1c1:	p < 0.05	a2b2c2:	p < 0.01 (h3b3c3:				

## III, Conclusion

solvent control: 50 % ethanol The authors conclude that thiacloprid most propably causes genotoxic effects by inducing the formation of chromosome aberrations, sister chromatid exchanges, miconucleated cells, nuclear plasmatic bridges and nuclear buds. In addition, it displayed a Sytotoxic effect by decreasing the mitotic index and proliferation index and also a cytostatic effect by decreasing the nuclear division index at the tested concentrations of 75, 150, and 300 µg/mL in human perpheral plood lymphocytes both in the absence and presence of a the tabol activation system

BCS conclusion: This non-GLP oudy is considered to be not reliable (see reliability assessment below). In addition, the described genotoxic effects were abserved in vitro at high concentrations of 75 to 300 µg/mL thiactoprid whick is equal to 75 300 mg/L. Dotal plasma concentrations of thiacloprid observed after treatment of fats with 1000 ppm in the diet (the high dose in the 2-year rat study, which clearly exceeded the MTD, were \$ 7-11.5 mg/L. This shows that the concentrations tested in this in vitro study are by factors of 6.5 to 52.6 bigher than the total plasma concentrations of rats in the high dose of the 2-year rat study. Therefore, it is concluded that the results of this study, besides the fact of its lack of reliability, have no impact on the situation in vivo.

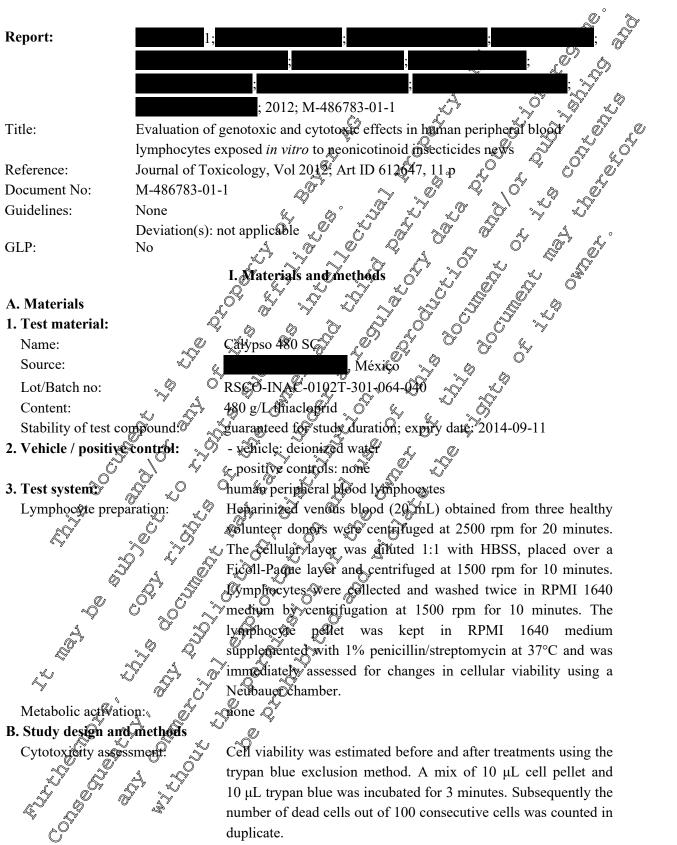
The reliability assessment is shown below

	🥎 Khmisch evaluation					
Reliability of study	Not reliable (Klimisch code 3)					
General comment on	The story was not conducted according to GLP. Thiacloprid was not					
reliability:	purchased from Boyer/BCS, the purity and the impurity profile of the					
	used material is not reported. Culture conditions are not reliable. No					
	of treatment medium is reported. No historical positive and negative					
E 2 S	gontrol data are provided.					
Comment on reliability CA	The study was conducted according to IPCS guidelines (Albertini et					
	al., 2000). However, the IPCS guidlines refer to in vivo exposure (i.e.					
	ex vivo - in vitro tests). There are no treatment durations given. For					
	result evaluation the IPCS guidelines consider only statistical					
	significances. According to OECD 473 a short-term treatment +/- S9					
	mix is recommended. Here a short-term treatment was only done with					

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

S9 mix.	0
The percentage of cells with chromosme aberarrations and struct	Fral 🔊
chromosome aberrations in thiacloprid-groups were statistica	~ 2
significantly different from both positive and regative controls. Sin	nĆo
no historical control data (HCD) for both positive and negative	ave
controls are available, it is not possible to evaluate / draw	
conclusion from these results. In addition, no individual culture d	átř 🦉
are provided that could help for the expluation. $\mathcal{I} = \mathcal{I}$	
According to the draft OECD 473 reduction in Onitotic index at	
highest concentration should be $45 \pm 5\%$ of sevent ontrol. In the	
hour treatment without S9 mix the mitotic index was only about 2	Ď%
of solvent controls.	0
Comment on reliability Test was conducted according to accepted protocols (Penech 2000;	Ũ
CBMN: Kirsch-Volders et al., 2003), but with major methodical and report	'ng
deficiencies & w w w w w	
According to Feinech 2007 nuclear division index (NDI)-values	of
untreated controls are expected to be in the range of $1.3 \neq 2.2$ . H	
NDI values of all ontreated controls are below 1.2 Furthermo	
Ferench reported normal ranges for untreaded cells of 0	
micronucleated (MN) cells/1000 binucleated cells (BN) cells, 0	
anuclear plasmatic bridges/0000 BN cells, and 05 nuclear buds/10	
BN cells Fenech 2007) Except for the positive control in the	48-
hour treatment withou S9 mix the mean number of miconuclea	
BN cells for untrested and treated groups and positive controls	
The mean values it can be concluded that the values observed in thistorical control MN-frequencies should within 95% control limits of historical control In this publication historical control data are provided. Without historical control d	
the mean values it can be concluded that the values observed in	the
Thiackprid-treated sultures are in the ranges expected for untrea	ted
lymphocyces. Y & S	1
Virtuphocyces.	be
within 95% control limits of historical control in this publication	no
in the second se	incy
Criteria of OECD 487 the maximum tested concentration should ca	
5555% control in the high start to the high start without metabolic activation the high	
$\mathcal{O}$ for g-term treatments without metabolic activation the high $\mathcal{O}$ $\mathcal{O}$ concentrations caused more than 55±5% cytotoxicity.	
Relevance of study & Not relevant due to lack of reliability: test system not adequate	
and not sufficiently described.	

References stated in the publication:


Fedech M 2000; The in artro micronucleus technique; Mutat Res 455:81-95

Fenech 10. 2007; Cytokinesis-block micronucleus cytome assay; Nature Prot 2:1084–1104

Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr,

Kirchner S, Lorge E, Morita T, Norppa H, Surralle's J, Vanhauwaert A, Wakata A. 2003; Report from the in vitro micronucleus assay working group. Mutat Res 540:153–163

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



Cytotoxicity was determined in preliminary assays at concentrations of 0.06, 0.09, 0.12, 0.13, 0.14, 0.2 and 0.28 M.

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Exposure concentrations for Comet assay: Negative control: Exposure conditions:

Number of evaluated colls Parameters assessed:

0.06, 0.09, 0.12, 0.13, 0.14 M

human peripheral lymphocytes in RPMI 100 medium Human peripheral blood lymphocytes ( $5^{10^5}$  cells) with a  $5^{10^5}$ viability > 92% were incubated with 0.06, 0.09, 0.10, 0.13 and 0.14 M Calypso in 1 al of 1640 BPMI medium at 37° for 2 J The controls consisted of human peripheral lymphocytes (5 % 10⁵ cells) in RPMI 1640 medium under the same conditions. After treatments, the cells were washed twoce with RPMI 1640 medium and subjected interediately to the cell viability alkaline comet & says

Linkly frc normal-melting-p a coversition Two slides w unt. The slides were kept at 4°C for with agarose to collidify. The coverslip was th unity removed, and the slides were immersed in a Copl staining for containing a freshly prepared cold lysis solutio (2.5 M NaCk 100 fm EDTA, 10 mM Tris, 1% Triton X-100 and 10% DMSO (BH = 10) at 4°C for 1 h. The slides were placed of a horizontal electrophoresis chamber containing freshly prepared cold electrophoresis chamber containing freshly prepared cold electrophoresis alkaline buffer (300 mM NaOH, 1.mM EDTA, pH = 43) for 20 minutes to unwind the DNA. Hectrophoresis was carried out at 25 V and 300 mA for minutes in thankness to prevent additional DNA -' slides were then washed three times " neutralization buffer (0.4 M Tri-withecold absolute meth temperature. N adda-'

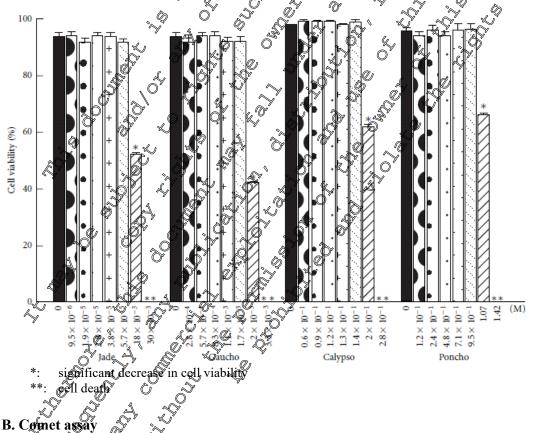
- comet frequency (nuclei with DNA damage)

- comet tail length (DNA fragmentation)

Comet frequency, tail length and cell viability are reported as the mean  $\pm$  standard error of the mean (SEM) obtained from three independent experiments for each treatment. An analysis of variance (ANOVA) and the Newman-Keuls test were used to

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

> determine significant differences between the treatment groups. Significance was defined as p < 0.001. The relationship between  $\bigcirc$  comet frequency and comet tail length was evaluated using finear regression analysis.

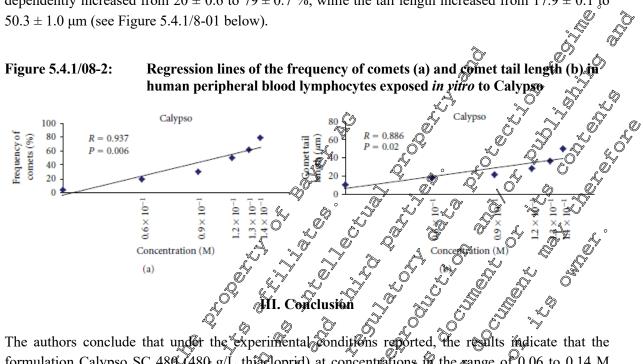

#### II. Results and discussion

#### A. Cytotoxicity

In the preliminary experiments, human peripheral blood lymphocytes were expersed  $\bigcirc$  different concentrations of Calypso SC 480 for 2 h. After treatment, cell viability was evaluated by trypen blue, dye-exclusion staining. The data indicate that concentrations of 0.06, 0.09, 0.12, 0.13 and 0.14 M dud not produce statistically significant differences in cell viability when compared to controls (p < 0.001). These concentrations were then used for the alkaline comet assay. However, when the human lymphocytes were exposed to p/2 M Calypso cell viability was significantly decreased in relation to the control values (p < 0.001). Cell ceath occurred following exposure to 0.28 M Calypso.

#### Figure 5.4.1/08-1:

Mean viability of human peripheral blood tomphocytes exposed *in vitro* to neonicatinoid insectiones including. Calypso. The bars represent the mean values ± SEM from three independent experiments




Exposure of human peripheral lymphocytes with Calypso SC 480 for 2 h caused significant increases in the percentages of comets and tail length when compared to controls (p < 0.001). In cells exposed to 0.06, 0.09, 0.12, 0.13 and 0.14 M Calypso SC 480 the mean comet frequency concentration

## **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

dependently increased from  $20 \pm 0.6$  to  $79 \pm 0.7$  %, while the tail length increased from  $17.9 \pm 0.1$  to all of the second secon  $50.3 \pm 1.0 \ \mu m$  (see Figure 5.4.1/8-01 below).

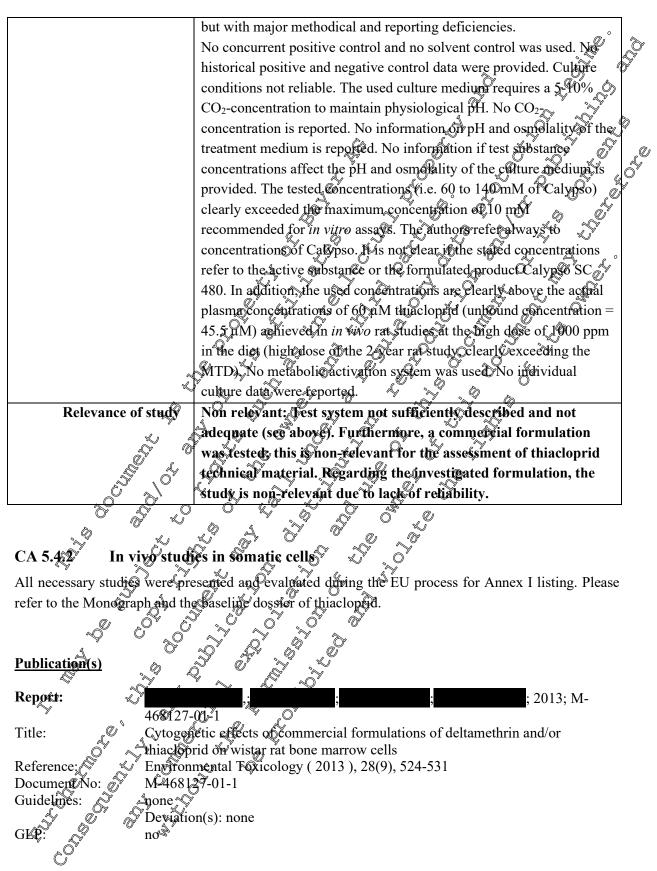
## Figure 5.4.1/08-2:



formulation Calypso SC 486 (480 g/L this cloprid) at concentrations of the gange of 0.06 to 0.14 M induced an increase in DNA damage with a concentration-dependent relationship

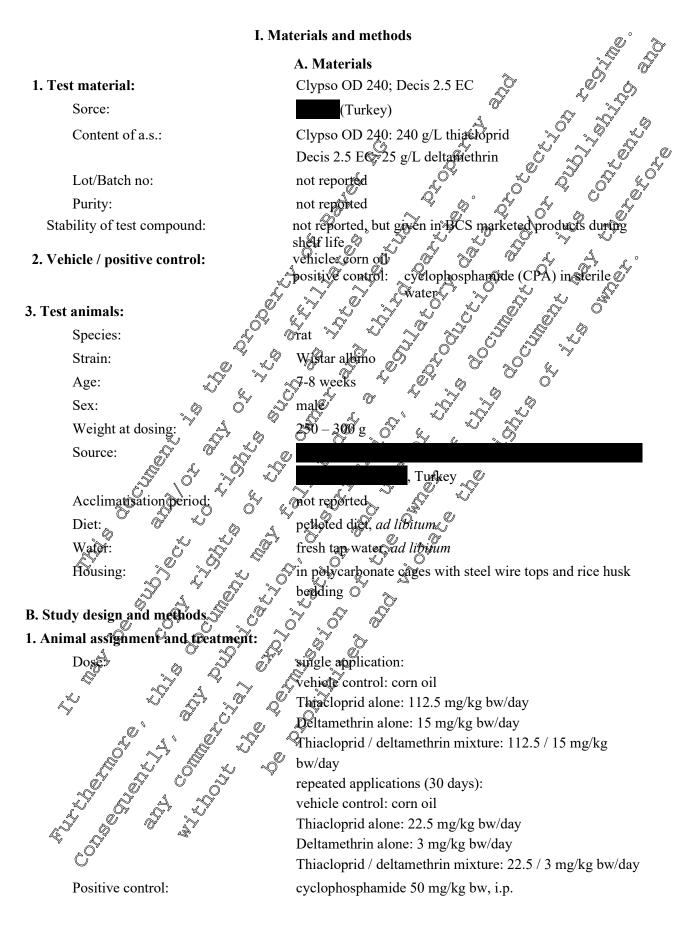
BCS conclusion: This non-GLP study is considered to be not reliable (details see in the reliability assessment below) Furthermore The described DNA Jamage was observed in vitro at extremely high concentrations of 60 to 140 mM of Catypso, which exceed not only the maximum concentration of 10 mM recommended for in vitro assays by afactor of 6-14, but even more, by a factor of 609-2800, the total plasma concentrations of thiacloprid \$50-100 µM or 0.05 to 0.1 mM) observed after treatment with 2000 ppm in the diet. This dietary concentration was tested as the high dose of the 2-year rat study, which clearly exceeded the MTD. Therefore, it is concluded that the results of this study, besides the fact of its missing reliability, have no impact on the situation in vivo.

Additional comment. In the publication it is stated the application rates of the tested formulation for the intended uses are in the range of 22 to 30 mL product/100 L. This corresponds to concentrations of 0.42 to 0.57 mM thidcloprid, It was stated that these concentrations are higher than the concentrations tested in the comet assay


If the stated concentrations used in the assays are correct (i.e. 60-140 mM), the real exposure concentrations of thigcloprid fi.e. 0.42 - 0.57 mM) are much lower than the tested concentrations. Furthermorghe applied Soncentrations refer to external exposure concentrations. Systemic exposure, Ke. the amoun? concentration that is internally available will be much lower.

assessment is presented below. The reliabil

	Klimisch evaluation
Reliability of study	Not reliable (Klimisch code 3)
Comment on reliability:	Test was conducted according to accepted methods (Tice et al., 2000),


BAYER Bayer CropScience

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid





Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Application route: Application volume: Duration:

Group size:

**Examinations:** 

Chromosome aberration assay (CA):

2 mL/kg bw

none reported

oral gavage except for positive control

single application and repeated dosing for 30 days 10 rats (6 for the chromosome aborration assay; 4 for the cytokinesis-block-micronucleus test)

An aqueous solution of Colchicine (2mg/kg injected intraperitoneally 2 h prior to cheduled eu manasi by cervical dislocation. Both femurs were dissected and bone warrow was firshed from the ferroral cavity with isotonic NaCl (0.9%) solution. The material was centrifuged at 500 x g for 10 monutes. The perlet was resuspended in 0,56% KCT and incubated at 37%C for 25 minutes. Cells were recentrifuged and tixed in chilled Carnoy's fixative (actic acid: methanol, 1:3, (v) @ree omes. Fixed cells were resuspended and dropped onto chilled slides, air dried, and Stained on the following day on 5% buffered Giemsa

Cytokinesis-block-microancleus (CBMN): Cytokinesis-block-microancleus (CBMN): Cytokinesis-block-microancleus (CBMN): Cytochalasin-B (Cyt-B), (3, mg/kg) was injected intraferitoreally 4 h bofore ceuthanasia by cervical dislocated to arest cytokingsis and obtain binucleated (BN) cells. Both femors were dissected and bone marrow was flushed from the generatant was discarded and the cell pelles were mixed by gentle agitation. The cells were fixed chilfed with Carnoy's fixative (acetic acid: methanol, 1:3, w). Bofore the preparation of slides, the fixed material was again centrifuged and resuspended in a small volume of fixative by gentle flushing. Fixed cells were dropped onto chilled slides and air dried, and finally staffed on the following day in 5% buffered Giemsa (pH 6(9) for 15 minutes.

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Chromosome aberration (CA) assay:

The mitotic index (MI) was determined by scoring 2000 metaphase cells per animal for a total of 12000 cells for 2 each group. Mitotic index, total chromosome aberration and abnormal metaphases with chromosome aberrations were calculated for each animal. Structural and numerical chromosomal aberrations (CA) were scored on 100 metaphases per animal (a total of 600 metaphases for each group). The scoring and classification of aberrations were also don@as described by Preston et al. (1987). Gaps were not considered CA.

Cytokinesis-block micronucleus (CBMN) test:

used for binucleated (BN) cells and The criteria micronucleus (MN) evaluation were those suggested by Titenko-Holland et al. (1997). For the BN cells analysis, the number of BN cells in 2000 bone marrow cells was seored per animal for a total of 8000 cells for each group. To determine MN formation, 2900 BS cells with well preserved eytoplasm were scoled for each animal (a total of 8000 BN cells for ach group)

IL Result and discussion

### A. Chromosome aberration (CA) assay

O The major two types of aberrations observed for the thiacloprid-destamethrin mixture group were breaks and fragments. Aberrant cells with multiple QAs were also observed frequently. The mitotic index (MI) decreased significantly (p < 0.001) for all treatment periods and doses of thiacloprid and thiacloprid-deftamethyin mixtures, as compared with their vehicle controls. The results of CA analysis showed that all independent and combined treatments of the clopic and/ or delamethrin significantly induced Gromosome aberrations compared with their vehicle controls (p < 0.001). The frequencies of chromosome aberrations and aberrant cells obtained after 24 Kexposure to higher doses of thiacloprid and/or deltamether were higher than for the 30 day exposure with lower doses. Furthermore, the frequencies of chromosome aberrations and aberrant cells in combined treatments of thiacloprid and deltamethrin for both treatment times were higher than the independent treatments. The lowest MI value and the highest chromosome aberration frequency were observed in combined treatment of the very high single doses of thiad oprid and donamethin for 24 h. Moreover, irrespective of the exposure period of 24 h or 30 days the total of chromatic and chromosome-type breaks was the predominant type of chromosome abeliations in all treatment groups.

The positive control caused & significant @crease in MI, and a significant increase in chromosome aberrations and frequency of aberrant cells.

The results are summarised in the following tables.

Compound and dose [mg/kg bw/day]					
Single exposure (24 hours)					

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Compoun	d and dose	MI,	Total CA	CA,	% cells with CA.
[mg/kg	bw/day]	mean± SE [%]	[number]	mean ± SE [%]	mean ± SE [%
Control (corr	n oil)	$4.40\pm0.06$	4	$0.66\pm0.21$	$0.66 \pm 0.00$
CPA	50	$1.70 \pm 0.06 **$	125	20.83 ± 0.94**	18.33 ± 0.88**
ТСР	112.5	$3.80 \pm 0.07 **$	73	12.16 ± 1.13**	10.66 2 0.665
DEL	15	$3.53 \pm 0.06 **$	75 _(Č)	12.50 ± 0.76**	11.33 ± 0.33**
DEL + TCP	15 + 112.5	1.95± 0.06**	98 🚿	16.33 ± 0.14**	€5.16 ± 9.79**
		Rep	eated exposure (30	days)	
Control (corr	n oil)	$4.70\pm0.04$	a de la companya de l	$0.83 \pm 0.96$	Q 4.83 ± 0.16
ТСР	22.5	$3.20 \pm 0.05 **$	70	_@1.66,±0.76**~	0.00 € 0.57 €
DEL	3	$3.92 \pm 0.03$ **	o [™] 54@	9.00 ± 0.897	8.00 ± 0.57**
DEL + TCP	3 + 22.5	$2.93 \pm 0.05^{**}$	A . 90 ~ 0	1500±1.50**	y 19.16 ± 24**

cyclophosphamide (positive control) TCP: thiacloprid chromosome aberration MI: mitors index statistically significant different from vehicle control, p < 0.05 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistically significant different from vehicle control, p < 0.00 statistical CPA: cyclophosphamide (positive control) CA: chromosome aberration

*:

**:

Table 5.4.2/02-2:	Types of	obser∗ed	chrômosome	e aborrations	04
			i V		~C

	<u> </u>				Ý . C	1 N	
Compound and dose	A A		Number of	promosom	e aberration	No. of the second secon	
[mg/kg bw/day]	Í Í Í			D)	F F	CF	Е
[mg/kg bw/day] Control (corn oil) CPA	L	Shugle ex	posure@24 h	ouls) 🛴	© í		
Control (corn oil)	-4		Â.		×1		
CPA 50 57			\$ 22 \$	Å.	35	7	8
TCP112.5	17.8	A11 0	× 130×	© 10 °	13	4	5
DEL 2 15	Î. Î.		. Õ [¶] 3		17	4	3
DEL + TCP 15 + 1133	1 6 N		18	Å16	23	7	6
		Repeated	exposure (30	Days)			
Control (corn oit)			<u></u>	1			1
TCP 22.5	°° 11, ℃		\$ 100°	15	15	3	3
DEL 33	A A A A A A A A A A A A A A A A A A A	0 9 3	Ľ,	10	11	8	4
DEL + TCP  3 + 22.5	A 8 2	18	16	18	19	6	5
CPA: vcyclophosphamide (	positive cont	rol) TÔ	thiaclop			deltamethri	n
P: polypioldy		Ø <b>SÇŬ</b> ∛ * <b>B</b> ∕′′:		romatid uni			
B': chromatic breaks		∀ <b>`By</b> `:	chromos	some breaks	5		

CF: centric fusions F: E: end to ends fragments Ó

## B. Cytokinesis Block micronacleus assay (CBMN)

All theaclopsed and or deltamethrin treatments decreased the frequency of binucleated (BN) cells significantly (p < 0.05 or p < 0.001).

The confined treatment of thiacloprid and deltamethrin increased a significant (p <0.05) frequency of micronucleated binucleated (MNBN) cells for both treatment times. The highest frequency of MNBN cells was also observed in the combined treatment of thiacloprid and deltamethrin for 24 h. When

ð

## **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

thiacloprid and deltamethrin were administered separately, a significant (p < 0.05) increase in MNBN cells was only observed in the thiacloprid treatment for 30 days. 

Table 5.4.2/02-3:	Summary of the cytokinesis-block micronucleus (CBMN) assay
-------------------	------------------------------------------------------------

_			
Compour	nd and dose	BN cells	
[mg/kg	g bw/day]	$\% \pm SE \qquad \bigcirc \qquad \% \pm SE \qquad \checkmark \qquad \checkmark \qquad \checkmark$	Ŵ
		$\frac{1}{1} \frac{1}{1} \frac{1}$	Ş
Control (corr	n oil)	$2.87 \pm 0.05$	
CPA	50	$0.97 \pm 0.09$	
ТСР	112.5	$2.47 \pm 0.07*$ ° ° ° ° ° 0.07 $\oplus 0.01$	
DEL	15	$2.17 \pm 0.08 * 2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$	
DEL + TCP	15 + 112.5	$1,23 \pm 0.08$	
		Repeated exposure (30 days)	
Control (corr	n oil)	$0^{\circ}$ 2.9% $\pm$ 0.07 $^{\circ}$	
ТСР	22.5	$2.02 \pm 0.07^{**}$ $3$ $3$ $0$ $0.11 \pm 0.01^{*}$	
DEL	3		
DEL + TCP	3 + 22.5	$ \begin{array}{c} \textcircled{0} \\ \swarrow \\ \blacksquare \\ \blacksquare$	

TGP. CPA: cyclophosphamide (positive control) DEL: deltamethrin thiacloprid BN: binucleated

MINBN , micronucleated binucleate statistically significant different from vehicle control, p \$0.05

**. statistically significant difference from vehicle control, per 0.001

III. Cooclusions

The authors state that under the experimental conditions reported commercial formulations of thiacloprix and deltamethrin show increases of chromosoffe aberrations and micronucleus formation. The treatment with combinations of the hiacloprid and deltamethrin formulations increased the cytotoxicity and genotoxicity as compared to treatment with individual formulations.

## BCS conclusion: This non-GLP study is onsidered to be not reliable. The deficiencies are described in the reliability assessment folow). The fast that two compounds, which were negative for genotoxicity in all regulatory guideline studies, both appear to be positive for genotoxicity under the experimental conditions of this study faises even more doubts about the reliability of the data. Ň

The reliability assessment is given below.

	«Klimisch evaluation
Reliability of standy:	Not reliable (Klimisch code 3)
Comment on the CA assay:	Non GLP study. Experiment was performed in general
	accordance with OECD 475 (2014) but with the following
	major deviations / reporting deficiencies:
Č	For the repeated administration for 30 days no positive control
	was used. Regarding single and repeated exposure only one

BAYI

#### **Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid**

<ul> <li>dose level was used instead of three. Signs of toxicity were not assessed or reported. Sampling was done only once after 20 h exposure. No individual animal data were presented and GAPs were not assessed. In addition, criteria for positive and frequete results were not provided. The evidation based solely on statistical analyses of group mean, data. No histoffeal positive and negative control data were presided.</li> <li>Comment to the CBMN assay: Non-GLP study, There exists polyalidated guidelineary proposed for the <i>n</i> two GBMN assay. Available protocols of guidelines are either forthe <i>in vitro</i> or the <i>agrino / dv</i> virgelest. It is stated that this, was the first three for the <i>n</i> vitro. GBMN assay were for small the the order of the bone marrow MN fassay were for small. If the available guidelines it is forcember deviced for the order of the bone marrow for the forther or the exposite of the forther and the bone marrow for the forther or the exposite of the forther and the state of the forther and was the forther in the state of the forther and was the forther state. In addition, no indefined for the forther or the forther state that this is the first meeting and the state of the forther and was the forther state that this is the first meeting and the state of the forther and was the there and the state of the forther and was the there the state and the forther the state of the forther and was the the the sthe the the is</li></ul>		
<ul> <li>exposure. No individual animal data were presented and GAPs*</li> <li>were not assessed. In addition, criteria for positive and negative results were not provided. The evaluation based solely on statistical analyses of group mean data. No historical positive and negative control data were provided.</li> <li>Comment to the CBMN assay:</li> <li>Non-GLP study. There exists no validated guideline or protocol for the <i>in vivo</i> CBMN assay. Available protocols or guidelines are either for the <i>in vivo</i> CBMN assay. Available protocols of guidelines are either for the <i>in vivo</i> CBMN was conducted in the laboratory. No validation data (historical positive / negative control) were provided. In the following further deficiencies are summarised:</li> <li>The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at least 5 minal group.</li> <li>At least three dose levels of each compound should have been evaluated.</li> <li>On the QECD guidelines for <i>in vivo</i> evaluation of micromodeus formation polychromatic erdbrocytes (i.e.</li> </ul>		dose level was used instead of three. Signs of toxicity were not
<ul> <li>were not assessed. In addition, criteria for positive and fregative results were not provided. The evaluation based, solely on statistical analyses of group mean data. No historical positive and negative control data were provided.</li> <li>Comment to the CBMN assay: Non-GLP study. There exists no validated guideline or protocol for the <i>in vivo</i>, CBMN assay Available protocols of guidelines are either for the <i>in vitro</i> or the <i>ex vivo</i> / <i>in vitro</i> of stated that this, was the first time that the <i>in vivo</i> CBMN was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. Fit the following further deficiencies are summarised:</li> <li>The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at least 5 minal group.</li> <li>At least three dose revels of each compound should have been evaluated.</li> <li>In the QECD guidelines for <i>wivo</i> valuation of micromicleus formation polychromatic er utirocytes (i.e.</li> </ul>		
results were not provided. The evaluation based solely on statistical analyses of group mean data. No historical positive and negative control data were provided. Comment to the CBMN assay: Non-GLP study. There exists no validated guideline or protocol for the <i>in vivo</i> OBMN assay Available protocols of guidelines are either for the <i>in vivo</i> OBMN assay Available protocols of guidelines are either for the <i>in vivo</i> or the <i>ex vivo in vivo</i> CBMN was conducted in the laboratory. No validation data (historical positive / negative control) were provided. In the following further deficiencies are summarised: The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at least 5 minal group At least three dose evels of each compound should have been evaluated. At least three dose evels of each compound should have been evaluated.		exposure. No individual animal data were presented and APs* P
statistical analyses of group mean, data. No historical positive and negative control data were provided.         Comment to the CBMN assay:       Non-GLP study. There exists negatidated guideline or protocol for the <i>in vivo</i> , OBMN assay, Available protocols of guidelines are either for the <i>in vitro</i> or the <i>ex vivo</i> / <i>u vitro</i> test. It is stated that this, was the first time that the <i>in vivo</i> , CBMN was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. In the following further deficiencies are summarised:         The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at beast 5 animal/group.         At least three dose levels of each compound should have been evaluated.         In the QECD guidelines for <i>u vivo</i> evaluation of an icromeleus formation polychromatic er throcytes (i.e.		were not assessed. In addition, criteria for positive and negative
and negative control data were provided.         Comment to the CBMN assay:         Non-GLP study. There exists no validated guideline or protocol for the <i>in vivo</i> (DBMN assay Available protocols or guidelines are either for the <i>in vivo</i> (DBMN assay Available protocols or guidelines are either for the <i>in vivo</i> or the <i>ex vivo</i> / th vitro test. It is stated that this, was the first time that the <i>in vivo</i> (CBMN) was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. If the following further deficiencies are summarised:         The group sizes used for the bong marrow MN assay were too small. If the available guidelines it is recommended to use at least 5 mimal group         At least three dose revels of each compound should have been ovaluated.         • In the QECD guidelines for <i>wivo</i> evaluation of micronucleus formation polychromatic erythrocytes (i.e.		results were not provided. The evaluation based solely on
and negative control data were provided.         Comment to the CBMN assay:         Non-GLP study. There exists no validated guideline or protocol for the <i>in vivo</i> (DBMN assay Available protocols or guidelines are either for the <i>in vivo</i> (DBMN assay Available protocols or guidelines are either for the <i>in vivo</i> or the <i>ex vivo</i> / th vitro test. It is stated that this, was the first time that the <i>in vivo</i> (CBMN) was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. If the following further deficiencies are summarised:         The group sizes used for the bong marrow MN assay were too small. If the available guidelines it is recommended to use at least 5 mimal group         At least three dose revels of each compound should have been ovaluated.         • In the QECD guidelines for <i>wivo</i> evaluation of micronucleus formation polychromatic erythrocytes (i.e.		statistical analyses of group mean data. No historical positive
Comment to the CBMN assay: Non-GLP study. There exists no validated guideline or protocol for the <i>in vivo</i> CBMN assay. Available protocols or guidelines are either for the <i>in vitro</i> or the <i>ex vivo</i> / <i>in vitro</i> itest. It is stated that this, was the first/time that the <i>in vivo</i> CBMN was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. If the following further deficiencies are summatised: The group sizes used for the bone marrow MN assay were too small. If the available guidelines it is recommended to use at least 5 minual group At least three dose levels of each compound should have been evaluated. If the QECD guidelines for <i>in vivo</i> evaluation of airconficteus for mation polychromatic erythrocytes (i.e.		
for the <i>in vivo</i> @BMN assay Available protocols or guidelines are either for the <i>in vitro</i> or the <i>ex vivo</i> / <i>in vitro</i> test. It is stated that this was the first time that the <i>in vivo</i> @BMN was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. In the following further deficiencies are summarised: The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at least 5 minul group At least three dose levels of each compound should have been evaluated. • In the QECD guidelines for <i>in vivo</i> evaluation of micromicleus formation polychromatic erothrocytes (i.e.	Comment to the CBMN assay:	
are either for the <i>in vitro</i> or the <i>ex vivo</i> / in vitro test. It is stated that this was the first time that the <i>in vivo</i> CBMN was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. In the following further deficiencies are summarised: The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at least 5 minal group At least three dose revels of each compound should have been evaluated. In the OECD guidelines for <i>in vivo</i> evaluation of micromecleus formation polychromatic erebrocytes (i.e.		
that this, was the first time, that the <i>in ivo</i> CBMN was conducted in the laboratory. No validation data (historical positive / negative controls) were provided. In the following further deficiencies are summarised: The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at least 5 minul group At least three dose evels of each compound should have been evaluated.		
conducted in the laboratory. No validation data (historical positive / negative controls) were provided. In the following further deficiencies are summarised: The group sizes used for the bone marrow MN assay were too small. In the available guidebines it is recommended to use at least 5 animal group At least three dose levels of each compound should have been evaluated. • In the QECD guidelines for an vive evaluation of micromecleus formation polychromatic erythrocytes (i.e.		
positive / négative controls) were provided. In the following further deficiencies are summarised: The group sizes used for the bone marrow MN assay were too small. In the available guidebines it is recommended to use at least 5 mimal group At least three dose revels of each compound should have been evaluated. • In the QECD guidelines for <i>in vivo</i> evaluation of micromecleus formation polychromatic erythrocytes (i.e.		
further deficiencies are summatised: The group sizes used for the bone marrow MN assay were too small. In the available guidebines it is recommended to use at least 5 animal group At least three doser evels of each compound should have been evaluated. The QECD guidelines for <i>uv vive</i> evaluation of micromocleus formation polychromatic erythrocytes (i.e.		
<ul> <li>The group sizes used for the bone marrow MN assay were too small. In the available guidelines it is recommended to use at teast 5 mimal group</li> <li>At least three dose revels of each compound should have been ovaluated.</li> <li>In the QECD guidelines for <i>in vivo</i> evaluation of micromocleus formation polychromatic erythrocytes (i.e.</li> </ul>		
too small. In the available guidelines it is recommended to use at least 5 animal groups At least three dose levels of each compound should have been valuated. • In the OECD guidelines for it vive evaluation of micromocleus formation polychromatic erythrocytes (i.e.		
at least 5 animal groups At least three dose levels of each compound should have been valuated. • In the QECD guidelines for in vive evaluation of micromocleus formation polychromatic erothrocytes (i.e.	a	Q The group sizes used for the bone marrow wire as say were
At least three dose evels of each compound should have been valuated. • In the OECD guidelines for it vive evaluation of micromocleus formation polychromatic erothrocytes (i.e.		too signal. Invite available guidences it is reconducing to use
• An the QECD guidelines for <i>in vivo</i> valuation of		
<ul> <li>An the QECD guidelines for <i>in vivo</i> evaluation of micronucleus birmation polychromatic erythrocytes (i.e. anuetate cells) in the bone marrow (takon from the femurs) are evaluated following acade exposure. Collowing sub-acute exposure the micronucleus depoputation is evaluated in normachromatic erythrocytes inblood samples. This was not the case in this paper and was vithout justification.</li> <li>The use of Gytochalasin B to block nucleated cells seems to be strange as this technique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is fle first time flat the cytokinesis block method has been used in the <i>in vivo</i> bone marrow MN assay, it would be useful to see valuation of ata with positive and negative controls. In addition, no justification for performing such a technique is provided. The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow Samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>	Ŷ,	At least three dose reveils by each compound should have
<ul> <li>and the QECD guidelines for an inverse valuation of an incronacleus formation polychromatic critinocytes (i.e. an under each state of 00 with a polychromatic explored the formation is evaluated in normechromatic explored to see the second the polychromatic explored to the second to the polychromatic explored to the explored to the polychromatic explored to the polychrom</li></ul>		been ovaluated.
and condicient end in polychromatic erdinocytes (i.e. anudrate cells) in the bone marrow (taken from the femurs) are evaluated following acute exposure. Following sub-acute exposure the inicronucleated population is evaluated in normochromatic erdinocytes inblood samples. This was not the case to this paper and was without justification. The use of cytochalasin B to block nucleated cells seems to be strange as this technique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>in vivo</i> bone narrow MN assay, it would be useful to see wildation data. With positive and negative controls. In addition, no justification for performing such a technique is provided. The bone tharrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have already gone through several cell divisions. • The use of Giemsa to stain the bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),	N A	• an the lot CD guidelines for an vivo evaluation of
anucreate cells) in the bone marrow (taken from the femurs) are evaluated following acide exposure. Following sub-acute exposure the inicronicleated population is evaluated in normachropatic explorence in blood samples. This was not the case of this paper and was without justification. The use of Sytochiasin B to block nucleated cells seems to be strange as this technique is generally used for <i>in vitro</i> evaluated for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the Sytokinesis block method has been used in the <i>vivo</i> bone narrow MN assay, it would be useful to see windation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have dready gone through several cell divisions. • The use of Giemsa to stain the bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		micronocleus termation polychromatic eryoprocytes (i.e.
evaluated following acute exposure. Following sub-acute exposure the nicronucleated population is evaluated in normechromatic explored is indiced samples. This was not the case of this paper and was without justification. The use of evidential in paper and was without justification. The use of evidential in paper and was without justification. The use of evidential in paper and was without justification. The use of evidential in paper and was without justification. The use of evidential in the provide is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is file first time flat the cytokinesis block method has been used in the <i>privide</i> of the <i>NN</i> formation. As the authors state that this is file first time flat the cytokinesis block method has been used in the <i>privide</i> of the <i>NN</i> formation as the authors state that this is file first time flat the cytokinesis block method has been used in the <i>privide</i> of the <i>NN</i> formation. As the authors state that this is file first time flat the cytokinesis block method has been used in the <i>privide</i> of the <i>NN</i> formation as the authors state that this is flat only anucleate cells are scored for MN, i.e. those, which have dready gone through several cell divisions. • The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		anucheate cents) in the bone married (taken from the femurs) are
<ul> <li>construction of the discronucleated population is evaluated in normachromatic exploration services in plood samples. This was not the case of this paper and was without justification.</li> <li>The use of extochalasin B to block nucleated cells seems to be strange as this technique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>pr vivo</i> bone marrow MN assay, it would be useful to see valuation data with positive and negative controls. In addition, no justification for performing such a technique is provided. Thebone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have dready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		evaluated following acute exposure. Following sub-acute
<ul> <li>A state of this paper and was without justification.</li> <li>The use of cytochalasin b to block nucleated cells seems to be strange at this technique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>vivo</i> pone marrow MN assay, it would be useful to see vanitation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The one marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		exposure the information is evaluated in
<ul> <li>The use of cytochalasin B to block nucleated cells seems to be spange as this technique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>vivo</i> bone marrow MN assay, it would be useful to see valuation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The one marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have a ready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		normochromatic entrino inclosed samples. This was not
<ul> <li>The use of cytochalasin B to block nucleated cells seems to be shange as this technique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>vivo</i> bone narrow MN assay, it would be useful to see yandation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The one marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		the case of this paper and was without justification.
be strange as thistechnique is generally used for <i>in vitro</i> evaluation of the MN formation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>v viva</i> bone marrow MN assay, it would be useful to see valuation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions. • The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		The use of sytocharasin B to block nucleated cells seems to
<ul> <li>A constraint of the MIN termation. As the authors state that this is the first time that the cytokinesis block method has been used in the <i>vivo</i> bone marrow MN assay, it would be useful to see withdation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have thready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>	ý v s	be strange as this technique is generally used for <i>in vitro</i>
<ul> <li>The first time that the cytokinesis block method has been used in the prive bone marrow MN assay, it would be useful to see windation data with positive and negative controls. In addition, no justification for performing such a technique is provided.</li> <li>The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have a ready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		evaluation of the MIN formation. As the authors state that this is
<ul> <li>the <i>br vivo</i> bone marrow MN assay, it would be useful to see varidation data with positive and negative controls. In addition, no justification for performing such a technique is provided. The one marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow Samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		the first time that the cytokinesis block method has been used in
<ul> <li>Windlation data with positive and negative controls. In addition, no justification for performing such a technique is provided.</li> <li>The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay.</li> <li>Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		the <i>br vivo</i> bone marrow MN assay, it would be useful to see
<ul> <li>no justification for performing such a technique is provided.</li> <li>The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay.</li> <li>Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		vandation data with positive and negative controls. In addition,
<ul> <li>The bone marrow micronucleus assay has been developed so that only anucleate cells are scored for MN, i.e. those, which have a ready gone through several cell divisions.</li> <li>The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),</li> </ul>		no justification for performing such a technique is provided.
that only anucleate cells are scored for MN, i.e. those, which have aready gone through several cell divisions. • The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		The bone marrow micronucleus assay has been developed so
have Gready gone through several cell divisions. • The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		that onl Qanucleate cells are scored for MN, i.e. those, which
• The use of Giemsa to stain the bone marrow samples is not an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),	A A A	have Qready gone through several cell divisions.
an appropriate stain to use in the rat bone marrow MN assay. Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		• The use of Giemsa to stain the bone marrow samples is not
Rat bone marrow contains fragile mast cells, which can burst upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		an [®] appropriate stain to use in the rat bone marrow MN assay.
upon manipulation of the bone marrow sample and release basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		Rat bone marrow contains fragile mast cells, which can burst
basophilic granules. These granules are difficult to distinguish from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		upon manipulation of the bone marrow sample and release
from micronuclei due to their shape and the fact that they also stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),		basophilic granules. These granules are difficult to distinguish
stain blue with Giemsa. Consequently the use of DNA specific dyes have been recommended by the American (1991),	Õ	from micronuclei due to their shape and the fact that they also
dyes have been recommended by the American (1991),		stain blue with Giemsa. Consequently the use of DNA specific
		dyes have been recommended by the American (1991),

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

	Canadian (1989) and Japanese (1987; 1990) authorities to $_{\circ}$
	differentiate MN from mast cell granules when using the rate
	model. In this context it is questionable, whether in Fig 2 juin
	the publication) the MN highlighted in the mage on the fight-
	hand side is truly a micronucleus or a granule. It is not perfectly
	round and there appears to be other "granules" over the top of
	the nuclei in the image. Unfortunately the image is not very
	the nuclei in the image. Unfortunately the image is not very good to be sure.
Relevance of study	Non-relevant: West method insufficiently validated (in vivo
	CBMN assa@. Test method not sufficiently described. Test
	system does not follow felevant guidelines completely (CA
	assay). Eurthermore, a commercial formulation was tested;
	this in non-relevant for the assessment of this loprid
	technical material. The study is also non-relevant for the
	tested formulation due to lack of reliability. S
1	

* GAP = an achromatic lesion smaller that the width of one chromatic and with miximum  $\gamma$  misalignment of the chromatids.

## CA 5.4.3 In vivo studies in germeells

Overall it is concluded that this cloprid and not show a genotexic potential and no vidence of an effect on germ cells was seen in other toxic a ogical studies. Therefore, an *in vivo* study in germ cells is not regarded necessary.

## CA 5.5 Long-term toxicity and carcinogenicity

## Summary of long-term studies

Long-term studies pave been conflucted in the pat and mouse.

In rats, body weight effects were observed in both sexes with more pronounced effects in females. The main target was the lover. Hepatic or yme induction was evident in males at dose levels > 50 ppm and in females at dose lovels > 500 ppm. Liver changes were observed which were probably caused by the chronic induction of hepatic phase 1 and 10 enzymes. These liver changes included increased weight, hepatocellular hypertrophy, altered hepatocellular foci and cytoplasmic changes in the hepatocytes. NOAELs of 25 ppm (1.6 mg/kg bw/day) and 50 ppm (3.3 mg/kg bw/day) were determined for enzyme induction in males and females, respectively.

Thyroid change were observed and included hypertrophy and hyperplasia of the follicular epithelium, colloid alteration and follicular cell adenoma. These changes were also considered to be a consequence of the liver enzyme induction. It has been proposed that the increased enzyme activities enhance the capacity of the liver to deactivate and excrete the circulating thyroid hormones. Alterations of the hormone levels trigger a compensatory increase in TSH, which induces the morphological changes in the thyroid gland. At 1000 ppm (69.1 / 51.7 mg/kg bw/day (males /

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

females)), re-evaluation of the data with the appropriate historical controls revealed a trend for an increase in TSH in high dose females in weeks 26 and 105 (statistically significant and pronounced increases in comparison to concurrent controls, but values still in the 2-s range of historical controls; therefore considered as a trend for an increase and not as an adverse effect). Although the expected decreases in circulating T3/T4 levels were not detected in this study, such decreases were seen in the short-term rat studies. It has been assumed that the expected decreases in T3/T4 levels are masked by the rapid compensatory reactions of the thyroid system.

There were increased incidences of uterine adenocate inomas and reduced incidences of lacted cysts and galactocele in the mammary glands, which were again considered to be secondary to the liver enzyme induction. Special mechanistic studies seemed to indicate an induction of aromatase resulting in increased estradiol levels and continuous stimulation of the uterine endometrium and, after 2 years, in an increased incidence of uterine adenocarcinomas in the old and a specific rats. However, more recent investigations showed that the apparent increase in aromatase was an artefact caused by the unspecificity of the users used at that time and that thiacloprid is not an aromatase inducer (see under 5.8.2, **1999**, M36075-02-1). More recent mode of action work on uterine adenocarcinoma in female rats is presented and discussed in chapters 5.8.2. and 5.8.3 as well as in the summary of mammalian toxicology.

An additional histopathological investigation of the uteri of females of all dose groups after 1 year of treatment revealed a slightly increased incidence of slight to moderate uterine glandular hyperplasia after 500 and 1000 ppm. This desion is a spontaneous finding. While it occurred as a reactive change in some animals up to and including 300 ppm due to endometritis, or stromal polyp or both conditions it could be treatment related in 2 or 4 out of 10 animats after 500 and 1000 ppm. There were increased incidences of retinal atrophy (females), tens degeneration/opacity (females), radiculoneuropathy (females), sciarc nerve degeneration (both sexes) and skeletal muscle atrophy (females). These age-associated findings were mainly seen at the top dose level or were sex specific but are consistent with the neurotoxic mode of action of the test material.

In mice, there were effects on male body weight and body intake. Leukocyte counts were increased in males and in females at some sampling points. Giver effects were seen in males and females and included increased weight hypertrophy, tat storage, necrosis and degeneration. In females, increased adrenal weight was associated with hypertrophy and vacuolisation of the cortical X-zone in females. The liver effects and the concomitant hornoral changes may have caused these adrenal changes by affecting the development of the hornoral changes tissue and ovarian luteomas were increased. The report considered these effects to be secondary to the known liver enzyme induction and the subsequent hornoral induction.

1 able 5.5-1:			long-term st		
Study	Sex	NO(A)EL	LO(A)EL	Main findings seen at LO(A)EL	Reference
		mg/kg	g bw/day	l l l l l l l l l l l l l l l l l l l	
Rat	М	1.2	2.5	50 ppm (M), 500 ppm (F):	<b>X</b>
2-year, oral		(25 ppm)	(50 ppm)	liver enzyme induction, ↑ liver weight,	, 1998 (
(diet)	F	3.3 (50 ppm)	33.5 (500 ppm)	hepatocellular hypertrophy, cytoplasmatic	, 1998 M-003817-024
0-25-50-500-		(50 ppm)	(300 ppm)		
1000 ppm				thyroid followular cell hypertrophy, colloid	\$`.6 ^{\$} \$
				alteration T incidences of thyroid follicular cell	
				alteration (M) 1 incidences of uterine adenocarcinona &	
				Uvanal Cysta, , , , , , , , , , , , , , , , , , ,	Ŷ
				ovatial cyste, 500 ppnz (M&Fr) bw. shightly food of consumption, Uncidences of skeletal muscle atrophy (F)	
			, K	$a transhv (F) \rightarrow a$	
ndditional	F	3.3	33.5	slight increase of stering glandithr	, 2007
uterus histo-	-	(50 ppm)	(500@pm)	hyperplasia after 1 year of treatment S	M-093817-02-1
pathology				Aight increase of iterine glandithar of hyperplasia after 1 year of treasment of the second s	(amendment)
Mouse	М	5.7	@ 234.5	1 Wer weight, hopatocelfular hypertrophy, fat &	&
2-year, oral (diet)	F	10.	475.33	storage (M) & degeneration (M), O	, 1998
(diet)		(30 ppm)	(12 <b>5</b> 0 ppm)	1 adjuntation adjunts, hypertrophy & vacuolisation of the adrenal cortical X-zone (F)	M-003819-02-1
)-30-1250-			A Q	Sincidence of Sinophilic, lutemized sells in	
2500 ppm				the oversan stropna / surrounding adipose tissue	
				& luteomas (F)	
M: male	Ĵ.	female	, ^{(Y} ↓: [™] dec	rrease(d) F: insrease(d)	
	8		Ô k		
Report: 🔬 🖗	)		à.		
		ð	, 200æ M-0	003817-62-1	
Title: 🔊		$\sim$ $\sim$	RC 2894 - 4	ombined chronic toxicity/carcinogenicity stu	ıdy in Wistar
	, 	ÿ [™] ri	ats dietary a	dministration over 2 years)	
Report No.: Document N	4	0 7	A 80 A-003&17-02	F S S	
Guidelines: *	- 1		DEGD 453	) Directive 67/548/EEC; US-EPA (FIFRA) serie	es 83.5:
A		ΟJ	MAFF Guida	ance on Toxicology Study Data for Application	on of
				bemical Registration; US EPA OPPTS 870.4	
, K				of TSP was not according to GLP. This dev	iation does not
GLP:	~	"0° v	may the asses	ssmooth of the results.	
	L°	,1 \ _0		Q [×]	
Ŕ	0″				
Report: 🖧	, š	A B K	GA 5.5/03,	, U., 1998;M-003817-02; Amended	
Report:	Z	A	SKC 2094 - 0	Combined chronic toxicity / carcinogenicity s	tudy in
			Vistar rats – ( Amendment I	dietary administration over 2 years	
Report 80.:			Trendment 1 7480A		
Document N			/480A /I-003817-02	1	
Guidelines:	NU		VI-003817-02 No applicable		
Guidennes:				not applicable	
		L		The all house	

#### Table 5.5-1:Summary of long-term studies

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

GLP: yes

#### I. Materials and methods

#### A. Study design and methods

This report is an amendment to the chronic and cancerogenicity feeding stady in rats over interim sacrifice after 1 year (doses: 0, 25, 50, 500, 1000 ppm), ( 003817-02-1; report no. 27480; DAR B.6.5.1)

The reason for this amendment was an increased incidence of adenocarcinomas a the 🖄 cancerogenicity study at 500 ppm and above. Therefore the uterus was investigated throughout groups (previously only controls, high dose animals and gross pathological findings). This was done in order to obtain a comprehensive general view of the functional state of the uteras mucosa after one year of treatment. of Oteri in all groups not

The results of the presented additional histopathological investigations change the toxicological interpretation of report No. 24480

## Results and Hiscustin

## A. Gross pathological findings in the uterus

There was no evidence of any gross finding in the uteru related to doshig with

Thiacloprid dose (ppin)				1000
Dilation(s)		Õ 1 v	3	2
Change in contents		Q AQ	1	0
Fluid 🥰 🔍	K N .	~Ó	2	0
Nodule(s)		A 1	2	0
6 A		Ô'		

#### Gross pathological uterus findings Table 5.5/03-1:

#### B. Histopathological findings in the uterus

Endometrals or endometrial polyp occurred unrelated to dosing with the test compound and are frequent spontaneous findings in rats of this and. Other findings observed sporadically among the animals were fibrosis, stronal hyperplasia of the cervix, squamous metaplasia in an inflamed uterus, uterine dilation and increased mucification of the cervix. In one female dosed at 50 ppm, a granular cell tumour was seen in the adnexe of the uterine cervix which is considered as a spontaneous finding.

Gland har hyperplasta of the uterine mucosa was encountered in one control female and in some females of the treatment groups. The grade was generally minimal or slight except in one female dosed at 3000 ppm and in one female at 500 ppm, in which the finding was moderate. The incidence of this finding was 1 - 0 - 2 - 4 - 4 suggesting an increase in the 500 and 1000 ppm dose groups. However, glandular hyperplasia occurred as a reactive change in some animals up to and including 500 ppm due to

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

- endometritis in control female no. 342 and 500 ppm female no. 501,
- stromal polyp in 50 ppm female no. 438
- or both conditions in female no. 521 of the 500 ppm group.

<ul> <li>endometritis in control remaie no.</li> <li>stromal polyp in 50 ppm female no.</li> <li>or both conditions in female no. 52</li> </ul> Table 5.5/03-2: Histopathological uter	o. 438 21 of the 500			\$ \$		
Thiacloprid dose (ppm)Uterus findingNumber of animals	<b>0</b> 10	©25 √√10	<b>59</b> Q10	500		
Endometritis	1 0	0	۶ 0 °	<u></u> ³ ³ ³		8
Stromal polyp	0,07	0 🔊		¢, v		
Glandular hyperplasia of the mucosa	¢1 č	° 0,0°		24 ×		
Glandular hyperplasia of the mucosa: non- reactive changes*					<u></u> 4 .	
*: not secondary to endometritis and / or	a stromal p	owp: possibl	v due to thi	aclosrid relat	ed hotmonal	1

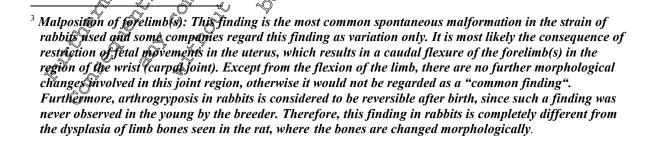
imbalance

#### MI. Conclusion

The additional histopathological evaluation revealed asslight increase of uterine glandular hyperplasia in animals of the higher dose levels (500 and 0000 ppm). This lesion is considered to be a spontaneous finding that develops during the physiological involution process and can occur as a reactive change to other conditions of the uterus. However, a slight treatment related offect due to formonal imbalance is also this finding. possible reason for

#### CA 5.6 Reproductiv

## Summary of reproductive and developmental toxicity studies


In a rat two generation study, decreased food consumption and bodyweight gain were seen at the top dose level of 600 ppms Clinical signs of toxicity were boted in dams at 300 and 600 ppm, the incidence of dystocia was also increased at these dose levels. Litter size and pup survival were significantly decreased at the top dose level, pup growth was significantly decreased at 300 ppm and 600 ppm in both generations. Increased thyrord, liver and gonad weights were seen in adults of both generations at  $\geq 300^{\circ}$  ppm. Histological correlates of hepatocyte and thyroid follicular hypertrophy were also reported.*

In the rat developmental study, decreased Bodyweights and food consumption were noted at the top dose level of 50 mg/kg w/day. Effects on urine and faecal production were also seen. Forelimb malformations (bone dysplasia) were also seen in the presence of marked maternal toxicity and the incidence was within the historical control range. Post-implantation loss was increased in this group as a result of late resorbtion. The incidences of placental border necrosis and foetal renal pelvic dilatation were increased in treated groups, however values were within or close to the historical control ranges. Numerous skeletal findings indicative of delayed or reduced ossification were noted at the top dose level.



In the rabbit developmental study, increased abortion, decreased food consumption and bodyweight idence c makormation This effect is makormation makor gain were seen at 10 mg/kg bw/day. Foetal skeletal effects indicative of reduced or delayed 2 ossification were noted in the top dose group. A marginal increase in the incidence of supernumerary 13th ribs was also noted in this group. An increase in the number of foetal malformations in this group is largely attributable to the incidence of forelimb arthrogryposis. This effect is a common spontaneous malformation (nowadays termed "malposition of forelimb(s)" - ventral Pexure in the region of the wrist)³ in this strain of rabbit, the incidence is within the historical control range and

Although forelimb malformations were seen in the rat and rabbit, these foodings are not directly comparable. Both the bone dysplasia and arthrogryposis are common sportance. comparable. Both the bone dysplasia and arthrogryposis are compared at and reaction of these effects are within the relevant historical control data, and th



l'able 5.6-1:	Sumn	nary of repr	oductive an	id developmental toxicity studies	
Study	Sex			Main effects seen at LOAEL	Reference
Doses tested Rat	М		g bw/d) 400 ppm	Liver: hepatocellular hypertroph (1/7 P	
1-generation	F	100 ppm	400 ppm	females)	, , , , , , , , , , , , , , , , , , , ,
dietary (dose				Thyroid: elongated follicular cells (1/7 P	, 1995 A L O (11 ) 1995
range finder)				males)	M-000911-06-1
0-100-400-					\$ 5° \$
1600 ppm					
Rat 2-generation	M F	2.6/2.7 (M/F)	21/26 (M/F)	Reproductive: dystochia (4/30 P females) Parental: 1 liver, weight, hepatocyto-	
dietary	ľ	$(101/1^{\circ})$ (50 ppm)	(300  ppm)		(1997 <u>)</u> .
-		(00 ppin)	(Soo ppin)	↑ thyroid weight, divroid fellicular cell	M-000304-01-1
0-50-300- 600 ppm			Ľ.	hypertrophy A	
Rat	Dom	10	250	Offspringe: ↓ pup weights Maternal: markedly food & water	.1997
oral (gavage)	Dam	10	LOVJU X	consumption, I fees, transient by loss	M-00832-01-1
developmental		d		during the first treatment days, ther: 10	
0-2-10-				water Sonsumption & Trine exerction overall: ↓ bw gain @	₿⁄
50 mg/kg	Fetal	160	50	Fetal: 1 invidences of late & total	-
bw/day			50 S	resorptions, 1 number of viable fetuses,	
			õ ő	fetat/weight ↑ incidences of extremital bone dysplasia, one fetus with muttiple	
	Ő		à là	ntalformations, ↑ incidences of skeletal	
	1. Star	NO X		retardetions (impaired ossification) &	
~				variations (wavy ribe asympactrical sternebrace)	
Rat 🔬	Feta	¥10 &	50	Fetal: fail & litter incidences of dysplasia	, 2000
oral (gavage)			50	of limb bones in the 50 mg/kg group lay	M-031344-01-1
developmental, historical	~	ų . ₁ 5		within the historication trol range of the	
control data					
Rabbit	Bam		2 ¹⁰ ×	Matesnal: 1 good consumption & bw loss	,
oral (gavage) ( developmenta	Feta			during the first treatment week. $\downarrow$ by gain.	1996
	гелаг			Fetal: marginally ↓ fetal weights	M-000780-01-1
0-2-10-	2/	Q Q			
45 mg/kg bw/day	<i>\$</i> 9	A			
bw/day M: male D: dam bw: body we CA 5(6.1	<u>ر بح</u> ر	female 2	la dece	ase(d) ↑: increase(d)	1
D: dam	,© ^{•••}			ase(d) ↑: increase(d)	
bw: body we	ght A				
Ĩ,	Š		Ŷ		
	r z				
UA 5(6.1	"Gene	rational st	udies		

Table 5.6-1:	Summary of reproductive and developmental toxicity studies
--------------	------------------------------------------------------------

Altenecessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dossier of thiacloprid. (M-000911-01-1; M-001304-01-1)



#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### CA 5.6.2 **Developmental toxicity studies**

All necessary studies were presented and evaluated during the EU process for Annex I listing, Rease refer to the Monograph and the baseline dossier of thiacloprid. (M-000832-01-4; M-031344-0) 1; M-000780 01 1) 000780-01-1)

#### CA 5.7 **Neurotoxicity studies**

#### Summary of neurotoxicity studies

As thiacloprid does not belong to the class of the organophosphates and has a different mode of action, i.e. action at the nicotinic receptor, testing for delayed neurotoxicity was not necessary. However, thiacloprid was tested in acute and sub-chronic deurotoxicity studies, as well as in a developmental neurotoxicity study.

Administration of single oral doses of this cloprid to rats by gavage produced only transiont clinical signs of toxicity. The overt signs included themory decreased activity ataxia, repetitive chewing movements, dilated pupils, exclid prosis, and clear lacrimation ortal and nasal staining and reduced body temperature. Brain weight was not affected by greatment. Histopathology did not reveal any lesions in the nervous system, eyes or skeletor muscle. The only treatment-related effects in the 13 week feeding study were reduced body weight and food consumption. The large differences between the NOELs determined for neurotoxicity if the adute and short-term feeding study may be due to bolus dosing or possibly adaptation.

dosing or possibly adapted on. For the registration of this cloprid in the United States, a developmental neurotoxicity study was conducted. The study was already submitted for Annex Dinclusion, but not discussed in the Monograph. In this study dietary exposure to thiaclopridedid not cause any neurotoxic effects in parental as well as affspring animals. Treatment-related findings consisted of reduced maternal body weights and body weight gain during gestation and lactation, as well as reduced food consumption during gestation in the mid and high dose. Body weights as well as body weight gain were also reduced in mid- and high dose FI males and pemales and absolute food consumption was also reduced in mid and high dose F1 males. Relative food consumption was increased in mid and high dose F1 rats of both sexes due to the reduced body weights. Terminal body weights were also decreased in mid and high dose males and high dose females of the F1 generation. F1 offspring of the mid- and high dose groups exhibited also a delay in development (preputial separation in mid and high dose males and vaginal patency in high dose females) which is considered to be secondary to body weight changes.

A publication on histopathological alterations in chicken after oral subacute treatment with thiacloprid was reviewed for its possible relevance for delayed neurotoxicity. However, the focus of the study was on general toxicity in hens and investigations regarding delayed neurotoxicity were not included. Therefore, the publication is not relevant for the endpoint delayed neurotoxicity.

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Study	NO(A)EL	LO(A)EL	Main effects seen at LOAEL	Reference
Doses tested	(mg/kg	g bw/d)	ð	Reference
Rat	< 20	20	Eyelid ptosis, slight tremors (M, FOB),	, , ,
acute oral			impaired aerial righting response (F, FOB),	&
neurotoxicity			↓ motor- and locomotor activity (F); figure – eight maze)	,1997 🐇
0-20-50-			eight maze)	M-000894-03-
100 mg/kg bw/d				
Rat	11 (M)	>11	↓ motor and locomotor activity (F only)	, 1 <b>9</b> 98
acute oral	3.1 (F)	11	figure Bight maze) 🧄 🧳 🖉	M-000894-03
neurotoxicity			4. 6° S J O	
0 2 1 11				1. A .
0-3.1-11 mg/kg bw/d			↓ motor and locomotor activity (F only figure eight maze)	
Rat, 13-week,	101 (M)	> 101 (MD)	↓ body weight & tood constamption, no Heurotoxie effects	
diet, neuro-	115 (F)	> 115.0F	Heurotoxy effects	$,1997^{9}$
toxicity	(1600 ppm in	(> 1600 ppm		M-003&15-01-1
	M/F	inQM/F)		
0-50-400-1600			W A W A A A	<i>«</i> .
ррт				0 [×]
Rat,	4.4 (Mat &	25.6 (Mat &	Maternal: ↓ 60dy weight/body weight gain	
developmental	Dev)	Dev)	& food consumption & &	2001
neurotoxicity	(50 ppm)	(300 ppm)	Bevelopmental/offspring: ↓ body weight/	M-088059-01-1
0.50.200	Neppotox:	Neurotox:	body weight gain (M/C),	
0-50-300- 500 ppm	40.8 K	<u></u> \$40.8	↓ absolute tool consumption (M), $\uparrow^{\vee}$ relative feed consumption (M/F) $\heartsuit$	
500 ppm	x 3800 ppm)	(\$\$500 ppm)	delayed(sexual maturation (preputial	
~		, [*] «'	Separation), $\mathcal{O}$	
 	Å.	6.1	↓ terminal body weight (DP 12 M)	
M: mate	F& f	emale Daternal actation	↓: decrease \\ \1: increase	
D: dam	م Mat: مر t	anternal 🖉 🖉	Dev: Ovelopmental	
gest: gestation	act: 1	actation 🔊 🔿		

Table 5.7-1:	Summary of neurotoxicity studies on the active substance
--------------	----------------------------------------------------------

## CA 5.7.1 Neurotoxicity studies in rodents

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the Monograph and the baseline dossier of hiacloprid.

## CA 5.7.2 Delayed polyneur pathy studies

Not necessare, since this coprid is no or monophosphate.

However, since chicken is the species used for delayed neurotoxicity studies, the following publication on histopathological alterations in chicken after oral subacute treatment with thistopria was reviewed for its relevance concerning delayed neurotoxicity.

BAYER Bayer CropScience

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Publication(s)	
Report:	6; ; ; ; ; 2010; M-4376 2-
Title:	01-1 Histopathological alterations induced after oral sub acute thiacloprid toxicity in <i>Gallus domesticus</i> Veterinarski Arhiv 80 (5), 673-682, 2010 M-437662-01-1 None Deviation(s): not applicable no I. Materials and methods Alanto 240 SC not reported not reported pot reported not reported pot r
Reference:	Veterinarski Arhiv 80 (5), 673-682, 2010 A
Document No.:	M-437662-01-1
Guidelines:	None
	Deviation(s): not applicable $\sqrt{2}$
GLP:	no A A A A A
	I. Materials and methods
A. Materials	
1. Test material:	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Description:	
Lot/Batch no:	
Purity:	
Stability of test comp	botha: Anot reported, but should be given, since the formulation is
<b>A</b> W I · I · · · · · · · · · · · · · · · ·	itrols: Callus domesticit
2. Vehicle and positive con	itrois: venicle: distilled water
3. Test animals:	
Species:	Gallus domesticus
Strain:	Gallus domesticus Mot reported 1 1/2 gears
2. Vehicle and positive con 3. Test animals: Species: Strain: Age: Sex: Weight at dosing! Source: Acclimatisation period Diet:	Galius domesticue not reported 1 ½ gears females not reported not reported D days standard feed, <i>ad libitum</i> ; mineral mixture, Vimeral, coordiostat amprolium hydrochloride and anti-stress vitamins were provided to the hens before start of treatment water, <i>ad libitum</i> ; in pens at the layer house of a poultry farm
Sex:	the features of the second sec
Weight at dosing?	by the reported of the second
Source:	not reported
Acclimatisation perio	od: S D days
Diet: 🔊 🖒	standard feed, ad libitum; mineral mixture, Vimeral,
A Ö	coccidio and anti-stress
	Q Aritamins were provided to the hens before start of
	→ ^v ^v ^v treatment
Water:	ن المعامر (Water, ad libitum;
Housing	I solve the layer house of a poultry farm
D. Study design and include	
1. Animal assignment and	traitment:
Dose: 5	0-10 mg/kg bw/day thiacloprid
Application route	oral gavage
Duration:	7, 14, 21 and 28 days
Group size:	control groups (I, II, III): 4
	thiacloprid groups (IV, V, VI, VII): 6

Document MCA: Section 5 Toxicological and metabolism studies	
Thiacloprid	

Application volume:	not exactly reported, administration with a 2 mL syring
Termination:	control groups I, II, III: days 0, 14 and 28, respectively
	thiacloprid groups IV, V, VI, VII: days 7, 14, 21, 28
Observations:	gross pathology, histopathology (liver, heart, Kidney, brain,

lung, intestine and ovaries)

#### II. Results and discussion

#### A. Gross pathological findings

confecutive days in Gallus Repeated oral administration of 10 mg/kg/day thiselopris for 28 domesticus resulted in significant changes in the gross morphology of light, lungs and intestine but no alterations in the kidneys, brain, heart and ovaries. The severity of liver fordings depended on the number of treatment days.

#### **B.** Histopathological findings

Histopathologically significant alterations in the liver were observed, such as mild fatty changes, congestion and degeneration of hepatocytes. Alterations in the histoarchitecture of the kidneys included marked congestion, tubular cell degeneration and sloughing of epithelial cells. The cerebral hemisphere revealed changes comprising of mid neuronal degeneration, with surrounding glial cells, satellitosis and vacuedation. Wild congestion and haemorrhage was observed in the lungs and myocardial tissues following oral administration of thracloprid. No adverse effect on the ovarian histoarchitecture and thus the reproductive performance of Gallus domesticus was seen.

## III. Conclusion

The authors concluded that the cloprin is of moder are risk on Gallos domesticus.

BCS conclusion: With regard to delayed near otoxicity in hens this oral subacute study revealed only supplemental information because the focus of the study was general toxicity and not neurotoxicity There was no assessment of neurotoxic signs (motor activity, etc) and no details on the grade of a possible neuron@degeneration were provided (no histopathological investigation of the spinel cord or of peripheral nerves for axonal degeneration and demyelination were conducted). The results do not change existing endpoints.

The reliability evaluation is given below

	^{SK} limisch evaluation
Reliability of study;	Reliable with restrictions (Klimisch code 2)
Comment on reliability?	- only one dose tested
	- no signs of toxicity were reported
	- no assessment of neurotoxic signs (motor activity, etc), no
Ŭ.	details on the grade of neuronal degeneration were provided (no
	histopathological investigation of the spinal cord or of



**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

	peripheral nerves for axonal degeneration and demyelination).
Relevance of study:	Not relevant for the endpoint delayed neurotoxicity, since
	the investigations needed for the assessment of delayed in the second seco
	neurotoxicity were not investigated in this study.

#### CA 5.8 Other toxicological studies

#### CA 5.8.1 **Toxicity studies of metabolites**

A summary of the toxicological studies on several metabolites

#### Summary of studies with metabolites

s provided betow: s several plant and for During the previous EU review, the toxicological properties of several plant and or soil/groundwater metabolites (YRC 2894-amide (M92), XRC 2894-sulforic act (M36), and YRC2894-sulfonic acid amide (M34)) had already been evaluated based on Audies on acufe oral toxicity in rats, genotoxicity and liver enzyme induction in tors.

In addition, new studies on 6-chlokonicofinic acid (M03), YRC 2894 sulfonie acid (M30), sulfonic acid amide (M34) and thigcloprid-thiadiazine (Z5) on acute oral toxicity, genotoxicity, steroidogenesis in vitre or liver enzyme induction in rats are now available or were conducted, respectively. With regard to the invitro steroid genesis assays on the metabolites thiacloprid was tested in parallel again in ordered be able to compare the results obtained with the metabolites with those of the parent compound. The results of all available studies on the above mentioned metabolites are provided in the following paragraphs.

#### Summary of studies with this cloprid-amide (M02)

For the plant metabolite this sprid amide (M02), which is also a postulated intermediate in rat metabolism, an acute oral toxicity study in rat and an Ames test have been conducted.

The acute or toxicity study revealed an LD₅₆ 2000 mg/kg bw showing that M02 is of less acute toxicity than thiacloprid. There was no indication for point mutations in the bacterial reverse mutation test.

Study	Dose levels / concententions tested	Result	Reference
	7500-2000 mg/kg bw/day	$LD_{50} > 2000 \text{ mg/kg bw}$	, 1995 M-000765-01-1
Bacternal reverse mutation assay (S. Asphimutaum TA1535, TA100, TA1537, A98, TA102)	16-5000 μg/plate (+/- S9 mix)	Negative (+/- S9 mix)	, 1995 M-000733-01-1

Table 5.8.1-1: Summar of studies with this loprid-amide (M02 / KKO 2254)

bw: body weight



#### Summary of studies with YRC 2894-sulfonic acid / sulfonic acid Na-salt (M30)

The groundwater metabolite YRC 2894-sulfonic acid, which is also a postulated intermediate in rat metabolism, has been characterized toxicologically in an acute oral toxicity study in rat, a set of 3 *in vitro* genotoxicity assays and a 7-day dietary study on liver enzyme induction in rats. In addition *n new in vitro test on steroidogenesis has been conducted*.

The metabolite has an acute oral  $LD_{50} > 2000 \text{ mg/kg}$  by and is therefore less acutely to the that this cloprid. YRC 2894-sulfonic acid did not induce mutations in bacteria and manipulation cells and displayed no clastogenic potential in mammalian cells *in vitro*. Thus, YRC 2894-sulfonic acid is of considered to be non-genotoxic.

Furthermore, YRC 2894-sulfonic acid did not induce liver enzymes in female cats after seven days of dietary exposure with 1000 ppm. An *in vitro* H295R steroidogenesis assay did not give any indication for an effect on estradiol and testosteroire secretion and, hence, on steroidogenesis.

Study	Dose levels / ~ ~	Result of S	Reference
			° M
Rat	2000 mg/kg bw/day 👸 🎾	LD56 2000 mg/kg w	, 1996
Acute oral (fasted)			M-000811-01-1
Bacterial reverse mutation as	16-5000 pg/plate	Negativo	, 1995
(S. typhimurium TA1535, TA100,	(+/- <u>S9 mix</u> ) 2	Negativo (+/- S9 mix)	M-000777-01-1
TA1537, TA98, TA102)	(+/- S9 mix)		
Mammalian cell gene Butation	133-3200 µg/mL	Negative	, 2003
test (Chinese hamster V79 Ms)	(P-S9 mix) ~ S	(+/- S\$(mix)	M-110485-01-1
Mammalian chromosome	800-1600-3200 µg/mL	Negative 💞	, 2003
aberration test (Chinese hangster V79 cells)	(+/-S9  mfx)	$(\mathbf{G}^2 \cdot \mathbf{S9} \cdot \mathbf{n} \mathbf{x})$	M-110494-01-1
Rat, 7-day oral (diet), assessment		no liver enzyme	,
of liver enzyme induction		induction	,
			, 2003 M-103210-01-1
In vitro H295R steroidogenesis		no effect on	, 2014
assay 🦓 🔍 🔊		steroidogenesis	M-490179-01-1

Table 5.8.1-2:	Summary of studies	with	YRC 289	42sulfonic	acidisu	lfonic	acid Na-	sält (M,	30)*
	·		104		. 🔍	~ //	$\alpha$		

*: New studies, i.e. studies that were not previously submitted, are written in bold and italic bw: body weight

## Symmary of studies with VRC 2894-sulfonic acid amide (M34)

The toxicological properties of the groundwater metabolite YRC 2894-sulfonic acid amide have been investigated in an acute oral toxicity study, a set of 3 *in vitro* tests on genotoxicity and a 7-day dietary study in rate on liver enzyme induction. *In addition, a new in vitro steroidogenesis assay has been conducted.* 

With a LD₅₀ S2000 mg/kg Dw YRC 2894-sulfonic acid amide is of less acute toxicity than the parent compound miacloprid.

In a set of genotoxicity tests M34 did not induce point mutations in bacteria and mammalian cells. Furthermore, there was no evidence of a clastogenic potential in mammalian cells *in vitro*. Thus, YRC 2894-sulfonic acid amide (M34) is considered to be non-genotoxic. Furthermore, YRC 2894-sulfonic acid amide showed no liver enzyme induction after dietary exposure with 1000 ppm for 7 days in female Wistar rats. An in vitro H295R steroidogenesis assay did not give any indication for an effect on steroidogenesis. 

#### Table 5.8.1-3: Summary of studies with YRC 2894-sulfonic acid amide (M34)*

Study	Dose levels /	Result	Reference
Rat Acute oral	2000 mg/kg bw/day	LD ₅₀ \$2000 mg/kg bo	, 2003 ₩-110389-01-₩
Bacterial reverse mutation assay ( <i>S. typhimurium</i> TA1535, TA100, TA1537, TA98, TA102)	16 - 5000 μg/plate (+/- S9 mix)	nogativê +/- S9 mix) 2 6	M-110534-01-1
Mammalian cell gene mutation test (Chinese hamster V79 cells)	125 - 4000 rg/mL (+/- S9 rhix)	negatives (4/- S9 mix)	, 200 M-110532zQY-1
Mammalian chromosome aberration test (Chinese hamster V79 cells)	250-500-2000-4000 (bg/mL) (+/c \$9 mix)	negative Č (* S9 mos) Š	, 2003 M-110318-01-1
Rat, 7-day oral (diet), assessment of liver ezyme induction		no lixer enzyme	, 2003 M-103210-01-1
In vitro H295R steroidogenesis assay	10 ⁴ - ⁻ 10 ¹⁰ μM	no effects on Steroidogenesis	, 2014 M-490176-01-1

*. New studies, is studies that were not previously submitted, are written in hard and italic bw: body weight

Summary of studies with 6-chloronicotinic acid (M03)

An acute oral toxicity study and an Americest are available on the rat, plant and soil metabolite 6-chloronicotinic acid.

An acute oral toxicity study in rats with an  $ED_{50} \ge 5000$  mg/kg bw revealed that 6-chloronicotininc acid has a lower acute deal toxycity than the parent compound thiacloprid. Furthermore, 6chloronicotininc acid wasnegative for point mutations in the bacterial reverse mutation test.

Table 5.8.1-4: Summary of studies with 6-chloronicotinic acid*

A A	Doselevels concentrations tested	Result	Reference
	(2000, 3000 mg/kg bw	LD ₅₀ > 5000 mg/kg bw	& , 1997 M-195930-01-1
Bacterial reverse mutation tssay S. typhimurum TA1535, TA100, TA1537, PA98 E. coli WP2 uvrA	313 - 5000 μg/plate (+/- S9 mix)	negative (+/- S9 mix)	& , 1997 M-195932-01-1

*: New studies, i.e. studies that were not previously submitted, are written in bold and italic bw: body weight

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### Summary of studies with thiacloprid-thiadiazine (Z5)

The toxicological properties of the groundwater metabolite thiacloprid-thiadioxine were assessed in an acute oral toxicity study, three in vitro genotoxicity studies as well as in an in witro steroidogenesis assay and a study on liver enzyme induction in male rats Thiacloprid-thiadiazine has a low acute oral toxicity with a  $LD_{50} > 2000 \text{ mg/kg by}$ . No mortalities or any signs of toxicity were observed in this study.

There was no evidence for point mutations in the bacterial reverse mutation assay as well and the mammalian cell gene mutation test. The micronucleus test in hyman symphocytes gave wo indication for a clastogenic potential. Thus, Thiacloprid-Afriadiazine is considered to be yonmutagenic or non-clastogenic, respectively.

Thiacloprid-thiadiazine also has no effect on steroidogenesis in the invitro H295K steroid ogenesis assay and does not lead to liver enzyme induction after dietary administration of 1000 ppm for 7 days in male rats.

	<u>n v r r n</u>		6
Study 🎝	Dose levels	Result	Reference
Rat 🖉	105-550-2000 mg/kg bw/day	LD50 > 2000 mg/kg bw	, 2014
Acute oral (up-and-down 🔊 🚊			M-485201-01-1
method) 🔬 🖧			
Bacterial reverse mutation assay	3-5000 useplate Gate 5 ucorportition	pegative 🔍 😽	,
(S. typhimurium TAS35, TA100,	incorporation, . 9	T+/- S& mix) 🖉	2014
TA1537, TA98, Ta102)	33-5000 µg/plate (pre ² » inconstion [®] » (+/- S9 mix) ~		M-478073-01-1
	incabation 🖉 🔊 🏷		
	(+/- S9 mix)		
Mammalian cell gene mutation	175-2890 μg/mL	negative	, 2014
test (HPRT / Chinese homster	(+/- \$9 mix) 6 0 4	(±/©\$9 mix)	M-484705-01-1
V79 cells)		A A A A A A A A A A A A A A A A A A A	
In vitro micronucleus test	294.3-2760 µg/mL (+ S9 mix)	negative	,
(human lymphocytes) 💭 🔊	294.3-2760 µg/mL (+ \$9 mix) 901.22760 µg/mL (= \$9 mix)	(+/- S9 mix)	2014
			M-486183-01-1
7-day dietary study on liver	0000 ppp in the diet	no liver enzyme	, 2014
enzyme induction	(87.40 g/kg bw/day)	induction	M-495981-01-1
In vitro H295R steroidogenests	10 ⁻⁴ - 10 ⁻⁰⁰ µM	no effects on	. 2014
assay of		steroidogenesis	M-490181-01-1
		, , , , , , , , , , , , , , , , , , ,	

Table 5.8.1-5: Summary of studies with this popridethiad

*: New studies, i.e. studies that were not previously submitted, are written in bold and italics bw: body weight 🔬

### Additional H295R steroidogenesis assay with thiacloprid

For the evaluation of possible effects of the metabolites on steroidogenesis in comparison with the parent compound, an additional H295R steroidogenesis assay was conducted in parallel with thiacloprid.

Thiacloprid caused a slight, but statistically significant treatment-related reduction in both testosterone and estradiol secretion in the H295R steroidogenesis assay at the highest concentration tested ( $10^4 M$ , equivalent to  $100 \mu M$ ).

#### Table 5.8.1-6: Summary of studies with thiacloprid parent compound Reference Résult Study **Dose levels** 10⁻⁴ - 10⁻¹⁰ иМ In vitro H295R steroidogenesis Slight statisticetly significant, 🦉 reduction of festosterone and assay estradiol secretion at the 🌋 highest concentration (104 M tested. 🖉 *: New studies, i.e. studies that were not previous YRC 2894-sulfonic acid Na-salt **Report:** KCA, Evaluation of YRC2894 sulfond Title: steroidogenesis assay Report No.: Document No. PS Seros 890, Endocrine Disruptor Screening Program Guidelines: gordeling, No. \$90.1550: Steroidog@esis (Human Cell Line -H295R) (Øctober 20 Deviation(s): none GLP: L Materials and method Materials 289 Sulfopic acid Na-salt 1. Test material: Lot/Batch no: white solid 2_2 Purity: Stability of test compound: 2. Vehicle and positive controls: 3. Test organism / cells: guaranteed for study duration; expiry date: 2015-02-25 vehicle: 0.1% dimethylsulfoxid (DMSO) positive controls: Forskolin – for sex steroid hormone biosynthesis stimulation Prochloraz – for sex steroid hormone biosynthesis inhibition Species: human Cell line adrenal carcinoma immortal cell line H295R

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Source:	(Batch No. 。
	58660579)
4. Culture maintenance:	
Medium:	DMEM:F12, supplemented with FS+ premix and 2.5%
	Nu-Serum I and 0.1 % Penicillin-Streptomychin
Conditions:	$37^{\circ}C \pm 1^{\circ}C$ and $5\% CO_2$
B. Study design and methods	
1. Test conditions:	
Cell isolation:	DMEM:F12, supplemented with $FS$ + premix and 2.5% Nu-Serum I and 0.1 % Penicillin-Streptomychi $37^{\circ}C \pm 1^{\circ}C$ and 5% CO ₂ H295 Focells isolated from basks of $\geq 750\%$ confluence DMEM: E12, supplemented with ITS $\oplus$ premix and 2.5 % No-serum I and 0.1 % Penicillin-Streptomycin
Medium:	DMEM: E12, supplemented with ITS premix and 2.5 %
	Nu-serum I and 0.1 % Penici Pin-Streptomycin
Test substance concentrations:	YRC2894-Sulfonic acid Ma-salt: 50 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁶ , 10 ⁻⁷ , 10 ⁻⁸ ,
	$10^{-9}$ , $10^{-1}$ M; $5^{-1}$ M;
	Forskolin 0.03, 03, 0.3, 7, 3, 10 µM;
	Prochlogaz: 0.00, 0.03, 0.1, 0, 9, 1, 3, 9M
Cell density:	Prochloraz: 0.00, 0.03, 0.1, 0, 9, 1, 3, pM H295R cells seeded into 24 well plates at a density of 0.3, 10° cells/mL and a final volume of 1 mL/well and
Cell density:	0.3 10° cells/mL and a thral volume of 1 mL/well and
Group size:	Altured for approx. 24 h prior treatment
Group size: $\mathcal{J}$ $\mathcal{O}$ $\mathcal{J}$	3 wets per compound/vencle control, concentration and
	treatment period
Incubation time	
Incubation compatitions	$37_{+} = 4^{\circ}C$ and $5\% OO_2$
2. Sample collection and analysis:	
2. Sample collection and analysis: Sampling: Analyses:	vour allquots of culture medium / well
Analyses: S	using specific enzyme-immunoassay kits (Enzo Life
	ScienceInc., USA), method detection limits: 5.67 pg/mL
	for testosterone, 14 pg/mL for estradiol
	esults and discussion
A. Interference evaluation	four arquots of culture medium / well using specific enzyme-immunoassay kits (Enzo Life Science Inc., OSA), method detection limits: 5.67 pg/mL for testosterone, 14 pg/mL for estradiol esufts and discussion
YRC2894-sulfonic acid Na-salcdid not int	ererer with the EIA kit for testosterone or estradiol at any
concentration valuated.	Q°

acid Sa-salt when Saluated using the XTT method. In addition, staining of the cells with trypan blue at the end of the evaluation demonstrated the viability of the cells following treatment with 10⁻⁴ M to 10⁻¹⁰ MOYRC 2894-sulfonic acid Na-salt.



Thiacloprid

### **C. Hormone evaluations**

### Testosterone concentrations

The variability (CV) between the runs for the solvent controls was slightly outside the grideline recommendation (~32% compared to the recommended guideline of 30%). YRC2894-sulfonic acid Na-salt was considered not to interfere with testosterone secretion in the H295R steroidogenesis assay as no concentration-related effects could be established in any of the three evaluations of the test item. The slight changes recorded for testosterone secretion ranged from -21.5% at  $10^{-8}$  M in the first evaluation to +8.6% at  $10^{-4}$  M in the third evaluation. These changes were of considered to be within the normal variability of the assay.

### Estradiol concentrations

The variability (CV) between the runs for the solvent controls was within the guideline recommendation (~14 % compared to the recommended guideline of 30%).

YRC2894-sulfonic acid amide was considered not to interfere with estradiol secretion in the H295R steroidogenesis assay. The slight changes recorded for estradiol secretion ranged from -233% at  $10^{-8}$  M to +12.5% at  $10^{-4}$  M in the same evaluation. These changes were considered to be within the normal variability of the assay.

### Table 5.8.1/14-1: Mean hormone concentrations, standard deviation and % change in comparison to controls after incubation of H295R cells with YRC2894-sulfonic and Na-salt for 24 h (mean of three evaluations)

	Te	støsterone (pg/	ally N	S & E	spradiol (pg/mI	L)
sulfonic acid Na-salt conc.	Mean V		% change	Mean .	SD	% change
DMSQ	8880.9	≪2826.06	ð ^{(0*}	@ 201.20	28.61	
10 ⁻¹⁶ M	7,920.1	5 1999.44	<ul> <li>-10.8% &lt;</li> </ul>	179.3	25.18	-14.9%
10 ⁻⁹ M	~§#13.9 ~	2420.90	<b>\$5.3%</b>	≈190.1	24.82	-5.5%
10 ⁻⁸ M	\$\$\ 7518-\$\ \$	£1867,02	<b>≪</b> -15.3%	0 [°] 170.8	25.88	-15.1%
10 ⁻⁷ M	8609.7	2489.93	⁷ ₅ 29% 0	195.9	19.93	-2.6%
10 ⁻⁶ M	8559.0	2218.32	\$3.6%°	204.0	18.84	+1.4%
10-5 00	904 <b>0</b> 24	2471 <b>®</b> 3	+1,8%	189.9	26.36	-5.6%
10 ⁻⁴ M	9429.6	2796.10	+62%	214.2	22.65	+6.5%

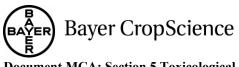
Statistical evaluation conducted on overall data on D? Data have been rounded up.

D: standard deviation conc.: concentration SD:

**Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

### Table 5.8.1/14-2: Mean fold change and standard deviation of hormone concentrations relative to DMSO controls after incubation of H295R cells with YRC2894-sulfonic acid Na-salt for 24 h (mean of three evaluations)

YRC2894-sulfonic acid Na-	Testoste	rone	Estradiol SD		
salt concentration	Mean fold change	SD	Mean fold change	SD SD	
10 ⁻¹⁰ M	0.89	0.23	ר.85	~ 0.13° ×	
10 ⁻⁹ M	0.95	0.27	Ø 0.94 Ö	<u></u>	
10 ⁻⁸ M	0.85	LQ.21	0.85	0.13 0.13	
10 ⁻⁷ M	0.98	0.25	Q 0.97 K	0.0	
10 ⁻⁶ M	0.96 🐇	0.25		<b>9</b> .09	
10 ⁻⁵ M	1.02 📡	<u>م</u> ر 0.23 م مراجع 0.28 م	× 1094 ~	°≫ 0.13 [∞]	
10 ⁻⁴ M	1.06	× 0.3 C	Ø Ø1.06	S AN L'	


SD: standard deviation Data have been rounded up.

Positive controls The comparison of the data generated in the concurrent positive control study (M-490174-01-1) with the guideline criteria are given in the table below. These data indicate that, with the exception of the testosterone increases induced by forskolin in the first and fourth evaluations, which were < 2-times the solvent control, all other criteria were met, it should be borne in mind that steroidogenesis in the \$1295 R assay is denamic and the lingited increase in testosterone secretion following forskolin treatment could, therefore, be a reflection of the marked increase in 29" to 244-fold increase compared to 25-fold increase proposed in the estradiol secretion (~ guideline)

#### Mean horizone concentrations and standard deviation of concurrent positive Table 5:8.1/14-3: controls (mean of four evaluations) S

Ľ Ø

	Man A C Man A C C C C C C C C C C C C C C C C C C C	Estr	adiol
, d	Y AN A A	SD Mean	SD
Minimum Basal	Pevaluation		
Production (pg/mL) (Testosterone:	2 nd evaluation		
(Testostetone: 500 pg/mL; Estradiol: 40 pg/mL)	Pevaluation		
Estractiol: 40 pg/mL)	A evaluation $\sim$		
	Overall &		



### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

		Testosterone	Estradiol
Basal Production	1 st evaluation	2133-times MDL	19-times MDL
(Testosterone :≥ 5-times	2 nd evaluation	1343-times MDL	18-times MDL
MDL; Estradiol: $\geq$ 2.5-times	3 rd evaluation	1218-times MDL	21-times MDL
MDL)	4 th evaluation	1595-times MDL	A 30-times MDL
	Overall	1572-times MDL	C 22-times MDE
Induction (10 µM	1 st evaluation	1.8-times SC	41 times SC
Forskolin)	2 nd evaluation	2.1 times SC	H.3-times SC O
(Testosterone: $\geq$ 2-times SC;	3 rd evaluation	2.0-times SC	$2^{\circ}$ $28.1$ -filmes SC
Estradiol: $\geq$ 7.5-times	4 th evaluation	1.9-times SQ >>	23.4-times SC
SC)	Overall	1 & times SC	2.9-times SC
Inhibition (1 $\mu$ M Prochloraz) (Testosterone: $\leq 0.5$ - times SC;	1 st evaluation	A . 10.04-tindes SC Q	Complete inhibition
	2 nd evaluation	0.05-times SC	Complete inhibition
	3 rd evaluation	6 0.05-times/SC	Complete inhibition
Estradiol: $\leq 0.5$ -times	4 th evaluation	0 0.06-times SC 5	Complete inhibition
SC)	Overall 👋 🧳	0.05 times So	Complete inhibition

MDL: minimum detection limit (\$67 pg/mL for testosterone, 14 pg/mI@or estradiol) X,

SC: solvent control

Note: Four positive control evaluations were conducted to cover the assessment of several test items. Evaluations 1 - 3 were conducted concurrently with the three evaluations of PRC2894-sulfonic acid Na-salt.

m

Į, II. Conclusion Overall, YRC2894-sulfonic acid Na-salt, tested at concentrations between 10-10 M and 10-4 M, was considered no to interfere with tostostatione of estration in the H295R steroidogenesis assay.

YRC 2894-sulfonic acid ami

;20014; M-490176-01-1 **Report:** Evaluation of YR 2894 Pulfonic acid amide in the H295R Title: steroidogenesis assay 🔬 12331 Report No. Dogument No .: S. 90176-091-1 Guidelines: US/EPA , OPPTS Series 890, Endocrine Disruptor Screening Program dest gudeline QNo. 890.1550: Steroidogenesis (Human Cell Line -Jules No Juley SR (October 2 Deviation (8): none H295R) (October 2009) I. Materials and methods A. Materials 1. Test material: YRC2894-sulfonic acid amide Description: white solid

BAYI

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Lot/Batch no:	SES 12253-5-4
Purity:	97.7%
Stability of test compound:	guaranteed for study duration; expire date: 2014-04911
2. Vehicle and positive controls:	vehicle: 0.1% dimethylsulfoxid (DMSO)
	Forskolin – for sex steroid hormone biosynthesis
	stimulation V
	stimulation Prochlorazy – for sex steroid hormone biosynthesis
	inhibition & & &
3. Test organism / cells:	
Species:	haman of the for the for the second s
Cell line	adrenar carcinoma immortal cell bae H293R
Source:	Batch No.
	(58660579) J J J J J J J J J J J J J J J J J J J
4. Culture maintenance:	
Medium:	DMEM 512, supplemented with ITSP premix and 2.5%
	Nu-Serum I and 0.1 Pentoillin-Streptomycin
Conditions:	$37^{\circ}C \pm 1^{\circ}C$ and $5\% CQ_2^{\circ}$
B. Study design and methods	
<b>1. Test conditions</b>	
Medium v v v v v	DMEM: F12 supplemented with ITS + premix and 2.5 %
	Nueserum and 0.1 % Penicillin-Streptomycin
Test substance concentrations:	YRC2894-suffonic actid amide: 10 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁶ , 10 ⁻⁷ , 10 ⁻⁸ ,
	$710^{-9}$ $10^{-10}$ M (equivalent to 100 - 0.0001 $\mu$ M)
	100 μM and 250 μM for cytotoxicity assessment
	Forskelm: 0.93, 0.1, 0.3, 1, 3, 10 μM;
	ProcΜoraz: 0.01, 0.03, 0.1, 0,3, 1, 3 μM
Celkdensity:	H295R cells seeded into 24-well plates at a density of
	H295R cells seeded into 24-well plates at a density of 0.3x10 ⁸ cells/mL and a final volume of 1 mL/well and cultured for approx. 24 h prior treatment
Group size:	3 wells per compound/vehicle control, concentration and
	treatment period
Celledensity:	48 h
Incubation Conditions:	$37^{\circ}C \pm 1^{\circ}C$ and $5\% CO_2$
2. Sample collection and analysis:	
Sampling:	four aliquots of culture medium / well
Ânalyses:	using specific enzyme-immunoassay kits (Enzo Life
	Science Inc., USA)., method detection limits: 5.67 pg/mL
	for testosterone, 14 pg/mL for estradiol



**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Replicates:

3 per dose level

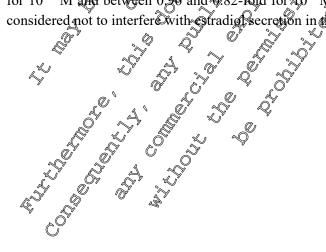
### **II. Results and discussion**

### A. Interference evaluation

YRC2894-sulfonic acid amide did not interfere with the EIA kit for testosterope or estradiol at any for testosterope or es

### **B.** Cytotoxicity

**b. Cytotoxicity** Cytotoxicity was not observed following treatment of the H295R cells at 100 and 250 µM YRO28 sulfonic acid amide when evaluated using the XTT method. In addition, stanning of the cells with trypan blue at the end of the evaluation demonstrated the viability of the cells following treatment with 10⁻⁴ M to 10⁻¹⁰ M YRC 2894-sulfonic acid amide.


C. Hormone evaluations <u>Testosterone concentrations</u> The variability (CV) between the runs for the selvent controls ithin the @guideline recommendation (~22% compare  $\hat{Q}_0$  the recommended guide  $\hat{Q}_0$ ). The effect of YRC2894-sulfon acid on testosterope secretion ranged between 46.6% at 10-10 M in

the first evaluation and -18.2% at 10⁻⁷ M in the second evaluation. In the absence of any concentrationrelated responses (either for each individual evaluation or overall), NRC2894-sulforic acid amide was considered not to interfere with testosterone secretion in the H295R steroid ogenesis assay.

### Estradiol concentrations

solvent controls was within the guideline The variability (CV) between the runs for the recommendation (~5,8% compared to the recommended guideline of 30%).

No concentration-related effects could be established for VRC2894-sulfonic acid amide in any of the three evaluations. The marginal though sortistically significant reduction in estradiol secretion at the two lowest concentrations tester (10⁴⁴ M and 10⁵ M), were considered non-relevant due to the variability observed among the three valuations for each concentration (between 0.98 and 0.75-fold for 10⁻¹⁰ M and between 0, 96 and 9,82-fold for 10⁻⁹ M). YRC2894-sulfonic acid amide was therefore considered not to interfere with stradig secretion in the H295R steroidogenesis assay.



### Table 5.8.1/15-1: Mean hormone concentrations, standard deviation and % change in comparison to controls after incubation of H295R cells with YRC2894-sulforing acid amide for 24 h (mean of three evaluations)

YRC2894-	Те	stosterone (pg/	mL)	F	Stradio (pg/m)	
sulfonic acid amide conc.	Mean	SD	% change	Mean	SD	L) & change
DMSO	9173.1	2029.28	(	z 228.3	13.35 🛒	
10 ⁻¹⁰ M	8963.4	2754.66	-2.3%	202.7* Q	21.86*	\$11.2%
10 ⁻⁹ M	8350.0	2261.35	-9.0%	200.1%	23.60	Q -12, Q √
10 ⁻⁸ M	7989.8	1732.03	-12.998	212.7		-6.8%
10 ⁻⁷ M	7810.1	1738.18	-14.9% °	210.3 X	@+3.67	<u>,</u>
10 ⁻⁶ M	8270.6	1845.21	Õ-9.8%€	209,25	or 24.75	-8.4%
10 ⁻⁵ M	8576.4	2031.23	-6 <b>0</b> %~	228,0	10.51 O	anc of
10 ⁻⁴ M	8181.8	1864.94	<u>,</u> ~₩0.8%	216.4	×~23.22	-5.28

Statistical evaluation conducted on overal@data.only. Data have conc.: concentration

standard deviation SD:

significantly diferent from controls p *:

nc: no change compared to controls

#### Table 5.8.1/15-2: Mean fold change and standard deviation of hormone concentrations relative to DMSO controls after incubation of H295R cells with YRC2894-sulfonic acid appride for 24 h (mean of three evaluations) $\bigcirc$ L

YRC2894-sulfourc acid	D L Testorte	rone S	Estradi	ol
amide concentration	Mean fold change	, √ % <b>D</b> , ≦	Mean fold change	SD
10 ⁻¹⁰ M		<b>9</b> .30	د (0.89	0.10
₩ ⁰⁻⁹ M		0.25	0.88	0.10
10 ⁻⁸ M	<u></u>	0.19	0.93	0.07
10 ⁻⁷ M	N 5 0.85	00.19	0.92	0.06
10 ⁻⁶ M	× 5 × 00.90 ×	S 0.20	0.92	0.11
100 M C	0.95 × 0.95	× _0.22	1.00	0.09
10 ⁻⁴ M		©0.20	0.95	0.10

SD: standard deviation Data have been rounded up

### Positive control

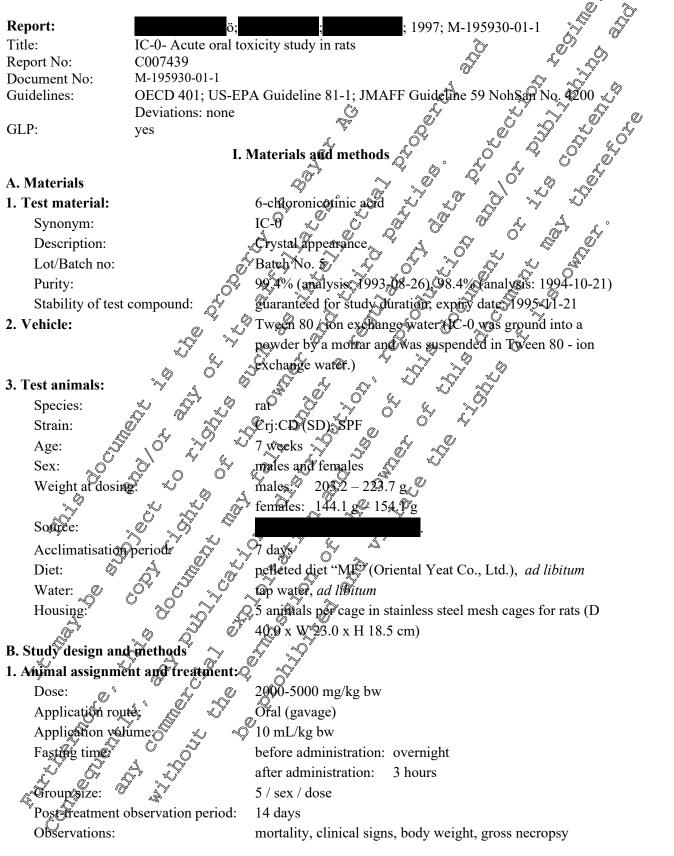
The comparison of the data generated in the concurrent positive control study (M-490174-01-1) with the grideline criteria are given in the table below. These data indicate that, with the exception of the testosterone increases induced by forskolin in the first and fourth evaluations, whick were 2-times the solvent control, all other criteria were met. It should be borne in mind that steroid ogenesis in the H295R assay is dynamic and the limited increase in testosterone secretion following forskolin treatment could, therefore, be a reflection of the marked increase in estradiol secretion (~23- to ~44-fold increase compared to 7.5-fold increase proposed in the guideline).

### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

controls (mean of four evaluations)							
		Testost	erone	🏷 Estra	idiol 🖉 👗	,	
		Mean	SD	Alean	SD, S		
Minimum Basal	1 st evaluation	12093	1224.5	272	5 ⁵⁷ 2 <b>2</b> 94	1	
Production (pg/mL)	2 nd evaluation	7616	چ 458.1	ر 250	×3.8 ~	a	
(Testosterone:	3 rd evaluation	6905 🧳	⁷ 398.7 Q	298	\$ 16.4	5	
500 pg/mL; Estradiol: 40 pg/mL)	4 th evaluation	9041	891.2	420	Q 2008 V	/	
Estradioi: 40 pg/IIIL)	Overall	891	2170.8	425 \$ \$10 5	70.4		
		Testost	eron 🖉 🏷	🖉 Æstra			
Basal Production	1 st evaluation	0 213 <b>%</b> time	seMDL 🔗	To A9-time	s MDL		
(Testosterone : $\geq$ 5-times	2 nd evaluation	nd evaluation , 1943-times MDL			18-times MOL		
MDL;	3 rd evaluation 1218 times MPL			🔊 🖉-time	MDL S		
Estradiol: $\geq 2.5$ -times	4 th evaluation		MDL	30-tip	š MDL		
MDL)	Overativ	1372-time			eş MUDL		
Induction (10 µM	1 st evaluation	2 1.8 ume		~4_04-time			
Forskolin)	2 nd evaluation	2.1-time		44.3-ti@d	es SC		
(Testosterone: $\geq$ 2-times SC;	3 rd evaluation	2.0-tiffe	es SC	28. Patimo	es SC		
Estradiol: $\geq$ 7.5-times	[™] 4 th evaluation	1.9-time		29.4-time	es SC		
SC)	overall.	9-time	SC O K	, ^*∕32.9-time	es SC		
Inhibition (1 µM Prochloraz)	1 st evaloation	0.04-min	es SØ	Complete	inhibition		
	^{2nd} exaluation	0.05×time		Complete	inhibition		
(Testosterone: ≤ 0,5- times SC;	3 ^r Oevaluation	Ø.05-time		Complete	inhibition		
Estradiol: $\leq 05$ -times	4 th evalipation	<u>گُ</u> رُنَّةً 0.06	es SC	Complete	inhibition		
SC)	<b>O</b> verall	0. <b>Q3</b> -time	SSC ~	Complete	inhibition		

# Table 5.8.1/15-3: Mean hormone concentrations and standard deviation of concurrent positive

MDL: minimum detection limit (5.67 pg/mL for test of terrone, 14 pg/mL for estradiol) SC: solvent control


SC: solvent control evaluations were conducted to cover the assessment of several test items. sonducted consurrently with the three evaluations of YRC2894-sulfonic acid Evaluations 1 amide.~C

Overall, YRC2894-sulfonic acude amidé, tested at concentrations between 10⁻¹⁰ M and 10⁻⁴ M, was considered not to interfere with restosterone or estradiol secretion in the H295R steroidogenesis assay.

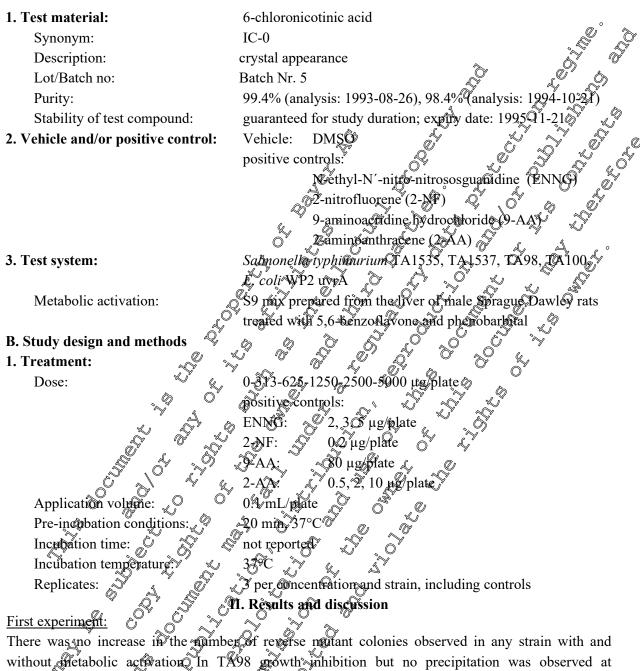


Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

### 6-Chloronicotinic acid



### **II. Results and discussion**


### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

### A Mortalit

Doce	[[OV100	ological	Occurrence of	Time of death	Mortality
Dose (mg/kg bw)	resu		signs		
			Male rats	<u>O</u>	
2000	0 0	) 5			
5000	0 (	) 5	🖓	<u></u>	D, D, J
			Female rats	Ő ^v ×	
2000	0 0	) 5	A C	\$ 5° \$	
5000	0 (	) 5	Q		
			$p_{50}$ : \$\$\star{5000} mg/kg b her = number of an male		
Leport No: Occument No: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Suideling: Sui	did not ca ns signs obse body sei reased on my kg fei creased o creased o crease	ause operations erved in an ght were of day 1 tool rales decr in days 1 tool revealing a fales decr in days 1 tool erveations a for after ac of tool tool of tool (1983); U tool 4200 (1	av animal at any dos observed in 2000 mg ay 2 after the admin eased on day 1 after of after administrat of after administrat the dose levels of <b>WI. Conclusion</b> ute oral administrati	se level. Joy in males. Body istration, and recover administration. Bod ion and recovered th 2000 or 5000 mg/kg on with an LD ₅₀ abo	ered from day 3. ly weights in hereafter. bw at necropsy. we 5000 mg/kg bw 932-01-1
ŏK₽: ∧ v	eŝ				

- A. Materials

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



without metabolic activation. In TA98 growth inhibition but no precipitation was observed in all Salmonella strains at 5000 µg/plate with metabolic activation. Growth inhibition and precipitation was observed in all Salmonella strains at 5000µg/plate with metabolic activation.

### Second experiment.

There was no increase of the bumber of reverse mutant colonies observed in any strain with and without metabolic activation. In TA98 growth inhibition but no precipitation was observed at 5000.0g/plate without metabolic activation.

Br.

### **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Table 5.0.1/1/-1.	Experin		ant counts (me	ali ±5D)		
Dose	<b>S9</b>		S. typhim	<i>urium</i> strain		E Soli
(µg/plate)	mix	TA 1535	TA 1537	TA 98	TA-100	E, coli WP2 uvr.4
Vehicle control	-	$10\pm7.23$	$11\pm2.52$	$24\pm4.36$	127 ± 2.65	19±2,65
Test item 313	_	8 ± 2.65	$14\pm3.21$	$26 \pm 2.31$	116 ± 4.62	17 3.61
625	_	6 ± 1.15	14±5.03	🖉 26 ± 3.61	$109 \pm 9.29$	$22 \pm 4.52$
1250	-	$8 \pm 1.00$	$19 \pm 4.58$	$25\pm2.3$	$135 \pm 4.91$	S 20 ± \$.77 _ €
2500	_	$8 \pm 2.52$	$12 \pm 4.94$	30 ± 2589	° 122 ≠ 91.37	2 <b>4</b>
5000	_	4 ± 1.53	10 - 9.51	10×5.00*	134/± 8,70	$c_1 8 \pm 3 $
ENNG 2	-		4 R°			¥ 445 ¥ 37.87
ENNG 3	_				557 ₽25.0	A L°
ENNG 5	_	496±65.77 🖋		A A		
2-NF 0.2	_	<u> </u>	KN L	s~88 ± 4.58		
9-AA 80	_	O ^V	\$48 ± 26.76 √			<u>i</u>
Vehicle control	+	14 <b>£</b> 0.58 ⊘	20 ± 2.00	40±6.60		≫ 32 ± 12.06
Test item 313	+	$49 \pm 4.16$	$15\pm 2$ 63	47 ± 231	121 7.00	$36\pm3.79$
625	+	[∞] 14 ±€2,00	℃ [×] 14 ±\$3.61 _©	42∜¥1.53	$103\pm9.87$	$28\pm 6.43$
1250	+ %	11±5.51&	1 <b>3</b> ± 1.53	38 ± 2.00	~\$129 ± <b>14</b> .00	31 ± 11.27
2500	Ł	\$\$\vec{2}\pm ± 5.86	$020 \pm 200$	[©] 34 ±⊊.00 ≰	133 9.24	$22\pm4.73$
5000	<u></u>	9 ± 2000*#	Z 10 ±3.04*#5	13 ± 5.51*₽°	90 <u>≠</u> 21.55*#	$28 \pm 10.44 \#$
2-AA 0.5	5 + 0		, <u>,</u>	\$\$54 ± 4.36	Ç	
2-AA 1	, de la companya de	······································			€ 592 ± 23.39	
Z-AA Z	10° + .	184 ± 9.17	164 € 8.39	<u> </u>		
2-AA 40	+ 👟					$663 \pm 13.75$

### Table 5.8.1/17-1: Experiment I: Revertant counts (mean ±SD)

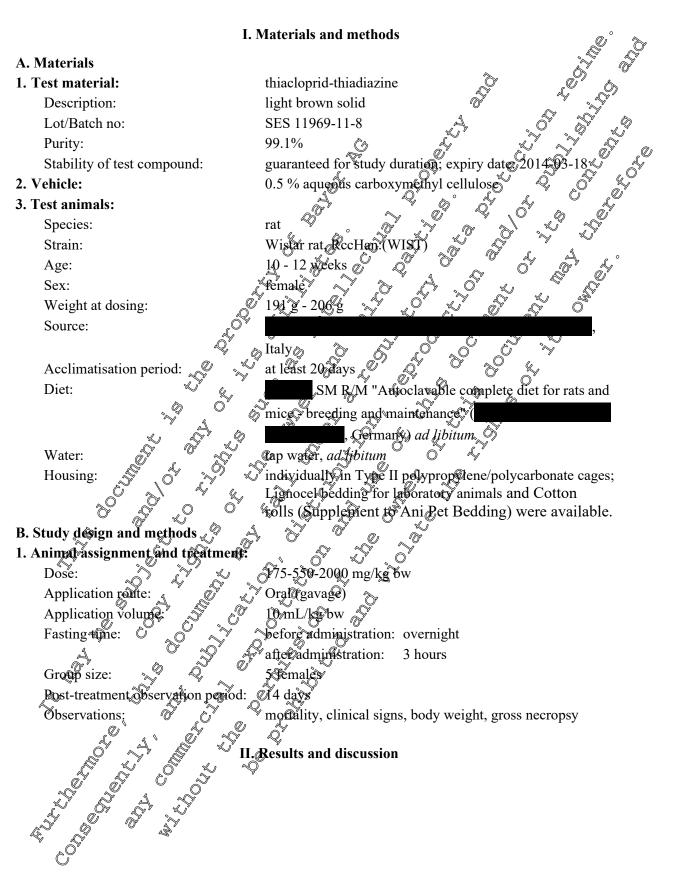
2-AA 10 + 2 2 2 AA ENNG: N-ethyl-N'-nitro-N-nitrosoguanidine 9-AA: 9-aminoactione hydrochloride *: bacterial growth anhibition #: Grecipitation #: Grecipitation *: Construction *: Constr

## **Bayer CropScience** Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

1 abic 5.0.1/1/-2	. Experi	ment II: Rever	tant counts (m	call ±SD)		
Dose	<b>S9</b>		S. typhim	<i>urium</i> strain		E. Eli
(µg/plate)	mix	TA 1535	TA 1537	TA 98	TA_100	Weg uvrA
Vehicle control	-	$12\pm3.06$	$14\pm3.21$	$24\pm4.04$	1分子 ± 2.52	24 ± 2.65
Test item 313	_	9 ± 2.52	$11 \pm 2.00$	$27\pm4.04$	125 ± 16.04	✓ 22,57.02 ¢
625	_	$11 \pm 2.31$	10 ± 3.61		§ 132 ± 4.93	$27 \pm 6.3$
1250	_	$9\pm 6.08$	$13 \pm 5.00$	$25 \pm 1.15$	$138 \pm 500$	\$26±6/11
2500	_	$15 \pm 3.51$	$14 \pm 4.96$	31 ± 8 1/2	134 04.36	20 4.04
5000	_	9 ± 2.52	12 ± 10.73	18 + 7.21*	13Q±8.70	$c_{2}^{23} \pm 3.06$
ENNG 2	_		K, B°			436, 9.07
ENNG 3	_			N A I	© 657 € 25.00¢	A f
ENNG 5	_	516 ± 24.99				
2-NF 0.2	_	Ó		\$1 ± 9 57		
9-AA 80	_	, Ó ^y	\$74 ± <b>40</b> .04			ò
Vehicle control	+	15 #2.08	12±4.62	35±2.52	$120\pm608$	27 ± 5.20
Test item 313	+	1@±4.51	$100 \pm 2$	©43 ± 8062	[©] 124&95.50%	$24\pm1.73$
625	+	≪16±5.20	°S 14 <b>±</b> 3.79	45 £√17.04	$107\pm6.43$	$21\pm4.04$
1250	+ .	P 11 ₽2.52	14 ± 4.16	$39\pm8.24$	√130 ±9,61	$28\pm 6.00$
2500	+	±3,21	$\hat{\mathbf{T}}^{\mathbf{T}} \pm 2 \mathbf{S}^{\mathbf{T}}_{\mathbf{Z}}$	0 39 ±3.21	1140 3.79	$23\pm5.13$
5000	\$ \$ \$ \$ + \$	@2±2;08*#	2 18 ± €04*#<	18±1.15*	114 ± 11.02*#	$28\pm4.58\#$
2-AA 0.5	\$ + 0		~~ <u>~</u>	14,57 ± 14,57	<u></u>	
2-AA 1	<u>, s</u>	× &			$5^{\circ} 652 \pm 20.03$	
2-AA 2	<u>S</u>	201 ± 17.67	148 28.72	<u> </u>		
2-AA 402	+ 🔊	Nº A				$682\pm15.04$

### Table 5.8.1/17-2: Experiment II: Revertant counts (mean ±SD)

ENNG: Avethyl-N'-nitro N-nitro oguanidine Q-AA: \$2-ampoanthracene


- bacterial gowth inhibition 9-AA: 9-aminoacridine hydrochloride 2-nitrofluorene -NŔ:
- precipitation *:

0

6-Chloron cotinic acid is non-mutagenic in this bacterial reverse mutation assay.

Thiacloprid-Thiad	
Ś	$\Delta^{\wedge} = \mathcal{Q}^{\vee} + \mathcal{Q}^{\vee} + \mathcal{Q}^{\vee}$
Report:	x; ; ; 2014; M-485201-01-1
Title:	Thraclopped-thiadiazine - Acute oral toxicity study in rat (Up and Down
Title:	Procedure)
Report No: $\bigcirc$	©₩3/3,50 ² 001P
Document & o:	M-\$5201-01-1
Guidelines.	OECD 425; Commission Regulation (EC) No 440/2008; B.1.TRIS; US-EPA
Õ	712-C-02-190, OPPTS 870.1100;
	Deviations: none
GLP:	yes

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



# **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies**

Thiacloprid

### A. Mortality

### Table 5.8.1/18-1: Doses, mortality / animals treated

Dose (mg/kg bw)	Toxicological result*		Toxicolog result*		gical *	Occurrence of signs	Time of death	Mortanty (%)
				Female rats	4			
175	0	0	1	🖉	Â,	L AY BY		
550	0	0	1	"(	8 ,			
2000	0	0	3	307				
LD ₅₀ : > 2000 mg/kg bw								

1st number = number of dead animals, 2nd number & number of animals with thric signs  $3^{rd}$  number = number of animals used

stration of 17 Thiacloprid-thiadiazine did not cause mort 2000 mg/kg bw to rats.

### **B.** Clinical observations

There were no clinical signs in any animal at any doseder Ö

### C. Body weight

Body weight and body weight gain of thaclopur-thiadiazine treated animals showed no indication of a treatment-related effect.

Ø

### **D.** Necropsy

\$2000 mg/kg bw at necropsy. There were no macr observations at the dose levels of 

Conclusion

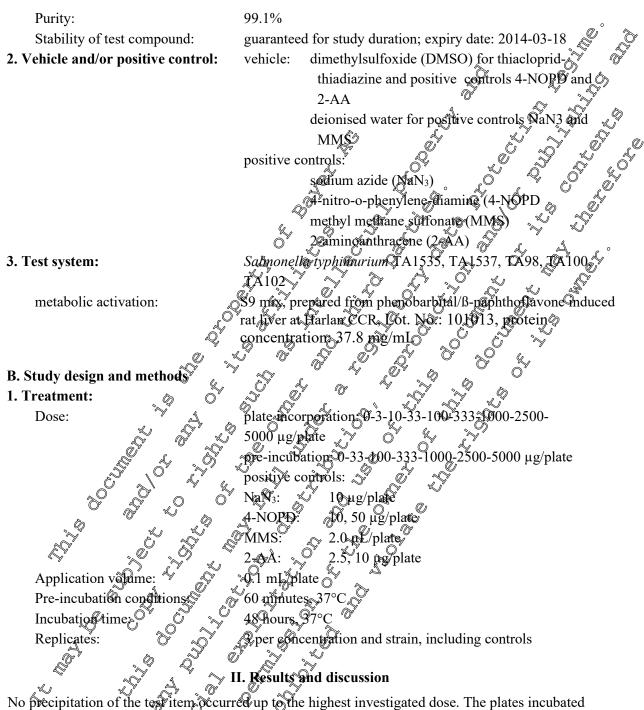
Thiacloprid-thiadiazine oral administration to female rats with an LD₅₀ value pòn above 2000 mg/kg by

2014; M-478073-01-1

### **Report:**

Thiaclophid-thiadiazine Salmohella typhimurium reverse mutation assay Title: Report No: \$97201 Document No: 478073-09-1 M OECD 470 (1997); Copunission Regulation (EC) No. 440/2008, Method Guidelines: 13/14, US-FPA 712, C-98-247, OPPTS 870.5100 (1998);

### atrons: none


GLP:

I. Materials and methods

### A. Materials

1. Test material: thiacloprid-thiadiazine Synonym: BCS-CJ16425 Description: light brown solid Lot/Batch no: SES 11969-11-8

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



with the test item showed normal background growth up to 5000  $\mu$ g/plate with and without metabolic activation in both independent experiments.

No toxic effects, evident as a reduction in the number of revertants (below the indication factor of 0.5) occurred in the less groups with and without metabolic activation.

No substantial increase in revertant colony numbers of any of the five tester strains was observed following reatment with this cloprid-thiadiazine at any dose level, neither in the presence nor absence of metabolic activation. There was also no tendency of higher mutation rates with increasing concentrations in the range below the generally acknowledged border of biological relevance.



In both experiments, the data in the negative control of strain TA 102 without S9 mix were slightly above the historical control range. Since this deviation is rather small, this effect is considered to be based upon biologically irrelevant fluctuations in the number of colonies.

Appropriate reference mutagens were used as positive controls and showed a distinct increase induced revertant colonies.

In conclusion, it can be stated that during the described mutagenicity test and under the operinontal conditions reported, the test item did not induce gene mutations by base pair changes of frameshifts in the genome of the strains used. Table 5 8 1/19-1: Experiment I: Revertant counts mean ±SD)

Dose	<b>S9</b>		Salmo.	nella	im speain	
(µg/plate)	mix	TA 1535	JA 1537	TA 98	TA 190	TA 102
Vehicle control	_	18±6	A 9, D1 ~	28⊊1	$04\pm3$ °	\$459 ±
Untreated	_	17 ± 3	\$±2	$2 \pm 10$	^√106 ±12	<i>لا</i> 504€46
Test item 3	_	18 ± <b>3</b>	& ±2	23 4	Ç 92,∉1 (	514 ± 7
10	—	16 6		24 ± 2 0	99 ± 150°	<u>\$</u> 499 ± 14
33	_	$dy9 \pm 3$	$\sqrt[6]{8 \pm 1}$	28±54	[™] 93 ± [™] 4 «	518 ± 26
100	_	21±7 [×]	$8 \pm 2$	[∞] 26 [€] 2 . ¢	$96\pm7$ $\bigcirc$	522 ± 42
333	(	≥ 1©±6 ≳		27 ± 3	\$90±5	$507\pm36$
1000	``¥	↓4 ± 2		$5^{\circ}$ 30¢± 8	× 89657	$496\pm14$
2500	Â.	0 13 6	<u> </u>	$29\pm5$	99 ± 5	467 ± 12
5000	\$ - 6	2 4 ± 4 √	$\sim 9 \pm 4 \sim 0$	22±5	@101 ± 11	$496\pm28$
NaN ₃ 10		2854 £98			2148 ± 33	
4-NOPD 10	\$~ ×			$2\overline{Q}7 \pm 29\overline{Q}$		
4-NOPD 50	-%		$062\pm3$			
MMS 🖧 2.0 μL	×.					$5244\pm858$
Vehicle control	\$9 + <i>^</i>	/ <b>}</b> ↓ 4 ~	$35\pm6$	41 ± 2	$101 \pm 4$	$585\pm49$
Untreated		\$12±6	°√° 19 ±3	34±5	$115 \pm 6$	575 ± 8
Test item Z	Č ^ę ř	° 16≈4 ~		36 ± 5	$94\pm19$	$584\pm43$
<u>10</u>	+ Õ	$\sqrt{24 \pm 4}$	©16±40	$40\pm 6$	$115 \pm 10$	$575\pm32$
33		$210 \pm 2^{10}$	£ ² 17 <u>+</u> 2	$38\pm 8$	$97\pm15$	$635\pm31$
100	$\mathcal{S}^+$	⇒ 21 <del>,</del> 22 ¢	13y±4	33 ± 4	$110 \pm 5$	$591\pm41$
333	+ 0		$\bigcirc$ 14 ± 5	$43\pm 8$	$101 \pm 6$	$606\pm25$
1000	<u> </u>	<u></u> 14 4 5	Q 17±0	38 ± 12	$107 \pm 11$	$632\pm34$
2500	$\gamma + \xi$	25±2 Ø	15 ± 5	$45\pm3$	$117 \pm 7$	583 ± 13
<b>S</b> Ø00 Å	× + 0	⇒91±10	$12 \pm 2$	$32\pm3$	$128\pm9$	$611\pm58$
2-AA 2 2.5	At .	415 ± 22	$344\pm10$	$2842\pm406$	$3555\pm95$	
2-AA 10		~				$1981\pm294$
NaNa softum az			2 1 1.	2 amin ganth		

Table 5.8.1/19-1:	<b>Experiment I:</b>	Revertant	counts (mean	±SD)⁄Q
-------------------	----------------------	-----------	--------------	--------

sodium azide NaN_{3:} MMS: Onethyl methane sulfonate 2-AA: 2-aminoanthracene

4-NOPD: 4-nitro-o-phenylene-diamine

# Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Table 5.8.1/19-2:	Experin	nent II: Revert	tant counts (mo	ean ±SD)					
Dose	<b>S</b> 9	Salmonella typhimurium strain							
(µg/plate)	mix	TA 1535	TA 1537	TA 98	TA-100	TA102			
Vehicle control	_	$15 \pm 3$	$9\pm4$	$24\pm 5$	85 ± 11	501 ± 24			
Untreated	_	$17 \pm 3$	8 ± 3	$24 \pm 5$	99±7	5 [°] 500⊊ 2 €			
Test item 33	_	$15 \pm 4$	$10 \pm 0$	رچ 19±5	75±4	$522 \pm 11$			
100	_	16 ± 1	10 ± 2	$20\pm5$	84 ± 12	\$\$11 ±€46			
333	_	$16 \pm 4$	8 ± 2 0 ×	25 ± 10	91 ±00	Ø 54©±4 ₩			
1000	_	$17 \pm 3$	8 +01	21±6	94Q ± 17 Ô	515±11			
2500	_	$17 \pm 4$	(12±5°°	$95 \pm 5$	@79±&	<u>√</u> 475, <u></u> 18			
5000	_	$14 \pm 5$	© 9 ± 3	م <del>کر کر</del> کر	© 74 ⊕12 "	5 <u>36</u> ± 28 °			
NaN ₃ 10	_	2836 ± 31 📡			$2209 \pm 17^{\circ}$				
4-NOPD 10	_	Ű,		\$26±1					
4-NOPD 50	_	. 64	& 66 ±6						
MMS 2.0 μL	_	Q, a				s≪4723 ± 37			
Vehicle control	+	@4±2%	018±35	€ 36 ±5	[©] 101⊳98 &	$558\pm53$			
Untreated	+	₩ 15 _{¢±} 1	≥ 16 <u>(</u> ±3	37(±2 ~	124 ± 20	584 ± 9			
Test item 33	+ 0	2 1 D± 2 🔊	$4\pm5$	30±75	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$611 \pm 30$			
100	+ ,	8 ± 3	18 ± ♥	⁰ √ 40¢± 8	104 8	$580\pm45$			
333	<u>Ş</u>	0 18 4	<u>19</u> €5 <	$3P\pm9$	$\sqrt{95} \pm 4$	$600\pm103$			
1000	\$ + <i>6</i>	290±7,05	$23\pm30$	641±7	@ 91 ± 3	$581 \pm 45$			
2500	<u> </u>	~~28 ±Q	[→] 17 ± 3 [×]	~ ² 38 (+ 3 ×	98 ± 17	$536\pm28$			
5000	ô st *	$28\pm3$	190±5	\$2±7@	$106 \pm 13$	$518\pm17$			
2-AA 2.3	+~	\$\$9±6	©21±15	@524±@17	$2867\pm61$				
2-AA 210		S &				$1433\pm40$			
NaN _{3:} sodium azide MMS: methyl methane suktonate MMS: methane suktonate MMS: methyl methane suktonate MMS: methyl methane suktonate MMS: methane sukton									
Thiacloprid-thiadi	azine 🕼 no	on mutagenic in	n this Salmonel	la typhimurium	reverse mutati	on assay.			
Thiaclopra-thiadiazine is non-mutagenic in this Salmonella typhimurium reverse mutation assay.									
Report:       Title:       This coprid-thradiazine - Gene mutation assay in Chinese hamster V79 cells in vitre V79/HPRTO         Report No       1597203         Document No       M-484705-01-1         Guidelines:       OECD 476; Commission Regulation (EC) No. 440/2008, B.17; US-EPA 712-									
Guidelines: 0 GLP:	°0° C-98-		70.5300 (1998)						

### Table 5.8.1/19-2: Experiment II: Revertant counts (mean ±SD)

I. Materials and methods

BAY

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

A Mataviala		he duration expiry date: 2014-09-11 lfoxid (DMSO) for thiacloprid-
A. Materials 1. Test material:		Q° &
Name:	thiscloprid thisdiszir	
Article no:	not specified	
Description:	light brown solid	
Lot/Batch no:	SES 11060 11 8	A OF A O
Purity:	90.1% (w/w)	
Stability of test compound:	guaranteed for study	duration Perpiry date: 2014 (2011)
2. Vehicle and or positive control:	yahialan di@sthylan	If a with DMS() for Disclored
2. Venicie and or positive control:	venicie. distetiiyisu	a and nasily a approximation of the
		Grum for positive control EVIS
	positôve controls:	
	7 1 2 4 month	ne Sulfonate (EMS)
	Chinese hanster X	Albenza)anthracene (DMBA)
3. Test system: Medium:	MEN (minimaliphan	ntial medium) containing Hank's salts,
	A 00/ fratal have a set	fum (FBS) (except during 4 h
[*] *		(15) (5) (2000) and amphotencin B (1%).
		nutant cells the complete medium was
		μg/m constant complete meanine was
	manamalian microbi	mal Graction S9 morphyprepared from
Metabolic activation:	livers of the obstrati	al and & Daphth alavone induced rats at
Metabolic activation:	Harlan CCR ot No	260943, protein concentration:
	31 A.mg/nal.	
B. Study design and methods		
1. Treatment:	A N O	
Pose:	Exposure Se	Of est item concentrations
	period smix	[×] A a
B. Study design and methods 1. Treatment: Dese:	Experiment I	
		87.5, <b>175.0</b> , <b>350.0</b> , <b>700.0</b> , <b>1400.0</b> ^P ,
		2800.0 ^P
A S	4 h +	87.5, <b>175.0</b> , <b>350.0</b> , <b>700.0</b> , <b>1400.0</b> ^P ,
		2800.0 ^P
	Experiment II	
Y ST		87.5, 175.0, 350.0, 700.0, 1400.0,
		2800.0 P
	4 ⁴ h +	87.5, <b>175.0</b> , <b>350.0</b> , <b>700.0</b> , <b>1400.0</b> ,
	P P : ::. :: ::	2800.0 P
	Concentrations given	le to the unaided eye
	mutation rate analysi	in bold letters were chosen for the
	toxicity assessment '	s, all concentrations were used for The high concentration of 2800 μg/mL
	test item is equal to a	molar concentration of approximately
	10  mM	i motar concentration of approximatery

10 mM.

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

used.

 $CO_2$ 

For each test solution or control two parallel cultures were

4 or 24 hours, at 37°C in a humidified atmosphere with

Incubation conditions:

### 2. Statistical analysis:

A linear regression (least squares) was performed to assess a possible dose-dependent increase of mutant frequencies. The number of mutant colonies obtained for the groups treated with the test term was compared to the solvent control groups. Agrend was judged as significant whenever the p-value (probability value) is below 0.005. However, both, biological and statistical significance wase considered

t	ogether.	~Ű		¢	$\bigcirc^{\nu}$	<u>o</u> r	Ĩ
				)	~// ~		
	Exposure period	S9 mix	Coture I	Chille Chille	Cultur		
	Experiment	Ĵ (		~C		1	
	4 <u>n</u> .0	- &	0.553	Õ	0.0ÅY		
	Å h	Ð	0.252	Ĩ,	0,814		
	Experiment	II S			9		
	24¥h _O*	$\rightarrow$	0,478 🌾 🖞		0.003 ^s		
1. K ~	©4h ぷ	de la	0.000 ^s 0 4	¥	0.198		
	¥ h ∽ s:≻signĭfic	ant trei	nd of so				

II. Results and discussion

Precipitation at the end of treatment was noted in experiment I at 1400  $\mu$ g/mL and above with and without the tabolic activation. It experiment II precipitation occurred at 2800  $\mu$ g/mL with and without metabolic activation.

No relevant toxic effects indicated by a relative cloning efficiency I⁴ or a relative cell density below 50% was noted up to the maximum concentration with and without metabolic activation. No relevant and reproducible increase in mutant colors numbers/10⁶ cells was observed in the main

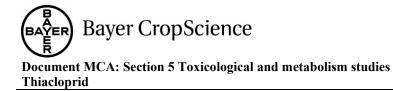
experiments up to the maximum concentration. The mutation frequency did not exceed the historical range of solvent controls.

The threshold of three times the mutation frequency of the corresponding solvent control was reached or exceeded in the second culture of the first experiment at 1400 µg/mL without metabolic activation and in the second experiment culture I, at 2800 µg/mL with and 175 µg/mL without metabolic activation. However, these effects were based on relatively low solvent controls as the absolute mutation frequency remained well within the historical range of solvent controls. These increases were judged as biologically irrelevant artifacts as none was reproduced in the parallel cultures under identical conditions

⁴: cloning efficiency I (survival, relative): (mean number of colonies per flask divided by the mean number of colonies per flask of the corresponding control) x 100

### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

A linear regression analysis (least squares) was performed to assess a possible dose dependent increase of mutant frequencies. A significant dose dependent trend of the mutation frequency indicated by probability value of <0.05 was determined in the second experiment in the first culture with and the second culture without metabolic activation. Again, the trends were not reproduced in the parallel cultures and consequently judged as irrelevant fluctuation.


In both experiments of this study (with and without S9 mix) the range of the solvent confols was from? 2.4 up to 13.4 mutants per 10⁶ cells; the range of the groups treated with the test item was from 3.2 up to 25.2 mutants per 10⁶ cells. The solvent control of culture II of the solvend experiment with metabolic activation fell short of the lower limit of the historical range (2.4 versus 3.4 colorues per 10° cells) The data are acceptable however, as the solvent control of the parallel culture remained well within the historical range.

The results of experiment I and II are summarised in the following tables.

	**			~~ <u>~</u>		
	Concentration	S)	Mutant colonies	Induction	Mutant colonies	Induction
	[µg/mL]	A mix	pers 10° cells	Factor	Vper 199 cells	factor
Experin	nent I / 4 h treatm	int 🐒 🖞	Culture	1 0'	🖌 🧳 Culture 🛛	Ι
DMSO			\$ 10.7 J	©1.0	8.3	1.0
EMS	£ 150.0	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ĩ 8.4℃	90.2	10.8
	8 × × × ×	_0"			ot continued [#]	
	175.0		A A10.0 0	0.9	7.0	0.8
Thiaclopind- thiadiazine	350 8	- Q	21.25	∑ ² 2⊕ ^y	9.8	1.2
thiadiazine	.7 <u>6</u> 0.0 , , , , , , , , , , , , , , , , , ,	Ž	0 ⁴ x 8.6 %	ÂÛ.8	8.7	1.0
	€1400.0 <u>₹</u>	Ø- *	15.0 °	۵ 1.4	25.2	3.0
	28000° Å		. ~ .76 ~ ~	0.7	20.1	2.4
DMSO 🦨	çı çı		Q Q8.7 Q	1.0	2.4	1.0
DMBA	1.2	\$ + (	×281.2×	32.4	109.7	46.3
	87.5 A			Culture was r	not continued [#]	
$\sim$	175.0		Q 397.7	0.9	5.0	2.1
Thiacloprid-	@ ^{\$} 350.0	¥ + 0	10.5	1.2	4.6	2.0
thiadiazine	O 700.0	¥₽ [®]	8.6	1.0	4.1	1.7
, S	A00.0 0	\$~+ *	♀ 11.5	1.3	3.2	1.4
29	2800.0 P	+	4.2	0.5	3.7	1.5

### Table 5.8.1/20-1: Summary of results: Experiment I

Culture was not continued since a minimum of only four analysable concentrations is required P: Precipitation



Table 5.8.1/2	1/20-2: Summary of results: Experiment II								
	Concentration [µg/mL]	S9 mix	Mutant colonies per 10 ⁶ cells	Induction factor	Mutant colonies per 10 ⁶ cells	Induction factor			
Experim	ent II / 24 h treatm	ent	Culture	Ι	Culture				
DMSO		_	6.0	1.0	5.9				
EMS	150.0	-	444.3	73.6	403.5 ×	×68.0 ×			
	87.5	—	<b>\$</b>	[₹] Culture was	ot continued [#]	S L A			
	175.0	—	18.3	3.0	67 Ŷ	br 40			
Thiacloprid-	350.0	-	8.5	1.4	\$ 5.0 x	0.8			
thiadiazine	700.0	_	5%	@.9 °~	7.2				
	1400.0		0 ¹ 4.8	× 0.8 ×		1.5			
	2800.0 ^p	-	A 645 Q		12.7 0	© 2.1 /			
Experim	ent II / 4 h treatm	ent	Culture		Calture]	II S			
DMSO		+ _	6.0	2 1.00	E Q.4 F	9.0			
DMBA	1.1	#	° 337.¥ [≮]	5,6,0 2	چې چې <u>25.2 د م</u>	24.3			
	87.5	Å.	6.9	Culture was	not continued	1			
	175.0 ~	\$* + *>	6.9	f 1.0	Ø .4 O	0.6			
Thiacloprid-	350.0	¥.	N 62 0	1.2	× 10.20	0.8			
thiadiazine	700.0 🏷	4 +	Q \$ 6.9 \$	\$ ^{1.2}	\$\$ 109	1.3			
	1400.9	+_?	13	¥ 20 ³	× × 12.5	0.9			
	2890.0 P	. 8	~~ 20 [°] .4 ×	3.4	18.0	1.3			
# 0.1		× ·							

### Table 5.8.1/20-2: Summary of results: Experiment II

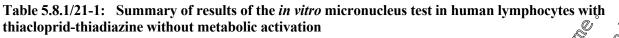
[#] Culture was not continued since a minimum of only hour analysable concentrations is required P Precipitation

The test term thiacloprid thiachazine and not induce gene protations at the HPRT locus in V79 cells under the experimental conditions teported. Therefore, thiacloprid-thiadiazine is considered to be non-mutagenic in this HPRT as as.

Report:	\$; 2014; M-486183-01-1
Title: S Thaclopfid-t	niadiazine. Mictonucleus test in human lymphocytes in vitro
Report No: \$1597202 0	
Document No: M-486183-01	-1
Guidelines: OECD 7 (2	(000); Commission Regulation (EU) 640/2012, B.49 (2012).
GLP:	4
A. Materials	I. Materials and methods
1. Test paterial:	
Name:	thiacloprid-thiadiazine
Description:	light brown solid

B/ R

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid


SES 1196	9-11-8		(M) n [°]
99.1 %	1.0 / 1	· .·	
guarantee	d for study	duratio	(DMGO)
venicie: c	limetnyisui	Ioxide	(DMISO)
positive c	controis:		
with	Aitomyoin (	c activ	vation IC): 2 µg/mL (pulse treatment) g/mL continuous treatment) on e (CPA) 15.0 µg/mL of
IN T	Demecolcin		g/mL Continuous treatments
with	metabolic a	ctivati	on 4 9 9 0
with 1		hamide	(CPA) $950$ $mL$
human n	erinheral bl		mphoxites from healthy not smoking
donors re	at receiving	madi	cation (everiment): female donor 29
	× n -	(( ))	
(average	generation	time).	
Blood cu	latures were	establ	ished by preparing an 11 % mixture of
V 2		A 17/	ithin 30 hours after blood collection.
Cultare r		~ ~	S Modified Fagles Medium/ Ham's
			1:10, supplomented with 200 mM
≪GlutaMD≯			treptomycm (100 U/mL/100 μg/mL),
Othe mytog			), 10% FBS (fetal bovine serum),
[»] 10,≦mM ₽	PES and	thean	ticongulant heparin (125 U.S.P
	All incubation	âns we	ere done at 37 °C with 5.5 % CO ₂ in
🖉 humidifi	ed air. 🌾	Å	¥
[%] Mammal	fan microsc	omal fr	action S9 mix prepared from livers of
phenoma	ırbitat∏β-n	phtho	flavone induced rats at Harlan CCR.
Mrotein c	oncentratio	n of th	e used S9 mix: 29.8 mg/mL (Lot No.
050913,	used for exp	perime	ent I) and 31.4 mg/mL (Lot No.
260918,	used for exp	perime	ent II).
F O			
Experi-	Exposure	<b>S9</b>	Concentrations in µg/mL
ment	period	mix	Concentrations in µg/mL
	4 hrs	_	17.9, 31.4, 54.9, 96.1, 168.2, <b>294.3</b> ,
•	т шо		<b>515.0, 901.2</b> ^P , 1577.1 ^P , 2760.0 ^P
IIA*	20 hrs	_	17.9, 31.4, 54.9, 96.1, 168.2, 294.3,
	<u> </u>		515.0, 901.2, 1577.1, 2760.0
			17.0.21.4.54.0.001.100.2.201.2
IIB	20 hrs	_	17.9, 31.4, 54.9, 96.1, 168.2, 294.3,
IIB	20 hrs	_	17.9, 31.4, 54.9, 96.1, 168.2, 294.3, 515.0, <b>901.2, 1577.1, 2760.0</b> 17.9, 31.4, 54.9, 96.1, 168.2, 294.3,
	99.1 % guarantee vehicle: a positive a witha M I with C human p donors n years old IIBC fem After blo Stimulate tining (Pl The cell (average Blood cu whole b Culture r FL2 (DM GlutaM) Chenoma Protein c 050913	donors not receiving years old; experiment IIBC female donor. After blood samples Stimulated for prolif tinine (PHA) to the The cell harvest time (average generation Blood cultures were whole blood infinedi Culture medium: Bu FL2 (DMEM/F42) in GlutaMAX™ (penic the mitogenPHA (§ 10 mM HPPES and \$\mathcal{S} mL). All insubatin humidified air. Mammalian microso of henomarbital. B-na Protem concentratio 050913, used for ext	<ul> <li>99.1 %</li> <li>guaranteed for study duration vehicle: dimethylsulfoxide positive controls:</li> <li>without metabolic active Mitomycin C(MM Demecolcin: 0.1 μ with metabolic activation Cyclophosphamide human peripheral blood.)</li> <li>donors not receiving media years old; experiment IIA: IIBC female donor, 40 year After blood samples were stimulated for proliferation tinine (PHA) to the culture The cell harvest time point (average generation time).</li> <li>Blood cultures were estable whole blood in medium with Culture medium: Bulbecco F12 (DMEM/F12) mixture GlutaNIAXTM penicitlin/si the mitogen PHA (9 μg/mi 10 mM FH2PES and the an 0/mL). All insubations were humalified arr.</li> <li>Mammalian microsomal fit other or concentration of the 050913, used for experiment.</li> </ul>

BAYI

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

				168.2, 294.3, 515.0, <b>901.2, 1577.1</b> ,				
	IIA	4 hrs	+	2760.0				
	P: Precipitation was observed microscopically at the end of							
	treatment							
				hnical problem				
				chosen for micronuclei analysis.				
	The highe	est treatmen	f conce	entration in this study, 27600 $\mu$ g/mL,				
	was chose	en since sit is	s equiv	alentio approximately 10 mM, which				
				a Paro mammathan cell micronucleus				
		ding to OE						
Treatment duration:	With (+)	39 mix, 4 h	2					
	Without (	-) S&mix: 4	Çand 2	gan of the Ar L'				
Recovery:	16 hours,	after end of	treatn	nent for the experiments with 4 h				
	treatment	time; none	forex	perments with 26th exposure				
	20 hours		Ş" ~					
Preparation interval:	Re			treatment with test substance				
\$~	V.	11/12	6-	after culture initiation)				
Number of evaluated cells:	2000 komu	cleated cell	s (100	¢cell /œulture) ○				
9. 9		catures /d						
Cytotoxicity assessment?				fect the CPPI (cookinesis-block				
Cytotoxicity assessment?	- 01.			ormined in 500 cells per culture and				
	s s s s s s s s s s s s s s s s s s s	~Q	65	% cytostasis.				
A Findings	II. Resul	ts and disc	ussion					
				e e e e e e e e e e e e e e e e e e e				
Visible precipitation of the test in	tenna in th	e culture	mediu	m was observed microscopically in				
				$\varphi$ and at 2760.0 $\mu$ g/mL in the presence				
			al part	s no precipitation was observed at the				
end of treatment op to the highest ap	plied conc	entration.	ð					
No relevant influence on osna arity	was obser	vedÔŤhe pÆ	<b>F</b> was a	adjusted to physiological values.				
No relevant cytotoxicity indicated	by a red	uged CBPI	(cytok	kinesis-block proliferation index) and				
described as cytostasis, could be obs	erved up t	o the highes	st appli	ed concentration.				
In the absence and presence of \$9	mix no	biologicall	y rele	vant increase in the number of cells				
				the cells after treatment with the test				
				of the solvent control values (0.20 –				
	0			aboratory historical control data (0.15				
- 1.40 % (40 treatment, puise treatm	ieng or 0.	10-1.35%	(20 h t	reatment, continuous treatment)).				
Fither Democratic (Å 1 u to 1) M	MC(20)	ug/mI) or	СРА	(15.0 $\mu$ g/mL) were used as positive				
controls and showed distinct increase	(2.0)	with micro	uclei	(15.0 µg/mL) were used as positive				
			100101.					
Ô								

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid



1					
Experi-	Preparation	Test item	Proliferation	Cytostasis [%]*	Micronucceated
ment	interval	concentration [µg/mL]	index CBPI	1 And	cells [%]** O
		Exposure perio	d 4 hrs without S9	mix	
IA	40 h	Solvent control ¹	1.5%	<u>s</u>	2 0.55 OF
		Positive control ²	1.20	65.6	0 \$00° 2 4
		294.3	Å.57	ړن کې 3.9 ل	Q0.45 S
		515.0	<u>الم</u> 1.67	Q ^y fl.c. √ n.c. Q ^y	2 0.40 L
		901.2 ^p	🖉 1.62 🕎	n.c. 🖓	0.45
		Exposure perio	20 hrs without S	9 prix 🔬 🖉	
IIB	40 h	Solvent control ¹	1.95		م ب 0.2 <b>0</b> ه
		Positive control ³	A_\$8 _ ~~	49.6	0 25 ⁵ 07
		902.1	¥.81	5 15	0.25 Š
		1575.1	لا 1.75 €	y 24.0 °	5 0.35 O
		2,760.0		21.05	£ 990

*. For positive control groups and test item treatment groups the values are related to the solvent controls

- **. The number of micronucleated cells was determined in a sample of 2000 Binucketed cells
- **: The number of micronucleated certs is control values
  n.c.: not calculated as the CBPI is equal to or higher than the solvent control value
  DMSO 0.5 % (v/v) The number of micronucleated cells is statistically significant Onghersthan corresponding control

- Demecolcin @µg/mL

Table 5.8.1/21-2; Summary of results of the in vitro micronucleus testin human lymphocytes with thigeloprid-thiadiazine with metabolic activation ~ 0

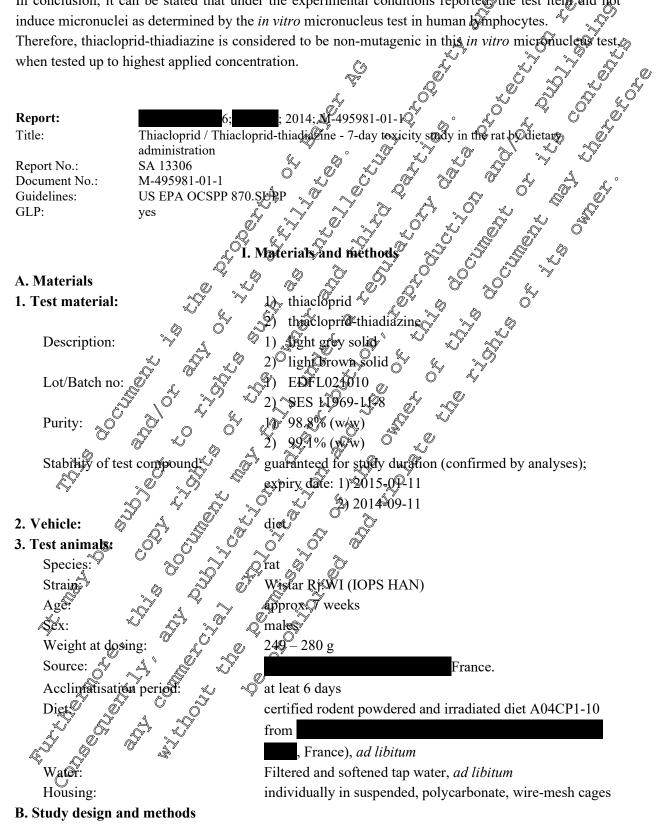
Experi- ment interval concentration	index A	Cytostasis [%]*	Micronucleated cells [%]**
		í ·	
Exposure peri	ed 4 hrs with \$9 m		
I $40 \text{ h}$ Solvent control $10^{-10}$	1.96 ⁹ 1.58		0.90
$\mathcal{Q}$ $\mathcal{A}^{\vee}$ $\mathcal{O}^{\vee}$ $\mathcal{O}^{\vee}$ Positive control ²	0 [°] 1.58	39.6	<b>3.85^s</b>
	9.89	7.3	1.35
901.2	1.89 1.86	10.8	0.80
$2760.0^{P}$	1.88	8.8	1.20
1 40 h Solvent control	1.80		0.55
Positive control of the source	1.29	63.6	7.15 ⁸
0 [°] ³ ⁴ 901.2 [°]	1.77	3.1	1.00
5 5 1577.P	1.76	5.3	1.00
Positive control 901.2 1577.P 2760.0	1.82	n.c.	0.25

For positive ontrol groups and test item treatment groups the values are related to the solvent controls

The number of micronucleated cells was determined in a sample of 2000 binucleated cells

The number of micronucleated cells is statistically significantly higher than corresponding control Cyalues

n.c.: not calculated as the CBPI is equal to or higher than the solvent control value


 1 : DMSO 0.5 % (v/v)

2: CPA 15.0 µg/mL

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

### **III.** Conclusion

not In conclusion, it can be stated that under the experimental conditions reported the test item and induce micronuclei as determined by the in vitro micronucleus test in human kimphocytes.



**BAYER** Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

#### **1.** Animal assignment and treatment:

Dose:	0 - 1000 ppm thiacloprid - 1000 ppm thiacloprid-thiadiatine
Application route:	oral (diet)
Group size:	10 per dose group
Observations:	mortality, clinical signs, detailed clinical examination, body
	weight, food consumption, gross necropsy, organ weights
	(brain, liver), liver histopathology, total cytochromo P 450
	content and specific cytocheme P 450 is cenzyme profile
	(pentoxyresorufin (PROB), bezoxyresorufin (BROD, UDP)
	glucuron syltransferase activity (UDPGT))

### II. Restorts and discussion

### A. Analyses of test substance formulations

Analyses of the test substance diets revealed that the dietary admixtures of the test substances were homogeneous. Homogeneity and concentration results ranged from 94 to 103% and from 96 to 99% of the nominal concentration for the diets containing this chloprid and this toprid thadiazine, respectively. They were within the in-house target range of 85 to 115% of the nominal concentration. Both compounds proved to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the redent dist when store to be stable at 1000 ppm in the reden

### **B.** Mortality

There was no mortality in any group throughout the stud

### C. Clinical observations

There were no treatment-related signs reported eather at the daily clinical observation or at the weekly detailed physical examination. The few signs recorded (i.e. white area on the eye and skin scab on the neck) were observed in isolation and were therefore considered not to be treatment-related.

A

### D. Body weight

After one week of treament mean body weights and overall mean body weight gain in the thiacloprid dose group were decreased by 10% and 66% when compared to controls.

There were no effects on body weight parameters in the thiacloprid-thiadiazine treated group.

### E. Food consumption and achieved dosages

In the thiaclosrid-treated group, mean food consumption was 25% lower than in the control group while it was not affected in animals receiving thiacloprid-thiadiazine.

The mean achieved dietary intake of thiacloprid and thiacloprid-thiadiazine expressed in mg/kg/day received by the animals during the study are summarised in the following table.

## **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

### Table 5.8.1/22-1: Achieved dose levels

Dietary concentration (ppm)	Achieved dosages – males (mg/kg bw/dax)
1000 ppm thiacloprid	73.5 8
1000 ppm thiacloprid-thiadiazine	874

### D. Terminal body weights and liver weights

### Thiacloprid dose group

A significantly lower mean terminal body weight was observed m males treated thiacloprid (-11%) when compared with controls. Mean absolute and relative liver 1000 ppm thiacloprid group were significantly higher than in controls 4+19

### Table 5.8.1/22-2: Mean terminal body weights and liver weights after thiscloprid reatment

	Mean terminal Body weight of liver weight # standard deviation (% change when compared with controls)
Thiacloprid dose (ppm)	
Mean terminal body weight (g)	289.92 ±\$1.385 ⁽¹⁾ ⁽²⁾ 255 ⁽¹⁾ ** ± 12.989
Mean absolute liver weight (g)	$8.103 \pm 0.5486$ $9.642^{**} \pm 0.9499 (+19\%)$
Mean relative liver weight (%)	$2.892 \pm 0.1227$ $3.78** \pm 9.2735 (+33\%)$
Mean absolute brain weight (g)	$3.879 \pm 0.0625$ (1) $1.0899$
Mean liver to brain weight ratio (%)	$431.150 \pm 22.8204 $

significantly different to control

### Thiacloprid-thiadiazin

terminat body weight and liver weights were observed in No test substance-related thiacloprid thiadiazin

### **D.** Necropsy

Thiacloprid dose group

liver observed in 4 out of 10 males treated with The only treatment-related finding was an enlarged 1000 ppm thiacloprid Ċ

### Table 5.8.1/22-3: Macroscopic finding observed in the liver of male rats at scheduled necropsy

Thiggloprid dose (ppm)	0	1000
Enlarged live	0/10	4/10

(x/y): number of animals affected / total number of animals per group

#### Thiac group

Notest substance-related macroscopic findings were observed at necropsy.

**a**x000



### **D.** Histopathology

### Thiacloprid dose group

Slight centrilobular to panlobular hepatocellular hypertrophy was noted in all males treated with 1000² ppm thiacloprid. This finding was considered to be treatment-related and correlated with higher lifer weights and enlarged liver at necropsy.

### Table 5.8.1/22-4: Histopathological liver findings at scheduled necropsy - male rats

Thiacloprid dose (ppm)	0
Hepatocellular hypertrophy: centrilob	oular to panlobular
Slight	Ø TO
Total	0/10 ∘

(x/y): number of animals affected / total number of animals per group

### Thiacloprid-thiadiazine dose group

There were no test substance-related histopathological fing

### **D.** Liver enzyme induction

### Thiacloprid dose group

Total P-450, BROD, PROD and UDPGT autivities were significantly increased by 1.8-, 31-, 17- and 2.5-fold, respectively compared to control.

Table 5.8.1/22-5: Mean liver enzyme activities and standard deviation in the cloprid treated male

& <u> </u>		<i>@</i> .
Thia pprid dose (ppm)		1000
Total P450	0 4 1.4 0 ± 0.2 28 4	2.602**±0.3395
BROD	$A_{1} = \frac{2}{3} \frac{312 \pm 60050}{6}$	841.008** ± 226.0059
PROD	11.294 3.476	$190.313^{**} \pm 49.4472$
UDPGT		$48.444^{**} \pm 3.8686$

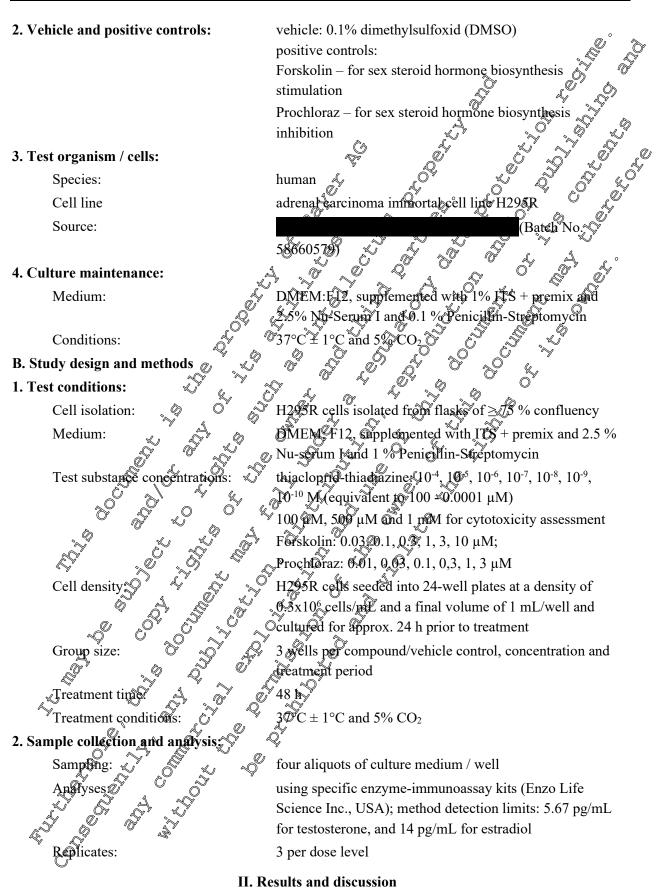
**: significantly different to control, p ≤0,001 g

Thiacloprid-toadiazûre dose group ~ ~ ~

There were no test-substance-related changes on live cenzyme induction observed.

# Table 5.8.1/22-6: Mean fiver enzyme activities and standard deviation in thiscloprid-thiadiazine treated male rats

Thiacloprid-thiadiaztre		1000
Total P450	$1.460 \pm 0.2338$	$1.422 \pm 0.1367$
BROD OF STATIS	$27.312 \pm 6.0507$	$31.370 \pm 6.8704$
PROD &	$11.294 \pm 3.4767$	$10.070 \pm 3.1779$
UDPG	$19.277 \pm 4.1485$	$22.575 \pm 4.2410$


**: significantly different to control,  $p \le 0.001$ 


Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

### **III.** Conclusion

Dietary administration of 1000 ppm thiacloprid to male rats led to decreased body weight parameters and food consumption as well as pronounced liver enzyme induction indicated by increased liver weight, enlarged livers, hepatocellular hypertrophy and markedly increased levels of total BROD, PROD and UDPGT. In contrast, no treatment-related effects and no indication for liver enzyme induction any animal of the 1000 ppm thiacloprid-thiadiazine group. **Analytical methods** A method for the determination of thiacloprid hiadiazine analys rodent diet developed. The reference of the study report is presented in the following **Report:** 201@ M-481765 Thiacloprod-thiadiazine Determination by high performance Title: chromatography analysis in ground fodent diet SA 14011 Report No .: Document No.: M-**4**/81765 aboratory Practice (Bonnes Pratiques de Laboratorre) described in Guidelines: the following issue Organization for Economic Cooperation and Development (O. C.D.) Principles of Good Laboratory Practice, 1997 (January 26, 1998); Adricle Annexe Ivà l'article D 523-8 du Code de PEnvironnencent (French GLP Legislation); Deviation(s), not spec GLP: 490181-01-1 Report aluation of thiacloprid-thiadiazine in the H295R steroidogenesis Title: Report No .: Document No OPPTS Series \$90, Endocrine Disruptor Screening Program Guideline test guidelines, No. 890/1550: Steroidogenesis (Human Cell Line – H295R) (October 2009) Deviation(s@none^{*} GLF ⁷I. Materials and methods A. Materials 1. Test materia thiacloprid-thiadiazine escription: light brown solid L Batch no: SES 11969-11-8 99.1% Purity: Stability of test compound: guaranteed for study duration; expiry date: 2014-09-11

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid







Thiacloprid

### A. Interference evaluation

Thiacloprid-thiadiazine did not interfere with the EIA kit for testosterone or estradiol at concentration evaluated.

### **B.** Cytotoxicity

Cytotoxicity was not observed following treatment of the H295R cells with concentrations up to 1 mM? thiacloprid-thiadiazine when evaluated using the XTT method. In addition, staining of the cells with trypan blue at the end of the second, third and fourth evaluation demonstrated the wability of the cell following treatment with 10⁻⁴ M - 10⁻¹⁰ M thiacloprid

C. Hormone evaluations Testosterone concentrations The variability (CV) between the runs for the servent controls was recommendation ( $\sim 10^{0/4}$  corrected to 1 was, within the guidefine recommendation (~19% compared to the recommended guidebne of \$0%), Thiacloprid-thiadiazine was considered not to interfere with testosterone searching in the H295R steroidogenesis assay as no concentration related effects could be established in any of the three evaluations of the test item. The slight changes recorded for test sterone section ranging from -20.6% to +8.5% were considered to be within the rormal variability of the assay.

### Estradiol concentrations

The variability (CV), between the runs for the solution to solution was outside the guideline recommendation (~45% compared to the recommended guideline of 30%) due to the increased concentration recorded for all samples of the fourth Galuation. This increased CV was considered as having no impact on the overall evaluation of this cloprid this drazine in the H295R steroid genesis assay.

Thiaclopridahiadiazine was considered not to interfere with estradiol secretion in the H295R steroidos enesis assay The sight charges in estration concentration ranging from -12% at 10-7 M to +30 % at  $10^{-5}$  M were considered to be within the normal variability of the assay.

the stratic correction of the stratic correc

# Table 5.8.1/24-1: Mean hormone concentrations, standard deviation and % change in comparison to controls after incubation of H295R cells with thiacloprid-thiadiazine for 24 h (mean of three evaluations)

		,		· · · · ·	~	
Thiacloprid-	Те	stosterone (pg/	mL)	E	Stradiof (pg/ml	
thiadiazine concentration	Mean	SD	% change	Mean	SD	% change
DMSO	7912.9	1510.86	(	چ 221.0	103.50	
10 ⁻¹⁰ M	7113.1	1250.53	-10.1%	217.7 Q	80.90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 ⁻⁹ M	7503.9	964.75	-5.2%	213.7	84.50	-3, <b>∭</b> ∕
10 ⁻⁸ M	7189.7	778.05	-9.1	217.1	79063	-1.8%
10 ⁻⁷ M	7127.0	668.36	9.9% °°	214.9 Y	Ø7.04	
10 ⁻⁶ M	7295.6	981.31	0 -7.8%	218.0	~ 79. <b>9</b> 5	-k.4%
10 ⁻⁵ M	7981.7	1231.05		249,3	92.94 O	£92.8%
10 ⁻⁴ M	7074.0	909.12	<u>,</u> -₩.6%	251.1	\$04.85	× +13.6

Statistical evaluation conducted on overall data only (based on second, third and fourth evaluation; the first evaluation was invalid due to cytotoxicity). Data have been rounded and second and the second of the

nc: no change compared to control

### Table 5.8.1/24-2: Mean fold change and standard deviation of hormone concentrations relative to DMSO controls after incubation of H295R cells with thiacloprid-thadiazine for 24 h (mean of three evaluations)

Thiacloprid-thiadazine &	, S restoster	one  S	Estradi	ol
concentration 0	Mean fold change	one SDS	Mean fold change	SD
10-8M	0.90%	2 006 m	0.99	0.37
€€9 ⁻⁹ M		00.12	<u>ک</u> 0.97	0.38
10 ⁻⁸ M	S. S.91	( 0. <b>1</b> 0)	✗ 0.98	0.36
10 ⁻⁷ M		Q.08	0.97	0.35
10 ⁻⁶ M	a a a	0 _{0.12}	0.99	0.36
	5 <u>01.01</u>	0.46	1.13	0.42
109M C 20		<b>29</b> .11	1.14	0.47

SD: standard deviation Data have been rounded up.

### Positive controls

The comparison of the data generated in the concurrent positive control study (M-490174-01-1) with the guideline criteria are given in the table below. These data indicate that, with the exception of the testosterone increases induced by forskolin in the first and fourth evaluations, which were < 2-times the solvent control, all other criteria were met. It should be borne in mind that steroid genesis in the H295R assay is dynamic and the limited increase in testosterone secretion following forskolin treatment could, therefore, be a reflection of the marked increase in estradio secretion (~23- to ~44-fold increase compared to 7.5-fold increase proposed in the guideline).

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

controls (mean of four evaluations)						
		Testost	erone	Sector Estradiol		0
		Mean	SD	Afean	SD, S	
	1 st evaluation	12093	1224.5	272	6 ⁵ 2 <b>2</b> .4	, Ô
Minimum Basal Production (pg/mL)	2 nd evaluation	7616	چ 458.1	ي پ 250 چ	گٍ∕3.8 ک	
(Testosterone:	3 rd evaluation	6905	398.7 Q	298	\$ 16. <b>4</b>	
500 pg/mL;	4 th evaluation	9041	891.2	420	Q 208 70.4 5	
Estradiol: 40 pg/mL)	Overall	891	2170.8	425 \$ \$10 \$	70.4	2
		Testost	¥ . V	🔗 Æstra	diol 🖉	
Basal Production	1 st evaluation		s MDL 🔗	To A9-time	es MDA	2
(Testosterone :≥ 5-times	2 nd evaluation	A 1943-times MDL		18-times MSL		
MDL;	3 rd evaluation	1218-time	s MDL	🏷 Ži-time	& MDL	
Estradiol: $\geq$ 2.5-times	4 th evaluation	1505-time	MDL	C 30-time	š MDL	
MDL)	Overativ	1372-time		6 22.9 me	eş MÜDL	
Induction (10 µM	1 st evaluation	2 1.8-time	es SO A	S 404-time	es SC	
Forskolin)	2 nd evaluation	2.1-time	SSC 0 .	44.3-ti@e	es SC	
(Testosterone: $\geq$ 2-times SC;	3 rd evaluation	2.0-time	es SC	28. Øtime	es SC	-
Estradiol: $\geq$ 7.5-times	[*] 4 th evaluation	1.9-time		23.4-time	es SC	
SC)	overalk,	Q.9-time	SC 🏹 🌾	°≫32.9-time	es SC	
Inhibition (1 µM Prochloraz)	1 st evaluation	0.04-min	es SØ	Complete i	inhibition	
í (°)	^{2nd} exaluation	0.05×time	SC Q	Complete i	inhibition	
(Testosterone: $\leq 0.5$ - times SC;	3 ^r Gevalua@on	05-ting	rs SC 🔊 👝	Complete i	inhibition	
Estradiol: <i>≤</i> <b>@</b> 5-times	4 th eval@ation	مُنْ 0.06 <i>4</i> 0me	es SC	Complete i	inhibition	
SC)	<b>W</b> erall	0.03-times SC		Complete inhibition		

# Table 5.8.1/24-3: Mean hormone concentrations and standard deviation of concurrent positive

MDL: minimum detection limit/(5.67/pg/mL for testosterone, 14 pg/mL for estradiol) SC: solvent control  $\bigcirc$ 

SC: solvent control valuations were conducted to cover the assessment of several test items. Where conducted concurrently with the pree evaluations of thiacloprid-thiadiazine. Evaluations 2 -

### HL. Conclusion

Overall, thiacloprid-thradiazine, tested at concentrations between 10⁻¹⁰ M and 10⁻⁴ M, was considered not to interfere with testosterone or estration secretion in the H295R steroidogenesis assay.

Report:	
Report:	§; 2014; M-490186-01-1
Title:	Dvaluation of thiacloprid in the H295R steroidogenesis assay
Report No.:	ŠA 13334 [M-490186-01-1]
Guidelines?	US-EPA, OPPTS Series 890, Endocrine Disruptor Screening Program
v sõv	test guidelines, No. 890.1550: Steroidogenesis (Human Cell Line –
U	H295R) (October 2009)
	Deviation(s): none
GLP:	yes

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

### I. Materials and methods A. Materials 1. Test material: thiacloprid light grey solid Description: Lot/Batch no: PFHCA-2013-07-01 **Purity:** 98.9% guaranteed for study doration; expiry@late: 20 Stability of test compound: vehicle 0.1% dimethylsulfoxid (DMISQ) 2. Vehicle and positive controls: positive controls Forskolig - for sex steroid homone biosynthesis imulation ne biosynthesis 3. Test organism / cells: adrenal carcinoma infimortato cell line H299R Species: Cell line Source: Batch No. 586605 4. Culture maintenance supplemented with ITS+ premix and 2.5% Medium: and 0.1 & Penicillin-Streptomycin Conditions: 1d 5® B. Study design and method 1. Test conditions R cONs isolated from flasks of $\geq 75$ % confluency Cell isolation DMEXP. F12, Supplemented with ITS + premix and 2.5 % Medium serum L and 1 % Penicillin-Streptomycin 10⁻¹⁰ Insity In Thiaclopfid: 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, 10⁻⁹, ubstance conce 100 $\mu$ M,500 $\mu$ M and 1 mM for cytotoxicity assessment Forskolin: 0.03, 0.1, 0.3, 1, 3, 10 μM; Prochloraz: 0.01, 0.03, 0.1, 0,3, 1, 3 μM H295R cells seeded into 24-well plates at a density of 0.3x10⁶ cells/mL and a final volume of 1 mL/well and cultured for approx. 24 h prior to treatment 3 wells per compound/vehicle control, concentration and treatment period 48 h $37^{\circ}C\pm1^{\circ}C$ and 5% $CO_{2}$

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### 2. Sample collection and analysis:

Sampling:	
Analyses:	

four aliquots of culture medium / well

A kit for testosterone or estradio at any concentration using specific enzyme-immunoassay kits (Enzo Li

### II. Results and discussion

#### A. Interference evaluation

or estradio at any Thiacloprid did not interfere with the EIA kit for testosterone evaluated.

#### **B.** Cytotoxicity

Cytotoxicity was not observed followings treatment of the H295R cells at concentrations of 500 µM thiacloprid when evaluated using the XIT method. In addition, staining of the cells with trypan blue at the end of the second, third and fourth evaluation demonstrated the Hability of the cells following treatment with 10⁻⁴ M - 10⁻¹⁰ M thraclopeid.

### **C. Hormone evaluations**

Due to a technical error during the first valuation of thiacloprid, a non-treatment related cytotoxicity was observed in several wells of the 24-well culture place following staining with trypan blue. The data from this first valuation have not been exploited and an additional assay (designated as the fourth evaluation) was conducted? Thus only the date from the second, fird and fourth evaluations have been analyzed and are presented

### Testosteron@concentrations

The variability (CV) between the runs for the solvent controls was within the guideline recommendation (~24% compared to the recommended guideline of 30%).

In each evaluation, the highes concentration of thaclopid tested (10⁻⁴ M) induced a slight but consistent treatment-related decrease in testosterone concentration, which resulted in an overall statistically significant reduction of testosperone by ~25% at this concentration compared to the solvent controls. No clear treatment-related effects on testosterone levels were observed in any evaluation when considering this loprid at all other concentrations (10⁻¹⁰ M - 10⁻⁵ M). Specifically, the slight changes recorded for testosterone secretion ranged from a ~23% increase at 10-7 M in the third evaluation to a ~1.9% reduction at  $10^{-10}$  M in the fourth evaluation. These changes were considered to be within the normal variability of the assa

### Estradiol concentrations

The variability (CV) between the runs for the solvent controls was within the guideline recommendation ( $\sqrt{24}$  % compared to the recommended guideline of 30%).

In each valuation, the highest concentration of thiacloprid tested (10⁻⁴ M) induced a slight but consistent treatment-related decrease in estradiol concentration, which resulted in an overall statistically significant reduction of estradiol by  $\sim 31\%$  at this concentration compared to the solvent controls. No clear treatment-related effects on estradiol levels were observed in any evaluation when



considering thiacloprid at all other concentrations  $(10^{-10} \text{ M} - 10^{-5} \text{ M})$ . The ~46% increase in estradiol secretion at  $10^{-9}$  M in the third evaluation was not considered relevant due to the variability observed at that concentration among the three evaluations (0.84- to 1.45-fold).

# Table 5.8.1/25-1: Mean hormone concentrations, standard deviation and % change in % comparison to controls after incubation of H295R cells with thiaclourid for #8 h (mean of three evaluations)

Thiacloprid	Те	stosterone (pg/	Ű.		stradiol (pg/ml		Ç
concentration	Mean	SD	% change	Mean	SD	2% change	V
DMSO	7518.8	1824.04		268.2	° 65,533	· · · ·	
10 ⁻¹⁰ M	6944.9	921.85	-7%%	289.6	65.79	×+8.0%	
10 ⁻⁹ M	7389.2	1434.00	×1.7%	290.6	69.52	-8.4%	
10 ⁻⁸ M	7107.3	1336.31	-5,5%	259,8	58.29	<b>3</b> .1%	
10 ⁻⁷ M	7944.9	846.05	\$.7%	@40.6℃	<u>,</u> ©4.58%	-10.3	
10 ⁻⁶ M	7438.1	949,	k√-1.1%	× 2562	× 35.00 ×	\$~~-4 <u>9</u> %	
10 ⁻⁵ M	6966.2	1344.16	-7;3% «	232.0	36.79	\$P3.5%	
10 ⁻⁴ M	5657.6*	1867.80	<b>\$</b> 4.8%	€) <b>84.4</b> *®	27.28	`∕∀-31.2%	

Statistical evaluation conducted on overall data only (based on second third, and fourth evaluation; the first evaluation was invalid due to cytotoxicity). Date have been rounded up

- SD: standard deviation
- *: significantly different to controls, p
- ^C: data based on 7/9 samples 4
- ^D: data based on 8/9 samples

Table 5.8.1/25-20 Mean fold change and standard deviation of hormone concentrations relative to DNSO controls after incubation of @295B cells with thiacloprid for 48 h (mean of three evaluations)

Thiacloprid concentration	🖉 🛇 Testoster	ônte 🛷 🎽 🔿	Estradi	ol
	Mean fold Change	SD A	Mean fold change	SD
10 ⁻¹⁰ M	\$ \$92 ×	0.120	1.08	0.25
	<u>0.98</u>	0.120 0.120	1.08	0.26
		<b>0</b> 7.18	0.97	0.22
@ ^{P0-7} M	ר @/:06 אָ	ي الم	0.90 ^C	0.20 [°]
10 ⁻⁶ M	0.99√°~	0.13	0.96	0.13
√ 10 ⁻⁵ M √ √	~~~ ¥ ()	0.18	0.86	0.14
10-4	Ø.75 Å	0.18	0.69 ^D	0.10 ^D

SD: standard deviation

^C: data based on **%** samples

D: data based on 8/9 samples

Data have been gounded up.

### Positive controls

The comparison of the data generated in the concurrent positive control study with the guideline criteria are given in the table below. These data have been taken from the results section of the report and indicate that, with the exception of the testosterone increases induced by forskolin, all other



criteria were met. It should be borne in mind that steroidogenesis in the H295R assay is dynamic and the limited increase in testosterone secretion following forskolin treatment could, therefore, be a 20 reflection of the marked increase in estradiol secretion (~23- to ~44-fold increase compared to 23-fold increase proposed in the guideline).

com	rols (mean of four	r evaluations)		Ű	\$ \$
		Testost		) Estra	diol O A
		Mean	SD SD	Mean y	sd 🔗
Minimum Basal	1 st evaluation	12093 °	1224.5	¢ 272	22
Production (pg/mL)	2 nd evaluation	07616 <i>©</i> *	× 458,	) 250 J	43.8
(Testosterone:	3 rd evaluation	A 69.69 ~	3987	298 O	£16.4¢
500 pg/mL;	4 th evaluation	9041	\$91.2	× 421	ر 228
Estradiol: 40 pg/mL)	Overall Q	<u>د</u> 8914 ×	2170 8	26 Ó	70.4
	á l	Testost		E Estra	VA A
Basal Production	1 st evaluation	~ 213 <i>3</i> Qime	s ADL / (	) D9-time	s MDL
(Testosterone : $\geq$ 5-times	2 nd evaluation	🔊 1343-time	sMDL 🖉 🐧	18-tiple	
MDL;	&rd evalmation	218-time	s MDL	2Ptime	s MDL
Estradiol: $\geq$ 2.5-times	^{4thevaluation}	2 1595 time	s MDL ×	So-time	s MDL
MDL)	Øverall.	∥ 1072-time	MDIO S	مَّ 22-time	s MDL
Induction (10 µM	Ist evaluation	1.8-fime	es SØ	41.4-time	s SC
Forskolin)	2 nd exaluation	2.12 time	strate of the second	44.3-time	s SC
(Testosterone: 20-times) SC;	3®evaluation	2.0-tinu	is SC and the second	28.1-time	s SC
Estradiol: ≩ [®] 5-times	4 th evaluation	5 1.9-Qme	es SC	23.4-time	s SC
SC)	Swerall &	L P-time	SSC O	32.9-time	s SC
Inhibition (1 µM		9.04-time	es SCA	Complete i	nhibition
Inhibition (1 $\mu$ M Prochloraz) (Testosterone: $\leq 0.3$ - times SC; Estradiol: $\leq 0.3$ times	2 nd examination	0.05-fime		Complete i	nhibition
(Testosterone: $\leq 0.5$ - times SC:	3 rd evaluation	مُنْ (195-time)	SC	Complete i	nhibition
times SC; Estradiol: ≤ 0.5-times SC)	^{Ch} evaluation	🕅 🖉 0.06-time	es SC	Complete i	nhibition
SC)	Overall	0.05-time		Complete i	nhibition

#### Table 5.8.1/25-3: Mean hormone concentrations and standard deviation of concurrent post controls (mean of four evaluations) a

MDL: minimum detection limit (5.67/pg/mL for tester for estradiol) SC: solvent control Note: Four positive control evaluations were condicted to cover the assessment of several test items. Evaluations 2 – 4 were conducted concurrently with the three evaluations of thiacloprid.

### **III.** Conclusion

Overall chiacloprid tested at Concentrations between 10⁻¹⁰ M and 10⁻⁴ M, was considered to induce a slight, though statistically significant treatment-related reduction in both testosterone and estradiol secretion of the H295R secretoidogenesis assay at the highest concentration tested ( $10^{-4}$  M or  $100 \mu$ M). Őچ

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

#### CA 5.8.2 Supplementary studies on the active substance

Summary of supplementary studies Supplementary studies on thiacloprid comprise previously and recently conducted studies on toxicokinetics, an immunotoxicity study as well as mechanistic studies investigating the modes of the observed tumors as well of the finding of dystocia.

Toxicokinetic studies

Toxicokinetic studies in rats revealed dose proportional increases in plasma concentrations in males high doses of 1000 ppm, while increases were over-proportional in females addicating an overload of the metabolic capacity of the liver. A decrease of plasma concentrations over time due to enzyme induction and increased metabolisation of thiaclophid wall of visible. Therefore, a possible inhibitory effect of thiacloprid on CYP450 dependent monooxigenases was investigated in an additional study. Thiacloprid had only a weak inhibitory effection 7-ethoxyconmarin-deethylation in liver microsomes of rat and dog. However, this is not very relevant in vivo because the necessar concentrations will not be reached. A study comparing toxicokinetics in pregnant to fon-pregnant to is revealed higher plasma concentrations of thiacloprid in pregnant animals. This finding wasmost pronounced at the end of gestation. Protein binding of thiadoprid in plasma of humans and rus, investigated in a newly submitted study, was low and of similar magnitude in both species (40.7% in human and 54.7% in rat plasma). Newly submitted were also toxicokinetic determinations in plasmoof dogs from the 15week dietary toxicity study. Compared with the administered doses the plasma levels were very high indicating a high fral absorption of thirdloprid. Insufficient oral absorption of thiacloprid as a possible reason for the fact that toxicity of Macloprid in dogs is not very pronounced, can therefore be excluded. 🕻

### Immungloxicity study

**Conducted** Ŋŗ ŲS EPA, revealed that thiacloprid has no immuno-An immunotoxicity study in ra suppressive potential.

Supplementary studies to etocidate the tumor mode ofactions

Additional work on the roid tune ors: An in vero study showed that this cloprid and its metabolites are no inhibitors of the thyroid peroxidese (TOO). A s-week dietary study was especially designed to investigate the effects of thiaclopfid on the thorid in rats. It was shown that thyroid findings (changes of thyroid hormones and TSH as well as the oid follicular cell hypertrophy occurred only at doses linked with marked liver enzyme induction including pronounced UDP-GT increases. This indicates that the mode of action of thyroid effects including thyroid follicular cell adenoma in male rats after long-tern treatment with this found is secondary to liver enzyme induction, a mode of action which is rat specific and not relevant to humans.

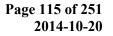
**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Additional work to elucidate the mode of action of tumors of the female reproductive tract (uterine adenocarcinoma in rat, ovarian luteoma in mice):

In the 1990ies studies in rats and mice have been conducted, in which aromatase (CYP19a1, catalysing the conversion from testosterone to estradiol or from androstened the to estrong, respectively) levels have been determined mostly in liver tissue and ovaries. This was done in the framework of the mode of action work for the tumors of the female reproductive tract or dystocia, 🦿 Ś observed after thiacloprid treatment in animals. An induction of aromatase could have been a possible reason for an increased estradiol/progesterope ratio which after long-tern treatment would lead to the observed tumors or dystocia, respectively However, due to the recently work by (2009, M-360757-02-1) it is known that the observed increases of aromatase in the old studies were artifacts caused by the unspecificity of the tritiated water assay used at that time and that this coprid is no inducer of aromatase (at high dietary thraclophid doses  $\geq 1000$  ppm even a marginal inhibition of aromatase in the ovaries was seen).

In a 13-week dietary study in female mice for aromatase induction also slight changes of sex storoid hormones were observed. There were slight decreases of plasma estradiel and increases of plasma progesterone, which resulted in a sugthly decreased estradiol/progesterone atio. The NOAEL for the hormone changes (based on the estradiol/ progester one ratio) was \$9 mg/kg bwoday. Further findings, besides changes in motility and reduced reactivity and increased liver weight, overe increased vacuolization and hypertrophy of the adrenal X-zone. The overall NOAEL in this study was 18 mg/kg bw/day.

Several mode of action statlies of development of utofine adenocarcinoma in rats have been between 2007 and 2010 in order to improve the Q Star risk assessment in the conducted by US. In these studies was shown that the cloprig treatment leads to slight changes of estradiol or progesterone plasma levels. These are accompanied by a slightly increased expression of genes associated with sex steppid hormone piosynthesis in ovary, liver & adrenal gland. It is assumed that this results in an increase of CYP450 ensymes involved in steroid biosynthesis with the magnitude of this effect not being known. However, also moderation of the steroidogenic effects was evident from the data due to an increased expression of genes associated with the metabolism of sex steroid hormones. While the observed slight hormonal changes in young adult rats do not lead to an effect on the estrous cycle or on other sex steroid harmon esensitive organs or tissues (see 2-generation study and short term toxicity studies in rats, effects on the estrous cycle were noted in 72-week old, aging female rats. In comparison to untreated controls fewer thiacloprid treated females were in pseudopregnancy and more in the ambiguous phase. In addition, thiacloprid treated rats displayed a lower level of vaginal mucification and marginal, non significant increases of plasma estradiol, which were more prohoused in females in pseudopregnancy in comparison to those in the ambiguousphase


In depth mode of action work showed that thiacloprid has no direct estrogenic effect, since it was negative in an uterpirophic assay. However, it was positive for an effect on steroidogenesis in a H295R assay. Increased progesterone secretion was observed at 100 µM (equivalent to an unbound concentration of about 25 mg/L), while unbound plasma concentrations in female rats after dietary exposure with 1000 ppm (high dose of the 2-year rat study, clearly exceeding the MTD) with up to 11.5 mg/L are still in the range of the NOAEC of 50  $\mu$ M or 12.5 mg/L for progesterone in this

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

assay. Incubation of rat preantral follicles with thiacloprid led to increased estradiol and progesterone secretion at 500  $\mu$ M, indicating that preantral follicles are a cellular target for thiacloprid treatment. The NOAEC was 100  $\mu$ M, indicating again that hormone changes and tumour development in rats occurred at unbound plasma concentrations in the range of the NOEO of this assay. However, the observed effects on sex steroid hormones as well as tumour development in rodents occurred always at dose levels showing pronounced enzyme induction as well as increased expression of genes associated with sex steroid hormone biosynthesis. Therefore, these effects are believed to be secondary to enzyme induction. The mode of action work by the optimiest uterine adenocarcinoma in rat as well as the comparison of in vitro and in vivo concentrations of thiacloprid are presented in the position papers bothered (2010, M-362441-01-1) and (2014, M-498558-01-1).

Supplementary studies to elucidate the mode of action for dystocia In the 1990ies several special 1-generation and mechanistic studies have been conducted to elucidate the mode of action for dystocia in the Sasco Sprague Dawley rat (used before in the two generation study on thiacloprid). Dystocia occurred repeatedly, in incidences between 3 3 and 13 3%, after dietary intake of of 300 to 1000 ppin thiacloprid for 10 weeks during prenating and during gestation, while it was not seen in the concurrent controls. An overview on incidences of dystocia observed in the generation studies on thiacloprid is presented in Table 5.8.2 4 below. In contrast, thiacloprid related dystocia was not seen after short-term treatment with oral gavage doses of 17.5 to 100 mg/kg by on gestation days 18 to 21 fin a further dietary study no effect of thiacloprid on direct birth functions could be shown. However, further data showed that thiacloprid treated animals had increased estradiol levels, slightly increased progesterote and 0 H levels as well as increased corticosterone levels in plasma during premating, gestation and lactation shortly after parturition.

In an additional special 1-generation study the mode of action of dystocia was further investigated using video-recording of parturition as well as sex homore determinations in plasma shortly before and after parturition. Already in two feasibility studies (conducted before the start of the main study to develop and optimize the procedure of video recording and blood sampling during parturition) several cases of dystocia were observed in untreated animals. This indicates that stress alone can cause dystoche in Susco Sprague-Dawley rats. In the main study dystocia was noted in 3/28 dams treated with thiacloprid and in none of the controls. In one dam dystocia was due to a missing progesterine decrease, which in rodents is manuatory for a normal parturition. This is not the case in humans, in which progesterane will draw it is regulated differently and plasma progesterone levels stay high during parturition. In a second dam dystocia there were no changes of hormone levels. Dystocia was obviously due to stress by blood sampling and the high general toxicity of thiacloprid agether with the increased sensitivity of the Sasco Sprague-Daley rat towards such effects. A third dum with dystacia was found dead, blood sampling was not possible. Furthermore, in thiacloppid treated animals the levels of progesterone (slightly increased mean value at GD 20, absence of animal decrease prior to parturition in one rat with dystocia) and estradiol (increased mean values at GD 21 and 22) and the respective balance between these hormones in the days before and during parturition were affected. There was no effect on onset and duration of parturition in all other treated rats. In addition, also the known effects of thiacloprid toxicity were



### **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies**

Thiacloprid

present in treated rats, i.e. reduced body weight and food consumption, increased liver and thyroid weights, hepatocellular hypertrophy and thyroid follicular cell hypertrophy. In conclusion, dystocia in rats is considered to be either due to hormonal perturbations (a missing progesterone decrease before start of parturition, which is mandatory for normal birth in rat, but not in humans) or due to stress by blood sampling and thiacloprid toxicity together with the relatively high sensitivity of the Sasco Sprague Dawley rat towards stress. The first mode of action is rat-specific and not relevant for humans, the second mode of action is unspecific and secondary to stress.

<b>Table 5.8.2 -1</b> :	Incidences of dystocia observe	ed in several	generation s	tudies on	thiacloprid	'n
	Sasco Sprague-Dawley	y <b>rats</b> (order	ed by incros	sing dose)		(

	Ŷ		
Author, Year Reference	Dose [ppm]	Dese*	Incidences [% (cases) per pregnant dams
, 1998, M-003820-01-1	300		£ (0/25)
, 1997, M-001304-01-1	در [™] 300 [™]	22 Č	<b>9.(0/25)</b> <b>9.</b> (0/25) <b>9.</b> (1/30)
, 1997, M-001304-01-1	@ <u>600</u>	× 43℃ Ĉ	5 10,0 (3/30)
- , 2011, M-4037&-01-1	0800 <u>~</u> ~	<i>2</i> 54 6	J1.5 (3/26)
, 1998, M-004253 ()1-1	800	61** 0	<b>8</b> .3 (1/12)#
, 1998, M-003820¢01-1 O	P 1800		4.5 (1/22)
Historical control data for Sasco Sprague Daw	51000 C	0° Q3***	3.3 (1/30)
Historical control data in Sasco Sprague Daw	vlæy rats#\$		Range: 0 - 11.5 (0/30 -
	Š. "		3/26)
			Mean incidence:
	vley rats#		1.21 (11/906)
*: dose intake determined during pestation			

letermined during gestation

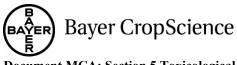
- dose intake determined for pre-mating, gestation and lactation **
- **.
- #:
- dose intake determined for premating, gestation and factation dose intake determined during premating, not determined during gestation There was one additional case of dystocial but this was obviously caused by big pups (one pup stuck in the birth canal) and is therefore not considered to be related to thiacloprid treatment. Historical control data on dystocia in Sprague Dawley rats from the breeder Sasco compiled from 26 one-and two-generation studies theoremising 40 generations) conducted at BCS Toxicology in Stilwell U.S. ##: between 088 an 1997 for 1997. switch to Wistar rats (for details please refer to , 2014, M-498539-01-1)

### **Publications:**

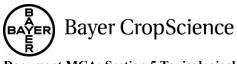
In addition, three articles on thiaclogrid or thiacloprid containing formulations were published in 2011 and 2012! Ľ,

One publication, considered not to be pliable, described changes of thyroid hormone levels in rat serum after treatment of the mimals with thiacloprid containing formulations. However, thyroid hormone charges after thiadoprid treatment of rats is a well investigated phenomenon and the reported results of the publication do not change existing endpoints.

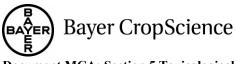
In the second publication, which was considered as reliable with restrictions, thiacloprid was reported to induce human CYP 1A1 and 1A2 in HepG2 cells. Because the determined enzyme induction was not pronounced and observed at a concentration exceeding the maximal unbound



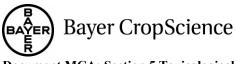

plasma concentrations of thiacloprid at the high dose of the 2-year rat study, the finding was considered to be non-relevant for human safety.


The third publication was also assessed as reliable with restrictions. It provides supplementa information on oxidative stress in lymphoid organs, polymorphonuclear leucocytes and plasma of rats after treatment with thiacloprid containing formulations. Also this publication has no influence AN IL. on existing endpoints.

<u> </u>	NO(1)EF				Q »-	i a la fit		<u> </u>
Study	NO(A)EL	LO(A)EL	Respir/ M	ain effect	s šeen at	LOADL	Reference	Ĩ
Doses tested	(mg/kg	bw/day)		<u> </u>	<u>_</u>	<u>~~~</u>		Ş
Rat, 4-week oral	Study 1 &2:	Study 1: 60.4 (	body wei	ight gain, 7	friver w	jights 🔊		
(diet), Mechanistic	6.6 (100 ppm)	(1000 ppm)	500 ppm	Ø Q	) (	<i>R</i>	(	
study on	(100 ppm)	Study 2:47.5	$\sim$ . $\sim$	× . >>	<u> </u>	, O' 🗶	ر ار	
aromatase		- (//// 0	Thiaclogric	l plasma c	oncentra	tions: dosp	, 1998	5
induction &		(3000)	proportiona				Ø-003766-0	03-1
toxicokinetics		5 O'	M, more th	an dose pr	roportion	al⊺mor	003766-0	
toxicokineties		°,	(overload c		10 lettiac	apaenty in a	/ //	
Study 1: M/F: 0-	~		concentrati				MA NO	
100-1000 ppm	Ŵ		over time y	visible a	, on Ly Inic	nicuction õ	O	
Study 2: F: 0-	Č6		Aromatase	dotomning	ti aQue	Norman	la l	
100-200-500	°~~~		possible du	ueteruma	mons. no	tw of the	it.	
ррт			assayoused					
Rat, subacute	S- 0	f000 pppr	Płasma leg			in preman	t 8	),
oral (diet),			rats in com	naricon to	mbn-nree	mant rats		
special study on		( . · · · · · · · · · · · · · · · · · ·	during gest	ation (diff	erence/m	ost		998
toxicokinetics in			pronounce				M-003821-0	J1-1
pregnant / non-					e or gesu			
pregnant rats			S. O	<i>(</i> ))	ŵ			
0-1000 ppm	Č Å		- A		Y			
Determination	na N		Low protei	n binding	of [ ¹⁴ C]-	YRC 2894		, 1998
of plasma			<b>ef</b> 40.76 ii				(translated	2014)
protein binding			in rat plasi	ng no rel	evant di <u>f</u>	ferences	M-075786-0	01-2
in rat and $\mathbb{Q}$	, ôr rì		between bo	<b>M</b> species	5			
human plasma	U _O		in the					
Toxicokinetiç	na		Peak mean				, 1	995
study, 15 weeks	na Na c						M-000760-0	<i>01-1</i>
dog (djet)	S A		feeding we				L	
N. N			ay 250, 100					
0.250.1000			with the ad					
0-250-1000- 2000 ppm			levels are v absorption			g a high		
28-day, diet	Seneral	Laxicity ^Q	$\geq 25.7 \text{ mg/s}$	-	-	ivo snloon		
immuno _z	S Veneral	South a start and a start a sta	$\geq 23.7 \text{ mg/}$ weight	ng uw/duy	. / /	ve spieen	2012	,
toxicity Pat	5.78	25.7	80.7 mg/kg	hw/daw	hode	oiaht /aain		01-1
(female)	(LOO ppm)	(300 ppm)	& food con				1.1 120/00-0	·· ·
E Q	"O" \$\$		relative spl			αις α		
v sõr	Immun	otoxicity	No effects	0		IoM_		
$\bigcirc$		-	response (1					
E. 0. 100. 200	<b>80.7</b>	> <b>80.7</b>	effect)					
F: 0-100-300-	(1000 ppm)	(>1000 ppm)	55 7					


Table 5.8.2 -2:	Summary of additional	studies on	the active	substance




Study	NO(A)EL	LO(A)EL	Result / Main effects seen at LOAEL	Reference
Doses tested	(mg/kg	bw/day)		
1000 ppm				S' D'
Determination of aromatase activity in liver and ovaries		61 (800 ppm)	Aromatase determinations: no assessment possible due to the unspecificity of the assay used	M-063794-0121
from a special 1- generation study in rats				M-063794-0121
0-800 ppm				
<i>In vitro</i> study on a possible inhibition of CYP450 dependent monooxigenases in liver of rat & dog		Production -	Thiacloppid had a weak inhibitory effect (IC ₅₀ 100 µÅr or 25 $3 \text{ mg/}$ 00 7- $3 \text{ eth}$ eth avec a more an end of the transformation of the stoster of the transformation of transfor	1998 M-003796-01-2 •
Mice, 13-week oral (diet), mechanistic study for aromatase	18 (30 ppm) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q 139 (250 ppm) (2 (250 ppm) (2 (250 ppm) (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	f motility & Jereactivity, $\uparrow$ liver weight (at interim sacrifice after 4 speeks only), $\uparrow$ acuolization (at higher doses also hypertrophy) of the advenal X some NOA 12 for sox hormone levels in plasma: 139 mg/kg/w/day (250 ppm)	, , , , , , , , , , , , , , , , , , ,
F: 0-10-30-250- 2500 ppm & 2500 ppm + mecamylamine (nicotinic mimicking agent)			Aromative determinations: no essessment possible due to the unspecificity of the assay used	
<i>In vitro</i> study on TPO-inhibition		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	To direct inhibitory effect of thiacloprid or its metabolites on the thyroid perovidase (PPO) was evident.	M-000690-02-1
3-week, rat (diet), special study for the investigation of thyroid effects	9.0/12-5 (100 ppm)	36.9/466 (MAF) (400 ppm) (400 ppm) (	kaluction of UDP-glucuronyl-transferase (UDP-GT), ↑liver weight (males), ↑ incidence of minimal to slight thyroid follicular cell hypertrophy (5/10 males)	, 2000 M-030427-03-1
		2 70 Q	$\downarrow$ motor activity (n = 1), $\downarrow$ body weight,	, 2007
assay, ray 0, 70 mg/kg Bw s.c., oncertails for 3 days		y	cumulative body weight loss, ↓ absolute liver weight & absolute ovary weights, no uterotrophic response	M-293209-01-1



Study	NO(A)EL	LO(A)EL	Result / Main effects seen at LOAEL	Reference
Doses tested	(mg/kg	bw/day)		
Hormone levels in female rats after single oral dose 0, 60 mg/kg bw	< 60	60	Significant ↑ of plasma progesterone (8 & 24 h after dosing) Significantly ↑ expression of several genes associated with the regulation of steroid hormone synthesis (24 h after dosing)	M-359235-01-27
Hormone levels in female rats 2 and 8 h after 4 oral doses 0, 60 mg/kg bw	< 60	60	No feces (n =1 on study days 2 & 3), body weights, cumulative body weight loss ↑ plasma progesterone (2, 8 h after dosing) ↓ absolute liver weight, ↑ absolute & relative advenal weights & ↓ absolute ovary weights without morphological ↓ change	M-360362-01-1
Hormone levels in female rats 24 h after 4 oral doses 0, 60 mg/kg w			↑ relative liver weights, ↑ absolute & relative advenal weights, Subsolute & relative evary & uterus weights, ↑ expression of generassociated with	
28-day, aiet, rat (female) F: 0-100-1000- 1600-ppm		(1000 ppm) . (1000	sex steroid hormone biosynthesis in overy, liver & advinal gland. Noderation of the steroid ogenic effects due to ↑ expression of genes associated with the metabolism. body weight, body weight gain & food consumption, significant ↑ in plasma estrdiol, marginal, non-significant ↑ of progesterone, liver weights, enlarged & dark livers, phenobarbital like liver enzyme induction, changes in expression of tenes associated with steroid ogenesis & metabolism of sex steroid hormones	M-360757-02-1
28-day, diet, rat (female, aged)		2 <b>31.5</b> 4 2 2 2 2 2	Sacrifice for humane reasons (1/25), ocular discharge, wasted appearance, soiled anogenital region, few / no faeces, ↓ motor activity, ↓ body weight, body weight loss, ↓ food consumption, marginal, non significant ↑ of plasma estradiol (more pronounced in females in pseudopregnancy in comparison to those in the ambiguous phase), fewer females in pseudopregnancy (more in	, 2009 M-359926-01-1



Study	NO(A)EL	LO(A)EL	Result / Main effects seen at LOAEL	Reference [°]
Doses tested	(mg/kg	bw/day)		
F: 0-1000 ppm			ambiguous phase), lower level of vaginal mucification, ↑ relative liver weight	
H295R steroidogenesis assay	< 50 µM	50 µM	Dose-related inhibition of test sterone after incubation for 24 & 48 hrs, at 100 $\mu$ M progesteron secretion after 24 h incubation	261492-01-1 M ² 361492-01-1
In vitro steroid hormone secretion, rat preantral follicles	100 µM	500 μM	1 progesterone & estradiol levels after incubation for 24 & 48 hrs?	M-361609-01-19 34-361609-01-19 34-361609-01-19 34 34 34 34 34 34 34 34 34 34 34 34 34
Special 1- generation study, rat	Pre-mating: 20 / 23 (M/F) (300 ppm)	Pre-mating: 69 / 75 (M/F) (1000 Spm)	Mortality dystochia (3/30 or 4/30(*), Φ body weight (@malest) ↑ liver & hyroid weight ↓ put viability	1998 Mc00382©01-1
0-25-300- 1000 ppm	Gestation: 20	gestation. 680		Ř S
Special 1- generation study in rat for the investigation of the cause for dystochia <i>0-1000 ppm</i>	20 Pre-mating: ~ < 73 (< 1000 ppm)	Pre-mating 73 (0000 ppon)	Dystoria (1/20), ↓ body weight (F, foremating) nordirect effect of thiactoprid or birth franctions could be detected	M-004291-01-1
Special study in pregnant rats, investigation of treatment with high oran gavage doses of thiacloprid on GD 18-21 can cause dystocia	(dystochia)	M.5 (general poxicity-not determined for dystocia)	highersdoses frortality, hypoactivity, ↑ number of stillbirths	, 1998 M-002127-01-1
Special stordy in pregnant rats, investigation, if high oral gavage doses of thiacloprid on GD 18-20 can caus dystocia 0-100 due to matced toxicity reduced to 50 on GD 20	Deneral toxicito	determined for	Mortality (4/26), hypoactivity, tremor, reduced / no faeces, ↓ body weight, One case of dystochia occurred, but this was considered to be related to the marked toxicity and a necrosis of the pregnant uterus horn.	, 1998 M-016564-02-1



Study	NO(A)EL	LO(A)EL	Result / Main effects seen at LOAEL	Reference o
Doses tested		bw/day)		
Special 1- generation study, rat Mechanistic study for dystochia <i>0-800 ppm</i>	< 54.0 / 61.0 (M/F) (< 800 ppm)	54.0 / 61.0 (M/F) (800 ppm)	Dystocia (2/12, one case obviously caused by a big pup stuck in the birth canal), ↓ body weight gain, liver enzyme induction, ↑ liver weight, centrilobular hepatocytomegaly, proliferation of smooth endoplasmatic refeulum ↑ plasma levels of estration, progesterone & LH1 (both: slight) & corticosterone	1998 4 M-004253-04-1 ,
Special 1- generation study, rat, including video recording of parturition &hormone determinations	< 50.5 / 60.9 / 54.0 (M/F premating/F gestation) (< 800 ppm)	gestation) (800 ppm)	Dystocia: 3/28, 1 due to a missing progesterone decrease 1 due to stress by blood sampling, thacloprid toxiesty & the high sensitivity of the fat strain used - dam had normal hormone tevels), 1 found dead (knood sampling not possible) ↓ body weight / gain & food consumption, ↑ progesterone &	, 2011 M-403763-01-1
0-800 ppm	42 9.7 7		estradio levels changes of estradio l/progestero peratio, 1 liver & thyroid weight, hepatocelular hepertrophy, thyroid follocular cell hypertrophy	
na: not applea	roxidase		ation days (6D) 23 of 24, the 4 th dam died o	decrease(d) n GD 22
<b>Report</b> [™] Title:		CA 2,8.2/14	D; 1998; M-075786-01-2 Plasma Protein Binding of [ ¹⁴ C]-YRC 2	2804
Demont No.	9 AN	ST5796 01 3		
Document No.		-075786-04-2		
Guidelines:		vapplicable gu viation(s): net	ideline applicable	
GLP:	2 Ano			
L.		🗸 I. Materia	ks and methods	
A. Materials			incline Applicable As and methods Methylen- ¹⁴ C]-YRC 2894 5.77 MBq/mg Not reported	
Specifie	ctiver S	، ۲	77 MBa/mg	
Specific a		) N	Not reported	
$O^{*}$	mical purity:		9%	
2. Sample mater			lasma	



Document MCA: Section 5 Toxicological and metabolism stud	lies
Thiacloprid	

Species:	human and rat	
Sex:	human: male	
	rat: female	~

#### **B.** Study design and methods

#### 1. Purity and stability assessment:

The radiochemical purity and stability of [14C]-thiacloprid were evaluated by HPLC analy

### 2. Determination of plasma protein binding:

For the determination of plasma protein binding a non-mal concentration of 60  $\mu$ M  $f^{14}$ C thiacloprid was added to plasma. The applied concentration of 60 µM corresponds to plasma concentrations, which had been measured in non-pregnant female rats after application of 1000 ppm thiacloprid in the diet (corresponds to/the high dose in the 2-year rat study). After application of the plasma into the ultrafiltration unit the samples were incubated for 16 minutes before ultracentrifugation (= ultrafiltration) Subsequently, the concentration  $OT^{14}$ Cl-thiacloprid was determined in the ultracentrifugate by liquid scint flation counting

### II Results and Discussion

### 1. Purity and stability of [14CF-YRC 2894

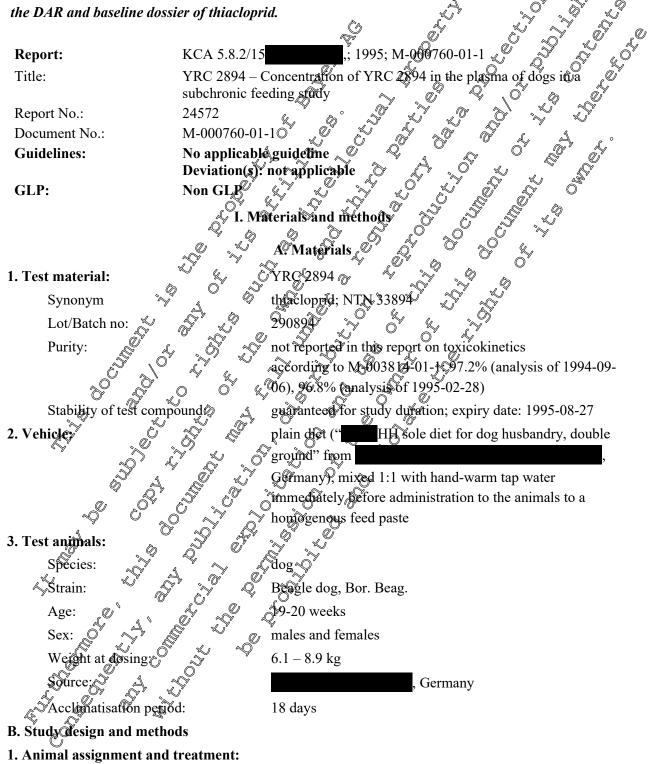
The radiochemical purity of [14 ( thiack prid as 99%. The stability of [4C]-thiacloprid in PBS, human and rat plasma was sufficient, since there was no change in conceptration within 1 h.

### 2. Determination of plasma protein binding:

Protein binding of [14C] Thiacloprid with 40.5% in Puman plasma and A.7% in rat plasma is low, relevant differences boween human and rando not exist. The results are summarised in the following table.

Sample 4 2 S &	Concentration	
	Actual [µM]	Relative [%]
Human plasma/mala $O^{*}$ $O^{*}$ $O^{*}$ $O^{*}$	®* 59.9	100
Corresponding ultrafiltrate	$35.5 \pm 0.4*$	59.3
Corresponding ultrafiltrate Corresponding bound fraction		40.7
Rat plasma (female)	65.1	100
Corresponding ultrafiltrate $\mathcal{O}'$	$29.5\pm0.6*$	45.3
Corresponding bound fraction		54.7

#### Binding of 14Ck this cloprid to human and vat plasma Table 5.8.2/14-1:


*: Mean volue  $\pm$  standard deviation (n=3)

### **III.** Conclusion

[14C]-thiacleprid with 40.7 or 54.7 % to human and rat plasma is low. Relevant Bunding of differences between rat and human regarding plasma protein binding do not exist.



The toxicokinetic measurements summarised in the following were determined in plasma samples obtained in the subchronic feeding study in dogs by **Example** & **Example**, 1998 (M-003814-04-1), which was already evaluated for the Annex I listing of thiacloprid (see DAR B.6.3.1.3), while this was not the case for the report presented below. Therefore, only relevant data of the subchronic feeding study are presented here. For details on the subchronic feeding study in dogs please refer to the DAR and baseline dossier of thiacloprid.



### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

	Dose:	0-250-1000-2000 ppm
		equivalent to: 0-8.5-34.9-68.0 mg/kg bw/day (males)
		equivalent to: 0-8.9-34.7-65.3 mg/kg bw/day (females)
	Application route:	oral (diet)
	Group size:	4/sex/dose
	Blood sampling times:	after 13 weeks of treatment at 0, 2h, 4h, 6h and 24 h after
		feeding in 1 male dog of sech treatment group and at 2h,
		4 h and 6 h in all other male and female dogs
	Extraction of plasma samples:	1 mL ptasma was extracted three times with 3 mL ethyl
		acetate. For separation of the organic layer samples were
		centrifuged 10 mm. at 2000 g. The combined extracts
	, ,	were evaporated to dyness at about 40°C mder a stream
	L) L	of nitrogen and stored at 20°C. for HPLC measurement
		the residue was taken up in 500 uL methanol.
	Analysis:	measurement of this floprid concentrations in plasma by
		HPLC with UV detection at 242 nm
	Evaluation:	determination of plasma concentrations and Cmax values
		esults and discussion 🗸 🏷
Y	RC 2894 concentration in plasma of	male dogs in or ship
fil	le of thiaclopped plasma concentrations	minmale dogs of of

A. YRC 2894 concentration in plasma of male dog

Profile of thiacloprid concentrations in male de

Initially plasma concentrations of thiacloprid were determined for the dog per dose level at 0, 2, 4, 6 and 24 h after feeding to find out the time point of the maximal concentration (Cmax). At the time points 6 and 24 h thaclopric concentrations were very low < 0.5 µg/mL). Between 0 and 6 h concentrations increased to reach a Cmar in the 6 h samples. Thiscloprid concentrations at this time point were clearl dose proportional (see

Table 5.8.2/15 below). Bused on these results plasma concentrations in all other male and female dogs were investigated 2, F and 6 h after feeding

The analyses for all four male dogs revealed the same result. Mean plasma concentrations increased up to 6 h and the concentrations increased dose proportionally. In the low dose group there was a plateau between 2 and 6 h after feeding, while in the high dose group the concentration increased by a factor of 2 during this time period

Overall the relatively high plasma levels showed an efficient absorption of thiacloprid after dietary exposure

### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

 Table 5.8.2/15-1:
 Plasma concentrations of thiacloprid in male dogs obtained after 13 weeks of

 1986, dietary administration in a subchronic toxicity study ( & M_003814_01_1)

M	1-003814-01-1)				~	j n
Dose level (ppm)	Dog No.	Pla	asma concenti	rations of thia	Coprid (µg/m	
		0 h	2 h	4 h	6 h	∞ 2,40,h
250	969	0.05	1,45	1.88	1.80 ~	n.d.
	973	n.s.	Ar.01	1022	1.00	n s
	983	n.s.	1.05 🖉	01.64	≪¥.46 Q	av.s. &
	989	n.s. 🗳	1.30	Ý 1.62°	مَحْ 1.66	On.s.
	Mean	n.c. 🕸	<b>.</b> 1.20	×1.59	× 1.48	, nc
	SD	n.c.		<b>0.24</b>	<b>0.30</b>	9 <b>n</b> .c.
1000	963	<b>n.c</b>	J <u>3</u> ,26 ,	4.18	6.18	َرُمُ 0.04 (¢°
	979	n.s.	6.65	1. 0. 31 0	8,99	E LO.
	981	ncs.	3.81	6.27	\$6.29 \$	Ön.s.
	985	@.s. ~~	\$26	¢,35	۶ [°] 7.60°	log n.s.
	Mean 🖓	6 n.c. 6	َنَ ^ہ 4.25	6.68 5 1.65 8,49		n.c.
	SP ~	n.c.		Q 1.65	<b>∂</b> ⁰ 1.16	n.c.
2000	961 K	0.48 K	<del>6</del> .60 4	8,49	13.56	0.38
	°~~~977 0	© 0.48 © n.s. nO. ©	3.69	€8.34	<b>49</b> .05	n.s.
	_≪ , 92√, ⊗	nQ. 🔊	1,1.95	23,56	گُ	n.s.
Ű	§ 997 g	On.s. S	5.75	10.03	16.14	n.s.
	Mean SD	n.c.	6.90 <u>2.89</u>	×12.60	16.24	n.c.
d: not detected @	SD ^Y SD ^Y SD ^Y	noc.	2.89	6.36	5.61	n.c.

 $\mathcal{S}$  not calculated  $\mathbb{Q}$ n.d.: not detected 7 »_ñ:c.: n.s 🛰 no sample

Profile of thiacloprid plasma concentrations in female dogs

There was no indication for a sex-difference with regard to the absorption and plasma concentrations , ¢ of thiacloprid. Õ

 $C_{max}$  was measured  $37^{\circ}8$   $ch^{\circ}12$  temale 365  $6^{\circ}h$ , in  $3^{\circ}$  dogs 4 h after feeding. Mean plasma concentrations increased poportional the low dose group there was again a plateau todose 'n Ĩ between 2 and 6 h.

The plasma concentration is time course of female no. 980 was completely different to the data of the other dogs (C_{max} at time point of then concentrations decreased up to 6 h). Therefore, the values of this dog were not used for the calculation of the respective mean values.

The plasma concentration in female does are summarised in Table 5.8.2/15-2 below.

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

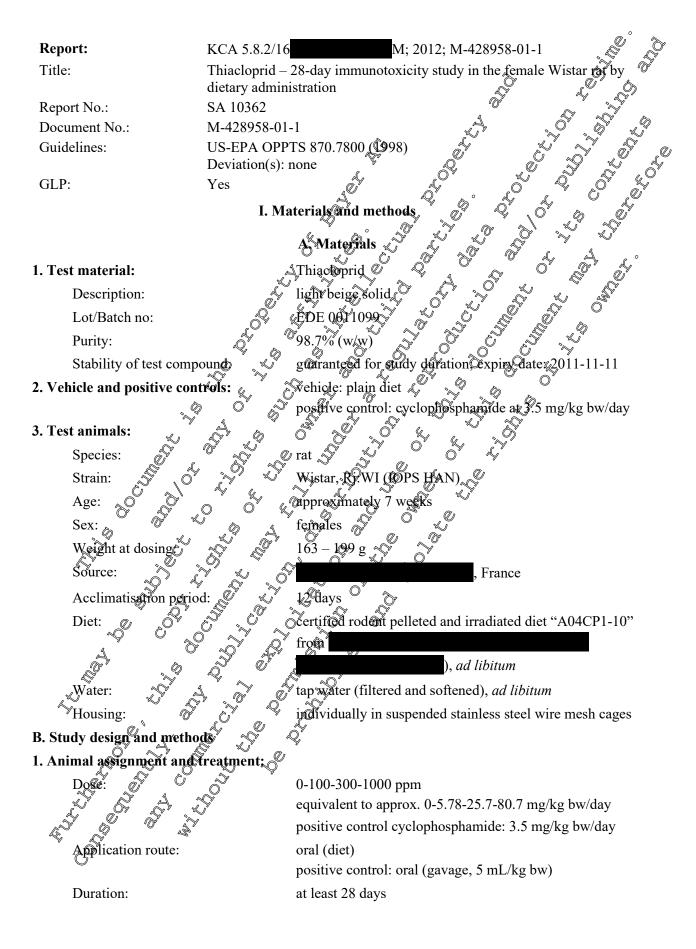
 Table 5.8.2/15-2:
 Plasma concentrations of thiacloprid in female dogs obtained after 13 weeks of dietary administration in a subchronic toxicity study (
 & 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986, 1986,

14	1-003814-01-1)				~	5 0	P ²
Dose level (ppm)	Dog No.	Pla	asma concenti	rations of thia	Coprid (µg/m		
		0 h	2 h	4 h	6 h	240h	
250	962	0.08	1,03	1.75	1.62~	∿~n.d. √	<i>y</i>
	970	n.s.	A.01	1228	1.03	n.s	Ĺ
	984	n.s.	£ 1.28	Őľ.85	×1.54 Ô	Aus. y	ĎŸ.
	986	n.s. 🖉	1.03	Q 1.55∘ . <b>1€61</b>	لم 1.6£ ₹		
	Mean	n.c.🖓	1.09 🕎	, <b>₽6</b> 1	¹ 1 48 x	© n.C	
	SD	nsc.	@°0.11\$	<b>∞0.22</b> €	<b>9</b> .20 ×	n.c.	
1000	980*	1.89	100 100	0.65	© ^v 0.39	~0.94 °	
	982	n.s. y		<b>10</b> .72	11.15	© n.Ş.	
	988	ñ.s.	© 6.50	_O [♥] 9.05	\$9.22 ×	Ön.s.	
	990 Ő	n.s.	× 34,937 _	5.42	6.1	n.s.	
	Mean Q	n.c.	6.15 J J 1.33	<b>8.30</b>	<b>&amp;</b> .83 🔨	n.c.	
	SDØ	n.c. n.c.	6.15 × 5 1.33	8.30 2.35 2.35	~ ⁰ 2.07	n.c.	
2000	964	50.19 5 n.s.	4.14	.7.59	13.89	0.14	
	\$966 O [™]	80.19 n.s	8.43	<b>9</b> .79	\$6.56	n.s.	
	972 0	Ö.S. 🎓	Q 2.65	5.72	4.50	n.s.	
(	974 5 978 5 5 9978 5	n.s. \$	<b>9</b> .29	1547 4	22.78	n.s.	
	Mean	<b>" p.c.</b>	~~~~ 6.2 <b>0</b>	, <b>9.64</b> ⊘	14.43	n.c.	
O	SD &	M.c.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.66	6.58	n.c.	

*: values were not considered for calculation of mean of a considered for calculation of mean of a constructed n.s. the sample of n.c.: I not calculated

Overall the relatively high plasma levels showed an efficient absorption of thiacloprid in dogs after dietary exposure.

### AII. Conclusion


These toxicokinetic data in the pasma of dogs revealed an efficient absorption of thiacloprid after 13 weeks of dietary treatment. The peak concentration was in most cases observed 6 h after feeding.  $C_{max}$  yalues in male and female anymals increased proportionally to dose.

Thus, it can be concluded that the marginal oxic effects of thiacloprid observed in the subchronic feeding study are not a consequence of inefficient absorption and low plasma concentrations of the test substance

Immunotoxieity

The immunotoxicity study on thiacloprid presented in the following was conducted to fulfill an U.S. data requirement.





### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

10 females

sheep red blood cell (SRBC) sensitization sheep red blood cell (SRBC)

On the day of injection, Sheep Red Blood Cells were washed in PRS (Phosphate Buffered Saline), counted using a cell counting instrument (Siemers Adva 120) and diluted in PBS in order to obtain a 5 × 10⁸ cells/mLO preparation. The SRBC preparation was kept on ice until use.

Administration of SRBC:

Observations:

Group size:

Identification:

Source of SRBC:

Antigen stimulation:

Preparation of SRBC:

f SRBC: On Study Day 26, all animals in all proups were immunized by intravenous injection in the tail of (0,5) mEanimal): Prior to intravenous injection, animals were mesthetized with Isedfurane (Virbae, Cartos, France). Mortanty, clinical signs, body weight, food consumption, organ weights (spicen, thymus) blood (blood sampling from the retro-orbital venous plexus 4 days after SRBC immunization at terminal sacrifice): determination of SKBC-specific IgM with an ELISA

### Methods

Thiacloprid was administered via diet to groups of 10 femate Wistar rats at concentrations of 0, 100, 300, and 1000 ppm (equivalent to approximately 0, 5.78, 25.7, and 80.7 mg/kg bw/day) for at least 28 days. An additional group of 10 females received 35 mg/kg body weight/day cyclophosphamide (immunosuppressive agent) daiky by of at gavage for at least 28 days to serve as a as positive control group. Animals were observed daily for mortality and clinical signs. Body weight and food consumption were recorded once weekly A detailed physical examination was performed once during the acclimatization phase and at least weekly throughout the study. On Study Day 26, four days before necropsy, all animals were inmunized with Sheep Red Blood Cell (SRBC) antigen by intravenous injection of 2.5 x 10° SRBC/animal via the tail vein. On Study Day 30 (just before necropsy), blood samples were collected from the retro-orbital venus plexus of each animal for specific anti-SRBC immunoglobulin M (IpM) analysis. All animals were necropsied, gross pathology observations were performed and spleen and thyms, were weighed.

TI. Results and discussion

A. Mortality of Co

### B. Clinical signs

There were no treatment-related clinical signs during the course of the study.

### C. Body weight

### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Mean body weight was reduced by 7 to 9% (statistically significant,  $p \le 0.05$ ) after treatment with 1000 ppm thiacloprid in comparison to control group animals from Study Day 9 to the end of the study. Overall mean body weight gain in the high dose group was approximately 32% Yower (statistically significant,  $p \le 0.01$ ) than in the control group at the end of the study.

### D. Food consumption and dietary intake of thiacloprid

At 1000 ppm, mean food consumption was 33% lower than in the control group (storis significant,  $p \le 0.01$ ) on Study Day 8 and remained approximately % lower until end of the study (Study Day 15 to 29, not statistically significant).

Table 5.8.2/16-1:	Mean achieved	dietary intake	of thiaclopric	l (weeks 1+4)

Dietary concentration of thi	acloprid (ppm)	Nean thiaclo	prid intake (mg/	g bw/(thay)
100			[→] ₂ 5,98 <u>×</u>	
300			25.7 D	
1000			\$ ⁷ 80; ⁵ , \$	
				***

### E. Immune response – SRBC-specific Igyl response m

Treatment with thacloprid had no statistically significant effect on the SRB ecific IgM response (see Table 5.8.2/16-2 below)

1 able 5.8.2/	16-2:	JI NIAC	yoprig-i	nduced	2KRC-8	spectric	igar resp	onse «S	
	ð	²	s s	RBS-spe	wific Ig	) (u/mL	), mean ±	SD	

, Ôj	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Sompare to con	trols)	
Thiaclogrid dose	Č 🕅	X Q .	1007 25	300	1000
level (ppm)					
Study Day 30	9724 ±	4824 > 1	1753 ± 6078	8521 ± 3041	$8468\pm3725$
				(-12%)	(-13%)
SD: standard dot	intion O K		. 0' '0'		

F. Necrop

### Organ weights

In the high-dose group, the mean terminal body weight was significantly reduced (-10%,  $p \le 0.01$ ) in comparison to the controls. In addition, the mean absolute and relative spleen weight was significantly increased by 18% (p  $\leq 0.01$ ) and +31% (p  $\leq 0.01$ ), respectively. In the mid-dose group relative spleen weights were also significantly increased (+16%,  $p \le 0.01$ ).

These changes were considered to be treatment-related.

#### Table 5.8.2/16-3: Spleen weights in female rats

Mean spleen weight ± SD (% change compared to controls)							
Dose level of thiacloprid (ppm)	0	100	300				
Mean absolute spleen weight (g)	$0.749 \pm 0.085$	$\begin{array}{c} 0.784 \pm 0.080 \\ (+5\%) \\ \end{array}$	$0.840 \pm 6.17$ (+12%)	$0.884^{**} \neq 0.084 \\ (+f8\%) \\ (+f8\%) \\ (-f8\%) $			
Mean relative spleen weight (%)	$0.2991 \pm 0.0246$	$0.3164 \pm 0.0357$ (+6%)	0.346 ± 0.0335	(0.3920)* ± 0.6326 (+31%)			

SD: standard deviation

**: statistically significantly different from control,  $p \le 0.01$ 

Treatment with the positive control compound cyclophophamide at 35 mg/kg bw/day significantly reduced the mean anti-SRBC IgM conceptration by -88% ( $p \le 0.01$ ) in comparison to the controls. In addition, cyclophosphamide treated animate displayed a lower mean terminal body weight (-5%, not statistically significant) and statistically significantly lower mean absolute and relative spleen and thymus weights (-17 to -24%, see Table 5.8.2/16-4 below).

Table 5.8.2/16-4: Mean spleen and thymores weights of the positive control group treated with cyclophosphamide

Cyclophosphamide (mg/kg bw/day)	Siean spicen	weight ±SD	Mean thymus	s weight ± SD
	Absolâte (g)	Relative (%)	Absolute (g)	Relative (%)
			€ 0.544 ± 0.111	$0.2168 \pm 0.0355$
369 29	0.567***# 0.076	$0.2379^{**} \pm 0.0270$	€428*±0.082 ○ (-21%)	$\begin{array}{c} 0.1805^* \pm 0.0366 \\ (-17\%) \end{array}$

SD: standard deviation 4

*: statistically significantly different from control,  $p \le 0.05$ 

**: statistically significantly different from control, p 0.01

### Gross pathology

No treatment-related macroscopic changes were observed in any of the thiacloprid treated animals, while in the positive control group atrophic/small spleens and thymus were observed in 8/10 and 3/10 animals, respectively.

### A. Conclusion

Dietary treatment with up to 1000 ppm thiacloprid (equivalent to approximately 80.7 mg/kg bw/day) for at least 28 days did not impair the immunological IgM response after immunization with SRBC in female Wistor rats. Therefore, thiacloprid was considered have no immuno-suppressive potential.

### Analytical methods

Analytical methods for the determination of thiacloprid by HPLC analysis in rodent diet (+1% corn oil) were developed. The references of the study reports are presented under KCA 5.8.2/31, M-392957-01-1 and KCA 5.8.2/32, M-425259-01-1.



Report:	KCA 5.8.2/17 ,; 2007; M-293209-01-1
Title:	
Report No.:	SA 06252
Document No.:	M-293209-01-1
Guidelines:	Prior to guideline, but in general accordance to OECD 440 2007
	SA 06252 M-293209-01-1 Prior to guideline, but in general accordance to OECD 440 (2007) Deviation(s): only one dose tested; wet uterine weight not determined: Each female was assessed for vaginal opening during recropsy (Duc to the opinion of the Study Director this deviation did not affect the results
	Each female was assessed for vaginal opening during mecropsy (Due to
	the opinion of the Study Director this deviation did not affect the results
CLD	of the study).
GLP:	yes of the second secon
	I. Materials and methods
	A. Materials
1	
1. Test material:	a unacioprite a construction of the constructi
Description:	hight brown powder of 5 5 5
Lot/Batch no:	the opinion of the Study Director this deviation did not affect the results of the study). yes I. Materials A. Materials thraclopred Hight-brown powder EDE 0011099 99.0% bund: guaranteed for study duration; expiry date: 2008-02-25 eleic acid 4-androstene-3,1% dione (male steroid hormone and aromatase inducer)
Purity:	
Stability of test compo	ound: y guaranteed for study duration; expiry date: 2008-02-25
2. Control compounds / mu	cleic acid
analog:	
Denomination	cleic acid 4-androstene-3,17-dione (male steroid hormone and aromatase induser)
	aromatase inducer)
Description: Lot/Batch no: Patity:	A 016K1420
Lot/Batch no:	
Description: Lot/Batch no: Posity: Stability of test compo Denomination: Description: Lot/Batch no: Pusity:	57 ~ 89% 57 £7 0 ⁷
Stability of test comp	Sund: 5 99% 5 5 9 Sund: 5 guaranteed for study duration; expiry date: January 2011 Bestradiol (17) estradiol, estrogen receptor agonist) white powder
Denomination:	Sund: Sund: Superanteed for study duration; expiry date: January 2011
Description:	White powder
Lot/Batch no:	025K1806
Stability of test comp	
Denomination:	
Description:	Soff-white crystalline powder
Lot/Batch new	<pre>% % % % % % % % % % % % % % % % % % %</pre>
Tadisty.	
Stability of test compe	
	date mentioned)
3. Vehicle:	arachis oil
1 Test animals.	

4. Test animals:



Species:	rat
Strain:	Wistar rat, Rj:WI (IOPS HAN)
Age:	19 days
Sex:	females
Weight at dosing:	36.4 – 51.2 g
Source:	, France Stranger
Acclimatisation period:	rat Wistar rat, Rj:WI (IOPS HAN) 19 days females 36.4 – 51.2 g 6 days certified rodent pelleted and irradiated diet "A04CP1-10" from France), addibitum tap water (filtered and softened), ad libitum during acclimatisation; commencing on the afternoon before the first day of treatment: solution of 0.8 mg BrdU/mL drinking water <i>ad libitum</i> during treatment During acelimatization, each dam with fitter was housed in
Diet:	certified rodent pelleter and irradiated diet "A04CP1-10"
	from
	France), addibitum
Water:	tap water (filtered and softened), ad libituar during
	"acclimatisation; commending on the afternoon before the
	drinking water ad library during treatmen
Housing:	During acelimatization, each darn with fitter was housed in
Housing:	arvindividual Makrolon cage Containing soft wood
	Bedding. Following acclimatization, the immature females
	were group-housed (7/cage) in Wakrolon cages.
B. Study design and methods	were group-housed (7/case) in Makrolon cages.
1. Animal assignment and treatment:	
Test substance dose	70 mg/kg bw/dag
Application:	rubcutaneous injection (s.c.) as suspension in arachis oil,
	4 mE/kg bw, once daily for three days
Androstenedione dose:	30 mg/kg bw
Application: $\chi^{\mu}$	s.c., as suspension in arachis oil, 4 mL/kg bw, once daily
176 astrodial dara	io unite mays
Applie@op	A u hgag uw
	for three days
Venicle dose: V	S mLAg by oral gavage
ATable 5.9 2/19 1. Course and	
	<ul> <li>70 mg/kg bw/day</li> <li>70 mg/kg bw/day</li> <li>90 mg/kg bw, once daily for three days</li> <li>30 mg/kg bw</li> <li>s.c., as suspension in arachis oil, 4 mL/kg bw, once daily for three days</li> <li>10 µg/kg bw</li> <li>s.c. as suspension in arachis oil, 4 mL/kg bw, once daily for three days</li> <li>8 mL/kg by oral gavage</li> </ul>
J Z A J	
$\bigcirc$	

Page 132 of 251 2014-10-20

### **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Group	First dose by	s.c. injection	Second dose by oral gavage		
	Compound	Dose level	Compound	Dose level	
1	AO	0 mg/kg bw	AO 🏠	0 mg/leg bw	
2	thiacloprid	70 mg/kg bw	AO	0 mg/kg bx	
3	17β-estradiol	10 μg/kg bw	AO	fing/kgow	
4	androstenedione	30 mg/kg bw	ĄĆ, "	°√0 mg⁄kg bw	
5	AO	0 mg/kg bŵ	-Q		
6	thiacloprid	70 mg/kg bw		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
7	17β-estradiol	10 μg tog bw		Å <u>-</u> Å	
8	androstenedione	30 mg/kg bw	87 . N - M &	N . 4 ³ 4 ³	

males/grour once daily for

Group size:

Number of applications:

Post-treatment observation period:

**Observations:** 

[™]24 h after last dos montality Plinic Signs Body Weight Saginal opening (prior to necropsy), plasma concentrations of estradiol, testosteroneand progesterone (blood sampling prior to newopsyl, gross necropsy, organ weights (uterus, liver, as quality control for immunohistochemical staining), ovaries); histopathology (uterus; sample of the duodenum mitotic index for epithelial cells (lumen and glands) and endometrial stromal cells, height of endometrial epithelium and thickness of endometrium, assessment of cor proliferation by immunohistochemical staining for BrdU()terus and du lenum as positive control)

### ults and discussion

### A. Mortality

No mortalities occurred during the stud

### **B.** Clinical signs

One animal in Group 2 (70 mg/kg/w/dag/thiactoprid s.c.) exhibited reduced motor activity on the last day of dosing. Reduced motor activity or coluced motility, resp., is a typical sign of thiacloprid intoxication in fats and also the appred dose of 70 mg/kg bw thiacloprid s.c. for 3 days could be high enough to lead to first signs of intoxication. Therefore, the finding is considered to be treatmentrelated (although it was considered to be incidental by the author of the report, since it was not observet in any other animal in this study).

No treatment related signs were observed in any other animal.

Physical examination prior to necropsy revealed no vaginal opening in any female of any dose group.

### C. Body weight

Ŀ,

### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

The following body weight effects were noted in the thiacloprid dose groups: Mean body weight of Group 2 females (70 mg/kg/day thiacloprid) was statistically significantly lower than that of the corresponding Group 1 control females on Day 2 (-12.8%; p<0.05) and Day 3 (19.8%) p<0.01) of treatment. Similarly, mean body weight of Group 6 females (70 mg/kg bw/day thiadoprid) was statistically significantly lower than that of the corresponding Group 5 control females on Day (-18.2%; p<0.01).

Overall, a mean cumulative body weight loss of -1.5 g (22%, p  $\leq 0.04$ ) was observed for Group 2 females treated with thiacloprid compared to a cumulative body weight gain of 9.5 g for the corresponding Group 1 controls, and a mean body weight loss of -3.0 g (-  $\mathfrak{W}$  %,  $p \leq 0$ recorded for Group 6 females treated with thiaclopfid compared to a sumulative mean body gain of 8.7 g for the corresponding Group 5 controls.

B-estradiol treated groups There were no effects on body weight in the and oscience difference or  $R^{\alpha}_{\beta}$ 

### **D.** Hormone analyses

The majority of the data generated from the determination of estradied testos erone and progesterone levels proved inconclusive for two reasons. First, as the females used in this study were immature (22 days old at sacrifice), the volume of blood required to evaluate a three hormones was not achieved for several animals (3/56, 14/56 and 9/56 samples were not available for the evaluation of estradiol, testosterone and progesterone, respectively). This was further complicated for estradiol and testosterone by the fact that the concentrations of these hormones were below the limits of detection for many samples (3756 for Ostradiol and 23/56 for testesterone).

Overall, estradiol was detected in 57 females of Group 7 (17 $\beta$ -estradiol treatment; 16.85 ± 8.85 pg/mL). All other values were considered incidental.

Low levels of testosterone were detected in available samples from animals treated with androstene the cone ( $0.84 \pm 0.91$  ng/mL for Group 4 and  $0.85 \pm 0.35$  ng/mL for Group 8). All other values were considered incidental.

Progesterone could be detected in all samples evaluated. There were no statistically significant differences observed between the treatment groups and the porresponding control groups.

### E. Organ weight

Liver:

The mean absolute liver weight was unaffected by treatment with either  $17\beta$ -estradiol (Groups 3 and 7) or androstenedione (Groups 4 and 8) However, mean absolute liver weight of thiacloprid treated animals was lower (in Group 6 ven statistically significantly lower) than in controls (Group 2: -17%; Group 6: -19.2% (  $p \le 0.05$ ) As there were no significant differences in the liver weights relative to body weight this reduction in absolute forer weight is considered to be due to the body weight losses induced by thiacloprid.

### Ovaries.

The mean appoint powers weight was unaffected by treatment with either 17β-estradiol (Groups 3 and  $\tilde{7}$ ) or and rostenedione (Groups 4 and 8). This applies also to the mean absolute ovarian weight of animal dosed with thiacloprid in Group 2. Only the mean absolute ovarian weight of the animals dosed with thiacloprid in Group 6 was statistically significantly lower than the control weight (-34%; p < 0.01)



### Uterus:

The mean absolute uterine weight was significantly higher than the control weight for animals used with  $17\beta$ -estradiol (Group 3: 154% and Group 7: 152%;  $p \le 0.01$ ) as well as for those treated with androstenedione (Group 4: 145% and Group 8: 142%;  $p \le 0.01$ ). A marginal increase in absolute uterine weight was recorded for animals in Group 2 dosed with thiacloprid (14%; not statistically significant). However, this was not observed for thiacloprid-treated animats in Group 6. As there were no histopathological changes associated with the increased uterine weight, it is considered as incidental and not treatment-related.

Group	1	2	3	^Q 4 °	J.	× 6	7≪	
Substance	Control	Thiaclo-	17β- (	Andros-	Controk	Thiaclo-		Andros-
		prid	Estradiol	tene- • dione		oprid "	Estra- diol	<b>fenedion</b> e
Terminal bw (g)	55.7	43.4** (-22%)	567 <b>4</b>	56.2	\$6.2 ***	42,1** (25%)	55.6 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6.4
Mean abs. liver wt. (g)	2.4	2.0 (-17%)*		~7.5 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~2.1*~ P(-19.2%)		\$ 2.5
Mean liver to bw ratio	4.4	4%6 (+ <del>2/</del> .5%) (	4.2 °S	4.4	4.6C	4.9 (+6.5)	4.2	4.5
Mean abs. ovarian wt. (mg)	27				\$ ²⁹	49** (-34%) 0 4	\$ 32	26
Mean abs. blotted uterine wt. (mg)			(+154%) (+154%)	44.4 (+145%)		17 <b>C</b> S	45.1** (+152%)	43.3** (+142%)

Table 5.8.2/17-2:	Mean organ weights at	terminal sacrifice	(% Change vs	. control)
	8	Core V		

bw: bod weight weight abs.: absolute

*: shift stically significantly different form control  $(\phi^2 \le 0.05)^2$ 

**: statistically significantly different form control  $(p \le 0.01)$ 

### F. Microscopic post mortem Evaluation >> ->

Microscopic Chamination of the uterus from all temales treated with the positive controls  $17\beta$ -estradiol and androstenedione indicated minimal to moderate diffuse endometrial hyperplasia and cellular debris in the endometrial epithelium. In addition, minimal interstitial mixed cell infiltrate was observed in animals freated with  $\beta^{-}\beta$ -estradiol (both treatment groups) when compared to the control animals.

No treatment-related effects were observed on the animals dosed with thiacloprid.

### Mitotic index:

The mean mitoric index observed in the endometrial stroma and the epithelial cells was higher in the positive control treatment animals when compared to the control animals. No differences were observed between animals treated with thiacloprid (both treatment groups) and control animals.

### Endometrium:



The height of the epithelium and the endometrial thickness were higher for animals dosed with  $17\beta$ estradiol when compared to control animals. Treatment with androstenedione did not affect the peithelial cell height or the endometrial thickness. No differences were observed between animals dosed with thiacloprid and control animals.

Group Substance	1 Control	2 Thiaclo- prid	3 17β- estradiol	4 Andros- tenedio	ن 5 Control	y 6 Thiaclo- prid	Ø7β- Sestradio	Andreos- tenedione
			Height of th	e uterns epit	helium (µ́m)			
Mean	12.39	12.69	15.63	12.68	10.58	11.86	14.97 √	10.56
SD	1.15	1.67	2.58	\$ 2.37	J.19 L	2,47	S 1.69 ×	1.22
			Endor	netria heigh	p(µm) Q	Ĩ,		
Mean	80.96	86.70	117.92	406.40	8729	A103,50	¥1,5.99	85,03
SD	26.13	24.08	32,35 %	×18.92	¥3.68 C	23602	21.86	<b>D</b> .97
				° 7 4				Ô

### Table 5.8.2/17-3: Mean values of height of the uterus epithelium and the endometrial thickness

### G. Cell proliferation assessment

In the endometrial stromal cells a higher proliferative index was observed for an mals dosed with  $17\beta$ estradiol (both treatment groups) as well as for those treated with and rostenedione (both treatment groups) when compared to controbanimats. No differences were observed between animals dosed with thiacloprid and control animals.

In the luminal epithelial cells a higher proliferative index was determined mainly for animals dosed with  $17\beta$ -estradiol but also for mimals treated with and estendione when compared to control animals. There were no differences between animals dosed with the cloped and control animals.

Group	1 Contrad	Thiaclo-	⁶ 3 17βΩ ¹ estradiol	Andros Andros Tenedione	Control	6 Thiaclo- prid	7 17β- estradiol	8 Andros- tenedione
		\$ ⁷ ,5 ⁵ ,	Endome	trial stromal	Als (%)			
Mean	~\$3.62 Û	2031 A		23.3 P	3.91	8.97	48.77	33.89
SD 🔎	1.13	2.41	16.64 %	10,49	3.18	15.14	6.42	9.67
Lunimal epitrelial cells (%)								
Mean	0.28	<b>0</b> .21 ~	12 12	5.08	0.40	0.49	8.63	2.86
SD	0,23	0.08	J3.87 (	0.95	0.47	0.81	3.23	1.32

### Table 5.8.2/17-4: Labelling index after Brd (detection (*)

(*): number of BrdL positive cells per 500 cells counted

### **III.** Conclusion

Thiactoprid  $\beta$  is not clicit an uterotrophic response (gravimetically and microscopically) in immature fermale rats. Under the same test conditions, significant gravimetrical and microscopical uterine effects were recorded for the positive control compounds 17 $\beta$ -estradiol and androstenedione.

BAYI

Report:	KCA 5.8.2/18 ; 2009; M-359235-01-1
Title:	Thiacloprid – Investigation of effects on hormone levels in adult female
Report No.:	SA 07125
Document No.:	M-359235-01-1
Guidelines:	No applicable guideline
	Deviation(s): not applicable
GLP:	Non-GLP (no specific Quality Assurance inspections were conducted
	standard operating procedures, whick were previously accepted and
	periodically inspected by the Quality Assorance Onit)
	Thiacloprid – Investigation of effects on hormone levels in adult female Wistar rats following a single oral dose SA 07125 M-359235-01-1 No applicable guideline Deviation(s): not applicable Non-GLP (no specific Quality Assurance inspections were conducted and dose formulations were not analysed, but performed according to standard operating procedures, which were previously accepted and periodically inspected by the Quality Assurance Unit I. Materials and methods A. Materials thiacloprid Upper durity of the provided of t
	A. Material &
1. Test material:	thiacloprid
Description:	Wight brown powder a star of a
Lot/Batch no:	thiacloprid Hight brown powder 7 EDE 001 1099
Purity: Stability of test comp	ound: aqueous 0.5 % methyles Julos 400
<u> </u>	ound: C guaranteed for study duration; expiry date: 2008-02-25
3. Test animals: 🔬	active out 0,5 % methyleellulose 400
Species:	F a rat F F a o f
Strain:	Wistar jat, Rj: WI (IODS HAN)
Age: S	O O Gapproximately 11 weeks
Sex: Q	females of a m
Weight at dosing,	8 217 - 369 g 3 0
Source:	, France
Acclimatisation perio	d: At least 12 days
Diet:	Contraction of the certified rodent pelleted and irradiated diet "A04CP1-10"
A S	from
	rat Wistar rat, Rj:XI (IOPS HAN) approximately 11 weeks females 217 – 269 g Certified rodent pelleted and irradiated diet "A04CP1-10" from France), <i>ad libitum</i> tap water (filtered and softened), <i>ad libitum</i> individually in suspended stainless steel wire mesh cages
Water:	tap water (filtered and softened), ad libitum
Housing:	individually in suspended stainless steel wire mesh cages
B. Study design and met	tods S
1. Animalassignment on	d treatment:
Dose levers:	0, 60 mg/kg bw
Application poute:	oral gavage
Application volume:	5 mL/kg bw
õ	

Bayer CropScience в R Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

1 2		(mg/kg bw)	(h after treatment)	Number of rats per group
2	Control	0	, ô	15 5
2	Thiacloprid	60	2	5 ⁵ 155 ⁵
3	Control	0	Č	13 13 S
4	Thiacloprid	60		0 3915 ×
5	Control	0 0		
6	Thiacloprid	60		
st-treatm servation	18-2? Geore express	acchinatization another another another pestosterone a weights (uter gland, pittita 24 h group; if bodyweight,	ation er, desing ortality clinical signs bo on and prior of dosing), bl tanecropsy, determinate ind progesterone), gross n us (incl. cervix), fiver, ox ry gland). or addition to the above ob clinical signs at least once r prior to sacrifice for estr ion analysis by quantitativ mic RNA of ovary and liv mic ol and treated animals antitative PCR in 24 h an	bin of estradiol, hectopsy, organ daties, adrenal eservations: terminal e after dosing, rous cycle staging, we PCR of isolated ver samples of of Groups 5 and 6. himals
ene (wiaj	or function)	Stevoidogen		Abbreviation

#### Table 5.8.2/18-1: Gi oun size and treatment

	Stevoidogenesis	
	Steroidogenic acute regulatory profein (Chalesterot transport to inner	StAR
~	Cytochrome P050 11al (Cholesterol side-chap cleavage to form pregnenolone)	Cyp11a1
4	Cytochrome P450 $\beta$ al (Pregnenologie $\rightarrow \beta$ ahydroxypregnenolone) (Progesterone $\rightarrow$ androstenedione)	Cyp17a1
	Hydroxysteroid dehydrogenaxe 3b1 (Pregnenolone $\rightarrow$ Progesterone)	Hsd3b1
	Hyproxystered delodrogenase 179 (Androstenedione $\rightarrow$ testosterone)	Hsd17b3
	Hydroxy deroid dehydrogenase 17b1 (Estrone $\rightarrow$ estradiol)	Hsd17b1
Å	Cytochrome $\mathbb{R}450$ [94] (aromatase) (Testosterone $\rightarrow$ estradiol)	Cyp19a1
L.S.	Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in endocrine tissue)	Nr5a1
	Insulin-like 3 (associated with ovarian thecal cells)	Insl3
	Metabolism	

Cytochrome P450 1a1	Cyp1a1	ر م	~
Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6 $\beta$ hydroxytestosterone)	Cyp3a3		A CONTRACTOR
Aldo-keto reductase 1c18 (Inactivation: progesterone $\rightarrow 20$ - $\alpha$ -hydroxy-progesterone)	Akr1c18	, er _s o	<i>Ф</i> ″ )
Steroid 5-alpha reductase 2 (Conversion of testosterone $\rightarrow$ DHT)	Srd5a2		æ-

Beta-2 microglobulin (B2m) was selected as the reference gene for the quantitative calculations of transcripts in the liver and beta-actin (Actb) was used as the reference gene for the ovary of calculations. The relative quantity (RQ) value of each test transcript was calculated using the following formula:

 $\Delta\Delta Ct = (Ct_{test} - Ct_{B2m})_{treated} - (Ct_{test} & Ct_{B2m})_{control}$   $RO = 2^{-\Delta\Delta Ct}$ 

where Ct is the threshold cycle at which RCR amplification started to be significantly different from the background signal. As a Ct of  $\geq 350$  indicates that a generic poorly expressed in the tissue investigated, any subsequent RO data generated from such a Ct are considered as nonrelevant due to an increased fixed of contamination.

Each RQ value obtained for a given gene was normalized by dividing by the RQ value obtained for a randomly chosen control animal. Thus, control rat RT5E3111 was used for the ovary evaluations and control rat RT5F3110 for the liver evaluations

AI. Results and discussion

### A. Mortality

There were no mortalities during the course of the stady.

### B. Clinical signs

No clinical signs were recorded for any animation of the stady.

Analyses of vaginal means prepared for the 24 h sacrifice group prior to termination revealed that thiacloprid treatment did not lead to any relevant changes of the estrous cycle.

		r to neer opsy					
Ancidence of observations* (%)							
Treatment A Pre-estrous	Estrous	Post-estrous	<b>Di-estrous</b>				
Control	4/15	5/15	3/15				
	(27)	(33)	(20)				
60 mg/kg by hiacloprid	3/15	8/15	3/15				
	(20)	(53)	(20)				

Table 5.8.2/18-3: Results of estrous cycle staging conducted prior to necropsy

*: (x/s): number of animals affected / total number of animals

### C. Body weight

There we no effects on terminal body weight 24 h after single oral treatment with thiacloprid.

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### **D.** Hormone analyses

To minimise variability in hormone measurements, the time of dosing was adjusted so as to ensure that all blood samples were obtained between 9 am and 10:30 am.

A significant increase in plasma progesterone concentration compared to the relevant control concentration was recorded 8 h (+56.7%;  $p \le 0.01$ ) and 24 h (+81.4%;  $p \le 0.01$ ) after treatment with thiacloprid. These increases were considered biologically relevant.

The results for testosterone were inconclusive due to the fact that this bormone could only be detected in the plasma of relatively few control females (7/15, 3/15 or 4/15 and h, 8 h or 20 h after treater respectively).

This hormone could, however, be detected more readily in the plasma of treated females Table 5.8.2/18-4: Hormone data

-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\sim 0$ 0 0	Ĵĭ în 🔨
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hange compared to co	ntrot,
60 mg/kg	thiacloprife 🥡	Progesterone	🖧 Testosterone	Estradiol
~	2 h ° ć	+10.7	\$+143\$ ×	-22.1
Sample times after dosing	× 84 0	0 +5 .7 ** 0 ×	\$ +66.7 S	-16.1
uosing	9 24 h	Ø \$81.4**	O 013.3 4	-8.0

statistically significant, p 5 0.01

E. Organ weight

There were no effects on absolute and relative organ weights of liver, ovary, uterus, adrenal and pituitary gland 24 h aft oral administration of thiactopric

F. gPCR analysis

Ovary:

Ovary: In the ovary Diere were no statistically significant changes in gene expression, only marginal increases were recorded for Hsd17b3 (59%, conversion of androstenedione to testosterone), Hsd3b1 (+70%, conversion of pregneneolone to progester on) and Insl3 (+125%, associated with the cal cell activity) expression. The large increase in Cyp 243 expression was due mainly to one animal (RT6F3135), which had an RQ of 530.07 and was considered to be non-relevant as the average threshold cycles (CTs) were 36. and 34.8 for control and treated samples respectively.

Tinaciopriu		

Ovarian gene transcripts	Mean Relative Quantity ± standard deviation of gene transcripts (% Change compared to control mean values)			
	Control	60 mg/kg bw thiacloprid	0	
	Steroidogenesis		Ô	
StAR	1.1±0.4	$12 \pm 0.2 (+9\%)$		
Cypllal	1.1 ± 0.4 1.4 ± 0.5	$1.3 \pm 0.3 (-7.4\%)$		
Cyp17a1	0.4 ± 0.3	$0.3 \pm 0.3 \pm 0.3$	K ^O	
Cyp19a	0.3 ± 0.3	$0.4 \pm 0.4 (+33\%)$		
Hsd17b1	0.9±0.2			
Hsd17b3	0.7 ± 0.2 0° ×	1 1 ± 1.4(+57%)		
Hsd3b1	1.0± 0.3	$2^{-1.7} + 2.4 (+70\%)$	0	
Nr5a1	0.7 ± 0.2			
Insl3		0.9 ± 1.07+125%) O		
	A Metabolism 🖑 🔿			
Cyplal		1.0±1.5€25%) [™]		
Cyp3a3		40.6±137@(+3275%)*		
Akr1c18	0.01 ± 0.4	° 0.7 ± 0.3 (-12.5%)		
Srd5a2		13.9 ± 7.7 = 36.4%)		

Table 5.8.2/18-5: Gene expression in the ovary analysed by quantitative PCR (RT-PCR)

*: change mainly due to one animal, considered to be on-relevant (for details see paragraph above)

Liver:

A number of gene transcripts, particularly those associated with metabolism were up-regulated in the liver of females treated with this loprid. Cyp1al ($p \le 0.01$) and Cyp3a3 ($p \le 0.01$) were statistically significantly up-regulated. Akr/e18, which is responsible for the metabolism of progesterone to its inactive metabolite 20-d-hydroxyprogesterone, was also pp-regulated but not statistically significant. Cyp17a1 ($p \le 0.01$) conversion of progesterone to and restenedione) and Hsd17b3 ($p \le 0.05$; conversion of an postenedione \tilde{w} test steron \tilde{w} , were up-regulated. StAR ($p \le 0.01$) was statistically significantly up-regulated, athough the fold-change was only marginal compared to the other

significantly op-regulated genes, Cyp 19a1 and Insl3 were not expressed in the liver samples and Srd5a2 was only very weakly expressed as evidenced by the CT > 40.

Table 5.8.2/18-6: Gene expression in the liver analysed by quantitative PCR (RT-PCR)

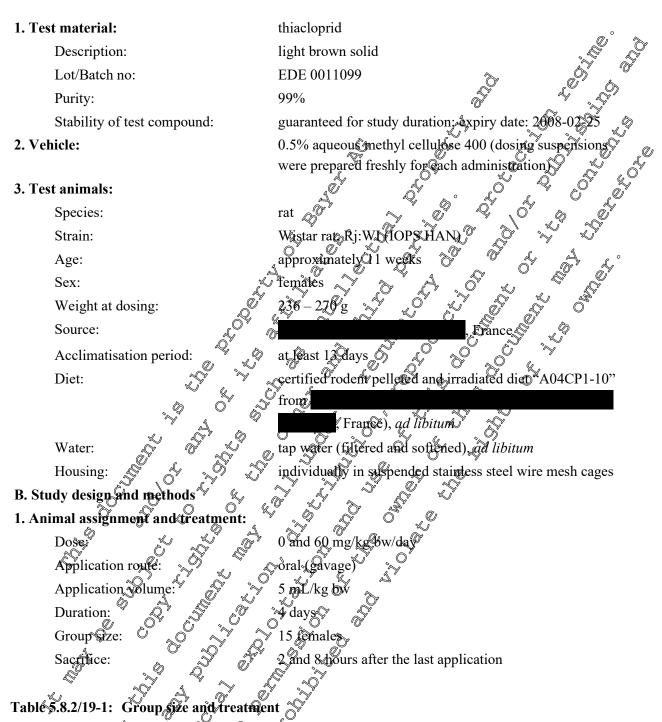
	ie expression in the river analysed by qu		~			
Hepatic	Mean Relative Quantity ± standard deviation of gene transcripts					
gene transcripts	(% Change compared to control mean values)					
	Control	60 mg/kg w thiacloprid				
	Steroidogenesis)			
StAR	0.9 ± 0.1 (℃)	$\frac{1}{1.1 \pm 1.7} (\pm 5\%) \times 7$				
Cyp11a1	0.7 ± 0.5 V	$\begin{array}{c} 1.1 \pm 0.3 & (12,30) \\ \hline 1.1 \pm 1.7 (+5\%) \\ \hline 1.8 \pm 1.0^{*} \\ \hline 1.8 \pm 0.0^{*} \\ \hline 0.0 \\ \hline$	Š			
Cyp17a1	0.9 ± 0.5)			
Cyp19a1	ND	Q Q AVD A				
Hsd17b1	0.8 ± 0.2 0					
Hsd17b3	0.8 ± 0.2 ⁽⁴⁾ 2.8 ± 6 ⁽²⁾ 2 ⁽⁴⁾	4 5 ± 2.3 (+61%)				
Hsd3b1		$0^{1.2 \pm 1.2 (+50\%)}$				
Nr5a1		1,3@1.1(#30%)				
Insl3						
	K Metabolism 🎸 🔿					
Cyp1a1	$2 2 3.1 \pm 2 2 3 $	^O 6.9 €4.1** (+229%)				
Cyp3a3		26.4 ± 25.7 ^(*) (+30%%)				
Akr1c18	$0.8 \pm 0.4 \%$	⁵ √ 5.3,±9.1 (+563%)				
Srd5a2		0.98 ± 0.4 (-46%)				

*: statistically different from the control group $(p \le 0.05)$

**: statistically different from the control group ($p \leq 0.01$)

Ľ

W. Conclusion


Ó

ð

Treatment of adult female rats with a single oral dose of 60 mg kg by thiacloprid caused an increase in plasma progesterone concentration and a significantly increased expression of several genes associated with the regulation of steroid hormone synthesis 24 rafter dosing. These findings were considered biologically relevant.

Report: ⁽¹⁾ KCA [*] 7.8.2/19
Title: A The cloped – Evaluation of hormone levels in female rats 2 and 8 hours
Report No.:
Report No.: \mathcal{N} A SA 07011 \mathcal{N}
Document No.: 0 Mc360362-01-1
Guidelines: So applicable guideline
Deviation(s); not applicable
GLP: GLP:
2 2 and dose formulations were not analysed, but performed according to
Standard operating procedures, which were previously accepted and
GLP: GL
I. Materials and methods

A. Materials

	ance 🖉 Dose levels (mg/kg,bw)	Sacrifice time (h after last treatment)	Number of rats per group
1 Control		0	15
2 S Thiacloprid	- 60	8	15
3 Control		2	15
4 Thiacloprid	60	Z	15

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Observations:

mortality, clinical signs, body weight, food intake, test substance intake, hormonal analyses (progesterone, testosterone, estradiol, FSH), estrus cycle staging (by vaginal smear analyses prior to sagafice), gross necropso organ weight (liver, ovary, uterus, adrenal glands). histopathology (liver, ovary, storus, adrenal gland, aging)

II. Results and discussion

A. Mortality

No mortalities occurred during the course of the state

C. In life observations

There were no faeces observed on Study Days 2 and 3 for one female that was treated with this clopfuid (Group 2, 8 h sacrifice group). Constigation and reduced defecation are known signs of thiactoprid toxicity, which were observed in female rate on treatment days 1-Pafter oral gavageadministration of 60 mg/kg bw/day of thiacloprid also in the pilot subacute toxicity study by ¢1995, M-000703-01-4).

Thiacloprid treatment significately reduced mean body weights all animals when compared to the appropriate controls. On Day 2 mean body weight was significantly reduced by 3.95% (p ≤ 0.01) in Group 2 (8 h sacrifice) and by 3.0% (p 20.05) in Group 4 (2 h sacrifice), while of Day 3 mean body weight was significantly reduced by 7.9% (p 30.01% in Group 248 h sacrifice) and by 6.8% (p ≤ 0.01) in Group 4 (2 h sacrifice).

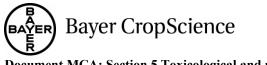
Overall, between Study Days, Dand 37 this cloprid reatment resulted in a significant ($p \le 0.01$) 8 h savifice for 15 g (Group 4, 2 h sacrifice), cumulative bod weight loss g (Group 2 respectively.

D. Vaginal smears

P

before sacrifice to determine the stage of the estrous staken from all animals Vaginal smears were cycle.

There were no indications that this cloprid meatment led to relevant changes of the estrous cycle. The results of the myestigation of the vaginal smears are presented in the following table.


Table 5:8.2/19-2:	Results of estrous	cycle staging conduct	ed in vaginal smear	rs prior to necropsy

Thiacloprid	Sacrifice time		Incidence of ob	servation* (%)	
(mg/kg bw/day)	\ (h [₩] *)	Pre-estrous	Estrous	Post-estrous	Di-estrous
	ale le	0/18	4/15	5/15	6/15
0 0	N A		(26.7)	(33.3)	(40)
60		°¶/15	2/15	8/15	4/15
		(6.7)	(13.3)	(53.3)	(26.7)
A G	A N	1/15	5/15	4/15	5/15
		(6.7)	(33.3)	(26.7)	(33.3)
600 ⁰		0/15	4/15	5/15	6/15
⇒O*		(0)	(26.7)	(33.3)	(40)

 $(\vec{x/y})$: number of animals affected / total number of animals

**: after the last of 4 daily doses

Page 144 of 251 2014-10-20

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

E. Hormone analysis

To minimize the interanimal variability in the hormone measurements, the time of dosing was adjusted of for the final dose so as to ensure that all rats were sacrificed and all blood samples were obtained between 9 am and 10:30 am.

Thiacloprid treatment significantly ($p \le 0.01$) increased the progesterone plasma concentration of all animals 2 h (+ 70%) or 8 h (54.2%) after the last administration. These increases were considered biologically relevant.

The results for testosterone were inconclusive, because it was detected only in one animal of the original control groups but in 9/15 or 8/15 animals 2 h or 8 h after the last treatment with this population respectively.

While FSH plasma concentrations were unaffected by treatment, estradio was not detected in the plasma of any female rat. Re-analysis of the plasma samples for estradiol by in external laboratory using a different RIA kit confirmed that the estradiol concentrations were below or close to the limit of detection for all females in all groups. No conclusions could, therefore, be drawn concerning the effect of thiacloprid treatment on this hormone in the present study. Technical problems are considered to be responsible for this occurrence as it is unlikely that the estradiol levels in all the adult females in all four groups would, under normal circumstances be below the finit of detection.

Table 5.8.2/19-3:	Hormone concer	itrations in	plasma
-------------------	----------------	--------------	--------

Thiacloprid dose (mg/kg bw)Sacrifice time (h)We have been been been been been been been be					
(mg/kg bw)		Progestecone 🛸 @ (ng/mL)	Testasteroge (ng/mLD	Estradiol (pg/mL)	FSH (ng/mL)
0		23.69 ± 12.96	o nd€	🖉 nd	5.8 ± 1.8
60		(+703) D	0.07 0.04	nd	5.8 ± 1.0 (nc)
	f Ø	<u>3</u> 20.98 ± 9.52	0.05	nd	6.5 ± 1.4
60		∲32.35 ± 10,58** ∝ (+54.0) ×	0.05 × 0.04	nd	6.5 ± 1.4 (nc)

**: $p \le 0.01$ A: sacrifice time after the last of your daily oral desce

B: testosterone was detected in the plasma of only one control female

- nd: not detected as concentrations were below the light of detection
- nc: no change

F. Terminal body weight and organ weight

This choprid treatment significantly ($p \le 0.01$) reduced the mean terminal body weight of the animals sacrificed at the 2 h (-11.7%) and the 8 h (-920) time-point compared to control females.

This reduction was reflected in the absolute liver weight, which was also significantly ($p \le 0.01$) reduced at both time points (-14.7% or 46.5% for females sacrificed 2 or 8 h, respectively, after the last thiactoprid cose). The repeated of these changes is unclear as the liver was not subjected to microscopic examination.

This borid reatment significantly ($p \le 0.01$) increased the absolute and relative weight of the adrenal gland for remales sacrificed 2 and 8 h after the last dose of this loprid (absolute and relative weights: 36.1% and 53.7% after 2 h, 20.8% and 32.1% after 8 h).

Thiacloprid treatment significantly ($p \le 0.05$) reduced the absolute ovary weight by 12.2% and 15.1% at the 2 h and 8 h time-points, respectively.

A A

The weight changes of adrenal gland and ovary were not associated with any morphological changes,

The following table depicts thiacloprid-induced effects on relative terminal body and organ weights.

10010 01012/19		0 0	A O' B' Q
	Mean terminal be	ody weight / mean organ ge in comparison to contr	weight ± SD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	(% chang	ge in comparison to contr	ols) v S & S
Sample time (h after the last dose)	Thiacloprid dose (mg/kg bw/day)		
	Terminal Body Weight (g) 🛛 🕵	⊘ 257.9€ 10.3√	227 8 ± 8.9 * (-11. * %)
	Absolute liver weight (g)	× 8.51 ± 0.80°	7.26 ± 0.48** (-14,7%) °
	Liver to body weight ratio (3,295 ± 0.215	53.184 ± 0.289€-3.4%€
2	Absolute adrenal weight (g)	Ø.0692 ≠ 0.0072	0.0942 ± 0.015** (+30.1%)
-	Adrenal to body weight ratio (%)	♥ 0.0 269 1 ±∕0,00317 ♥	0.04135 ± 0.00616**
	Absolute ovary weight (g)	0.082 ₽ 0.014	$0.072 \pm 0.012^{*}$ (-12.2%)
	Ovary to body weight ratio (%)	0.0320 ± 0.0043	0.0318@ 0.0052 (nc)
	Terminal Body Weight (g)	250.1 ± 10.4	227.6± 5.8** (-9.0%)
	Absolute liver woight (g)	8.49 ^{°±} 0.86 ^{°°} 3	7.09 [°] ± 0.49** (-16.5%)
	Liver to body reight ratio (%)	3.389 ± 0.243	3A13 ± 0.193** (-8.1%)
8	Absolute adrenal woight (s)	0.0745 £0.0083	$0.0900 \pm 0.0103^{**} (+20.8\%)$
5	drenatio body weight ratio (%)	\$ 0.02994 ± 0.09428	0.03955 ± 0.00454** (+32.1%)
(Å	Absolute ovary weight (g)	0.086 ± 0.020	0.073 ± 0.014* (-15.1%)
	Ovary to body weight ratio (%)	0.0304 ± 0.0084	0.0320 ± 0.0057 (-7%)
<u> </u>			

Table 5 8 2/19-4	Mean terminal h	odv weights s	and organ weights
1 abic 5.0.2/17-4.	Witcan ter innar D	ouy weights a	ind of gain weights

*: statistically significantly different from control, p 0.05

**: statistically significantly different from control $p \le 0.01$

nc: no change

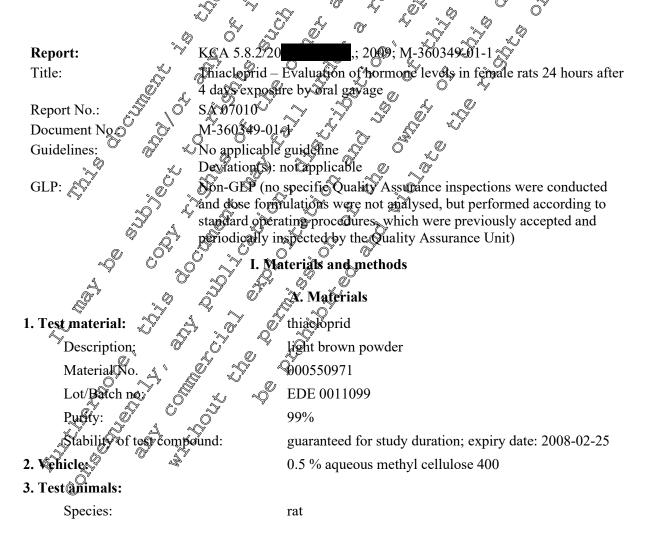
G. Gross pathology

No treatment-related gross pathological alterations were detected.

H. Micropathology

No morphological changes were detected in the adrenal glands and ovaries following treatment with thiacloprid.

The uterus and vagma from each surviving female was investigated to establish the stage of the estrous cycle at sacrifice. There no effects on the estrous cycle phase due to four daily oral doses of thiaclopfid between the groups.


BAYER Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Thiacloprid	Sacrifice		Incidence of observation	ıs* (%)
dose (mg/kg bw)	time (h after last dose)	Proestrous	Estrous	Detestrous / Diestrous
0		0/15 (0)	4/15 (26.7)	11/45 (D.3)
60	2	0/15 (0)	2/15 (13.3) Q	
0		1/15 (6.7)	5/15 (33.3) ©°	9945 O
60	8	1/15 (6.7)		9/45 ² (60)

Table 5.8.2/19-5: Results of estrous cycle staging conducted by post mortem histology

The clear increase in plasma progesterone concentration deserved at both 2 h and 8 heafter the last of four daily treatments with 60 mg/kg day this cloprid was considered treatment.

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Strain:	Wistar rat, Rj:WI (IOPS HAN) approximately 11 weeks females 231 – 264 g at least 7 days certified rødent pelleted and irra from , France), ød lib tag water (filtered and softened) individually in suspended stamle og and 60 mg/kg bw/day	°
Age:	approximately 11 weeks	
Sex:	females	
Weight at dosing:	231 – 264 g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Source:		France of a straight
Acclimatisation period:	at least 7 day	
Diet:	certified rødent pelleted and irra	diated fiet "A04C-16"
	from	
	, France), ad lib	itium or a dr
Water:	tap water of iltered and softened	ad lifetium 😽 📈
Housing:	individually in suspended stamle	ess steel whre mest cages °
B. Study design and methods		
B. Study design and methods 1. Animal assignment and treatments Dose: Application route:	individually in suspended stamle	
Dose:	0 and 00 mgAkg bw/day	
Application route:	oral gavage of to	
Application volume: 🔊 🔭	5 mL/kg bw	
Duration:	once daily for 4 days	Y L
Group size:	15 femators	. 6
Table 5.8.2/20-1: Group size and treatmon	nt S S O	
Group Test Substance Dose lev (mg/kg,h	els Sacrifice ame	Number of rats per group
1 Control 2 2		15
2 Thiacloprice		15
Sacrifice: 🖗 👌 🖉	24 hours after the last applicatio	n
Observations:	mortanity, clinical signs, body w	eight, hormonal analyses
	(progesterone, testosterone, estra	adiol, FSH), determination
	of estrous cycle (by vaginal sme	ar analyses prior to
	uterus adrenal glands) gene exi	ression (in ovary liver
	(hafter the last of 4 treaments) 24 hours after the last applicatio mortanty, clinical signs, body w (progesterone, testosterone, estra of estrous cycle (by vaginal sme sacrutice), gross necropsy, organ uterus, adrenal glands), gene exp and adrenal gland) d by quantitative PCR	
Table 5.8.2/20-2: Gene expression analyse	d by quantitative PCR	

Gene (Major function)	Abbreviation
Steroidogenesis	
Storoidogenic acute regulatory protein (Cholesterol transport to inner mitochondrial membrane)	StAR
Cytochrome P450 11a1 (Cholesterol side-chain cleavage to form pregnenolone)	Cyp11a1
Cytochrome P450 17a1 (Pregnenolone \rightarrow 17 α hydroxypregnenolone)	Cyp17a1

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

(Progesterone \rightarrow androstenedione)		1
Hydroxysteroid dehydrogenase 3b1 (Pregnenolone \rightarrow Progesterone)	Hsd3b1	le s
Hydroxysteroid dehydrogenase 17b3 (Androstenedione \rightarrow testosterone)	Hsd17b3	
Hydroxysteroid dehydrogenase 17b1 (Estrone \rightarrow estradiol)	Hsal7b1	
Cytochrome P450 19a1 (aromatase) (Testosterone \rightarrow estradiol)	Cyp19a1	
Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in endocrine tissue)	Nr5al	
Insulin-like 3 (associated with ovarian thecal cells)	Insl3 🖉 🔊	
Metabolism		
Cytochrome P450 1a1	Cyplal O Q	
Cytochrome P450 3a3 (Inactivation: testosterone 🐑 6βhydroxytestosterope)	Cyp3 🖓 🗽	de la companya de la
Aldo-keto reductase 1c18 (Inactivation: progesterone -20-α-hydroxy- progesterone)	Akf@c18	, [°]
Steroid 5-alpha reductase 2 (Conversion of testosterone - DHT)	Srd5a2	
		\mathbf{O}

Gapdh and beta-2 microglobuling (B2m) were selected as reference genes for the quantitative calculations of transcripts in the liver and beta-actin (Actb) was used as the reference gene for the ovary and adrenal gland calculations. The relative quantity (RQ) walue of each test transcript was calculated using the following formula:

 $\Delta\Delta Ct = (Ct_{test} - Ct_{B2m})_{treated} + (Ct_{test} - Ct_{B2m})_{treated}$ $RO = 2^{-\Delta\Delta Ct}$

where Ct is the threshold cycle at shich PCR amplification started to be significantly different from the background signal. As a Ct of 235 indicates that a gene is poorly expressed in the tissue investigated, any subsequent RQ data generated from such a Ct are considered as non-relevant due to an increased risk of contamination.

Thus for the ovary evaluations the control female used was KT1F0042. RT1F0051 was used for the liver evaluations and KT1F0043 was used for the adrenal evaluations.

K Results and discussion

A. Mortality @

Two females of the thiactoprid treatment group were found dead on study days 4 and 5. These deaths were considered treatment-related.

B. In Tife observations

The animal that was found dead on study day 4 exhibited the following clinical signs on day 3: no faeces and hundered posture

The rat that was found dead prior to cacrifice had soiled fur in the mouth region, reduced motor activity and no faces on study day 4.

In surviving and all females dinical signs were recorded on Study Days 3 and 4 for all females treated with this toprid, these this had either few or no faeces and several had soiled fur in the head/mouth region (40%) and/or a hunched posture (33%). Three of the 15 this cloprid treated females exhibited piloerection (20%) and on Study Day 4 one female had reduced motor activity.

All of these clinical findings are well-known signs of acute thiacloprid intoxication.

0

Table 5.8.2/20-3: Summary of clinical signs

Clinical sign	Control group*	60 mg/kg bw Thiacloprid
Soiled fur, localized, head/mouth	0/15	\$ 6/15 \$ \$
Piloerection	0/15	المَّنْ عَلَيْنَ عَلَ مُنْ عَلَيْنَ
Reduced motor activity	0/15	
Few or no faeces	0/15	0 15445 N 0 0
Wasted general appearance	1/15	
Hunched posture	\$15 Q	<u> </u>

*: (x/y): number of animals affected / total number animals

#: 60 mg/kg bw thiacloprid were administered once daily for 4 days by oral gavage

C. Body weight

Thiacloprid induced treatment related changes of body weight parameters. In comparison to controls mean body weight was reduced by 7.5% ($p \leq 0.01$) on Study Day 9 and by 10.6% ($p \leq 0.01$) on Study Day 4. Between Study Days 1 and 4, there was a cumulative body weight loss of 25 g ($p \leq 0.01$) in females treated with thiacloprid compared to a body weight goin of 50 in control females. The body weight parameters are presented in the following table.

	A.	~			l.			
Study day		1 🖉		2	or s	3		4
Study day Dose (mg/kg bw/day	<u>ک</u> 0 رو	5 699))) ,	ð ⁷ 60 , C	, ,	60	0	60
No. of rats / group	15%	<u>د 15</u>	~15 °	15	¥5	\$ 15	15	14
Mean bw (g)	2014	©245 &	245	240	248 J	230**	249	223**
SD 🔍 🖗	7 4	84		0 8 ₍₁₎	ġ.	7	8	7
Mean by gain per day (g)		کر کم		-6.9*		-10**	2	-8**
SD SD	4 Ô		3	0 4	4	4	4	5
Mean absolute body weight gain (g)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-5 ³ *	3	-15**	5	-23**
SD A	ð _s ó	× -2	63	Ø 4	5	5	3	5

Table 5.8.2/20-4: Mean body weight (g) and body weight gain (g)

**: statistically significantly different from control, p \$0.01

bw: body weight

D. Vaginal smears

Vaginal smears taken 24 hours after the last application were examined to determine the phase of the estrus cycle. There were no relevant changes to the estrus cycle due to thiacloprid treatment.

The result of the investigation of vaginal smears are presented in the following table.

Table 5.8.2/20-5: Results of estrous cycle staging conducted in vaginal smears prior to necropsy .

		Incidence of ob	servations* (%)	
Treatment	Pre-estrous	Estrous	Post-estrous	Di-estrous
Control	2/15 (13%)	4/15 (27%)	4/15 (27%) A	5/15
60 m/kg bw Thiacloprid	1/13 (7.7%)	1/13 (7.7%)	4/13, (3008%)	53,8%) 2 A

(x/y): number of animals affected / total number of animals *:

E. Hormone analysis

in plasma progesterone Thiacloprid treatment resulted in a significant increase concentration compared to control 24 h after the last application. This increase was considered biologically relevant.

The results for testosterone were inconditioned with the fact that this hormone was only detected in the plasma of only 2 of 13 control females. This hormone was, howe ver, detected in the plasma of 9 of 13 thiacloprid-treated females.

Thiacloprid treatment caused anon-significant increase of the plasma concentration of estradiol (+ 28.2%) and FSH (+ 14%).

of hormonal plasma concentrations are depicted in the The mean results of the determination of following table.

Table 5.8.2/20-6: Ehanges of hormonal plasma concentrations

	O Change compared to control	
Treatment	Brogesterone Testosterone Estradiol	FSH
60 mg/kg bw Thiaclop	$d \rightarrow 7423\%^*$ $+7423\%^*$ $+28.2\%$ (ns)	+14.1% (ns)

statistically significantly different from control. *: ns: not significant

F. Terminal body weight and organ weight

the mean terminal body weight compared to control Thiacloprid treatment significantly reduced females (49.3%).

With regard to organ weights, significantly increased relative liver weight (+ 21.9%) and absolute and relative adrenal weights 447.4% and +62.5%) were observed in thiacloprid treated animals in comparison to controls.

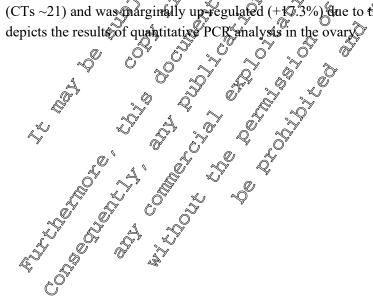
In contrast, this clopping treatment significantly decreased the mean absolute and relative ovary weights (-25.2% and 17.4%) and the absolute (24.6%) and relative (-16.9%) uterus weights.

The following the gives an erview on terminal body weight and relative organ weights.

A A

Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

	Mean terminal bw / organ weight ± SD (% change in comparison to controls)			
Thiacloprid dose (mg/kg bw/day)	0	60 چې	Control of the second sec	
Terminal body weight (g)	250.2 ± 8.0	227.0±6.7**	(9.3%)	
Absolute liver weight (g)	8.19±0.64	9.08 ± 1.76	10.9%	
Relative liver weight (%)	3.273 ± 0.21	3.989 ± 0.705**	(A1.9%)	
Absolute adrenal weight (g)	0.0686 ± 0.0105	0.1011 ± 6. 0161*	(+47, 4%) (
Relative adrenal weight (%)	0.02743 + 0.00439		** (+62.5%)	
Absolute ovary weight (g)	0.1 K ± 0.008	0.083 ± 0.016**	(- 2 5.2%)	
Relative ovary weight (%)	0.0443 ± 0.003	0.0366 ±0.0072*	¥(-17.4%)	
Absolute uterus weight (g)	0.357 0.062	0.269 ± 0.064**	(-2 6%) ~ °	
Relative uterus weight (%)	~ 0.1429 ± 0.4236	0.087±0,0290	* (~16.9%)	


Table 5.8.2/20-7. Mean terminal body weight and organ weights

*: statistically significantly different from control, $p \le 0.05$

: statistically significantly different from control, $p \le 0.01$ **G. Gene expression <u>Ovary</u>: Genes associated with steroidogenesis showed an overall tendency of inereased expression due to thiacloprid treatment. The expression of StAR and Hst3b1 were significantly increased.

Gene associated with metabolism, i.e. Cyp19a1 (+23%), yp19at (+98%), and Hsd17b3 (39%), were increased, but the increase was not statistically significant due to high inter-animal variability.

In contrast, two genes (Oplat and Srd5a2) associated with metabolism were only weakly expressed in the ovary (ontrol and treated), as evidenced by threshold bycles (CTs) ≥35. Cyp3a3 was only weakly expressed in the control ovary (average CT 35.9) but expression in the ovaries of the thiacloprid freated group, though not statistically significant due to large interanimal variability, was clearly mereased (+1,853.3%) Akr1c18 was clearly detected in the control and treated ovary samples (CTs ~21) and was marginally up regulated (+10.3%) due to thiscloprid treatment. The following table

Table 5.6.2/20-6: Gen	le expression analysed by quantitative l	I CK (KI-I CK) III Ovaries	
Ovarian	Mean Relative Quantity ± standard deviation of gene transcripts (% change compared to control mean values)		
Gene transcripts	Control	60 mg/kg bw thiacloprid	
	Steroidogenesis	A. 67 29	
StAR	0.76±0.2	$1.27 \pm 0.27 ** (+ 671%)^{-1}$	
Cyp11a1	1.28 ± 0.39	0.44 ± 0.29 (+ 2.5%)	
Cyp17a1	4.84 ± 3.47	$\begin{array}{c} 1.20 \pm 0.27 & (1.2)7 \\ 0.44 \pm 0.29 & (+2.5\%) \\ 5.96 \pm 8.39 & 23.1\% \\ 6257 \pm 628 & (+94,9\%) \end{array}$	
Cyp19a1	3.32 ± 2.23	657±629(+949%)	
Hsd17b1	0.93 ± 0.48	× 1.06 ± 0.8 (± 14.0%)	
Hsd17b3		1.14 ± 0.54 (+ 39%)	
Hsd3b1	0.04 ± 0.34	$2^{-1.13 \pm 0.70*} (+06.6\%)^{-1.13}$	
Nr5a1	$1,25 \pm 0.43^{2}$	1.29 ± 0.26 (nc)	
Insl3	$\frac{1,25 \pm 0.43}{0.86 \pm 0.48}$	0.69 ± 0.43 (- 26.4%)	
	A Aletabohsm		
Cyplal		0.41 0.37 46.1%	
Cyp3a3		$35.9 \pm 67.3 P(+1853.3\%)$	
Akr1c18		¥.15 ± (45 (+17.3%)	
Srd5a2		0.54 0.33 (- 20.6%)	

Table 5.8.2/20-8: Gene expression analysed by quantitative PCR (RT-PCR) in ovaries

*: statistically significantly different from control, p 20.05

**: statistically significantly different from Control, $\mathbf{p} \ge 0.01^\circ$ nc: no change

Liver:

Concerning genes associated with steroidogenesis, nother Cyp1944 nor Insl3 gene expression was detected in livers of control or this loprid-treated animats. Further, several other genes were only weakly expressed in the liver samples.

For example, this oprid freatment clearly increased Nr5a1 ($p \le 0.01$; 189.5%), Hsd3b1 ($p \le 0.05$; +112.7%), and Cyp11a1 (+465.7%; not statistically significant) expression in liver, but these genes were only weakly expressed in both control and this cloprid liver samples (CTs between 34.5 and 36.1). Therefore, the modulation of these genes should probably not be further evaluated.

Thiacloped treatment significantly ($p' \le 0.01$) increased StAR (+59.3%) and Hsd17b3 (+159.6%) expression. Thiacloped treatment also prongly increased Cyp17a1 expression (+607%), but this increase was not statistically significant due to large inter-animal variability. Here, the variability was mainly attributed to one animal (RT200069) Excluding it's RQ value from the dataset still results in a significant increase of Cyp17a1 expression in the thiacloprid treatment group compared to controls (p ≤ 0.01 ; refined new mean RQ for thiacloprid = 7.83 compared to a control value of 2.66).

Cyp1a and Cyp3a3 were readily detected in control liver and the expression of these two genes was significantly up-regulated due to thiacloprid treatment. In addition, Akr1c18 expression was also significantly increased due to thiacloprid treatment.

The following table summarizes the results of quantitative PCR analysis in the liver.

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Hepatic	Mean Relative Quantity ± standard deviation of gene transcripts (% change compared to control mean values)							
Gene transcripts	Control	60 mg/kg w thiacloprid						
	Steroidogenesis	A 67 29 .						
StAR	1.23 ± 0.25	1.96 ± 0.50** (+ 59.3%) ~						
Cyp11a1	1.05 ± 0.78	\$94 ± 11.16 (+\$65.7%)						
Cyp17a1	2.66 ± 0.84	$\frac{1.96 \pm 0.50^{**} (+ 593\%)}{5.94 \pm 11.16 (+ 465.7\%)}$						
Cyp19a1	Not detected	Not detected						
Hsd17b1	$1.07 \pm 0.2\%$	1.26 ± 0.36 (± 7.8%) ~						
Hsd17b3	1.51 ± 4.71	3.92 3.07** + 159.6%)						
Hsd3b1	1.26± 0.73	$2.68 \pm 2.49 * (+102.7\%)$						
Nr5a1	0.86 ± 0.59	₹2.49 ± 206** €± 189.5%)						
Insl3	Not detected 2	Not detected S						
	A Metabohsm 🗸							
Cyp1a1	2224 ± 2227	21.54 24.90*** (+ 862%)						
Cyp3a3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	37.04 ± 17.88** (+6178%)						
Akr1c18		[*] 10.75* (* 1008%)						
Srd5a2	V Not detected by white	Not detected						

Table 5.8.2/20-9: Gene expression analysed by quantitative PCR (real-time RT-PCR) in liver

*: statistically significantly different from control, p 20.05 ~

**: statistically significantly different from Control, $p \ge 0.01$

Adrenal gland:

Four genes associated with sterordogenesis (StAR, Cyp11c), Hsd3b1 and Nr5a1) were readily detected in both control and thracloprid treated adrenal gland samples (CTs ≤ 25). The remaining steroidogenesic genes were either only weakly expressed (CTs of approximately 35) or, in the case of Insl3, not detected in the adrenal samples. Concerning genes associated with steroidgenesis, thiacloprid treatment significantly increased Oyp11aP and Hsd3b1 expression. The relevance of all other changes in steroidogenesis gene expression is unclear as the CT values were low (approximately 35).

All genes associated with metabolism were only weakly expressed in the control adrenal samples, with CT values exceeding 3. The relevance of the statistically significant ($p\leq0.01$) increase in Akr1c18 expression is unclear due to the low average CF values for both the thiacloprid treated group (CT= 34.6) and the control group (CT= 35.1). A wide inter-animal variability was recorded for Cyp3a3 (RQs between 9.73 and 1369) mating the large increase in expression (+ 1229.8%) of this gene recorded for the thiacloprid group difficult to interpret.

The results of quantitative PCR analysis in the adrenal gland are presented in the table below.

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Table 5.8.2/20-10: Gene expression analysed by quantitative PCR (real-time RT-PCR) in th	e
adrenal gland	£

		. 4
Adrenal gland	Mean Relative Quantity ± standar (% change compared to	
Gene transcripts	Control	60 mg/kg hw thisclongid
	Steroidogenesis 🚕	00 mg kg bw timetog va 0 70 ± 0.17 (+€ 0.9%) 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StAR	0.62 ± 0.19	$0.70 \pm 0.17 (+0.9\%)$
Cyp11a1	1.10 ± 0.16	○ 1.76 ± 0.30 ℃ (+60%)
Cyp17a1	1.92 ± 2.5	$\begin{array}{c} 0.70 \pm 0.17 (+12.9\%) \\ \hline 0.176 \pm 0.30 & (+60\%) \\ \hline 0.438 \pm 4.40 (+128.1\%) \\ \hline 0.438 \pm 0.40 (+128.1\%) \\ \hline 0.400 & 0.100 \\ \hline 0.400 & $
Cyp19a1	11.74 ± 34 30	1% (1.00 ± 0.000)
Hsd17b1	1.36 ± 657 0 5	× 1.94 0.72 + 42.6%)
Hsd17b3	1.49 ± 0.60 %	233 ± 1.14* (+56,4%)
Hsd3b1	0,88 ± 0,16 ~ ~ ~	↓.03 ±0.17* (+17.0%)
Nr5a1	@:82 ± 017	0.28 ± 0.18 (-4.9%)
Insl3	ONot detected S	Not Not Setected &
	🍳 🔗 Metabolismer 🖉	
Cyplal		0.54 ± 0.57 (-40.5%)
Cyp3a3	1.78 ± 3.11€ @	23,67 ± 42,23 (+1229.8%)
Akr1c18		£ 2.34 £ 0.94** (+88.7%)
Srd5a2 🦿	0.46 0.24 0	0.53 ± 0.6% (+15.2%)

statistically significantly different from Control, p <0.05 *:

statistically significantly different from control, $p \le 0.01$ **: Contraction of the second seco

C. S. C. 0 MII. Conclusion

e e Four daily doses of 60 mg/kg/day thick opric by oral gavage led to mortality and typical signs of thick opric intoxication in this rat study. At this aready lethal dose thick oprid also induced steroid hormone changes, je? increases in plasma progesterone and to some extent estradiol, and also the increased expression of genes involved in steroid hormone biosynthesis in the ovary, liver and adrenal gland. Moderation of the storoidogenic effects was apparent, at least at the gene level, due to increased expression of those genes associated with the metabolism of steroid hormones.

Report: KCAØ.8.2	;; 2010; M-360757-02-1
Title: Thacloprid – Expl	oratory 28-day toxicity study in the rat by dietary
administration An	
Report No. 2 SA 08054	
Document No.: S & M3360757-02-1	
Guidelines: 2 A No applicable guide	eline
	pplicable
GEP: Non-GLP (no speci	ific Quality Assurance inspections were conducted,
but performed acco	ording to standard operating procedures, which were
previously accepted	and periodically inspected by the Quality Assurance
Unit)	
Document No.: Guidennes: GAP: GAP: Construction (s): not applicable guident of the spectrum of the spe	pplicable ific Quality Assurance inspections were conducted,

BAYI

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

I. M	A. Materials thiacloprid light brown solid EDE 0011099 98.7% guaranteed for study duration; expiry date: 2009-08-28 powdored and irradiated dier rat Wistar rat, Rg:WI-(IOPS HAN) approximately 7 weeks temales approximately 189 – 212 g females approximately 189 – 212 g females approximately 189 – 212 g females approximately 189 – 212 g females approximately 189 – 212 g
	A. Materials
1. Test material:	thiacloprid
Description:	light brown solid
Lot/Batch no:	EDE 001109
Purity:	98.7%
Stability of test compound:	guaranteed for study depation; expiredate: 2009-0828
2. Vehicle:	powdered and irradiated die
3. Test animals:	
Species:	rat 2 5 6 6 R A L
Strain:	Wistar rat, Ry: WIGIOPS HAN)
Age:	approxinately tweeks i for the second
Age: Sex: Weight at dosing:	Females I a z z z z
Weight at dosing:	approximately 180 – 212 g
Source:	, France
Acclimatisation period:	at least 14 days
Diet:	certified fodent velleted and invadiated diet "A04CP1-10"
Diet: Water: Housing B. Study design and methods 1. Animal assignment and treatment:	from
	, France), <i>q@libitum</i>
Water: O A 4 4	tap water (filtered and softened), ad libitum
Housing a co	vindividually in suspended stainless steel wire mesh cages
B. Study design and methods	
1. Animal assignment and treatment:	
Dose:	0-190-1000-1600 ppm
	equivalent to 0.8.0-75.2-107.7 mg/kg bw/day
Application route:	oral (thet)
Duration:	28 days @
Group size:	AT5 females
Solutions of the second	mortality, clinical signs, body weight, food intake, vaginal
	Anears for estrous cycle staging, blood sampling for Anormone measurements, gross necropsy, organ weight
	(liver, adrenal glands, uterus with cervix, ovaries),
	histopathology (uterus with cervix and vagina for estrous
	cycle staging), determination of CYP enzymes in liver
	samples and of aromatase in liver and ovary samples,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<ul> <li>carine policy perfect and hadrage a det "Abrect Pro- from.</li> <li>France), <i>aWlibitum</i></li> <li>ap water (filtered and softened), <i>ad libitum</i></li> <li>individually in suspended stainless steel wire mesh cages</li> <li>0-f00-1000+1600 ppm</li> <li>cauvalent to 0.8.0-75.2-107.7 mg/kg bw/day</li> <li>orak (diet)</li> <li>28 days</li> <li>75 females</li> <li>motality, clinical signs, body weight, food intake, vaginal sprears for estrous cycle staging, blood sampling for</li> <li>hormone measurements, gross necropsy, organ weight</li> <li>(liver, adrenal glands, uterus with cervix, ovaries),</li> <li>histopathology (uterus with cervix and vagina for estrous cycle staging), determination of CYP enzymes in liver samples and of aromatase in liver and ovary samples, qPCR analyses (liver, ovary)</li> </ul>
$\bigcirc$	



*a* 

#### Table 5.8.2/21-1: Gene expression analysed by quantitative PCR

Steroidogenesis         Steroidogenic acute regulatory protein (Cholesterol transport to inner mitochondrial membrane)       StAR         Cytochrome P450 11a1 (Cholesterol side-chain cleavage to form pregnenolone)       Cyp11a1         Cytochrome P450 17a1 (Pregnenolone → 17αhydroxypregnenolone)       Cyp17a         Cytochrome P450 17a1 (Pregnenolone → 17αhydroxypregnenolone)       Cyp17a         Cytochrome P450 19a1 (aromatase) (Testosterone → speadiol)       Cyp19a1         Hydroxysteroid dehydrogenase 3b1 (Pregnenolone → Progesterone)       Hsd3b1         Hydroxysteroid dehydrogenase 17b1 (Estrone → speadiol)       Kr5a1         Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in stadocrime tissue)       Nr5a1         Metabatism       PSR         P450 (cytochrome)oxidoreductase       PSR         Cytochrome P450 2b2 (liver)       Cyp2b2         Cytochrome P450 2b2 (liver)       Cyp2b2         Cytochrome P450 3a3 (Inactivation: testosterone → speadoron of testosterone)       Akr14V         dihydrotestosterone)       Akr14V         dihydrotestosterone)       Akr14V         Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of Srd5a1	Gene (Major function)	Abbreviation	
Steroidogenic acute regulatory protein (Cholesterol transport to inner mitochondrial membrane) Cytochrome P450 11a1 (Cholesterol side-chain cleavage to form pregnenolong) Cytochrome P450 17a1 (Pregnenolone → 17ahydroxypregnenolone) (Progesterone → androstenedione) Cytochrome P450 19a1 (aromatase) (Testosterone → estradiol) Cytochrome P450 19a1 (aromatase) (Testosterone → estradiol) Hydroxysteroid dehydrogenase 3b1 (Pregnenolone → Progesterone) Hydroxysteroid dehydrogenase 17b1 (Estrone → estradiol) Nuclear receptor subfamily 5a1 (Transcription factor cantrolling expression of the steroidogenic cytochrome P450 genes in endocrine tissue Metabolism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Aldo-keto reductase family f member D1 (conversion of testosterone → Steta Katr144 dihydrotestosterone) Aldo-keto reductase family f member D1 (conversion of testosterone → Steta Katr144 dihydrotestosterone) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of Std5a1		ADDIEviation	$\mathcal{O}^{\prime}$
mitochondrial membrane) Cytochrome P450 11a1 (Cholesterol side-chain cleavage to form pregnenolone) Cytochrome P450 17a1 (Pregnenolone $\rightarrow$ 17 $\alpha$ hydroxypregnenolone) (Progesterone $\rightarrow$ androstenedione) Cytochrome P450 19a1 (aromatase) (Testosterone $\rightarrow$ extradiol) Hydroxysteroid dehydrogenase 3b1 (Pregnenolone $\rightarrow$ Progesterone) Hydroxysteroid dehydrogenase 17b1 (Estrone $\rightarrow$ extradiol) Hydroxysteroid dehydrogenase 17b1 (Estrone $\rightarrow$ extradiol) Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in endocrine tissue) Metabditism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Cytochrome P450 2b2 (liver) Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6fbhydroxytestosterone) Aldo-keto reductase family (member D1) conversion of testosterone) Aldo-keto reductase family (member D1) conversion of testosterone) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expressed in fiver) (conversion of the Strolar) Steroid 5-alpha reductase (predominantly expre	Steroidogenesis	<u> </u>	
Hydroxysteroid dehydrogenase 17b1 (Estrone → Stradio) Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in andocrine tissue) Metabolism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Aldo-keto reductase family, member D1 & onversion of testosterone → 5beta Aldo-keto reductase 108 (Inactivation progesterone → 20-ochydroxy progesterone) Steroid 5-alpha reductase I (predominantly expressed in Tiver) (Conversion of Srd5a1	Steroidogenic acute regulatory protein (Cholesterol transport to inner mitochondrial membrane)		
Hydroxysteroid dehydrogenase 17b1 (Estrone → Stradio) Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in andocrine tissue) Metabolism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Aldo-keto reductase family, member D1 & onversion of testosterone → 5beta Aldo-keto reductase 108 (Inactivation progesterone → 20-ochydroxy progesterone) Steroid 5-alpha reductase I (predominantly expressed in Tiver) (Conversion of Srd5a1	Cytochrome P450 11a1 (Cholesterol side-chain cleavage to form pregnenolone)	Cyp11al	
Hydroxysteroid dehydrogenase 17b1 (Estrone → Stradio) Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in andocrine tissue) Metabolism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Aldo-keto reductase family, member D1 & onversion of testosterone → 5beta Aldo-keto reductase 108 (Inactivation progesterone → 20-ochydroxy progesterone) Steroid 5-alpha reductase I (predominantly expressed in Tiver) (Conversion of Srd5a1	Cytochrome P450 17a1 (Pregnenolone $\rightarrow$ 17 $\alpha$ hydroxypregnenolone) (Progesterone $\rightarrow$ androstenedione)	Cyp17a	59 K
Hydroxysteroid dehydrogenase 17b1 (Estrone → Stradio) Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in andocrine tissue) Metabolism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Aldo-keto reductase family, member D1 & onversion of testosterone → 5beta Aldo-keto reductase 108 (Inactivation progesterone → 20-ochydroxy progesterone) Steroid 5-alpha reductase I (predominantly expressed in Tiver) (Conversion of Srd5a1	Cytochrome P450 19a1 (aromatase) (Testosterone $\rightarrow estradiol$ )	Cyp19a1	
Hydroxysteroid dehydrogenase 17b1 (Estrone → Stradio) Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in andocrine tissue) Metabolism P450 (cytochrome)oxidoreductase Cytochrome P450 2b1 (ovary) Cytochrome P450 2b2 (liver) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Cytochrome P450 3a3 (Inactivation: testosterone → 6Bhydroxytestosterone) Aldo-keto reductase family, member D1 & onversion of testosterone → 5beta Aldo-keto reductase 108 (Inactivation progesterone → 20-ochydroxy progesterone) Steroid 5-alpha reductase I (predominantly expressed in Tiver) (Conversion of Srd5a1	Hydroxysteroid dehydrogenase 3b1 (Pregnenolone — Progesterone)	Hsd3bj\્ 🗸	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
the steroid ogenic cytochrome P450 genes in endocrine tissue $\begin{tabular}{c} & & & & & & & & & & & & & & & & & & &$	Hydroxysteroid dehydrogenase 17b1 (Estrone $\rightarrow \mathcal{S}$ tradig)	Hsd 1961	*
P450 (cytochrome)oxidoreductasePSRCytochrome P450 2b1 (ovary)Cyp2b1Cytochrome P450 2b2 (liver)Cyp2b2Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6Bhydroxytestosterone)Cyp2b2Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6Bhydroxytestosterone)Cyp2b2Aldo-keto reductase family (member D1 & onversion of testosterone $\rightarrow$ 5betaAkr164Aldo-keto reductase family (member D1 & onversion of testosterone $\rightarrow$ 5betaAkr164Aldo-keto reductase 10.8 (Inactivation progesterone $20$ -achydroxyAkr1c18Steroid 5-alpha reductase)(predominantly expressed in fiver) (Conversion of $5$ Srd5a1testosterone $\rightarrow$ 0HT)Cyp2b2	Nuclear receptor subfamily 5a1 (Transcription factor controlling expression of the steroidogenic cytochrome P450 genes in endocrine tissue	Nr5al O	
P450 (cytochrome)oxidoreductasePSRCytochrome P450 2b1 (ovary)Cyp2b1Cytochrome P450 2b2 (liver)Cyp2b2Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6Bhydroxytestosterone)Cyp2b2Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6Bhydroxytestosterone)Cyp2b2Aldo-keto reductase family (member D1 & onversion of testosterone $\rightarrow$ 5betaAkr164Aldo-keto reductase family (member D1 & onversion of testosterone $\rightarrow$ 5betaAkr164Aldo-keto reductase 10.8 (Inactivation progesterone $20$ -achydroxyAkr1c18Steroid 5-alpha reductase)(predominantly expressed in fiver) (Conversion of $5$ Srd5a1testosterone $\rightarrow$ 0HT)Cyp2b2	Metabolism		O S
Cytochrome P450 2b2 (liver)       Cytochrome P450 3a3 (Inactivation: (estosterone $\rightarrow$ 6Bhydroxytestosterone)       Cytop 3a3         Aldo-keto reductase family (), member D1 (conversion of testosterone $\rightarrow$ 5beta       Akr1dV         dihydrotestosterone)       Akr1dV         Aldo-keto reductase 1408 (Inactivation progesterone $\Rightarrow$ 20-achydroxy       Akr1c18         progesterone)       Steroid 5-alpha reductase (reductase)       Stroken of $\Rightarrow$ 8 kg/s	P450 (cytochrome)oxidoreductase	POR & Q	
Cytochrome P450 2b2 (liver)       Cytochrome P450 3a3 (Inactivation: (estosterone $\rightarrow$ 6Bhydroxytestosterone)       Cytop 3a3         Aldo-keto reductase family (), member D1 (conversion of testosterone $\rightarrow$ 5beta       Akr1dV         dihydrotestosterone)       Akr1dV         Aldo-keto reductase 1408 (Inactivation progesterone $\Rightarrow$ 20-achydroxy       Akr1c18         progesterone)       Steroid 5-alpha reductase (reductase)       Stroken of $\Rightarrow$ 8 kg/s	Cytochrome P450 2b1 (ovary)	Cyp2b ~~	
Cytochrome P450 3a3 (Inactivation: testosterone $\rightarrow$ 6Bhydroxytestosterone)       Cyp 3a3         Aldo-keto reductase family (member D1 & onversion of testosterone $\rightarrow$ 5beta       Akr14V         dihydrotestosterone)       Akr1cl         Aldo-keto reductase 1008 (Inactivation progesterone $\rightarrow$ 20-achydroxy       Akr1cl         Steroid 5-alpha reductase)       (predominantly expressed in fiver) (Conversion of $\rightarrow$ Srd5a1	Cytochrome P450 2b2 (liver)		
$\begin{array}{c c} dihydrotestosterone) & & & & & & & & & & & & & & & & & & &$	Cytochrome P450 3a3 (Inactivation: (estosterone $\rightarrow$ 6Bhydroxytestosterone)	Cop 3a3	
$\frac{\text{progesterone}}{\text{Steroid 5-alpha roductase}} \left( \frac{1}{\text{predominantly expressed in Tiver}} \right) \left( \frac{1}{\text{Conversion of }} \right) \\ \frac{1}{\text{Steroid 5-alpha roductase}} \left( \frac{1}{\text{predominantly expressed in Tiver}} \right) \left( \frac{1}{\text{Conversion of }} \right) \\ \frac{1}{\text{Conversion of }} \\ \frac{1}{\text$	dihydrotestosterone)	Akr169	
testosterone $\rightarrow QHT$ ) $O'$ $O'$ $V'$ $V'$ $V'$ $V'$	progesterone)	Akrlc18	
	Steroid 5-alpha reductase (predominantly expressed in fiver) (Conversion of $($ testosterone $\rightarrow$ DHT)	Srd5a1	
S(c) O(a) - algina reducease 2 (Conversion Of Coston O	Steroid 5-alpha reductase 2 (Conversion of testosterone $\rightarrow$ DHT)	Srd5a2	

Beta-2 microglobulin (B2m) was selected as reference gene for the quantitative calculations of transcripts in the liver and beta-actin (Actb) was used as the reference gene for the ovary calculations. The relative quantity (RQ) value of each test transcript was calculated using the following formula:

 $\Delta\Delta Ct = (Ct_{test} - Ct_{B2m})_{control} - (Ct_{test} - Ct_{B2m})_{control}$   $RQ = \Delta^{\Delta\Delta Ct}$ 

where Ct is the threshold cycle at which PCR amplification started to be significantly different from the background signal. As a Ct of  $\geq$ 35 indicates that a gene is poorly expressed in the tissue investigated, any subsequent RQ data generated from such a Ct are considered as non-relevant due to an increased risk of contamination.

Each RQ value obtained for a given genewas normalized by dividing it by the RQ value obtained for a randomly chosen control animal. Thus, the RQ data for control female RT1F1879 was chosen for both the liver and overy evaluations in the present study.

#### **II. Results and discussion**

#### A. Mortality

There were no mortalities during the course of the study.



#### **B.** Clinical observations

All females in the 1600 ppm high dose group had a wasted appearance. This observation was first recorded on Study Day 6 or 7. For 7/15 females this continued through to the end of the study for the remaining females in this group, the effect was transient (Study Days 6/7 up to Study Day 22). Hair loss (abdomen, hind limbs and thorax or back) was also recorded for two 1600 ppm females between Study Days 7 and 28. All other observations were not considered to be treatment related.

#### C. Body weight

At 100 ppm thiacloprid there was no effect on body weight parameters. At higher doses mean body weight was statistically significantly reduced by between 9.5% and 12.4% at 1000 ppm and between 14.2% and 18.1% at 1600 ppm throughout the treatment period when compared to controls.

Between Study Days 1 and 7, there was a statistically significant mean body weight loss day in the mid dose group (1 g/day) and high dose group (3 g/day) when compared to the controls. Overall, between Study Days 1 and 8, there was a significant reduction in body weight gain for females at 1000 and 1600 ppm compared to the controls. More specifically mean cumulative body weight gains of 35 g and 23 g at 1000 ppm and 1600 ppm, respectively, were recorded compared to a mean control cumulative body weight gain of 56 g.

Ş O	^y "ÅŇea	n body we	ight (g) and	d standarð	deviation (	(SD)	
* 0 ppm (			ppm 2	<b>1000</b>	ppm ©	1600	ppm -
	S∳ & S∳	Mean		Mean	کي× SD	<i>I</i> Mean	S SD
1,97	×10 Å	195	07	194	8	194	6
213 ô	§ 13€	212	S 10 ^S	188**	9	177**	6
> 232€	×	Ô [°] 229	¢12	\$204**	12	190**	8
243	ي 16 س	244		220**	10	205**	9
<u>6</u> 253 8	) lt	ُم ² 52 أ	× 146	229**	11	217**	10
	197 213 232 243	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

#### Table 5.8.2/21-2: Mean body weights (g) and standard deviation (SD)

n: number of animals **: significantly different from control p 20.01

**:

Table 5.8.2/21-3:	Mean ab	solut@body.	weight gain (	g) and standard	deviation (SD)
A .		× ()		0/	

Alean absolute body weight gain (g) and standard deviation (SD)								
Thiacloprightose	-)0 ppm (	control)	100	ppm	1000	ppm	1600	ppm
Day of study Mean SD Mean SD				5	1	5	1	5
Day of study	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	©″17∞`	6	17	5	-5**	5	-17**	7
4, 14,	<b>5</b> 5	9	34	9	11**	8	-4**	9
<u>2</u> 1	46	10	49	9	27**	8	11**	9
28	56	8	57	10	35**	8	23**	10

n: number of animals

significantly different from control  $p \le 0.01$ 



**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### **D.** Food consumption

At 100 ppm thiacloprid food consumption was marginally reduced by between 10.3% (p  $\leq 0.05$ Days 8-14) and 5.4% (not statistically significant; Study Days 22-28). Food consumption was significantly affected due to treatment with 1000 ppm and 1600 thiacloprid. At 1000 ppm food consumption was reduced by between 49.7% ( $p \le 0.01$ ; Study Da 7) and 8.4% ( $p \le 0.05$ ; Study Days 22-28). At 1600 ppm food consumption was reduced by be 59.3% (p  $\leq$  0.01; Study Days 1-7) and 21.8% (p  $\leq$  0.01; Study Days 2228). Thus, thiacloprid treatment dose-dependently reduced food consumption over the observed time period.

Table 5.8.2/21-4:	Mean food consumption	n (g/da	ay) and	standa	ar <b>ð</b> dev	iation	(SD)	Å

8	
	Mean food consumption (g/day) and standard deviation (SD)
Thiacloprid dose	0 ppm (control) 100 ppm 2 4000 ppm 2 4600 ppm
n	0 ppm (control) 4 100 ppm 7 1000 ppm 7 4500 ppm 15 7 45 45 45 45 45 45 45 45 45 45 45 45 45
Day of study	Mean SD Means SD Means SD Mean SD Mean SD
7	18.9 2.4 17.6 0 1.2 0 7 4 2.3
14	21.4 \$\$ 0.2** 13 17.2* 2.0 14.4* 1.6
21	20.6 2.7 \$ 19.2 \$ 1.2 \$ 18.7 \$ 2.3 \$ 15.8* 1.0
28	20.2 5 1.80 190 0 1.7 185 ^{**} 1.1 15.8 [*] 1.5
1 0 :	

number of anima n:

- significantly different from control p & 0.05 *.
- **. significantly different from control  $p \le 0.0$

Achieved dose:

The mean achieved dose levers of miacloprid during the start period were 8.034, 75.158 and 107.67 mg/kg bw/da for the low, mid- and high dose group respectively.

#### Group mean achieved doses of thacloprid (mg/kg bw/day) Table 5.8.2/21-5:

ر المراجع								
Study week in the second se	3	4	1 to 4					
100 mm Thiaclonrid $3202^{10}$ $384^{10}$	7.869	7.579	8.034					
1000 ppm Thiaclopfed 50,58 84,91	85.00	80.79	75.158					
1600 ppm Thiacloprid 🖉 🌾 59.6 🖓 🕺 🖓 1.3	123.3	116.5	107.671					
1000 ppm Thiacloped     0.002 c     0.003 c     1000 ppm Thiacloped     0.003 c       1000 ppm Thiacloped     50,38     84,91     85.00     80.79     75.158       1000 ppm Thiacloped     69.6     21.3     123.3     116.5     107.671								

#### E. Vaginal smear

#### **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

be	efore necropsy		-	
		Incidence of	observations* (%) 🛛 📎	
Thiacloprid dose	Pre-estrous	Estrous	Post-estrous	Di-estrous
0 ppm	1/15 (6.7%)	2/15 (13.3%)	7/15 (46.7%)	505 (3.3%) (3.3%) (3.3%)
100 ppm	1/15 (6.7%)	5/15 (33.3%)	1/15@¥ (6.7~¥)	© (53,3%) ©
1000 ppm	2/15 (13.3%)	4/15 (26.7%)	26.7% Q	5/15 C (33.3%)
1600 ppm	5/15 (33.3%)	1/13 (67%) 2°		5#45 (33?3%)

## Table 5.8.2/21-6: Results of estrous cycle staging conducted in vaginal smears on the afternoon

(x/y): number of animals affected / total number of animals *:

#### F. Hormone analyses

nducted between 8:30 a.m. To minimise variability in hormone measurements, blood sampling and 11 a.m. in the morning of the day of necropsy

Marginal, though not statistically significant increases in plasma progesteron concentration were recorded for the thiacloprid treated females (26.2% 6, 40.3% and 34.3% at 100, 100 and 1600 ppm, respectively).

The results for testosterone were inconclusive due to the fact that this hormone could be detected in the plasma of only 4/15/control females. Similarly restosterone ould only be detected in 6/15 females treated with 100 pp. This hormore could, however, be detected more readily in the plasma of those females treated with 1900 ppm and 1600 ppm thiacloprid 60/15 and 11/15 treated females respectively).

No change in plasma estradiol concentration was observed for females treated with 100 ppm thiacloprid, However, a significant increase in plasma estradiol of +64.7 % at 1000 ppm and of +59.7 % at 1600 ppt this observed. This increase was considered to be biologically relevant.

Plasma FSH concentration was not affected following treatment with 100 or 1000 ppm thiacloprid ,

Plasma FSH concentration was not affected following treatment with 100 or 1000 ppm thiacloprid , while a marginal, though not statistically significant, increase (+60%) was recorded in rats treated with 1600 ppm thiacloprid.

#### Table 5.8.2/21-7: Hormone data

	]	Hormone concentration ± standard deviation (% change compared to control)				
Thiacloprid dose (ppm)	0	100	1000 🖓	1600		
No. of animals examined	15	15	15			
Progesterone (ng/mL)	$24.8\pm11.3$	$31.3 \pm 12.1$	34.8 ± 4.1	33.3±1.1		
		(+26.2%)	(+40,3%)	× (+34,3%)		
No. of animals examined	4	6 <u>"</u>	5×10			
Testosterone (ng/mL)	$0.07\pm0.01$	0.1 \$ 0.06	$0.16 \pm 0.07$			
		(+2.9%)	(+128.6%) Q	(+57,1%)		
No. of animals examined	15	رم <i>الح</i>	p"15	$\sim 15$		
Estradiol (pg/mL)	$11.9\pm3.5$	O [™] 12.3@ 6.4 ×	19.6 ± 57**	19.0 ± 3.8**		
	Д	(\$3.4%)	Q (+64.7%)	<b>○</b> (+59, <b>7%</b> )		
No. of animals examined	12			L		
FSH (ng/mL)	$4.0 \pm 23^{2}$	(¢ [°] 4.9∉1.7 °√ [°]	4.3 ± 2/3	$0.4 \pm 30^{\circ}$		
	, Ô¥	(+\$ <u>2</u> .5%)	(+7,5%)	(+60%)		

**: significantly different from control  $p \leq \frac{1}{2}$ 

#### G. Necropsy

Organ weights

Dietary concentrations of 100 ppm thiaclopric had no effect on terminal body weight or organ weight parameters. At dietary conceptrations of 1000 and 1600 ppm that clopid mean terminal body weights were significantly lower (-10.3% and -15,1% respectively) than in control females.

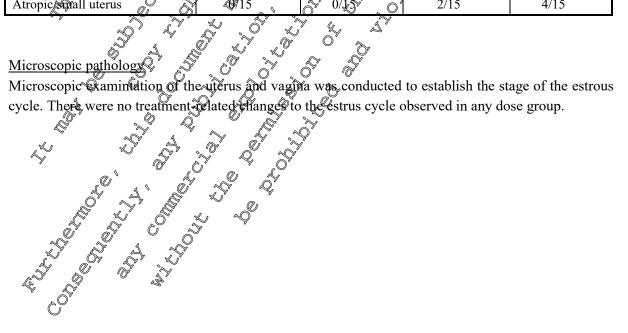
In addition, the apsolute and relative liver weights were statistically significantly higher for females treated with 1000 ppm and 1600 ppm thiac loprid when compared to the controls.

The increases in mean ovary weight (absolute and relative) are difficult to interpret as there was no dose response and microscopic examination of the quary was not performed.

The other organ weight changes were considered to be incidental and not treatment-related.

()`						
	Mean ± Standard deviation We change as compared to controls) Wrid dose (prim)					
Thiacloprid dose (ppm)		100	1000	1600		
Terzninal body weight (g)	€ 257s1 ¥ 15.8	$255.2 \pm 14.3$ (nc)	230.6** ± 10.7 (-10.3)	218.3** ± 9.7 (-15.1)		
Mean absolute liver	€8.7 <b>±</b> 9.95 €	$8.76 \pm 0.86$ (nc)	10.08* ± 0.81 (+15.7)	10.71** ± 0.99 (+23)		
Mean relative liver	3.384 ± 0.244	$3.431 \pm 0.227$ (nc)	4.370* ± 0.233 (+29.1)	4.898* ± 0.263 (+44.7)		
Mean(absolut Ovary weight (g)	$50.077 \pm 0.018$	$\begin{array}{c} 0.134 \pm 0.182 \\ (+74) \end{array}$	$\begin{array}{c} 0.088 \pm 0.013 \\ (+14.3) \end{array}$	$\begin{array}{c} 0.079 \pm 0.012 \\ (+2.6) \end{array}$		
Mean repative ovary weight (%)	$0.0298 \pm 0.0066$	$\begin{array}{c} 0.0522 \pm \\ 0.0703 \\ (+75.2) \end{array}$	0.0382* ± 0.0061 (+28.2)	0.0362* ± 0.0049 (+21.5)		

#### Table 5.8.2/21-8: Mean terminal body weight and mean organ weight


#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

	Mean ± Standard deviation(% change as compared to controls)01001001600				
Thiacloprid dose (ppm)	0	100	1000	1600	
Mean absolute adrenal gland weight (g)	$0.0606 \pm 0.0062$	$0.0631 \pm 0.0104$	$0.0582 \pm 0.0084$	0.0534 0.007	
Mean relative adrenal weight (%)	$\begin{array}{c} 0.02361 \pm \\ 0.00253 \end{array}$	$0.02474 \pm 0.00407$	0.2530 0.00391	0.002442 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Mean absolute uterus weight (g)	$0.495 \pm 0.200$	0.471 ± 0.148	0.407 ± 0.231	0.405 ± 0.159	
Mean relative uterus weight (%)	$0.1937 \pm 0.0780$	0.1855 ± 0.0615	€2066 ± 0.09€1	Q1851 ± 0.0736	

*: significantly different from control  $p \le 0.0$ 

 $\frac{Gross \text{ pathology}}{Enlarged and dark livers were noted in the majority of females in the 1900 and 1600 ppm epoups. All other findings were considered incidental. Table 5.8.2/21-9: Gross pathological findings$ 

		Narm S Narm	ber affected / to	ta Drumber examine	ed
Dose (ppm)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ر ۲۰ <b>۱۵۵</b> ۲۰	¥000 ×	1600
Enlarged liver	Ô, M	/15	V WIX O	4/15 [×]	15/15
Dark liver			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14/15	11/15
Atropic/small adrenal gland	ls 🐐 🌾	)/15	¢¢ 0/15 €	<b>1</b> 5	1/15
Enlarged ovaries		)/15%	195 5	Ø/15	0/15
Dilation of operus horns			03/15 O	5/15	2/15
Atropic strall uterus		¥15	\$* 0/13* O	2/15	4/15
	× *				



#### Table 5.8.2/21-10: Results of estrous cycle staging conducted by post mortem histology

		Incidence of observations	(%)
Thiacloprid dose	Pre-estrous	Estrous	Métestrous / Diestrous
0 ppm	6/15 (40)	2/15 (13.3)	7/15 4 (46.7) (46.7)
100 ppm	4/15 (26.7)	3/15	
1000 ppm	4/15 (26.7)	3/15 (20)	\$/15 \$ 0 (53,3) \$
1600 ppm	2/15 (13.3)	5/15 (33.3) 0 y	

*: (x/y): number of animals affected / total number of animals

#### H. Hepatotoxicity testing

There were no treatment-related changes at 400 ppm this toprid. At 1000 and 4600 ppm this cloprid there was a dose-related increase in total P-450 content, as well as in BROD and PROP activity, indicating a phenobarbital-like profile for hepatic enzyme indiction

			) [*]
	Change	Mean ± SD	)
Thiaclopred dose (ppm)	¢ک `¢¢` `````100 ,	Ø <u>109</u> 0	1600
Number of animals examined	& 6 × & 6 ×		6
Total P-450 content	9.13 £0.11 1.22 0.0	$08^{3}$ $3.80 \pm 0.10$	$1.92\pm0.26$
[iiiio/iiig piot)	a princ)	(x1.6)	(x1.7)
PROD [pmol/min/mg protein]	3,00 ± 1.28 3.33 ±0.	56 25.29 ± 7.21	$23.20\pm10.79$
	(ñe)	(x8.4)	(x7.7)
BROD [pmol/min/mpprotein]	$3.17 \neq 1.86$ $202 \pm 0.12$	$104.5 \pm 64.12$	$187.34\pm73.26$
10 A	(nc)	ý (x33)	(x59.1)
nc: no change			

#### Table 5.8.2/21-11: Hepatotoxicity testing

#### I. Aromatase enzyme activity

Aromatase enzyme activity was directly measured by estradiol production and indirectly by tritiated water production. The aromatase assay with the unspecific tritiated water method was used in several previous studies on thiacloprid, in which a dose related increase in aromatase activity in liver samples had been detected. However, since the release of tritiated water could also have been triggered non-specifically by other Cyp 450 enzymes the tritiated water method was compared in the current study with the new, specific method measurement of estradiol production) in liver samples in order to see if the old results were valid.

#### Estradio

Measurements were conducted in the presence and absence of a specific aromatase inhibitor (anastrozole) so as to determine the background levels of estradiol present in the homogenate and microsome preparations.



At 100 ppm thiacloprid, there was no change in ovarian aromatase activity compared to the control levels. A non-significant reduction in estradiol production, indicating a marginal inhibition of aromatase activity, was recorded for the ovarian samples from the females treated with 1000 ppm (16.7%) and 1600 ppm (45.6%) thiacloprid.

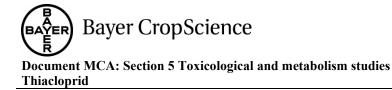
(10.7%) and 1000 ppm (45.6%) thactoprid.		
In liver microsomes no aromatase enzyme activity was observed.	O' A A	
Č.		
Table 5.8.2/21-12: Aromatase enzyme activity in ovary and liver de	etermined by estradion $\mathcal{O}$	
production <i>in situ</i>		

	Corrected estradio production fog/mL/
Thiacloprid dose (ppm)	$\begin{array}{c} \mathbf{O}^{*} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$
0	$2297.9 \pm 641.5$
100	2219.2 1957 2 0 0.1 ±08.4 2
1000	$19436 \pm 744.1  \bigcirc  \bigcirc  -7.1 \pm 7.5  \bigcirc  -7.1 \pm 7.5  \bigcirc  \bigcirc  -7.1 \pm 7.5  \bigcirc  -7.1 \pm 7.5  \bigcirc  \bigcirc  -7.1 \pm 7.5  \odot  -7.1 \pm 7.5  -7.1 = 7.5  -7.1 \pm 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.1 = 7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5  -7.5$
1600	

Estradiol concentration corrected for background estradiol keyel; i & (pg/mb) estratiol in absence of **†**: anastrozole) - (pg/mL estradio n presence of anastrozole)

#### Tritiated water measurement

In liver microsomes of rates treated with 2000 pern and 1600 ppm thecloprist a statistically significant increase of tritiated water production was observed. Thus, the tritiated water data indicated, indirectly, an apparent increase in bepatic aromatase activity the to thiaclopped treatment. However, since this is not confirmed by the specific assay (measurement of estradiol production), this is not a valid result. This applies also to the results in the previous pat studies.


Table 5.8,2/21-13: Apparent aromatase enzyme activity indiver microsomes determined by tritiated water production in site (invalid method)

A A A A AMean arou	matase activity
Thiacloprid @ose (ppm)	% of control
	+26.4%
Q1000 Q Q Q 27.5 4.1*	+281.9%
1600 1600 29,9±5.4*	+312.5%

fignificantly different of m control p ≤ 0.01

# 

J. qPCR anatysis this Hoprid reatment groups compared to the controls (33.8%, 156.3%, and 93% at 100, 1000 and 1600 pron). This was more apparent when considering only those females in metestrus/diestrus (63.6%, 156.7% and 237.1% at 100, 1000 and 1600 ppm, the increase at 1600 ppm was statistically



significant). All other changes in expression of genes associated with steroidogenesis were considered to be incidental.

The following table depicts the ovarian gene expression associated with steroidogenesis.

Table 5.8.2/21-14: Gene expression of enzymes a	ssociated with	steroidogenesis	analysed by	$\sim$
Table 5.8.2/21-14: Gene expression of enzymes a quantitative PCR in ovaries	<u>_</u>	s de la companya de l		Q

Ovarian	Mean	Relative Quantity ± st	tandard deviation of ge	ne transcripts
Steroidgenesis			red to control mean val	ues) V Q O
Gene transcripts	Control	100 ppm	1000 ppm & ° thtaelopric	ne transcripts 9 [°] ues) ⁴ 1600 ppm thiacloprio
		Ovary, all da		
StAR	$0.79\pm0.3$	0.87 ± 0.2 (+10.1%)	0,88±0,2(+11.4%)	$0.87 \pm 0.27 (+10,1.0)$
Cyp11a1	$0.73\pm0.3$	0.88±04 (+20.5%)	0.88 +0.4 (+20,5%)	0.68 ± 0.3 (-6.8%)
Cyp17a1	7.1 ± 4.9	9.5 <b>@</b> 9.4 (# <b>38</b> .8%)	18.2 ± 19.1* (+156.3%)	1357±142 (+93%)
Cyp19a1	4.4 ± 3.9	Q4.1 ± 3.8 (-6.8%)	4.0 ± 2.9 (-9 %)	3.6 ± 3.2 (± 18.2%)
Hsd17b1	$0.95\pm0.3$	$0.96 \pm 0.40$ (nc)	0.74 = 0.2* (+22.1%)	$0.79 \pm 0.4$ (-22.1%)
Hsd3b1	$0.92\pm 0.3$	$1.08 \pm 0.00 (+17.4\%)$	$1.0 \pm 0.5$ (+8,7%)	0.92 = 0.3 (nc)
		Ovarian? Metgestrus	dioestrus 🔗 🛴	Y L
StAR	0.75 ± 0.4	$0.89 \pm 0.3$ $18.7$	087 ± 0,2 (+16%)	065 ± 0.2 (+13.3%)
Cyp11a1	\$.83 ± \$\$	$1.05 \pm 0.3 (+26.5\%)$	$(1.1 \pm 0.3)$ (+33) (+33) (+33) (+33) (+33) (+33) (+33)	$0.79 \pm 0.3 \ (-4.8\%)$
Cyp17a1	€ 7.09 <b>4</b> .2	) (+63-6%) (*	\$8.2 ± 14.2 \$(+1500%)	23.9 ± 11.6** (+237.1%)
Cyp19a1	€.67±©2	$0.07 \pm 3.2(-16.3\%)$	> 3.72 3.0 (nc)	4.52 ± 3.2 (+23.2%)
Hsd17b1	$0.96 \pm 0.4$	$0.98 \pm 0.4$ (pic)	0.75 ± 0.2 (±24.9%)	0.87 ± 0.3 (-9.4%)
Hsd3b1		1.0 ± 0.6 (+22.4%)	$1.94 \pm 0.4$ (+34.1%)	0.95 ± 0.2 (+11.8%)

significantly different from control  $p \le 0.5$ 

**: significantly different from comprol p

Ô Akr1c18 gene expression was increased in all hiaclorid treatment groups compared to the control group (25,3%, 23.3% and 32.2% at 100, 1000 and 1600 ppm). This change was more evident when considering only those females in metestras diestors where the increases at 1000 and 1600 ppm (63.6 and 14.1%) were statistically significantly different compared to the appropriate control. The large increase in Cyp3a3 expression observed for the 1600 ppm thiacloprid treatment group was considered as thon-relevant due to the high ets and was mainly due to one female with an RQ of 76.6. All other changes in the expression of genes associated with metabolism were considered to be incidental. Data on ovarian gene expression associated with metabolism are shown in the table and the second s below 🔬 

no change nc:

Ø)

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

## Table 5.8.2/21-15: Gene expression of enzymes associated with metabolism analysed by quantitative PCR in ovaries

				<u>. ()</u>						
Ovarian Metabolism	Mean		tandard deviation of gen red to control mean val	ne transcripts	, O					
Gene transcripts	Control	100 ppm thiacloprid	1000 ppm thiacloprid	1600 papa thiaclogrid						
Ovary: all data           Por $1.18 \pm 0.4$ $1.27 \pm 0.3$ (+7.6%) $1.28 \pm 0.3$ (+8.5%) $1.21 \pm 0.5$ (+2.5%)           Cyp2b1 $0.74 \pm 1.8$ $0.46 \pm 0.5$ (-37.8%) $0.45 \pm 0.46$ (-39.2%) $0.44 \pm 0.2$ (-40.5%)           Cyp3a3 $1.74 \pm 1.7$ $1.55 \pm 1.5$ (-10%) $1.71 \pm 1.7$ (pc) $8.48 \pm 19.2$										
Por	$1.18\pm0.4$	$1.27 \pm 0.3 \; (+7.6\%)$	$1.28 \pm 0.3 (+8.3\%)$	1.21 £ 0.5 (2.5%)	4					
Cyp2b1	$0.74 \pm 1.8$	$0.46 \pm 0.5 (-37.8\%)$	$0.45 \pm 0.4$ $-39.2\%$	$0.44 \pm 0.2$ (-40.5%)	Ĵ					
Cyp3a3	$1.74 \pm 1.7$	1.55 ± 1.5 (-10.5%)	1.71 × 1.7 (nC)	848±19.00 × 387.4%)						
Akr1d1	$1.21\pm1.4$	0.83 ± 0.9 (31.4%)	1 # ± 0.8 + 15.7%	$1.51 \pm 1.6 (+24.8\%)$	e 0					
Akr1c18	$1.46\pm0.8$	1.83 ± 1.4 (+25.3%)	V.8 ± 0.6 (+23,3%)	Q1.93 ± 0.7 (+32,2%)	Ş					
Srd5a1	$1.12 \pm 1.2$	1.36 + 1.1 (+2¥.4%)	> 1.16€ 1.3 (\$3.6%)~	1.35 ¥ 1.2 (+20.5%)						
Srd5a2	nd	S NO S		A BA						
	(	Øvarian: Metoestrus,	dioestrus ô							
Por	$1.23 \pm 0.4$	1.40 = 0.3 (7) 3.8%)	1.3 2 0.2 (+6.5%)	1.40±0.5 (+19.5%)						
Cyp2b1	0.31 ± 0.3	[∞] 0.72 → 0.6 [∞] √ (+192.3%)	$0.35 \pm 0.5$ (+77.4%)	0.45 ± 0 [°] (+45.2%)						
Cyp3a3	1.76≠ 1.6	2.05 \$1.6 (\$6.5%)	2.18 = 1.9 (*23.9%)	11.9 ± 26.3 (+576.1%)						
Akr1d1	1.1 ± 1.0	(0.57 ± (0.5 (-48,2%))	$3.43 \pm 0.5 (+30\%)$	§1.95 ± 2.0 (+77.3%)						
Akr1c18	0.88 ± 0.3		1.4440.4* (463.6%)	1.86 ± 0.9* (+111.4%)						
Srd5a1	Ø.86 ± 9.5	$1.25 \pm 6.8 (+45.3\%)$	0.79 +0.4 (-801%)	0.67 ± 0.5 (-22.1%)						
Srd5a2 🔊 🖗	nd d	nd 🖓 🤇	nd nd	nd						

nd: not detected

nc: no change

#### Liver

Cyp19a1 and Nr5a1gene expression could not be detected in control and thiacloprid treated liver samples and all other genes associated with steroid genesis were only weakly expressed in the liver samples as evidenced by Cts of between 32 and 35.6. At 1600 ppm, marginal, though not statistically significant increases, were observed for StAR (+33%), Cyp11a1 (39.2%) and Hsd3b1 (+28.6%) when compared to the controls.

However, with regard to genes associated with metabolism thiacloprid treatment affects several genes in liver. 1000 ppm and 1000 ppm thiacloprid treatment significantly increased the expression of Por (+172.3 and +308.5%, respectively), Cyp3a3 (+3988.7 and +7740.4 %, respectively), and Akr1d1 (+29.9 and +75.2%, respectively). Cyp2b2 expression was already increased at 100 ppm (+1475.4 %) thiacloprid and further dose-dependently at 1000 and 1600 ppm (+39344 and +48507%, respectively). Srd5a1 gene expression was significantly reduced at 1000 and 1600 ppm thiacloprid (-20.6 and -29.9%, respectively).

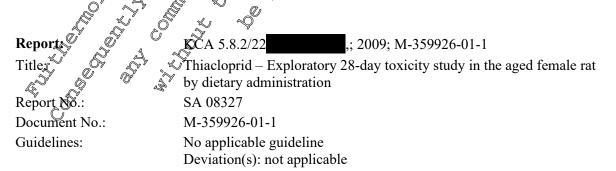
The following table depicts hepatic gene expression associated with steroidgenesis and metabolism.

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Cyp11a1       17.1 ± 9.6       13.76 ± 5.5       17.9 ± 6.4 (±4.7%)       23.81 ± 2.2         Cyp17a1       0.51 ± 0.2       0.6 ± 0.3 (±17.6%)       0.35 ± 0.2* (-31.3%)       0.52 ± 0.4 (±x)         Cyp19a1       nd       nd       nd       nd       nd         Hsd17b1       1.25 ± 0.5       1.49 ± 0.6 (±19.2%)       0.25 ± 0.7 (nc)       129 ± 0.5 (±3.2%)         Hsd3b1       0.77 ± 0.6       0.63 ± 0.3'(-18.2%)       9.69 ± 0.2 (±0.4%)       0.99 ± 0.6 (±28.6%)         Nr5a1       nd       nd       nd       nd       nd         Por       0.94 ± 0.2       0.91 ± 0.2 (±3.2%)       2.56 ± 0.6(±       3384 ± 1.2**         (±19252)       1.26 ± 2.0%       19.85 ± 18.9**       497.0 ± 125.22*       612.45 ± 361.2**         (±48507%)       1.95 ± 0.9 (±9.1%)       612.45 ± 361.2**       (±48507%)         Cyp3a3       1.57 ± 0.7       1.95 ± 0.9 (±9.1%)       612.45 ± 361.2**       (±74 ± 18*9**)       148.39 ± 22.1**         Akr1c18       101 ± 0.3       145 ± 0.7 (±13.9%)       0.80 ± 0.4(±20.8%)       1.55 ± 0.6**       (±78.2%)         Srd5a1       0.97 ± 0.2       1.01 ± 0.2 (±42%)       0.77 ± 0.1**       0.68 ± 0.1**       (±29.9%)       1.55 ± 0.6**	1 abic 5.6.2/21-10.	Gene expres	sion analysed by que							
Gene transcriptsControl100 ppm thiacloprid1000 ppm thiacloprid1600 ppm thiaclopridSteroidgenesisStAR $0.94 \pm 0.2$ $1.05 \pm 0.2 (+11.7\%)$ $0.55 \pm 0.3 (+11.0\%)$ $1.25 \pm 0.56 (+3.3\%)$ Cyp11a1 $17.1 \pm 9.6$ $13.76 \pm 5.5$ $17.9 \pm 6.4 (+4.7\%)$ $33.81 \pm 12.2$ Cyp17a1 $0.51 \pm 0.2$ $0.6 \pm 0.3 (+17.0\%)$ $0.35 \pm 0.2^{*} (-3120\%)$ $0.52 \pm 0.4 (4c)$ Cyp19a1ndndndndHsd17b1 $1.25 \pm 0.5$ $1.49 \pm 0.6 (+19.2\%)$ $0.25 \pm 0.7 (-10.4\%)$ $0.99 \pm 0.6 (+3.2\%)$ Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.3 (-18.2\%)$ $0.69 \pm 0.2 (-10.4\%)$ $0.99 \pm 0.6 (+28.6\%)$ NrSa1ndndndndndPor $0.94 \pm 0.2$ $0.91 \pm 0.2 (-3.2\%)$ $2.66 \pm 0.66^{*}$ $(+308.5\%)$ Cyp2b2 $1.26 \pm 20^{*}$ $19.85 \pm 18.9^{**}$ $497.0.4125.2^{*}$ $612.452 \cdot 361.2^{**}$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9 (-50.1\%)$ $617.4 \pm 18.9^{**}$ $418.39 \pm 22.1^{**}$ Akr1c18 $4.01 \pm 0.3$ $145 \pm 0.7 (+13.9\%)$ $0.30 \pm 0.4 (-20.8\%)$ $1.46 \pm 1.3 (+44.6\%)$ Srd5a1 $0.97 \pm 9.2$ $1.01 \pm 0.2 (+440\%)$ $0.30 \pm 0.4 (-20.8\%)$ $1.46 \pm 1.3 (+44.6\%)$	Hepatic	Mean	<b>Relative Quantity ± s</b>	tandard deviation of ge	ne transcripts					
thiaclopridthiaclopridthiaclopridSteroidgenesisStAR $0.94 \pm 0.2$ $1.05 \pm 0.2 (+11.7\%)$ $705 \pm 0.3 (+11.0\%)$ $1.25 \pm 0.56 (+3.3\%)$ Cyp11a1 $17.1 \pm 9.6$ $13.76 \pm 5.5$ $17.9 \pm 6.4 (+4.7\%)$ $33.81 \pm 32.2$ Cyp17a1 $0.51 \pm 0.2$ $0.6 \pm 0.3 (+17.0\%)$ $0.35 \pm 0.2^* (-31.3\%)$ $0.52 \pm 0.4 (4c)$ Cyp19a1ndndnd $nd$ $(+39.2\%)$ Hsd17b1 $1.25 \pm 0.5$ $1.49 \pm 0.6 (+19.2\%)$ $0.25 \pm 0.7 (nc)$ $129 \pm 0.5 (+3.2\%)$ Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.3^* (-18.3\%)$ $9.69 \pm 0.2 (-104.0\%)$ $0.99 \pm 0.6 (+28.6\%)$ Nr5a1ndndndndndPor $0.94 \pm 0.2$ $0.91 \pm 0.2 (-3.2\%)$ $2.56 \pm 0.6^{4}$ $334 \pm 1.2^{1/4}$ Cyp2b2 $1.26 \pm 20^{5}$ $19.85 \pm 18.9^{n/4}$ $497.0 \pm 125.2^{1/2}$ $612.45 \pm 361.2^{1/4}$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9 (49.1\%)$ $4.13 \pm 0.3^{1/4} (+29.9\%)$ $4.18.39 \pm 22.1^{1/4}$ Akr1c11 $0.87 \pm 0.3$ $1.95 \pm 0.7 (+13.9\%)$ $0.30 \pm 0.4(-20.8\%)$ $1.46 \pm 1.3 (+44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.7 (+13.9\%)$ $0.30 \pm 0.4(-20.8\%)$ $1.46 \pm 1.3 (+44.6\%)$		(% change compared to control mean values)								
Steroidgenesis           StAR $0.94 \pm 0.2$ $1.05 \pm 0.2$ (+11.7%) $205 \pm 0.3$ (+11.9%) $1.25 \pm 0.56$ ( $a3.3\%$ )           Cyp11al $17.1 \pm 9.6$ $13.76 \pm 5.5$ $17.9 \pm 6.4$ ( $4.7\%$ ) $23.81 \pm 2.2$ Cyp17a1 $0.51 \pm 0.2$ $0.6 \pm 0.3$ (+17.6%) $0.35 \pm 0.2^*$ (-31.3%) $0.52 \pm 0.4$ (ac)           Cyp17a1 $0.51 \pm 0.2$ $0.6 \pm 0.3$ (+17.6%) $0.35 \pm 0.2^*$ (-31.3%) $0.52 \pm 0.4$ (ac)           Cyp19a1         nd         nd $0.35 \pm 0.2^*$ (-31.3%) $0.52 \pm 0.4$ (ac)           Cyp19a1         nd         nd $0.6 \pm 19.2\%$ ) $0.25 \pm 0.7$ (nc) $f(29 \pm 0.5 + 3.2\%)$ )           Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.7$ (-18.2%) $0.69 \pm 0.2$ (-10.4%) $0.99 \pm 0.6$ (+28.6%)           Nr5a1         nd         nd         nd         nd         nd $0.69 \pm 0.2$ (-10.4%) $0.99 \pm 0.6$ (+28.6%)           Cyp2b2 $1.26 \pm 2\%$ $19.85 \pm 18.9^{**}$ $497.0 \pm 425.2\%$ $612.45 \pm 361.2^{**}$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9$ ( $49.1\%$ ) $413.394 \pm 0.3$ $(+1475.4 \%)$ $(+3988.7\%)$ $(+7740.4 \%)$ Akr1c18 $401 \pm 0.3$ <th>Gene transcripts</th> <th>Control</th> <th></th> <th></th> <th>S 1600 ppm 🥄</th>	Gene transcripts	Control			S 1600 ppm 🥄					
Cyp11a1 $17.1 \pm 9.6$ $13.76 \pm 5.5$ $17.9 \pm 6.4$ ( $47.\%$ ) $33.81 \pm 2.2$ Cyp17a1 $0.51 \pm 0.2$ $0.6 \pm 0.3$ ( $\pm 17.9\%$ ) $0.35 \pm 0.2^{*}$ ( $-3129\%$ ) $0.52 \pm 0.4$ ( $dc$ )         Cyp19a1       nd       nd       nd       nd       nd         Hsd17b1 $1.25 \pm 0.5$ $1.49 \pm 0.6$ ( $\pm 19.2\%$ ) $0.25 \pm 0.7$ ( $nc)$ $129 \pm 0.5$ ( $\pm 3.2\%$ )         Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.5^{*}(-18.2\%)$ $0.69 \pm 0.2$ ( $-10.4\%$ ) $0.99 \pm 0.6$ ( $\pm 28.6\%$ )         Nr5a1       nd       nd       nd       nd $nd$ Por $0.94 \pm 0.2$ $0.91 \pm 0.2$ ( $-3.2\%$ ) $2.56 \pm 0.6$ ( $\pm 3.384 \pm 1.2\%$ )         Cyp2b2 $1.26 \pm 2\%$ $19.85 \pm 18.9^{**}$ $497.0.4125.2\%$ $612.45 \pm 361.2^{**}$ Cyp3a3 $1.57 \pm 0.7$ $1.95 \pm 0.9$ ( $49.1\%$ ) $64.74 \pm 18.9^{**}$ $(\pm 48507\%)$ Akr1c18 $4.01 \pm 0.3$ $125 \pm 0.7$ ( $\pm 14.95.4\%$ ) $(\pm 14.95.4\%)$ $(\pm 13.934.4\%)$ $(\pm 774.4.\%)$ Akr1c18 $4.01 \pm 0.3$ $12.5 \pm 0.7$ ( $\pm 14.95.4$ $(\pm 3.988.7\%)$ $(\pm 14.6\%)$ $(\pm 3.988.7\%)$ $(\pm 774.4.\%)$			thiacloprid	thiacloprid	thiacloprid					
Cyp11a1 $17.1 \pm 9.6$ $13.76 \pm 5.5$ $17.9 \pm 6.4$ ( $47.\%$ ) $33.81 \pm 2.2$ Cyp17a1 $0.51 \pm 0.2$ $0.6 \pm 0.3$ ( $\pm 17.9\%$ ) $0.35 \pm 0.2^{*}$ ( $-3129\%$ ) $0.52 \pm 0.4$ ( $dc$ )         Cyp19a1       nd       nd       nd       nd       nd         Hsd17b1 $1.25 \pm 0.5$ $1.49 \pm 0.6$ ( $\pm 19.2\%$ ) $0.25 \pm 0.7$ ( $nc)$ $129 \pm 0.5$ ( $\pm 3.2\%$ )         Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.5^{*}(-18.2\%)$ $0.69 \pm 0.2$ ( $-10.4\%$ ) $0.99 \pm 0.6$ ( $\pm 28.6\%$ )         Nr5a1       nd       nd       nd       nd $nd$ Por $0.94 \pm 0.2$ $0.91 \pm 0.2$ ( $-3.2\%$ ) $2.56 \pm 0.6$ ( $\pm 3.384 \pm 1.2\%$ )         Cyp2b2 $1.26 \pm 2\%$ $19.85 \pm 18.9^{**}$ $497.0.4125.2\%$ $612.45 \pm 361.2^{**}$ Cyp3a3 $1.57 \pm 0.7$ $1.95 \pm 0.9$ ( $49.1\%$ ) $64.74 \pm 18.9^{**}$ $(\pm 48507\%)$ Akr1c18 $4.01 \pm 0.3$ $125 \pm 0.7$ ( $\pm 14.95.4\%$ ) $(\pm 14.95.4\%)$ $(\pm 13.934.4\%)$ $(\pm 774.4.\%)$ Akr1c18 $4.01 \pm 0.3$ $12.5 \pm 0.7$ ( $\pm 14.95.4$ $(\pm 3.988.7\%)$ $(\pm 14.6\%)$ $(\pm 3.988.7\%)$ $(\pm 774.4.\%)$	Steroidgenesis									
Cyp17a1       0.51 ± 0.2       0.6 ± 0.5 (117.0%)       0.53 ± 0.9       (5.8 ± 7.6) $0.52 \pm 0.7$ (nc)         Cyp19a1       nd       nd       nd       nd       nd       nd       nd       nd         Hsd17b1       1.25 ± 0.5       1.49 ± 0.6 (±19.2%)       0.25 ± 0.7 (nc)       129 ± 0.5 (±3.2%)       0.99 ± 0.6 (±28.6%)         Msd3b1       0.77 ± 0.6       0.63 ± 0.7 (-18.2%)       0.69 ± 0.2 (-10.4%)       0.99 ± 0.6 (±28.6%)         Nr5a1       nd       nd       nd       nd       nd       nd       nd         Por       0.94 ± 0.2       0.91 ± 0.2 (-3.2%)       2.56 ± 0.6%       384 ± 1.2%*       (±308.5%)         Cyp2b2       1.26 ± 2.0       19.85 ± 18.9**       497.0 ± 25.22%       612.45 ± 361.2**         Cyp3a3       1.51 ± 0.7       1.95 ± 0.9 (±9.1%)       64.74 ± 18.9**       497.0 ± 25.2%       612.45 ± 361.2**         Akr1d1       0.87 ± 0.3       0.97 ± 0.4 (+11.5%)       1/13 ± 0.3* (±29.9%)       1/18.39 ± 22.1**         Akr1c18       4.01 ± 0.3       145 ± 0.7 (±13.9%)       0.80 ± 0.4 (-20.8%)       1.46 ± 1.3 (±44.6%)       6.68 ± 0.1**         Srd5a1       0.97 ± 0.2       1.01 ± 0.2 (±4.4%)       0.77 ± 0.1 ½       0.68 ± 0.1**       (-29.9%)       1.46 ± 1.3 (±44.6%)       1.46	StAR	$0.94\pm0.2$	$1.05 \pm 0.2 \; (+11.7\%)$	105 ± 0.3 (+11 ∰%)	1.25 ±0.56 (±33%)					
Cyp17a1       0.51 ± 0.2       0.61 ± 0.5 (117.0%)       0.53 ± 0.9       (5.8 ± 7.6) $0.52 \pm 0.7$ (nc)         Cyp19a1       nd       nd       nd       nd       nd       nd       nd       nd         Hsd17b1       1.25 ± 0.5       1.49 ± 0.6 ( $\pm$ 19.2%)       0.25 ± 0.7 (nc)       129 ± 0.5 ( $\pm$ 3.2%)       0.99 ± 0.6 ( $\pm$ 3.2%)         Hsd3b1       0.77 ± 0.6       0.63 ± 0.7 ( $-18.2\%$ )       0.69 ± 0.2 ( $-10.4\%$ )       0.99 ± 0.6 ( $\pm$ 28.6%)         Nr5a1       nd       nd       nd       nd       nd       nd       nd         Por       0.94 ± 0.2       0.91 ± 0.2 ( $-3.2\%$ )       2.56 ± 0.6%       384 ± $1.2\%$ ( $\pm$ 308.5%)         Cyp2b2       1.26 ± 2.0%       19.85 ± 18.9**       497.0 ± 25.2**       612.45 ± 361.2**         Cyp3a3       1.51 ± 0.7       1.95 ± 0.9 ( $\pm$ 9.1%)       6 $\pm 74 \pm 18.9**$ 497.0 ± 25.2**       612.45 ± 361.2**         Akr1d1       0.87 ± 0.3       0.97 ± 0.4 (+115%)       1/13 ± 0.3* (+29.9%)       1/8.39 ± 22.1**         Akr1c18       4.01 ± 0.3       145 ± 0.7 (*13.9%)       0.80 ± 0.4(-20.8%)       1.46 ± 1.3 (+44.6%)       6.68 ± 0.1**         Srd5a1       0.97 ± 0.2       1.01 ± 0.2 (+44.%)       0.75 ± 0.1\%       0.68 ± 0.1**       (-29.9%)	Cypllal	$17.1\pm9.6$	<u> </u>	17.9 ± 6.4 (4.7%)	\$3.81 ± 2.2					
Cyp17a1       0.51 ± 0.2       0.61 ± 0.5 (117.0%)       0.53 ± 0.9       (5.8 ± 7.6) $0.52 \pm 0.7$ (nc)         Cyp19a1       nd       nd       nd       nd       nd       nd       nd       nd         Hsd17b1       1.25 ± 0.5       1.49 ± 0.6 ( $\pm$ 19.2%)       0.25 ± 0.7 (nc)       129 ± 0.5 ( $\pm$ 3.2%)       0.99 ± 0.6 ( $\pm$ 3.2%)         Hsd3b1       0.77 ± 0.6       0.63 ± 0.7 ( $-18.2\%$ )       0.69 ± 0.2 ( $-10.4\%$ )       0.99 ± 0.6 ( $\pm$ 28.6%)         Nr5a1       nd       nd       nd       nd       nd       nd       nd         Por       0.94 ± 0.2       0.91 ± 0.2 ( $-3.2\%$ )       2.56 ± 0.6%       384 ± $1.2\%$ ( $\pm$ 308.5%)         Cyp2b2       1.26 ± 2.0%       19.85 ± 18.9**       497.0 ± 25.2**       612.45 ± 361.2**         Cyp3a3       1.51 ± 0.7       1.95 ± 0.9 ( $\pm$ 9.1%)       6 $\pm 74 \pm 18.9**$ 497.0 ± 25.2**       612.45 ± 361.2**         Akr1d1       0.87 ± 0.3       0.97 ± 0.4 (+115%)       1/13 ± 0.3* (+29.9%)       1/8.39 ± 22.1**         Akr1c18       4.01 ± 0.3       145 ± 0.7 (*13.9%)       0.80 ± 0.4(-20.8%)       1.46 ± 1.3 (+44.6%)       6.68 ± 0.1**         Srd5a1       0.97 ± 0.2       1.01 ± 0.2 (+44.%)       0.75 ± 0.1\%       0.68 ± 0.1**       (-29.9%)			(-19.5%)		(+39.2%)					
Hsd17b1 $1.25 \pm 0.5$ $1.49 \pm 0.6$ $(+19.2\%)$ $0.25 \pm 0.7$ $1/29 \pm 0.5$ $(+3.2\%)$ Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.3$ $(-18.2\%)$ $0.69 \pm 0.2$ $(-10.4\%)$ $0.99 \pm 0.6$ $(+28.6\%)$ Nr5a1       nd       nd       nd       nd $nd$ $nd$ $nd$ $nd$ Por $0.94 \pm 0.2$ $0.91 \pm 0.2$ $(-3.2\%)$ $2.56 \pm 0.6^{-4}$ $3.84 \pm 1.2^{-4}$ Cyp2b2 $1.26 \pm 2.0^{-4}$ $19.85 \pm 18.9^{+\times}$ $497.0.425.2^{+2}$ $612.45 \pm 361.2^{+\times}$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9$ $(-14.75.4\%)$ $(+39344\%)$ $(+48507\%)$ Akr1d1 $0.87 \pm 0.3$ $997 \pm 0.4$ $(+11.5\%)$ $(+13.94\%)$ $(+39384.7\%)$ $(+7740.4\%)$ Akr1c18 $4.01 \pm 0.3^{-7}$ $1.95 \pm 0.7$ $(-3974 \pm 0.3)$ $(-13.9\%)$ $0.80 \pm 0.4$ $(-20.8\%)$ $1.46 \pm 1.3$ $(+44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $(-13.9\%)$ $0.80 \pm 0.4$ $(-20.8\%)$ $1.46 \pm 1.3$ $(+44.6\%)$ $(-29.9\%)$ $(-29.9\%)$ $(-29.9\%)$ $(-29.9\%)$ $(-29.9\%)$ $(-29.9\%)$ $(-29.9\%)$	Cyp17a1	$0.51\pm0.2$	$0.6 \pm 0.3 \; (+17.6\%)$	$0.35 \pm 0.2^{*} (-312^{-6})$	[∞] 0.52 [@] 0.4 (âgc)					
Hsd3b1 $0.77 \pm 0.6$ $0.63 \pm 0.3'(-18.2\%)$ $9.69 \pm 0.2'(-10.4\%)$ $0.99 \pm 0.6'(+28.6\%)$ Nr5a1       nd	Cyp19a1	nd	nd 🌾 👔		nd V					
Nr5al       nd	Hsd17b1	$1.25\pm0.5$	$1.49 \pm 0.6$ (+19.2%)	$0.25 \pm 0.7$ (nc)	$1.29 \pm 0.5 (+3.2.5)$					
Nr5al       nd	Hsd3b1	$0.77\pm0.6$	$0.63 \pm 0.3 (-18.2\%)$	$0.69 \pm 0.2 (-1.04\%)$	$0.99 \pm 0.6 (+28.6\%)$					
Wetabolism       Xietabolism       Xietabolism         Por $0.94 \pm 0.2$ $0.91 \pm 0.2$ $(-3, 2\%)$ $2.56 \pm 0.65$ $3.84 \pm 1.2\%$ Cyp2b2 $1.26 \pm 2.0\%$ $19.85 \pm 18.9\%$ $497.0 \pm 125.2\%$ $612.45 \oplus 361.2\%$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \oplus 0.9$ $(+393344\%)$ $(+48507\%)$ Akr1d1 $9.87 \pm 0.3$ $0.97 \pm 0.4$ $(+11.5\%)$ $(+13988.7\%)$ $(+7740.4\%)$ Akr1c18 $401 \pm 0.3\%$ $145 \pm 0.7$ $1.45 \pm 0.7$ $1.45 \pm 0.7$ $(+78.2\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $(+44\%)$ $0.76^{\circ} \pm 0.1\%$ $0.68 \pm 0.1\%$	Nr5a1	nd	nd v	ndo ^v	S not S					
Cyp2b2 $1.26 \pm 2.0^{\circ}$ $19.85 \pm 18.9^{**}$ $497.0 \pm 125.2^{**}$ $612.45 \pm 361.2^{**}$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9$ $(\pm 48507\%)$ $(\pm 48507\%)$ Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ $(\pm 1475.4\%)$ $(\pm 1475.4\%)$ $(\pm 393344\%)$ $(\pm 48507\%)$ Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ $(\pm 1475.4\%)$ $(\pm 139388.7\%)$ $(\pm 7740.4\%)$ Akr1c18 $401 \pm 0.3^{\circ}$ $145 \pm 0.7$ $(\pm 13.9\%)$ $0.80 \pm 0.4$ $(-20.8\%)$ $1.46 \pm 1.3$ $(\pm 44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $(\pm 44\%)$ $0.77 \pm 0.1\%$ $0.68 \pm 0.1^{**}$			Netabolism							
Cyp2b2 $1.26 \pm 2.0^{\circ}$ $19.85 \pm 18.9^{**}$ $497.0 \pm 125.2^{**}$ $612.45 \pm 361.2^{**}$ Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9$ $(\pm 48507\%)$ $(\pm 48507\%)$ Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ $(\pm 1475.4\%)$ $(\pm 1475.4\%)$ $(\pm 393344\%)$ $(\pm 48507\%)$ Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ $(\pm 1475.4\%)$ $(\pm 139388.7\%)$ $(\pm 7740.4\%)$ Akr1c18 $401 \pm 0.3^{\circ}$ $145 \pm 0.7$ $(\pm 13.9\%)$ $0.80 \pm 0.4$ $(-20.8\%)$ $1.46 \pm 1.3$ $(\pm 44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $(\pm 44\%)$ $0.77 \pm 0.1\%$ $0.68 \pm 0.1^{**}$	Por	$0.94\pm0.2$	$0.91 \pm 0.2 (-3.2\%)$	2.50 ± 0.60	<b>3</b> 384 ± 1.2**					
Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9$ ( $\pm 9.1\%$ ) $(\pm 39344\%)$ $(\pm 48507\%)$ Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ ( $\pm 11,5\%$ ) $(\pm 3988,7\%)$ $(\pm 7740.4\%)$ Akr1c18 $0.1 \pm 0.3\%$ $145 \pm 0.7$ ( $\pm 13.9\%$ ) $0.80 \pm 0.4$ ( $\pm 1.3$ ( $\pm 44.6\%$ )         Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ ( $\pm 44\%$ ) $0.76 \pm 0.1\%$ $0.68 \pm 0.1**$		<u> </u>								
Cyp3a3 $1.51 \pm 0.7$ $1.95 \pm 0.9$ ( $\pm 9.1\%$ ) $61 \pm 74 \pm 18.9 \pm 2.1 \pm 18.39 \pm 22.1 \pm 18.39 \pm 18.39 \pm 22.1 \pm 18.39 \pm 18.$	Cyp2b2	$1.26 \pm 2.0^{\circ}$	19.85 18.9**							
Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ $(+11,5\%)$ $(+3988.7\%)$ $(+7740.4\%)$ Akr1c18 $0.1 \pm 0.3$ $1.97 \pm 0.4$ $(+11,5\%)$ $(+13 \pm 0.3* (+20.9\%))$ $1.55 \pm 0.6**$ Akr1c18 $0.1 \pm 0.3$ $1.45 \pm 0.7$ $(+13.9\%)$ $0.80 \pm 0.4$ $(-20.8\%)$ $1.46 \pm 1.3$ $(+44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $(+44.6\%)$ $0.77 \pm 0.1\%$ $0.68 \pm 0.1**$										
Akr1d1 $0.87 \pm 0.3$ $0.97 \pm 0.4$ $(+11,5\%)$ $(+29,9\%)$ $1.55 \pm 0.6^{**}$ Akr1c18 $01 \pm 0.3$ $145 \pm 0.7$ $(+13.9\%)$ $0.80 \pm 0.4$ $(-20.8\%)$ $1.46 \pm 1.3$ $(+44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $(+44.6\%)$ $0.76 \pm 0.1\%$ $0.68 \pm 0.1**$	Cyp3a3	1.51 € 0.7		61.74 ± 18.9**						
Akr1c18 $01 \pm 0.3$ $145 \pm 0.7$ $t+13.9\%$ $0.80 \pm 0.4$ $t-20.8\%$ $1.46 \pm 1.3$ $t+44.6\%$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $t+0.2$ <		L S'								
Akr1c18 $0.1 \pm 0.3$ $14.5 \pm 0.7$ $*13.9\%$ $0.80 \pm 0.4$ $-20.8\%$ $1.46 \pm 1.3$ $(+44.6\%)$ Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2$ $(+44.6\%)$ $0.77 \pm 0.1\%$ $0.68 \pm 0.1**$ (-20.6\%) $(-29.9\%)$	Akr1d1	0.87 ± 0.3	0.97 ± 0.4 (+1,5%)	¥.13 ±0.3* (+2@9%)						
Srd5a1 $0.97 \pm 0.2$ $1.01 \pm 0.2 (+44\%)$ $0.75 \pm 0.1\%$ $0.68 \pm 0.1**$ (-29.9%)       (-29.9%)	~	<u>F</u> O >			(+78.2%)					
(-29.9%)	Akr1c18		$1(15 \pm 0.7) + 13.9\%)$	$0.80 \pm 0.4$ (-20.8%)	$1.46 \pm 1.3 \ (+44.6\%)$					
	Srd5a1	£0.97 ≠ 9.2	$0.01 \pm 0.2 (+40\%)$							
Srd5a2 Ond S on a s nd nd	<u> </u>			(-20.6%)	(-29.9%)					
	Srd5a2	Önd S	nd S	A A	nd					

#### Table 5.8.2/21-16: Gene expression analysed by quantitative PCR in liver

*: significantly different from control,  $p \le 605$ 


**: significantly different from control, p 20.0

nd: not detected

nc: no change

## 

In conclusion, the increased pepatic enzyme activity, the changes in plasma sex steroid hormone concentrations and the changes in the expression of several genes associated with the regulation of steroid hormone synthesis following dictary exposure to thiacloprid at 1000 ppm and 1600 ppm for at least 28 days were considered treatment related and biologically relevant.



Page 167 of 251 **Bayer CropScience** 2014-10-20 Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid GLP: Non-GLP (no specific Quality Assurance inspections were conducted, but performed according to standard operating procedures, which we previously accepted and periodically inspected by the Quality Assistance Unit) I. Materials and methods A. Materials thiacloprid 1. Test material: light brown solid Description: Lot/Batch no: EDE 0011099 Contrations expired dates 2008-02-25 **Purity:** 98,7% Stability of test compound: guarante 2. Vehicle: 3. Test animals: Species: 7 , & 0 Ø Strain: Wistar rat Age: approximat Sex: femáles Weight at dosing: France Source: erfød: The rats over originally used as control animals in a Acclimatisation Carcinogenicity study. The study was cancelled and the 50 ⁶ females used in the current study were selected from the 60 control/females of the cancelled study. certified rodent pelled and irradiated diet "A04CP1-10" from , France), ad libitum ÷ S Itap water (filtered and softened), ad libitum; Water: 🖉 ually in suspended stainless steel wire mesh cages Housing: B. Study design and methods 1. Animal assignment and treatment: Dose: Application route: Duration: 0,01000 ppm Quivalent to 0, 31.5 mg/kg bw/day oral (diet) 28 days 25 females

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Observations:

mortality, clinical signs, body weight, food intake, test substance intake, hormonal determinations (progesterone, testosterone, estradiol), estrus cycle staging (vaginal smeaf analysis), gross necropsy, organ weight (liver, ovary, uterus (including cervix), adrenal glands), histopathology (uterus, vagina, one of the adrenal glands)

#### II. Results and discussion

#### A. Mortality

figed on study One female (ST2F4024) of the thiacloprid treatment 21 for humane group was reasons.

#### **B.** Clinical signs

21 for humane reas Rat ST2F4024, which was killed on Study Day hibited a wasted general appearance, ocular discharge and a soiled anogenital region. These signs were considered to be a consequence of thiacloprid treatment. °

In the 1000 ppm dose group secenal chinical stigns were considered to be a consequence of thiacloprid treatment. Few or no faeces were observed for 24 females between Study Days 8-15 and 22-29, a general wasted appearance was noted in five females between Study Days 15 and 22 and for one of these also on Study Day 29, a soiled anogenital region was seen in one rat (ST2F4024) on Study Day 21 and reduced motor activity occurred in one female on Study Day 29

All other clinical signs were considered to be associated with the age (72 weeks at start of study) of the females and not treatment-related. 

Clinical signs	1000 ppm Thiacloprid (x/y)
Reduced motor activity	1/25
No faeces of the second	1/25
Few faces	2/25
Wasted general appearance Q 25	4/25
Soiled anogenital region A 0/25	1/25

#### Table 5.8.2922-1: Summary of clinical signs

x/y: number of animals affected / Cotal number of Onimals

#### C. Body weight

Treatment with 1000 ppm thiactoprid had an effect on body weight parameters. Mean body weight was statistically significantly reduced by between 4.9% (Study Day 8) and 13.4% (Study Day 29) throughout the treatment period when compared to controls. At each weekly interval, there was a statistically significant mean body weight loss per day when compared to the controls. The effect was most pronounced between Study Days 1 and 15.

Overall, between Study Days 1 and 29, thiacloprid treated rats experienced a mean cumulative body weight loss of 58 g (p  $\leq$  0.01), while control females exhibited a marginal mean cumulative for dy weight loss (1 g) during the same treatment period reflecting the age of the females used in this study. Mean body weight parameters are presented in the following table. 

	Mea	n body w	veight (g	) and bo	dy weigh	nt gain (g	and st	andard	leviation	n (SP)
Study day		1		8 (		15 5	2	22	\$ ¥	Ó
Thiacloprid dose (ppm)	0	1000	0	1000 ©	0	1000	Ŷ°O,	Q ⁹ 1000		10 <b>9</b> 9
п	25	25	25	25	25	25	, And S	<b>Q</b> 4	25	24
Mean bw (g)	412	414	409	389*	<b>\$98</b>	<b>368</b> **	[©] 410	359**	¥ 411	356**
SD	27	29	27	25	28 2	21	> 310	20	31	21
Mean bw gain per day (g)	-1	0	-1 K	∑-4*¢ ∽∽		-30		Ø**		0 -1**
SD	5	Ð,	1		1			r E		1
Mean absolute body weight gain (g)		Q ,	S [™] -3 S [™]	ð -25*	-40	-46***	ð ¢	ð ^{94**}	-1	-58**
SD	ō	Å	S.	<b>é</b> 10	10 8	15	× 10×	1\$	11	19

Table 5.8.2/22-2:	Mean body weight (g) and body weight gain (g)
-------------------	-----------------------------------------------

number of rats per group n:

significantly different from control,  $p \le 0.05$ *:

significantly different from control,  $p \not\in 0.01$ **.

## D. Food consumption and achieved dose level

Food consumption: A statistcally significant reduction in food consumption was recorded for thiacloprid treated females at was pronounced between Study Days 1 and 15. each weekly interval The effect

¢

Š

		n de la companya de l				
A C A Mean fo	od consump	tion (g / da	y) and sta	ndard dev	riation (SI	))
🔬 Study day 🏷 🔊 8 📣		5	2	22	2	.9
Study day 78 4 Thiacloprid dose (ppn) 0 1000		1000	0	1000	0	1000
, n 25 0 250 250	* 25	25	25	24	25	23
Mean food consumption (g / day	19.2	9.9**	19.9	13.1**	19.9	14.9**
SIO ~ ~ ~ ~ ~ 2.7	2.7	3.3	2.1	2.2	2.0	2.0

#### Table 5.8.2/22-3 Mean food consumption (g / day)

number of rats per group 🔊 n:

significantly different from control,  $p \le 0.01$ 

ed da Ac

The mean achieved dose level of thiacloprid during the study period was 31.5 mg/kg bw/day.

#### Table 5.8.2/22-4: Group mean achieved dose of thiacloprid

Dietary concentration	N	Mean achieved thiacloprid dose (mg/kg bw/day) 1000 ppm					
Study week	1	2	3	<b>A</b>	A to 4-5		
Achieved thiacloprid dose (mg/kg bw/day)	20.8	26.9 Ča	36.5	41.9			
		ATT.	, Ø	/	C C C		

#### E. Evaluation of estrous cycle

Comparison of the vaginal smears taken on Study Day 1 with hose taken on the day of Gacrifie indicated that there were no effects on the estrougycle due to thiacloped treatment, ^C However, as physiological changes in the estradiol/progesterone fatio occur in ging rats there are subsequent changes in the estrous cycle, such as a lengthening of the strous phase or a prolonged luteal phase (repetitive pseudo pregnancy), Thus, the standard phases of the strous cycle stablished for young adult female rats (i.e. pro-estrous, estrous, post-estrous and di-estrous) are not applicable to the older female. Consequently, the assessment of the estrous cycle in age females requires the histopathological evaluation of the pterus and vagina.

Table 5.8.2/22-5: Results of extrous cycle staging conducted in orginal means on Study Day 1 and prior to necropsy ŝ

		× ×		SY M	. A		Ro	
	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ې Incie	tence of obs	servations*	(%)		
		Study	1.				nation	
Thiacloprid	Pre	Estrous	Rost-	\$Di-\$	Pre-	Estrous	Post-	Di-
dose [ppm]	Preservous		estrous	ి Di- స్ estrows	🔊 🎝 🎝 🎝 🎝	See all	estrous	estrous
0	0 5/250	1/25	6/25	×1,3/25 م	1/25 (©%)	×0/25	10/25	14/25
	) (2 <b>0</b> 55) -	«J(4%)	(24%)	\$(52%)	( <b>()</b> )	Ø (0%)	(40%)	(56%)
1000	5/25 🛒	0/25	a 0/25	10/25	@ 5/24 @	2/24	7/24	10/24
Ê,	(20%) ^C		\$ (40%)	<u>(</u> )) 4	× (21%)	(8%)	(29%)	(42%)

x/y: number of animats affected / total number of ancimals 🖔

#### F. Hormone data

To minimise variability in dormone measurements, blood sampling was conducted between 8:30 and and 11:00 a.m. on the day of sacrifice

The plasma concentrations of testosterone were below the limit of detection for the majority of the control and treated animals

Since the age related changes in the estrous of the associated with changes in circulating estradiol and progesterome levels and on particular the ratio between these two hormones, hormone data from this study were analysed both independent of the estrous cycle stages and according to the major phases (persistent estrous and repetitive pseudopregnancy combined with ambiguous) of the cycle observed in this study

The relevance of the increases in plasma progesterone concentrations recorded for the treated females, particularly when considering those females in persistent estrous, was unclear due to the large interantipal variability observed for the progesterone measurements in both the control group (1.79 to 129.1 ng/mL) and the treated group (1.70 to 127.6 ng/mL).

## **BAYER** Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

A marginal, though not statistically significant, increase (+13.1%) in plasma estradiol concentration was recorded for the treated females when considering the data independent of the different stages of the estrous cycle. This increase in plasma estradiol concentration was more apparent (+19%;  $p \ge 0.05$ ) using a one-sided t-test) when considering the data from those females in pseudopregnancy combined with those presenting an ambiguous phase. This increase was considered to be treatment related.

	Progesterone (ng/mL)		Testosterone (ngmL)		Estradiol (pg/mL)	
Thiacloprid dose (ppm)	0	1600	. 0,~	×1000	× ~ ~ .	1000
Number of animals	25	0 ^{×23} , 0 ³	L.	\$ 12°	\$ 25	23
Mean	28.73	30.29	© 0.00 Q	ر0.00 ر	× 8.€ [×]	9.5
Standard deviation	35.43	<b>\$</b>	× 0,00	~~0.04~°	×2.6	3.05

## Table 5.8.2/22-7: Mean estradio and progesterone levels and E2: Pratice according to stage of estrous cycle

a a a a a a a a a a a a a a a a a a a	Estradiol (pg/mL)	Progestero	ne (ng/mL)	E2 PR	tio x 10 ³
Thiacloprid dose (ppm) 🖉	0 2 1000	<b>0</b>	~\$`100 <b>0</b> \$`	0	1000
		Persisten	t estrus		
Number of animate		<i>y</i> 9 0	0 ⁷ 6 4 ⁷		
Mean S	A.992 A.0.592	5,555	(j 8.2 <b>9</b> 0	2.1962	2.5701
Standard deviation	⁵ 1.8 47 3.890 3.890 4	2.378	\$007	0.6426	2.285
	Combined repet	titive pseudo-p	oregnancy/am	biguous stag	ge
Number of animals	× 15 0 12	¥5 ~	12		
Mean 🔨 🔊	7.025 <b>8.363</b>	44.420	31.773	0.678	0.868
Standard deviation	2572 × 2060	38.580	38.742	1.088	0.963

*: significantly different from control  $p \le 0.05$ , by one-sided test

#### Table 5.8.2(22-8: Hormone data (% change compared to control)

	1000 ppm thiacloprid	🖉 🧏 % Cha	inge compared to o	control
(numet	per of controls, number of treated females)	Progesterone	Estradiol	E2:P Ratio
Phase	All phases (25/23)	+ 5.1%	+13.1%	+5.4%
of estrous	Persistent estrous (95)	+49.0%	-3.6%	+17.0%
cycle	Pseudopregnance and anabiguous (15, 12)	-28.5%	+19.0%*	+28.0%

*: significantly different from control,  $p \le 0.05$ , using a one-sided t-test

#### G. Necropsy

The mean terminal body weight of thiacloprid treated females was significantly lower (-14.5%) than that of the control females. In addition, treated females had a statistically significantly higher relative



liver weight (+14.9%) than the controls. The other organ weight changes were considered to be de la companya de la comp incidental and not treatment-related.

Table 5.8.2/22-9:       Mean terminal bo	ody weight and mean organ weight	·0·
Thiacloprid dose (ppm)	Mean ± Standar (% change as compa 0 7	
Number of animals examined		
Terminal body weight (g)	413 4 ± 31.3	353.6 ^{**} ± 23.7 (-1.4.5%)
Absolute adrenal weight(g)	0.0781 ± 0.0212	0.0723 ± 0.0496
Relative adrenal weight (%)	€01917∉0.00€01	0.02958 ± 0.00600
Absolute liver weight (g)	$A_{140}55 \pm 10/7$	$11.38 \pm 1015(-1.5\%)$
Relative liver weight(%)	\$\$804 € 9.298 0	-3,9222* ±0.285,(+14.9%)
Absolute uterus weight (g)	Q 4 1.1 2 ± 0.8 9 × 4	Ø.946 <b>#</b> Ø.431 ○
Relative uterus weight (%)	0.2809 ± 0.2294	0.124¥
Absolute ovary weight (g)	Q Q0.088 0.059 Q	$0.082 \pm 0.063$
Relative ovary weight (%)	0.0219±0.0443	0.9230 + 0.0174

**: significantly different from control,  $p \le 0.01$ 

#### Gross pathology

There were no macroscopic findings in rat/ST2F402 which was killed for humane reasons on Study Day 21, and no treatment clated resions in the animals killed at scheduled carrifice. 

Ø

Ô

O

#### Microscopic pathology

In order to provide an accurate evaluation of the estrous cycle longitudinal sections of the vagina and cervix, transverse sections of both efferine horns, and medial socions of both ovaries are necessary. Since the ovaries from all females were for zen for possible further evaluations they were not available for histopathological evaluation to support staging. It has also to be considered that histological inconsistencies are incorentally seen between the various components of the reproductive tract in the aging rat. Therefore, staging of the stroug cycle in the ged rat is difficult.

Despite these impediments, the control remains were shown to be in phases commonly associated with the physiological changes in the estradio progesterone ratio known to occur in aging rats. More specifically, the majority of control females were observed in either persistent estrous (corresponding with low levels of progesterone and, therefore, a high E2:P ratio) or repetitive pseudopregnancy (corresponding with an increase in progesterone levels and, therefore a reduced E2:P ratio compared to the ratio for persistent estrous).

In contrast, there were fewer this cloprid treated females than controls exhibiting clear repetitive pseudopregnancy (2733% vsc52% in controls) and there was a higher incidence of thiacloprid treated females exhibiting an ambiguous cycle compared to the controls (27.3% vs. 8%).

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

## Table 5.8.2/22-10: Incidence (%) of stages of the estrous cycle in uterus and vagina at scheduled sacrifice [E2:P ratio x 10³]

Thiacloprid dose (ppm) Estrous cycle	Incidence (%) of stages of the 0 (control)	estrous excle [E2:P ratio 10 ³ ]
Persistent estrous	9/25 (36%) [E2:P~2.2]	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} & & \\ \end{array} & & \\ \end{array} & & \\ \end{array} & & \\ \begin{array}{c} \end{array} & & \\ \end{array} & & \\ \end{array} & & \\ \begin{array}{c} \end{array} & & \\ \end{array} & & \\ \end{array} & & \\ \end{array} & \begin{array}{c} \end{array} & & \\ \end{array} & & \\ \end{array} & & \\ \end{array} & \begin{array}{c} \end{array} & & \\ \end{array} & & \\ \end{array} & \begin{array}{c} \end{array} & & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} & \begin{array}{c} \end{array} & \\ \end{array} \\ \end{array} & \\ \end{array} \\ \\ \end{array} & \\ \end{array} \\ \\ \end{array} & \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} & \\ \end{array} \\ \end{array} \\$
Repetitive pseudo-pregnancy	13/25 (52%) [E2:P = 0.65]	$\begin{array}{c} 6 22 (275\%) & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
Persistent anestrous	01/25 (4%)	2 2 (9.1%) O
Pro-estrous	& 0/ <b>25</b> °(0%)\$	× \$22 (9:1%) *
Ambiguous female reproductive cycle	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	6/22 (27.3%) (2.1) (E2:P = 1.5)

x/y: number of affected animals / number of aninfals examined

Treatment related changes concerning the level of vaginal mucification were also recorded. In particular, the level of vaginal mucification observed in this appridtreated females (minimal to slight) was lower than that observed in the control females (minimal to moderate). As vaginal mucification is a useful criterion to stage the cycle this could explain the greater incidence of treated females with an ambiguous phase.

Vaginal mucification was observed mainly in those females in repetitive pseudo pregnancy. Thus, the reduced incidence of treated females with vaginal mucification (30.8% vs. 64% in controls) was considered non-refevant as fewer treated than control females were in repetitive pseudo-pregnancy (27% vs. 52% in controls).

# Table 5.8 2/22-11: Incidence and severity of vaginal mucification at scheduled sacrifice

A A A A A A A A A A A A A A A A A A A	ginal mucification* (%)
Thiacloprid dese (ppro)	1000
Vaginal mucification	
Minimal A A A A A A A A A A A A A A A A A A A	5/22
Slight 3/25	2/22
Moderate $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	0/22
Totaly 2 3 16/25 (64%)	7/22 (31.8%)
Incidence of females with vaginal mucification in repetitive needlo	5/7 (71.4%)
Incidence of females with vaginal mucification in repetitive pseudo- pregnancy	

*: number of anymals affected (botal number of animals examined

#### **III.** Conclusion

Treatment of adult (aged) female rats with dietary doses of 1000 ppm (31.5 mg/kg bw/day) thiacloprid for at least 28 days caused a marginal increase in mean plasma estradiol concentration, as well as changes to the estrous cycle and to the level of vaginal mucification.

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

These findings were considered treatment-related and biologically relevant.

An analytical methods An analytical method for the determination of thiacloprid by HPLC analysis in rodent diet was developed. The reference of the study report is presented under KCA 5.8.2/33, M-304485/01-1

	KCA 5.8.2/23 KCA 5
Report:	KCA 5.8.2/23
Title:	Thiacloprid: Investigation of in vitro effects on steroidogenesis using
	H295R cells - Report of studies: SA 08350, SA 09029
Report No.:	H295R cells - Report of studies: SA 08350, SA 09029 $\sim$
Document No.:	M-361492-01-1 $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$ $\mathcal{L}$
Guidelines:	H295R cells - Report of studies: SA 08350, SA 09029 SA 08351 M-361492-01-1 No applicable guideline Deviation(s): not applicable Non-GLP (not subjected to specific Quality Assurance inspections,
GLP:	Non CL Prince which the shifts anality resumber indication
	dosing solutions were not analysed; however, performed according to
	standard operating procedures for cell colture and hormone analyses,
	which were prevoously accepted and periodically inspected by the
	Quality Assurance Unit)
	> O' I. Materials and methods
- 7 - X 1	A & Materiak
I. Test material:	thiadopries a second second
Description	hight brown solid
Lot/Batch no:	, EDE20011099 ~ (U
Purity?	
Stability of test comp	ound: guaraneed for study duration; expiry date: 2009-08-28
2. Vehicle and positive con	trols: vehicle: 1 dimethylsulfoxid (DMSO)
à A	S positive controls:
	$\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ Forskolin – for sex steroid hormone secretion stimulation
A	$\sim$ $\sim$ ketoconazole – for sex steroid hormone secretion
	C aphibition
3. Test organism / celts:	
Species:	boman
Cell line	dosing solutions were not analysed however, performed according to standard operating procedures for cell offure and homone analyses, which were previously accepted and periodically inspected by the Oriality Assurance Unit) I. Materials A. Materials A. Materials thiacloprid ight brown solid EDE0011099 987% poold: guaranced for study duration; expiry date: 2009-08-28 vehicle: 1% dimethylsulfoxid (DMSO) positive controls: Forskolin – for sex steroid hormone secretion stimulation keloconazole – for sex steroid hormone secretion thibition homan derenal carcinoma immortal cell line H295R (CRL-2128; ATCC-LGC Standarts, Manassas, VA, USA)
Source	(CRL-2128;
	ATCC-LGC Standarts, Manassas, VA, USA)
4. Culture maintenance:	Ĵ.
Mediam:	DMEM:F12, supplemented with ITS+ premix and 2.5%
	Nu-Serum I
Conditions:	<ul> <li>Forskolin – för sex steroid hormone secretion stimulation keroconazole – for sex steroid hormone secretion inhibition</li> <li>homan</li> <li>adrenal carcinoma immortal cell line H295R</li> <li>(CRL-2128; ATCC-LGC Standarts, Manassas, VA, USA)</li> <li>DMEM:F12, supplemented with ITS+ premix and 2.5% Nu-Serum I</li> <li>75 mL flasks at 37°C and 5% CO₂</li> </ul>
B. Study design and metho	ods

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

#### 1. Test conditions: H295R cells isolated from flasks of $\geq$ 75 % confluence Cell isolation: DMEM: F12, supplemented with ITS + premix an Medium: Nu-serum I Test substance concentrations: Study 1 Thiacloprid: 50, 100, 500 ⁷1mM: Forskolin: 1 M; Ketoconazole: not use Study Thiacloprid: 50, 100, 500 aM Forskolige not used: oconazol 20 SR cells seeded into 22 plates at a density of Cell density: approx. 22 h prior to cells/mE ontrop concentration and Group size: 4 wells per compound reatment period Incubation time: Study **2. Sample collection and analysis** Sampling č 3', Diree abquots of culture medium / well using specific radio-immunoassay kits (Diagnostic Sortems Labor Mories) progesterone: DSL-3900 TISE; testosterope: DSL-4000 ACTIVE; estradiol: 43100 ACTAVE and discussion A. Cytotoxicity $O^{*}$ $O^{*$

48h. Treatment of the cells with 1 mM thacloprid for 48h gave rise to 87% viability, which was considered acceptable for the studies. However visual inspection of the cells indicated that the cell morphology was slightly altered

#### B. Hormone Concentration

Vehicle controls

Control progesterone levels were between 1.4 ng/mL (study 1) and 4.6 ng/mL (study 2) following 48h incubation and between 0.8 ng/mL and 0.92 ng/mL (study 1) following 24h incubation.

Control tostosterone levels were between 1.8 ng/mL and 3.8 ng/mL (study 1) following 48h incubation and between 0.7 ng/mL and 1.9 ng/mL (study 1) following 24h incubation.

Control estradiol levels were between 1.8 pg/mL (study 2) and 9.4 pg/mL (study 1) following 48h incubation and between 8.4 pg/mL and 11.2 pg/mL (study 1) following 24h incubation.

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

#### Positive controls

Twenty-four hour treatment of the H295R cells with 1  $\mu$ M forskolin led to significant increases in progesterone (+136%) and estradiol (+190%) secretion compared to the controls but had no effect on testosterone secretion. Treatment of the cells for 48h with 1  $\mu$ M forskolin also significantly increased the secretion of progesterone (+37.7%) and estradiol (+342%) and marginally increased testosterone secretion (+14.7%).

Treatment of the H295R cells with 10  $\mu$ M ketoconazole for 48h led to a significant/inhibition of both  $\beta$  progesterone (-50.7%) and testosterone (-99.8%) sectorion and a marginal increase (+19%) in estradion secretion.

#### 24 h treatment:

A dose-related increase in progesterone secretion and an inhibition in testosterone secretion were recorded following 24h treatment of the cells with thraclouid. No clear effects on estradio were recorded following 24h treatment.

	(study 1)	J ^ &	S c			
Thiacloprid	Progestero	one (ng/mL)	Cestostero	ne (ng/mL)	Estradiol	(pg/mL)
concentration	Mean ± SD	🔏 change	Mean # SD	S% change	≪Mean⊊SD	% change
0	0.9 + 0.06		1.3 0.5		9.6×1.2	
50 µM	0.09	nc s	0.9 ± 0.20	@42.4%	$7.8 \pm 0.8*$	-18.9%
100 µM	$0.0\pm0.1$	××+16,5%		S -56 <b>B</b> %	$8.0\pm0.6$	-16.0%
500 μM 💍	2.2 € 0.4** (	) +1 <i>5</i> 0.5% &	0.5¥0.2*℃	-60.8%	8.6 ± 1.0	-10.3%
1 mM	$2.4 \pm 0.3^{**}$	<b>41</b> 77.7%	$0.8\pm0.0$	-40.1	$10.9\pm1.9$	+13.8%
Forskolin concentration						
1 µM	23 ± 0.3**	@Y35.9%	@r.2 ± 0.9	-2.04%	27.7 ± 3.8**	+190.2%
	ŠV ŠV			$\sim$		

Table 5.8.2/23-1: Mean hormone concentrations and standard deviation (SD) after 24h treatment (study 1)

*: significantly different from Sontrok  $\beta \le 0.05$ 

**: significantly different from control,  $p \leq 0.01$ 

nc: no change compared to controls

#### 48 h treatment:

There was a clear dose related and statistically significant inhibition of testosterone secretion following treatment of the cells with 50  $\mu$ M -1 mM thiacloprid, with the effects being more apparent than those observed following 24h beatment. There was no clear effect on progesterone concentration following 48h this loprid reatment. The effects of this cloprid on estradiol secretion were difficult to interpret as the control levels were low and variable, particularly for study 2.

E ST CT

#### **Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Thiacloprid	Progestero	ne (ng/mL)	Testostero	ne (ng/mL)	Estradio	(pg/mL)
concentration	Mean ± SD	% change	Mean ± SD	% change	Mean ± SD	% change
0	$3.0\pm1.4$		$2.4 \pm 0.7$		5.5 ± 3.0	~ <u>~</u> ~
50 µM	$2.5\pm1.5$	-16.6%	$1.1 \pm 0.3^{**}$	-53.7%	$6.5 \pm 0.8$	\$+17. <b>8</b>
100 µM	$2.8\pm1.6$	-5.6%	1.1 ± 0.4**	-55.5%	$6.2 \pm 0.4$	× +13×1%
500 μM	$3.7 \pm 2.1$	+23.1%	$0.8\pm0.2*$	-68.3%	5.7 ± 1.6	\$4.1% ×
1 mM	$2.7 \pm 0.8$	-11.0%	0.8 ± 0,1**	-69.0%	9.8 ± 1.0***	Q+77.8%
Forskolin concentration						
1 µM	$2.3\pm0.2^{\ast}$	+37.74%	3.2 ± 9.8	¥14.7 <b>4</b> %	36.3±51**	×+341.8%
Ketoconazole concentration		Ş				
10 µM	2.1 ± 0.1**	-50.7%	ر َ∽0.003 √ 0.003** ~	• <b></b>	3.4 + 9.6	+190%

Table 5.8.2/23-2:	Mean hormone concentrations after 48h treatment (study 1 and 2 combined#)
-------------------	---------------------------------------------------------------------------

only values for thiacloprid treatment were combined #: L'

*: significantly different from control, p 0.05

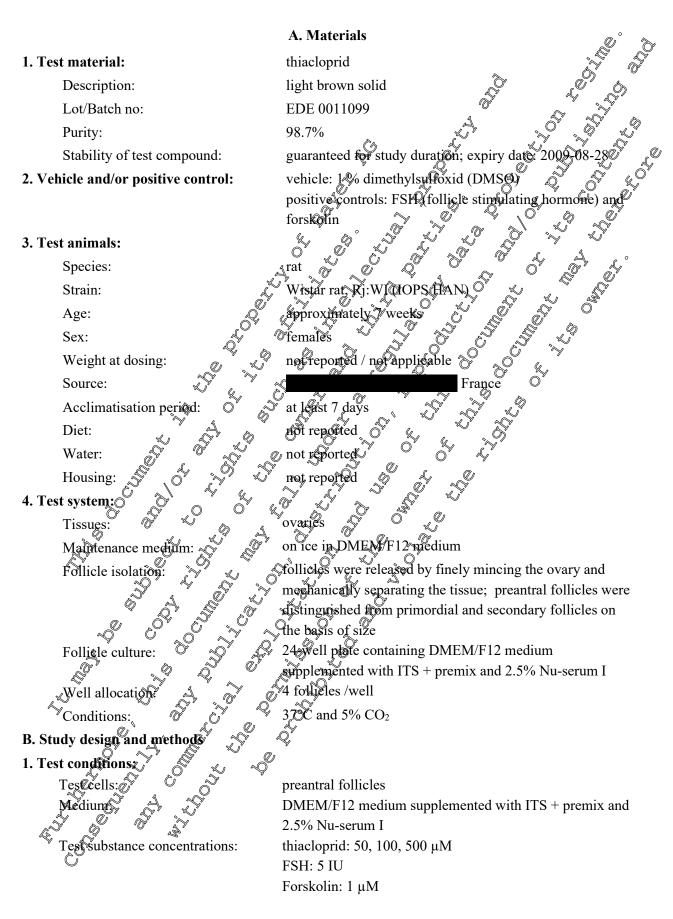
**: significantly different from control  $p \ge 0.01$ 

nc: no change compared to controls &

) III Conclusion

The most marked effect induced by priacloprid was a consistent and clear dosp related inhibition of testosterone secretion following 24h and 48h treatment. An increase in progesterone secretion following 24h treatment was also recorded. The effects of thiad prid on estradiol secretion were difficult to interpret as the control levels were low and variable.

Overall, sex steroid formone secretion in the H295R colls was affected due to thiacloprid treatment, with the effects on testosterone being the most apparent Under the same conditions of test, the positive controls, for kolin and ketoconazole induced the expected changes in steroid hormone secretion.


Ô

<b>Report:</b> KC25.8.224 ,; 2010; M-361609-01-1
Title:
Title: "Intracloperd – In witro Revestigation of steroid hormone secretion in rat ovarian preantial folicies
Report No.: $\sqrt[3]{SA} 09062 \sqrt[3]{SA}$
Document No.: $M^{3}61609-01-10^{\circ}$
Guidelines: 🔏 🔬 🖉 o applicable guideline
Deviation (St not applicable
GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP:
were not analysed; however, performed according to
L Standard operating procedures for cell culture and hormone analyses
GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GLP: GL
Quality Assurance Unit)
Ŭ

I. Materials and methods



Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Incubation time:	24 and 48 h
Group size (treatment time):	Study 1:         3 wells per compound/vehicle control (24 h)         2 wells per compound/vehicle control (48 h)
	3 wells per compound/vehicle control (24 h)
	2 wells per compound/vehicle control (48 h)
	Study 2:
	2 wells per compound/vehicle control (48 h) <u>Study 2:</u> 4 wells per compound/vehicle control, and concentration (24 h and 48 b) 37°C and 5% CO ₂
	4 wells per compound/vehicle control, and concentration (24 h and 48 b) 37°C and 5% CO ₂
Incubation conditions:	37°C and 5% CO ₂
2. Sample collection and analyses:	
Sampling:	two alignots per well ? ? ? ?
Analyses:	using specific radi@immunoassay kits Diagnostic Systems
	Leboratogues) - progesterone: DSL-3900 ACTIVE
	sestradioI: DSI24310@ACTIVE O' O'
II.d	Kesults and discussion 170.2%) was detected following incubation of the preantral
A. Study 1: Hormone concentration	
Progesteron concentrations	
An increase in progesterone secretion (5)	170.2%) was detected following incubation of the preantral

follicles with 500  $\mu$ M thiacloped for 24 h. Progesterone ( $\mu$ 55.3%) could only be detected in one out of three samples treated for 24 h with 5 IUFSH. A for the prediction of the prediction o

After incubation of the preantral follicles for 48 h with 500 µM that loping or 540 FSH increases in progesterone secretion were +146.7% or 268.5%, respectively, compared to the ophicle controls.

Table 5.8.2/24-1: Study 1 - Mean progesterone concentrations in rat preantral follicles after sincubation with this cloprid or FSPI for 24 or 48 h

Incubation of time (h)	Compound	Compound concentration	Mean Progesterone conc.	% of control
	Vehicle control		0.47 0.21	
K.	FSH		° ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1.20 [#]	+155.3%#
	Tapacloprid	× 50 μM	$\bigcirc \qquad \bigcirc \qquad$	+34%
		~100 WM	0.47 ± 0.29	n.c.
		> 560 μM >	1.27 ± 0.61	+170.2%
48 🛋	Vehicle control		$3.66 \pm 0.65$	
40	FSH _S	5,48	× 13.48 ± 8.41	+268.3%
$\mathcal{A}$	Thiaclopric	³ 5 <b>00</b> μM	$9.03\pm3.62$	+146.7%

conc." concentration

n.c.: no change #: progesterene detected in only one out of three samples

#### Estradiol concentrations

Both thracloped and FSH had no clear effect on estradiol levels following 24 h treatment of the follicles. For howing incubation of the follicles for 48 h increases of 23.8% and 132.5% compared to the felevant controls were recorded for 500  $\mu$ M thiacloprid and 5 IU FSH, respectively.

Table 5.8.2/24-2:	Study 1: Mean estradiol concentrations in rat preantral follicles after
	incubation with thiacloprid or FSH for 24 or 48 h

_					
Incubation time (h)	Compound	Compound concentration	Mean estradiol conc. (ng/mL) ± SD	% of couprol	
24	Vehicle control	0	$7.15 \pm 0.60$		
	FSH	5 IU	4.85 ± 1.94	°~~-32.2°€° ≾	
	Thiacloprid	50 µM	7.02 ± 104	<u> </u>	
		100 µM	7.52 Đĩ.45 🔹	5.2% \$	
		500 μM	₹ 7.90 ± 0.55 °	+11.3	
48	Vehicle control	0 🖓	14/08 ± 2.32		
	FSH	5 IU 🖏	\$ \$32.74€¥12.53€	+132.5%	
	Thiacloprid	500 µM 👔		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

conc.: concentration

Thiacloprid

B. Study 2: Hormone concentrations <u>Progesterone concentrations</u> An increase in progesterone secretion was detected following treatment of the follicles with 500 μM thiacloprid for 24 h (+178.7%) and for 48 h (+464.7%). The significant increase on progesterone observed for 48 h treatment with \$0 µM thacloprid is cofficult to interpret as the increase appeared to be only due to one of four samples (3.20 ng/ng) compared to progesterone concentrations being below the limit of detection for 2 samples and 0.33 ng/m[Ofor one sample).

Treatment of the follocies for 24 hand 48 with FIU FSH led to increases in progesterone secretion of

+73.8% and +394 % respectively. Treatment of the follocles for 48 b with p µM forskelin also led to an increase in progesterone concentration (+40,5%). The increase (+262,5%) at 24 h & difficult to interpret as the increase appeared to be due to only one of the four samples.

Table 5.8.2/24-3:	Study 2~	Mean progeste	eron concentratio	ns in rat pream	tral follicles after			
Sicubation with this coprid, FSH or forskolin for 24 or 48 h								

Incubation time(h)	Compound 5	Compound .	Mean progesterone conc. (ng/mL) ± SD	% of control
24	Vehicle control		0.61 ± 0.29	
24	FSH Q	540	✓ 1.06 ± 0.54	+73.8%
L.	Førskolin	^Δ μΜ ^Δ	$2.21 \pm 3.11^{\#}$	+262.3%#
. A	Thiaclopfid	50 μλ <del>Υ</del>	$0.58\pm0.36$	-4.9%
4		29 100 AM	$0.48\pm0.16$	-21.3%
J.		590 μM	$1.70 \pm 0.13 **$	+178.7%
48	Vehicle control	0	$0.34\pm0.04$	
	FSH	5 IU	$1.68\pm1.14$	+394.1%
	Forskolig	1 µM	$1.72\pm1.76$	+405.9%
	Thiacloprid	50 µM	$1.79\pm2.07^{\#}$	+426.5%
Q		100 µM	$0.29\pm0.06$	-14.7%
		500 µM	$1.92\pm1.45$	+464.7%



conc.: concentration

**: significantly different from control,  $p \le 0.01$ 

#. progesterone increase only due to one out of four samples

Estradiol concentrations

Marginal, dose related increases in estradiol concentration were recorded following incobation

Marginal, dose related increases in com-thiacloprid for 24 and 48 h. Treatment with 1 µM forskolin induced a marginal increase in estradio concentration, with the effect following 48h treatment (+25.8% ys. +10.8% following 24 h treatment). FSH had no effect on estradiol secretion in this study.

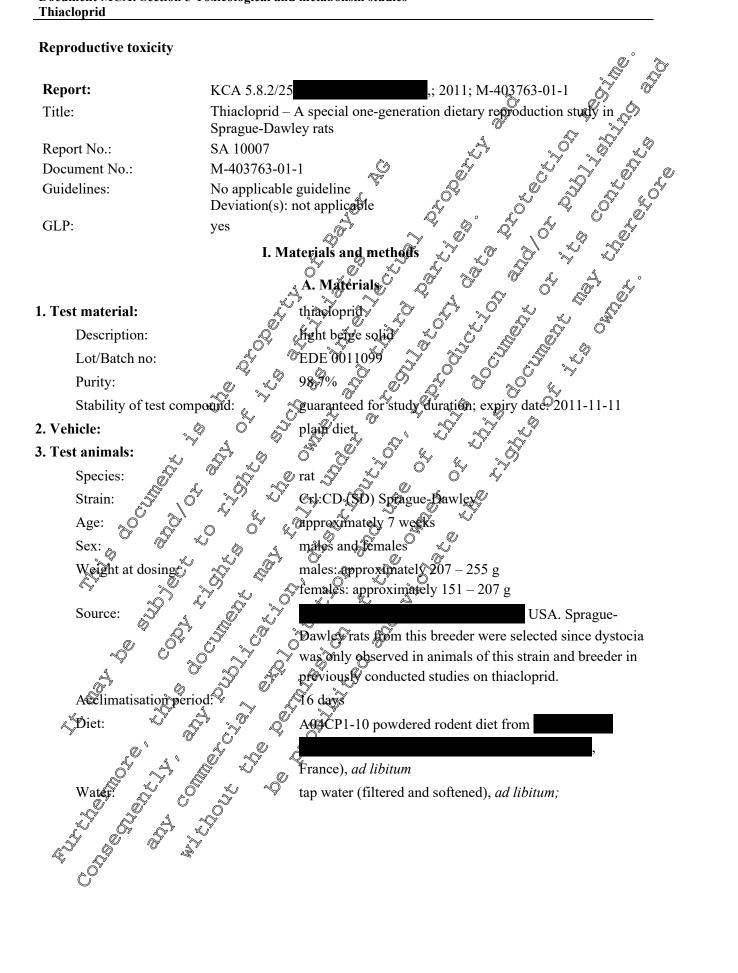
Table 5.8.2/24-4:	Study 2 - Mean estradiol	concentrations	in rat pre	antral follicles	after,
	Study 2 - Mean estradiol incubation with thiaclop	r <b>id,</b> FSH@r fors	Rolin for 2	24 øv 48 h	°~y~

			<u> </u>
Incubation time (h)	Compound	Compound concentration	% of control
24	Vehicle control	<u>8.70</u> <u>8.70</u>	× - 0
	FSH	0 5 W . 7 2 8 68 ± 0,75 5	
	Forskolin	$\mathbb{Q}$ $\mathfrak{g}^{1}\mu M\mathfrak{g}$ $\mathfrak{g}^{*}\mathfrak{b}4 \pm \mathfrak{Q}\mathfrak{b}7^{*}\mathfrak{g}^{*}\mathfrak{b}4$	€ <del>7</del> ¥0.8%
	Thiacloprid	50 μM 10 μM 9.13 0.09* 9.13 0.09* 9.14 0.09* 9	× +4.9%
		( 10€ µM	+11.95%
			+16.2%
48	Vehicle control		
	FSI	² ² ² ² ² 8.97 ± 0.Ω ¹ ⁴	n.c.
	Farskolin	² ² 1 μM _y ² 201.11 ± 2.75 ^Q	+25.8%
	Thiacoprid	50 mm 2 9.08 ± 1.2 1 ×	+2.8%
Ŭ Å	"0" ~~ (C	$100^{\circ}\mu M_{\odot}$ $979 \pm 0.96$	+10.9%
		500 μM ² 919 ± 5,70 500 μM ² 10.22 ± 0.66*	+15.7%

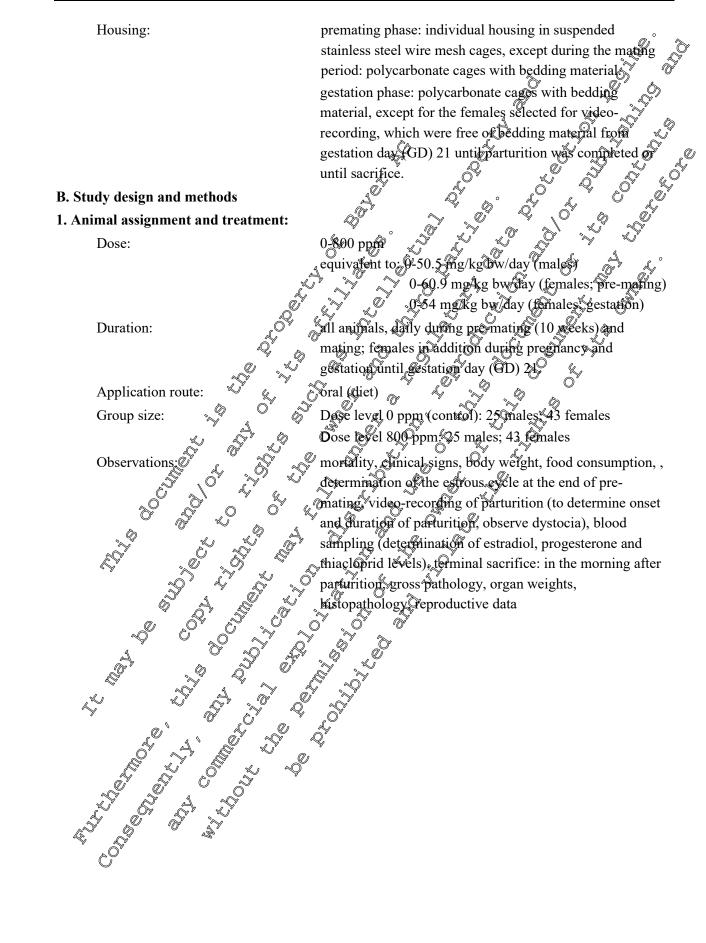
conc.: concentration

significantly different from control,

- ** significantly different from whtroly p
- n.c.: no change


# کې II. Conclusion

of the follicles ^wM thiack prid gave a clear and consistent increase in 500 Treatment with progesterione at both 24 or 48 h (up to +178.7 or 6464.7%, respectively) in both studies. The changes in progesterone levels at 50 µM and 109 µM were not considered relevant due to high variability. Estradiol was also consistently increased due to 24 and 48h treatment of the follicles with 500 µM Q, thiacloprid.


In conclusion, the consistent increases in progesterone and estradiol levels following 24 and 48h exposure of ovarian preantral follicles to 500 µM thiacloprid were considered treatment related and biologically relevant

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

#### **Reproductive toxicity**



#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



**Bayer CropScience** 

Group	Main groups	Satellite groups (1)	Satellite groups (2)	Satellite groups
0 ppm Thiacloprid (controls): no. of females	24	5	6	
<b>800 ppm Thiacloprid</b> : no. of females	24	6	5	
Clinical signs, body weight & food intake	Х	J. J	Q ^y X _∞ ∘	
Video recording of parturition	Х	^O X ^C		
Blood sampling (determination of	individually on the	(venjipunct.)	CTD 21.5	GD 22 (Cominal Cominal
hormone & thiacloprid	morning after	individually	saçeîfice)	sacrifice
levels)	parturition (termina) sacrifice)	on the morning after parturition (terminal sacrifice)		(Cominal of sacrifice)
Organ weight	Thain, liver, and thyroid gland	brain, liver, thyroid gland		
Histopathology	liver, thyroid	Stiver, thyroid	- J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

venipunct .: venipucture of the retroorbited plexus under mesthes

Feasibility studies: Feasibility studies: Two teasibility studies were conducted before start of the main study in untreated pregnant rats in order to develop and optimize the procedure of video recording during partitrition. Already the presence of humans during parturition or the manipulations of blood sampling can *per se* tead to dystocia in rat. Therefore, video recording of parturition and blood sampling had to be performed in a way which avoided unspecific dystocia. **II. Results and discussion** "Two reasibility stuffes were conducted before start of the

### A. Feasibility studies:

and 3/8 dams of the ^{2nd} study. These findings were attributed to the increased level of stress caused by the long presence of technicians in the mimal room during parturition (in order to develop/optimize the video recording), the hoise of people talking and handling materials, the missing bedding material so that the dams could not build a nest for their pups (necessary to enable video recording of parturtion through the transparent bottom of the cage) and the procedure of blood sampling before birth in some of the animals. The findings also gave a first indication for an increased sensitivity of the Sasco Sprague-Dawley rat towards stress-induced disorders of parturition (this was confirmed by historical control data on dystocia in this and other rat strains compiled lateron). The feasibility studies



showed that stress in the main study had to be reduced as much as possible in order to have no cases of dystocia in the untreated animals.

#### **B.** Mortality and dystocia

#### Control group:

There were no mortalities in the control group in either sex during any phase

#### 800 ppm thiacloprid group:

#### Premating phase

Thiacloprid treated female UR2F0473 was killed for human reasons on Day 84 after having been aggressed by the male during mating. The fonale had a large skiplesion at the head and the left ear was damaged. No other macroscopic findings were noted at nearopsy. The male was excluded from pairing.

#### Gestation phase

In the main group, thiacloprid-treated tomale BR2F0981was killed for humane casons on gestation day (GD) 23 (03:42 pm) during parturition. The first pup had been delivered on GD 22 (08:40 pm). Clinical signs consisted of phoerection, reddish soiled anogenital region and reduced motor activity. There were no other remarkable findings during gestation, except for a slightly lower body weight gain between GD 14 and 21 compared to the other megnant thiscloprid deated females (58 g compared to a mean value of  $\frac{1}{6} \pm \frac{1}{5}$  g). Before secrifice the female had delivered 5 pups but only 4 of them were still present in the cage at the time of sacoffice and one uterine horn was protruding out of the vagina. A blood sample was collected before cuthanasta and the hormonal status and thiacloprid concentration Fere determined. Progesterone concentration was 71687 pg/mL, the estradiol level was below the detection limit of 16,4 pg/mL and the concentration of the acloprid was 5.8 mg/L. Necropsy confirmed the marked werus prolapse and revealed 3 live puppin the uterine horn remaining in the abdomen. At the microscopic examination, a moderate centricobular hepatocellular hypertrophy was noted in the liver and a minimal follicular cell hyperplasia hypertrophy was observed in the thyroid gland.

Main group animal UR2F0463 Sas found dead on GP 24 (09:59 am). The first pup had been expelled at 12:25 am on GD 23 and a least 12 other pupe had been delivered by 05:19 pm on GD 23. No clinical signs were recorded in the data capture system but reduced motor activity and markedly soiled anogenital region were seen in the video records during parturition. Since the animal was found dead, blood sampling was not possible. An necropsy, a moderate autolysis was recorded and one dead pup was found in the uterus. Histopathology@evealed a moderate centrilobular hepatocellular hypertrophy and minimal hepatocellar degeneration/necrosis in the liver.

In the sateline group, piloerection, general pallor and markedly soiled anogenital and abdominal regions were recorded (GD 23, 09:02 am) on female UR2F0451 after parturition. The first pup was expelled on GD 23 at 00:50 am and the parturitional length was 210 min for 14 pups, compared to a mean length of  $128 \pm 55$  min in the treated satellite group. Hormonal values of this animal were 105300 pg/mL progesterone and 22 pg/mL estradiol on GD 20 and 9806 pg/mL progesterone and



21 pg/mL estradiol at terminal sacrifice after parturition. Thiacloprid concentrations were 25.9 and 5.76 mg/L on GD 20 and at terminal sacrifice, respectively. At necropsy, an atrophic and small uterus was noted. At the microscopic examination, a slight centrilobular hepatocellular hypertrophy was noted in the liver and a slight follicular cell hyperplasia/hypertrophy was observed in the thyroid gland. .1

Table 5.8.2/25-2:	Mortality and status of femal phase)	les in the main an	d sateflite gro	ups (gestation
	phase)	- Contraction of the second se	Ũ.	

gland.			-1. -1.	
Table 5.8.2/25-2:	Mortality and status phase)	of females in the m	ain and sateflite grou	ups (gestation
	Main animals	Satellite anymals, Blood sampling GD2V& at termination	Satelfite animals, Blood sampling GD21	Satellite animals, Blood sampling GD22
		0 ppm (controls)		X A o
No. females	24	$A$ $S$ $\sim$		
Scheduled death	24	S . ~ 5 ~ .		
Pregnant	20		40	
Not pregnant	4	Or Or wi		J. D
Unscheduled death	0			
Pregnant			jêr b	0
Not pregnant				<i>i i i i i i i i i i</i>
		800 ppm thiacloprid		Ŷ
No. females	$\sim 24$		or the set	4
Scheduled death				4
Pregnant	0 [°] 21 × [×]	5 5 5	0 4~S	4
Not pregnant		LO LO D		0
Scheduled death Pregnant Not pregnant Unscheduled death				0
Pregnant				0
Not pregnant				0
		Y . W O A		

#### B. Clinical observations

Premating phase

There were no treatment related finical signs

Two makes and 2 femates in the control group and 3 males in the treated group showed hyperreactivity to external stimuli, aggression and/or resistance to handling at one or several occasions between Days 64 and 84. In addition, concompantly to the hyper-reactivity to external stimuli, the treated male UB2M0428 had fonic Convulsions and piloerection on Day 74. These clinical signs, observed in control and treated aritmals, were attributed to stress and not to the treatment with thiacloprid.

Other chincal sons recorded ouring the premating phase were those commonly observed in the rat or were consecutive to the implantation of the identification micro-implant (scabs and/or hair loss at the head or neck) Å



#### Gestation phase

There were no treatment-related clinical signs, except for the animals that exhibited dystochia.

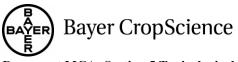
One thiacloprid-treated female of the main group was killed for humane reasons on GD 23, approximately 19 hours after delivery of the first pup. Clinical signs indicative of pain and difficult parturition (piloerection, reddish soiled anogenital region and reduced protor activity) were noted in this animal.

Another thiacloprid-treated female of the satellite group with estochia showed children signs (piloerection, general pallor and markedly soiled anowinal and abdominal regions) after parturation.

#### C. Body weights

Premating phase

Between Day 1 and 8, the mean body weight gain per day was reduced by 50 and 46% in treated males and females, respectively, compared to controls  $(p \le 0.01)$ . Thereafter, the mean body weight gain per day in both sexes was occasionally lower than controls. Overall, the mean body weight gain cumulated over treatment was reduced on all intervals between Day 1 and 71 in both sexes, the effect being more severe in females than in males. The difference to controls was statistically significant ( $p \le 0.01$ ) in males between Day 1 and 22 (-11 to -49%) and in females between Day 1 and 71 (-15 to -44%). At the end of the premating phase, the mean body weight of females was 4% ( $p \le 0.01$ ) lower than in controls.


#### Gestation phase

Between GD 7 and 14 and between GD 14 and 21 the mean body weight gain of treated females was 17 and 16% lower than in controls, respectively ( $p \ge 0.01$ ). The mean body weight gain over gestation (GD 0 to 29) was reduced by 14% ( $p \ge 0.01$ ), when compared to controls.

Mean body weights and mean body weight gain during the different phases of the study are presented in the tables below.

Mean absolute body weight gain (g) during pre-mating       Thiacloprid dose (ppm)     V (control)       V     V (control)       V     Males       V     Females							
Thiaclopria dose (ppm)		merol)	80	0			
	Q Males	Females	Males	Females			
Study day		43	25	43			
K A	234 ^Q	177	235	179			
	\$ _{*2} 273 ~	195	255**	189*			
@ 15 m C	^م ن 303	205	292*	199*			
× 25 L	327	215	318	210			
29 °	346	222	339	216			
× 36	361	229	356	223			
43	376	235	372	225**			
50	389	239	382	231*			

#### Table 5.8.2/25-3 Mean absolute body weight (g) during pre-mating



Thiacloprid dose (ppm)	Mean absolute body weight gain (g) during pre-mating 0 (control) 800			
	Males	Females	Males 嶡	Females
Number of rats	25	43	25	~43 <u></u> ~~
Study day			4	
57	402	243	£ 395	235*
64	413	248	405	~
71	421	251	411 ⁴	Q 246 × 4

*: significantly different from control,  $p \le 0.05$ 

# **: significantly different from control, $p \ge 0.03$ Table 5.8.2/25-4: Mean absolute body weight gate (g) during pre-mating

Thiacloprid dose (ppm)	Mean absolute body weight gain (g) during pre- 0 (control) 7 7 7 8 Males 7 Females 7 Males 7	<b>Females</b>
Number of rats		43
Study day		0 [×]
8	20 ² 20 ² 20 ² 20 ²	10**
15 2		20**
22 🖉	5 ^y 93 ⁵ → 38 ^y √ 4, 83**,	31**
29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37**
$ \begin{array}{c} 22 \\ 29 \\ \hline 36 \\ \hline \end{array} $	×127 × 53 5 0 0 21	44**
		46**
50 0°		52**
<u>م</u> رح کر	→ 169 → 66 → 160	56**
64		59**
71 5		61**

significantly different from Sontrol, **:

### Table 5.8.225-5: Mean body weight g) of females during gestation

	Mean body weight (g) of	females during gestation
Thiacloprid dose@pm	C Ocontrol)	800
Study day Number of rays	J J 34	36
	× 225	245*
7 4 2 0 5	285	273**
	314	297**
	405	373**

*: & significantly different from control,  $p \le 0.05$ 

**: significantly different from control,  $p \le 0.01$ 

#### Table 5.8.2/25-6: Mean body weight gain (g) of females during gestation

		Mean body weight (g) of	f females during gestation
Thia	cloprid dose (ppm)	0 (control)	800
Study day	Number of rats	34	∂ ⁷ 36 4
7		30	
14		59 💍	52×3 ⁷ × 5 ⁷
21		149	Q 105** 3 × 5

**: significantly different from control,  $p \le 0.01$ 

#### D. Food consumption and test substance intak

Food consumption

#### Pre-mating phase

take a stonific ability of the store of the When compared to controls, mean for consumption was significantly reduced during the first week of treatment in males and females (201% and -26% respectively). Thereafter, frean food consumption remained slightly lower in treated Temales on most intervals throughout the Featment (-6 to -9%). 

	Mean food consumption (g/day) during pre-mating									
Day	8	15	<u>2</u> 2	29 🔊	36	AN C	[∞] 50 ≪ [∞]	55	64	71
Dose / sex	Ĺ	ÿ ĉ		0 ppn	nthiaclop	rid (contro	ol) males	, ²		
Ν	25	25, 0	20	0 ppn	22			21	22	21
Mean intake (g/day)	3.0 S	22.4	22.7 %	22.8	Jal. 1		224	22.1	22.3	22.6
Dose / sex 👸			, Ôg	A 80	) ppm/thia	acloprid m	alles			
N N	25	25	\$25 E	25	207	94 ~	24	23	23	24
Mean intake (g/day)	18.2**	22.6	225	2.5 2.5	∑7 22. <b>5</b> €	232	22.0	22.1	22.3	22.3
Dose / sex	Q.			y 0,ppm	thiaclopr	id (contro	l) females			
N	A3 &	¥42	43%	A3O -	~41 ~"	41	37	38	42	42
Mean intake (g/day)	" 18.7	18.0	38.8	18.8	184	18.4	18.3	18.1	18.3	18.3
Dose / sex	Ś	, A		× 800	ppm thia	cloprid fer	nales			
$N \checkmark$	43	AS T	Â9	~43 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 43	41	43	42	42	42
Mean intake (g/day)	13.9**	§17.2	77.3*	17:2**	16.9**	16.9**	17.1**	17.0*	16.6**	17.2**
N: number	of animals		× 1	~0						

### Table 5.8.2/25-7: Mean food consumption (g/day)during premating,

er of animals

significantly different from control,  $p \le 0.05$ ; *:

significantly different from control,  $p \le 0.01$ 

#### Gestation phase

When compared to controls, the mean food consumption of thiacloprid-treated females was slightly, but significantly reduced by 8 to 10% throughout the gestation phase ( $p \le 0.01$ ).

#### Table 5.8.2/25-8: Mean food consumption (g/day) of females during gestation phase

	Mean food co	onsumption (	g/day) of femal	e rats durin	g gestation
Day	7		14	ð	21
Thiacloprid dose (ppm)			0 ppm	Ô,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Number of animals	34		34	A	
Mean intake (g/day)	21.6	Ĉ	چ 22.5	¥0 ° Y	25.7 7
Thiacloprid dose (ppm)		, As	800 ppm Q		
Number of animals	35		35 🖧		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mean intake (g/day)	19.4**		20.6**	Ŷ	23.1**
**: significantly different from	om control, $p \le 0.01$		Q X	, Ø - D	

#### Achieved doses:

The mean achieved dose levels of thracloprid during the pre-mating and gestation period are summarised in the following table.

#### Table 5.8.2/25-9: Group mean achieved doses of the cloping during premating and gestation

میں میں کی معلم Mean achieved diefary infake of thiacloprid (mg/kg bw/day) Thiacloprid dose (ppm) and sex محمد 80 (Cppm males کی کی 800 ppm females
Premating phase (weeks 1 to 10) $\xrightarrow{1}$ $505$ $505$ $60.9$
Gestation phase $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$ 54.0

#### E. Thiacloprid concentrations in plasma

The mean pasma concentrations of this loprid in treated females were as presented in the table below.

				(119/12)
	S & Mean thiactoprid	concentration in	plasma (mg/L)	
	Main animals i so i	Satellite :	animals	1
Blood sampling		GD 21	GD 22	TS
No. of anomals		4	4	5
Mean/thiacloprid concentration (mg/L)		16.1	14.8	9.8
Standard deviation	× 56 × 34	1.5	3.6	3.0

### Table 5.8.2/25-10: Mean this cloptid concentration and standard deviation in plasma (mg/L)

TS: terminal sacrifice (in the morning after parturition)

GD: gestation day

#### F. Onset of parturition and parturitional length

There was no effect of the treatment with this cloprid on pregnancy, onset of parturition or parturitional lengths.

In main animals, onset of parturition took part in most of the controls as well as thiaclopridtreated animals on GD 22 (ranged from GD 21 to GD 23). The parturitional length in controls



varied from 58 minutes (4 pups) to 238 minutes (14 pups) and from 51 utes (13 pups) to 199 minutes (15 pups) in thiacloprid-treated animals not displaying dystocia. The mean parturitional length was  $120 \pm 50$  minutes in controls and  $106 \pm 43$  minutes in treated animals. In satellite animals which had been blood sampled on GD 20, the mean parturitional length was prolonged compared to the main animals, in both control and treated groups. This effect was less marked in treated animals (128 vs. 106 minutes) than in control animals (171 vs. 120 minutes). It contrast, the onset of parturition was slightly delayed rise., the gestation phase was prolonged to 21.8 of days).

#### Table 5.8.2/25-11: Mean start of parturition

	Mean start of parturition gestation day)
	A Main groups
Thiacloprid dose (ppm)	<b>1 1 1 1 1 1 1 1 1 1</b>
Start of parturition (gestation day)	

Table 5.8.2/25-12: Mean parturitional length and spindard deviation in main and satellite group females

	O SMea	n parturitional	lengthand		eviation (n	ninutes)
Main groups: thiacloprid dose (pp	/m) 🖉 🕺	0 ppm (contr	ol) &		800 ppm	
		S Mean		N,	Mean	SD
Main group animal	[∞]	, <u>1</u> 9.8 q	i 01.º	<i>Q20</i>	105.6 ^{ns}	42.9
Satellite animals#		× 171.2	<b>64</b> .6 [×]	5	128.2	54.6

- ns not significantly offerent from controls
- SD: standard deviation
- N: no. of animals
- #: Statistical analysis was not conducted on these parameters.

There were three this toprid reated females (two main group-, one satellite group animal) that exhibited a profonged parture on (dystochia).

#### Main group

One thiacloprid-treated female was killed for humane reasons on GD 23, approximately 19 hours after having delivered the first pup. At the time of sacrifice, 3 live pups were noted in the uterine horn remaining in the abdomen, which indicates that the parturition was not complete.

Another this oprid-treated remale was found dead after delivery of 12 pups within 266 minutes. At necropsy one dead pup was found in the uterus indicating that the parturition was not completed.

For comparison the mean partitional lentgh in this group was 105.6 minutes.

### Sate Hite group

One this loprid-treated female of the satellite group had a parturitional length of 210 minutes, as compared to a mean value of 128.2 minutes in this group.



However, since this animal belonged to the satellite group it is unclear whether the effect was due to the thiacloprid treatment, the stress caused by the blood sampling at GD 20 or both. Hormonal values measured on GD 20 and at terminal sacrifice were within the normal range of values.

#### G. Hormone analyses

Hormonal levels and the balance between progesterone and estradiol concentrations were affected by thiacloprid treatment.

In control animals, the mean plasma concentration of progesterone was elevated on GD 20 (90220 pg/mL) and decreased by 83% between GD 20 and GB 22, then remaining static during parturition. In thiacloprid-treated animals, the mean plasma concentration of progesterone was 20% higher than in controls on GD 20 (108177 pg/mL, not statistically significant) and decreased by 87% between GD 20 and GD 22, then remaining stable during parturition.

In controls, the level of estradiol decreased between GD 20 and the end of partirition (terminal sacrifice). The estradiol to progesterone ratio (E/Px 1000) gradually increased 5-fold between GD 20 and 22. In animals treated with this toprid, the level of estradiol strongly increased between GD 20 and 21, reaching a concentration 88% higher than controls on GD 24, then decreasing but remaining 31% higher than controls on GD 22 (not statistically significant). Overall, the difference in estradiol levels in treated females between terminal sacrifice and GD 20 was lower than in controls (-2.8 pg/mL compared to -11.0 pg/mL). The estradiol to progesterone ratio (E2/Px 1000) sharply increased 10-fold between GD 20 and 21 and remained stable between GD 21 and 22.

			<u>/</u>		Ŵ		
Thiacloprid d	ose (ppm)	\$	0 ppm (contr Mean	ol) SP	S	800 ppm	
	× O	$\mathbb{Q}_{V}^{\nu}$	Mean S	SB ^{SY}	N	Mean	SD
Hormone	Time				,		
Progesterore [pg/mL]	ĜD 20		90219	\$73368 ⁹	5	108176.8 ^{ns}	16042.1
	GD 24	≪4.(	26687.5 &	4033.0	4	26334.0 ^{ns}	13786.0
	GD 22 🖉	× 5 2	ر <b>19</b> 747.8 ^{0°}	<b>&amp;</b> 464.5	4	14268.0 ^{ns}	3087.5
<i>a</i> ,	Şars ,⊅		15753.4	2827.6	5	16975.2 ^{ns}	6265.6
Estradiol [pg/mL]	GDQ0	y 5 0	× 627.0 0	8.1	5	20.2 ^{ns}	3.2
	GD 21 ని	- E	2170	6.0	4	39.5*	12.4
	GD 21 3 GD 22 9	~5	Q.0	5.1	4	28.8 ^{ns}	14.7
	TS	7 5 Q	~~16.0	0.0	5	17.4 ^{ns}	2.2
Ratio E2/Px1000	GD 20	<b>V</b> V 4	0.31	0.11	5	0.19**	0.02
	GD	£¥4	0.78	0.15	4	1.88 ^{ns}	0.97
	<u>م</u> 22 م	, 5~ [©]	1.54	0.62	4	1.93 ^{ns}	0.70
	TS O	5	1.05	0.21	5	1.19 ^{ns}	0.60
N COL	Y 4 Y						

### Table 5.8.2/25-13:

N: no. of anymals GD: gestation day

TS: terminal sacrifice (in the morning after parturition)

*: significantly different from control,  $p \le 0.05$ 

**: significantly different from control,  $p \le 0.01$ 

^{ns}: not significantly different from control



#### H. Necropsy

#### Terminal body weight and organ weights

Mean terminal body weight was statistically significantly lower when compared to controls. Treatment with 800 ppm thiacloprid led to an increase of absolute and relative liver and pyroid weight as well as to increased liver and thyroid to brain weight ratios. Details are presented in the table below.

#### Table 5.8.2/25-14: Mean terminal body weight, organ weights and standard deviations

	Mean organ weight ± standard deviation
	Mean organ weight ± standard deviation
Thiacloprid dose (ppm)	
Terminal body weight (g)	321.3 ± 50.4 297.3 ± 48.0* (-7.%)
Number of animals examined#	
Mean absolute liver weight (g)	$ \begin{bmatrix} 14,17 \pm 1.76^{3/4} & (+23\%) \end{bmatrix} $
Mean relative liver weight (%)	$5.198 \pm 0.371 ** (+32\%)$
Mean liver to brain weight ratio (%)	(€ 615.830 ± 54.1 √ 773.678 ± 84.212 €* (+26%)
Number of animals examined#	
Mean absolute thyroid weight (g) 🔗 🍦	<b>20</b> .0146 0.000 <b>№ № № № № № № № № №</b>
Mean relative thyroid weight (2)	0.00499 ± 0.00108 0.00606 ± 0.00113** (+23%)
Mean thyroid to brain weight ratio(%)	$0.78073 \pm 0.17753$

*: significantly different from control, p 20.05

**: significantly different from control  $g \le 0.0$ 

#: main animals and satellite mimals with blood satelling on GD 20

##: thyroid glands of one satellite animal were missing

#### Gross pathology

There were no macroscopic lesions observed in male rate after the pre-mating phase. After gestation gross pathological findings observed in thiacloprid-treated females consisted of enlarged hvers (5/40) and prominent fobulation of Overs (1/2/40).

Microscopic pathology

Only pregnant, femates from the main and the satellite groups sacrificed on GD 20 were histopathologically examined.

histopathologically examined. Treatment related effects were observed in the liver and thyroid, as summarised in the following table. Almost all females at 800 ppm displayed a minimal to moderate diffuse centrilobular hepatocellular hypertrophy in the liver as well as a a minimat to moderate diffuse follicular cell hypertrophy in the thyroid.

#### Table 5.8.2/25-15: Histopathological findings in liver and thyroid at terminal sacrifice

	Incidence and seven	rity of liver findings
Thiacloprid dose (ppm)	0	<u></u> → 800 ↔
Number of pregnant females	34	36 36
Number of females examined	25	A . 26 ⁵⁷ 25 ⁷ . 9
Hepatocellular hypertrophy, centrilobular	Č 4	
Minimal		
Slight		
Moderate		
Total		
× O	Incidence and severi	ty of thyroid findings
Number of pregnant females		Q 0'36 Q 4
Number of females examined		
Follicular cell hyperplasia/hypertrophy: confuse		
Minimal		
Slight		
Moderate		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Total		<u> </u>
#: thyroid glands of one control animal massing		

#### **III.** Conclusion

Stress-related clinical signs were noted in male and gemale control and greated animals during the premating phase indicating an enhanced sensitivity of this rat strain to environmental stress.

0 General to ficity of thiscloprid was indicated by changes in body weight, food consumption and liver/thy oid histology of almost all treated females

Three cases of dystocia were observed in this cloprid-freated rats:

- one of them showed very high progesterone level at parturition (whereas the group mean values reflected the Gorma Strong decrease between 6D20 and GD21/ parturition, which in rodents is mandatory for a normal parturition. This is not the case in humans, in which progesterone withdrawal is regulated on receptor leveRin the uterus myonetrium, while progesterone levels in plasma stay high during parturition.),

- in a second rat hormon@levels, could not be@etermined (animal found dead),

- and in the third animal hormone levels were in the normal range, but since a blood sample had been drawn in this Satelfite animal on GD20, dystocia could have been a consequence of stress related to blood sampling and/or to general toxicity of thiacloprid. It had been demonstrated in the previously conducted feastbility study that stress can cause dystocia in untreated rats of this strain.

The levels of progesterone (slightly increased mean value at GD 20, absence of normal decrease prior to parturation in the individual rat mentioned above) and estradiol (increased mean values at GD 21 and 22) and the respective balance between these hormones in the days preceding and during parturition were affected. A causal relationship between these changes and the observed cases of

bined

dystocia is obvious only for the individual with the missing normal progesterone decrease. There was no effect on onset and duration of parturition in all other treated rats.

In summary, these findings support the assumption that the observed dystocia sh single animals we caused:

- 1. either by thiacloprid-induced increases of progesterone (i.e. a missing progesterone deprease before birth)
- 2. or by stress due to general toxicity of thiacloprid and blood sampling of increased sensitivity of the Sasco Sprague Davley rat to stress.

#### **Analytical methods**

Analytical methods for the determination of thiactoprid by HPLC analysis in rodent diet (1)% corn oil) and rat plasma were developed. The references of the study reports are presented under teCA 5.8.2/31, M-392957-01-1 and KCA 5.82/34, M-398883-01-1

#### Publication(s)

**Report:** 2013, M-462492-01-1 4,7 L Effects of commercial formulations of deltamethrio and/or thiacloprid Title: on thy foid hormone Cevels in rat serum Tox Colog And Industrian Health, (2012 Jun 7), p. 1-7 Reference: Document No.: Guidelines: GLP: Arterials and methods Materials 1. Test material: Clypso OD 240; Decis 2.5 EC (Turkey) Source: Clypso OD 240: 240 g/L thiacloprid Content of a. Decis 2.5 EC: 25 g/L deltamethrin not reported Lot/Batch_no not reported Purity compound: not reported 2. Vehicle and positive controls: vehicle: corn oil positive control: none 3. Test animals: Species: rat Strain: Wistar albino rats



#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Age:	7-8 weeks
Sex:	males
Weight at dosing:	250-300 g
Source:	
Source.	Turkey
A 11 / / / / I	
Acclimatisation period:	not reported
Diet:	not reported
Water:	not reported
Housing:	in polycarbonate cayes with steel wire tops and sice husk
	bequing a star of the star of
B. Study design and methods	
1. Animal assignment and treatment:	
Dose:	Acute exposure single application)
	thiscloprizelone 12.5 mg/kg/by
	deltametirin alone: 120 mg/kg bw
	250-300 g , Turkey not reported not reported in pay carbonate cages with steel wire tops and vice huck bedding Acute exposure (single application) Vehicle control: corn oil thisclopricalone; P12.5 mg/kg bw deftamedirin alone: 15 mg/kg bw thiacloprid / deltamethrin anxture; 112.5 / 15 mg/kg bw repeated exposure (once daily for 30 days): vehicle control.corn oil
	repeated exposure (once daily for 30 days):
	whicle controb cornoil
	deltamethrin alone: 9 mg/kg bw/day
	thiaclopric alone 22.5 mg/kg bw/day
B. Study design and methods 1. Animal assignment and treatment: Dose: Application route: Application volume: Buration: Group size:	"thracloprid / dettamethrin maxture: 22.5 / 3 mg/kg bw/day
Application ropte:	✓ oral (gavage) O Q
Application volunco:	2 miL/kg bw
Duration:	Singledose and repeated administration for 30 days
Group size: $3$	6 parle rate per group
Examinations:	TSH, free T3 and free T4
Blood ampling:	At 24 h after the last dose, the rats were euthanized by
	convical dislocation and blood samples were collected by
	tubes were centrifuged (2500 r/min for 20 min), the serum
	was stored at -80 °C until analysis.
Statistics.	$Q$ The data are expressed as the mean $\pm$ standard error.
	Differences between the groups were assessed by oneway
	analysis of variance using the SPSS software package for
	Windows. The comparisons between the groups were
	deftamedarin alone: 15 mg/kg bw thiacloprid / deltamethrin mixture; 112.5 / 15 mg/kg bw receated exposure (once daily for 30 days): vehicle control corncoil deltamethrin alone: 3 mg/kg bw/day thiacloprid alone; 22.5 mg/kg bw/day thiacloprid / deltamethrin mixture: 22.5 / 3 mg/kg bw/day oral (gavage) 2 mL/kg bw Single dose and repeated administration for 30 days 6 male rats per group TSH, free T3 and free T4 At 24 h after the last dose, the rats were euthanized by ceivical dislocation and blood samples were collected by sardiac puncture. The blood samples collected into serum tubes were centrifuged (2500 r/min for 20 min), the serum was stored at -80 °C until analysis. The data are expressed as the mean ± standard error. Differences between the groups were assessed by oneway analysis of variance using the SPSS software package for Windows. The comparisons between the groups were made using a post hoc test, Tukey's test. esults and discussion
	esults and discussion
U II. K	and discussion

#### **II. Results and discussion**



Thiacloprid

#### A. Thyroid hormone levels

#### Acute exposure

TSH-levels were increased after acute exposure with thiacloprid and the mixture of thiacloprid and deltamethrin when compared to vehicle control. Levels of free T3 and free T4 were decreased after both acute exposure with thiacloprid and the mixture of thiaclopridand deltamethrin. of the changes reached statistical significance.

#### Repeated exposure

After repeated exposure of thiacloprid and the the cloprid-delta methin mixture After repeated exposure of thiacloprid and the thracloprid-deitameun in increase ion consistence ion compared to controls. The results are summarised in the following table.

Table 5.8.2/26-1:	Effects on thyroid hormone levels after acute and repeated exposure t	0 4
	thiacloprid containing mono- and combination products	0

Treatment groups		e e Hori	prone levels (mean ± §	Ê ÷
	[mg/kg bw/day]		Free T3 mg/mb	Free T4 [ng/mL]
	🖉 🔬 Ácut	exposure (single do		Ö
Control (corn oil)		$0.99 \pm 0.01$	178±0.13	$1.81\pm0.18$
Deltamethrin	* * 15	0.48 0.11	(k) 1.70 ± 0.14	$1.56\pm0.22$
Thiacloprid	S 0 12.5	y 0.49 € 0.1€	0 1.2 ± 0.14	$1.42\pm0.13$
Deltamethrin + thiac			↓.54±@17	$1.38\pm0.13$
	S & Repe	ated exposure (30 da	yşç 🗸	
Control (corn of)		$0.20 \pm 0.02$ (	$2.23 \pm 0.17$	$2.44\pm0.20$
Deltamethrin	× × 30	0.17±0.03	2.24 ± 0.12	$2.77\pm0.26$
Thiaclopin	<u></u>	<u>∿ 0.16</u> 0.02 √	$0^{2.89 \pm 0.21*}$	$3.27\pm0.17\texttt{*}$
Deltamethrin + thiack	oprid 🎸 3 to 22.5 🔊		3.02 ± 0.19*	$3.23\pm0.15\texttt{*}$
		.0 9 %		

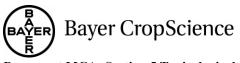
SE: standard error micro international units

μIU: significantly different to co

#### H. Conclusion

The authors concluded, that single or al exposure to commercial formulations containing thiacloprid as well as to a combination of deltamethrin and macloprid caused a non-significant increase of TSH and non-significant decreases of free T3 and free T4, while repeated oral exposure of the same formulations of lower dose evels led to a non-significant decrease of TSH and statistically significant increases of free TS and free T4

BCS conclusion: It's known that repeated administration of high thiacloprid doses to rats (in BCS studies observed after 269 mg/kg bw/day) leads to slight perturbations of thyroid hormone and TSH levels. These changes are secondary to liver enzyme induction leading to an increased metabolism and excretion of T3 and T4 from plasma and subsequently to a stimulation of the hypothalamic-pituitary-thyroid axis. Permanent stimulation of the thyroid follicular cells by TSH


Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

then leads to thyroid follicular cell hypertrophy. BCS data show, that the changes observed after thiacloprid treatment in rats are mostly minimal to slight and that the body up to very high deses approaching the MTD is able to maintain an euthyroid state.

It is difficult to evaluate the hormone levels reported in the publication by et ak. without any historical control data. After single application there are no significant changes, which could as well all be in the normal range of biological variation. Apparent differences between groups might be due to the order of blood sampling and the circulation fluctuations of the hormones. Since the thyroid effects in rat are secondary to liver enzyme induction, real effects should not occur as, C early as 24 h even after such a high single dose of A2.5 mg/kg by. However, sught effects could be visible after 30 days of treatment with 22.5 mg/kg bw/day (in the BCS studies liver enzyme induction in male rats was noted starting at 25 mg/kg bwGn studies of up to year duration). However, also here it is not clear, if the observed slight effects and real or e.g. a consequence of the sequence of blood sampling and the circudian thythere of these hormones. Basically, it could be possible to see slightly increased free Ts and Ty values and a slightly decreased FSH level (after an up-regulation of thyroid hormone production which resulted in slightly higher theroid hormone levels, TSH secretion will be decreased again). However, in conclusion, due to species specific differences between rat and man the mode of action for the thyroid effects observed after thia cloprit treatment in rat (secondary to liver enzyme induction) is considered not to be relevant for humans. The study results do not change existing endpoints.

	ý QU ÁÝ ÁÝ GŮ ÁV
Reliability of study:	Not retiable (Klimischede: 9)
Comment: of the comment	Non CLP study, conducted according to scientific principles but
	with major methodical and / or reporting deficiencies.
	Only one dose-lever for individual formulations and the
	mixtures were used for acute and repeated exposures. The
	QECD 467 (2008) recommends at least three dose levels. Only
	O rats per dose group used. OECD 407 recommends at least 10
	(5/sex) rats per group, in modern hormone studies at least 15
	Important is also the sequence of blood sampling, since TSH,
	T3 and T4, show a circadian rhythm, so that apparent dose
	related Granges can be a consequence of sequential blood
	Sampling of the different groups. Stress (i.e. disturbances in the
	animal room due to blood sampling) can also lead to altered
	TSH and thyroid hormone levels. Examinations on body
	weights, general signs of toxicity were not done or not reported.
	Since there are several factors that can influence thyroid
LE C E	hormone levels (e.g. stress) the assessment of general toxicity
	would have been useful for the evaluation of the results. No
	historical control data were provided. Since thyroid hormone
	levels differ also with the methods (test kits) used, historical

The reliability evaluation of the publication s giver below



	control data for the applied test method could have proved the
	validity of the test results. No histopathological investigations of
	the thyroid were conducted, which could have prover the
	reliability of the effects.
Relevance of study:	In <i>in vivo</i> rat studies conducted by BCS according to valid
Refevance of study.	guidelines and GLP thyroid effects were comprehensively.
	investigated. BCS consider those studies to be more reliable
	than this published non-guidefine, non-GLP study However,
	the results of the study are not in contradiction to the results of
	the BCS studies and do not change existing endobints
Report: KCA	5.8.2/27 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	2012; M-488996-01-1 0 2
Title: The in	duefbility of human cytoohrome P450 VA by Trinonmental
releva	noxenopotics in the human hepatoma derived cell fine HepG2
Reference.: Envi	nmental Toxicology and Pharmacology 28 (2009); p 370–378
Document No.: Med 88	ductbility of human cytochrome P450 VA by chvironmental noxenobiotics in the human hopatoma derived cell line HepG2 inmental Toxicology and Pharmacology 28 (2009); p 370–378 3996-01-1 plicable fron(sty not applicable LP <b>1. Materials and methods</b> AvMaterials
	plicables O
🔊 Devia	tion(s) not applicable
GLP: Non-G	LP Q & A A A A A A A A A A A A A A A A A A
L ST.	U Material and method
	$\sim$ 1. We are that we choose $\sim$ $\sim$ $\sim$ $\sim$
S O M	A Materials &
	y And y and a general second
1. Test material:	hiactoprid and several other xenobiotics, pesticides
Source:	, Germany
Lave Batch no:	a not reported 2
Disaiteri	
Purity:	
Stability of test compound:	, for reported
Guidelines: GLP: 1. Test material: Source: Lot Batch no: Purity: Stability of test compound: 2. Vehicle and positive controls:	vehicle: dimethylsulfoxide (DMSO)
	S positive control: omeprazole
3. Test cells:	
	$\sim$ $\lambda^{\sim}$ $\sim 0^{\circ}$
Cell line:	² ² human hepatoma cell line HepG2
Source:	
Culture medium:	Williams medium with 10% (v/v) FCS
Culture conditions	√ 5% CO ₂ , 95% humidity, 37°C
	$= 570 \cos_2, 5570$ numberly, $57 \cos^2$
B. Study design and methods	
1. Treatment	
	Thiacloprid stock solutions were prepared in DMSO.
c	Working solutions were prepared in the corresponding
<b>`</b>	media and added to the plates (final DMSO-concentration:
	0.05%). Thiacloprid was diluted in log 2 steps.
	0.0570). Thiactophia was analica in log 2 steps.

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

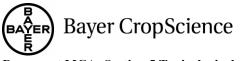
#### 2. Measurements:

trypsination (0.25% trypsin and 0.02% EDT?). The cells

HepG2 cells were maintained routinely in 75 cm² cell

onto 6-well plates with  $5 \times 10^5$  cells per well after

culture flasks for 3 days in order to become confluent. The cells were transferred onto 96-well plates, with  $2 \times 10^4$  cells per well for EROD/MROD assays and for RNA solation


Lut N Lor 24 be afte Lor 24 be after Lor absolute ethanol. A resorufin standard in duplicates (31.25 1000 nM) served as an activity reference. EROD/MROD

metrically at 562 nm.

After withdrawal of the remaining EROD/MROD solution **Q** M PBS. After drying the cells at room temperature the Solutes were stored at  $-80^{\circ}$ C. Addition of 20  $\mu$ L/well 0.1 M sodiumhydrogenphosphate buffer (pH 7.8) was followed by a 3-fold freeze-thaw-cycle (-80°C, 25°C). The protein concentration was measured by the BC assay (modified Lowry protein assay, based on bicinchoninic acid). The protein content was measured spectrophoto-

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

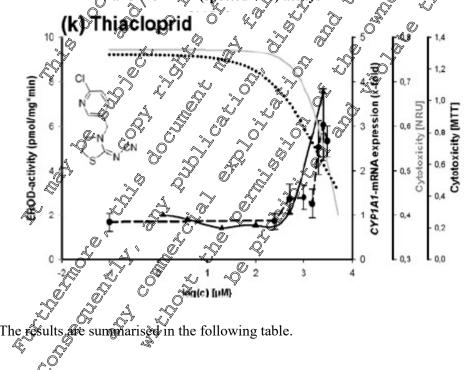
MTT-assay At the end of the exposure the cell culture medium was MTT = 3-[4,5-dimethylthiazol-2withdrawn leaving 50 µL/well. Thereafter, a 10 µL/well yl]-2,5-diphenyl tetrazolium MTT stock solution (5 mg/mL) was added followed by incubation for 4 h (37 °C, 5% CO₂, 95% humidir. bromide Subsequently, 100  $\mu$ L/well stop solution (40 gs SDS/200 mL 50% DMF) was added followed by an overnight incubation step (12 h, 37 °C). MTT conversion as a parameter for metabolic activity was spectrophotometrical & measured at \$70 nm. After posure the cell culture medium was withdrawn Neutral red assay (NRU): and 100 µL/well \$RU solution was interested added (P.66 dilution of NRU stock solution 3.3 mg/mLAin medium) followed by incubation for 3 h (37 °C 5% CO2, 95% humidity). After withdrawal of the reaction solution and addition of 100 µL/well dixation solution (0.5%, v/v Oformaldehyde, 1%, w/v Cael2 in ddH2Q for laninute, cells were washed once with 100 µL/well 0.1 M PBS for 1 minute followed by an addition of a 100 µL/well extraction solution (1%, Xx acetic acid, 50% ethanol in ddf20). The plates were incomed a 10% reddf2O). The plates were incubated for 30 minutes at 37°C and then shaken at room temperature for additional replicates: Isolation and amplification of the sign of the sign of the speciments Isolation and amplification of the speciment of the specimen of the specimen Data points of normalized means of cytotoxicity were Cellular RNA was isolated from HepG2 cells with the [©]peqGold RNAPure[™] Isolation protocol (Peqlab, Erlangen, Germany, After a DNAse digestion step, 5 µg of total RNA was taken to synthesize cDNA utilising the ReverAid H Minus First strand cDNA Synthesis Kit (Formentas GmbH, St. Leon-Rot, Germany). polymenase ekam reaction (RT-PCR) Semiquartitative real-time The semi-quantitative CYP1A1/CYP1A2-RT-PCR was done using custom synthesized primer pairs. The PCR was performed at 94°C for 15 minutes, then 40 cycles at 94°C for 30 s, at 58°C for 30 s, at 72°C for 30 s. Specific PCR products were evaluated by the melting curves of the PCR product. HPRT (hypoxanthine-guanine phosphoribosyltransferase), GAPDH (glyceraldehyde-3phosphate dehydrogenase) and ALB (albumin) served as a housekeeping control to calculate mRNA expression



changes.

1

**Replicates:** 


II. Results and discussion A. Induction of CYP1A1 mRNA transcript in human HepG2 cells

Following a dose-dependent exposure of thiacloprid for 24 hours, the highest CYDIA1-specific mRNA induction was a 3.8-fold increase in comparison to the vehicle control (0.05 % DMSO) observed at 2500  $\mu$ M (corresponding to a total concentration of 630.8 mg/L). The positive control of methods are control (0.05 % DMSO) observed (at 50  $\mu$ M) caused a 25.5-fold change of the CYP1A1-mRNA induction.

#### B. Induction of EROD-activity in human HepO2 cells (CYDIA1-activity)

Additionally, xenobiotics were examined for their capability to induce the CYPTA1 enzyme activity measured by EROD-activity. A low level EROD activity was constitutively expressed (vehicle control, DMSO). A dose-response relationship could be detected for the majority of xenobiotics. Comparing the CYP1A1 mRNA and the EROD-activity, the data differs in its degree of magnitude, but an overlay of the CYP1A1 mRNA induction with CYP1AP enzyme activity profiles for single xenobiotic has shown well conform dose response patterns. Also for thiacloprid the peak value for EROD activity was in good correlation to the induction of the respective CYP1A1-mRNA transcript (see Figure below).

Figure 5.8.2/27-1: Comparative dose-response relationship of CYP1A1 mRNA expression (black line) and GYP1A4 activity (ERCD), dashed line) after a 240 exposure in the human hepatoma derived celline HepG2 in relation to cytotoxicity. The system of the NRU (gray line) and the MTT-(spotted line) assays



TADIC 5.0.2/27-1. Effects on EROD activity and CTTTAT-Interaction	Table 5.8.2/27-1:	Effects on EROD activity and CYP1A1-mRNA expression
-------------------------------------------------------------------	-------------------	-----------------------------------------------------

		-	
		Maximum EROD activity	Maximum CYP1A1-mtonA
Treatment group	Concentration [M]	Normalized# EROD- activity [fold change]	expression Induction rate [fold change]
Control (0.05% DMSO)		1.7	
Thiacloprid	2.5 x 10 ⁻³	5,9**	× 53.8 × 0 0
Positive control (omeprazol)	5.0 x 10 ⁻⁵	£18.6**	£ 25.5 \$ \$ 0
	1 0.001		

**: significantly different to control,  $p \le 0.001$ 

#: normalized to total protein amount

#### C. Induction of CYP1A2 mRNA transcripton human HepG2 cells

In general the constitutive and inducible 7 methoxy resonatin activity (MROD) was about 20to 5-fold lower than that for EROD activity and less xenobiotics showed a significantly increased MROD activity.

Following a dose-dependent exposure of this cloped for 24 hours, the highest induction was a 7.8-fold increase of CYP1A2-mRNA in comparison to the vehicle control (005 % DMS0) observed at 2500  $\mu$ M (corresponding to a total concentration of 631 mg/Q). The positive control one-prazole (at 50  $\mu$ M) caused a 16.6-fold change of the CYPA2-mRNA induction.

### D. Induction of MROD-activity in human HepG Zeells (CYP 1A2-activity)

In contrast to the higher CVP1A23hRNA induction, the maximum formatised MROD activity for thiacloprid at 2.5 x 50⁻³ M was 2.2 fold

The results are shown in the following table.

### Table 5.8.2/27-2: Effects on MROD activity and CYPIA1-mRNA expression

Treatment group	Concentration	Maximum MROD activity Normalized# MROD- activity [fold change]	Maximum CYP1A2-mRNA expression Induction rate [fold change]
Control (0.05% MSO)			1.0
Thiacloprid	25 x 10-2	Q Q2.2**	7.8
Positive control (omeprazol)	5.0 x 10 ³⁵	× م ^{ين} 10.6**	16.6

**: significantly different to control  $p \le 0.0$ 

#: Anormalized to total protem amount

#### **Î**I. Conclusion

The data show that miacloprid exposure of HepG2 cells for 24 hours caused induction of CYP1A1and CYP1A2-mENA as well as CYP1A1 and CYP1A2 activity. Induction measured as fold-change of CYP1A2-mENA was higher than induction of CYP1A2-activity.

BCS opinion: It is known that thiacloprid is an inducer of different CYP450 enzymes. The maximum induction of CYP1A1 and CYP 1A2 determined in this study as normalized EROD and MROD activity in Hep G2 cells as a model for human hepatocytes was not very pronounced (an 5.9 or 2.2 fold increase in comparison to the vehicle control, respectively). In addition, it was observed at a very high concentration of 2500 mM thiacloprid, which corresponds to a total concentration of



Ø

631.83 mg thiacloprid/L. This concentration is a factor of 25 higher than the maximum total plasma concentration of thiacloprid in rats treated with 1000 ppm thiacloprid in the diet (this being the high dose of the 2-year rat study, which is exceeding the MTD). Therefore, the finding is not  $\widehat{\mathcal{O}}$ considered to be relevant for human safety. Furthermore, the results de not change Existing endpoints. 

Ö

The reliability evaluation of the publication is given below.

	Klimisch evaluation
Reliability of study:	Reliable with restrictions (Klimisch code 2)
Comment:	This <i>in vitro</i> and y was conducted according to colentific
Relevance of study:	The maximum ©YP1A1 and CYP1A2 induction caused by
	thiacloprid was not very pronounced and observed at a very
	high concentration, which exceeds the maximum total plasma
	concentration of this formid in rats of the high dos of the 2-year
	rat starty by a factor of 25. The enzyme induction is therefore
	not regarded as relevant for the situation in vivo. Therefore,
	support is regarded as supplemental.
	K Not celevant. Supplemental information
No.	Results do not change existing endpoints

Report: 5.8.242	8 201 \$ M-478667-69-1
Title: C C Effects of the	iagoprid, deltamethrin and their combination on oxidative
Stress in lym	phoid ofgans, polymophon delear leukocytes and plasma of
rats A	
	ochemistry and Physiology 100 (2011) 165-171
Document No.:	
Guidelines:	
Deviation(s)	: not applicable S
GLP: O Onon-GLP	Y & A
	A. Materials
	2 A. Materials
1. Test material:	ALYPSO OD 240; DECIS 2,5 EC; Proteus
1. Test material:	
Lot/Batch por 5 2 ~	not reported
Pupity: S A	
Stability of test compound:	not reported
2. Vehicle positive control:	negative control: corn oil
Š	positive control: cyclophosphamide (CPA)

3. Test animals:

BAYER Bayer CropScience

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

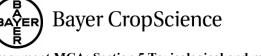
	Rat Wistar albino not reported males 250 – 300 g not reported standard pellet, <i>ad libinim</i> tap water, <i>ad libinim</i> 12 h light / 12 H dark 21 ± 1°C - acute treatment 12 mg/kg bw thiatloprid (TCP) 15 mg/kg bw deframethin (DLT) - mixture of 112mg/kg bw TCP + 15 mg/kg bw DLT Subarute treatment 22 5 mg/kg bw/day TCP - 3 mg/kg bw/day DLT - mixture of 225 mg/kg bw/day TCP + 3 mg/kg bw/day DLT - acute treatment positiv/ control: 50 mg/kg bw CPA
Species:	Kat Without It in
Strain:	wistar albino
Age:	not reported
Sex:	males
Weight at dosing:	250 - 300  g
Source:	not reported (S
Acclimatisation period:	not reported
Diet:	standard pellet, ad libititit
Water:	tap water, ad libitum
Housing:	invaboratory cages
Light/dark cycle:	$12 h light / 12 H dark \sim$
Temperature:	
B. Study design and methods	
1. Animal assignment and treatment:	
Dose:	- acute treatment?
	112 mg/kg bw thiatioprid (TCP) ↓ 15 mg/kg bw
	$\sim$ depresentation (DL1) - topx ture of 112 by g/kg bw 1CP +
	Subacute treatments
	2253  mg/kg bw/day TCP - 3  mg/kg bw/day DLT -
	mixture of 222 mg/kg bw/day TCP + 3 mg/kg bw/day
1. Animal assignment and treatment: Dose:	
	⁴ - acute treatment positive control: 50 mg/kg bw CPA
Application route and a start	- Gral gavage (Begative control& thiacloprid/deltamethrin
	v treatiment groups)
	- ip. (positive control cyclophosphamide)
Application/volume:	The reported
Group size:	6 males per group
Sampling times:	- Cocute the atment: 24 h post application
	S subavule treatment: on day 50
Pland accuration of the second	by cervical dislocation
Blood sampling:	A part of the blood was used for serum preparation, another part (obtained by heart puncture with a
	heparinized disposable syringe) was centrifuged at 2500
	rpm for 5 minutes for separation of plasma, mononuclear
	cells and erythrocytes. For isolation of polymorphonuclear
	leukocytes (PMNs) the leukocyte-rich "buffy coat" was
Application routes Application routes Application volume: Group size: Sampling times: Blood sampling:	removed and subjected to gelatin sedimentation by mixing
9	with an equal volume of 2% gelatin in 0.9% NaCl and
	incubation at 3 / ¹ C for 40 min.

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

After centrifugation at 1000 rpm for 10 minutes, the cell pellet containing the PMNs was resuspended in cold erythrocyte lysing solution (155 mM NH₄Cl, 2 mM centrifuged at 275g for 5 minutes, the supernatant was discarded and the pellet was and the discarded and the pellet was washed tree times with Hank's balanged solution (sodium chloride 138 mmol/L ... in hydrog ... diffydrogen phr ... diffydrogen potassium chloride 2.7 minol/L, disodium hydrogen phospha@8.1 mmol/I potassium difydrogen phosphate Bone marrow was ejected from the femer after cutting the

lymphoid

of thiobarbituric acid reactive substances (TBARS)


Myeloperoxidase (MPO) activity

Security asportate transaminase (AST), alanine transaminase

The vatalase (CAT) activity, superoxide dismutase (SOD; EQ 1.15.1.1) activity, glutathione peroxidase (GPx; EC أرقال (GST; EC) وأرقال المحتوي (GST; EC) وأرقال المحتوي (GST; EC) وأرقال المحتوي (GST; EC) وأرقال المحتوي ا 2.5.1.18) activity, DT-diaphorase (DTD; quinone reductase, EC 1.6.99.2) activity, and glutathion (GSH) in the lymphoid organs (i.e. spleen and thymus)

The extent of lipid peroxidation in terms of TBARS formation was measured in lymphoid organs, PMNs and plasma.

MPO activity was determined in PMNs.



Document M	CA: Section 5	Toxicological a	nd metabolism	studies
Thiacloprid		-		

Nitric oxide level	Total NO _x (N	$NO_2 + NO_3$ ) determinatio		0
	plasma			Ő
		1 · 1	$\sim$	and the second s

Total antioxidant capacity (TAC)

TAC was measured in plasma.

#### **II. Results and discussion**

#### A. Liver and renal injury markers

Acute treatment

After acute treatment with thiacloprid AST was reduced and ALT was significantly increased, whe compared to controls. After a single application of dotamethrin both AST and ADT were significant increased when compared to controls. In both cases, there were no significant effects on urea and creatinine. After a single application of the thiacloprid - depamethin minsture prea and AL were statistically significant increased when compared to control effect observed for AST and creatinine levels.

#### Subacute treatment

significant After subacute treatment with this loprid both AST and were decreased and creatinine levels were significantly increased when compared to controls. In contrast, after deltamethrin treatment AST, ALT, we and creating were significantly increased After subacute treatment with the mixture of this doprid and deltamethrin AST was increased and ALT was decreased but without reaching statistical significance. However urea and creatining were significantly increased.

ð	Dose O	O'AST&	S BALT S	Urea	Creatinine
Substance 🔊	(mg/kg bw)		(U/L)	💭 (mg/dL)	(mg/dL)
		Single 1	treatment	2	
Control		<b>≹4</b> 0.83 <del>6</del> 8.04 [°]	62.87 ± 5.41	$24.17\pm2.56$	$0.34\pm0.05$
ТСР	× 112	@130.39¥ 9.250°	74.06±\$2.31*	$27.07\pm2.87$	$0.37\pm0.05$
DLT		169 <u>6</u> 2 ± 18 <b>8</b> 9*	\$ ⁹ 98.15\$9.51*	$28.52\pm3.02$	$0.41\pm0.06$
TCP + DLT	142 + 150	√1 <b>3</b> 9.72 € 77.89	135 <u>5</u> 9 ± 11.70*	$30.93\pm3.28\texttt{*}$	$0.42\pm0.06$
CPA*	50	5167.93 € 19.00	85.24 ± 15.65*	41.51± 4.79*	$0.60\pm0.12\texttt{*}$
li al		🖉 🔨 Subacute trea	Oment (30 days)		
Control	Ŵ Ø	54.92€ 8.84	$75.44\pm6.50$	$24.65\pm2.61$	$0.33\pm0.05$
TCP	≥ 22.5 ×	125.78 ± 14.44*	$52.81\pm4.55\texttt{*}$	$30.41\pm3.22$	$0.51\pm0.07\text{*}$
DLT	A3 R	185,94 ± 12.63*	$96.84 \pm 18.08*$	$30.56\pm3.66*$	$0.49\pm0.07\texttt{*}$
TCP + DLT	×22.5 +	≪170.54© 12.67	$65.63{\pm}18.08$	$38.01 \pm 4.03*$	$0.58\pm0.08\texttt{*}$
			. 1 .1		

### Table 5.8.2/28-1: Effects on AST, ALT, urea and creating in strum of rats (mean ± SD)

Control: corn of TCP: thiacloprid

DLT: 🔊 deltamethrin CPA: cyclophosphamide aspartate transaminase

ALT: alanine transaminase

significantly different to control, p < 0.05



Thiacloprid

#### B. Effects on antioxidant and phase II enzymes in lymphoid organs

#### Spleen - Acute treatment

After acute treatment with thiacloprid or deltamethrin alone, and with the thiacloprid - deltamethrin mixture SOD was significantly increased and CAT, GPX and DTD were significantly decreased, when compared to controls. In addition, after application of the thiacloprid - deltamethrin mixture GSFA was statistically significantly decreased when compared to control. No significant effects, were for GST.

#### Spleen - Subacute treatment

The decreases, which were seen for CAT, GPX and DTD after acute freatment, were also observ after subacute treatment. However, SOD was significantly decreased after application of this prid alone. In addition, GSH was significantly decreased in all treated groups when compared to control.

. 1

Table 5.8.2/28-2:	Effects on antioxidant	enzymes, phase	IL enzyme	activity	and glut	athione 🔊
	content in the spleen o	of rats (mean ± Si		. Č		Ş O

Substance Dose	SOD		<b>GPX</b>	GST	d d d d d	К) ⁹ У GSH
(mg/kg bw)		() mg protein			1mol/mg protein)	)
	, Č		Single treatme	nt 🔊		
Control	3.91 ±0.32		88.00 ±8781	€10.50±7.18 ^{\$}	50.05×±5.01	$8.41 \pm 0.90$
TCP 112	5.87 ±0.47*	108.01±1/4*	35.20 S.52*	104.98±6.82	22.03 ±2.20*	$8.03 \pm 0.68$
DLT 15	5.48 0.44*		44.35 ±4.4	1.Ø.82 ±7.39	¢41.73 ±7.28	$8.06\pm\!\!0.63$
TCP + DLT	4050 ±0,36	16.96±1.62*	39.16±3.02*	À00.02 6.01	y 39.33 ±4.23*	$6.39\pm\!\!0.61*$
112+15		0 0 0				
CPA 50 🔊	4.70 ±0.38* *	16.2 <b>€</b> ≠2.58 <u>*</u>	35.42 ±1.74	88.05 ±8.94*	$43.91 \pm 4.60$	$6.89 \pm 0.50*$
	ð	Suba	cute treatment (	<b>30</b> ° days		
Control	4.39 ±0,35		\$82.07≠€6.25	103 07 ±15.87	$51.82 \pm \hspace{-0.5mm} 5.43$	$8.20 \pm 0.40$
TCP 22.5	2.940±0.24*	18.16±1.80*	24.06±1.40*	\$9.92 ±10.42	$34.69 \pm 4.59*$	$6.00 \pm 0.36*$
DLT 3	5.05 ±0.01	1038±103*	<b>`3</b> 3.48 ± <b>4</b> ,41*	£110.92 ±16.98	$45.48\pm\!\!7.94$	5.32 ±0.16*
	€ 4.83 €0.39	D15.83 ±1.57*	→ 33.47¥2.55	$111.29 \pm 18.57$	41.33 ±4.50*	4.75 ±0.36*
22.5+3						

Control: Sorn oil thragloprid ·cyclophosphamide

DLT: deltamethrin superoxide dismutase SOD Ceatalase

 $\bigcirc$ 

©GŠT: glutathione-S-transferase GPX: glutathione peroxidase DTD: DT-diaphorase GSHQ glutathione

significantly different to control, p < 0.05*:

<u>Thymus Acute freatment</u> After acute treatment with thacloprid or deltamethrin alone, and with the thiacloprid – deltamethrin mixture CAG and CPX and DTD were significantly decreased, when compared to controls. In addition, after application of thiacloprid alone GST and DTD were significantly reduced, whereas GST an GSH were significantly decreased after application of the mixture. SOD was only decreased after application of deltamethrin and the mixture.



#### Thymus - Subacute treatment

The decreases, which were seen for CAT, GPX and DTD after acute treatment, were also observed after subacute treatment. In addition, SOD and GST were significantly decreased after application of thiacloprid alone. GSH was significantly decreased in all treated groups when compared to control.

#### Table 5.8.2/28-3: Effects on antioxidant enzymes, phase II enzyme activity and glutathion content in the thymus of rats (mean ± SD) s de la composición de la comp

		ť	` (	/		
Substance Dose	SOD	САТ	GPX	GSE	<i>c C</i>	CSH &
(mg/kg bw)		(U/mg protein)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nmolong protein	n) 🔊 👋
			Single treatmen		je d	
Control	$3.56 \pm 0.29$	$31.33 \pm 1.63$	©¥.80 ±₡.49	≴\$56.00 <b>∯4</b> .47	o~ 78.3∂ £7.37	5.71 ±0.42 °
TCP 112	$3.88 \pm 0.31$	26.32 ±1.37*	56.8 <i>5</i> €5.62*℃	46.38±6.38*	53.07 ±5.08*	$565 \pm 022$
DLT 15	2.67 ±0.22*	18.80 ±0.98*	32.¥6±3,22*	\$8.87 ±5 71	×8.00 £7.67 .	5.30 0.33
TCP + DLT 112+15	2.85 ±0.23*	17.23 ±000*	30.67 - 07*	48.39 <u>4</u> 4.67*č	66.99±5.295	5.11±0.28*
CPA* 50	$2.92 \pm 0.24*$	27.26/±1.42	2828 ±2.5*	45 47 ±4.90*	05.57 - 9.36	5.12 ±0.23*
		Subaci	ite treatment (3	Q days		
Control	3.68 ±0.27	[©] 29.7%,±1.55€	70 7 ± ±6.37	53.76 ±4.29	\$ <b>82</b> 30 ± <b>48</b> 1	$5.68\pm0.31$
TCP 22.5	2.46 ±0.18	25.30 ±1.32*	42.43 ±3.82*	44.57 ±2.51*	\$2.28+10.77*	$4.96 \pm 0.50*$
DLT 3	3.31 ±0,24*	<b>\$</b> 6.19 <b>±\$</b> 237*	31.11 ^{2.80*}	0 59.68∕±2.50	72 10 ±5.85	4.79 ±0.32*
TCP + DLT 22.5+3	3.5000.24		25.46 ±2.29	48.95 ±4.97	67:84 ±10.04	3.94 ±0.24*
$C \rightarrow 1$					¥	

Control: corn of thiaeloprid clophosphami DLT: deltamethrin CPA SOD: superoxide dismutase zatala ×ΑΤ· glutathione GPX: ghutathione peroxidase ₿\$T: DT-diaphoras@ DTD: gloathione GSH: *: significantly different to control

cute treatment Bone marrow -

Bone marrow - Acute treatment of a state of the state of mixture CAT and GPX and GSQ were decreased, when compared to controls. SOD was significantly increased after application of deltamethrin and the mixture, and slightly increased after application of thiacloprid. Ŵ

#### Bone marrow - Subacute treatment

After subacue treatment CAT, GPX and GSH were significantly decreased in all pesticide treatment groups, while SOD was spinificantly increased.

Table 5.8.2/28-4:	Effects on antioxidant enzymes, phase II enzyme activity and glutathione
	content in bone marrow of rats (mean ± SD)

SOD w)	CAT (U/mg protein)	GPX S	GSHO
·	(U/mg protein)		
			(nmol/mg/protein)
Sing	le treatment	Â	
$5.48\pm0.44$	33.33 + 2.07	80.96 ± 8.10	0.88 ± 0.43
$6.63\pm0.53$	20.67 \$1.28*	3562±3.57*	<u>0</u> 6.24 0.44
$11.12 \pm 0.90*$	18.00 ± 1.12*	₹5.91 ± 8.02*	$5.90 \pm 0.5$
5 7.50 ± 0.61*	10x53 ± 0.98*	v26.80j±2.13*	~5.80±0.48* ~
11.61 ± 0.94*	©19.00 ± 1.18	24,72 ± 2,46*	5.88 # 0.55
Subacuter	reatment (30 days)		
$5.59\pm0.45$	30.00 € 1.86 √	77.72 ± 7,78	0 ⁶ .55 00.55
11.73 ± 0.95*	17.49±1.00	31.09 ± 911*	$5.51 \pm 0.33$
12.85 1.04*	19.42 ± 1.90* *	£27.22¥ 2.94	\$45±098*
$12.46 \pm 1.00$	≥~15.48 ≤0.73 *	28 20 ± 3 03*	4.84 0.39*
	$5.48 \pm 0.44$ $6.63 \pm 0.53$ $11.12 \pm 0.90*$ $5  7.50 \pm 0.61*$ $11.61 \pm 0.94*$ <b>Subacute</b> $5.59 \pm 0.45$ $11.73 \pm 0.95*$ $12.85 \pm 1.04*$	$5.48 \pm 0.44$ $33.33 \pm 2.07$ $6.63 \pm 0.53$ $20.67 \$ 1.28*$ $11.12 \pm 0.90*$ $18.69 \pm 1.12*$ $5$ $7.50 \pm 0.61*$ $10.53 \pm 0.98*$ $11.61 \pm 0.94*$ $19.00 \pm 1.18*$ Subacute treatment (30.00 $\ddagger$ ).86 $\checkmark$ $11.73 \pm 0.95*$ $17.49 \pm 1.08*$ $12.85 \pm 1.04*$ $19.42 \pm 1.90*$ $3$ $12.46 \pm 1.09*$	$5.48 \pm 0.44$ $33.33 \pm 2.07$ $80.96 \pm 8.10$ $6.63 \pm 0.53$ $20.67 \sqrt[3]{1.28*}$ $35.92 \pm 3.57^*$ $11.12 \pm 0.90^*$ $18.60 \pm 1.12^*$ $43.91 \pm 8.02^*$ $5$ $7.50 \pm 0.61^*$ $16.53 \pm 0.98^*$ $26.89 \pm 2.13^*$ $11.61 \pm 0.94^*$ $19.00 \pm 1.18^*$ $24.72 \pm 2.46^*$ Subacute reatment (30 alays) $5.59 \pm 0.45$ $30.00 \notin 1.86$ $77.72 \pm 7.78$ $11.73 \pm 0.95^*$ $17.49 \pm 1.08^*$ $31.09 \pm 3.11^*$ $12.85 \oplus 1.04^*$ $19.42 \pm 1.90^*$ $27.22 \pm 2.94\%$

Control: corn oil Chiacloprid TØ₽: cyclophosphamide deltamethrin °₽A:

catalase superoxide dismutas CA™ 

significantly different to control,  $\phi < 0.0$ GPX:

*:

DLT:

SOD:

# C. Effects on TBARS levels in lymphoid organs

The extent of lipic perox dation in terms of thiobar bituric scid reactive substances (TBARS) levels were increased in all pesticide treatment groups after acute and subacute application. Except for the acute treatment with deltanethrin all increases were statistically significant. Treatment with the mixture of thiacloprid and deltamethrin were in general more pronounced than for single pesticides. Ļ,

 $\bigcirc$ 

#### Ŕ Table 5.8.2/28-5: Effects on TBARS level in kymphoid organs, PMNs and plasma of rats , Ø Mean + SD Ľ ð

Substance Dose		They mus	Bone marrow	PMNs	Plasma
(mg/kg ww)			(nmol/mg protein)	1	
. K		Single tr	eatment		
Control	1.90 \$0.21	$3.43 \pm 0.09$	$2.51\pm0.28$	$0.03\pm0.00$	$2.64\pm0.17$
TCP 112	2.72s± 0.4	~.63±.053*	$4.52\pm0.51*$	$0.05\pm0.00\texttt{*}$	$6.47\pm0.77\texttt{*}$
DLT 15	2.62±0.44	4.59@# 0.62*	$4.37\pm0.49\texttt{*}$	$0.06\pm0.00*$	$8.19\pm0.54*$
TCP + DL	\$2.66@0.38*\$	5.21 ± 0.59*	$7.54\pm0.85*$	$0.06\pm0.00*$	$10.57\pm0.70\texttt{*}$
~\$2+15					
CPA* 50	283±0.38*	$4.54\pm0.46*$	$5.27\pm0.59*$	$0.04\pm0.00\texttt{*}$	$6.07\pm0.40\texttt{*}$
Č ^O Č					

#### **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Substance Dose	Spleen	Thymus	Bone marrow	PMNs	Plaşma
(mg/kg bw)			(nmol/mg protein)		
		Subacute treat	tment (30 days)	L.	4 . 4
Control	$2.09\pm0.24$	$3.64\pm0.34$	$2.69\pm0.23$	$0.03\pm0.00$	\$.77 ± 0,21
TCP 22.5	$3.01\pm0.53\texttt{*}$	$4.63\pm0.63*$	4.75 ± 0.54*	$0.04\pm0.00*$	7.51% 1.03*
DLT 3	$3.20 \pm 0.53*$	$4.69\pm0.66*$	4.72 ± 0.53*	$0.06 \pm 0.00 *$	8.06±0.63*
TCP + DLT 22.5+3	$3.31 \pm 0.56*$	$5.90 \pm 0.76*$	\$.97 ± 0.60*		QI.91 ≠ Y.89* &

TBARS:	extent of lipid peroxidation in terms	of <u>t</u> hio	arbituric	acid	<u>r</u> eactive	subst	ances	L
PMNs:	polymorphonuclear leukocytes	<b>%</b>	Ô	2	\$Ľ	4	Ň.	°~
~ .		<b>_</b>	$\square$	SK 11	AL N	(Chan)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

 IDANS.
 Extent of input peroxidation in terms of Info@arbituric acid/reactive substances

 PMNs:
 polymorphonuclear leukocytes

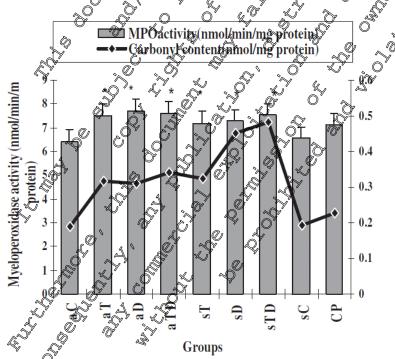
 Control:
 corn oil
 TCP:

 DLT:
 deltamethrin
 CPAA

 SOD:
 superoxide dismutase
 CAD:

 GPX:
 glutathione peroxidase
 GH:

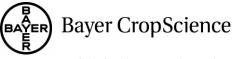
 glutathione peroxidase
 GH:
 glutathione


 *:
 significantly different to control p < 0.95</td>

 Myeloperoxidase (MPO) activity and carbonyl content in PMNs
 Generation of the peroxidase (MPO) activity in the PMNs was significantly dicreased (p 0.05) fin all pesticide

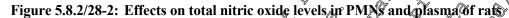
 treated groups when compared with the correstonding control groups.
 Incoddition of control groups.

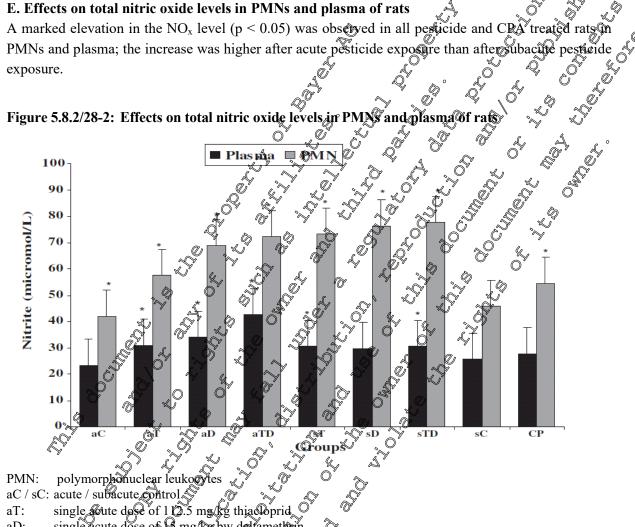
 treated groups when compared with the corresponding, control groups. In addition, a significantly increased carbonyl contentwas observed in PMNs in all acute pesticide groups and thiacloprid and deltamethrin subacute groups.


## activity and carbonyl content in rat PMNs Figure 5.8.2/28-1 SEffects on myeloperoxidase (MPO



aC / sC acute / subacute control


- aD: single acute dose of 15 mg/kg bw deltamethrin
- aTD: single acute dose of 112.5 mg/kg thiacloprid + 15 mg/kg deltamethrin;

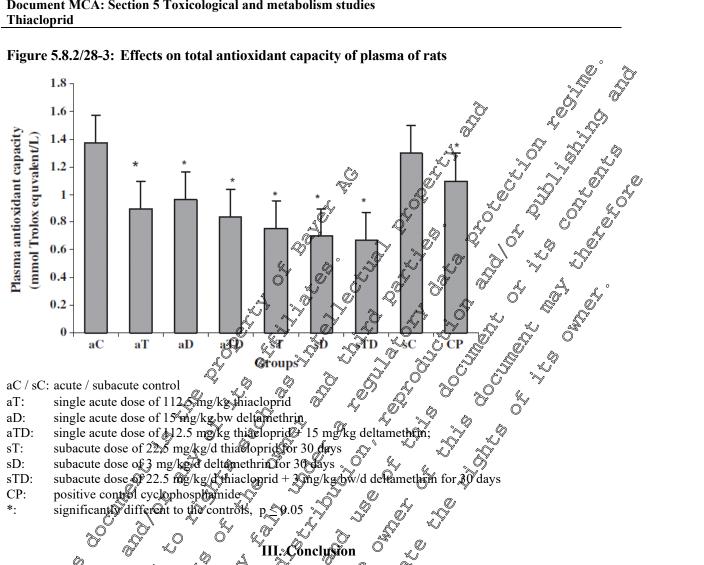

single acute dose of 112.5 mg/kg thiacloprid aT:



- sT: subacute dose of 22.5 mg/kg/d thiacloprid for 30 days
- sD: subacute dose of 3 mg/kg/d deltamethrin for 30 days
- sTD: subacute dose of 22.5 mg/kg/d thiacloprid + 3 mg/kg bw/d deltamethrin for 30 days
- CP: positive control cyclophosphamide
- *: significantly different to controls,  $p \le 0.05$

#### E. Effects on total nitric oxide levels in PMNs and plasma of rats






- single acute dose of 13 mg/ky bw deltamethin aD:
- single acute dose of 112.5 mg/kg thiaclopfed + 15 mg/kg deltamethrin; aTD:
- sT: subacute dose of 22.5 mg/kg/d thiacloped for 30 days
- sD: subacute dose of 3 mg/kg/d detramethern for 30 days
- sTDA subacute dose of 220 mg/kg/d thiac oprid 3 mg/kg bw/d deltamethrin for 30 days
- positive control cyclophosphamide CP:
- significantly different to the controls, 0.05 *:

### F. Effects on total antioxidant capacity of plasma of rats

Total antioxidant capacity in plasma was significantly decreased in all pesticide treatment groups and in the positive control group.

**BAYER** Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid



Acute and subacute pesticide treatments caused significant charges in the levels of AST, ALT, urea and creatinine. Antioxidant enzyme (catabase and glutathione peroxidase), glutathione and plasma antioxidant levels becreased while lipid peroxidation increased in all lymphoid organs and the plasma. Glutathione-S-transferase and especially DT-diaphorase activity decreased after thiacloprid treatment. Mycloperoxidase activity, carbonyl content, lipid peroxidation and total nitrite levels increased in PMNs and plasma. When evaluated as a whole, the oxidative and inflammatory stresses seen in the pesticide combination groups were not much more pronounced than in the groups treated with a single pesticide. In terms of the evaluated biochemical parameters, the pesticides showed similar effects to cyclophosphamide.

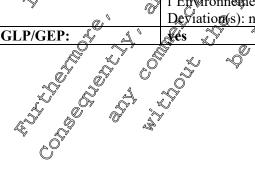
BCS opinion: This non-GLP hat stuffy, which was conducted with thiacloprid doses in the range of the known effect levels, provides supplemental information on oxidative stress in lymphoid organs, polymorphonuclear leukocytes and plasma of rats. The reported results do not change existing endpoints and do not change the risk assessment.

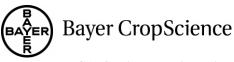
The reliability evaluation of the publication is given below.



Klimisch evaluation			
Reliability of study	Reliable with restrictions (Klimisch code 2)		
Comment	Non-GLP study, conducted according to scientific principles		
	with reporting and methodical deficiencies		
	Only 6 males/group, no positive control for subacute treatment,		
	only one dose for each treatment, only means and no individual		
	values provided; signs of toxicity for reported, porgross and		
	histopathological evaluation, no distorical concol data provided.		
Relevance of study	Relevant: supplemental information which does not change		
	existing endpoints and does not lead to a more conservative		
	risk assessment.		

#### Analytical methods


Analytical methods Analytical methods for the determination of thiacloprid by HPLC analysis in odent dret (+0% corn oil), rodent diet and rat plasma were developed for studies summarized under KCA 5,82/16 (M-428958-01-1), KCA 5.8.2/22 (M-\$59926-01-1) and KCA 5,82/25 (M-405/63-01-1). The references of the study reports are presented in the following.


Report:	6; ; 2010;M-392957-01
Title:	Thiscloprid - Determination by high performance liquid chromatography
× ×	apalysis in ground rodent diet (+1 percent corn oil)
Report No:	SA 10217 3 3 3 0 4
Document No: 5	M-392957491-1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	OÊCD, \$997; Peviation(s): not specified
Guidelines:	
GLP/GEP	yes a by by by by
Report:	q; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Title:	Theacloprid - Determination by high performance liquid chromatography
	analysis in ground rotent dien (+1 percent corn oil)
Report No: 🖓 👘	DŠA 19328 2 2 2 2
Desument	M 20 SOLO MALL OF T

 Document-No:
 M-225259-01-1.

 Guidelines:
 OE.C.D. Principles of Good Laboratory Practice, 1997 (January 26, 1998) and Article Annexe II à l'article D523-8 du Code de l'Environnement du 16 octobre 2007 (French GLP Legislation).;

 GLP/GEP:
 A
 Yes





Report:	t; ; ; ;2008;M-3	04485-01
Title:	Thiacloprid - Determination by high performance liquid chroma analysis in ground rodent diet	atography
Report No:	SA08077	
Document No:	M-304485-01-1	
Guidelines:	OECD, 1997; US EPA OPPTS 870.SUPP;	
GLP/GEP:	yes a line of the second se	Y O C

Report:	p; ; ; 2011; 12-3988 3-01
Title:	Thiacloprid - Determination by high performance liquid chromatography analysis in Sprague Dawley rat plasma
Report No:	SA 10347
Document No:	M-398883-04-T
Guidelines:	OECD,1997     Image: Constraint of the second
GLP/GEP:	yes yes y yes yes

#### Endocrine disrupting or CA 5.8.3

### Thiacloprid - Endocrine discuption

### roperties of the state of the s A review of the whole data base on this cloprid was conducted to identify possible effects of thiacloprid on endocrine organs, tissues or parameters. Thiacloprid treatment led to findings linked to the thyroid as well as to findings linked to steroidogenesis. However, the data give no indications for effects on the pancreas (including blood glucose, urinalysis data or histopathology) pituitary (organ weight, histopathology), thymus (histopathology) of parathyroid (based on blood calcium levels and histopathology) in rat, mouse or dog.

Effects on the thyroid According to the study ports as well as the avaluation at Annex I inclusion thyroid effects were observed in the rat (including effects on thyroid hormones, thyroid weight and histopathology) and dog (thyroid hormone charges), while there were no effects on the thyroid in the mouse (no histopathological evidence up to 335 Pand 8/3 mg/kg bw/day in the 14-week and the oncogenicity study, respectively), However, thy foid hormone data in rat and dog had to be re-evaluated, since in the original evaluation historical control day collected only from studies run prior to the thiacloprid studies had beer bised. The re-ovaluations can be studied in detail in the respective position papers by

2014 (M-496853-01-1 and M-496983-01-1).

Thyroid Offects in rats:

#### Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Thyroid data in rats and the mode of action of the development of benign thyroid follicular cell adenoma in aging male rats treated with thiacloprid were reconsidered based on a new analysis of the thyroid hormone data in the available rat studies.

By comparison of the hormone data with the historical control data of the year of study conduct it could be shown that changes or tendencies for changes in thyroid hormone levels were only seen after high doses of 69 mg/kg bw/day (equivalent to 1000 ppm in the diet, the high dose of the 2-year at study, which approaches or exceeds the MTD in males or gemales, respectively) or higher. These changes comprised increased TSH values as well as decreased T3 and T4 values. In dower bases in changes of thyroid hormones or TSH were observed Thyroid findings were not very pronounced and included only minimal to slight thyroid follicular coll hypertrophy and colloid Quanges The fact that these findings were observed at lower doses than changes of the roid hormones and TSH indicates that the body maintains an euthyroid state at these lose levels. Thyroid findings were stways accompanied by liver enzyme induction with markedly and dos dependently acreased UDR-GT levels as well as less increased P450 levels in liver tissue, Further evidences of Diver enzyme, induction were increased liver weights, minimal to moderate hepatoce hular hypertrophy and cytoplasmatic changes. Regarding thyroid follicular cell hypertrophy and liver enzyme induction male rate were marked more sensitive than female rats, and this was getting even more pronounced after long-term treatment for y or 2 years. This fits to the fact that a slightly increased incidence of beingn theroid follicular cell adenoma was only observed in aging male rats and not in remales. 1

With regard to possible modes of action genotoxicity as well as an inhibition of theroid peroxidase (TPO) can be excluded,  $\bigcirc$ 

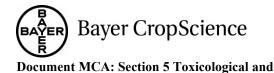
Taking all facts together, the mode of action of the follicular cell adenome development in aging male rats treated with this doprid is secondary to liver on zyme induction (including pronounced and dose dependent UDP-GT increases as well as less pronounced increases of P450), which leads to an increased metabolism and exerction of T3 and T4 from pasma and subsequently to a stimulation of the hypothatamic-pituitary-thyroft axis-Permanent stimulation of the thyroid follicular cells by TSH leads to the road follicular cell hypertrophy and, after long term treatment in aging males (which show a more pronounced liver enzyme induction than females) also to a slightly increased incidence of thyroid follicular coll adenoma. W should be noted that the changes observed under thiacloprid treatment are mostly minimal to slight and that the body up to high doses approaching the MTD is able to maintain a Qeuthy coid state.

Due to species specific differences between that and man this mode of action of thyroid tumor development (including the mechanism by increased UDP-GT and P450) is considered not to be An overview on the thyroid data in rat studies with thiscloprid is given in the tables below.



Document MCA: Sec Thiacloprid	tion 5 Toxicological and 1	metabolism studies		Ca du	ja and a start
•	Thyroid effects in rats in	toxicological studies on th	niacloprid E Bayer	Property	d 2-year dietary C 2-year dietary C 2-year dietary
Study	14-day gavage	14-day dietary	3-week dietary©	B-week dietary + ree	2-year dietary
Doc ID	M-000703-01-4	M-000785-02-1	NI-030427-03-1	Me000863-01-	AL-003817-02-1
Doses [ppm] [mg/kg bw/day]	0-5-10-20-120	0-25-100-500-2000 0/0-2.5/2.3-11/9.6-49/50- 188/187	<b>NI-030427-03-1</b> 0-25-109-400-1600 0/0-25-3.1-9/12-97/45- 145-191	0°-25-100 400-1600 \ 0′0-1.9/20°-7.3/7.6-29/36- 123/161	0-25-59-500-1000 00-1.2/1 6-2.5/3.3-25/34-52/69
Food intake & body	$\geq$ 60 mg/kg bw/d:	$\geq$ 49/50 mg/kg bw/ $4$	145/191 mg/kg bw/d:*	₹29/36 mg (kg bw/d: O	$\geq 25/34$ mg/kg bw/d:
weight (bw)	$\downarrow$ food intake & bw	↓ food intakes	↓ food infake (week 1), ↓ $bw$	bw (rec: N.E.)	Food make. N.E.
Protein & albumin levels	N.E.	N.E. CILL OF CLUTCH	Protein: N.E. Albumin: N.I.	at 123 mg/kg bw/d; ↑ protom (week-)1/12, m) (ræ: N.E.) Albumia; N.E.	
Thyroid hormones	T3. T4, TBC: N.B.	188/187 mg/kg bw/dz	1,45/191 mg/kg bw/d:	123 mg/kg bw/d:	69 mg/kg bw/d:
& thyroid binding capacity	TSH: N.I.	TSH (m/f, week 2, in 3-s range of HCD, statistically	tendencial $T3 (day 2) \& T4 (day 2, 7 \& 2) \ (day 2, 7 \& 2) \ (day 2) \ (day 2, 7 \& 2) \ (day 2$	113 (m, 345 range of HCD in week 3 & 11/12)	TSH: trend for an $\uparrow$ (f, weeks 26 & 105)
cupucity	GUIG	Significant in f only)	14 (m), day 5 & 21/22 (f) m 3-s ranse of	T4, TBC: N.E. SPSH: N.I.	T3, T4, TBC: N.E.
	TRAN De CC	T3, T4, TBC: N.E. $2^{1}$ $2^{1}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$ $2^{2}$	HCD (m), in 2-Grange or Occeeding the 3-s range in (f) TBO: N.E.		
Clinical chemistry	≤ 60 mg/kg bw/d:	$\geq$ 49/50 mg/kg by $q$ :	$\geq 37/45$ mg/kg bw/d:	$\geq$ 29/36 mg/kg bw/d:	After 1 year:
in liver tissue	TUDPGT	TRADPGT	TUDBET 8450: N.I.	↑UDPGT (rec: N.E.) ↑P450 (rec: N.E.)	$\geq$ 25/34 mg/kg bw/d: $\uparrow$ UDPGT P450: N.I.
			6430. N.I.	(rec: N.E.)	After 2 years: liver enzymes N.I.
E UIT	Dernor Conne	$ \begin{array}{c} 2 \\ \hline & 2 \\ \hline & 2 \\ \hline & 49/50 \\ \hline & 100 \\ \hline & 10$			

(BAYER) Bayer CropScience


Page 218 of 251 2014-10-20

				<u> </u>	
Study	14-day gavage	14-day dietary	3-week dietary	13-week dietary Frec.	2-year dietary
Doc ID	M-000703-01-4	M-000785-02-1	M-030427-03-1	M-000863201-1	M-003827-02-1
Doses [ppm]		0-25-100-500-2000	0-25-100-400-1600	0-25-100-400-1600	م ^م ر بن 0-2 هو 0-2 مربع المربع ا
[mg/kg bw/day]	0-5-10-20-120	0/0-2.5/2.3-11/9.6-49/50- 188/187	0/0-2.6/3.1-012-37/45-。 4#5/191	<b>13-week dietary Frec.</b> <b>M-00086 201-1</b> 0-25 100-400-1600 0/0-1.9/2.0-7.3/7.6-29/36 123 461	0/0-1.24.6-2.5/3:3-25/34-52/69
iver findings	$\geq 60 \text{ mg/kg bw/d}$ :	$\geq$ 49/50 mg/kg bw/d:	$\geq$ 37/45 mg/kg bw/d: $\uparrow$ GW er weight (m, up to) $\Rightarrow$ 14%) 145/199 mg/kg tw/d:	$\geq 29/36$ mg/kg bw/ds	
	$\uparrow$ liver weight (up to	Thiver weight (up to $+9 \&$	Gever weight (m, up to	Aliver weight (m, up to )	$\geq 25/34$ mg/kg bw/d: liver
	+20 & +40%  at  60 &	+38% at 49/50 & 188/187	145/199 mg/kg tw/d:	+8%), moderate liver	, hypertrophy (m/f), focal fat mfiltration (m)
	120 mg/kg bw/d), slight cytoplasmatic	cytoplasmatic changes	Niver weight (up to +4)	extoplasmatiochanges	After 2 years:
	changes (f)	188/187 mg/kg/bw/d·	39% & De (m/f) marked &	Ørec: reversible in f&still	$\frac{1}{2}$ $\frac{1}$
	100 /1 1 /1 1.1.	$\wedge 1 \cdot \cdot 1$	lobular patternel	slight hypertrop at 123	hyperteephy & cytoplasmatic
	hypertrophy &		lobular patterno(P)	mg/kg bw/d m 3/10 mg	change
	cytoplasmatic changes	ocumer and and and and a		123/19 Omg/kg bw/d:	🖻 mg/kg bw/d: ↑ liver weight
	in m/f	CV 10 ² . Thu	Ow. I t	tiver weight m/f, up to	(m, up to +31%)
	<u> </u>			344 / 38%) Us g	
hyroid findings	120 mg/kg bw/d	≥g9/50 mg/kg bw/d: "	$\geq$ 37 (m) mg/kg/bw/d:	123 mg/kg bw/d.@lightly↑	After 1 year:
	slightly ↑ no. or	mitotic wadex (m)	Dincidences of min. to hight	thyroid weight (m),	$\geq$ 25 (m)/69(f) mg/kg bw/d: min. to slight thyroid follicular cell
	mitoses in 1/3 m & 1/3 f	theroid follow for cell 4	hypertrophy (5%) m) at	Thyroid histopathology:	hypertrophy & colloid clumping
	Thyroid weight: N.I.	hypertronav (5/5 an Clight	145/191 ng/kg bw/d fa 8/10		52 mg/kg bw/d: thyroid follicula
	Gui Gui	1/5 f minimal	m & 500 f		cell adenoma (m: 1/10)
	NO ^C	Thyroid weight: N.I.	Throid weight: no 1 in @		After 2 years:
	A 00	Dulle the	weight treatment related		$\geq$ 2.5 mg/kg bw/d: min. to slight
	Those as	20 × CO × C	effect SO		thyroid follicular cell hypertroph
	1 ^t . 6				& colloid alteration (m) $25/24$ mg/lag have/d min to align
	E Dall I	o ^{ju} <del>4</del> 9 jo	a Those		≥25/34 mg/kg bw/d: min. to slight thyroid follicular cell hypertroph
			8		& colloid alterartion (f), $\uparrow$
	Le Bige	i i a b a cab i t			incidences of thyroid follicular
	and and i				cell adenoma (m)
I.E. = No effect	N.I. = Not investigated	$f = male(\mathbf{O}^{\text{b}})$	female(s) rec = recovery	min = minimal bw	= body weight $d = day$
-s or 3-s range of HC	D = 2 sigma or 3 sigma ran	ge of historic Control data	≥ 37 (m) mg/kg/bw/d: incidences of min. to hight thyroid follicular ell hyperfrophy (\$10 m), at 145/191 mg/kg bw/d m 8/10 m & 5240 f Throid weight: no ↑ in @ weight / treatment rotated effect. female(s) rec = recovery		, 8,
- B. Ver	act a		female(s)		
401	The Strand P.	J.			

# Document MCA: Section 5 Toxicological and metabolism studies

Thiacloprid	· Section (	, i onicological	and metabolism stu				à ac
Table 5.8.3-2:	Thyro	oid follicular c	ell adenoma observ	ed in a 2-year die	etary study on thiaclopric	d in rats (M-003	817-102-1) <u>r</u> egitte and
Dose level	Dose	Species/sex	Tumour	Tumour	BW in comparison to	Food intake	Other findings regarding liver, thyroid,
[mg/kg bw/day]	[ppm]			incidence [%]	controls [%]	~ °2 [™]	Adrenak, Sexual organs
0	0	Rat, male	Thyroid follicular cell adenoma	0 (0/50)	et nade e	o ^{or™} nad© ^{©°°}	Prot Public nade The
1.2	25	Rat, male	Thyroid follicular cell adenoma	0 (0/50)	at had to	-p ^{at} nadat	and it's nade to
2.5	50	Rat, male	Thyroid follicular cell adenoma	-201750)	and and the guild	COT nad OR	Liver enzyme induction, 1 liver weight, hepatocellular hypertrophy, cytoplasmatic changes, osinophilic foci, hypertrophy of the thyroid follicular epithelium
25.2	500	Rat, male	Thyroid tofficular cell adenoma	2 ¹⁰ 10 (550)	UIDE TO THE THE	ni ^ĝ	thyroi¢ follicular epithelium Liver enzyme induction, ↑ liver weight, hepatocellular hypertrophy, cytoplasmatic changes, eosinophilic foci, hypertrophy of the thyroid follicular epithelium
51.7	1000	Rat, male	Thyroid follicular cell aderôma	\$ 96.3 (8/49) + 1027 316	-12% week 1&20 b + Pyear: up to -9% OF	Very slight 7	Liver enzyme induction, ↑ liver weight, hepatocellular hypertrophy, cytoplasmatic changes, eosinophilic foci, hypertrophy of the thyroid follicular epithelium

Thyroids: 1000 ppm after 1 year: 1/10 males: thyroid follicular denoma Historical controls: in males up to 5.1% (Bayer intermediata), up to 14.7% (RITA database) Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales & 1000 ppm anales after 1 + 2 years (minimal to slight) and 50 ppm in males after 2 years; not observed after 1600 ppm for 90 days BW: body weight nad: nothing adverse detocked Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales & 1000 ppm anales after 1 + 2 years (minimal to slight) and 50 ppm in males after 2 years; not observed after 1600 ppm for 90 days BW: body weight nad: nothing adverse detocked Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales & 1000 ppm anales after 2 years; not observed after 1600 ppm for 90 days BW: body weight nad: nothing adverse detocked D M: note(s) f: increase(d) F: female(s) f: increase(d) Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales after 2 years; not observed after 1600 ppm for 90 days BW: body weight nad: nothing adverse detocked D M: note(s) f: increase(d) Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follicular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follocular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follocular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follocular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follocular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophy of thyroid follocular epithelium: in 500 f000 ppm anales after 2 years; not observed Hypertrophyroid follocular epithelium: in 500 f000



Thyroid effects in dogs:

metabolism studies Thiacloprid

Re-evaluation of the thyroid hormone (T3, T4) and thyroxine binding capacity (BBC) data from all three dog studies on thiacloprid in the context of the historical control data of the years of study conduct revealed that there are no treatment related changes of thyroid hormones and thyroxine binding capacity. In addition, also thyroid weights and thyroid histopathology did not give any indication for an effect of thiacloprid. Based on these data, and in contrast to the evaluations made in the study reports and at Annex I inclusion, it is concluded that thiacloprid has no effect on thyroid parameters in dogs.

Conclusion on effects on the thyroid: In summary, thiacloprid treatment leads to effects on the thyroid in sats, but not in dogs or mice. The mode of action in rats is secondary to liver enzyme induction, which leads to an increased metabolisation and excretion of thyroid hormones and as a consequence, to an activation of the hypothalamic-pituitary-thyroid axis. Permanent stimulation of the thyroid follicular cells by TSH causes thyroid follicular cell hypertrophy and, after long-term treatment in males, a slightly increased incidence of thyroid follicular cell adenoma. Overall, the changes observed under thiacloprid treatment in rats are mostly minimal to slight and the body is able to maintain an euthyroid state op to highdoses approaching the ACD. This mode of action for the development of thyroid follicular cell adenoma in rats is well known. Due to species specific differences between rat and man it is generally accepted as a mode of

# Effects on steroid genesi

action, which is non-relevant for humans

Findings, which are or could be linked to effects on steroidogenesis have been observed in toxicological studies with this cloprid in rats, mice and dogs as well as in in vitro studies.

# In vitro studies:

Thiacloprid showed an effect on steroidogenesis in the H295R assay. Increased progesterone secretion was observed at 100  $\mu$ M, the NOAEC for this finding was 50  $\mu$ M (equivalent to unbound concentrations of about 25 or 12.5 mg/L thiacloprid, respectively). However, unbound plasma concentrations of up to 11.5 mg/L in female rats corresponding to dietary exposure with 1000 ppm thiacloprid (high dose of the 2-year rat study, clearly exceeding the MTD, and of several one-generation studies investigating dystocia) are still in the range of the NOAEC of 12.5 mg/L for progesterone for rease in this assay (11000, 2014, M-498558-01-1). Incubation of rat preantrabiolicles with hiacloprid led to increased estradiol and progesterone secretion at 500  $\mu$ M or about 026 mg/L thiacloprid, indicating that preantral follicles are a cellular target for thiscoprid freatment. The NOAEC was 100  $\mu$ M or about 25 mg/L, indicating again that hornone changes, tumour development and dystocia in rats occurred at unbound plasma concentrations in the range of the NOAEC of this assay. Since the effects on sex steroid hormones as well as tumour development and dystocia in rodents occurred always at dose levels showing

# Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

pronounced enzyme induction as well as increased expression of genes associated with sex steroid hormone biosynthesis, these effects are considered to be secondary to enzyme induction.

In the 2-year rat study on thiacloprid (M-003817-02-1) increased incidences of uterine In vivo findings related or possibly related to effects on steroidogenesis in rats adenocarcinoma occurred. Incidences were 12 - 6 - 6 - 2 36% after 3% 1.6 - 3.3 --33.5 -~69.1 mg/kg bw/day, respectively. The Bayer internal historical control data for this type of spontaneously occurring malign tumor include incidences up to 24% the peer revelowed historica control data from the RITA database contain incidences up to 28%. This shows that the incidence of 28% at 33.5 mg/kg bw/day is rather a borderline effect. It has to be noted that with body weight decreases of -10% to 15% and -21% the affected dose levels of 33.5 and 691 mg/kg by beach of exceed the MTD, respectively. The tumor data are presented in Table 5.8.3 @ below. The proposed mode of action for the uterine adepocarcinoma is as follows (described in the position , 2010, M-362441-01, K. K. S. K. with Stight differences): In Comale Cats this cloprid paper by affects steroid sex hormone secretion leading to changes in circulating levels of progesterone and estradiol. An overview on hormone datagis given in Table 5.8.3-4 below. The changes we'r marginal to slight. The increases of progesterone levels gained statistical significance at 60 mg/kg/bw/day, increases in estradiol levels were statistically significant at doses of 75 mg/kgbw and above. A statistically significant increase of FSH as also observed at 108 mg/kg bwday. The hormone changes were accompanied by changes in gene expression associated with the regulation of steroid hormone synthesis (also observed at doses of 60 mg/kg bw/day and above) indicating overall an induction of enzymes of the sterood hormone biosynthesis (not including aromatase). In the young adult rat these hormone changes have no adverse effect: there was no influence on the estrous cycle (investigated to the two-generation study over 3 weeks ( , 1997, M-001304-8₽ 01-1, KCS \$26.1)) or on other sex hormone sensitive tissues and organs like the ovaries, the mammary gland, the uterus or the pituitary. Only in aged, 1-2 years old females these hormone changes eventually lead to uterine changes (increased incidence of uterine glandular hyperplasia) including effects on the estroits cycle (i.e. Rewer thaclopped treated females in pseudopregnancy and more in the ambiguous phase, lower level of vaginal muchfication, marginal increases of plasma estradiol), and finally tumors as the alterations in formore secretion generally associated with the aging process are exacerbated following treatment with high doses of thracloprid. Further findings with a possible endocrine background in old female rats after 2 years of treatment with high doses were an increased incidence of ovary systs and decreased incidences of lacteal cysts and galactocele in the mammary gland, which are per se not adverse. In conclusion, the increased ocidences of efferine adenocarcinoma occurring only in aged female rats after high oral doses of this loprid at the MTD or higher are considered to be secondary to enzyme induction including enzymes involved in steroid biosynthesis. Since enzyme induction is less pronounced in humans and also the normal range of female sex hormones shows a much broader

variation that in rodents (for details please refer to **section**, 2007, M-293264-01-1), this mode of action is considered to be less relevant in humans.

Dystocia was another effect in female rats, which was noted in several 1 or 2-generation studies in Sprague-Dawley rats from the breeder Sasco at doses of 22 mg/kg bw and above. Besides an

# Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

unspecific mode of action secondary to stress, dystocia also seemed to be linked to perturbations of sex hormone levels. Increased estradiol levels, slightly increased progesterone and LH levels as well as increased corticosterone levels in plasma during premating, gestation and lactation shortly after 998 M-004253-04-1, parturition were observed in a previously conducted study ( KCA 5.8.2). This was confirmed by the latest special one-generation study ( M-403763-01-1, KCA 5.8.2), in which the levels of progesterone (slightly increased mean value at GP 20, absence of normal decrease prior to parturition in one tat with dystocia) and estradiol (increased) mean values at GD 21 and 22) and the respective balance between these hormones in the days before and during parturition were affected in thiacloprid treated animals However, the regulation of birth in humans is different, i.e. a missing decrease in progesterone level, which is manuatory for normal parturition in rat, is not seen in humans, in which progesterone levels in plasma stag high during parturition. Therefore, this mode of action is considered to be rat specific and not relevant for humans. Since also the normal range of progesterone and gradiol levels in humans is much wider than in rat, the observed, rather slight changes of these plasma levels in gat are considered to pose norrisk for 2007, M-293264-01-1). dystocia in pregnant women (for more information, please refer to In male rats, a slightly increased incidence of Leydig ell hypertrophy (mostly graded as minimal to slight) was noted in the testes after 2 years of treatment with 25 mg/kg bw/day and higher doses.

However, no other effects on male reproductive organs or male fertility were observed in this species in vivo.

In the H295R steroid genesis as an inhibition of test osterone secretion was noted commencing at the lowest investigated concentration of  $50^{\circ}\mu$ M of 12.5 mg/L thiadoptid, repectively (being statistically significant after incubation for 48 h, but not for 24 h). However, unbound plasma concentrations of thiadoptid in male Wistar rats *in vivo* at the high dose of the 2-year rat study of 1000 ppm (equivalent to 52 mg/kg bw/day) with 3.7 - 6.9 mg/D were dower.

Findings related or possibly related to effects on steroid ogenesis in mice

In the 13-week mechanistic study (M-403764-91-1) changes of steroid sex hormone levels in plasma were noted in females. These included slightly decreased stradiol levels and increased progesterone levels, which led to a decrease of the estradiol/progesterone ratio at dose levels of 1101 mg/kg bw/day and higher. Since a first, slight change of the estradiol level observed at 139 mg/kg bw/day had no effect on the estradiol progesterone ratio, 139 mg/kg bw/day is considered to be the NOAEL for hormonal changes. The hormone changer were accompanied by reduced cholesterol levels. However, similar to the situation in fats, these hormonal perturbations had no influence on the estrous cycle in young adult animals (see 14 week thetary study in mice, M-000697-02-1). Details are given in Table 5.8.3-7.

Furthermore, female mice displayed enlargement, hypertrophy and more prominent vacuolisation of the adrenal X zone commencing at 27 mg/kg bw and, at higher doses, also increases in adrenal weight (see Table 58.3-5). The adrenal X-zone of female mice is a species-specific zone not seen in other laborators animals or man. X-zone vacuolation is regarded to be a physiological finding in the context

# Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

of age-related X-zone degeneration (Greaves 1990⁵). The X-zone involutes in male mice at puberty and persists in females until the first pregnancy. In non-pregnant females, it degenerates during adulthood depending on the genetic background of the animals (Shire and Bearner 1983⁶). The significance of the dose-related increase of X-zone vacuolation seen in the thiae oprid studies is unclear but probably related to hormonal imbalances since development and disappearance of this zone is under hormonal influence (Deacon et al. 1986⁷). However, these tindings are not considered to be adverse effects, but biomarkers for an endocrine effect. The NOEL for these effects was 18 mg/kg bw.

In the 14-week dietary study (M-000697-02-1) historic thological investigation of the ovaries revealed a decrease of advanced corpora lutea with eosinophilic cells after 704 mg/kg b@/day and above and the interstitial glands of the ovaries appeared to be activated. These glands are derived mostly from atretic follicles and respond to gonadotropin stimulation but their functional significance is unknown (Yuan, Y.1991⁸). However, there were no effects on the mammary gland and, in the anterior pituitary, immunohistochemical demonstration of prolaction revealed also no exidence of any changes related to dosing with the test-compound.

In the oncogenicity study in mice (M=003849-02-4) increased incidences of ovarian loteoma a benign tumor, were noted after two years of treatment (for details see Table 9.8.3-6). In contrast, no adverse findings in the ovaries were reported after one year of treatment. Incidences of ovarian futeoma after two years were 0 - 2 - 6 - 13% after  $0 - 10.9^{-475.0} - 872.5$  mg/kg bw/day. The Bayer internal historical control data for the period of time when the study was conducted howed incidences of up to 6%. At the mid and high dose theoma were accompanied by a slightly increased incidence of eosinophilic, luteinized cells in the ovarian stroma (5/49 and 8/47 in comparison to 3/47 in the controls). Due to the large dose spacing between mid and low dose in this study the NOAEL for ovarian luteoma was 10.9 mg/kg bw/day.

In male mice, there were no effects on male reproductive organs in any study.

Findings related of possibly related to effects on steroid ogenesis in dogs In the subacute dog study (M.90381602-1) a slight increase in prostate weight without any histopathological correlate was noted after administration of the high dose of 2500 ppm (equivalent to 80 mg/kg bw/day, administered for up to 10 weeks and to 66 mg/kg bw/day for 4 weeks). The finding was more pronounced in dogs reated with 89 mg/kg bw/day for 10 weeks. There were no findings in

- Peacon, G.F., Mosley, W., Jones, J.C.: The X-zone of the mouse adrenal cortex of the Swiss albino strain.
   Gen. Comp. Endocrinol. 61, 87-99; 1986.
- ⁸ Yuan, Y.: Female Reproductive System, in: Handbook of Toxicologic Pathology, eds. Haschek, W.M. and C. G. Rousseaux, Academic Press Inc., San Diego U.S.A.; 891-935; 1991.

⁵ Greaves, P.: Histopathology of preclinical to reity studies. Chapter XII endocrine glands. Elsevier Amsterdam, New York, Octord. 677-755; 1990.

⁶ Shire, J.M. and W.C. Beamer. Adrenal Changes in Genetically Hypothyroid Mice. Journal of Endocrinology 102, 277-280, 1983.

# **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

the testes and epididymides in this study. In the 15-week dietary study (M-003814-01-1) at 68 mg/kg. bw/day there were slightly more prominent Leydig cells in the testes (3/4; controls: 1/4) as well as slightly increased no. of degenerated spermatocytes (2/4). The second finding was also observed in the epididymides (4/4, controls: 1/4). Such changes are known to show a wide variation with respect to 0 severity and incidence in young mature dogs. Prostate weights were increased at  $\geq 35 \text{ mg/kg bw/day}$ , exceeding slightly the historical control data, while very low absolute and relative weights ocurred in the concurrent control and low-dose groups. Increased prostate weights were accompanied by slight to moderate glandular hypertrophy (4/4 at both dose levels). Since it is difficult to distinguish treatment related effects on these trale reproductive organs from the normal, wide variability in young dogs, additional male dosage groups for an interim acrifice after 26 week of treatment as well as sonographic investigations of the prostate were included in the study design of the 1-year study (M-003818-01-1). In this study no changes regaring testes or epididymides were reported. Prostate weight was also unchanged after 26 weeks of treatment, but was slightly increased at the high dose of 34 mg/kg bw/day after 1 year. Somography of the prostate after 17, 26 and 52 weeks of treatment as well as instopathology revealed no treatment related effects.

Female dogs showed no effects on steroid genesis:

# Conclusion on effects on steroid genesis:

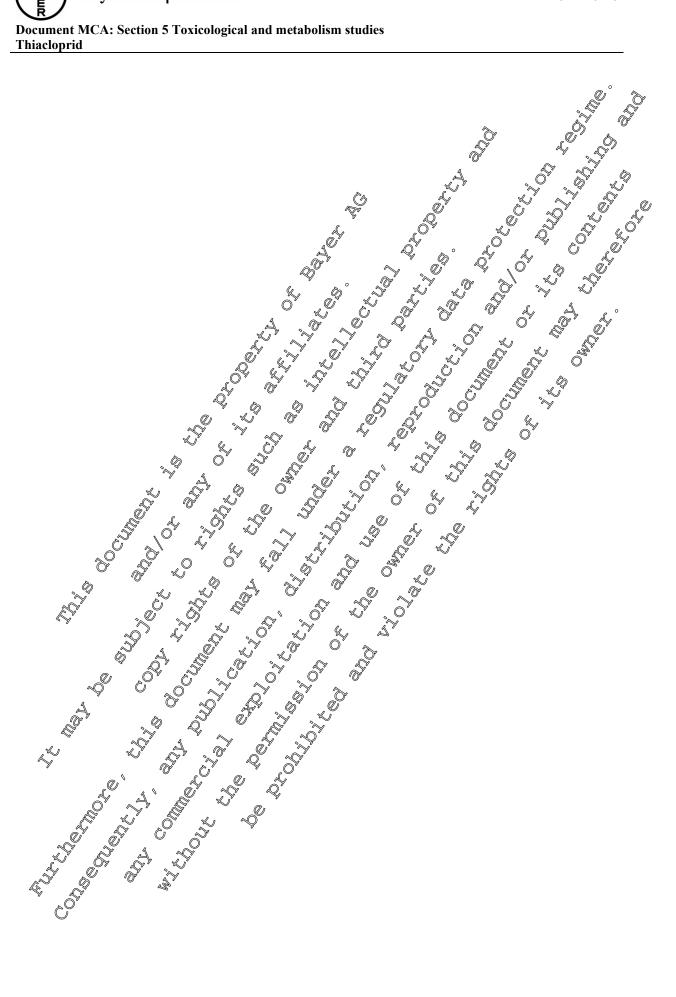
In vitro assays showed that thiscioprid has a direct effect on steroid ogenesis at high concentrations, which exceeded the unbound plasma concentrations of this cloprid in vivo at the high dose of the 2-year rat study of 1000 ppm. The dose levels in vive with findings like hormonal charges, areine cumors and avstocia were always associated with enzyme induction including enzymes involved in second biosynthesis (with the exception of aromatase). The observed hormone changes and resulting toxicological findings are therefore considered to be secondary to enzyme induction. Å

In female rats this closerid treatment caused changes in steroid sex hormone levels, which had no further consequences in young adult females. Nowexer, in old, acyclic rats these hormonal disturbances led to changes of the uterus and, eventually, to an increased incidence of uterine tumours since alterations in hormone secretion generally associated with the aging process are exacerbated following treatment with high this cloprid doses. Since enzyme induction is less pronounced in humans and also the range of female sex hormones shows a much broader variation than in rodents, this mode of action is considered to be less relevant in humans. The lowest dose devel with a borderline incleased tumor incidence was 33.5 mg/kg bw/day. Dystocia was another finding observed in female rats commencing at 22 mg/kg bw/day. Besides an unspecific mode of action secondary to stress, dystocia also seemed to be linked to perturbations of female sex hormone levels, especially to a missing progesterone decrease before parturition. This decrease is mandatory for normal birth in rats, but not in humans, in which regulation of birth is different. Therefore, this mode of action is considered to be rat specific and not relevant for humans. Since the range of progesterone and estradiol levels in humans is also



**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

during pregnancy and birth much wider than in rat, the observed, rather slight changes of these plasma levels in rat are not considered to pose a risk for dystocia in pregnant women. In male rats, only a slightly increased incidence of minimal to slight Leydig cell hypertrophy was noted in testes after 2 years of treatment with doses of 25 mg/kg bw and above. This is considered to be a biomarker for an endocrine effect, but no adverse effect.


In female mice, changes of steroid sex hormone levels, Endings in the adrenal glands (increased weight and enlargement, hypertrophy and more prominent vacualization) and in the ovaries (a decrease of advanced corpora lutea with eosinophoic cells and an activation of the interstigal as well as an increased incidence of ovarian luteona) could be linked the effects on steroid genesis The adrenal findings are mouse specific, not relevant for humans and, as the slight hormone changes, considered at most as a biomarkeo for an endogrine effect. The only adverse finding, the ovary changes with the luteoma, was seen only at very high doses of 475 mg/kg bw/day and Of the second second higher at the end of the 2-year study.

In male dogs findings with a possible endocrine background were not seen consistently? Increased prostate weights were noted repeatedly instudies up to year, but not seen in every case. Only in the 15-week study they were accompanied by slight to moderate glandular hypertrophy of the prostate as well as by slightly more prominent Leydigreells in the testes and a slightly increased no. of degenerated spermatocytes in testes and epididymides. All of these findings can also be found in untreated young does during their normal development. In conclusion, there are at most transfent possible endowine effects in male dogs. A slightly higher prostate weight without morphological correlate is not seen as an adverse effect, but at most as a biomarker for an endocrine effect 

Assessment of the endocrine potential:

Taking all results together this loprid treatment leads to endocrine effects in toxicological animal studies. However, many of the effects were no adverse effects, but biomarkers for a (possible) endocrine effect, or they were species specific and not relevant for humans (like the observed thyroid findings or destocia in rat and adrenal findings in female mice). The only adverse findings with a possible, although less pronounced, relevance for humans are the increased incidences of uterine adenocarcinoma in female rats, commencing at 33.5 mg/kg bw/day, as well as the ovarian juteoma in female mice, which were observed at 475 mg/kg bw/day and higher doses. According to the Joint DE-UK position "Regulatory Definition of an Endocrine Disrupter in Relation to Potential Threat to Human Health" of March 2011 the uterine adenocateinoma with its borderline increased incidence at 33.5 mg/kg bw/day observed in the combined chronic toxicity and carcinogenicitiv study in rats would fall into the STOT-RE Cat 2 guidance values of the CLP regulation (> 5 and < 50 mg/kg bw for chronic / long-term studies). As such, thiactoprid would not be deemed an ED of regulatory concern and the standard risk assessment could be applied.





BAYER Bayer CropScience

Table 5.8.3-3:	Findi	ngs possibly lin	nked to effects on s	teroidogenesis ob	served in a 2-year dietar	e ^C y study on <del>stu</del> ac	2 ^{t-1} loprid in rats: (M2-003817-92-1)
<b>Dose level</b> [mg/kg bw/day]	Dose [ppm]	Species/sex	Tumour	Tumour incidence [%]	BW in comparison to	Food intake	Other and ings regarding tiver, thyroid, adrenals, sexual organs
0	0	Rat, female	Uterine adenocarcinoma	12 (6/50)	per inad ec	2 a T nad	and of the thread
1.6	25	Rat, female	Uterine adenocarcinoma	6 (2050) 2 2 2 50)	Chi Chi To	nad a	OF The Charles
3.3	50	Rat, female	adenocarcinoma	\$ 6 (3,\$0) }	the street out	or had on other	At May nad
33.5	500	Rat, female	Uterine de la comparcinoma comp	L'ELE	-10 up to -15%	$Verx \oplus ght \downarrow$	a sign on runn handu at an liver wought
69.1	1000	Rat, female	Uterine ct adenocarcinoma Ct guild ct coPV cument	\$ 36 (18,50) TRAN dife	decreased up to -24%	Very Stright ↓	Liver enzyme induction, ↑ liver weight, hepatocellular hypertrophy, cytoplasmatic changes, eosinophilic foci, hypertrophy of the thyroid follicular epithelium, slight increase in follicular cell adenoma, ↑ incidences of ovarian cysts
			berplaster at 500 and 1 ernal data), up to 28 adverse detected attributer to the formation of the formati	000 pộp after 1 ye	af e) $\mathcal{F}$ : female(s)	↑: increase(	(d) ↓: decrease(d)

(BAYER) Bayer CropScience

Thiacloprid	ection 5 Toxicological and meta	adonsin studies		ð	~®°
Table 5.8.3-4: Eff	fects on sex hormones and st	teroidogenesis in toxicologic	al studies on thiacle prid in		regin and
Parameter	Single dose gavage study (females) M-359235-01-1	Repeated dose gavage study (females) M-360362-01-1	Repeated dose gavage study (females) M-360349-01-1	4 week dietary study	4-week dietary study in aged temales N4-359926-01-1 @-0000
Doses [ppm]		Ő	20, 22, 22, 20, 20, 20, 20, 20, 20, 20,	0 ⁵⁶ 0-100+1000-1600\ppm	C ^O ² <b>9</b> -9000
[mg/kg bw/day]	0-60	4 x 0-60 2	4 x 0 60 3.	@-8-75-108 in F	0-32 in F
Sampling:	2, 8, 24 h after dosing	2, 8 h after the as dose			t The
Progesterone	Significant 78 & 24 h after dosing	Significant \$8 & 24 th after dosing	Significant 7 24 h after Adosing	Marginal 1 28 mg/kg Ww/day, but statistically not	Large interanimal variability
Estradiol	No relevant changes	LIN Not detected S (technical problems?)	Marginal 19but statistically	Statistically significants ↑ ≥ 75 mg/kg bŵsddy	Marginal ↑, but statistically not significant
Testosterone	No relevant charges	No relevant changes	Detected nore readily m thiacloprid animals (9/13, × controls: 2/13)	AL SNo relevant changes	Not detected
FSH	Not investigated	Norrelevant changes	Slight 1, but statistically not significant	© [™] Slight ↑ at 108 mg/kg bw/day	Not investigated
Gene expression: steroid hormone synthesis	Liver: statistically significant 7 Over no change	Not investigated	Liver, ovary, adrenals:	Liver, ovary: ↑at ≥ 75 mg/kg bw/day	Not investigated
BW: body weight	Liver: statistically significant 7 OP Open: no change TF: female(s) T: Eller 1007 0 00000 0000000000000000000000000	increase (d) 0 ² decrease (d) Plus e RP 10 ² decrease (d) 2 d d d d d d d d d d d d d d d d d d d	H) JA		



Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

# MOUSE

Thiacloprid				6	à <u>a</u> e°
MOUSE			e ^r B ^C	C.T.L.J.	20t i OIA regine o 20t i OIA regine o 20t i Bhilles
Table 5.8.3-5: A	drenal findings possibly linked	to effects on steroidogenesis in toxicolog	gical studies on thia	Poprid in mice	20t 10t 12 10 1 10 5
Adrenal findings	2- & 3-week dietary studies M-000821-01-1 & M-000688- 01-1	13-week mechanistic dietary study in female mice M-003764-01-D	<b>greaf studies on thia</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b> <b>14-week dietar</b>		1 W 003819-020
Doses [ppm]	2-week: 0-50-200-2000-10000 3-week: 0-100-1000-10000			0-6250 and	<u>,</u>
[mg/kg bw/day]	2-week:0-21.6/29.8-84.3/113.2- 765.1/1201.2-4143.2/5449.8 3-week: 0-30.1/63.9-368/559- 4141/5785 in M/F	0-6-18 239-1101 244 in FG	542.47x04.3-2816.9/	5 939.1- O ^T 3351 in 14/F 3 UI ^{TIE} 10 14/F	
Organ weight	Not investigated	Noveffect up to 1244 mg/kg bw/day	↑ (statistically not si	ignificant) in 🔬 🖗	↑ in females ≥ 873 mg/kg bw/day at interim sacrifice
Histology	Not investigated	Vacuolisation of the adrenal x-zone ≥ K9 mg/kg bw/day (NOEL: 18 mg/kg bw/day, hypertrophy ≥ 1101 mg/kg bw/day	Enlargement, paor vacuolisation of the ad females $\geq 27$ mg	renal x-zone in	Vacuolisation of the adrenal x-zone in females at 873 mg/kg bw/day
BW: body weight ලැට C	M: male(s) GVP: fe DE TRAY DE COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY COPY	Vacuolisation of the adremal x-zone $\geq$ N9 mg/kg bw/day (NOEL: 18 mg/kg bw/day) hypertrophy $\geq$ 1101 mg/kg male(s) T: increase(d) T: def the contribution of the	æase(d) n ^e *: me	ecamylamine: nicc	otinic blocker

# (BAYER) Bayer CropScience

Thiacloprid	: Section 5	Toxicological and	l metabolism studies				à	°
	Findings	possibly linked t	o steroidogenesis o	bserved in an onc	cogenicity study on th	hiacloprid	@	reginde and
Dose level	Dose	Species/sex	Tumour	Tumour				
[mg/kg bw/day]	[ppm]			incidence [%]	to controls [%]	intake $Q^{3}$	and sexue	at organs, \$
0	0	Mouse, female	Ovarian luteoma	0 (0/50)	Ft nad es	Janad .	Pho. of cosmophilic Vatei Stroma	nized Cells in the ovarian
10.9	30	Mouse, female	Ovarian luteoma	2 (1/5000	E had	Phad	at a na	id set
475.3	1250	Mouse, female	19	6 (3)50) 6 + 1	26 Inde this	nadi at off	↑no. of eosinophilic, lutei ↑no. of eosinophilic, lutei of stroma (5/49), ↑ liver eadrenal x-zone: hyper ↑no. of eosinophilic, lutein stroma (8/47), € liver weig typertrophy, hepatocellula	weight, hepatocellular rophy, trophy & vacuolation
872.5	2500	Mouse, female	Ovariand Arteoma	0	et nad	12 nad 00	Tno. of Sinophilis, lutein strona (8/47), iliver weig Hypertrophy, hepatocellula adrena x-zone: hypertroph	ized cells in the ovarian ht, hepatocellular r necrosis y & vacuolation
BW: body weig	ols: up to 2 ht na	ected at \$500 ppm -6% (Bayer intern ad: nothing adv be gr that be	Ovariand at coma at Ovariand at coma at after 1 year to nal data part of the second opy to the second opy to the second and the second opy to the second and the second opy to the second op to the sec	M. male(s)tr dib it oitation itagion dib	the Jate	¢. 9 ¹⁰ in	, ecrease(d) ↓: decre	ease(d)

**Bayer CropScience** Document MCA: Section 5 Toxicological and metabolism studies

Estradiol/Pro-

gesterone ratio

Not investigated

Thiacloprid BG 
 Table 5.8.3-7:
 Substrate & hormone changes in toxicological studies on thiacloprid in mice
 Oncogenicity study 14-week dietary study 2- & 3-week dietary studies Substrate & 13-week mechanistic dietary study M-000697-02-1 M-000821-01-1 & M-000688-01-1 in female mice, M-003764-01-1 M-003819-02-1 hormone changes 0-10-30-250-2500= 50 250-1250-6250 Doses [ppm] 2-week: 0-50-200-2000-10000 ۶-۴ (0-5.70,0.9-۶-۴ ( 2500+mecamylamine 3-week: 0-100-1000-10000 0-6-18-139-1409-12-2<del>.</del>6@39 344405-546/873 in [mg/kg bw/day] 2-week:0-21.6/29.8-84.3/113.2-E THE TOM/F j.Dt.C. 19,9/3351 in 0/F 765.1/1201.2-4143.2/5449.8 Not investigated 3-week: 0-30.1/63.9-368/559the Not investigated 4141/5785 in M/F 30 and kg bw/day in females, and Cholesterol  $\downarrow$  at 4143 mg/kg bw/day in males (2mg kg bw/day in males week study) Not investigated (3-week stude r, Ś t ≦1101 mg Kg bw/day Not investigated Progesterone Not investigated Not investigated Not investigated Shightly 139 mg/g bw/day* Not investigated Estradiol Not investigated  $\mathbb{A} \geq 110^{1} \mathbb{A} \mathbb{B} / \mathbb{A} \mathbb{B} \mathbb{A}$ Not investigated Notiovestigated

BW: body weight

×,0

body weight male: male(s) to female(s) (increase(d) to decrease(d) for hormonal changes in female mice is 139 mg/kg bw/day. A first, slight effect at 139 mg/kg bw/day did not had to changes of the stradiol/progesterone ratio. Theofore, the NOAEL for hormonal changes in female mice is 139 mg/kg bw/day. The contract of the stradiol/progesterone ratio. Theofore, the NOAEL for hormonal changes in female mice is 100 cuttlent to the tract of the stradiol/progesterone ratio. Theofore, the NOAEL for hormonal changes in female mice is 139 mg/kg bw/day. *:



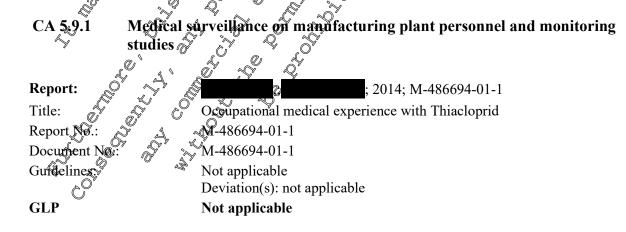
Document MCA Thiacloprid	: Section 5 Toxicological and metabolism studies		à de °
DOG Table 5.8.3-8:	Findings possibly linked to endocrine effects on	testes, prostrate and epidedymides in toxicological stu	Alle and the clourid of dogs.
Organ	10-week dietary study	15-week digery study	-year, standy
Doses [ppm]	<b>M-003816-02-1</b> 0-100-300-1000* (1250-1600- 2500)-2500 (4 weeks)	<b>M.003814-01</b> -1 00-250 r000-(4000-0)** 2000 rpm	M-003818-01-1 C 0-40-100-250-1000 ppm (52 weeks) 0-100-1000 ppm (25 weeks, males only, investigation of prostata effects)
[mg/kg bw/day]	M+ F combined: $0 - 3.3 - 9.6 - 80.0$ (10 weeks) - $65.7$ (4 weeks)	$0^{\frac{1}{2}}$ $3^{\frac{1}{2}}$ $3^{\frac{1}{2}}$ $3^{\frac{1}{2}}$ $3^{\frac{1}{2}}$ $3^{\frac{1}{2}}$ $3^{\frac{1}{2}}$	M: $0-1, 4243.60-8.88-34.42$ (week 4-52) 0- $3, 23 = 32.40$ (26 weeks)
Testes	Weight: no treatment-related effect (at 100 ppm 11 slightly reduced weight) Histology: no treatment-related effects	Weight no effect Histology: at 68 mg/kg 6w/day: Leving cells hightly more prominent (2,4, controls: 1/4), slightly ↑ no. 20 degenerated spormatocytes (2/4)	Weight: no effect Histology: no effects up to 34 mg/kg bw/day
Prostrate	pronounced in 80 mg/kg bw/day group, possibly due to longer treatment duration/higher feed to take) Histology: no effect	Weight 1 ≥ 35 mg/kg bw/day folightly higher than HCD; very low absolute & relative weights in control & low- dose groups Histology: ≥ 35 mg/kg bw/dg slight to moderate glandular hypertrophy (44 at both dose levels)	Weight: no effect at 26 weeks, slightly ↑ at 34 mg/kg bw/day after 1 year Sonographic investigations in weeks 17, 26 & 52: no treatment related effects Histology: no effect after 26 and 52 weeks
Epididymides	Weight: not in destigated Histology: no treatment-related undings	Weight: not investigated Histolog©at 68 mg/kg bw/day slightly ↑ no. of degenerated spermatocytes (4/4, controls: 1/4)	Weight: not investigated Histology: no effect

Since no toxic signs were observed at 1000 ppm the higher bise was the reased to 250 from day 19 onwards, to 1600 ppm from day 26 onwards, and to 2500 ppm from day *: 38 onwards. An additional 2500 ppm treatment group was added from day 98 to day 66.

**: Due to vomitus, slight tremor, feed refusal and voticed bodyweights the high-dose of 4000 ppm was set to 0 ppm from day 5 to 14 and then to 2000 ppm from day 15 throughout the study:
bw: body weight the Mathematical equation of the material equation



Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid


# CA 5.9 Medical data

Medical surveillance data of manufacturing plant personal exposed to thiacloprid are available from the years 2004 to 2014. The annually conducted medical routine investigations included assessment of medical history, a full physical examination, laboratory investigations (PBC, liver enzymes creatinfine, urine stick), and technical examinations (vision testing, audiometry, Ong function testing as needed for specific job tasks). None of these investigations revealed any unwanted effects in the workers. In addition, there were no accidents involving thiacloprid during the production period since 2005. Further data on humans are only available from one publication. However, no clear relation to thiacloprid could be derived. The reported symptoms were typical for non-icotinely insecticides, and were considered to be due to prolonged high intake of treated fruits and teas. In addition, product stewardship surveillance has revealed some cases of mediated fruits and teas. In addition, product during the symptoms were typical form overexposures due to accidental ingestion and in suicide attempts with combination products (pyretholds plus ethanol). No different symptoms were reported

Direct observations in humans as well as epidemiological studie with this clopind are not available.

Diagnosis of poisoning is mostly due to determination of compound-specific clinical signs, i.e. nicotine-like cholinergie symptoms like nausea, voniting, abdominal pain, diachea, increased salivation, headache dizziness, and central nervous system effects like agitation or confusion, as well as severe symptoms as cona, tachy- or bradycardia, hypotension, respiratory failure. For an exact diagnosis analytical determination of thiaclopird or its metabolites in blood, urine or gastrointestinal contents would be required.

A specific antidote therapy is not known? For first and measures termoval of ingested compound by gastric lavage, application of activated charcoal and sodium sulphate is recommended Burther treatment has to be symptomatic and supportive with about on respiratory function, if needed mechanical ventilation. Contaminated skin should be washed immediately with plenty of water and soap. Exposed eyes should be flushed with lukewarm water



BAY

In-company experience	o
Chemical name:	
IUPAC:	{(2Z)-3-[(6-Chloropyridin-3-yl)methyl]-1,3-thiazolidin 2-
	ylidene}cyanamide
CAS:	111988-49-9,
	[3-[(6-Chloro-3-pyridinyl)methy] 2-thiazolidigylidene
	cyanamide & A S S
Physical state:	light brown powder
Processing plant:	<pre>{(2Z)-3-[(6-Chloropyridin-3-yl)methyl]-1,3-thiazolidig 2- ylidene}cyanamide 111988-49-9, [3-[(6-Chloro-3-pyridinyl)methyt]&gt;2-thiazolidinylideno] cyanamide light brown powder 1005 -2014 166@851 tons per year Helmet, Gafety glasses, safety shoes TyveR type suit and PFP3 masks for some tasks.</pre>
Number of employees handling product:	$40$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
Production period:	2005-2014 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Amount produced:	1669851 tops persear & T
Personal safety measures:	Helmet, Cafety glasses, safety shoes
ž	TyveRtype suit and PFP3 masks for some tasks
In-company experience: $\sqrt[4]{0}$	
In-company experience: No unusual occurrences or complaints.	
Occupational Medical Experiences	TyveR type suit and PFP3 masks for some tasks
No. of workers exposed:	
Medical examinations;	History and full physical examination
Medical examinations: Commenced in: Examination intervals:	
Examination intervals:	annually S & L @
Laboratory examinations: $\sqrt{2}$ (4) Technical examinations: $\sqrt{2}$	FBC, liver enzymes, creatinine urine stick
Technical examinations:	Vision esting audiometry, ung function testing as needed
	Vision desting sudionsetry, dung function testing as needed for specific job tasks n/a orkers exposed to Thiacloprid performed since 2005 annually
Other technical details	$n/a$ , $rac{1}{2}$ , $rac{1}{2}$ , $rac{1}{2}$
Medical assessment:	
Occupational medical surveillance of wo	orkers exposed to Thiacloprid performed since 2005 annually
on a routine Dasis, not directly related	to exposure, did not reveal any unwanted effects in the
workers. The examinations included	he above laboratory parameters and clinical and technical
examinations.	
During the production period since 200	Ono accidents with Thiacloprid occurred in the workers. No
further consultations of the Medical I	Department due to work or contact with Thiacloprid were
required.	
	Cho accidents with Thiacloprid occurred in the workers. No Department due to work or contact with Thiacloprid were
õ	



Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

# CA 5.9.2 Data collected on humans


Report:	u; 2014; M-486526-01-1
Title:	KCA 5.9 Medical data for thiacloprid
Report No:	M-486526-01-1
Document No:	M-486526-01-1
Guidelines:	EU Regulation 1107/2009 & EU Regulation 283/2013
	SANCO 10181/2013;
	Deviation(s): not specified $\int_{0}^{0^{\prime}}$
GLP/GEP:	Not applicable

# Any significant clinical findings related to exposure 🖉

One publication in 11 patients (6 to 52 years old) in Japan reported detection of the metabolite (6chloronicotinic acid, not specific and ometabolite also of other neonicotinyl inserticides) in 6 patients. These 6 patients had symptoms of headache, general fatigue, tinger themory and short time memory disturbance, fever, cough, palpitation, chest pain stomachache, myalgia/muscle spasm/muscle weakness, heart rate abnormality tonus tachycardia, sinus bradycardia, or intermittent WPW syndrome). The symptoms were assumed to be due to prolonged high intake of treated fruits and tea. [Taira K et al: Chudoku Kenkyu, 2011, 24(3), 222-30 – abstract only in English],

Product stewardship surveillance has recealed some cases of nicotinergic symptoms from overexposures with abdominal pain, nausea, diziness and vomiting Irritations of skin and mucous membranes have been described. In 2 cases of accidental ingestion and in suicide attempts with combination products pyrethroids plus ethapol) no different symptoms were reported.

CA 5.9.3 2	Direct observations
CA 5.9.3 C	Direct observation U: U: U
<b>Report:</b>	; 2004; M-486526-01-1
Title:	KEA 5.9 Medical data for thiacloprid
Report No: 🖉	$\widetilde{\mathbf{M}}^{2}4865\widetilde{\mathbf{Z}}^{2}6-01\widetilde{\mathbf{\Psi}}$
Document No.	M-480526-01-1 ~ ~ ~
Guidelines	EU Regulation 1107/2009 & EU Regulation 283/2013
Guidelines	SANCQ10181/2013
×.,	Deviation(s); not specified
GLP/GEP:	Not applicable Q 👋
Ŵ	
None available.	SANCO10181/2013 Deviation(s): not specified Not applicable
GLPGEP:	Not applicable



**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

### CA 5.9.4 **Epidemiological studies**

CA 3.7.7	
_	Lipide motogical studies t; 2014; M-486526-01-1 KCA 5.9 Medical data for thiacloprid M-486526-01-1 M-486526-01-1 EU Regulation 1107/2009 & EU Regulation 283/2013 SANCO 10181/2013; Deviation(s): not specified Not applicable Diagnosis of poisoning (determination of active substance, metabolites)
Report:	t; 2014; M-486526-01-1
Title:	KCA 5.9 Medical data for thiacloprid
Report No:	M-486526-01-1
Document No:	M-486526-01-1
Guidelines:	EU Regulation 1107/2009 & EU Regulation 283/2013
	SANCO 10181/2013;
	Deviation(s): not specified
GLP/GEP:	Not applicable
None available	t; 2014; M-486526-01-1 KCA 5.9 Medical data for thiacloprid M-486526-01-1 M-486526-01-1 EU Regulation 1107/2009 & EU Regulation 283/2013 SANCO 10181/2013; Deviation(s): not specified Not applicable
None available	
CA 5.9.5	Diagnosis of poisoning (determination of active substance, metabolites),
	specific signs of poisoning, clinical tests
Report:	SANCO 10181/2013; Deviation(s): not specified Not applicable Diagnosis of poisoning (determination of active substance, metabolites); specific signs of poisoning; clinical tests KCA 5.9 Medical data for thiacloprid M-486526-01-1 KCA 5.9 Medical data for thiacloprid M-486526-01-1 EU Regulation 1107/2009 & EU Regulation 283/2014;
Title:	KCA 5.9 Medical data for thiaclourid
Report No:	M-48652 $G$ -01-1 $K$ $G$ $G$ $G$ $G$ $G$ $G$ $G$ $G$ $G$
Document No:	M-486526-04-1 8 4 4 4 4
Guidelines:	M-486526-04-1 EU Regulation 1167/2009 & EU Regulation 283/2013 SANCO 10181/2013;
	SANCO 181/2013; S S
	Deviation(s); not specified a difference of the specified
GLP/GEP:	S Not applicable S
As for all chit	M-486526-04-1 EU Regulation 1167/2009 & EU Regulation 283/2013 SANCO 10181/2013; Deviation(s): not specified Not applicable pronieotinyl, ensecticides meotine like cholinergic symptoms can occur like nausea,
• • • • •	

vomiting, abdominal pain, diarrhea, increased salivation, headache, dizziness, and central nervous Ş system effects like agitation of confusion. S  $\bigcirc$ 

Severe symptoms may be coma, tachy- or bradycardia, hypotension, respiratory failure.

While most chloroficotinyl poisonings, seem to hav a mild course, there are reports of fatalities in S. literature for other chlorophicophyls then this lopric

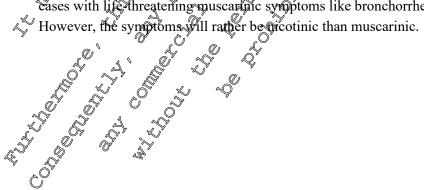
In high dose animal experiments with ther choronicotinyl insecticides disturbances of breathing and movement, tremor and cramps, impaired papillary function and hypothermia have been observed. In

total the symptoms were similar tonicotive poisoning.

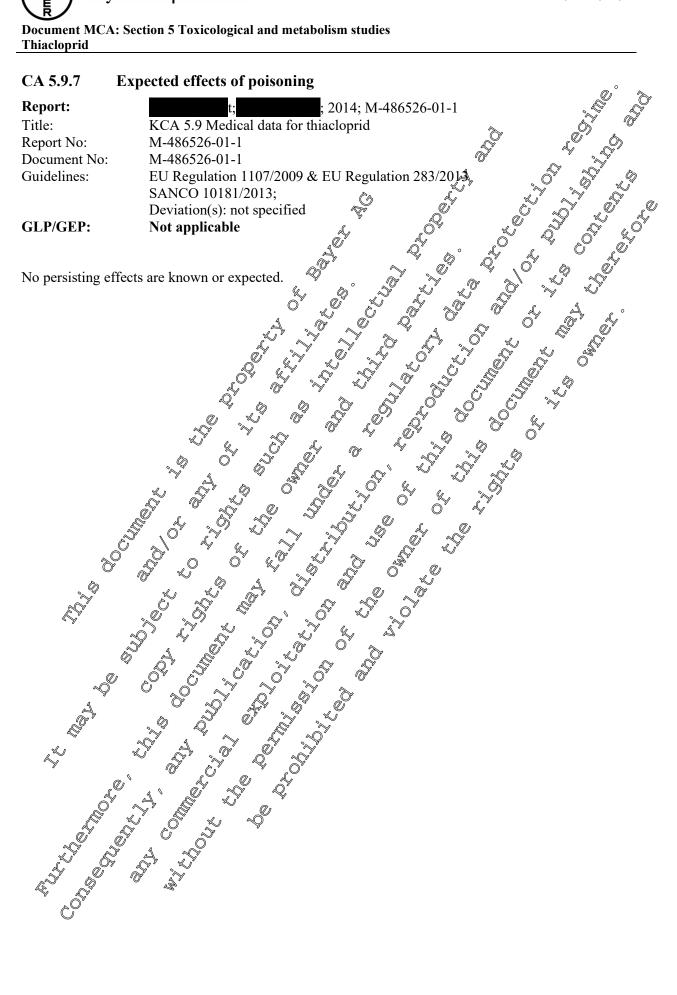
~0

5

## **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid


CA 5.9.6	Proposed treatment: first aid measures, antidotes, medical treatment
Report:	i; 2014; M-486526-01-1
Title:	KCA 5.9 Medical data for thiacloprid
Report No:	M-486526-01-1
Document No:	M-486526-01-1
Guidelines:	EU Regulation 1107/2009 & EU Regulation 283/2013
	SANCO 10181/2013;
	Deviation(s): not specified
GLP/GEP:	Not applicable

# **First Aid:**


- _
- Remove patient from exposure/terminate exposure Thorough skin decontamination id: Remove patient from exposure/terminate exposure Thorough skin decontamination with copious mounts of water and soap of available with polyethylenglykol 300 followed by water. Note: Most formulations with this active ingredient can be decontaminated with water (and soap), so for formulations polyerhyleneglykot 300 is not required ? 0
- Flushing of the eyes with lukewarm water for 15 minute
- Induction of vomiting should only be considered if a large amount has been swallowed, if the ingestion was less than one hour ago, and if the patient is fully conscious
- Induced vomiting car remove maximum 50% of the ingested substance, Note: Induction of vomiting is forbidden if a formulation containing organic solvents has been ingested!

# **Treatment:**

- Gastric lavage should be considered in cases of significant ingestions within the first (2) Abour(s) L)
- The application of activated charged and sodium sulphate (or other carthartic) can be considered in significant ingestions.
- Treatment hat be symptomatic and supportive with a focus on respiratory function, if
- needed mechanical ventilation. Some experts recommended for other neosucotinyls to consider judicious use of atropine in Cases with life threatening muscarinic symptoms like bronchorrhea with airway compromise.







### CA 5.10 **Overall conclusions**

# Summary of absorption, distribution, metabolism and excretion

In the *in vivo* rat metabolism studies (reported in the baseline dossier) this copyrid is intersively metabolised. On average, only ca. 6% of the administered adioactivity was identified as unchanged parent compound, while more than one third of the given dose consisted of 6-chloropricotine acid and its glycine conjugate. Altogether 13 metabolites were dedentified, but most of the poat amounts below 5% of the administered radioactivity. These metabolites were either formed by ging-opening of the thiazolidine ring and/or by conjugation, i.e. by a phase II reaction. This may be the reason that the were not found in the in vitro microsomal system.

In the comparative in vitro metabolism study conducted in human and rat liver microsomes ¹⁴Cthiacloprid was highly metabolically stable. The in wiro metabolism was comparable in fumar and rat liver microsomes, with no indication for the formation of a unique huntah metabolite Only one metabolite was detected in very low amounts of the relative percentage (<10%) after ¹⁴C-thiacloprid in-vitro incubations with both sat and human liver precognes. The results of the comparative in vitro metabolism study demonstrate that phase interabolism plays a very moderate pole in the biotransformation of thiscleprid in rat and human liver microsomes. In addition, no differences with respect to the metabolic pattern were found in both fr-vitro est systems 

# Acute toxicity

Thiacloprid displayed moderate acute or al toxicity in male and female Wistar rats, but was toxic after acute oral administration to Fisher 344 rates in a pilot study for the acute oral neurotoxicity study. The results obtained with fasted and non-fasted Wistar rats suggest that dietary status can influence the toxicity of thiacloprid. Thiacloprid was moderately toxic after inhalation and of low toxicity after dermal application. See differences are exdent in rats when exposed via the oral or inhalative route, fentales appear to be more sensitive than males. Thiacloprid does not cause skin or eye irritation and is no skin sensitizer.

An in vitro 3T3 NRU phototoxicity test conducted with thiacloprid did not give any indication for a phototoxic potential of the compound.

Short

Short-term to ricity studies have been conducted in rats, mice and dogs.

The main target in rodents proved to be the liver. There was no evidence of accumulation in the shortterm studies at dose levels that did not overload the metabolic capacity of the liver. A dose-dependent **BAYER** Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

liver enzyme induction occurred in rats and mice. This enzyme induction was associated with increased liver weight, centrilobular hypertrophy and changes in the cytoplasm of the hepatocytes

In rats, the enzyme induction was believed to be responsible for the secondary effects observed in the thyroid glands (e.g. increased weight, increased mitotic rate and hypertrophy of follicular epithelium). A comparison of the enzyme induction seen at the top dose levels in the 14 day rat stud and 12 week rat study indicate that some but not all of the enzyme levels increased with the duration of exposure. The cytochrome P-450 (males) and UDP-glucuronyl-transferase (mates and females) levels appeared to increase with time. Liver enzyme induction and the related morphological changes were also observed in the inhalation and dermal studies. Following oral (13 weeks) and dermal administration (22 applications), the enzyme induction and increased liver weight were shown to be reversible or at least partly reversible. The thyroid follicula cell hepertrophy was also shown to be at least partly reversible following dermal administration and a 2-week recovery period. There was evidence of an effect on circulating thyroid hormone levels and biochemical parameters. Body weight and food patake effects were also observed in rats.

In mice, the liver effects also included an increase in the bird content of the hepatocytes. A doserelated increase in fatty vacualation and hypertrophy of the actional X-zone was also detected in female mice. A NOAEL was not established for this finding.

In dogs the liver was also a target, but the effects were toss pronounced, and although an enzyme induction was observed, it was weaker than in redents. Re-evaluation of the thyroid hormone data in dogs with the adaequate historical control data of the year of study conduct revealed, that there is no effect on the hyroid in this species. The mean prostate weights were increased in the 10- and 15-week dog studies at tose levels > 1000 ppm. Microscopy revealed slight to moderate hypertrophy of the prostate at dose levels > 1000 ppm in the 5-week study only. In the 52-week dog study, there was no evidence of increased prostate weights at 26 weeks but the mean prostate weight was increased at 1000 ppm on termination. Microscopic and ultrason graphic investigations of the prostates did not detect any treatment related effects at week 2000 revealed to high individual variation in growing dogs. It was noted that six treated dogs had individual prostate weights that were noticeably higher than the cited historical control data.

A toxicontinetic evaluation of thiacloprit concentrations in blood plasma of dogs from the subchronic dietary study demonstrated an efficient oral absorption of thiacloprid. The less pronounced toxicity observed in dogs as compared to rodents are therefore not due to low absorption of the test substance.

Genotoxicity texting

Guideline genotoxicity studies conducted with thiacloprid were consistently negative. They comprised point mutation assays in bacteria and mammalian cells, an in vitro cytogenetic study, an unscheduled DNA synthesis assay on primary rat hepatocytes as well as a micronucleus test in vivo.

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

Furthermore, an additionally available bacterial DNA-repair test (rec-assay) revealed no indication for a DNA-damaging effect of thiacloprid.

Three publications emerging from public literature between 2012 and 2013 described genotoxic effects of thiacloprid in different test designs in vitro and in vivo. All three of them were based on non-GLP studies, which according to different deficiencies were considered to be non reliable and, thus, not relevant.

Long-term toxicity and carcinogenicity Long-term studies have been conducted in the rat and mouse In rats, body weight effects were observed in both serves with more and the rate of the and in females at dose levels > 500 ppm Liver Shanger, probably caused by chronic induction of hepatic phase I and II enzymes, were increased weight, hepatocellular hypertrophy, altered hepatocellular foci and cytoplesmic changes in the hepatocytes NOAEEs for enzythe induction in males and females were 25 ppm (16 mg/kg bw/day) and 50 ppm (3.3 mg/kg bw/day), respectively. Thyroid changes were observed icluding hypertrophy and hyperplasia of the follicular epithelium, colloid alteration and follicultar cell aderoma. These changes were also considered to be a consequence of the liver enzyme induction. It has been proposed that the increased enzyme activities enhance the capacity of the liver to deactivate and excrete the circulating thyroid hormones. Alterations of the hormone levels trigger a compensatory increase in TSH, which induces the morphological changes in the thyroid gland. At 1000 ppm 69.1 / 51.7 mg/kg bw/day (males / females)), re-evaluation of the data with the appropriate historical control data revealed a trend for an increase in TSH in high these females in weeks 26 and 105 (statistically significant increases, but values still in the 24s range of historical controls). Although the expected decreases in circulating T3/T4 levels were not detected in this study, such decreases were seen in the short-term rat studies. It has been assumed that the expected decreases in TS/T4 levels are masked by the rapid compensatory reactions of the thyroid system.

There were increased incidences of utering adence arcinomas and reduced incidences of lacteal cysts and galactocele in the manmary glands, which were again considered to be secondary to the liver enzyme induction. Special mechanistic studies seemed to indicate an induction of aromatase resulting in increased estradial levels and via continuous stimulation of the uterine endometrium, after 2 years in an increased incidence of uterine adenocarcinoma. However, more recent investigations showed that the apparent aromatase induction was an artefact caused by the unspecificity of the assay used and that thiacloprid is not an aromatase inducer.

An additional histopathological investigation of the uteri of females of all dose groups after 1 year of Greatment revealed a slightly increased incidence of slight to moderate uterine glandular hyperplasia after 500 and 1000 ppm. This lesion is a spontaneous finding. While it occurred as a reactive change in some animals up to and including 500 ppm due to endometritis, or stromal polyp or both conditions, it could be treatment related in 2 or 4 out of 10 animals after 500 and 1000 ppm.



There were increased incidences of retinal atrophy (females), lens degeneration/opacity (females), radiculoneuropathy (females), sciatic nerve degeneration (both sexes) and skeletal muscle atrophy (females). These age-associated findings were mainly seen at the top dose level or were sex specific? Ŵ but are consistent with the neurotoxic mode of action of the test material.

In mice, there were effects on male body weight and food intake. Leukoogte counts were increased in males and in females at some sampling points. Liver effects including prcreased weight, hypertrophy, fat storage, necrosis and degeneration, were seen in males and females. In female@increased advenal weight was associated with hypertrophy and vacuolisation of the cortical X-zoneOThe liver effects and the concomitant hormonal changes may have reduced these adrepted changes by affecting the development of the hormone-dependent X-zone. The incidence of eosinophilic lateinised cells in the ovarian stroma or the surrounding adipose to sue and ovarian luteomac were pricreased. The report considered these effects to be secondary to the mown driver enzyme induction and the subsequent Reproductive Toxicity hormone imbalance.

In a rat two generation study, decreased food consumption and bodyweight gain were seen at the top dose level of 600 ppm. Clinical signs of pxicit were proted in dams at 300 and 600 ppm, the incidence of dystocia was also increased at these dose level. Litter size and pup survival were significantly decreased at the top dose level, pup growth way significantly decreased at 300 ppm and 600 ppm in both generations. Increased thyroid, liver and gonad weights were seen in adults of both generations a 300 ppm, Distological correlates of patocyte and thyroid follicular hypertrophy were also reported.

In the rat developmental study, decreased body weights and food consumption were noted at the top dose level of 50 mg/kg bw/day, Effects on wrine and faecal production were also seen. Forelimb malformations (bone dosplasify wer also seen in the presence of marked maternal toxicity and the incidence was within the historical control range Post implantation loss was increased in this group as a result of late resorption. The inoidences of placental border necrosis and foetal renal pelvic dilatation were increased in treated groups, however values were within or close to the historical control ranges. Numerous skeletal findings indicative of delayed or reduced ossification were noted at the top dose level?

In the rabbit developmental study, increased abortion, decreased food consumption and bodyweight gain were seen at 10 mg/kg bw/day. Foetal skeletal effects indicative of reduced or delayed ossification were noted in the top dose group. A marginal increase in the incidence of supernumerary 13th ribs was also noted in this group. An increase in the number of foetal malformations in this group is dargely attributable to the incidence of forelimb arthrogryposis. This effect is a common spontaneous malformation (nowadays termed "malposition of forelimb(s)" - ventral flexure in the



region of the wrist)⁹ in this strain of rabbit, the incidence is within the historical control range and

Although forelimb malformations were seen in the rat and rabbit, these findings are not directly comparable. Both the bone dysplasia and arthrogryposis are common spontaneous findings and the incidences of these effects are within the relevant historical control data. thiacloprid was tested in acute and suberronic neurotoxicitostudies, as well as in a developmental neurotoxicity study.

Administration of single oral doses of thiacloprid to gats by gavage produced only transient clinical signs of toxicity. The overt signs included fremos, degreased activity, ataxis, repetitive chewing movements, dilated pupils, eyelid ptosis, and clear lacrimation, oral and nasal staining and reduced body temperature. Brain weight was not affected by treatment. Instopathology did not reveal any lesions in the nervous system system system is skeleral muscle. The only treatment-related effects in the 13 week feeding study were reduced body weight and food consumption. The large differences between the NOELs determined for neuropexicity in the acute and shoft term feeding study may be due to bolus dosing or possibly adaptation.

For the registration of thiacloppid in the United States, a developmental neurotoxicity study was conducted. The study was aready submitted for Angrex I inclusion, but not discussed in the Monograph. In this study dietary exposure to thiacloprid did not cause any neurotoxic effects in parental as well as offspring mimals. Treatment-Plated findings consisted of reduced maternal body weights and body weight gain during gestation Sand lactation, as well as reduced food consumption during gestation in the mid and high dose. Body weights and body weight gain were also reduced in mid- and high dose FA males and females and absolute food consumption was also reduced in mid and high dose F1 males. Relative food consumption was increased in mid and high dose F1 rats of both sexes due to the reduced body weights. Terminal body weights were also decreased in mid and high dose males and high dose females of the F1 generation. F1 offspring of the mid- and high-dose groups exhibited also a delay in development (preputial separation in mid

 $^{^{9}}$  Malposition of forelimble): This finding is the most common spontaneous malformation in the strain of rabbits used and some comparies regard this finding as variation only. It is most likely the consequence of restriction of fetal movements in the uterus, which results in a caudal flexure of the forelimb(s) in the region of the wrist (carpet joint). Except from the flexion of the limb, there are no further morphological changes involved in this joint region, otherwise it would not be regarded as a "common finding". Furthermore, arthrogryposis in rabbits is considered to be reversible after birth, since such a finding was never observed in the young by the breeder. Therefore, this finding in rabbits is completely different from the dysplasia of limb bones seen in the rat, where the bones are changed morphologically.

and high dose males and vaginal patency in high dose females) which is considered to be secondary to body weight changes.

**Delayed polyneuropathy studies** 

A publication on histopathological alterations in chicken after subacute treatment with thiacloprid was reviewed for its possible relevance for delayed neurotoxicity. Since investigations regarding delayed neurotoxicity were not included in the study design, the publication is not relevant for the endpoint delayed neurotoxicity.

Toxicity studies of metabolites During the previous EU review, the foxicological properties of several plant and/or soil groundwater metabolites (YRC 2894-amide (M92), YRC 2894 sulfanic acid (M30), and VRC2894sulfonic acid amide (M34)) had already been evaluated based on studies on a take or al toxicity in rats, genotoxicity and liver enzyme induction in rats.

In addition, new studies on 6-chloronicotinic acid (M03), YRC 2894-sulferic acid (M30), sulfonic acid amide (M34) and thiacloprid-thiadiazine (Z5) On acute oral toxicity, generoxicity, steroidogenesis in vitto or liver enzyme induction in rats are now available of were conducted, respectively. With regard to the invitro steroidogenesis assays on the metabolites thiacloprid was

tested in parallelagain in order to be able to compare the results obtained with the metabolites with those of the parent compound.

The results of all available studies on the above mentioned metabolities are provided in the following paragraphs.

The plant metabolite thaclopid-amide (also a possilated intermediate in rat metabolism) displayed a LD₅₀ > 2000 mg/kg by in an acute wral toxicity study in rats showing that M02 is of less acute toxicity than thiacloprid. In addition, MOO was for point mutations in an Ames test.

YRC 2894-sulfonic acid (M30)

Thiacloprid-amide M02

Å

The groundwater metabolite YRC 2894-offonic acid (also a postulated intermediate in rat metabolism) also has a lower acute or al too city than thiacloprid (LD50 M30 > 2000 mg/kg bw). YRC 2894-sulfonic acid did not induce mutations in vitro in bacteria and mammalian cells and displayed no clastogenic potential in mampalian cells. Therefore, M30 is considered to be non-genotoxic. Furtherstore, M30 did not incluce liver enzymes in female rats after dietary exposure with 1000 ppm for one week. An in vitro H295R steroidogenesis assay did not give any indication for an effect on steroidogenesis.

# Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

## YRC 2894-sulfonic acid amide (M34)

The groundwater metabolite YRC 2894-sulfonic acid amide displayed an acute oral  $LD_{50} > 000$  mg/kg bw in rats indicating that it is less acutely toxic than thiacloprid. In addition, M34 is considered to be non-genotoxic based on negative results in *in vitro* assays for point mutation in bacteria and mammalian cells as well as for clastogenicity. YRC 2894-sulfonic acid amide caused no liver enzyme induction after dietary exposure of female rats with 1000 ppm for one week. An in vitro prospective steroidogenesis assay did not give any indication for an effect on steroidogenesis.

## 6-Chloronicotinic acid (M03)

An acute oral toxicity study and an Ames test are available on the raft plane and soil metabolity 6chloronicotinic acid.  $LD_{50}$  in rats was > 5000 mg/kg bw indicating that 6-chloronicotininc acid is less acutely toxic than thiacloprid. Furthermore, 6-chloronicotininc acid was regative in the Ames test.

# Thiacloprid-thiadiazine (Z5)

Investigations on the groundwater metabolite thracloped-thiadiazine (Z5) Fevealed a lower acute oral toxicity with a  $LD_{50} > 2000 \text{ mg/kg}$  by incomparison to thiacloprid. With negative results in a bacterial reverse mutation assay, a mammalian cell gene mutation test and omicronucleus test in human lymphocytes thiacloprid-thiadiazine is considered to be non-genotoxic. The metabolite did not lead to liver enzyme induction after dietary administration of 1000 ppm to male rats for one week and has no effect on steroidogenesis in the invitro D295R steroidogenesis assay.

# Additional steroid genesis assay on this toprid

For the evaluation of possible effects of the metabolites on steroid ogenesis in comparison with the parent compound, an additional H295B steroid ogenesis essay was conducted in parallel with thiacloprid. Thiacloprid caused a slight, statistically significant effect on testosterone and estradiol secretion at the highest concentration of 100  $\mu$ M  $\approx$ 

# Supplementary studies on the active substance

Supplementary studies on this loprid comprise previously and recently conducted studies on toxicokinetics, an immunotoxicity study as well as mechanistic studies investigating the modes of action of the observed tubors as well of dystoora.

# Toxicokineti

Toxicokinetic studies in rats revealed dose proportional increases in plasma concentrations in males at high doces of 1000 ppm, while increases were over-proportional in females indicating an overload of the metabolic capacity of the liver. A decrease of plasma concentrations over time due to enzyme induction and increased metabolisation of thiacloprid was not visible. Therefore, a possible inhibitory effect of thiacloprid on CYP450 dependent monooxigenases was investigated. Only a weak inhibitory effect on 7-ethoxycoumarin-deethylation in liver microsomes was noted, which is not very relevant *in vivo* because the necessary concentrations will not be reached. A study comparing toxicokinetics in

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

pregnant to non-pregnant rats revealed higher plasma concentrations of thiacloprid in pregnant animals. Protein binding of thiacloprid in plasma of humans and rats was low and of similar magnitude in both species (40.7% in human, 54.7% in rat plasma). Toxicokinetic determinations in 🖗 plasma of dogs from the 15-week dietary toxicity study revealed a high oral absorption of  $\mathcal{A}^{\otimes}$ thiacloprid. Insufficient oral absorption can therefore be excluded as a possible reason for the fact that toxicity of thiacloprid in dogs was not very pronounced 

Immunotoxicity study

An immunotoxicity study in rats revealed that thiactoprid has no tommunosuppressive potentia

Supplementary studies to elucidate the tumor mode of actions

Additional work on thyroid tumors: An in story story showed that this cloprid and its metabolites are no inhibitors of the thyroid peroxidase (TPO). A 3-week dietae study was especially designed to investigate the effects of thiacloprid on the thyroid in rats. It was shown that thy foid findings (Changes of thyroid hormones and TSH as well as thyroid folliculaticell hypertrophy) occurred only aldoses linked with marked liver enzyme induction including monounced UDP-GT increases. This indicates that the mode of action of thyroid effects including thyroid follicular cell adenoina in male rats after long-term treatment with thiseloprid is secondary to liver enzyme induction. This mode of action is rat specific and not relevant to humans.

Additional work to excide the mode of action of tumots of the female reproductive tract (uterine adenocarcinoma in sat, ovarian luteoma in mice): In the 1990ies studies in rats and mice have been conducted, in which aromatase (CYP19, catalysing the conversion from testosterone to estradio for from and postenedione to estrone, respectively levels have been determined mostly in liver tissue and ovaries. This was done in the framework of the mode of action work for the tumors of the female reproductive tract as well as for dystocia. An induction of gromatuse could have been a possible reason for an increased estradiol/progesterone ratio which after long term treatment would lead to the observed tumors or dystocia, respectively. However, due to the recent work by (2009, M-360757-02-1)_it is known that the observed increases of aromatases in the old studies were artifacts caused by the unspecificity of the tritiated water assay used and that thiacloprid is no inducer of aromatase (at high dietary thiacloprid doses 1000 ppm even a marginal inhibition of aromatase in the ovaries was **see**n).

In a 13-week diffary study in female mice for aromatase induction also slight changes of sex steroid hormones were observed. There were slight decreases of plasma estradiol and increases of plasma progesterone, which respired in a slightly decreased estradiol/progesterone ratio. The NOAEL for the hormone changes (based on the estradiol/ progesterone ratio) was 139 mg/kg bw/day. Further findings, besides changes in potility, reduced reactivity and increased liver weight, were increased vaccolization and hypertrophy of the adrenal X-zone. The overall NOAEL in this study was 18 mg/kg bw/day?

## Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

Several mode of action studies on development of uterine adenocarcinoma in rats have been between 2007 and 2010 in order to improve the Q Star risk assessment in the conducted by US. In these studies it was shown that thiacloprid treatment leads to slight changes of estradio or progesterone plasma levels. These are accompanied by a slightly increased expression of genes associated with sex steroid hormone biosynthesis in ovary, liver & adrenal gland. It is assumed that this translates into an increase of CYP450 enzymes involved in steroid biosynthesis will the S magnitude of this effect not being known. However, also moderation of the steroid openic effects was evident from the data due to an increased expression of genes associated with the metabolism of sex steroid hormones. While the observed slight hotonoal changes in young adult rats to ne lead to an effect on the estrous cycle or on other sex steroid hormone sensitive organs or fissues (see 2 generation study and short term toxicity studies in rats), effects on the estrous cycle were noted in 72-week old, aging female rats. In comparison to unireated controls fewer this formed treated females were in pseudopregnancy and more in the ambiguous phase. In addition, thacloged treated rats displayed a lower level of vaginal mucification and marginal, non significant increases of plasma estradiol, which were more pronounced in females in pseudopregnancy in comparison to those in the ambiguous phase. ° K) Ŵ In depth mode of action work showed that thiasloprichas no direct estrogenic effect, since it was negative in an uterotrophic assay. However, it was positive for an effect on steroidogenesis in a H295R assay. Increased progesterone secretion was observed at 100 µM (equivalent to an unbound concentration of about 25 mg/L), while inbound plasma concentrations of female rats after dietary exposure with 1000 ppm (high dose of the 2 year set study) clearly exceeding the MTD) with up to 11.5 mg/L are still in the range of the NOAEC of 50 µM or 12.9 mg/L for progesterone in this assay. Incubation of rat preantral follicies with this doprid led to increased estradiol and progesterone secretion at 500 pM, indicating that preantral follicles are a cellular target for thiacloprid treatment. The NOAEC was 100 µM indicating again that hormone changes and tumour development in rats occurred at unbound plasma concentrations in the range of the NOAEC of this assay. However, the observed effects on sex steroid hormones as well as tumour development in rodents occurred always of dose vevels showing pronounced enzyme induction as well as increased expression of genes associated with sex steroid hormone biosynthesis. Therefore, these effects are considered to be secondary to enzyme induction.

Supplementary studies to Elucidare the mode Maction for dystocia

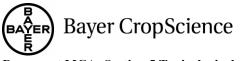
In the 1990ies several special  $\mathbb{Q}$ -generation and mechanistic studies have been conducted to elucidate the mode of action for dystocia in the Sacco Sprague-Dawley rat (used before in the two-generation study on thiacloprid). Dystocia occurred repeatedly, in incidences between 3.3 and 13.3%, after dietary intake of 300 to 1000 ppm thracloprof for 10 weeks during premating and during gestation, while it was not seen in the concurrent controls.

In contrast, this loop is related distocia was not seen after short-term treatment with oral gavage doses of 17.5 to 100 mg/kg bw on cestation days 18 to 21. In a further dietary study no effect of this cloprid on direct birth functions could be shown. However, further data showed that this cloprid treated annuals had increased estradiol levels, slightly increased progesterone and LH levels as well as increased corticosterone levels in plasma during premating, gestation and lactation shortly after parturition.

# **Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

In an additional special 1-generation study the mode of action of dystocia was further investigated using video-recording of parturition as well as sex homone determinations in plasma shortly before and after parturition. Already in two feasibility studies (conducted before the start of the main study to develop and optimize the procedure of video recording and blood sampling during parturition) several cases of dystocia were observed in untreated animals. This indicates that stress along can cause dystocia in Sasco Sprague-Dawley rats. In the main study dystocia was noted in 3/28 dams treated with thiacloprid and in none of the controls. In one dam distocia was due to a missing progesterone decrease, which in rodents is mandatory for a normal parturition. This is not the case in humans, in which progesterone withdrawal is regulated differently and plasma progesterone, levels stay high during parturition. In a second dam dystocia there were no changes of hormore levels. Dystocia was obviously due to stress, by blood sampling and the high general toxicity of thiacloprid together with the increased semitivity of the Sasce Sprague-Datey rat towards such effects. A third dam with dystocia was found deady blood sampling was not possible Furthermore in thiacloprid treated animals the levels of progesterone (slightly increased mean value at GP 20, absence of normal decrease prior to party it on in one rat with Aystocia) and estration (increased mean values at GD 21 and 22) and the respective balance between these hornernes in the days before and during parturition were affected. There was no effect of onset and duration of parturition in all other treated rats. In addition, and the known effects of the clopid toxicity were present in treated rats, i.e. reduced body weight and food consumption, increased liver and thyroid weights, hepatocellular hypertrophy and thyroid follicular cell hypertrophy. In conclusion, dystocia in rate is considered to be either due to hormonal perfurbations (a missing

progesterone decrease before start of parturition, which is mandatory for formal birth in rat, but not in humans) of due to stress by plood sampling and thiadoprid poxicity together with the relatively high sensitivity of the Sasoo Spragne Dayley ratiowards stress. The first mode of action is rat-specific and not selevant for humans, the second mode of action is unspecific and secondary to stress.


# **Publications:**

In addition, three orticles on the clopped or the clopped or the containing formulations were published in Ĉ 2011 and 2012.

One publication, considered to be non-reliable, described changes of thyroid hormone levels in rat serum after treatment with thit Soprid containing formulations. This is a well investigated phenomenon and the reported results do not charge existing endpoints.

In the second publication considered agreliable with restrictions), thiacloprid was reported to induce human CYP 1APoind 132 in HepG2 Cells. The determined enzyme induction was not pronounced and observed at a concentration exceeding the maximal unbound plasma concentrations of thid cloped in vivo. Therefore, the finding was considered to be non-relevant for human safety.

The third publication (also assessed as reliable with restrictions) provides supplemental information on oxidative stress in lymphoid organs, polymorphonuclear leucocytes and plasma of rats after treatment with thiacloprid containing formulations. Also this publication has no influence on existing endpoints.



Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

# **Endocrine disrupting properties**

A review of the whole data base on thiacloprid was conducted to identify possible effects of thiacloprid on endocrine organs, tissues or parameters. Thiacloprid treatment led to findings linked to the thyroid as well as to findings linked to steroidogenesis. However, the data give no indications for effects on the pancreas (including blood glucose, urinalysis data or histopathology), pituitary (organ weight, histopathology) thymps (histopathology) or parathyroid (based on blood calcium levels and bistopathology) in ray mouse or dog.

# Effects on the thyroid

Thiacloprid treatment leads to effects on the hyroid in rats, but not in dogs or mice. The mode of action in rats is secondary to liver enzyme induction, which leads to an increased metabolisation and excretion of thyroid hormones and as a consequence, to an activation of the hypothalamic pituitary-thyroid axis. Permanent stimulation of the thyroid follicular cells by TSH causes thyroid follicular cell hypertrophy and, after long term treatment in males, a slightly increased in cidence of thyroid follicular cell adenoma. Overall, the changes observed under this cloprid treatment in rats are mostly minimal to slight and the body is able to maintain an euthyroid state up to very high doses approaching the MTD.

doses approaching the MTD. This mode of action for the development of the follicular cell adenomy in rate is well known. Due to species specific differences between but and man it is generally accepted as a mode of action, which is non-relevant for humans

# Effects on steroidogenesis

In vitro assay showed that thiacloprid has a direct effect on steroid ogenesis at high concentrations, which exceeded the unbound plasma concentrations of thiocloprid in vivo. The dose levels in vivo with findings like hormonal changes, uterine tumors and dystocia were always associated with enzyme induction including enzymes involved in steroid bios of thesis (with the exception of aromatase). The observed hormone changes, and resulting toxicological findings are therefore considered to be secondary to enzyme induction.

In female rate thiacleprid treatment caused charges in steroid sex hormone levels, which had no further consequences in young adult females. However, in old, acyclic rats these hormonal disturbances led to changes of the uterus and, eventually, to an increased incidence of uterine tumours, since alterations in hormone secretion generally associated with the aging process are exacerbated following treatment with high thiacloprid doses. Since enzyme induction is less pronounced in humans and also the range of female sex hormones shows a much broader variation than in rodents, this mode of action is considered to be less relevant in humans. The lowest dose level with a borderline increased tumor incidence was 33.5 mg/kg bw/day.

Dystocia was mother finding observed in female rats commencing at 22 mg/kg bw/day. Besides an unspecific mode of action secondary to stress, dystocia also seemed to be linked to perturbations of female sex hormone levels, especially to a missing progesterone decrease before parturition. This decrease is mandatory for normal birth in rats, but not in humans, in which regulation of birth is different. Therefore, this mode of action is considered to be rat specific and not relevant for humans. Since the range of progesterone and estradiol levels in humans is also during pregnancy

Document MCA: Section 5 Toxicological and metabolism studies Thiacloprid

and birth much wider than in rat, the observed, rather slight changes of these plasma levels in rat are not considered to pose a risk for dystocia in pregnant women. In male rats, only a slightly increased incidence of minimal to slight Leydig cell hypertrophy was noted in testes after 2 years of treatment with doses of 25 mg/kg bw and above. This is considered to be a biomarker for an endocrine effect, but no adverse effect.

In female mice, changes of steroid sex hormone levels, findings in the adrenal glands (increased weight and enlargement, hypertrophy and more prominent vacuolization) and in the ovaries (a decrease of advanced corpora lutea with eosinophilic cells and an activation of the interstitia as well as an increased incidence of ovarian luteoma could be linked to effects on steroid ogenesis. The adrenal findings are mouse specific, not relevant for humans and, as the slight hormone changes, considered at most as a biomarker for an endocrine effect. The only deverse finding, the ovary changes with the luteoma, was seen only at very high doses of 475 mg/kg bw/day and higher at the end of the 2-year study.

In male dogs findings with a possible endocrine background were not seen consistently. Increased prostate weights were noted repeatedly in studies up to 1 year, but not seen in every case. Only in the 15-week study they were accompanied by slight to moderate glandular hypertrophy of the prostate as well as by slightly more prominent Leydig cells in the testes and a slightly increased no. of degenerated spermatocrites in testes and epidedymides. All of these findings can also be found in untreated young dogs during their normal development. To conclusion, there are at most transient possible endocrine effects in male dogs. A slightly higher prostate weight without morphological correlate is not seen as an adverse effect, but at most as a biomarker for an endocrine effect.

# Assessment of the endocrine potential

Taking all esults together thiactoprid reatment leads to endocrine effects in toxicological animal studies. However, many of the effects were no adverse effects, but biomarkers for a (possible) endocrine effect, or they were species-specific and not relevant for humans (like the observed thyroid findings or dystocia in rat and alrend findings in female mice). The only adverse findings with a possible, although less pronoticed relevance for humans are the increased incidences of uterine adenorarcinoma in female rats, commencing at 33.5 mg/kg bw/day, as well as the ovarian luteoma in female mice, which were observed at 475 mg/kg bw/day and higher doses. According to the Joint DE-UK position "Regulatory Definition" of an Endocrine Disrupter in Relation to Potential Threat to Human Health" of March 2011 the uterine adenocarcinoma with its borderline increased incidence of 33.5 mg/kg bw/day observed in the combined chronic toxicity and carcinogenicity study in rate would fall into the STOT-RE Cat 2 guidance values of the CLP regulation (5 anti 50 mg/kg bw for chronic / long-term studies). As such, thiacloprid would not be deemed an ED of regulatory concern and the standard risk assessment could be applied.

# Calcutation of the acceptable daily intake (ADI)

During the EU review process for the Annex I listing of thiacloprid an ADI was already established. In general, the ADI is based on the lowest NOAEL in the most sensitive species observed in chronic feeding studies in rats, mice and dogs.

**Document MCA: Section 5 Toxicological and metabolism studies** Thiacloprid

For thiacloprid the rat proved to be the most sensitive species. Therefore, the NOAEL of 1.23 mg/kg dy D bw/day observed in males in the chronic toxicity / carcinogenicity study in rats, was selected for ADI derivation at that time and is still regarded as valid. Thus, by applying a safety factor of 100, the resulting ADI is 0.01 mg/kg bw/day.

# Acceptable Operator Exposure Level (AOEL) 🖄

Also an AOEL was already derived during the EU review process for the Annex I lighting of

The AOEL should be based on the lowest relevant DOAEL obtained in the subscute and subchrot toxicity studies in the most sensitive species.

toxicity studies in the most sensitive species. The lowest relevant NOAEL of 2 mg/kg bw/day was found in the developmental fabbit study. Considering the whole toxicological database of thracloping this QOAEL is still regarded as appropriate for the derivation of a systemic AOEL for the aclogdid. Thus, by applying safety fac 100, the resulting AOEL is 0.02 mg/kg bw/day.

Acute Reference Dose (ARFD) The appropriate basis for the derivation of an ARID is the the lowest NGAEL after acute exposure. Considering the whole toxicological database of thiacloprid, the NQAEL of the acute neurotoxicity study in rats was considered to be the most appropriate value for deriving an ArtD and this is still valid at the time being. The NOAEL in the acute neurotoxicity, study was 3 mo kg bw/day. Applying a default safety factor of 100 this results in an ARID of 0.03 mg/kg bw/day. at the time being.