

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed of any third party without the prior written authorisation of Bayer CropScience

The summaries and evaluations contained in this document are based on unpublished O proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the from BayerCropScience; or from other applicants once the period of data projection has repired. basis of the summaries and evaluation of inpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based, either:

Version history

Date (yyyy-mm-dd)	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
2015-09-04	Original Document MCA – Section 5 of Supplementary Dossier	M-531877-020 6
2016-05-02	Original Document MCA – Section 5 of Supplementary Dossier Dossier update according to "Request for additional information of the supplementary dossier submitted by Bayer CropScience for the approval renewal of the active substance Fosetyl (2015-5865) by RMS France on 2016-04-04: - Summaries of the studies used for the first approval of fosetyl and presented in the DAR and addenda to the DAR including detailed result tables have been added throughout Section 5. - Summary tables with additional information have been added to chapters CA 5.3.2, CA 5.5, CA 3.6.1, CA 5.6.2 and Ca 5.8.2. Some of these additional information have been taken from two addenda to study report [1,194]; M-249664-02-1 taken from two addenda (1,1948); M-34109Q1-1 and (1,1948); M-34109Q1-1 and (1,1948); M-3459669-02-1, has been amended, new study report: M-459669-03-Q - ADME information on alumnitum from EFA 3 2008 evaluation of alumnitum in food has been paraphrased in	M-531877-03-1
	 Summaries of the studies used for the first approval of osetyl and presented in the DAR and addenda to the DAR including detailed result tables have been added throughout Section 5. Summary tables with additional information have been added to a summary tables. 	
	chapters CA 5.3.2, CA 5.5, CA 6.1, CA 5.6, and CA 5.8.2. Some of these additional information have been taken from two addenda to study report 5, 1981; M 49664-92-1 taken fore both addenda (1983-1983; M 341090)1-1 and	
	; 1983; M-159736-01-1 have been added to chapter CA 5.5. Study KCA 5.3.2/42, 1983; M-4\$9669-02-1, has been amended, new study report: M-459669-03-Q - ADME information on alumnium from EF-A's 2008 evaluation of aluminium in food has been paraphrased in	
	chapter CA 5.161, Cy & & & &	
	- An analysis of the available MoA information regarding urinary bladder neoplastics lesions following the IRCS scheme has been added to Chapter 5.8.2 - Study results were assessed according to the criteria of Regulation 122/2/2008 throughout Section 5.	Ž
2016-09-01	Dossier update according to Request for additional information on the supplementary dossier submitted by Bayer Crop Science for the approval renewal of the active substance setyle 2015-3865)" by RMS France on 2016-04-04 and its follow up on 2016-96-02:	M-531877-04-1
	- Historical control data for study (1981; M-20)664-021 for neoplastics lesions, particularly for phaeography of the phaeograph	
(C)	Statements regarding bone marrow exposure have been added to chapter \$ 5.4.20	
2016-12-05	Dossier update according to "Reguest for additional information on the supplementary dossier submitted by Bayer CropScience for the approval renewal of the active substance Fosetyl (2015-5865)" by	M-531877-05-1
Z . O	Correction of Cose greens in Acadline of Table 5.6.2-7, it is 0, 500 100 and 300 mg/kg booday instead of 0, 100, 315 and 1000 mg/kg bw/day	
	- Historical control data provided in study ; 2000 A-205472-01 (KCA 5.6.2/04) have been added to the sunmary of his study in chapter CA 5.6.2.	

It is suggested that applicants abopt a similar approach to showing revisions and version history as outlined in SANCO/10160/2013 Chapter 4 "How to revise an Assessment Report"

Table of Contents

CA 5	TOXICOLOGICAL AND METABOLISM STUDIES ON THE ACTIVE	Page
CA 3	SUBSTANCE	5
CA 5.1	Studies on absorption, distribution, metabolism and excretion in mammals	
CA 5.1.1	Absorption, distribution, metabolism and excretion by oral route	
CA 5.1.2	Absorption, distribution, metabolism and excretion by other routes	
CA 5.2	Acute toxicity.	,29
CA 5.2.1	Oral V	Ž
CA 5.2.2	Dermal	Ž38
CA 5.2.3	Inhalation Q Q	<u>,</u> © ^v 4j
CA 5.2.4	Skin irritation	
CA 5.2.5	Eye irritation	
CA 5.2.6	Skin sensitisation & & & X	
CA 5.2.7	Phototoxicity O' Q' Q' Q' Q' Q	59
CA 5.3	Short term toxicity	Ø
CA 5.3.1	Oral 28-day study	
CA 5.3.2	Oral 90-day study	62
CA 5.3.3	Other routes S S S S S	81
CA 5.4	Genotoxicity testing	, Ž88
CA 5.4.1	In-vitro studies	89
CA 5.4.2	In-vivo studies in comatic cells	111
CA 5.4.3	In-vivo studies in germ cells	117
CA 5.5	Long-term to society and carcinogeneity	110
CA 5.6	Reproductive toxicity	144
CA 5.6.1	Generational studies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	146
CA 5.6.2	Developmental toxicity studies	152
CA 5.7	Neurosoxicity studies Q Q Q	
CA 5.7.1	Neurotoxicity studies introdents	
CA 5.7.2	Delayed polyneuropathy studies	
CA 5.8	Other toxicological studies	164
CA 5.8.1		
CA 5.82	Supplementary studies on the active substance	
CA 5.8.3	Endocrine disrupting properties	197
CA 5.9	Medical data V	197
CA 5.9.1	Medical sarveillabee on manufacturing plant personnel and monitoring studies	197
CA 5.9.2	Data collected on humans	197
CA 5.9.3	Direct observations V. D. D. D.	197
CA 5.9.4	Epidemiological studies 2. S.	197
CA 5.9.	Diagnosis of poisoning (determination of active substance, metabolites), specif	fic
. 🕊	signs of poisoning, chrical tests	197
0100		198
CA 5.9.7	Expected effects of pois oning	198
, Ĉ		
	Expected effects of pois ning	

CA 5 TOXICOLOGICAL AND METABOLISM STUDIES ON THE ACTIVE SUBSTANCE

Fosetyl was included in Annex I to Directive 91/414/EEC in 2006 (Directive 2006/64/CE of 18 July 4 2006, Entry into Force on 1 May 2007). This Supplementary Dossier contains only data which were not submitted at the time of the Annex I inclusion of fosetyl under Directive 1/414/EEC and when were therefore not evaluated during the first EU review. All data which were already submitted by Bayer CropScience (BCS) for the Annex I inclusion under Directive 91/44/EEC are contained in the DAR, its Addenda and are included in the Baseline Dossier provided by BCS. These data are only mentioned in the Supplementary Dossier for the sake of completeness and only general information (e.g. author, reference etc.) is available for these data. In order to facilitate discrimination between new, O data and data submitted during the Annex I inclusion process under Directive 91/414/EEC, the objective data are written in grey typeface. For all new stadies, detailed summaries are provided within this Supplementary Dossier. However, for a better understanding of the toxicological and metabolic behaviour of fosetyl, an overall summary is given below and additional short summaries including the results of all studies are given at the beginning of the relevant sections. Additional information requested by the RMS France on 2016-04-04 during the evaluation of the supplementary Dossier is highlighted in yellow. Additional information requested by the RMS France on 2016-11-22 during the evaluation of the Supplementary Dossier is highlighted in grey.

Fosetyl is the ISO common name for ethyl hydrogen phosphorate (PPAC). Due to the fact that the aluminium salt, a variant of fosetyl, is used in the formulated product of should be noted that the presented data in this section belong to the variant fosetyl-aluminium (fosetyl-Al), onless otherwise specified.

In original reports study authors may have used different names or codes for metabolites of fosetyl-Al. In this summary, a single name of single code is used for each metabolite. A full list containing structural formula, various names short forms, vodes and occurrences of metabolites is provided as Document N3.

As some pragnatic approach "phosphonic acid," formed as a major metabolite is reported in this Supplementary Dossier as the free acid for the sake of clarity and unequivocal handling. After application, aluminium trist ethyl phosphonate (i.e. fosetyl Al) dissociates into the O-ethyl phosphonate and aluminium ions. Any phosphonate formed from O-ethyl phosphonate in the following would never be present in the form of the free acid (i.e. phosphonic acid) under the conditions of the civironment (all 4 to 9). This conclusion is supported by the molecular structure and by the dissociation constant observed (dissociation constant for the first step of deprotonation: pKa = 2.0). Consequently phosphonates in their fully protonated form are strong acids that spontaneously form salts in contact with soil or natural water with any suitable counter ion present (i.e. sodium, polassium, magnesium, calcium). With the ability to readily form salts in the environment phosphonates are, in terms of their acidic or alkatine character, similar to the salts of phosphoric acid (i.e. phosphates) in their environmental behaviour. Conclusively, the character of being a salt prevents effects that would be observed when the fully protonated form, i.e. the free acid, would be tested. Consequently, invicological tests were performed with the sodium or potassium salts rather than with phosphonic acid.

OVERALL SUMMARY AND CONCLUSION

The following summary is based on the EFSA conclusion on the peer review of fosetyl (EFSA Scientific Report (2005) 54, 1-79, revised publication dated 12 June 2013). Some information on high dose and multiple dose tests supporting the overall picture is taken from the public DAR, Section® B.6.1.4 (Summary of ADME) of the RMS France (February 2005).

Toxicokinetics and metabolism
Fosetyl-aluminium (fosetyl-Al) is rapidly and totally absorbed (by the rapidly are a single-oral low dose of 100 mg/kg bw of ¹⁴C-fosetyl-Al), based on expiration and uring and faecal excretion of the ¹⁴C-ethyl radiolabel within 48 hours after administration. The large amount of radioactivity expired as © 14CO₂ shows the occurrence of an extensive metabolic transformation. The presence of C-ethanol in urine suggested also the integration of the radiolaber in naturally occurring components from the 140ethyl moiety of the parent (as confirmed by analysis of fractionated fissue extracts, e.g. lipids datty acids, amino acids preparations). After repeated doses, absorption is also rapid and practically complete (> 90% 24 hours post administration, and excretion is apid \$\infty 70\% on air and urine). The major component in urine is ¹⁴C-fosetyl-Al, accounting for 22.8 to 26.3% of the dose, associated by other minor components, accounting for 0.07 to 1.11% of the administered dose.

After single oral high dose of 3000 pg/kg by of 14c-fosetyl-Al, Climination was shown to be very rapid, mainly occurring within 24 hours after administration, through expaled of (ca 50%) and urinary excretion (32 to 33% of the dose) Overall, mean values for faceal excretion were 185% in males and 3.30% in females within 168 hours from administration.

After repeated oral exposures large amounts of 10002 were expired indicating the removal of the radiolabelled ethyl group and the subsequent metabolism via acetalde byde and acetate giving rise to already mentioned integration intonaturally occurring molecules. The remaining molecule of fosetyl, the phosphonate anion is renally excreted as a major component in the urine (together with unchanged fosetyl).

Fosetyl-Al widely distributes to all tissues, with the highest amounts in kidneys, liver, lungs, spleen, fat, adrenal glands gonads, tissues with a high metabolic activity. Tissue levels were between 1.2 and 6% of the dose 168 hours after administration and between 6.9 and 9.5% of the dose 72 hours after administration of a single ord dose. O'

Acute toxicity

The acute toxicity of cosety Al was evaluated following oral dermal, subcutaneous and inhalation routes of exposure (see Table 5.2-4, page 29).

routes of exposure (see Table 5.2-4), page 29). The Fosetyl-Al was of low acute toxicity following or a, desmal and inhalation administration and is therefore not classified for acote lethal effects according to the criteria of Regulation 1272/2008. Fosetyl-Al was previously classified as a severe eye irritating agent (Eye Dam. 1, H318; ; 1997; M-179082-01-13, but a newer oudy (; 2012; M-446501-01-1) demonstrates the reversibility of ocular effects and justify a new classification as Eye Irrit. 2, H319. Fosetyl-Al is not irritating to skin and not a skin sensitizer and not classified for these endpoints in accordance with the respective CEP criteria.

Short-term toxicity

Short term to keity of fosety. Al (see Table 5.3-1, page 60) has been assessed in rodents (6-week oral study in mice; 90 day or studies in rats and 28-day dermal studies in rats) and in dogs (90 days, oral).

Fosety and did not induce adverse effects after oral administration, except for a marginal increase in the incidence and severity of extramedullary haematopoiesis in the spleen at the top dose (1922 and 2499 mg/k@bw/day in males and females, respectively) in an old study (1977; M-158836-01-1) whose results were considered doubtful.

Derma application of fosetyl-Al (1050 mg/kg bw/day) for 28 days in rats caused dermal irritation; no signs of systemic toxicity were recorded (; 1999; M-178986-01-1).

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

The oral 90-day rat study by [1999; M-184588-01-1 was acceptable and showed no effects up to 1270 mg/kg bw/day and this would be the relevant short-term NOAEL. A recent 90-day feeding study in rats has been conducted with almost identical results ([1999]; 2016; M-459669-03-1). The EFSA experts, however, considered that, for the overall short-term NOAEL, also the mechanistic studies should have been taken into consideration. In these studies, increased calcium levels on urine were observed at 20 000 ppm and above and treatment-related changes in the trinary bladder, kidney and ureters were seen at 30 000 ppm and above. The NOAEL of 500 mg/kg 6w/day from the 13 week rat study by [1989; M-160331-01-1] was considered to be an overall NOAEL for short-term toxicity, with histopathological changes in the kidney, impairment of calcium/phosphorus metabolism, calculi and hyperplasia in the urinary tract at higher doses.

No specific target organs were identified in any of the repeated-dose toxicity studies. Therefore, a classification in the STOT RE hazard category is not warranted, according to the criteria of Regulation 1272/2008.

Genotoxicity

Genotoxicity of fosetyl-Al was assessed in a battery of *privo* and *in vitro* lests (see Table 5.4-1, page 88). All the studies gave negative results clearly indicating the absence of any genotoxic potential for fosetyl-Al. Therefore, a classification for germ cell mutagenicity is not warranted, according to the criteria of Regulation 272/2008.

Long-term toxicity and carcinogenicity

Long term toxicity of fosetyl-Al was tested in a 2-year oral study in dogs, in a 2-year oral study in mice (see Table 5.5-1, page 19)

Mice did not show any treatment related effect, exen at high doses (around 4000 mg/kg bw/day).

Testes were the main target organ in dogs Males treated at high doses displayed testicular degeneration. The NOAEL of the study was 258 mg/kg bw/day.

In rats, effects in the urinary tract were recorded, such as calculi and hyperplasia of the urinary bladder

In rats, effects in the urinary that were recorded, such as calculi and hyperplasia of the urinary bladder epithelium in females at doses of 30 000 ppm; at the same dose, males showed a higher incidence of transitional cell papilloms and carcinoma in the urinary bladder. The NOAPL from this study was 348 and 450 mg/kg bw/day for males and females, respectively.

Two mechanistic studies were conducted to assess the mode of action of fosetyl-Al during long term exposures. It was hypothesised that the renal timours ould result from a chronic irritation rather than a true carcinogenic effect of fosetyl-Al The ingestion of high doses of fosetyl-Al is a possible cause of functional alterations of renal excretion, while the formation of calculi may induce a chronic irritation of the urinary bladder epithelium leading therefore to the development of transitional cell papilloma and carcinoma of the urinary bladder. With all long term NOAELs and LOAELs being ≥300 mg/kg bw/day a classification in the TOTRE hazard category is not warranted, according to the criteria of Regulation 1272/2008.

The relevant NOAEL for long-term effects was discussed by the EFSA experts and it was agreed to be about 300 mg/kg bw/day, based on the 2-year studies in rats (1981; M-249664-02-1; addendate (1983; M-234109; 1981; M-15936-01-1) and dogs (1984; M-159302-0-1).

In conclusion, no carcinogenic potential for for etyl-Al is evident.

Reproductive and developmental roxicity

The reproductive toxicity of fosetyl-Al was evaluated in rats and rabbits (see Table 5.6-1, page 145). In a multi-generation for study, fosetyl-Al did not induce any sign of reproductive toxicity. The NOAEL's for maternal and reproductive toxicity are 1782 and 1997 mg/kg bw/day in males and females respectively highest doses tested).

The overall results indicated that fosetyl-Al dose not induce teratogenic effects in rats and rabbits, with an overall NOAEL of 300 mg/kg bw/day from the rabbit study (2000; M-205472-01-1). According to the criteria of Regulation 1272/2008, no classification as reproductive toxicant is required.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Neurotoxicity

Fosetyl-Al did not show any evidence of neurotoxic potential (see Table 5.7-1, page 162).

Studies on metabolites

Phosphonic acid is the major metabolite of fosetyl-Al in plants and in *in vivo* studies. Phosphonic acid and its potassium and sodium salts are of low acute oral, dermal and inhalation toxicity. It is not a skin irritant while it is a slight eye irritant, albeit with no resulting classification (see Table 5 % - 1 page 164). Phosphonates were also tested in some *in vitro* and *in vivo* genotoxicity assays, without showing any genotoxic potential (see Table 5.8.1-3, page 165).

The NOAEL from a 90-day oral study with phosphonic acid in rats was 400 mg/kg bw/day based on soft faeces, increased water intake and urinary sodium excretion at 2000 mg/kg bw/day. In a 117 week oral study in rats (; 1981; M-159229-07-1), phosphonic acid did not induce any major effect at very high doses, and it is unlikely to pose a carcinogenic lazard to humans (see Table 5.8.1-2, page 165). Further revision of this last result for phosphonic acid has been undertaken by EFSA after the peer-review. Considering that this 112 week rat study had been performed with the hydrated monosodium phosphonate, a correction has been made by EFSA experts for the content of water (25.9% of the tested material) and for the molecular weight of monosodium phosphonate (104 g/mol) versus phosphonic acid (82 g/mol). However, the correction for water content is inappropriate, since the study NOAEL had already reported as a dose of anhydrous monosodium phosphonate. Therefore the corrected NOAEL expressed as phosphonic acid is:

NOAEL(H₃PO₃)_{corrected} = 348 mg/kg bw/day (82/204) = 2/4 mg/kg bw/day

resulting in an ADI of 2.74 mg/kg bw/day by applying an uncertainty factor of 100.

Endocrine-disrupting properties

There are currently no scientific cuiteria for classification as BD. However the interim criteria for ED classification land down in Regulation 1109/2009 are not fulfilled, since fosetyl-Al is neither classified as Carc and or Repr. 2 nor does it fulfil the criteria for such a classification. Designated studies on endocrine disrupting (ED) properties of fosetyl-Al have not been conducted. The existing body of data is sufficient to exclude elevant ED the potential of fosetyl-Al.

Overall conclusion

Following oral administration, fosetyl-Al was rapidly almost completely absorbed and metabolised into phosphonate and ethanol and tapidly eliminated within 24 hours.

Fosetyl-Al had low acute toxicity. The compound was classified as a severe eye irritating agent (Eye Dam. 1, H318; 1997; Mol 79082-01-10; but a newer study (1997; Mol 79082-01-10; but a newer study

The overall acceptable NOAEL for short term toxicity is 500 mg/kg bw/day based on the results of a 90-day rat study (\$\frac{1}{2}\$\frac{1}

The overall acceptable NOAF for long-term toxicity was 300 mg/kg bw/day (both sexes) based on the 2-year studies in rats (1981; M-249664-02-1) and dogs (1981; M-159302-01-2).

¹ EFSA (2013): Conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl. EFSA Scientific Report (2005) 54, 1-79, revised version dated 12 June 2013.

Available at http://www.efsa.europa.eu/de/efsajournal/doc/54r.pdf

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Acceptable Daily Intake (ADI)

Parent: Fosetyl-Al

The NOAEL of 300 mg/kg bw/day based on the 2-year studies in rats (249664-02-1) and dogs (; 1981; M-159302-01-1) was selected as the relevant value set a the ADI. Applying a safety factor of 100, this leads to an ADI for fosetyl-Al of 3 mg/kg by/day. Expressed as **fosetyl**, the ADI is **2.8 mg/kg bw/day**.

Metabolite: Phosphonic acid

The most relevant study to derive the ADI for phosphonic acid is the carrinogenicity fat study ; 1981; M-159229-01-1) for which the NOAEL expressed as @hosphonic acid, is 274 m@kg bw/day. Applying a safety factor of 100, this leads to an ADI of 25/4 mg/kg bw/day. Expressed fosetyl, the ADI is 3.7 mg/kg bw/day.

Acceptable Operator Exposure Level (AOEL)

The most relevant study for setting an AOIA for losetyl-Al is the mechanistic rat study with an ; 1989; M5 1603297-01-457 resulting in, an AQEL of NOAEL of 500 mg/kg bw/day (5 mg/kg bw/day (SF 100). Fosetyl-Al was well absorbe (82-89%) when orally administered at dose levels of 100 and 1000 mg/kg bw. Accordingly, no adjustment for oral absorption was considered necessary when calculating the systemic AOEL. Expressed as Posetyly the NOEL is 4.70mg/kg bw/day.

Acute Reference Dose (ARfD)

An ARfD for fosetyl-Al was not set because of the low acute to saity and the absence of severe acute effects.

Drinking Water Limit (DWL)

The maximum admissible concentration of an active substance of 0.1 kg/L, as established by Council Directive 98/83/EC.

The DWL based on the ADI derived from dietary studies is several adders of magnitude higher. Taking into account that exposure through drinking water should not exceed 10% of the ADI and assuming that 60 kg person consumes L of water per day the DWL values were calculated as follows:

// (A mg) kg bw/day x 60 kg) 2 L/ =9.0 mg/Lx 60,kg) / 2₫ day w 0.1

= 8.4 mg/L

= 8.2 mg/L

CA 5.1 Studies on absorption, distribution, metabolism and excretion in mammals

The absorption, distribution, metabolism and excretion of fosetyl-aluminium (fosetyl-Al) by Sprague—Dawley rats have been investigated using both ¹⁴C-ethyl radiolabel and ³²P-phosphonate radiolabel. The ADME properties of its metabolite, phosphonic acid (H₃PO₃) which is formed in plants and the environment (water and soil) have also been investigated (see Figure 5.1-1).

The available studies are listed in Table 5.1-1. All ADME studies have been submitted and evaluated on the occasion of the Annex I inclusion of fosetyl under Directive 914. No new ADME studies have been performed.

Figure 5.1-1: Radiolabelled substances used in the ADME studies

According to the data requirements published in the Commission Regulation (EU) No 283/2013 of 01 March 2013, a "comparative in vitro metabolism study" should performed "on againal species to be used in pivotal studies and on human materials (fricrosomes of intact cell systems) in order to determine the relevance of the toxicological animal data.

However, no official test guideline or guidance exists at present on such cases, waiving of this particular data requirement is considered acceptable according to the "Guidance document for applicants on preparing dossiers for the approval of a chemical new active substance and the renewal of approval of the chemical active substance according to regulation (EU) No 283/2013 and regulation (EU) No 284/2013 "(SANCO/10181/2013-rev 2 of 2-May-2019).

In addition there is no scientific need for comparative study. Metabolism of fosetyl-Al across mammalian species is going to be very similar as it follows basic pathways (see Figure 5.1-2).

There are also technical difficulties that would make an *in-vitro* study unfeasible, since expiration is the major route of excretion and this will be hard to follow in an *in-vitro* system.

Figure 5.1-2; Metabolic pathway of foretyl-A

Table 5.1- 1:	Overview of ADME stud	lies (all studies via o	ral gavage, SD rats)
---------------	-----------------------	-------------------------	----------------------

Annex point / reference number	Test substance Dosing regime	Scope of study	Reference
KCA 5.1.1/01	¹⁴ C-fosetyl-Al Single dose: 3000 mg/kg bw (♂+♀)	Distribution and excretion	; 1987 M-
KCA 5.1.1/02	14C-fosetyl-Al Single low dose: 100 mg/kg bw Single high dose: 1000 mg/kg bw (♂+♀)	Absorption, distribution, pabolism, and excretion	M-205381-01-1
KCA 5.1.1/03	Repeated dose: 250 mg/kg bw/day 7 days ($3+2$)	Distribution and excretion Q	1976; M-159160-01-1 @
KCA 5.1.1/04	14 C-fosetyl-Al Repeated dose: 250 mg/kg		1976; M-161367-01-1
KCA 5.1.1/05	3 ² P-fosetyl-Al Repeated dose: 250 frg/kg by/day 7 days (♂+♀)		;
KCA 5.1.1/06	Sodium ³² P-phe phonae Repeated dos (111 mg/kg bw/day, 7 days (3+4)		; 1977, M-158817-01-1
KCA 5.1.1/07	Sodium ♥-phosphonate Repeated dos 111 mCkg bw hay, 7 day ♥(♂+♀♥	Maboli O	; 1978: M-158849-01-1

Four studies were conducted using the Sprague-Dawley (SD) rai and orally administered ¹⁴C-fosetyl-Al. The animals received either one single dose (1250 mg/kg bw/day for 7 days) (1250 mg/kg bw/days) (1250 mg/kg bw/days)

The fate of ¹⁴C-foretyl-Al, ³²P-wesetyk Al and Sodium ³²P-mosphonate appeared to be similar in both sexes in all studies.

Absorption

The oral posorption of 4C-fosetyl-At as catefulated by the sum the radioactivity found in the urine, expired air and tissues was almost complete, even at very high dose rates: 82 to 101% of dose over a range of dose rates covering 100 to 3000 mg/kg bw for single oral doses. Similar figures were obtained following sever repeat doses at 250 mg/kg bw/day: 94 to 96% of dose.

Due to this complete oral absorption introvenous administration or a bile cannulation study is not needed for determination of the bioavailability of fosetyl-Al.

Distribution

Following both single and repeated administration of ¹⁴C-fosetyl-Al, the radioactivity was found to be widely distributed in terms of % of administered radioactivity the levels found in the tissues were between 12 and 6% at 168 hours following a single oral administration (100 to 3000 mg/kg). Following seven repeat doses at 250 mg/kg bw/day, the tissues levels were 6.9 to 9.5% of dose at 72 hours after the last administration.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

In terms of tissue concentrations, there appeared to be a dose proportionality between the 100 mg/kg and the 1000 mg/kg dose groups. This was not seen between the 100 mg/kg group and the 3000 mg/kg dose group which appears to be a reflection of the slightly higher elimination rates observed at 3000 mg/kg. In the most recent study (\$\frac{1}{2}\$ (\$\frac{1}{2}\$ (\$\frac{1}{2}\$) (\$\frac{1}{2}\$ (\$\frac{1}{2}\$) (\$\fr

administrations of ³²P-fosetyl-Al. In this study, the highest concentrations were observed in the spleen (ca 40 µg equiv./g) and the lowest levels in the fat (ca 6 µg equiv./g).

A generalised distribution of radioactivity was observed following oven in mg/kg/day

A generalised distribution of radioactivity was also observed following even 111 mg/kg/day administrations of sodium ³²P-phosphonate. In this study the highest concentrations were, again, observed in the spleen (ca 11 to 12 µg equiv/g) and the lowest levels in the fat (ca 1 to 2 µg equiv/g).

Metabolism

¹⁴C-fosetyl-Al was rapidly metabolised to give mainly ¹⁴CO₂ which was eliminated in the expired air. The urine was found to contain unchanged parent material as the major component following administration of ¹⁴C-fosetyl-Al although ¹⁴C ethanol has also been detected at early time points. Determination of phosphonate levels by GC-FTD indicated that the phosphonate amon was also a major component being eliminated in the urine. Phosphonate levels in the usual were found to be either below the detection limit or at trace levels. Analysis of tractionated usual extracts demonstrated the association of radioactivity with fractions involving the neutral lipid, free fathy acid and amino acid preparations. In no instance the parent compound or possible metabolities were detected.

Following seven administrations of 111 mg sodum ³²P-phosphonate kg bw day the urine was found to contain one radioactive component which was identified as the ³²P-phosphonate anion. The aqueous extracts of the faeces also contained the ³²P-phosphonate anion as the major component and lower amounts (up to 35% of the extracted radioactivity) of the ³²P-phosphonate anion. Analysis of the tissue extracts revealed the prosence of trace levels of the phosphonate anion in the kidney and intestinal tract samples. Trace levels were also observed in the female muscle samples.

Elimination

The major foute of elimination following oral administration of C-fosetyl-Al was the expired air (ca 56% of dose was expired s 14CO2) followed by the wrine (ca 30% of dose). The faeces proved to be a relatively minor route of elimination and accounted for only ca 4% of dose. The rate of elimination was rapid with the majority being completed within 24 hours of dose administration.

Blood kinetics following repeated doing suggested a biphasic elimination with an initial rapid phase (half-life of 1% o 2 hours) followed by a longer elimination phase for the remaining low levels of radioactivity.

The major route of elimination following repeated administration of ³²P-fosetyl-Al was with the faeces (ca 54% of dose) followed by the urine (ca 56 to 38% of dose).

The major route of Fimination following repeated administration with sodium ³²P-phosphonate was with the urine (ca 65 to 65% of dose) followed by the faeces (ca 30 to 32% of dose).

Conclusion &

Orally admonstered i 4C osetyl-Al to fats is essentially completely absorbed, widely distributed, extensively metabolised and then rapidly excreted. The metabolic steps involve dissociation and hydrolysis of fosetyl to phosphonate and ethanol. The ethanol is oxidised via acetaldehyde and acetate to CO and then excreted with the expired air. The phosphonate is partly excreted (along with some unchanged fosetyl) with the urine in unchanged form. The major portion of phosphonate is excreted with the faeces, partly oxidized microbially to phosphate. A small proportion of the administered radioactivity associated with the two-carbon metabolites (ethanol, acetate) would have been available for introduction into normal anabolic processes and thus account for the appearance of radioactivity in endogenous molecules.

CA 5.1.1 Absorption, distribution, metabolism and excretion by oral route

One group of 10 (5/sex) young adults C238 (Spigue Jawles derived) rats, (by Odosig fan ye from 163 to 190 g; average by for 2 sexy 18 (2) web gives a single oral diministration of 10 an aqueous suspension of 10 (5/sex) John 18 (2) web gives a single oral diministration of 10 an aqueous suspension of 10 (5/sex) John 18 (2) web gives a single oral diministration of 10 an aqueous suspension of 10 (5/sex) John 18 (2) web gives a single oral diministration of 10 an aqueous suspension of 10 (5/sex) John 18 (2) web gives a single oral diministration of 10 an aqueous suspension of 10 (5/sex) John 18 (2) web gives a single oral diministration of 10 an aqueous suspension of 10 (5/sex) John 18 (5/sex) Jo

respectively (ethanol caps were received at 24 light in civals up to an including 72 hours post-dose for the males and a hour for the few ses and there ethanol caps were renewed at 24 hour intervals up to an including 72 hours post-dose for the males and a hour for the few ses and there eth up 144 hours before being disconnected; similarly, CO₂ trans were renewed at 24 hour intervals up 3 and occurring 72 hours and the left until 144 hours before being disconnected; which is the control of the 2 cores of the control of the 2 cores of the control of the control of the core in the core i

to 168 how after dosing

Blood scoples were taken from each rat at approximately 0.25, 1, 2, 4, 6, 24 hours post-dosing and at 24 hour intervals the caffer fit was primarily intended to collect sufficient blood for separate analysis of erythic ytes and promary ut the was disregarded because rats exhibited peripheral ischemia immediately after doorg. ischemia immedi@ely at do ogg).
Cage washing overe one at 38 hows afto admiostration

All rats were sacrified a Od-7 (138 hours) provides and tissues were taken or sampled for either immediate assay for radioactive or saved (12 idual carcass was also retained for analysis). Sampled tissues included liver, I diney Queart, lungs, Lain, its, skeletal muscle, adrenals, spleen, small intestinal + contents, large in Chine 1 contents, carbum + contents ovaries and uterus, testes, eyes, Harderian glands, thyroid, skin and 50). So the Radioactivity in usine, cage wishes and transchaled ethanol and CO2 solutions was measured directly.

using LSC; satisfies of face and Ssues, Comogenized in water, were combusted in an oxidizer and the evolved CO₂ was absorbed and to radioactivity was measured using LSC. Blood samples and residual cases were so poilised prior to assay by LSC. Skin and fur were combusted prior to assay by LSC.

² Storage stability, stability and homogeneity in vehicle were not considered as applicable

Fractionation, extraction and chromatographic procedures included:

For urine:

Chromatography on silica plates using 2 system solvents (in methanol/water/ammonia and acetonitrile/water mobile phase) and radio-gas chromatography.

Extraction of pooled urine samples from each time interval for both sexes with ethyl ace and hexane for separate analysis of the organic and aqueous phase.

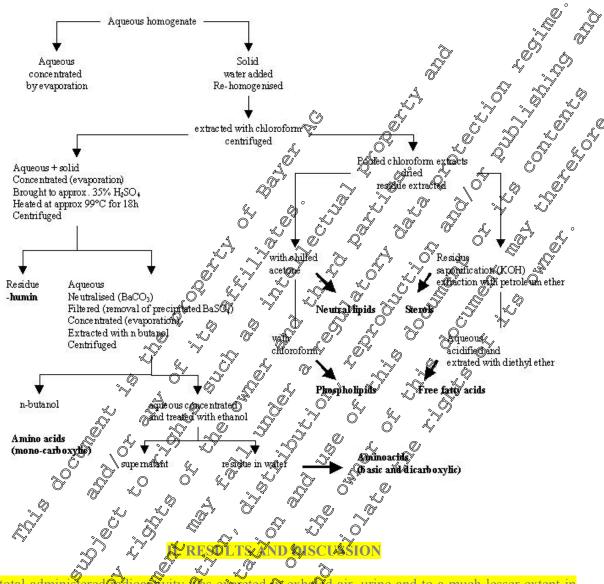
Extraction and isolation of the radiolabeled components from the 24-, 48- and 72 hours pooled samples for both sexes, using a solvent partition/salting out procedure (addition amuschium) sulphate and extraction with diethylether/ethanol). Following TI analysis methanol/water/ammonia mobile phase), radiolabeled components were located by scarning w extracted with ethanol and further eluted on an ion exchange resing th hydrocly ric and; regular residues were examined by nuclear magnetic resonance spectromers, and radio-cos chromatography

For faeces:

Extraction of pooled faeces samples from each time interval Extraction of pooled faeces samples from con-hexane for separate analysis of the organic and aqueous unexplants Q T

Analysis of organic extracts and aqueous uperroants phase).

For tissues:


Ssues:

- Fractionation using a month-step procedure of the motor part of the aque as hortogenate of pooled "suitable" tissues from each &x (so Figure 5.1 & 1), and one of the pooled treated tissues. It is, kidney, model, &, head lung, brain ovar y+ uterus) and testes).

water soluble fraction was consentrated and analysed by TC (as for unit)

Solid phase was extracted twice with chlomform shloroform what sere used as a source of tissue wide sing sector exaction (new all loids), alloroform extraction (phospholiods), saponification with SOH shlowed by extraction with petroleum ether (sterols) and a shiftee in owner custic solution sollowed by extraction with diethylether (free for axis); TL analysis of hipday fractions used varied solvent systems known for their eparating properties with specific the different classes of lipids. Aqueous and solid phases serve as source of tissue protess: after concentration and acidification by addition of their exactions were forted as 90 °C for 1 years and contributed and then processed Truric acid, symple were wated at 99 °C for 14 hour and centrifuged and then processed for separative humb and arning a ids. Smino wids Quetions were assayed by TLC (in nfor separating humo and amino axids omino seids. Outions were assayed by TLC (in n-butanol/slas) all agents acts water mobile phase) as wall as aqueous phases for which a second solvent of the secon

Figure 5.1.1-1: Tissue fractionation scheme

The total administered adioa vivity has expeted a exhand air, urine and to a much lesser extent in faeces within how after losing the pan revolvery rates were 103.18% (range 94.65 to 111.56%) and 100.12% (range 91.3 to 10.77%) the lose in pales and females, respectively.

Excretion was rapid and or irredo predo inant. Within the first 24 hours after dosing. The radioact ity was predominantly eliminated via 16 exhaled air as CO₂ with no significant difference between males and timales 24 hours after treatment, the mean ¹⁴CO₂ excretion accounted for 49.50% (males) and 49.70% (females) whereas insignificant amounts were found in ethanol traps (0.10 and 0.04% of dose 2 males and timales espectively). Excretion in the urine was the other main route of excretion, showing recommendation and 32.34% of the administered dose in males and females, respectively. Experion accounted for 23.75 and 32.34% of the administered dose in males and females, respectively. Experion accounted for 23.75 and 32.34% of the administered dose in males and females, respectively. Experion accounted for 23.75 and 32.34% of the administered dose in males and females, respectively. Experion accounted for 23.75 and 32.34% of the administered dose in males and females, respectively. Experion accounted for 49.50% in males and 32.34% in the dose by Aris root that did the males: overall mean values (0 to 168 hours) were 1.85% in males and 32.34% its accounted for 23.11-1).

male and 3.0% in Semales (see Table 5.1.1-1).

At 3.08 hours after dosine, approximately 4% of the administered dose was found in rats: 3.30 and 2.96% in the carcass and 0.99 and 1.17% in the tissues of males and females, respectively.

Table 5.1.1- 1: Group mean values (expressed as % administered dose) in urine, faeces, tissues and total recovery.

_	_	Males			Females	
Time after dosing (h)	0-24	<mark>24-48</mark>	<i>0-168</i>	0-24	24-48	0-7-57
<u>Urine</u>	32.75	<mark>3.52</mark>	<i>37.39</i>	32.34	% .53	2000
Faeces (1)	0.74	0.46	<i>1.85</i>	0.69	¥ <mark>1.32</mark>	₹ <mark>3.30</mark> ₹
Exhaled air CO ₂ Ethanol	49.50 0.10	6.93 0.06	59.13 0.23 °	49.70 0.04 &	5.47 0.01	5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cage wash			0.25	O '	Ö	~0.21, W
Dissected tissues (3)			<mark>0,69</mark>	, O		2 1. K
Carcass			4 <u>430</u>	Ô,	.0	8 296 a
Total recovery (%)			€ <mark>303.18</mark>	A G	Q, 64	100.12
(1) corrected for combust (2) 0 to 144 h period (3) corrected for combust		&			, / e	100.12 5

Half-lives and elimination constant value calculated from blood radificative found in each rat; sear half-lives were 184 ± 69 hours and 12% 12 wurs and mean elimination, synstay value were 0042 ± 0.0016 and 0.0054 ± 0.0006, in makes and tempto respectively, indicating that fergules exhibited a

Radioactivity in tissues collected at tensinal ocrific was bierraped bowet combustion and LSC and converted to µg/g fosetyl- Gequitalent: C was generally digributed throughout all tissues, with highest amounts found in kindley, liver, lung, spleen, fat, adreng gland and sonads i.e. in tissues with high metabolic activity. No tissue contained los than 32 µg/g with many contents above 100 µg/g fosetyl-Al equivalent (set Table 5.1.1-2). Man conventment in the capass was found to be 137.3 and 129.6 µg equiv./g in male and lonales espectively.

Table 5.1.1-2: Mean Concert ation SD of foscily-Al in Assues At terminal sacrifice (μg equiv./g)

	() _ \	~	<i>(</i> , <i>y</i>			
Tissue		ean Conce	v./g)	Tisse		centration uiv./g)
\$ \$ \$	Ma	les 🗸	Le nales O		Males	Females
Liver	124.00		148.90 ± 12.36	stonach & carrents	48.32 ± 30.42	98.48 ± 36.13
Kidneys	\$\frac{18}{2}\$	± 24.43	258.44±38.45	Smol intestine & contents	94.00 ± 24.86	191.02 ± 24.88
Brain @	, <mark>129 59</mark>	±30.20	258 × ± 38 × 16.00 ± 7.54	Sarge in Estine & contents	74.76 ± 14.78	111.30 ± 18.97
Spleen «	144.96	<mark>\$1.45</mark>	157 55± 13652	Cagum & contents	38.88 ± 9.50	64.66 ± 9.20
Lungs O	116 ₈ 9@	± 28.26	15946 ± 37.64	• Adrenals	255.72 ± 80.88	656.00 ± 184.10
Heart	<mark>726% ±</mark>	1 k .94	90.30 + 21.23 ~	<mark>Prhyroid</mark>	75.28 ± 33.93	151.72 ± 63.09
Mysche	12 90 ±	<mark>√2.25</mark> %	52.90± 14.40	<mark>Eyes</mark>	51.58 ± 14.97	68.43 ± 9.48
Fat	222.08 ±	<u>14.6</u>	167,12 ± 52,20	Bone & marrow	86.38 ± 24.82	74.12 ± 42.32
Testes	225 ₄ 90 :	± 22068		Skin	262.48 ± 119.51	138.38 ± 50.20
Ovaries and O'uterus	n.		n.æQ, 164.5@± 43.60	Fur	217.12 ± 74.50	$\frac{200.74 \pm}{152.95}$
Testes Ovaries and Outerus n.a.: not Valyseo						

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

The nature of radioactivity was assayed in urine, faeces and tissues using various fractionation procedures. Examination of the 24-, 48- and 72 hours urine samples by TLC, radio-gas chromatography and NMR spectrometry revealed only one labelled component which was shown to be fosetyl-Al and which accounted for approximately 36% of the administered dose; rade gas chromatography on 24 hours urine samples from 3 rats/sex showed the presence of ¹⁴C-ethano 0.5 to 2.2% of total urine radioactivity i.e. 0.2 to 0.4% of administered dose). In the 24 to 72 hours factors samples, only fosetyl-Al was detected in aqueous extracts by TLC. In tissu@ selected for multiplep fractionation procedure, the radioactive content of water soluble, lipid and protein aquovus fortions was associated with numerous compounds involving neutral lipids, free latty acids and a preparations, and in no instance parent or possible metal ites were de eted.

III. CONCOUSION

RMS conclusion: Following a single oral adminiparation of a 3000 masks by in raise 4C (Setyland is rapidly and totally absorbed and excreted, protomingally in the extended (59% of the close) and in the urine (35 to 37% of the dose) within 48 hours, with conor aroung an the daeces 2 to 3% of the dose). Excretion occurred mainly within 44 hours, indicating apid absorption and elimination in major sex differences were found. Usage amounts of to radioable accorded for as \$CO₂ demonstrated that extensive metabolic Pans of matical of the admit Pstere whose ind occurred; Ois was

An AlviE study of performed following single oral accomistrations of ¹⁴C-fosetyl-Al (batch CFQ 11651, species) activity 5500 MR/mg, adioptity 95%) using two groups of 4 male and 4 female Sprague, away a transaction of the remaining of the rem 168 hour post dose the sampled tissue west all removed or sampled 168 hours post dose administration and consisted of liver, address pheart, lungs, brain, fat, skeletal muscle, spleen, gasts intestinal trace and some part als, the and marrow, eyes, whole blood, plasma, testes,

ovaries, thyroid, uterus, skin archir and the Aidual carcass.

The levels of relioactivity protent is the scopples was either determined directly by liquid scintillation counting (LSO) or VLSC allowing a combustion technique.

Urine and friecal sample were prepared for chromatographic analysis using sequences of solvent

extraction central fugation and evaporation under nitrogen. The presence of metabolites was investioned along thing yer chromatography technique and PhosphorImager detection. Gaschrocatogr@hy/Moss Systrometric Detection was used to investigate levels of phosphonic acid in lives, kidney and muscle samples.

ð

II. RESULTS AND DISCUSSION

The recovery of radioactivity is given in the following Table 5.1.1-3.

Table 5.1.1- 3: Mean recovery of radioactivity

									_ ()
			% of a	administer	ed radioacti	i <mark>vity</mark> ()**	_	
Cample		<mark>100 n</mark>	ng/kg			10 <u>6</u> 0	mg/kg	S X	r b
Sample	Ma	les	Fem	<mark>iales</mark> 🚕	<u>Male</u>	s V	<mark>Fejî</mark> î	yles w	
	Mean	SD	Mean	SD	^D Mean	2	Mear J		,
<u>Urine</u>	25.89	1.66	27.21	<mark>2.35</mark>	25.44 S		<mark>29.09</mark>	2 1.70	
Faeces	4.46	0.85	<mark>3.80</mark>	@ <mark>3.97</mark>	8.14	2.26	0 5.04	Q 0,0	
Cage Wash	0.47	0.21	<mark>0.76</mark>	(a) 0.41	1.22	థ్రు <mark>0ి.64</mark>	المراج	. 0 <mark>.87</mark>	4
Exp Air-1	<mark>47.37</mark>	0.67	<mark>46.9%</mark>	4.15	42.04 •	© 1.26	48.38	² 1.54	Q"
Exp Air-2	6.47	1.25	<mark>649</mark>	2.49	6.91		3.27 3.01	² / ₂	Ĭ
Tissues	0.97	0.08		© <mark>0.12</mark>		<u>⊘.13</u>	2 1.01	<u>Q14</u>	. 0
Carcass	6.00	1.40	<u>م 5.50</u>	0.90	Q 8	0.64	4.0 4.0	%.75	<i>a</i> .
G.I. Tract & Cont.	0.52	0.09	**************************************	y <u>1,16</u>	% <mark>0.63</mark> €) <mark>0.6</mark>	[₹] <mark>√0.59</mark>	U. 1 1/2	
Recovery	<mark>92.15</mark>		91%	@ .16	, & <mark>90.56</mark>	3 75	33.32	×2 1 1 725	,
Exp Air-1 & $-2 = \exp ire$	d air traps.	Q				Ĉ	33.32	, T	=

The main route of elimination of responsitivity was a chired of tagger of the dose indicating extensive metabolic conversion of the dose indicating extensiv

Table 5.1.1-4: Mean concentration of radioactivity in the tissues

	μg equivalent/ g tissue								
Cample		100 r	ng/kg			1000 i	mg/kg	۰. "	
Sample	Ma	les	Fem	ales	Ma Ma	<mark>les</mark>		iales 🙈	1 10
	Mean	SD	Mean	<mark>SD</mark>	Mean	SD	Mean	STO	
Adrenals	20.7	4.3		1.1	181.2	<mark>33.@</mark>	^{235.7}	Y/X/	* >>>
Bone Marrow	8.7	<mark>5.9</mark>		0.9	<mark>67.8</mark>	<mark>13.6</mark>	83.4	√ 13 <u>~</u> €	
Bone	7.3	2.0	<mark>6.2</mark>	<mark>1.2</mark>	72.6	4.2	<mark>72.</mark> 9	\$\frac{13}{20.20}	
Brain Brain	<mark>6.0</mark>	0.5			J J . 1	® 4.2	48,4	√ 2.6	. Ď
Eyes	3.7	0.2		₂ 0.2	34.0	3.1	%.7	3 1.2	
<mark>Fat-R</mark> enal	<mark>29.8</mark>	10.2	<mark>31.8</mark>	₹3.0 ○ 0.2	443 X	48.5	34.8	Q 1000 Q 300	
Heart	<mark>7.1</mark>	0.4	<mark>6.5</mark>	0.2		© 5.6 © 14.2	8 69 A	<u>\(\frac{\text{\tinx{\tinit}\\ \text{\ti}}}\\ \text{\text{\text{\text{\text{\text{\text{\texi}}\text{\text{\text{\text{\text{\tex{\texi}\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\texi}}\\ \tittt{\text{\texi}\text{\text{\texi}\text{\text{\texi}\ti</u>	
Kidneys	10.9	<mark>1.4</mark>	16.8	1 7	1 /3.2		4 1891	\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Q"
<u>Liver</u>	<mark>7.1</mark>	1.0	<u>4-2</u>	@ <mark>9.5</mark>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	J <mark>w</mark>		3.4	
Lungs	9.8	0.8	<u> </u>	© 3.3	103	9.6	95.9	<u>4.1</u>	
Muscle	<mark>8.2</mark>	0.7	<u>7.1</u>	50		· ·	8.00	%.6 ≈ 31.0	\$ -
Skin and Fat	<mark>12.5</mark>	0.7	114	5 Q	≈ <mark>202.7</mark>	A 226	^y 1,53.8	₹31.0	Ç,
Spleen Spleen	9.1				202.7 84.6	Y <u>j'2/2</u>	53.8 283.7 101 6	7 38.4	,
Thyroid	<mark>8.5</mark>	<mark>2</mark> -Q	8.0	2 <u>2 &</u>	1 / SK (0)	& 5 0 0	101	≥ 38.4	
G.I. Tract & Cont.	<mark>4.1</mark>	Q 1.5	4.9	2.6 2.6 2.7 2.1	× × × 1	2 13.6) <u>567</u>	\$ 5.5	
Carcass	<mark>7.5</mark>	& 1.5	~ 78		× 64.7		@67 /	³ ∼y 9.6	
Whole Blood	8.2	() (<u>)</u> .	3 <mark>78</mark>	© 0.4	© 64.7	′ <mark>(3.3</mark>	9 54.2 170	4.6	
<u>Plasma</u>	- 87	\$ 0. %	1.3	9 00.9	8/ ((/)/5	\sim 43	1/9	0.9	
Testes	10.1	0.3	O'N/A	y Mon	8 9.4	7 7	P (20/1-)	N/A	
<u>Ovaries</u>	s _A QA	N/A		1 7	N/A	j ^y N	181.9	13.7	
Uterus	N/A	A NA	8.1	7 3.5 7 27 7 27		X/A	181.9	89.8	
G.I. Tract & Cont. = gas N/A = not applicable	traintestin	Fract and c	ontents			0 4			

The distribution of total radio ctivity following a single val addinistration of ¹⁴C-fosetyl-Al at the rate of 100 m 14 C 14 C

11.4 μg equiv./g) for male and fervale and ials, respectively and ovaries (13.5 μg equiv./g). Most other

tissues contained Sheentrations hat we've in the geneOl range of 3 to 10 µg equiv./g.

The lowest mean concentrations were ound in place a (1 yand 1.3 µg equiv./mL for male and female animals, respectively.)

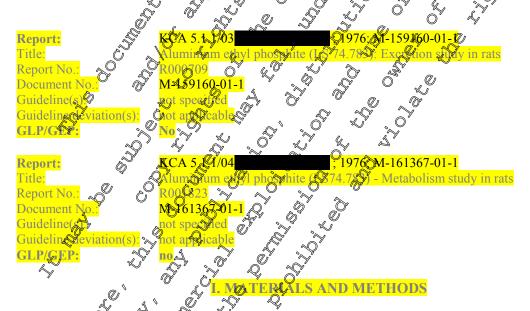
The lowest mean concentration were count in place a (1 count 1.3 µg equiv./mL for male and female animals, respectively).

The distribution of total chicactority following a sincle oral administration of ¹⁴C-fosetyl-Al at the rate of 10 mg/kg was similar for falle and female animals. Actual concentrations achieved were approximately 10 k was observed at the lower dose level. Highest mean concentrations of total radioactivity were wind in the child for (443) and 434.8 µg equiv./g), adrenal gland (181.2 and 235. µg equiv./g), and win and fat \$\infty\$02.7 and 153.8 µg equiv./g) for male and female animals respectively. Concentrations of radioactivity in the ovaries (189.4 µg equiv./g) and uterus (181.9 µg equiv./g) of female rads were also relatively high.

Lower concentrations were also relatively high.

Lower concentrations we Flound in the Idneys (113.2 and 131.1 μg equiv./g) and thyroid (141.8 and 101.6 μg (quiv.) for male and female animals respectively. Most other tissues contained concentrations the range of 0 to 100 μg equiv./g.

The lowest Pan concent tions were found in plasma (16.5 and 17.4 μg equiv./mL for male and ference animals, respectively).


Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

For urine and faeces samples selected for chromatographic analysis, procedural losses following the extraction of 0 to 24 and 24 to 168 hours faeces and 24 to 168 hours urine samples were high, with extraction recoveries ranging from 21.8 to 61.1% TRR (0.25 to 1.20% of dose). Centrifugation of the 0 to 24 hours urine samples gave extraction efficiencies ranging from 98.2 to 100.0% TRR (2.28 to 28.3% of dose).

TLC analysis of 24 to 168 hours urine samples and 0 to 24 and 24 to 168 hows faeces samples who unsuccessful due to low radioactivity and the nature of the extract. TLC Gromatograms generated from 0 to 24 hours urine extracts contained 4 to 5 radioactive peaks. The major combiners in all chromatograms was ¹⁴C-fosetyl-Al which represented 85.7 to 96.7% TRN (22.6 to 26.7% or lose) of the analysed radioactivity. The other components were whor, unidendied peaks, such one of which accounted for between 0.27 and 4.22% TRR (0.07 to 1.11% of dose)

III. CON LUSION

RMS Conclusion: Following a single oral admir a tratic of 500 and 1000 hg/kg/bw in rats, absorption of fosetyl-Al was extensive (> 9%) and excretion was \$\text{Sid}\$ (\$\text{20}\)% excreted within 24 hours post-dosing). Excretion profile was similar in both sexes at both does levels the \$\text{Sin}\$ in rackes of elimination were via the exhaled air (> 5%) information extensive rachabolic conversion of the radiolabel to \$^{14}\text{CO}_2\$ and excretion via \text{Sin} at \$\text{CO}_2\$ of \$\text{30}\sqrt{60}\$ adapthistered dose. Elimination via the faeces was a minor route. At 168 hours post-dose, were \$\text{30}\sqrt{60}\$ some low stential of racioactivity in the body (5 to 9% of the dose) which was distributed throughout the body (highest concentrations were found in the renal fat and in the adrenal glands. From the \$T_2\$ analysis \$\text{30}\$ to 26 hours urine extracts (faeces samples and of 24 to 68 hours urine samples were up accessful due to procedural losses following extraction), it was concluded the the region usine component was discretely analysis of the dose. TRR i.e. 22.6 to 26.3% of the doo and that 4 ther (unidentified), importants were minor (each one accounting for between 0.24 to 4.22% TRR i.e. 0.07\text{30}\$ TRR i.e. 20.6 the dose).

An excretic stuff was performed using ¹⁴C-fosetyl-Al (batch KWC 461, specific activity 13.48 mC/mmol and 3 hale and 3 female rats. Each animal was dosed orally at 250 mg/kg/day for seven dos. The unimals were sacrificed 24 hours following the seventh dose administration. Selected tissue, were does for adjustically, as was the residual carcass.

Uring faces and Chale Vir were collected daily until 24 hours after administration of the final dose. Urine, 15 Ses, exhaled air and tissues were assayed by liquid scintillation techniques for total radioa Civity.

Chromatographic investigations were performed using gas chromatography with a specific phosphorus detector following methylation of the phosphonate components.

II. RESULTS AND DISCUSSION

rapic 3.1.1-3.	lean recovery of radioactivity	
Sample	Ite that the expired of the following see Table 5.1.1-5) The terms of the males was 98.84% and for the females was 96.16% (see Table 5.1.1-5) Items of administered radioactivity Male	
Urine	26.44 27	W
Faeces	2.86 <u>, 1.78</u> Q , Ø Z , Ô	1
Carbon dioxide	59.82 <u>6</u> 30.03 47 67 9 67 7	
Ethanol	0.02 A 0.03	
Cage wash		
Tissues		
Total Bassyamı		
Total Recovery		
These results indicate	te that the expired of (in the form of 100) of the major oute welling ation	
accounting for appro	ox 60% of the Painted the To uring was the next most interest route	
representing approx.	27% of dose Taking these figure and he lasts of adjocativity left in the	
tissues it can be seen	n that the administred 14% foset Al was hig Qy aborbed around 95%. The	
regults obtained on a i	douby board thought that the about to what alternation was found	
	daily basis hower that the absorption and elegination were apide	
	Loop Control in a Valida Vivir in the figures of the figures	
Toblo 5 1 1 6. M	Teal Colored State	
Γable 5.1.1- 6: M		
Гable 5.1.1- 6: М	Concernation of radoactive (µg.eQiiv./gs.	
Tissue	lean concentration of rad active (µg, eQ, iv, /g) Foodles Mean 3.80 1.20 4.40	

	Conce ation frad	Pactiv (µg.eQiiv./g)
Tissue	Of ales	Fexpales O
d	Mexu S.D.	Mean & O.D.
Liver	965.30 7 3.80	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Kidney	240,20 × 11,20	14.02 77.50
Brain O	10.85	, Ø 63 & 0 4.9 . 0
Spleen 🛴 🧳	181.47, Q 28.34	20.99/3 J
Lungs	5181.20 7.45	3 1.83 3 4 19
Heart 🐬	899 3 13 6 1	88.43
Muscle	Q 43 Q 202	48 √ 3 7.52
Fat &	551.53 V 349.79	9 116.33 5 32.13

The liver, kidney, lungs spless and were found to contain radioactivity levels above 100 μg equiv./g is both sexes. The bort, no scle and brash were found to contain concentrations between approx. To to 90 μg aquiv./g these result being indicative of a wide distribution of radioactivity although not partial array and goen the tast had received seven administrations at a rate of 250 rig/kg and that the so rifice occurred onlo 4 hours following the last dose.

The extent of the elimination as relioacobe CO₂ demonstrated that the ¹⁴C-fosetyl-Al had been extensively in rabolity d. The rate welimination indicated that this metabolism had been rapid.

Table 5.1.1-7: Recovery of fosetyl-Al and phosphonate

		o *					
Sample		Males			Females		
	Fosetyl-Al	Phosphonate	Total	Fosetyl-Al	Phosphona	Total	
<u>Urine</u>	28.10	72.80	100.90	<mark>26.30</mark>	76.0 2	99.32	
Faeces	0.01	3.78	3.79	0.02	<u></u> 0.67	\$ 6 69	
Carcass	n.d.	0.30	0.30	💍 n.d.	0.41	2 0.41	
Intestinal Tract	n.d.	0.09	0.09	n.d.	0.47		
Tissues	n.d.	<mark>n.d.</mark>	n. d	n.d.	C n.dc	Q.d.	
Total	28.11	<mark>76.97</mark>	10	26.32°	7407	6 ^{400.89}	a de la companya de l

Fosetyl-Al underwent extensive hydrolysis in vigo to give 1 phosphonate produced was excreted predominantly equippent to 3% of the administred compounds in the urine together with unchanged material to to 2% of the administred compounds. Twelve-four hours after the final dose there were no exidence for unchanged compounds are of the body components examined. Small amound (equipment to 0.4 to 0.9% of the administred compounds of phosphonate were found in the carcus and attested track of but grow of algorithms. Phosphonate residues were generally absent from the tissue exampled all Yough amples of kidney and fat from the female group of rate ave roidue evels of approximatory 7.9 equiv./g and 51 µg equiv./g respectively. There we no evidence for the accumulation of phosphonate roidues in any of the tissues

the tissues.

The ¹⁴C-ethanol that was produced we rapidly oxidised to ¹⁴CC and as multiply excreted in the expired air. It is postulated that a small producing the C-ethanol was incoporated into naturally occurring molecules on accore and carbon dioxide thus reading to the residing levels of radioactivity observed in tissues.

RMS Concludon: Filowing 7 daily comecutive oral Aminio ation of 250 mg/kg bw 14C-fosetyl-Al

in rats, large amounts of CO₂. We excreted Adicading the removal of the labeled ethyl group and possible research methods in via setalethyle god accore giving rise to a wide range of naturally occurring molecules. Cashada as wide deviabution of radioacculty and no unchanged compound nor phosphonate resides (except includes and of frogs females) were found in organs and tissues. Although it might expected the the pushbaselie molety would be extensively oxidized to phosphate in vivo, results indicade the bit was excreted qualitatively, predominantly in urine, without prior oxidation.

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

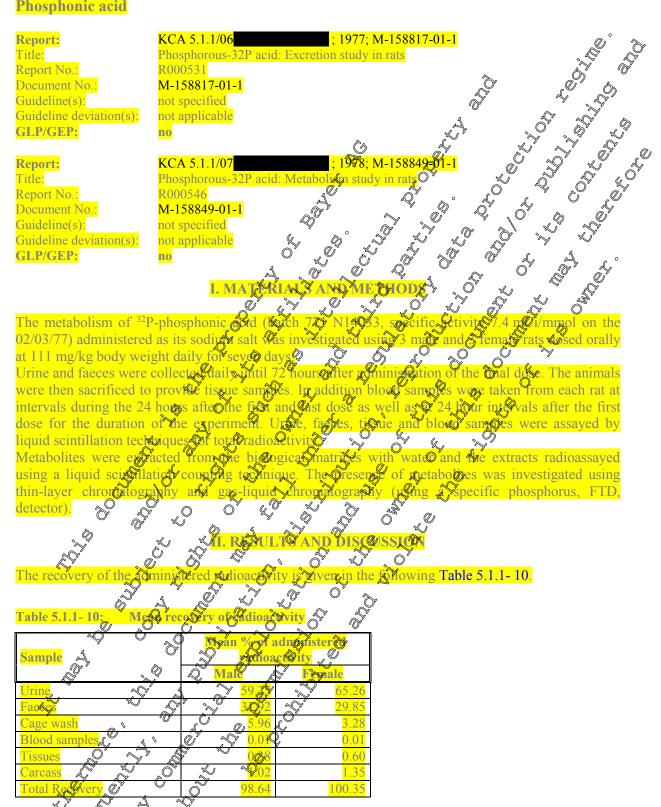
; 1977; M-158800-01-1 KCA 5.1.1/05 Report: Aluminium ethyl phosphite-32P (LS 74.783-32P): Excretion study in rats Title: R000523 Report No.: M-158800-01-1 Document No.: Guideline(s): not specified Guideline deviation(s): not applicable **GLP/GEP:**

I. MATERIALS AND METHODS

the clowing Table 5.1.1.8 An excretion study was performed with 32P-foset Al (batch 5.9 mCi/mmol, radiopurity 92%) using 3 male and 3 female Sprague Dawley rats.

Each animal was dosed orally at approximately 250 mg/kg/day fee seven days of rine and faces well. collected daily until 72 hours after the adminigration of the final cose. Que a mals evere den sacrificed to provide tissue samples. In addition blood sample were taken from such rat at intervals during the 24 hours after the first and last dose as well as at 24 hour intervals after the first dose for the duration of the experiment. Urine, faeces, tissue and blood samples were as yeld in liquid scintillation techniques for radioactivity.

The recovery of the administered Q


Table 5.1.1-8: Mean rect⊌ery of radio

Sample		Mean Nw	% of adradioa	vity C	red / Ö ale **
<u>Urine</u>	Ø, Y		37	2	25 .23
Faeces			<u>54,10</u>	¥ %	\$4.56
Cage wash C		*	1.14	1 ,4	1.29
Blood samples	\$./		n.&	ħ	Ø 1
Tissues 💍	102 1	Ò	<u> 4.32</u>		₽ .33
Carcass 🔊			⊘ 1.05		0.82
Total Recovery	. Ø .		94.49 \		93 :
n.d. = not detected		A. <u>M</u>	Q,		Q.,

The major part of the commission of the commission of the major part of the commission of the commissi

Table 5.1.1- 9:	Mean concent	ration of rad	lioactivity in	the tissues			
	Mean concentre Main Mean 24.60 21.13 10.37 40.47 21.27 13.73 18.93 6.47 viation dioactivity in block the second step was attained to occur in two were still present initial yeak (a) o 75 hours).	ation of radi	oactivity (μg	equiv./g)			w°
Tissue	Male	es	Fem	ales			
	Mean	S.D.	Mean	S.D.	8		
Liver	24.60	5.96	25.50	6.84	Ţ	4	
Ridney	10.27	3.79 3.20	24.60 10.53	0.7	(O'		
Snleen	40.47	15.29 15.81	40.00	. 11 34		, O'	
Lungs	21.27	4.85	24.6	8.14			
Heart	13.73	1.91	15 _e 77	4.14	.		
Muscle	18.93	<mark>4.75</mark>	<u>10,30</u>			~ Q	
<mark>Fat</mark>	6.47	3.31	5.50	1 1 1 1 1 1 1 1 1 1		\$ a	
S.D. = standard dev	riation		Q) .		Y &		
The levels of ray	dioactivity in blo	nd reached a	Savin@n 1	the house	ftorogonia	Wyhilet in co	me rate a
second maximum	n level was attair	ned 4 or 5 th	ours after do	ano The dis	and earance	of parioacta	etty freem
the blood seeme	ed to occur in tw	o distincts	ens. The first	ster was fa	V rapid w	ith a half if	e on to
2 hours whilst th	ne second step wa	s much slov	with wha	If-He of	to 75 Hours		
		R (,	0
			CONCLUS	YON NO			
		4 0					
RMS Conclusion	n: Following 🍣	laily consec	ulive op ad	m Wistraton	of 250 n	kg bw 32P-fo	osetyl-Al
in rats, radioact	ivity was prodon	ninantly Co	reted in the	faeces 54%	and in the	e urme (36	to 38%).
Minor amounts	were still presen	of in the occ	ody@/2 hoth	s after the	est adepinis	\mathcal{L}_{old} (116.1)	od levels
2 have and 40 t	n initial year (al	to 2 Mours	TAST (1084)	longwing a	z siggy pared	yı (nan-nve	8 01 1 10
					•		

Phosphonic acid

The Jajor Ort of he a ministered radioactivity was excreted in urine (approx. 60 to 65%) with a smaller acount in the faeces (approx. 30 to 32%). Minor amounts (1.4 to 2%) of the administered radioa Pity were still present in the body 72 hours after cessation of dosing.

Table 5.1.1- 11: Mean concentration of radioactivity in the tissues

	Concentra	tion of radio	<mark>activity (μg equ</mark>	iiv./g)		٥
<mark>Fissue</mark>	Male	S	Females			
	Mean	S.D.	Mean	S.D.		
Liver	6.03	0.85	<mark>7.87</mark>	1.55	*	
Kidney	6.47	0.87	7.23	1.45	Ş	
<mark>Brain</mark>	3.23	0.35	3.67	0.86	, O2	
Spleen	10.93	0.78	12.20	1.30		phophonic acid
Lungs	5.73	1.40	<mark>5.50</mark> එ _{නි}	1.48	4 *	
Teart	<mark>4.77</mark>	0.74	5.3 %	1.50	U E	
Muscle	<mark>5.57</mark>	0.67	<mark>667</mark>	0.20	, _	
F <mark>at</mark>	1.10	0.30	4 <mark>4.67</mark>	6 70		
S.D. = standard dev	iation an levels of radiowest mean levels			*		
			Q			
The highest me	an levels of rad	oactivity w	ge found in t	spless	(11 to 12 9g	phosphonia acid
equiv./g). The lo	west mean levels	of radioact	Pity were form	d in the fat	Les to m μg	phosphanic acid
equiv./g). The re	emaining tissues ^y g.	were four	to cortain ruli	oactive con	centrations of	between appex.
arrala in Alaa lala	ood rose rapidly f	following the	First dese on	asion, Oith	neximal alue	es Feing Tained
to 2.5 hours fo tage process w	X 2					

Levels in the blood rose rapidly following the virst also occasion, of the wimal values being claimed I to 2.5 hours following dosing. It a care what the elimination of the edioactivity as at least a two stage process with an initial rapid elimination phase (half-light I to 3 hours) followed a slower second stage. The sampling time was no long mough to establish an account half-life for the second elimination phase.

Chromatographic investigation into the Sture of the radio ctivity present in the urine samples indicated that there was only of radiactive component which, as identified as being the 32P-phosphonate anion.

Examination of the actions (Scal & Practs Indica of the Sesent of the 32P-122sphonate anion as the major component and also the precince of essert mounts (up to 35% of the extracted radioactivity) of the ³²P-phosphate from A C C C the ³²P-phosphate fron. W

Le camples Analysis of the ossue of tracts revealed the reserve of trace less of the phosphonate anion in kidney and in stinal pact samples. Orace weeks the algorithm observed in the female muscle samples.

RMS conclusion: Dollowing Maily Conservive oral Aministrations of 111 mg/kg bw of 32P-phophonic acid radioactivity was medoranant/Dexcepted in the urine (59 to 65%) and in the faeces (30- to 32%), protomosintly of unchanged shost content. Minor amounts were still present in the body, 72 Quirs Der the last administration Blood levels declined from an initial peak (1 to 2.5 hours post dose) following a step potern.

Aluminium

The EFSA Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AEC) has evaluated the safety of aluminium (Al) from dietary intake (EFSA J, 2008; 754; 1-34) Al is assumed to dissociate from the fosetyl anion when ingested. It is likely that fosetyl residues in plants or animal products associate with other naturally occurring cations, e.g. protons, sodium, calcium potassium. Soluble Al can therefore be assessed independently from fosetyl.

In the following, the review by the EFSA AFC panel of ADME data is reproduced (emphasis added): Available studies indicate that the oral bioavailability of Al in humans and experimental animals from drinking water is in the range of 0.3%, whereas the bioavailability of Al from food and beverages generally is considered to be lower, about 0.1%.

However, considering the available human and animal data, it is likely that the oral absorption of Adversarias and the considering the available human and animal data, it is likely that the oral absorption of Adversarias and the considering the available human and animal data, it is likely that the oral absorption of Adversarias and the considering the available human and animal data, it is likely that the oral absorption of Adversarias and the considering the available human and animal data, it is a likely that the oral properties are considered to be lower, about 0.1%.

However, considering the available human and animal data, it is likely that the oral absorption of Alfrom food can vary at least 10-fold depending on the chemical forms present in the intestinal tract.

Except for sodium Al phosphate (SALP), acidic, none of the Al compounds authorised as food additives in the EU have been studied for bioavailability. The bioavailability of Alfrom SALP, acidic, when incorporated in a biscuit, was found to be about 0.1% in the oat. However, the Pakel noted that in the FEEDAP opinion on Zeolite, a form of sodium Al silicate used in animal feed, it was stated that sodium Al silicate may be partly hydrolysed in the directive tract, to ainly in the abomasum (because of the low pH value) resulting in release of Al and silicate ions. Thus, in an unpublished study in cows, an increase of the Al serum level from 13 µg/L before treatment to 85 µg/E during a three week administration of 600 g Zeolite per day was reported.

This finding on sodium Al silicate in cows is in line with the suggestion by some authors that acid

This finding on sodium Al silicate in cows is in line with the suggestion by some authors that acid digestion in the stomach world solubilise most of the ingested of compounds to the monomolecular species Al³⁺ (e.g. hydrated Al(H₂(M₂)³⁺). The Panel therefore noted that other insoluble Al-containing food additives that previously have been considered not to be absorbed from the gut can be expected to behave similarly.

After absorption, Al distributes unequally to all tissues in humans and accumulates in some. The total body burden of Al in healthy human subjects has been reported to be approximately 30 to 50 mg/kg bw. Normal levels of Al in serum are approximately 1 to \$\text{\text{\$\gent{g}\$}} \pu_g/\text{\text{\$\gent{g}\$}} \text{About one-half of the total body burden of Al is in the skeleton, and about one fourth is in the dangs (from accumulation of inhaled insoluble Al compounds).

Reported normal levels in human bone tissue range from 5 to 10 mg/kg. Al has also been found in human skin, lower gastrointestinal tract, lymph nodes, adrenals, parathyroid glands, and in most soft tissue organs. In rats occumulation of Al was higher in the spleen, liver, bone, and kidneys than in the brain, muscle, heart or lung. It has also been reported that Al-san reach the placenta and foetus and to some extent distribute to the nulk of lactating mothers. Al levels have been found to increase with ageing in a number of tissues and organs bone muscle, lung, liver, and kidney) of experimental animals. The main carrier of Al³⁺ in plasma is the iron binding protein transferrin. Studies have demonstrated that about 89% of the Al³ in plasma is bound to transferrin and about 11% to citrate. Cellular uptake of Al in organs and pissues is believed to be relatively slow and most likely occurs from the Al bound to transferrin by transferin-receptor mediated endocytosis. There are two routes by which Al might enter the brain from the Rood:

1) through the blood brain barrier (BBB) and

K)

2) through the choroid prexuses into the cerebrospinal fluid of the ventricles within the brain and then into the brain.

Al has been shown to capidly enter the brain extracellular fluid and the cerebrospinal fluid, with smaller concentrations in these than in the blood.

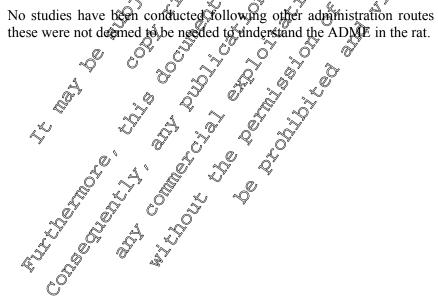
The distribution of Al may be modulated by several factors. Although citrate and fluoride have been shown to reduce tissue accumulation of Al and increase its renal excretion in experimental animals, this only occurs when the Al concentration exceeds the transferring metal binding capacity. This will seldom happen in humans. The iron status is negatively correlated with Al accumulation in tissues and animal experiments have shown that calcium and magnesium deficiency may contribute to accumulation of Al in the brain and bone.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Following ingestion in humans, absorbed Al from the blood is eliminated primarily by the kidneys. presumably as the citrate, and excreted in the urine. Unabsorbed Al is excreted in the faeces. Excretion via the bile constitutes a secondary, but minor route. The two most recent studies in humans that had normal renal function, did not consume any specific diet, took no medications containing Al, and had no other special exposure to Al, reported urine levels of Al of 3.3 (median) and 8.9 µg/L (median). respectively.

Multiple values have been reported for the elimination half-life of Al m humans and animals, suggesting that there is more than one compartment of Al storage from which Al is eliminated. Within the first day after receiving a single injection of 26Al citrate, approximately 59% of the dose was excreted in the urine of six subjects. At the end of days, it was estimated that 27% of the dose was retained in the body. However, when ²⁶Al levels were monitored for more than 3 or 10 years in a single subject that received the injection, half-live of approximately 7 years and 50 years were estimated.

Initial half-lives of 2 to 5 hours were reported in rats, mise, rabbits and dogs after intravenous injection of soluble Al salts. When the sampling time was prolonged, the half-life of Al in rabbits was estimated to be 113, 74, 44, 42, 4.2 and 2.9 days in spleen, liver, lung, serving, kidney contex, and kidney medulla, respectively. A second half-life for the ledney greatly exceeded 100 days of rats the whole organism elimination half-life was estimated to be 8 to 24 days in serum, kidney, muscle Wver, tibia and spleen. ~~~


tibia and spleen.

Al persists for a very long time in the rat brain following intravenous injection of very small doses of ²⁶Al. A half-life of 150 days has been reported. However, this estimate is not expected to have a high degree of accuracy as brain samples were not obtained for all least 3 half lives. Based on calculations for offspring of rats that were given Al injections daily from day 1 to 20 postpartum and thereafter examined on days 40, 80, 160, 320 or 730 postpartum, elimination half-lives of approximately 13 and 1635 days in the brain were suggested. Palf-lives of 7 and 520 days were suggested for parietal bone. For liver and kidneys half-lives were suggested to be 3 and 430 days and 500 days, respectively. In blood the values were 16 and 980 days.

There is little published information on allometoc scaling of Al elimination rates that can be used to extrapolate these results from the rat to the human. For Al in the brain, 150 days is approximately 20% of, and 1365 days exceeds, the rat's normal life span. For comparison, the whole-body half-life of Al in the human was estimated to be 50 years.

Absorption, distribution, oretabolism and excretion by other routes

No studies have been conducted following other administration routes (e.g. intravenous, dermal) as

CA 5.2 Acute toxicity

New acute toxicity studies have been performed to fulfil legal requirements in India. All new studies are summarised in the following sections, in addition to summaries of studies that had been evaluated in the previous DAR.

Fosetyl-Al has a very low acute oral (LD₅₀ > 5000 mg/kg bw, unspecific clinical signs), percutaneous (LD₅₀ > 5000 mg/kg bw, no clinical signs) and inhalation (LC₅₀ > 5.03 mg/L air, no clinical signs) toxicity in male and female rats (see Table 5.2-1). Therefore, no classification for acute tethal effects is required, according to the criteria of Regulation 272/2008.

In the eye irritation study by ; 1997; MA 79082-01-10 the study was terminated after 72 hours when eye effects were still present. Although the severity of the eye effects did not wallfy. for classification as severe eye irritant, the substance was classified as severe irritant (XI, Re); nove Eye Dam. 1, H318) because the reversibility of the effects could not be proved OE 405 allows in to 21 days for a possible recovery). An older study which was not fally compliant with OECD 405 (1981; M-229224-01-2) showed severe irritation when the eyes were not rinsed (OECD 405 allows the rinsing after 1 hour in case of solds). The eyes of another group of rabbits were rinsed, albeit at 1 minute, whereas the guideline allows rinsing not before brour after instillation. A new eye irritation study/ 2012 M-446501-01-1) was conducted. The scores for chemosis and conjunctival redness were 22 in at least two rabbits, thus exceeding the threshold for classification as eye in tant. Dikewise, corneal opacity reached a score of 1,00 in at two rabbits, also fulfilling the criteria for classification as eye irritant. 20 However, all effects were reversible and the corneal effects and not reaction exceed the threshold for serious eye damage. There were no effects on iris. This leads to actassification as Eye Irrit. 2, H319.

Fosetyl-Al is irritating to eyes but not to kin (see Table 5.2-1). It has no kin-sensitizing potential (see Table 5.2-1) and is thus not classified as kin sensitizer according to the criteria of Regulation 1272/2008.

Table 5.2-1: Acute the xicity studies with fosetyl-Af

	Species	Residts W	Reference
	Rat Rabbit	D ₅₀ = \$400 mg/kg bw/6/+2	; 1977; M-231363-01-2
Acute oral toxety	Rent Mouse	$D_{50} = 16250 \text{ mg/kg bw } (3)$ $D_{50} = 10600 \text{ mg/kg bw } (2)$ $D_{50} = 5250 \text{ mg/kg bw } (3)$ $D_{50} = 550 \text{ mg/kg bw } (4)$; 1979; M-163431-01-1
Acute oral togetty &	© Rat	QD ₅₀ 2080 10 kg b (♂+♀)	; 1997; M- 179086-01-1
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Mouse	$LD_{50} = 5000 \text{ mg/kg bw } (?)$ $LD_{50} = 5000 \text{ mg/kg bw } (?)$	2013; M-447270-01-1, ; 2013; M-454114-01-1
	, ,	$LD_{50} > 2000 \text{ mg/kg bw } (3+2)$; ; 1977; M-231363-01-2
	Rat	$LD_{50} > 2000 \text{ mg/kg bw } (3+2)$; 1997; M- 179084-01-1
Acute desmal to ricity		$LD_{50} > 2000 \text{ mg/kg bw } (\circlearrowleft + \circlearrowleft)$; 2012; M-446499-01-1
Acute Subcutaneous	Mouse	$LD_{50} = 3950 / 3800 \text{ mg/kg bw } (3/2)$;
toxicity	Rat	$LD_{50} = 6600 / 7400 \text{ mg/kg bw } (3/2)$	1979; M-163431-01-1

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Study Type	Species	Results	Reference
		$LC_{50} > 1.73 \text{ mg/L air } (4 \text{ h, MAC*, } ?+?)$; 1977; M-159162 01-1
Acute inhalation toxicity	Rat	$LC_{50} > 5.11 \text{ mg/L air } (4 \text{ h}, 3+9)$; 1597; Ms 158978-01-1
		$LC_{50} > 1.24 \text{ mg/L air } (4 \text{ h, MAC}, + ?)$	2013; M-451451-019
		Non-irritant	; 1980; M-237207-01-2
Skin irritation	Rabbit	Non-irritant Q Q)° 178080-0141
		Non-irritant Without rinsipe: Sevele irritant (efforts not	2013; 91-449128-01-15 0
		Without rinsing: Sey re irright (efforts no reversible at study rinning on) With rinsing after 1 min; not irresting A	; 1981; M-229224-002
Eye irritation	Rabbit	Severally in that (effects not reversible at study ermination), by e Dan 1, H 3 8	; 199 5 , M-
		Eye Irritan (reversible effects), Eye Irrita 2, H3(9)	; Q2012; M-4465V1-01-1
	S	Not sensitising (non odjuvani injectori method)	; 1979; M-159691-01-1
Skin sensitisation (GPMT)	Gunea Pig	Not set it is in a set of the set	; 1998; M-
		Not sensitising 5	2013; M-449129-01-1
* MAC = Maximum at air	nable concern		Ž
CA 5.2.1	oral 🗸 🖁		
Report Fitle:	© KCĄĆ)	2.1/0f 3 1977: M-2	231363-01-2
Fitle:	the rat ar	Harming in ethy) phosopite, 325 R.P., also problem of the second of the	anniani sait). Ficale toxicity in
Document No.: Guideline(s):	M-23130		
Guideline deviation(s): GLP/GE (Control of the control of the cont	ne appt Q	Apple 4. 6. 7.	
		MAZERIA SAND METHODS	
Groups of 10 (Sex)	CD rate (bw onge: Q0 to 160 g) were given sing ty hon specified) in 10% gum arabic (do	le doses of 0; 2.8; 4.2; 6.3 of ose volumes: 10.0: 15.0: 22.5
and 33.7 mg/kg by	resp©tive	 Ovo signs of toxicity and mortality 5 days; gross examination was perfo 	were recorded for a 15-d tes
sacrification of Accidental Secretary of Accidental Se	auvæde B	ourgogne rabbits were given single oral d	oses of 1.35; 2.0; 3.0; 4.5 and
6. Ay/kg by of fosety and 22. OnL/kg bw,	l-afaminiu respectivel	m (fosetyl-Al) in 10% gum arabic (dose y). Overt signs of toxicity and mortality	volumes: 4.5; 6.7; 10.0; 15.2 were recorded for a 15-d tes
period. Bw was reco sacrifice.	rded every	5 days; gross examination was perform	ned on all rabbits at termina

II. RESULTS AND DISCUSSION

In rats, sedation and dyspnoea were observed immediately after dosing, prior to depression and mortalities which occurred between 3 and 48 hours after dosing (see Table 5.2.1-1). It is reported that in surviving rats, by was significantly decreased on d-5 but that this reduction was no onger significant on d-10 and d-15 post-dosing (no data tabulated). Congestion of the landular region of open stomach and of the kidney was observed in decedents but no macroscopic abformalities were force surviving animals.

In rabbits, sedation, dyspnoea and deaths were seen within 24 hours in the 4.5 g/kg by on the high dose group); deaths were recorded on d-2/d-spost-dosing Wlowing a period of tepre in the 3 g/kg bw group. No bw changes were found. Marked irrog on of the gesti congestion of the gastric mucosa, petechiae and ul@rations were recorded at Oecrops rabbits; no abnormal necropsy findings were records in surviving anin

Table 5.2.1-1: Death induced in rats and publits following single

				% <i>I</i>		٧())	\bigcirc	
	De	eaths record	ed during	e 15 dobs	exy@tio	n period a		0,
	R.	ATS			\nearrow	OKBBIZES >	,_O″	&
Dose (g/kg)	Males	Females	2 seg@s	Z Zose Z (g/kg)		es Dem	akts ^y 2	es (
2.8	0/5	0/5	\$ <mark>9/10</mark> €	7 1.33	$\sqrt{\frac{90}{2}}$			0/4
<mark>4.2</mark>	0/5	1/5	[™] 1/100	2.0	0/@	5 29/	2 0	Q
<mark>6.3</mark>	<mark>3/5</mark>	5/5		©3.0		\mathbb{Q}' \mathbb{Q}' 2/	2 9 1) 4 %
9.4	<mark>5/5</mark>	<mark>5/5</mark> ≪	10/10 %	4 5	2/2	2 2 2		4/4
				$\mathcal{O}_{\mathcal{N}}$	10	· ~~/	°~,	Ö

obbits@vas sater wan 2000 mgog bw Thus, fosetyl-Al is not The acute oral LD n rats and

classified for acute fral to city a pording to the critical of R gulation 1270/2008.

RMS conclusion: The tral LIC, of fosetyl was approx 3400 cg/kg of both sexes of CD rats, and 2500 mg/kg by Oor by sexes in the

Report:

1979 M-163431-01-1
24-78 Valuminium et A phosphite) in rats and mice. Title:

Report No.: Document No.

Guideline(s):

Guideline dev GLP/GEP:

ND METHODS

Groups of 20 (10/sex) or rate (bw range) 03 to 108 g and 93 to 101 g in males and females, respectively) were given singly oral coses (6,000; 7,800; 10,140; 13,182 and 17,136 mg/kg bw of fosetyl-Al (B) (h DA) 36; writy (6.9%) in a 10% solution of distilled water (dose volume: 1 mL/kg bw).

Groups of 0 (1) Sex) OR make (bw range: 24.4 to 28.7 g and 22.2 to 24.0 g for males and females, respect (Cly) were given since oral doses of 2500, 3250, 4230, 5492, 6000 and 7140 mg/kg bw of 74-78) in \$10% solution of distilled water (dose volume: 0.1 mL/kg bw).

Morality was recorded or the 14-d observation period. Overt signs of toxicity were recorded daily and at 10 to 6 hours after dosing; by was recorded initially and at d-7 and d-14 post-dosing. All animals were sacrificed and gross examination of abdominal and thoracic cavities was performed.

II. RESULTS AND DISCUSSION

The clinical signs observed in rats comprised depressive state in abdominal posture within 30 minutes after dosing (males and females), diarrhoea after 1 hour (at 2 higher dosages for males, and at the top dose for females) and nasal bleeding in both sexes after 24 hours (not seen at the 2 lowest dose vels). Deaths occurred after 24 to 48 hours post-dosing (see Table 5.2.1-2). No particular clinical rens wo recorded in surviving rats which recover from initial depression at 24 hours after dosing. Now dependent difference of bw among groups was recorded. Hyperaemia and haemorrhage of mucosa and distension of the stomach filled with white fluid was frequently seen in deveden ats. particular finding was seen in surviving rats.

The clinical signs observed in mice comprised depressive station abdominal power within 30 minutes after dosing (males and females), absormal gait, as of rightion reflex, absorming distension. Deaths occurred within 1 to 4 days after dosing (see Table \$2.1- 2). No particular clinical signs were recorded in surviving mice except which recover from its fall depression at 24 hours, ther dosing. No dose dependent difference of by according to the stomach filler with with the fail of frequently seen in Accedent mice; ascites were observed in the 2 high dost male groups. No particular finding was seen in accedent mice; ascites were observed in the 2 high dost male groups. No particular finding was seen in surviving mice.

Table 5.2.1- 2: Death induced in ats for wing ingle val

	^^′			
Dose level	RATS	Dos Pevel		CFO (
(mg/kg bw)	Males Fenyales	(mokg by	Males	© Females
6000	0/10 4 4 0/10	√y <mark>250%</mark>		0/10
7800	0/10 3 1/16 7	3250	1 10 2	
10141	3/10	2 230 0	& 2/10 ° .	<u>1/10</u>
13182	9 0 0 3/10 0	5 5492 y	0 46	⁴ /10
17130				8/10
		√ <mark>7</mark> 140 √	10/16	10/10

The action of the grant of the

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

; 1997; M-179086-01-1 KCA 5.2.1/03 Report: Fosetyl-Al: Acute oral toxicity in the rat. Title:

R009340 Report No.: Document No.: M-179086-01-1

ves

EU (=EEC): 92/69/EEC, V, B1, (1992); JMAF: 59 NohSan No.4200, (1985 Guideline(s):

401, (1987); USEPA (=EPA): FIFRA 81-1, (1984)

Guideline deviation(s): **GLP/GEP:**

I. MATERIALS AND METHODS

Groups of 5 fasted male and female Sprague Dawley rats (6 to 70 eek old) received single administration of technical fosetyl-Al (batch 9607) I, purity 976 g/kg) by gavage at dose ovels 4200, 5000, 5950 or 7080 mg/kg body weight. For tyl-aluminium (fos 31-Al Qvas so pended in 0 great by leading the first lead water methyl cellulose in distilled water.

Animals were observed daily for clinical sign weights were recorded weekly.

At termination of the study, all surviving examination.

Mortality occurred in all treated groups with 2 to days ost-duing to Table 5.2.1-3). Clinical signs were observed at all do Sievels from day 2 to day 3 and in added silo-erection, or ostration, cold to touch and reduced motor activity. All Jumal Mad roovered on day 4, except two males treated at 7080 mg/kg which had a prisy breathing persiong until day 7 in one male and used day 8 in the other animal.

The body weight evolution will arguals was not val.

No significant gross undings were noted the trial satisfice However, the majority of animals found dead demonstrated non-Oecific hanges such as standach (all of Muid Ackened stomach glandular wall with multiple blands spots, fed in stine contents or haemorrhance lungs.

Table 5.2.1-3: Mortality toduce by fost Al Sprague Da ey ratoafter a single oral administration

	(('))			_ %	
Dose	, Ü	Nale C	*, * O, *O,	Female	
(mg/kg bw)	Mortsoty &	Time Ldeath O	day Mytalit	ya Time of de	ath in days
(mg/kg bw)		(n@nber.of ra	ts) Ø O	y (number	of rats)
4200	1/5 Q	\$ 30	~ 47 <mark>0/\$</mark> \$		•
5000	<mark>1/5</mark> 🔑) 2/8	3 ((2)
5950 ₄	9 0/5 8	, , , , , , , , , , , , , , , , , , ,	Q Q 1/5	2(1)	- 3 (1)
7080	1/5	3 4 6 €	2/5 2/5	2 ((2)

The acute oral 10050 in rats is reater than 7000 mg/kg bw. Thus, fosetyl-Al is not classified for acute oral toxicity of ordinal to the critery of Regulation 1272/2008.

RMS concessions The of LD₄₀ in Spague Dawley rats was greater than 7080 mg/kg body weight for both of the critery of Regulation 1272/2008.

Bayer - Crop Science Division

Document MCA - Section 5: Toxicological and metabolism studies

Report: KCA 5.2.1/04 ; 2013; M-447270-01-1

Title: Fosetyl-Al: Acute oral toxicity study (acute toxic class method) in Wistar rats

Report No.:

Document No.: M-447270-01-1

Guideline(s): OECD Guidelines for the Testing of Chemicals, Test No 423 (2001); Method By tris:

Acute toxicity (Acute toxic class method) of Annex to Commosion Directive

2004/73/EC, 2004

Guideline deviation(s): none **GLP/GEP:** ves

Executive Summary

An acute oral toxicity study with fosetyl-aluminium (fosetyl-Ald) in Wistar was according to the acute toxic class method (OECD 429). The test item was dissolved in water and was administered by oral gavage to three fasted female rats at the dose of 2000 mg/kg bw. A vehicle control group consisting of further three females was administered water. There were no cunical signs of toxicity and mortality observed in the treatment and vonicle control group. Based on the testing scheme of OECD 423, three additional female rats were tested at the same dose of 2000 mg/kg bw and three additional vehicle control animals, were administered water. There were no clinical signs of toxicity or mortality observed in treatment and vehicle control groups

The rats of treatment and control groups were subjected to necropsy at termination and there were no abnormalities detected. Thus, an LD of value of 5000 mg/kg bw is assigned according to Annex 2d of OECD Guideline 4230

cy according to the criteria of Based on this result, fosetyl-Al, is not classified for Regulation 1272/2008.

A. MATERIALS

1. Test material

Name: Description: Batch / Lot No.: Purity: 🗞

Exploy date: 2014-07-05 Stability and homogeneity in vehicle were

2. Vehicle:

3. Test animals [©]

Species: Strain: Sex:

Weight at dosing Source:

5≌⁄days

Acclimatisation period Teklar Certified (2014C) Global 14% Protein Rodent Maintenance

India

Diet – Pellet (Certified), ad libitum Charcoal-filtered and UV-irradiated deep bore-well water, ad

Individually in standard polysulfone cages with corn cob bedding

Bayer - Crop Science Division

Document MCA - Section 5: Toxicological and metabolism studies

B. STUDY DESIGN AND METHODS

2. Animal assignment and treatment

A. MORTALITY

Results of the acute toxic this test in rat with fosetyl-Al Table 5.2.1- 4:

Fosetyl				
Environmental conditions:				
Temperature:	20-23°C			
Humidity:	58-67%		\mathcal{O}_{n}°	A .
Air changes:	12-15 h ⁻¹			
Photoperiod:	12 h light / 12 h dark	~) ^y
		Ţ		
B. STUDY DESIGN AND M	AETHODS	.1		à
1. In life dates: 2012-09-14 t	o 2012-10-10			Q
2. Animal assignment and t	reatment S			_W
Dose:	0, 2000 mg/kg bw			0
Application route:	Oral, gavage			1
Application volume:	10 mL/kg bw	~ &		
Fasting time:	Before administration: 16-18 h			
Group size:	3 rats/group per step o			
Post-treatment observation	14 days 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°		4 A co	
period:)' & ' &	
Observations:	Clinical signs, mortality, bodo w	eight) grosOnecropsy		
	20-23°C 58-67% 12-15 h ⁻¹ 12 h light / 12 h dark METHODS 0 2012-10-10 reatment 0, 2000 mg/kg bw Oral, gavage 10 mL/kg bw Before administration: 16-18 h 3 rats/group for step 14 days Clinical signs mortality, bodow Table 5.2.1 4). Results AND DISCUSS Table 5.2.1 4). Recacute toxic chast test in rat with the sicological ones and duration of signs Female rats 1st Step 0 3 5 5 6 mg/kg bw (females)			
	IF RESULTS AND DISCUSSI		~~	
AMODTALITY			& ,	
A. MORTALITY) V	
There were no mortalities (see	1 aboe 5.2.1 (4).			
Table 5.2.1- 4: Results of t	tte acute toxic chass test in ratovith f	osetyl-Al S		
Dose of To	xicological Onset and duration	Onset of death	Mortality	
(mg/kg bw)	result* of ogns	L Q	(%)	
	Fennale rats 1st Step			
		, –	0	
2000		V –	0	
	Female rate 2nd Step	7		
2000		-	0	
2000		_	0	
	$LD_{50} = 5000$ mg/kg bw (females))**		
d. 4 of 1 @ 1 @ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4		

¹st number Lumber of dead mimals And number = number of animals with toxic signs,

B. CLINICAL OBSERVACTION

There were no clinical signs of toxicity

C. BODY WEJG

There were per eff

no abnormalițies observed at necropsy.

³rd number = number of apprals used

^{**} LD50 cut-off according to Annex 2 of

III. CONCLUSION

Fosetyl-Al is non-toxic after oral administration. The acute oral LD₅₀ of female rats was greater than 2000 mg/kg bw. Thus, fosetyl-Al is **not classified for acute oral toxicity** according to the criteria of Regulation 1272/2008.

Report:

Fosetyl-Al: Acute oral toxicity study (acute toxic class method) in swiss a G8756 Title:

Report No.:

Document No.: M-454114-01-1

OECD Test No 423 (2001) Guideline(s):

Method B.1 tris of Annex to Commission Direct

Guideline deviation(s): GLP/GEP: yes

Executive Summary

An acute oral toxicity study with fosetyl attuminium (fosetyl-Al) in Swiss all mo mice was conducted according to the acute toxic class method (OECD 423). Therest item was dissolved in water and was administered by oral gavage to three fasted temale mice at the dose of 2000 mg/kg bw. A vehicle control group (three females) was administered water. There were no clinical signs of twicity and mortality observed in the treatment and vehicle control group. Based on the testing scheme of OECD 423, three additional female mice were tested at the same dose of 2000 mg/kg bw and three additional vehicle control animals were administered water. There were no pre-teminal deaths in treatment groups and clinical signs of toxicity and mortality observed in treatment and vehicle control group.

The mice of treatment and control groups were subjected to necropsy at termination and there were no abnormalities detected. Thus an $\mathbb{E} D_{50}$ cut-off value of 5000 mg/kg/bw is assigned according to Annex 2d of OECD Guideline 423

Based on this result, foodtyl-Afris not classified for acute oral toxicity according to the criteria of Regulation 1272/2008

1. Test material

Name: Description: Batch / Lot No.: Purity:

Stability of test compound: Expiry date: \$014-07-05. Stability and homogeneity in vehicle were analyticall verified.

2. Vehicle: Denonised water

3. Test animals

Mouse Species: Strain: Swiss Albino Pemales 10-11 weeks 27.80-35.69 g

India

Acclimatisation period: 5-7 days

Teklad Certified (2014C) Global 18% Protein Rodent Maintenance Diet:

Diet – Pellet (Certified), ad libitum

Document MCA – Section 5: Toxicological and metabolism studies

Water: Charcoal-filtered and UV-irradiated deep bore-well water, *ad libitum* Housing: Individually in standard polysulfone cages with corn cob bedding

Environmental conditions:

Temperature: 21-24°C Humidity: 65-67% Air changes: 12-15 h⁻¹

Photoperiod: 12 h light / 12 h dark

B. STUDY DESIGN AND METHODS

1. In life dates: 2013-03-08 to 2013-03-29

2. Animal assignment and treatment

Dose: 0, 2000 mg/kg bw
Application route: Oral, gavage
Application volume: 10 mL/kg bw

Fasting time: before administration: 16-18 h Group size: 3 mice/group or step?

Post-treatment observation 14 days

period:

Observations: clinical signs, mortality, body weight gross necrossy

HARESUNTS AND DISCUSSION

A. MORTALITY

There were no mortalities (see Table 5.2.1.5)

Table 5.2.1- 5: Results of the acute toxic class testin mice with fosetyl-A

Dose (mg/kg bw)	Toxicological versitie	Onset and duration	Onset of death	Mortality
(mg/kg bw)	∠ resoft* 🏈	of signs 🕡	e @.	(%)
(C)		A		
			,	0
2000				0
		male mice – 2 nd Step	O'	
	0 0 3		_	0
2000	1		_	0
	LD = 5	000 mg/kg bw (f@nales)	**	

^{* 1}st number = number of dead animals, 2 number = number of animals with toxic signs,

B. CLINICAL OBSERVATIONS

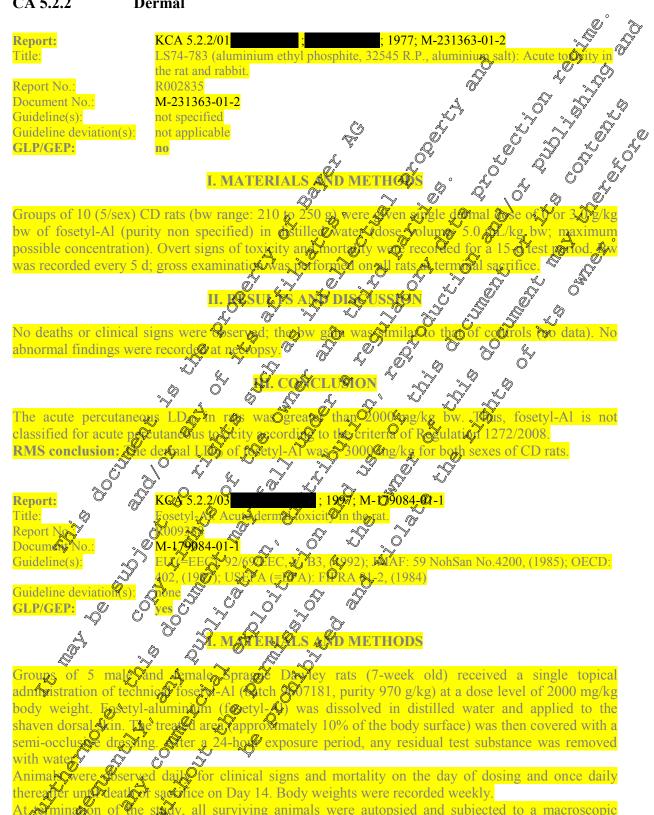
There were no clinical signs of to acity (see Table 5.2.1-5).

C. BODY WEIGHT

There were no effects on body weight.

D. NECROPSY

There were no abnormalities observed at necropsy.


III. CONCLUSION

Fosetyl-Al is non-toxic after oral administration. The acute oral LD₅₀ of female mice was greater than 2000 mg/kg bw. Thus, fosetyl-Al is **not classified for acute oral toxicity** according to the criteria of Regulation 1272/2008.

³rd number number of animals used

^{**} LD₅₀ cut off according to Annex 20 of OE Guide ine 42 2

CA 5.2.2 Dermal

II. RESULTS AND DISCUSSION

No treatment-related deaths or clinical signs were observed throughout the study.

The body weight evolution was normal for all animals except for one male which showed body weight on Day 15 only.

No significant gross findings were noted at the final sacrifice.

III. CONCLUSION

The acute percutaneous LD₅₀ in rats was greater the 2000 mg/kg classified for acute percutaneous toxicity according to the criteria of Segulation 12 **RMS conclusion:** The dermal LD₅₀ in Sprague Day v rats was

Report: KCA 5.2.2/04

Title: Fosetyl-Al: Acute desimal to ocity stody in Westar

Report No.: G8212

M-446499-01-1 Document No.:

OECD Guidelines for the Testing of Chemicals, Test (No 402) 1987) Method B.3 Guideline(s):

(Acute Toxicuy - Domal) Part B of Annex to Coragnission Directive 92/69/EEC of

31st July 1992

Guideline deviation(s): none **GLP/GEP:**

Executive Summary

An acute dermal toxicity study with fosetyl-Aluminium (fosetyl-Al) in Wistar rats was conducted as a limit test according to DECID 402. The test item was moistene oin water and was administered semiocclusively to group of each five male and female rate at the dose of 2000 mg/kg bw. The exposure duration was 24 bafter which the application, site was cleaned with water and soap. There were no clinical signs of toxibity, local skin reactions of mortality observed. The rats were subjected to necropsy at teomination and there were no sonormalities detected.

Based on this result, fosetyl-Aleis not classified for acute percutaneous toxicity according to the criteria of Regulation 1272/2008

A. MATERIA

1. Test material:

Name: 🚄 Description: Batch / Lot No.: Perity:

Stability of test compound: Expiry date: 2014-07-05.

مارست date: 2014-07-05.

Moistened with deionised water 2. Vehicle:

3. Test animals

Species:

Strain Wistar rats - HsdCpb: WU

Males and females

8-9 weeks

Males: 260.5-272.4 g

Females: 212.9-220.7 g

Source:

India

Document MCA – Section 5: Toxicological and metabolism studies

Fosetyl

Acclimatisation period: 5 days

Teklad Certified (2014C) Global 14% Protein Rodent Maintenance Diet:

Diet – Pellet (Certified), ad libitum

Charcoal-filtered and UV-irradiated deep bore-well water, ad libitum Water: Individually in standard polysulfone cages with corn cob bedding Housing:

Environmental conditions:

Temperature: 20-23°C Humidity: 58-67% Air changes: 12-15 h⁻¹

Photoperiod: 12 h light / 12 h dark

B. STUDY DESIGN AND METHODS

1. In life dates: 2012-09-21 to 2012-10-10

2. Animal assignment and treatment

Group size: 5 rats/sex Dose: 2000 mg/kg b@

Dermal, semi-occlusive Application route: Application area: Ca. 10% of body sarface

Exposure duration: 24 h

The treated area was washed initially withwater and soop and next Test substance removal:

with water Washed animals were wiped dry with a cotton hard towel.

14 days Post-treatment observation

period:

Člipical signs, local skin reactions, mortality, Observations:

A. MORTALITÀ

There were no prortalities (see

Results of the acute percutaneous toxicity test with fosetyl-Al **Table 5.2,**

Dose	Toxicological Onset and duration	Onset of death	Mortality
(mg/kg bw)	result* of signs		(%)
Q A	A & Wale rats &		
2000@		_	0
4	Tomale ots		
			0
	LD: >2000 mg/k@bw (males and f	emales)	

number = number of dead animals, 2nd promber = number of animals with toxic signs,

B. CLINICAD OBSERVATION

There were no climical signs of toxicity (see Table 5.2.2-1).

C. LOCAL SAIN REACTIONS

There were no skin reactions observed at the site of application.

^{3&}lt;sup>rd</sup> number = number of animals used

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

D. BODY WEIGHT

There were no effects on body weight.

III. CONCLUSION

Fosetyl-Al is non-toxic after dermal administration. The acute percutaneous LD₅₀ for both sexes was greater than 2000 mg/kg bw. Thus, fosetyl-Al is not classified for acute percutaneous toxicity according to the criteria of Regulation 1272/2008.

CA 5.2.3 greater than 2000 mg/kg bw. Thus, fosetyl-Al is **not classified for acute percutaneous toxicity** according to the criteria of Regulation 1272/2008.

CA 5.2.3 Inhalation

Report: Title:

Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

KCA 5.2.3/01 Acute inhalation tox (technical) R000710 M-159162-01 not specified not applica

14 (7/sex) Sprague-Dayley 153 web subrotted a "wole body" exposur for 4 hours to a dust atmosphere of technological footyl (996% pt/ty) which was go cratest at the mean achieved concentration of 163 ± 423 m/s n³ 35 (nominal of centrological footyl). A control group of

Gravimetric arroysis Othe dust consentration was performed.

Clinical observation for according signs were of ductor on a rats of fing the exposure period and at least twice only thereafter. Two ats/systromone control and exposed groups were killed immediately after exposure for association and the control and exposed groups were killed immediately after exposure for association and the control and exposure tract. Individual by were determined on the day of sposure and on d-3; d-7; d-70 & d-14 after the exposure period. Necropsies were period on a rate temperation for macroscopic examination of the lungs, the trachea, the heartand the

ND SISCUSSION

mean air 18t coeentration we show to be of 1.73 \pm 0.23 mg/m³ air i.e. 36% of the nominal concentration, GC analysis of samples aboved concentration of 1.67 \pm 0.27 mg/m³. No deaths occurred. Non Specific clinic sign were recorded during exposure and included difficulty of breathing, gashing at end of exposure particles, thereafter dark red discharge around the snout was seen. Breathirs, difficulties disappared ernight after the exposure period and all rats behaved normally during the entire follow-up 140 period. No change in bw were recorded except on d-1 post-dosing. Few scattered seeds of saemorrhage in lungs were seen in only 1 rat killed immediately after exposure and nesignificant conges were recorded at study termination.

III. CONCLUSION

RMS Conclusion: The LC₅₀ (4 hours) was \geq 1.73 mg/L (analytical) for both sexes of Sprague Dawley rats.

Report No.
Report No.
Roug 243
Document No.
Guideline(s)
Guideline(s)
Guideline deviation(s)
GLP/GEP:

L. MATERIALS AND CETHODS

Groups of 5 male and female Sprague-Dawley rate 48 to 10-wee old were exposed (nog only system) continuously for 4 hours to a dust atmospher of technical osetyl-Al (leach no 96078). The main exposure parameters were as follows.

Table 5.2.3-1:

Main characteristics of the achieved at Cosphere Plow rate
Plo Report: ; 1997; M-178978-01-1 KCA 5.2.3/02 No treatment-related deaths were observed the Vighou one study.

Clinical stans were considered to wet (9), hunched resture of the properties of ptosis, tiptoe gait, ataxia, red/brown staining round the case and request sneezing streidents of ptosis, tiptoe gait, ataxia, red/brown staining round the case and or swort. Respirately difficulties persisted but all animals recovered three traves days after expected.

Treatment-related decreases is body beight vain when only week 2.

Macroscopic examination only overlap lark seei in the lungs of 3 males and one female at the final sacrifice. sacrifice. The 4-h LC₅₀ i Crats was graver that 5 mo L. Thus, fosetyl-Al is not classified for acute inhalation toxicity according to the craftia of Regulation 1272/2008.

RMS congression to the inhalation meeting LC₅₀ (4 hours) in Sprague-Dawley rats was greater than 5.11 mg/C to be a sexcent WI. CONCLUSION

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: KCA 5.2.3/03 ; 2013; M-451451-01-1 Title: Fosetyl-Al: Acute inhalation toxicity study in Wistar rats

Report No.: G8213 Document No.: M-451451-01-1

Guideline(s): OECD Guideline for the Testing of Chemicals, Section 4, No. 403; adopted 7

September, 2009; Method B.2 (Acute toxicity - Inhalation) Part B of Annex

Commission Directive 92/69/EEC of 31st July, 1992

Guideline deviation(s): none GLP/GEP: yes

Executive Summary

The inhalation toxicity of fosetyl-aluminium (fosetyl-Al) was determined in 5 male and 5 female Wistar rats by exposure to aerosol of 25% w/v dilution of test item in deionised water generated by glass atomizer with an injection rate of 0.8 mL/mm with 1.4 kg/cm² of atomizer pressure. Similarly, rats in the vehicle control group were exposed to deionized water aerosol.

The rats of control and treated groups kept in special rat restrainers were continuously exposed to the test item and vehicle aerosol (nose only) for 4 hours in an inhabitation exposure chamber. The post treatment observation period was 14 days.

The aerosol sampled from the inhalation chamber for particle size analysis showed a mean aerosol particle size of 1.21 µm (GSD 2.13) for the treated group.

The aerosol was highly respirable with 99% of the particles in the treated group being smaller than 3.98 µm. The analytically determined average concentration of fosetyl-Al in the freated group was 1.24 mg/L.

Nasal discharge was observed in all treated rats on Day 1. All the rats were free of ymptoms from Day 2 onwards. There were no pre-terminal deaths. Upon necropsy to abnormality was detected in any of the rats.

The 4-h LC₅₀ value of fosety Al is greater than 2.24 mg/L of chamber air maximum attainable concentration) in both male and female Wistar rate.

Based on this result Posetyl-Al is not classified for acute inhalation toxicity according to the criteria of Regulation 1272/2008.

I. WATERIALS AND DETHODS

A. MATĚŘIALS

1. Test material:

Name: Fosetyl-Ar Description: White bowd Batch / Lot No.: 12020045 Purity: 97.1%

Stability of test compound: Expiry date: 2014-07 0

2. Vehicle:

.. vemore.

3. Test animals

Species: Ra

Strain: Wista Frats AsdCpb: WU
Sex: Malos and females

Age: 11-12 works

Weight at dosing: Males: 285.7-299.0 g
Females: 193.5-211.6 g

, India

Acclimatisation period: 5 days

Diet. Teklad Certified (2014C) Global 14% Protein Rodent Maintenance

Diet - Pellet (Certified), ad libitum

Water: Charcoal-filtered and UV-irradiated deep bore-well water, ad libitum

Document MCA – Section 5: Toxicological and metabolism studies

Fosetvl

Housing: Individually in standard polysulfone cages with corn cob bedding

Environmental conditions:

Temperature: 21-23°C Humidity: 65-67% 12-15 h⁻¹ Air changes:

Photoperiod: 12 h light / 12 h dark

B. STUDY DESIGN AND METHODS

1. In life dates: 2013-01-03 to 2013-02-14

2. Animal assignment and treatment

Sighting study: 0.63 mg/L (measured) Test concentration:

Main study: 0, 1.24 mg/L (measured)

Inhalation, aeros nose only Application route: 3 rats/sex/group (sighting stud) Group size:

5 rats/sex/grow (main stu

Exposure duration: 4 h Post-treatment observation 14 days

period:

Clinical signs, Observations:

3. Generation of test atmosphere

Exposure apparatus:

So g of the test item was mixed with deignised water and the volume Preparation of test item

was made in to 200 mL to get the test item suspension with a suspension:

concentration of \$25%

Source and rate of air: **2**0 L/min

System of generating Glass atomizer, pressure

aerosols:

Accosol Particle Size Analyser, Galai Pvt. Method of particle size

determination O

4. Test atmosphere@

Temperature and humidity Controls 18.9 " 18.3-21.1%C, 71.85-77.95% RH in air chamber: Treated Controls: 90% of Particles were 4.08 µm Particle size distribution:

Treated: 99% of particles were < 3.98 um

MMAD (G ontroksi 2.23 Jum (2.96)

DISCUSSION

There were no mortalities (see

B. CLINICAL ØBSERVAT FÖNS

Nasal discharge was observed treated rats on Day 1. All the rats were normal from Day 2 onwards (see Table 5.2.3

C. BODY WEIGHT

The body worghts at all rais increased throughout the observation period, except for two male rats and one female rat of the treated group wherein the Day 2 body weight was slightly decreased when compared to their initial body weight.

D. NECROPSY

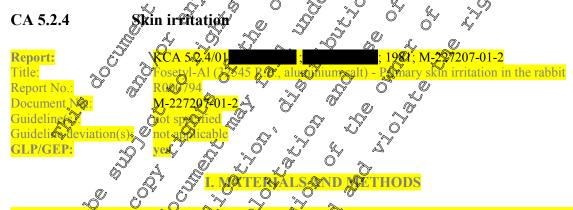

There were no abnormalities observed at necropsy.

Table 5.2.3- 2: Results of the acute inhalation test with fosetyl-Al

Concentration (mg/L)	То	xicolog result [;]		Onset and duration of signs	Onset of death	Mortality (%)
	·		Ma	le rats – sighting study		
0.63	0	3	3	1 h – Day 2	- \$	20 0
	•		Fem	ale rats – sighting study	O'	
0.63	0	3	3	1 h – Day 2		
			M	lale rats – main Mudy	Ž, ž	
0	0	0	5	_ 🔻	Q0	\$\tag{0}
1.24	0	5	5	during Day 1	<i>A</i> - 0	Q 00°
			Fer	male rats main study		y d
0	0	0	5			
1.24	0	5	5	urin@Day 1		000
	II.	LC	C ₅₀ : >	1.24 mg/L/(males+ fema	(Pes)	

 $^{3^{}rd}$ number = number of animals used

The 4-h LC₅₀ of fosetyl-Al is greater than 1.240mg/L (maximum artainable concentration) in both male and female Wistar rats. Thus, fosetyl-Al is not classified for acute intralation toxicity, according to the criteria of Regulation 1272/2008.

9.5% Prity; moistened with physiological saline) was layer which was applied to the skin of the right flank deposited four 3 x 3 m ab bent auze (scarified area) and of the left flack of 6 of ale Now Zealand derived rabbits for 24 hours under semi occludive dressing. After the hour, the Gauze was removed and the skin carefully wiped (but not washed) with absorbent gaper of remove the dest material. All rabbits were observed during 3 days. 24- Ad 72 hours after application.

> LTS AND DISCUSSION III. CONCLUSION

Al is not irritating to rabbit skin. The primary irritation score was zero. Thus, fosetyl-Al is not classified for primary skin irritation / corrosivity according to the criteria of Regulation 1272/2008. **RMS conclusion:** No evidence of skin irritation was found.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

; 1997; M-179080-01-1 KCA 5.2.4/02 Report: Fosetyl-Al: Skin irritation test in the rabbit. Title: Report No.: R009334 Document No.: M-179080-01-1 EU (=EEC): 92/69/EEC, V, B4, (1992); JMAF: 59 NohSan No.4200, (1985 Guideline(s): 404, (1992); USEPA (=EPA): FIFRA 81-5, (1984) Guideline deviation(s): **GLP/GEP:** ves I. MATERIALS AND METHODS A group of 6 adult female New Zealand white rabbits received a sogle dose of 500 m of technical fosetyl-Al (batch no 9607181, purity 970 g/kg). The test material was moistered with physiological saline and then applied to a 6 cm² clipped area of the skin on the right fland of the animal, the of the flank serving as control. The treated area was covered with a gauze of the toprovial a sext-occurrence dressing for 4 hours. Any residual test substant was cently it moved with a flat of the flank serving as control. Body weights were recorded on the first and last of the study. Body weights were recorded on the first will last day of The cutaneous reactions were scored 1524, 48 and scoring system detailed in the study ro 0 No treatment-related deaths of Clinical sign, were observed throughout the stud Body weight evolution was unaffected by the treatment. Body weight evolution was unaffered by the trestment of the showed a well-defined erythema with a very shight erythema will do so (see Table 5.2.4-1).

The group mean score calculated wall 6 animes over 44, 480 and 7 hours were 0.38 for erythema and 0.16 for codema. and 0.16 for oedem Table 5.2.4- 1: 6 After Mean score Group mean score 0.38**1**/ma After 48 h 0.16

Fosetyl-Al is not irritating to rabbit skin. The erythema and oedema scores were far below 2.3 in all animals. Thus, fosetyl-Al is not classified for primary skin irritation / corrosivity according criteria of Regulation 1272/2008.

III. CONCLUSION

RMS conclusion: Fosetyl-Al is not irritating to rabbit skin. The mean skip rritation so below the thresholds for classification as skin irritant. Thus, fosetyl-Al is rot classifie skin irritation/corrosivity according to the criteria of Regulation 1272/2008

Report: KCA 5.2.4/03 ; 2013; M-449128-01-1

Fosetyl-Al: Acute dermal irritation/corrosion study in New Zealand white rabbu Title:

Report No.: G8214 Document No.:

OECD Guidelines for the Testing of Cherificals Test No 404 (2002); Method R. Acute Toxicity - derman irritation / cortosion) Appear to 1000 (Acute Toxicity - derman irritation / cortosion) Guideline(s):

(Acute Toxicity - derma) irritation / cortosion) Annex to Compission Directive

2004/73/EC, 2004

Guideline deviation(s): none **GLP/GEP:** yes

Executive Summary

A primary dermal irritation / condition study in New Zealand White Rabbits was conducted with fosetyl-aluminium (fosetyl-Al) according to OFCD gordeline 404.

A quantity of 0.5 g the test item was made into a paste by adding 0.5 mL of denonised water and was completely transferred onto a cotton patch of approximately 6 cm² and applical onto the prepared area of the skin. A control patch (water, volume 0.5 cmL) was applied 3-4 cm anterior to the test patch.

After 4 hours, the treated area was washed with deionised water. The study was conducted in a stepwise manner (i.e., one rabbit was dosed initially, followed botwo additional rabbits).

The degree of irritation was scored at 1, 4, 48 and 72 hours after removal of the test patch. The total mean score of skip reaction was 0 at all the observation periods, indicating that the test item did not cause dermal irrelation

There were no oxic signs, pre-terminal deaths and no skin reactions observed.

There were no abnormalities detected at necropsy. Based on this result, fosetyl-Al is not classified for primary skin irritation according to the criteria of Regulation 1272/2008.

1. Test material:

Name: 🚄 Description: Batch / Lot No.:

Stability of test compound: Expiry date: 2014-07-05.

WMossened with 0.5 mL deionised water 2. Vehicle:

5-6 days

3. Test animals

Perity:

Source:

Rabbit Species:

Strain New Zealand White

Males

7 to 8 months Weight at dosing: 2.77 to 2.93 kg

Acclimatisation period:

. India

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

Diet: Rabbit feed manufactured by

Maharashtra, India, ad libitum

Charcoal-filtered and UV-irradiated deep bore-well water, ad libitum Water: Housing:

Individually in rabbit cages, approx. size: L 65 x B 65 x H 45 cm

with Noryl shallow cage body

Environmental conditions:

moistened with 0.5 mL deionised water

Dermal, semi-occlusive
6 cm²

1st rabbit 3 min 1 h, 4n
2md and 3md rabbit 4h
They abbits were restrained using an Ebrabetian collar for 28 hours post application of the test patch.

Test substance removal:
Post-treatment observation
72 h
period:
Scoring times:
Coring system:

1. 24, 48/72 h
As laid down in Oho D 404

RESULTS AND DISCUSS*

ORTALLOPY
were no mortalities.

NICAL OBSERVATION
Ten oclinical sign*

B. STUDY DESIGN AND METHODS

1. In life dates: 2012-09-21 to 2012-10-01

2. Animal assignment and treatment

A. MORTALA

There were no mortalities.

B. CLINICAL OBSERVATIONS

There were no clinical signs of toxicity

C. LOCAL SKIN REACTI

sit of application at any of the scoring times (see Table 5.2.4-No skin reactions were observed at the 2).

Resalts of the skin irritation test with fosetyl-Al Table 5.24- 2:

	Q" %			Scoring ti	me (h)			
Rabbit No.		1 <i>@</i> ,	<u>ک</u> 2	24	4	18	7	'2
	K	_%O* ^	Ş E	О	E	0	E	O
		0,0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0

Document MCA - Section 5: Toxicological and metabolism studies **Fosetyl**

D. BODY WEIGHT

There were no effects on body weight.

E. NECROPSY

There were no abnormalities observed at necropsy.

There were no abnormalities observed at necropsy.

III. CONCLUSION

Fosetyl-Al is not irritating to rabbit skin. All skin irritation scores were zero. Thus, fosetyl-Al is not classified for primary skin irritation / corrosivity according to the criteria of Regulation 1272/2008.

CA 5.2.5

Eye irritation

KCA 5.2.5/01

KCA 5.2.5/01

KCA 5.2.5/01

Report: Title: Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

KCA 5.2.5/01 Fosetyl-Al (32545 R000783 M-229224-01 not specified not applicable

100 mg of technical fosety. Al (both D 203: 07.5 ± 9.5% purity) as in yiled job the conjunctival sac of the left eye of each of 2 male 10 w 7 stland white derived rabbid. Eye were not rinsed for 6 rabbits and rinsed for the oner 3 abbits Animos was observed for a 120 period. Scoring was based on lachrymal period (A) stlemos (B) sednes of the conjunctival), iridial damage (A1), degree of opacity (22) and area Dopasty (B2). Individual se irritation index (I.O.I. = 2 [A+B+C] + 5 A1 + 5 A2 BE, mean eye Critation index I.O. and acute irritation index (highest MOI) Pere c

grinsing and 8.0 and 7.3 without rinsing.

agns a stritagen per sted a system used in the study, it was concluded that fosetyl-Al er 7 days when eyes were rinsed.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

K)

Gro@ mean score 24-72 h

; 1997; M-179082-01-1 Report: KCA 5.2.5/02 Fosetyl-Al: Eye irritation test in the rabbit. of tee Title: Report No.: R009336 Document No.: M-179082-01-1 EU (=EEC): 92/69/EEC, V, B5, (1992); JMAF: 59 NohSan No.4200, (1985 Guideline(s): 405, (1987); USEPA (=EPA): FIFRA 81-4, (1984) Guideline deviation(s): **GLP/GEP:** ves I. MATERIALS AND METHODS Groups of 6 adult male New Zealand white rabbits received a single dose of 600 mg of technical fosetyl-Al (batch no 9607181, purity 970 g/kg) in the conjunction sac of the first eye, the out the serving as a control. The eyelids were gently kept to sed for one second following a prication and the eves were not rinsed. Animals were observed daily for clinical signs and martality furing a No treatment-related deaths or clieval signs were observed thoughoothe ody.

No treatment related deaths or clieval signs were observed thoughoothe ody.

Four out of 6 animals showed rederate tridiagend soring control all chooges. On Table 5.2.5-1). In addition, all animals demons of death of the conjunction of the test substance appoints to be irreversible and all animals were sacriced in Dayot.

The group mean score calculated for also anjoins over 24.48 and 22 hours and 24 was an all animals were sacriced in Dayot.

The group mean score calculated for also anjoins over 24.48 and 22 hours and 24 was an all animals were sacriced in Dayot.

The group mean score calculated for also anjoins over 24.48 and 22 hours and 24 was an all animals were sacriced in Dayot. The group mean score calculated for also anicals over 24, 48 and 22 hoos were 1.77 for redness of the conjunctivae, 2.66 for cherensis, 1.27 for orner opacio, and 0.61 for this legyn. Table 5.2.5- 1: rresation Q Caljunc val red@ss Mean score 0.332.66 0.66 Group meas score 1.66 2.66 Group mean score <mark>brnea opacity</mark>

0

0

1.27

0

Document MCA – Section 5: Toxicological and metabolism studies

		Animal						
	1	2	3		4	<mark>5</mark>	<mark>6</mark>	
	Irio	lial inflan	nmation					
After 1 h	0	0	0		0	0	0	
After 24 h	0	1	1		0	1	00	
After 48 h	1	1	1		0	L. C.	0 (
After 72 h	1	1	1		0	™	0	
Mean score 24-72 h	0.66	1	1		0	<u> </u>	6	
Group mean score 24-72 h				», <mark>0.61</mark>	3	U"	~ ~ ~	

III. CONCLU

Under the conditions of the study, fosetyl-Al produced positive enter route to New Zealand white rabbits. Since 😥 duration 💉 the 🛪 demonstrate the reversibility of ocular effects the teosubs size was classified Eye Dam. 1, H318 - Causes serious eye damage.

RMS conclusion: The overall group meanscore from Ge 24for conjunctival redness; 2.66 for the chemosis 1.27 cor cal op According the current EU guidelines, Wesety Al should be the symbol R41 and the risk phrase 'Sk of Serious ama

Report:

Fosetyl-Al: Acute exporirritation / corrosion atudy in New Zealand white rabbits Title:

Report No.: G8215

M-446501-01-1 Document No.:

OECD Guidelines for the Testing of Chemicals, Test No 40502002); Method B.5 Guideline(s):

(Acute Toxicity - eye irritation / corrosion) Annex to Commission Directive

2004/73/E 2004

Guideline deviation **GLP/GEP:**

Executive Summary

An acute ove irritation corrosion study in New Zealand white abbits was conducted with fosetylalumination (fosetyl-Ally according to the 2002 yersion of OECP 405. On test day one, a quantity of 100 mg of the test item was instilled into the conjunctival sac of the left eye of the animals. The right eye remained untreated and served as the reference control. All the rabbits (one rabbit for initial test and two rabbits for confirmatory test were treated in a similar manner. The treated eyes were rinsed 24 hours after instillation to remove residual test material.

The eyes of each rabbit were examined at \$\infty\$, 24,\$\tag{8}\$ and 72 hours and 7, 14 and 21 days postinstillation and scored.

There was conjunctival redness (max. score: 2) and chemosis (max. score: 2) in all rabbits. Two rabbits also displayed correlal opacity (pax. score: 1). All eye reactions had completely reversed by Day 21 after exposure at the latest.

The mean scores for conjunctival and cornea effects observed between 24 and 72 hours exceeded the threshold values for classification as eye irritant in Category 2 (H319 – Causes serious eye irritation) but did not reach or exceed the threshold for classification as reach or exceed the threshold for classification as severe eve irritant.

There were no toxic signs and pre-terminal deaths and no abnormality was detected at necropsy in any of the animals."

Based on these results, dosetyl-Al is classified as Eye Irrit. 2 (H319 – Causes serious eye irritation) according to the criteria of Regulation 1272/2008.

Fosetyl

I. MATERIALS AND METHODS

A. MATERIALS 1. Test material: Name: Fosetyl-Al Description: White powder 12020045 Batch / Lot No.: Purity: 97.1% Stability of test compound: Expiry date: 2014-07-05. Test substance was applied as delivered 2. Vehicle: 3. Test animals Species: Rabbit Strain: New Zealand Wha Sex: Males Age: 7 to 8 months © Weight at dosing: 2.51 to 2.94 kg Source: Jadia 🎠 Acclimatisation period: 5-6 days Rabbit feed manufactured by Diet: a, India, ad libitum Charcoal-filtered and UV-invadiated deep bore-well water, ad libitum Water: Individual on rabbit cages, approx. size. L 650x B 65 x H 45 cm Housing: with Norst shallow cage body Environmental conditions: Temperature: Humidity: @ Air changes: Photoperiod? B. STUDY DESIGN AND METHOD'S 1. In life dates: 2012-10-11 10-2012-1-06 2. Animal assignment and treatment Group size: Applied amount: 100 mg Institution into conjunctival sac Application oute: Test substance removal After 240, the treated eve was irrigated with deionised water for one Dinute to remove the residual test item. The rabbits were restrained using an Elizabethan collar for 72 hours after instillation of the test scoring times: 1, 24, 48, 72 h and Day 7, 14 Scoring system: As laid down in OECD 405 itema. 1, 24, 48, 72 h and Day 7, 14 and 21 post-instillation

II. RESULTS AND DISCUSSION

A. MORTALITY

There were no mortalities.

B. CLINICAL OBSERVATIONS

There were no clinical signs of toxicity.

C. OCULAR REACTIONS

There was conjunctival redness (maximum score: 2) and chemosis (maximum score: 2) in all rabbuts. Two rabbits also displayed corneal opacity (maximum score: 1). We eye reactions had completely reversed by Day 21 after exposure at the latest (see Table 5.2.5-2).

reversed by Day 21 after exposure at the latest (see Table 5.2.5-2).

The mean scores for conjunctival and cornea effects observed between 24 and 72 hours exceeded the threshold values for classification as eye irritant in Category 2 (H319 — Causes serious exe irritation) but did not reach or exceed the threshold for classification as eye damaging (Category 1, H318 — Causes serious eye damage).

Table 5.2.5-2: Results of the eye irritation test with fosety. Al

Rabbit	Scoring time	_ Сбијі	ınçtiya 🏸 🕜	Iris 5	Corneal opacity
No.	Scoring time	Kedness	Chemosis (0-4)	(0.24	(0-4)
		I ₹(0-3 %	90-4)		
	1 h			Ş 0 0	% 0
	24 h			7 Q Q	1
	48 h 🚀	2 %	3 3 2 3 5 4		1
	72 h		3,0 %		1
1	Day 7	mi ♥o -		0 1 V	1
	Day 14 🖇			L 0	1
	(Day 21)	* &0 *			0
	Mean Score 24, 48, 72 h		\$ \$.0 O	Q 0.0	1.0
	24, 48, 72 h	2.0	L "O"		
	1 h &		CA INTA	y 0	0
				0	1
	3 8 h	\$\frac{2}{}		0	1
	©72 h €		3.0	0	1
2	© Day 9		3,0	0	1
1	" Day 14 💸		Ø 0	0	0
	Day 2 🗞		0	0	0
	Mean score 24, 48, 72 h	2.0	2.7	0.0	1.0
4	24, 48, 72 h		2. .		
	@. *		1	0	0
	24.41	V S 2 Q	2	0	0
	A8/h 5/72 h 0/	20	3	0	0
	- \$72 h ℃	2	2	0	0
3	Day 7	1	0	0	0
	Day 14	0	0	0	0
359 55	Day 21	0	0	0	0
	Mean score 24, 48, 72 h	2.0	2.3	0.0	0.0

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

D. BODY WEIGHT

There were no effects on body weight.

E. NECROPSY

There were no abnormalities observed at necropsy.

III. CONCLUSION

Fosetyl-Al is irritating to rabbit eyes. The scores for chemosis and conjunctival redness were 2 in a least two rabbits, thus exceeding the threshold for classification as Gye irritant. Likewise, correct opacity reached a score of 1.0 in at two rabbits, also fulfilling the oriteria for classification as eye irritant (≥ 1).

However, all effects were reversible and the corneal effects did not reach or exceed the threshold for serious eye damage (≥ 3). There were no effects on iris. Thus Josety Al is classified as Eye Irvit. 2, H319: Causes serious eye irritation, according to the criteria of Regulation 1272 2008.

CA 5.2.6 Skin sensitisation

Report: KCA 5.2.6/04 Title: Screening of for de albino gyinea-p Report No.: Document No.: M-159691-01-1 Guideline(s): Guideline deviation(s): **GLP/GEP:**

A sensitization Gudy Gis conducter With Weetyl of (bach DA 12; purity: $97.5 \pm 0.5\%$) on 20 male Dunkin-Hartley guida pig 5 weeks old; mean $3w = 50 \pm 50$ g). The dose 1 cels used for the man test were secreted from whether the conduction of a range of dilution of the conduction of th

of a range of dilutions of for yel-alminium (for yel-Almin physiological saline): the concentration producing minimal mutation was 0.2% by in mysiological valine and was selected for the intradermal injection for both induction and maller phases of the main study.

The induction phase contributed in 3 intra-definal injection where the formula of 10 of 0.2% fosetyl-Almin physiological white of the physiological white of the remaining of the physiological white of the physiological white of the remaining of the physiological white of the physiological white of the physiological white of the physiological white physiological whit

9 injections of the experiment of the experiment

erythema Ad oedema.

The challenge was porfermed weeks after the law induction injection and consisted in 1 intra-dermal injection of 0.1 mL \(\sigma 0.2 \) fose \(\forall - Al \(\forall - v \) is physiological saline; injection sites were scored 24-and \(\forall - v \) hours after the injection \(\forall - v \) erytlema \(\forall - v \) oedema.

SURTS AND DISCUSSION

At the englif the induction phose, derival reactions were recorded at the 24-hour readings (scores = 1-4 for Sythers, and 1-2 fo Obedema; diameter of the reactions = 3 to 10 mm) and at the 48-hour readings (scores = 1-4 for Sythema and 1-2 for oedema, although it is reported that dermal reactions had sheliog fed; dometes of the reactions = 2 to 10 mm).

Following the challenge, similar cutaneous reactions as noted after the induction phase, were noted at the 24 four readings (scores = 1-4 for erythema and 1-2 for oedema; diameter of the reactions = 4 to 10 mm) and at the 48-hour readings (scores = 1-4 for erythema and 1-2 for oedema, although it is reported that dermal reactions had ameliorated; diameter of the reactions = 3 to 10 mm).

III. CONCLUSION

Since the test substance did not produce a cutaneous reaction after challenge, fosetyl-Al is produce classified for skin sensitisation according to the criteria of Regulation 1272/2008.

RMS conclusion: As cutaneous reactions 24 and 48 hours after challenge were similar to the seen during the induction period, it was concluded that no evidence of delayed hypersensitivity coul demonstrated for fosetyl-Al.

Report: Title:

KCA 5.2.6/02 : 1998-M-179051-0 Skin sensitization test in guinea-pigs - (Maximizzan method Kligman A.M.).

Report No.: Document No.: Guideline(s):

GLP/GEP:

R009304 M-179051-01-1

Guideline deviation(s):

EU (=EEC): 92/69/EEC B6 OECD: 406, (Jul.1992)

none

ves

Groups of 10 male and female Duo in-Hartley guineauigs (3 ponth (batch no 9607181, purity 970 g/kg) according the following protocology Induction phase:

Intradermal injection of fosetyl-Acciding at the concentration of

ixed with Freund's complete adjuvant on Day 🖣

Topical application of sodium Auryl sulphate in Dag 7.

Topical application of soety Al unwitted on Dag under an of lusiv Aressing for 48 hours.

Challenge phase:

After a rest period of 12 orys, toxical application of Psetyl-Qumin (f. Jetyl-Al) undiluted under an

The dose level used for the Aduction and hallenge we selected following a preliminary study.

2,4-Dinitro holorobenzene and receptable benze Viazolowere used a Positive controls.

Animals vere observed wice only for linical sign and receptable.

Body wights were reorded in the first and last Day of the study. The skin reactions were scored 48 and 72 hours after to challenge at lication.

body veight changes were observed throughout the No treatment-related deads.

Forty-eight and 72 haves following the charge opplication, no treatment-related cutaneous reactions were disserved in a vaning of the concellant related groups (see Table 5.2.6-1). Conversely, 2,4-dinitrocolloror phzene and refrequency of the concellant reactions in 90 and 30% of the treated groups, respectively.

Table 5.2.6- 1	: Cut	aneous r	eactions			llenge	applic	ation 72- thema RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
_			, 🖳	48-h		_		<mark>72-</mark> 1	our	_
Group	Sex	Anima		hema RF		dema	Ery	thema	Oed	lema DE
Control	Male	61	LF 0	0	LF 0	RF 0	LF	O		
Control	iviaic	62	0	0	0	0	0	0	0 0	
		63	0	0	0	0	0	0	<mark>0</mark> 4	0
		<mark>64</mark>	0	0	0	0	0	0	A V	0
	Female	65 76	0	0	0	0		0 0	7) ⁸ 0	0
	remare	77	0	0	0	4	0		0	0%
		<mark>78</mark>	0	0	0 2		0	Q <mark>)</mark>	<u></u> 0	A CONTRACTOR
		<mark>79</mark>	0	0		/ <u>U</u>	0	0) 0	% 0
Fosetyl-Al	Male	80 66	0	0 0		000	20		<u> </u>	
USCLYI-AI	iviaic	67	0)				A CONTRACTOR OF THE PROPERTY O	
		68	0		A (U)	/ I / / / / /		V 03	0	
		<mark>69</mark>	0							
		70 71			C. C.					
		72			0 "					
		<mark>73</mark>		Ø <mark>0</mark>					8 0	,6°
		74 75 75	y 0 %	.a 🕕 📗		(V) (1)	C 0			
	Female	73 ~				0	7 0		7 U	
	romaro	<u>%1</u> ≫82	4 0	Ø 0	\$ 0		~ (V)			
	*			, <mark>0</mark>	0 2	0) <mark>0</mark>	\$ <mark>0</mark> @	0	, 9
		840			_ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, K)	9 0 C	0 8	0
	Ş	\$5 \0 <mark>86</mark> \$		1 0 , 1	Y 0		- 60			0
	VO 3	87					0	√ 0	\sim ${0}$	0
	O S	w w	V V	Y	Z <mark>Q</mark>	Y O				0
		€ <mark>89</mark> € 90	y 0			"Ø			0	0
ce the tessified for	RF: right ¶		/ 1	<u>, </u>	· C				U U	U U
	29	89 5 90 5 4k - 5				Wy Control of the Con	1	y		
		4			JON (
ce the te	Subsections in Subsection States Stat	ce do	nof~arc			»'	reacti	ion afte	er cha	llenge
sified for	skin sensi	itisaion	a ordi	nQto th	Prit	eri	f Regul	lation 1	272/20	008.
IS consta	sion: Bas	on the	7 0% iq	riden	ofa	Kimal	s in the	e test g	oup e	xhibiti
ctionsat	challenge	technit	al Fos	etyl-M	is	be c	onside	red a n	on-sei	nsitize
skyed acc	ording	e critevia	orone	E (493/2	A P	C dir	ective.			
·	<i>@1</i> \	'O'	, ((, ,	<i>)</i>					
6	4 A		T,	Q						
			W	\$						
		Õ	y	·						
	R A									
MS constructions at assisted acc										
G										

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: KCA 5.2.6/03 ; 2013; M-449129-01-1

Title: Fosetyl-Al: Skin sensitisation study (Magnusson and Kligman test) in guinea pigs

Report No.: G8216

Document No.: M-449129-01-1

Guideline(s): OECD Guideline for Testing of Chemicals, Test No 406 (1992); Method B.6 (Skin

sensitization) Part B of Annex to Commission Directive 96/5 EC, 1996

Guideline deviation(s): none **GLP/GEP:** ves

Executive Summary

Fosetyl-aluminium (fosetyl-Al) was tested for its stan sensitisation potential in a quinear pig maximization test according to OECD guideline 406. Two groups (10 animals in the control and 20 animals in the test item group) were subjected to induction treatments by intra-dermal injection and topical application and then challenged by topical application.

The animals were injected with 0.1 mL each of 3 pairs of intradermal injections, at the shoulder region such that one injection of each pair was on either side of the inidline.

On Day 1, the test item group received three pairwise intradermal injections: 1) a volume of 0.1 mL of Freund's Complete Adjuvant (FCA) in propylene glycol (1:1 mixture), 2) 0.7 mL of the est item in vehicle (1% w/v in propylene glycol). The test item in vehicle mixed 1.1 with FCA in propylene glycol. Control animals, received similar treatments each time with vehicle along rather than test item. On Day 7, the hair at the intradermal injection site (approximately 2 x 2 cm area) was closely clipped and the test area was painted with 0.5 mL of 10% w/v sodium lauryl sulphate in liquid paraffin to produce local irritation. Approximately 24 hours after clipping (Day 8), 0.0 g of the test item as a paste in deionised water was completely transferred on to filter paper and applied to the site of intradermal injection. Control animals received a patch soaked with 0.5 mL deionised water. The patches were held in place for 48 hours by adhesive tape under occlusive conditions. On Day 22 animals of the test item and control groups were both challenged with 0.5 g of undituted fosetyl-At moistened with water for 24 hours under occlusive conditions. Skin reactions were assessed 24 and 48 hours after patch removal.

There were no strin reactions in any animal of the control or test item group. A contemporary reliability check using mercaptober zothiazole showed a high rate of sensitization demonstrating the reliability of the test stem.

Based on this result, fosetyl-AD is not classified to skin sensitizer according to the criteria of Regulation 1272/2008.

LMATERIAKS AND∕METHODS

A. MATERIALŠ

1. Test material:

Name: A Fosety Al & Description: White powder Batch / Lot No.: A 12020045

Pacity: 97.1% Expiry date 2014-07-05.

2. Vehicle: A Propylene glycol for intradermal injection

Moistered with water for epicutaneous application

3. Test animals

Species: Guinea pigs
Strain: Dunkin-Hartley
Males + females

 $\frac{16-19}{1000}$ weeks at intra-dermal induction

Weight at intra-dermal Males: 351.17 to 444.10 g induction: Females: 349.59 to 407.10 g

Source: India

Document MCA - Section 5: Toxicological and metabolism studies

Fosetyl

Acclimatisation period: 5 days

Diet: Guinea pig feed manufactured by

India, ad libitum

Water: Charcoal-filtered and UV-irradiated deep bore-well water, ad

Individually in standard polysulfone cages with corn cob bedding 20-23°C 64-67% Housing:

Environmental conditions:

Temperature: Humidity: Air changes: 12-15 h⁻¹

Photoperiod: 12 h light / 12 h dark

B. STUDY DESIGN AND METHODS

1. In life dates: 2012-09-07 to 2012-10-21

2. Animal assignment and treatment

Group size:

Induction:

Exposure route:

Schedule:

IETHODS

2012-10-21

eatment

Pre-study (1 per sex)

Control (10 (\$ per sex)

Test item: 20 (10 per sex)

Intradermal

Epicutaneous occlusive

Day 7: pre-irritation with 10% sodium laury sulphate in liquid paraffig

Day 8: topical induction

Intradermal (1)

Intradermal: 0.1% in propylene glycok Concentrations

Topical: Indiluted, moistened with water

Application site Dorsak along the midine

Exposure duration:

Challenge:

Exposure route: Epicutaneous veclusive

Søhedule:

Concentrations:

Application site: Exposure duration:

and 48 h after and of Pallenge exposure Scoring times

Scoring system: Magnusson-Kligman scale as laid down in OECD 406

Negative controls: regative controls received sham inductions with vehicle (propylene

glycof or 0.5 mL desonised water) but were challenged with the test

substance as described above.

Reliability chec Positive@ontroly2-mercaptobenzothiazole, conducted 2012-05-28 to

⊮ÑESŰĔTS AND DISCUSSION

There were no mortalities

There were no clinical signs of toxicity.

C. BODY WEIGHT

There were no effects on body weight.

C. SKIN REACTIONS

Intradermal induction

At 24 hours (post administration) observation period erythema score of 1 and oedema score of 1 was observed in 10/10 animals at the sites receiving injections containing Freund's complete adjoint (with or without test item).

At 48 hours (post administration) observation period erythema score of 1 and sedema score of 1 was observed in 10/10 animals at the site receiving injections containing Freend's complete adjacent (FCA, without test item). Erythema score of 1 was observed in 8/10 animals and oedern score of 1 was observed in 5/10 animals at the site receiving injections containing FCA (with test item). There were no reactions observed at the injection sites not receiving FCA.

Topical induction

There were no skin reactions 1 and 24 hours after removal of the test patch.

Challenge

There were no skin reactions 24 and 48 hours after removal of the test patch (see Table 5.2.6.2). The positive control showed a high rate of sensitization showing the reliability of the test system.

Table 5.2.6- 2: Results of the GPMQ with fosetyl Al

Group	Reading time No. of animals with skin reactions Sensitisation rate (%)
	(h) O no. o animals in group O
Control	24 × 0
Control	48 0 0 0
Test item	24 6 20 20 2 20 0
Test item	
Positive control	24° 2 5 / 10° 50 50
Tositive controls	40

^{*} One male and two female guinea pigs of the control group were not challenged and were retained naive, to be used for sechallenge, however rechallenge was not required.

E. NECROPSY

There were no abnormalities of served at necropsy

JIL GÖNCIÐÍSIGN

Fosetyl-Al is not skin censitizing in the gonea pig maximisation test. None of the animals in the test item group showed skin reaction. Thus fosetyl-Al ionot classified as skin sensitizer according to the criteria of Regulation 1272 2008.

CA 5.2.7 Phototoxicity

The data requirements published in Commission Regulation (EU) No 283/2013 stipulate a study on phototoxicity for active substances showing an extinction coefficient $\geq 10 \, \text{L x mol}^{-1} \, \text{x cm}^{-1}$ in the spectrum of 290 to 700 km. Fosetyl-Ab does not fulfil this criterion and thus, this data requirement does not apply.

CA 5.3 Short term toxicity

The short-term studies with repeated administration demonstrated a low toxicity of fosetyl-Al in cats, mice, and dogs (see Table 5.3-1). New subchronic feeding studies (2013; M-459669-03-1) and subacute dermal studies (2013; M-459673-0-1) in rats have been performed to fulfil legal requirements in India. The NOAELs in all repeated-dose studies were in excess of the limit dose of 1000 mg/kg bw/day. No specific target organs were identified in any of these studies. Therefore, a classification in the STOT RE hazard category is not warranted, according to the criteria of Regulation 1272/2008.

Table 5.3-1: Short-term toxicity studies with fosetyl-Al

Study type	Species	Doses tested	LOAEIO Effects	NOQEL O	Reference
Oral feeding, 6 weeks	Mouse	0, 5000, 10 000, 20 000, 30 000 or 40 000 ppm	>40,000 ppp on a Gerse &	240 000 ppm	; 1978; M- 159695-01-1
		0, 1000, 5000 or 25 000 ppm	efficients of the contraction of	\$25 000 pm (1922 2499 pt/kg bw/say, 3	; , 1977: M- 158©36-01-1
Oral feeding,	Rat	0, 2000, 6000 or 20 000 pp 1	©20 000 ppm : no advose effects	bw day, 6 67 6 20 000 5 m 91269 0 580 m kg bw dy, 3/6	; 1999; M- 184588-01-1
13 weeks		0, 2000, 6000 or 20,000 pp iv	20 000 ppm: no adverse effects	≥20 000 ppm 0 %1212/1246 mg/kg bw/day/3/20	; 2016; M- 459669-03-1
	Dog	0, 20 0 , 10 000, 50 000 ppp	>00 000 Jm: no Odver & O	≥50000 pg 1 4309/146 mg/kg ©w/day, €/♀)	; 1977; M- 231272-01-2
Dermal, 4 weeks	Dog A		Systemic: 2050 no kg byday: no adverse effect Local 21050 ng/kg bwoay: skin irritation	Syst@nic: ≥1050 mg/kg bw/day Local: <1050 mg/kg bw/day	; 1999; M- 178986-01-1
Derma 3 weeks		Dw/day 💸	>1000 mg/kg bw/days me adverse effects	≥1000 mg/kg bw/day	; 2013; M- 459673-01-1
Inhalation	A epeat	ose inholation stud vis no volatile (vap	ly with fosetyl-Al has not been out pressaire <10% Pa)	n conducted because the	e active

Apepeat dose inhalation study with fosetyl-A substance is not volatile (vapour pressure <10

CA 5.3.1 Oral 28-day study

; 1978; M-159695-01-1 Report: KCA 5.3.1/01 Title: Efosite-Al: 6 week range finding study in mice Report No.: R000988 Document No.: M-159695-01-1 not specified Guideline(s): Guideline deviation(s): not applicable **GLP/GEP:**

I. MATERIALS AND METHO

Groups of 10 male and female CD-1 mice (a not reported weight range 20 10 30 preceded technical fosetyl-Al (batch DA112, purity 978 g/kg) in the lifet of concontration of 2000, 20000, 20000, 30 000 or 40 000 ppm for 6 weeks. Ocontrol groups of 15 ning g/sex served the basal diet alone.

Stability, homogeneity and concentration on the Net we've der unine the Animals were observed at least twice only for clinical signs, more dity study. Detailed clinical observation were weekly recorded. y Jany Juring the study y Jany Mility Hough at the Cight and food consumption perio Cally during the stu were weekly recorded.

The achieved daily intakes were a

following A -weed dietaks exposore to fosetyl-Al Table 5.3.1- 1:

Fosetyl-Al concenting feed (py	Sation (C	yan a Vieved dai Male	lyje ake (% /kg	<mark>/day)</mark>
50 0		954 ₀ 0 2		<u>2</u>
10 90		2073	Z 0555	9@
2 2000	Z. Z.) <mark>4449</mark> &	© 4590	
30 000		2 <mark>61</mark>	Q 2 678	y
₹ 40 000		7390		1

No treatment-rel ges body weight and food consumption were observed throughout the

RMS conclusion: Eastyl-Al did not induce any Dieaningful toxicological effects in the mouse after a 6-week dietary exposure period at the self-less up to 40 000 ppm (equivalent to 7390 and 9361 mg/kg/day in male and tonale respect Dely). Accordingly, this dose level was considered to be the No Observe Adverse Effect Land (NOVEL) of the study.

CA 5.3.2 Oral 90-day study

KCA 5.3.2/01 ; 1977; M-158836-01-1 Report: LS74783 - 3 month oral toxicity study in the rat Title: Report No.: R000540 Document No.: M-158836-01-1

Guideline(s): not specified Guideline deviation(s): not applicable

GLP/GEP:

I. MATERIALS AND METHO

Groups of 30 (15/sex) OFA / Sprague Dawley Ferived rats 7 to Eveeks Vid) Ore achinist Ced dietary concentrations of 0, 1000, 5000, and 25 000 pm of Settle flumi (Cetyl XI) technical [batch FT 793 (98.7% purity) and batch FT 74/79 299.85 purity, exhibiting finilar LD₅₀ values in mousel for 13 consecutive weeks. mouse] for 13 consecutive weeks.

Test batches of diets, prepared approx. Very 2 Veeks, Were shecke for to material content at and w-8 (recorded values were 1170, 650, 126, 60 at 11 and 1000, 10; 1560 ± 14 and 150 at w-8 for the 1000, 5000 and 1525 125 125 ppn close Vels, respectively.

The animals were observed daily & clinful signs. Individual w, find and vater Sinsulation were recorded weekly. Ocular examination was performed all ois at fart of the and at w-4; w-8

and w-13.

Haematological determinations (exythroc count, Hb. Hct, act V, 19al and differential leukocyte count, erythrocyte cholinese rases were puried out on w-4 (10 rats / from the count and high dose groups); on w-6 (5 rats / from all lose well expert exermination of chonesterases); on w-8 (10 rats/sex including Autermiorium of cholesterases); (10 rats/sex including Atermication & cholesteroe on rats/s/x) and on w (10 rats/sex from all groups). Clinical semistry decriminations shilority, sodium, ootassism, calcium, inorganic phosphorus, glucce, ure challer footal protein ASAP, AIAT, abaline phosphatase, serum cholinesterase) are cavied of on w-4 (10 ats/sec from the coerol and high dose groups); on w-8 (5 rats/sex from all abups) and worz (we ats/sex from the coerol and high dose groups at w-4; w-8 and w-12. Urisally is determination were performed on 5 rats/ex from the control and high dose groups at w-4; w-8 and w-12. We and w-13 (volume, production, protein, pucoso ketones bodies, bile pigments and blood)

Gross-pathologica xamination were performed on of rate and selected organs were weighed (*) and sampled for histogoica xamination which was performed on 8 rats/sex from the control group and 15 rats/sex from the Orgh ose strup (Loun*, Otuital gland, thyroid*, salivary gland, thymus*, oesophagus, bachea, heave, aorta lungo liver spleco, kidney*, adrenal gland*, pancreas, stomach, duodenung lejunum, ileum, colon, uritary bladder, smph nodes, gonads*, prostate, seminal vesicles, uterus* sammary gland, screlic nerve, mysele, ingue, eyes, caecum, skin and femur). In addition, brain, holinesterase sas determine at ten final and on 5 rats/sex/group.

II. I SESULAS AND DISCUSSION

The mean a sleve, substance intake over 13 weeks was 75.2 [65.6 to 100.0]; 365.7 [324 to 482] and 1922.1 [1567 to 5640] og/kg by in males and 98.0 [91.4 to 114.0]; 481.4 [432 to 550] and 2499.6 [2175 to 853] og/kg by in tonales from the 1000, 5000 and 25 000 ppm groups, respectively. No treatmen velated death occurred. There were no treatment-related signs of toxicity and no oply almob gical Ganges Bw and food and water consumption were not affected by treatment.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

There were some statistically significant changes in the haematological parameters at w-4 (decrease of RBC and Hct in high dose males, increased erythrocyte cholinesterase in high dose females, decrease of leucocyte counts in high dose males and females) and at w-12 (decrease of leucocyte in low & se males, increase of erythrocyte cholinesterase in high dose females); terminal bone differential cell count did not show any changes in the number of erythrocytes, granulocytes and lympocytes producing cells; these haematological changes which did not exhibit any dog-response perfern on were seen in only one sex should be considered as not related to treatmen? There were also wine statistically significant changes in chemistry parameters, most of which being transit by an Piever beyond the historical values. There were no significant changes in the urinary parymeters Brachelolinesterases were statistically significantly increased all males on all dose coups see Table

5.3.2-1).

Gross-pathological examinations did not reveal at significant thanges and organ weight were similar between tests and controls (see Table 5.3.2-1). The only significant this ological finding was slight increase in the incidence of extra-medullar, haematopy is in the spleen of high after the absence of any related haematological charges and of spren altitute and relative weight changes this observation is to be considered of doubtful significant.

Table 5.3.2-1: Selected parameters 13 weeks

				<u> </u>	<u>~</u>	<u>.v or</u>	<u> </u>	0
Dose level (ppm)	(Ö,	\$ 6 10	00 9 S	Males	Ž Ž Ž	S S	000
Sex	Males	Females	Males	Fen Caes	Malc	males	Males	Females
Bw gain (%)	63.9	35.57	× 65.2	<u> </u>	1 600 V	© 40.3	0 <mark>57.1</mark>	38.5
Mean food conc. (g/rat)	25.3	22.2 O		22.8 0 3 3 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24.8		26.0	22.5
Intake of test substance (w1-13) mg/kg/d	85 G 297		750) +0 F4	1922.1	2499.6
RBC (10 ³ /mm ³) w-4	85 © 297 © 36±2	7326± 3 0			9 9	Ş	7996±366**	6798±716
w-6	8930±2 ₆ 67	\ <u> </u>	8648± 2 06	SO SO TACK	800±1460	7604±211	8564±356	7584±269
w-8	⊘ <mark>9634±298</mark>	8174±425	94 9 +213	8282±965	@ <mark>9756±2%</mark>	8342±344	9684±280	8308±846
w-12	9576±238	9 <mark>8228 \$ 97</mark>	\$18±264	819x±268	² 942 277	8254±452	9646±196	8360±398
Leucocytes (mm ³) w-4	16650±058	1 1 30±80					12 320±2231 **	9780±1830
w-6	15820±2373	1	1000±1-07		*12980±1153	9600663±	15 440±2170	11 440±1433
w-8 w-12	13040±2902	980±1 9	105 Q -2006	9740@949	11 180±1962	10 440±1113	13 990±1964	9850±2218
w-12 &		10 340 3 314	0270+190×	100±8700	11 200±1361	10 350±1086	10 380±1500	9460±1555
RBy cholinesærase (mUI/mL) w-4		7 7					<mark>975</mark>	920**
w-8	722	\$\frac{779}{779}	~0 ⁹⁵	812	<mark>789</mark>	809	<mark>767</mark>	<mark>746</mark>
W- Z ((// n		0 810	<mark>745</mark>	<mark>799</mark>	<mark>797</mark>	812	974***	840
w-12 Brain cholines (n)	268+3Q	\$1\frac{1}{2\pmu} \delta \frac{1}{2} \delta 1	8452±264	8496±328	8680±289	8624±538	8700±642	8874±659

 $\label{local-condition} \begin{tabular}{ll} \textbf{Document MCA-Section 5: Toxicological and metabolism studies} \\ \textbf{Fosetyl} \end{tabular}$

Table 5.3.2- 2: Absolute organ weight (g): [Mean ±SD]

Table 5.3.2- 2:	Absolute organ weight	$t(g) : [Mean \pm SD]$		
Dose level (ppm)	0	1000	5000	25 000 。
MALES				1.860 ± 0.74
Brain	1.867 ± 0.067	1.849 ± 0.063	1.888 ± 0.066	
Thyroid	0.017 ± 0.002	0.016 ± 0.002	0.015 ± 0.002	0.017 ± 2002
Thymus	0.275 ± 0.055	0.270 ± 0.048	0.274 ± 0.06	0.269 40.08 4
Heart	1.136 ± 0.066	1.116 ± 0.082	1.214 ± 0.172	1.1 (S ± 0 (S)
Liver	9.122 ± 0.942	8.955 ± 1.028	9.206 ± 2736	9,38±,1926 «
Spleen	0.712 ± 0.105	0.734 ± 0.118	0.756 0.085	0.04 ± 0.05 0.04 ± 0.05
Kidney	2.378 ± 0.158	2.353 ± 0.168	2.370 ± 0.178	© 2.53 © 0.19©
Adrenal gland	0.043 ± 0.005	0.043 ± 0.006	0.043 ± 0.005	$\frac{0.024 \pm 0.035}{0.000}$
Gonads	3.454 ± 0.209	3.522 (3.159)	*\\\\527 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	430 ± Q276
FEMALES	1.7(1 + 0.027		\$\frac{10.43 \pm 0.005}{\sqrt{527}}\$\frac{9.180}{\sqrt{9}}\$\$	
Brain	1.761 ± 0.027	1.712 ± 0.057**	~~	\mathbb{O}^{γ} $1.\%$ $1 \pm 0.\%$
Thyroid	0.014 ± 0.002	0.227 0.04 0	14 ± 003	0.015 ± 0.002
Thymus Heart	0.223 ± 0.054	0.22 6, 0.04 () 0.839 ± 0.249	0.211 0.053	0.81 0.02
Liver	0.860 ± 0.090 6.967 ± 0.577	2 0 53 8 ± 0 1 + 2 2 2 3 9 ± 0 0 5 1 2 4	0.8 = ± 0.0 = 0	0.014 \(\frac{1}{2}\)
Spleen		(1) (652 a) (1) (4)	¥ (0+3 ± 2.370 %) ¥(610 ± € 0.062 €)	7639 ± 0.053
	0.609 ± 0.096 1.480 ± 0.096	© 1.548 ± 0.09	7619 ± 0.776 7619 0.062 588 0.148	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Adrenal gland	0.053 ± 0.024	0.656 ± 0.097	7619 ± 776 2619 © 062 7588 0.143 0.93 ± 0.05	0.052 + 0.005
Gonads	0.113 + 2013	0 15 + 3 14 0	19+(913	\$ 108 ± 0.017
Uterus	0.423 70.110	0.113 ± 0.085	433 20.085	9.407 ± 0.113
* p < 0.05; ** p < 0.0	01			<u> </u>
				7
	1.480 ± 0.09 0.053 ± 0.04 0.113 ± 0013 0.42 ± 0.110 01 01 01 01 01 01 01 01 01	III ON LUSION		
RMS conclusion:	The NOAEL of this	ady was condered	© o be 25 000 ppm.	This result should be
cautiously interpre	ed as various batches	of text substance	ere und and sonly	limited investigation
were performed in	n linged number gyan			
<i>©</i>			4585-01-1 ary dietary administra od B26; JMAF: 59 Nol	
Donort S	A CA SON ON	1000 NASO	7 07 4500 001 1	
Title:	s. © Foset OAI: 90-day	toxicity sody in the r	at by dietary administra	tion
Report No.:	KCA 33:2/02 Fos (9 Al: 90-day ROL 799 M-1845 9-01-1		A arctary damminustre	tion.
Document No.:	M-184589-01-1		,	
Guideline(s):	/ (=\$C): 2069	PEG, Anne V, Myth	od B26; JMAF: 59 Nol	nSan No.4200, (1985);
	OEO : 408, 1987	DOUSERA = EPAY: OI	PPTS 870.3100, (1998)	
Guideline deviation	(S): n		PPTS 870.3100, (1998)	
GLP/GEP				
		KIA SAND ME	THODS	
4				
Groups of 10 may	e and female Wigar	ratk (6-week old)	received technical f	osetyl-Al (batch N°
9810111 purity	9813g/kg) of the Fiet	at Concentration of	2000 6000 or 20 0	00 ppm for at least
90 days. A solilar	cyntrol goup receive	Uthe basal diet alone		oo ppiii 101 at 10at
Stability, Komogo	weity and consentration	is in the diet were de	termined periodically	during the study.
	served at Lost daily f			
	ntend food consumpti			
	soessmant (grasping, r			le and head shaking
reflexes) Sas perfe	ormed once during the	acclimatization phas	e and during week 12	<u></u>
Ö				

Ophthalmoscopic examinations were performed in all animals of the control and high dose groups prior to the first administration and during week 12. Haematology, blood chemistry and urinalysis measurements were conducted at the end of the treatment period. Each animal was then subjected of a gross pathology examination. Appropriate organs were weighted and preserved for histopathological examination.

II. RESULTS AND DISCUSSION

ithin ac Yotabi Tangy

suc to foretyl-Al

go and Sod istikes were

rerendypes of stimuli were Stability, homogeneity and concentrations of fosetyl-Alain the diet Achieved daily intakes were calculated as follows:

Table 5.3.2- 3: Mean achieved daily intakes following a 90-day Octary exposure

Fosetyl-Al concentration	Mean achieved Oly intake (mg/kg/	day
in feed (ppm)	Male 📞 💍 Smale	
2000	127.6 O W E 155 6	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
6000	382.6 🕰 💮 💇 45�	<i>x</i>
20 000	12692 ~ ~ 580.5	<i>,</i> ♦ , 0

General observation

No treatment-related mortalities, noticed at any dose level.

No changes in motor activity of the strength and reported at any examination whe.

No specific eye alterations were son at

Haematology, clinical Lemi

No toxicologically clinical chemistry and urinalysis.

At the final sacrific on treatment-related mac a copic findings were eported at any dose level.

There were some differences is absolute and clative weight from various organs when compared to control a fine of them chieves statistical significance (see Tabo 5.3.2-4). However, as these effects were not dose-related they were not constrered thologically recent.

Table 5.3.2- 4:

		<u>, </u>		
Fosetyl-A concentration in feed Spm)			6000	20 000
MALES				
Brake	$\frac{2\sqrt{27}\pm\sqrt{64}}{2\sqrt{27}}$	2390 ± 0.0814	2.098 ± 0.0353	2.103 ± 0.0848
Heart	1.609 ± 9.2831	4.562 ± 0.1463	1.623 ± 0.2081	1.598 ± 0.1946
Liver	∆ ¹ 11.8 © 1.7 7 √	$2.97 \pm 1.248*$	12.39 ± 1.284	11.49 ± 0.398
Pituitary glap	90000 ± 0.008	$\sqrt[3]{0.012 \pm 0.0013}$	0.012 ± 0.0014	0.011 ± 0.0016
Spleen Kidney		1.267 ± 0.2385	1.089 ± 0.1539	1.048 ± 0.1398
Kidney Adrey gland	2.903 Q 0.2738	2.998 ± 0.1945	3.025 ± 0.3167	3.088 ± 0.1887
Adrenaugland	0.000 ± 0.0086	0.063 ± 0.0068	0.064 ± 0.0092	0.065 ± 0.0070
Thyous C	0.487 ± 0.0711	$0.561 \pm 0.0933*$	0.459 ± 0.0732	0.535 ± 0.0657
Thyroid \$	0.021 ± 0.0034	0.026 ± 0.0046 *	0.022 ± 0.0046	0.020 ± 0.034
Epidid Opius	1.584 ± 0.2053	1.566 ± 0.1336	1.564 ± 0.1750	1.413 ± 0.1321
Prostate	0.802 ± 0.1625	0.961 ± 0.1978	0.764 ± 0.1626	0.853 ± 0.2317
Testis	4.014 ± 0.3204	3.860 ± 0.4297	3.997 ± 0.3435	3.788 ± 0.2320

Document MCA – Section 5: Toxicological and metabolism studies

Fosetyl-Al concentration in feed (ppm)	0	2000	<mark>6000</mark>	20 000
FEMALES				
Brain	1.953 ± 0.0775	1.918 ± 0.0870	1.928 ± 0.0543	1.903 ± 0.554
Heart	0.989 ± 0.0617	1.019 ± 0.0981	0.978 ± 0.0675	1.026 ± \$\mathbb{Q}\$1120 \$\mathbb{O}\$
Liver	6.94 ± 0.227	6.62 ± 0.447	6.37 ± 0.70	6.66 ± 0.291
Pituitary gland	0.014 ± 0.0016	0.013 ± 0.0016	0.012 ± 0.0124 *	0.05 ± 0.59 9
Spleen	1.835 ± 0.1366	1.743 ± 0.0867	1.835 ± 0.1324	1.916±9,1680
Adrenal gland	0.074 ± 0.0073	0.075 ± 0.01	0.076 & 0.0094	0.077 0.005 C
Thymus	0.432 ± 0.0643	0.393 ± 0.0728	0.38 ± 0.0459	0.41 01 0.0 252
Thyroid	0.015 ± 0.0031	0.018 ± 20033	$0.20 \pm 0.0027*$ C	0.019 ± 0.937
Ovary	0.094 ± 0.0128	0.088 (3).0187	0.092 20.01140	092 ± 0.0159
Uterus	0.718 ± 0.2117	0.62 £ 0.2169	0.637± 0.2029	0.722 £ 0.28
*p<0.05			0.637 0.2029	

Histopathological examination did not reveal any weatment

RMS conclusion: The minor charges in some Yaematological and prochamical Saramuers and in organ absolute and relative weights should be Considered as oridenced. The OLOALE for this study was 20,000 ppm, the highest concentration tested, which was equippent to an acrage saily intake of 1424 mg/kg bw/d (1269 and 180 mg/kg by/d in males and fencies, se pectically).

Report: 3 month of toxicy study in the dog Title: Report No.: Document No.: Guideline(s): Guideline deviation GLP/GEP:

(8 of 14 penths old at art of dosing) were administered dietary Groups of 10 (5/s ,000 And 5 000 An of Seetyl-Al (batch no. DA 67; 99.7 ± 0.3% concentrations of 0; 200; 5, purity) for 92 onse drive dys.

Test batches of diets, popared approx ever 2 works, were checked for stability before start of

treatment (no degradation of curred at a concentration of 2,000 ppm after 2 weeks at room temperature); analysis of the test material contents as performed at 0, 1, and 2 months.

The samuals were observed day for behaviour and clinical signs; individual food and water consumption were recorded day; by was occurred weekly. Ophthalmological examinations were carried out on a dogs before reatment and it w-4; -8 and -12. Rectal temperature was recorded every

Haematologal cuming (wthrough count; Hb; MCV; total and differential leukocyte counts; MCH; MaHC; Matele count reticulocyte count; sedimentation rate and prothrombin level) and blood & misk (sod m; passium; chloride; calcium; phosphorus; glucose; urea; bilirubin; alkaline phose vatasce GO SGR, serum cholinesterase, erythrocyte cholinesterase) were carried out on all does twice before treatment and at w-0; -4; -8 and -12; urinalysis (pH; density; protein; glucose; ketones Oile pigments; blood; examination of spun deposits) were carried out at w-0; -4; -8 and -12. In addition, bone marrow smears were taken from all dogs and brain cholinesterases were analysed in all dogs at termination.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

At termination, gross pathological examinations were performed on all organs; organ weights (*) were determined and histopathological examinations were carried out on aorta; thyroid*; thymus*; heart*; liver*; spleen*; mammary gland; kidney*; adrenal gland*; gall bladder; gonads*;mesenteric lypush nodes; muscle; pancreas; prostate* or uterus*; stomach; duodenum; jejunum; ileum; colon; bein*; pituitary gland*; spinal cord; sciatic nerve; skin; urinary bladder; eye; salivary glands; ongue,

Dose level (ppm)	Mean achieved dar intake (mg/kg/bw/e)
Dose level (ppin)	Males & & Fervies &
2000	58 [53-60] 58 53-63 63 63 63 63 63 63 63 63 63 63 63 63 6
10 000	274 [255, 2 8]
50 000	1309 [1246-1352] 1376 [1380-15144]

No treatment related changes were seed in harmatological farminations 55 dos nor time dependent changes) except a slight decrase inverythrocyte bunt of the high dose mades; no dose nor time dependent biochemical changes were seed except a slight (not startically significant) decrease in serum potassium levels for sex at high dose revel at w-4; w-8 and w-12. No changes were seen in urinally significant in urinal

Table 5.3.2- 6: Bod chemistry Yarangeters

	0			<u>~</u> .\$\forall \tag{\sqrt{2}}				
Study	Control	ls 🔻	<mark>2 @0 pp@</mark>		19@00 ppi	<mark>n</mark>	50 000 _I	<mark>opm</mark>
" Øeriod	Males F		des Fei			nales M	ales l	Females
Sodium (oveq/L)		males M	Ş		Y			
w-0		156 Q1		58	56	56	<mark>57</mark>	157
w-4	9 156 2	¥57 √ 1		<mark>/58</mark>			<mark>60</mark>	158
w-4 %	A 5	156 🗸	59 1	59 O 1	58 1	58 1	<mark>60</mark>	157
a n				8				
Potassium (rxQ/L)	· () ~	v o		,				
<u>, </u>	<mark>50</mark> ~Q	5.7 5	((// ())				<mark>.3</mark>	<mark>5.3</mark>
6 W-4	6 <mark>5.2</mark>	5.60 3 54 2 5	<u>v.3</u> • 5			5.3 4	·.8	<mark>4.6</mark>
	5.5	<u>√</u> √ 5	. <mark>.0</mark> ∼◎ ′ ′ ′ ′			5.0 4	·.6	<mark>4.3</mark>
	√√ <mark>5,</mark> ₹ \ . 4	° 7.5 ₽ 4		5.1	5.4	5.0 4	·.6	<mark>4.5</mark>
Calcium (mg/L)	<i>**</i>		0,					
w ₋ @``	106		07 1	08		08 1	07	<u>107</u>
524	√ 105¢	1	08 1	06	07 1	08 1	04	104
& <mark>w-8</mark> ≪	106	, <mark>113</mark> 🔷 🚺		12 1	10 1		05	<u>106</u>
w-15	7 <mark>007</mark> 5	109 [*] 1	08 1	09	10 1	08	02	107

tions and not reveal any treatment-related changes. There were some changes for Ons, some achieving statistical significance, but without dose dependency or a consistent trend (se Table 5.3.2-7).

Table 5.3.2- 7: Absolute organ weight (g): [Mean \pm SD]

	Controls	2 000 ppm	10 000 ppm	<mark>50 000 ppm</mark>
MALES				
Brain (g)	76.6 ± 6.1	72.9 ± 3.0	78.3 ± 7.5	71.3 ±
Pituitary gland (mg	$\frac{76 \pm 5}{}$	76 ± 9	78.3 ± 7.5 72 ± 8	71.3 ± 654 74.25
Thyroid (mg)	1690 ± 307	1480 ± 375	1406 ± 330	74, 5 1430 ± 19% 788 ± 4, 7 725.4 7 1.4 0 32, 7 16.7 0 5 9 ± 4, 7 166 ± 0.22
Thymus (g)	12.46 ± 10.28	8.46 ± 1.83	11.30 ± 2.70	758 ± 452
Liver (g)	353.6 ± 31.1		331.6 £ 46.5 26 ر 3.2	25.4 21.4
Spleen (g)	24.3 ± 3.7	320.4 ± 22.9 32.9 ± 23.8	26 © 3.2	0 32 0 16.7 0
Kidney (g)			567 ± 8.5	597+4.8
Adrenal gland (mg)	1310 ± 216	1416 + 246	344 + 322 °C	1866 + 892
Gonads (g)	18.14 ± 3.45	16 16 1 86	76.58 22.67 7 76.58 20.67 7 76.58 20.67 7 76.58 20.67 7	50 ± 4.0 1966 ± 22 13.40 ± 2.03 15.40 ± 1.15 9588 ± 15.3 16.40 ± 0.24
Prostate (g)	7.5 ± 2.6	79+29		5/8 1 1
Lung (g)	94.60 ± 10.21	\$ 22 + \$ 8 \$	9280 ± 228	05/8 + 13/3
Heart (g)	100.6 ± 6.31	97.36.4-1 AA	9480 ± 1228 100 594.25	06.40 + 0.24
	100.0 ± 0.31	A . 6	Q	6.40 - 0.24 0
Brain (g)	71 1 + 4 8		D	V 70.6 ± 2.5
Pituitary gland (mg	68 + 12		070 + 47	74+6
Thyroid (mg)	71.1 ± 4.8 68 ± 13 1416 ± 308 10.38 ± 3 326.6 ± 5.6.1	56.4 ± 4.6* 1416 ± 0.6 16.1	78 ± 5 0 0 145 2 435 5 5 0 8 0 ± 2.20	70.6 ± 2.5 74 ± 6 140 6 ± 224
Thymus (a)	10.28 + 2.5	1082 × 331 y	10 143 0 433 0 1	12 4 7 62
Liver (a)	10.38 ± 3.0 f	934 ± 429		14.39 ± 7.02
Culcan (a)	320.0 ± 0.1		7 1.4 ± 6.8 C	303.3 ± 33.0
Videor (g)	22.845.1	20.5 ± 4.6	0, 428.2 + 6.9	6.4 ± 13.9
Advanct start (a)	4/.4±1.4	429±6.80	** 49. ** 5. 6 Q	00.4 ± 4./***
Adrenal gland (mg)	1	30 ± 3/9	**************************************	$y^* = \frac{1530 \pm 157}{1570}$
Gonads (g)	1.46 ± 38	102 ±0:33	1.02 ± %.50	1.71 ± 0.83
Uterus (g)	13.28 ± 5.62 y	7.5 4.96, 7	0° 8.01 ₹ 5.78 ₹	12.14 ± 7.15
Lung (g)	81.94 ± 5	83.97 ± 14.52	94.54 ± 8.88*	100.80 ± 20.71
Heart (g)	\$\ \ <mark>\@.08 ±}\%</mark> .60 \ \	7 25.24 ± 212 Q	9 .12 ± 9 81	84.00 ± 4.58
		M. COSCLUÇON		
RMS convusion	: Dietaly adamistra®	on of fosety Al for	3 consecutive weeks	at dose levels un
50 000 Sm did	not i luce Dy signifi	cart chan Os in the I	Beagle dog: the NOF	L in this study w
therefore 50,000 i	200 e 1679 and 144	6 Olg/kg/bw/d &p male	and females, respec	ctively
therefore 50 000 j		Y O O		otivory.
<u> (</u>			,	
Q				
~ Q				
A n	A A			
		o		
y				
Y On				
T T		Á, O,		
y V				
	71.1 ± 4.8 68 ± 13 1416 ± 308 10.38 ± 3 6 22. 55.1 47 ± 1.4 10.8 ± 19 46 ± 3.8 13.2 ± 5.6 28.1 94 ± 5 30.8 ± 3.6 29.1 5.1 10.1 60 10 10 10 10 10 10 10 10 10 10 10 10 10			

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

; 2016; M-459669-03-1 Report: KCA 5.3.2/04

Title: Amendment no. 2 to final report - 90 day sub chronic toxicity study following oral

dietary administration of fosetyl-Al to Wistar rats with 28-day recovery

Report No.: G8220 Document No.: M-459669-03-1

OECD guideline 408 (2008); Method B.26: Repeated dose 9 day oral toxicing Guideline(s):

Annex to Commission Directive 2001/59/EC, 2001

Guideline deviation(s): none **GLP/GEP:** ves

Executive Summary

The subchronic toxicity of fosetyl-aluminium (fosetyl-Al) was evaluated in a 90-day feeting study in Wistar rats according to OECD guideline 408. Tex rats/sex/dose were administered the test article continuously in the diet at concentrations of 2000, 6000, and 20 000 ppm for 00 days control animals received plain diet). Additional high-dose and control groups were employed as recovery groups and

were maintained for additional 28 days without exposure to the test item.

Each rat was observed for clinical signs, mortality and morbidity. Body weights and food consumption were measured during the course of the in life phase of the study. Functional Observational Battery Tests were performed during last week of treatment and recovery periods for main and recovery groups respectively. Clinical pathology investigations (uringlysis, Haematology) and Clinical chemistry) were performed at the end of treatment for main groups and at the end of recovery period for the recovery groups. All the rate of main group and recovery groups were sacrificed and subjected to gross examination. Specified organs were collected, weighed and preserved. Histopathological examination was carried out on preserved organs of control and high dose animals. In addition, all gross lesions from all animals were examined microscopically.

The actual mean daily intake of the test substance was calculated as \$19,367, and \$212 mg/kg bw/day for males and 148, 450, and 1446 mg/kg bw/cay for cemales, respectively.

No clinical signs, mortalities or ocular changes were observed. No test item-related neurological abnormalities were observed. There were no significant variations in mean body weights, net body weight gains and food consumption. No toxicologically significant changes were observed in haematology, chrical chemistry or urinalysis parameters. No significant changes were observed in absolute or relative organ weights. No gross or nacroscopic changes were observed.

Thus, under the conditions of this test, the NQAEL for fosetyl-Al in the rat is $\geq 20~000$ ppm dietary level, i.e. \$\frac{1}{2}12 mg/kg \text{bw/day for mates and} \geq 1446 mg/kg \text{bw/day for females, respectively.}

1. Test material: Name: 🚄 Description: Batch 7 Lot No.: Purity: Stability of test compound: Expiry dates 2014-07-05. Stability and homogeneity in diet were analyticall verified. 2. Vehicle: Plain di@ Species: Strain: Wistar rats-HSD Han: wist Males and females 7-9 weeks Weight at dosing: Males: mean weights 247-251 g Females: mean weights 187-189 g Source:

. Israel

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Acclimatisation period: 5 days

Diet: Teklad Certified (2014C) Global 14% Protein Rodent Maintenance

Diet – Pellet (Certified), ad libitum

Water: Charcoal-filtered and UV-irradiated deep bore-well water, ad

Individually in standard polysulfone cages with corn cob bedding Housing:

Environmental conditions:

20-24°C Temperature: Humidity: 64-67% 12-15 h⁻¹ Air changes:

12 h light / 12 h dark Photoperiod:

В. STUDY DESIGN AND METHODS

1. In-life dates

2012-10-05 to 2013-03-27

2. Animal assignment and treatment

Animal assignment and dose groups:

Animal assignment and dose groups:

Rats were randomly distributed to the ferent groups by body weight stratification method. Rats with extreme body weights were removed from the study. Grouping was done two days prior to the start of the treatment period. The following dose groups were employed:

Group allocation in the subchronic feeding study in this **Table 5.3.2-8:**

Test Group	Conc. in Diet	No of animals & Female
G1 – Control		
G2 – Low dose	2000	
G3 – Mid dose	\$ 6000 <u>_</u>	70 S 90 S
G4 – High dose	\$20 00Q [©]	10 10
G1R - Control recovery		
G4R – High dose recovery	20 00Q	10 0 10

Diet Preparation and Analysis:

The fosetyk-Al fortified the way prepared within the prescribed stability period. For the high dose groups, 200 g of fosety AI was mixed with approximately 0.25 kg of powder diet in a mixer grinder for 2 minutes (premix). This premix was manually mixed with approximately 1 kg powdered diet in a stainless steel container using a stainless steel spoon for 2 minutes. Then, this mixture was added in portions to the remaining bulk (ca 8.75 kg) podiet in the stainless steel ribbon blender and mixed for 20 minutes.

The homogeneity and active ingredient analysis was carried out on the day of commencement of treatment (Day 1) and during months D and 3 of the treatment period. Two replicate samples were taken each from top, middle and bottom layers of the fortified diet of each group to determine the homogeneity of the test item in the fortified food.

The fortified diet was sampled for active ingredient analysis at the beginning of the treatment (i.e. Day 1 of the treatment) and during months 2 and 3 of the treatment period. The test item concentration was determined from the samples collected for homogeneity test on Day 1 and during months 2 and 3 of the treatment period and hence, no separate samples were collected for test item concentration analysis on these occasions.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

For the control group, one composite sample was collected at the beginning of the treatment (i.e. Day 1 of the treatment) and during months 2 and 3 of the treatment period.

All the collected samples were analysed for fosetyl-Al content using the validated analytical method. During all three occasions, the results were within the acceptable criteria as the mean results were within ± 15.0% of the nominal concentration and % RSD (of all the replications of each concentration) was < 15.0%.

Details on oral exposure:

Duration of exposure

Frequency of treatment

Recovery period

90 days

Via diet, ad libitum

28 days for additional control and high-dose gra

3. Examinations

Clinical signs - mortality and moribundity/general daily observations

Clinical signs - detailed observations

All rats were observed forcelinical signs once saily. Observation for morbidity and mortality was carried out tonce daily except on weekends and public foliday where t was carried out once per , day since there were no clinical signs of Soncern.

Detailed clinical examination was done prior to the test item administration on Day V and once a week thereafter during Préatment and récovery period for all rats

During detailed chinical examination, all fats were observed for changes in skin Dir, eyes, muchus membranes, occurrence of secretions and excretions and automomic activity @.g. lacripation piloerection, pupil size, unusual respiratory pattern), changes in gait, posture and response to handling as well as the presence of closectonic movements, stereotypic behaviour (e.g., Excessive graming, repetitore circling) of abnormal behaviour (e.g. self-mutilation, walking backwards).

On days of detailed clinical examination, these observations Replaced the daily observations except on Day 1.

Individual body weights were recorded before the administration of test item (Day 1) and at weekly intervals thereafter during the treatment and recovere period. Fasting body weight was recorded prior to terminal sacrifice.

Food Consumption was measured weekly. Water consumption was not measured.

Sphthatmological examination of all animals was performed with an ophthalmoscope by a veterinarian prior to start of treatment period for the main group animals and at the end of the recovery period for the recovery group animals. Before examination, mydriasis was induced using a 1% solution of Tropicamide.

At the ep@ of the treatment period (on Day 92) for main groups and at the end of recovery period (on Day 120) for recovery groups, all rats were fasted overnight (water allowed), and sthetized with isoflurane and blood was collected from retro-orbital sinus plexus with fine capillary tube.

The following parameters were examined:

Haematocrit, haemoglobin, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, mean corpuscular volume, mean platelet volume, platelets, red blood cells, reticulocytes count, white blood cells, differential leukocyte count, prothrombin time, and activated partial thromboplastin time

Body weights

Food and water consumption

Ophthalmic evaluation

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Clinical chemistry

The following parameters were examined:

Alanine aminotransferase, albumin, albumin/globulin ratio (calculated values), alkaline phosphatase, aspartate aminotrans, ferase, blood urea nitrogen, calcium chloride, creatine kinases creatinine, gamma glutamyl transpeptidase, globulin (calculated values), glucose, inorganic phosphorus, potassium, sodium, total bilirubin, direct bilirubin, indirect bilirubin (calculated values) total cholesterol, total plasma protein, Ariglycerides

The following parameters were examined:

Specific gravity, nitrite, pH, protein, glucose, ketone bodies, urobilinogen, bilirubin, appearance (colour and clarity), volume All the rats of main (Day 92) and recovery groups (Day 129) were subjected to detailed necropsy and findings were recorded. The rats sacrificed at term were fasted overnight (water allowed), weighed, exsanguinated under isoflurabe anaesthesia and were subjected to detailed no crops by a pathologist.

Total and relative organ weights of all sacrificed Pats were determined. The paired organs were weighed together and

an including redultations, errebelium an prostate, seminal vestices and coagulating glands, spleen, thyr and pathyroid, testes, thymus, uterus with cervix.

On completion of the gross pathology examination, the tissues and organs noted below were collected antipreserved from all its. Histopathological examination was restricted to the pressived organs from control (GP) and high dose (G4) group annuals. In addition, all gross lesions from all the animals were examined microscopically.

Adrenal glands, aordy, bone-marrypy smear, brain including medullar pors, cerebellum and errebrum, caecum, colon, deodenum, epiddymides, oosofhagus, eyes with optic nerve, femoral muscles (skeletal miscle), femur bone with joint, gross lesions, heart, ileum with eyer's patch, jejunum, kidneys, liver, laryfix, lungs, mammary, gland, mandibular lymph nodes, mesenteric lymph nodes, nose, ovaries, pancreas, pharynx, pitutary, prostate, refetum, salivary glands, skirn with subcutaneous tissue, spinal eard at 3 levels - cervical, mid-thoracic and lumbar, spleen, sternigh with marrow, stomach (both parts), thyroid and parathyroid testes, thymus, trachea, urinary bladder, uterus with cervix

Urinalysis

Gross pathology

Organ weights

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

Functional observation battery (FOB) tests

Home cage observations

Open field observation

Each rat was observed in the home cage for posture and presence/absence of abnormal vocalizations and convulsions Rat was placed (one at a time) in an open field arena and observed for at least 2 minutes. During this observation period o rat was evaluated as it moves about freel unperturbed and the following observations were made and observations were recorded using score/ranks:

Gait, posture, mobility score, arougal level, clonic or tonic movements, stereotypic behaviour, abnormal behaviour, urination, defection, rearing, abnormal vocalisation

Functional tests

Motor activity

The motor activity of rats was measured using an automated animal activity measuring system. Each rat was individually placed in the activity sages of the instrument. The rats were monitored for 60 minutes. During this session, the stereotypic time (small movements) in seconds, the ambulatory time (large ambulatory movement) in seconds, horizon of counts, and ambulatory counts wore monttored

Sensory evaluation After the 2 minutes (approximately) observation period, while the rat was in the open weld arena, the following tests were conducted. The rat was allowed to prove freely in the open field box for these tests but had been positioned in the box by the obsorver in order to administer stimulus. During sensory reactivity measurements, rate were observed for following and Whe observations were recorded using scores/ranks:

Approach response touch response, click response, tail-pinch response, pupil response, aerial righting reflex

The landing hind limbs foot splay was performed by dropping the ration to horizontal sorface (able top) from a short height and measured the distance between the hind feet upon landing. The heel portion of each hind foot of each rat was marked with non-permanent ink just prior to testing. The rat was suspended in a prone position and then dropped from a height of ca 30 cm on to a recording paper sheet. A total of 3 readings were recorded

dor each rat. €

Gripoperformance

Hing imbs and fore limbs grip performance was tested using computerzed dual grip strength meter. Three trials were conducted for each rat i.e., three trials each for forelimb and hind

Regal book temperatures were recorded.

At the end of the functional lest, weight of each rat was Theasured.

Landing him limb foot splay

Physiological observations Body weight Habons of the state of the stat

Statistical evaluation

All quantitative variables like neurological observations (neuromuscular observation and body temperature) and clinical pathology (haematology, coagulation and clinical chemistry) data were tested for normality and homogeneity of variances (Levene's test) within the group before performing a one-factor ANOVA modelling by treatment groups. If the data are found to be non-optimal (non-normal or heteroschedastic), data was transformed before ANOVA was performed. ANOVA was done using suitable transformation. Comparison of means between treatment groups and control group was done using Dunnett's 't' test when the overall treatment 'F' test was found to be significant. In the case of recovery groups, data of treatment period and recovery period (no treatment period) was tested using the methods stated above.

II. RESULTS AND DISCUSSION

A. MORTALITY

No mortality occurred throughout the study period.

B. CLINICAL OBSERVATIONS

Clinical signs of toxicity attributable to the text substance were not observed throughout the study period.

C. BODY WEIGHT

There were no significant variations in mean foody weights at any of the tested to se groups. However, there were incidental and transient statistically significant variations in net body weight gains when compared to the concurrent control group.

The observed variations are considered to be incidental as the changes were inconsistent, not dose-dependent and also there were no associated ariations in the mean body weights (see Table 5.3.2-9).

Table 5.3.2-9: Bodyweight development in the subchronic feeding study on rats

			/ W T	Body wei	ght (g)	₩,		
<mark>Study</mark> day	Control	ls 🗸 🛴	_գ <mark>2000 թթ</mark>		© 600 0	p <mark>m</mark>	20 000	<mark>ppm</mark>
%		SD S N	Again O'	SD.	Mean	SD	Mean	SD
1	247.3120	15 867 × 24		¥8.782 ✓	248.094	14.280	250.653	16.494
<mark>8</mark>	280. 35 4	19.781 28	3 .964 4	21.368	282.720	17.130	277.133	16.932
<mark>15</mark>	306,625			235847	307.800	15.873	300.325	18.774
<mark>22</mark>	³³ 0.878	189 × 33		26.0570	331.833	16.948	322.154	21.316
29		18.592 35	3 .489	25.729	<mark>351.346</mark>	23.836	<mark>340.907</mark>	23.845
36	359.076	19.842 37	• •	<mark>28)249</mark>	<mark>369.720</mark>	28.617	358.302	<mark>26.127</mark>
43	375.36 %		3,5 ⁶⁷	2 9.767	387.855	<mark>29.302</mark>	370.222	28.437
<mark>50</mark>	387.050	21.305° 39	<mark>8.761</mark> ([©] :	<mark>29.779</mark>	<mark>401.186</mark>	<mark>29.017</mark>	382.660	<mark>27.994</mark>
<mark>57</mark>	400,.895 🐧 🔌	20.580	2.246 [©] :	<mark>30.680</mark>	<mark>412.866</mark>	<mark>28.899</mark>	395.129	<mark>29.996</mark>
<mark>64</mark>	3.542	24×10 42	<mark>4.784</mark>	<mark>32.429</mark>	<mark>424.227</mark>	32.957	408.590	<mark>27.977</mark>
71 @	7 <mark>417<i>3</i>48</mark>	21.948 43	2.474	<mark>36.051</mark>	<mark>431.887</mark>	<mark>34.991</mark>	<mark>415.411</mark>	<mark>27.429</mark>
78.	425.104	21.900 44	2.430	<mark>37.869</mark>	437.598	<mark>34.996</mark>	<mark>419.391</mark>	28.111
<mark>85</mark> √	@ 31.889	22,642 44	9.012	<mark>38.391</mark>	<mark>444.732</mark>	33.660	425.537	31.627
91	438.666 S	25.775 45	6.800	40.47 <mark>6</mark>	<mark>449.478</mark>	34.565	430.605	31.777

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

				Body w	eight (g)			
<mark>Study</mark> day	Cont	<mark>trols</mark>	2000	<mark>ppm</mark>	<mark>6000</mark>	<mark>ppm</mark>	<mark>20 00</mark>	<mark>0 ppm</mark>
uay	Mean	SD	Mean	SD	Mean	SD	Mean	SP
	Females							
1	187.380	12.176	185.859	11.827	186.700	14.430	188.825	(¹ 11.495)
8	<mark>201.409</mark>	13.031	201.993	14.106	201.533	16.214	204.302	11:781
<mark>15</mark>	211.855	17.804	212.818	14.608	210.089	18.313	213.040	958
<mark>22</mark>	220.922	15.956	221.081	12.781	© <mark>218.919</mark>	\$8.901	22 3 4979	12.956
<mark>29</mark>	<mark>225.935</mark>	16.674	<mark>227.575</mark>	14.085 _e	226.115	<mark>217.984</mark>	23 1.009	12.566
<mark>36</mark>	<mark>229.261</mark>	15.939	233.590	16.066	230.966 S	16.950	© <mark>237.22</mark> 8⁄	Q. 127
<mark>43</mark>	233.074	15.357	237.693	15,578	233.587	19.432	239 <mark>952</mark>	15.049
<mark>50</mark>	238.105	15.464	243.215	19 .911 。	241 ₆ 710	19.304	248.872	15550
<mark>57</mark>	240.368	15.654	245.779	16.74 %	23 5.138	21 M6	\$253.069	13.219
<mark>64</mark>	245.650	15.943	250.604 ₃	17,144	248.963	20.036	25 6 963	14.35\(\frac{1}{2}\)
<mark>71</mark>	<mark>248.935</mark>	16.345	255.967 ×	18.560	253732	21.77 6	257.152 [©]	13.333
<mark>78</mark>	<mark>249.195</mark>	16.436	257Ø10	`≫ <mark>18.02</mark> %	235.0540		263.682	5.395
<mark>85</mark>	250.103	16.099	258.780 ×		255.965	20.670	265\$22	14.917
<mark>91</mark>	252.688	18.240	262.815	17.950	2590521	21.500	2 65.064	14.251

D. FOOD CONSUMPTION

There were no significant variations in mean food consumption at any of the ested dose groups except for some random and transfert statistically significant variations (see Table 3.2-30).

Table 5.3.2- 10: Average food intake in the subcaronic feeding study in rats

			<u> </u>			
		Food intake	e (g/rat/day)	~(3)		
Controls		M ppmy y	2000	ppm	<mark>20 000</mark>	<mark>) ppm</mark>
Mean O		SD S	Mean 🐇	SD SD	Mean	SD
Males 📡				,		
24.005 © 1.0	090) 23.641	» . <mark>2.092</mark>	24.280°	1.216	24.345	2.510
24.04 3 0 14		2.327	2 3.5 58	<mark>0.972</mark>	21.765	1.725
21.383 22.	141 2 0. 054	1.931	22.236	1.688	21.043	1.368
	145 22.507C		22.144	<mark>0.464</mark>	<mark>21.789</mark>	0.959
21.355 Q	672 7 22.169		<mark>22.958+</mark>	<mark>0.500</mark>	<mark>22.802</mark>	1.515
20.845	883 2 3 347	1.939	23.917+	<mark>2.301</mark>	<mark>22.267</mark>	0.805
23.016	414 22.789		25.079	1.354	<mark>22.571</mark>	1.290
	039 23.766+	1.154	23.475	<mark>0.900</mark>	<mark>22.504</mark>	<mark>0.660</mark>
23.376	7////	1.491	23.624	<mark>1.459</mark>	<mark>21.346</mark>	1.746
22,701 🐧 🔌 1.	180° 23.412°	2.360 2.360 2.360 2.360	23.501	1.331	22.409	1.169
21.286	22.1 90	<mark>0.895</mark>	21.892	1.054	21.837	1.064
21.7 <mark>67</mark> 01.	303 22.180	1.305	22.534	1.743	<mark>20.861</mark>	0.641
	21.351	0.321	22.190	1.283	<mark>21.961</mark>	0.635
2 1.924 1	21.551	<mark>0.953</mark>	21.191	1.064	21.337	1.326
	Mean (2) 1. 24.005 1. 24.043 1. 21.383 2. 20.322 2. 21.355 1. 20.845 1. 23.016 3. 22.079 6. 23.376 0. 21.286 1. 21.286 1. 20.635 0.	Mean Mean Males 24.005 1.099 23.641 24.042 1.099 23.753 21.383 2.141 26.654 20.322 2.148 22.507 21.355 6.72 22.69 20.845 1.883 23.347 23.016 3.414 22.789 23.376 6.820 24.161 22.701 1.182 23.412 21.286 1.303 22.180 21.351 0.942 21.351	Concols 2000 ppm Mean SD Males 23.641 2.092 24.005 1.990 23.641 2.992 24.043 1.402 23.753 2.327 21.383 2.141 26.654 1.931 22.322 2.148 22.507 0.366 21.355 6.72 22.169 0.410 20.845 1.883 22.347 1.939 23.016 3.414 22.789 596 22.079 1.059 23.7664 1.154 23.376 6.820 24.161 1.491 22.701 1.120 23.412 2.360 21.286 19 22.180 0.895 21.267 1.303 22.180 1.305 26.635 0.942 21.351 0.321	Mean SD Mean SD Mean 24.005 1.090 23.641 2.092 24.286 24.043 1.402 23.733 2.327 23.558 21.383 2.141 26.054 1.931 22.236 22.322 2.148 22.507 0.366 22.144 21.355 1.883 22.347 1.939 23.917+ 23.016 3.414 22.782 27.964 1.154 23.475 23.376 0.820 24.161 1.491 23.624 22.701 1.120 23.412 2.360 23.501 21.286 21.99 22.180 1.305 22.534 21.635 0.942 21.351 0.321 22.190	Mean SD Mean SD Males 24.005 1.090 23.641 2.092 24.280 1.216 24.043 1.402 23.733 2.327 23.558 0.972 21.383 2.141 26.054 1.931 22.236 1.688 22.322 2.148 22.507 0.366 22.144 0.464 21.355 1.883 22.347 1.939 23.917+ 2.301 23.016 3.414 22.782 27.964 1.154 23.475 0.900 23.376 0.820 24.161 1.491 23.624 1.459 22.701 1.120 23.412 2.360 23.501 1.331 21.286 219 22.180 0.895 21.892 1.054 21.267 1.303 22.180 1.305 22.534 1.743 22.635 0.942 21.351 0.321 22.190 1.283	Concols 2066 ppm 6000 ppm 20 000 Mean SD Mean SD Mean Males 24.005 1.090 23.641 2092 24.280 1.216 24.345 24.043 1.002 23.753 2.327 23.558 0.972 21.765 21.383 2.141 26.654 1.931 22.236 1.688 21.043 20.322 2.148 22.507 0.366 22.144 0.464 21.789 21.355 0.672 22.169 0.410 22.958+ 0.500 22.802 20.845 1.883 23.347 1.939 23.917+ 2.301 22.267 23.016 3.414 22.789 0.966 25.079 1.354 22.571 22.079 1.059 23.766+ 1.154 23.475 0.900 22.504 23.376 0.820 24.161 1.491 23.624 1.459 21.346 22.701 1.120 23.412 2.360 23.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

				Food intake	e (g/rat/day)			
<mark>Study</mark> week	Con	trols	2000	ppm	6000	ppm	20 00	0 ppm
WEEK	Mean	SD	Mean	SD	Mean	SD	Mean	S
	Females							
1	17.858	1.606	17.701	1.566	18.249	1.901	³ 17.369	([©] 1.97 ©)
<mark>2</mark>	19.229	1.941	19.207	1.392	19.012	2.078 [©]	17.417	
3	18.053	1.034	17.387	1.359	17.742	1, t30	17.23© [*]	29.496
<mark>4</mark>	17.117	<mark>0.966</mark>	17.392	1.256	🕲 <mark>17.484</mark>	<mark>\$2311</mark>	17.951	0.90
<mark>5</mark>	16.205	<mark>0.724</mark>	16.786	1.018	17.381	Q 1.646	Ø.133	<mark>0.908</mark>
<mark>6</mark>	16.421	1.069	18.104	1.255	18.056	1.554	○ 17.652	0.507
<mark>7</mark>	16.603	0.390	17.691	1458	17.307	2 .624 Q	17643	0.712
8	16.395	0.572	18.336	1.065 °	18/438	≫ <mark>3.147</mark> ,	≈18.288 ≪	
<mark>9</mark>	16.246	<mark>0.695</mark>	19.057+	2.75 9	(16.979)	1,452	\$\frac{17.204}{}	₄ 0.758
10	16.134	0.389	17.721 ₄	1,571	2 17.705	Ψ <u>.416</u>	17 <u>.</u> 700	0.98 4
11	16.428	<mark>1.104</mark>	17.44 ³	1 7.746	17,580	2.580	₂ 1,7.252	<mark>1,899</mark>
12	15.975	<mark>0.780</mark>	<u> </u>	₹ 0.938	√ <mark>17.196</mark> , ○	1.3.47	7 17.02 2	3.443
13	15.134	0.853	06.281	<mark>1.5</mark> 99	7 <mark>15.716</mark>	2.562 S		<u>1.606</u>
14	15.664	1.435	Q 15.941	0.784	163413	1.436	3.892	1.209

^{+/-:} Statistically significantly higher (*) / lower (-) that the velocite control group

The observed variations are considered to be incidental due to their isolated occurrence, inconsistency and also there were no associated changes in the mean body weights. The resulting test substance in the isolated property in the mean body weights.

Table 5.3.2-11: Mean substance intake in the subchronic feeding study in rats

Test Group Conc, in diet Mean daily sul	bstance intake bw/day]
Viale	Female
G1/GFR - Control / Control recovery 0.00	0.00
G2 - Low dove 7 7 2000 118.36 G3 - Mid dose 7 6060 363.40	147.85
G3 - Mid dose & & 6060 & 363.40	445.76
G4 - 196 h dos 0 2 26 000 2 1196 04	1433.43
G4R High dose recovery 20 000 1227.75	1438.72

E. OPHTHALMOSCOPIC EXAMINATION

Ophthalmoscopy revealed no test article related findings in any of the animals.

F. HAEMATOLOGY AND CLINICAL, CHEMISTRY

There were no treatment related changes in haematology parameters at all the doses tested (see Table 5.3.2-12) Increased mean platelet volume in high dose recovery males (5%) and females (7%) were considered increased seems as the magnitude of change was minimal and there were no changes in MPV value on high dose group at the end of treatment.

Table 5.3.2- 12: Haematology and coagulation parameters measured on Day 92

Mean SD Mean	D	Con	trols	2000	ppm	6000	ppm	$20~000~\mathrm{ppm}_{\mathrm{D}}{}^{\circ}$	
RBC (10 ¹³ /L) 9.01	Parameter	Mean	SD		<u> </u>		<u> </u>	Mean	SD A
RBC (10 ¹³ /L) 9.01		Males					Ô		
Het(UL)	$RBC (10^{12}/L)$	9.01	<mark>0.41</mark>	8.85	<mark>0.50</mark>	9.03	0.35	9.19 ×	0.40
MCV (fL) 57.17 2.16 57.59 2.78 57.18 1.73 \$7.65 1.98 MCH (pg) 17.22 0.72 17.30 0.99 16.90 0.49 16.85 971 \$662 \$692 \$692 \$693	Hb (g/L)	155.00	<mark>4.76</mark>	152.80	<mark>6.18</mark>	152.60	<u>5</u> 10	154.60	\$ \$.91 ∂
MCH (pg)	Hct (L/L)	0.52	0.02	0.51	0.02	0.52	0.02	<u>0.53</u>	≫ <mark>0.02</mark>
MCHC (g/l) 301.40 5.82 300.30 663 295.80 9.66 291.90 5.17.60 Retic (1017L) 0.18 0.04 0.20 0.04 92.00 0.03 9.21 0.06 Retic (76) 2.01 0.36 2.32 0.94 9.219 0.57 2.24 0.534 Plat (107L) 920.70 1.48.64 907.56 3.65.30 9.49.26 83.31 0.94 9.93 0.92 MPV (IL) 9.68 0.55 1.03 5.80 0.90 5.23 1.18 5.34 3.22 Neut (107L) 1.34 0.35 1.24 9.23 1.29 0.55 1.25 0.41 Lymph (107L) 3.90 0.82 427 0.72 3.75 0.75 3.71 0.82 Mono (107L) 0.15 0.06 0.017 0.92 0.16 0.06 0.017 0.05 Baso (107L) 0.01 0.01 0.01 0.01 0.01 0.02 PT (s) 16.24 0.92 46.71 0.66 0.02 0.66 0.02 0.05 APTT (s) 11.42 2.25 11.50 0.20 0.66 0.02 0.05 BHC (1012L) 78.8 0.48 7.90 0.20 0.14 0.25 0.02 MCV (11 62.46 0.03 3.49 0.02 0.04 0.02 0.51 0.02 MCV (12 62.46 0.03 62.46 2.66 0.02 0.04 0.02 0.51 0.02 MCV (12 62.46 0.03 62.46 2.66 0.66 0.02 0.02 0.51 0.02 MCV (13 62.46 0.03 62.46 2.66 0.66 0.02 0.05 0.02 0.51 0.02 MCV (12 62.46 0.03 62.46 2.66 0.66 0.02 0.05 0.02 0.51 0.02 MCV (13 62.46 0.03 62.46 2.66 0.66 0.02 0.05 0.02 0.51 0.02 MCV (14 62.46 0.03 62.46 2.66 0.66 0.02 0.05 0.02 0.51 0.02 MCV (12 62.46 0.03 62.46 2.66 0.68 0.77 0.22 0.03 0.02 0.05 0.05 MCV (13 62.46 0.03 62.46 2.66 0.68 0.04 0.01	MCV (fL)	57.17	<mark>2.16</mark>	<mark>57.59</mark>	2.7 <i>5</i>		1.73	\$7.65	1,98
Retic (10 '/L)		17.22	<mark>0.72</mark>	17.30	<mark>0.99</mark>	16.90°	0.49	√ 16.85	9.71 (
Retic (%) 2.01 0.36 2.32 0.44 2.19 0.57 2.24 0.54 Plat (10 1/L) 920.70 148.64 907.58 1.65.30 94.20 383.31 916.80 6.348 MPV (1) 96.8 0.55 1.03 8.80 0.90 5.23 1.48 5.36 3.22 Neut (10 1/L) 1.14 0.35 1.24 92.2 1.29 0.55 1.25 0.41 Lymph (10 1/L) 3.90 0.82 427 0.72 3.75 0.76 3.71 0.82 Mono (10 1/L) 0.15 0.06 0.017 0.05 0.16 0.08 0.17 0.05 Baso (10 1/L) 0.02 0.01 0.01 0.02 0.01 0.02 0.01 Eos (10 1/L) 0.11 0.16 0.66 0.02 0.06 0.00 0.00 0.00 PT (s) 16.24 0.92 0.671 0.62 16.28 0.05 15.34 0.60 APIT (s) 11.42 0.35 0.149 0.02 0.61 0.82 0.51 Femiles Fe	MCHC (g/L)	301.40	<mark>5.82</mark>	300.30	△ <mark>6.63</mark>	295.20	% <mark>9.66</mark> ⊀√	<mark>291.90</mark>	<u> </u>
Plat (10"/L) 920.70	Retic $(10^{12}/L)$	0.18	<mark>0.04</mark>			@ *A	D 0.03 ♥	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.60
MPV (fL) 9.68 0.55 1.03 5.80 0.90 5.23 1.48 5.36 3.22 Neut (10°/L) 1.34 0.35 1.24 9.23 1.54 0.55 1.25 0.41 Lymph (10°/L) 3.90 0.82 43°7 0.72 3°75 0.76 3°71 0.82 Mono (10°/L) 0.15 0.96 0.17 0.98 0.16 608 0.17 0.05 Baso (10°/L) 0.01 0.01 0.02 0.03 0.02 0.02 0.03 0.02 0.03		<mark>2.01</mark>	<mark>0.36</mark>		_ <u>~ ~</u>	\$ <mark>2.19</mark> < √	🔷 🚜	L.V	
Neut (10°/L) 1.34 0.35 1.34 1.32 1.32 0.55 1.32 0.41		920.70		-		94120	83.31 ♥		, y 00. , p
Neut (10°/L) 1.34 0.35 1.24 0.72 0.75 0.76 0.77 0.82					0.39	9.83	0.4 4	- V	
Mono (10°/L) 3.90 0.82 40°/T 0.72 3.75 0.75 3.71 0.82						5.23	3/ n	5.36	<u> </u>
Mono (10%L)				V × /		- 1/2	© 0.55	1/3/5	N .
Baso (10°/L)	Lymph (10 ⁹ /L)	<mark>3.90</mark>	0.82	<mark>40r*7</mark>	_	W C	7 0.76	\$3.71 \(\)	0.82
Eos (10°/L) 0.11 0.10° 0.66 0.02° 0.06° 0.02° 0.07 0.02 PT (s) 16.24 0.92 0.6.71 0.62 16.28 0.55 15.34 0.60 APTT (s) 11.42 2.55 11.30 1.20 12.87 2.57 10.82 3.51 RBC (10¹²/L) 7.88 0.48 7.79 149.00 5.96 144.40 3.57 149.10 2.85 Hbt (L/L) 62.46 0.03 0.49 0.02 0.49 0.02 0.51 0.02 MCV (1,1) 62.46 0.03 0.49 0.02 0.49 0.02 0.51 0.02 MCV (1,1) 62.46 0.03 0.88 0.85 18.88 0.85 18.77 0.72 18.21 0.51 MCHC (g/L) 9.820 4.78 30′.80 5.41 30′.80 7.32 291.70 4.88 Retic (10¹²/L) 0.24 0.08 0.026 0.69 0.04 0.45 2.56 0.38 Plat (10¹²/L) 8.95 0.72 0.96 0.97 14.84 882.40 105.69 876.30 63.45 MPV (1,1) 10.22 0.52 0.17 0.49 9.48 0.59 10.15 0.39 WBC (26°/L) 2.70 0.54 3.48 0.56 2.95 0.68 3.39 0.83 New (10²/L) 1.92 0.54 3.48 0.56 2.95 0.68 3.39 0.83 New (10²/L) 1.92 0.54 3.48 0.56 2.95 0.68 3.39 0.83 New (10²/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10²/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10²/L) 0.08 0.03 0.09 0.04 0.11 0.01 0.01 0.01 Eos (10²/L) 0.08 0.03 0.09 0.04 0.11 0.00 0.00 0.01 Eos (10²/L) 0.08 0.03 0.09 0.04 0.11 0.00 0.01 0.01 Eos (10²/L) 0.08 0.03 0.09 0.04 0.11 0.00 0.00 0.01 Eos (10²/L) 0.08 0.08 16.16 0.67 15.91 1.70 15.58 0.80 APST (s) 3.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APST (s) 3.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80	Mono (10 ⁹ /L)	0.15		Ø <mark>0.17</mark>	7 7 6	0.16 (2 <mark>908</mark>	// // // // // // // // // // // // //	<mark>0.05</mark>
PT (s)	Baso (10 ⁹ /L)	0.02	∞ 0.01 °		™ .01 ⊀	0.63	6.01	602	<mark>0.01</mark>
RBC (1012/L) 37.88 948 7.99 0.02 7.86 929 8.20 0.33 Hb (g/L) 14680 7.79 149.00 5.96 140.40 3.57 149.10 2.85 Hct (L/L) 949 0.03 949 0.02 0.49 0.02 0.51 0.02 MCV (tf) 62.46 1.697 62.46 2.09 62.42 2.50 62.46 1.99 MCH (g/L) 18.65 96.68 18.88 0.85 18.77 0.72 18.21 0.51 MCHC (g/L) 29820 4.78 301.80 5.91 300.80 7.32 291.70 4.88 Retic (1012/L) 6.24 0.03 0.26 0.05 0.24 0.03 0.21 0.03 Retic (**) 3.02 94.40 3.36 0.69 3.04 0.45 2.56 0.38 Plat (10°/L) 89830 72.87 965.70 41.84 882.40 105.69 876.30 63.45 MPV (tf) 10.22 9.54 3.46 0.56 2.95 0.68 3.39 0.83 Neur (10°/L) 0.65 0.20 0.65 0.15 0.68 0.17 0.62 0.15 Lymph (10°/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.08 0.03 0.00 0.01 0.01 0.01 0.01 Eos (10°/L) 0.03 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APFT (s) 16.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Eos $(10^{9}/L)$	0.11	0.10 ×	~ W	1//	0 .06	0.02	∂ 0.07	0.02
RBC (1012/L)	PT (s)	16.24 ×	<mark>0,92</mark>		<mark>0(62</mark>	^{16.28}	2 <mark>1.05</mark>	15.34	<mark>0.60</mark>
RBC (1012/L)	APTT (s)	11.42	2 .95	11. 9 0		12.87	2.57	10.82	<mark>3.51</mark>
Hb (g/L)		Females			F S), 4.		
Hct (L/L)	$RBC (10^{12}/L)$	∑ <mark>7.88</mark> Ô		√ 7.90 √	~ <mark>0,20</mark>	S (//)	% 29	8.20	0.33
MCV (fl.) 62.46 kgf 62.46 2.69 62.42 2.50 62.46 1.99 MCH46gg) 18.65 0.68 18.88 0.85 18.77 0.72 18.21 0.51 MCHC (g/L) 298.20 4.78 301.80 5.31 300.80 7.32 291.70 4.88 Retic (1012/L) 0.24 0.03 0.21 0.03 Retic (%) 3.07 0.40 3.00 0.69 3.04 0.45 2.56 0.38 Plat (10%L) 893.30 72.87 965.70 41.84 882.40 105.69 876.30 63.45 MPV (fl.) 10.22 52 10.17 9.99 9.48 0.59 10.15 0.39 WBC (x6/L) 2.30 0.54 3.45 0.56 2.95 0.68 3.39 0.83 Neut (10%L) 0.08 0.03 0.06 0.15 0.68 0.17 0.62 0.15 Lymph (10%L) 0.08 0.03			7 .79 🖔	149 ₀ 00	:% / *	14 % 40	<a>✓⁸3.57	149.10	<mark>2.85</mark>
MCH(\$\text{g}'\text{g}) 18.65 668 18.88 0.85 18.77 0.72 18.21 0.51 MCHC (g/L) 298.20 4.78 301.80 5.81 300.80 7.32 291.70 4.88 Retic (1012/L) 0.24 0.03 0.26 0.05 0.24 0.03 0.21 0.03 Retic (%) 3.04 9.40 3.39 0.69 3.04 0.45 2.56 0.38 Plat (10°/L) 895.30 72.87 965.70 41.84 882.40 105.69 876.30 63.45 MPV (fL) 10.22 22 10.17 9.49 9.48 0.59 10.15 0.39 WBC (x6°/L) 2.70 0.54 3.46 0.56 2.95 0.68 3.39 0.83 Neut (10°/L) 0.65 0.20 0.65 0.15 0.68 0.17 0.62 0.15 Lymph (10°/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04	net (L/L)	-(0)	0.03	0.49	0.02	<mark>⊙.49</mark> _ ©	0.02	0.51	0.02
MCHC (g/L) 298.20 4.78 361.80 5.81 300.80 7.32 291.70 4.88 Retic (1012/L) 0.24 0.03 0.24 0.03 0.21 0.03 Retic (%) 3.02 0.40 3.30 0.69 3.04 0.45 2.56 0.38 Plat (109/L) 899.30 72.87 265.70 41.84 882.40 105.69 876.30 63.45 MPV (ft.) 10.22 0.52 10.17 0.49 9.48 0.59 10.15 0.39 WBC (109/L) 2.54 3.46 0.56 2.95 0.68 3.39 0.83 Neur (109/L) 0.65 0.20 0.65 0.15 0.68 0.17 0.62 0.15 Lymph (109/L) 1.92 0.40 2.66 0.48 2.10 0.55 2.62 0.78 Mono (109/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (109/L) 0.01	MCV (fL)		1297	62.46°		v 62.42	<mark>2.50</mark>	<mark>62.46</mark>	<mark>1.99</mark>
Retic (101²/L) 0.24 0.08 0.26 0.05 0.24 0.03 0.21 0.03 Retic (%) 3.02 0.40 3.00 0.69 3.04 0.45 2.56 0.38 Plat (10°/L) 899.30 72.87 965.70 41.84 882.40 105.69 876.30 63.45 MPV (11) 10.22 92 10.17 949 9.48 0.59 10.15 0.39 WBC (10°/L) 2.50 0.54 3.46 0.56 2.95 0.68 3.39 0.83 Neur(10°/L) 1.92 0.40 2.66 0.48 2.10 0.55 2.62 0.78 Mono (10°/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Eos (10°/L) 0.03 0.01 0.03 0.01 0.04 0.01 0.04 0.02		18.65		<u> </u>		18577	0.72	18.21	<mark>0.51</mark>
Retic (101²/L) 0.24 0.08 0.26 0.05 0.24 0.03 0.21 0.03 Retic (%) 3.02 0.40 3.00 0.69 3.04 0.45 2.56 0.38 Plat (10°/L) 899.30 72.87 965.70 41.84 882.40 105.69 876.30 63.45 MPV (11) 10.22 92 10.17 949 9.48 0.59 10.15 0.39 WBC (10°/L) 2.50 0.54 3.46 0.56 2.95 0.68 3.39 0.83 Neur(10°/L) 1.92 0.40 2.66 0.48 2.10 0.55 2.62 0.78 Mono (10°/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Eos (10°/L) 0.03 0.01 0.03 0.01 0.04 0.01 0.04 0.02	MCHC (g/L)	29820 ₂	√ <mark>4.78</mark>	301.80 v	⁷ 5. &1 ,	≥ 300.80	7.32	291.70	<mark>4.88</mark>
Plat (10°/L)				6.26	<mark>0.05</mark>	<i>y</i>			
WBC (10°/L) 2.70° 0.54 3.46 0.56 2.95 0.68 3.39 0.83 Neuk (10°/L) 0.65 0.20° 0.65 0.15 0.68 0.17 0.62 0.15 Lymph (10°/L) 1.92 0.90° 2.66° 0.48 2.10 0.55 2.62 0.78 Mono (10°/L) 0.08 0.03 0.09° 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.01	W/,	3.07	30.40	<u> </u>	ॐ 0.69	3.04	0.45	2.56	0.38
WBC (10°/L) 2.70° 0.54 3.46 0.56 2.95 0.68 3.39 0.83 Neuk (10°/L) 0.65 0.20° 0.65 0.15 0.68 0.17 0.62 0.15 Lymph (10°/L) 1.92 0.90° 2.66° 0.48 2.10 0.55 2.62 0.78 Mono (10°/L) 0.08 0.03 0.09° 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.01		89\$/.30 _{>>}	72.87		У <mark>41⁄84</mark>	882.40	105.69	<mark>876.30</mark>	<mark>63.45</mark>
Neut (10°/L) 0.65 0.20 0.65 0.15 0.68 0.17 0.62 0.15 Lymph (10°/L) 1.92 0.40 2.66 0.48 2.10 0.55 2.62 0.78 Mono (10°/L) 0.08 0.03 0.09 0.04 0.11 0.03 0.09 0.04 Baso (10°/L) 0.01 0.02 0.02 0.02 0.02 0.00 <		10.22	42	// // // //	12 J	<mark>9.48</mark>	<mark>0.59</mark>	10.15	<mark>0.39</mark>
Baso (10°/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 PT(s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APT(s) 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/ Statistic and y significantly higher (+) / lower (-) than the vehicle control group 1.63 11.76 4.75 14.26 3.77		2.70	20.54	AL "	% 0.56 0.56	2.95	<mark>0.68</mark>	3.39	<mark>0.83</mark>
Baso (10°/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 PT(s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APT(s) 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/ Statistic and y significantly higher (+) / lower (-) than the vehicle control group 1.63 11.76 4.75 14.26 3.77		0,65	0.20	20 .65	0.15	0.68		0.62	
Baso (10°/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 PT(s) 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APT(s) 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/ Statistic and y significantly higher (+) / lower (-) than the vehicle control group 1.63 11.76 4.75 14.26 3.77		1.92	0 540	2.66°	<mark>0.48</mark>	<mark>2.10</mark>	<mark>0.55</mark>	<mark>2.62</mark>	<mark>0.78</mark>
Eos (10%) 0.03 0.01 0.04 0.01 0.04 0.02 PT 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APT (s) 2.00 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/Statistically significantly higher (+) / lower (-) than the vehicle control group		4-0	0.03	0.09	<mark>0.04</mark>	0.11	0.03	0.09	<mark>0.04</mark>
Eos (10%) 0.03 0.01 0.04 0.01 0.04 0.02 PT 16.09 0.88 16.16 0.67 15.91 1.70 15.58 0.80 APT (s) 2.00 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/Statistically significantly higher (+) / lower (-) than the vehicle control group	Baso (10 ⁹ /L)	2 <mark>0,01</mark>	©.01		0.01	0.01	0.01	0.01	0.01
APTT (s) 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/Statistically significantly higher (+) / lower (-) than the vehicle control group	Eos (10%)	© 0.03	9 01	0.03	0.01	0.04	0.01	0.04	0.02
APVT (s) 2.46 9.62 1.63 11.76 4.75 14.26 3.77 +/Statistically significantly higher (+) / lower (-) than the vehicle control group			∞ <mark>0.88</mark>		<mark>0.67</mark>	15.91	1.70	15.58	<mark>0.80</mark>
+/- Statistically significantly higher (+) / lower (-) than the vehicle control group	APTT (s)	1.00 %					<mark>4.75</mark>	14.26	<mark>3.77</mark>
	+/ Statistically sig	nificantly hig		er (-) than the	vehicle contro	ol group			

There were no treatment-related changes in clinical chemistry parameters at any dose tested (see Table 5.3.2-13).

Table 5.3.2-13: Clinical chemistry parameters measured on Day 92

Mean SD Mea	Doromatas	Con	<mark>trols</mark>	2000	ppm	<mark>6000</mark>	ppm 🗬	20 00	<mark>ppm</mark>
Males Glu (mmol/L) 7.48 0.70 7.71 0.91 7.50 1.13 29 BUN (mmol/L) 5.20 1.00 4.84 0.41 5.33 0.56 5.38 Creat (μmol/L) 32.50 6.55 39.20 81 41.44 9.87 38.00 AST (U/L) 77.00 13.03 72.20 33.58 70.50 8.33 70.10 ALT (U/L) 33.90 10.92 27.60 7.03 27.40 422 28.90 GGT (U/L) 0.30 0.67 0.60 6.70 0.46 6.52 0.70 ALP (U/L) 85.60 11.88 76.80 5.57 80.80 12.87 6.70 CK (U/L) 256.30 150.89 188.50 33.27 233.50 610.5 482.00 T.Bil# (μmol/L) 1.34 0.68 1.84 0.49 1.25 0.71 1.68 0 Trig (mmol/L) 0.88 0.32 0.97 0.88 0.98 0.93 1.10 T.Pro (g/L) 72.48 74.29	Parameter	Mean	SD	Mean	SD	Mean	SD	<mark>Mean</mark> ⊸	6
Glu (mmol/L) 7.48 0.70 7.71 0.91 7.50 1.13 29 BUN (mmol/L) 5.20 1.00 4.84 0.41 5.33 0.56 5.38 Creat (μmol/L) 32.50 6.55 39.20 281 41.46 9.87 38.00 AST (U/L) 77.00 13.03 72.20 793.58 70.50 8.33 70.10 ALT (U/L) 33.90 10.92 27.60 7.03 27.40 4.22 28.90 GGT (U/L) 0.30 0.67 0.60 70 0.46 7.52 0.70 ALP (U/L) 85.60 11.88 76.80 5.57 80.80 12.87 79.70 CK (U/L) 256.30 150.89 188.50 33.27 333.50 51.25 182.00 T.Bil* (μmol/L) 1.34 0.68 1.84 0.49 1.23 0.71 1.58 Trig (mmol/L) 0.88 0.32 0.97 0.88 0.98 0.93 1.10 T. Pro (σ/L) 72.48 74.29 74.29 74.29 74.29		Males					V , V		, Ø
Creat (μmol/L) 32.50 6.55 39.20 6.81 41.46 9.87 38.00 AST (U/L) 77.00 13.03 72.20 70.50 8.33 60.10 ALT (U/L) 33.90 10.92 27.60 7.03 27.40 4.22 28.90 GGT (U/L) 0.30 0.67 0.60 6.70 0.46 0.52 0.70 ALP (U/L) 85.60 11.88 76.80 5.57 80.80 12.87 79.70 CK (U/L) 256.30 150.89 188.50 33.27 233.50 61.45 182.90 T.Bil* (μmol/L) 1.34 0.68 1.84 0.49 1.23 0.71 1.88 T.Chol (mmol/L) 2.53 0.37 2.34 0.32 2.99 0.45 2.23 Trig (mmol/L) 0.88 0.32 0.97 0.88 0.98 0.93 1.10 T. Pro (g/L) 72.48 204 71.3% 265 69.68 0.49 74.29	Glu (mmol/L)	<mark>7.48</mark>	0.70	<mark>7.71</mark>	0.91	7.50	1.13	29	y 1.
AST (U/L) 77.00 13.03 72.20 13.58 70.50 8.33 70.10 ALT (U/L) 33.90 10.92 27.60 7.03 27.40 422 28.90 2 GGT (U/L) 0.30 0.67 0.60 670 0.46 0.52 0.70 ALP (U/L) 85.60 11.88 76.80 5.57 80.80 12.87 70.70 ALP (U/L) 256.30 150.89 188.50 33.27 333.50 61.45 182.00 71.81 (µmol/L) 1.34 0.68 1.84 0.49 1.25 0.71 1.58 0.71 T.Chol (mmol/L) 2.53 0.37 2.34 0.32 2.39 0.45 2.3 0.71 72.48 0.97 0.88 0.32 0.97 0.88 0.98 0.93 0.45 74.29	BUN (mmol/L)	5.20	1.00	<mark>4.84</mark>	0.41	5.33	0.56		ø
AST (U/L) 77.00 13.03 72.20 13.58 70.50 8.33 70.10 ALT (U/L) 33.90 10.92 27.60 7.03 77.40 422 28.90 2 GGT (U/L) 0.30 0.67 0.60 6.70 0.46 0.52 0.70 12.87 70.70 12.70 12.87 70.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70 12.70	Creat (µmol/L)	32.50	<mark>6.55</mark>	39.20			. 0		& <mark>℃.</mark>
GGT (U/L) 0.30 0.67 0.60 6.70 0.46 0.52 0.70 ALP (U/L) 85.60 11.88 76.80 5.57 80.80 12.87 6.70 70 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>70.50</td> <td>8.33 8.33</td> <td></td> <td>14.</td>						70.50	8.33 8.33		14.
GGT (U/L) 0.30 0.67 0.60 6.70 0.46 0.52 0.70 ALP (U/L) 85.60 11.88 76.80 5.57 80.80 12.87 79.70 70 CK (U/L) 256.30 150.89 188.50 33.27 333.50 61.45 182.00 T.Bil* (μmol/L) 1.34 0.68 1.8½ 0.49 1.25 0.71 1.58 0 T.Chol (mmol/L) 2.53 0.37 2.34 0.32 2.99 0.45 2.23 0 Trig (mmol/L) 0.88 0.32 0.97 0.88 0.98 0.93 1.10 T. Pro (g/L) 72.48 20.44 71.3% 2.65 69.68 2.49 74.29				27.60	7.03	27.40	4/202		ĮĄ.
ALP (U/L) 85.60 11.88 76380 5.57 © 8080 12.87 67.70 CK (U/L) 256.30 150.89 188.50 33.27 33.50 61.45 182.00 T.Bil# (µmol/L) 1.34 0.68 1.81 0.49 1.25 0.71 1.58 0 T.Chol (mmol/L) 2.53 0.37 2.31 0.32 209 0.45 2.23 0 Trig (mmol/L) 0.88 0.32 0.97 0.98 0.98 0.93 1.10 T. Pro (g/L) 72.48 274.29 274.29 274.29 274.29				0.60	670	M n () /161.a	№ 9.52		1.
T.Bil# (µmol/L)				<mark>76≨80</mark> ू	~ 5.5 <u>7</u> €	A	N CONTRACTOR		1
Trig (mmol/L) 0.88 0.32 0.97 0.88 0.98 0.93 0.93 0.110					33.27	33.50	61945	√182.00	40
Trig (mmol/L) 0.88 0.32 0.97 0.88 0.98 0.93 0.93 0.110				1.84	0,49	1.25	9.71 0		0 0.
T Pro (σ/L) 72.48 20π4 Κμ [*] 71.350° 2565 Φ [*] 69.68° Φ [*] 49.54 746.29				0.07	0.40	2.979	0.45	\$.23 Q	
Alb (g/L) 44.19 (1.93, 44.34 1.44 42.46 1.80, 44.05 Glob (g/L) 28.29 2.57 27.01 2.21 27.22 2.36 30.24 A/G 1.57 64.7 1.68 69.15 1.57 61.4 1.50 P; (mmol/L) 1.83 70.23 1.72 70.15 70.27 70.27 1.83 Ca (mmol/L) 28.27 0.10 2.76 0.68 2.71 0.11 2.76 Na (mEq/L) 3.64 149.52 77.39 149.82 2.06 149.83 K (mEq/L) 3.64 0.18 2.74 0.24 3.78 0.31 3.79 C1 (mEq/L) 102.26 1.16 2.02.34 1.82 101.85 1.59 101.29						0.98	0 40 ^ (0. 5
Glob (g/L) 28.29	1.Pro (g/L)	72.48 44.10	204	71.330 7 1.330	1 44	109.00°	2.49 %		5. 1.
A/G	Glob (g/L)	28 20 v	2.57	27 01	2 2 1	7 7 √.40 %	1.0g		5.
P ₁ (mmol/L) 1.87 0.23 1.72 0.15 0.57 0.24 1.83 Ca (mmol/L) 2.87 0.16 2.76 0.68 2.71 0.11 2.76 Na (mEq/L) 3.64 0.18 2.74 0.24 3.78 0.31 3.79 Cl (mEq/L) 102.26 1.16 102.34 1.59 101.29 Cl (mEq/L) 102.26 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 P ₁ (mmol/L) 2.87 0.16 0.18 2.76 0.18 2.71 0.11 0.11 1.83 R (mEq/L) 3.64 0.18 2.74 0.24 3.78 0.31 3.79 Cl (mEq/L) 102.26 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 P ₁ (mmol/L) 2.87 0.16 0.18 0.18 0.26 1.49 P ₂ (mmol/L) 2.76 0.18 0.18 0.24 0.24 0.24 0.24 0.24 P ₁ (mmol/L) 2.76 0.18 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 P ₂ (mmol/L) 0.11 0.1	0100 (g/L)	1 57	2.30 017	1 65	2.21 6.15	1.57	√ 1/1 × √		0.
Ca (mmol/L) \$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$	P: (mmol/L)	1.57	23 % i	1.02	0.15	057	0.14		0.
Na (mEq/L)	Ca (mmol/L)	1 6y 27	0.23	~ 76 ~	0.12		0.20		0.
K (mEq/L) 3.64 0.18 2.74 0.24 3.78 0.31 3.79 C1 (mEq/L) 102.26 1.16 1.17 1.17 1.17 1.17 1.17 1.17 1.1	Na (mEq/L)	49.6	(54	149/52	2000 2000	1498	Ø ₂ 11 ũ2 06		0.
CI (mEq/I ₂) 102.26 1.16 .402.34 1.29 101.29	K (mEq/L)	3.64	$\bigcirc 0.18 \bigcirc$	\$ 9 <u>4</u>	24 0 24 0	78	0.31		0.
	Cl (mEq/L)	102.26	1 126	.%102 34.\\\	100	101.88	1 59		1.

Document MCA - Section 5: Toxicological and metabolism studies

Davamatas	Con	<mark>trols</mark>	2000	<mark>ppm</mark>	<mark>6000</mark>	<mark>ppm</mark>	20 000	<mark>) ppm</mark>
Parameter	Mean	SD	<mark>Mean</mark>	SD	Mean	SD	Mean	SD 。
	Females							
Glu (mmol/L)	<mark>6.97</mark>	1.09	8.57+	<mark>0.62</mark>	<mark>7.54</mark>	0.92	8.01	¥.02
BUN (mmol/L)	5.43	<mark>0.64</mark>	<mark>5.49</mark>	<mark>0.58</mark>	<mark>5.79</mark>	0.54	5.57	© (0.72)
Creat (µmol/L)	42.50	10.36	<mark>45.40</mark>	<mark>9.08</mark>	<mark>42.70</mark>	<mark>7.19</mark>	45.50	12.98
AST (U/L)	69.20	<mark>9.54</mark>	<mark>64.70</mark>	<mark>7.42</mark>	65.20	<mark>9</mark> 39	67. ©	3.58
ALT (U/L)	19.20	<mark>5.69</mark>	20.00	4.83 🖔	21.40	4.38	30 50 ~	4.22
GGT (U/L)	0.40	0.52	0.50	0.71	0.70 Q	0.48	/ <mark>0.60+</mark>	<u>1×3/5</u>
ALP (U/L)	37.22	<mark>9.55</mark>	40.20	16,45	43.5 Q	12.14 ₂	[∨] 40.40⁄	8.78
CK (U/L)	<mark>267.60</mark>	152.79	155.30	√ 38.77	184.90	\$\frac{77.39}{2}	21\2.00	58.6 %
T.Bil [#] (µmol/L)	1.65	<mark>0.91</mark>	1.01	0.56	1.56	1,09	1.39	9067
T.Chol (mmol/L)	<mark>2.29</mark>	<mark>0.39</mark>	2.27	<mark>9,3</mark> 9	2.3 9	9 239	r 	0.41
Trig (mmol/L)	0.55	<mark>0.11</mark>	<mark>0.66</mark>	0.18 ©	<mark>0.69</mark>	0.16	65	0.08 °
T.Pro (g/L)	<mark>81.76</mark>	<mark>4.46</mark>	78.72	3.48 ^y	79.03	3.63°	80.51	4.64
Alb (g/L)	<mark>54.32</mark>	<mark>1.69</mark>	0 52.10 √	<mark>1035</mark> %	51.6 ⊕	2 <mark>2.38</mark>	> <mark>51.36</mark>	⊕ <mark>5.71</mark>
Glob (g/L)	<mark>27.44</mark>	3.20 Ĉ	× 26%62	\$\times_2.75}\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\\\\$\	27 ₃ 39	2.56°	2 % 15	2.73
A/G	<mark>2.00</mark>	0.22	1.98	" <mark>0,20</mark>	1.90 C	0.22	21.78 V	<mark>0.28</mark>
$P_i (mmol/L)$	1.54	0,23	ري <mark>1.26</mark>	1030	1.41	% .23	1 ₆ 40	<mark>0.23</mark>
Ca (mmol/L)	<mark>2.89</mark>	9.10	2.84	0.07	2.8/7 	<u>0.07</u>	Ø 73	0.34
Na (mEq/L)	149.66	1.0	158.78 Q	1.210	147.57	1.62	48.20	1.33
K (mEq/L)	3.48	<u>040</u>	3.45	27	3.54°	₹ 0.20 €	3.69	0.30
Cl (mEq/L)	101 4	1.33	101.51	1.33	100.49	√ 0.94	100.08	1.66

Statistically significantly higher (p<0.05) than the vehicle control group Q

G. URINALYSIS

There were no significant differences noted in annalysis parameters for any dose group.

H. PATHOLOGY

There were no treatment-related macros pic changes noted in any of the animals. Determination of organ weights rewaled no teswarticle related changes. Histopathological examination revealed no treatment-related findings.

I. FUNCTIONAL OBSERVAÇIÓN BATTERY

I. FUNCTIONAL OBSERVATION BATTERY

Neurological examinations were conducted on Day 86 of treatment for main group rats and on Day 115 for recovery group rats.

There were no test tem-related change observed in the neurobehavioural parameters: home cage, handling, open field, sensory and physiological observations.

However, a statistically significant increase in hind limb grip strength values in mid-dose males was noted (see Table 5.3-2-14) This significant variation is considered to be incidental as all rats showed normal gait and there were no impairments in mobility scores that were observed during open field observations. Also, the effect was not noted at the high-dose level.

[&]quot;: Values below LLOGA Lowe Omit of Quantification for T.Bil 139.40 μφο/L) were not included for analysis

Table 5.3.2- 14: Select FOB parameters assessed on Day 86

Parameter		Controls	2000 ppm	<mark>6000 ppm</mark>	<mark>20 000 ppm</mark> @
Males		<u> </u>			25
Hindlimb footsplay (mm)	mean	77.37	73.67	86.53	88.88
	SD	18.81	20.25	18.26	20.39 s
Forelimbs Grip Strength (gf)	mean	1108.47	1111.77	1,15,1.63	38.17
	SD	40.53	∂ 38.74	102.16	52,57
Hindlimb Grip Strength (gf)	mean	660.23	₹ 638.20	<mark>717.60+</mark>	64997 <u>(</u>
	SD	26.43	41.78 C	³ 46.92	Q 2.53
Motor Activity Score (all inter	<mark>vals)</mark>		Q.		\$ 0
Stereotypic Time (sec)	mean	600.48	646,10	537.60	6 <u>07.80</u>
	SD	10 80	167.39	1 2 .32	72.68
Ambulatory Time (sec)	mean	898.80	1 ² 02.99	899.90°	1029
	SD	232.55	147.64	25680 25680	162.05
Horizontal Counts	mean	4909.70	680\.00+\@^	4838.50	341.70
	SD 5	% 66.52 \$	V411.88	1336.68	1041,42
Ambulatory Counts	mæn	3357.80	4820.90+	330 <u>4.50</u>	3613.70
	≪⊗ ⊗ ⊗D ≪	1044.97	7 1 69 V . 41	1005.290	841.72
Females Sector Leaders (1999)			7 7 7	. Q	70.07
Hindlimb footsplay (mm)	mean SD	3 80.30 1384 &	76.73 «	7 /4 / 9/3 / V	70.87 11.04
Forelimbs Grip Strength (4f)	A__	1324 g	\$ 044.5	(052 %2)	940.5
rotellillos Orip Stielight (gr)	mean, SD	0 65 16	20.47	933.43 0 1235	15.3
Hindlimb Grip Strength (gt)	n Mean	525/93 ·	560 17	256.57	554.33
rimumio Grip Strongtii (gri)	SD	884	18 45	32.96	39.56
Motor Activity Score all inter	,			Ø	23.00
Stereotypic Time (sec)	Anean (58760	599.30	665.80	587.30
	SD	103.65	82.37	116.93	97.16
Ambulatory Time (see	ncean	970 <u>40</u>	√ 100 5 .10	1050.50	888.40
A A	&D &	223.97 ×	12 6.65	176.41	183.05
Horizontal Counts	mean	6 794.8 0	0 7332.00	6933.20	5537.10
	SD	1528 1 6	<mark>1674.81</mark>	1948.39	1576.78
Ambulator	mean	4871.20 V	4899.30	<mark>4917.00</mark>	3814.60
	SD	\$ 1256.40°	1219.85	1610.86	1247.32

III. CONCLUSION

There were no treatment-related adverse effects noted in any of the dose groups tested following subchronic aletary exponer to fosety. Al. Thus, under the conditions of this test, the NOAEL for fosetyl-Al the rat is $\geq 20,000$ ppm dietary level, equivalent to ≥ 1212 mg/kg bw/day for males and ≥ 1446 mg/kg bw/day for females, respectively.

CA 5.3.3 Other routes

Report:

Title:
Report No.:
Report No.:
Report No.:
Guideline(s):
Guideline deviation(s):
GLP/GEP:

Groups of 10 male and female CD rats (9-wee old) received top call administration of tech cal fosetyl-Al (batch OP9850217, purity 981 g/kg) at a jose left of jost of jost of jost of the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. The treated area approximated to the shaven dorsal skin. 6 hours per day over a period of 29 days. Footyl-a@miniton (footyl-A@was &solved in water and applied to the shaven dorsal skin. The treated are cappromated 10% of the body of face was then covered with a porous gauze dressing. A for a 6-Your exposure period any oridust test substance was removed with water. A similar control coup weive the verticle ache.

Stability, homogeneity and concentrations were determined period cally curing he study.

Animals were observed at least dely fooelinical signs, more under and fortally throughout the

study. Body weights and food consumption were weekly recored. Accareful examination was

performed once prior to the init dior of treatment and once week of thereafter.

A battery of elicited behaviours and motor divity were assessed in week 4.

Ophthalmoscopic examinations were performed in all animals prior to the first administration and during week 4.

Dermal irritation was scored in the first Oy of ceating it, workly thereast (immediately before application of the test material) and on the lay of Secroty. 0

Haematology and Good Gemisto measurements was consected at the and of the treatment period. Each animal was hen subjected to a gross supplied by Examplation Appropriate organs were weighted and preserved Or hist Oathological Namy, Oron. «

Stability foseyl-Al preparations were within acceptable ranges.

General observat@n

No treatment-plated Ortalities and linic signs were roticed at any dose level.

There were a statistical Osignic ant Wieren's in year body weights. However, during the first week of Acatment, lower an higher body weight gains were observed in males and females, respectively. As no Cange Owere observed law, these differences were attributed to biologic variation.

sensory reactivity to different types of stimuli were No Wanges in motor act Mty, reported.

No specific excalterations were served and examination time.

Treatment-related in malaritation was observed in both sexes. Findings included slight to moderate erythema. Fight colored and summation (see Table 5.3.2-15).

Table 5.3.2-15: Dermal irritation noted in rats following a 28-day percutaneous exposure to fosetyl-Al

Ourse (number of onimal)	Ma	ale .	Fema	ale		
Organ(number of animal) Finding	Dose (ppm)	Dose (p	<mark>(mq</mark>		
rmunig	0	1050	0	1050		
SKIN (n=10)	-		-			
Erythema					The state of the s	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Slight	0/10	0/10	0/10	4/10	1	
Moderate	0/10	2/10	0/10	<mark>4/10</mark>		
Oedema			G		a'Y	
Slight	0/10	<mark>2/10</mark>	0/10	<mark>4/10</mark>	Q"	
Desquamation					Př	
Slight	0/10	<mark>2/10</mark>	<u> </u>	3/10 ² / ₂ "	l co s	
		4	m '		, Š	
Haematology, clinical chemis Changes in haematology wer	try, urinaly	vsis (,	*	, Ø' 4		
Changes in haematology wer	e limited t	o milaly	higher abs	Vite 1862	itropasi con	in treated females

Changes in haematology were limited to mile These findings were likely correlated with the acu examination.

No toxicologically meaningful changes

Gross pathology, organ weight, histopatho

At the final sacrifice, no changes incorgane weig histopathological examination @eveal trea@ient ir Adin crusted areas, erosion, hyperkeratosis and achte inflammation (see Table 3.3.

Table 5.3.2- 16: Histopathological finding **Xaneous** exposure to fostyl-Al

	Z V V V				<u> </u>	_ اام
Organ(number s	anima A		Dose (ppm)	, Nº 0	nosQ	ppm)
	10 m		10		0	1050
SKIN (n=1®	\$. S				To a second	
Crustedayeas			√ 3/		0/10	6/10
Erosion	9 4	\$\frac{1}{2}\frac{1}{2		10	0/10	5/10
Hyperkeratosis ©	9 4) O O	3/	10, (0/10	5/10
Acute inflantotion			0 3	10	0/10	4/10

RMA conclusion: Dermy approation of 1.50 mg/kg bw/d of fosetyl-Al for 28 consecutive days caused dermal, irritation will crosted seas macroscopically and hyperkeratosis and acute inflammation sucrossopical. The werealso diffuse multiple red areas on the treated skin in 1 female four dead on de which machave been related to treatment. Based on an overall mild toxicity which was limbed to the dermal site of application, the systemic NOAEL should be

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

Report: KCA 5.3.3/02 ; 2013; M-459673-01-1

Title: 21-Day sub acute dermal toxicity study of fosetyl-AL in Wistar rats with 14-day

Report No.: G8221 Document No.: M-459673-01-1

Guideline(s): OECD Guideline 410 (1981)

Method B.9: Annex to Commission Directive 92/69/EEC

Guideline deviation(s): none **GLP/GEP:** ves

Executive Summary

The subacute percutaneous toxicity of fosetyl-aluminium (fosetyl-AD was evaluated in a Aday study in Wistar rats according to OECD guideline 410. Fix@rats/sex/dose were exposed to aqueous solutions of the test article at doses of 100, 300, or 1000 mg/kg bw/day for 21 confecutive days (control animals were exposed to water). Additional high-dose and control groups were employed as recovery groups and were maintained for additional 14 days without exposure to the test item.

Each rat was observed for clinical signs, mortality and morbidity. Body weights and food consumption were measured during the course of the involves of the study. Glinical pathology investigations (urinalysis, haematology, and clinical chemistry) were performed at the end of treatment for main groups and at the end of recovery period for the tocovery groups. All the rate of main group and recovery groups were sacrificed and Subjected to gross examination. Specified organs were collected, weighed and preserved. Histopathological examination was capried out on preserved organs of control and high-dose animals. In addition, all gross lesions from all animals were examined microscopically. No clinical signs, mortalities of ocular changes were observed. There were no significant variations in mean body weights, net body weight gains and food consumption. No texicologically significant changes were observed in haematology, clinical chemistry or urinallysis parameters. No significant changes were observed in absolute or relative organ weights. No gross of microscopic changes were observed.

Thus, under the conditions of this lest, the dermal NOAEL for fosetyl-Al in the rat is $\geq 1000 \text{ mg/kg}$ bw/day.

I. MATERIALS

1. Test material:

rurity:
Stability of test compound:

Vehicle:
Test anim

Expry dat@ 2014-07-05. Stability and homogeneity in wellicle were analytically verified.

Deionised water

2. Vehicle:

3. Test animals

Species: Strain: Sex:

Age:

Acclimatisation period:

5 days

Teklad Certified (2014C) Global 14% Protein Rodent Maintenance Diet – Pellet (Certified), ad libitum

Wistar rats-HSD Han: wist

Males and females

11-12 weeks Males: mean weights 305-311 g

Females: mean weights 209-216 g

, Israel

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

Water:	Charcoal-filtered and UV-irradiated deep bore-well water, ad libitum
Housing:	Individually in standard polysulfone cages with corn cobbedding
Environmental conditions:	
Temperature:	21-24°C
Humidity:	65-68%
Air changes:	12-15 h ⁻¹
Photoperiod:	12 h light / 12 h dark
the treatment period. The following the treatment period. The following the Table 5.3.3- 1: Group allocation in	ictent groups by body weight stratification method. Rats with om the study Grouping was done one day prior to the start of e groups were employed.
Test Group Pose	Dove volume Conc. in vehicle No. of animals
(mg/kg bw	day) mL/kg, bw) (mg/mL) Male Female
G1 – Control	5 5
G2 – Low dose 500	50 5 5
G3 – Mid dose 3 300	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
G4 – High do 1000	\$ 2 \$ 5 5
G1R – Confeol recovery 0 G4R – Grigh dose recovery 1000	\$\frac{1}{2} \frac{1}{2} \frac

Preparation of the Test item for suplication:

Dose solutions/suspensions in deionised water were prepared freshly every day before application. The weight of the test item and volume prepared varied depending on the requirement (body weight and intended dose). Dose solutions/suspensions in deionised water were prepared freshly every day before application.

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

Details on dermal exposure:

Route of exposure

Exposure site

Preparation of exposure site

Frequency of treatment Duration of exposure Removal of test substance

Recovery period

3. Examinations

Clinical signs - Mortality and moribundity/general daily observations

Clinical signs - detailed observations

Body weights

Food and water consumption

Blood collection

Dermal, semi-occlusive

Dorsolateral thoracic region, ca. 10% of body surface area

Males: ca. 9 x 6 cm; Females: ca. 8 x 5 cm

Approximately 24 hours before test item application (first application), the hair on the exposure site was clipped using an O electric clipper. Care was taken to avoid kin abrasions. Repeat on per day

The treated area was rinsed with lukewarm water and an absorbent paper was used to dry the area.

14 days for additional control and high a

Each rat was observed twice daily, once in the morning and once in the afternoon, for mortality and morbidity. Routine cage side observations for checking general clinical signs were performed once prior to spplication of the test item and once after washing. The treated skin areas were examined twice doily (prior to

Detailed chinical examination was done prior to the test item administration on Day and and once a week thereafter during treatment and recovery period for all rats.

During detailed chinical examination, all rats were observed for changes in skin, bur, eyes, much membranes, occurrence of secretions and excretions and autonomic activity (excretions and excretion, pupil size membranes). Secretions and excretions and autonomic activity (e.g. lacrimation, piloerection, pupil size, unusual respiratory pattern), presence of clepic/toric movements, stereotypic behaviour (e.g., (e.g. self-mutilation, walking backwards).

Intervidual body weights were recorded before the administration of test from (Day 1) and at weekly intervals thereafter during the treatment and recovery period. Fasting body weight was recorded prior to terminal sacrifice.

Food consumption was measured weekly. Water consumption was not measured.

Ophthalmological examination of all animals was performed with an or hthalmoscope by a veterinarian prior to start of Treatment and at the end of the treatment period for the main group animals and at the end of the recovery period for the recovery group animals. Before examination, mydriasis was induced using a 1% solution of Tropicamide.

At the end of the treatment period (on Day 22) for main groups and at the end of recovery period (on Day 36) for recovery groups, all rats were fasted overnight (water allowed), anaesthetized with isoflurane and blood was collected from retro-orbital sinus plexus with fine capillary tube.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Haematology The following parameters were examined:

> Haematocrit, haemoglobin, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, mean corpuscular volume, mean platelet volume, platelets, red blood cells, reticulocytes count, white blood cells, differential leukocytes count, prothrombin time, and activated partial thromboplastin

Clinical chemistry

Alanine aminotransferase, albumin, albumin/globulin ratio (calculated values). Akaline phoenical (calculated values), a kaline phosphatase, aspartate aminotrans ferase, blood urea nitrogen, calcium chloride creatine kinaso creatinine, gamma glutamyl transpeptidase, gobulin calculated values), glucose, inorganic phosphorus, porassium sodium, total bilirubin, direct bilirubin, indirect bilirubin (calculated values)

total cholesterol, total plasma protein, triglycerides

The following parameters were examined:

Specific gray by, nithte, pH, protein, glucose, ketone bodies, urolilinogen, bilitabin, appearance (colour and clarity), volume All the rais of main and recovery group were subjected to O Detailed necrossy. The rate socrificed at term were fasted overnight (water allowed) weighed, excanguinated under isoffurane maesthesia and were subjected to detailed necropsy

& Total and relative organ weights of all sacrificed rats were O'determined. The paired organs were weighed together and combined weight was presented. The following organs were

opathology

and organs noted below were collected. In additional state of the paired organs were combined weight was presented. The weighed.

Adrefial glands, kidneys, liver, testes.

One completion of the gross pathology and organs noted below were collected. The paired organs noted below were collected. The weighed.

Adrefial glands, kidneys, liver, testes.

One completion of the gross pathology and organs noted below were collected. The paired organs noted below the paired organs noted below the paired organs noted below the paired organs noted belo Or completion of the gross pathology examination, the tissues and organs noted below were collected and preserved from all Gats. Histopathological examination was restricted to the preserved organs from control (G1) and high dose (G4) group aromals. In addition, all gross Jesions from all the animals were

Adroal glands, kidneys, Kiver, skin (treated and untreated),

Statistical evaluation

All quantitative variables like neurological observations (neuromuscular observation and body temperature) and clinical pathology (haematology coagulation and clinical chemistry) data were tested for normality and homogeneity of variances (Levene's test) within the group before performing a one-factor ANOVA modelling by treatment groups. If the data are found to be non-optimal (nonnormal or heteroschedasto), data was transformed before ANOVA was performed. ANOVA was done using suitable transformation Comparison or means between treatment groups and control group was done using Dumett's t' test when the overall treatment 'F' test was found to be significant.

In the case of recovery groups, data of treatment period and recovery period (no treatment period) was tested using the methode stated above.

Gross pathology

Urinalysis

Organ weights

Histopathology

Statistical evaluation
All quantitative

II. RESULTS AND DISCUSSION

A. **MORTALITY**

No mortality occurred throughout the study period.

B. CLINICAL OBSERVATIONS
Clinical signs of toxicity attributable to the test substance were not observed throughout the stridy

C. **BODY WEIGHT**

There were no significant variations in mean body weights at any of the tested dose?

D. FOOD AND WATER CONSUMPTION

There were no significant variations in mean food consumption at any of the tested dose groups.

Ophthalmoscopy revealed no test article related findings of any of the animals.

HAEMATOLOGY

There were no treatment-related changes in haematology parameters at all the coses tested. Decreased mean cellular haemoglobin concentrations at 100 and 300 mg/kg bw day in remales and 1000 mg/kg bw/day in males on Day 22 was considered of incidental and transient change as the magnitude of change (< 5%) was minimal. Decreased reticulocytes counts at 1900 mg/kg bw/day dose in recovery females on Day 36 was considered toxicologically insignificant as there were no significant changes in reticulocyte count at the end of treatment

Increased prothrombin time at 300 mg/kg bw/day in mates and 100 mg/kg bw/day in females on Day 22 was considered toxicologically insignificant as there was no progression with dose.

Decreased activated partial thromboplast time in females at 100 (56%), 300 (68%) and 1000 (47%) mg/kg bw/day dose groups on Day 22 was considered toxogologically in gnificant as there was no dose correlation

CLINICAL CHEMISTRY G.

There we're no treatment-related changes in clinical chemistry parameters at any dose tested. At 1000 morking bw/day, increased total bilirubin concentration in recovery males and females, decreased calcium concentration in males and increased total protein concentration in recovery females at the end of the recovery period (on Day 36), was considered toxicologically insignificant as there were no significant changes in respective parameters at the end of treatment period.

There were no significant differences noted in urinalysis parameters for any dose group.

There were no treatment related macroscopic changes noted in any of the animals. Determination of organ weights revealed no yest-article-related changes. Increased absolute weight of testes at 1000 mg/kg bay/day in recovery makes at the end of the recovery period (on Day 36) was considered toxicologically insignificant as there were no significant changes in testes weights at end of the treatment period \$

Histopa Gological examination revealed no treatment-related findings.

III. CONCLUSION

There were no treatment-related adverse effects noted in any of the dose groups tested following subacute percutaneous exposure to fosetyl-Al. Thus, under the conditions of this test, the NOAEL for fosetyl-Al in the rat is $\geq 1000 \text{ mg/kg bw/day}$.

CA 5.4 Genotoxicity testing

Fosetyl-Al was tested in a complete battery of *in-vitro* and *in-vivo* assays (see Table 5.4-1). New genotoxicity studies have been performed to fulfil legal requirements in India. The new studies are summarised in detail in the following sections. Fosetyl-Al was negative in all in-vitro and in-vitro genotoxicity tests. Therefore, a classification for germ cell mutagenicity is not warranted, according to the criteria of Regulation 1272/2008.

The data requirements published in Commission Regulation (EU) No 283/2013 stipulæ a stady on photomutagenicity for active substances and their major metabolites showing an extinction coefficient $\geq 1000 \, \mathrm{L} \, \mathrm{x} \, \mathrm{mol}^{-1} \, \mathrm{x} \, \mathrm{cm}^{-1}$ in the spectrum of 290 to 700 nm. Fosety Al and its phajor no tabulates, phosphonic acid, ethanol, and carbon dioxide, do not fulfil this criterion and thes, this data requirement does not apply.

Table 5.4-1: Genotoxicity/mutagenicity tests with fosetyl-XI

Ctuder terms	Ouganism	Concertuative	1 000	Results	Noforos o
Study type	Organism	Concentration / Dose	Vurity\(\) (%)	Results	Reference
			94.7	, Parativ	
	S. typhimurium TA 98,	In to (4)90 μεχ (± \$9)	, Ö ,	S as	; 1981;
	S. typhimurium TA 98, 100, 1535, 1537, 1538				, 1701, M-159 3 01-01-1
In vitro	S. typhimurium TAO8,		970	n@gative	み;
bacterial cell	100, 1535, 1537	Ro 50 μg/place (± SP)			1997; M-184456-01-
gene mutation test	E. coli WP2 u 🏠				
test	S. typhimurium TA &8,		97.1	n@ative	P; 2013;
	100, 153 5, 2 537 ©	50 to 5000 μg/plate (± S9)			M-447222-01-1
	E. coli WP2 uvrA		& **		141 11/222 01 1
	CH Cells		D 97.54	negotíve	. 1002
In vitro	CHOcells	3 t 100 p mL (\$39)	,	@ h	; 1982; M-231739-01-2
chromosome aberration test		180 to 1800 kg/mL (~39)	\$\frac{\sqrt{0}}{207.1.\sqrt{1}}	negative	
aberration test	CHO Colls	260 to 2600 ag/mL (-89)		negative	;; 2013; M-450289-01-1
In vitro	L5198Y cells (moose	, , , , , , , , , , , , , , , , , , ,	*	negative	;; 1997;
mammalian	lymphoria assay	#8 to 200 μg/mL (± S0)	Ó	nogative	M-184459-01-1
cell gene	S YA Y		© 97.1	negative	.:
mutation test	CHO cells (H) T assay)	112 to 354 μg/mL (±S9)	*	υ	2013; M-450287-01-
	(TIPKT assay)				1
	Swiss Rice (5)	1000, 2000, and	>95	negative	; 1977; M-
		4000mg/kgOw			223290-01-2
In vivo	CD1 mice 7+20	1063, 2105, and 0	97.0	negative	; 1998;
micronucleus test		74250 mg/kg bw	07.1	,•	M-178982-01-1
icsi 👸	Swiss mice (+2)	500, 5000, and 2000 mg/kg bw/day,	97.1	negative	; 2013; M-449130-01-
	SWISS INICOTO 1 1	2 consecutive days			1
,		,	99.7	negative	;; 1978;
		up t ₁ 2000 μg/plate (± S9)			M-178996-01-2
Induct test	E. copy K12	0 4 200 a/alata (50)	99.7	negative	
Ÿ		Q to 200 μg/plate (± S9)			
DNA repair	E. cok W3478-	un to 500 ug/ploto (+ 50)		negative	,,,
test 🛴 🧳	WZGZ Z	up to 500 μ g/plate (± S9)			; 1981; M-159301-01-1
Irivitro yest	**************************************	up to 1000 μg/mL (– S9)	1	negative	101-139301-01-1
test Ö	S. cerevisiae D7	up to 500 μg/mL (+ S9)			
	1	l .	I		1

CA 5.4.1 *In-vitro* studies

of mutagency in KCA 5.4.1/01 : 1981; M-159301-01-1 Report: Title: Fosetyl-Al (32545 R.P., aluminium salt) - Supplementary studies of mutage microorganisms. Report No.: R000765 Document No.: M-159301-01-1 Guideline(s): not specified Guideline deviation(s): not applicable **GLP/GEP:**

I. MATERIALS

Technical fosetyl-Al (batch no. DA 67; 99.7% purity) was technical fosetyl-Al (batch no. DA 67; 99.7% purity) was technical fosetyl-Al (batch no. DA 67; 99.7% purity) was technical form of the purity of the state of the purity of the sta substance/plate and the main test (using triplicate poies) with 12, 250 500 on 1,000 µg/state of fosetyl-Al along with negative concels and refreence outages (beo-proportion). To addition, a substance of plates and eviding broade: 60 µg/plate; hycanthone: 50 µg/plate; niridazola, 0.05 @g/plate and eviding broade: 60 µg/plate). It addition, a spot test was carried out in similar conditions win the late fosetyl-Al and an incubation pe@od ot 48 hou@

The mean number of revertant per to ated Oate of that Oer course plate did not exceed 1.15 in the absence of metabolic extivation and 1.11 in the presence of metabolic extivation (see Table 5.4.1-1).

Table 5.4.1- 1: Incorporation tes (mean in mbe for

//		\sim	// N	7. 0		\	4				
Mean number	of reporta	nt& flonie	s (3 rep	likates)			(//)				
, Q	u a /plato	TAG	335		1537 ®		53%	TA	<mark>.98</mark>	TA	<mark>100</mark>
	μg/plate [®]		+29	-S9	\$3 9	759	₹ S 9	- <mark>S9</mark>	+ S9	- <mark>S9</mark>	+ <mark>S9</mark>
1st experiment	t %	(%)	₩ <u></u>	S,	`~ .		1				
Solvent	9	46.3 14.6 15	* 15 %	U Q 2 K	()	<mark>7</mark> 2	13.7	15.3	19.3	<mark>98.7</mark>	101
Fosetyl-Al	6 125 £	14.6	1 3 4	546 ⁰	8.6	63	13.3	<mark>14</mark>	20.3	112.3	110.7
	250 500		12.6	No.	6 8	\$ 5.6	11.3	<mark>14</mark>	19.3	113.7	106.3
~	500°	<u>3.3</u> ∠	* 4.3	N 2 × 4	7 6.6	<u>5</u>	14.3	15.7	19.6	107.3	106.3
.1	1000	O'13.6	⁷ 13	6.2	5.0	8	15.3	16.3	20.3	98.3	<mark>97</mark>
Beta-proportional lactone	50 × 7		W N								
Hycasthone	20		%430 €		1 467						
Niridazole Niridazole Niridazole Niridazole Niridazole	<mark>0.05</mark>	'O' (C) [0				<mark>672</mark>		1672	
Ethidium bromide	© 60 ₄ \							23.7	1379		

reverse gene mutation in any Salmonella typhimurium strains with or Subolic activaçãon.

I. CONCLUSION

Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

ね; 1997; M-184456-01-1 Report: KCA 5.4.1/02

Title: Fosetyl Al: Reverse mutation in four histidine-requiring strains of Salmonella

typhimurium and one tryptophan-requiring strain of Escherichia coli.

R011732 Report No.: M-184456-01-1 Document No.:

none

<mark>yes</mark>

EU (=EEC): Annex V, Tests B13 & B14; ICH: Tripartite Hato. Guideline of Genotox.; JMAF: (1985); MHW (Japan): (1989); OECD: 45, (1983), 472, 198 USEPA (=EPA): OPPTS 870 5100 OPPTS 870 5265

USEPA (=EPA): OPPTS 870.5100, OPPTS 870.5265

Guideline deviation(s): **GLP/GEP:**

Guideline(s):

I. MATERIALS AND METHO

Technical fosetyl-Al (batch N° 9607181, purity 20° g/kg) was tested to its along to induce mutation in 4 strains of Salmonella typhimurium (TA98, TA100, TA535 and TA1537) and the strain of Escherichia coli (WP2 uvrA). The study ansist of cytotoxicity range finding experiment followed by two independant experiments, each cyducted in the absence and preserve of attabalic activation by an Aroclor 1254 induced at live post nitochondrial fraction (S-9). No ative appropriate positive controls were in the first post nitochondrial fraction (S-9). appropriate positive controls were included in each exp

Cytotoxicity range-finder experiment

Fosetyl-aluminium (fosetyl-/ was Ossolved in sterile phrified) and 5000 μg/plate in TA100 only. We evicence choxicing was Oser

Experiment 1 (standard plate in orporation)

Accordingly, fosetyl- was sted with same fine concentrations.

Cytotoxicity, indicated by a slight thinning of the background bacterial lawn, was observed at 5000 µg/plate with Salvonnelle hyphiburium, strain TAV and TA104 both in the absence and presence of S-9 and was Escherichia coli strain WA2 in the absence of S9.

The mean numbers of reverant colonies on no ative control plate, were within acceptable ranges

while the roan number of revenut colonie in positive control states were significantly increased (see Table 8.4.1-2).

Fosety A treatments Groduco no statistically singlificant increases in the mean numbers of revertant colonies in any test of straits, both of the Osen and research f S-9 (see Table 5.4.1-2).

Table 5.4.1-2: 7 Nigher Rever Ent coolies in almowlla typhimurium and Escherichia coli strains M fosety-Al - xperiment 1

Trootkont and	TA98	M&n re	vertants per pla	to (4 SD)	
Trofment and		NIESH FE			
conce ation (µg/pleye)		TAO	TA1535	TA1537	WP2 uvrA
Wit Wut metabolicy tivation Solvent control	**************************************				
Solvent control		a	12 ± 2	15 ± 3	14 ± 4
- ·	.((//)	Ő -	_	_	_
NaN ₃ 2 AAC 50		625 ± 59	330 ± 5	_	_
AAC 50 & S	₩ -	_	_	184 ± 13	_
		_	_	_	986 ± 51
Foset VAI 8 67 5	28 ± 11	128 ± 11	12 ± 1	15 ± 1	10 ± 2
For yl-Alogo O' and	36 ± 9	143 ± 13	16 ± 5	17 ± 7	21 ± 13
Fosetyl- 200	22 ± 2	130 ± 6	13 ± 2	17 ± 3	19 ± 1
Fosety Al 1000	$20 \pm 5 (C)$	132 ± 7	12 ± 2	13 ± 2	12 ± 2
Fosetyl-Al 5000	$27 \pm 2 (C)$	$112 \pm 14 (C)$	9 ± 5	17 ± 5	$7 \pm 2 (C)$

Document MCA - Section 5: Toxicological and metabolism studies **Fosetyl**

Treatment and		Mean re	vertants per pla	ite (± SD)		
concentration (µg/plate)	TA98	TA100	TA1535	TA1537	WP2 uvrA	
With metabolic activation					w °	1
Solvent control	37 ± 6	125 ± 14	18 ± 4	13 ± 5	16 ±\$	
AAN 5	979 ± 84	-	_	8		O'
AAN 10	_	-	_	A.	250 ± 27	
Fosetyl-Al 8	26 ± 4	111 ± 1	15 ± 4	17 ± 2	\$\frac{14}{6}	Ĉ
Fosetyl-Al 40	38 ± 6	126 ± 10	18 ± 3		10 10 7 K	1
Fosetyl-Al 200	39 ± 7	108 ± 10 €	$\frac{9}{2}$ $\frac{17\pm4}{2}$	11 ± 2		
Fosetyl-Al 1000	46 ± 5	121 ± 8	15 ± 2	16 ± 4	3 9 ± 2	, Ő
Fosetyl-Al 5000	$34 \pm 6 (C)$	107 ± 124	17 ±	17.0°	120 0 0	
SD: standard deviation	•					•

C : presence of cytotoxicity

2NF: 2-nitrofluorene; NaN3: Sodium azide; AAC: 9-angnoacri

Experiment 2 (pre-incubation step)

According to the cytotoxicity observed *\n' the maximal concentra were tested in strains TA98, TA100 are WP. whilst ©000. dose for treatments of TA1535 and TS 153% In each 5.4.1-3).

Ophim Fium Wains in the Cytotoxicity was observed at high coopentrations with all

presence of S-9 and in Escherica control of the greence of S-9. The mean numbers of reverant colonies on negative control of attes were within acceptable ranges while the mean number of reverant colonies of positive control poses were significantly increased (see Table 5.4.1-3).

Fosetyl-Al treatments goduce no societically significant herews in the meannumbers of revertant colonies in any tester trains both in the absence of d provence of S-9 of Table 5.4.1-3).

Number of revertent colones in Admonena typtomurity and Escherichia coli strains forwing ceatmon with losety Al - Lopering at 2 Table 5.4.1- 3:

	J		<i>,</i> •	
Treatmen@nd concents fion (μg/plate)	VA98 TA10	an revertagts per	rate (± SD)	
concentration (µg/plat©	TA10	10 A 1525	TA1537	WP2 uvrA
With metabolic activation ?				
Solvent control 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 33 5 17 17 17 17 17 17 17 17 17 17 17 17 17	3 21±7	9 ± 2	26 ± 4
2NF 5 Q A	33 75 10 10 10 10 10 10 10 10 10 10 10 10 10	3 0 2 1 ± 7 0 422 ± 31	<u>-</u>	_
NaN ₃ 2 AAC 50	0 134 ±	0 422 ± 31	_	_
TATO SO			234 ± 40	_
NOO 2 Fosetyl 178.125		-		667 ± 191
Fosetyl 78.125	% ± 8		_	_
Fosetyl-Al 156.25	30 10 119 119 119 119 119 119 119 119 119	-		24 ± 4
Fosevi-Al 312.5	30 30 30 1123 27 4	$\frac{7}{21 \pm 10}$	9 ± 1	22 ± 6
Fosetyl-Al 625	24 ± 8	$\frac{16}{22 \pm 2}$	8 ± 5	22 ± 5
Fosetyl-Al 12	24 ±6 Y15 ±	$11 18 \pm 7$	5 ± 2	$\frac{22 \pm 2}{}$
Fosetyl-Al 600	√_	$16 19 \pm 3$	6 ± 4	11 ± 2
Fosetyl-Al 625 @/ Fosetyl-Al 200 Fosetyl-Al 200 Fosetyl-Al 2000		21± 5	7 ± 2	_
Fosetyl-Al 200 Fosety	127 ±			

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Treatment and		Mean re	vertants per pl	ate (± SD)	
concentration (µg/plate)	TA98	TA100	TA1535	TA1537	WP2 uvrA
With metabolic activation	<u> </u>	<u> </u>	<u> </u>		
Solvent control	41 ± 6	125 ± 7	23 ± 5	10 ± 4	
AAN 5	974 ± 101		<u>-</u>	- >	28 ± 6 × 5 · · · · · · · · · · · · · · · · · ·
AAN 10	-	-	_	- Q	48 20 0
Fosetyl-Al 156.25	36 ± 1	125 ± 11	_	" O"	20 7
Fosetyl-Al 312.5	39 ± 8	122 ± 4	17 ± 4	#\ ± 3	00 ± 50 7 17 17 17 17 17 17 17 17 17 17 17 17 1
Fosetyl-Al 625	38 ± 6	126 ± 6	උිත <mark>24 ± 1</mark>	4 11 ± 3	17±7 S
Fosetyl-Al 1250	$41 \pm 6 (C)$	$121 \pm 12 (C)$	♥ 21±3	9 ± 3	P 120-4 V
Fosetyl-Al 2500	$32 \pm 5 (C)$	$136 \pm 12 (C)$	21 ± 5	7 ± 2	3 ± 2 5
Fosetyl-Al 5000	_	- 3	20 ± 8 (Q)	5±1 (C)	1.
SD: standard deviation	_	136 ± 12 (C)	~ .	$\frac{7 \pm 2}{9 \pm 1}$	
SD: standard deviation C: presence of cytotoxicity 2NF: 2-nitrofluorene; NaN ₃ : \$	3 12 21	· · · · · · · · · · · · · · · · · · ·		dinolity AAN	3 ± 2 5 3 ± 2 5 amino Mithracine
2NF: 2-nitrofluorene; NaN ₃ : S	sodium azide; AA	C: 9-an Soacrid	e; NOIS 4-nitred	dunolify AAN	aminoa/hthracene
		LA CONCLU	21 ± 5 20 ± 8 (2) 2, NO 34-nitro	Minoli & AAN, A	ns of baceria a SS-9 speciaboli
				4 0 4	
RMS conclusion: Fose concentrations up to an ectivation.	tyl-Al was	Dogities for a	uta on icity.	5 Weter win	ns of haria a
oncentrations up to an	d including	000 yg/nlas in	pre@nce	absence	S-9 metaboli
ctivation up to un					
	~~				. **
					4
Report: K	CA 5.4.1/Q3	· · · · · · · · · · · · · · · · · · ·	; 1982; N	%-23173% 01-2	0
itle: R	cort on On vit	zassay Øchron	nosomal aberrat	yns in CHO cel	line, with and
, and the second se	Whout metaboli	Pactiva Yon",	ried on the p	product phoseyl-	al of Ravit Co.,
₩.	ome S				
Report No.:	000985 ~~ 4@2172681 2 4	Ļ Š.		0, 4	
Guideline(s):	ot specified	J ~ .29			
Buideline deviation(s):	ot applicable			J'	
GLP/GEP: O S n				()	
Report No.: Document No.: Guideline(s): Guideline deviation(s): GLP/GEP:				j	
	¹ NO	TERIALS AND	DATHOUS	8	
₹ ⁷ .√0					
Report: Report No.: Cocument No.: Guideline (s): Guideline deviation(s): GLP/GEP: An in vitro chronosome echnical fosety) Our of miles with and selections.	e Caberración t	eQ usive Chi	ese Hamster	Ovary cells, v	vas conducted or
echnical fosety (ba	ch D © 2034	97.5 P 0.5%	pur at co	ncentrations ra	anging from 3 to
oo ag me, was and O	nout \$-9 magab				
~ O	0 8,8		¥		
Toxicity and range findin	A 37 (2)				1: 0 ==
Fosetyl-amhinium (fog	tyl-Ay was Wi	iluted in ctitu	re medium (1	Ham's F10 me	edium from Flov
aboratones, Scotland Vat	final concenti	rations of o, 10	$, 30 \text{ and } 100 \mu$	ig/mL. At the l	nighest practicabl
oncentration (limited so	The state of the	Galture Grediun	1), the mitotic	index was sign	nnicantly reduced
aboratores, Scotland Vatorical Scotland Vatorical Scotland Scotlan	viect. (C)	. 4			
Thromosom & A		Q,			
Chromosome berration a Duplicate Says were po	Day. ~	Ond without m	etabalia activa	tion voing 4 a	lasted dags large
of test moerial of culture					
period with a with aut					
ctives of male Sprage					
piection of 30 mg/kg by					

injectic Of 30 mg/kg bw phenobarbital (d-1); 60 mg/kg bw phenobarbital (on d-2); 60 mg/kg bw of phenobarbital and 80 mg/kg bw of beta-naphtoflavone (on d-3) and 60 mg/kg bw of phenobarbital (on d-4). Capacity to induce metabolic activation was tested, determination of microsomal proteins was

performed and enzyme tests on S-9 were carried out.

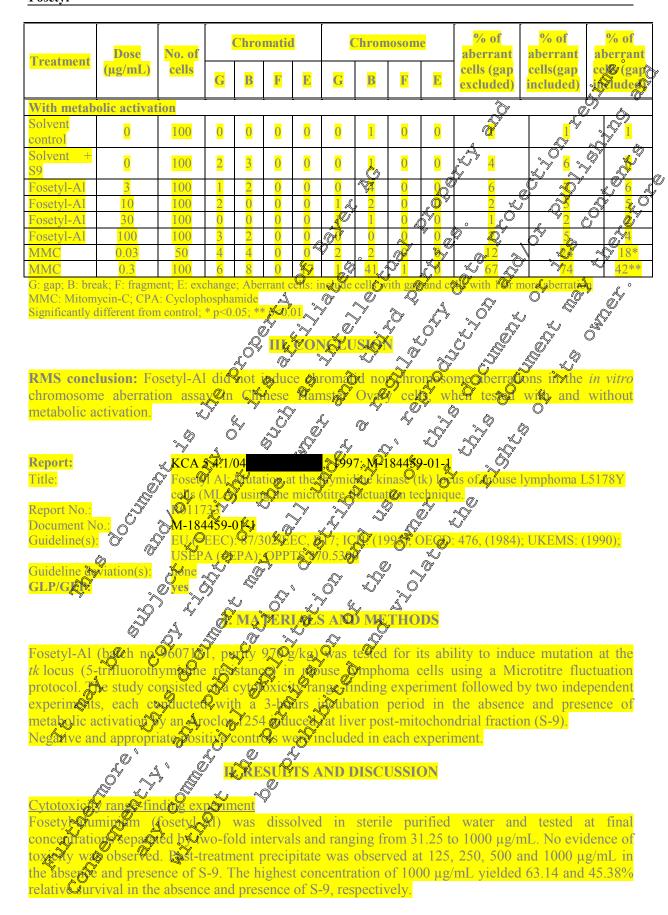
All cultures were exposed to Colchicine 3 hours prior to the harvests. Positive controls were used: 0.03 and 0.3 μg/mL Mitomycin C in the absence of metabolic activation and 0.0263 and 0.263 μg/mL cyclophosphamide in the presence of metabolic activation.

Chromosome aberrations were scored on 100 cells from each of 2 replicate cultures at each doses of test material and from the corresponding untreated, solvent and positive controls, in the approach and non-activated systems. The total number of aberrations and the percentage of cells will one on more aberrations were classified as chromatid and chromosome aberrations Waps, fragment exchanges, minutes, rings, dicentric, polycentric) for each dose level.

IL RESULTS AND D

Test substance was toxic to the CHO cells at the highest concentration tested in the absence presence of metabolic activation, as shown by the protocic index (see Table 5.407-4), the highest selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the selected for the mutagenic assay represented the solubility limit of the test material in the selected for the selec medium.

Table 5.4.1- 4: Mitotic index


		<i>~</i>		_ // //	~ · .		~///
	Dose (µg/mL)	Celo [©]	Vithout S9 m	Magotic 7		Won S9 with S	Mitotic
	(MS/ III.2)	anal Wed	1 (20	Index	arorysed &		Index
Control Fosetyl-Al	0.0 3	\$\begin{align*} \text{\$\left(\text{1000} \text{\$\left(\text{\$\text{\$\left(\text{\$\ext{\$\text{\$\exitin{\text{\$\}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	9 <mark>7</mark>		0. 1000	\$\frac{94}{107} \times	8.91 10.7
1 050ty1 711	10 \$	1042	⁴² 4.	4 [*] 02 x [®]		100	10
	30 g	16 ³ / ₂)	© 2.88	7 000 7		<mark>5.8</mark>
3.67	100	1002	032	7 2.0°	JOOK 7	~	4.3
Mitomycin	€ 0.3	2710000	0 15 S	2 1.5 O	V (4		
Cyclophosphamide	\$ <mark>0.026</mark> €	. 0	7 .	o -w	1000	<mark>41</mark>	<mark>4.1</mark>
	0.263	\$ - L	N N		Ø <mark>105€</mark>	<mark>24</mark>	<mark>2.4</mark>

in the clomative and chromosome aberrations oset Al, toth in the progence od in the absence of S-9 metabolic frequencies at any dose level of activatico Negative courol alige were claimed to be within normal historical changes and positive ficant Screas of aberration (see Table 5.4.1-5). controls produced sta

Table 5.4.1- 5: type Ochronatid Ad chronosome aberrations

Treatment Dose No. of (µg/mL) Yells	ChryQutid (2)	Shron G B	osome F E	% of aberrant cells (gap excluded)	% of aberrant cells(gap included)	% of aberrant cells (gap included)
With ut metabolic activation		<u> </u>	<u>!</u>	-	-	
Solvent 0 100 0		1 0	0 0	0	1	1
Fosetyl-Al	0 0	0 1	0 0	1	<mark>2</mark>	<mark>2</mark>
Fosetyl-A 30 100 0	0 0	2 2	0 0	2	4	<mark>3</mark>
Fosetyl- 30 100 0	0 0	0 1	0 0	1	1	1
Fosety Al Ov 100 1	0 0	0 0	0 0	0	1	1
MMA 9.03 0 3	2 0 9	3 20	3 0	34	<mark>40</mark>	32**
MMC 0.3 100 6	15 0 12	<mark>4</mark> 5	0 0	<mark>32</mark>	<mark>42</mark>	30**
Ö						

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Main study experiments

Accordingly, fosetyl-Al was tested at final concentration up to 250 µg/mL (approximate limit of solubility in cell culture medium). Six doses, separated by two-fold intervals and ranging from 7% 13 to 250 μg/mL were tested in the absence and presence of S-9 in 2 independent experiments. Τές top five doses tested were selected to determine viability and 5-trifluorothymidine (5-TFT) resistance 2 days after treatment. The highest concentration of 250 μg/mL yielded 80. Cand 113.70 relation survival in experiment 1 and 121.24 and 96.15% relative survival in experiment 2, in the absence presence of S-9, respectively (see Table 5.4.1-6).

Mutant frequencies were within historical normal ranges in negative control culture w frequencies were clearly increased in positive control curve (see Tables.4.1-6). In the 2 independent experiments, fosetyl-Al treatments produced no matistically significal in mutant frequency at any dose level tested in the alternoe or pressive of S-9 (sco Table 4.1

Table 5.4.1- 6: Relative survival, relative total growth and cottant, peque lymphoma cells following to the with wetyl-

				V .	Cı	(1) P		<u>"0" do</u>	
Treatment and	Without	t metabolic.			·	Qn m	etabolic	<mark>çtivati</mark> Q"	
concentration	% RS	RTG		F A	0/200	Ĺ	RTC		
(µg/mL)	70 IXS	w i		IF O					\checkmark
Experiment 1		49.	() 10				Ö		7
Solvent control	100.00	10 0		1200	9 100.U	8	2.0	1.5°.1'	9 K 1
Fosetyl-Al 7.813 \$	78.30	4 6	Ò	ð) (WIF.	*%
Fosetyl-Al 15.625	84.41	U <mark>0,94</mark> 1		2	© .32		0.7 9 *	504.24	NS
Fosetyl-Al 31.25	79.10	1.01 A	₹ 51.5	2 NS	Y 08.1	S W Y	<u>Ø</u> 67 ₹ 180 × ©		NS
Fosetyl-Al 62.5	102,17	7.09 C	1180		O 102.7	y ~	0.80 0.95 C	70000	NS
Fosetyl-Al 125	8 <u>8,25</u>	U. 7 (U.)	1 600-4	7 NG	<mark>97,45</mark>	W	0.950		NS
Fosetyl-Al 250	80.08		3 5.8	9 . ØŠ	6 3.7	K,	0.80	8.18	NS
Linear trend				Ç,)"	\$\frac{\frac{1}{2}}{4}	y NS	
NQO 0.05	V 86,67	<mark>√0.68</mark>	<mark>4</mark> \$		7			_	
NQO 0.1	6094	19/ <mark>U. / 7</mark> 9/		5.15	\$.24	a V	3 8	_	
B(a)P2	~ ~	7×-7		- \$\frac{1}{2}	₹ <mark>5.24</mark>		&5 8	<mark>494.8</mark> 2	
B(a)P3	C ,O	0 4			© <mark>53.%</mark>		<mark>@.0.32</mark>	902.4	<mark>7</mark>
Experiment 2	gr ~	Q A	Ž19	<i>\@</i> '		<i>M</i>	0.32		
Solvent corrol	240.00		9 19	9.52	190.0		1.0	205.8	<mark>6</mark>
Fosety 7.813 \$	@ <mark>95.83</mark> 67			\bigcirc	115.6	O"			
Fosetyl-Al 15.625	\(\) 10638	<u> </u>	20 <u>6.</u> (N N	, <mark>111,5</mark>	<u> </u>	1.04	177.66	NS
Fosetyl-Al 15.625 Fosetyl-Al 31.25	<mark>98.04</mark>	7 1.23 V	170	3 NO	109.3		0.99	The state of the s	NS
Fosetyl-Al 62.5	304.93	1 2 ·	198.3	1 NS	29.5	6	1.06	187.27	NS
Fosetyl-Al 125©	O 737.26	~ <mark>Q49</mark> (210 <u>,</u> 2	NS SIN	© 91.95		1.09		NS
Fosetyl-Al 25	12,94			8 N.O	96.15	•	1.28	184.24	NS
Linear trend		S A	~ Q*	NS. O				NS	
NQO 0.	∘ <mark>96.58</mark> Q		32	127	_		-	_	
NQO_0.1	6 7 07 5×	1 1 106	7 <mark>5</mark> 2	9 35	_		<mark>-</mark>	_	
B(a)	Y A	- Q.		_	82.68		0.55	1178.8	<mark>32</mark>
B(a)P 3		ý <i>a,</i> *			<mark>49.94</mark>		0.32	1305.7	<mark>16</mark>

S: Not plated for Ability

RS: Percent by post treatment cell counts

cell /10 viable cells after 2 days treatment)

zo(a)pyrene

III. CONCLUSION

RMS conclusion: No relevant reproducible enhancement of the mutation rate over the range of control values were induced by fosetyl-Al the tk locus of L5178Y mouse lymphoma cells up to the solubility limit, with and without metabolic activation.

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

;; 2013; M-447222-01-1 Report:

Title: Fosetyl-Al: Bacterial reverse mutation test

Report No.: G8217

M-447222-01-1 Document No.:

Guideline(s): OECD Guidelines for the Testing of Chemicals, Test No 471 (1997); Method \$\infty 3/14 \infty

(Mutagenicity) Official Journal of the European Communities L142, 31/05/2008

Guideline deviation(s): GLP/GEP: ves

Executive Summary

Fosetyl-aluminium (fosetyl-Al) was examined in the S. Typhimurium Fains TA98 PA100 TA and TA 1537 and in the E. coli strain WP2uvrA (pKM101) in two independent experiments each carried out without and with metabolic activation of microsoma preparation derived from Aroclass 1254-induced rat liver). The first experiment was carried out as a plate incorporation test and the second as a pre-incubation test.

In a preliminary test, fosetyl-Al was exampled for potential cytotoxicity and precipitation (plate incorporation test without and with metabolic activation on test of train TA 100. Neither precipitation nor cytotoxicity was observed at concentrations up to 5000 µg/plate. Hence, \$000 µg/plate as chosen as top concentration for the main study

In the main study, five concentrations ranging from 50 to \$000 we plate were employed in the plate incorporation test and in the pre-incubation test, each carried out with metabolic activation. No increase in revertant colony numbers as compared with control courts was observed for fosetyl-Al in any tester strain, without and with metabolic activation, respective (plate incorporation and pre-incubation test). The positive controls showed a significant increase in the number of revertant colonies of the test strain and confirmed the validity of the test conditions and the sensitivity of the test system.

In conclusion, fosetyl-Al is not in the bacterial reverse mutation test beither in the presence nor absence of a metabolic activation system under the conditions of this test.

A. MATERIALS

1. Test material:

Names White powder Description: Batch / Lot No. Purity:

Stability of test compound Expry dao 201007-05 Stability in vehicle was analytically

verified.

sterile water 2. Vehicle and/or positive

2-Nitrofluorene (2-NF), -S9 control Sodium azide (NaN₃), -S9

9-Aminoacridine (9-AA), -S9 4-Nitroquinoline-l-oxide (4-NQO), -S9

2-Aminoanthracene (2-AA), +S9

3. Test system:

Organisms:

2-Aminoanthracene (2-AA), +1

Salmonella typhimurium and Escherichia coli.

S. typhimurium TA98, TA100, TA 1535 2m 1 m

E. coli WP2uvrA (pKM101) S. typhimurium TA98, TA100, TA 1535, and TA 1537

, UK

E. coli:

UK

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Metabolic activation system: S9 homogenate was prepared from male Wistar rats induced with a

single i.p. injection of Aroclor 1254, 5 days prior to sacrifice. Each

metabolize the pro-mutagens 2-aminoanthracene and benzo(a) pyrene to mutagens using S. bushimum T. 100

Test concentrations:

50, 100, 200, 400, 800, 1600, 3200, and 5000 μg/plate (plate incorporation, TA100 only)

Main study (-S9 and +S9);
50, 158, 500, 1581, and 5000 μg/plate (plate incorporation)
100, 266, 707, 1880, and 5000 μg/plate (pre-incubation)
ca. 30 min
Exposure duration:
67 h

B. STUDY DESIGN AND METHODS

Experimental dates
2012-09-13 through 2012-12-01

Experimental procedure
Preliminary study
Fosetyl-Al was examined in a preliminary cytotoxicity test plate incorporation test without and with metabolic activation) in tester strain 1A 100. The number of a vertant colonies on the plates was metabolic activation) in tester strain TA 100. The number of perentant colonies on the plates was counted and the bacterial background lawn was evaluated for the evidence of test item toxicity.

The plates were also checked for any precipitation formation.

Main study

Two independent maragenicity experiments were carried out with fosetyl-An each without and with metabolic activation. Five concentrations were employed and each experiment consisted of 3 plates per concentration. Appropriate positive and solvent sterile water controls were included into the test to confirm its sensitivity.

In the plate-incorporation test, 2 and soft agar containing histidine-biotin/tryptophan, 100 µL bacterial cell suspension and 100 µL of the test item solution or solvent or positive control solution, respectively. In the experiment with metabolic activation 500 µD of S9 mix was added, whereas in the experiments without metabolic activation, 0.5 mL of phosphate-buffered saline was added. After pouring onto again plates and solidification, the plates were incubated at 37 ± 1 °C for 67 hours. Revertant colonies were counted manually and the plates were examined for bacterial background

The independent repeat was performed as pre-inculation in an incubator shaker at 37 ± 1 °C for 30 minutes. After this period, 2 mL wift agar containing histidine-biotin / tryptophan were added to each of the tubes. The tube contents were mixed and overlaid onto agar plates and allowed to solidify. The plates were then incubated at $37 \pm 10^{\circ}$ C for 67 hours. Revertant colonies were counted manually ne positive controls ar and the plates were exampled for bacterial background lawn.

The doses used for the positive controls are prorted in Table 5.4.1-7.

Table 5.4.1- 7: Positive controls used

rain	Activation	Positive control	Concentrations [µg/plate]	
A 0.0	+	2-AA	4	
A98	_	2-NF	2	
A 100	+	2-AA	4	
A100	_	NaN ₃	1	
A 1525	+	2-AA	4	
A1535	_	NaN ₃	1	
A 1527	+	2-AA	A O.	
A1537	_	9-AA	2°50 ~	
P2uvrA	+	2-AA 💪	30 0 0	
KM101)	_	4-NQOO	30 0 0	
ality criteria e Salmonella typets the following Tester strain - S. typhi	phimurium and E g criteria: integrity imurium tester st	scherichia vol	li reverse matation	assayus considered acc
				ion, respectively.
TI D	1. 1 1 1 1 1 1 1			

- - presence of *uvr* muta@on.
 - S. typhimurium strains TA98 and TA160 and T. coli strain WP2707A (pKM101) must exhibit resistance to ampiculin to demonstrate the presence of the plasmid R-factor.
- The spontaneous reversion rates on the vehicle control must be in the range of in-house historical data.
- There must be at least three non-toxic dose levels
- The top dose selected hould demonstrate poxicit. In case of non-toxic test items, the top dose tested should be 5000 µg/plate.
- All rester strain culture titres must be in the range of 1-2 x 109 cells/mL to ensure that appropriate numbers of acteria are used for lating
- The positive control substances. Should produce at least a 3-fold increase in mutant colony frequencies when compared to the respective vehicle control plates.

Assessment anteria

To determine a positive result, there should be a dose related increase in the mean revertant count per plate of a reast one tester strain over a minimum of two increasing concentrations of the test item either in the presence of absence of the metabolic activation system.

The test will be judged positive, in the increase in mean revertants at the peak of the dose response is equal to or greater than 20 mes the mean vehicle control value for strains TA98, TA100 and WP2uvrA (pKM101) or equal to or greater that 3 times the mean vehicle control value for strains TA1535 and TA1537.

An equivo response is biological or elevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-dependent increase that does not achieve the respective threshold cited above or a non-dose-dependent increase that is equal to or greater than the respective threshold cited. A response will be evaluated as negative, if it is neither positive nor equivocal.

II. RESULTS AND DISCUSSION

A. REVERTANT FREQUENCIES

Preliminary study

There was neither pronounced cytotoxicity nor precipitation observed in the preliminary asset with our without activation. Hence, 5000 µg fosetyl-Al per plate was chosen as too concentration for the main study in the plate incorporation test and in the pre-incubation test.

Main study

No increase in revertant colony numbers as compared with control could's was observed for osetylexl tested up to 5000 µg/plate, in any of the test strains in two independent experiments without and with O metabolic activation, respectively (plate incorporation and pre-incorporation test). The positive controls showed a significant increase in the number of revertant colonies of the test strain and confirmed the validity of the test conditions and the sensitivity of the test system. The results of the plate incorporation and pre-incubation tests are presented in able 3.4.1-2 and rable 5.4.1-9, respectively.

Results of the plate incorporation test **Table 5.4.1-8:**

			1	L	abor man		,O°		<u> </u>	J ,	
					%0. o	f re verta	nts per 1	Pate ^a 😤			Ö
T	reatment	TA	98		1 00 ° %	TA	1535 ©	⊅ A1	1537	A 💜 . //	lòyrA
(μg/plate)	Mean	Ratiob	Mean ± SD	Ratio	Mean	Ratiob	Mean	Ratiob	Mean	Ratiob
		± SD	_@	± SD	O T	±SD		SD Ĉ	ř 20	±SD	
Wit	hout metabo	lic activa	ıtion 🥍	<i>(</i> ,			¥	*	~~~	O'	
Sol	vent (water)	26±2	J.00	Öl 21±2.≈	1.000	15±1°	1.00	≈ © ±2	% 1.00_	Ø142±4	1.00
	50	27±1	¥1.04 <u>4</u>	114±13	0.54	<u></u> 12941	3 9.98	11±1×	0.86	143±4	1.01
-Al	158	25+3	0,97	120±4	0.99 ₄	914±2°	0.95	10€4	Ŷ: § 1	138±3	0.97
Fosetyl-Al	500	2°±3	£1.06	21±10	1.00	14-22	0 98	12±2	1.00	136±5	0.96
Fos	1581	26±4\	1.01	128±2	1.06	13±1	3 0.89) 11± 2 0	0.86	139±9	0.98
	5000	24	0.95	104±5 (J.03	√13± 2	0.9	11±3	0.89	141±5	1.00
Pos	itive control ^c	255±6	9.95 @	548± <u>1</u> 2	4.54	136	9.27	42 4±7	10.05	562±17	3.96
Wit	h metabolic					Q .		*O*			
Sol	vent (water)	27,3	1,00	113±3	\$1.00 °	P _{16±1}	1.00	11±1	1.00	139±3	1.00
	50	28±3	1.04	7111±4	0.98	14-1	0.89	11±2	1.06	140±8	1.01
-Al	158	\$29±36	1.07	107-5	∘0 <u>.</u> 94	€16±1 €	\$\frac{1}{2}.02	10±1	0.97	136±5	0.98
Fosetyl-Al	500	27,9	0099	~199±4 _~	©1.05 <u> </u>) 13±20	0.85	9±2	0.87	139±3	1.00
Fos	1581	28±4	J.04	116±20	1.02	1691	1.02	11±2	1.00	137±9	0.99
	5000	27±20	1.03	1232	1 908 .	. ¥4±2	0.87	11±2	1.00	145±6	1.05
Pos	itive control ^c	556 25	20.58	878±42	Ç7.75 <u>~</u>	147±5	9.38	116±12	10.91	570±14	4.11
Pos	itive control ^c	55.6+25	20.58	878±42	%7.75	147±5	9.38	116±12	10.91	570±14	4.11

a Means of three replicates rounded to integers

b Relative to vehicle control (foe an revortants per plate)

Relative to vehicle control (foe an revertants per place) See Table 5.4.1- For the list of posterive controls

Table 5.4.1- 9: Results of the pre-incubation test

					No. o	f reverta	nts per j	plate ^a			
T	reatment	TA	98	TA	100	TA1	1535	TA1	537	WP2	uvrA 🍣
((μg/plate)	Mean ± SD	Ratiob	Mean ± SD	Ratiob	Mean ± SD	Ratiob	Mean ± SD	Ratiob	Mean ± SD	Ratio
Wit	hout metabol	ic activa	tion						O'	<u> </u>	, °
Sol	vent (water)	29±2	1.00	104±3	1.00	13±1	1.00	11±2 _√	1.00	138±©	1.00
	100	25±1	0.86	111±4	1.07	15±1_(§ 1.15	12±0	1.06	138≠4	1 00
-Al	266	26±2	0.89	111±4	1.07	14±2	1.08	1421	0.94	@39±3	N()) //
Fosetyl-Al	707	24±3	0.84	115±7	1.11	1 €±2	1.13	√¥1±3	1.000		0.99
Fos	1880	25±2	0.86	107±2	1.04	€16±3	1.21	10+	0.838	12843	ا 1.00
	5000	23±2	0.80	101±2	0.97	16±1₀	1,20r	Ĵĵ¥2	_@v.94 °	140±2×	. 🔊
Pos	itive control c	243±6	8.39	545±17	526	1 43 ±19		\$\dagger 13±4@	9.94	559±12	4.06
Wit	h metabolic a	ctivatio	1		A	~ (, v		Ö	
Sol	vent (water)	28±2	1.00	118±3€	1.00	15⁴√	1,00	J (1) 1 .	. Ψ.00 <u>·</u>	€137±3	1.00
	100	27±4	0.95	1118	0,94	15±2	×1.02 ×	91±2×	√1.00®	139	1.00
-Al	266	25±1	0.89	109±3	Ø.92 %	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 1. 00	12+0	1.00	138±3	@ .01
Fosetyl-Al	707	29±1	1.02	\$04±3	0.88	14%	0.96	_100±1	9.94	j̃134±3∧	0.98
Fos	1880	23±3	0.82	10849	0.92	1 5±2	Ø.98 .	(10±1 €	0.9%	138∉2	1.00
	5000	23±3	0483	\$108±2	3 9.92 J	14±2	®0.9 3 C	10±9	0297	138±6	1.01
Pos	itive control c	549±8	\$ 9.60	®78±1 @	7.44 [©]	146±13	9.73	1,719±11,	ĴØ.37 ₄	§57±6	4.07

^a Means of three replicates rounded to integers

JIII CONCLUSIO

Fosetyl-Al was not mutagenic in the bacterial reverse mutagion as any, with and without metabolic activation.

Report: \$\infty \" KCA 5.4 \tag{67}

Title: Losetyl M: In thro manification chromosome aberration test in cho cells

Report No.: G82195

Document No. M-450289-04-

Guideline(s); Open Guideline For the Testing of Chemicals, Test No 473 (1997); Method B.10

(Mutagoricity) Official Journal of the European Communities, L142, 31/05/2008

Guideline deviation(s): none

GLP/GEP: yes 2

Executive Summary

The clastogente potential of fosetyl-aluminium (fosetyl-Al) was evaluated using cultured Chinese Hamster Overy (CHO) cells according to DECD guideline 473.

The study consisted of a preliminary cytotoxicity test and a chromosome aberration assay comprising of three independent experiments: one each in the presence and absence of metabolic activation and a confirmatory experiment in the absence of metabolic activation (S9 fraction prepared from Aroclor-1254 induced rat liver).

Based or the observations in the preliminary cytotoxicity test, CHO cells were exposed to fosetyl-Al in duplicate at concentrations of 260, 823, and 2600 μ g/mL in the presence of metabolic activation with 3-h exposure and at 180, 570, and 1800 μ g/mL in the absence of metabolic activation with 3-h as well as 21-h exposure in the definitive chromosome aberration assay.

b Relative to vehicle control (mean revertants) per plate

^c See Table 5.4.1- 7 for the list of positive controls

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Similarly, concurrent vehicle (sterile water) and positive controls (cyclophosphamide monohydrate in the presence of metabolic activation and ethyl methanesulfonate in the absence of metabolic activation) were also tested in duplicate.

In each case, the cells were harvested at 21 hours after the start of the treatment and slides were prepared for chromosome analysis.

At the highest concentration tested (2600 μg/mL and 1800 μg/mL), the reduction in the cell growth was 51% and 51% in the presence and absence of metabolic activation respectively, with 3-h exposure whereas in the absence of metabolic activation (1800 µg/mL), with the 21-12 exposure, the reduction in a cell growth was 55% compared to the vehicle control.

A total of 200 metaphases per dose level from duplicate cultures were evaluated for chromosome aberrations. There was no evidence of induction of chromosome aborrations, including of excluding of gaps, either in the presence or in the absence of mabolic activation. In each of these experiments under identical conditions, the respective positive control substances produced a large and statistically significant increase in aberrant metaphases.

at the concentrations dested and under the The study demonstrated that fosetyl-Al is not clastogenic conditions of testing.

A. MATERIALS

1. Test material:

Name: Description: White powder Batch / Lot No.: 2020045

Purity:

05. Stability in yehicle was analytically Stability of test compound: verHied.

2. Vehicle and/or positive

control:

sterile water @ Wehicle C

Ethyl methanesul mate (MS), -S9 Pos. controls: Cyclophosphamade (CPA), +S9

3. Test system

Organisms:

Strains

Mammalian 🔊 İs in Alture

Chinese Hamster Ovary (ČHO N) cell line, (ATCC CCL-61, Lot 4765275) chypodiploid with a modal chromosome number 20 and a population doubling time of 10 to 14 hours

Source:

Media:

Haby's F-12 mediom supplemented with L-glutamine, sodium bucarbonate, antibioties and 5 or 10% of fetal bovine serum (F-12

Metabolic activation system.

PBS 540) & C S9 homogeoate was prepared from male Wistar rats induced with a single i.p injection of Aroclor 1254, 5 days prior to sacrifice. Each batch @S9 homogenate was characterized for its ability to metabolize the promutagens 2-aminoanthracene and benzo(a)pyrene to wutagens using S. typhimurium TA100 strain.

Cytotoxicity test (-S9 and +S9):

75, 150, 300, 600, 1200, 2400, and 3541 µg/mL

 $(3541 \mu g/mL = 10 mM)$

3-h exposure, +S9: 260, 823, 2600 μg/mL

3-h and 21-h exposure, -S9: 180, 570, and 1800 μg/mL

Exposure duration:

3, 21 h

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Mitotic arrest: Colchicine was used as the spindle inhibitor, added to the cultures

19 h after start of exposure at a final concentration of 0.2 μg/mL.

Harvest time:

B. STUDY DESIGN AND METHODS

Experimental dates

2012-09-25 through 2013-01-11

Experimental procedure

Determination of cytotoxicity

Cytotoxicity of the test item was determined in a protest, as well in addition cultures. The effective of the test item on cell viability was estimated by expressing the number of cells in each treated cultive as a percentage of the number in the vehicle control.

The pH value and osmolality of the cell culture medium was measured before and after the exposure period. Fosetyl-Al precipitated in the treatment medium at 300 pg/mL and higher, but did not cause any appreciable change in the osmolality of the test solutions at the end of the 3-h esposure to treatment either in the presence or in the absence of metabolic activation. However, fosetyl-Al aftered the pH of the test solutions at and above 600 ug/mI in the presence of metabolic activation and at and above 1200 µg/mL in the absence of metabolic activation, therefore, the pH of the lest solutions of these concentrations were adjusted to neutrality before exposure to the cells.

Main study

Cells were treated with the test substance dissolved in sterile water and the respective positive and solvent controls both in the presence and absence of a metabolic activation system (\$9 mix).

After the exposure period, the medium was removed from the test flasks and replaced with fresh medium. Two hours proor to the end of incubation Colcerned was added to the cultures.

At the end of the incobation period cells were suppended in F-12 FBS after trypsinization. 200 μL of cell suspension of each individual republicate were pooled into test tubes mixed and the cells were counted.

Cells were fixed using colomethanol: a cell a colomethanol according to the colomethanol accordi

Slide evaluation

Chromosome aberrations for the three concentrations of the test them, the positive and vehicle controls cultures were scored

Each metaphase spread was examined at 1000 magnification. The number of chromosomes in each spread was counted anothose containing 18 to 22 centroperes were evaluated for aberrations. A total of 200 such pretaphases evenly distributed amongst the duplicate cultures were evaluated for each group.

The chromosome number was recorded for all the metaphases analysed and the Vernier readings

(microscope coordinates) of the metaphases with aberrant chromosomes were recorded. The total number of metaphases showing whe or more aberrations both including and excluding gaps was calculated from a set of 200 metaphases for each group.

Statistical evaluation

Pooled data from each test concentration and the positive control are compared with the vehicle control using the one-tailed Fisher exact test.

Validity criteria

The assay is considered acceptable if it meets the following criteria:

- 1. The micidence of aberrations in the vehicle control cultures is in the range of in-house historical control data.
- 2. The positive control substances should produce a significant increase in the incidence of aberrations compared to the respective vehicle control.

Assessment criteria

Biological relevance of the results is considered first. Statistical methods may be used as an aid in evaluating the test results, but statistical significance should not be the only determining factor for a positive response.

As a guide to interpretation of the data, the test item will be considered to induce a positive response when the percentage of cells with aberrations is increased in a dose-dependent manner will one on more concentrations being significantly different from controls (p < 0.05). If there is a statistically significant increase over the control in only one dose, to prove a reproducible increase, an independent confirmatory assay will be done.

Values that are statistically significant but do not exceed the range of lastoric vehicle controls may be judged as non-biologically significant. Test items not demonstrating a statistically significant increase in aberrations will be considered as negative.

Positive results that occur only at concentrations above 0.5 mg/mb or mM may require interpretation on a case-by-case basis.

An increase in the number of polyploidy cells may indicate that the test item has the potential to inhibit mitotic processes and to induce numerical chromosome aborrations. An increase in the number of cells with endoreduplicated chromosomes may indicate that the test substance has the petential to inhibit cell cycle progression.

II. BESUETS AND DISCUSSIO

A. CYTOTOXICITY

- A. CYTOTOXICITY

 3-h exposure, without activation: at the highest concentration tested (1800 µg/mL), the reduction in the cell growth was 51% compared to the chicle control (see Table 54.1-106)
- 3-h exposure, with activation: at the highest concentration tested (2600 µg/mL), the reduction in the cell growth was 51% compared to the vehicle control (see 7.4.1-10)
- 21-h exposure, without activation: at the highest concentration rested (1800 mg/mL), the reduction in the cell growth was 50% compared to the Cehicle control (see Table 5.2.1-11).

Thus, the highest concentrations rester elicited sufficient contoxicity (58 ± 5%). In the presence of S9, the highest recommended test concentration (2 mg/mL) was exceeded.

B. CHROMOSOMAL ABERRATIONS

No biologically relevant and thistically significant increases of metaphases with aberrations were detected at any time point in any of the concentrations tested will or without metabolic activation (see Table 5.4.1-10 and Dable 5.4.1-11). Appropriate solvent and positive controls gave the expected results and thus proved the sensitivity of the test. The incidence of aberrations in the vehicle control

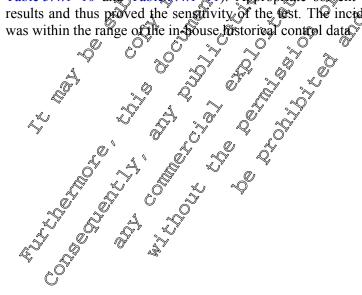


Table 5.4.1- 10: Chromosome aberration test in CHO cells, 3-h exposure

Treatment	Conc. [μg/mL]	No. (%) of metaphases with aberrations ^a								No. (%)	w°
		Gaps		Breaks		Exchanges			of aberrant metaphases		Growth inhibition
		Cs b	Ct	Cs	Ct	Cs	Ct	RC	Inci. gaps	gaps	
Without metabolic activation											
Water	_	0	0	0	0		0		0		J - J
Fosetyl-Al	180	0	0	0	0	Ç 0	0	80	0 🔏		
	570	0	0	0	0,4	0	0 🗳	0000		29	08
	1800	0	0	0		.0	Õ	\$\frac{1}{2}\text{0}	~ 0 ~	0, 4	357
EMS	600	29 (14.5)	12 (6.0)	2 (1.0)	69 © (34 \$)	107× (53,5)	39 (19 5)	(1.0)	159 (79.5)	155 (57.5)	28 0
With metabolic activation											
Water	_	1 (0.5)	0	Q 0 &			0 %		1 (QS)		0_
Fosetyl-Al	260	0	0.0	0		0	30			\$ 0 %	<i>♀</i> 7
	823	0	$^{\circ}$ (0.5)		0 F	0,5	0				19
	2600	0 🗞	00		ŽŽ	© 0	, o		\$\frac{1}{2}\text{0} \tag{0}	0	51
СРА	55	17 ⁷ (8.5)	\$5 \$(2.5) ₂	58 (29.0)	52 (26.9)	(0.5)	21 (105)		104* (52,0)*	101* (50.5)*	32

^a Values are the sum of two replicates and the value in parentheses represent % of metaphases with aberrations

Table 5.4.1-11: Chromosome aberration test in CHO cells, 21-h exposure

	₹	<u> </u>	% <i>I</i>		<u> </u>	<i>Q</i>	<i>)</i> "(0P			
Treatment	Conc	No. (%) of metaphases with aberrations a Breaks Exchanges							Total No. (%) of aberrant metaphases		Growth inhibition
	[µg/m²D]	Os b	Ct	Cs [*]	CC		Ct	RC	Incl. gaps	Excl. gaps	[%]
Without metabolic activation of the contraction of											
Water	-	(<i>U)</i>			0 ×	0	0	0	0	0	-
	180 🏻		0~			0	0	0	0	0	4
Fosetyl-Al	570	95		Q 0 (0	0	0	0	0	0	13
	1.8000	4 0 Q	″ U ~©	0 Q	0	0	0	0	0	0	55
EMS	600	26 (1300)	10 (5/0)	30 (95.0)	85 (42.5)	32 (16.0)	52 (26.0)	4 (2.0)	130* (65.0)*	129* (64.5)*	35

^a Values are the survof two replicates and the values in parentheses represent % of metaphases with aberrations

III. CONCLUSION

Fosetyl-Al was not clastogenic to mammalian cells in the chromosome aberration assay, with and without metabolic activation.

b Cs: Chromosome type Ct: chromatid type, RC ring chromosome

^{*} Significantly higher than control (p. 6.05)

b Cs: Chromosome type, Chromosome

^{*} Significantly higher than control ($p \le 0.05$)

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: KCA 5.4.1/08 O; 2013; M-450287-01-1

Title: Fosetyl-Al: In vitro mammalian cell gene mutation test in CHO cells

Report No.: G8218

Document No.: M-450287-01-1

Guideline(s): OECD Guidelines for the Testing of Chemicals, Test No 476 (1997); Method \$\frac{1}{2} \text{T} ?

(Mutagenicity) Official Journal of the European Communities L142, 31/05/2008

Guideline deviation(s): none **GLP/GEP:** yes

Executive Summary

The potential of fosetyl-aluminium (fosetyl-Al), to induce gene mutation in manifold cells was evaluated in an HPRT test in Chinese hamster ovary (CHO) cells according to OECD guideline 76. The study consisted of a preliminary toxicity test, an initial gene mutation assay, and a confirmators gene mutation assay. Each of these mutation assays comprised of two independent experiments, one each in the presence and absence of metabolic activation system (S) fraction prepared from Arcelor-1254-induced rat liver). Fosetyl-Al formed a milky suspension in sterile water at the tested concentration of 354.1 mg/mL and was stable in water for 24 hours at come temperature at the tested concentrations of 0.015, 1.0, 200 and 500 mg/mL. In a preliminary cytotoxicity test, fosetyl-Al dicknot cause significant cell growth inhibition as evaluated by relative cloning afficiency (RCE) up to the highest tested concentration of 354 log/mL (equivalent to 10 mM) in the presence or absence of metabolic activation. Fosetyl-Al precipitated in the treatment medium at 300 mg/mL and higher, but did not cause any appreciable change in the osmolality of the test solutions at the end of the 3-h exposure to treatment either in the presence of metabolic activation. However, fosetyl-Al altered the pH of the test solutions at \geq 600 µg/mL in the presence of metabolic activation and at \geq 1200 µg/mL in the absence of metabolic activation, therefore the pH of the test solutions of these concentrations were adjusted to neutrality before exposure of the cells.

In the initial gene mutation assay, CHO cells were exposed to fosetyl-Al in duplicate at concentrations of 227, 567, 1416 and 3540 µg/rdl of the medium for 3 hours in the presence and absence of metabolic activation in the confirmatory gene mutation assay. CHO cells were exposed to fosetyl-Al in duplicate at concentrations of 112, 355, 121 and 3540 µg/rdl for hours in the presence and absence of metabolic activation.

In a similar way, a concurrent vehicle control (water) and appropriate positive controls (3-methylcholanthrene, +89; ethyl methanesultanate, 489) were also dested in duplicate.

There was no induction of some mutations in any of the fosetyl-Al-treated cultures either in the presence of metabolic activation. In each of these experiments, the respective positive controls produced a statistically significant increase in the frequency of mutants, under identical conditions and the concurrent vehicle control cultures values were within laboratory historical controls.

The results of this forward gene in tation assay at the hprt locus demonstrate that fosetyl-Al the test item is non-mutagenic in the presence of patabolic activation.

I.MATERIALSOAND METHODS

A. MATERIALS

1. Test material:

Name: Fosetyl Al
Description: White powder
Batch Lot No.: 12020045
Purity: 97.1%

Stability of test composited: Expiry date: 2014-07-05. Stability in vehicle was analytically

verified.

2. Vehicle and/or positive Vehicle: sterile water

control: Pos. controls: Ethyl methanesulfonate (EMS), -S9

3-Methylcholanthrene (MCA), +S9

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

3. Test system: Organisms: Mammalian cells in culture Chinese Hamster Ovary (CHO-K1) cell line, (ATCC CCL-61, Lot Strains: 4765275) hypodiploid with a modal chromosome number 20 and a population doubling time of 10 to 14 hours Source: Media: Basic medium: Ham's F-12 medium supplemented with I glutamine, sodium bicarbonate, antibiotics was the. Complete medium: basic medium supplemented with 10% fortal bovine serum (FBS) was used for the flowth and multiplication of cells as well as in detaching and dilming the cells Treatment medium was basic medium without serum and was used for target cell exposure to the test item and controls. Cloning medium was basic medium supplemented with 20% FR and was used for the determination of cell viability or plating/cloning efficiency Selective medium was basic medium supplemented with 20% FBS and the selective agent 6-thioguaning (6-TG) at 35 µM and was used for the selection of mutants hprDocus* Locus Examined: 6 Thioguanine (6-TG) Selection agent: Metabolic activation system: S9 homogenate was prepared from male Wistar ats induced with a single i.p. injection of Arcelor 1254, 5 days prior to secrifice. Each batch of Sy homogenate was characterized for its ability to metabolize the promutagens 2-aminoanthracene and benzo(a)pyrene to mutagens asing & typhiarurium TA100 strain Test concentrations Cytotoxicity test \$9 and +S9) \$ 150,\$00, 600, 1200, 2400, and 3541 μg/mL ,567, 1416, and 3541

B: STUDY DESIGN AND METHODS

Experimental dates

2012-09-25 through 2013-0 C07

Experimental procedure

Preliminary cytotoxicity test

Initial precipitation pH and comolably assessment of fosetyl-Al exposed test solutions was determined in the concordant chromosomal perration study (2013; M-450289-01-1). Exponentially growing CHO 121 cells were plated at ca. 106 cells/flask in 5 mL complete medium and incubated for approximately 4 hours.

Cells were exposed to seven concentrations of fosetyl-Al, in the presence and absence of metabolic activation up to a maximum of 3541 µg/mL (equivalent to 10 mM) along with the vehicle control. Medium was removed and replaced with treatment. For the test in the presence of metabolic activation, of mL of S9 mix was added to the respective flasks to achieve a final concentration of 10% (v/v) in the medium. The pH of the test solutions containing the test item were adjusted to neutrality (between 7.21 and 7.38) before exposure to the cells.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

50 µL of the vehicle or the stock and dilutions of the test item were mixed with the medium in the respective flasks to get the required test concentrations. The flasks were incubated for 3 hours to expose the cells to treatment. After the treatment period, the flasks were observed for precipitation.

Medium from each flask was removed, the cell monolayer was rinsed with PBS, trypsinized, and cells were suspended in 5 mL complete medium and counted using a haemocytometer.

About 200 cells from the control and each treatment level were plated in triplicate and incubated for 10 days. After incubation, medium from each flask was removed and the cells were stained with methylene blue and the colonies counted manually to determine absolute cloning efficiency (ACE) and cytotoxicity was expressed relative to the vehicle weated control (relative cloning efficiency - RCE).

Main study

Exponentially growing CHO-K1 cells were plated in duplicate in 15 mL of complete medium at a density of approximately 3 x 106 cells / 75 cm kflask and incubated for 24 kours.

Exposure of target cells to treatment: All test item and positive control concentrations were prepared immediately before use in sterile test tubes. The target cells in duplicate cultures were exposed to the vehicle, positive controls or selected concentrations of the test item for 3 hours in the presence and absence of metabolic activation. The medium from each target cell flasks was removed and replaced with 13.5 mL and 15 mL of treatment medium from the experiment in the presence and absence of metabolic activation, respectively. For the experiment incorporating metabolic activation, 1.5 mL of S9 mix was added to give a final concentration of 10% (vv) in the test solutions.

300 µL each of the vehicle control, respective positive controls, or stocks of the test item were transferred to respective flasks and gently prixed and the flasks were incubated

Assessment of parallel cytotoxicity and expression of the mutant phenotype. After the treatment period, cells were rinsed with PBS, trypsinized, detached with 10 mL complete medium, and counted using a haemocytometer.

About 200 cells from each replicate of the controls and each treatment level were plated into T-25 cm² flasks in triplicate with obning medium to determine ACE and to express parallel cytotoxicity based on RCE. After Clays of incubation, the colonies were stained with methylene blue and counted for cloning efficiency.

For expression of the mutant phenotype, the cells from the replicate cultures were sub-cultured in complete medium in duplicate at a density of ca 106 cells/25 or 75 cm² flasks and incubated. The cells were subcultured as above at 52-3 day interval and carried out for the 9 day expression period. After this time, the mutant phenotype was selected.

Selection of the mutant phenotype and platting for Cloning efficiency: Cells were rinsed with PBS, trypsinized, detached with 5 mc complete raedium pooled, and counted using a haemocytometer.

For selection of the 6-thiogramine (6-TG) resistant phenotype, cells from each of the replicate cultures were plated into 5 flasks at a density of approximatel 2 x 10⁵ cells/25 cm² flask (total of 10⁶ cells) in selective medium and incubated for 16 days:

For closing efficiency determination at the time of selection, cells from each of the replicate cultures were plated approximately at 200 cells/25 cm² thisk in triplicate in cloning medium and incubated for 10 days for the initial and days for the configuratory mutation assays.

Staining: The colonies were stained with 0.5% methylene blue and counted for both cloning efficiency and mutant selection after 10 days of incubation for the initial and 8 days of incubation for the confirmation assays.

Acceptance criveria

The Cloning Principacy of the vehicle controls should not be less than 60%.

The mean mutant frequency of the vehicle controls in each experiment should fall within a range of 0-20 mutants per 10⁶ clonable cells.

The positive controls must induce a statistically significant response.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Assessment Criteria

There are several criteria for determining a positive result, such as a concentration related, or a reproducible increase in mutant frequency.

Biological relevance of the results will be considered first. Statistical methods may be used as an add in evaluating the test results. Statistical significance should not be the only determining factor for a positive response.

A test substance, for which the results do not meet the above criteria is considered non mutagenic in this system.

II. RESULTS AND DESCUSSION

A. CYTOTOXICITY

Fosetyl-Al precipitated at concentrations $\geq 300 \,\mu$ g mL, both in the presence and absence of metabolic activation at the beginning as well as at the end of 3-h exposure to treatment

The pH of the test suspension ranged from 4.56-7.2 with 7.30 in the vehicle control in the presence of metabolic activation while in the absence of metabolic activation the prowas between 4.49 and 7.36 with 7.34 in the vehicle control at the beginning of exposure to treatment.

At the end of 3-h exposure to treatment pH of the test suspension ranged from 6.01-7.27 with 783 in the vehicle control in the presence of metabolic activation while in the desence of metabolic

activation, the pH was between 5.97 and 7.41 with 7.37 in the vehicle control.

Hence, the pH of the fosetyl-Al treated cultures was adjusted to between 7.21 and 7.38 using 1N NaOH at the beginning of exposure.

B. MUTATION FREQUENCIES,

Initial assay

Based on the preliminary cytotoxicity tests the pargeted concentrations of 227, 567, 1416 and 3541 µg/mL were tested in the initial gene mutation assay, both in the presence and absence of metabolic activation

The relative cloning efficiency (RCE) in the absence of metabolic activation, ranged from 66.6-87.8% while the RCE on the presence of metabolic activation range from 2.5-90.2% compared to the vehicle control see Toble 5.1-120

The test item did not cause a significant increase in the frequency of mutants compared to the vehicle control in the presence of absence of metabolic activation at any of the test concentrations whereas the respective positive controls showed significant increases for mutant frequencies (see Table 5.4.1-12).

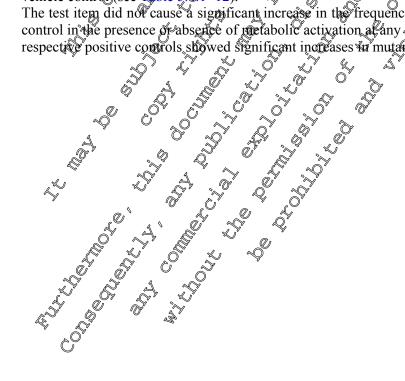


Table 5.4.1- 12: Initial HPRT assay with fosetyl-Al, 3 h exposure duration

Test item	Concentration	Cloning	efficiency	TG-resistant	Mutants per
	[µg/mL]	ACE (%) ^a	RCE (%) ^b	colonies / dish ^c	10 ⁶ cells
Without meta	bolic activation			Õ	
Water		95.9	101.5	100	¥2.9-
water	_	93.2	98.6	<u></u> 10	5 10 3 €
	227	83.0	87 ,8	L 6 €	7 7% G
	221	82.2	₹7.0	Q. 7 Q.	\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\ \\$\\
	567	79.0	83.6	7 💥	Q 9.8°
Fosetyl-Al	307	79.2	83.8	6° 75	, 8.8 <u>,</u>
rosetyi-Ai	1416	63.4	67.1	7	£10.2
	1410	65.0	\$ 68.8° Z		11.2
	3541	63.2	\$\\ \times \\ \frac{1}{2} \\ \frac{1} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2	7 0	\$ 10 ,9
	3341	62.9	66.6	A 8 4.	₹11.3 <i>,</i> €
EMS	600	499	© 51.9 0	7158	
LIVIS	000	56 .0 4	50/3	163	218.2*
With metabol	lic activation			<u> </u>	
Water	_	95.Q	\$ 100\$\text{\$\exiting{\$\text{\$\exitin{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitin{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	5 11 5	11.7
vv ater	~	\$ \$94.0 _{\$\infty\$}	99/3	6 10 ° (10.8
	227 🔊	85.4	ÿ		7.4
	227 🔊	839	√ 88.4° ×	J 7 Z	8.5
	52	\$0.0 O	\$4.5 V	(7.9
Fosetyl-Al		79.40	\$3.8	O'Asi	7.7
1 0000 11 111	1416	69.2	73.6	© 6	8.6
		⁴ 468.7	72.5	∜ 7	9.7
	\$541 \(\text{9541}\)	69.7	\$73.6 O	V 7	11.0
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	£ 69 → D	73.6	8	12.0
MÉN [®]		Š.7	5 36 .7	141	219.6*
1.1041		± 54.20 €	× 57.2 5	134	232.2*

^a ACE: absolute cloning efficiency; ACE (mean no. of colonies or disk x 100) / (no. of cells seeded per dish)

Based on lack of significant toxicity in the preliminary toxicity test, the targeted concentration of 112, 355 N21, and 354 mg/mg were tested of the confirmatory gene mutation assay.

The RCE values without metabolic activation ranged from ranged from 63.0-95.2% while in the presence of metabolic activation the RCD ranged between 74.5-93.5%, compared to the vehicle control. The test item did not cause a significant increase in the frequency of mutants compared to the vehicle control in the presence of absence of metabolic activation at any of the test concentrations.

The respective positive controls induced a significant increase in the mutant frequency as compared with the vehicle control (see Table 5.4.1-13).

The frequency of matants in the vehicle control was within the range of the in-house historical control data (not shown).

The test@em did not cause a significant increase in the frequency of mutants compared to the vehicle control in the presence or absence of metabolic activation at any of the test concentrations whereas the respective positive controls showed significant increases in mutant frequencies (see Table 5.4.1-13).

^b RCE: relative cloning efficiency; RCF = [AGE (treatment) x 100] / (average ACE of vehicle control replicates)

c Total of five dishes

^{*} Significantly different from vehicle controls (p < 9.05)

Table 5.4.1-13: Confirmatory HPRT assay with fosetyl-Al, 3 h exposure duration

Test item	Concentration	Cloning	efficiency	TG-resistant	Mutants per 106 cells	
	[µg/mL]	ACE (%) ^a RCE (%) ^b		colonies / dish ^c		
Without met	abolic activation				. 6	
II I - 4		93.9	99.9	11	12.0	
Water	_	100.2	100.2	12	13.3	
	112	88.4	94.0	10	11.2 Q	
	112	89.5	95.2	1 1	12:0	
	355	75.5	80.3		\$ 15°.0	
Fosetyl-Al	333	78.5	8305	5 10	© 2.9° (2.9°)	
rosetyi-Ai	1121	74.7	7 9.5		11.7	
	1121	71.7	76.3 。		\$\tag{1}\tag{1}\tag{2}\tag{2}\tag{2}	
	3541	59.2	620 2		\$ 12.2	
	3341	60.4	64.3 Ø	70	0 11.4	
EMS	600	54.7	58.2	D 155 D		
LIVIS	000	52.7 [©]	5,6,1	7 0183 V	228.8*O	
With metabo	olic activation					
Water		Q 6.7	<u>6</u> 100 5		£ 10.8	
vv atci	_	@ 95.7 ¹	0° 985 (0	Q 11 0 6	© <u>%</u> 12.0	
	112	J 89.9 S	93.5	4 7 5	7.8	
	112	088.0	© 91.5 °	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	9.0	
	355📞	83.4	3 86 5	8 4	9.6	
Fosetyl-Al		84.9	85.1		9.5	
1 osctyl 7ti	\$\frac{1}{21} \times \frac{1}{2}	3 7.0 \$	80.05	Q 9 , "	11.7	
	C. \	\$\frac{1}{2} 8\frac{1}{2}.4 \times \times	\$46 5	9,5	11.9	
	3541) 7 ^{6,7} 4 ⁰	3/4.5	7	11.2	
<i>\</i>		©73.9 °	76.8	<u> </u>	10.5	
MC AC	8	5900	61.3	153	228.7*	
IVICA		© 52.°9	\$\tag{\$5.0}	146	221.5*	

Fosetyl-Al was not coutagenic to prammatian cells in the HPRT assay, with and without metabolic activation.

^a ACE: absolute cloning efficiency, ACE, (mean no. of colonies per dish × 100) / (no. of cells seeded per dish)

^b RCE: relative cloning efficiency; RCI [ACE (treatment) x 100) (average ACE of vehicle control replicates)

^c Total of five dishes

CA 5.4.2 *In-vivo* studies in somatic cells

and of hydrated of KCA 5.4.2/01 ; 1977; M-223290-01-2 Report: Investigation of the possible mutagenic activity of Aliette and of hydrated Title: monosodium phosphite R000822 Report No.: M-223290-01-2 Document No.: Guideline(s): not specified Guideline deviation(s): not applicable **GLP/GEP:** I. MATERIALS AND METHO

Groups of 10 Swiss mice were given two oral ofes, by gavase, at 20-hour interval of 00 000 and 2000 mg/kg bw of fosetyl-Al (batch DA 67; 29.7% purity) Spended in defilled attention a group of 5 males was given 4000 mg/kg bw of test colorate under the ormet testiment schedule. All mice were sacrificed after the 2nd dose, and bor margow was taken for determining the count of Howell-Jolly bodies in 2000 polychroma verythocytes.

II. PSULYS ANY DISCUSSIYI

In the top dose group, 3 mice dies within 24 lours are the dies within 1 hour after the 2nd administration.

I hour after the 2nd administration.

Control mice exhibited a low percentage of polychroniatic Cythrolytes containing Howell-Jolly bodies while benzene, benzo(a)polychroniatic Cythrolytes containing Howell-Jolly bodies. Fosetyl-Al did now increase the required of polychroniatic crythrolytes containing Howell-Jolly bodies at any downlevels. Table 5.42-1).

Table 5.4.2-1: Sroughean screeninge of CE confaining lower Jolly Odies per 2000 cells

Treatment groots	Dose (mg&y bw)	Viroughean Orcertage of SE containing Your Wolf Olly Lodies for 200 Wells
Vehicle 🖫 🖏		→ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
LS74-782	Ů <mark>1006</mark> ♥	
l V v	· 2 (4)	
Benzo (a) pyrene	<u>A</u> 200	1.51 0
MMS		O S S IS
Benzene ~	© 0.25 L/kg	1.31%

The ratio of PCEs to NCEs has not been determined or reported in this study. Therefore, a direct conclusion that the bone marrow had been reached by the test substance or its metabolites cannot be drawn from the results of this study. However, appreciable residues of ¹⁴C-fosetyl-Al (86/74 µg equiv./g, m/f) were found in bone marrow of rats even at 168 hours after a single oral dose of 3000 mg fosetyl-A/kg by in an aqueous vehicle (see Table 5.1.1- 2). In another rat ADME study, 168 hours after a single dose of 1000 mg/kg by in an aqueous vehicle, bone marrow residues of 68/83 µg equiv./g (m/f) were measured (see Table 5.1.1- 4). The toxicokinetics of fosetyl-Al in rats and mice is assumed to be very similar, not only because both species belong to the order *Rodentia*, but because the metabolism (see Figure 5 1.2), which is very similar among all mammals. This allows the conclusion that the bone marrow had been exposed to fosetyl-Al or its metabolites in this micronucleus test.

III. CONCLUSION

Fosetyl-Al does not induce micronucleus formation in mice after two daily oral doses of up to 2000 mg/kg bw/day. 2000 mg/kg bw/day.

Report: Title:

Report No.: Document No.: Guideline(s):

Guideline deviation(s): **GLP/GEP:**

KCA 5.4.2/02

; 1998; M-178982-01-1

Fosetyl-Al: Induction of micronuclei in the bone marroy of treated micronucle micronuclei in polychromatic erythrocycs from the time removed CI micronuclei in golden administration. The study consider of cythoxicit transplanding experiment followed by a main study.

In the range-finding study, grops of 3 male and female CD micronuclei in study.

main study.

In the range-finding study, groups of 3 male and female CDo mice received a single oral administration of fosetyl-Al (0.5% w/z method cells ose) be gavyte at ose leads of 4000, 4500 or 5000 mg/kg. Animals were of cred taily for clinical sight and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility during a 4-oy period. In the main study, groups of 5 may and obtaility d

Cytotoxicity range Onding experies
Mortality occurry in 3 and 1 out
evidence of toxicity who observed
and 4250 many in the main study. animals treated 4500 and 5000 mg/kg, respectively. No Accordingly, fosetyl-Al was tested at 1063, 2125

Main study
Mortality occurred in V and 4 females treated at 1053 and 4250 mg/kg, respectively. Clinical signs, i.e. lethary, hunched visture type cosure and tractors, were seen at 4250 mg/kg. These results clearly indicated that fosetyl-Al ould on the tested a Oin appreciably higher dose.

Negative (vehicle) control might exkerted to mal group mean ratios of PCE to NCE and the incidence

of micronucle atted of E will in historical vehicle control ranges. Cyclophosphamide-treated animals showed swistically significant picreases in micronucleus frequency (see Table 5.4.2-2). Fosetyl-A treatments produce no changes in group mean ratios of PCE to NCE and no statistically

significant in cases in mix nucleus frequency at any dose levels and at any sampling times (see Table 5.4.2-0

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Since the ratio of PCEs to NCEs was not affected by treatment, a direct conclusion that the bone marrow had been reached by the test substance or its metabolites cannot be drawn from the results of this study. However, appreciable residues of ¹⁴C-fosetyl-Al (86/74 µg equiv./g, m/f) were found in bone marrow of rats even at 168 hours after a single oral dose of 3000 mg fosetyl-A/kg bw in an aqueous vehicle (see Table 5.1.1- 2). In another rat ADME study, 168 hours after a single dose of 1000 mg/kg bw in an aqueous vehicle, bone marrow residues of 68/83 µg equiv./g (m/f) were measured (see Table 5.1.1- 4). The toxicokinetics of fosetyl-Al in rats and mike is assumed to be very similar, not only because both species belong to the order *Rodentia*, but because the metabolism of fosetyl-Al consists only of abiotic ester hydrolysis and subsequent ethanol catabolism, free Figure 5.2.

2), which is very similar among all mammals. This allows the conclusion that the one marrow had been exposed to fosetyl-Al or its metabolites in this micronucleus test.

Table 5.4.2- 2: Ratio of PCE to NCE and frequency of microsycleator PCE is the lone morow of CD-1 mice following a single oral administration of issetyloid.

	THICE TOTTO THE	<u>V</u>	<u> </u>			
Treatment	Sampling	Sex O	PCF CE io Z Goup	roan frequence of cated QE (p 1000) per treated QE (p 1000) per treat		
(mg/kg)	<mark>time</mark>		OF PCE CE	micronuc	Man frequency of cated QCE (pg 100)	
	(hours)			per yex	per treat ve	ent
					gr <mark>grQp</mark>	
Vehicle	24 🐧	Male	~~~~ 1.66° /	0.50	2 2 2 2 60	
	Q"	Female 6	678			
	480	Male O'	70.86	9.50	© 4 0.35	
		Female	0.83	چا ^{ا د} چا <mark>0.20</mark>	. 0	
	72 O	Mato	2) 0 <mark>.90</mark>		Q 0.45	
	480 y	Female **		(a) (b) (30)		
Fosetyl-A2 250		Male	7 PCF CE 7 P	in picronus	0.35 0.45 0.50 0.60	
		Femule 2	o o o o o o o o o o o o o o o o o o o	0.10		
Į Š	0" 48°	Mole ~	2 <mark>9.97</mark>		0.50	
		Female	1.06	√ √ <mark>0.63</mark>		
, Or St	1 2 72 60 °C	Maley		5 Q 0.70	0.60	
Q Q		Febrale %	"0".12 Q	0.50		
Fosetyl 2125		Male .		© 0.20	0.20	
		Female	7 4.85 3	0.20	0.20	
	480°		0:69	0.20	0.30	
		emale 9	9 0.9 G	0.40	0.20	
		E-Galo	V 0.99	0.30	0.30	
Focatul 4250	2012 1013 1014 1015 1015 1015 1015 1015 1015 1015	Tolo %	× 10 × 5	0.50	0.70	
Fosetyl-A-250		Female	0.03	0.30	0.70	
	A48. 0		7 1.00	0.50	0.75	
		Female o	1.00	1.00	<u>0.73</u>	
@ \ . \	~	Male O	1.23	0.10	0.25	
Fosetyl-A-4250 CPA 80 PCE: pjychrop Wc ery 30c		Fei@ale	1.50	0.20 0.10 0.30 0.50 0.20 0.20 0.20 0.20 0.40 0.30 0.30 0.50 1.00 0.10 0.40 0.40	0.23	
CPA 80	0 24	Male	0.60	24.80	19.85	
		Female	0.63	14.90		
PCE: polychron oce erycoc	ytes CE: norr	nochromatic er	rythrocytes; CPA:	Cyclophosphamide	I	

RMS conclusion: Test material was negative for causing cytogenetic damage as measured by micronucleus induction in CD-1 mice.

III. CONCLUSION

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: KCA 5.4.2/03 ; 2013; M-449130-01-1

Title: Mammalian erythrocyte micronucleus test following oral administration of fosetyl-Al

to Swiss albino mice

Report No.: G8222

Document No.: M-449130-01-1

Guideline(s): OECD 474 for testing of chemicals Mammalian erythrocyte incronucleus tests.

adopted on 21st July 1997 (OECD 1997); Official Journal of European Communities, Commission Regulation (EU) No 1152/2010 of 8 December 2010,L324,B, 12. - In vivo

Mammalian Erythrocyte Micronucleus Test

Guideline deviation(s): none GLP/GEP: yes

Executive Summary

A micronucleus test in mice with fosetyl-aluminism (fosetyl-Al) was conducted according to OECD guideline 474.

Fosetyl-Al was suspended in the vehicle (deionised water) and administered orally by gavage to Swiss albino mice at the dose levels of 500, 1000 and 2000 mg/gg bw/day, on 2 consecutive days Mice in the vehicle control group received vehicle along The mice in the positive control group received cyclophosphamide monohydrate (40 mg/kg bw) as a single of a gavage. The dose worms administered was 10 mL/kg. Each group consisted of five males and five semales.

Mice were observed twice daily for Onical signs of toxicity. Mice in the vehicle and reatment groups were sacrificed 22 to 23 hours following the second dose, but those if the positive control group were sacrificed 23 to 24 hour following a single dose. The femulation marrow was flushed, smears were prepared and stained. From each mouse, a minimum of 2000 polychromatic erythrocytes (PCEs) were scored for the incidence of micronucleated PCE Cytotoxicity was determined by evaluating the ratio of PCE: Total RBC by counting 202 to 252 red flood corpuscles (RBC) per mouse.

At doses of 500, 1000 and 2000 mg/kg bw/day, there was poincidence of mortality at any of the doses tested. The treated mice did not exhibit any clinical signs and there was no effect on body weight and no necropsy finding were observed.

The incidence of microprocleated PCEs in fosetyl-Al-treated microwards was comparable to the vehicle control group. The PCE Total RBC gatio at all the tested doses was comparable to vehicle control.

Since the ratio of PCEs to Total RBCs was not affected by treatment, a direct conclusion that the bone marrow had been reached by the test substance or its metabolites cannot be drawn from the results of this study. However, appreciable residues of ¹⁴C-fosetyl 4 (86/4 µg equiv./g, m/f) were found in bone marrow of rats even at 168 hours after a single oral dose of 3000 mg fosetyl-A/kg bw in an aqueous vehicle (see Table 5.1.122). In another rat ADME study, 168 hours after a single dose of 1000 mg/kg bw in an aqueous vehicle, bone marrow residues of 68/83 µg equiv./g (m/f) were measured (see Table 5.1.4.2). The traicokinetics of fosetyl-Al in rats and mice is assumed to be very similar, not only because both species belong to the order *Rodentia*, but because the metabolism of fosetyl-Al consists only of abiotic ester bydrolysis and subsequent ethanol catabolism (see Figure 5.1-2), which is very similar among all mammals. This allows the conclusion that the bone marrow had been exposed to fosetyl-Al or its metabolites in this micronucleus test.

The positive control caused a significantly increased percentage of micronucleated PCE and a significantly reduced PCE. Total RBC ratio.

Hence, fosetyl Al was non-clastogetic in Swiss albino mice at the doses tested and under the conditions of testing.

Fosetyl

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Name: Fosetyl-Al Description: White powder 12020045 Batch / Lot No.: Purity: 97.1%

re EsdWin NMM

lindia

lindia Expiry date: 2014-07-05 Stability and homogeneity in variable verified Stability of test compound:

analytically verified.

2. Vehicle and/or positive

control:

Vehicle:

Pos. control:

3. Test animals

Species: Mouse

Strain: Swiss albinomice, Dis

Sex: Male and female Age: 8-10 weeks Weight at dosing: Groupanean range

Males Females: 18

Source:

Acclimatisation period: 5 days (3), 6-7 days (4)

Toklad Certific (2014C) Global 14% Protein Rodent Maintenance Diet:

Diet - Pellet Certified), ad tibitum

Chareoal-fiftered and UV-irradiated deep boreswell water, ad Water:

Bidividually in standard polysulforce cage with corn cob bedding Housing:

Environmental conditions:

Temperature Humidity:® Air changes: **Photoperiod**

B. STUDY DESIGN

1. In life dates: 2012-99-21 \$2012-91-1

2. Animal assignment and treatment

Dose finding and main study: Dose:

500, 1000 and 2000 mg/kg bw/day for 2 consecutive days CPA was administered as a single oral gavage of 40 mg/kg bw.

Application route [©]10 m√kg bw0 Application volume: Not fasted Fasting time

Dose-finding: 2 mice/sex/dose Main study: 5 mice/sex/dose Clinical signs, mortality, body weight

3. Details of micronucleus test

Sacrifice: 22-23 h after the second dose

Tissues and cells examined: Bone marrow; 2000 polychromatic erythrocytes (PCEs) examined:

per animal.

The proportion of immature erythrocytes among total RBC (number of PCE divided by total number of erythrocytes) was determined for each mouse by counting 202 to 252 erythrocytes per mouse.

Details of slide preparation Bone marrow was flushed using a syringe containing feed boyane

serum and transferred to a centrifuge tube.

The cell suspensions were centrifuged at 2500 rpm for 10 minutes and the supernatants were discarded A sample of oa. 10 pt. of the cell suspension was spread evenly on a clean glass slide and blowdried.

The smears were fixed in methanol for 10 minutes. Three slides were prepared for each mouse.

Slides were stained by May-Gruenwald and Giemsa stain. The slides were dried immersed in xylene and cover slips mounted with DPW. The test is considered valid its it meets the following criteria:

a. The incidence of micronucleated polychromatic erchrocytes
(MNPCE) in the vehicle control group is within the historical
control data range.

b. The positive control animals demonstrated a granificant increase (x < 0.05) in MNPCE compared to control.

The test item was considered to induce a positive response if there was a dose related increase in the number of micronucleated cells. The test item was considered negative if there was no statistically significant increase in micronucleated polychromatic erythrocytes as compared to the concurrent vehicle control. However, values that are significantly elevated but do not exceed the historical data range vehicle controls may be judged as biologically non-significant. All quantitative ariables like thange in net body weight were tested

for normality (Shapiro Wilk test) and homogeneity (Levene's test) of within group variance before performing ANOVA. For counts/proportions' percentages data were normalized using suitable transformation (square root) before ANOVA. Comparison of means between the control and the treatment groups was done using Durnett's jest, where 'F' test was significant in ANOVA.

J. RESULTS AND DISCUSSION

A. CLINICAL SIGNS, MORTALITY AND NECROPSY FINDINGS

There were no mortalities chinical signs of abnormal necropsy findings in any of the mice.

B. BODY WEIGHT

There were no effects on body weight

C. MICRÓNUGZEUSGASSAS

The incidences of micronucleated PCE and PCE: Total RBC ratio at 500, 1000 and 2000 mg/kg doses were comparable to the vehicle control group (see Table 5.4.2-3). CPA significantly increased the percentage of micronucleated PCE and significantly reduced the PCE: Total RBC ratio as compared to the vehicle control group.

Validity criteria:

Evaluation criteria:

Statistical nothods

Table 5.4.2-3: Results of the micronucleus assay in mice with fosetyl-Al

	Dose	PCI	E : Total RBC	C ratio		PCE	°
Treatment	(mg/kg bw/day)	No. of PCE	No. of RBC	Ratio (mean ± SD)	Total no.	No. with MN	(mean ±SD)
Males						, G	
Water	0	517	1067	0.48±0.01	10 076	3	0.03±0.03
	500	527	1096	0.48±0.01	10 067	3	0.03 20.04
Fosetyl-Al	1000	550	1150	0.48±0.00	10 180°	3	003±0.04
	2000	541	1131	0.48 0.01	10.204		Q 0.02 0.03 K
CPA	40	451	1087	0 1 ±0.01*	10210	° Q244, 5	2.39±0.30
<u>Females</u>				~ ~ ~	0 / Y	.0 2	
Water	0	525	1098	0.48±0.01	10\$62		0.05±0.07
	500	511	107	. 0.47±0.04	90 089	3 0'	@3±0.03
Fosetyl-Al	1000	544	1 23 2	⁷ 0.48 ∉ 0.00 √	10.665		0.04 0.02
	2000	515	01088	0.07±0.01	180	5 0 1995	0g5±0.05
CPA	40	492 🚜	1183	0.42±0.01*	\$ 10 5 8 \$	1995	1.88±0.25*

^{*}Significantly different from vehicle control group

CA 5.4.3

Revivo studies in gent cells

Since all genoloxions studies with fosetyl-aluminium are negative this data requirement does not apply.

CA 5.5 Long-term toxicity and carcinogenicity

The long term toxicity and carcinogenicity of fosetyl-aluminium (fosetyl-Al) was evaluated in cogs and rodents. The testes and the urinary bladder were identified as the target organs in dogs and rats respectively. However, both the LOAELs and NOAELs for these effects were much higher than the guidance value (GV) of 10 and 100 mg/kg bw/day for classification as STOT RE1 and 2, respectively. These GVs are valid for 90-day (i.e., 3-month) studies while the studies in question are 24-month studies. Hence, an 8-fold lower GV should apply for each category. This follows from the application of Haber's law as suggested by the ECHA CLP guidance document³. The GVs for classification as STOT RE1 and 2 are therefore 1.25 and 12.5 mg/kg bw/day, respectively.

With all long-term NOAELs and LOAELs being $\geq 300 \text{ mg/kg}$ bw/day (see Table 5.557), a classification in the STOT RE hazard category is not warranted, according to the criteria of Regulation 1272/2008.

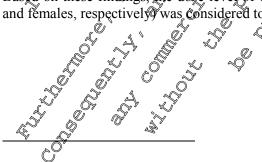
An overview of the data is presented in Table 5.5 1. The 2-year dog study (1985) M-159302-01-1) has been used to derive the ADD for foodyl-At. No new studies have been performed for this endpoint.

Dog study (; 1981; M-159302-01-1)

Despite the administration of very high dose level (greater than the limit dose of 1000 mg/kg/day) during 2 years, fosetyl-Al did not induce any treatment related mortalities clinical sign or major changes in body weight or food consumption.

No toxicologically meaningful effects were observed in harmatology, clinical chemistry or urinalysis. Examinations performed at the terminal specifice indicated that oxicity of fosetyl-A0 was limited to the testes. Males treated at 20 000 and 40 000 pppy displayed testicular degeneration.

The dose level of 10 000 ppm (equivalent to 309 and 288 mg/kg/day in spales and females, respectively) was considered to be the NOAES of the study


Mouse study (1981, M-159267-04,-1)

Following the administration of very high dose levels up to 30 000 ppm during 104 weeks, fosetyl-Al induced no toxic effects. Accordingly, this dose level (equivalent to 356 and 4549 mg/kg/day in males and females, respectively) was considered to be the NOSEL of the study.

Rat study (1983; M-249664-02-1; addenda ; 1983; M-234109-01-1 and ; 1983; M-159736-01-1) with additional histopathological peer reviews (1985; M-165085-01-2; 1985; M-165088-01-2; 1985; M-163457-01-1).

Following the administration of very high dose levels up to 30 000 ppm during 104 weeks, fosetyl-Al induced toxic effects that were limited to the annary tract. Females treated at 30 000 ppm showed calculi and hyperplasia of the unnary bradder epitherum without any evidence of tumour formation. Males treated at 30 000 ppm displayed similar charges which were associated with a higher incidence of transitional cell papilloma and carcinoma in the urinary bladder.

Based on these findings, the dose level of 8000 ppm (equivalent to 348 and 450 mg/kg/day in males and females, respectively) was considered to be the NOAEL of the study.

³ ECHA (2015) Guidance on the Application of the CLP Criteria. Version 4.1, June 2015

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

In the absence of any genotoxic potential, it was hypothetised that the renal tumours could result from a chronic irritation rather than a true carcinogenic effect of fosetyl-Al. The ingestion of high doses of fosetyl-Al is a possible cause of functional alterations of renal excretion, while the formation of calculi may induce a chronic irritation of the urinary bladder epithelium, leading therefore to the development of transitional cell papilloma and carcinoma of the urinary bladder.

Two mechanistic studies into the effects of high doses of fosetyl-Al on kidney and bladder histopathology were conducted. These studies are summarised in Section 5.8.2.

Conclusion

The bladder tumours observed in rats occur only at very high doses (LOAEL 1372) 786 mg/kg bw/day, δ/φ). Mechanistic studies have established a non-genotoxic mechanism that involves imbalance of calcium/phosphorus metabolism, urouth formation, and subsequent chronic irritation of the urothelium. Due to the high doses required to cause imbalance of calcium/phosphorus metabolism, the urinary bladder tumours in the rat are not considered relevant for humans. In addition, no tumours were observed in dogs or mice, despite similarly high doses administered in the top dose groups. Therefore, fosetyl-Al is not classified as carcinogen, according to the criteria of regulation 1272/2008.

Based on the results of available studies, the overall acceptable NOAEL for fosetyl-Al for long-term toxicity was 300 mg/kg/day based on the results of the 2-year dog study sexes combined). This NOAEL has been used to derive the ADI for fosetyl-Al, therefore the respective summary for this pivotal study is included in this Supplementary Dossies.

Table 5.5-1: Long-term toxicity studies with fosety Al

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: KCA 5.5/01 ; 1981; M-159302-01-1 Title: Fosetyl-Al: Two year dietary toxicity study in dogs

Report No.: Document No.:

Guideline(s):

Guideline deviation(s): GLP/GEP:

Executive Summary

MI-159302-01-1

No guideline was in effect at the time of the study (study design is equivalent to OECD 452, 1981)

none

yes

etyl-Al) was administered in the viet to purebed Beagle document to the design is equivalent to the study (study design is equivalent to DECD 452, 1981)

none

Yes Fosetyl-aluminium (fosetyl-Al) was administered in the viet to purebyd Beagle dog at dog ge le of 0, 10 000, 20 000 and 40 000 ppm. The study was conducted prior to the adortion of the personence OECD guideline 452, but the study design was in agrordance with the provisions of this guideone. Side male and six female dogs were randomly assigned to each of three featment groups of a confol group. The dogs were observed daily for general behaviour and appearance, Unical signs, evert toxicity, moribundity, and mortality. Individual body weights and food consumption values were measured and recorded weekly. Mean compound consumption and good efficiently values were calculated weekly.

Haematological and biochemical valuations and uringlyses were conducted twice during the pretest period and at 1, 2, 3, 4, 5, 6, 2, 18 and 24 months of oddy. Molin Grerase Determinations were conducted on all dogs at term all sacrifice

No compound-related trends were wablished for survival, mean group consumption or ophthalmoscopic and physical examinations. The percent change in the group when compared with the controls. There were, however, no catistically significant differences, in boo weights between the groups. The observed coating of tools with 'grey electic-like or grey majorial" in the treated animals (especially the 40 000 ppm Soup) Oas streggestive of a combund flated reflect The results obtained from analyses of the Gool For test article control indicated the "grow elastic-like or grey material" was constituted from an saknow Psubstance and not the test Sticle

Although there were statisticall significant of ferences in many of the haematological parameters examined for the treated grows when compared with the controls, no consistent trends could be established. The diff Gences Poted were not considered to be loxicologically significant. Slight but significant reduction were seen for BUD value in fewales and this was seen on several occasions at the 40 000-ppm Josage level The Wological significant of the reductions in BUN is dubious. Sporadic statistically Quificant difference from Introl Values, at various intervals, were seen in the treated group for many of the biochemical parameters evaluated. The statistically significant reductions in peak value for Serum Dectro nore were not considered to be of toxicological significance. There were no bi regically significant differences for urinalysis parameters.

No treatment related indings were seen at here were no meaningful variations in organ weights. On histopathological oxamigation evidence of testicular degeneration was seen at 40 000 ppm and to a maximal degree at 20000 ppm. Based on the histopathological findings, the NOAEL for this study is considered to be 0 000 ppm dietary level. This is equivalent to 309 mg/kg bw/day for rolles and 288 mg/kg w/day for females, respectively, and 300 mg/kg bw/day for both sexes combined.

I. MATERIALS AND METHODS

A. MATERIALS 1. Test material: Name: Description: Batch / Lot No.: Purity: Stability of test compound: 2. Vehicle: 3. Test animals Species: Strain: Sex: Age: Weight at dosing: Source: 4 weeks (quarantine)

9 Purita Capte Dictor Putina Confied Janine Diet #5007,

ad libiture Acclimatisation period: Diet: Water: Housing: Environmental conditions 2. Animal assignment and treatment Animal assignment and dosc groups.

Dogs were randomly discontinuous. s. The following dose groups were employed:

Table 5.5-2: Goup allocation and mean supplance intake in the 2-year feeding study in dogs

Conc. in Det	No of a	iningals	Mean daily substance intake [mg/kg bw/day]		
	Maye @	Female	Male	Female	
\$ 0.5° E	\$ 6	6	_	_	
	Ø-	6	309	288	
28 400 P	6	6	609	632	
4 0 000	6	6	1228	1190	

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Diet Preparation and Analysis:

Stability of test substance in food was checked and concentration of fosetyl-Al was determined in diet samples from the top, middle and bottom of each batch at Week 1, 2, and 4 and on single sample, at Week 8, 12, 27, 40, 53, 66, 79, 93, and 105. Fresh batches were prepared weekly.

Details on oral exposure:

Duration of exposure

Frequency of treatment

2 years

Via diet, ad libitum

3. Examinations

Clinical signs - mortality and moribundity/general daily observations

Body weights

Food and water consumption

Ophthalmic evaluation

All animals were observed doly for signs behaviour, gen al health of dition and hortality physical exarmations were carrie out for all dogs once during pre-test period and at 1, 200, 6, 9,12, 15, 18, 21, and 24 mores

Individua body Reight were Cord

Food consumation was measured week Water Insuration

all aximals of months of with 3-2 drops of Sopical fide and ophthologist determined it was becessary to clarify a particular finding.

Blood was obtained via pointure of this jugurar vein. The dogs were faced on Shight Capproximately 16 hours) prior to blood collection.

Hard atological parameters (erythrocyte count, Het, Hb, MCV, MCH, MCH, MCHC, parateler sount soft at gold differential leukocyte sedimentation rate methalomoglosin), were determed dogs twice during the pre-test period and the same of the pre-test period and the pre-test period and the same of the pre-test period and the pre-t Opp malino ogica investigation were yone and arimals since 1.0%. A bigocula indirect opht almosope was used to examine each dog. A direct or so lampo xamilation has performed if the

mistry

mistry Gross pathology

Organ wights

Organ wights

Organ wights

Organ wights

Organ wights

Organ wights

Junt, Het, Hb, N. April differential leukocy

Junta differential leuk twice during the pre-test period and at 1, 2, 3, 4, 5, 6, 12, 18, and

examination of abdominal, thoracic, cranial and pelvic cavities.

Blood collection

Document MCA – Section 5: Toxicological and metabolism studies

Histopathology

Histopathological examinations were performed on the following tissues:

Adrenal, aorta, nasal cavity, brain (3 levels), eye (+ optic nerve), gallbladder, heart (with coronary vessels), trachea, tongue, oesophagus, stomach, duodenum, ileum, jejunum, caecum colon, rectum, kidney, liver, larynx, lung with main-stem bronco (3 sections), mesenteric lymph node, skewtal muscle, skin, mammary gland, sciatic nerve, spleen pancreas, pit rary, prostate/corpus and cervix uteri, rib unction (bone marrow) salivary gland, spind cord (2 level), testis/ovar epididymis, thymus, thyroid/parathyroid, urionry bladder, bene, bene many smear and any over tissues with lesions.

Statistical evaluation

All statistical analyses compared the treatment groups with the sontrol group weights, mean food consumption, haematological, biochemical and urinalosis garameters, and absolute and relative organ weights (terminal sacorice). Were compared by analysis of variance (offeway classification), Bartlett's test for homogeneity of variance and the appropriate t-test (for equal or unequal variances). Dunnett's multiple comparison differences.

A. MORTALITY

Survival after 104 weeks was not affected by the treatment and there was at treatment related deaths (one male from the 10 000 ppm group died accide ally wring the 19 1 mg/ms study period; the cause of death was att Huted & a gas ric haemorrhoge)

There were no evert signs of voxicity and no changes in general heads and behaviour, in physical examinations anich auld boattriboed to reatment (inodental indings included soft stool/diarrhoea, injection of the sclera, emesis, dermatitis, alorecia, acrimation. Seen both in control and treated dogs). Incidence of part of stort covered with grey-elastic like reflerial" or "grey-material" was first noted after one year of tudy of several dogs from of treated groops, which higher frequency in the top dose group (analysis of faccal sample from a top dose made showed that the material was water insoluble and commined traces of test substature and that the white flakes were constituted from an unknown substance)

the throughout the study between treated and control In was noted at Week 104 in treated dogs when dogs, be slight reduction

on mean food consumption and food efficiency (see Table 5.5-There was no reatment-related effect (3).

Table 5.5-3: Group mean bw and bw gain and group mean food consumption during the study period

	Con	Controls		0 ppm	20 00	0 ppm	40 00	0 ppn©
	M	F	M	F	M	F	M	*F
Group mean bw	(kg)					Ö	,	
Pre-test	7.5±1.54	6.4±0.95	7.2±1.42	6.8±0.97	6.7 ± 0.77	6.2±002	7.7±0.70	6.6±£34
Week 104	12.7±3.24	11.3±3.61	12.7±1.61	11.4±2.77	11.2±1.80	10 <u>3</u> +2.04	12.7±259	100±3.450
% change from pre-test	+69.3	+76.6	+67.1	+67.60	+67.2	C+66.1	#4.9 ^	+62
Group mean foo	d consumpt	tion (g/kg b	w/day)	4	ِّOُّ	Ý		\$ \(\(\)
g/kg bw/day	327	288	360	2	316	307 C	354	گ 277 <i>،</i> ق
% of controls			+10.1	0 +1.0	4 .0	+6.6 Q	√ 8.3 Ø	-36

E. OPHTHALMOSCOPIC EXAMINATION

No test-substance related effect was recorded on on that half logic xaminations

F. HAEMATOLOGY AND CLINICAL CHEMISTRY

No treatment related changes were need in either sex is the harmator gical and civical chemistry parameters among the various groups, a few significant changes were related (see Table 5.55.):

- in haematological parameters: Soradic statistically significant di Tenco from contro values were seen in the various dose groups at various interpals from eryprocyte course. Hb, Hct, Ptl counts and methaemoglobin, and also in females for segmented neurophie; however, no dose and time consistent trend occurred.
- in some biochemical parameters: statistically significant changes were seen at various intervals for glucose, ALT, AST, LDH, and proposition makes, and or use, total and direct bilirubin and total protein in females, there was also a slight but consistent reduction in total protein in the top dose males for the 12, 18-4nd 240 north, intervals and a slight but significant reduction in blood urea in the top dose females. Note of these changes occurred considered without histopathological corroborate and therefore could not be attributed to treatment.

Table 5.5 4: Mon hae ontological and biochonical values (OSD) after 24 months of treatment

	<u> </u>	4 20			A	Fen	nales	
Parameter	0 pc n	.10 000nasen	20/0000 np.en.	40 000 ppm	0 ppm	10 000 ppm	20 000 ppm	40 000 ppm
Haematologic	al values	Q', \$\frac{\fir}}}}{\fint}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}{\fint}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\fin}}}}}}}{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}			9			
Erythrocytes (10 ⁶ /cmm)	al values	7.50±0.59×	7.06 7.29	8.83±45	6.94±1.08	7.01±0.43	6.47±0.52	7.10±0.51
Haemoglobin (g/L)	15.5±1.31	17.6±197*	1 © 34±0 1 *	7.83±45 16.3±1.14	16.1±2.21	16.5±0.79	15.4±1.10	16.9±0.55
Haematocrit (%)	49.3±4.5	55.4+3.98*	52.10.31	\$1.6±2.93	51.3±6.74	52.4±2.42	49.3±3.28	52.9±2.25
WBC (10 ³ /cmm)	12.9+8.71	12.0±2.29	7.1±1.9()	10.8±2.33	12.4±4.52	10±2.30	12.1±4.84	10.0±0.62
Segmented neutrophils%	057±5 A	12.0±259	63-8.1	67±5.4	66±10.1	61±8.2	70±5.8	65±9.6
Ptl (10 ³ /cmm)	315-532.9	©289±8©3	391±52.0	313±68.7	414±101.6	386±113.5	403±39.5	365±78.3
(10 ³ /cmm)	315 \$2.9							

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Damanadan		Ma	ales			Fen	nales	
Parameter	0 ppm	10 000ppm	20 000 ppm	40 000 ppm	0 ppm	10 000 ppm	20 000 ppm	40 000 ppm
Biochemical v	alues							a.°
Glucose (mg/100 mL)	103±11.4	107±6.2	104±12.4	117±4.9*	102±7.2	104±7.8	106±14.5	\$102±5\$
Urea (mg/100 mL)	13.8±3.87	14.7±3.99	16.0±1.62	13.5±2.62	16.1±3.0	13.1±2	14.2±2.8©	n
Alkaline phosphatase (U/L)	73±16.7	67±24.9	70±33.5	60±27.5	90±47.7	6 <u>1</u> ±24.3	576.6	\$\frac{1}{60\pm\left(\pm\right)}
ALT (sigma U/L)	18±4.2	16±8.3	18±2.6	15±5.3	15±5.5	15±3.3	013±36	
AST (U/L)	19±8.1	22±9.0	27±4.7	28+2.2	25±12 . (5	20±8.4	26 Q 0.0	5 27± 1 0
LDH (B-B U/mL)	355±211.4	247±43.8	221±50.9	05±75.2	377±290.1	313±7 2 4	©16±36%	200±87.1
Tot. bilirubin (mg/100 mL)	0.5±0.29	0.4±0.19	0.4±0.25 🖔		5.5±0,39	\$9±0.34\$	0.4±0.20	₩ _{0.5±0.16}
Cholesterol (mg/10 mL)	156±43.7	153±11.9	158±1 2 2	63±33,60	204\(\text{Q71.6}\)	175±49.9	066±290	12 ±28.9
Total protein (g/100 mL)	6.84±0.53	6.56±0.09	6.640.49%	6.19± 0 35*	\$6.53±0	6.40±0.13©	Λ	6.25±0.34
Potassium (mEq/L)	5.0±0.31	4.9±0.15	O <mark>5.0±0,</mark>	\$\frac{\frac{1}{2}\psi_0.24}{2}	5,3 9 .22	5.2±6\$7	9.2±0.2©	5.3±0.23

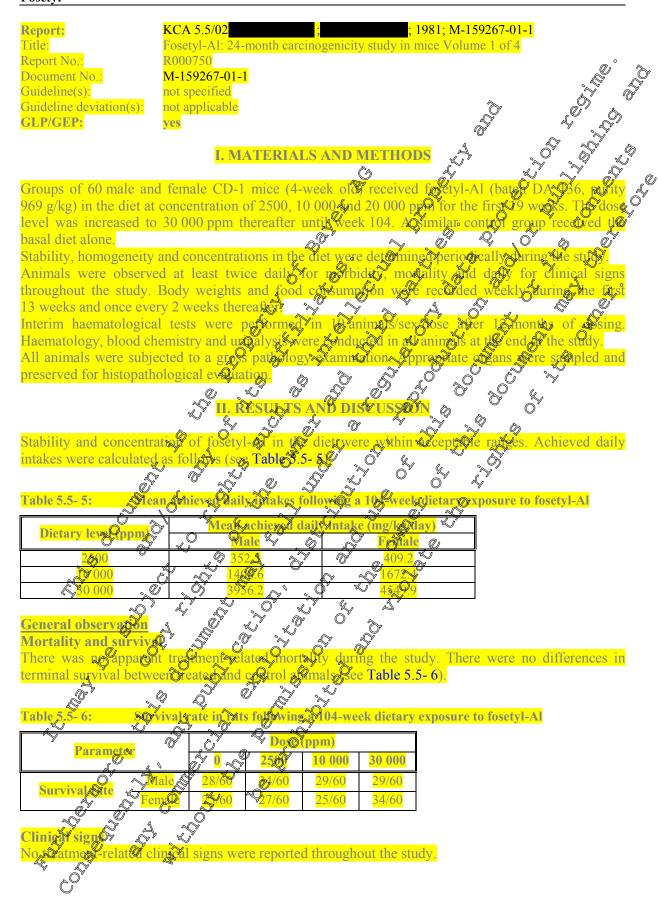
* p<0.05

G. URINALYSIS

There were no significant differences noted in up alysis coarameters for any dose group.

H. PATHOLOGY

There were neither goss treatment elated findings nor statistically senificant organ weight changes at terminal sacrification.


Histopathological reatmont-related changes were confined to the takes and the kidney:

- In the testes, doscrelated degenerative charges (presence of spermatocytic and/or spermatidic giant cells within the later of the seminife ous tubeles) where seen in 2/6 and 6/6 males from the 20 000 and 40 000 ppm groups, respectively. In the 20 000 ppm males, lesions were focal and involved one or both goods and were graded as those in veverity; in the 40 000 ppm males, lesions were more numerous, focal or multiplied in distribution, bilateral and also graded as trace in severity; in addition, scantomount of cellular doors and/or absence of spermatozoa were noted in the epidid midal aucts from the 40 000 ppm males.
 In the kidney from the females, an antexploried about increase in the incidence and relative
- In the kidney from the semalos, an enexployed wight increase in the incidence and relative severity of the daturaby occurring vacuous tubular lesion was seen among the 20 000 and 40 000 ppm groups: the incidence were 6; 4/6 6/6 and 6/6 among the control; 10 000; 20 000 and 6/000 ppm females of oups, respectively and lesions were graded as trace in severity in the controls and 10 000 ppm groups, in contrast to trace to mild among all except 1 female from the 20 000 and 40 000 ppm groups.

IIQCONCLUSION

RMS conclusion. The significant reduction of bw gain in treated dogs was not reflected in variations in the mean by hor i Good consumption and should not be attributed to test substance. The presence of unknown green nateral in significant was not corroborated by any pathological change in the intestinal tract and was attributed to a possible interaction of test substance with diet components. The testicular changes with graded severity seen in the 20 000 and 40 000 ppm groups indicated a test-substance-related effect. The NOAEL in this 2-year chronic toxicity study was 10 000 ppm and was equivalent to an average daily intake of 309 and 288 mg/kg bw/d of test substance in the males and females, respectively.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Document MCA – Section 5: Toxicological and metabolism studies

Body weight

Statistically significant decreases in body weight were occasionally observed in males and females treated at 30 000 ppm (see Table 5.5-7). However, as these effects were not dose- nor time-related, they were not considered toxicologically significant.

Table 5.5-7: Group mean bw (g) and food consumption (g/mouse/d) and difference for controls 1

	Con	Controls		ppm 🙈	10 000 %√m	20 % /30 % ppm
	M	F	M	P	M O F	EV EV
Body weight (g & d	lifference w	vith control	ls in %)	4		
	38 ± 3.7	36 ± 6.4	38 ± 5.2 (0.00)	5 ± 4.9 (-2.8)	38 2 3 35 ±5.4 (-2.8)	37 ± 4.8
Food consumption	(g/mouse/d	& differen	ice with co	ntros in %		
	5.1	5.5	50°	\$\frac{5.2}{5.2}\$\frac{1}{5}\$\	5.4 9.5.4 6 1.8 1.1 1.8 1.1	5 <u>C</u> 4 5.3 .

Food consumption

malestreated at Occasional statistically significant doreas effects were considered biologically and coxic orginal norte of these

Haematology, clinical chemistry surinal

Haematology

neutrophil and lymph yte Sints were occasionally observed in box sexes at different dose levels and sampling time. However, these offers were a sampling time. wers not close- and time-related, they were not and sampling time However, the considered toxico Gical Sign Cant.

Clinical chenostry

voe observed wany of the parameters examined chologonal total protein). No statistically or b (SGPT, SOOT, alkali

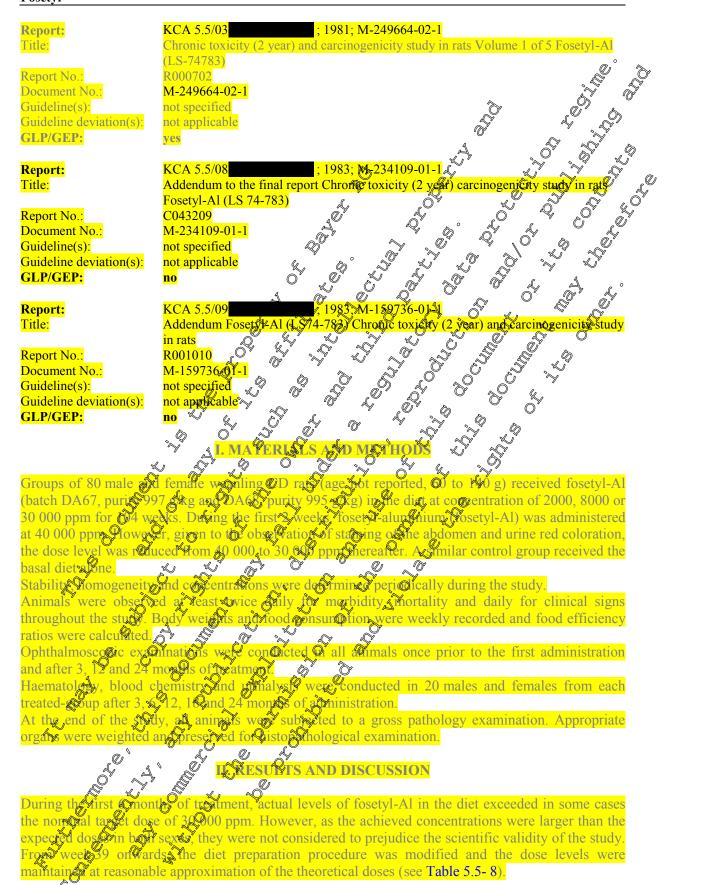
Urinalysis

were observed in both sexes at the end of the No statistically s treatment period

Gross pathology and

Gross parology

Macros Spic examination und related changes.


Histopathology

Histopathological examination and prevent reatment-related non-neoplastic or neoplastic changes in both sexes at My dom levels. The Ope and incidence of findings were representative of the pathology that would be expected for incorporationing the age, sex and strain.

III. CONCLUSION

Pusion: No weatment related effects were seen in this study; the NOEL was therefore 30 000 m, i.e., 3956 and 4549 mg/kg bw in males and females, respectively.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Fosetyl

Table 5.5-8: Concentration of fosetyl-Al in the diet during the first 39 weeks of treatment

Dose level (p)	am)	Conco	Concentration found after analysis						
Dose level (p)) iii)	Week 1	Week 13	Week 26	Week 39				
2000	Male	1798	1899	1963	1807				
	Female	1827	2174	1904	1887				
8000	Male	11734	10530	8390	8829				
	Female	<mark>7624</mark>	8531	9900	7768				
40 000 →	Male	49 842	36 645		_{ීනු} <mark>29 701</mark>				
30 000	Female	44 720	40 968	52 440 %	³ 30 047				

After 104 weeks of treatment, mean achieved daily

Table 5.5-9: Mean achieved daily intake follow

Dose level (ppm)	Mean achieved dwy intake (mg/kg/day)
Dose level (ppm)	Magy A C Acmal Y J
2000	
<mark>8000</mark>	2548
30 000	<u> </u>

General observation

Clinical signs

ming the abdomen within Animals dosed at 40 000 ppm Asplay the first 2 weeks of Catmon. Follow fkm 40,700 to 30,000 ppm, no doing treatment-related cli@cal signs w

Mortality and Prviv

Though not doe-re treged groups when compared with respective control gr

Table 5.3- 10:

	Cant	trols V 🐇	رِّ <mark>20</mark> يور	ppm ^O	8000 ⊗	ppm	30 000	<mark>) ppm</mark>
_	MalQ, y	Females 0	Maky	F emales	Males	Females	Males	Females
No. surviving no. initiated	3 <mark>%50</mark>	ř soʻl		~y 37/80 3 7/80 3 7/80	29/80	40/80	35/80	40/80
No. of rate					1 (w-5)	1 (pre-test) 1 (w-3)	1 (w-4)	1 (w-2)

Slight reduction in body weight wer choted within the first 2 weeks in animals treated at 40 000 ppm (-12 and -9% in males and smalls) respectively) while no treatment-related effects were observed at the end of the study (see **Table 5.5-11**).

Slight reduction in Good Sunsumption were noted within the first 2 weeks in animals treated at 40 (So pprowhile oset) Al induced no changes in food consumption and efficiency thereafter (see

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Table 5.5- 11:	Body weights and food consumption noted in rats following a 104-week dietary
	exposure to fosetyl-Al

able 5.5- 11:		sure to foset		umption not	cu iii rats it	mowing a T	04-Week die	tary	
	Con	trols	2000	ppm	8000	ppm	30 00	0 ppm	L
	Males	Females	Males	Females	Males	Females 8	Males	Forales 4	ď
ody weight	(g & differe	nce with co				Ş	2		
eek 104	729 ± 121	486 ± 109.7	748 ± 112.8 (+2.6)	497 ± 103.4 (+2.3)	$\frac{688 \pm 103.3}{(-5.6)}$	546±110.	758 ±128.8 (+4.0)	443 ± 191.1 (8)	ĈQ
ood consum	ption (g/d)				Ğ		Z		3V
Veek 1-13	27.1±2.69	18.9±0.81	26.7±2.56	18.8±0.84		8.6±1.01	26 €3.07 €	Q <mark>18.8±2,32</mark>	
/eek 14-26	28.2±1.23	19.7±1.12	2.72±1.23	20.1±154	27.1±1.39c		7.8±1.20	19 62 1.07 (
eek 27-39	28.6±1.02	20.5±0.76	27.2±1.13**	20.9 4 9.90	27.3±1.05*	264±1.00	√ <mark>28.4±€,09</mark>	29.0±1.18	1
eek -40-52	26.7±0.54	19.3±0.80	25.6±0.90**	201±0.69-	25.7±0/12**	9.5±0.76	// / / / / / / / / / / / / / / / / / /		
eek 53-65	28.8±1.05	21.3±1.26	27.3±0.85**		27. DE1.25*	20.9×1.43	\$3±0.99√	20.8¥1.47	
eek 66-78	27.8±0.86	21.6±1.00	26.4±0.72**	22.1451.13	℃ .6±0.9 ℃ *	2 5±1.08	27.8±490	<u>2</u> 4,0±1.04 °	
eek 79-91	27.8±0.90	22.7±1.03	26.8±0.9**	\$2,6±0.92	26.3±0.90*	422.6±1	27.0±0.94	\$22.2+ @ 1	
eek 92-104	27.0±1.04	23.8±0.90	27 70.75°	22.8±03	24.6±2.06*5	√ <mark>23.11√9.98</mark>	₹.6±1. ₹	21.08	
est substanc	e consump	tion (mg/kg/	do V		S S	\$\frac{1010}{1010}		_	
Veek 1	-	-		255	929	3 1010 3	<u>√</u> 562 «	5210 5210	
eek 2	-	- 0,	293	© 228°	7690		√ 4579 ♣ **	<mark>4781♣</mark>	
veek 3	-	, Ç			√ <mark>769</mark> 0 √	828 (^{29.}	3182◆	
leek 4	-		√ 17.Ç	⊘ 171 ⊘	OTO.		<mark>&444</mark>	<mark>2907</mark>	
eek 52	-	*		20 7171 0	<u>≥89</u>		♥ <mark>1104</mark>	1549	
eek 104			\$ 70 O	· · · · · · · · · · · · · · · · · · ·	10 25(K)	316 °C) 1222	1354	
Iean (w1-				5 117 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 48	0 [*] 450	1372	1786	
04)	J.		₹ , ✓						
p < 0.05; ** p	<0.0 %0	d peri⊚; ♦ fo				0'450 0'5'			
100d consum	o o o o o	1 peri (0) ; • 10	Consentation of the consen	on Fra 8-d		@			
phthalm	ogical eva	Natia V							
o specific e	ve altera	ons we see	en at anx ex	amioation	ime. , O				
-, -,		ons work see	, ° 0		Friod S				
<u>laematolog</u>	y, clissical	chemist@,	urin Alysis		ð				
aematolog	v ° () / 🔊	~°°° ~	LY.	L.	4 (, 1	, _ 1	
tatistically a	of hoom	chauges in	several h	lawnatologi Cothro	in time n	eters (eryth	rocyte, leu of retioulo	cocyte and	1
ccasionally	observed i	n hoth save	s (ee Tabl	2 5 5 × 12)	ni unie, p However a	s these effe	cts were no	ocyte) were ot dose- and	
me-reled.	they were	not conside	red toxicolo	ogia Iv sig	nificant.	5 those effe	ots were m	r dose- a nd	1
4 W	S								

Clinical chemistry

Statistically significant changes in every poinchemical parameters (glucose, SGPT, SGOT, total protein, bility of the protein, solvin and potassium electrolytes) were occasionally observed in both sexes (see Table 53-12 However, a chese effects were not dose- and time-related, they were not considered toxic regions of the protein
Table 5.5-12: Mean haematological and biochemical values (±SD) at 24 months treatment period

Table 5.5- 12:	Mean I			hemical valu	es (±SD) at a			rioa
Parameter		Ma					<mark>iales</mark>	w° 8
	Controls	2000 ppm	8000 ppm	30 000 ppm	Controls	2000 ppm		59 000 cym
Haematological	values	Т	T	T	T			<u>"</u>
Erythrocytes (10 ⁶ /cmm)	6.41±0.86	6.57±0.90	5.80±1.63	6.50±0.62	5.97±1.09	6.1900.70	6.07±0.81	\$35±0.97
Haemoglobin (g/L)	14.4±1.99	14.6±2.03	12.4±3.56*	14.7±1.	14.5±2.46	14.7±1.80	24.6±1.76	13 (22.03)
Haematocrit (%)	41.3±5.36	42.7±5.74	37.0±10.8	43 4.17	41.3±0.81	42.9±5.6	42.04.92	4 3.1- 4 .77
WBC (10 ³ /cmm)	9.9±4.8	10.5±2.91	13.6±8.17	۰ ۵	1 1 ± 1 3 . Q		8.5±6.27	##7.93
Segmented neutrophils %	33±9.4	40±14.4	47±17.9*	#±15.4°	476/3.2	942±1.98	54±16.34	50±43.8
PTT (s)	13±0.6	14±0.6**	\$±0.9*	100.8	13±05	20.5 L	12±0.7	\$\frac{7}{2}\pmu0.7**
Ptl (10 ³ /cmm)	839±97.1	805±135.6	810% 38.2	7)4±10*2**	\$\frac{12.5}{2}	670 ³ 0.8	\$05±9 9 8	571±102.2
Reticulocytes (10 ³ /cmm)	2.2±1.26	2.0-4.84 %	√ <mark>3.6±4.29</mark>	1 20.51	2.0.Q.81	7.8±10	\$\text{9\pm 1.40}	2.0±1.69
Biochemical val	ues					~ Q))	<u>l</u>
Glucose (mg/100 mL)	107±16.8		119±15	10x±24.25	9 <u>8</u> ±11.9	√93±257	103±24.8	88±23.1
Urea (mg/100 mL)	19.720.8	() 6.3±854	340°±37.48°	22.4-39.05	@ <u>11.0+2.7</u>	12.6±11.9	12.8±14.8	12.3±3.83
Total protein (g/100 mL)	0.0±0,0	66±0.55	6.4 _0 82**	7.1±056	7 3 ±0.65	7.2±0.78	7.4±0.86	7.6±0.70*
Alk. phos. (IU/L)	80±32.2	108-50.8*	0±2.0€.8	81±29 <u>1</u> @	60± 9 7.4	47±21.8	45±21.5	65±38.3
SGPT (sigma U/L)	.~" a	230±82	20211.7		\$29±6.73	28±7.5	26±7.0	32±14.8
SGOT (IU/L)	2 <mark>134±38</mark>		135+34.6	%7±7% €	178±46.9	165±64.1	149±58.1	179±82.9
Total bilirubin	0.5±0.29	0.45925	25±0.50 V	0.00.20	0.4±0.19	0.4±0.28	0.5±0.09*	0.5±0.13
Cholester (mg/10 hL)	190, 7.2	467±66	136,40.2	187±55.6	148±70.9	166±67.6	144±39.5	170±71.5
* p<0.05; ** p< 0. Urinalysis Following on	01 V 4.	A67±667						
Urinalysis Following 6 m	on of C	Sing Abun	ni Puria was	observed i	n males trea	ated at 8000) and 30.00	0 ppm
However as the	resence	of Dumin	in the urine	was also re	norred in bo	oth control a	ind freated a	inimals
at late Nample		Y						

Fosetyl

Gross pathology, organ weight, histopathology

Gross pathology,

Gross pathological examination revealed the presence of calculi and mineral deposits in the uripa bladder of animals treated at 30 000 ppm as well as mass involving the mucosa wall (see Table 5.5) 13).

Table 5.5-13: Gross pathology findings noted in rats following a 104-week dietary exposure fosetyl-Al

				~~				* * *
Organ (number of		M	<mark>ale</mark>		Ũ	Fem		Y
animal examined		Dose	(ppm)	,	Ô	Dose	(pm)	
animai examineu	0	2000	<mark>8000</mark>	30 000	Q	。 <mark>2000</mark> 0	8000	37000 @
URINARY BLADDER (n=	= 80)		200° "	*	√ . Ø)	O O	
Calculi / mineralisation	0	0	4.0	。 <mark>7</mark> 🔊		/0 <mark>0</mark> 0	³ 0 %	
Mass	0	1	O O	Z.		o 0	% <u>0</u>	<u> </u>

Organ weights

Statistically significant increases in assolu kidney, brain, and thyroid (see Table 5.5- 44). How trend, these changes were not considered to icologically

Table 5.5- 14: Absolute and relative organ weigh

	U U	2					
	Sontro		<mark>) ppm</mark>	~ © 00	prity _9	30 000	<mark>) ppm</mark>
	Mean 🔏 SI	Nean a	SD S	Mean	priv	Mean	SD
Males Body Weight (g) Spleen abs. (g)	Mean SI		SD ST	× 4,	SD ST		
Body Weight (g)	7 727 5%	00 725	1 23.8 a	k 673 € i	170 8	753	135.5
Spleen abs. (g)	0.3	<mark>8</mark> ~ . <mark>13/</mark>	0.4540	<mark>12</mark> 28 ~	0.533	1.37	0.511
\$ 9 %	0.8		Q.09	₹ <mark>0.2</mark> <	0.101	0.19	0.088
Liver abs. (g)	\$\frac{17}{26.20} \frac{4.3}{4.3}\$	~ W - ~ ~ ~ ~ ~	295	22.86 ©	4.093	25.53	4.741
S 2 101 70	3.79 Q1.0	12 🐴	! 4// 190	3043	0.512	3.44	0.625
Klaneys (g)	26 2 4 2 1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.99	\$ 1.100°	7.46	2.426	6.34	1.932
rel %	0.89 J	9 9 0.85 C	0.229	≫ <mark>0.99</mark>	0.427	0.87	0.355
Testes abs. (g)	3 (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (3 3 3 3 5 4 5 5 4 5 5 4 5 4 5 4 5 4 5 4	00.662	3.48	0.679	3.69	0.589
r@%	<mark>∂√51</mark> 💸 0.1	8 9.54	0.12	<mark>0.53</mark>	0.121	0.50	0.102
Heart abs. (g)	0 ² .12° .0 ⁰	2.22 0 17 0 0 0		<mark>2.22</mark>	0.355	2.21	0.348
		17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	©.063 0.104	0.34	0.066	0.3	0.063
Brain abs (Tree) Free rel %×100	2.33 9 0.2 2.33 9 0.2 2.33 9 0.0		≪6 n U U4	2.28	0.152	2.34	0.192
© rel %×100	2.33 0.2 0.33 0.0	0.33 20 4 122	0.064	0.35	0.074	0.32	<mark>0.057</mark>
Adre lals abs. (mg)		16	1	<mark>101</mark>	33.5	82	<mark>16.5</mark>
rel %×100	<mark>0.5 گن 0.5 گئا</mark>	8 4 088	<mark>3.406</mark>	1.54	0.564	1.12	0.293
Thyroid abs. (m.g.)	4 55 0 16	76.00 0.81	<mark>14</mark>	<mark>54</mark>	14.20	54	16.30
relox×100	0.75	.7 0.81	0.33	0.83	0.247	0.74	0.243
Adrews abs. (mg) rel %×100 Thyroid abs. (mg) rel %×100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

	Con	trols	2000	ppm	8000	ppm	30.0	00 ppm
	Mean	SD	Mean	SD	Mean	SD	Mean	SD SD
Females			<u> </u>			! ' '		<u> </u>
Body Weight (g)	483	111.0	488	102.4	534	107.9	441	7.9 %
Spleen abs. (g)	0.99	0.58	0.88	0.554	1.01	0.56	1.09	0.6%
rel %	0.21	0.11	0.18	0.093	0.19	0038	0.25	V 0.58
Liver abs. (g) rel %	18.56 3.92	3.77 0.63	17.59 3.63	4.699 0.654	19.39 3.66	4.921 0.695	17.5° 206	0.74
Kidneys abs. (g) rel %	3.68 0.80	0.56 0.21	3.68 0.79	0.221	3.68 0	0.591 0.157	83.97 0.928	0. © 3
Ovaries abs. (mg) rel %×100	171 0.38	45.30 0.14	170 0.35 Å	© 60 0.12	0.32 0.5 0.32 0.5	48.40 0.10	15 M	0.150 0.150
Heart abs. (g)	1.66 0.36	0.25 0.08	1.63	0,228	1.69	279 2003	1.5%	\$\frac{\circ}{251}
Brain abs. (mg) rel %×100	2.08 0.45	0.13	2.08	0.10	2.00	0.293	OZ.12	0.121°
Adrenals abs. (mg) rel %×100	160 3.44	69.2		0122.6 2 426	107	123.3 24.0		30.6 3.521
Thyroid abs. (mg) rel %×100	41	\$ 10 m	© 38 ×	6.1 9	56	2.78	36*25 0.8*4	9.2
Significant difference to c		(4.19 (5) (4.19 (6) (6) (7) (01		Q.	10000000000000000000000000000000000000	<u> </u>	0.201
	Ü	y ()					Oʻ	
Histopathology	. Ø			"O"				
<u>Non neoplastic findir</u> Upon histopathologic	al evami	Ation & on	nonlaco	Vindio S	wate limit	ed to the	rinary tra	act of both
male and female.				& IIII & J	weke limit		irmary tra	ict of both
Evidence of hyper	asia & d ii		n of the t	rac Itional	epitheliun	n of the ur	inary bla	dder were
observed in male tre	eated at 30	c000 ppm.	Similar fi	mings Ser	e rootted	males t	reated at	8000 ppm
male and female. Evidence of hypersobserved in male free	t ©0 000 p	pm in a les	so extext	(see Lable	53-15).	9		
No treatment-relate					o level à			
Table 5 15: N					~ 104	oole diatawa	077700077700	40
rable 305-13.	sztyl-Al		5 27	rats following	104-W	cek uletal y	exposure	10
Organ (number of ani	4		Maje				nale	
Organ (number of ani		Di Di	o (bbuo				(ppm)	
examined $\sqrt[q]{}$		200	Y SYOU	30 000	0	2000	8000	30 000
URINARY	R (n=80)	F F			<u> </u>			
Hyperpl®a		2	4 0	13	0	4	1	6
Inflar vation		, 0 4		11	2	4	1	6
~								
Neoplastic find Wgs			Ź,					
Upon histoprologic	al exacin	iation, neo	glastic find	dings were	limited to	the male a	drenals a	nd urinary
bladder (sy Table 5 females Juny (Se I	0.3- (1). 1	wore was	no eviden	ce of any	treatment-	related ne	oplastic c	enanges in
	<u> </u>)						

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

 Table 5.5- 16:
 Neoplastic lesions (incidence / examined rats)

		Ma	ales			Fer	nales	0
Dose level (ppm)	0	2000	8000	30 000	0	2000	8000	2000
Liver Neoplastic nodules Neoplastic nodules or carcinoma	6/80 9/80	12/80 13/80	14/81 14/81	10/81 12/81	15/79 15/79	3/80 13/80	12/81 13/%	
Pancreas Islet cell carcinoma Islet cell carcinoma or adenoma Adrenal	3/79 3/79	3/78 6/78	0/79 1/79	3/80 8/80	1 7 7 2 .	1/79 3/79 Ø1	7 2/78 × 5/78 ×	
Cortical adenoma Cortical carcinoma Cortical adenoma or carcinoma Phaeochromocytoma Malignant phaeochromocytoma	19/80 0/80 19/80 5/80 1/80	9/79 3/79 12/79 7/79 0/7	781 74/81 15/89	18/81 1/81 189 1881 1881 1881	24/79 6/79 04/79 7 1/79 7 0/25	20/9 4/79 25/70 0/0	2/80 1/80 25/20 25/80	24/84/ 24/84/ 281 281 2/81
All phaeochromocytoma [#] Medullary focal hyperplasia Phaeochromocytoma or hyperplasia Thyroid	6/80 16/80 22/80	7/79 5/79 % 5/18/79 %	2.6/81 9/81 2.5/91 2.5/91	7/84 7/84 95/81	4/79 5/72 5/72	7/79 5/79 5/29 0	9 0/80 2 1/80 2/80	3.6.1 Ø81 §1/81
C cell adenoma C cell carcinoma Adenoma or carcinoma C cell hyperplasia	3/80 Ø 9/86 Ø 14/80	7/76 3/76 7/76 7/79	7 4/80 3 0 7 80 1 0/81	530 57/80 2 8/8 C 16C	3/79 & 2/20 5/79 2/20 5/79	10/75 10/77 12/77	1. 4.78 4.778 4.4.78 23.778	7/81 4/81 11/81 12/81
Adenoma	29/76 3/76 32*4	28/76 105 29/75	2479 4/79. (26/72/7	2598	53.79 1/79 4/79	12/9 0 79 47/79	49/79 0/79 49/79	49/80 2/80 51/80
Carcinoma Combination Mammary gland Adenocarcinoma Adenoma Fibroadenoma Urinary blader Transitiona ell carcinom Transitiona ell papillo					14 % W/7 236/77	10/78 6/78 46/78	8/78 1/78 40/78	14/79 9/79 30/79
Transition ell carcinom Transition ell call papillo Combination Hyperplasia Inflammation Dysplasia Squamous meo lasia # Historical control incidence of male	71/78 6 0/78 70/78 7778 7778	0/79 1/8/7 0/77 0/777 2/77 4/40	0/80 71/80 1/80 4 1/80	© 5/72 © * 9/7 © * 14 * * * * 13/79 211/79	0/76 0/76 0/76 0/76 2/76	0/78 1/78 1/78 4/78 4/78	0/76 0/76 0/76 1/76 1/76	2/79 1/79 3/79 6/79
Dysplasia Squamous mc Olasia Historical Control incidence i Omale	7 0/76 0/78	1/77 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0/80 0/80 at 100 D: 5	2/79 0/79 .3% (range:	1/76 1/76	0/78	0/76 0/76	2/79 2/79 ddendum

In the drenal metalla, wistic by significant increases in the incidence of pheochromocytoma was observed in males treated at 600 and 30 00 ppm (18/81 at 30 000 ppm and 16/81 at 8000 ppm compared to 600 in the control group, p 605). As illustrated in Table 5.5- 17, this mainly resulted from an increase in the number of benian tumours while the incidence of carcinoma was similar in both control and that doups an add on, the incidence of adrenal medullary hyperplasia in treated animals to a similar in control animals (see Table 5.5- 17).

Taking into a count wat a forma and hyperplasia are both proliferative lesions and considering the absence of covious cellular changes between them and the subsequent difficulty in diagnosis, the inchence of these two lesions were combined to run a statistical analysis. Interestingly, there was no significant difference between control and treated animals for the combined lesions (see Table 5.5-17).

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

However, in order to eliminate any observer bias and further clarify these results, a blinded reexamination of the adrenal slides was performed by a consulting pathologist (\$\frac{1}{2}\$; 1985; Pathology report: Fosetyl-Al - A blinded histopathologic evaluation of adrenal tissue from a 2-year study in rats; M-165085-01-2) and all the data were reviewed and summarised by a pathologist expert (\$\frac{1}{2}\$; 1984; Fosetyl-Al: A blinded histopathologic evaluation of adrenal tissue from a 1-year rat study; M-163455-01-1). In contrast to the first diagnosis, the blinded re-examination of adrenal slides reported sixular incidences of hyperplasia and adenoma in both control and treated animals. In addition he statical analysis did not reveal any significant dose-related increase in any adrenal medulla lesions (\$\frac{1}{2}\$ Table 5.5-17). According to the results provided by the blinded review, it was ago of with the administration of very legh dose levels (greater than the limit lose of 1000 mg/kg/day) for 104 weeks, fosetyl-Al did \$\frac{1}{2}\$ produce any carcalogero effect in the adresal medulla of rats.

Table 5.5- 17: Neoplastic findings noted in the Frenal nedule of ma rats following a 10 veck dictary exposure to fostil-Al

	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organ - Pathologist	A Wose (wm) A A A A A A
	7 9 000 9 8000 3 7 5 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Adrenal medullary - initial patl	hology regard 6 0 A A P 0 0 7
Combined (A+C)	
Adenoma (A)	1
Carcinoma (C)	
Hyperplasia (H)	4 16/80 9 11/20 14/81 2 ⁹ /81 4 27 27
All combined (A+C+H)	
Adrenal medullary - Anded Ca	16/80 9 11/3 1/8 9 2/81 7 7 9 9 1/8 9 1/8 9 1/8 1 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Combined (A+C) Adenoma (A)	5 78 5 74 6 79
Adenoma (A)	76/78 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Carcinoma (C)	
Hyperplasia (IO	1598 94/74 0 13/70 1679 0
	21/78 19/2 2302 22/79 0.05 Catistical analy, was center by for the first diagnosis)
Significantly Mifferent from antrol;	30.05 Oatistical analysis was resented only for the first diagnosis)

In the **urinary bladder**, statistically sign of cantarcreases in the incidence of transitional cell papilloma and carcinoma was observed in males freated at 30 000 pcm (14/79 compared to 1/78 in the control group, p<0.05). As ill offated in Table 5.5–18, the resulted from an increase in the number of both papilloma and farcinoma.

In order to eliminate any observe bias and to ain it light into the underlying mechanism of tumour formation, a blinded re-examination of the unique bladder slides was initiated by a consulting pathologist (1985; Pathology report - Fosetyl-Al - Blinded histopathologic evaluation of kidney & urinary bladder tissue from a two year study in rats; M-165088-01-2) and all the data were reviewed and summarises by a consulor pathologist expert (1985; Fosetyl-Al: A blinded histopathologic evaluation of tenal and bladder tissues from a two year rat study; M-163457-01-1).

Similarly to the fort dia fosis, high concidences of urinary bladder adenoma and carcinoma were noted in the fosion of the mucosal transition of the

Accordingly of was conclided that following the administration of high dose level (greater than the lines dose of 1000 mg/local day) for 104 weeks, fosetyl-Al increased the incidence of urinary bladder tumours of male rats.

Table 5.5- 18: Neoplastic findings noted in the urinary bladder of rats following a 104-week dietary exposure to fosetyl-Al

		M	ale			
Organ		Dose	(ppm)			
	0	2000	8000	30 000	*	
Urinary bladder- first pat	thologist					
Adenoma (A)	0/78	1/80	1/81	9/79 *	, O	
Carcinoma (C)	1/78	0/80	0/81	5/79		
Combined (A+C)	1/78	1/80	<mark>1/81</mark> ۾	14/79*		
Hyperplasia (H)	<mark>na</mark>	<mark>na</mark>	na 💎	na na		
Urinary bladder- blinded	pathology revie	e <mark>w</mark>	L	e`	b* «J	
Adenoma (A)	1/78	1/80	<mark>4081</mark>	5/79		
Carcinoma (C)	2/78	2/80	⊘ /81	16/79 ⁸ /		
Combined (A+C)	3/78	3/80	Ø <mark>2/81</mark>	2179		
Hyperplasia (H)	5/78	<mark>7/8@</mark> _	<mark>5.661</mark>	<u>√</u> 29/79 ×		
Significantly different from con	ntrol; * p<0.05 (sta	tisticaQana	lyşi Was p	esented of	y for O first O gno	sig) 🔬 ့
na: data not available		4 .	lysi Was p	16/79 16/79 21/79 20/79 20/79		
		" " "	A MA	<u>6</u>		

TIL CONCIONSION

RMS conclusion: Dietary administration of up wand heludity 30 % ppp of for tyl-Affor rats for up to 24 months induced statistically significant higher incidince convergence and new lasia in the urinary transitional epithelium of higher one higher inciding of calculi and mineral decosits of the urinary bladder recess. The increased incidence of phaeochromocytoma in males from the 5000 of 30 000 ppm grows was on unclear toxicological significance since prolifes tive lesions of the French medules occurred in all materials and phaeochromocytoma (diagnosis differentiation between typerplasia and necessaria for administration between typerplasia and necessaria for administration measured intake of 348 and 450 mg test substance/kg bwysty in thales and females, respectively.

ANSES has requested the submission of historical control data relevant for the 2-year rat study with fosetyl-Advisor 1985 M-249664-02-1), with a focus on pheochromocytoma.

MPI Research, the contract research laboratory that has emerged from the International Research and Development Corporation (IRDC), has compiled a list of 14 studies that had been conducted by IRDC in the CD rat (bred at Charles River Laboratories) between \$975 and 1985.

Report:
Title:

ReportNo.:

Couldeline deviation(s):

Guideline deviation(s):

ReportNo.:

Guideline deviation(s):

Guideline deviation(s):

Couldeline deviation(s):

Couldel

In male control ats, benign preochromocytoma had an incidence of 86/1049 (8.2%) with a range of 0.0 to 23.9% Likewise, malignant pheochromocytoma had an incidence of 2/1049 (0.2%) with a range of 0.5 to 3.8%. In the fosetyl-Al study, benign pheochromocytoma was diagnosed in 16/81 (19.8%) high-dose males, whereas malignant pheochromocytoma was seen in 2/81 (2.5%) of high-dose males (see Table 5.5- 19). Therefore, the incidence of both benign and malignant pheochromocytoma falls within the range of incidences observed in contemporary studies conducted by the same laboratory in the same strain of rats.

Table 5.5- 19: Historical control data for pheochromocytoma in male CD rats

04 1	7 7	C-4-1	Internal and	ı	A .1	1 1	11.	
Study	Year	Control group	Interval used			nal medu		. 01
		group		Total	_	chromo-		chromo- oma,
				number examined		toma, paign	mak	oma, gnant
				cxammeu	n de	%	n n	
A	1975-1977	C-1	NA	<mark>72</mark>	. 0	0.0%	0	0.0%
B	1976-1978	C-1	12 months to	40"	³ √4	8.2%		0.0%
_			termination 🖔	S. S	*			Ş
C	1978-1980	C-1	NA 🐬	50	5	19.9%	9	Q.5%
D	1978-1980	C-1	12 months to	49 "	2	4.1%	0	0.0%
TD	1979-1981	C-1	termination NA ***	Q" (5	10,	1.5%	, C	0.5%
E E	1979-1981	C-1 C-2	NA O	65 65		1.5%	1	~Q:0%
F	1979-1981	C-1	Mar A		$\sqrt{\frac{2}{2}}$	7.0%	¥ 0	0.0%
F	1979-1981	C-2	NA V	∞ 50 ≈	3	6.0%	<u>0</u> 4	0.0%
G	1980-1982	C-1	0 to termination	46 ₄ €	Įţ,	23.9%		000%
G	1980-1982	C-2	O to termination	537	. 94	2 5%	2	3.8%
H	1982-1984		18 months to termination			2.1%	<mark>1 0</mark> (0.0%
Ī	1982-1984	$\frac{0}{\sqrt{C-1}}$	0 to termination	5367		92%	K O	0.0%
i	1982-1984	C-200	Opo termoration	49	$0\frac{3}{7}$	4.3%	₹ 0	0.0%
J	A/O	7) <mark>(%)</mark>	to 18 months	Q <mark>14</mark>	0 %		0	0.0%
J	1982-1984	C-1 55		5Q Q	6	12.0%	0	0.0%
J	1982-1984	C-22	remination termination	36 £	\$ <mark>5</mark>	3.9%	0	0.0%
K	1982-1984		12 months to	0 66	8	12.1%	0	0.0%
L	§ <mark>1983⊕985</mark>	C-AV	12 months to termination	*44	10	22.7%	0	0.0%
M	1983-1985	O <mark>Č-1</mark> &√	12 months to	\$ 41 **	3	7.3%	0	0.0%
N'AJ	198341985	Car Car	to termination	50	8	16.0%	0	0.0%
	1983-1985		0 to termination	⊘ ″ 50	5	10.0%	0	0.0%
TÕŤAL		\$ 10 A	~ ~ <u>~</u> 5	⁹ 1049	91	8.7%	2	0.2%
LOWER RANGE						0.0% 23.9%		0.0% 3.8%
UPPER RANGE	1977-1979	Control males	0 to termination	80	5	6.3%	1	1.3%
1981; M-249664- 02-1	1907-1979	High dose mates		81	16	19.8%	2	2.5%
•	19.7 9 -1979©	Control males	0 to Termination	78	6	7.7%	0	0.0%
1985; M-165088- 01-2	1979-1979	High dose	0 to Termination	78 79	6	7.6%	0	0.0%
Blinded review			.O ^y					
1985; M-165088- 01-2 Blinded review of 1981								

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

The comparison of tumour incidences between these older studies is confounded by different ways of presenting histopathology findings in the various study reports. Some studies report "adrenal cortex" and "adrenal medulla" separately, some jointly under "adrenal" gland. Furthermore, some pathologists appear to have classified benign or malignant pheochromocytoma as simply as adrenal medullary adenoma or carcinoma, respectively. A distinction can only be deliably made if the tissue section had been stained with chromium salts. This becomes apparent by comparing ; 1985; M-16508 (01-2) with the original the blinded review of adrenal findings (; 1981; M-249664-02-1). The reviewing pathologist, Dr study report (was of the opinion that a true pheochromocytoma must be chromaffin positive. Lacking proof that each adrenal medullary tumour is or is not chromaffin positive, he has elected to substitute medullary adenoma, a benign tumour of medullary secretory gells. In the case of a malignant pheochromoz cytoma, he has substituted medullary carcinoma, a malignant turnour of medulary secretory cells Therefore, the term "pheochromocytoma" as used by the first two periewing pathologists may be considered synonymous with Dr 's adenoma for the purpose of comparing histopath Gogy findings Furthermore, peer review of adrenal histopathology by other pathologists has revealed that there is a problem of distinguishing adrenal medultary hyperplasia from adregal medullary adenorma / bewign pheochromocytoma. Depending on the individual interpretation of these findings a substance telated effect is either apparent or absent (see able 3-20) It is noteworthy that the incidence of adrenal cortical adenomatin both controls and high dose animals of the fosetyl-Al study is much higher, than in any of the prestorical controls. The reason for this is unclear, but it is important to note that there is no effect of the three incidence of cortical adenoma (control males: 19/80, high-dose males: 18/8h; control females: 24/29, high-dose females: 24/81). It can be concluded that the apparent increase in pheocheomocytoma incidence in high-dose males falls within the historical control range and is therefore of no concern. Re-examination of the histopathological results of the main study Adrenal wedulla seen in the main study, a blinded rereformed by a constoring pathologist (examination of the adrecal slice ; 1985; Mwed a pathologist expert (165085-01-2). 1984; M-163455-01-10 ©1985; M-165085-01-2 Report Pathlogy Oport Usetyl M - A blinded histopathologic evaluation of adrenal tissue of maximum a plear study in 105 M-165085-012 Report No. M-165085-07-2 Document No Guideline(s) Guideline g of 69 "blioded" Maes, each including a collection of microscopic sections of tissues (total = 5 secons of tissues) from each of 643 rats from the 2 year chronic/carcinogenicity study were re-exagined using a composite evaluation statement for the adventitia, the capsule, the cortex and the medulla of each adrenal gland (for each adrenal tissue slide), and the classification published by

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

et al., 1981, for classifying proliferative deviations from the normal morphology of the adrenal medulla.

Results (see Table 5.5- 20) were tabulated by sex and group, generating incidence values for act. adrenal gland separately and making distinction between:

Non neoplastic microscopic changes which occurred with equal or higher incidence in adrena lands of controls than in high dose males or females rats (haemorrhage, ectopic cortical tissue, file sis, foi of cellular alteration....); these changes were considered to be spontaneous in occurrence, fortuit in its distribution and therefore not related to treatment.

Non neoplastic microscopic changes which occurred at higher incidence in high done rate than controls: among these changes, a statistically significant nigher incidence was found only or brown fat in the adventitia of the adrenal gland of females from the mid sose group (\$\subseteq 0.004) and considered to be not related to treatment, inasmuch a his excess de not occur i Ongher tose soups Metastatic (secondary) tumours, occurring in all groups including ontrolo most of which were neoplasm of the reticulo-endothelial system (nr. logenous la kaenia, lymphosary) may be treatment. leukaemia and myeloma); these metastatic tunkurs whe cornidered is nowelated treatment. Primary neoplastic microscopic changes in adjence, in

controls than in any treated group (cortical denorms and arcinomas; medulloy adeloma) of Primary neoplastic microscopic changes occurring in a renal grand of higher incidence in one of more treated group than in controls of the sole so hower, notatist Pally Anificant difference 0=0.05 or less) in treated rats compared to ontrol was how for concal senons, coreal cocinomas, medullary adenomas, medullary of cinomas among the varios treated grows of tales and females, each being considered of spontaneous of currence, for itous of distribution and the refore not related to

Incidence of medullary hyperplasic was of related to treatment in wiles (ocidence in females was about 1/3 less than in male.

Incidence of benign tumours of the adrenal redulls as hister in males wan it semales; in males, no treatment related excess couls be de fonstrated, a Gough's static reall knon-synficant 6% increase of adenomas occurred or the mid-dese grow (801) ppm compared to the high dose (30 000 ppm) and the low dose (200(5)pm) Youp and the controls. the low dose (2005) pm Youp and the controls.

The only malignent acceptal medullacy tumous was seen in high defe features.

Comparative sessment of n-neoplastic and no plastic medullary adrenal changes Table 5.5-, 200

	/ (O)) ·	~ ()	~ ~ ~							
Adrenal medullary cha	nges M mal									
. F		2006 nnm	8000 ppm	30 000 ppm						
ily per plasta	T & T		Ž.							
1st pathologist @	80 <mark>6/80 0</mark>	0 ¹ 11/790°	© 10/81	9/81						
2 nd pathologist	2/0 <u>0</u>	3/8/	₹ <mark>5/80</mark>	4/80						
3rd pathologist		- 1 <mark>974</mark>	13/72	16/79						
Auguston La Chiuna	, Q,									
1st nathologist	A 6/80	7/30 T	16/81	18/81						
2 nd Sthologist	17.00	Q <mark>1% 9</mark>	19/81	21/81						
3 rd pathologist	1 10 / 7 0 1	\$ <mark>/74</mark>	10/72	<mark>6/79</mark>						
3rd pathologist										
1st pathologis	22/80 ²	@ 18/79	26/81	27/81						
2 nd pathologist	© 22 29 0 ~	8 18/79	24/81	25/81						
2 nd pathologist 3 rd pathologist	0 778	19/74	23/72	22/79						

blin od re-evaluation of adrenal gland changes in rats administered with 2000, 8000 and 30 000 mm fosetyl-Al for 105 weeks concluded that there was no significant increase of any nonneoplastic or neoplastic deviation from the normal morphology.

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

; 1984; M-163455-01-1 Report: Fosetyl-Al: A blinded histopathologic evaluation of adrenal tissues from a two year Title: Tollowin has a second s rat study Report No.: R002848 Document No.: M-163455-01-1 Guideline(s): not applicable Guideline deviation(s): not applicable **GLP/GEP:** All the data were reviewed and summarized by a consulting expert, who emphasized to folk For the original pathologist, which made the morphologic distinction between physical processing the processing of the p and focal hyperplasia, treatment related excess of a senal medulicy tumours was subjected in the males rats; since treated females did not exhibit single changes, by opinion a geond pathologist was requested. of the adonal medula we have Considering that all hyperplastic lesions phaeochromocytoma, the 2nd pathologist differed with the pathologist 48, 3, 25 and 15% of the time for the control-, low-; mid- and high dose groups, respectively; however, this district cathologist the interpretation of no treatment release. interpretation of no treatment related exect, combining Soth phaeochromocytoma (see Table 5.5- 20) As these 2 pathologists could have biged in everteenly the opinion begins of the last of t diagnosis, it was decided that a "boided" review by a 3rd path orgist Gould be personned. Ising a predetermined set of criteria, for diminating an orgina see above for vesult owhich of the 1st diagram of pathologist by 30%; 45%, 5% and 52%, for the control- own-; mid- and high dose groups, respectively). The main difference between the pathon gists magnesis was the diffinction between hyperplasia and benign neoplasia or between hyperplasia and forms by (see Table 5.5-20). benign neoplasia or between he **RMS Conclusion** Od that no cardnogenic effect in the adress media was induced by fosetyl-ministration of dietary concentration up \$30.00 ppm. The blinded review sho Al in rats after Urinary badder In order to clarify or result on mary Padd Theoperms seen in the main study and the underlying mechanism of tugour formation, a builded reason and uninary bladder slides was performed by a coulting path Agist all the data we revowed by a particlogist ; 1985; M-165088-01-2). Subsequently : 1985; M-163457-01-1). 985; M-165088-01-2 Report: Title: Report No. M-163088-01-2 Document No Guideline(s) o Applicable of apply able Guideline d GLP/GE

A top of 60 "blidded" odes, each including a collection of microscopic sections of tissues (total = 135) sections of kidney and 727 sections of the urinary bladder) from each of 641 rats from the 2 year chronic arcinogenicity study were re-examined using a composite evaluation statement for adventitia, capsule, cortical interstitium, cortical tubules, medulla and pelvis of each kidney and for the lumen, epithelium, propria, submucosa, muscularis and serosa of each urinary bladder.

Inflammatory, hyperplastic, degenerative, secondary neoplastic and obstructive deviations from the normal histologic morphology were classified according to the catalogue of observations of micro-SW); primary neoplastic deviations of the kidney were classified according to the system of Hard (with tumour of the cortical epithelium, tumour of the connective Ssue, nephroblastoma, adenoma, adenocarcinoma, mesenchymal tumour, lipoma, liposarcoma) proliferative lesions of the urinary bladder were classified using the system Hicks (non-neoplass) lesions with transitional cell hyperplasia, nodular hyperplasia, squamo@ metaplasia, muxilar hypertrophy; benign neoplastic changes with transitional cell papilles a, leiomys a, forma o malignant neoplastic changes with papillary transitional cell carcinome, infiltrating Pansitional cocarcinoma, squamous cell carcinoma, complex pap Tomatous carcinoma, leio yosa oma, the fibrosarcoma; secondary metastatic tumours).

Results (see Table 5.5- 18)

The only statistically significantly increased non-neoplastic maney, which occurred to high cose males, was hyperplasia of the epithelium of the urinary bladder (p=0.00) and so-acute lymphocytic inflammation of the submucosa of the urinary bladder (p=0.03).

In high-dose females, several non-neoplastic allanges occurred at statistically significantly higher levels than in controls: interstitial fibrous of the kidney core (p=0.00) ectase of the Boysan's space in the kidney cortex (p=0.05) systical bules p<0.01); all merular sclassis (© 0.00 ©, acute leukocytic inflammation of tubules © the kidney system (p=0.00); hyperplasia of the epithelium of the kidney peles (p=0.02) sydrogistis of the kidney (p=0.002); hyperplasia of the epithelium of the kidney peles (p=0.02) sydrogistis of the kidney (p=0.002); hyperplasia of the epithelium of the mary bladder (p=0.01).

With respect to primary neoplasts, only the skidney complex is pilloreatous carcinoma of the epithelium of the urinary bladder was statistically significantly increased (p=0.02) in high-dose males, compared to controls; in addition, the incidence could type of carcinomas of the epithelium of the

epithelium of the urinary. Adder was so statically significantly increased 40.02 in high-dose males, compared to controls; in addition, the incidence of all types of carcinomas of the epithelium of the urinary bladder was to significantly increased of high lose of carcinomas of the urinary bladder was to controls, although separate incidences of each type of carcinoma (thereton complex papillomatous carcinoma) was not significantly different from controls.

RMS Concluded

The blinded re-evaluation of kidney are urinary bladder increaseopic changes following administration of 2000 200 and 30 00 ppm fosetyl-Alia the discontrols up to 105 weeks concluded that stationary significant troument related effectively significant troument related effectively significantly significant troument related effectively significantly including

that stackically significant in the inent related effects were seen any in the highest dose level, including increased incidence of \$<0.05) of higherplan of the ephyelium and sub-acute inflammation of the sub-mucosa of the urighty bludder of the urides, and increased scidence of several forms of inflammatory and/or degenerative damages of the kiddy for the smales. No microscopic treatment-related significant changes were seen in the kiddy and of in the urinary bladder at the lower dose levels for both sexes.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

; 1985; M-163457-01-1 Report: Title: Fosetyl-Al: A blinded histopathologic evaluation of renal and bladder tissues from a All the data were reviewed and summarized by a consulting expert (see Table 5.5-27), where the summarized the following:

Renal findings
Blinded review of the results confirmed the included renal cortical cysts and incidence of

included renal cortical cysts and ectasis of the Bowman's capace. Incidence of renal medullary and pelvic charges as altered incooth hydropelvis or ectasis of the pelvic lumen and ectasts of the mediary coules were sently thereaged in males, but more markedly in the females,

Hyperplasia of the transitional epithelity of the pel

more markedly in high dose females.

Cortical adenoma and adeno-carcinoma courre at six ar compared to controls; there was Q slight increased scidence of papillo-carcinoma in high dose amales. ose males and of papillo-carcinoma in high dose & malex

Urinary bladder findings

Gross macroscopic finding found in the uring bladder (calculi, de in the females. of vales were not seen

in the females.

Blinded review of the result confuned that no neoplific clonges onsist of hyperplasia of the transitional cells with was seen full clups including controls, but markedly increased in high dose males and females.

males and females

Neoplastic charges were predominantly transitional cell papilomas and papillo-carcinomas which were seen in the high dose group, particinarly of male. For ther opes of tumours, low incidence

It was the acknowledged that he biglied review ocreased the number of proliferative lesions in all treated youps and is on he case of the original report, but this was not considered to alter the original interprediction platity to an ocreased epigodial proliferation only in the high dose males. On the other hand, the Anding of increased of differentive losions of the transitional cell epithelium in the urinary tract of the Gemal's changed the original interprediction and substantiate a common urinary reaction in altograte to lemal's, transitional cell spanses being similar to those of males at the highest dose level.

Table 5.5-21: Non neoplastic and neoplastic findings in kidney and bladder

Males Females Q,°											
Dose le	vel (ppm)	0	2000	8000	30 000	0	2000	8000	2 000		
on neoplastic	(ppiii)	<u> </u>	2000	0000	0000	<u> </u>	2000	0000	7 0		
Aidney cortex							Ô	20			
yperplasia		5/78	7/80	4/81	4/79	1/76	0/78	1/78	\$ <mark>\$79</mark>		
rolithiasis		8/78	10/80	17/81	<mark>7/79</mark>	27/76	<mark>27/78</mark>	1 2 78	3/79 E		
<u>fineralization</u>		<mark>4/78</mark>	4/80	7/81	<mark>3/79</mark>	1.25	1/78	9/78 _~	3/74		
ctasis/tubules		74/78	69/80	71/8 <mark>1</mark> ©	74/79	4 76	50/78 ×	J <mark>49/78</mark>	5659		
ctasis/Bowman's cap	sule	22/78	17/80	17/81 ⁸	20/79	Q <mark>10/76</mark>	8/78 O	18 9 8	27/79		
<mark>ysts</mark>		<mark>60/78</mark>	<mark>53/80</mark>	59 (81	57/79 () ' <mark>25/76</mark>	26/J8	2778	34/7@		
idney medulla/pelv	is			4	Q"	0	<i>y ,</i>	ر <u>'</u> رُ			
yperplasia		13/78	8/80 2	% 1/5/81	21/79	6 776	Q <mark>10/78</mark> 0	² /78	1879		
rolithiasis		6/78	11/80	5/8 I		48//6	45	2408 200	%//9		
lineralization ctasis/tubules		2/78 21/78	3/8®			10/30		27/8 e 10/79 4	20/70		
ystic tubules		21/78 2/78	4/20	$\sqrt{\frac{40001}{1000}}$		076	2/79 C		29//9		
ctasis/hydronephrosi	e e	6/78	%	12/21	2/79 26/70	A 2/76	1/72		1 1 1 1 1 1 1 1 1 1		
rinary bladder	J	orro M	7	(I) .		7 -1 -1		3			
yperplasia		5/78 ₂ Q,		×/81	7 <mark>29/24</mark>	1076	9 78	2/3/78	11/79		
rolithiasis		1/3	80	$\sqrt[8]{0/81}$		27/76 ×	0/78	0/78	1/79		
lineralization		1 2/8	2 1/80 c	0%	779	0/76	0/28	7 8	0/79		
eoplastic changes		@ <u>`</u>		\$		59/76 50/76 5	20	Çı			
idney cortex		Ž VY		10° 4		Ò.	0 (
<mark>denoma</mark>	, ~	<mark>2/48</mark>	2 /80 6	√ <mark>2/80</mark> 0°	~ * /		1/78 ₀	_	1/79		
denocarcinoma		. <mark>978</mark>	2/800	1/81	≈ 2/79 €			1/78	<mark>3/79</mark>		
lesenchymal tumour	4	4 1/78 1/78		~ (5° - <u>-</u> 4.	1/%	78	1/78	1/79		
ipoma/liposarcoma_		, the state of the		9 <mark>1/81</mark>				1/78	<mark>-</mark>		
iposarcoma & reticu			<mark>4/80</mark> 2		<i>@</i> 1 -		1/78		<u>-</u>		
ymphomeukemia	Wit cell	% 1/8 «					<u> </u>				
ryeloma C		Y 1// 0		//81 ^	y	₹	<u>-</u>		<u>-</u>		
idney pelvis		1/78	1 × 100 0		0 70	@ 1/76	1/78	1/78	1/79		
№		. Q 78 =	1/8°) 1770	1//0	1//0	6/79		
ringry Widder			y 1700)				<u> </u>	<u> </u>	0///		
anillor	. O . O	1/78	<u>√80</u> ∘	0° _{1/81} &	* 9		2/78		1/79		
apillosarcoma «		₹ 78 ∘.	02/80×	1/8/2	4 8/79	_	1/78	_	5/79		
eiomyosarcoma	, a .	0 1/78 🗸		181	1/79	1/76	1/78	_			
eticulum cell sarcom				5 ^{1/81}	2 -	-	-	_	_		
ympholeukaer da		1478	% 		_	_	_	_	_		
apillosarco (California Prinary Caldder Apillosarcoma California Prinary California Prina			Q" " []								
MS Conclusion	à â	S ő		, W							
arcino enic potent	ial of fose	yl-Al wa	s discusse	as bein	g more a	chronic t	oxic rea	ction rath	ner than		
trug oarcinogenic	e ect, alig	ghtof the	W llowing	y .							
osetyl-Al decompo	ses widly	refa	vivel on	ocuous b	y-product	s, predon	ninantly	into pho	sphonic		
cid which exhibits	no carcino	enica Ato	entia								
he highest se u uman ing ng t	sed in se	ratvarci	nogenicit	y study i	s excessiv	vely high	(equiva	lent of	a 50 kg		
uman inge Ing ta	at leas 75 g	fosetyle	and daily f	or the mai	or portion	of the li	fe-span)				
on-neog stic Sar	iges@fthe	Pinary tr	act are as	sociated o	nly with 1	nassive o	ral dose	s of foset	vl-Al		
ncreases uring ex	0	1 .	1 1.	1 1 1	1 1	-4: 14		11			

seen Ster 1 30nth 5 the Same strain of rats given 40 000 ppm fosetyl-Al (; ; ; ; 1981; M-205133-01-2; see Section CA 5.8.2, p.182).

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

In the 2 year study, there was no exacerbation of tubular changes that would be expected in case of non-reversible lesion; the most probable mechanism for hydronephrosis, hydro-pelvis and dilatation of the lower renal tubules and pelvic lumen is urine retention, which is assumed to originate in the bladder since high dose rats exhibited dilated ureters and occasionally bladder stones. Then, staged in of urine containing presumed high levels of calcium would generate uroliths and chronic intation leading to transitional cell proliferation, which in turn gives rise to papillomator neoplastic plange of No similar urinary tract proliferative changes were seen in 2 year carcinogolicity study on mice led with 2.8 to 4.3 g/kg bw/d fosetyl-Al.

CA 5.6 Reproductive toxicity

The reproductive toxic potential of fosetyl-aluminium (fosetyl-A) was tested in a three-generation study in rats and in developmental toxicity studies in rats and rabbis (see Table 6-1). No new studies have been performed for this endpoint.

Despite the continuous oral administration of high dose levels up to 24 000 ppm throughout 3 generations, fosetyl-Al did no produce any adverse effects on reproductive performance and ertility. Accordingly, this dose level of 24 000 ppm 1782 1997 orig/kg (w/day) F0 (%) was considered to be the NOAEL of the study for reproductive or fertility effects.

Rat teratogenicity study (1977, M-158 19-01, 1)

Following oral administration from Day o to Day 15 of gestation to pregnant rate at a dose level of 4000 mg/kg bw/day, fosetyl-Al induced by the maternal toxicity as evidenced by mortality and body weight loss. Foetal toxicity which was illustrated by occasional changes in atter parameters and slightly higher incidences of maternation (thoracic asymmetry displaced kidney and testes, hydrocephaly, vein atternation intra-abdominal and subcutaneous haemorrhage) and minor anomalies likely cosulted from maternal toxicity rather than from a direct effect of fosetyl-Al on the embryo. Given the absence of any effects in both dams and focuses at lower dose levels, the dose level of 1000 mg/kg bw/day was considered to be the NOXEL for maternal and developmental toxicity.

Rabbit teratogenicity study (1976, M-23) 386-01-2)

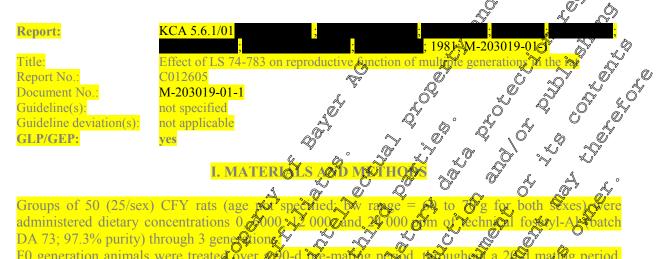
An older, non-guide ine study with oral administration of dose levels ranging from 125 to 500 mg/kg bw/day did not show any treatment related effects in ones or foetuses. The top dose level of 500 mg/kg bw/day was therefore considered to be the NOAEL for maternal and developmental toxicity.

Rabbit to atogenicity study (2000 M-207431-01-1; 2000; M-205472-01-1)

A preliminary range-finding study showed that following oral administration at dose levels ranging from 250 to 500 mg/kg bw/day rosetyl-Al induced maternal toxicity as evidenced by body weight and food consumption decreases however, despite the administration from Day 4 to Day 29 of gestation to pregnant rabbits at a dose level of 300 mg/kg bw/day, fosetyl-Al did not induce any maternal or foetal toxicity in the definitive regulatory study. The top dose level of 300 mg/kg bw/day was therefore considered to be the NOAEL for maternal and developmental toxicity.

Conclusion

Taken together, these results indicated that fosetyl-Al was neither a reproductive toxicant nor a teratogenic compound in rat or rabbit under the experimental conditions used. Foetal toxicity was only observed in the rat at very high dose level, i.e. 4000 mg/kg bw/day, which also induced obvious maternal toxicity. Therefore, according to the criteria of Regulation 1272/2008, no classification as reproductive toxicant is required.


Based on the results of available studies, the overall acceptable NOAEL for maternal and pup toxicity was 300 mg/kg bw/day based on the results of the rabbit teratology study (XEL A TECHNOLOGY 205472-01-1).

Reproductive toxicity studies with fosetyl-Al **Table 5.6-1:**

Study Type	Species	Doses tested	LOAEL / Effects	NØXEL &	Reference
Study Type	species	Doses tested	LOAD V	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q D
Three- generation reproduction	Rat	0, 6000, 12 000, 24 000 ppm	Reproductive OAF > 24 000 ppm: no peatment retared effects Material and oetal DAEL 12 000ppm decreased by of F2B pups and litter weight	Reproductive © AFI ≥ 24 000 ppg (1782 / 190) mg/kg bw/dy, K0 d/2 Maternal and Toetal NG AEL	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	RAY S	0, 500, 1000 4000 mg/sg	Mexical LOAEL = 4000 The low logs Developmental LOAEL = 5 \$00 mg/kg bw/gay: Minor changes in lifts parameters, marginally increased in Glence of malformation and minor anogolies	Material NOZEL = 1000 mg/kg w/day Pevelopmental NOZEL = 1000 mg/kg bw day	; 1977; M- 158819-01-1
Developmental toxicity (oral gavage)		0 125, 740, 500 mg/kg	Maternal LOAEL 300 mg/kg bw@ay: no reating of the streets of the streets of the street	Maternal NOAEL ≥ 500 mg/kg bw/day Developmental NOAEL ≥ 500 mg/kg bw/day	; ; 1976; M-231386-01-2
	Rabbit	Rang-finding study: \$75, 126, \$250, 500, 1000 mg/kg/ by day	Maternal LQ EL = 250 my g bw day: lower bw, bw gin Developmental LOAEL > 100 mg/kg bw/day: no geatment-related effects	Maternal NOAEL = 125 mg/kg bw/day Developmental NOAEL ≥ 1000 mg/kg bw/day	; 2000; M- 207431-01-1
		Defoitive stary: 5, 50, 100, 300 mg/kg bw/day	Maternal LOAEL > 300 mg/kg bw/day: no treatment-related effects Developmental LOAEL > 300 mg/kg bw/day: no treatment-related effects	Maternal NOAEL ≥ 300 mg/kg bw/day Developmental NOAEL ≥ 300 mg/kg bw/day	; 2000; M- 205472-01-1

CA 5.6.1 Generational studies

All studies for this endpoint have been previously submitted and evaluated. The following saddy summary contains a newly conducted statistical evaluation of body weights (see Table 5.6.1-5)

I. MATERIÓ

Groups of 50 (25/sex) CFY rats (age of specified w range = 1 to 5g for both sixes) were administered dietary concentrations 0 000 12 000 and 2 000 7m of vechnical for yel-Al-batch DA 73; 97.3% purity) through 3 gene ation.

For generation animals were treated over 60-d permating period, the suggestion of the F1A litter); all females over 30 degree the suggestion of the F1A litter); all females over 30 degree the suggestion of the F1A litter); all females over 30 degree the suggestion of the F1A litter) were sacrification of the suggestion of the suggestion of the F1A litter). The suggestion of the s

of the F1A litter); all females were showed to dever their litters and rear size plays for 21 days; 5 dams/group were sacrifical at d-20 of cestation (1st litter). Or tempology investigations and F0 parents were killed and examined across pically after weaning of the F1B litters. On the F1B generation; 25 pups/sex/group were selected from the F1B litters to for the F1B generation (remaining F1B pups were killed and examined across pically). F1B generation groups were sacrifical on the F1B litters to for the F1B generation (remaining F1B pups were killed and examined across spically). F1B generation groups were sacrifical on 12-20 of great and mated twice as for F0 generation; 13 dams/groups were sacrifical on 12-20 of pregency or teratology investigations (1st litter).

(1st litter).

F2A pups were rear untit 1-21 post partim and there acrified an examined macroscopically; F2B pups were rear under their respective does for it least 91 days when 15 pups/sex/dose were sacrification and examined macroscopically; remaining F2B pups 12 males and 24 females) were then mated twice (1 males 2 fee ries assing exteres partners at the 2nd pairing) to produce F3A and F3B generations.

generations.

All F3A pups were sacryced and existing macroscopic by; F3B pups (10/sex from the control and high dose groups) were subjected to organ beight on high pathological examinations.

Follow up Af adult generations:

Parental Pimals were regularly for mortality and signs of toxicity

Food consumption as regarded weekly during the 1st pre-mating phase of each generation; water intake was determined during the positionate w of this same pre-mating phase.

Determination of the was performed weekly in F0 generation and on d-0; d-4; d-8; d-12; d-21 and the positional description of the was performed weekly in F0 generation and on d-0; d-4; d-8; d-12; d-14; d-17 weekly thereafter in the sub equer gener ons. Females were also weighed on d-0; d-7; d-14; d-17 and d-20 of esumer gest on and on do; d-7; d-14 and d-21 of lactation.

Mating per rmage, prechance and duration of gestation period were determined.

Macroscopic exchination wa Carried out on all parents after the 2nd litter has been weaned; uterine of appare by no pregrant females were examined and testes of males which failed to induce pregnancy were reight and reserved for histologic examination.

On d-20 oregnancy 5 selected F0 and F1B dams were examined for congenital abnormalities and pathological changes in maternal organs; number of corpora lutea, number and distribution of live young, of early or late embryonic and foetal deaths, litter weight and foetal abnormalities were determined; half of pups in each litter were preserved for examination of visceral abnormalities and the other half for sex determination and skeletal examination.

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Following death of 5 rats in high dose group in which kidney damage was seen at macroscopic examination, it was decided to perform limited urinalysis in F1B generation (10 males from control and high dose groups) during w-7 of treatment.

Follow-up of offspring/litters:

All pups from each litter were examined within the 1st 12 hours after birth for external abne and daily thereafter for dead young and abnormal young.

Individual pups bw, litter size and cumulative mortality were determined on d-0; d-4. d-21 post partum.

Surplus pups sacrificed on d-21 post partum were examined externally externally Organs from 10/sex F3B pups from the control and high dose groups were weighed brain mean Organs from 10/sex F3B pups from the control and input dose group; of the weight of the kidney; lung; spleen; thymus) and histopathologica examination was performed (brank, eye heard) lung; liver; kidney; spleen; urinary bladder; stopich; duodenum; illam; occum salivary gladder; pancreas; lymph nodes; thymus; thyroid; pituitary adrenal gland, tester, seminal velocie; of the argument of the list instance).

Intake of test substance:

SIOX by Spher or the FI For each dietary concentration, dees of and F2B generations than for the F0 generation

Table 5.6.1-1: Nominal doses (vg/kg 19/d) of fest m@erial

		i co	.0	e 0	\mathcal{A}^{ν}		% <i>1</i>			
conc. Generation		y w	9 5		W W		W-	12	Me (w1 -	ean w12)
	/		₽ F				M	F	M	\mathbf{F}
	784 & 806	577 4	\$22 s		<u> </u>	26	<mark>299</mark>	401	482	553
6000 OIB	87 <mark>8</mark> 896	68Q	/ / U ~ V	432 478	356	444	_	_	<mark>586</mark>	<mark>649</mark>
F2B40*	1492 116	1 797	8639	51 % 640	392	544	<mark>310</mark>	<mark>395</mark>	<mark>629</mark>	<mark>721</mark>
\$Q x			7	W .	<u> </u>					
FO O	155(F) 158	2 1143	\1190	829 363	5 54	807	<mark>592</mark>	<mark>738</mark>	<mark>954</mark>	1056
12 000 F1B	1765 172	6 148\$	1544		² ∕⁄ <mark>688</mark>	898	_	_	1203	1297
F2 2	2239	2 1454	1234	163 128	813	1054	631	773	1288	1186
			V							
l a FO	3205 311	<u> </u>	23786°	<mark>1699</mark> 2032	1321	1591	1186	1510	1958	2125
24 000 PIB C	50 4 433	35 %	35 9	<mark>2189</mark> 2107	1785	1957	_	_	3256	<mark>2999</mark>
F2B	980	4 3976	35 66	<mark>2@1 2762</mark>	1921	2222	1300	1655	3066	3030

Parental generations
These were no treatment-re nical gns cany dose in any generation.

Over all generations:

Over all generations:

13 treated male, died, versus willy 10 con Qls; mortality in males was clustered at 24 000 ppm for the F1B generation and a laser extent in the F2B generation; autopsy of these rats showed changes in the urinary tract haem or hag bladder wall, increased renal pelvic dilatation, interstitial nephritis and poillary necros). A similar clustered distribution of urinary tract changes was also seen for both sexes thermal al examination of surviving rats. The incidences of urinary tract lesions are Mistic by significantly elevated only in high-dose F1B animals of both sexes (see Table 5.6.1-2) This ican line with the urinary tract effects (urolithiasis) observed at high doses in the 2-year rat ; 1981; M-249664-02-1) and in the two mechanistic studies in rats (: 1981: M-205133-01-2 and

160331-01-1).

 Table 5.6.1- 2:
 Incidence of urinary tract lesions in parental animals (survivors + decedents)

		Males			Females		0 ^
Dose (ppm)	F0	F1B	F2B	F0	F1B	F2B	
	n=25	n=25	n=27	n=25	n=25	n=25	
0	1	0	1/27	0		0 4	2 X
6000	0	2	0/27	1	2		
0000	n.s.	n.s.	n.s.	<mark>On.s.</mark>	A.S.		
12 000	0	1	1	, [®] 0	8 <u>3</u>		
12 000	n.s.	n.s.	n.s.	n.s.	y n.s.	~ ~ <i>,</i>	
24 000	0	<mark>9**</mark>	5 D	4		\$\sigma_5^5 \tag{5}	
	<mark>n.s.</mark>	p=0.0016			≈ 0.0046	0.050	
Statistically signit	ficant difference	from controls:	**p<0. retros	Octive statistical	analysisusing F	sier's exact test	

8 treated females died versus none in coperols, but the groups and generations and were then not related to treament see

Table 5.6.1-3: Mortality over 3 generation (in the of

Generation	Controls	600	ppm S	5 12,000 p	24 00	<mark>0 ppm</mark>
Generation	M N	M	OF L		F S &	F
F0		&, S	4 00	4 .		2 (w-17-
	1 (w-20)		© 2 (w-27)	<mark>1 (w19</mark>)		$\frac{2(W-1)^{-1}}{21}$
	7 3			Ş',		2 1)
F1B	- L S	_ P - O	0w-19		- 7 (w3-8)	1 (w-26)
F2B				β(w 25) Φ ² 2	3 (w3-14)	
				W-23)	3 (w3-14)	<u>-</u>

Mean weekly God consumption of treated rate was comparable with controls except in F1B males from the 12,000 and 24,000 ppm groups during the invalue realing putse and in F1B and F2B females from the 3,000-ppm grups diving the week of rearing C. For all pherations, we consumption in both notes and femous from the 24,000 ppm groups was

higher than controls 1st week (Se Tabit 5.64-4).

Table 5.6.1-4: Mean for and Sater consumption in Sie 3 generations

Generation	Study V	Controv		pjon	12 000	ppm	<mark>24 000</mark>	<mark>) ppm</mark>
Generation	week week	M P F	y <mark>o</mark>	e F	M	F	M	\mathbf{F}
FOOD ON	SUMPTI	(g/raQv)		1				
r≪J	w-1	× 1224 / 108	12 %	118	127	114	129	113
	w-13	136 A	Q <mark> </mark>	138	185	135	183	143
	voj^	102 4 100	×12	104	105*	99	102*	84
F1B	<u>√√-2</u> √ △	170 255	¹⁶³	150	154*	140	143*	138
£	♥w-10	132	180 180	142	<mark>176</mark>	127	<mark>206</mark>	<mark>144</mark>
F2B	w _a Ç	109 December 109	105	105	<mark>96</mark>	<mark>95</mark>	111	<mark>93</mark>
, %	2	191 128	<mark>207</mark>	142	<mark>186</mark>	127	<mark>191</mark>	<mark>134</mark>
	07 0	`^ _ X^						

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Generation	Study	Con	itrols	6000	<mark>) ppm</mark>	12 00 0	<mark>) ppm</mark>	24 000	<mark>0 ppm</mark>
Generation	<mark>week</mark>	M	F	M	\mathbf{F}	M	F	M	<mark>F</mark>
WATER CO	NSUMP'	TION (g/ra	<mark>at/d)</mark>						w°
EO	w-1	<mark>24.3</mark>	<mark>23.5</mark>	<mark>26.8</mark>	<mark>24.2</mark>	24.3	<mark>23.2</mark>	<mark>27.5</mark>	\$.9 \$ 10 \$ 0
F0	w-12	38.9	31.2	<mark>42.5</mark>	31.7	<mark>42.7</mark>	<mark>29.%</mark>	40.0	(0) 31.8 (0)
F1B	w-1	20.3	20.8	23.1	22.1	23.0	200	25.0 <u>(</u>	26 9)
ГІБ	<mark>w-9</mark>	<mark>36.5</mark>	32.3	<mark>42.7</mark>	<mark>35.2</mark>	39.6	3 ⁶ 6.1	40.5	3 6 8
F2B	w-1	19.4	16.8	17.3	16.5	16.5	14.8	190	% 17.8 €
1 ² D	w-12	43.2	31.0	<mark>46.8</mark>	35 ₆ %	39.6	^{30.5}	48.5 ×	y <mark>32.</mark>
* p<0.05					V		· -		

Mean bw gain for all generations were lower in high dose group than in controls (by reduction were marginal in F0 males and females and more properties of the properties of t

Statistically significantly reduced by in high ose a mals as seen throughout he pre-mating phase in both sexes of the F1B and the F2B generation by who also reduced in high-doc animals at the beginning of the gestation phase in both B and F2D dams. In high-doc F1B dams, were was significant reduction of by at the end of the betation phase. A significant reduction was coted in high-dose F2B dams, but the effects were so tistigately not geniticant (see Table 5.6.18).

Table 5.6.1-5: BW in the three generation with patistic evaluation.

				S W			<u> </u>	
		N	~	Bodyw	eigW(g)	'n .	0,	
Sex		/ Ma©		0		'⊸∑ <mark>Fen</mark> o	<mark>ale</mark>	
Dose (ppm)								
GENERATION FO	4, 2	Ö			& w	~ \\		
Pro mating Wk 1	\$7±14 0′ 172	40 1	65±13	16 7 14	945±5	140,49		
Wk 13	552± 3 7 56		4 1 1 9	500 m	307±24	319 ± 26	309 ± 28	
Gestation		ay 0		y J	31@ <u>#</u> 25			
(1st mating)	D' D	V20	d Z	*	434±51	462±34*	449 ± 41	451±49
Lactation O	y v <u>r</u>	ay 0 📉		\$	0 <mark>346±2</mark>			
(1 st mating)		ay 🔼	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	"O" (V)	35@27	$373\pm27*$	363 ± 23	343 ± 52
GENERALION F1B					O			
Dose (ppm) Section Day 0 Day 0		83±26***						
Wk 13	541±38 57525	50** 5	64	7 <u>6</u> ¥51***	373±35	389±35**	376±53	334±65***
Gestation				, &	298±18	315 ± 35	302±35	276±25***
(1 st mating)	Ö Ö 🔎	<mark>\$ 20</mark> C		O,	406±46	421±48	409 ± 51	382 ± 52
<u>Lactation</u>		ay 0	. 65	Ô		355 ± 30	349 ± 50	327 ± 33
(1st mating)	, y D	ay		W .1	344 ± 23	365±31*	355 ± 40	286±30***
GENER TION F2B		Į.		•				
Wk 1	710±1 <u>4</u> 102-	<u>*13</u> @/4:	± 16	84±15***	100 ± 13	96 ± 13	88±15**	80±12***
Wk 13	543	<u>-79</u> 🍫 5	22 42 4	95±38***	306±44	316±35	292 ± 41	286±22
Gestation (a.	A, D		4		319 ± 52	330±39	306±42	299±20
(1st mating)			4		419 ± 52	423 ± 67	418±48	402±54
Lactation &	, Z	ay D			343±29	377±40**	349±38	349±23
(1st mating)	O S D	ay 21			348±26	381±46*	354±34	297±35
Statistical significant d	ifformac Oom o		· -0 05 *	₩0.01 ₩	** <0.001.		4.41.41.41	. 1

Statistical significant difference com controls: *p<0.05, **p<0.01, ***p<0.001; retrospective statistical analysis per request with Roy. Singly factor, NOVA (α=0.05) followed by Dunnett's t-test

There was no test substance related effect on reproductive performance in all generations:

Mating performance and pregnancy rates were comparable at both matings of each generation, except a lower pregnancy rate (related to an increased median pre-coital time) for low dose F2B generation for both matings. As no similar changes were seen at the higher doses, these findings should be considered as incidental (see Table 5.6.1-6).

Table 5.6.1- 6: Reproductive performance in the 3 generations

		£ £		<u>.</u>	1 (
Gener	<mark>ration</mark>		Controls	6000 ppm	12 000 ppm	24% 0 ppp
	1 st	N° of rats	25	25 W	25 3	7 25 Ø
	mating	Pre-coital time (d)	2. Q	2.69	<mark>3,0</mark> 0	25 W 25 W 2
		Pregnancy rate %		y	((>)))	. .
Eo		N° of rats with gestation period (d)	(22.2)	24 (22.66) 3 (24.06) 3 (24.06)	Q (22, 6)	31 (22 g)
F0	2 nd	N° of rats	18°	Y K		W W
	mating	Pre-coital time (d)	o de la companya della companya della companya de la companya della companya dell	7 3 90 0	20	<u> </u>
		Dragman ary rata 0/	80	/ <mark>\$10 </mark>	2 100 O	78 Y
		N° of rats with gestation V		0 16 (2¢3)	020 (26/3)	13 (25)3)
		period (d)				,
	1 st	N° of rats	7 25 V	25 × 25	7 25 % 4 0	25 25
	mating 		3.6y	2 5.0 S	4.0	5.0
		Dragnanov rate 0/2	S 3.67	5.0		80
			40 (22 1)	\$\frac{\Q^2}{22-2\frac{Q}{2}}	21 (22 20	20 (22 2)
F1B		period (d)	(22. <u>1)</u>	22°25	21 (22.3)	20 (22.2)
FID	2 nd	N° of rats, the gestation period (d)	(22.1)	o <mark>M</mark>	\$1 (22.3)	<mark>16</mark>
	mating	Pre-coital ties (d)		<u>€</u> 3.0	₹ <mark>.0</mark>	3.0
		Propriance vate of i	84 7 2 84 7	0 ⁴ 67	80 80 8 8 8 8 8 8 8 8 8 8	88
		of rats with static		0°67 4 0°6(2.2) 0°6(2.2)	11 (22.2)	12 (22.3)
				y D y D	Į.	
	1st & mating	Cof rato O &	24 0 46	24 a.	24	24
	mating	Pre-coital time(d)	469	170	4.0	4.0
		Preguncy r 12 %	۲ <mark>/</mark> 5 ، ه	V ~ <mark>Q</mark>	83	86
		Noof rats of the gestion	(22.3)	(22.0)	20 (22 2)	19 (22.1)
F2B	* */	policity &	* (22.3)	(22.0)	20 (22.2)	19 (22.1)
FZD	2 nd	No of rats		24	22	<mark>24</mark>
	mating	Predital tice (d)	3.5 ×	10.0	<mark>4.5</mark>	4.0
		Pre vital to (d)	, 0 [*] 75 °	58	73	83
	4	period d)	2 18 (2.5)	14 (22.5)	16 (22.1)	20 (22.2)
	1997 ×		<i>,</i>	•	•	

Among the 5 female from F0 and F1B mercians killed and examined at d-20 pregnancy, the only significant finding was the feducal number of propora lutea per dam for both generation at 12 000 and 24 000 ppm; this finding was not of biological importance since large number of dams reared their young and no differences in Oter spoor or wight at birth occurred.

young and no differences in Quer sport or weight at birth occurred.

There were the treatment resided gross moroscopic organ changes except urinary tract changes in high dose rats warticatinly in the LB generation; such changes were occasionally seen at 6000 and 12 000 and, particularly in the F2B generation.

Pup data:

No treatment related effect was seen on total litter loss (which was scattered throughout the various groups and generations), litter size, pup viability.

For both matings of each generation, mean litter- and pup weights were comparable for all grows at birth and at d-4 post-partum; however, pup bw gain was subsequently retarded at 24 000 pproducing the latter part of lactation (differences with control values were marked at 21 post-partum, but adoption on litter and mean pup weight at 12 000 ppm. Such effects were considered to be

een on litter ar naternal bw ga	nd mean	pup w	eight a	t 12 00	00 ppm.	7)		were	consile	red to be	To Red	Fower
aterrial ow ga	III QUI III	ig racta	HOII (SE	e raur	e 3.0.1-	<mark>/).</mark> ₹	>			Ö		
able 5.6.1- 7:	Litt	<mark>er data</mark>				4			54			
				At bir	th @			-Q	Y To	Xt d-2	y C	<u></u>
					Litter	Mea		7 %	<u> </u>	Cusul	Letter	. 💜
	egnant	L	itter siz	z <mark>e</mark>	Mgh	Öveigh		Ligge	r size	læve	weight	♥ <mark>pup</mark> weight
	(no.)		1	, 4 , 2	g		<i>)</i>	Q,	O 14 /	los (%)		(Section 1)
		Total	Live					M	F			
/1st mating				Q (* ~	N. N	W)	Š		Ž, O	<u>.</u>
Controls	25	13.3	12.80	3.9	80.9	, ^y 6.4		\$ 7.5	6.3		² 53 95	46.4
6 000	2525	13.0 13.3	12.5g	200 2012	% .0	\$ 6.6		6.0 (0.00° 5.0°	70° 9.5	°522.6 € . 514.9	44.5
24 000	25	12.7	11.6	₹ <mark>7.3</mark> ≈		6.6	, W	(<u>)</u>	<i>⊘</i> 3.6	77.6	348.7***	
/ 2 nd mating				Z.C		©		y a				
Controls	20	13 ³ 3	13.3		Q .0	6.8	~	<u>6.7</u> ≪	6.6Cy		625.6	49.5
6 000 12 000	20	13.6	7 13 7	$\frac{1.0}{21.7}$	90.7	7.00 63		<u>%</u> 03	6.6	<u>6₹.6</u> ≈ 10.6	592.7 587.9	50.0 48.4
24 000	18	14.5	148	200	95%	A 8	a.	7.2	$\bigcirc \frac{30.2}{6.0}$	8.2	434.9***	33.8***
B/1st mating	20 18 V	″ O _A		₹Ú	.~	, 9		a.Y	~\\\			== 1
Controls		12.5	12.3 §	1.3	80.7	y <u>v.</u> ·			\$5.8	8.9	469.5	41.6
6 000 (a)	7 <mark>25</mark>	11.40	1009			7 3.9 3.9		5.5 ×	7 5.4 4.4	7.9 10.0	500.5 445.0	48.2 45.8
24 000	25 25	M.8	M.6	2 00	73.4	6.4	Ø	6.0	5.2	5.6	406.1**	38.2
B/ 2 ⁿ /Creating	\.Q				, C		7	0				
Controls	15 14 14	126	125	0.6	82,8	& <u>6.7</u>			5.8	8.7	578.5	51.9
6 000		4.2 50 8	% ./	2.2 °	22.9 22.5	0 <mark>6.9</mark>		6.7 7.5*	6.3 4.7	7.7 4.5	598.7 525.6	46.6 43.9*
24 000	715 P	13.10		1,70	83.9	6.9	2 /	5.7	6.8	5.7	503.7	41.2**
B/1st mating		~°		Q,	Ş	Ò						
Controls	24	11.4	71.2	E .3	76.1	7.0		4.7	4.8	14.0	505.5	54.5
6 000	24 % 23 %	10.6	2,10,2 10,1	3.4 £	* <mark>/2.2</mark>	7.3 6.8		5.2 4.9	4.6 4.4	7.0 9.0	521.3 451.4	55.7 50.8
12 QQ0 24 900	23 24	1489	100° 200.6	201°	3 8.8	6.7		5.3	4.8	8.0	354.7***	
/ 2 nd /*	<i>a</i> , \	102		(V)	2		1					
	24 <u>4</u> <u>24</u> <u>7</u>	^ <u>11.1</u>	≪ ∠ n:	0.9		7.1		5.1	5.2	6.8	569.0	56.8
6 000 12 000	24" "		12.1 41.9	9. 5	88.2* 80.1	7.4 6.7		5.5 5.2	5.9 6.1	6.3 6.1	625.8 540.8	57.2 48.6*
6 4 0 0 0 (7)		0.0	117	1.0	76.4	6.7		6.1	5.1	4.6	485.5**	48.6**
<0.0 %/ ** p<6	; ***	0.00.03	* ****	1.0	70.1	U. /		V. I	V . 1	1.0	700.0	.5.0
	W.											

Statistically significant changes in organ weight were seen in the 24 000 ppm groups (lower liver, spleen and thymus weights and higher lung weight in males; lower thymus weight in females); however no dose related trend and no histological corroborate could be evidenced; in addition, maternal bw gain was reduced during gestation and mean pup weight was reduced during lactation. Test substance related microscopic changes in the urinary tract were seen in the F3B pups (on image) in the properties and/or hypertrophy of the transitional epithelium and desquamation of operithelial cells; presence of crystalline or calcareous deposits): these changes were seen in 8/10 walles and 8/10 females from the 24 000 ppm group and only in males (1/10) from the 12 000 ppm group.

III. CONCLUSION

The parental NOAEL was 12 000 ppm (equivalent 2 1203 and 197 mg/kg by od in FB my es and females, respectively), based on reduced by and in cased incidence of anal by ons of FIB animal and 24 000 ppm.

RMS conclusion: Fosetyl-Al did no production and erse affects in revolucing performance and fertility in rats over 3 generations. The POAFL for oppositive afformance for fertility was 24 000 ppm (equivalent to 1782 and 1994 mg/k/20w/l/4n mails and femals, of the F0 anerason, respectively), as no treatment-related effects are observed on any generation. We overall NVAEL for development was 6000 ppm (equivalent to 432 and 33 mg/g by in F5 mals, and omales, respectively) given to the effects of bodyweight of 188 generation and after planeters in the 12 000 ppm treated group.

CA 5.6.2 Developmental toxicity studies

All studies for this endpoint have been reviously submitted and evaluated. A short overall summary of these studies is provided in Table 5.6-1. The wetal findings have been remained according to current nomenclature (www.devtocorg) and a statistical analysis of their incidences has been performed.

Report:
Title:
Report No.:

Guideline(s):
Guideline deviation
GLP/GEP:

KCA5.6.2/0P

Effect of \$74-7\3 on 2 manc of the rat

M-158819-01-1

Guideline deviation
M-158819-01-1

MATARIA AND METHODS

Groups 20 CFY forfales 20s (bw rangest start 180 to 250 g) were administered 0, 500, 1000 or 4000 mg/kg bw/day of technical weety Al (tach FR 794/795 FT; 99.8% purity) in an aqueous suspension (dose volume 2.0 1/1000 bw by oral gavage once daily, on d-6 through d-15 of presumed gestation.

Rats were observed daily Gough at the dosing period for mortality and clinical signs; bw was determined of d-1/3; -6/10; -14; -1 Cand -20 of pregnancy. All rats were sacrificed on d-20 of gestation. Carrow pic Camin than was performed with emphasis on ovaries the uteri; number of corporation, which is a country, live of the foetuses from each litter were country, live of the foetuses from each litter were exactly and of visces about malities and the other half for sex determination and skeletal abnormalities.

II. RESULTS AND DISCUSSION

Parents:

Occasional deaths seen in the 500 and 1000 mg/kg bw dose groups were attributable to dosing ors; 5/20 rats from the 4000 mg/kg bw group died or were sacrificed on d-9; -10 and -11 (all exhibited bw loss and chromodacryorrhea prior to death; post mortem examination recalled mark grass gas dilatation and fluid retention).

Dose related reduction of bw and bw gain was seen in all groups during the first 4 dos of Ssing a Effects were still observed in the 4000 mg/kg bw group at end of dosing period

Pregnancy rate was comparable among all groups.

Litter data

Litter weight and mean foetal weight was slightly duced only in the 400 mg/kg by young The number of resorptions was slightly increased in the 4000 mg/kg by group.

Foetuses from the 4000 mg/kg bw group exhibited a gight inight inciduce of higher constraints (thoracic asymmetry, displaced kidney and tests, hydrocepholy, variety transcosition intraabdominal and subcutaneous haemorrhage, and onor snormalities (subcutaneous oeders, moral displacement of the testis).

A higher incidence of skeletal (sternet Ge) with antisonal seep of the \$\fo(000 \text{m}) \text{kg to group which would correlate with the lower mean overall weight Gee Table 5 (@2-1).

Table 5.6.2-1: Maternal an Witter Wserva Cons in the ra Wevel Sment Otoxic Stuck

	~ '0			*
	4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Down (mgx	g bw/gy)	
Ò		5,00	7000 4	<mark>4000</mark>
	920 5		2 bw/ 6 y) 2 000, 9 2 2 2 3 1	
Mortality & S	₂ 9 9/20 5	1/20 gy	2/2Q(a)	<mark>5/20</mark>
Bw gain (g)				
Day6-10		7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		<mark>31</mark>
Day6-20	9 9/20 5 9 20 5 9 25 5	21 2 2118 0	@ 18 \$\frac{125}{25}	<mark>108</mark>
Pregnancy rate (%)	0 40 95 25	8 958 °		<mark>95</mark>
N° with viable youngo V			<mark>17</mark>	<mark>14</mark>
LITTER SERVATIONS &			T	
MATERNAL OBSERVATIONS Mortality Bw gain (g) Day6-10 Day6-20 Pregnancy rat 20 N° with viable young LITTER SERVATIONS Live your Males Females Total Embryonic deaps Early				
Males	\$\frac{5.4}{4}\frac{1}{2}		<mark>5.1</mark>	5.3
Total 2 4 Q		5.5	6.9	6.2
	<u> </u>	O <mark>11.3</mark>	13.1	11.5
Males Females Total Embryonic deadys Early Late			0.4	0.5
Late A		0.6	0.4	0.5
Late Total Mean pre-implantation ss (%)		0.4 0.9	0.0	0.8 1.3
Mean pre-implantation bss (%)	\$ 10.30	12.7	12.1	12.1
Meast and pre-implantation loss (1)	~ 5 ^{10.3} 0	8.9	2.6	10.5
Mean yost-implantation loss to Litter weight (g)	4005	42.07	48.50	39.71*
Mean foetal weight (g)	2 2 3.79	3.74	3.72	3.46
Malformation	23.79 242 (0.8%)	1/204 (0.8%)	2/222 (0.8%)	2/161 (3.8%)
Mean pre-implantation oss (%) Mean footal weight (g) Malformation Visceral Skeletal Skeletal Skeletal Extra bss (stra-ribs a): dosu or rror; *p<0.05) 8/119 (6.9%)	7/103 (6.6%)	8/108 (7.4%)	8/78 (13.0%)
Skeletal & & O S	9/121 (7.0%)	9/100 (12.6%)	14/112 (11.8%)	17/78 (22.4%)
Visceral Skeletal Ske				
Extravibs ()	24.6%	29.0%	42.1%	27.7%
Stonebrae Oxtra-ribs &	23.8%	38.2%	8.9%	56.1%
(a): dosir@error; * p<0.05				

The incidence of specific abnormalities according to the current nomenclature (<u>www.devtox.org</u>) is presented in Table 5.6.2- 2. The incidences of mild to moderate subcutaneous oedema and small interparietal bone were significantly increased in the high-dose group. Frequently, several abnormalities occurred in a single pup, so that more abnormalities appeared to occur in the high-dose group, whereas the proportion of pups with abnormalities was not different from controls (Table 5.6.2-1).

1 <i>)</i> .			Ğ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Table 5.6.2- 2: Incidence	e of specific malform	ations and variatio	ns (number / % o	f pups Affected
		Dose (mg/	kg bw/elay)	
	0		2 1000	NO ON
	n <mark>%</mark>	n « %	<mark>%</mark> √	g <mark>n</mark> ð 👸
Malformations			% % % % % % % % % % % % % % % % % % %	
No. of pups examined	242 100.0%	100.8%	200 1 NO.0	% ♥ 101 ₺ 10007
Hind limb, malrotated	1 0.4%			
Sternebra, fused	1 0.4%	9 30.5%		
Thoracic centrum, bipartite	1 410/	9 5 0.5% 7 7 8		
ossification	1 2 2		\$ 0° ×	
Thoracic centrum, dumbbell-shaped				0.69 0.69
Thoracic arch, fused				0.6%
Thoracic arch, misaligned				0.6%
Lumbar centrum, fused		7 7 7 9 0.5° 0.5° 0.5° 0.5° 0.5° 0.5° 0.5° 0.5°		1 0 0.6% 1 0 0.6% 1 0 0.6%
Rib, fused				1 0 60
- i i				J 0.6%
Rib, branched Sternum, split				3.07
Digit, supernumerary				
Abdomen, haemorrise			R 0.	1 0.6%
Ventricular septur defect				
Kidney, malpo oned	d 0			1 0.6%
		D/ ///08/	V	-
moderate 🗡 💮			NO.	0.6%
Renal payis, increased	(D)/ ₂)	0.6%
Cavitation, marked Subcutaneous oede				1 0.6%
Azygous vein transpose O				1 0.6%
Azygous vein, transpose Q Aortic arch, trospose Q Ductus arte Aosus, transpose				1 0.6%
Ductus arter osus, transpose				1 0.6%
				0.07
		,~Q"		
		The state of the s		

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies

					Dose (1	mg/kg	bw/d	ay)				
		0			500			1000			4000	
	n	<mark>9/</mark>	0	n	<mark>%</mark>		n	<mark>%</mark>		n	<mark>%</mark>	v °
Variations, visceral												i G
No. of pups examined	119	10	0.0%	103	100.	0%	108	100	% %	<mark>78</mark>	@ <mark>?00</mark>) <u>.</u> &
Cestis, malpositioned	<mark>5</mark>		4.2%	2	<mark>1</mark> .	<mark>9%</mark>	<mark>5</mark>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.6%	2	4	% %
Renal pelvis, increased avitation	1		0.8%	2	1.	9%	2	J.	.9%			
Abdomen, haemorrhage	2		1.7%	1	\$\frac{\text{\$\text{\$\gamma\$}}}{\pi_n} \frac{1}{1}.	0%	Ŵ	7	Ĉ		Ŋ,	Ŵ,
Medulla oblongata, ubarachnoid haemorrhage	1		0.8%) (1)	7	L				Q,) &
Anterior chamber, naemorrhage, mild	1		0.8%			~ Q,	, W			5	o O	Ž,
Subcutaneous oedema, mild to noderate			(<u>)</u>	, <mark>v</mark>		0% ()				***	₽2 0.0	$\frac{7.7\%}{0014}$
Chorax, internal haemorrhage, noderate		4	A		~ ~ ~	Q,).9%	Ĵ ^Y		Ž,
Variations, skeletal			,°~	y . Q	7.4) (, ,		Q.	4		
No. of pups examined	120	& <u>10</u>	<u> </u>		~(<mark>V00.</mark>	<mark>0%</mark> /	112		0% 20%	Ø <mark>78</mark>	100	0.0%
horacic centrum, bipartite	Q	, &	0.5%			3 /40					j ^a	5.1%
Thoracic centrum, hemicentric	& 4		3.3%		, O 1	<mark>0%</mark> Q	1	0 1	9%	% 3		3.8%
horacic centrum, misshapen) (<u>k</u>	, (4,	@Z	4		Ď	۵			1.3%
resacral vertebrae, upernumerary	3		2.5%				\$\frac{10}{**}	() p=0.5	.2% Q18			
elvic girdle, asymmetry			0.8%	\$ 2	2 2.	O			.8%	2	2	2.6%
General ossification Fuld etardation		J.				0% 041		W				
nterparietal, si	()	, O'	Ž,			, Q, 1	C).9%	3 *	!	3.8% 0.031
Occipital, Sall			8				7			6 ***	1	7.7% E-05
'arietal, mall) A		\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							1		1.3%
Lib, supernumerary		- N	. V			-+				1	-	1.3%
tatistically signi want dit O ence) v	O 10 ***	0.05,	** © <0.0		001 in	Ficho	r avaat t	act: not	rospect	ive statis	

th@iy abn mality the Table 5.6.2-1).

L. CONCLUSION

RMS conclusion: Oral administration of only dose up to 4000 mg/kg bw in pregnant rats induced maternal toxicity at 4000 mg/kg bw level bw loss and mortality) and developmental toxicity including occasionally statistically orally of infrant account and mortality and developmental toxicity including occasionally statistically orally of infrant account account to a superior of the statistic orally ora for meyernal and de Clopper ntal toxicity.

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: ; 1976; M-231386-01-2
Title: Compound LS 74-783: Oral teratogenicity study in the rabbit
Report No.: R000559
Document No.: M-231386-01-2
Guideline(s): not specified

Guideline deviation(s): not applicable no

I. MATERIALS AND METHODS

Groups of 20 presumed pregnant New Zealand white rabbit (bw: 2.60 3.4 kg at soft of Oldy) were administered by gavage daily oral administration of 3; 125; 250 and 500 mg/s bw LS 3-783 (batch n.d.; 99.8% purity) in a 10% gum arabic aqueous solution from d-6 through d-16 of gostatio Bw was recorded on d-0; -6; -16 and -28 of gestation; food consumption was accorded daily from 0 through d-27 of gestation. All rabbits were sacrificed on d-20 of gostation for explanation of solital tract, number of implantation sites, resorption live of deed footbacks; live foety is were weighed and examined externally and internally.

II. REVILTS AND VISCUSSIO

Maternal data:

15/88 does mated for study were excluded because of accountal ceath cavage trause or uterine and/or pulmonary disorder at time of swrifteen and/or pulmonary disorder at the swrifteen and or sw

The mean daily food consumption was slightly reduced in the 12th does group, by On was reduced in the 250 and 500 mg/kg group.

Pregnancy rate was similar in all groups. No cases of total vitter a sorp on or tal litter loss were

Pregnancy rate was similar in all groups. No cases of total litter desorgen or dial litter loss were recorded.

Litter data:

No evidence of expryor Oxicity or impairment of fortal growth was found

Table 5.6.2-3: ©mmary data

	. //	2 8	4	y 0,		
Parameter [§]		Cor	Pols	1.5 mg/C bw	y 250 mg/kg bw	500 mg/kg bw
Materra data			Q°			
Bw gain (kg)	2° 4	<u> </u>			0.12±0.04	0.15±0.03*
Mated females				18 6	<mark>18</mark>	<mark>19</mark>
Pregnant		♡ (#		S 16	<mark>15</mark>	<mark>15</mark>
Mean n° of ixolar	ntation sites	/ <u>~~</u> **3=		%6±0.5	9.3 ± 0.3	7.4 ± 0.4
Mean foetal loss 9	<mark>%</mark>	~0 ^y 0.	<u> </u>	2 6.9	1.3	0.5
Live foet 62's	Ò				<mark>120</mark>	103
Males 🗬		∜ ~√4	<u> </u>	61	<mark>61</mark>	<mark>42</mark>
Females		、	U ~	3 46 €	<mark>59</mark>	<mark>61</mark>
Malformed foetus	es of		3 [°] Y o	0	<mark>2</mark>	O

JII. CONCLUSION

RMS confusion. The protocol and results are poorly described; given the limits of this study, one could propose the dote level of 125 mg/kg/day to be considered as the NOAEL for maternal toxicity and the dose evel \$500 mg/kg/day to be considered as the NOAEL for developmental toxicity.

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

; 2000; M-207431-01-1 KCA 5.6.2/03 Report:

Oral range-finding study of embryo-fetal development in rabbits Technical fosetyl-Al Title: C014859 Report No.:

Document No.: M-207431-01-1

Guideline(s): not specified Guideline deviation(s): not applicable

GLP/GEP:

I. MATERIALS AND METHODS

Groups of 5 time-mated female New Zealand rabbits & to 6 months old at star of treoment by range: 3 to 4 kg on d-0 of gestation) were given daily oral adminimation, by grage, 6 0; 75 1256 250; 500 and 1000 kg/bw/d of technical fosetyl-A (batch 9816)11, 98.1% durity) in an equeous suspension of 0.5% w/v methylcellulose (dose gradine: 2 mL/kg) ong 4 through 628 of gestatom. Batches were prepared weekly; duplicate samples of dosing soutions were order a vinitiation and end of study for analysis of concentrations; homograeity of dosing soutions were checked. Dose selection was based on the results of a prey but to do of gestation; solutions were checked. Dose selection was based on the results of a prey but to do of gestation; results showed that losety All produced slight to moderate reduced by vain at 250 and 5000 g/kg/kv any slights; moderate reduced food consumption at 500 mg/kg bw.

All rabbits were examined at least trace dayly for fortaits, mandidity lights by overstoxicits. Bw was recorded on d-0; -4; -6; -9; -12; -Q; -19; -24 and -29 of gestation; food consumption was determined daily from d-4 through d-28 of cestation. All curvives animals were saccinced on d-29 gestation and a gross necropsy was performed with emphasis on the overies and the atterus (gravi Outerine weight; number of corpora lutea and uter we implicately data over record (b); live and dead foetuses were Groups of 5 time-mated female New Zealand rabbits to 6 months old at start of tree

number of corpora lutea and uter se impuntation data were recorded; live and read foetuses were counted, weighed and examined for external algorimatities (palate includes crow rump lengths); late resorptions were also examine for external more fities of

Homogeneity od stac were within \pm 10% of the acceptable linots.

All females from the op day group were sacrified on gestavin d-13 because of excessive bw loss and food consumption reflection 1 was found dead on gestation d-10 and another 1 on gestation d-13): none of them exhibited emargible correspond to the dead of the exhibited emargible correspond to the dead of the exhibited emargible correspond to the dead of the exhibited emargible correspond to the exhibited emargible emargible correspond to the exhibited emargible emargible correspond to the exhibited emargible ema revealing uteone hachorrhoge).

No treatment related clinical sign were recorded in any rabbit.

Bw and the gain were rounded reduced from d-4 th ough d-12 gestation in the high dose group; slight reduction of bw gain was found in the 500 mg to group (60% of control values) and some evidence was ten also for the 250 mg/kg found firing the first day of dosing. No bw changes were seen in the

Food consumption was markedly reduced Q the top dose group during the first 12 d of gestation and was also red Oed in the 505 mg/kg ow group from gestation d-4 through d-19 (and returned to normal

Pregnant Prates Were 80% in Sontrols; 100% in the 75; 125 and 250 mg/kg bw groups and 75% in the 500 mg/g by frour 100 mg/g by

Table 5.6.2- 4: Maternal observations

	Controls	75 mg/kg	125 mg/kg	250 mg/kg	500 mg/kg	1000 mg/kg
Mortality (dead or sacrificed)	0/5	0/5	0/5	0/5	1/5	
Pregnancy rate (%)	80	100	100	100	0 <mark>75</mark>	1
Bw gain (g)				G.	OF	% ₹
D4-d6	76±38.1	65±21.6	-4 ± 28.0	-10±63. 5	-39±43.5*	-15.006.3**********************************
D4-d29	517±95.5	536±110.0	440±110.6	358±7546	312±10%	
Food consumption (g)				- W		23±26**
D4-d6	45±1.5	46±5.9	43±3.9	4 2 13.8	3394.0	23±20**
D4-d29	39 ± 3.7	40±3.3	© 37±1.4	\$39±4.8	02 ± 6.7	1 6 % (// T
Caesarean section data		2 1	1			d\0
Pregnant	<mark>4</mark>	5 0	5			
Dams with viable foetuses	<mark>4</mark>	Q	ري ا المراجع		DE STATE OF THE ST	
Corpora lutea (n°/rabbit)	11.8±1.5	11.200.84	<mark>13.2 يُرْجُ2.86</mark>	72.2±301	*100 L 1 2 C	4 - 0
Pre-implantation losses (%) Post-implantation losses (%)	2.0±1.15	5 ±0.800	\$\frac{1}{2}\dot{\pmu} \dot{\pmu}	3 <u>.2</u> ±2.77	1.7±2.08	
Live foetuses	0 @		0 <mark>1</mark> 4	7 47	\$ <mark>4</mark> \$	
Dead foetuses	0 &			2 <u>4</u> 0		<mark>∪</mark>
Early resorptions (%)		⊘ 1 *>				2 <u>0</u>
Late resorptions (%)	<u>°</u> Q	a <mark>o</mark> d	\$ 0 € °	0 4 0°	Ö <mark>l</mark> 🔌	₹ <mark>0</mark>
* p<0.05; ** p<0.01				7,0		

Litter data:

2 dead foetuses were found in the 500 kg/kg w group; a slight decrease of the mean number of live foetuses and a slight increase of the mean number of post-Orphartation, losses where recorded in the 250 and 500 mg/kg group of such onange were considered as incidental gight the shall size of the groups. There was no charge in feetal by at any dose level for troument related external malformation or variation; I foet a from the 500 mg/kg group exhibited a spina of fida onich was not considered as treatment related considering historical comols. Single malformations found in live foetuses and dead foetuses (malformation of wellds, pinna alteration, many gloson) we wincidental.

Table 50 - 5: Food dato C , 6 ,

	<i>`</i> \``````````	× ′		\sim .		1			
Foetal observation	29" 4	Q ",		<i>j</i>		Dose (mg/	<mark>kg/day)</mark>		
r detai observatio					70 ′	125	250	500	1000
Malformation									
Litter examino	Č , O				5	<mark>5</mark>	<mark>5</mark>	<mark>3</mark>	0
Foetuses examined				9 @	<mark>47</mark>	<mark>52</mark>	<mark>38</mark>	<mark>26</mark>	0
Spina bif	Ò)	0	0	0	<mark>1</mark>	_
Total focus with r	nalformation				0	0	0	<mark>1</mark>	_
Tota Witter with ma	al mation	, , O' ,)	0	0	0	<mark>1</mark>	_
Variation		(())							
Litter examined @	, "			<mark>1</mark>	<mark>5</mark>	<mark>5</mark>	<mark>5</mark>	<mark>3</mark>	0
Foetuses exampled	d A variation		¥ 3	9	47	<mark>52</mark>	<mark>38</mark>	<mark>26</mark>	0
Total foetus onth	varjätion S	4, 8	9)	0	0	0	0	_
	~~ ~		T						

III. CONCLUSION

RMS concusion: Oral Aministration of daily dose up to 1,000 mg/kg in pregnant rabbits induced maternal exicity (marked at 1,000 mg/kg, slight to moderate at 250 and 500 mg/kg); slight decreases in the Samber of live foetuses and slight increase of the number of post-implantation losses seen at 250 and/or 500 mg/kg were of doubtful significance considered the small number of rabbits evaluated. No maternal or developmental toxicity was seen at 75 and 125 mg/kg bw.

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies

; 2000; M-205472-01-1 Report: KCA 5.6.2/04

Oral study of embryo-fetal development in rabbits Technical fosetyl-Al Title:

Report No.: C013896

Document No.: M-205472-01-1

Guideline(s): OECD: 414; USEPA (=EPA): OPPTS 870.3700

Guideline deviation(s): none **GLP/GEP:** yes

I. MATERIALS AND METHODS

Groups of 25 time-mated female New Zealand white rabbits (5-6 mooths of age at last 2the widy; bw = 3 to 5 kg on gestation d-0) were administered orally (by 2 vage) once unity, 5 50, 50 of 300 mg/kg bw/d of technical fosetyl-Al (batch 98 M 11; 98.9% Dirity) in an equeous suspection 0.5% w/v methylcellulose (dose volume = 2 mL/Q) on d-4 through 28 of 2 station. Homogeney ty was checked on d-1 of dosing, using samples from the 50 og/kg, 3 see lovel; Succentration 5 test substance in the dietary preparations was addyse during the 50. 2 and 3 week of dosing on duplicate samples of all dosing preparations. and 35 week of dosing on duplicate samples of all dosing preparations.

All rabbits were examined at least twice daily food consumption was overmined daily during the dosing period. All surviving animal overs vacrified on 2-29 estation and grown ecropsy was performed on all animals, including on the dietar sacrificed during the study, with emphasis on the reproductive system; uterus and caries were weighed number of orpora futea, dumber of live and

dead foetuses and number of eagly and the resorbtions were seconds.

All foetuses (live and deads were seconds), weighed and Caminod for external and visceral

was confirmed mean recovery = 96.4%); Homogeneity of the 50 hg M samoles will with in ± 100 of nominal concentration during all 3 weeks of doong.

A total will 8 females Are secretical or forced developing the assing period (1 in the 50 mg/kg group; I in the 100 mg/kg group and 6 cycle 30 mg/kg group); all theaths except 1, should be considered as resulting from a gravage group and 6 cycle 30 mg/kg group; all theaths except 1, should be considered as resulting from a gravage group; the group and of the group and/or fluid in the trachea or lung were seen at necropsy; in 0 50 rG/kg by group, the gravity as caused by an abortion (see Table 5.6.2-6). No treatment related effect was 0 clinical sizes, by ord food consumption was recorded. Pregnang that was consumpted and control rabbits.

No remarkable findings were seen at technical placroscopic examination and not treatment related effect were recorded one gravity utering was fit, mean number of corpora lutea, pre and post-implantation losses, mean number of live detuses, sex ratio and mean number of early and late resorptions.

Bayer - Crop Science Division

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

Table 5.6.2- 6: Maternal data

Dose	Controls	50 mg/kg	100 mg/kg	300 mg/kg	0,° %
Mortality (gestation d)	0/25	1/25 (d-27)	1/25 (d-11)	300 mg/kg 6/25 (d-6; -6; -9; -16) -18;-27 476±208*6	
Mean bw gain (g) D0-29	501±229.4	531±189.9	552±209.6	476±208.6	
Food consumption (g/kg/d)			.1	42 3 62	Ö
<mark>d-4-6</mark>	43±10.5	47±5.7	45±6 [®]	4 13.6°	
d-27-29	21±8.2	26±10	31±0/**	27±7.5 ×	
d-4-29	39±7.5	40±7.6	<mark>&</mark> \$27.0	Ø 38±31	
Pregnancy rate	<mark>88.0</mark>		95.8	38+34 	
Caesarean section data		23 23		y (y () () () () () () () () () () () () ()	A CONTRACTOR OF THE CONTRACTOR
Pregnant	<mark>22</mark>	23 23		19 0	W'
Dams with viable foetuses	<mark>22</mark>		24 0 1	208 A	ľ
Corpora lutea (n°)	<mark>240</mark>		2460° (208 <u>2</u>	
Pre-implantation loss %	48	გ <mark>52</mark> დ	Q 5P	0" <mark>51</mark> @"	Ž
Post-implantation loss %	9 183 J	7 10 7 7 7 9 1 V			7
Live foetuses	183 Ø	<u> 200</u>	190, Y		
Males	989	7 2 <mark>09</mark> 27	20 20 S	9 2 <mark>77</mark>	
Females	<u> </u>			5 71 9	
Early resorptions %	Q4 60 0 5 4			\$ 71 9 5 *7	
Late resorptions %		O S		9 4	
* p<0.05; ** p<0.01	0 <mark>5</mark> 4 29	,		0	

Litter data:

There was no effect of treatment on factal by

No treatment related externed viscoul or skelete malformation or extraction were recorded. Fused sternebrae were ob Eved in all the led Sups, but at Single incidence and were then not considered as related to treatment, Osmuch as this finding was previously of serve on this strain. Examination of the dead focus fond in the sample group revealed greenal halformations (gastroschisis, hindlimbs hyporflex in, and agenesis of the tail which yould pream acidence since no such findings

were seen a higher dose levels (see Table 5.627).

Statistical ve-evaluation of the foet incidence was a an incidence exceeding the historical control range from this laborators see Vable 26.2-9. However, the foetal and per-litter incidence of distended ureter in concurrent controls also exceeded the historical control range.

T	abl	e 5.	6.2-	7.8	Litter	

Dose group Controls 50	100	300
Litter of the second of the se		
IN Toetus examined 1 "O" 186", " " O 201	190	148
N° litters examin	<mark>23</mark>	<mark>18</mark>
Inci vnce Foeta Litter	Foetal Litter	Foetal Litter
Visceral Macormations		
	0	1 1
Hydrocephyy & 0 0 0 0 Skeleta Salfor Sation		
Fused cterneby $0 \lor 0$ $0 \lor 1$	<mark>1</mark>	<mark>1</mark>
Fuggribs © 0 0	0	1 1
Variation		
Distence ureter 4 (2.2%) 4 (18.2%) 4 (2.0%) 4 (17.4%)	3 (1.6%) 3 (13.0%)	10 (6.8%) 10 (55.6%)

Historical control incidence at Huntingdon Life Sciences (5 studies, 31 May 1998 through 22 March 1999)

per foetus: mean: 0.63% (range: 0.00 to 1.99%), N=800 per litter: mean: 5.26% (range: 0.00 to 15.00%), N=95

Table 5.6.2- 8: Per-foetus incidences of foetal abnormalities

	Controls	50 n	ng/kg/d	100 mg/kg	s/d 30	00 mg/kg/d _o
	n	% n	% Ng/ U	n n	% r	
Malformations						
No. of pups examined	183 100.	<mark>0%</mark> 201	100.0%	190 1g	0.0%	3 0 100 8%
Trunk, spina bifida		1	0.5%	The state of the s		7,5
Trunk, gastroschisis	1 0.	<mark>5%</mark> 1	0.5%	4		
Tail, absent		1	_{&} 0.5%			
Head, domed		<mark>5%</mark>	0.5%	O T		
Face, proboscis		<mark>5%</mark>		, ô ^y		
Eye, open	<u>1</u> 0.	5% (Y		
Hindlimb, hyperflexion	<u> </u>		0.5%			o o
Head, hydrocephalus					<u> </u>	7 .7%
Heart/great vessels, anomaly	0.	5% 10°	9 .5%			~ ~ ~
Sternebra, fused	1		0.5%(0)		<u>05%</u> & 1	0.7%
Ribs, fused/branched External malformations		50/0	Y Y	A . 5	w i	6 6 7 6
Visceral malformations	1 0 0	70 Y 20 Y	% 50/.			0.7%
Skeletal malformations			0.5%			2 6 1.4%
All malformations		50/2			0.5%)	2.0%
Variations, visceral						2.070
No. of pups examined	183 7 100	0% 20	200.0%	198 10	9.0% 0148	100.0%
Iris, surrounded by	T' & S		D 3.5%			
haemorrhagic ring Q			9 3.5%		4.7% 5	3.4%
Heart/great vessels, alteration	A 7 3.		3.0%	6 V	2%	
Ureter, dilated	4 3	2% \$ 4 ×	~ 2.0%	Sy Sy	1.6%	6.8% p=0.040
Renal papilla, abs		786 . 30	7 0%		2.1%	
Gall bladder, ab the	√ 2 ⟨ . 1′	No and the second				
Gall bladder, mall				@_ <mark>2</mark>	1.1%	
Variations skeletal Variations skeletal	, Q		* 0 - 1	<u> </u>		•
No. of puby examined	83 0100.	<mark>0% 201</mark>	% 0.0%	190 <u>10</u>	0.0% 148	100.0%
Hyoid ser horn, ben	D 1 ~ A	<mark>%</mark> , 0°	√' , <mark>0</mark>		1	0.7%
Hyoid body/lesser hor?,	7	2% J	, 0.5%	2	1.1%	
unossified Ossification, reduced			0.5%			<u> </u>
Presacral verte tae 280°	A . P . O		0.5%		<mark>_ </mark>	+
Presacral vertebrae, 27	1 2 1 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1	0% 9 26 0		25 1:	3.2% 15	10.1%
D.1 10.1 A.1.	217 0 9:		10.4%		5.3% 17	
Rib, 13th Alimentary Rib, 13 full	67 36	% 080	39.8%		4.2% 48	
Puh Junossified		2	1.0%		0.5%	
# Historical control incidence at 1	' I 🗞 🤏 ! 🦳	ice of (5 studi				

Historical control incidence at Hurtingdon Line Sciences (5 studies, 31 May 1998 through 22 March 1999) per foetus:

[Prican: 0.63% (range: 0.00 to 1.99%), N=800]

Statistically significant (Afterence Com controls: *p(0).05; retrospective statistical analysis per request of the RMS. Chi-square analysis (a=0.45) follows by Fisher examplest.

III. CONCLUSION

RMSZoncl@ion: The developmental toxicity was observed at > 250 mg/kg bw. Oral administration of fosetyles up to 300 mg/kg bw during pregnancy of rabbit did not induce maternal or embryo/foetal toxicity nor teratogenicity. The NOAEL for maternal and developmental toxicity was 300 mg/kg bw.

CA 5.7 Neurotoxicity studies

The chemical structure of fosetyl-aluminium (fosetyl-Al) has no structural relationships with organophosphates or carbamates. No evidence of clinical signs indicative of delayed neurotoxicity or other neurotoxic effects were seen in the acute, subacute, subchronic (90-day) or long-term exicity studies; in the two generation reproduction toxicity study, no clinical signs were seen in either the or F2 offspring or their parents.

Cholinesterase activities in brain, erythrocytes and plasma have been measured in the course of the two-year feeding study in dogs (; 1981; M-159302-014); see Section CA 55, page 118). These activities were not affected by fosetyl-Al doses of 1228 190 mg/kg 5 // he highest dose tested in this study.

For these reasons, acute, subchronic or developmental neurotoxicity studies were not triggered. However, an acute delayed neurotoxicity study was performed in the somestic hen (1992; M-203022-01-1). Single oral gavage administration of 2000mg foretyl-Al/kg by to kens die not induce any signs of delayed neuropathy and no axonopathy in the spinal cord or peripheral nerve (see Table 5.7-1).

No new studies have been performed for this endpoint

Table 5.7-1: Neurotoxicity study with 40 setyl-

Study Type	Species	Doses Tested	LOAEL /	Effects 1	MOAEL	Reference
Acute delayed	Domestic	0, 2000 mg/kg	> 2 00 mg		≥20%) mg/& t	; 1982;
neurotoxicity,	hen	pro "	no effects	· 4		[™] M-203022-01-1
oral gavage	,			*		

This study has been reviewed as part of the first OU review of fosetyl-Al.

CA 5.7.1 Neurotoxicity studies in rodents

Neurotoxicity studies in rodents are not deemed necessary because to setyl-aluminium is not an organophosphate or a Carbamate and the existing repeated-dose studies did not reveal any clinical signs or behavioural abnormalities that are suggestive of neurotoxicity.

CA 5.7.2 **Delayed polyneuropathy studies**

The study for this endpoint has been previously submitted and evaluated.

Report: Title: Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

; 1982; M-203022-01-1 KCA 5.7.2/01 Fungicide Fosetyl Al: An acute delayed neurotoxicity stu C012606 M-203022-01-1 not specified not applicable

I. MATERIAL

stud in the domestic her Groups of 10 Light Sussex domestic hens (80 14 ronths ed; by range 1.64 is 3.37 kg) were given single oral (gavage) doses of 0 or 2000 mg/kg bw fosco 1-Al Oatch LA 203; 97.56 purito in 0.3% w/v carboxymethyl cellulose (dose volgare: 4 mL/x). A additional positive control group was given 750 mg/kg bw triorthocresyl posphas in 00% who care xymg/yl collulos the sittive control were treated immediately proceed to colling with the country out idection of 20 mg/kg atropine sulfate and intra-peritoneal injection of 75 org/kg of pralifoxing

Examinations were carried out at east grice wily forgener conflion, whaviou and overt signs of toxicity; neurotoxicity was assessed daily using a pring stem 0: no daxion: deubtful or minor signs; 2: positive paralytic ogns; 3: advoced paralytic signs 4: deuth); individual bw and food consumption were recorded 7- and 3-d blore watmen, immediated before dosign and at d-3; -7; -10; -14 and -21 after a sing Necrolly examination and on those dying study and is sudded established examination of the entire spinal and both saights and so the spinal and so the spinal and so the spinal and cord, both sciatic ner s and rain

All hens given fose A-Al servived; I control between Sund could on 4-13 and 2 positive controls died and were serificed in sectron on the another and declarate and declarate and declarate and declarate another another and declarate another anothe

occurred control and read fiens.

All positive control exhibited signs of fioling processing, although protected by atropine and pralidoxine (parallels immediately also dosing and recovery after 48 hours, except 1 hen which continued to show atages, and exhibited hunched posture prostration, irregular respiration and was sacrificed on 6). 6/6 urvi as de Gope Felay neur oxicity (ataxia) between 9 to 18 days which

Bw and fold consumption were not a feeted by test Substance; bw was significantly decreased in the positive and related was related by the study of study.

positive ontrols surviving at Old of study.

No treatment related macroscopic onding were ecorded; histological appearance on spinal cord was similar in treated and control ons; Ons pobvious neuropathy were recorded in several sites, particularly in cervical cord and peripheral nove of the positive controls.

21. CONCLUSION

RMS coclusion: Single orgonoministration of 2000 mg/kg bw of fosetyl-Al in hens did not induce any signs of wayed reuronathy and no axonopathy in the spinal cord or peripheral nerve.

CA 5.8 Other toxicological studies

CA 5.8.1 Toxicity studies of metabolites

Several studies were carried out for assessing the toxicity of the major metabolite of fooeyl-Al phosphonic acid (previously referred to as "phosphorous acid") which is present in significant amounts in plants and in relevant body compartments of mammalian laboratory animal species. Owed to its acidity, phosphonic acid was tested as a sodium (Na-) or potassium (K₋₅) Thosphonates? (previously referred to as "phosphites") in most studies. Phosphonic acid and its saltscare of low across toxicity via all routes of administration. The potassium salt is not irritating to kin opeyes (see Table 5.8.1-1).

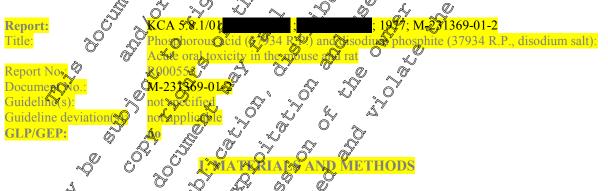
Sub-chronic and chronic feeding studies with phosphonates have not revealed any specific effect & concern. Sodium phosphonate was not carcing enic in a 27-month feeding stody in rats see Table 5.8.1-2). Phosphonates were also negative in various in vitro and in-vivo genetoxicity tests (see Table 5.8.1-3).

Taken together, these data indicate the absence of any critical toxical of the plant metabolite of fosetyl-Al, phosphonic acid. The 27-month feeding study with sodium phosphonate (1981; M-159229-01-1) has been used to set an ADI for phosphoric acre and its summary is thus included in this Supplementary Dossion

Acute toxicity tests with phosphonic acid or ss salts Table 5.8.1- 1:

Study type	Test Material / Doses tested	Results &	Reference
Acute oral toxicity, rat	Phosphonic acid 1350, 2000, 3000, 450, 6700 mg/kg w Nachosphonate 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$LD_{50} = 2947 \text{ mg/sp bw}$ $LD_{5} \Rightarrow 5306 \text{ mg/kg bw}$; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	K-ph@phon3xy 2500, 3250, 4000, 5000 mg/kg bw/	$QD_{50} = 4624 \text{ m/kg bw}$; 1995; M-205464-01-1
Acute oral toxicity prouse	Brosphanic acid 600, 200, 1350, 2000 3000 6 kg bw Nashospishate 600, 906, 8350, 2000, 3600 mg/kg bw	$LIO_0 = 1600 \text{ mg/kg bw}$ $LD_5(O_0 = 2450 \text{ mg/kg bw})$ $(O + P)$; ; 1977; M-231369-
Acute dermal toxicity, rabbit	K-phosphon V V V S	$D_{50} > 2000 \text{ mg/kg bw}$ (?+ ?)	; 1994; M-205465-01-1
Acute inhalation toxicity, ratio	K-phosphonate* 6.14 mg/L, rose only K-phosphonate* K-phosphonate* K-phosphonate*	4-h LC ₅₀ > 6.14 mg/L $(3+2)$; ; ; 1994; M-205468-01-1
Skin irritation, rabbit	W.5 mkg	Not irritating	; 1994; M-205470-01-1
Eye irritation, rabbit	K-phosphotote* Q	Not irritating	; 1994; M-205458-01-1
* Aqueous solution of	of assisted phosphonate containing 41% phosphon	ic acid equivalents.	

potassium phosphonate containing 41% phosphonic acid equivalents.


Table 5.8.1- 2: Repeated-dose toxicity studies with phosphonic acid or its salts

Study type	Species	Test Material / Doses tested	LOAEL / Effects	NOAEL	Reference
Oral feeding, 13 weeks	Rat, CD	Phosphonic acid 2500, 5000 or 25 000 ppm	25 000 ppm: soft faeces, increased water consumption and urinary sodium excretion.	5000 ppm (400 mg/bg bw/day + + + +	ļ
Oral feeding, 27 months	Rat, CD	Na-phosphonate 0, 2000, 8000 or 32 000 ppm	32 000 ppm: so aeces, body weight and food efficiency ratio decreased, urine	Ø000 ppm (34%) 434 mg/kg bw/day,	M=139229-01-1
		32 vvv ppm	acidification, organ weight		

Genotoxicity tests with phosphonic acid of its said **Table 5.8.1-3:**

Study type	Organism / Strain	Fest Maxerial Doses tested A	Results	Reference
Ames test	S. typhimurium TA 1535, 1537, 1538, 8, 100	K-chosphonite* 3 10 060 µg/piste (± 90)	N Gative	; 1994; M-20 5 460-01-1
Induct test	E. coli, K12	Phosphonic and C C Up to 2000 gg/place(± S-Q	Nacobiya	か; 1978; M- 4,78996-01-2
In vivo MNT, oral	Mouse / Svass (♂) ○	Da-phosphonate	Q Negative	; 1977; M- 223290-01-2

^{*} Aqueous solution of potassium phosphonate containing 41% phosphonic acidequivalents.

Groups of 0 (5/sex) Co rats w: 14 to 12 g) were given single oral administration of 1350, 2000, 3000, 4500 and 6700 Mg/kg by of chosphoric and (H₃PO₃ Prolabo 75162) or 2000, 3000, 4500, 6700 and 14000 mg/kg by of disclinary mosphorate Ha₃HPO₃ Prolabo 73130).

Groups of 10 (5/sex) Of mic (bw: 1 to 20 g) were given single oral administration of 600, 900, 1350, 2000 and 3000 mg/kg w of mosphoric acid in 10% aqueous solution of gum arabic or 600,

Ing/kg/bw of disodium phosphonate in 10% aqueous solution of gum arabic.

days Thacroscopic examination was carried out on all animals dead during termix sacrifice which was performed 15 days after dosing.

II. RESULTS AND DISCUSSION

Mortality rates in rats and mice are summarized in Table 5.8.1-4.

In rats, clinical signs included sedation and dyspnoea after administration of phosphonic acid (athsoccurred within 1 to 2 hours) and sedation, diarrhoea and cloning or tonic convulsion after administration of disodium phosphonate (deaths occurred within 2 to 24 hours after dosing) in mion, clinical signs after administration of phosphonic acid included sedation and dyspnoea (death occurred within 3 to 6 hours post-dosing) and sedation, dyspnoea, diarrhoea and prostration after diministration of disodium phosphonate (deaths occurred 6 to 24 hours after dosing). There were no spanification of disodium phosphonate (deaths occurred 6 to 24 hours after dosing). There were no spanification of disodium phosphonate (deaths occurred 6 to 24 hours after dosing). There were no spanification of disodium phosphonate (deaths occurred 6 to 24 hours after dosing). There were no spanification of disodium phosphonate (deaths occurred 6 to 24 hours after dosing).

No significant macroscopic findings were noted at reminal sacrifice except moked irritation of the digestive tract i.e. severe congestion of the glandwar region of the storach and of the small intestive in both rats and mice following administration of phosphonic acid distended intertine and/or orght congestion of the glandular region of the storach as not following administration of disdium phosphonate.

Table 5.8.1-4: Mortality pattern in Ms and Mice Mowing single Yral administration Cophosystonic acid or disodium plosphy yet

				<u> </u>	> 3/ - 4()f			<u>~</u>
Species			T O	~~ ~		D MOI	<mark>JSK</mark> ŠŽ " <i>KŠ</i>	∢
	Dose level	Mor	tali@ after	25 d 2	Do lever)		<mark>5 d</mark>
Compound	(mg/kg bw)	MS es	Yemales	2 sexes	by	vales 3	Ferniles .	2 sexes
Phosphonic acid	1350 _×	Ø <mark>0/5</mark> 0		0/10 8 0/10	600 Z	√ n° ≈	Ø <mark>0/5</mark>	0/10
	2000 ₄		Ø <mark>1/5</mark> ◎	~ 0	0' <mark>900</mark> %	(0/5 °C	0/5	0/10
	30QQ	0 <mark>2/5</mark> 🛴	^j 26	\$\frac{\pi}{10} \langle	[*] 13.9	0/3 . U	0/5	1/10
	400	(5/5 6)	\$	310/18	2000	545	<mark>5/5</mark>	10/10
	₹ 700 √ C	56	5/5	1040	1. ~3000 av	3 5	5/5	10/10
	2 ³⁷ 00 \	, ,		<i>S</i> ?		*		
Disodium phosphona	2.900	4 0/5 0/3	<u> </u>	2 <mark>0/10</mark> 5	<u>6000</u> ≪	© <mark>0/5</mark>	0/5	0/10
	3000 گ	Z	0/5	<mark>0670</mark>	900 y	0/5	0/5	0/10
	<mark>459</mark>	۰ <u>۰</u>	1/5	<u> </u>	135)	1/5	0/5	1/10
	Q	√√ <mark>4/5</mark> ~	, O	√ 9/10	29 00	0/5	0/5	0/10
	<u>2</u> 9000	5 20°		7 10/10	<mark>∂3000</mark>	<mark>5/5</mark>	<mark>5/5</mark>	10/10
·	4 W		0 %		Z.			

The acut world LD₅₀ of hosp whic acut and pisodism phosphonate in rats and mice was greater than 2000 mg/kg bw. Thus heither substance is lassified for acute oral toxicity according to the criteria of Regulation 1272/2008.

RMS conclusion: The coll LDC were calculed using the Litchfield and Wilcoxon method and were 2950 [2400 to \$60] mg/kg w in 5th sees of rats and 1650 mg/kg bw in both sexes of mice for phosphonic and ant 5300 \$6000 mg/kg bw in both sexes of rats and 2450 mg/kg bw in both sexes of mix for social phosphonard.

Bayer – Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Report: KCA 5.8.1/02 ; 1995; M-205464-01-1

Title: Acute oral toxicity (LD50) test in rats Potassium salts of phosphorus acid

Report No.: C013892

Document No.: M-205464-01-1

Guideline(s): USEPA (=EPA): F 81-1, M 152-10

Guideline deviation(s): none GLP/GEP: yes

I. MATERIALS AND METHODS

Groups of 10 (5/sex) Sprague Dawley rats (6 to 8 week old; bw range at start: 19 to 97 g) were administered (gavage) single oral doses of 2500, 325% 4000, and 500 mg/kg bw of potosium all of phosphonic acid (Foli-R-Fos 400 referred as potassism salts of phosphonic acid patch 2244-30H₃PQ 41%; pH = 5.7); 410 mg/mL of phosphonic acid present as 668.9 mg/nL of phosphonate).

Rats were examined twice daily for mortally and clinical signs until sacrifice at d-14; by was recorded prior to dosing, on d-7 and -14 after dosity; all Prviving rats dere subjected to mail oscopio examination of thoracic and abdominal organs.

II. POSULAS AND DISCUSSA

Mortality occurred within 1 day pest-dosing in the 3.50, 400 and 500 ng kg be group (see Table 5.8.1-5).

Table 5.8.1-5: Mortaling patton

Dose	J.	Me &		. 0	& Female
(mg/kg bw)	Mortal	Twie of Wath in (For raw)	days Mo	Wality Ov	O Fime of dearly in days (n° of rats)
<mark>2500</mark>				<mark>)/5</mark>	V
<mark>3250</mark>	9 /5 ~	N Y (Q)		3/5 [~]	√ √ <mark>3 (1)</mark>
4000	€ 5/5 € F	4 (9-1 (8)			3 9 4 (0)
5000 _©	$\frac{3/5}{}$	2 (0) - 1(1)		<mark>1/5</mark>	1 (0) - 3(1)

Clinical Igns were nowd in the treated groups from 30 minutes after dosing and included pilo-erection, subdued behaviour educid activity, at Oia, postration, consulsions, tremors, hunched appearance, increased salivation and laboured breathing; direvivors of the various treated groups recovered after 2 to 7 days. No treatment related effect on the was second on survivors.

Macroscopic examination show a gas Qc aby small es (stomach filled or distended with clear fluid and redd and glandular mucos) in the 5000 mg/kg w group, and distended intestines in 2 males and 2 femals and caecung alled with brown flow in 10 hale from the 4000 mg/kg bw group.

III. ONCLUSION

The acute or LD₅ of possium phosphonate in rats was greater than 2000 mg/kg bw. Thus, the substance is not classified or acute or boxicity according to the criteria of Regulation 1272/2008.

RMS conclusion The Gedian ral LD₅₀ of potassium salt of phosphonic acid in Sprague Dawley rats was calculated using probin bethod and was 3816 [2814 to 5143] mg/kg bw in males, 3445 [2396 to 4322] mg/kg bw in Smales, and 3624 [3082 to 4186] mg/kg bw for both sexes.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

; 1994; M-205465-01-1 Report: KCA 5.8.1/03 Acute dermal toxicity (limit) test in rabbits Potassium salts of phosphorus acid Title: Report No.: C013893 Document No.: M-205465-01-1 Guideline(s): USEPA (=EPA): F 81-2 Guideline deviation(s): none **GLP/GEP:** yes I. MATERIALS AND METHODS Groups of 10 (5/sex) adult New Zealand rabbits (bw Ninge at start 2.34 to 2.5 single topical application of 2000 mg/kg bw of potassium salt of Priosphonic and (For-R-F) 400 referred as potassium salts of phosphonic acid; bat 2244-3 [H₃D₃: 41%; pH₂=5.7], 410 nO/mL₂D phosphonic acid present as 668.9 mg/mL of mongand dipotasium phosphonics) to be clipped do al skin (approx. 10% of the body surface) under semi occlusive dressing; after 24 your of contain the skin was wiped with water to remove excess of test material. Clinical signs were recorded daily and skin was wiped with water to remove excess of less materials. Character of the differ. Oll rabbits were say fixed on d-14 post-dosing and subjected to a gross pacrox No treatment-related changes were The acute percutaneous 1950 of potas cum prosphorate Man 2000 mg/kg bw. according to the riteria of Regulation 1272/2008. phosphonic acid in the New Zealand RMS conclusion: We madian do rabbit was > 2000 ong/ke Ow. Report: ; 1994; M-205468-01-1 , 1994; M-20 shyr salts of phosphorus acid Title: Report X Document No.: Guideline(s): Guideline deviation GLP/GEP: **METHODS** Groups of 10 (5/sex Sprage Dayley rage (5 to weeks old; bw range at dosing: 165 to 207 g) were exposed "nose only" to a figure basely factor weeks old, by range at dosing: 165 to 20/g) were exposed "nose only" to a figure for a 4-b period; the recan active exposure tration of test aerosol in the exposure chamber was determined gray imetacally fill way 6.14 \$\Delta\$ 1.75 mg/L (nominal concentration = 4.77 mg/L) and the percentage aparticles < \$\Delta\$ \text{µm}, was 89%.

Rats were fixaminal continuously throughout the exposure period, immediately after exposure and for the firm that the post design and twice deals of the firm that the post design and twice deals of the firm that the post design and twice deals of the firm that the post design and twice deals of the firm that the post design and twice deals of the firm that the firm that the firm that the post design and twice deals of the firm that the firm th post-dosing and twice daily thereafter; bw were recorded before dosing and on examination particularly of the respiratory tract. d-2; 2 -4; -4; -10 and - All rats were sacrificed at d-14 and subjected to a gross macroscopic

II. RESULTS AND DISCUSSION

No deaths nor treatment related clinical signs were seen; the bw was slightly reduced on d-4 postdosing in 1 male and 3 females which recover thereafter; on necropsy findings were small and (1 male), pale lungs (2 males and 3 females) and slightly patchy liver (1 male).

III. CONCLUSION

The 4-hours inhalation LC50 of potassium phosphonate in rats was greater than 5 mg/ substance is not classified for acute inhalation toxical according to the critery of Tegu

Report:
Title:
Primary skin irritatical test in aubitus otasses is alts of plosphorus acid (Polisphorus Cid (Report No.)

Document No.
Guideline deviation(s):
GLP/GEP:

A group of 6 male young dult New Zoand Onte rebbits (by range at cong.) 22 to 2.33 kg) were administered a single topical actication of 65 mlg of pote Dium/calt of phosphorus acid (Foli-R-Fos® 400, batch 2244-3) to one clipped deviation (at the congruence of the congruence o

Potassium pto sphorate is on irritioning to tablic win. The crythema and oedema scores were zero and thus belova 2.3 in all annuals. Thus potassium cosphonate is not classified for primary skin irritation corrosivity, a cording to the critery of Regulation 1272/2008.

RMS conclusion: The potassium set of prosphosoc acid was not irritant to the rabbit skin.

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

; 1994; M-205458-01-1 Report: KCA 5.8.1/06 Primary eye irritation test in rabbits Potassium salts of phosphorus acid Title: Report No.: C013889 Document No.: M-205458-01-1 Guideline(s): USEPA (=EPA): F 81-4 Guideline deviation(s): none **GLP/GEP:** yes I. MATERIALS AND METHODS administered a single application of 0.1 mL of potassum salt of plosphonic acid (Foliot-Fost 4 batch 2244-3) in the conjunctival sac of the right Ae; ocular regions, were recorded 1, 24,448, a 72 hours after dosing using the EPA scoring syst. A group of 6 male young adult New Zealand white rabbes (bw range) dosing: 2. No corneal nor iridial changes were seed, slight to moderate discharge in all rab after instillation (see Table 5.8.1-6). Eye irritation scores Clowing inst Table 5.8.1- 6: Eye irritation scores (no of affected Scoring time Cornea opacity 0 Iris inflammation Conjunctival redne Conjunctival checo Conjunctival Charge Regulation 1272/2008

RMS conclusion: According the Arrent VU gallelings, the potassium salt of phosphonic acid should not be considered as irritant to the eyes. Document MCA – Section 5: Toxicological and metabolism studies

KCA 5.8.1/07 Report: Phosphorous acid (37934 R.P.): Three-months toxicity in the rat by the oral route (by admixture in the diet as hydrated monosodium phosphite)

R000591

M-231192-01-2

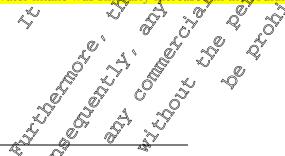
not specified

not applicable

no

I. MATERIALS AND TETHODS ; 1978; M-231192-01-2 Title: Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

Groups of 30 (15/sex) CD rats (1 month old) were given oral administration of 0, 25 000 ppm of phosphonic acid as an hydrated monosodium phosphonat Q anh Yous NaH₂P₃; 69.3%; water: 27.7%; batch DA 88) by admixture in the diegory 9 consolutive days (Quiva) of to daily oral ingestion of 0, 200, 400, and 2000 rg/kg fg/d of hosphonic gdd); 2 controls groups were used, one administered the basal diet and the other the admixtered 50% ppm of sodium characteristic to the highest sodium concentration of sodium admixtered to the highest test substance tracked rate to allow for the large amounts of sodium is roduced in the diet of the highest concentration of monosphonate).


phosphonate).
Stability of sodium phosphonate Q the liet ver Lyonth was pecket in a review study. Anhydrous monosodium phospholate and sodium content of foo mix are when preparing fresh batches.

Rats were observed daily of morality moribilidity and wical signs; bw, oater and food consumption were recorded weeks; back tological assertions. Rats were observed daily of mortality moribilidity and mical signs; bw, outer and food consumption were recorded weekly; hae atological enamination (e) through count; Hb; Hct; total and differential leukocyte counts and finice hemical examination (phophoris) sodium; calcium; chloride; SGOT; SGPT; alkable phosphates; glaose. FON) were carried at on 5 rats/sex after I and 3 months; uring sis follows pH; phosphates; glaose. FON) were carried at on 5 rats/sex after I and 3 months; uring sis follows pH; phosphates; microscopic elimination of the section of the

RESOLTS AND SAISCUSSION

There was no treatmer velates effection my tality low gon, food consumption and ophthalmological findings. So in faccer were deen throughout the dudy period and diarrhoea during the early part of dosing in the high dose goup. To rease vater stake of study and persisting shroughout the study period in males while it disappeared at w-7 in females; water intake was simply by increased in the sodius shloride control group (see Table 5.8.1-7).

*Bettrand A., Acide phophoreux (37 394 R.P.): stabilité dans Paliment

⁴ Bertrand A., Acide phophoreux (37 394 R.P.): stabilité dans l'aliment pour rats UAR 103; PH/RD/F-AB/CP 1842; May 26,

Table 5.8.1-7: Mean phosphonic acid intake (mg/kg bw/d and mean water intake (mL/day/rat)

Dose level (ppm)	()	NaCl c	ontrols	25	00	50	00	25 <u>4</u>	
Sex	M	<mark>F</mark>	M	F	M	<mark>F</mark>	M	Ö <mark>F</mark>	NO.	<mark>∂F</mark>
Mean pho	osphonic a	cid intake	(mg/kg by	<mark>v/d)</mark>			- T)	₩,	Ţ,
<mark>w-1</mark>	_	_	-	_	300	<mark>300</mark>	600g	<mark>600</mark>	2 ,700	3,280
<mark>w-4</mark>	_	_	_	_	200	<mark>200</mark>	480 >	<mark>400</mark> %	2,000°	<mark>2000</mark>
<mark>w-8</mark>	_	_	_	_		200		300	1 49 0	600 @
w-12	_	_	<mark>-</mark>	_	100	100	<mark>200</mark>		200	√ 1,600
Mean wa	ter intake	(mL/d/rat) (% varia	tion vs ab	solute Yont	<mark>rols)</mark> (/		<u> </u>	
w-1	25	25	32 (+28%)	31 (+24%)	4 4 %)	24 Q,* (-4%)	29 (6 %)		(+&2%)	% 28%)
w-4	<mark>36</mark>	30	45 (+25%)	36 (+20%)	36°°°		38 0 (+5%)	(2 3%)	*\frac{45}{+25\%}	38 (+27%)
w-8	35	38	42 (+20%)	36 (/ 7%) «	36 0+3 %	30 0° (-21%)	6 / 4 /6%) <	70 32 (-16%)	4 4 7 (+&)%)	(34 (0 -11%)
w-12	<mark>35</mark>	<mark>34</mark>	44 (+26%)	\$\frac{31}{2}\tag{9\tag{9}}		90 	36 (+34)	*	44 7 (+26°Q)	31 (-9%)

No treatment related changes were seen in haematological and linic chemical in stigations. Higher levels of urinary sodium and calcium were seen in high dos. Ats from the moon of treatment; such increases was only seen in 3 co of the mid dose level (see able 8.1-8).

Table 5.8.1-8: Result of urinalysis Oter 1 Week of treatment

Sex Male Female Dose (ppm) 0 2540 500 25000 5000 25000 Urinary pH W-4 W-13 0 84 7.44 3 0.50 6.88 7.22 6.82 6.20 Sodium (mg (24h) W-4 20 28.9 35.00 7.22 17.0 31.2 ** W-13 20 26.6 10 20.00 ** 16.0 17.1 24.7 27.6 **
Urinary pH w-4 w-13 Sodium (mg/24h) w-4 20 28.9 35.0** 76.3 17.2 17.0 31.2 **
Sodium (mg/24h) w-4 20 28.9 35.0 * 76.3 17.2 17.0 31.2 **
Sodium (mg/24h) w-4 20 28.9 35.0 * 76.3 17.2 17.0 31.2 **
Sodium (mg/24h) w-4 202 28.9 35.0 * 76.3 17.2 17.0 31.2 **
Sodium (mg/24h)
Calcium (mg/24h)
w-4
w-13 Q 3 LS Q 3.32 L34 2 ** 1.36 1.02 2.19 2.72 **
Phosphorus (n@/24h) O
w-4
* p<0.05 @* p<0.01

No watment related effect wer seen Qierm tion macroscopic examination.

IIR CONCLUSION

RMS convision Bases On firstings seen in the high dose rats (soft faeces, increased water intake and increase curing sodium and Calcium excretion), the NOAEL in this study is 5000 ppm (equivalent to 400 m2 kg by 6x).

Fosetyl

Report: : 1994: M-205460-01-1 KCA 5.8.1/08 535, TA 1537, TA Testing for mutagenic activity with Salmonella typhimurium TA 1535, TA 153 Title: 1538, TA 98 and TA 100 Potassium salts of phosphorus acid Report No.: C013890

M-205460-01-1 Document No.: Guideline(s): USEPA (=EPA): F84-2; M 152-17

Guideline deviation(s): none **GLP/GEP:** ves

I. MATERIALS AND WIETHOD

Prior to the experiments, a toxicity testing was perfumed on TAOO strain using 3333, and 10 000 μg/plate of potassium salt of mosphonic acid (F_Q/R-F_Q/R 400 400 g/L phosphonic acid present as mono- and dipotassium phosphonic acid was tested to the one concentrations in the range

Crange finding assay, in a plate incorporation assay using 5 bacterial tower strons: 798; 0100; TA1538 of S. typhimurium, with and without me abolis activation (3-9 fraction of prepared from the livers of Aroclor 12% treated Sproduc Dawley as and 3-9 co water), using 2 independent experiments.

Positive controls without metabolic activation in Added Vamina

DMSO), sodium azide (1 µg/plateQissolved in sterile vater), Lug/plate dissolved in DMSO) and 4 nitrofluorene 🗽 0 μεχν ate dosolve Sin Dlo

No evidence of toxicity was of rved in the hige fuling oxicity test; no ation of test material was seen.

In the 2 independent experiments there was no statistically significant increase in the mean number of revertant colonie in an Oester Frain, both in the above a fill in the presence of metabolic activation; positive control elicitor the expected increases in fewer tants colories (see Table 5.8.1-9). es in fevertants colories (see Table 5.8.1-9).

Table 5.8. Meanumber of representation of the Meanumber of the Meanu trea hent with possium salt of hosphinic aco

~0)	Mean Sum	heOf r	exertant	& lonies	3 replica	tes)			
щд	<u>√TA153</u> €	KATAA	% 7) <mark>************************************</mark>	<mark>538</mark>	TAS	<mark>88</mark>	TA	<mark>100</mark>
	59 5 S9 6	ð <mark>+ S9</mark> ≫	- SAC	+50	- <mark>S9</mark>	+ S9	- <mark>S9</mark>	+ S9	- <mark>S9</mark>
1st experiment		~	~ <u></u>	^					
Solvent 0 19		Q±9	<u> </u>	0 <mark>15±7</mark>	13±2	23.2±	13±2	99±7	86±15
33	3±3 910+8	<mark>12±3</mark> ℃	1 4±4	12±4	9±3	<mark>24±8</mark>	13±6	88±6	98±6
100 X	2 10 2	Q±9 212±3° 12;Q	1403	8±6	11±1	24±5	16±3	113±9	89±16
Potago m 333	0±25 7 <u>-0</u> °	<u>1</u> 4	243	10±2	8±4	26±1	18±4	104±4	89±18
phosphonate 1000 11	302 05±1	1 <u>12±4</u>	D <mark>10±4</mark>	12±3	9±2	23±2	13±3	86±8	88±9
3,200° 100° 100° 100° 100° 100° 100° 100°	3±4 715±5	12+6	9±3	16±3	8±3	20±3	15±5	86±8	92±11
6 7000)±4 8±3 /	6 4 2	11±3	13±4	9±8	19±5	15±3	93±3	85±4
2 NF 1 2		₹	_	-	214±45	-	179±45	_	-
Na azide. Will will have a	<u>4</u> ∂12±4	-	_	_	-	_	-	_	419±8
9 AAC		-	1427± 325	-	-	-	-	-	-
	<mark> </mark>	146±15		268±43	<u>-</u>	495±43	-	547±35	-
<u> </u>									

Bayer - Crop Science Division

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

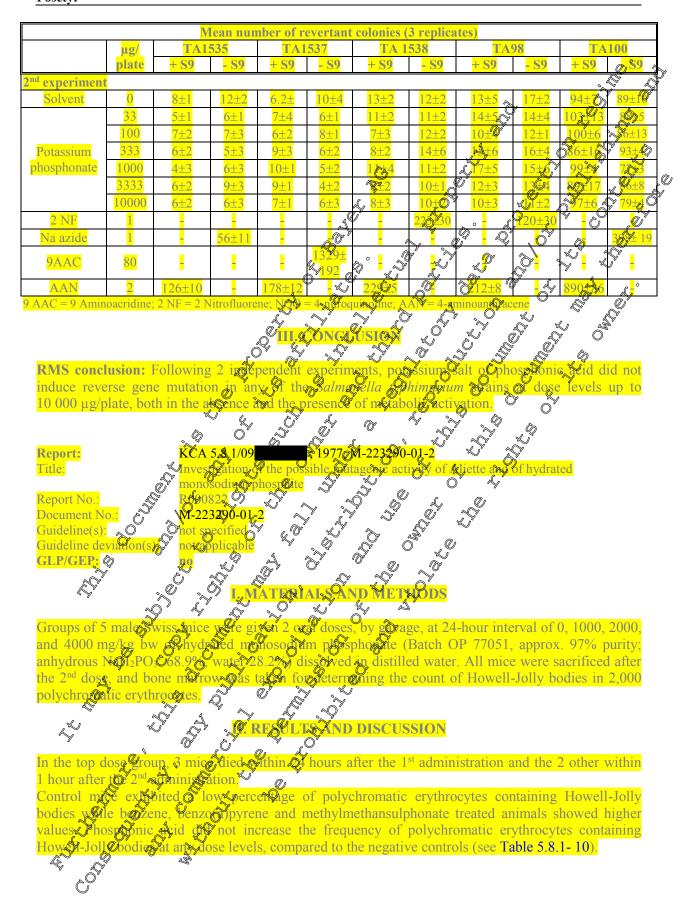


Table 5.8.1- 10: Group mean percentage of PCE containing Howell-Jolly bodies per 2000 cells

Treatment groups	Dose (mg/kg bw)	Group mean percentage of PCE containing Howell-Jolly bodies per 2000 cells
Vehicle	0	0.18%
	1000	<mark>0.27%</mark> *
Phosphonic acid	2000	<mark>0.21%</mark>
	4000	0.22%
Benzo (a) pyrene	200	1.51%
MMS	<mark>25</mark>	1. %
Benzene	0.25 mL/kg	1 <mark>1771 %</mark>

III. CONC

RMS conclusion: Administration of phosphonic 4,000 mg/kg bw did not induce the formation erythrocytes of the bone marrow of mice.

Report: Title: Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

KCA 5.8.1/10 Inductests on Olosph Yous act R002844 M-178996-01-2 not specified

Nospkonate to in the polychromatic the polychrom Induction of prophete lawbda de elop ant in Eschochia eli K12 strain GY 5027 was assayed in the absence and the presence of metabolic activation (Apollor educe) at liver microsomes) using concentrations of phochonic acid elitch on specified in discrete water up to 2 mg/plate. Effect of test substance on prophage development was assayed, ung the same concentrations, on liquid culture of E. coli eq 5029 strain, in the absence is a function that presence of metabolic activation. Results were expressed as the concentration of the substance is activation that maximum theoretical induction which is assessed by ounting either the rember of infective time or the number of lysogenic bacteria. (see Table 5.8.1- 12)

Table 5.8.1- 11

	7			\sim	
Strain	Prophage	Quent	eta ynarlôs V A	Endpoint	
GY 4015	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	k + S	<u>+</u> 601 °	Indicative Indicative	
GYATY27	Lambda Papa	A MB	34 D A1	A Induction potential	
GY 5029	Lambda cI85	AC B	34 AO	A Prophage developn	<mark>nent</mark>

RESULTS AND DISCUSSION

No inducing poontial of propoage lambda was observed in the E. Coli GY5027 lysogenic strain with and www.out notaboli-activation.

Propylge delopont was not inhibited for dose of test substance up to 2,000 μg/in the absence and in se pressice of metabolic activation.

III. CONCLUSION

RMS conclusion: Phosphonic acid did not induce prophage lambda development in the E. Coli 6,12 strain (GY5027) at dose level up to 2 mg/plate, in the absence or in the presence of methodic. activation. Data are succinctly described so that this negative result should be considered as indicative

Report: KCA 5.8.1/11 ; 1981; M-159229-01-1
Title: Monosodium phosphite: Lifetime chronic toxicity and varcinogenicity study in rats Report No.: R000746
Document No.: M-159229-01-1
Guideline(s): No guideline was in effect at the time of the study design is equipment to OECD 453, 1981)
Guideline deviation(s): none
GLP/GEP: yes

Executive Summary
Monosodium phosphonate monohydrate of its administrated in the dict to Clarles River (\$\mathbb{R}\$ rate to provide dosage levels of 2000, 8000, and 32 000 ppp) (expressed as the sanydrates salt; the product containing 27% water). The study was conducted prior to the adoption of the patinen OECD guideline 453, but the study design was in accordance with the povisions of this guideline exty male and 60 female rats were initiated \$\mathbb{Q}\$ each dosage level and in accordance of sucret twice deally for signs of sucret twice deally signs of sucret tw and 60 female rats were initiated a each dosage level and in a control group. The lats were observed twice daily for signs of overt togicity and for mortality. Detailed observations were recorded weekly. Individual body weights and 150d (with compound) consumption reasons were occorded weekly for the first 13 weeks of study and once every 2 weeks thereafter. Ophthalmoscopic examinations were performed for all rats once during the control period and at 3, w 12, w and w months of study. Haematological and biochemical evaluations and urbalyses were conducted on 8 male and 13 female weanling rats once doing the accumation period. Haen atological evaluations were determined for 10 rats/sex/group at 4, 8, 12, 16, 20, 24 and 27 months of study. Biochemical evaluations and urinalyses were determined for to rats/sex/group at 6, 12, 16, 24 and 27 months of study. An interim sacrifice was conducted for 10 rats/sex/group at 12 months of study. No compound-related trends were established formean Good (Ath compound) consomption or on thalmoscopic examinations.

A compound-related decrease in group mean ody words was not at the 32 000-ppm dosage level. Also noted at the 32 000-ppm male deage level was a high incidence of soft stool which appeared to be a compound-relate befrect Survival, though fairly consistent between groups throughout 12 months of study, was decreased at 7 months of Sudy for all the treated male groups when compared with the control group, due mainly to slightly increased mortality in the 12-19 month period.

Variations noted in harmatologic vedes latked consistency and progression and therefore they were not considered to be of to cological significance. Sporadic and inconsistent statistically significant values were noted in the real ogroup for pany biochemical studies. Reductions noted in calcium and potagodim values were difficult to interpret and were probably sporadic in nature but could also be secondary to the considerable quantities of sociom and phosphorus present in the test article. The increase in sodium values of 27 months of probably due to the same cause while the chloride changes are probably secondary to the other electrolytochanges seen. There was a tendency to a reduced pH of the urine in males. There were no other features of note in urinalysis parameters examined.

At necropsy dere were noweatment related findings but relative organ weights for liver, kidney and heart for poles, and kidney and heart for females, at 32 000 ppm were increased. These were not considered to be of tox cological significance. On histopathological examination the only feature of note was an increased incr remaided within the background range for this laboratory. No treatment related changes in neoplastic in the NOAEL for anhydrous monosodium phosphonate seen in this study was considered to be 8000 ppm, equivalent to 348 and 434 mg/kg bw/day in males and females, respectively.

I. MATERIALS AND METHODS

drate (= maosodium)

Or phosphonic acid in the dies ranges A. MATERIALS 1. Test material: Monosodium phosphite hydrate (= monosodium Name: phosphonate monohydrate) Description: White powder Batch / Lot No.: DA 117 NaH₂PO₃: 73% water: 25.9% Purity: Stability of test compound: Stability and Concentration of were within the acceptable ranges 2. Vehicle: Plain diet 3. Test animals Species: Rat& Strain: Sex: Age: Weight at dosing: Source: Acclimatisation period: 0 days Diet: Water: To wate Qad libitum & Housing: Environmental B. STUD D 1. In-life dates
1978-08-25 to 1987-11-25

2. Animal asognment and reatment Soups The following dose groups were employed: Animal assignment and dose greo Rats wer and and and distributes

Table 5.8.1- 12: Group Flocation in the 27-pointh feeding study in rats

Conc. in diet [ppm] *		animals
Conc. in diex ppint	& Wale a.	Female
£ 0 \$	8 × 600	60
2 000 0	60	60
2 808 A	5 60	60
320000	60	60

^{*}excessed anhydrous more sodium phosphonate

Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

Diet Preparation and Analysis:

Homogeneity of test substance in the diet was checked on two occasions during the study period; samples were collected from all diet preparations during each of the first 4 weeks and at Weeks 8012, 26, 39, 52 65, 78, 91, 104, and 117.

Details on oral exposure:

Duration of exposure

Frequency of treatment

117 weeks

Via diet, ad libitum

3. Examinations

Clinical signs - mortality and moribundity/general daily observations Body weights

Food consumption

Ophthalmic evaluation

Haematology

Clinical chemistry

Urinalysis

Organ weights

Histopathology,

Rats were observed at least twic@daily for more moribundity and ligns of over toxicity and letailed

examinations were performed weekly. Body weights were recorded weighty for the first 13 weeks every 2 weeks the earth of the second of t

Food consumption we recoved workly for the first 13 wheks

Ophthalmotogical examinations were varried but on all rats ho ore treatment and at months 3, 6, 32,18, and 24 Post-dong. Quemajological investigations (errorrocy) council Hb; Mot; total

choestero BUN, alkaline phorphatase, SGOT, SGPT, albumin,

Jeney Hb; Vact; total county Vace canced a pointy in atelet wonth vac, 8, 12, 16, 29, 24, ord 27.

Joo Chemistry (chloride, votassium, solium, calcium, chosesterot, BUN, alkaline photomatace, SGCU, SGPT, albumin, glucose affect and total voilizabin, LDH, total protein, globulin)

Were carried out on Wrats/ox/downlevel at months 6, 12, 18, 24, and 27.

Uimalysis (volume, sp. Affic glwity, 14, colour and appropriate county blood protein uroly innocessory on 10 rate 3x/downless. Urhalysis volume, specific of wity 11, colour and appearance, Occursolood protein, uro inogo, nitrites) were also carried out

Sected gans were wighed (heart, kidney, liver, brain, testis) Olisto Thologial exominations were performed on the following

weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weights

The weigh spleet pancious, urinary bladder, prostate, uterus, testes, ovaries,

Statistics evaluation
All statistical maly compared the treatment groups with the control group, by sex. Mean body weights, much food consumption, haematological parameters, biochemical and urinalysis parameters, and absolute and relative organ weights were compared by analysis of variance (one-way classification), Bartlett's test for homogeneity of variances and appropriate t-test (for equal or unequal variances) using Dunnett's multiple comparison tables to judge significance of differences.

II. RESULTS AND DISCUSSION

A. MORTALITY

There were no treatment-related changes in survival through 12 months of study; at study termination, lower survival was recorded in all treated males compared to controls, due to the greater number of deaths in the 12-19 month interval, whereas survival in treated females we greater that that of controls (see Table 5.8.1-13).

Table 5.8.1- 13: Survival rate after 117 weeks

Sov		Dose level (ppm)						
Sex	0	2000	8000	Z,	32 0000			
Males	21/50	15/50	14/50	N S	11/50			
Females	16/50	21/50	20/50	y , W	20/50			
	<u> </u>	0	, , ,	~// ./	.0°			

B. CLINICAL OBSERVATIONS

No treatment-related clinical signs were then except a Migher Acidence of soft stolls in Migh See males throughout the study period.

C. BODY WEIGHT

Statistically significant reduction (\$\sigma < 0.05\) or p<0.01) of group meadow goin was recorded in both sexes of high-dose rats throughout the gody period scept (\$\sigma \text{week}, 117. \$\sigma \text{group} \text{mean bw changes} were seen at lower dose level, except a statistically significant lecrease (p<0.05) by the mid dose males at w-113 of study (see Yable 5.8.1- \$\sigma \text{y}.

Table 5.8.1- 14: Group mean ody weight

		() () () () () () () () () () () () () (~	/ Dise le		0 4	•	
Week	Ž.			00,	800		32	000
	M &	\\F 4	M	~ F ~			M	F
13	500 2.7	21±250	500±59.5%	0279± 29 .5	899±47	276±20.7	464±46.5**	264±21.0
39	0 10 10	9354±54.1	669±94 ₄ 1		\$682±75.3	& ±20.7 & ±33.2	615±67.7**	324±43.3
65	76 7±136.1	43 \$\D297.4	972±1 6 6.5	493±85.7	760 @ 11.3	0410±58.7	678±84.8**	375±58.6**
117	748±146.1	69±86.65	677 <u>9</u> 7.2		633±129.℃	494±127.0	645±103.2	425±67.1

^{*} p<0.05; ** p<0.01

D. FOOD CONSUMPTION.

No treatment clated changes in God consumulon were seen in both sexes at any dose level throughout the study pool (1 w difference) were occasionally seen, but no dose trend was established, however, food enciency ratio were decreased in mid and high dose males (see Table 5 1-15).

Table 5.8.1- 15: Mean Good consumption (got/d) and mean substance intake (mg/kg bw/d)

	Al .				
Dose level		onsumation	Mean substance intake* (mg/kg bw/d)		
(bbu%, %	/ "OM "	♥ F	M	F	
	24.80	18.1	-	-	
20 00 8	27.9	18.2	83.9	104.2	
₹8000© (₹ % 5.7	18.4	347.6	434.1	
32 000	24.9	18.0	1481.5	1820.1	

^{*}express Quas anhydrous monosodium phosphonate

E. OPHTHALMOSCOPIC EXAMINATION

No treatment-related changes were seen at any time during ophthalmological examinations.

F. HAEMATOLOGY AND CLINICAL CHEMISTRY

Statistically significant changes were recorded in several haematological parameters (slight significant reduction in erythrocyte count, in HB and in Hct at 12 months only for mid- and high males; increases platelet count in high-dose males at 27 months; changes in females were sport and did not appear to be treatment-related as no dose or time trend could be demonstrate Statistically significant changes were recorded in several biochemical parameters (occasional for glucose, alkaline phosphatases, SGPT, LDH, album, globulin and total proxin in males glucose, BUN, SGPT, LDH, albumin, globulin, total protein in formles; increased total bilirubin levels in both sexes; decreased calcium an potassium levels at some Otervals appear to be treatment-related as no dose or time trand could be demon

Clinical-chemical selected parameter Table 5.8.1- 16:

			4	To Dose We	vel (psm)		<u> </u>	(/// h
Parameter		0	[[] N	BO ~	M.O	90 ° 0,	√ 32 0	000
	M	F	O MY		MO	KIF a		000\$ F
RBC 10 ⁶ /cmm	7.61±0.54	6.81±0.3♠	7.22 49 .58	6.69±0.3\$	6.80± @ 35**	√5.50±0.€3	6.990.33**	6.65±0.34
Month-12	7.61±0.54	6.81±0.34	7.22±0.58	6.69±0.33	6.80₹0.35*€	6.50 0.43	6.90±0.339*	6.65±0.34
Month-27	6.90±1.56	6.39±0.84	, 9 54±0 ,9 8	6.07 7.19	6.88±0.35*©	6.2 ±1.32	7.69±1.49	6.61±1.57
Hb (g/100 mL)			,			, O		
Month-12		16.3±1606	16 2 1.29	\$5.8±0.84	15.3 71*	15.5±©11	15.3±0.80**	15.7±0.78
Month-27	12.8±1.93	212.6± ₽ .58	13.3±1.65	11.8±1.99	11.8±2.40	12.0 2.33	(137.±2.20	12.9±2.37
Hct (%)	, "7	کے		@ Y	lα v		7	
Month-12		7.5±2.90	44.4±4.13	€.5±2,19	41.7:0.92**	₩1.5± 2.9 *	41.3±2.25*	41.8±1.85*
Month-27	48 210.84	47.4± 85	52.9±6.41	44.7±283	46,5±9.86	45.5±9.05	53.1±9.11	48.3±9.81
BUN (mg/100 mL)	96.7±316	12.7±2.0%	15.8 7.79	12 6±2,35	28.2	19 .4±2.45*	6.0±6.22	13.3±2.52
Alk.phospharase (IU/L)	83±25.5	42± 6 3.0	\$2±48	65± % .2	41.7 © .92** 46,5±9.86 28.2 © .16 87±31	61±50	154±38.5**	40±17.5
Ca (mg/th/) mL)	10.5±0.63	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		y W	2	9.7±0.49**	10.3±0.62	10.2±0.52
Na (meq/L)	04±2.6	1473.0	J44±2.6°	142\(\text{Q2} \) .0	144±2.3	145±2.4*	149±3.7*	146±3.7*
					7			•
Urinary pH Month-6 Month 12								
Month-6	8 8		LO 8 . (2)	7.30	7	7	7	6
1110 17750 1		N É	7		6	6	6	6*
Month-18		Q 7		O 6*	6	6	6	6
Month-24		7,0	Ø6 %	, ,	6	6	6	6
Month-27	6		Q 6 5	5	6	5	6	6

eas a urinary pH was recorded in high dose males at all sampling intervals

H. PATHOLOGY

No gross pathological findings were recorded in rats during study period, neither in those sacrificed at the 12-month interval nor in those sacrificed at study termination.

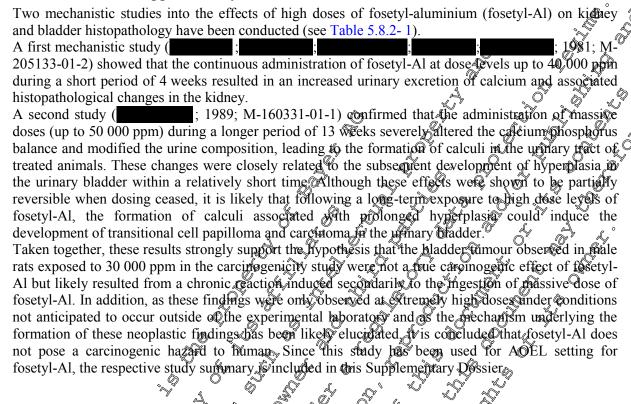
Statistically significant increased liver, kidney and heart relative weights were recorded in high lose rats (increased kidney weight were considered to be caused by increased incidence of chronic pohritist and within the expected range of this species).

Histopathological examination at terminal sacrifice did not reveal any treatmont-related neoplastic and non-neoplastic changes: there were more benign than malignant tumour and the incidence of both was slightly higher in low and high dose males and high dose females had more management to their treated groups; non neoplastic changes (inflammatory, degenerative changes) were excelled distributed among sexes and dose groups. However, none of these changes appeared to be treatment of related (see Table 5.8.1-17).

Table 5.8.1- 17: Organ weights and incidence of tumours in this sagraticed termination

		. 📎		, , ,		Al 37		
			Jale 💍		8	ℴ Fe	male 2	1
Dose (ppm)	0,4	2000	80@	32000	4 O 4	> 2000 €	D. 800%	32/1/0
Liver		. ~	~__________________\		,			
Absolute weight (g)	2© 12	√21.76.	2 ⁹ 309		16297	13.97	7.94	1 7.02
Relative weight (%)	6 ₹.27 €	3.19€	₹ 3. 8 \$	3 88*	Q.62	\$3.41	© *3.68	4.05
Kidney	\$ °	~	~		ð é		, Ka	
Absolute weight (g)	5 @ 3	© 40	© .38	6 √7.11 *	3.30	3,91	3.89	3.92*
Relative weight (%)	· 0.79	0.80	1.07	1.10	0.72	7.72	4 0.79	0.95**
Heart V		, Y.	*			<u>`</u>	0	
Absolute weight (g)	2.23	204	2.27	2.64	× 1.59	1.60	1.62	1.73
Relative weight (%)	0.31	.32	\$9.37* ₂	№ 0.43	0,3,4	4	0.34	0.41*
4 6		O O			&			
No. of rats with benign tumours	29 ₀	3.5	35	97	o [™] 50 4	, 47	50	45
n=60 & 4. Oi		~··		, O	a a			
No. of rats with no lignan tumqurs	, Y4	7 17 3	19 🍣	100	Z	14	16	22
n=60	Y 40		r 🔈	1 0 36 (C	*			
No. of rats will tumovrs (beingn	37			036	D 53	50	52	50
and malignant) n=60	4		\\ \Phi' \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					

OT. CONCLESIO


RMS conclusion: Based on see findings corded in the high dose group (soft stools, bw loss and decreased for efficiency decreased unite pH organ weight changes), the 8000-ppm dose level (equivalent to 347.6 and 4.1 pg/kg pg/day in male) and females, respectively; 390 mg/kg bw/day for both socks) was the NOAF on the study.

Applicant's remark: Please note that the study NOAEL refers to anhydrous monosodium phosphonate. The correction of the NOAED for water content that was applied by EFSA in its revised ADI setting for phosphonic acid, was 274.1 and 342.3 mg/kg bw/day in males and females, respectively, and 307.5 mg/kg bw/day for both sexes. The NOAEL was converted using molecular weights of 104 and 82 g/mol for anhydrous monosodium phosphonate and phosphonic acid, respectively.

⁵ EFSA (2013): Conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl. EFSA Scientific Report (2005) 54, 1-79, revised version dated 12 June 2013.

Available at http://www.efsa.europa.eu/de/efsajournal/doc/54r.pdf

CA 5.8.2 Supplementary studies on the active substance

Mechanism of action

The mechanism of action (MoA) underlying the development of uringry bladder tumours in rats following high coses of tosetyl-Al can be summarised as follows:

Kev Event@

High doses of phosphorate lead to an increased calcium (Ca) concentration in urine. This is noted after one week of treatment in the 1st mechanistic study (Ca) in mechanistic study after 13 weeks (1989; M-160331-01-1). The mechanism by which this occurs has not been investigated, but it is conceivable that phosphorate in serum forms complexes with Ca, in analogy to high concentrations of phosphorate. It thereby reduces stimulation of Ca-sensitive receptors (CaSr) in the parathyroid that do not sense complexed Ca triggering an increase in parathyroid hormone (PTH). PTH stimulates osteoclast activity thereby releasing Ca from bone. Ca in serum is tightly controlled and the release of Ca from bone into serum causes increased renal excretion / decreased tubular re-absorption. This will lead to increase furinary Ca concentrations.

Key Event 2

High Ca in circum eventually leads to exceeding the solubility product of Ca-phosphonate or Ca phosphote, thereby producing bladder calculi that are composed of Ca and phosphorus (P). This is seen after 2 weeks of treatment in male rats receiving 30 000 or 50 000 ppm fosetyl-Al. Uroliths were noted after 2 weeks of treatment in the kidney of high-dose rats of both sexes. After 13 weeks, middose animals of both sexes also showed kidney urolithiasis (1989; M-160331-01-1).

Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Key Event 3

The presence of calculi and uroliths causes a chronic mechanical irritation and damage of the urothelium and the transitional cell epithelium. The resulting urothelial repair activity is a proliferative stimulus that leads to papillary and transitional cell hyperplasia. This is a well-known phenomenon in rodent bladder carcinogenesis and can be observed with chemically induced calculi as well with foreign objects implanted into the urinary bladder (reviewed by Clayson et al., Fd. Chem. Toxio. 33(9), pp. 771-784, 1995).

Applying the IPCS Human Relevance Framework to setyl-Al.

Question 1. Is the weight of evidence sufficient to stablish the NoA in animals?

Yes, the development of uroliths in the urinary fact by high doses of fosetyl-Al could be clearly demonstrated in a time- and dose-dependent fashion. The development of urothelial neoplastic in rodents in response to bladder calculi is well established. A genotoxic Mox can be excluded due to the unambiguously negative genotoxicity database for fosetyl-Al.

Question 2. Can human relevance of the MoA be reasonably excluded based on fundamental qualitative differences in key events between experimental animals and humans?

No, urinary bladder calculi, irrespective of composition, cause irritation and cell proliferation in humans. There is some epidemiological evidence that urinary tract causer in bumans is associated with a history of calculi in the bladder. The risk in humans may not be as great as that in rodents because the calculi are usually voided pontaneously or removed by surgical procedure. Thus, although there are quantitative differences in the carcinogenic response to calculi between species, the effect is not species-specific. However calculus formation is dependent on attainment in the urine of critically high concentrations of the constituent chemicals which form the valculus. The carcinogenic effects are also dependent on reaching a threshold concentration for calculus formation (cited from IARC Publication No. 147)⁶.

Question 3. Can human relevance of the MoA be reasonably excluded based on quantitative differences in either kineticor dynamic actors between experimental animals and humans?

Yes, healthy humans have very low concentrations of urinary protein and much lower urinary osmolalities than rodents, two of the critical parameters required for the formation of cytotoxic calcium phosphate-comaining precipitate (cited from IARC Publication No. 147)⁶.

Furthermore, the LOAEL for eliciting **Key Event 1** (facreased urinary Ca) and **Key Event 2** (calculus formation) is 30 000 ppm, equivalent to 2405 / 2724 mg/kg bw/day (3/2) during week 8 of the 2nd mechanistic study (1989 M-160331-00-1). Likewise, the substance intake at the LOAEL for bladder amount in the 2-year rat study was greater than 4500 mg/kg bw/day during the critical first two weeks of exposure during which increased Ca excretion is already detectable in the 1st mechanistic study. These doses are much higher than the practical limit dose of 1000 mg/kg bw/day laid down in the relevant OECD guideline 453 and more than 1000-fold higher than the ADI for fosetyl AI (3 mg/kg bw/day).

In conclusion, while the MoA for bladder caromogenesis in rats may theoretically operate in humans, the doses required to elicit key events are no achievable in any foreseeable human exposure scenario.

Leaves required to elicit key events are
⁶ Available at https://monographs.iarc.fr/ENG/Publications/pub147/IARCpub147.pdf (accessed 28 April 2016)

Table 5.8.2- 1: Mechanistic studies with fosetyl-Al

Study type	Species	Doses tested	LOAEL / Effects	NOAEL	Reference o
4-week oral	Rat	0, 10 000,	20 000 ppm of fosetyl-Al during	10 000 ppm	;
(dietary)		20 000 and	4 weeks induced functional	(equivalent to	·
mechanistic		40 000 ppm	alterations and histopathological	ca. 1000 xg/kg	
study			changes in the kidney.	bw/day)	; 1981; M-💭
				<i>©</i>	205133-01-2
13-week oral	Rat	0, 8000,	30 000 ppm: function alterations	80 00 ppm	7,
(dietary)		30 000 and	and histopathological hanges in	\$ 00/600 mg/k &	19895M-160931-
mechanistic		50 000 ppm	the kidney, including imbalance of	bw/day, ♂/♀)	
study			calcium/phosphows metabolism	ِ ٥ ا	
			formation of calculi and		
			subsequent Reperplasia in the		
			urinary troct.		

Report: KCA 5.8.2/01 Title: Report No.: Document No.: Guideline(s): Guideline deviation(s): **GLP/GEP:**

Groups of 10 (Sex) D[®] rays (approx. Week; old) Sere a ministred 0; 10,000; 20,000 and 40,000 ppm of Sechnical footyl-Alobatch OA 1,2; 97 ± 0.38 purity) in the diet for 4 consecutive weeks (equivalent to 34.9, 465) and 2983.9 g/kg; 3/d footyl-25.

Stability, a mogeneity and consentration of the substance of th

All anites were observed the eday for general neal condition and mortality. Individual by and food consumption whe recoviled wekly

Calcium and phosprorus levels fore determined weekly in the serum, in the 24 hours urine and in the faeces.

At termination all rower subjected to gross macroscopic examination and some tissues* were examined hisropathologic by (o'xophao's, stollach onall intestine, colon, liver, pancreas, salivary gland, tradea, lung, heart, acoo, spleth, in center lymph nodes, thymus, thyroid*, parathyroid*, prostate, seminal vesicle, uterus, brain adrenal muscle, kidney bolder, gonack epic ymides, prostate, seminal vesicle, uterus, brain, spinal cord, eye and Situita

S AND DISCUSSION

No treatment related death for clinical gens, nor food consumption changes were found; by gain was similar in feated and control rate at end of the 4w study period.

Serum alcium and phosph ous levels were similar between treated and control rats (significantly)

increased phorpoleve hoted in females after 4 weeks was within control ranges seen during the

Urine volume did not differ between treated and control rats.

Urinary **calcium** was increased at all dose levels, particularly in the males: at 40 000 ppm, males and females urinary calcium levels were 4 to 6 times and 2 to 3 times as high as in controls, respectively and decreased markedly at end of treatment; at 20 000 ppm, significantly increased levels (2 to 3 mess as high as in controls) were seen in males for the first 3 w of treatment and after 2 weeks in the females and urine calcium returned to normal values at end of treatment; at 0 000 ppm. Alght out significant increased urinary calcium levels were seen only in males after 2 to 3 weeks of treatment only and urine calcium was similar to controls values at end of treatment (2 Table 5.8.2). Urinary **phosphorus** was reduced at all dose levels (only in males at high dose; after 2 weeks all after 2 to 3 times as high as in controls.

4 weeks of treatment in the mid dose males and females, respectively only in the two doses from the after 3 weeks of treatment (see Table 5.8.2-2).

Faeces weights were generally similar between treed and control rats, except in high dose at all development of the faeces were increased in gales at all development and the faeces were gales at all development and the faeces are gales at all development and the faeces at all development and the fae

No treatment related macroscopic changes were recorded. Hotopostological examination (only kidney, thyroid and parathyroid examined thowe conly subset stated increased incidence of vacual and degeneration of the epithelial cell in the renal vibules for more only, which was fairly discrete and considered as probably reversible. No sanges were sen in the thy old and parabyroids.

Table 5.8.2- 2: Calcium and p sphorus leves in som, up an Oaeces

					200	ALV (o o		
	Time		ols %	y 10		<mark>om</mark> L	2 <u>220</u> 0	0 ppm	0 40 500	
	(week)	Males	Fegal	es Yal		emales	Males	Pemalo	Males	Females
Serum		Ď	0"			e O		y iy	L.S	
	1	120	<u> 133</u>	126			₹ <mark>131</mark> ~	43 3	122	140
Calcium	2	& <mark>144</mark> &	7 163°	? <mark>1</mark>	1 (* <mark>153</mark> ~			/	151
(mg/24 h)	<mark>3</mark> (7 109 0		@ <mark>10</mark>		<mark>94</mark>	98	Oʻ <mark>106</mark> %	100	100
	4	125	· <u>14</u>	Z 7 12	<mark>U</mark> . I.	~ 00 0	9 <mark>121</mark> 5	100	105	88
		<u></u> √82	< 71c	~		≫ <mark>70</mark> ≈	y" <mark>82</mark> 0"	2 <mark>89</mark>	<mark>84</mark>	<mark>71</mark>
Phosphorus	\sim	89	86	/ <u>(</u>		77		///	88	81
(mg/24 h)	5 40	7 5€	67	. / 0		Q	0 <mark>76</mark>	65 65	<mark>79</mark>	<mark>67</mark>
		×66	€ 56	60		80 (D <mark>68</mark> V	<mark>59</mark>	<mark>65</mark>	<mark>62*</mark>
Urine										
			1 0 <i>p</i> 92	3.8 4	<mark>+0,</mark> ^}r	0.020	1,484**	1.449	3.810	1.959**
Calcium	2,5	0.958	\$568	2.10		16×94	2.942**	4.107*	5.434	3.557*
(mg/24 h)		<u>₽</u> ₹48	\$ <mark>1.194</mark>	9 1,9 % ()**	1.636	7 <mark>1.495*</mark>	2.612	3.191**	2.410*
	@1 <mark>4</mark>	№386	0,50		14 6 ^S	0.94@	0.731	0.955	1.703**	1.473**
	- T		23/.5	≫ <mark>31.</mark>		12/3	22.6**	16.7	17.7**	18.6
Phosphorus (mg/24 h)	. <mark>2</mark>	242	$\sqrt[2]{4.4}$	ATT	<i>"</i>	, <mark>W.5</mark>	17.5*	17.8	14.3**	11.9
(mg/24 h) © 3	3	\$6.0	16.2 ⁰	V [†]	3 ×	10.5*	22.5	10.7	15.6**	12.8
	∧	^{32.4}	* <mark>1890</mark>	25.	<mark>8</mark> ,~�′	14.7	<mark>20.7</mark>	11.6*	19.2*	15.2
Faeges	×	y (=1)	~_\^\							
<i>y</i>	1		© 38.3	470	D "	<mark>48.5</mark>	<mark>50</mark>	<mark>39.3</mark>	40.1	40.4
Calcium	S. C.	₄ \ \ 57.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	450) <u> </u>	0	38.6	<mark>47.5</mark>	<mark>49.2</mark>	56.8	34.9
(mg/24 h)	0 3 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	57.0 D	48.6	@, <mark>58.</mark>	6	47.0	<mark>61.5</mark>	<mark>32.7</mark>	63.5	41.1
	44	3	& A3.9	♦ 49.		48.9	55.2	<mark>43.2</mark>	57.7	45.2
l Ø	3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>\$5.7</u>	39.5	<mark>60.</mark>		50.2	65.8	<mark>50.5</mark>	<mark>78.5</mark>	72.1**
Phosphoras	\mathcal{Z}_{2}^{2}	4 89.7	<mark>66.0</mark>	101		<mark>64.4</mark>	88.4	90.0	156.7**	95.7
(mg/24 h)		862	89.5	<mark>99.</mark>		83.6	119.6*	<mark>59.5</mark>	132.1*	95.3
	4	43.2	<mark>59.2</mark>	<mark>78.8</mark>	3*	81.7	88.7*	<mark>68.1</mark>	120.3**	<mark>95.8</mark>
* p< 0.05 0 * 1	0 < 0.01									

III. CONCLUSION

RMS conclusion: Administration of fosetyl-Al at dietary levels up to 40 000 ppm for 4 weeks in the resulted in increased urinary excretion of calcium, particularly in the males in which renal two less exhibited slight microscopic vacuolar degenerative changes. No changes were seen in the thyroid/parathyroids. At 40 000 ppm, phosphorus levels were decreased in urise and increased in open

Report:
Title:

Report No.:

Report No.:

Guideline (s):

Guideline deviation(s):

H-160331-01-1

not specified

not applicable

yes

Executive Summary

This mechanistic study was undertaken to investigate the effect of bron-dows of esetyl-duminium

(fosetyl-Al) on the urinary system of the first of the were dosed (via the diet) with sosety! Al at levels of 0, 8690, 36900 or 50 000 ppm or periods of up to 13 weeks. Up to 10 rats/sex/grup were killed after 2, 4, 8 or 1 week of treatment. A further 20 rats/sex/group were dised for 8 weeks over which 10 rats/sex/group were allowed 8 weeks recovery and then killed while the remaining animal were killed after 16 weeks recovery. Finally, up to 10 rats/sex/group were down for 45 weeks, allowed 21 week of recovery and were then killed. The animals were observed for clinical signs of reaction to treatment, body weight, food and water consumption were measured, proof, time, faces and unifary captuling the analysed and finally all animals subject to grass pathological examination and subsequent liveropathological evaluation of kidneys, ureter, urigry blader and thyroids (won paralyroid).

Mortality: Ton high-dose males and 3 mid-dest males died or wer killed in extremis. This occurred intermittently throughout the ody. Conical signs consists of marked diuresis, red/brown staining of abdominal fur, abdominal distinsion, weakers, son pallor and hypothermia. Gross pathology showed obvious urolithiasis and distration of kickey prives, unters and urinary bladder while histopathology findings revealed hydronephrous and transflonal cell operplasia in the kidneys and papillary hyperplasia in the bladder.

hyperplasia in the blader. So the Clinical signs Marked diversis and red your spining of abdominal fur were observed in high-dose animals and similar but loss moked dects of middless animals. Abnormal food consumption was also seen on some high dose animals. The continued was also seen on some high dose animals while tree onent continued. When dosing ceased, only the abdomanal fur staining continued. These light wind the abdomanal fur staining continued. These light was not recouped during subsequent recovery periods a sting to to weeks. Similar but less marked effects were observed in

mid-dose mads, but body seight recovered to normal when dosing ceased. These changes were not observed in hid-dwe fem les or Jow-de animals.

Food concumption: Consistently reduced food intake was observed in high-dose animals and initially in mid, and low-dose males Such reactions persisted in high-dose animals while treatment continued, but food concumption rapidly returned to normal when dosing ceased. Mid- and low-dose females did no show these changes.

Achieve vintake of fosetyl-Al: Calculated mean achieved doses of fosetyl-Al were 600, 2300 or 3900 mg/kg bw/day for low-, mid- and high-dose groups, respectively.

Document MCA - Section 5: Toxicological and metabolism studies Fosetvl

Water consumption: High-dose animals showed a marked increase in water consumption which persisted during treatment and recovery periods. A similar effect in mid-dose males persisted only as long as dosing continued. No such effects were seen in mid-dose females and low-dose animals. Haematology: No obvious adverse changes were seen with the possible exception of increased &BC, Hb, and Hct in high-dose animals which may have been a result of the marked diuresis shown these rats.

Clinical chemistry: Uraemia occurred in all high-dose animals which persisted during treatment and recovery periods with some recovery in females when dosing ceased. Decleased protein and a suming levels were observed in some animals during treatment with apparent recovery there after. Increase phosphorus and carbonate levels followed the same powern. Simila Vout less maded effects vere observed in mid-dose animals. Low-dose animals showed no adverso hanges.

<u>Urinalysis:</u> Increases in urine volume and decreases a specific granty and pH vore seem in high-dos animals. Urine electrolytes were also reduced except for calcium and dominism which were increased) in these animals. These effects revesed when do ingreased Similar but less maked offects were observed in middless enimals. effects were observed in mid-dose animals. So sugo charges were observed of low wose animals except for the change relating to urine pH.

Faecal analysis: With the exception of an initial inforease in male, calcium levels in ligh-due animals were reduced during treatment and returned to pormal durin othe recovery Period Phosphorus Evels were initially increased in high dos animals. Adminium levels were increased in this group throughout the dosing period but reto ned knowns during the ocovery period. In ped-dose animals, similar but less marked changes were seen in aluminium levely. In 100-dose animals, the only change observed was increased aluminium level and ally dueing the reatment period.

Urinary calculi analysis: Uring calculi, available only from high and mid-dos animals showed high calcium and phosphorus content, and low duminium content.

Organ Weights: Increase absolute kighey wights were seen in high-like and mid-dose

males. No other significant changes were observed.

Gross and histopathological fordings. The major goss partiological find was parked urolithiasis in the bladder, ureters and others of high dose unimal and pid-dose male within two weeks of the start of dosing. The phenomenon tendar to subside slightly as doong progress but even after a 21 week recovery period mall woliths were still present in the fords of the undry bladder and the kidneys. Such effects were uncoronon of high any middose semales and all low-dose animals. Histopathological findings consisted of papillary hypoplasia in the bladder epithelium of the high-and mid-dose males treated for 2-13 weeks, although such indings significantly decreased in animals from the same group which were subsequent allowed a Occovery period of up to 21 weeks. Hydronephrosis, politis, oyelogephritio papillary secrosis dilatation of collecting tubules and transitional cell haperplasia of the pely's was seen in high-dose animals and mid-dose males from treatment week 2 onwords and persided throughout dosign and recovery periods. Dilation of ureters with occasion urgeritis or transition of cell Plyperplasia was seen in the same groups. The histopathological change on the industry and patters be considered directly related to the urolithiasis which occurred in these same Sups.

Conclusion: The NOAEL in his study was male and females propertiely. 8006 ppm equivalent to 500 and 600 mg/kg bw/day in

Y TERSALS AND METHODS

Fosetyl-Al

Fine white powder

DA497

Stability of test compound: Stability and homogeneity in diet were analytically verified.

2. Vehicle: Plain diet

Document MCA - Section 5: Toxicological and metabolism studies **Fosetyl**

3. Test animals

Species: Rat

Strain: Sprague-Dawley, Crl:CD(SD)BR

Sex: Males and females

Age: 6 weeks

Weight at dosing: Males: 165-229 g

Males: 165-229 g
Females: 123-179 g

Source:
Acclimatisation period: 15 days
Diet: Water: Water, purified Bodent Chow #5002 dad libitum
Water, purified by referse osmosis and ultraviolet sterilization of libitum
Individually in stordard stainless steel ages
Environmental conditions:
Temperature: 21±3°C
Humidity: 50±20%
Air changes: Not reported
Photoperiod: 12 h light / 12 h darlay

B. STUDY DESIGN AND MERCHOD

1. In-life dates
1987-08-12 to 1988-04-07

2. Animal assignment and treatment
Animal assignment and dose schups:
Two days after arrival the rate were randomly assigned to each of the atreatment groups and 1 control group using a confined were wandomly assigned to female animals were randomized separately according to Odividial body weights. Rats in noor health or of the extremes of the head-weights weights. group using a conjuter based sumbon generator. Male and female animals were randomized separately according to Odividual body weights. Russ in pror halfth or at the extremes of the body to the study. The following dose froups were employed: weight range were not essigned

Group allocation and mean Substance intitue in the mechanistic feeding study in rats **Table 5.8.2**

Group	Conc. in	Exposure dyration	Recovery ,	y No. of a	nniWals	Mean daily sub [mg/kg b	
no.	diet [ppm]	رweek® ((weeks)	Male 💍	Female	Male	Female
				\$\frac{10}{10}\$	10 10		
	4		Q- Q		10		
	0		O 8 %	, ≪10	10	0	0
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, 16	O [×] 10	10		
4		A13.0°	Ů,	y" 10	10		
~			2 21	10	10		
	@ ^ .	X,	W -X	10	10	817	849
	\$ 4		v –≒	10	10	725	804
			<u></u>	10	10		
2	S 86000		8	10	10	616	718
	(,		16	10	10		
		$\sqrt{1}$	_	10	10	451	567
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		13	21	10	10	431	307
4E,	**	1					

# Document MCA - Section 5: Toxicological and metabolism studies

Group	Conc. in	Exposure duration	Recovery period	No. of a	animals	Mean daily sul [mg/kg k	
no.	diet [ppm]	(weeks)	(weeks)	Male	Female	Male	Femal _{@1} °
		2	_	10	10	3118	3208
		4	_	10	10	2805	300
			_	10	10		
3	3 30 000	8	8	10	10	<b>Q</b> 405	2724
			16	10	10		\$ \$
		13		10	10	( 1771 )	
		13	21	10	10		
		2	—	10 🔻	10 Q	4590 Ø	\$217
		4	—		100	4204	Q 5016 S
				<b>4</b> 10	Q'	5° & 4	
4	50 000	8	8	10	<b>→</b> 10 . @	″ 3845 √°	\$585 W
			16	* 10°	\$\tag{7}		
		13		Ø ^{r0} ×	14	316	38\$0 .
			2	~ 10 ~			

### Diet Preparation and Analysis:

Diets for each treatment group were were stored at room temperature.

Stability of the test diets was Qvaluated after storage concentrations of the test article in the diet were analysed 13. The results indicated good stability and homog et i@xtures. Dietary concentrations were also considered satisfet

## Details on oral exposure

Duration of exposure

Frequency of trea

Recovery period

Table 5.8.2- 3)

# 3. Examinations

Clinical cens - mor moribundity

Body weights

ally for clinical signs and mortality.

Blood / urine / foeces collection

Blood / urine / 8 weeks of treatment and then been allowed 8 weeks recovery. After Week 24, haematology and clinical chemistry analyses on 10

males and 10 females from each group and urinalysis and faecal investigations on 5 males and 5 females from each study group was performed on animals which had received 8 weeks of treatment and then been allowed 16 weeks recovery.

At the beginning of Week 35, haematology and clinical chemistry analyses on 10 males and 10 females from each study group and a the end of week 34, urinalysis and faecal assays on 5 males and females from each study group was performed on animals with had received 13 weeks of treatment and then been allowed weeks recovery.

On each occasion, wrine and faeca vollections were performed first and then blood samples were collected at Oecrops. For we removed overnight from animals to be sampled for saematology and clinical commistry. Blood samples were obtained from the abdominal wrta in media by following other a sesthesia. On each ocasion 24-horine somple were collected from individual animals which were water loaded with 9mL (Scept during Weeks) of two wat and then placed in wetabolism codes. lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

lysis

ly During this 24-h period for Weels 2, 48 and 3, the mimal had acess to food and water. For weeks 6, 24 and 35 the animals did access to food. Faccal sarples vore also collected during

Erythrogyte count, Hgt, Hb, total and diffeontial leukocyte count,

The following parameters were exampled:

Olouw appearance, olumes pecific gravity, pH, glucose, ketones, blood, profon, urobilinogen, sodium, potassium, calcium, totophosphorus, aluminalm, exalate, nitrite and microscopic examination of the certaining deposit.

Dosino the animals with high levels of fosethill calcil (bladder stoles). At the 4 stoles were collected. proposition of the animals with high levels of fosetyl-Al induced urinary calcium the stores ware collected from 5 males which had received 30 000 mm an 4 males and 7 female which had received 50 calculowere the assayed.

The following parameters we aluminism, calculosed. Faecal analysis

Gross pathology

Organ weiges

Histopathology

Organ weiges

Histopathology

Histopathology

Gross pathological examination was carried out on the urinary bladder, kidney, ureters, thyroid including parallel including parall

Haematology

Clinical chemistry

Urinalysis

### Document MCA – Section 5: Toxicological and metabolism studies Fosetvl

#### Statistical evaluation

Numerical data obtained during the conduct of the study was subjected to calculation of group mean values and standard deviation. When appropriate, the data was analysed for homogeneity of variable using Bartlett's test. Homogeneous data was analysed using Analysis of Variance and the significance of inter-group differences was assessed using Dunnett's 't' test. Heterogeneous data was wallysed using Kruskal –Wallis test and the significance of inter-group differences was assessed using Duros test.

# II. RESULTS AND DISCUSSION

### A. MORTALITY

Ten males from the 50 000-ppm group and 3 males com the 30 000-ppm group Oied or were Pile extremis; clinical signs prior to deaths included weakness, tremog abdominal distension red/brown staining of the abdominal region; maj gross pathological andings consisted of calcult and dilatation of the urinary system (kidney, ukters and urinary bladder) istop thological findings included urolithiasis in the bladder, hydronephosis, capillary neosis, and transitional hyperplasia in the kidney and occasionally in the treeters. hyperplasia in the kidney and occasionally to the deters.

No deaths occurred in the 8000-ppm group.

B. CLINICAL OBSERVATIONS

Major findings were marked diversis and red/brown discolorared of the abdominal fur:

- During the first 2 weeks treatment, these findings occurred in approx. 50% of the dose males and 25% of the high dose smales of which soveral more exhibited yellow staining in the urogenital and/or ventfal area. The findings and were also seen in many of the mid-dose males
- and occasionally in the mic-dose female. No such charges were seen in the low-dose group.

  Abdominal wetness, reds rown and/or yellow fur stanning persisted during Weeks 3 and 4 and also, to a much oser extent daring weeks 5 through 8.
- Similar findings were seen in high- and mix lose trales during recovery periods extending through Works 9-8 and on Weeks 14-24 and in high-dose rate during recovery period extending on Weeks 25-34.

Body Wights were warked reduced in Origh-Lose rats (both sexes), and also but less markedly in mid-dose males disting the treatment seriod; after constant of treatment, high-dose rats exhibited improved body weight pain, by their body weights were ower than controls at end of the various recovery periods (up to 21 wasks) (the Table 5.8.24)

# D. FOOD AND WATER CONSUMPTIONS

Reduced God consumicion was recorded in high close rats during the treatment period and also in the mid dose males during the first ww of reatment; after cessation of treatment, food consumption improved and was not different from coorols from Week 14 to study termination (see Table 5.8.2-4). The mean test substance intake was 500/600 2100/2500, and 3500/4200 mg/kg bw/day (3/2) for the 8000; 30 000 and 50,000 ppo dose group respectively. Substance intakes by duration of treatment for each dose group are given in Table 5 & 2-3.

Water concemption was agnificently increased in high dose rats (both sexes) and in mid-dose males during the treatment period; ofter cessation of treatment, high dose males still exhibited statistically significant higher water a sumption than controls (increased values seen in females were not significantly different from controls).

Table 5.8.2- 4: Mean body weight, mean food and water consumption among study groups

Week	Con	trols		8000	ppm			30 00	0 ppm			50 000	0 ppm	۰
week	M	F	M(1)	M(2)	F(1)	F(2)	M(1)	M(2)	F(1)	F(2)	M(1)	M(2)	F(1)	(2)
Body v	weight	(g)											Å	y a
0	200.8	146.0	199.8		145.5		198.4		146.2		1970		14 <b>0</b>	Ô
4	380.4	222.4	378.0		223.2		344.8		216.6		2 <b>%</b> .1 <b>*</b>		181.5*	
8	470.0	255.0	479.1		260.1		437.2		253.4	4	\$87.1♣	Ċ	206.7	
16	560.5	287.3	558.1	573	285.2	291.2	528.6	536.9	288.7	2890	466.6*	411.7	264.04	2520*
24	623.0	318.4	615.7	636.3	322.0	330.7	611.6	6 <b>№</b> .9	315.6	<b>20</b> 0.4	541.3	G2*	<b>20</b> 2.1	295.1 <b>*</b>
34	662.4	345.4	-	656.1	-	356.2	- 6	<b>6</b> 54.1	- 4	942.7	- %	<b>9</b> 79.7 <b>4</b> (	) - 6	320.14
Food o	consum	ption (g	/rat)	•		•	4	<i>y</i>	Q	i ka	4	L	Ü	J.
0	160.8	125.5	160.4		129.9		100.4		125.3	~ W	159.7	\O'	1 <b>∅</b> .9 <b></b>	
4	202.8	142.9	190.7*		141.7	(	184.6	ð .	35.2		<b>9</b> 19.3	<b>\)</b>	16.8	J*
8	186.9	130.6	186.7		131.7	C	177.8	Ö	132		129.80	4	1154	e °
16	178.8	130.6	175.5	197.4*	124.6	129.2*	1608	189.7	1254	125.5	103.4	180.9	<b>1</b> 3	<b>6</b> 7.0
24	176.5	122.1	169.3	185.9	125.0	\$\display35.0	74.4	<b>1</b> 93.7	<b>Q</b> 15.8	Q 29.1 %	163.8	\$492.2 ₄	, 126.5	¥31.7
34	160	119.4	1	155.0	- 0	120.	" - L	167.00	-4	118		156	_ 0	122.3
Water	consui	nption (	g/rat/da	y)	<b>10</b>						Ş			
3	37.1 ±4.68	30.8 ±4.59	40.5	± 7.45		<b>9</b> .82	\$55.3 ±	<b>©</b> 74 <b>*</b>	34.1	9.38	950.6 ±	9.68 <b>*</b>	¥47.8 ±	10.08*
7	37.1 ±5.98	32.2 ±5.34	40.0	± 5.49	29.8 ±	± 7.65	52:9 ±	11.22	<b>1</b> 0.4 :	± 8,99	63,8 ±	14.79	49.8 ±	14.93*
12	33.7 ±7.13	32.1 ±6.19		Ø ≥8.08 _4	30.1		\$\\ 46.6	Ø.53♠£	34.4	9.80 J	69.9	3 14.87♠	51.8 ±	6.71
15	40.6 ±9.00	32.7 ±7.90		± 6.10	<b>3</b> .1 :	± 4 <i>6</i> 66	<b>3</b> 9.9 ±		31.8	± 703	49.5 ±	7.64*	40.4 ±	6.57*
24	31.3 ±3.68	±7.90 27.6 ±6.20 ±6.20	31.	9 4.80 <b>(</b>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	£ 8.43	35,72	Q £ 6.88\$	23.0	± 4.255	41.4 =	11.4	34.1	± 11.1
34	32.9 ±4.90	365 ±6.17	7.3 ±	1403	34.7 ±	12.31	. <b>3</b> 9.5 ±	± <b>3</b> 5	083.8 g	± <b>©</b> 98	51.1 ±	8.47*	51.3 ±	21.44

(1) : groups administered 8 yeeks of reatmen@ recovery ; (2) groups administered 13 weeks of treatment ± recovery

# E. HAEMATOLOĞY AND ÇÖNIÇÂL CHŒMISŌRY &

Haematological change (sign front occrease of RCC, HIC Hct in high dose males and of platelets in high-dose fem des du ng the first weeks of treatment) were within normal range and may have been related to diuretic effects of test substance. No significant changes were seen among mid- and low-dose rats

Major chical-chemical changes (see Table 8.8.2) consisted of:

- Increased BUN Twels in high lose row which persisted during the recovery periods (only in males after the 16- and 21-week row overy periods)
- Increased prosphorus levels in 19th dose rats and mid dose males, which persisted in high dose males after 13 weeks recovery and returned to normal values thereafter.
- Reduced protein and albumin levels in high dose rats, which persisted after 13-week recovery period and saurne to control range thereafter; such changes were also seen in mid dose rats during the first 4 weeks of treatment.
- Other clarifges consisted of slightly increased levels of carbon dioxide in high dose and mid dose grats, more reductions of calcium levels in high and/or mid dose rats.

^{*:} p< 0.00 (0.00)

### Document MCA – Section 5: Toxicological and metabolism studies **Fosetyl**

Table 5.8.2- 5: Serum clinical chemistry parameters in various study groups

Study	Con	trols	8000	ppm	30 000	0 ppm	50 000	0 ppm 。
week	M	F	M	F	M	F	M	<b>W</b>
BUN (mg/d	L)							
0	14.8±1.64	15.4±1.14				2	ď	
8	13.6±2.07	14.0±1.58	14.0±1.87	16.2±2.49	14.8±14.48	14.8±1.6	23.0±4.00 <b>*</b>	\$6.0±2 <b>€3</b> ♠
13	14.0±1.41	15.4±1.34	13.4±2.61	15.2±1.10	17.2±2.77	16.8±3.77	29.2±6.7	22,2 3.72*
8+16	11.0±1.94	12.3±1.83	11.0±1.15	12.1±1.85	11.9±1.60	12.17.91	15.4±2, 97.	,1 <b>9</b> 6±1.50
13+21	12.7±1.7	15.9±2.23	42.9±94.42	16.1±2.77	<b>3</b> 4.4±2.07	15,0±2.00	20.7 <b>.4</b> .90 <b>.4</b>	22.2±679*
Calcium (m	ıg/dL)				7	Q.		
0	9.9±0.32	10.0±0.26			4	) *		57 4
8	9.9±0.34	9.9±0.25	10.1±0.33	10.0≇0.11	9.9±0. <b>2</b> 2	10,2±0.25		\$4.0±0,49
13	10.0±0.35	9.9±0.35	$9.8\pm0.22$	9 <b>0</b> 5±0.30	909 🚉 31	<b>Ø</b> .1±0.62	9.90.68 Q	9.5± <b>@</b> 30
8+16	10.1±0.21	10.4±0.32	10.1±0.33	410.7±046	10.190.190		<b>0</b> .2±0×1	10 <b>/</b> 2±0.42
13+21	10.0±0.22	10.9±0.28	908±0.56 (	11.0+0.42	99±0.1	10.0±0.39	9.9±0.39	10.9±0.31
Phosphorus	s (mg/dL)		100	<i>~</i> (	Ũ Q	. ~	O [®]	
0	9.8±0.55	9.2±0.42				A . 6	<b>4</b>	AL V
8	7.7±0.52	6.5±1.26	7.4 <b>%</b> .58	√6.6±0. <b>©</b> 5	8.4±0.650	6.6±3.65	₩.2±0,₩	951.16*
13	6.9±0.38	6.0±0.98	63±0.26	6.0.00.79	♥.8±1₩	6 <u>©</u> ±0.99	9.5± <b>©</b> 34 <b>.</b>	8.3±0.91
8+16	5.9±0.53	5.5±0.96	\$5.7±0. <b>®</b>	5.3±1.09	6.5±0/59*	3.4±0	65±0.32	6.0±1.07
13+21	5.7±0.63	5.3±0.74	₹7.3± <b>©</b> .24	\$.3±0	56,0.65	5.4+0.51	\$.8±0.5\$	6.1±1.87
Total protein	in (g/dL)	<b>≈</b> ⊘y	*N		L. 2		)	
0	5.5±0.11	5.8± <b>4</b> 23		4, 0			0	
8	6.7±0.41	6.2 0.26	6.6±026	<b>2</b> 8±0.56	6.6±0.27≈	\$6.6±0. <b>7</b> 8	<b>5.9</b> ±0.19 <b>♣</b>	6.2±0.22
13	6.8±0.43	7.0±0.24		7.1±0.25	\$7±0.26	7.340.61	\$6.3±0.27*	6.4±0.23
8+16	7.0±0.40 ×	⊌7.5±0 <b>Ω</b> 7	\$\delta_10.23	7.500.60 %	6.8±0M	Q,2±0.41	6.6±0.18*	7.4±0.34
13+21	7.1±0.3		♥7.1±0 <b>&amp;</b> 1	\$\frac{1}{2}\psi 0.45	7.0±0.28	O7.9±0.₺7	6.9±0.21	7.8±0.61

^{*} p<0.05; **4**: p<0.01; **p**<

- Most of the **urinalyos** changes were seen in the high-fold mid-dose ats (see **Table 5.8.2-6**):

   Urine solume was significantly increased in high dow male and/or females during treatment periods and was start increased in high dose mades after 16 works recovery.
- Specific gravity was reduced in high dose in during tradment periods and returned to normal values thereafter
- pH was also reduced in his doso and of mid dose rate and returned to normal values thereafter Increased Calcium Pevels and decreased sodion, podssium and phosphorus levels were seen in high and mid dose males and of femoles during the covery.

  No senificant changes were seen in the low dose group and after the 21-week recovery period.

## Document MCA – Section 5: Toxicological and metabolism studies Fosetyl

Table 5.8.2- 6: Urine analysis among various groups

13	\$\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6
0 9.8±3.56 10.0±2.99 8 19.0±5.66 17.0±6.3 19.0±1.6 25.4±12.6 19.8±6.6 15.9±4 42.8±9.4 28.7 13 19.1±5.13 14.9±4.07 15.9±5.3 16.7±8.3 26.0±7.9 18.2±8.9 43.6±5.3 24 8±16 25.5±12.6 14.9±8.2 27.0±7.9 11.1±1.9 19.8±5.3 17.5±7.2 22.0±4.8 12.0±1.2 12.0±2.9 19.3±8.0 16.0±5.9 20.0±7.6 225.0±4.2 14.5±3 28.2±6.8 18.2±1 20.8±2.9 19.3±8.0 16.0±5.9 20.0±7.6 225.0±4.2 14.5±3 28.2±6.8 18.2±8.9 19.3±8.0 16.0±5.9 20.0±7.6 25.0±4.2 14.5±3 28.2±6.8 18.2±8.9 19.3±8.0 16.0±5.9 20.0±7.6 25.0±4.2 14.5±3 28.2±6.8 18.2±8.9 19.3±0.0 16.0±5.9 19.0±7.6 25.0±4.2 14.5±3 28.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6.8 18.2±6	76.5 0±5 5±5 0.45 0.00 0.00 0.65 1±.65
8	76.5 0±5 5±5 0.45 0.00 0.00 0.65 1±.65
8	76.5 0±5 5±5 0.45 0.00 0.00 0.65 1±.65
13	0±5 4 5±5 5 3.45 4 0.00 6 0.65 4 4.65
8+16	0±5 4 5±5 5 3.45 4 0.00 6 0.65 4 4.65
13+21 20.8±2.9 19.3±8.0 16.0±5.9 20.0±7.6 25.0±4.2 14.5±3 28.4±6.8 18.  4 7.2±0.27 7.3±0.29 6.8±0.27 7.3±0.57 5.1±0.22 53.3±0.27 50±0.00 5.24  8 7.4±0.22 7.7±0.22 6.9±0.22* 7.0±0 5.8±0.45 5.3±0.27 5.0±0.00 5.24  13 7.2±0.27 7.7±0.22 6.7±0.27* 6.8±0.29* 6.0±0.35 50±0.55 5.0±0.00 5.0±  8+8 6.8±0.27 6.2±0.27 6.9±0.22 69±0.96 6.9±0.22 7.3±0.91 6.2±0.00 6.4  13+21 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.25 7.2±0.87 6.6±0.65 8.±0.27 6.2±0.00 6.4  13-21 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.25 7.2±0.87 6.6±0.65 8.±0.27 6.2±0.00 7.3±0.87 6.6±0.65 7.3±0.25 6.2±0.25 6.2±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7.3±0.25 7	5±5 3.45 0.00 0.65 ±.65
H         4       7.2±0.27       7.3±0.29       6.8±0.27       7.3±0.50       5.1±0.22*       5.3±0.27*       5.0±0.00*       5.24         8       7.4±0.22       7.7±0.22       6.9±0.22*       7.0±0.55       5.8±0.45       5.3±0.27*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.4       5.0±0.00*       6.0±0.00*	9.45 • 0.00 0 0.65 ± .65
4 7.2±0.27 7.3±0.29 6.8±0.27 7.3±0.57 5.1±0.22 5.3±0.27 5.24  8 7.4±0.22 7.7±0.22 6.9±0.22* 7.0±0.5 5.8±0.45 5.3±0.27 5.0±0.00 5.24  13 7.2±0.27 7.7±0.22 6.7±0.27* 6.8 5.29* 6.0±0.35 5.0±0.00 5.0±0.00 5.0±  8+8 6.8±0.27 6.2±0.27 6.9±0.22 6.9±0.96 6.9±0.22 7.3±0.91 5.±0.00 6.4  13+21 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.05 7.2±0.87 6.6±0.65 7.8±0.27 6.2±0.00 6.4  Calcium (mg/dL)  0 13.3±5.43 10.0±5.15 7.0±0.05 7.2±0.87 6.6±0.05 7.3±0.27 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21 7.3±0.21	0.00 0.4 2.65 ±.65
8 7.4±0.22 7.7±0.22 6.9±0.22* 7.0±6.5 5.8±0.45.5 5.3±0.27* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 5.0±0.00* 6.4* 6.8±0.27 6.2±0.27 6.9±0.22 6.9±0.96 6.9±0.22 7.3±0.91 6.5±0.00 6.4* 6.4±0.27 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.05 7.3±0.87 6.6±0.65 7.8±0.27 6.2±0.00 7.3±0.87 6.6±0.65 7.8±0.27 6.2±0.00 7.3±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.5±0.87 7.	0.00 0.4 2.65 ±.65
13 7.2±0.27 7.7±0.22 6.7±0.27* 6.85 29* 6.0±0.35* 5 2±0.55 5 5.0±0.00* 5.0± 8+8 6.8±0.27 6.2±0.27 6.9±0.22 69±0.96 6.9±0.22 7.3±0.91 6.5±0.00 6.4 13+21 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.25 7.2±0.87 6.6±0.65 7.8±0.27 6.2±0.20 7.2±0.87 7.6±0.20 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±0.87 7.2±	:0.65 £.65
13+21 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.25 7.5±0.87 6.6±0.55 9.8±0.27 6.7±0.25 7.5±0.87 6.6±0.55 9.8±0.27 6.7±0.27 6.6±0.55 9.8±0.27 6.7±0.27 6.6±0.55 9.8±0.27 6.7±0.27 6.6±0.55 9.8±0.27 6.6±0.27 6.6±0.55 9.8±0.27 6.6±0.27 6.6±0.55 9.8±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.	£.65
13+21 7.1±0.22 6.9±1.24 6.8±0.27 6.7±0.25 7.5±0.87 6.6±0.55 9.8±0.27 6.7±0.25 7.5±0.87 6.6±0.55 9.8±0.27 6.7±0.27 6.6±0.55 9.8±0.27 6.7±0.27 6.6±0.55 9.8±0.27 6.7±0.27 6.6±0.55 9.8±0.27 6.6±0.27 6.6±0.55 9.8±0.27 6.6±0.27 6.6±0.55 9.8±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.27 6.6±0.	£.65
Calcium (mg/dL)     O     A       0     13.3±5.43     10.0±5.15     O     O       8     10.6±12.9     14.6±7.1     10.7±6     12.9±3.5     18.±17.6     11.7±16     64.5±7.9     73.7       13     5.0±1.9     15.5±8.0     6.6±3.0     20.2±16.5     14.±6.2     45.3±M.5*     77.6±1     70.0       8+16     4.3±2.8     15.5±11.2     2±2.6     6.6±3.3     4.8±1     5±3.1     3.4±7.5     11.	a.
8 10.6±12.9 14.6±7.1 10.7±6 12.9±3 18.0±17.6 11.7±16 64,5±7.9 73.7, 13 5.0±1.9 15.5±8.0 6.6±3.0 20.2±16.5 13.6±6.2 45.3±3.5* 77.6±1 70.8 8+16 4.3±2.8 15.5±11.2 2±2.6, 6.6±3 4.8±1 5±3.1 3.4±8.5* 11.	
8 10.6±12.9 14.6±7.1 10.7±6 12.9±3 18.0±17.6 11.7±16 64,5±7.9 73.7, 13 5.0±1.9 15.5±8.0 6.6±3.0 20.2±16.5 13.6±6.2 45.3±3.5* 77.6±1 70.8 8+16 4.3±2.8 15.5±11.2 2±2.6, 6.6±3 4.8±1 5±3.1 3.4±8.5* 11.	- O'S
13 5.0±1.9 15.5±8.0 6.6 2.0 20.2±1 3 13 ±6.2 45.3±2 3.45 5 11.  8+16 4.3±2.8 15.5±11.2 2 ±2.6 6.6 2.3 4.8±1 5 ±3.1 3.46 5 11.	
8+16 4.3±2.8 15.5±11.2 Q±2.6 6.6±23 (4.8±1) (5)±3.1 (3.44).5 11.	<b>₹</b> 8.9
8+16 4.3±2.8 15.5±11.2 Q±2.6 6.6±2.3 4.8±15 5±3.1 3.465.5 11.	±12.1
	3±7.0
13+21 5.3±0.6 15.9±11.8 9.0±3 6 20.5±5.9 5.5±9 2.3±115 7.5±1.5 0 14.	9±6.6
odium (mag/L)	
0 146.8±49.62 123.6±16.97	
	±8.3
	3±20.7
8+8 25.0±9.9 2 3±9.7 0 28.2 7.0 4.4±14.5 38.0±10.6 32.8 7.8 25.8±13.0 30.6	5±20.7
8+8 25.0±9.9 2 20±9.7 28.2 20.0 4.4±14.5 38.0±10.6 32.8 38.0±13.0 30.6 13+21 42.6±9.2 28.4±9 30.4±9.9 30.8±6.7.6 4.6±12.2 37.615.9 35.4±10.0 33.4	±10.9
	±10.5
ottissium (meq.E)	
0 338.0±89 291.8±38.97	
	±20.4
	±27.8
	2±41.6
	±14.6
0 7 56.4±14.37 (30.4±44.32)	
8 \$\frac{1}{8}\$  \text{108.6\pm 23.9}\$  \text{80.2\pm 90.5}\$  \text{89.8\pm 146}\$  \text{51.0\pm 28.4}\$  \text{18.8\pm 9.5}\$  \text{23.3\pm 13.2}\$  1.3\pm 0.35\pm 1.3\pm 1	0.354
13 56.9±14.6 964±36.6 67.2±05 61.9±16% 254±20.6 28.2±13.9 1.1±0.28 1.5±	0.58
8+16 74 3+306 86 2+35 0 71,9+19 5 089 8+101 26 0+13 7 61 4+8 4 69 6+5 3 99 4	+49 ~
13+21 89 8+3 9 600 8+450 1200+26 8 77 5046 9 600 8+14 7 86 0+26 5 72 4+11 4 95 7	+21/
07.013.7 07.013.7 070.014.7 17.4120.7 17.410.7 50.0114.7 00.7120.3 72.4111.4 75.2	.141.5
13+21 1 0 2±19 8.30 30.6 116.2±2 1 20 8±14 94. 13.8 283.0±24.0 88.8±20.0 37.4 2	ŀ

Table 5.8.2- 7: Faecal analysis among various groups

Study wool	Con	trols	8000	ppm	30 000	0 ppm	50 000	0 ppm °
Study week	M	F	M	F	M	F	M	
Calcium (mg	/g)							
0	35.97±5.61	37.23±6.8					ř	
8	40.1±10.23	42.92±3.80	38.02±4.78	3.59±3.5	34.83±4.89	33.28±4.35	22.46±4.04*4	24.96±28*
13	29.33±12.78	37.52±2.48	31.13±6.1	33.27±7.23	29.51±7.34	29.76±8.19	24.64±3.85	20 24.04
8+16	41.97±4.57	45.88±4.59	40.8±5.48	39.29±6.65	44.06±5.64	40.2±4.93	36.92±10.83	3 <b>6</b> 2±6.54
13+21	53.59±9.57	50.63±3.87	37.97±7.56	56.18±14.0	<b>3</b> 9.61±18.0	6179±7.74	44.62±6.27	64.99±801
Phosphorus (	(mg/g)			₹	न्त्र १		O ~	) × 1
0	14.99±1.04	12.21±3.05		2	_(	D. A.		S U
8	15.74±6.25	20.02±2.08	17.89±1.30	22.21 <b>±0</b> .76	21.17±8.	0	Q2.74±9.83	3 <b>2.</b> 94±1.7 <b>6</b>
13	10.71±10.48	19.75±1.64	20.38±8.37	14.6 25.87	24.21±12.9	20 <b>9</b> 8±11.6	22.9 <b>5</b> ¥11.7	21.66+
8+16	21.15±2.81	20.07±3.30	18.87±2.55	2195±4.72	21.67+3.46	\$3.63±1.82	21\44±8.16	21.66±36 24.21 4.54
13+21	26.11±2.57	24.44±1.66	21.47±5.7	<b>€2,</b> 7.43±8 <b>⊘</b> 5°	27 <b>3</b> 2±6.3	730.28±5.69	Ø.92±1.36	29:03±4.38
Aluminium (	mg/g)					20 0	ř 1.	ه ک
0	$0.49\pm0.08$	0.25±0.11		~ . (	V Q		O _A	o" &
8	0.409±0.22	$0.42\pm0.14$	3.41± <b>%.4</b> 4	333±.42	9.245.17	-\2.25±686	13.76±6.74	18.57 ₹.73 ♠
13	0.27±0.30	0.56±0.11	1.79 2.07	2.82±1 <b>@</b> 3	6.09±4.92		4.22± <b>%</b> 4	18.57 £.73 <b>A</b> 148±7.76
8+16	0.55±0.04	0.59±0.09	0.Q±0.02	0.50 9.11	Ø.45±0, <b>€</b> 9	0.65±0.03	0.32	0.54±0.05
13+21	0.58±0.07	0.63±0.29	0.58±0.49	0.62±0.20 ×	√0.60±0,13	>0.76±0.03°	0.500.49	Ø 0.67±0.13


H. PATHOLOGY
Relative and/or absolute kidney weights were increased in high dose buts and also in mid dose males; such changes were also seen in high dose to sacrificed at end of the warious recovery periods. Changes in absolute and/or relative thyroid weights were seen in high dose hats during treatment periods are were considered at fortextous.

Major gross pathology findings were relative to the property of 
Major gross pathology findings were related to the presence of calculi in the urinary system: uroliths occurred in the kinney povis and in the urinary bladder, particularly after week of treatment which declined progressively Orerea (\$7).

Major histogathological findings were related to the utilith phenometron (see Table 5.8.2-8):

In the **urivary bladder** papilory hyderplasia occurred rostly in high-dose rats and mid-dose males and was already seen after. Weeks of troublent at end of the various recovery periods, hyperplasia was significantly roused at the various recovery periods, hyperplasia was significantly required.

In the kidney, a ligh incidence hydronephysis was found in high dose rats and mid dose males and was considered to his cause pychis, prelone iritis, Sapillary necrosis, dilatation of collecting tubules and minsitional coll hyperplasia in the pelvic zone. In addition, a benign transitional cell



examined:

# **Document MCA – Section 5: Toxicological and metabolism studies Fosetyl**

Table 5.8.2- 8: Histopathological data

Organ		M	ale			Fe	emale	0
(no. of rats examined)		Dose	(ppm)			Dose	e (ppm)	Q .
(no. of fats examined)	0	8000	30 000	50 000	0	8000	30 000	<b>50</b> 000
URINARY BLADDER (n=	10)					ð		
Uroliths						Ş	4	
Week 2	0	0	5	3	0	0	0	
Week 13	0	0	6	6 a	0 5	<b>&gt;</b> 0	, (O'	<b>6</b> 70 4
+ 21 weeks of recovery	1	0	2 b	℃ 3 c	0K	0		7 1 Ş
Papillary hyperplasia		T		77			, S	
Week 2	0	0	7 🛴	8	000	0 &		A o
Week 13	0	0	Ē	6 a 🔘	0 .	QC	0	° 1 €
+ 21 weeks of recovery	0	0	O B	1 5		Q,	000	107
KIDNEY (n=10)			•		, "Y" ,	<b>~</b> ~		~Ç
Uroliths			Y Q	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· **	***
Week 2	0	0,	XV.			007	<b>*</b>	7 (
Week 13	0		~05 ~	, 6 a	30	\$0	2	
+ 21 weeks of recovery	0	\$	y 0 b, y		\$ 0 %	2 2		
Chronic interstitial nephriti	is					Ŵ ^v	Ş	
Week 2	1		~~~	J 8 0	Ď	Ţ,	<b>2</b> 0 0	5
Week 13	0 Q v	0	2	63°	<b>9</b>	00		10
+ 21 weeks of recovery		L 33	5 6		y 0 8			10
Hydronephrosis	- N		"O"	<u> </u>			<u> </u>	-
Week 2	<b>*</b> 0 <b>&amp;</b>	Č ^v	2 3 Q	, 5~4		<b>Q</b> 2	0	3
Week 13	20		3	6,a .		<b>7</b> 0 <b>4</b>	, I	9
+ 21 weeks of recovery			400	Ö ⁹⁹ C ⟨⟨	1 20		1	9
Transitional cell hypermasi		Ž W		<u>~ o"</u>	<b>W</b>	\$0	0	2
Week 2	0 5		J 0 5		Q)		0	3
Week 13		<b>*</b> 0'0		Of a	\$ 0 @	0	0	8
+ 21 weeks of recovery	- 6	7 0 3		~ 9 c ~	₩,	0	0	4
Tubular dilar on Week 2	0 0				<b>4</b> 0	0	0	0
Week 2	00	30		(In )	2000	0	0	0
,, early		0, 10 C		2 a	0 0	0	0	0
+ 21 weeks of recovery	05.0		0,0 s	(y 3 c O °	U	U	U	1
URETERS (n=10)			<u> </u>	<u> </u>				
Dilatation J	<u> </u>		gr U		0	0	0	2
Week 2 Week 13 W					1	0	0	8
			6 4 b 6	6 a	1	1	2	7
+ 21 w of recovery (a): 9 animats instead of 10 were	- 1. A	L _a Q!	Q 4 b O	6 C	1	1	2	

RMS conclusion: Dietary administration of 50 000 ppm and possibly 30 000 ppm in rats for up to 13 weeks in Oced some portality, marked diuresis, reduction in food consumption and in bw gain, increased water consumption, increased BUN, phosphorus and calcium levels, decreased serum total protein; acreased urine volume and decreased urine pH, specific gravity and electrolytes except calcium which was increased; all these changes, except bw, occurred shortly after initiation of treatment are reverse more or less completely during the recovery periods.

NCLUSION

Urbithia of, which occurred in high-dose rats and in mid-dose males, was then considered to cause irritation of the urinary tract and subsequent papillary hyperplasia which was partly reversible after cessation of treatment.

The NOAEL was 8000 ppm equivalent to 500 and 600 mg/kg bw/day in males and females, respectively.

#### **CA 5.8.3 Endocrine disrupting properties**

Designated studies on endocrine disrupting (ED) properties of fosetyl-Al have not been conducted by the applicant. The existing body of data is sufficient to exclude relevant ED-like potential of to extra the applicant. Al. This is based on the absence of effects on the weight and histopathological appearance of hormone-sensitive tissues like reproductive organs, thyroids and pituitary. In addition, the available fertility studies showed no effects on male or female fertility, which may be considered sensitive targets of ED-like activity.

There are currently no scientific criteria for classification as ED. However, the interim criteria for ED classification laid down in Regulation 1107/2009 are not fulfilled, since fosetyl-AD is neither classified as Carc 2 and/or Repr 2 nor does it fulfil the criteria for such a classification.

#### **CA 5.9** Medical data

# Medical surveillance on manufacturing plant personnel and CA 5.9.1 monitoring studies

For information on medical surveillance on manufacturing plant personnel and monitoring studies (M-527602-01-1) please refer to the CONKIDENTIAL part (Document OCA) because information on manufacturers is confidential.

#### CA 5.9.2 Data collected on humans

No human poisoning cases have been published

#### **CA 5.9.3** Direct observations

No human poisoning cases have been published

#### Epidemiological studies CA 5.9.4 🗞

No epidemiological studies have been published.

#### Diagnosis of poisoning (determination of active substance, CA 5.9.5 metabolites), specific signs of possoning, clinical tests

Fosetyl-aluminium is an encylphosphonate of low toxicity that does not inhibit cholinesterase!

## Signs and Symptoms of Poisoning:

There are no reports on human cases.

In animal experiments symptoms have only been reported from chronic high dose studies. accrease in un

Diuresis and a calcium decrease in urme carroot be ruled out for high dose ingestions.

#### **CA 5.9.6** Proposed treatment: first aid measures, antidotes, medical treatment First Aid:

- Remove patient from exposure/terminate exposure.
- Thorough skin decontamination with copious amounts water and soap, if a ailable with a polyethylene glycol 300 followed by water.

Note: Most formulations with this active ingredient can be decontaminated with water so for formulations polyethylene glycol 300 is not required.

- ent ca not required.

  Je required in regarc.

  Je required in regarc.

  Je required in regarc.

  Je required in regarc of the ingested sut, orbidden of a formulation couplin.

  Je required in regard of the low toxicity.

  Je required in regard of Induction of vomiting does not seem to be required in regard of the low toxicaty. It should only considered if a large amount has been swallowed, if the ingestion was less than one hour ago, and

Note: Induction of vomiting is forbidder of a formulation containing organic solvents has been

- Gastric lavage does not seem to be required in regard of the low toxicity of the compound.
- The application of activated charcoal and sodium sulphate for other carthartic) might be