

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the supposed proprietary, data, contained in this
 from Bayer CropScience; or
 from other applicants once the period of data protection has expired;
 from other applicants once the period of data protection has expired;
 from other applicants once the period of data protection has expired;
 from other applicants once the period of data protection has expired; basis of the summaries and evaluation of inpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based, either:

Date (yyyy-mm-dd)	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
2015-10-05 2016-07-18	 Original Document MCP – Section 10 of Supplementary Dossier Dossier update according to "Request for additional information of the supplementary dossier submitted by Bayer CropScience for the approval renewal of the active substance Fosetyl (2015-58653) by RMS France on 2016-04-04 and its follow up on 2016-06-052. BCS responses to RMS requests have been added throughout Section 10. Summaries (including detailed result tables) of the studies used for the first approval of fosetyl and presented in the DAR and addenda to the DAR which are still relevant for the List of Endpoints have been added throughout Section 10. Endpoints from study KCA 8.2 (2010) 2010 4 add to Table 2010 10. 	Document identifier and version number M-534835-024 M-534835-03-1
2016-09-01 It is suggested th SANCO/10180/2	Dossier update according to "Request for additional information On the supplementary dostrer submitted b@Bayer@ropScience for the approval renewal of the active substance Forefyl (2015-5865)" by RMS France on 2016-07-27 - New risk assessments for aquatic organisms have been added to	M-534835-04-1 G
	chapter 2022 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Version history

Table of Contents

		Page 🔊
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION	
	PRODUCT	
CP 10.1	Effects on birds and other terrestrial vertebrates	ŬÔ57
CP 10.1.1	Effects on birds	
CP 10.1.1.1	Acute oral toxicity	
CP 10.1.1.2	Higher tier data on birds	ý
CP 10.1.2	Effects on terrestrial vertebrates other than birds	
CP 10.1.2.1	Acute oral toxicity to mammals	
CP 10.1.2.2	Acute oral toxicity to mammals	,O [×] 18, [×]
CP 10.1.3	Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)	
CP 10.2	Effects on aquatic organisms	
CP 10.2.1	Acute toxicity to fish, aquatic povertel pates, or effects on aquatic algae and	4J [¥]
	Effects on aquatic organisms	27
CP 10.2.2	Additional long-term and chronic @xicit@studieSon fish, aquatic invertebrates	S Of
	and sediment dwelling organisms	
CP 10.2.3	Further testing on aquatic organisms.	.O
CP 10.3	Effects on arthropod	
CP 10.3.1	Effects on bees	32
CP 10.3.1.1	Acute toxicity to bees a grand g	40
CP 10.3.1.1.1	Acute oral toxicity to bees	40
CP 10.3.1.1.2	Acute contact toxicity to bees.	
CP 10.3.1.2	Chronic togicity to bees	
CP 10.3.1.3	Effects on honey bee development and other honey bee life stages	
CP 10.3.1.4	Sub-lethial effects	43
CP 10.3.1.5	Cage and tunnel tests	44
CP 10.3.1.6	macrophytes Additional long-term and ehronic toxicity studies on fish, aquatic invertebrates and sediment dwelling organisms Further testing on aquatic organisms Effects on arthropodo Effects on bees Acute toxicity to bees Acute contact toxicity to bees Acute contact toxicity to bees Chronic toxicity to bees Effects on honcy bee development and other honey bee life stages Sub-leftral effects Cage and tunnel tests Field tests with honeybees Effects on non-target arthropods other than bees	54
CP 10.3.2	Effects on non-target arthropoids other than bees	55
CP 10.3.2.1	Standard laboratory esting for non-targed arthrepods	
CP 10.3.2.2	Standard laboratory desting for non-targed arthropods Extended laboratory testing, aged residue studies with non-target arthropods	79
CP 10.3.2.3	Semi-field studies with non-target arthropods	
CP 10.22.4	Field gudies with non-target arthropods	87
CP 10.3.2.5	Other routes of exposure for non-farger arthropods	92
CP 10.4	Effects on non-target soft mes@ and macrofauna	92
CP 10 4 1	Forthy orms & M & C	03
CP 10.4.1.1	Earth Forms Gub-lethal effects	94
CP 10.4.1.2	Earthworms sub-lethal effects Earthworms field studies	94
CP 10.4.2	Effects on non-parget soil meso- and macrofauna (other than earthworms)	100
CP 10.4 2.1	Species level testing	100
CP 10.4.2.2	Higher tier testing	100
CP 10.5	Effects on soil pitrogen transformation	101
CP 10.6	Effects on terrestrial fon-target higher plants	101
CP 10.6.1	Summary of screening data	103
CP 10.6.2	Testing opnon-target plants	103
CP 10.6.3	Extended laboratory studies on non-target plants	109
CP 10.69	Semi-field and field tests on non-target plants	
CP 1007	^w Effects on other terrestrial organisms (flora and fauna)	
CP210.8	Monitoring data	
× . 63		
Ũ		

CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT

Fosetyl was included in Annex I to Directive 91/414/EEC in 2006 (Directive 2006/64/CE of 18 July 2006, Entry into Force on 1 May 2007). This Supplementary Dossier contains only data which were not submitted at the time of the Annex I inclusion of fosetyl under Directive 91/414/EEC and which were therefore not evaluated during the first EU review. All data which were already submitted by Bayer CropScience (BCS) for the Annex I inclusion under Directive 91/444/EEC are contained in the DAR, its Addenda and are included in the Baseline Dossier provided by BCS. These data are only mentioned in the Supplementary Dossier for the sake of completeness and only general information (e.g. author, reference etc.) is available for these data. In order to facilitate discrimination between new O data and data submitted during the Annex I inclusion process under Directive 91/414/EEC, the ob data are written in grey typeface. For all new studies, detailed sumparies are provided within this Supplementary Dossier. However, for a better understanding of the ecotoxicological behaviour of Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80), short summaries including the results of all studies are given at the beginning of the relevant sections. Additional information requested by the RMS France on 2016-04-04 and its follow up on 2016-06-02 during the evaluation of the Supplementary Dossier is highlighted in yellow. Additional information requested by the RMIS France on 2016 97-27 as follow up of the requests of 2016-04-04 and 2016-06-02 during the evaluation of the Supplementary Dossier is highlighten in green. 2

Fosetyl is the ISO common name for ethyl hydrogen phosphonate (IUPSC) by the aluminium salt fosetyl-aluminium (fosetyl-Al) a variant of fosetyl, is used in the formulated product.

In original reports study authors may have used different names or ordes for metabolites of fosetyl-Al. In this summary, a single name or a single code is used for each metabolite A full list containing structural formula, various names, short forms, codes and occurrences of metabolites is provided as Document N3.

As some pragnatic approach "phosphonic acid" formed as a major metabolite is reported in this Supplementary Dosster as the free acid for the sake of clarity and unequivocal handling. After application, aluminum tris-O-ethyl phosphonate (ref. fosetyl-Al) dissociates into the O-ethyl phosphonate and aluminum tons. Only phosphonate formed from O-ethyl phosphonate in the following would never be present in the form of the free acid (i.e. phosphonic acid) under the conditions of the environment (pH 4 to 90 This conclusion is supported by the molecular structure and by the dissociation constant observed (dissociation constant for the first step of deprotonation: pKa = 2.0). Consequently phosphonates in the form of neutral water with any suitable counter ion present (i.e. sodium, potassium, magnesium calcium). With the ability to readily form salts in the environment phosphonates are, in terms of their acidic of alkaline character, similar to the salts of phosphoric acid (i.e. phosphoric acid in the environment behaviour).

The formulation Fosety Al WG 80 is a vater dispersible granule (WG) formulation containing 800 g/kg of fosetyl-Al. This formulation is registered throughout Europe on a wide range of crops under trade names such as Anette. Fosetyl-Al WG 80 was already a representative formulation of BCS for the Annex I inclusion of fosetyl under Directive 91/414/EEC.

for the Annex I inclusion of fosetyl under Directive 91/414/EEC.

Use pattern considered in this risk assessment

Table 10- 1:	Intended a	application pat	tern		° >
Сгор	Timing of application (range)	Number of applications	Application interval	Maximum label rate (range)	Maximum application rate, individual treatment (ranges)
			[days]	[kg prod./ha]	Fosetyl-Al
Orchards (Pome fruits)	BBCH 55-85	1-3	7-10	4.5	Fosetyl-Al ST
			4		
Definition of Justification 1 Section 7.4.1. Table10- 2:	the residue for	r risk assessm	ent d	Â,	
Justification	for the residu	e definition	for risk asse	essmennt is ~pr	ovided in Document MCA,
Section 7.4.1.			Ŏ ^ĸ ĮŴ		
Table10- 2:	Definition	of the residue	for risk asse	ment &	
Compartmen	t Residue De	finition		<u> </u>	
Soil	Fosetyl-Al,	phosphorie acio	¥, ç	S B	
Surface water	Fosetyl-Al,	phosphonic aci			
Sediment	Phosphonic	acid			
Groundwater	Fosetyl-Al,	phosphonic aci			
		~~```````````````````````````````````			

CP 10.1 Effects on birds and other terrestrial vertebrates

The risk assessment has been performed according to "European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA GD 2009" CP 10.1.1 Effects on birds Table 10.1.1-1: Endpoints used in risk assessment

	Table 10.1.1-	1: Endpoints	used in risk ass	sessment	
	Test substance	Test design	Test species	A	Endpoin
Ī				Ŵ	

Test substance	Test design	Test species	Â	Endpo	inQ o	â	х С	Referênce
	acute toxicity	Bobwhite quail			ng û s./kg lấ		1981) KC O	Q. L.; Q. N. K, M-159690-01-1 8.1.1201
	acute toxicity	Japan g quQ q	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	497 n 297 n	ng Os./kg tox			D. B.; W. L.; M-158803-01-1 8.1,1,7/02
	acute toxicity	Bobytkute guari	LD ₅₀	≡″3⁄228 n	mg a.s./kg bw	Ow ₩ V ^{b)}	4447@	, T. L.; M. T.; 2012; M- 0-01-1 8.1.1.1/04
	geomest LD50	ABobwhite Quail	8000 mg a 500 mg a 3228 mg a bw 4997 mg a	.§.?Kg (5082 5082 mg a%s/kg	; b ŵy	للم 5039	mg a.s./kg bw
		🗳 quail	bw	.5./ Kg 2 ~	mg a.s./kg	gbw		
Fosetyl-Al	dietary toxicity (short-teen)	O 40 Bobwhite C que		> 20000 > 222 n	mg a.s./kg bw	iet v/d		, N. L.; , C. N. K.; , R. H.; 1982; M- ;7-01-1 8.1.1.2/01
4	dietary toocity (shore germ)	Marfard Marfard Abuck	Y LC-57 LPN950	₹ \$0000 \$4616 n	mg a.s./kg d ng a.s./kg bw	iet v/d		, N. L.; , C. N. K.; , R. H.; 1981; M- 35-01-1 8.1.1.2/02
LE Mar	6-weeks feeding chronic, reproduction	Japanese 4	NOSC ACTEL		ng a.s./kg die g a.s./kg bw/o		M.; 1999;	, S. P.; , J. B.; M-189216-01-1 8.1.1.3/01
Å.	7 weeks feeding C chronic, reproduction	Japanese	NOEC NOEL		ng a.s./kg di g a.s./kg bw			, R.; M-298080-01-1 8.1.1.3/02
	5 LD ₅₀ 10	geomean LD ₅₀	5	i039 / 10 = mg a.s./k				

Bayer – Crop Science Division

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

Test substance	Test design	Test species		Endpoint	Reference
Dhambaria	acute toxicity	Bobwhite quail	LD ₅₀ LD ₅₀	> 2250 mg test item/kg bw > 675 mg pm/kg bw	, S. M.; , J. B.; 1995, M- 200039-01-1 KCA 8.1.1.1003
Phosphonic acid	dietary toxicity (short-term)	Bobwhite quail	LC ₅₀ LC ₅₀ LDD ₅₀	 > 5620 mg test item/kg diet > 1692 mg pm/kgrotet ^{c)} > 508 mg pm/kgroted ^{c)} 	, S. Y.; S. MQ , J. B. Q995: M-200041-0-1 KgA 8.1: Q2/03

pm = pure metabolite

3 mortalities from 10 birds tested at 8000 mg/kg/bw, therefore extrapolation actors (EFSA GD 2009; Table 1) not applicable. Included as LD₅₀ = 8000 mg/kg by into the calculation of geomean LD values

- b) no mortalities among the 5 birds tested at 2000 tag/kg kg, therefore extrapolation factor of 1.614 (EFSA GD
- 2009; Table 1) applicable: 2000 x 1.614 = 3228 mg/kg bw Values were corrected for a purity of 41% phosphonic acid weight by volume which is equal to 36.1% weight by weight. Test substance potassium salts of phosphonic acid has a density of \$36. Therefore one L of test substance weights 1360 g and contains 410 g phosphonic acid (410/1960 = weight/weight purity of 30.1%. 9.301) with a

Request from the RMS:

The calculation of an extrapolate LD50 value and the calculation of an @D50 based of the geometrical mean of the endpoints from several species are two methods indicated in the guidance document EFSA/2009/1438 for the determination of the relevant toxicity value for the acute TER estimation. However, the guidance document does not indicate if both methods could be combined. It is the RMS opinion that both methods should not be combined as the combination of these extrapolations would induce too much uncertainty in the obtained endpoint. The reliable toxicity value for acute is the LD50 of 4997 mg a.s./kgb.w.

Response from BC

According to the EFSA Guidance doctionent the geometric mean D50 is a fully valid approach to assess the acute toxicity entropoint, appropriately maintaining the level of protection. In order to correctly calculate statistics like the geometric mean, unbound values should be avoided. Therefore it is necessary and appropriate to apply the very conservative extrapolation factor recommended in the EFSA GD to "LO50 > " values before inclusion into the geomean. In the view of the notifier, it is therefore not to be expected that the combination of the two methods would unduly increase the uncertainty of the acute risloassessment estimate

Request from the RMS:

In accordance with the guidance document EFSA (2009), a justification that no mortality or no clinical signs were observed during the test should be provided to exclude the dietary endpoint from the acute TER calculations. Please provide spon justification. Q

Response from BCS:

In the Mailard duck short tem dietary study with fosetyl-aluminium (fosetyl-Al), no mortalities or clinical signs were reported for the birds treated with fosetyl-Al. In the Bobwhite quail short term dietary study no amical signs were observed and a single mortality was observed among the birds receiving 20000 ppm of fosetyl-Al. However, this single mortality occurred on day 6 of testing, and at the same time one mortality also occurred in the untreated controls. Therefore it is questionable whether this single mortality at 20000 ppm is actually a treatment related effect, and with regard to the time course certainly not appropriate for the use in an acute risk assessment which addresses a single day of exposure.

Request from the RMS:

A justification that no risk assessment is required for the metabolite phosphonic acid would be suitable.

Response from BCS:

The toxicity of phosphonic acid, the major metabolite of fosetyl-Al, has been evaluated in birds. Due to the absence of notable toxicity of phosphonic acid (no mortalities or treatment related effects have been found up to the highest doses tested), a quantitative risk assessment is not considered necessary. K)

õ.

Table 10.1.1- 2:	Toxicity data of the formulated produ	act Fosetyl-Al	WØ 80

Test species	Test design		Endpoint	LO ^V	Reference	Q	.04	& [©]
Bobwhite quail	acute, oral	LD ₅₀ >	6400 ^(A) mg p	producit g by	; 71999 M CP 1997.1.	M; -184583-0	; 01,75°	2

Relevant generic avian focal species for risk assessment on Tier 1 level according to Table 10.1.1-3: EFSA GD (2009) Ŋ

Crop scenario	Most critical window of relevance for generic focal species scenario			speries	Short cu for reput R base RUD ₉₀	A
Orchards	Spring, Symmer	Sonall insectivor	~~ ~	Blue tit	46.8	18.2
2 × 3.6 kg/ha BBCH 55-85	BBCH 200 √	feeding bird "th	rûsh" Ó	Robin	2.2	0.8
7d interval	Crop Greeted application $BBGH \ge 40$	Small granivoro	is bird	Seria	8.2	3.8

ACUTE DIE PARY

			11/12 -	Ų	~~
	m.• ⊘⊾ੱ		20	ent for birds	, <u>~</u> ~
Table 10.1.1 - 4:	1 1er(🖉 9.c)	ITA PICL	9.680ccm	ent for burds	
$1 a D C 1 V U I = T_{0}$	$\mathbf{I} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$		40303311	CHUIDI DMUS	1 N W

		~	۵ <u>,</u> ۵				
Crop scenario	Seneric focal species Applorate		شم MAF90	DDD	LD50 [mg a.s./kg bw]	TERA	Trigger
Fosetyl-Al 🔊		~.0 [.]					
Orchards	Small insectivorous bird \mathbb{A}	46.8		269.6		19	
Spring, Sommer	<u>& "tit" & </u>	J 10.0		207.0		17	
Orchards	Small insectivorous/worm	2.2	1.6	12.7	5039	398	10
$BBCH \ge 40$	feeding burd "throsh"	2.2	1.0	12.7	5059	390	10
Orchards		0.2		47.2		107	
BBCH \ge 40 $_{e}$	2 "fingh" Q Q	8.2		47.2		107	

The TERA values calculated in the acute risk assessment on Tier 1 level exceed the a-prioriacceptability trigger of the for all evaluated scenarios. Thus, the acute risk to birds can be considered as low and acceptable without wed for further, more realistic risk assessment.

Acute risk assessment for birds drinking contaminated water

In the EFSA GD (2009), section 5.5, step 1 the following guidance is given on the selection of relevant scenarios for assessing the risk of pesticides via drinking water to birds and mammals:

- Leaf scenario: Birds taking water that is collected in leaf whorls after application of a pesticide to a crop and subsequent rainfall or irrigation.
- Puddle scenario. Birds and mammals taking water from puddles formed on the soil surface of a field when a (heavy) rainfall event follows the application of a perticide to a crop or bare soil.

For the crops under assessment in this evaluation (organards) the leaf scenario is relevant. The risk for birds from drinking water in puddles is addressed in Table 10

Acute risk assessment for birds drinking contaminated water in puddles L, Ò

Ø, \bigcirc Evaluation of potential concern for exposure of Birds deinking water, Table 10.1.1- 5:

Сгор	K _{oc} [L/kg]	Application rate × MAF [g a.s./ha] Application rate (Application rate) (Application rate (Application rate) (Application ra
Fosetyl-Al		
Orchards	0.1	$\begin{array}{c c} 3600 \times 1.0^{5} \\ \hline 3600 \end{array} & 5039^{6} \end{array} & \hline 5039^{6} \end{array}$

LONG-TERM REF

Table 10.1.1-6: Arier 1 reproductive risk assessment for birds

				Q^{\prime}	A CV			
Crop	Generic focal	Appl. rate [kg a]s./ha]	DD Vm MAFm		≪J Z DDD	NOAEL [mg a.s./ kg bw/d]	TERLT	Trigger
Fosetyl-AC			<u>, 2</u> ,	Ô				
Orchards Spring, Summer	SmalOnsectivorous		18.20 ⁴ 5		69.5		≥ 4.8	
Orchards BBCH ≥ 40	Sbird 'tit' Small Sinsectivorous@vorm feeding bird thrust@	1 .5.54 .6.5	0.8° 2.0	0.53	3.1	≥ 331	≥ 108	5
$BBCH \ge 40$	Small granvorous ord		3 .8		14.5		≥23	
Bold values d	o not meet the Tier 1874	ER trigger O						

The TERLT values calculated in the reproductive risk assessment on Tier 1 level do not exceed the apriori-acceptability trigger of 5 for the small insectivorous bird scenario in orchards. Thus, a refined risk assessment for this scenario is presented below. The TER_{LT} values for the other scenarios exceed the a-priori-acceptability trigger of 5. Thus, no further risk assessment is needed for these scenarios.

Refined risk assessment - small insectivorous birds in orchards

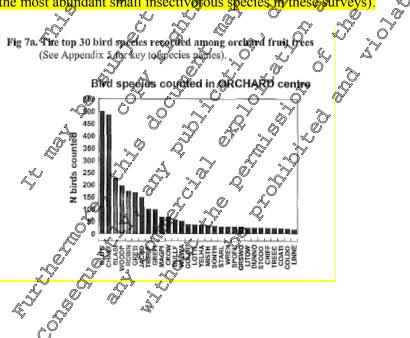
Additional refinement potential can be employed by incorporating PT values for the blue tip in orchards as reported by Finch *et al.* (2006): mean PT = 0.21 for all birds (0.27 for "consumers") 90th percentile PT = 0.55 for all birds (0.58 for "consumers); A recalculation of the data already evaluated by Finch *et al.* (2006) has been provided in Proster (2010): 90th percentile PT for blue tits in orchards: 0.53 for all birds (0.57 for consumers).

The documents with these PT values are accessible on the internet:

 \bigcirc

Finch *et al.*: 2006: http://www.pesticides.gov.uk/Resources/CRD/Migra@d-Resources/Documents/POPTFeb06.pdf

Prosser 2010:


http://randd.defra.gov.uk/Document.aspx?Document=20258_20nsofidations/fibirder/dmainmalPYdataf

Request from the RMS:

For the refined reproduction risk assessment for birds, it would not be possible to validate that the blue tit is a relevant focal species for uses in orchard (pome fruits) without data indeed, without data the choice of blue tit as focal species for the refined risk assessment would be challenged during the peerreview. Could you please provide such data?

Response from BCS:

The proposed PT value for blue tits is taken from radiotracking work conducted by the former Central Science Laboratory. The selection of the species for radiotracking had been based on previous bird counting work conducted in UK orchards (reported 1998 as CONPRACT PN0903: IMPROVING THE ASSESSMENT OF PESTICIDE RISKS TO BIRDS IN ORCHARDS, Objective 2: Relative importance of pesticides and other factors influencing birds in orchards). Below a screenshot of the results as presented in the original OSL document on page 34 BLUTI is the acronym for the blue tit, the most abundant small insectivorous species in these surveys).

For illustration, below the screenshot of Table 3 on page 13 of Prosser 2010, providing highly conservative PT – value recommendations for blue tits in orchards.

Screenshot Table	3 on page 13 of P	rosser 2010:			Ø,
Table 3 PT values their confidence lin	for passerine birds nits. Consumers on	in orchards, with mo ly.	odelled 90 th and 95 th		
Season	Species	No. of individuals	90 th percentile T value (95% CLs)	PT value (95%	
	Blackbird		0.75 (0.61 - 0.869	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
Summer (April	Blue tit	¥6 0°	0.57 × (0.43 - 0.75) ×		
– September)	Chaffinch	A 24 0	(0.69 - 0.91)	0.87 0.77 - 0.965	
	Robin		√0.56 √0.43 ≈0.69℃	(£52-680)	

The refined risk assessment cateulation is provided in the table below.

Table 10.1.1- 7:	Refined reproducti	ive risk assessme	ent for small i	insectivorous	birds in orchard
Table 10.1.1- 7:	Refined reproduct	ve risk assessme	ent for small	insectivorous	birgs in orchar

	× .	a 🔍	27			1.1	\approx		
Сгор	Generic focal of	Appl/ rate Akg a.s./ha	′SV _™ ઐ́M	AKa fro		DDD	/ NOAEL / [mg a.s./ kg bw/d]	TER _{LT}	Trigger
Fosetyl-Al		1 (n			. S	K,			
Orchards Spring, Summer	Small insectivorous		18.12 1	200 0.	53 057	39.59	≥ 331	≥ 8.4	5
<u> </u>									

Uncertainty analysis Refinement of the Tiest risk assessments is only friggered for one scenario in the reproductive risk assessment: small insectivorous birds ("tit") in grohards.

For this scenario, a single refinement element is introduced in the section above. Therefore it is considered appropriate and acceptable to focus the uncertainty analysis this element instead of a tabular approach as recommended in the ECSA GD (2009).

For the scenario of small msectivorous birds ("tit") in orchards, a 90th percentile PT value is available from radiotracking blue tits. This data is considered sufficient to address the long-term risk assessment

As all other elements of the exposure assessment remain unchanged in the refined risk assessment. The uncertainty in the sense of everlooking an undue risk for small insectivorous birds in orchards can be considered as low.

Therefore the long-term risk assessment for small insectivorous birds ("tit") in orchards is considered acceptable.

Ŷ

Long-term risk assessment for birds drinking contaminated water in puddles

Crop	Koc [L/kg]	Application rate × MAF [g a.s./ha]	NO(A)EL [mg a.s./ kg bw/d]	Ratio (Application rate × MAF) / NO(A)EL	"Escape	Çënclusion
Fosetyl-Al					, C	
Orchards	0.1	$3600 \times 1.0 =$ 3600	≥ 331	≤ 11	≤ 50 × ×	No concern
			Å	, Ö [¥]		

Table 10.1.1- 8: Evaluation of potential concern for exposure of birds drinking water

RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if feeding on contaminated prev like fish or each words. For organic chemicals, an octanol-water partition coefficient $(\log P_{\rm ev}) > 3$ is used to trigger an indepth evaluation of the potential for bioaccumulation.

Table 10.1.1- 9:	Log Pow values	of Øsetyl-M an	d its metabolite

		0 /	~ 1 ()*		
Substance	Nog Poo	🖉 Referen	ce S 20		°F
Fosetyl-Al	2- 2.1 (PH 6	EFSA So	n MCA Qectio	on 2.7 5 254 (2005)	S C
Phosphonic acid - H ₃ PO ₃	6 - 40% (pH3) Docume	nt MCA, Secret	on 2.74	
-					

The log Pow values of tosety Al and phosphonic acid are below the trigger value of 3, indicating a very low risk of secondary poisoning.

CP 10.1.1.1 Acute oral toxicity

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and in the DAR

The study from which the endpoint will be used for risk assessment is summarised below from the original DAR of for the origin

Report: K 10. (*1/01)
Title: Report No R01/1797 R01/1797 R01/1797
Document No.: MC184583-01-1 0
Dockment No.: MC 84583 01-1 C C Guideline(s): SEPAQ = EPA): É, 71 Q, Equivalent to US EPA OPPTS Guideline No. 850.2100
Guideline deviat $h(s)$: not specified
GLP/GEP: Of yest to a
L' L' D' L P
Guideline (s): (95EPAQ=EPA): E, 7/ 4, Equivalent to US EPA OPPTS Guideline No. 850.2100 Guideline deviation(s): not specified (97) GLP/GEP: (97) Endpoint@ccordog to EPSA Stentific Report (2005) 54, 1-79 for Fosetyl-Al WG 80:
$LD_{50} > 6400 \text{ mg product/kg bw}$
$LD_{50} > 6400 \text{ mg product/kg bw}$
Manods

Test subGance: Fosetyl-Al WG 80 (EXP10369F (794 g a.s./kg)). Each experimental group included 10 birds (5 males and 5 females). The three experimental groups were treated at nominal doses of 1600, 3200 and 6400 mg/kg b.w.

Results:

Two mortalities occurred during the study: one female in the treatment group at 6400 mg/kg on d 1 after dosing and one male in the 3200 mg/kg group on d 6. These two mortalities were considered likely to be related to treatment. Clinical signs of toxicity were observed in the bird which died on d 1. No conical signs of toxicity were observed in any other bird. Food consumption was similar in treated and upreated LD50 > 6 400 mg Fosetyl-Al WG 80/kg b.w. NOEL: not determined
 Comments (RMS): acceptable
 Further study information supplementing the original DAR sommary: Validity Criteria: Control mortality not exceeding 10% (Halfilled)
 Mean bodyweight [g/bird]:
 Test group
 Day @
 Day 7, 2
 Day 7, 2
 Day 7, 2
 Day 14
 Control groups. Bodyweight of males did not differ significantly between treated and untreated groups.

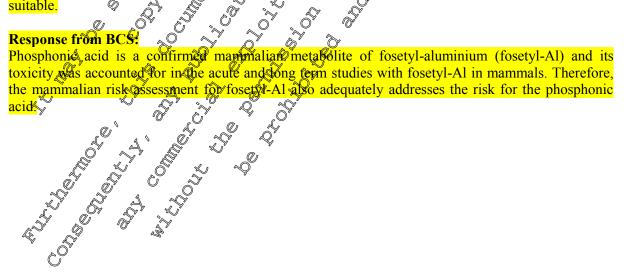
	<u> </u>	<u> </u>	- Ô - O	\circ	
<mark>Test group</mark>	Day 🗶	Day 7		iy 14 🛇	8
<mark>Males</mark>		Ş L		in la	
Control			<mark>20</mark>	⁶ 2	Ŵ
1600 mg/kg bw	⁴ 189	2 <mark>993</mark> 0	¹⁹	<mark>5</mark> KJ	S.
3200 mg/kg bw	1845 2		<u>~ 619</u>	<mark>4 🖉 🕺</mark>	Y
3200 mg/kg bw 2 6400 mg/kg bw 2 Females 3	190 8 .v	້ <mark>192</mark> ັ ລື	Q 19	<mark>7</mark>	
Females			<u>් 19</u> නි ව	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Control 50 50	191 0 %	@` <mark>200</mark> ¢\$` ~~	¥ <u>20</u>	2	
1600 mg/kg bw	190 0 1	194* S		8	
3200 mg/kg bw	192 0 0	¥97 *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŏ	
6400 mg/kg bw	1880	<mark>⊳} 19,1 ®</mark> *	^{لا} ر کې ک ^ا	5	

Statistically significand differences: **

Mean food consumption

Test group	Day 1 to D	Day 8 to 14
Males A O		
Control N 13 N	¹⁴ ²	<mark>13</mark>
		13
3200 mg/kg bw 12 0 6400 mg/kg bw 12 0 Females 0 0	4 <mark>,12</mark>	<mark>14</mark>
6400 mg/kg bx	¥ <mark>14</mark>	15
Females A A A	1	
Control of a fraction of the f	13	<mark>13</mark>
Control S 12 S 1600 mg/kg bw A 12 S 3200 mg/kg/kg/bw A 12 S	<mark>13</mark>	13
	<mark>14</mark>	15
6400 mg/kg bw 13	13	<mark>15</mark>

Û


Summary table				
Reference	Followed guidance	Guidance currently	Differences	Critical assessment of the study / Deviations / conclusion about i
	guidance	in force		Reliability
M-184583-01-1	EPA71-1	OECD 223	With OECD TG 223,	The guideline used in stud XCP
	<mark>(1978).</mark>	<mark>(2010)</mark>	individual birds are	10.1.1.1/20 satisfies the
KCP 10.1.1.1/01			tested per dose whilst the	requirements in OECD TG 223
			EPA guideline requires 5	
			males and 5 female birds	
			per dose.	
			L c	
CP 10.1.1.2	Higher t	tier data on	birds $\mathcal{A}^{\mathcal{V}}$ $\mathcal{Q}^{\mathcal{V}}$	
In view of the res	ults presente	d in Section	CP 10.9.1.1, no further stu	ndies were necessary.
				relies were necessary.

Effects on terrestrial vertebrates other than birds **CP 10.1.2**

Table 10.1.2- 1: Endpoints used in risk assessmen

	I	,0 °	
Test substance	Exposure	Species "	Endpoint O C Reference
	Acute risk assessment		LD ₅ (5) 2,080 p.2 a.s./kg bw 0,79086,01-1 KCA 3,2.1/01
Fosetyl-Al	Long-terms		A.W., 5.J.,
	Lorg-term? ride/assessment	Řat ($ \begin{array}{c} & = & = & = & = & = & = & = & = & = & $
0		ction 8.1.2	
^{a)} please refer to D	ocument MCA, Se	ction 8.1.2	

Request from the RM required for the metabolite phosphonic acid would be A justification that no suitable. Ô Ő

Bayer – Crop Science Division

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

Table 10.1.2- 2:	Relevant generic focal species for risk assessment on Tier 1 level acc. to EFSA GD
	(2009)

Crop scenario	Most critical window of relevance for generic focal species scenario	Generic focal species	Representative species	Short cut values for reproductive RA based on RUDog RUDo
	$BBCH \ge 40$	Small herbivorous mammal "vole"	Common vole	400 21.7
Orchards 3 × 3.6 kg/ha	Fruit stage BBCH 71-79 currants	Frugivorous mammal "dormouse"	Garden dormouse	£47.9 22 £
BBCH 55-85 7d interval	$BBCH \ge 40$	Large herbivorous mammal "lagomarph"	Rabbit &	
	$BBCH \ge 40$	Small omniverous mammal	Wood mouse	5.2 2 5 y

	×	ĝ [°] 4			S.	K) ^V
ACUTE DIETARY RISK ASSESSME	NT			8	, 0, 1	Ô
Table 10.1.2- 3: Tier 1 acute risk asses	ment for v	vilæmamı	nhals 5			S.

Сгор	Generic focal species	Appl. rate kg a.s./ba	EERA Trigger
Fosetyl-Al			0 %
Orchards	Small herbyvorous		> 30
$BBCH \ge 40$	mammal "vole"		> 30
Orchards	Frugivorous manmal		> 26
BBCH 71-79	of ormouse '	3.6 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	-
Orchards	Large herbivorous		> 117
$BBCH \ge 40$	mammal "lagomorph"		> 117
Orchards 🤌	Small omnivorous C		> 236
$BBCH \ge 40$	magnimal "horouse"	5.2 30.0	- 250
	4 , 4 j		

The TERS values calculated in the assister risk assessment on Tier level for wild mammals exceed the a-priori-acceptability trigger of 10 for all evaluated scenarios. Thus, the acute risk to wild mammals can be considered as low and acceptable without need or further, more realistic risk assessment.

°

Acute risk assessment for mammals drinking contaminated water The puddle scenario is relevant for the acute risk assessment.

For aluation of potential soncern for exposure of mammals drinking water Table 10.1.2-4:

Crop	A loc arate	ication & LD ₅₀ MAF (mg a.s./ s./hat kg bw/d)	Ratio (Application rate * MAF) / LD50	"Escape clause" No concern if ratio	Conclusion
		" Fosetyl-	Al		
Occhards S		$\begin{array}{c c} x \ 1.0 = \\ 500 \end{array} > 7080$	< 0.5	≤ 50	No concern

.

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

LONG-TERM REPRODUCTIVE ASSESSMENT

			DDE)			NOAEL	
Сгор	Generic focal species	Appl. rate [kg a.s./ha]	SVm	MAF _m	ftwa	DDD	[æng a.s./kg 🖉 bw/d]	TEROT Trigger
Fosetyl-Al						4	or É	\$ \$ \$ \$
Orchards BBCH \ge 40	Small herbivorous mammal "vole"		21.7	Č,		8 2.8		Å.T G
Orchards BBCH 71-79	Frugivorous mammal "dormouse"	2.6	22.7	₩° 1 2 0		86.6		8.3
Orchards $BBCH \ge 40$	Large herbivorous mammal "lagomorph"	3.6	a da	2.0	0, 5 8	¢96.4		44 64
Orchards $BBCH \ge 40$	Small omnivorous mammal "mouse"	×	, 2.3 ¢			8.8		82

....

The TER_{LT} values calculated in the reproductive risk assessment on Tier 1 vevel for wild manifelds exceed the a-priori-acceptability trigger of 5 for all valuated scenarios. Thus, the long-term tisk to wild mammals can be considered as tow and acceptable without need for further, more realistic risk assessment.

Long-term risk assessment for mammals drinking contaminated water The puddle scenario is relevant for the long-term risk assessment.

Сгор		Application rate * Mar	NO(A)EL fung a.s. kg bw/dj	Apprica (Apprica MAF)/	atio ation rate * NO(A)EL)	^C Escape clause" No concern if ratio	Conclusion
Fosetyl-Al	Ŭ ŝ	3690 x 14)=	0720 0	~~	5×0 ⁰⁷	≤ 50	No concern
					1		

RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high boaccumulation potential could theoretically bear a risk of secondary poisoning for mammals if feeding on contaminated prey like fish or earthworms. For organic

As presented in Table 10.11-9, log P_o values are below the trigger value indicating a very low risk of secondary poisoning.

CP 10.1.2.1 Acute oral toxicity to mammals

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and in the DAR.

Table 10.1.2.1- 1:	Mammalian toxicity	v data of the formulated	product Fosetyl-XI WG 80

Test species	Test design	Enc	lpoint	Reference	
Rat	acute, oral	LD ₅₀ > 2000	mg product/kg bw Q	B; , 01-1 @ KCP 7.1.591	1999; MN 999989; 7 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20

CP 10.1.2.2 Higher tier data on mammals

In view of the results presented above, no forther studies were necessary. A number of assessments (M-237219-01-1, M-237426-01-1, M-236288-01, M-105688-01-1, M-237425-01, made for the Annex I inclusion of fosetyl under Directive 91/414/EPC and included in the original DAR and its Final Addendum are no valid or applicable any longer

CP 10.1.3 Effects on other terrestrial vertebrate wildlife (ceptiles and amphibians)

Information on effects of fosetyl on reptiles or anophibians is not available. No guidelines for studies with terrestrial amphibian dife stages and reptiles are available and no risk assessment schemes are established so far. Therefore no further studies can be suggested for these groups of organisms.

CP 10.2 SEffects on aquatic organisms

The risk assessment is based on the current gurdance: EFSA PPR Panel (EFSA Panel on Plant Protection Products and then Residues), 2013. Caldance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field subface waters EFSA Journal 2013;11(7):3290, 268 pp.

Risk assessment for aquatic organisms

Ecotoxicological enderints used in Fisk assessment

Table 10.2-4: Endpoints used in risk assessment and additional studies for fosetyl-Al, its metabolite and Fosetyl-Al WC80

Test substance	Test species		Endpoint	Reference
	Pish, acute, Oncorhynckes mykiss		> 120 mg product/L (nom) (> 96 mg a.s./L)	며; 1999; M- 184613-01-1 KCP 10.2.1/01
Fosetylen	Brvertek Ate, actie	EC ₅₀	37 mg product/L (nom) (29.6 mg a.s./L)	;; 1999; M- 184617-01-1 KCP 10.2.1/02
WG 80 Gr	Argae Desmodesmus subspicatus (Scenedesmus subspicatus, green algae)	E_bC_{50} E_rC_{50}	8.0 mg product/L (nom) (6.4 mg a.s./L) 27.7 mg product/L (nom) (22.2 mg a.s./L)	;; 1999; M-184628- 01-1 KCP 10.2.1/03

Test substance	Test species	Endpoint	Reference
	Fish, acute Lepomis macrochirus	LC ₅₀ > 60 mg a.s./L (mm)	, P. M.; ° 1997; M-1844 7- 01-1 KCA 8.2 692
	Fish, acute Oncorhynchus mykiss	$LC_{50} > 122 \text{ mg a.s./L (mm)}$, G. 1999 M- 1892 G-01-1 K 8.2, 161
	Fish, acute Cyprinus carpio	LC ₅₀ 100 mg a.s. (nom)	M-449083-0141 KCAS.2.1/05
	Fish, chronic Oncorhynchus mykiss	NOR ≥ 100 mg a.s. Q (nom)	, POM.; Q 697; N-18457 01-1 KCA8.2.2/01
	Fish, chronic Pimephales promelas	NOEC 0.212 mg a.s.4 (nonf)	, D. 4, Ke; 2015; M 531355 01-1 KCA 8.2.2 01
	Invertebrate, acute	EC50 100 Mg a.50 (nors)	J. G.; 1996; 31-170974-01-1 O KCA 8.2.4.1/01
	Invertebrate, Conic S Daphnia magna	CNOEC IV mg c	, I. G.; 1996; №189214-01-1 KCA 8.2.5.1/01
Fosetyl-Al	Algae Desmodesmus Abspicatus (Sceredesmus Subspicatus, green algae)	50 mg & s./L (mm) ErC50 2 16 n@ a.s./L (mm)	, G.; 1999; M- 189220-01-1 KCA 8.2.6.1/01
ð	Algao Psetadokiromeriella	2 d-F ₄ 4 99 mb s / 1 (mm)	1989; M-163526- 01-1
	subcapitata (Selenastrum capricornutum) green algae)	72h P. Crow 9 54 mg a s /1 (mm)	KCA 8.2.6.1/03 , M.; 2005; M-253825-
			01-1 KCA 8.2.6.1/04
	Algan Desinodesmus subspicatus (Scenedesinus subspicatus green algae)	EbC 24.9 mg a.s./L (nom) EbC 24.3 mg a.s./L (nom) 43.3 mg a.s./L (nom)	2007; M-289324- 01-1 KCA 8.2.6.1/05
L L L	Alege Navicula pellicutora (diatom)	7d-E$_{0.50}$ 8.93 mg a.s./L (mm) recalculation 72h-E$_{r}C_{50}$ 18.11 mg a.s./L (mm)	, J.S.; 1988; M-163531-01-1 KCA 8.2.6.2/01
	Aquaticplant	$14d-E_yC_{50}$ 79.67 mg a.s./L (mm)	, J. S.; 1989; M-163537-02-1 KCA 8.2.7/01
		recalculation: 7d-ErC ₅₀ 166.6 mg a.s./L (mm)	, C.; 2015; M-525565-01-1 KCA 8.2.7/02

Test substance	Test species	Endpoint	Reference
	Fish, acute, Oncorhynchus mykiss	LC_{50} > 28.6 mg pm/L (mm) ^{a)}	, J. W.; H. J.; 1994; M 179069-01 KCA 8.2 003
	Fish, acute, Oncorhynchus mykiss	LC ₅₀ > 400 mg pm/L (nôm)	2008 M-3 10496- 01-0 KGA 8.2 1706
	Fish, acute Lepomis macrochirus	LC_{50} \rightarrow 35.7 mg/sm/L (nom) ^{b)}	, M. X
Phosphonic acid	Invertebrate, acute Daphnia magna	10 ⁵⁰ 2 [°] >2 [°] .7 mg/m/L (pam) ^a)	H. J., 1994; M- 170068-041 PCA 824.1/07
	Invertebrate, acute	€,C 50	M
	Sediment dwell Chironomus rivarius	NOEC 2 x100.2 pm/L (nom)	Q , M.;
	Algae Pseudokirchne subcestata belenarum	© _b C ₅₀ ↔ 80 mg m/L (zom) ^{b)} ↔	, M. J.; , M.; D.; 1999; M-
D -14, 4	carticornutum, gibn asae) 5 5 5		171844-01-1 KCA 8.2.6.1/02

Bold: endpoints used in sisk assessment a.s. = active substance, gm = pige metabolite & mm = mean measured@nom = nominal

Values were corrected for a purity of \$1% phosphonic acideweighter volume which is equal to 29.7% weight by weight. Test substance potassium salts of phosphonic acid has a density of 1.38. Therefore, one L of test substance weighs 380 g and contains 410 g phosphonic acid (410/1380 = 0.297) with a weight/weight pure of 29/7%.

A

Values were conjected for a purity of 40.9% phosphonic act weight by volume which is equal to 29.7% weight by weight. Te substance potentiates of phosphonic acid has a density of 1.376. Therefore, one L of test substance weight 376° and contains 409° g phosphonic acid (409/1376 = 0.297) with a weight/weight purity of 29.7%

Selection of algae and macrophytes endpoints for risk assessment

Processes in ecosystems are dominantly rate driven and therefore, the unit development per time (growth rate) is more suitable to measure effects in algae and macrophytes. Also, growth rates and their inhibition can easily be compared between species, test durations and test conditions, which is not the case for wield of biomass based endpoints. Following current state of science, the test guidelines OECD TG 201 and 221, the EU-Method C3, the EC regulation for Classification and Labeling (EC orgulation 1272/2008), the PPR Opinion (EFSA Journal 461, 1-44; 2007) and also the EFSA Aquatic Guidance Document (AGD, 2013, noted by SCFCAH on July 10-11th, 2014), list growth rate as the relevant endpoint of the algae and the *Lemna* growth inhibition test. The previous Guidance Document on Aquatic Toxicology (SANCO/3268/2001 rev. 4) still stated that "As there is no clear evidence available to indicate which is the most relevant endpoint for the field situation, the lower figure should be used in the risk assessment". As this statement is clearly superseded by recent

scientific and regulatory developments toxicity-exposure-ratios in this assessment were based on the E_rC_{50} , when available.

Fable 10.2- 2:	Initial may PEC	'sw values – FOCUS Steps 1 a	and 2
Compound	FOCUS Scenario	Orchards ne 3 × 3.6 kg a.s./ha, 7 d int., BBCH 55-85	ew PECsw according to RMS request: Orchards × 3.6 kg a.s./ha, 7 days int., BBC/H 55-85
Fosetyl-Al	STEP 1 STEP 2 – North ^A STEP 2 - South ^A	[μg/L] Ø' 4166.0 Φ' 188.7 Φ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Phosphonic acid	STEP 1	2842.0 229.2 307.6 207.6	$\frac{32905}{2}$
Worst case valu	es for single or mult	iple application	
Fable 10.2- 3:	Initial max PEC	w values - FOCUS Step 3	
Compound	FOCUS Scenario	Crchards 3 %3.6 kg a.s./ha, 7 d int., BBCH \$5-85 PEC.sw, max A [µgL]	
	D3 (ditch, 1st) D4 (pond, 1st) D5 (stream, 1st) D5 (stream, 1st) R1 (pond, 1st) R1 (stream, 1st) R2 (stream, 1st) R3 (stream, 1st) R4 (stream, 1st) control ingle or mult	132.10 5.929 132.60 5.930 5.925	

Table 10.2- 4:	Summary of FOCUS Step 4 PECsw values of fosetyl-Al (3×3.6 kg a.s./ha, 7d int.)
	Entries marked with * result from single applications. Pome/stone fruit, late
	applications

			Fosetyl-	Al [µ	ıg/L]						
Buffer					Nozzle F	Reduc	tion 🔊			, P	"0" 55
Width & Fype	Scenario		0%		50%		75%			<u>_</u> 90%~~	70
i ypc	D3 (Ditch)	S	89.130 *	S	44.570 *	S	22.280	*	<u></u>	8.9230	, P
	D4 (Pond)	S	6.7810 *	S	©3900 *	S	1.6950	*	~S S	~0,6781	Ĩ
	D4 (Stream)	S	103.50 *	S	\$51.750 *	se and a second	25.870	* (S	010.350	ľ
	D5 (Pond)	S	6.7820 *	S∡	3.3910 *	ŐŠ	1.6960		S	0.6782	(
5m	D5 (Stream)	S	111.80 *	S	55.890 *	S	27.940	*	^S	14,180 *	
Spray	R1 (Pond)	S	6.7760 * 4		3.3880 *	SÔ	1.6940		Śs	0.6776	
drift	R1 (Stream)	S	77.830	S	38.910**	, V	1.9 460	*\	S	7.7830	¢
41110	R2 (Stream)	S	106.30	Sĩa	° 53,050 *	× š	×26 580	Ò	S ≈	10.630 *	¢
	R3 (Stream)	S	111.80*	. C		× S .	©27.950	*		10.090	¢
	R4 (Stream)	S	77_520 * 0	K,	55.890 * Ø8.760	S C	©27.956) 19,380	*	∫S S	Ø.7520	, ° \$/
	D3 (Ditch)	S	39830*	S S	¥19.920 *	Å.	<u>\$</u> 9580		S	3.9830	
	D4 (Pond)	S	3.7610	S	1.8800 *	S S	× 9402	*	s S	0.3961	
	D4 (I olid) D4 (Stream)	S A	Q, 46.250 *		23/120 *) C /	11 56	∛ *	S S S	4.6250 *	
10m	D5 (Pond)	sÖ.	3.7620 * %	S S S	×1.8810		0,9904	* 4	S S	, © 0.3762 *	¢
Spray	D5 (Stream)	S S S	49.950	S S⊘	24.970 *		12.490	*	," S S‰	1/ n	
drift &	R1 (Pond)	Š	3.7580	5. S	1.8790 *	∮ S	0.9325	Ŷ		0.3758	
Runoff	R1 (Stream)	S S	× 34.780 *	Ś	47.390		8.6940	*	ζS ⊖S	3.4780 *	
Kulloll	R1 (Stream) R2 (Stream)	ß	47.500 * 4	S	~23.756	S S	11 28 80		S	4.7500 *	
		\$ 0\$	49.950 ×	S S	24.980 * .	S	2.490	¢,	S	4.9950 *	
	R3 (Stream) Q R4 (Stream)	S	34.640*	Š	17 320 *	S	8.6600		S	3.4640 *	
	D3 (Ditch)	5	20.190 *	Ľ	×10.060				S	2.0110 *	
	D3 (Ditch) D4 (Pond)	- Z	20.140 * 2¢030 *\$	ŬS ∛S	≈1.2010*	S	0:6007		S	0.2403 *	
	D4 (Fonday D4 (Stream)		20,030 · ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5 5	11,680 *	S	5.8380	*	S	2.3350 *	
15m			× 3.330 ·		1,2020*0		$\bigcirc 0.6008$	*	S	0.2403 *	
	D5 de la	ΎS S	2.4000	A C	12.610€	S [™]	6.3050		S	2.5220 *	
Spray drift &	RO(Pond)	S S	2.4010*0	S	1.2010	S S	0.6003		S	0.2401 *	
	Re(Folice)	s bc	2.4010 €) 17.560 ₹	S d S Ø		∜S	4.3900		S	1.7560 *	
Kulloll 👔	R2 (Stream)	S	23.980*		3.1800 1.990	S S	5.9960		S	2.3980 *	
Ŕ	R2 (Stream) R3 (Stream) R4 (Stream)	S S	25 200 * /	S S	×12.610	S	6.3050		S	2.5980 *	
K Y	R4 (Stream)	3 49	25,220 * (0.490 *	S S	8.7450*	S	4.3730		S	1.7490 *	
	D3 (Ditch)	S S	¥2.290	S S	6,1450 *	S	3.0730		S	1.2290 *	
	D3 (Duch) D4 (Pond)		°V√.,ĭ.	- S	Ø 430 ·	S S	0.4277		S S	0.1711 *	
	D4 (Pond)	S		S S S	Ø.1360 *	S S			s S	1.4270*	
20m	DB (Pond)	, S	1402/0	0 S S⊗			3.5680 0.4278	*			
	D3 (Duch) D4 (Pond) D42(Stream) D5 (Pond) D5 (Stream)		14070 * (1.7110 *) 4.75.410	S	7.7070*	S	3.8530	*	S	0.1711 *	
Spray	D5 (Stream)		1.7,00 * s	K.	0.8549 *	S	0.4274	*	S	1.5410*	
lrift & 🖉	R1 (Pond) (2 R1 (Stream)	S S S S S S S		AD C	0.8349	S			S	0.1710 *	
Runoff		∕S∕ ØS		S	5.3660 * 7.3290 *	S	2.6830		S	1.0730 *	
	R2 (Stream) R3 (Stream) R4 (Stream) lemote main entry foute		94.00W	S	7.3290 *	S	3.6650 3.8540	*	S	1.4660 *	
	R3 (Stream) *0	5	13.410	S S	7.7070 · 5.2450 *	S S	2.6720	*	S S	1.5410 * 1.0690 *	
<i>v</i>			10.6390	3	5.5450	3	2.0720	•	3	1.0090	

Risk assessment for aquatic organisms

ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

ACUTE RISK A	SSESSMENT FOR AQ	UATIC ORGANISMS		
Table 10.2- 5:	TERA calculations based	on FOCUS Step 2	â	
Compound	Species	Endpoint [µg/L]	PEC _{sw,m}	TERA Trieger
Orchards		à	×,	
Fosetyl-Al	Fish, acute	LC_{50} 60000	¥88.7	>318
rosetyi-Ai	Invertebrate, acute	EC_{50} > 100000	Q100.7	£530 \$ \$ \$ \$
Dhaanhania aaid	Fish, acute	LC_{50} $(2^{\circ}) > 40000$	2076	
Phosphonic acid	Invertebrate, acute	EC_{50} > 400000	307.6	>1000
			N m	

As requested by the RMS France, new PECs calculations were performed using the input parameters as provided by ANSES. As the PEC_{sw} values for fosetyl-Aydid not change due to the new catculations the risk assessment for fosetyl-Al remains, unchanged in the following an updated risk assessment is presented for the metabolite phosphonic acid, based on new maximum FOCUS Step 24BEC sus alues for orchards.

Table 10.2- 5a:	TERA calculations based on EOCUS Step 2
Compound	Species Specie
Orchards	
Phosphonic acid	$\frac{ F sh, acute}{ Inxertebrate} = \frac{ SC_{50} }{ EC_{50} } = \frac{ V }{ V }$
Request from th	

Request from the RMS:

1 Cor The preparation seems to be more whic than fasetyl-AP. The Diricity data of the preparation should also be used in the risk assessment (TER estimation for the preparation based on PECsw estimated for the drift of a single application is required).

≪.

Ř **Response from BCS:**

L

ő The formulated product was shown to be of low/moderate toxicity to all 3 taxonomic groups of aquatic organisms (fish, Daphia and greef algae), and this is consistent with the toxicity of the active substance. Although there is no substantial difference between the toxicity of Fosetyl-Al WG 80, compared to the active substance, for figh and green algae, a difference of up to a factor of 3 can be estimated for Daphnia. However, such a factor is deemed to be within the biological variation inherent in standard laboratory studies. As such, these data do not indicate a real difference in toxicity between the formulated product and the active substance. Thus, the risk assessment performed below on the active substance fosetyle auminium (fosetyle) will also cover the formulated product, and this is confirmed by TORA calculations for the formulated product (see table below).

		the representative for		·	
Compound	Species	<mark>Endpoint</mark> [μg/L]	PEC _{sw,max} [µg/L]	TER _A	<mark>Trigger</mark>
Orchards	ð "S				
Easterl OWC 90	Fish, acute	$LC_{50} > 120000$	188.7	<mark>> 636</mark>	100
Fosetyl-QWG 80	Invertebrate, acute	EC ₅₀ > 37000	100./	<mark>> 196</mark>	
Fosetyl Alas	Fish, acute	LC ₅₀ > 96000	<mark>188.7</mark>	<mark>> 509</mark>	<mark>100</mark>
Fosetyl-Al a.s.	Invertebrate, acute	EC ₅₀ > 296000	100./	<mark>> 1569</mark>	

Ô TERA calculations based on FOCUS Steep for the representative formulation Fosetyl-AI WG 80

.

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

		0		
Compound	Species	pecies Endpoint [µg/L]		LT Brigger
Orchards			- S	
	Fish, chronic	NOEC 213	1.1	
E (1.41	Invertebrate, chronic	NOEC 🚓 17000		
Fosetyl-Al	Green algae, chronic	ErC ₅₀ 🕉 9540	- \$88.7 	
	Aquatic plants, chronic	$E_r C_{50}$ 166600	0 [×] 883	
Phosphonic acid	Sediment dweller, chronic	NOEC > 100200	$\sqrt{2}$	
Phosphonic acid	Green algae, chronic	ErCs 29400	\$\$\$07.0 \$\$ \$\$	
Bold values do not	pass the risk assessment			N N

Table 10.2- 6: **TERLT** calculations based on FOCUS Step 2

As requested by the RMS France, new PEC_{sw} calculations were performed using the input parameters as provided by ANSES. As the PEC_{sw} values for fosely I-Al did not change due to the new calcolations the risk assessment for fosetyl-Al remains unchanged. In the following an updated risk assessment is presented for the metabolite phosphonic acid, based on new maximum FOCUS Step 2 PEC_{sw} values for orchards. P

			Y	"O" >		1 Ra		
Table 10.2- 6a:	TERLT cal	leulations	based on I	FQCUS Ste	p 2 🎸	°~° O	× v	
		<u> </u>		<u>v "0"</u>				
Compound	Species	A		⁷ <mark>Εφ</mark> αροί «Υμα/L	nt, ^s D [×] &	PEC wmax [µg/L]	TERLT	Trigger
Orchards		d d	, W	\$ \$	0	or 4	7	
Phosphonic acid	Sediment	dweller, cl	hromic NO	ĔC N S	109200		> 225	10
0	Green alga	ae, chronic	≥	50 4	[©] 29400		<mark>66</mark>	10
ð	8 4				Ő	.©		
<u> </u>	.0	L)	1	1 6	 	*		

Request from the RMS;

 \sim

The chronic risk assessmen for Chirononius riparius (phosphonic acid) should be done with the toxicity endpoint and the RECsed expressed in mg a.s.4kg sediment as phosphonic acid has a potential of accumulation in the sediment

Response from BCS

The chronic toxicity endpoint of phosphonic acid to the sediment dweller Chironomus riparius is √1999,4M-171912-01-1 (please refer to Document MCA, derived from the study by Section 8.2.5.4, KCA 8.2.5, 4/01), which provided a NOEC > 100.2 mg/L. In this study, phosphonic acid concentrations were measured only in the overlying water after 1 hour, 7 days and 21 days. The analytical results (see Table 2 in the study report) show that the recovery of phosphonic acid was close to 100%, without decrease with time, for the three highest concentrations tested (*i.e.*, 25, 50.1 and 100.2 mg/L). This indicates that, over the experimental period, phosphonic acid remained in the water phase, and and not accumulate in the sediment. Results were therefore expressed with respect to the matrix where physphonic acid was present (*i.e.*, the overlying water), thus as mg/L.

E SH E SH

All TER values for the uses in orchards meet the trigger value based on FOCUS Step 2 PEC_{sw} values, except for the long-term exposure to fish. Therefore TER calculations for fish based on FOCUS Step 3 r L M O values are presented below.

Compound	Species	Endpoint [μg/L]	FOCUS scenario	PECsw,max [µg/L]	TER
Orchards			۵.	2	
			D3 (ditch 1st)	@32.10	1.6 055.9 1.5 10
			D4 (pond, 1st)	<u>6</u> ¥ 5.929	35.00
			D4 (stream, 1st)	132.60	1.6 0
			D (pond, 1st)	5 .930 °	035.9
Fosetyl-Al	Fish,	NOEC 213	D5 (stream, 1st)	143,200	
rosetyi-Ai	chronic	NOEC 213	R1 (pond, 1st)	\$ \$ 9 25 ô	7 759 4
			R@ (stream, 1st)	99.71	<u>2.1</u> (⁴) <u>2.1</u> (⁴) <u>2.1</u> (⁵)
			R2 (stream, 1st)	136.20	
			R3 (stream, 1st) 🐇	143.20	1 15
			R# (stream, 1st)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.1 J

D.C. Table 10 2_ 7.

S ° The FOCUS pond scenarios meet the required trigger. Nevertheless, further refinement using FOCUS

Ø

Ô

The FOCUS pond scenarios meet the required trigger. Nevertheless, further perimeness to a low of the scenarios and is presented below.

						0
Species	Endpoint [µg/L]	Mitigation	FOCUS scenario	PECsw,max [µg/L]	TER	Ţ rig ger
Orchards					ð	
			D3 (ditch)	12.29	17.3	
			D4 (stream)	14.27	14.9	Ø, ^v
T ¹ 1		20 m	D5 (stream	15.44	13.8	
Fish, chronic	NOEC 213	vegetated	R1 (stream)	1,6,73	9 .9 S	18 4
emonie		buffer strip	R2 (stream)	A.66	~14.5.Q	
			R3 (stream)	°€ 15.45°	13(8	
			R4 (stream)	4,0,69	¥ <u>19.9</u>	
			D3 (diten)	8.913 5 10.30	23.J	
		4	D4 (stream)	10.30	2056 Å	
F' 1		5 m non-spray	DS/(stream)	<u>1418</u>	19.1	
Fish, chronic	NOEC 213	buffer zone +.	R1 (stream)	0 ⁷ .783	\$ 27.4 ⁽¹⁾	
cinonic		90% reducing	R2 (Stream)	÷ 10.6	C 200 0	
			(Su wan)	J 1018 C	j\$9.1 . L	
			R4 (stream)	7.752	<u> </u>	
			D3 (ditch)	€ [™] 9.9 58	2104	
	\$ \$		De (stream)	10-56	Ø18.4	
P 1.1.	°∕¶″ ,	vegetated a	D5 (stream)	¥12.49	17.1	
Fish, chronic	NOEC 213	vegetåted buffer strip		8.694	24.5	10
	NOEC 213	75% reducing	RQ (stream)	11.88	17.9	
		nozzles	R3 (stream)	12.49	17.1	
			R4(stream)	8.660	24.6	

Table 10.2- 8: Refined TER calculations for fosetyl-Al based on FOCUS Step 4 including mitigation measures

Ľ According to the presented risk assessment based on FOCOS Step 4 calculations, the risk to aquatic organises from the use of the product in orchards & unlikely if O

A

- 5 m non-spray buffer zone and 90% driff reduction, or
- 20 m vegetated buffer strip are maintained during application of the product. - 10 m vegetated byffer strip and 75% drift reduction, Or

M

Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae **CP 10.2.1** and macrophytes

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier S provided by Bayer CropScience.

. 1

As an overview the original summaries from the DAR are given below.

	KCP 10.2.1/01 ; 1999; M-184613-01-1 EXP10369F: Acute toxicity for reinbow trout (<i>Gobrhynchus myciss</i>)
Departs	KCP 10.2.1/01
Report: Title:	EXP10369F: Acute toxicity for rainbow trout (<i>Qobrhynchus myriss</i>)
Report No.:	R011807
1	M-184613-01-1
Guideline(s):	M-184613-01-1 EU (=EEC): 92/69/EEC, COOECD: 203; Equivalent to US EPA OPPTS Guideloc No. 850 1075
Guideline(5).	No 850 1075
Guideline deviation(s).	not specified
GLP/GEP:	ves A a Q Q A A A
	EXP10369F: Acute toxicity for ratinbow trout (<i>Q®:orhynchus mytass</i>) R011807 M-184613-01-1 EU (=EEC): 92/69/EEC, C@OECD: 203 Equivalent to US EPA OPPTS Juideloc No. 850.1075 not specified yes
Endpoint according to	M-184613-01-1 EU (=EEC): 92/69/EEC, CO OECD: 203: Equivalent to US EPA OPPTS Guidable No. 850.1075 not specified yes EFSA Scientific@eport 2005 04, 1-39 for 63 etyl, A: LC ₅₀ - 96 > 121 mg Fusetve Al W& 80/L 996 mg a.s./L0
Enapoint according to	$LC_{50} - 96 > 120 mg Essety Al WG 80/L 496 mg a.s./La$
	EFSA Scientific report 2005 64, 1-49 for 6 setyl A: $LC_{50} - 960 > 1217$ mg Fosety Al W/ 80/L 96 mg a.s./L 6^{-1}
Methods:	
The test substance was	s EXP10669F (194 g fosetyl 21/kg) A toto of 40 uverbe fisk from the same experimental design included two experimental groups with 2 replicates per replicate. The experimental groups were: Addition water control and one
botch were used. The	avariation to a design and a design of the avar avar avar available avar available ava
Datch were used. The	experimental design included two experimental groups with 2 replicates per
group and 10 fish per	replicate. One experimental groups were: A callution water control and one
nominal concentration	orsexP10369F (120 pg/L) equivagent to a nonural expectation of 95 mg
tosetyl-Al/L). The test	of EXP10369F (120 152/L) (squivabent to a nonzival concentration of 95 mg (jimit tor) wasperformed upper set in-static conditions (willy renewal).
Results:	
The test substance w	As soluble in the diffution water at the computations tested. Measured
concentrations Oinged	from 103 to 674% of nominal values at so th 0 and 24 h, from 102 to 103% at
72 h and from 102	From 103 to 54% (Fornominal values at with 0 and 24 h, from 102 to 103% at to 404% at 96 h. The foxicity value are expressed in terms of nominal
concentration of the for	regulated by our tality or subethal which was observed in the control
groups of in the two	Groups of terstish exposes for the h tood nominal concentration of 120 mg
EXP10369F/L.	
.~?	
LQC 50 -	96 h > 180 mg EXP19369F/L (mee) measured concentrations)
@NOE	96 (F)= 12(Cing F&P103O)F/L Onean measured concentrations)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Comments (RMS):	accentable AF 6 . C
Further study inform	ation supplementing the original DAR summary
<b>Objective:</b>	
	ed to assess the acute toxicity of EXP 10369F (794 g fosetyl-Al/kg) to rainbow
trout (Oncortrynchus m	ykiss) under semi-static conditions.
Hour Concorreginentis II	
Materials and method	
Test item: EXP10369	
	ed over a period of 96 hours with the rainbow trout (Oncorhynchus mykiss) in
filtered, dechlorinated	and softened laboratory tap water. Chlorine levels ranged from 0.02 to
	lness level was between 132 and 168 mg CaCO ₃ /L. Medium was renewed daily.

	measured at the start of the study. The mean standard length
was $3.8 \text{ cm}$ (SD = $0.2 \text{ cm}$ ) and the mean	weight was 0.86 g (SD = 0.2 g) resulting in a loading of
0.43 g bodyweight/L. Fish were not fed du	
	s dark was maintained, and temperature, pH and dissolved
oxygen were recorded daily in each contro	
	e measured at 0 and 72 hours in fresh media and at 24 and
	ography using a conductivity detector and a suppressor:
	nce of sublethal effects in the fish compared to control were
made at approximately 0.25, 2, 4, 24, 48 72	2 and 96 hours during the test, $2^{\circ}$
Findings:	
<b>V</b> 1' 1', ', '	
Validity criteria:	ography using a conductivity detector and a suppressor: nce of sublethal effects in the fish compared to control were 2 and 96 hours during the test, adopted 17.07.1992) Obtained in this study
Validity criteria (according to OECD 203,	adopted 17.07.1992)
Mortality in the controls (criterion is $< 10\%$ )	K B S V L Q W
Dissolved oxygen concentration in the control	
Temperature was within 13 to 14 °C, <i>i.e.</i>	the recommended pange of 13 to 7 °C
Analytical findings	
Analytical findings:	
The pH values in the test ranged from 7.2	To 8.1, dissolved oxygen concentrations ranged from 8.1 to
10.1 mg/L, and temperature ranged from	3 to 44 °C C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Conclusion 🗸 🔬	
The acute toxicity of EXP \$369F do One of	rhynchus mykiss has been provestigated and gave the 96-hour
LC_{50} of $> 120 \text{ mg} \text{ EXP} \sqrt[3]{0369F}/L$ (based	l upon nominal concentrations). The no observed effect
concentration (NOEC) was 120 mg EXP1	0369F/L@ased on the lack of mortality and sublethal effects
at this test concentration.	
<u> </u>	
Report: $\sqrt{2}$ $\sqrt{4}$	1999 M-284617-08-1
Report: Title:	(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
Title: 7 EX\$10369F: Acute Report No.: 9 R011809	;; 1999; M-184617-07-1 toxicity to Dagania magna
Title: 7 EX\$10369F: Acute Report No.: 9 R011809	in 1999; M-184617-07-1 toxicity to Definia magna
Title: Report No.: Document No.: Guidelings): Cuidelings): Title: Report No.: Cuidelings): Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Report No.: Cuidelings): Report No.: Report No.: Re	Toxicity to Depinia magna ,
Title: Report No.: Document No.: Guidelings): Cuidelings): Title: Report No.: Cuidelings): Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Report No.: Cuidelings): Report No.: Report No.: Re	Toxicity to Depinia magna ,
Title: Report No.: Document No.: Guidelings): Cuidelings): Title: Report No.: Cuidelings): Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Report No.: Cuidelings): Report No.: Report No.: Re	Toxicity to Depinia magna
Title: Report No.: Document No.: Guidelings): Cuidelings): Title: Report No.: Cuidelings): Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Cuidelings): Report No.: Report No.: Cuidelings): Report No.: Report No.: Re	Toxicity to Depinia magna
Title: Report No.: Document No.: Guideline deviation S): GLP/GEP: Report No.: M-184G17-01 S EUX 2EC): 92/69/1 Equivalent to US 1 Action Spec Ged	Toxicity to Deginia magna , EC, G2 OECD: 202, Part I; A OPDIS Grideline No. 850.1010
Title: Report No.: Document No.: Guideline(s): Guideline deviation: Guideline deviation: Cuideline deviation: R011809 M-184G17-0145 EUX-2EC): 92/69/4 Equivalent to US I Active deviation: Cuideline deviation:	Toxicity to Deginia magna , EC, G2 OECD: 202, Part I; A OPOTS Gradeline No. 850.1010
Title: Report No.: Document No.: Guideline(s): Guideline deviation: Guideline deviation: Cuideline deviation: R011809 M-184G17-0145 EUX-2EC): 92/69/4 Equivalent to US I Active deviation: Cuideline deviation:	Toxicity to Deginia magna , EC, G2 OECD: 202, Part I; A OPOTS Gradeline No. 850.1010
Title: Report No.: Document No.: Guideline(s): Guideline deviation: Guideline deviation: Cuideline deviation: R011809 M-184G17-0145 EUX-2EC): 92/69/4 Equivalent to US I Active deviation: Cuideline deviation:	Toxicity to Deginia magna , EC, G2 OECD: 202, Part I; A OPOTS Gradeline No. 850.1010
Title: Report No.: Document No.: Guideline deviation S): Eudy Decument No.: Guideline deviation S): Eudy Decument No.: Cuideline deviation S): A ot spec ded CLP/GEP: Endpoint according to EFGA Scientific Qe EGG - 480 = 3	Toxicity to Deginia magna , EC, G2 OECD: 202, Part I; A OPDIS Grideline No. 850.1010
Title: Report No.: Document No.: Guideline deviation S): Endpoint according to EFA Scientific (Per Endpoint according to EFA Scientific (Per EC) - 480 = 2 Methods:	toxicity to Depinia migna CC, G2 OECD: 202, Part I; A OPDTS Grideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Foretyl-Al WG 80/L (29.6 mg a.s./L)
Title: EXPl0369F: Acute Report No. Roll 809 Document No.: Roll 809 Document No.: NI-184G17-01 & Guideline deviation : Act spectred GLP/GEP: Set Endpoint according to EFOA Scientific / Pe Endpoint according to EFOA Scientific / Pe ECO - 486 = 3 Methods: Daphnids less than 24-boold were distuble	toxicity to <i>Depinia migna</i> SEC, G2 OECD: 202, Bart I; A OPOTS Gradeline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Foretyl-Al WG 80/L (29.6 mg a.s./L) potto the test vessels randomly and assigned to eight
Title: EXPlo369F: Acute Report No: Roll809 Document No: M-184617-014 Guideline deviation S): EUX=ZEC): 92/69/4 Equivalent to US P Guideline deviation S): Aot spec red GLP/GEP: Ses Endpoint according to EFGA Scientific Per EGG - 486 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per splica	toxicity to <i>Desinia magna</i> . EC, 62 OECD: 202, Part I; A OPDTS Grideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 mg Fosetyl-Al WG 80/L (29.6 mg a.s./L) putto into the test vessels randomly and assigned to eight aby 4 replicates per group). The experimental groups were a
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No: Roll809 Document No: M-184617-014 Guideline deviation S): EUX=ZEC): 92/69/4 Equivalence OUS P Guideline deviation S): Aot spec red GLP/GEP: Ses Endpoint according to EFGA Scientific P EGG - 486F = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per splica	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra
Title: EXPlo369F: Acute Report No.: Roll809 Document No.: M-184617-014 Guideline deviation 1: Act spec field GLP/GEP: Ses Endpoint according to EFOA Scientific/2e ECG - 480 = 3 Methods: Daphnids less than 24-bold vere distribute experimental groups (5 animals per collication dilution wates control and normal co	toxicity to <i>Dastinia magna</i> EC, G2 DECD: 202, Part I; A OPOTS Glideline No. 850.1010 port 2005) 4, 1-79 for fosetyl-Al: 37 ng Fosetyl-Al WG 80/L (29.6 mg a.s./L) but of into the test vessels randomly and assigned to eight above test vessels randomly and assigned test vessels randomly and assigned test vessels randomly as the test vessels ra

Bayer – Crop Science Division

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

Results:

Analytical verification showed that the measured concentrations of fosetyl-Al were close to nominal Analytical verification showed that the measured concentrations of losetyi-AI were close to nominal values. Measured concentrations ranged from 101 to 107% of nominal values at start and from 97 to 103% at the end of the test.
 EC₅₀ - 48 h = 37 mg EXP10369F/L (nominal concentration) (22 mg a.s./L)
 NOEC - 48 h = 5.6 mg EXP10369F/L (nominal concentration) (4.5 mg a.s./L)
 Comments (RMS): acceptable

Further study information supplementing the original DAR supplementary

This study was undertaken to determine the acute toxicity expressed as the 48-h median effect concentration (EC₅₀), of EXP 10369F (794 g foretyl-fd/kg) to Daphylia magna.

Materials and methods:

Ô Test item: EXP10369F, Lot No.: OP980953, pupity: 794 fosety1-Al/kg. Bioassay was conducted with Elendt medium without renewal with a photoperiod of \$6 hours light : 8 hours dark and without supplementary agration or feeding during the 48 hour exposure period. Each test vessel contained 5 daphnids and 100 mL of test solution to give a loading of 20 mL test solution per organism. The temperature pH and dissolved oxygen levels were recorded at the start and at the end of the study. Test concentrations were verified by chemical analysis at 0 and 48 hours (LOD = 2 mg/L

Findings:

Validity criteria:

Validity criteria (according to QECD 262, adopted 13,04.2004)	Obtained in this study
Mortality in the control oriterion is < \$0%)	<mark>0 %</mark>
Dissolved oxygon concentration in the Control and test vessel (criter on is >3mg/L)	<mark>≥4.9 mg/L</mark>

Analytical findin	igs: of st		* .		10-	
Nomina		høurs 🤇	× ×		48 hours ¹	
<mark>concentration</mark> (mg/l)	D pH	hours hours 7.0 7.0 7.0 7.0	TOC		mg O ₂ /L	T °C
	i 🔗 🔊	7 <mark>.0</mark> °	$\frac{1}{21}$	<mark>7 5 - 7.7</mark>	<u>7.2 – 7.3</u>	<mark>22</mark>
5.6	0 <mark>7.7</mark>	<mark>%∕2</mark> ~		<u>~</u> 7.7	<mark>7.3</mark>	<mark>22</mark>
	7.6	⊖ [¥] 7.0 <u></u>			<mark>7.2 – 7.5</mark>	<mark>22</mark>
$ \begin{array}{c} 10 \\ 18 \\ 32 \\ \end{array} $		7.0 8	× <u>21</u> × § 21~0	اً <mark>7.7</mark>	<mark>7.2</mark>	<mark>22</mark>
		<mark>.2.2</mark>	^چ 21	<mark>7.6</mark>	<mark>7.2</mark>	<mark>22</mark>
<mark>56</mark> _ KJ	7.2 7.0 7.0	√ <u>√</u> 2 ⊘ <mark>6.8</mark> @ ≫ 7.1 ~ ∞	21 21 21 21 7 7	<mark>7.5 - 7.6</mark>	<mark>7.2 – 7.4</mark>	<mark>22</mark>
100×	7.0	🎾 <mark>7.1</mark> 🔏		<mark>/.3 - /.4</mark>	<mark>7.2 – 7.5</mark>	<mark>22</mark>
180	}` <mark>5.2</mark> √		$\sqrt[9]{21}$	<mark>4.9 - 5.0</mark>	<mark>7.3</mark>	<mark>22</mark>
¹ conducted with 4	replicates	Ĵ,	*			
180 ¹ conducted with 4	7.2 A 7.07 5.2 A replicates					

Biolocical findings:

Number of immobilised *Daphnia* is displayed in table below.

Nominal	<mark>24 ho</mark>	Itised Daphnia is dispinite is dispinite is dispinite is dispinite is dispinite in the second seco		<mark>ours</mark>	ð	, S
concentration	Total	%	Total	%	Â	ý.
(mg/l) Control	0	<u> </u>	0	0	1	S S
5 6	0				s de la companya de l	
0	0		3		and the second sec	
8	0		10 @	50	Ą.	, v z z
2	0		8			V Q .0 ⁴
5 <mark>6</mark>	0	0	13	65 ⁹	6° 2	i o
100	1	5	120	<u>60</u>	Ŭ ⁴	\ ⁰ ´ Ø
80	20	100	<u> </u>	° 1.00 ×	, , , , , , , , , , , , , , , , , , ,	0`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			<u> </u>			
onclusion			1 ×	ŵ Q,	Ŏ ~	Ô D
e acute toxicity	v study of EX	XP10369F	te Daphhia m	agna has been	nvest@ated	kand gave a 480
₅₀ of 37 mg E	XP10369F/L	(nomina)	concentration	29.6 mg a ©	L) Accordin	vely the NORC
6 mg EXP10369	9F/L (nomina	al conceptra	ation 4 5 mg			
		S	O N			\$ 49
		Q") Ø Ĉ		õ <u>,</u> õ	õ v
eport:	KCP 1	QQ.1/03		: 1999	M-18462870	-1 &
tle:	EXP	369F: Alga	l 🕵 wth inhibiti	ion assay of Sc	en@lesmus sub	spicatus
eport No.:	R0118	13		O A		, Ö
ocument No.:	M ₇ 184	628-01-1 🖗			j ^a "S ^a "š	ý ,
uideline(s):	, EU (=]	EC): 92/69	/EE 6 , C3; 2 0C	D: 01, (1084)		
	Equi	ient tous I	EPA OPP Gu	idenne NØ 850). 340 0 (Y	
uideline deviation	(s) Algal i	nocitium we	s cultured using	ya shaleer on a	light bench in a	a temperature
\$	S Ontrol	lles room, u	ot in an incubat	or as cated in	he protocol. Th	nis was because la
C.	Volume	Sof incculu	im were require	d. V	s v	
DI DICED	o Iniso	eviati@ did	to affect the ou	ucome oagene s	tudy.	
LP/GEP:	•0 yes≪	, 9 A	ot in su incufer im were reduire copaffect the ou		2	
n da a interesti a	to Bro A	Quanti Q D	anart (2005) 5	1 \$70 f	cotril Al.	
naponaccordin			2000	4 - 19 10 10		\ \
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n = 0/./ n	g rosetyi-A	WG 84/L (2.	2.2 mg a.s./L)	)
Tedler Jac	à a	N N		ð		
<b>SLP/GEP:</b> Endpoint accordin <b>Aethods</b> : Nominal concentration quivalent to 9.9, 11 the concentration <b>Results</b> : Measured concentration ominal at 72 hore ubstance.					VD10260E (5	101 a forstal Al
		J.∠, ∘, 1Ψ.4, ∦		Uning/L of E	AP10369F (/	94 g Iosetyl-Al
quivalent to Y.9,	4.1, 9.1, 80,		ng a.soji. Inc	est substance	e was soluble	in the test solution
If the concentration	ons tested.	, S	×* . *			
L.		¥ ~,				
lesults:		. 0' _				0 04 1100
leasured concen	trations	ed virom 👯	to 3% of n	ominal values	s at 0 h and	from 84 to 1129
ominal at 72 h	the results of	tinis tegt a	re expressed in	terms of the	nominal conc	centrations of the
ibstance.	A	, s	~~			
Į.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D			
^A ErC	ĵv- 72 b℃					
Ext	_{i0} - 72 h	P = 8.0  mg	g EXP10369F/ EXP10369F/ EXP10369F/	L (C.I. 95%:	6.64 – 9.68)	
DO F	C 72 h V	= 2.4 mg	EXP10369F/I	L		
	O'	0				
Componts (R	MS): accepta	able				

### Further study information supplementing the original Monograph summary

#### **Objective:**

This study was designed to assess the inhibitory effect of EXP 10369F (794 g fosetyl-Al/kg) of the growth of the unicellular alga *Scenedesmus subspicatus*.

### Materials and methods:

Page 31 of 110	
2016-09-01	

Waterials and methods:
Study was conducted using the strain No. CCAP 276/20 of the unicellulat green algae Scenedesmus?
subspicatus. Triplicate algal cultures were exposed to six test levels with six replicates of an untreated
control. Cultures were incubated in a Gallenkamp Orbital Incubator under continuous illumination of
approximately 6000 lux at 22 °C for 72 hours. Culture medium was a sterile toutrient medium as
recommended. The starting culture cell density was $\sqrt[5]{4}$ cells/m
Test concentrations were verified by chemical analysis (LQD = 0.04 mgQa.s./LOLOQ = 1.2 mg
formulation/L). Duplicate samples were taken from control and test coltures at 0 and 72 hours.
The temperature and pH of the test cultures was measured at b and 2 hours and a second s
Measurements of growth were conducted at 24, 48 and 72 hours and condensity was determined by
using a haemocytometer. The areas under the growth curve (biomass) and average growth rate were
calculated.
Findings:
Validity criteria:
Validity criteria (according to OECD 201, adopted 23.03.2006)       Obtained in this study         &       &       &       October 1000000000000000000000000000000000000
$\frac{1}{10000000000000000000000000000000000$
Mean coefficient of variation for section by section specific growth rates \$2.3% (see argumentation below)
(days 0-1, 1-2, 2-3) in the controls (cuterion $@ \le 35\%$ )
Coefficient of variation for average specific growth rates thring the 0 to $\swarrow$ $\leq 10\%$
Coefficient of variation for average specific growth rates thring the 0 to $\leq 10\%$ 72 hour test period in replicate control cultures (criterion is $\leq 10\%$ ) $\leq 10\%$
Biological results:

		Q	À	<u> </u>		
Nominal	Ar	ea ander	carve	<mark>ັ%</mark> 🖉	Growth rate	<mark>%</mark>
concentration	. Ø.	aЙ hou	rs 🧃	Inhibition	( <del>0 – 72 hours)</del>	<b>Inhibition</b>
(mg/l)			, Ô	, s e		
<mark>Control</mark>	6 4	<mark>Ø8</mark>	$\mathcal{L}$	jø <mark>-</mark> C	∕ <mark>⊉0.052</mark>	-
<mark>2.4</mark>		\$ <mark>40</mark>	Į.	°∼y <mark>&lt;5.5≵</mark> y	ي <mark>0.054</mark>	<mark>&lt;3.3&gt;</mark>
<mark>5.2</mark>		ຽັ <mark>23</mark> ~		) <mark>38</mark>	0.048	<mark>8.1</mark>
<mark>11.4</mark>	8		įQ,"	<b>6</b>	<b>0.040</b>	<mark>23</mark>
<mark>25</mark>		<b>%</b> .2	Ű,	× 84 v	<mark>0.032</mark>	<mark>39</mark>
<u>25</u> 55	°∕ ₹	∕ <mark>&amp;0.04</mark>	đ	S <u>100</u> 7	<mark>0.013</mark>	<mark>74</mark>
120 x		1 <mark>-2,7</mark> ,7		1 <mark>107</mark>	<mark>0.019</mark>	<mark>136</mark>
~~~	<u> </u>		ą,	2		
· · · · · · · · · · · · · · · · · · ·	<u>к</u> чОг	,O	<i>.</i>	. U		

Ø1

Conclusion

. Under laboratory conditions, EXP10369F had an effect on the biomass and the growth rate of Scenedesmus subspicatus The 72 hour $E_{r}C_{50}$ was calculated to be 8.0 mg/L and the 72 hour $E_{r}C_{50}$ was calculated to be 28 mg/L. The NOEC (no observed effect concentration) was calculated to be 2.4 mg/L

2.4 mg/K

Request from the RMS:

Further explanations are required to justify that the study of the effects of the preparation on Scenedesmus subspicatus (; 1999; M-184628-01-1) are still reliable for the risk since the coefficient of variation is estimated to be 72% for the control.

Response from BCS:

Whereas the biomass increases and the coefficient of variation of average recific growth rates in replicate controls over 72 hours meet the validity criteria according to the QECD TG 20 the RMS is right when stating that the coefficient of variation for section-by-section specific growth rates of controls is 72% (BCS's calculations result in the value of 72.3%). BCS therefore concurs with the RMS that this very criteria is not met. Visual inspection of the growth curves (Eigure 13) the study of report) shows that this is due to the slower growth of control algovover the first 24 hours. However, over this early time period, the pattern of toxic effects was already set with aconcentration-response relationship fully consistent with the final result of the study. Thus, highly variable section by section specific growth rates in the control had no major mafluence on the detivation of reliable toxicity endpoints from this study

Additional long ferm and chronic foxicity studies on fish, aquatic **CP 10.2.2** invertebrates and sediment dwelling organisms

requirements. Please Pefer to Document No new studies were necessary based on the current data MCA, Section 8.2.

Further testing on aquatic organisms **CP 10.2.3**

Ŵ No studies were necessary based on the cubent data requirements. Please refer to Document MCA, Section 8.2.

Effects on arthropods **CP 10.3**

CP 10.3.1 Effects on bees

The risk assessment has been performed according to the existing guidance in force at the time of the preparation and submission of this dossier namely the EV Guidance Document on Terrestrial Ecotoxicology (SANCO/ 1032@2002, rev 2) and EPPO Standard PP 3/10 (3) Environmental Risk Assessment Scheme for Plant Protection Products - Chapter 10: honey bees.

Commission Regulations (PU) 283/2010 and 284/2013 require, where bees are likely to be exposed, testing by both acute (oral and confact) and chronic toxicity, including sub-lethal effects, to be conducted. Consequently in addition to the standard toxicity studies performed with adult bees (OECD 213 and 214) the following additional studies are also provided:

- \bigcirc Chronic 10 day toxicity to adult thes under laboratory conditions,
- Acute contact toxicity to bumble bees under laboratory conditions,
- A colory feeding study following opmen et al. 1992 (using a realistic worse case spray solution concentration and covering exposure for effects on brood (eggs, young and old larvae) and their development, nurse bee op-going behaviour in brood care and colony strength),
- Semi-field brogd teeding studies following OECD Guidance Document No. 75 (using a more Dealisticspray scenario onto flowering *Phacelia* at the maximum application rate for the approval renewal of fosetyl and covering exposure for effects on brood (eggs) and their development and colony parameters),

• Semi-field studies following OEPP/EPPO Guideline No. 170(4) simulating a spray exposure scenario for honey bees in flowering apple orchards at the maximum application rate for the approval renewal of fosetyl and evaluating flight intensity, mortality and colony development.

Details of the bee testing with fosetyl-Al and ecotoxicological endpoints are presented in Document MCA, Section 8.3.1, Document MCP, Section 10.3.1, as well as within the existing EFSA scientific Report (2005) 54, 1-79.

• • • •			4	O'	p, °S
Table 10.3.1- 1:	EU evaluated and additional st	udies on bee toxicity	of fosetyl-Al,	phosphoni	ic acid and
	Fosetyl-Al WG 80		Ů		Y , Û

l able 10.3.1- 1	Fosetyl-Al WG	80	
Test substance	Test species/ study type	Endpoint O	References
	Honey bee, 48 h	LD& oral > 140 µg a.st bee LD ₅₀ Contact > 100 µg a.st bee	KACA 8.3.1.1.2.01
Fosetyl-Al	Honey bee, 48 h	Q LD_{50} - Q	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø KC % 8.3.1.1.2/02 Ø
		D LD of oral $> 108.5 \mu g$ as bee	
Fosetyl-Al	Hone bee, i	2 LB ₆ - oral 2 >440. 4 g prod/bee >3.87 µg ag bee 2 2 2 2 2 3 3 2 3 3 2 3 3 2 3 3 10 4 2 3 10 4 10 10 10 10 10 10 10 10	,; 1999; M-184602- 01-1 KCP 10.3.1.1.1/01 KCP 10.3.1.1.2/01
Fosetyl-Al	Harrey bee 9 48 h	LD ₅₀ - of al >136.3 μg prod/bee >10.4 μg a.s./bee >123.5 μg prod/bee >1000 μg a.s./bee	,; 2014; M-503644-01-1 KCP 10.3.1.1.1/02 KCP 10.3.1.1.2/02
A B B	$ \begin{array}{c} $	D_{50} D	, S.; 2000; M-238701- 01-1 KCA 8.3.1.1.1/03
Phasphonic acid	Honey Lor, 480	2° 2°	, J. B.; 1995; M- 179067-01-1 KCA 8.3.1.1.2/03 , T.; 2010;
	Honey dee, 48 4 48 4 48 4 48 4 48 4 48 4 48 4 4	$ \sum_{LD_{50}-\text{ contact}} > 848 \ \mu\text{g p.m./bee} $	M-389965-01-1 KCA 8.3.1.1.1/05 KCA 8.3.1.1.2/05

Test substance	Test species/ study type	Endpoint	References
	Honey bee, 10 d chronic adult feeding study	NOEC 750 mg a.s./kg $LC_{50} > 750$ mg a.s./kg NOEDD 37.3 μ g a.s./bee/day $LDD_{50} > 37.3 \ \mu$ g a.s./bee/day	, A.; 2015; ° M-527665-01-4 KCA 8.3.1.201
Fosetyl-Al WG 80	Honey bee brood feeding (Oomen <i>et al.</i> , 1992)	Slightly increased termination rate of eggs, young and old larvae; comparable brood nest development as in control; brood index and brood compensation index displayed continuous increase, indicating a successful development of the brood. No effects on the survival of adult bees and pupae, colony strength and overall colony conditions by feeding honey bee colonie sugar syrup at a foset Al concentration of 2.4 g a.s./L (2.97 g test item/L).	
	Semi-field honey bee brood study (according to OECD 75; forced exposure conditions) in <i>Phacelia</i> ; application during full-bloom and bees actively	No adverse effects on mortality, fright intensity, brood development (brood termination rate, brood indeg compensation index) as well as on colony strength and brood and food abundance at 3600 g as./ha. No adverse effects or mortality, flight intensity, colony strength and brood and food abundance at 570 g a.s./ba.	43.; 2005; M-526896-4 01-1 KCA-8,3.1.3/92
	foraging Semi-field honey bee brood study (according to OECD 75: forced conditions) in <i>Phacelia</i> application during full-bloom and beesactively	No adverse effects or mortality, flight intensity, behaviour, brood development (brood termination rate, brood index, compensation foldex) as well as on colony strength and brood and food abundance at 570 g a.s. ha	, B.; 2015; M-528899- 01-1 KCA 8.3.1.3/03
	PPO studeline No. 60 (1985)	Application of 100 k@product/ha at approx. 30% flowering of <i>Phacelia</i> , 28% before the i@roducom of loes in the tents (7-day exposure) did not vause a werse effects to honeybees	;; 2000; M- 238790-01-1 KCP 10.3.1.5/01
Fosetyl-Al WG 80	Semi-field flones bee study (OEPB) EPPO Guideline No:4/0(4); forced exposure conditions) in flowering apple	No adverse effects on mortality, foraging activity, behaviour, cobary strength, amount of brood and food borage after one application of 1200 g a.s./ha/m canopy height (corresponding to 3600 g a.s./ha/3 a, canopy height).	;; 2015; M-528978-01-1 KCP 10.3.1.5/02
	orchard Semi-field honey Hee study (OFRD/ EPPO Guide the No@70(4) Forced exposure conditions) in flowering apple orchard	No adverse effects on mortality, foraging activity, behaviour, colony strength, amount of brood and food storage after two applications of 1200 g a.s./ha/m canopy height (corresponding to 3600 g a.s./ha/3 m canopy height) in a 6-day spray interval.	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Test substance	Test species/ study type	Endpoint	References	
Fosetyl-Al	Bumble bee, 48 h	LD_{50} - contact > 250 µg a.s./bumble bee	, S.; 2015, ° M-525339-01-1 KCA 8.3.1.1 206	

- Studies written in grey typeface are referring either to studies in the corresponding Baseline Dosser for the active substance or the old representative formulation for Annex I inclusion of fosetyl under Directive 91/414/EEC (which is provided for approval renewal as well); whereas studies in black typeface are studies of the Supplementary Dossier for the active substance or the representative formulation Fosetyl-AWG 80

p.m. = pure metabolite

^{a)} 96h-endpoint

b) Values were corrected for a purity of 41% phosphonic acid weight by volume which is equal to 29.7% C weight by weight. Test substance potassium salts of phosphonic acid bas a density of .38. Therefore, one by of test substance weighs 1380 g and contains 10 g phosphonic acid (410/1380 / 0.297) with a weight/weight purity of 29.7%.

Bold: endpoint used for risk assessment

Risk assessment for bees

The risk assessment for bees is based on the application rate of tosetyl-aluminum (fosetyl-A) with 3600 g a.s./ha for applications in or hards using the entropoints LD_{50} values for fosetyl-Al and its metabolite phosphonic acid.

Hazard Quotients

The risk assessment is based on Hazard Quotient approach (Qa) by calculating the ratio between the application rate (expressed in g a) ha op in g total substance/ha) and the laboratory contact and oral LD_{50} (expressed in µg a.s. bee or in µg total substance/bee).

 Q_H values are calculated using data from the studies performed with the active substance and with the formulation. Q_H values higher than 50 indicate the need of higher tiered activities to clarify the actual risk to honey bees.

Hazard Quotient, or at: Hazard Quotient, or a

Hazard Quotient, contact: $\sqrt[4]{Q_{H}}$ maximum applicatio ristate $\sqrt[4]{LD_{st}}$ contact $\sqrt[6]{[\mu g a.s./he}$ or g total substance/ha] $\sqrt[6]{[\mu g a.s./he}$ or μg total substance/he]

Compound	Oral LD ₅₀ [up-a.s./b@]	Max. application rate	Hazard quotient Qно	Trigger	<i>A-priori</i> acceptable risk for adult bees
Fosetyl-Al	>4070.4	3600	<32.6	50	yes
Phosphonic acid	>848	\$ 2\$01 *	<2.9	50	yes

Table 10.3.1-20 Hazard quotienty for bees - oral exposure

* assuming quantitative onversion of the parent to the metabolite, 3.6 kg fosetyl-Al corresponds to 2.501 kg H₃PO₃ based on a motar mass of 354.1 g/mol for fosetyl-Al and 82.0 g/mol for H₃PO₃ and assuming that 1 mot osetyl-Al degrades to 2 mol H₃PO₃

The bazard quotients for oral exposure are below the validated trigger value for higher tier testing (i.e. $Q_{HO} < 500$

Ĉ

Compound	Contact LD50 [µg a.s./bee]	Max. application rate [g a.s./ha]	Hazard quotient Qнс	Trigger	<i>A-priori</i> acceptable A for adult bees
Fosetyl-Al	>100.0	3600	<36.0	500	
Phosphonic acid	>1050.0	2501 *	<2.4	50	yes yes

Table 10.3.1-3: Hazard quotients for bees – contact exp	osure
---	-------

assuming a quantitative conversion of the parent to the metabolite, 3.6 kg fosetyl-Al corresponds to 2501 H₃PO₃, based on a molar mass of 354.1 g/mol for fosetyl-and 82.0 g/mol for H₃PO₂ and assuming that 1 mol fosetyl-Al degrades to 3 mol H₃PO₃

The hazard quotients for contact exposure are below, the validated trigger value for higher tier testing (i.e. $Q_{HC} < 50$). Further considerations for the risk assessment

In addition to acute laboratory studies with adult koney bees, fosetyl aluminum (fosetyl A) was further subjected to topical acute bundle bee testine (KCA 8.3.1 2/06; 2015; M-525339-01-1). The study resulted in an LD50 of 250 µg a.s. bumble becand did not reveal sensitivity differences between honey bee and bumble bee forages. 0

Moreover, fosetyl-Al was further subjected to chronic laboratory testing with adult honey bees (KCA 8.3.1.2/01; A.; 2015; M-527665-0, 1).

This chronic study was designed as a dese-response test by exposing adult honey bees for 10 consecutive days to nominal concentrations of 36.88, 9.75, 487.5, 375 and 50 mg fosetyl-Al/kg feeding solution. The actual lest was conducted by using the formulated product Fosetyl-aluminium WG 80 (Fosetyl-ACWG 80). After exposing honey bees for ten consecutive days exclusively to sugar solution containing fosetyl-Al at the respective treatment tevels, the 10 day LC_{50} (Lethal Concentration) was determined to be $> 750^{\circ}$ mg fosetyl-Al/kg, which corresponds to a LDD_{50} (Lethal Dietary Dose) of >37.3 µg/a.s./bee/day. The respective NOEC (No Observed Effect Concentration) for mortalify was determined to be 750 mg osetyl-Al/kg which corresponds to the NOEDD (No Observed Effect Dietary Dose of > 39.3 μ g a.s./bec/day

Ô In order to reveal whether fosely I-Al poses a risk to immature honey bee life stages, a bee brood feeding study (RCA 8.3.1.3 CT; C.; 2015; A-508986-01-2) has been conducted by following the provisions/method of Oomon P.AO de Roijter, A. & van der Steen, J. (OEPP/EPPO Bulletin 22:693-616 (1992), which require, appongst other parameters to "...use formulated products only... products are fed at a concentration recommended for high-volume use...". The honey bee brood feeding test is a worst-case screening test, by feeding the honey bees directly in the hive with a treated sugar solution which contains the test substance at a concentration typically present in the spray tank (and as such at a very high concentration) and by investigating the development of eggs, young and old larvae by employing digital photo imaging technology.

This particular study was conducted with Fosetyl-Al WG 80 and the actual test concentration of fosetyl-Al was 2.4 gas.s./L 2.97 g Foset Q-Al WG 80/L). The administration of Fosetyl-Al WG 80 at a concentration of 2400 ppm fosetyl-At to honeybee colonies via feeding of 1 litre spiked sucrose solution has nether resulted an adverse effects on worker or pupal mortality, nor in behavioural abnormalities as compared of the control. Regarding brood development, the Brood Termination Rates of the test is in treatment were overall on a low to moderate level with 27.3, 11.3 and 11.0% for eggs, young larvae and old larvae, respectively. Yet, as compared to the Brood Termination Rates in the control (13.3, 3.7 and 1.7% for eggs, young larvae and old larvae respectively), a slight but statistically significant increase was detected for the test item at the end of the brood observation period. However, neither Brood Indices nor Brood Compensation Indices were significantly increased in the test item as

Ô

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

compared to the control for any brood stage, indicating that these indices performed comparable to the control, including compensations of previous brood losses.

All in all, it can be concluded from the acute and chronic laboratory studies in adult honey bees as well as from the bee brood feeding study (Oomen et al., 1992) investigating side-effects on inomature® Ô honey bee life stages, that fosetyl-Al is of moderate, general intrinsic toxicity to Honey bees.

In order to clarify whether the moderate, general intrinsic bee toxicity of fosetyl-Al poses a sisk to honey bee brood and colony development in particular as well as on money bees in general under realistic worst-case conditions, a higher tier semi-field honey bee brood study (according to the provisions of the OECD Guidance Document 75) was conducted in 2014 under forced/confined O exposure conditions, by application of 3600 g a.s./ha@as well as a rate of 570 g a.@/ha (spray drfft rate) under tunnel conditions to the full flowering and highly bee attractive sorrogate crop Phacelia , B.; 2695; M-526896-01-1) tanacetifolia (KCA 8.3.1.3/02; The study included four treatment groups: Control grap water), Test item 1 (2000 g z.s./ha), Test item 2 (570 g a.s./ha) and Reference item (300 g fenoxycarb/ha) with all applications being carried out with a spray volume of 400 L water/ha. For all treatment groups, four replicates (tunnels) were set up. The application of all treatments was conducted during daily bee tright setivity at the time of full flowering of the crop. Thereafter, the bees were kept for 7 days within the tunnels (contined exposure phase) and in the evening of the 7th day after application (after bee flight activity) the colonies were relocated out of the tunnels and transferred to a monitoring site without flowering spops and intensive agricultural area for further monitoring (day 8 to day 27 after treatment). Daily, throughout the confined exposure phase, mortality of worker bees, latvae and pupae was assessed along with assessments of foraging activity and behaviour. Daily mortality assessments were continued along with behaviour around the hive furing the post-exposure observation period (day 8 to day 27 after treatment). Colony assessments (food stores, brood areas, colony strength) were made before confinement, after confinement and at the end of the study Detailed brood assessments (brood termination rate, broad index and broad compensation index) by employing digital photo imaging technology, investigating the fate of more than 2009 ndividually marked cells was performed on 5 occasions throughout the study, covering an entire brood cycle of honey bees.

The application of fosetyl-ADat the date of 3600 g a.s./ha under tunnel conditions to the full flowering and highly bee attractive surrogate crop Phacelia tanacetifolia dicknot cause any adverse effects on mortality, fight intensity, brood development (brood termination rate: 36.5%, brood index: 3.2, compensation index; 28 in test item compared the control with brood termination rate: 41.2%, brood index: 2.9, compensation index: 3.5), as well as on colony strength and brood and food abundance. The application of tosetyl Al at the rate of 570 g a.s./ha did not cause adverse effect on mortality, flight intensity, colony strength and brood and food abundance but resulted in unclear findings on brood development (brood termination rate: 79.9%, brood index: 1.0, compensation index: 2.1), Since effects were only seeo at the lower strate of 570 g a.s./ha tested in this study but not at all in the higher application rate of 3600 g s. /ha, the investigation of the lower test rate was repeated in a second study conducted in 2015.

The study conducted in 2015 (KCA 8.3.4.3/02) , B.; 2015; M-528899-01-1) was performed following the same study design as 19/2014 In the repeat study for the lower rate of 570 g a.s./ha no adverse effects on mortality flight intensity, behaviour, brood development (brood termination rate: 36.1%, broof index. 3.2 compensation index: 3.7 in test item compared to the control with brood termination rate: 29.6% brood index: 3.5, compensation index: 4.1) as well as on colony strength and brood and food abundance were determined. Thus, this study confirms that fosetyl-Al has no overall adverse effect on brood development at the rate of 570 g a.s./ha.

G. To complete the data set, two further semi-field studies following the EPPO Guideline No. 170 (4) design were performed, in which Fosetyl-Al WG 80 was applied in flowering apple orchards at the rate of 3600 g a.s./ha (for trees with 3 m canopy height).

The first study (KCP 10.3.1.5/02; B.; 2015; M-528978-01-1) included three treatment groups: Control (tap water), Test item (3600 g fosetyl-Al/ha/3 m canopy height, corresponding to 1200 g a.s./ha/m canopy height) and Reference item (400 g dimethoate/ha/3 m canopy height, corresponding to 133.3 g a.s./ha/m canopy height) with applications being carried out with a spray volume of 1430 L water/3 m canopy height, corresponding to 450 L water/ha/m canopy height. For all treatment for oups, four replicates (tunnels) were set up. The application was conducted during daily bee flight activity onto the flowering crop at BBCH 63. Thereafter, the bees were kept for 70 days within the tuniels (confined exposure phase) and in the evening of the 7th day after application (after bee fight activity) the colonies were relocated out of the tunnels and transferred to a monitoring site without Howering crops and intensive agricultural area for further monitoring (day 8 to day 21 after treatment). Dally, throughout the confined exposure phase, mortality of worker bees farvae and pupae was assessed O along with assessments of foraging activity and behaviour. Saily mortalio assessments were continued along with behaviour around the hive during the post-exposure observation period (day 8 to day 21 after treatment). Colony assessments food stores brood areas, colony strength) vere performed once before and once during confinement and six times after confinement up to the end of S the study 45 days after application. Despite the observation of slightly reduced foraging activity 3 and 6 days after the application (due to a phytotoxic effect by the test item on the blossoms which resulted in geduced attractiveness of blossoms and therefore led to lower toraging intensity), the application of Fosetyl-ALWG 80 at the rate of 3600 g a.s./ha (1200 g a.s./ha/m capopy, height) pinder mannel conditions in a full flowering apple orchard did not result in macceptable effects on honey be mortality foraging activity, behaviour, colony strength, amount of brood and food storage ° , N√, , V.@2015; M-533329-01-1) The second study (KCP 10.3.1.5/03; "J.; included three treatment groups. Control (tap water), Test item (3600 g losety Al/ha/3 m canopy height, corresponding to 1200 g a.s./harm anopy height) and Reference item (400 g dimethoate/ha/3 m canopy bright, corresponding to 133.3 g a.s./ha/m canopy height) with all applications being corried out with a sprac volume of 1500 L water/3 m canopy height, corresponding to 500 L water/has canopy height. For all treatment groups, five replicates (tunnels) were set up. The two applications were conducted in a 6-day interval during daily bee flight activity onto the flowering crop at BBCH 63-65 and BBCH 66-67. The bees were kept for 8 days within the tunnels (confined exposure phase) and in the evening of the 8th day after the 1st application (after bee flight activity) the colonies were relocated out of the tunnels and transferred to a monitoring site without flowering crops and intensive agricultural acea for further monoring (day, 9 to day 22 after treatment). Daily, throughout the confined exposure phase mortality of worker bees, larvae and pupae was assessed along with assessments of for aging activity and behaviour. Daily mortality assessments were continued along with behaviour around the bive during the post-exposure observation period (day 9 to day 22 after treatment). Colony assessments food stores, brood areas, colony strength) were performed once before the 1st application and twice after the 1st application during confinement, and five times after confinement uppo the end of the study 42 days after treatment.

Despite the observation of slightly reduced foraging activity on days 1 and 6 after the 1st application, the two applications of Foretyl-Al WC 80 at the rate of 3600 g a.s./ha (1200 g a.s./ha/m canopy height) in a 6-day interval under tunnel conditions in a full flowering apple orchard did not result in unacceptable effects on honey bee mortality foraging activity, behaviour, colony strength, amount of brood and food storage.

Both studies simulating (repeated) applications at full flowering apple orchards in a semi-field design confirmed that the application of Fosetyl-Al WG 80 at rates of 3600 g fosetyl-Al/ha in full flowering orchards does not result in any unacceptable effects on mortality, foraging activity, behaviour, colony strength, amount of brood and food storage.

Synopsis

Fosetyl-Al and Fosetyl-Al WG 80 are of low acute toxicity to honey bees, with LD₅₀ (oral and contact) above the highest tested dose levels (oral: LD₅₀> 110.4 µg a.s./bee, contact: LD₅₀> 100 µg a.s./bee) \sim The calculated Hazard Quotients for fosetyl-Al are below the validated trigger value which would indicate the need for a refined risk assessment; no adverse effects on honey bee mortality are to be expected at the maximum envisaged fosetyl-Al application rate. This conclusion is confirmed by the results of the bee brood feeding study as well as by the results of the semi-field studies, which covered the maximum application rate of 3600 g a.s./ha.

The acute laboratory study conducted with bumble bees revealed no sensitivity differences between honey bee and bumble bee foragers.

It can be concluded from the acute and chronic laboratory studies in adult honey, bees as well as from the bee brood feeding study (Oomen *et al.*, 1992), investigating the effects or minimum honey bees life stages that fosetyl-Al is of a moderate general intrinsic toxicity to honey bees.

Regarding potential side effects of fosetyl-Al on immature horey becalife stages, the conducted bee brood feeding study (Oomen *et al.*, 1992) found slightly to inderately, but statistically significantly increased termination rates of eggs, young and old arvae. Despite of this observation, the brood index and brood compensation indices displayed a continuous increase without any statistical significant difference to the control, indicating a successful development of the brood. Overall the study revealed no ecologically adverse effects on the curvival of adult bees and pupae, behaviour, colory strength and overall colony conditions. Thus, when considering the severity of the exposure situation in this worstcase screening test in combination with the absence of effects on both, colony level parameters and also on the overall development of bee brood, it can be concluded even on the basis of this worst-case screening study that the use of foseryl-Al does not pose an unacceptable risk for adult honey bees, immature honey bee life stages and honey bee colonies.

In order to clarify whether the conclusions on the basis of lower tiesed honey bee studies are correct, fosetyl-Al was subjected to confined semicifield desting faccording to the provisions of OECD Guidance Document No. 751 by applying the two rates of 3600 and 570 g a.s./ha for Fosetyl-Al WG 80 to full-flow ming Phacelia during Money Dees actively foraging on the crop. This study design is from an apidological and apicultural point of view thore to alistic than at in-hive feeding of the test compound via a dreated sugar solution, which contains the test substance at a concentration typically present in the pray tank (and as such at a yery high concentration). The results of this first higher tier semi-field study confirmed the conclusions made above on the basis of the outcome of the lowertiered studies, as no adverse direct or delayed effects on prortality of worker bees or pupae, foraging activity, behaviour, notar- and pollen storage, colony strength colony development as well as the development of bee brood were observed for the kigher test rate of 3600 g a.s./ha, even under aggravated, force Dexposure conditions and by digitally following-up in a very detailed manner the fate of individually marked prood cells (digital photographic assessment) from egg stage until emergence. In the same study the application of fosetyl-Al at the rate of 570 g a.s./ha did not cause adverse effect on mortality, flight intensity, colony strength and brood and food abundance. However, unclear fundings were determined on brood development. In a repeated test following the same study design the absence of adverse effects on these assessment parameters together with the absence of adverse effects on the development of brood for the rate of 570 g a.s./ha was confirmed. Thus, this study confirms that fosety -Al has no overall adverse effect on brood development at the rate of 570 g a.s./ha. Ø1

In addition two semi-field studies following the EPPO Guideline No. 170 (4) design were performed, in which Fosetyl-Al WG 50 was applied in flowering apple orchards at the rate of 3600 g a.s./ha (for trees with 3 m sanopy neight). Both studies simulating exposure of honey bees after (repeated) applications in full flowering apple orchards in a semi-field design confirmed that the application of Fosetyl-Al WG 80 at rates of 3600 g fosetyl-Al/ha does not result in any unacceptable effects on mortality, foraging activity, behaviour, colony strength, amount of brood and food storage.

Ĉ

Conclusions

Overall, it can be concluded that Fosetyl-Al WG 80, when applied at the maximum application rate of 3600 g a.s./ha even during the flowering period of a bee-attractive crop, does not pose an unacceptable risk to honey bees and honey bee colonies.

CP 10.3.1.1 Acute toxicity to bees

CP 10.3.1.1.1 Acute oral toxicity to bees

For information on studies already evaluated for the Annex I inclusion of fosety and Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baselphe Dessier provided by Bayer CropScience. As an overview the original summary from the AR iogiver below, (KCP 10.3.1.1.1/01 and KCP 10.3.1.1.2/01; , S.; 1999; No.184602-014).

One additional study on acute toxicity to bees was performed, which was not submitted for Annex I inclusion of fosetyl under Directive 91/414/PFC and is submitted within this Supplementary Dossier for the fosetyl approval renewal. This study is summarized below (

1999 M-184902-01-1 **Report:** Title: Laboratory esting for toxisity (a ste conset and Ora EXP10399F on honey bees (Apps mellifora L.), Hyme Sptera Report No .: R01189 Document No .: M-184602-01 Guideline(s): EF**9**O: 17**9**(19 Equivalent to Guideline deviation(s) **GLP/GEP:** Endpoint accordin product/bee Methods The test substance y kg). The study design included 7 experimental beg per rolicate. EXP10369F was applied at the following groups. Each group had 3 replicates and 192 µg poduct/bee (equivalent to 310, 221, 158, 113 nominal doses (both test 390 do@s me@ured (@ral test) were 440, 333, 246, 164 and 122 µg and 81 µg fos m/l-Al/Qee). The aver ee. 97 µo fosetyl-Al/bee). In addition to the EXP10369Fproduct/bee (equivalent treated groups, on control with a toxic standard (dimethoate) groups were use Results 0369F/bee μg 390 kg EXP10369F/bee Comments (RMS): Deptat

Fosetyl-aluminium WG	80		
Descent		2.	- 2014. M 502644 01 1
Report: Title:	Effects of fosetyl-aluminiur	n WG 80 W (acute contact and	; 2014; M-503644-01-1
THU.	<i>mellifera</i> L.) in the laborato		
Report No.:	91831035	- ,	
Document No.:	M-503644-01-1		N A
Guideline(s):	OECD 213 and 214 (1998)		\sim \sim \sim
Guideline deviation(s):	none		A A A
GLP/GEP:	yes	4	
			city of Felsety alumination
Objective:	1 . 1		
The purpose of this st	udy was to determine the	acute contact and ora toxic	city of Fosety aluminium
WG 80 (Fosetyl-Al W	(G 80) to the honey bee (A.		
viortality of the bees v	was used as the toxic endp	mellifera L.). O ^V oind. Sublethal effects, such	as changes in benaviour
vere also assessed.	L. L	oint Sublethal effects, such	
Matarial and Mathad	K	6° 5° 2° 45	
Material and Method	WC 80. Esset i alumini	m (LS 74783) 91.0% //w	(a) Israely Crasting
Test Item: Fosetyi-Al	WG 80: Fosetyl-aluminiu	$m_{LS} = 10146.07$	(analyseo); Specification
NO.: 102000024225 — Under Johanstemy een	01, Batch ID: EV36003202	vorker bees per dose were	for 18 house to a
vingle nominal does l	and of 100.0 ag a stranger	· bee (123,5 µg Fosetr)-A	1 W/ 20/52) by topical
ongle nonlinal dose l	mit test) and 0 worder b	es per dose were exposed	for 18 Source for fooding
oral limit test value h	used on the actual intakeso	f the test item) to a single a	survey does of 110 / up
	Fosetyl-Ad WG80/bee).	The ast here to a single a	~ 0
i.s. per θee (150.5 μg			ð v
Reference item (nomi	nal dose): 0 \$ 0 2000 15	and 0.10 µg dimethoare/bee	Prontaet test): 0 30 0 15
0.08 and 0.05 µg din	nethoate/bee (orabitest): @	ontrol: tap water with 0.5	% Adhäsit (contact test)
50% w/v sucrose solut	ion (oractest)		, · · · · · · · · · · · · · · · · · · ·
Â			
Dates of experimenta	l work: April 01, 2014	April 94, 2024	·¥
, Š ^y			
Results: 🔊			
Validitas anitamias			
Validity criteria:		Ö U Ö	
Validits Criteria		Recommended	Obtained
Control Mortality - Cor	tact Test 🔟 🖧	<u> </u>	0.0%
		 ∅ ≤ 10%	0.0%
LD ₅₀ of Reference Item	24 hours - Contract Test	©0.10 0.30 μg a.s./bee	0.29 μg a.s./bee
LD ₆₀ of Reference Item	1 Test 7 7 7 Q4 hours) - Contract Test (24 hours) - Oral Test 7	0.10 - 0.35 µg as /bee	0.17 µg a.s./bee
		0.10 0.30 μg a.s./bee 0.10 - 0.35 μg a.s./bee	0.17 μg α.3.7000
The contrat and oral to	the are Argida d value as	the control mortality in eac	$h_{aaa} = 100/and that$
Dro volvos obtoinad v	with the reference iter (die	Sethoate), were within the re	If case was $< 10\%$ and the
		ference item (dimethoate)	$v_{\text{are calculated to be 0.20}}$
and 0.17 µg a s /bee r	espectively	(uniterioate)	were calculated to be 0.2)
Ó A			
OT AS	Dsc (24 h) Values of the set		
19 2° 1			
	I A A A A A A A A A A A A A A A A A A A		
Ő			
N //			

Toxicity to Honey Bees; laboratory tests

Test Item	Fosetyl-A	1 WG 80 。
Test Species	Apis me	
Exposure	contact (solution in Adhäsit (0.5 %)/water)	oral
Application rate µg a.s./bee	100.0	\$ 110.4 ⁶
LD ₅₀ µg a.s./bee	> 100.0	> 1107.4
LD ₂₀ µg a.s./bee	> 100.0	× × 10.4 ×
LD ₁₀ µg a.s./bee	> 100.0	
NOED µg a.s/bee*	≥ 100.0	$\swarrow \ge 169.4$ \swarrow 0°

* The NOED was estimated using Fisher's Exact Test (partwise comparison, one-sided greater, $\alpha = 0.050$

Mortality and behavioural abnormalities of the bees in the contact toxicity test

	Afte	r 4 hours 🛛 🔘	ØÅfter	24 hours	After	48 hours
Dosage	Mortality	Behavioural abnormatities	Mortality	Behavioural abnormalities	Mortality	Behavioural abnormalities
[µg a.s./bee]	Mean %	Mean % 🔬	Mean %	🖓 Mean % 📈	Mean %	≫ Me@n%
			Test item		S &	
100.0	0.0	Q 0.0	0.0	0.00	0.0	مې 0.0
water	0.0	0 <u>.0</u> , 0	ř 959 ,	e e o	% 0,9 %	0.0
	Ŕ	Re Re	eference item		å.	
0.30	2.0	0 15.00	© 56.0 °	4.0	× 62,0	4.0
0.20	0.0%	<u>2.0</u>	× 20,0	\$ ¹ _4.0 ⁴	34.0	0.0
0.15	Ø.0	× × Ø.0	\$8.0°>	0.0	°∽28.0	2.0
0.10	Ø 0.0	\$ 0.0 •	\$ 4.0.5	0.0	4.0	0.0

Ô

results are averages from fi@ replicates (ten bees each) per dosage? control water = CO_2 /water-treated control²

Mortality and behavioural abnormalities of the Dees in the orartoxicity test

A S	, Afte	4 hours	After	24 hours	After	48 hours
Ingested 👸	Mortality		Mortality	Behavioural Jabnormalities	Mortality	Behavioural abnormalities
[µg a.s./bee]	Mean %	Mean %	Mean %	Mean %	Mean %	Mean %
~\$			Fest item			
110.4 water	0.0	3 9 9	ž Q.Ø	0.0	0.0	0.0
water	× 9.0 ~	0.0	××0.0	0.0	0.0	0.0
<i>"</i> ¢	2 A		eference item			
0.32	1870	6 58.0 C	92.0	4.0	96.0	2.0
0.16	<u> </u>		50.0	6.0	60.0	0.0
0.08	~ ^{0.0}	₩ 0.0 W	8.0	0.0	8.0	2.0
0.05		\$ 0.8P	0.0	0.0	0.0	0.0

results are averages from five replicates (ten bees each) per dosage / control

water = water/mgar treated control

Observations:

Contact Test:

At the end of the contact toxicity test (48 hours after application), no mortality occurred at 100.0 μ g a.s./bee and in the control group (water + 0.5 % Adhäsit), respectively. No test item induced behavioural effects were observed at any time in the contact toxicity test.

Oral Test:

In the oral toxicity test, the maximum nominal test level of Fosetyl-Al WG 80 (i.e. 100 µg 43./bee) corresponded to an actual intake of 110.4 µg a.s./bee. On this dose level and in the control group (50% w/v sucrose solution = 500 g sucrose/L tap water) no mortality occurred after 48 hours, respectively. In the oral test, no behavioural abnormalities occurred at any time in the oradioxicity tests

Ð

Conclusions:

The toxicity of Fosetyl-Al WG 80 was tested in both, an acute contact and an acute oral toxicity test on honey bees.

The contact LD₅₀ (48 h) was $> 100.0 \ \mu g a.s_{\star}/bee$. The oral

Acute contact texicity to bees **CP 10.3.1.1.2**

Please refer to Section CP 10.3.1.1

Additionally, an acute contact toxicity study was conducted on buppele bees with tosety aluminium; the corresponding summary is provided in Document MC, Section 8.3. P.1.2 (SCA \$3.1.1.2/06, , S.; 2015; M-525339-01 M.

°

Ŵ

Chronic toxicity to bees **CP 10.3.1.2**

A 10 day chronic oral toxicity stude was conducted with Foretyl-aluminium WG 80; the corresponding summary is provided in Document MOA, Section & 3.1.2 (KCA 8.3.1.2/01, , A.; 2015; M-527665 (1-1).

CP 10.3.1

Effects on honey bee development and other honey bee life stages

A hone bee brood feeding story according to the method of Oomen et al. 1998 (KCA 8.3.1.3/01, , C.; 2015; XD 508986-01-22) has been conducted with Posetyl-aluminium WG 80 (Fosetyl-Al WG 80) and is included in Document MCA, Section \$3.1.3

Two semi-field honey bee brood studies (according to OCCD 75) (KCA 8.3.1.3/02, B.: 2015; M-52696-01-9, and KCA 8.34, 903, , B.; 2015; M-528899-01-1) have been conducted with the Foset Al WY 80 and are include in Document MCA, Section 8.3.1.3.

Sub-lethal effects CP 10.3.1.4

There is no particular study esign Pest stideline to assess "sub-lethal effects" in honey bees. However, in each laboratory study as well in any higher-tier study, sub-lethal effects, if occurring,

are described and reported.

activity, bee brood development an Ogeneral behavior

CP 10.3.1.5 Cage and tunnel tests

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to corresponding section in the Baseline Dossier provided by Bayer & CropScience and in the DAR. A short summary from the original DAR is given below.

Report:	KCP 10.3.1.5/01 ; 2000; M-238790-01-1 A
Title:	Assessment of the side effects of soil applications of EXP 10369F (foxtyl-ALSO
	percent w/w) on the honey bee (Apis mellifera L.) under semi-field conditions
Report No.:	B003137
Document No.:	M = 238/90 = 01 = 1
Guideline(s):	EPPO guideline No. 170 (199 4); Q g° χ χ
	Equivalent to US EPA OPPS Guideline No. 850. 2040
Guideline deviation(s):	see page /1-//
GLP/GEP:	yes of a first in the second s
Endpoint according to	EFSA Scientific Report (2005) 54 1-78 for fosatyl-Als
A semi field test at 80	kg EXP10369E ha. No effect on mottality bee fight intensity and foreiging
activity boo brood de	

Methods:

foscor I-Al (*/w) Tas explained on small bee The effect of the test substance, EXRU036910(79.5%) colonies in cages placed over field plots with flowering Phaceliq Quinac wifolia

Three experimental groups, with three collicates each were tested A case with one colony was considered as a replicate in one group the test substance EXP10309F with applied to soil twice at a rate equivalent to 40 kg a.s./hc. The Jst application was pollorized 1 day before sowing of *Phacelia*. The 2nd application was performed a approximately 30% flow and of *PhaceTa* (8 weeks after the 1st application, 28 h before the introduction of bees in the test substance was applied twice at a sate equivalent to 80 kg a s ha with the same application timing as in the 1^{st} group. A 3^{rd} group we treated with water at the same timing as in the sate substance treated groups. The spray volume Was 2 Sm². Õ

Mortality, toght and foraging activity, Achavoir, antocondition of the colonies and the development of the bee brood were assessed. The affluence of the test substance was evaluated by comparing the bees in the pesticide feater Pages to those in the control cages treated with water regarding the bees in the pesticide freated eages to those in the control cages treated with water regarding the following observations: (a) mortality at the eage of the treated area and in the bee traps, (b) light intensity (number of flying bee/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp), (c) foraging activity, *i.e.*, number of forager bees/m² flowering *Phacelia* corp, (b) behaviour of the bees on the crop and around the hive, and (e) development of the dee brood. **Results**:

and T2 in conferrison to the concol. The number of dead bees on the linen/tent on d 1 after introducing boss in tents we increased in groups T1 (49.3) and T2 (57.7) in comparison to the number of dead becon the liner over the cover of group (20.7). On the following days, no differences in the number Wdead dees between the test substance treatments and the water treated control which could be attributed by the influence of the test substance. Over the complete period of exposure (7 d), the average number of lead kees/tent/day did not significantly differ in the treatment group T1 and T2 compared to the control.

ć

Bayer – Crop Science Division

Document MCP – Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

(b) Effects on honey bee flight intensity and foraging activity were assessed as follows:

10) Effects on noney bee firght intensity and for agin	<u>ng detivity</u> were d	5565564 d5 1011	0 11 5.
	T 1	T2	Control
Flight intensity (flying; bees per m ² /day)	2.2 ± 1.7 (-)	1.9 ± 1.3 (-)	2.1 ± 1.5 (-)
Foraging activity (forager bees per m ² /day)	$10.6 \pm 6.0 (+) *$	8.0 ± 5.2 (-)	8.1 ± 6.1 (-)
(-): Non-significant compared to the control; (+): sig		to the contro	
* The increased average number of forager bees			higher desity of
flowering Phacelia.	-		
-			
<u>(c) Effects on honey bee brood development:</u>	Ĉ4	L.	
In the bee brood development no abnormal differe	nce which could l	beattributed to	the infloque of the
test substance were observed between the test subs	tan log and control	Qeatments.	
	AU AO	✓ (¹	the influence of the st
(d) Behaviour of the bees:			Substance treatisents
No abnormal difference in behaviour of the bees	was observed bet	wen the test	substance treatisents
and the control treatments at any time during the p	eriod of assessme	nt 🖉 🤇	
and the control treatments at any time during be p	~ Č Ø	the start of the second	
(e) Conclusion:		1 5	
Repeated applications of EXP10369F a location	sed soil application	the up to rates	equivalent to 30 kg
a.s./ha did not cause adverse effects to none fices i			
		N N	
□ Comments (RMS): acceptate. However, the	e strady is page a	noropriate to e	Filuate the potential
impace of the metabolite	-9- (1) 1		ive substance.
	0 4 64	, ¹	0
Report: KCP 10,3.1.5/02	· 2015· M-5289784		S .
Report:KCP 10.3.1.5/02Title:Assessment of side effects of	Stosetvl-AL WG 80) on the hone	e (Apis mellifera L.)
in the semi-field after applig	nion on Nowering a	pple/trees in/Ge	ermany 2015
Report No.: 2 S15-01634 2	à a.	Q 'Y	2
Document No.: 528978-01-1 Guideline(s): 0EPP/EPPO Guideline No. 1			
Guideline(s): OEPP/BPPO Guideline No. 1	170(4), 2010 (modi	fied)	
Guideline deviation(s): no major deviations		<i>(</i>)	
GLP/GEP: ⁽⁷⁾ yes ⁽²⁾	- A	K,	
)ř	
This study was designed to determine the por	ential side-effect	s of Fosetyl-	Aluminium WG 80
(Fosetyl-Al WG 80) on the honeybee (<i>Apis melli</i> flowering in Germany in a semi-field study. T	fertOL.) after one	application of	n apple trees at full-
flowering in Germany in a semi-field study. The	he evaluation of	the treatment	effects focused on
mortality, flight intensity, behaviour and condition	of the Colonies.		
Materials and Methods:			
	S. S	1000000	
Test item: Fosetyl-Al VG 80 Sample description			
Batch ID: EV36003889; content of fosety alumin	ium (nominal): 80	0% w/w, (analy	ysed): 80.5% w/w.
		• • •	.
The study included three treatment groups with f	our replicates (tu	nnels) each: o	ne tap-water treated
control group one test-item group and one referen			
Application to the frees were made at full-flower	(BBCH 63) w	1th honeybees	actively foraging on

Applications to the trees were made at ff41-flowering (BBCH 63) with honeybees actively foraging on the crop. The target application rate of the test item Fosetyl-Al WG 80 was 1200 g a.s./ha/m canopy height (CH) (actual rate applied 1214 g a.s./ha/m CH). Tap water was applied in the control group and Perfection was applied at a target rate of 133.3 g a.s./ha/m CH in the reference item group (corresponding to 333.3 mL product/ha/m CH). The spray volume was 450 L/ha/m CH.

The initial mean colony sizes per treatment group were in the range of 4550 to 4908 bees. The honeybees remained in the tunnels for 10 days and colonies were assessed once before set-up, once during and six times after the end of the confined phase.

The following endpoints were assessed:

- Mean number of dead bees (worker and pupae separately) on the linen sheets in tunnels and in the dead bee traps before as well as after the application.
- Flight intensity (mean number of forager bees/apple tree row/min before as well as after the application.
- Behaviour of the bees in the crop and around the hive.
 Condition of the colonies (colony strength and area of the different brood stages and bod starage per colony and assessment date).
 Dates of experimental work: 20 April 2015 08 June 2015
 Results:
 Mortality
 Mortality: Findings are summarized in the table below.
 Control
 Control
 Treatment group

	A			
Treatment group		Control	Test item	Reference
	2DBA ODBA	-58:8±44	@1.7±39,4	58.2±59.9
Daily mean mortality (dead worker bees/colony)	∲¢́AA _⊘	© 13.3€9.5	20,008.1	1168 ±70.8
± STD	QUAA to DAA	929±5.5	\$6±6.7	40.3*±14/5
	0DAA to 21DAA	\$9.6±375	⁸ .4±2x8 s	©29.2*±16.7
×~	2DBA to 0BBA	0.1≨0.2 €	0.6±0.8	0.0±0.0
Daily mean mortality (dead pupae/colony)	ORA O	9.0±0.0×	02.3*±€7	≥> 1.0±1.2
(dead pupae/colony) ± STD	0DAOS to 7DSAA	0.2+0.2	0.7±0.6	⁹ 0.5±0.3
	0BAA to 21DAA	Q.3±0.2 ~	0±0.9	0.4±0.1

DAA: days after application; DBA: days before application; SPD: standard deviation

* statistically significantly higher than control group

C L Throughout the pro-exposure period, murtality of honeybees was slightly but not statistically significant higher in the test item treatment group (), compared to the control group (C) and the К 1 reference item group (RA) Ľ

During exposure period from day 0 ontil day 4 after application, mortality across the treatment groups C and T was Gimila Indicating no effect of the test item. Towards the end of the confinement of the bees in the tunnels on days 5 and 6 after application, the mortality in T was statistically significant higher compared to the control group (C) (Test pooled, one sided, $\alpha=0.05$). The higher mean value on 5DAA is mainly influenced by one out of the your replicates (Tb). Therefore, it is unlikely that the difference detected by the statistical analysis is related to an effect of the test item. Furthermore, the mean number of dead bees assessed in T falls in the same range at both days as the mortality observed on other assessment days in Tas well as Q indicating that the observed mortality is not biologically meaningful. O

During the entire period after the application (0DAA to 21DAA), the mean daily mortality was on the same lever in Qand T. Therefore, overall, no biologically relevant adverse effect on mortality was found in T.

During the entire period after the application (0DAA to 21DAA), a low number of dead pupae was recorded during the mortality assessments across all treatments (average sum of dead pupae per colony: 0.3, 1.0 and 0.4 for C, T, and R, respectively). The mean number of dead pupae recorded throughout the post-exposure period was not statistically significant different between the treatment a groups. At the monitoring site (8DAA to 21DAA), some daily fluctuations occurred but except on 12DAA (R) and on 14DAA (T), no statistically significant difference was observed (t-Test, method Satterthwaite, one-sided, $\alpha = 0.05$).

Flight Intensity

<u>Flight Intensity</u> Findings are summaria	zed in the table below.	Č V		
Treatment group		Control	Test/item (T)	Reference V
Daily mean flight	2DBA to 0DBA	14.3±2.9	@14.5≇3,5	
intensity (bees/min)	0DAA	°26.6€10.4 ×	20:0±3.6	\$0*±1.9
± STD	0DAA to 7DAA	.16.7±5.00	\$1.9±2.0	<u>0.8*±0.2</u>

DAA: days after application; DBA: days before application; STD: standard deviation * statistically significantly lower than control group

Foraging rates were similar acrossful treatments before exposure (2DBA and 0DBA). On the day of application (0DAA) the mean number of foraging bees in T and Rovas lower compared to C. However, only the mean value in R was statistically significant different from the mean number of foraging bees in C (t-Test, method pooled, one sided $\mu = 0.05$). 0 Ô

From 1DAA to 6DAA, for aging activity was clearly reduced in the reference item group (R) compared to the control group (C) (t-Test, method pooled and method Satterthwaite, one sided, $\alpha = 0.05$; Mann Whitney exact test, one-sided $\alpha = 0.05$). During this period, the mean number of foraging bees in T was slightly lower than in C. A statistically significant difference was observed on 3DAA and 6DAA (t-Test, method pooled, one-sided, $\alpha \neq 0.05$). As the test item baused a phytotoxic effect on the blossoms of the apple trees (first signs of phytotosicity appeared on SDAA), it is probable that the overall lower foraging intensity observed in T was due to the reduced availability of food due to the damaged blossoms. Also on 4D2A and 5DAX, the fight intensity was lower in T compared to C although no statistically significant difference was detected.

Overalk a slight test-item related effect on flight intensity was observed, which was due to the reduced attractiveness of blossoms caused by the phytotoxicity of the test item.

Behaviour of the Bees

From 0DAA to 7DAA, the behaviour of the bees was similar in the treatment groups C and T. During the exposure phase (0DA) to 7DAA) the number of bees showing unusual behaviour was low in both treatments in total, five bees with locomotion problem were observed in T during this period. As only a small mamber of homeybees showed the symptoms two days and six days after the end of application, the observed behaviour is not interprete das test item related or biologically relevant. In the reference item group, a high number of honeybees showing unusual behaviour was observed from 0DAA to

3DAA.

Strength of the Colonies

The overall development of colony strength (mean number of bees per hive) of all treatment groups showed fluctuations in a typical and normal range. The colony strength in the test item group T was an approximately the same level at the first two colony assessments. From the third assessment (11 AA). to the sixth assessment (32DAA), the number of bees/colony was lower in T and R, compared δC . $A^{(0)}$ significant difference between C and T was observed on 11DAA (t-Test, method pooled, one-sided) = 0.05). However, the high colony strength in the control group (C) is in part due to the colony Ca, which had clearly more bees compared to the other replicates. Since the replicate Ca was fee with sugar solution on 3DAA (during the exposure period), it is likely that the colony had better conditions to compensate the limiting tunnel conditions and therefore more favourable conditions to expand compared to the other control replicates.

Throughout the study, the strength of the colonies in and T had similar growth arends. Therefore, no test-item related effects on colony strength were observed.

Development of the Brood Area

The mean amount of brood in the colonies (sum of cells containing eggs, lavae, and pupae) was assessed and overall, honeybee brood development in the test from treatment group was not affected when compared to the control.

Development of the Food Storage Area

The mean amount of food stores in the colonies (sum of certs containing nectao and pollen) was assessed and the majority of the colonies were well provided during the course of the study. Thus, no test-item related adverse effects on the development of the food storage area were observed.

Conclusion:

Fosetyl-Al WG 80 was applied at a rate corresponding to 1214 g a.s. And/m canopy height, at fullflowering of apple trees, during daily honeybee foraging activity. The effects on honeybee colonies under confined conditions considering mortality flight intensity, behaviour, colony strength, amount of food and brood cell development wete evaluated.

No biologically televant test-item related adverse effects on mortality were observed.

A slight reduction in Foraging activity was discorded in on DAA and 6DAA due to a phytotoxic effect by the test item on the blossoms which resulted in reduced attractiveness of blossoms and therefore hed to lower for aging intensity.

No test atem related adverse diffects on behaviour were observed.

The overall honeybee brood development in the test item freatment group T, measured as mean number of cells govered with the different types of brood cells per colony was not affected when compared to the control Furthermoreono test-item related adverse effects on colony strength and food storage were observed. Ô

Fosetyl-Al WG 80 applice at 1214 g a Q/ha/m@canop@height to flowering apple trees in presence of honeybees resulted in reduced foraging activity but did not cause unacceptable effects on mortality. behaviour, colony strength, amount of broger and food storage.

Request from the RMS:

Further explanations are considered required to conclude on the reliability of the semi-field study in an apple orchater (1997), p. 2015; M-528978-01-1) for the risk assessment. Could you please indicate if some data are available to precise the level of exposure of the exposed colony? Could you, also, precise of the surgle application in this study is sufficient to assume that the exposure of bees would be representative of the exposure following the application of the preparation according the intended GAP (multPapplication)

Without These precisions the reliability of this study could be challenged during the peer-review process.

Response from BCS:

The study was performed according to the guideline EPPO 170 (4) that is referenced in the data requirements as set out in Commission Regulation (EU) No 284/2013.

The standard design as detailed by the guideline includes a 2 to 3 day acclimatisation period normally followed by a 7 day direct exposure period that is seen as an appropriate post-treatment exposure period. The final duration inside the tunnels and the timepoint of removal from the tunnels is clearly driven by the actual flowering period of the crop or the confinement of the bees to a limited foraging area. The guideline states "Honeybees from small colonies are forced to forage on a flowering for ing field cages (to provide realistic worst-case exposure)." ... "Shortly before the application, the number of foraging bees per m² should be recorded. ... A boraging density of at least's bees per me is required on bee attractive crops ... in order to verify exposure." Since this study was performed in an O apple orchard and blooming apple trees are commonly known as bee-attractive and pollipated by honeybees, the flight intensity was measured in the number of forager bees/appertree tow/min. Counts that took place before the application confirmed the presence of 15.8 bees/min in the control, 20.0 bees/min in test item and 20.2 bees/mik/in the toxic reference item. Additional evidence on exposure is available for 3 time points on the application day (after application) as well as from further counts up to 7 days after application. Generally, a soon as a blossom is successfully pollinated, neorar flow and availability of pollen stop and fruit development starts. In this study the test item caused a phytotoxic effect with first signs appearing 3 days after application in form of damaged blossoms. Consequently, due to the decreasing oumber of blossoms available in an enclosed system like a tunnel, the presence of the colonies inside the tunnels for longer than 7 days after application, could not be justified and a second application was not feasible. The use pattern for Fosetyl-ALWG 80 foresees 1-3 applications to be performed in 7,30 day intervals

The use pattern for Fosetyl-Ad WG 80 foresees 1-3 applications to be performed in 7.10 day intervals at BBCH 55-85. In reality exposure of bees to two subsequent applications is unlikely since first of all the lifespan of a blossom is limited; once pollitated the nectar flow and pollen production will stop and bee-attractivity is no longer given. And second usually not more than one application will take place during the limited flowering period (BBCH 60-69) of apple trees. This was also the case in the current study where the application was performed at BBCH 63, due to the fact that a sufficiently high number of blossoms has to be available as food supply for the bees. This approach is fully in line with the guideline in which it is stated that "Normally, a single application during flowering will be sufficient"

The guideline also states that "The toxic standard is used to confirm that the bees are exposed to the treatment, and to calibrate the magnitude of the possible effects under trial conditions". As recommended in the guideline the present study included dimethoate as a toxic standard, which showed the expected effects on adult mortality and foraging activity. The application in all treatment groups was performed, with a calibrate portable knapsack sprayer simulating a commercial application. Several criteria were established on the condition for performance of the application to ensure appropriate exposure Wind speed was low with 1.3 m/s, no rain occurred on the application day and the deviation from the target application rate was +1.14% in the test item and +2.34% in the toxic reference item.

Therefore, based on the available data on monitoring of flight activity, the use of a toxic standard, the technical and meteopological conditions encountered during and after the application, combined with the description of exposure in the guideline that was followed and that is valid at the time of submission, the applicant is of the opinion that exposure of bees in this study before and after application is sufficiently confirmed and fully compliant with current requirements in place at the time of submission.

Report: Title:	KCP 10.3.1.5/03
	KCP 10.3.1.5/03 (2007); (2015; M-533329-01-1) Evaluation of potential side effects of fosetyl-Al WG 80 (FEA WG 80 W) on honeybees (<i>Apis mellifera</i>) in a semi-field test in an apple orchard in Germany at the location Hoefchen E 319 4749-7
Report No.:	location Hoefchen E 319 4749-7
Document No.:	M-533329-01-1
Guideline(s):	M-533329-01-1 OEPP/EPPO Guideline No. 170 (4), 2010 (modified)
Guideline deviation(s):	
GLP/GEP:	yes
Objective:	

Objective:

This study was designed to determine the potential side-effect Oof Fosetyl-Aluminaum WG (Fosetyl-Al WG 80) on the honeybee (Apis mellifera L.) after two applications in a 6 day interval so apple trees at full-flowering in Germany in a semicifield study. The evaluation of the reatment effects focused on mortality, flight intensity, behaviour and condition of the colonies

Materials and Methods:

Test item: Fosetyl-Al WG 80; Sample description Specification No. 102000024225 TOX10884-00; Batch-ID: EV36003889; content of foseryl-aluminium nominal): 80% w/w (analysed): 80.5% w/w.

X)

Õ The study included three treatment groups with five replicates (tunnels) sach: tap water-treated control, reference item and test item. Two foliar applications were performed in a b-day interval onto full flowering apple trees. N Ň Ø1

Two applications to the trees were made in a 6-day interval at full-flowering (BBCH 66-65 and BBCH 66-67) with honeybees actively foraging on the crop The target application rate of the test item Fosetyl-Al WG 80 was 1200 g a.s./ha/m canopy height (CH). Tap water was applied in the control group and Perfekthion was appfied at a targes rate of 133.3 g a.s tha/m CH in the reference item group (corresponding to 333,3 mL product/ha/m CH). The spray volume was 500 L/ha/m CH.

The initial mean colony sizes per treatment group win the range of 2100 to 3255 cm² comb area covered by bees. Diparcally healthy, queen-fight honeybee colonies, equatised for adult worker bees, brood and food tores as reasonably possible were used for the purpose of this study.

The following assessments and observations were made during the study:

- Mean number of dead bees (worker and larva pupae separately) on the water-permeable sheets in tunnels and in the dead bee traps+water permeable sheets in front of hive before as well as after the application.
- Flight intensity (mean pumber of forager bess/apportree row/min before as well as after the application.
- Behaviour of the bees in the grop and around the lave.
- Condition of the cotonies colony strength and area of the different brood stages and food storage per colony and assessment date).

Dates of experimental work: 25 April 2015 10 June 2015

Results:

Mortality

Mortality Mortality: Findings are summarized in the table below.							
Assessment	Assessment period	Contr	ol (1)	Toxic refe	rence (2)	Test it	em (3)
parameter	Assessment period	mean	SD	mean	SD	mean	°∧\$D
	Mean pre-exposure period (-3DAA to 0DAA)	44.3	28.9	36.3	23.9	*42.9 *	30.6
Mean Number of Dead	Mean exposure period (1DAA to 6DAA) ¹	19.5	2.9	90 S	19.0		5.0 V
Worker Bees	Mean exposure period (7DAA to 8DAA) ²	57.0	26.9	248.7	° 138.2	0 ^{49.4}	314
	Mean post-exposure period (9DAA to 21DAA)	Q.1	°1.6		6.9 C	1.X	×1.3
	Mean pre-exposure period (-3DAA to 0DAA)	0.6	~.0		. 0 ^{9:5} K	0°0.2	° ¢Å
Mean Number of	Mean exposure period $(1DAA \text{ to } 6DAA)^1$	\$0.5 K		×9.8 č		Ø.3	0.4
Dead Pupae	Mean exposure period (7DAA to 8DAA) ²		0.1			0.95	1.0
	Mean post-exposure period (9DAA to 21DAA)	\$ 0.2	0.8	0.3 Q	0.9	00.2	0.5

Exposure period after second application ¹: exposure period after first application DAA: day(s) after first application pre: before first application SD: standard deviation

Ľ R \bigcirc In honeybee colonies exposed of the test item as well those of the control, mortality was low throughout the entire test period for worker bees, pupae and larvas. The treatment with the test item did not result in any detectable effects on mortality (worker beer pupae). Statistical analysis revealed no significant differences between the control and the test item group for any of the assessed mortality parameters. 0

The colomes treated with the reference item showed statistically significant increases in worker bee mortality from 2 to 8DAA and 10 to 11DAA that on firm that the colonies and the test system were A

mortality from 2 to 8 DAA. and 10 to 11 DAA that confirm th adequate to detect effects on honeybee survival.

Foraging Activity

Findings are summarized in the table below.

Assessment	Assessment period	Control (1)		Toxic reference (2)		Test item (3)	
parameter	Assessment period	mean	SD	mean	SD	mean SD	
	Mean pre-exposure period (-3DAA to 0DAA)	5.3	6.3	5.7	0.4	5.3	
Mean	Mean on day of first application (0DAA post)	13.4		0.0	0.0		
Number of Foraging	Mean exposure period (1DAA to 6DAA) ¹	21.3	\$21.0	109	9.7 🖑		
Bees	Mean on day of second application (6DAA post) ²	71	10.7	3.3	f.90	0 ⁶ 63.2 <i>c</i> 9 6	
	Mean on day after second application (7DAA) ²	J ⁰ .1	9.10	19:8 19:8	5 0.65 S	62.9 13.4	

²: exposure period after second application

DAA: day(s) after first application pre: before first application SD: standard deviation Before the first application, foraging activity was very homogenous and no statistically significant differences were detected. In comparison to the compol, the foraging activity ophone bees in the test item was at the same level except for 2 days with a slight but significant reduction of foraging bees (0DAApost and 6DAAprecapplication). No statistically significant difference between control and test item was found at any other day. After the second application the foraging activity in the control and the test item group remained at the same high level

After the first and second application there was a distinct and statistically significant reduction of foraging activity in the toxic reference item resulting in a total cessation immediately after the application and decreased foraging activity from 3DAA onwards

Behaviour of the Bees

Ľ There was no evidence that the test item treaments resulted in adverse effects on behaviour. Neither signs of intoxication of repelbace, nor aggressive behaviour, change in the cleaning behaviour or any other form of behavioural change of the bees were observed after the respective application of the test item and thereafter

Strength of the Colon as

<u>Strength of the Colonies</u> After setup in the tunnels the strength of the hopeyber colonies remained on the same level except for the test item group showing an increased number of worker bees compared to the control group on 8DAA. After the release from the tunnels, the strength of the colonies increased in all treatment groups, but was significantly lower in the toxic reference.

Brood Development

Brood development was very homogenous for the honeybee colonies in the control as well as in the test item treatment. The data reflected very well the typical seasonality of brood development in honeybee colonies. The abundance of brood in control and test item remained at the same level from the first to the fourth assessment (-1DAA to 14DAA) and increased afterwards steadily throughout the monitoring period. No statistically significant difference in the development of brood was found between control and test item at any day. Although the abundance of brood was statistically significant lower in the toxic reference item compared to the control at 4DAA, 8DAA and 21DAA, the overall increasing trend was also recorded in this group.

Food Stores

During the confined exposure period the food stores remained on the same level in the control and the test item, while there was a statistically significant decrease of food cells in the toxic reference item group on 8DAA. Pollen and nectar cells showed an increase on the first assessment after confinement a on (14DAA) in all treatment groups, but to a significantly slighter extent in the toxic reference item[®] and the test item group compared to the control. While this trend remained in the toxic reference group throughout the monitoring period (up to 42DAA), the food stores in the test item group showed a steady increase. Compared to the control, the food stores in the test item were slightly higher upfil the end of the monitoring period.

Conclusion:

Fosetyl-Al WG 80 was applied twice in an interval of 6 days at a rate of 4.5 kg Fosetyl-A WG 80/ha/3 m CH (3600 g a.s./ha/3 m CH) in Dowering apple trees during hopeybee foraging activity. In this study honeybee foraging activity was assessed for & days after the first application as well as mortality and behaviour for 22 days after the first application. Colory strength, development of brood area and food stores were assessed up to 42 days after the first application? No test-item treatment related adverse effects on adult and pupae mortality were observed. Foraging activity of the honeybees in the test item group was slightly bu statistically significantly reduced compared to the control directly after the first application and directly before the second application but no difference was detocted during any other assessment No test-item related adverse effects on behaviour were observed.

Colony strength and size of food stores was comparable between control and test item treatment. Honeybee brood development in the test item group was comparable with the control group. Considering the individual brood stages eggs, larvae and pupae some transient differences occurred inbetween treatment groups that carobe explained by natural variability in these parameters.

Overall, the application of 4 Skg Fosetyl-AP WG 0/has m CH (3600, g a.s 4 a/ 3 m CH) in a 6-day interval in flowering apple trees in the presence of honeybees did not result in unacceptable effects on honeybee foraging activity, mortality, behaviour, colory strength, blood development and food stores.

Request from the RMS:

O Could you please indicate if some date are available to precise the level of exposure of the exposed colony and the semi-field study in an apple orchard (V.; 2015; M-. N.: 533329-01-1)? L,

Response from BCS:

requirements as set out in Commission Regulation (ELP) No 284/2013.

The standard design as detailed by the guideline includes a 2 to 3 day acclimatisation period normally followed by a 7 day direct exposure period that is seen as an appropriate post-treatment exposure period. The final duration there is the term of the timepoint of removal from the tunnels is clearly driven by the actual flowering period of the mop or the confinement of the bees to a limited foraging area. The guideline states "Honeybees from small colonies are forced to forage on a flowering crop in field cages (to provide realistic worst-case exposure)." ... "Shortly before the application, the number of foraging bees per m² ... should be recorded. ... A foraging density of at least 5 bees per m² is required of bee attractive crops... in order to verify exposure." Since this study was performed in an apple orchard and blooming apple trees are commonly known as bee-attractive and pollinated by honeybees, the flight intensity was measured in the number of forager bees/apple tree row/min. Counts that took place before the first application confirmed the presence of 8.7 bees/min in the control, 10.0 besomin in test item and 11.3 bees/min in the toxic reference item. Additional evidence on exposure is available for 3 time points on the day of the first application (after application) as well as from further counts performed on the 6 days following days. Counts that took place before the second application confirmed the presence of 15.8 bees/min in the control, 9.9 bees/min in test item and

6.3 bees/min in the toxic reference item. Additional evidence on exposure is available for 3 time points on the day of the second application (after application) plus from further counts on the day thereafter. Generally, as soon as a blossom is successfully pollinated, nectar flow and availability of pollen stop and fruit development starts.

The use pattern for Fosetyl-Al WG 80 foresees 1-3 applications to be performed in 7-10 day intervals at BBCH 55-85. In reality exposure of bees to two subsequent applications is unlikely since first of all the lifespan of a blossom is limited; once pollinated the nectar flow and pollen production will stop and bee-attractivity is no longer given. And second usually not more than one application way take place during the limited flowering period (BBCH 60-69) of apple trees. Therefore the current study must be seen as a worst-case simulation in which the first application was performed at BBCH 63265 followed by a second application that took place 6 days later at BBCH 65-67, which is an even shorter of spray interval as in the intended use pattern.

spray interval as in the intended use pattern. The guideline also states that "The toxic standard is used to confirm that the bees are exposed to the treatment and to calibrate the magnitude of the possible effects under trial conditions? As recommended in the guideline the present study included dimethoate as a tost c standard, which showed the expected effects on adult mortality and foraging activity. The application in all theatment groups was performed with a calibrated metorised Port sprayer simulating accommercial application. Several criteria were established on the condition for performance of the application to ensure appropriate exposure. Wind conditions were described as being calm, no tain occurred during hours after the applications and the proviously prepared target amount for the application rate was completely applied inside each tupnel. Õ Therefore, based on the available data of monitoring of flight activity, the use of a toxic standard, the

technical and meteorological conditions encountered during and after the applications combined with

CP 10.3.1.6 Field tests with honeybees

CP 10.3.2 Effects on non-target arthropods other than bees

The risk assessment was performed according to Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods (ESCORT 2, Candol *et al.*, 2000¹).

Table 10.3.2-1: Fosetyl-Al WG 80: Ecotoxicological endpoints for arthropods other that bees (parrent?) representative formulation) Image: Construct of the second seco

repro	esentative formulation)	Č Á	
Test species,	Tested Formulation, study	Ecotoxicological	dpoint of the second
Dossier-file-No.	type, exposure		
Reference	4	Ŵ Q, "	
Aphidius rhopalosiphi	WG 80	LR ₅₀ > 18,56 kg pros	ha; $E\mathbb{Q}_{\delta 0} > 1$ 836 kg arod/ha
,; 1999; M-	Laboratory, glass plates.		
184606-01-1	No. And No.	orr. Mortality %]	Effect on Reproduction [%]
Rep.Nr: R011803			P AD.7 A
KCP 10.3.2.1/01	18.56 kg prod ha	-2.84	Effect on Reproduction [%] 0.7 0.7 0.5 0.7 0.7 0.5 0.7 0.9 0.9
Aphidius rhopalosiphi	WG 80	$\mathbb{C}_{0} > \mathbb{O}_{0} $	$x; ER_{50} > 8 Qkg prod/ha$
;	Laboratory, glack plates	$\mathcal{C}_{\text{Corrs}} = \mathcal{C}_{\text{Corrs}} $	L Effect on Reproduction [%]
2001; M-201953-01-1	o kg prod/nag		
Rep.Nr: C012023	10 kg prod/hto		0 5 -6.8 V
KCP 10.3.2.1/02	20 kg procha 6		
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
T 11 1 ·	No kg prod/ha		00.9
Typhlodromus pyri D; 1999; M-	WG 80 Leooratoly, glasplates 71.88 Leprod/ha 18.30 kg prod/ha	O A A	Effeçição Reproduction [%]
D; 1999; M- 184622-01-1	L'aboratory, glass platest	Corr. Fortality [%]	Effection Reproduction [%]
Rep.No: R011811 $\overset{<}{\sim}$	Files Longard	Corr Fortality [%]	96.8
KCP 10.3.2.1/03	18.50 kg prod/ha 18.50 kg prod/ha	867	96.8 96.8 100.0
Typhlodromus pyri S			Ø 100.0
;; 2000; M-	Extended Lab., exposure on	Y N ON S	G
238637-01-1 2	detgehed bon leave	Cox. Mortanty [%]	Effect on Reproduction [%]
Rep.No: B002979	$\sim$ 7,43 kg prod/ha	\$ 69.0	77.5
KCP 10.3, 2.2/01	18,36 kg pod/ha		na
Typhlodyonus pyri	WG S C	LR ₅₀ 18.87 kg prod	$I/ha; ER_{50} > 2.52 \text{ kg prod/ha}$
;; 2001; M-	Laboratory, glass writes		
202973-01-1		Gerr. Monality [%]	Effect on Reproduction [%]
Rep.No: CW01/00	052 kg/ord/ha	$\bigcirc$ $\bowtie_{4^A}$	22.1
KCP 10.3.2.1/04 🖌 🧸	St.81 Cprod the S	\$1.1	59.3
	© 18.87 kg procha	1.1	58.4
Typhlodromus pyri	S8.81 Cprod/hg C18.87 kg prod/hg S6 80 C	$OR_{50} > 80 \text{ kg prod/ha}$	$ER_{50} > 80 \text{ kg prod/ha}$
,: 2007; M-	Extended Lab Exposure on 🖉		
2954/4-001-1 🔊	detaced bean leaves	Corr. Mortality [%]	
Rep.No: 37191062	A 2.5 kg prof ha	-2.0 ^A	7.9
KCR 0.3.2.2/02	/S ^r / kg prod/ha /S ^r	20.4	57.6
	P.25 kg.prod/ha	-8.2 ^A	11.2
L. L.	@20.04@prod/@	-2.0 ^A	43.8
	40.0 Kg prod/ha	-8.2 ^A	32.3
	or 8400 kg pQd/ha	-4.1 ^A	-20.2 ^B
KCR 10.3.2.2/02			
<u> </u>	X X		
	Alla .		

¹ Candolf *al.*: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

Test species,	Tested Formulation, study	Ecotoxicological Endpoint
Dossier-file-No.	type, exposure	-
Reference		
Coccinella	WG 80	
septempunctata	Laboratory, glass plates	
,; 1999; M-		Corr. Mortality [%] Eggs/Fonale/Day
184632-01-1	Control	
Rep.No: R011815	11.88 kg prod/ha	-2.4 9.8
KCP 10.3.2.1/07	18.56 kg prod/ha	78.6 19.2 Or or or
Coccinella	WG 80	LR ₅ 82 kg prod/ha, no effect on reproduction
septempunctata	Extended Lab., exposure on	
; 2011; M-	detached bean leaves	Corr. Mortality [%] Eggs/Female/Day Hatching [%]
412084-01-1	Control	
Rep.No: 111048020A	12 kg prod/ha	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
KCP 10.3.2.2/03	19 kg prod/ha	
	33 kg prod/ha 58 kg prod/ha	
	82 kg prod/ha	
Aleochara bilineata	WG 80 WG 80	(1) -0.5 Q = 4.1 Q
O; 2000; M-	Laboratory, sprzydeposits on	STAR - TO IS HAVE INO
0, 2000, M- 238636-01-1	quartz sand	Theet of Penrolletion Col
Rep.No: B002978	11.88 Q prod Va	A A A A A A A
KCP 10.3.2.1/06	18.50 kg prod/ha	
Aleochara bilineata	WG 80	$R_{50} > 0$ kg pfod/ha
; 2011; M-	Extended Laby spray	
413058-01-1	deposits on soil (LDFA 2.1)	Leffect on Reproduction [%]
Rep.No: 111048021A	36kg prod ha	
KCP 10.3.2.2/04	57 kg prød/ha €	4 a 168 a
	67 kgprod/h	
Poecilus cupreus 🛛 🔗	WOOD V -	$LR_{\rm M} > 18.9$ kg ${\rm gg}$ d/ha ${\rm c}$
; 1999; No	Laborator, spra deposits on	Corr Mortality Food consumption
184577-01-1 🔊	Qand and beetles	[%] [%] [%] [%] weeks]
Rep.No: R01178	Control	- A 2.5
KCP 10.3.2.1/05	12.09 kg prov ha	3.0
(Ch	18099 kg prod/ha	<i>∂</i> -3.3 ^A <i>↓</i> 3.0
Poecilus capreus	WG & Non- P screening	Montality [6] Food consumption
,; 1999; M	spra eposits on quartz sar	(no. of fly pupae/beetle]
	control & Or y	& 3.2
Rep.No: R011817	124 kg prod/ha 🗇 🔗	$O^{*} \gtrsim 0$ 4.3
KĈP 10.3.2.1/08 🖗 👸		
Pardosa sp	WG80, NoCGLP ofeeniro,	
₽,9999; Ŵ-	spory deposits on quartz sand	ð.
184609-01-1		Wortality [%]
Rep.No: 10011805	126 prod/log	65
KCP 10.9.2.1/09		
Predatory mites	WO 80 0° 0° 0°	No unacceptable effects on predatory mite
; 2010;	Field, mapple orchards	populations
M-367548-01-1	Southern France	
Rep.No: S09-05000	Triat 01: 3 x 3.2 kg prod/ha	
KCP 10.3.2 01	ac d spray interval.	
	Prial 02: 3 x 4.0 kg prod/ha	
A A P	and $\mathfrak{O} \times 7.2$ kg prod/ha at $1\mathfrak{F} - \mathfrak{P} $ d spray interval.	
	18 21 d spray interval.	
,, 2010, M-367548-01-1 Rep.No: S09-04000 A KCP 10.3.2,401 A KCP 10.3.2,400 A KC		
× L×		
. 0″		

<b>Document MCP – Section 10: Ecotoxicological studies</b>	
Fosetyl-aluminium WG 80	

Test species,	Tested Formulation, study	Ecotoxicological Endpoint
Dossier-file-No.	type, exposure	
Reference		
Predatory mites	WG 80	No unacceptable effects on predatory mite
,; 2013; M-	Field, in apple orchards	
475378-01-1	central zone	
Rep.No: S13-01518	T1: 3 x 4.5 kg prod/ha	
KCP 10.3.2.4/02	(interval 3-4d)	
	T2: 3 x 7.5 kg prod/ha	
	(interval 7d)	
	T3 3 x 3.75 kg prod/ha	
	(interval 9d)	

^A: A negative value indicates a lower mortality in the treatment than in the control ^B: A negative value indicates a higher reproduction rate in the treatment than in the control n.a.: not assessed

The non-target arthropod data as presented in the table above indicate that FoscovI-aluminium WG 80 (FosetyI-Al WG 80) has a low toxicity to *Aphidirs rhopWosiph* (effects on mortality or reproduction under laboratory conditions <50% up to and including 80 kg prod/ha) Effects on mortality of *Coccinella septempunctata* exceeded under taboratory conditions 50% at an application date of 18.56 kg prod/ha. But under more realistic extended taboratory conditions no adverse effects on mortality or reproduction were observed for *Coccinella septempunctata* up to and including an application rate of 82 kg prod/ha. Effects on the reproduction of *Aleo Para bilineata* were under extended laboratory conditions below 22% at an application fate of 57 kg prod/ha.

The studies for the predatory role *Typhlodromus pyri* need a pore detailed evaluation. In the Addendum to the DAR (2009) it has been stated:

"Both the standard and the mendee laboratory soudy by 3 1999; M-184622-01-1 A.; 2000; M-238667-01-10 on T pyri revealed severe effects of EXP10369F at 15 kg and a.s./ha to this predatory mite. , P.: 2001; M-202073-01 (F), in contrast, found lower mortality, but Qnific Qt impact on production was observed, woth studies conducted by characterized by an other wariability regarding the aic humi Oy and or temperature. These points are addressed addeviations in both childies, Although these measurements refer to the climatic chamber (in which the whole set-up was placed and not to the tes funits it cannot be excluded that the test organisms encountered these environmental variations. In the study performed by , P.; 2001; M-202973-(1) the "islags-method", agecent on provement of the test design has been applied. The "islands" are thin grass sliges floating on a water surface, preventing mites from escape and leads to a very hongogenor humanity. Therefor, the Desult achieved by P.; 2001; M-202973-01-1) were more very

It is therefore proposed to base the tier 1 risk assessment on the mortality data from P.; 2001, M-202973-07-1) which indicated an LRQ of >18.87 kg prod/ha.

To further clarify the situation concerning the effects on predatory mites an additional extended laboratory study with *Typhlogromus pyri* has been conducted in 2007 (1997), M.; 2007; M-295474-01-1) in the same laboratory that has conducted before the studies from 1997 (1997), A.; 1999; M-184622-01-1 and 1997, A.; 2000; M-238637-01-1). This new extended laboratory study from 2007 which was evaluated in the Addendum to the DAR (2009) indicated an LR₅₀ and ER₅₀ >80 kg prod/ha. In line with the recommendation of the RMS in the Addendum to the DAR from October 2009 it is proposed to use the endpoint of this extended laboratory study (1997, M.; 2007; M-295474-01-1) for the fier 2 tisk assessment.

Ũ

# Tier 1 in-field risk assessment for other non-target arthropods

Crop	Species		Appl. rate [kg prod./ha]	MAF	LR50 [kg prod./ha]	HQ	Trigger ô
Oraharda	T. pyri		4.5	2.3	> 18.87	< 0.55	2.0
Orchards	A. rhopalos	siphi	4.5	2.3	> 80.00	< 0.13	
Fier 1 off	f-field risk assess	ment for	other non-ta	rgetarthrop	ods		
Table 10.3	3.2- 3: Tier 1 of	f-field ris	k assessment f	or non-target		\$ <u>`</u> .6 ⁴ .	
		f-field ris	k assessment f	ft VDF	orrection AL	R50 HQ	<u>s. 01</u>
Table 10.3	3.2- 3: Tier 1 of	f-field ris	k assessment fy te MAF Dri	tt VDF (C)	factor factor h	\$ <u>`</u> .6 ⁴ .	<u>s. 01</u>
Table 10.3	3.2- 3: Tier 1 of	f-field ris Appl. ra [kg	k assessment fy te MAF Dri	t VDF (C)	orrection L factor Hkg I h		Thigger

For Aphidius rhopalosiphi and Typhodromas pyrthe aculated HQ values for the m-field and offfield scenario are below the triggeoof concern, indicating acceptable risk. To address the question of the reproduction effects >50% that were observed in the Typhlodromus pyri , P.; 2001; M=202973-01-1) an tier 2 risk assessment for Typhiodronois pyri and two study (

additional species (C. septempunctura and A. bilipeata) is provided below.

### C Ô Tier 2 in-field risk assessment for non-target achropods L Ő

Ô

Ũ

Table 10.3.2- 4:	Exposure asso	%, ₂ %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Crop / no. of a		Oppl. rate	MAD S	kg prod./ha]
Orchards 3		ja ja o	2.3	8.28

Ř Ô Fier 2 risk assessment Or terrostrial non-target arthropods for the in-field scenario Table 10.3.2- 5:

K,

O

Сгор	Species In-field PEC max LR50 ER50 (kg prod?/ha) [kg prod./ha]	Risk acceptable if	Refined risk assessment required
Orchards 🔬	T. pyri 0 20 20 20 >80.0	Effects are < 50%	No
	C. septempunctate $\mathbb{Q}^{*}$ 8.2 $\times$ >82.0	Effects are < 50%	No
	A. bilingata S - A - A - A	Effects are < 50%	No
AL.			

The tier 2 in-field risk assessment confirms the results of the tier 1 risk assessment and indicates that no unacceptable adverse effects on on-target arthropods are to be expected from the use of Fosetyl-Al WG 80 according to The proposed use pattern.

This condusion also confirmed by the results of two predatory mite field studies ( J.: 2010; M-3675 8-01 and and , D.; 2013; M-475378-01-1) that indicated no unacceptable adverse effects under field conditions with application rates of 3 x 7.2 kg prod/ha and 3 x 7.5 kg prod/ha, respectively

# Tier 2 off-field exposure assessment for other non-target arthropods

Table 10.3. Crop	2-6: Expose Application rate [kg prod./ha]	ure asses	sment for Drift [%]	off-field asses Veg. distr. factor	Soment (Tier 2 Correction factor	) off-field PEC _{max} [kg protha]	Remark of
Orchards	3.6	2.3	11.01	10	5	<u>0</u> .198	in case of 2-D Ostudy design
					Ô	Å.	

# Table 10.3.2- 6: Exposure assessment for off-field assessment (Tier 2)

Table 10.3.2-7: Tier 2 risk assessment for terrestrial non-target arthropods for the off-field scena	popods for the off-field scenario
------------------------------------------------------------------------------------------------------	-----------------------------------

Crop	Species	off-field	LR50; ER50	<b>Risk</b> acc	ceptable if	Refined risk
		PECmax	kg prod./ha]	k o°	Q A	assessment
		[kg prod./ha]			<u>∼% ∖0</u>	<b>Required</b>
	T. pyri	ų,	>80.0	≪Effects	fe < 50%	No No
Orchards	C. septempunctata	0.198	_© [*] >82 [€] 9	F Effects	are 🔧 🕉 0% 🔒	No
	A. bilineata	4	>67.0	Effects	are < 50%	No 🔨
				A	Ô, de	

The tier 2 off-field risk assessment confirms the results of the tier 1 off2field risk assessment and indicates that no unacceptable adverse effects on non-target arthropods are to be expected from the use of Fosetyl-Al WG 80 according to the proposed use pattern.

# Conclusions

The tier 1 and the tier 2 risk assessment indicated in line with available field data that no unacceptable adverse effects are to be expected for non-target arthropods in the off-field and the in-field habitat from the use of Fosetyl-Åt/WG 80 according to the proposed use pattern.

### 0 **CP 10.3.2.1** andard laboratory testing for non-target arthropods S. **Report: 1999; M-184606≥01-1** Title: Mopalosiphi (Hymenoptera, labor Report **1** Document Guideline(s): Guideline deviation ~Ø **GLP/GEP:** Materials and methods

Formulated product resetyl-Al WG 80 (4XP 1769F, a.s. content 808 g/kg fosetyl-Al, batch no. OP990544). *Aphidip rhom losiple* four orplicarys, each containing 10 wasps (5 females and 5 males) per treatment group were exposed to fish dreat residues on glass plates at rates of 12.0 and 18.75 kg test item/ha (nominal, 11.88 ato 18 @ kg/hz/measured) in 200 L water/ha. A tap water control and a toxic reference control (0.85 mL Refekthion EC in 200 L water/ha) were included in the study design. Mortality are behavioured abnormalities were recorded 1, 2, 24 and 48 hours after test initiation. Reproduction my source as possitation rate of aphids was recorded 11 days after the 24 hours parasity on period of aphids by the wasps.

# Findings:

Image: Second	Findings:				
minimized       Water       18.75 kg pr./bs       12.0 kg pr./bs       dimethoder 0         rected mortality (5)       5.0       2.4       0.0       100         matation efficiency, mean # SU       11.8411 K       0.847.0%       10.647.0%       10.6         match (10)       11.8411 K       0.847.0%       10.66.7 (mm. 15)       10.647.0%         match (10)       11.8411 K       0.847.0%       10.66.7 (mm. 15)       10.66.7 (mm. 15)         Differences with the control statistically significant (Bog from Users)       10.64.7 (mm. 15)       10.64.7 (mm. 15)         Differences with the control statistically significant (Bog from Users)       10.64.7 (mm. 15)       10.64.7 (mm. 15)         Iter 48 hours of exposure to the test substance one mortaling (10) of the control statistically significant (Bog from Users)       10.64.7 (mm. 15)       10.64.7 (mm. 15)         Iter 48 hours of exposure to the test substance one mortaling (10) of the control statistically significant (Bog from Users)       10.64.7 (mm. 15)       10.64.7 (mm. 16)         Iduit animalis at the two rates tested. No 10.64.7 (mm. 16)       2.0 (mm. 16)       10.65.6 (mm. 16)       10.65.6 (mm. 16)       10.7 (mm. 16)       10.65.6 (mm. 16)         Iduit animalis at the two rates tested. No 10.64.7 (mm. 16)       10.7 (mm. 16)       10.6 (mm.			Fosetyl-Al WG 8	80 (EXP10369F)	Perfekthion EC
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	Application	Water	<mark>18.75 kg pr./ha</mark>	12.0 kg pr./ha	336.6 mg
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	Mortality (%)	<mark>5.0</mark>	2.5 ^{ns}	5.0 ^{ns}	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	Corrected mortality (%)	-	-2.6	0.0	100
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	Parasitation efficiency, mean $\pm$ SD	$11.0 \pm 11.0$	$10.8 \pm 7.0$ ns	A	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	number of aphid mummies per	(n=20)	(n=20)	$7.0\pm6.9$ (n=18)	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	female (n=sample size)	(1 20)		<u> </u>	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	ns: Differences with the control not	t statistically signi	ficant (Bonferroni-	-U-tosy.	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	⁹ Differences with the control statis	stically significan	t (Borgerroni-U-tes	s <mark>t, ag=0.05).</mark>	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	After 48 hours of exposure to t	ha tast substand		the Wet substar	
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	or lower than that in the control	le indicating le	ck of lethal effect	a contract substat	10 groups was equal
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	on adult animals at the two rate	is tested. No l@k	avio tal effects	were ob aved	adults in the control
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	or test substance groups	<u></u>			
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	The mean number of aphid mu	ummies produce	oper semale a	s 112 10 Oand	7.0 for the corrols
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	8.56 kg product/ha and 11.88	kg pro@ct/ha	espectively, Mas	edOn these mea	data the estimated
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	eduction in parasitation efficie	ency Sing & Sta	undord for Orula is	3.5% Ond 48	% f@ the 18.56 and
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>	11.88 kg product/ha groups, res	pectively.	N N N		S. L
<ul> <li>Inclusions:</li> <li>Ider the worst-case conditions of this to spray treatments of Fost 1-ALWG 80 (EXP10369F) at est equivalent to 18.75 be product/he growth, 15 be a.s./ha) of 11 style product/ha (nominal, or ga.s./ha) did not carrie adverse lethal or sho-letter effects on Athone lossiple</li> <li>Is study was already evaluated for the same systing of fosety1-AL</li> <li>RMS Conclusion: Acceptable</li> <li>Inter study information supplementing the original DAR summary:</li> <li>Inter study information supplementing the original DAR supplementing the effects of plant between the original DAR supplementing the original candidity of a supplementing the original DAR</li></ul>					
<ul> <li>and the worked action of the project has a nomical. 15 is a study was already evaluated to the concern of the project of the project</li></ul>	Conclusions	∕ 、∾ ・0			~ % ,
<ul> <li>kg a.s./ha) did not caule adverse lethill or sto-lethe effects on A thorped stips</li> <li>is study was already evaluated for the conex section of fosetv1-A10</li> <li>RMS Conclusion: Acceptatic</li> <li>urther study information supplementing the original DAR summary:</li> <li>urrent Guideline:</li> <li>ference: Mead-Briggs, M/A. EUAL. (2000) A laboratory test for evaluating the effects of plant tection products on the parasite wasp, Aptidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconidae) in Candalfi, M.P. ET.AL. (eds.) Guidelines to evaluate side-effects of int protection products to non-target anthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000, G = 23.</li> <li>st engloints according to current guideline:</li> <li>Mortality of adult wasps during 45 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>	Jnder the worst-case condition	s of this tes, sp	oray treatments &	Foselyl-Al-WC	3 80 (EXP10369F) at
<ul> <li>kg a.s./ha) did not caule adverse lethill or sto-lethe effects on A thorped stips</li> <li>is study was already evaluated for the conex section of fosetv1-A10</li> <li>RMS Conclusion: Acceptatic</li> <li>urther study information supplementing the original DAR summary:</li> <li>urrent Guideline:</li> <li>ference: Mead-Briggs, M/A. EUAL. (2000) A laboratory test for evaluating the effects of plant tection products on the parasite wasp, Aptidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconidae) in Candalfi, M.P. ET.AL. (eds.) Guidelines to evaluate side-effects of int protection products to non-target anthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000, G = 23.</li> <li>st engloints according to current guideline:</li> <li>Mortality of adult wasps during 45 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>	ates equivalent to 18.75 by pr	occt/haonomi	@1, 15 kg a.s./ha	1) and 11.88 kg	ploduct/ha (nominal,
<b>RMS Conclusion: Acceptation rther study information supplementing the original DAR summary: rtner study information supplementing the original DAR summary: requestion: requestion:</b>	0.6 kg a.s./ha) did not cauye ady	erse lethal or si	b-lethyl effects of	n A.rhopa Bsiph	
<b>RMS Conclusion: Acceptation rther study information supplementing the original DAR summary: rtner study information supplementing the original DAR summary: requestion: requestion:</b>					)
<ul> <li>arther study information supplementing the original DAR summary:</li> <li>arrent Guideline:</li> <li>ference: Mead-Briggs, MrA. EU AL. (2000), A laboratory test for evaluating the effects of plant bection products on the parasitive wasp, Aphidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconidae) in Candolfi, M.P. ET AL. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000, 9 – 25.</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>	This study was already evaluate	d for the Annex	Kisting of fosety	<mark>'I-Al.</mark> O' &	
<ul> <li>arther study information supplementing the original DAR summary:</li> <li>arrent Guideline:</li> <li>ference: Mead-Briggs, MrA. EU AL. (2000), A laboratory test for evaluating the effects of plant bection products on the parasitive wasp, Aphidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconidae) in Candolfi, M.P. ET AL. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000, 9 – 25.</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>		N W N	9 9	L Q	
<ul> <li>arrent Guideline:</li> <li>ference: Mead-Briggs, MrA. EUAL. (2000) A laboratory test for evaluating the effects of plant bection products on the parasitive wasp. Aphidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconidae) in Candolfi, M.P. ETAL. (eds.) Guidelines to evaluate side-effects of int protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000. 9 – 25.</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>	RMS Conclucion: a cepta				
<ul> <li>Irrent Guideline:</li> <li>ference: Mead-Briggs, M.A. <i>EL AL</i>. (2000) A laboratory test for evaluating the effects of plant otection products on the parasific wasp. <i>Aphidius rhopalosiphi</i> (DESTEPHANI-PEREZ) ymenoptera: Braconitae) in Candolfi, M.P. <i>ET AL</i>. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000, 9 – 2</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>					
ference: Mead-Briggs, MrA. Et AL. (2000), A laboratory test for evaluating the effects of plant bection products on the parasific wasp, Aphidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconittae) in Candolfi, M.P. ET AL. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/ PRS publication, 2000, 9 – 25, st endpoints according to current guideline: • Mortality of adult wasps during 48 hours exposure. • Fecundity of surviving temale wasps over a 24 hours oviposition period.	Further study information suj	oplementing the	e original DAR's	ummary:	
ference: Mead-Briggs, MrA. Et AL. (2000), A laboratory test for evaluating the effects of plant bection products on the parasific wasp, Aphidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconittae) in Candolfi, M.P. ET AL. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/ PRS publication, 2000, 9 – 25, st endpoints according to current guideline: • Mortality of adult wasps during 48 hours exposure. • Fecundity of surviving temale wasps over a 24 hours oviposition period.				$\sim$	
<ul> <li>betection products on the parasifie wass, Applidius rhopalosiphi (DESTEPHANI-PEREZ) ymenoptera: Braconitize) in Candadii, M.P. ET AL. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000. Q - 25</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>	Current Guidenne:	FT. AL (SOOD)		) Set for evaluating	the effects of plant
<ul> <li>ymenoptera: Braconictae) in Candodfi, M.P. ET AL. (eds.) Guidelines to evaluate side-effects of ant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000. 9 – 25.</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>	protection products on the	Darasifin was	Arthidius rh	onglosinhi (DF	STEPHANI-PEREZ)
<ul> <li>IOBC, BART and EPPO Joint Initiative. IOBC/PRS publication, 2000, 9 – 25</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving ternale wasps over a 24 hours oviposition period.</li> </ul>					
<ul> <li>PRS publication, 2000. 9 – 25.</li> <li>st endpoints according to current guideline:</li> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> </ul>		n tobat anthron	OR IOBC BAR		
<ul> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> <li>posure according to current guideline:</li> <li>eatments are applied to glass plates. When dry, these are used to form the floor and ceiling of adult waspe over a surviving temale waspe over a final waspe over a 24 hours oviposition period.</li> </ul>			X X		
<ul> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving temale wasps over a 24 hours oviposition period.</li> <li>posure according to current guideline:</li> <li>eatments are applied to glass plates. When dry, these are used to form the floor and ceiling of adult waspe over a surviving temale waspe over a final waspe over a 24 hours oviposition period.</li> </ul>	A A	9 A . 9			
<ul> <li>Mortality of adult wasps during 48 hours exposure.</li> <li>Fecundity of surviving ternale wasps over a 24 hours oviposition period.</li> <li>posure according to current guideline:</li> <li>eatments are applied to glass plates. When dry, these are used to form the floor and ceiling of the survivious of fine printing of fine printing.</li> </ul>	Fest endpoints according to a	irrent guidelin			
Fecundity of surviving temale wasps over a 24 hours oviposition period.	Mortality of adult wasp	s during 48 hout	sexposure.		
posure according to current guideline: eatments are applied to glass plates. When dry, these are used to form the floor and ceiling of				position period.	
eatments are applied to glass plates. When dry, these are used to form the floor and ceiling of				Figure Figure	
eatments are applied to glass plates. When dry, these are used to form the floor and ceiling of	Exposure according to curren	t guideline:			
allow arenas. Den adolft wasps (including a minimum of five females) are placed in each arena. ere are to be a minimum of four replicate arenas (i.e. 40 wasps in total) in each treatment.	Freatments are applied to glas	s plates When			
ere are to be a minimum of four replicate arenas (i.e. 40 wasps in total) in each treatment.	hallow at the a the adapt week	in all dim a	mainting of fire	a famalaa) ana m	lagad in analy anona
	There are to be a minimum of the	our replicate area	nas (i.e. 40 wasps	in total) in each	treatment.
$\mathbb{Q}$	× "Å				
	$\bigcirc$				

# **Evaluation according to current guideline:**

Assessments of treatment effects are made at 2, 24 and 48 hours. To assess any effects on the relative fecundity of the surviving insects, a minimum of 15 surviving females are taken after 48 hours and individually confined over untreated aphid-infested plants. After 24 hours the wasps are removed and the plants are left for a further 10 to 12 days under controlled environmental conditions before the number of aphid mummies that have developed is assessed.

# Validity Criteria:

Validity Criteria:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
valuity Criteria.			
	Guideline 🖉 🧳	Ş,	Test result
Control mortality	Not more than 5 out of 40 wasps (12.5%)		<u>5.0%</u>
<b>Toxic reference mortality</b>	>50%		
(according to study protocol)	A Q	n° é	
<b>Reproduction rate</b>	$\geq$ 5 much mies/female $\sim$	Ĩ	1.8 mummies@emale
	$\leq 2$ females producing 0 muturinies.		emate with O mumphes

# **Study Remarks:**

No differences were found between the ourrent guideline and the actual study. All procedures and assessments were conducted according to the instructions present in the guideline. A slight difference occurred once during the study, with the temperature rising by 0.5°C by 2 to 3 bours above the agreed limit. However this small increase us not expected to affect he lest results. All study parameters and assessments were obtained as described in the gaideline.

# **Conclusion:**

The test design of the actual study is in line with the recommendations of the current guideline (Mead-Briggs et al., 2000). The validity criteria of the current test guideline were fulfilled.

2001; M-201953-01-1 **Report:** KCP 10.3A)1/02 WC&V A10430n the parasited Aphidius rhopalosiphi ) in the laboratory dose response test -Title: Ofects of AE F033616 00 Hymenoptera, Bracopidae) Report No .: **Q**23 Document No M-201953901-1 and current improvements of the ring-test group Guideline(s); Guideline deviation(s **GLP/GEP:** 

# Material and methods

Test item: Fo@tyl-AOWG 00 680 4101 or EXP 10369F, a.s. content 795 g/kg fosetyl-Al, barch no. OP999907

four replicates, each containing 10 wasps (5 females and 5 males) per Aphidius Appalosiphi, treatment group were exposed to fresh drie residios on glass plates at rates of 5, 10, 20, 40 and 80 kg test item/ha in 200, Swater ha. A reionized water control and a toxic reference (0.3 mL Perfekthion EC, equivalent to 125.3 mg dimethode, in 200 L water/ha) were included in the study design. Reproduction seasured as chasitation rate of aphids was recorded 10 or 11 days, respectively after the 24 hours arasitation refind of aphid by the wasps.

# Findings

Treatment level	<b>Corrected mortality</b>	significance	Parasitation efficiency	
Control	0.0		-	
5 kg product/ha	0.0	n.s.	30.2	n.s. 27 8
10 kg product /ha	5.0	n.s.	-6.8	n.s.
20 kg product /ha	0.0	n.s.	13.6	n 🎸 🖓
40 kg product /ha	0.0	n.s.	15.2	Q.S.
80 kg product /ha	2.5	n.s.	10.9	On.s. O
Toxic standard	100.0	* (^^	L.	
n.s. not significant		A.	Ű	

# Conclusions

Phopadesiphic inder worst- fixe The effect of AE F053616 00 WG80 to the paraground wasp, Aph conditions (glass plate) was determined as follows

$LR_{50}$	> 80 kg product/ha
$ER_{50}$	> 80 kg product/ha

Further study information supplementing the original DAR similar 

# Current Guideline:

Reference: Mead-Briggs, M.A. QET AL (2000). A Booratory test for evaluating the effects of plant protection products on the parasitic wasp, *Aphidius rhopalosophi* (DESTEPHANI-PEREZ) (Hymenoptera: Braconidae) in: Cardolfi M.P. *ET AL* (eds.). - Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and ERPO Joint Initiative. IOBC/ WPRS publication, 2000, 13 - 5. Ô

# Test endpoints according to current gordeline:

- Mortality of adul wasps during 48 hours exposure.
- Fecundary of surviving female wasps over a 24 hours over on the surviving female wasps over a 24 hours over one of the surviving female wasps over a 24 hours • Ô Ľ

# Exposure according to current guidefine:

Treatments are applied to glass places. When dry these are used to form the floor and ceiling of shallow arenas. Ten adult wasps (including a minimum of five females) are placed in each arena. There are to be a manimum of four replicate arepas (i. 40 wasps in total) in each treatment.

S

# Evaluation according to current guideline:

Ô

Ő Assessments of treatment effects are made at 2,24 and 48 hours. To assess any effects on the relative fecundity of the surviving insects, a minimum of 19 surviving females are taken after 48 hours and individually confined over unceated aphid infested plants. After 24 hours the wasps are removed and the plants are left for a further 10 to 12 days under controlled environmental conditions before the number of aphid mummies that have developed is assessed.

			al i	Ŵ	
Validity	Criteria:			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
vanuity	CIIIci ia.	L.		17	

	ی م [©] <mark>Guideline</mark>	Test result
Control mortality	Not more than 5 out of 40 wasps (12.5%)	<mark>0.0%</mark>
Toxic reference mortality (according & study protocol)	<mark>&gt;50%</mark>	100%
Reproduction rate	$\geq$ 5 mummies/female $\leq$ 2 females producing 0 mummies	44.1 mummies/female 0 female with 0 mummies

# Study Remarks:

No differences were found between the current guideline and the actual study. All procedures and assessments were conducted according to the instructions present in the guideline.  $Q_{\mu}^{\circ}$ 

# **Conclusion:**

The test design of the actual study is in line with the recommendations of the opprent guideline (Mean Briggs *et al.*, 2000). The validity criteria of the current test guideline were fulfilled.

		J.	
Derreute	KCD 10 2 2 1/02	1000 194(22.01	mus pyti cheuto (Acat
Keport: Title:	Effects of EXP10369F on the r	redatory mite Type your	mus pyri Cheutar (Acar
	Phytoseiidae) in the laboratory	mal report	
Report No.:	R011811		
Document No.: Guideling(g):	M-184622-01-1		
Ouldefine(s).	US EPA OCSPP guideline: 850	<b>OUPP</b>	
Guideline deviation(s):	none		
GLP/GEP:	yes S	No A.	
Matarials and matha			
Formulated product F	osetvl-Al We 80 GXP	69Fx is content 208	g/& fos@l-Al @atch_no
OP990544). Typhlodr	omus pyri, Q replicates, sach h dried gsiduet on goss pl	containing 20 potony	why the second group.
were exposed to fres	sh dried masidues on games pl	aves atorates at 12.0	and $\mathcal{O}$ . / S kg test item/ha
(nominal) in 200 L wa	ater/ha, N deion del water con	trol and a toget referen	nce (M mL@erfekthion EC,
Mortality was recorde	d of Days 1, 3, 769, 11 Ond 1	A after test in wition	Compared as Deve 7, 0, 11
and 14 after test initiat	win		as as ossed on Days 7, 9, 11
			dy i
Findings:			Ŵ,
Test formula On	methoate in 2001, Witer/by w d a Days P. 3, 769, 11 and 1 imber of twe and dead fiveral on. 67 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Toxic standard
Ch l	Deiostard water		
Application	C (20(C/ha) (20) (20) (20) (20) (20) (20) (20) (20	4na (92.0 x 9na	<b>11 mL Perfekthion EC/ha</b>
% mortanty (1 week at the application		<u>k</u> , <mark>8140</mark>	<mark>94.0</mark>
% corrected mortanty		<del>0</del> <del>7.1</del>	-
% corrected mortagy Reproduction rate (mea total # eggs to remale Quotient of treated and	5 1 <mark>26</mark>	0.3	<mark>0.7</mark>
Quotient of treated and untreated eves (R)	20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     <	Ø 0.03	-
		~,	1
Concusions:			
Under the worst-case	conditions of this test the I	_{LR50} of <i>Typhlodromus</i>	<i>pyri</i> exposed to fresh dry
deposits of Fosetyl-A	I WG & (EX @036%) on gl	ass plates was below	12.0 kg product/ha (9.6 kg

a.s./ha), the lowest to ded race This stude was a seady coaluated for the Annex I listing of fosetyl-Al. **RAS Conclusion: acceptable** 

# **Further study information supplementing the original DAR summary:**

# Current Guideline:

Reference: , S. ET AL. (2000): Laboratory residual contact test with the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products in: Candolfi, M.P. ET AL. (eds.). - Guidelines to evaluate side-effects of plant protection products to In Candolli, M.P. ET AL. (eds.). - Guidelines to evaluate side-effects of plants protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/ WPRS publication, 2000, 121 – 144.
Test endpoints according to current guideline:

Cumulative juvenile mortality 7 days after treatment (day 7)
Cumulative reproduction per females from day 7 to day 14

Exposure according to current guideline: 

# Exposure according to current guideline:

Either glass plates, glass cells or glass discs are sprayed with the test item 20 protonymphs (24 hours old) in each of 5 replicates are exposed to the dried spray residue for 14 days. Ő

# Evaluation according to current guideline:

X) Mortality assessment is carried out of day (optional) and day Reproduction per (obligator) female is recorded 3 times from day Qon, to day 14 with a maximum interval of 3 days

# Validity Criteria:

valuty Criteria.			y Q'Q'	0 8 V	<b>K</b>
	ζ ^γ φ.	29 2		e a a	[©] Test result
Mortality rate		E S M	an mortality (dea	1 + escaped)	<mark>17%</mark>
Toxic reference mean	nortality of		³ <u>S²20% at da</u> Between S ³ and		<mark>94%</mark>
protonymphs at dage Reproduction (number	of eggs per fem				<mark>9.4</mark>
the control from day 7	to 14) 4 (			Ĵ.	

# Study Remarks:

No major differences in the study design were found between the current guideline and the actual study. All procedures and assessments were performed as described in the guideline with the exception of the environmental conditions. Due to technical reasons, the relative humidity was less than 60% for up to  $\mathcal{A}$  hours and temperature exceeded  $\mathbb{Q}^7$  °C for about 3 hours (max. 30.0 °C).

°N, , O In the previous EU Annex listing (Addendum to the DAR, 2009) it was concluded: "Both the standard and the extended laboratory study by states (second states); 1999; M-184622-01-1 and 2000; M-238637-02-1) of T pyri revealed severe effects of EXP10369F at 15 kg a.s./ha to ; 2000; M-202973-01-1), in contrast, found lower mortality, but this predatory mite. significant impact of reproduction was observed. Both studies conducted by are characterized by an extreme variability regarding the air hundidity and/or temperature. These points are addressed as deviations in both studies. Although these theasurements refer to the climatic chamber (in which the whole set-up was placed) and not to the test units, it cannot be excluded that the test organisms encountered these environmental variations. In the study performed by the "island-method", a recent improvement of the test design has been applied. The "islands" are thin glass slides floating on a water sarface preventing antes from escape and leads to a very homogenous humidity. Therefore, the result acheved by were more relevant."

j.

# **Conclusion:**

The test design of the actual study is in line with the recommendations of the current guideline. The validity criteria of the current test guideline were fulfilled. Due to the observed deviations of dhumidity and temperature the study is considered as less reliable compared to the study of  $s_{\rm s}$ F; 2001; M-202973-01-1).

Report:	KCP 10.3.2.1/04 ;; 2001; M-202973-01-1 Toxicity to the predatory mite Typhlodromus pyri SCHEUTEN (Acar) Phyto Fiidae in the laboratory Aliette 80 WG (Aligne SAR+) Corr. AE F05361 ; 00 WG (Aligne SAR+) Corr.
Title:	Toxicity to the predatory mite Typhlodromus pyri SCAEUTEN (Acary Phyto ridae
	in the laboratory Aliette 80 WG (Aliette SAR+) Coor AE F053616 00 WG 0 A107
Report No.:	C012583
Document No.:	M-202973-01-1
Guideline(s):	ESCORT 1994. Guidance doctment on regulatory testing procedures for pesticides
	with beneficial arthropods $\mathcal{O}^{\mathcal{O}}$ $\mathcal{O}^{\mathcal{O}}$ $\mathcal{O}^{\mathcal{O}}$ $\mathcal{O}^{\mathcal{O}}$ $\mathcal{O}^{\mathcal{O}}$
Guideline deviation(s):	
GLP/GEP:	
Material and method	
Test item: Fosetyl-Al	WG 80 (AE F054616 00 WGSV A10 Por EXP 10269F, 25. content 795 g/kg
foratul Al batab no C	

fosetyl-Al, batch no. OP990907). Typhlodromus pyri, five replicates each containing 20 protonympts per freating nt group, were exposed to fresh dried residues on glass plates at sates of 2.52. 8.81 and 18.87 kg test item/ha (nominal) in 200 L water/ha. These apprication rates correspond to 2, 7 and 15 10 a.s./ha, repectively. A tap water control and a toger reference (3 g diffethoate in 200 L water/ha wer mcluded in the study design. The "island method" adopted here is an open laboratory method for testing the effects of plant protection agents on *Pyphlodromic pyri* which the use of inject age is not necessary (Joisten 2000).  $\bigcirc$ 

and 4 after test onitiation. Reproduction, measured as Mortality was recorded at Days and read interior and test interior region on Days 7 to number of eggs angenumber of day 14 after test initiation

**Findings** Of the test 91% of the mitos survived in the control group, while 2% died, and 7% were missing. Av 2.52, 8.81 and 18 67 kg tot item/ha the survivel rates at day 7 were 95%, 90% and 90%, respectively. There we no solvivors at day 7 in policates treated with the toxic reference substance. The mean (± standod deviation) sumbeo of offering produced per female in the control group was 11.3 (± 0.4). This compared to 3.8 (±40.9) eggs/female at 52 kg test item/ha, 4.6 (± 1.9) at 8.81 kg test item/ha and 4.7 2 0.5 egger emails at 1887 kas test item/ha. Due to 100% mortality no reproduction ould be quantified in replicates with the toxic reference substance.

Corrected mortalities, reproduction races and the %, bital effects are derived as follows:

g pr./ha 8.81 kg pr./ha 18	8.87 kg pr./ha	toxic standard
5 10	10	100
4.4 1.1	1.1	100.0
.8** 4.6**	4.7**	-
0.77 0.41	0.41	-
9.2 59.8	59.0	100.0
)	5     10       .4.4     1.1       .8**     4.6**       0.77     0.41	0.77 0.41 0.41

significant different from the control with alpha < 0.05.

# Conclusions

The effect of Fosetyl-Al WG 80 (Aliette WG, EXP10369F) to the predatory mite, Typhlodromus pyri under worst-case conditions (glass plate) was determined as follows:  $LR_{50} > 18.87$  kg product/ha.

# **Further study information supplementing the original DAR summary:**

# **Current Guideline:**

Reference: , S. ET AL. (2000): Laboratory residual contact test with the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products in: Candolfi, M.P. ET AL. (eds.). - Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/ WPRS publication, 2000, 121 

Ô

# Test endpoints according to current guideline:

• Cumulative juvenile mortality 7 days after treatment (day '

Ô

() ()

• Cumulative reproduction per females from dev 7 to day 14

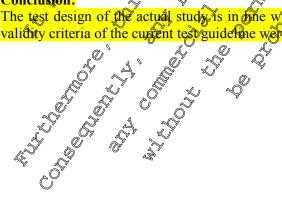
# **Exposure according to current guideline:**

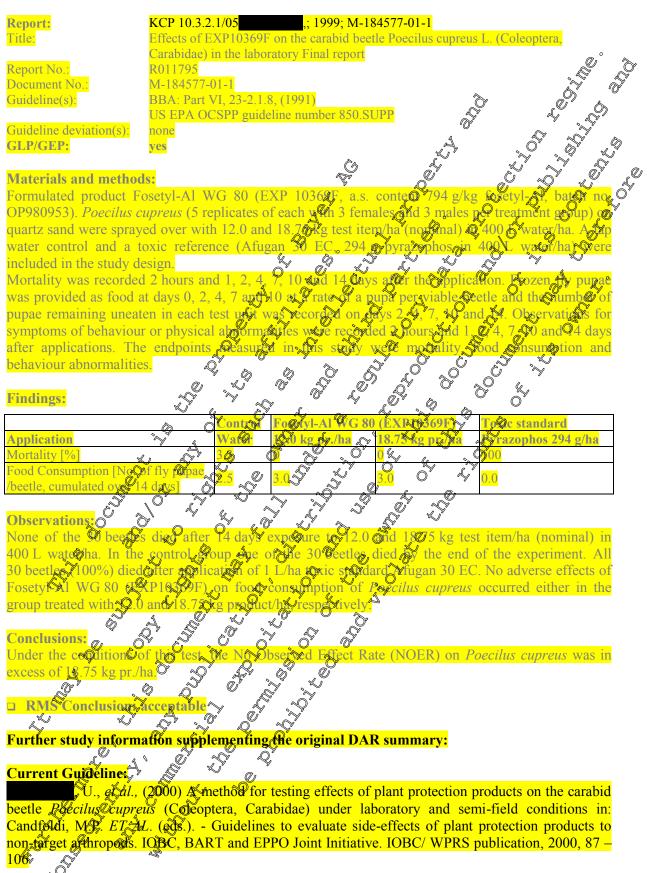
1 Either glass plates, glass cells or glass dises are sprayed with the meatments. 20 protonymphs A LA (24 hours old) in each of 5 replicates are exposed to the dried spraw residue for 14 days 

# **Evaluation according to current guideline:**

Reproduction per Mortality assessment is carried out on day (optional) and day (obligator) female is recorded 3 times from day  $\mathcal{P}$  on to day 14 with a maximum interval

# Validity Critoria


valuty Criteria:				or So	\$
	W W	2	Gardelin		Test result
Mortality rate			an mortality (dea	id + escaped)	<mark>9%</mark>
Toxic reference mean	nortality of x		20% at d		100%
protonymphs at day	control corrected	e S	à ai		11.2
Reproduction (number the control from day 7	to 14)	$\rightarrow$		Ś	11.3
		40 B		Ū.	


# Study Remarks:

No major differences were found between the current guideline and the actual study. All procedures and assessments were performed as described in the suideline. The reproduction formula used to calculate the effect on reproduction value was modified, deviating from the formula given in the current guideline, including the number of eggs that were counted on day 7. The influence on the result of the reproduction assessment is minor. Since on day 7, the highest number of eggs was observed in the control treatments a re-evaluation would slightly decrease the calculated effect on reproduction of the test item treatment goups.

# Conclusion:

The test design of the actual study is in the with the recommendations of the current guideline. The validity criteria of the current test guidefine were fulfilled.





# **Test endpoints according to current guideline:**

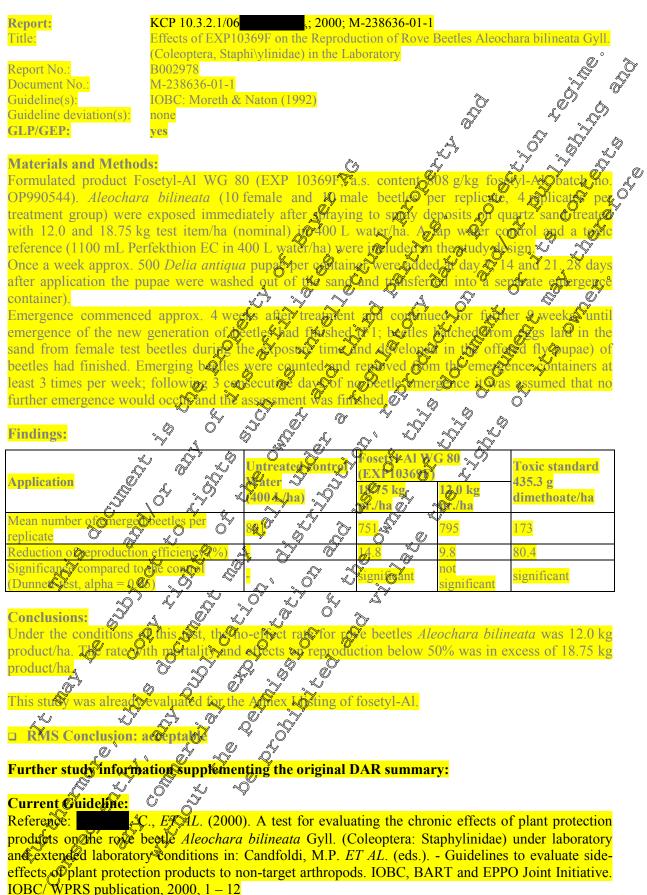
- Mortality and behavioural abnormalities
- Food uptake (number of fly pupae eaten per beetle)

# Exposure according to current guideline:

Suitable test units are, for example plastic containers (outside dimensions: e. 18 x 13.5 cm, 6. cm high) filled with  $250 \pm 1$  g dry quartz sand (particle size 0.1 to 0.4 mm, at least 99% Si_zoxide) Test vessels made of glass or metal can also be used; the surface area of the substrate must have a surve of  $180 \pm 20$  cm² and the vessel depth 6 ± 1 cm. The quantity of sand must be adapted to the size of the vessel (filling height approx, 1 cm). Transparent lids should allow air ventilation. Before the animals are put into the test units, the dry sand in the test is evenly wetted with  $45 \pm 1$  mL depended water  $\odot$ without disturbing the sand surface. The beetles have to be exposed to the test conditions at least for 3 days before the application. After application of the test item to the beetles in the test units, they are observed for at least 14 days.

# Evaluation according to current guideline:

. 7 10 (op 11) and 14 days Mortality and behavioral abnormalities are assessed 1 to 9 hours and after application.


atter application. Food consumption is assessed by the number of fly pupae consumed or untouched at day (or 11) and 14 after applications. Q7, 10

			<b>Guideline</b>	Crest result
Maximum mortality after	2 weeks in the	Scontrel L	$\mathbb{Z}^{3}$ beet $(6.7\%)$	1 beetle (3.3%)
Mortality rate in the refer	ence treatmen	t after 2 weeks	$65 \pm 35\%$	💦 <mark>100 %</mark>
(control corrected)			X O X	
Q [*]				

# Study Remarks:

No major differences were found between the current guideline and the actual study. The temperature raised by 0.5 @ above the agreed limit (22, C) for a period of 8.5 hours, but this minor increase didn't

Conclusion: The test design of the actual study is filling with the requirements of the current guideline. The validity criteria of the current test guideline were fulfilled.



# **Test endpoints according to current guideline:**

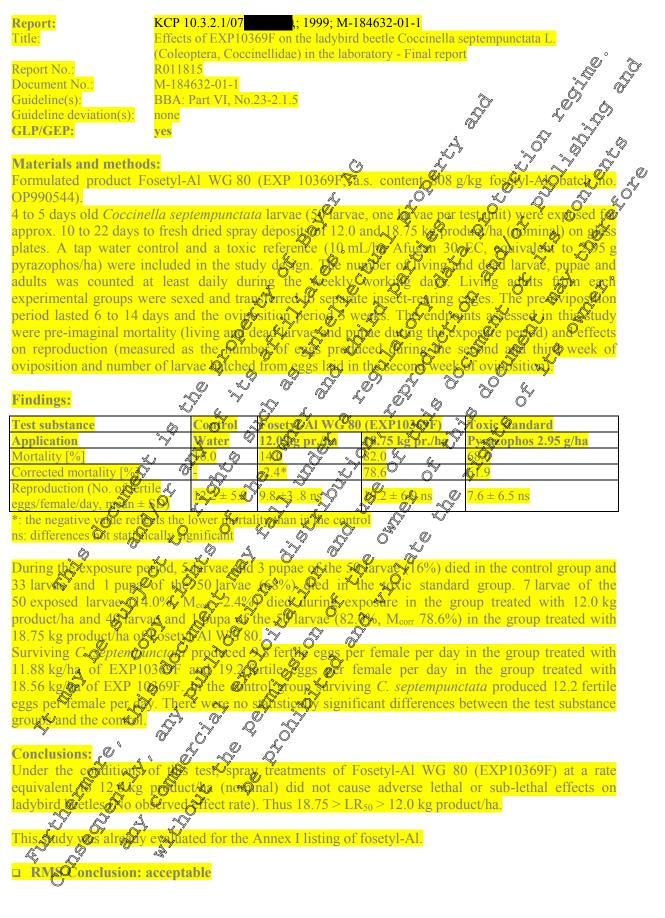
• Reproductive efficiency: total number of beetles emerged from the offered fly pupae

# **Exposure according to current guideline:**

The test units used do assess beetle fecundity consists of a container (e.g. a glass or plastic dish or cylinder) with a minimum ground surface of 150 cm² with a layer of moist guartz sand (Jaboratory test) or sandy soil (extender laboratory test) as substrate. The test unit is covered with a lid with an opening that is covered with fine mesh nylon netting. The layer of substrate in the container is a least 4 cm deep (minimum volume 600 cm³). For the standard laboratory test, quartz sand is used as inert substrate. The particle size should be within the range of 0.4 to 0.8 from Before introducing the lest organisms into the test units, the sand is moistened with tap water at a ratio sand: water of O approximately 10:1 vol./vol.. Ten pairs of male and @male adult beetles, between one and seven days old, are then introduced after the application of the test item. A total of approximately 1500 onion by Delia antiqua (Meigen) (Diptera: Anthomyiidae) pupae are added to the test substrate during the following three weeks as hosts for the beetle lawae. After removing the papae from the substrate, they are placed into hatching test units. The purpose of the hatching units is to remably catch all adults Aleochara bilineata hatching from the onion fly pupae.

# Evaluation according to current guidelines

The reproductive efficiency of Algochargybilingata of beetles of the Fl generation emerged from the offered fly pupae.


# Validity Criteria:

	•		1		
				<b>Guideline</b>	🖗 <mark>Test result</mark>
Average number o	f beetles emer	ging from the <b>f</b>	ly pupere in	<mark>≥ 400 (&gt;26.7%)</mark>	<mark>881 (58.7%)</mark>
<mark>the control</mark>		<u> </u>		O S S	
Minimum reductio				@, <mark>90%</mark> ^	<mark>80.4%</mark>
reference item trea	Ement Contra	<mark>l corrected)</mark> 🔊	<u>, , , , , , , , , , , , , , , , , , , </u>		
Õ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	( ⁽ )			

# Study Remarks:

No major differences were found between the current guideline and the actual study. Some minor modifications compared to the guideline were applied to the study protocol. These small improvements (e.g. the height of the glass beakers) had to effect on the outcome of the study and it made it easier to conduct the study Š Q .

Conclusion: The test design of the actual study is in line with the recommendations of the current guideline. The validity criteria of the current test guideline were fulfilled.



# Further study information supplementing the original DAR summary:

# Current Guideline:

et al., (2000) A laboratory test system for assessing effects of ant Reference: protection products on the plant dwelling insect Coccinella septempunctata L. (Coleoptera: Coccinellidae). In Candolfi, et al., (eds.) (2000) Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC/WPRS, Gent, pp 45-56. 

# Test endpoints according to current guideline:

- Pre-imaginal mortality (pupation after 10 to 15 days).
- Reproductive performance of the ecdysed beetles over a 2 week period.

# **Exposure according to current guideline:**

Glass plates are sprayed with the compound to be tested. Aftor spray deposits have dried 3 to Stays old larvae (n=40) are individually confined on these glass plates until they enter the pupal stage. After ecdysis (approx. 1.15 days after study initiation) beetles are reproved and transferred to non-treated breeding cages. The eggs laid are sampled over a period of two weeks and observed for fertility (lawal hatch).

# Evaluation according to current guideline

The number of ecdysed beetles in recorded daily for each treatment (control, test, reference group) separately. If more than 50% of the darvae apposed to the test tem survive and can successfully ecdysed, the reproductive pefformance of the beetles is assessed. After control beetles have started to lay eggs all surviving beetles of the test item and the control group are taken and confined in breeding containers. The number of eggs laid per viable female in the test item, and the control group is OR B recorded daily over two weeks

# Validity Criteria:

				.~~ 6		
(		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Guidéfine	<mark>Test result</mark>
Average pre-m	naginal morta	Dity on the co	ntrol	Č,	<u> </u>	<mark>16 %</mark>
Pre-imaginal m	ortality in th	e ref <b>e</b> rence_tr	eatment	a -	<mark>%⊉40%</mark>	<mark>68 %</mark>
Number of egg	s/female/day	on the contro			~ > 2	<mark>16.5</mark>
		<u>6</u> 6			, O'	

K,

Ő

A.

# Study Remarks:

Study Kemarks: No differences were found between the current guideline and the actual study. All procedures and assessments were performed as described in the guideline. Slight differences occurred some times during the study, with the temperature rising or decreasing by 1 or 2 °C by 2 to 6 hours. However this small difference didn't lead to an effection the study Likewise, similar differences were found in the humidity satues for some hours during the study, nevertheless these changes also had no effect on the study results. Some corrections were also made for the larval hatch. Instead of separating eggs only during the 2nd week in this study regs were separated also on the 3rd week. Due to the high abundance of eggs (2000 when only 200 are needed), this had no effect on the larval hatch. All study parameters and assessment were then obtained as described in the guideline.

Conclusion Conclusico Conclusico Conclusico Conclusico Conclusico Conclusico validity Fiteric of the current lest guideline were fulfilled.



beetle *Poecilus cupreus* (Coleoptera, Carabidae) under laboratory and semi-field conditions in: Candfold, M.P. *ET AL*. (eds.). - Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/ WPRS publication, 2000, 87 – 106.

**O Test result** 

0 beetles (0%)

<mark>77.8%</mark>

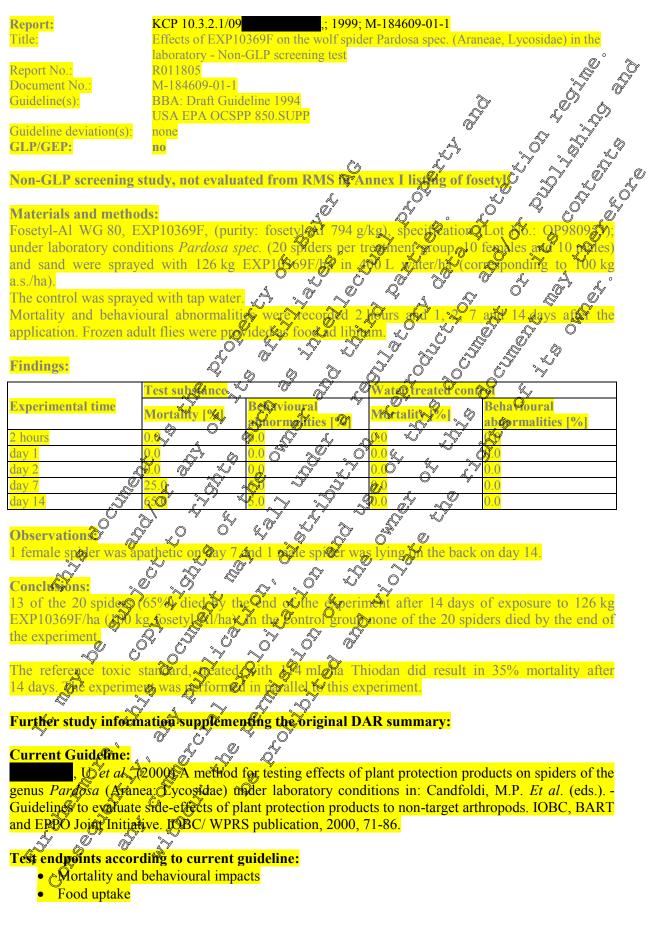
Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

### **Test endpoints according to current guideline:**

- Mortality and behavioural abnormalities
- Food uptake (number of fly pupae eaten per beetle)

#### Exposure according to current guideline:

Suitable test units are, for example plastic containers (outside dimensions: e. 18 x 13.5 cm, 6.9 m high) filled with  $250 \pm 1$  g dry quartz sand (particle size 0.1 to 0.4 mm, at least 99% Si-oxide) Fest vessels made of glass or metal can also be used; the surface area of the substrate must have a surface of  $180 \pm 20$  cm² and the vessel depth  $6 \pm 1$  cm. The quantity of sand must be adapted to the size of the vessel (filling height approx, 1 cm). Transparent lids should allow air Gentilation. Before the animals are put into the test units, the dry sand in the test is evenly wetted with  $45 \pm 1$  mL detenised water  $\circ$ without disturbing the sand surface. The beetles have to be exposed to the test conditions at least for 3 days before the application. After application of the test item to the beetles in the test units, they are observed for at least 14 days.


Evaluation according to current guess. Mortality and behavioral abnormalities are assessed 1 to 9 nous after application. Food consumption is assessed by the number of fly pupae consumed or untouched at day 110 and 14 after applications. 7, 10 (op11) and 14 days . 10

- Cochine

Guideline Maximum mortality after week in the control 2 beettes (6,7%) Mortality rate in the reference freatment after week  $65 \pm 35\%$ (control corrected)

Ø Study Remarks: 🖑 Ø Ľ Ò No major differences were found between the current guideline and the actual study. When comparing to the guideline in the present stude the number of beenes used per treatment was significantly lower (18 compared to 309. Nevertheless, it should be considered that in this specific study, there was no mortality is the control. Therefore, the study would have identified a mortality of 30% as statistically significant based on Figher's exact test. Since there was no mortality observed in the test item group, it

Conclusion: Conclusion: The test design of the actual study is in line with the requirements of the current guideline. The validity enteria of the current test guideline were fullifled.



#### Page 76 of 110 2016-09-01

Ľ

#### Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

#### **Exposure according to current guideline:**

Test units are, for example, plastic containers (e.g. outside dimensions. 11.5 x 11.5 cm, 6 cm high) filled with  $125 \pm 1$  g dry quartz sand (particle size 0.1 to 0.4 mm, at least 99% Si-oxide). Test units made of glass or metal may also be used, but the surface area of the substrate should be  $90 \pm 20$  cm² and the unit depth  $6 \pm 1$  cm. The quantity of sand must be adapted to the size of the vessel filling depth of approx. 1 cm sand). Transparent lids should allow air ventilation. Before the animals are placed into the test units, the sand is evenly wetted with distilled or deion sed water so that it is at  $70 \pm 5\%$  of its pre-determined maximum water-holding capacity. The water should be added without %disturbing the sand surface. The animals are subsequently placed into the phits. If the test and reference item is to be applied with a sprayer, it will be diluted just before treatment application in deionised or distilled water for application at a rate of 400 L/ha. After the application of the treatments to the spiders in the test units, they are been been for at least 14 day. If effects still occur in the second week after application, the test should be prolonged for another week. Ŷ

#### Evaluation according to current guideline:

The test units are inspected after 1 to 3 hours and 1, 2, 3, 4,7, 10 and 10 days after the atment application. If effects in the group treated with the fest item, already occur 1 to 3 bours ofter application, a further assessment must be carried out approximately 2 hours after the first assessment. On each occasion, effects on the test animates should be recorded, as should the number of five and dead spiders. Furthermore, all skins dound all fernales which have built cocoons and the number of animals sitting on the underside of the lid (thus escaping contact with the test item) should be noted.

#### Validity Criteria:

	wi ,		al		
<u>`</u>			Î (	Guideline	ې <mark>Test result</mark>
Maximum mortality after	2 weeks in the	e control 🔍 🖉		6.7% 🔊 🖇	§ 0.0%
Mortality rate in the refere	ence treatmen	nt after 2 weeks		55 ⁴ ± 35 ⁶ / ₆ 2	<mark>35%</mark>
(control corrected)	. <u>.</u>	<u> </u>	s a.		
		N S	n se	a and a construction of the construction of th	

#### Study Remarks

No major differences were found between the current guideline and the actual study. The toxic reference treatment is not presented in the study but was performed in parallel. The results from this

Conclusion: The study was not conducted ander. GLP. The test design of the actual study is in line with the requirements of the current guideline of the validity criteria of the current test guideline were fulfilled.

### Supplemental information from the literature

Report:	KCP 10.3.2.1/10, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			
Title:	Side effects of different pesticides used in citrus on the adult stage of the parasitoid Aphytis melinus DeBach (Hymenoptera Aphelinidae) and its progeny. M-484397-01-1 M-484397-01-1 not applicable not applicable no setyl-Al) was tested on the adult femates of <i>Aphytis melinus</i> to determine the urvival and fecundity Survival and fecundity were not significantly affected. a low value of reduction of beneficial capacity. According to the IOBC criteria			
Report No ·	M-484397-01-1			
Document No ·	M-484397-01-1			
Guideline(s)	not applicable			
Guideline deviation(s):	not applicable			
GLP/GEP:	no V V V V			
<b>Executive Summary</b>				
J				
Fosetyl-aluminium (fo	setvl-Al) was tested on the adult femates of <i>Aphytic melinus</i> to determine the			
effects on parasitoid s	urvival and fecundity Survival and fecundity were not supplicantly affected			
Also the test item had	a low value of reduction of beneficed canadity. According to the IOBC criteria			
it was classified as slig	htly harmful			
it was classified as sing				
Material and Method				
A Motorial				
1 Test material				
<u>1. Test material</u>	Test item 2 Pomker WHY 2 2 2 2 2			
Ac	tive substance( $\hat{S}$ ) Fosetyl-Al ( $\hat{S}$ 0%) & $\hat{C}$			
Chemical stat	e and description: Not reported			
Se	ource of test frem:			
L	ot/Batch_humber: Not sported &			
¥	V S Purity. Not reported ' K K			
2. Test organism(s)				
effects on parasitoid survival and fecundity. Survival and fecundity were not significantly affected. Also the test item had a low value of reduction of beneficial capacity. According to the IOBC criteria it was classified as slightly harmful. Material and Methods A. Material <u>1. Test material</u> <u>1. Test material</u> <u>1. Test item</u> ; Pomba [®] -WP Active substance(s); Fosetyl-Al (80%) Chemical state and description: Source of test nem; Lot/Batch humber: Not reported Species; Aphytis meliants Host: A. merii				
Č s	K Host: A. mejii N S @ S			
Sout	De of test species:			
·0*				
B. Study design and me				
1. Test procedure	2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (			
Test sy	stem (study type): Kaboratory Petri dish assay with fresh residues			
, SP	Conduction: Pesticides were left to dry at room temperature for an hour, then			
Q [°]	A adult females of A Onelinus (24-48 h old) were introduced into,			
Č, U	adding several drops of honey as food. Parasitoid mortality on			
~Q U	where the second second second and the second secon			
A	cach Petri dish was evaluated after 24 h. Surviving females were pransferred to correspondent ventilated container with a piece of squash with drops of honey and an excess of <i>A. nerii</i> scales.			
	Females were left with the scales for 48-72 h to parasitize the			
4	bosts, and the resulting parasitoid offspring were counted and			
	S Sexed following their emergence.			
_@ Appl	ication technique Test item was applied to tops and bottoms of Petri dishes (5 cm			
5 A	diameter) with a potter precision spray tower, 0.7 bar pressure,			
	alibrated to leave 1.5 mg of solution cm-2 [150 L/ha].			
	Application rate: $19.2 \times 10^3$ ppm a.i.			
	nder of replicates: 4-6			
	First conditions: The experiment was carried out at $25 \pm 1$ °C, a 16:8 L:D			
	photoperiod and $60 \pm 5\%$ relative humidity.			
	thous stem (study type): Eaboratory Petri dish as any with fresh residues Conduction: Pesticides were left to dry at room temperature for an hour, then adult females of <i>A Onelinus</i> (24-48 h old) were introduced into, adding several drops of honey as food. Parasitoid mortality on each Petri dish was evaluated after 24 h. Surviving females were transferred to a correspondent ventilated container with a piece of squash with drops of honey and an excess of <i>A. nerii</i> scales. Females were left with the scales for 48-72 h to parasitize the posts, and the resulting parasitoid offspring were counted and seved following their emergence. Test item was applied to tops and bottoms of Petri dishes (5 cm diameter) with a potter precision spray tower, 0.7 bar pressure, valibrated to leave 1.5 mg of solution cm ⁻² [150 L/ha]. Application rate: 19.2×10 ³ ppm a.i. mer of replicates: 4-6 uals perreplicate: 6-8 Test conditions: The experiment was carried out at 25 ± 1 °C, a 16:8 L:D photoperiod and 60 ± 5% relative humidity.			
Ô				

2. Observations and measurements:	
Biological parameters measured:	Contact toxicity to adult parasitoids; effects on parasitization
Statistical analyses:	activity and sex ratio of parasitoid offspring. Data on adult parasitoid mortality, the mean number of offspring produced per surviving parasitoid, and the sex ratio of the offspring (as % female) were subjected to one-way ANOVA using the results of each Petri dish as replicate Means were separated
	normalized were transformed before being analyzed.
Results	
1. Validity criteria:	
No validity criteria defined.	
2. Biological findings: Table 1 shows the mortality and the redu	using Tukey's honest significant difference test when analysis of variance were significant at p < 0.95. All data meeding to be normalized were transformed before being analyzed.
	A A A
Table 1:Mortality of adults adultsreduction of beneficial	A Aphysis metimus (corrected with the Abbott's formuta) and I capacity (RBC) indices
Corrected	mortality RBC ^a (%)(mean ± se) DOBCS
(%)(mean ± se	
Fosetyl-Al 3.3 + 3.3	
^a Reduction of Beneficial Capacity. Toxicit harmful (30-79%).	y effects grouped into four categories according to IOBC: slightly
Easatul Al produced a mortality of 2,3%	which did not differ from the control of the fecundity was not
significantly affected the territer and	a Jow value of reduction of beneficial capacity.
significantly affected affected in terrar	
Conclusion	
According to the IOB criteria it was cla	assisted as stightly harmful.
	V. Q. S. O
Comment by the Notifier	
The study results are indine with the ava	ilable regulatory data for the parasitoid Aphidius rhopalosiphi.
The data are considered as supplemental	information.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The study sesures are mone whit the ava The data are considered as supplemental a b b b b b b b b b b b b b b b b b b b	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Õ	

CP 10.3.2.2 Extended laboratory testing, aged residue studies with non-target arthropods

ar	<pre>KCP 10.3.2.2/01 Effects of EXP1036 Phytoseiidae) - Exte B002979 M-238637-01-1 IOBC: Louis & Ufe none yes</pre> ds: osetyl-A1 WG 80 replicates, each cor on detached primat ha (nominal) in 2000	-,			e° ~
Report:	KCP 10.3.2.2/01	,; 2000;	M-238637-01-1	~	
Title:	Effects of EXP1036 Phytoseiidae) - Exte	9F on the Predato ended Laboratory	ry Mite Typhlodroı Study	nus yri Scheuten	Cari:
Report No.: Document No.:	B002979 M 228627 01 1			۶. ۵۶	59 . Q
Guideline(s):	IOBC: Louis & Ufe	r (1995), Overme	2 (1988)		
Guideline deviation(s): GLP/GEP:	none ves	, L	, 6 ⁹		
	3	Ą	Q° g°		
Materials and Methor Formulated product F	us: osetyl-Al WG 80	(EXP 10369E,	a.s. Content 808	okg fortyl	atê no.
OP990544). <i>Typhlodromus pyri</i> , 5 to fresh dried residues	replicated and an				
to fresh dried residues and 18.75 kg test item/ (40 mL Perfekthion EC design. Mortality was	on detached primax	y reaves of the	warf bean <i>Ahase</i>	as vulgaris at at	es 27.5
and 18.75 kg test item/	ha (nominal) in 20) L water/ha A	leicnised water of	mtrol a toxic r	et Frence
design. Mortality was	recorded on days	b 3, 7, 9, 11 €	nd 14 Assessme	ntoof egg prode	tion and
number of juveniles (re	eproduction Indpoin	nt) were consuct	ed of day O, 9, 1	and C. ~	
Findings:			4 (0 ⁴ , 0		
Test formulation		Folltyl-Al W	G 80 (EXP \$369E	Tere standard	
Application (200 L/ha) Mortality (1 week after t	Vdeionised water				ate/ha
application) [%]		2 (13.0 (3= 23.3) 2 (69.3)	-	94.0* ± 6.5 93.2	
Reproduction rate chean	10.2 5 1.	2.3* ±4.5	Normal Street St		
total # eggs per (Onale)					
[%] * Significative compared	the entrol (Febre	rroni U-te (salpha		•	
After 1 week expo					
total mortality of 73%	in the Youp area	ted with 7.3 kg	and 91 mites	died and 8 mites	escaped
making a total mortal group 3 mit of the distance of the dista	of 5% in the g	rowp trefed we	n 18.75 kg/ha; ii	n the water treated	control
mortality) after 1 week	of whose in the	toy is standed of	couro.		
The mear eproduction female Sompared to b	sate of the miles in	the group treate	ed with 7.43 kg te	st item/ha was 2.3	eggs per p treated
with 48.56 kg test ver	m/h and if the	kic standard gro	oup was not eval	uated due to 99 a	ind 94%
with 48.56 kg test ver mortality, respectively					
Conclusions			. 1		* 1
				to tresh dried res	iddes on
This fuctor of the second	eventuated for the	nney Llisting of	fosetyl Al		
detached Géan Loves y This Sudy vos already	s	tinex i fistilig of	iosetyi-Al.		
RMSO Conclusion:	acceptable				

Further study information supplementing the original DAR summary:

Current Guideline:

Reference: , S. ET AL. (2000): Laboratory residual contact test with the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products in: Candolfi, M.P. ET AL. (eds.). - Guidelines to evaluate side-effects of plant protection products to In Candolli, M.P. ET AL. (eds.). - Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/ WPRS publication, 2006, 121 – 144.
Test endpoints according to current guideline:

Cumulative juvenile mortality 7 days after treatment (day 7)
Cumulative reproduction per females from day 7 to day 14

Exposure according to current guideline:

1 Either glass plates, glass cells or glass dises are sprayed with the treatments. 20 protonymphs A Log (24 hours old) in each of 5 replicates are exposed to the dried spray residue for 14 days ^A

Evaluation according to current guideline:

\$ 1 Mortality assessment is carried out on day (optional) and day (obligator) Reproduction per female is recorded 3 times from day Oon to day 14 with a maximum interval of

Validity Criteria:

L'A S Guideline	Test result
Mortality rate 3 3 3 3 3 3 3 3 3 3	escapesty 12%
Toxic reference mean mortality of protonymphs Between 50 and 100 at day 7 (control corrected)	<mark>0 % / 94%</mark>
Reproduction (number of eggs per female in the control from dat 7 to 14)	² / _{10.2}
Study Remarks:	

Study Remarks: ⁽⁷⁾

The design used in this study is aligned with the recommendations of the current guideline. As recompended by the guideling when dealing with extended laboratory tests for this insect species, the glass plates should be replaced by leaf material, as happened in the present study.

Instead of exposing the insects of the dived residues of the test item exactly at the same time, in this study the specimens were subjected with different timings after application. Due to technical reasons, the relative humidity was less that 60% For approximately 19 hours in total on day 3 and 4 after 8° application. In the previous EU Annex I betting (Addendum to the DAR, 2009) it was concluded: "Both the

standard and the extended faboratory study by ; 1999; M-184622-01-1 and ; 2000; XS238647-01-1) on Tayri revealed severe effects of EXP10369F at 15 kg a.s./ha to this predatory mite. (2001; N-202973-01-1), in contrast, found lower mortality, but significant impact on reproduction was observed. Both studies conducted by are characterized by an extreme variability regarding the air numidity and/or temperature. These points are addressed as deviations in both studies. Although these measurements refer to the climatic chamber (in which the whole set up was placed and not to the test units, it cannot be excluded that the test organisms encountered these environmental variations. In the study performed by the "island-method", a recent improvement of the test design has been applied. The "islands" are thin glass slides floating on a water surface, preventing mites from escape and leads to a very homogenous humidity. Therefore, the result achieved by were more relevant."

Conclusion:

<u> </u>	e actual study is in line with the recommendations of the current guideline. The
validity criteria of th	e current test guideline were fulfilled. Due to the observed deviations of air 🔊
humidity the study is	considered as less reliable compared to the study of (
<mark>M-202973-01-1).</mark>	
D	
Report:	KCP 10.3.2.2/02 ; 2007; M-295474-01-1 Effects of Fosetyl-Al WG 80 on the predatory mite Tephlodromus pyr, extended laboratory study - dose response text
Title:	Effects of Fosety1-AT wG 80 on the predatory mile Lypniodromus pyr, extended
Papart No .	 KCP 10.3.2.2/02 10.5.2.2.2/02 10.5.2.2.2/02 10.5.2.2.2/02 10.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
Report No.: Document No.:	M 205474 01 1
Guideline(s):	
Guidelille(s).	et al., 2000: Laborarovy residual contact tergwith the predesory mite
	reprint and the second
	Demon 1088. Cuidelin Stath Coolection of the officia of a Graidee on
	Distancial experimities A H
	Privioseiulus persimilius AH
	US EPA OCSPP & UPA

Due to the slow development at 2 lose rates (5 that 1.25 and 20 th g product/has the

Due to the slow development at a dose rates (5.0 × 1.25 ×

Guideline deviation(s):

GLP/GEP:

Material and methods 🔪 🧔

Test item: Fosetyl-Al WO'80 (As. content 80.5)/kg (setyl-Al; TOX 07594-00.20 orkorder: 06008273, batch ID.: 2006-0035\$, supplier bach ID: EV3 000066, material no: 0592,389, specification no.: 102000001579).

 \bigcirc

10200001579). *Typhlodromus pyrs* six revicates, each containing 160 rotors inphsper treament group, were exposed to fresh dried recidues on detailed bean leaves at rates of 2.5, 5 4, 11 2, 20.0, 40.0 and 80.0 kg test item/ha in 200 L water/ha. O deioosed where control and a testic reference (40 mL Perfekthion EC, equivalent to 15.8 g (imethodate in 200 L water/ha) were included in the study design.

And a many and a series of the series of the

Findings

Treatment	Mortality ^{a)} [%]				uction ^{c)} female	Reduction of a reproduction of (%)	
Control	18.3		-	5.1	ð		9
2.5 kg product /ha	16.7	n.s.	-2.0	4.7	an.s.	A.9 . Q	
5.0 kg product /ha	35.0	n.s.	20.4	2.2	n.s.	\$ 57.60	Ĉn
11.25 kg product /ha	11.7	n.s.	-8.2	4.5	n.s.	× 12	,
20.0 kg product /ha	16.7	n.s.	-2.0~~	2.0	n.s.	3.8	Å
40.0 kg product /ha	11.7	n.s.	-842	Ő.4	n.s.	2 ^{32.3}	Ő
80.0 kg product /ha	15.0	n.s.	S. 4.1	6.1 .	nço	-262 0	×
40 mL Perfekthion/ha (Reference Item)	100.0	*	Q 100.0		a.		
LR50			0 0 80. King pr	odyct/ha	Ś		
ER50			> 800 kg pc	oduct/ha	~ (

^{a)} n.s. = not significant, * = significant; Fisher Exact Text, $\alpha = 0.05$

 a) n.s. = not significant, * = significant; Fisher Kact Text, α = 005
 b) Negative value means lower mortality constant to the courol
 c) n.s. = not significant; Dunnett-Test, α = 005
 d) Negative value means increased reproduction ompared to the courol n.a. = not applicable
 Conclusions
 Under extended laboratory conditions the LR₅₀ Fostoyl-Al WG & Vis estimated to be greater
 80.0 kg product/ha Under extended laboratory conditions the is estimated to be greater than

80.0 kg product/ha. The reproductive capacity of *pyricy* as teged at 5, 5.011.25, 20.0, 40.0 and 80.0 kg product/ha. There was no statistically significant effect on pyroduction up to and including 80.0 kg product/ha compared to the control. Ő

At 5.0 kg producing the effect on reproduction was above the trager voue of 50% (57.6%) and the mites were undo developed, but at at higher dose these the effectives below the trigger value 50% and less mites well und preveloped. Therefore it cappe assumed that the high effect at 5.0 kg product/ha was not test tem related. The ERR is >40 kg & duct/fa.

Further study information supplementing the original DAR summary:

<u>~</u>0 Current Guideline:

, SET AL. (2000): Laboratory residual contact test with the predatory mite Reference: Typhlodromus pyri Scheuten (Acair: Phytoseiidae) for regulatory testing of plant protection products in: Candolf, M.P. ET AL (eds Q - Guidelines to evaluate side-effects of plant protection products to non-targe Parthropods. BBC, BART and ERPO Joint Initiative. IOBC/ WPRS publication, 2000, 121 <u>– 144.</u>

Test endpoints according to current guideline:

- Cumulative juvenile prortation 7 days after treatment (day 7).
- Cumplative reproduction per females from day 7 to day 14.
- \bigcirc

Exposure according to current guideline:

Either glass plates, plass cells or glass discs are sprayed with the treatments. 20 protonymphs (24 hours old) in each of Syeplicates are exposed to the dried spray residue for 14 days.

Evaluation according to current guideline:

Mortality assessment is carried out on day 3 (optional) and day 7 (obligatory). Reproduction per female is recorded 3 times from day 7 on, to day 14 with a maximum interval of 3 days.

Validity Criteria:

	Guideline	Test result
Mortality rate	Mean mortality (dead + escaped)	18.3%
	$\leq 20\%$ at day 7	<u>S</u> ^a O
Toxic reference mean mortality of protonymphs	Between 50 and 100 %	100%
at day 7 (control corrected)	<u> </u>	
Reproduction (number of eggs per female in the	≥4	0 [°] ^{5.} ≹ [°]
control from day 7 to 14)		
Study Domostry		
Study Remarks: The actual study follows the recommendations	of the quidaling of recommonded h	
The actual study follows the recommendations	of the guideline. As recommended t	by the guidenness
when dealing with extended laboratory tests for by leaf material. The reduced number of specime		
of 20) is not a guideline deviation since 6 repli		
dose responses testing fewer replicates and		
recommendations of Grimm <i>et al.</i> (2001) in wh	ich the rember of specimens per rent	cate in the same
(10) as in the present study	A A A A	
(10) as in the present study.		the state
recommendations of Grimm <i>et al.</i> , (2001) in wh (10) as in the present study.		
Conclusion: The test design of the actual study is in life wi validity criteria of the current test guideline wefe	th the recommendations of the curren	it guideline. The
validity criteria of the current test ouidebre we	fulfilled	
		K
)″
Report: KCP 10.3 2/03	; 2019, M-412084-0-1 ~	
Title: Dose-response to Ricity (D	₹50) of Fosetol-AL WG 80% w/w to the 1	adybird
CoccineTa septempunoTata	Lounder expended laboratory conditions	
Report No.: 27 11 10048 0205A		
Document No.: M-412084-01-1	ar Ol actor for a la contra	1
Document No.: Guideline(s):	CK et al. 2000), modified; use of natural s	substrate
US DA OC SP 850 SUP	tead of glass plates extended laboratory to	281)
Guideline deviation(s none a		
GLP/GEP~ Kes ~ ~ ~		
Guideline deviation(s) none GLP/GEP Materials and Methods:	Y & Y	
The effects of the upst hem rosepyr-Ai woo solo	w/wyallalaseu active iligieulelli. //	7% w/w Fosetyl-
aluminium (LS 94783) Specification No 10	0200001579-03, Batch No.: EV380	000066, Sample

aluminium (LS 74783). Specification No. 102000001579-03, Batch No.: EV38000066, Sample description: F (R01374-01, Material No.: 03921589) were tested under extended laboratory conditions after contact exposure of larvae of the ladybird *Coccinella septempunctata* L. to dried spray residues of the test item with rates of 9, 15, 26, 45 and 64 kg a.s./ha (equivalent to 12, 19, 33, 58 and 82 kg product/ha, based on analysed content of a.s.) in 200 L deionised water/ha applied on bean leaves. The control, was treated with deionised water (200 L/ha). Dimethoate EC 400 (30 mL product/ha, nominally equivalent to 12 g a.s./ha, in 200 L deionised water/ha) was used as a toxic reference item. Larvae of *Coccinella septempunctata* L. were exposed to the residues in 40 replicates per treatment group with 1 farva per replicate in the test item, reference item and control treatments, respectively. During the assessments, the larvae were ted with black bean aphid (*Aphis fabae* Scop.) and pea aphid (*Acyrthosiphon pixum* Harris). The number of dead larvae and pupae and hatched beetles as well as the number of eggs laid and larvae hatched (F1) were recorded over a period of 49 days. From these data the endpoint fuortality was calculated. Additionally, effects on reproduction were investigated.

All validity criteria according to *et al.* (2000) for conducting the laboratory test with *Coccinella septempunctata* were met.

Findings:

Test item		Fosetyl-Al W	'G 80% w/w	0	
Test object	Coccinella septempunctata L.				
Exposure		Dried spray deposits or	n detached bean leaves	s N	
Treatment	Mortality ²⁾	Reproduction 🔗 🔗 🖉			
		Fecundity	Fe	ertility 🖌 🔊	
	after 18 days	average number of	mean hatching rate	average number of	
		eggs/		sfertile çggs/ 🟑	
		viable female/da		viable female/day	
		- As	Q,		
	[%]	(number)	%]	🖉 (oumber) 🖉 🌾	
Control	22.5	4.1	Q ⁹ 76.3 °	0 3.1℃ Ø	
Application rate	Corrected mortality			VO & O	
1)	3)		O N O		
[kg a.s./ha]	[%]				
9	6.5 (n.s.)	4.50 0	76.8		
15	3.2 (n.s.)	× -> -2.0 ~~	76.2	A A U	
26	3.2 (n.s.)	A.1 Y	<i>√ √6</i> .1 <i>√</i>	3.1 5 3.1 5 3.1 0 2.41	
45	-3.2 (n.s.)	4.0 × ×	76.0	ý <u>s</u> 3.1 °	
64	-6.5 (n.s.) _0	4,15 √	<u>~</u> 763 5	30)	
LR50	> 64 kg a.s./h@				
Reference item					
Dimethoate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
EC 400	61.3	joy nid.	🗸 n.d. Q	n.d.	
30 mL				K ³	
product/ha				A	
(12 g a.s./ha)	e in 20 L. water/he			P	

¹⁾ Application rate in 200 L water/ha

²⁾ Mortality after exposure or residues on treated bean leaves. The results for moreality in individual treatments were

compared to that in the control using FISHER'S Exact Binomial test x = 0.05. ³⁾ Corrected mortality according to ABBOTT (1925)

(n.s.) not statistically significantly different compact to the control

* statistically significantly different compared to the control

n.d. not determined

The results of the control group indicated that the test organisms were in a good condition (mortality: 22.5%, reproduction: SY fertile eggs per visible female per day).

L,

Å

The results of the reference item group indicated that the test system was sensitive to harmful substances (corrected mortality 91.3%).

Conclusions:

A calculation of the LR₅₀ (median lethal rate) was not possible, since the corrected mortality of the test item groups did not exceed 6.5%. Therefore, the LR₅₀ is empirically estimated to exceed the highest tested application rate, 64 kg/s./ha/ $\sqrt{2}$

The reproductive output was above the lower limit given as validity criterion (average number of fertile ergs per vable female per day in the control group > 2) according to the historical database of the ring testing group (ergs) and ergs and ergs). According to that, this parameter was considered as not impacted by the treatment.

Report:	KCP 10.3.2.2/04 ; 2011; M-413058-01-1
Title:	Chronic toxicity (ER50) of Fosetyl-AL WG 80% w/w to the rove beetle Aleochara
	bilineata GYLL. under extended laboratory conditions
Report No.:	11 10 48 021 A
Document No.:	11 10 48 021 A M-413058-01-1 IOBC Guideline (GRIMM et al. 2000)
Guideline(s):	IOBC Guideline (GRIMM et al. 2000)
Guideline deviation(s):	US EPA OCSSP 850.SUPP The relative humidity in the test room decreased, due to a technical fault during the
	reproduction phase on day 53/54 after application for 21 hours to 54% (the required
	range is 60.00%) These slight deviations did not affair the results of
	the study.
GLP/GEP:	yes of the second s
Materials and Metho	ds:

Materials and Methods:

The effects of the test item Fosetyl-Al WG 80% w/w fanalysed active ingredient: 97.7% w/w Fosetylaluminium (LS 74783); Specification No.: 010200001579-03 Batch No.: 10 38000066 Sample description: FAR01374-01, Material No.: 05921589 were tested under extended laboratory conditions after contact exposure of adults of the rove beetle Aleochara bilineata Gyll Qo dried spray residues of the test item with rates of 28, 44 and 520kg a 3. Tha (equivalent to 36057 and 67 kg product/ha) in 400 L deionised water/ha applied onto sandy soil (LUFAQ.1). The control way treated with deionised water (400 L/ha). Dimethoate EC 400 (45 L product/ha, nominally equivalent to 600 sa.s./ha, in 400 L deionised water/ha) was used as a toxic reference item

°~/ Adults of *Aleochara bilineata* Gyll. were sposed in 4 replicates per reatment group and 20 beetles per replicate to the spray residues of the test itera, reference item and control treatments, respectively. During the assessments, the beetles were fed with deep frozen larvae of Chironomus spp.

The number of hatched beetles of the F1 generation was recorded over a period of 68 days. From these

All validity criteria according to Grimm *et al.* (2000) for conducting the extended laboratory test with *Aleochara bilueata* were met

Findings:

Test item	Fosetyl-Al WG 80% w/w					
Test organism	Aleochara bilineata GYLL.					
Exposure		Dried spray deposits on sandy soil (LUFA 2.1)				
Treatment			Reproductive capa	city 🏷		
	Mean number	Mean number	Parasitisation	Total number of	Effect on	
	of hatched	of hatched	rate	hatched beetles	reproductive	
	beetles of the	beetles/	(%)	of the F1-	Capaçõity	
	F ₁ -generation	host pupa	Ò	generation per s	(relative to S	
	per replicate		- The second sec	areatment group	~ @ntrol 2 .	
			L C		<u> </u>	
Control	573	0.382	38.2	° 2293		
Application rate ¹⁾						
[kg a.s./ha]		~~				
28	531 (n.s.)	0.354	Q 35.4	2124	>> 7.4	
44	477*	0.318	U D.8 O	8 1907°	46.8	
52	448*	0,299	29.9	1701	\$21.9	
Reference item						
Dimethoate EC 400	10*	©0.00Z	x 07 x	40 Ôy	- 9D3	
1.5 L product/ha		, ⁶ × 10			₽° ⊗	
(600 g a.s./ha)		y '0' '7		Ď Č Š		
¹⁾ Application rate in 4	100 I water/ha				**	

¹⁾ Application rate in 400 L water/ha

²⁾ Effect on reproduction according to the following form $\hat{p}a$: (1-P/Pc) * 00% calculated on the exact raw data (positive values represent a decreased reproduction compared to the control)

n.s. = not statistically significantly different compared to the control: DUNNERT's makiple t test, $\alpha = 0.05$ * statistically significantly different compared to the control; DUNNETT's multiple test (test item) or Student ttest (reference item), $\alpha = 0.05$ L,

The results of the control group ordicated that the test organosms were in a good condition (average number of hatcher beetles of the F_1 -generation per replicate 573)

0

 \bigcirc

The results of the reference item group indicated that the test system was sensitive to harmful substances (98.3% reduction of reproductive capacity) õ

Conclusions:

In this extended laboratory test the effects of Fosetyl-Al WG 80% w/w residues on the reproductive capacity of the rox beetle Aleochara bilineate were determined at the rates of 28, 44 and 52 kg a.s./ha. The reduction of reproductive eapacity at all tested ates was below 22%. The ER₅₀ is >52 kg a.s./ha (equivalent to 567 kg product/ha)

Semi-field studies with non-target arthropods

In view of the results presented in Sections CP 0.3.2.1 and CP 10.3.2.2, no semi-field studies were deemed necessary.

CP 10.3.2.4 Field studies with non-target arthropods

Report:	KCP 10.3.2.4/01 s; 2010; M-367548-01-1
Title:	A field study to evaluate the effects of fosetyl-AL WG 80 on predatory mites Acari:
	Phytoseiidae) in apple orchards in Southern France
Report No.:	S09-01000
Document No.:	M-367548-01-1 IOBC BART and EPPO Guidance Document (BLUE) tet al 2000
Guideline(s):	
	BBA-Guideline Part VI, 23-2.3.4 (HEMANN-DETEEFSEN 1991)
	LIS EPA DUSPP SOUSTIPP SOUSTIPP SOUSTIPP SOUSTIPP
Guideline deviation(s):	none
GLP/GEP:	yes all a so to a

Objective:

Two field trials were carried out in an apple of that determine the effects of the fungicide Fosetylaluminium WG 80 (Fosetyl-Al WG 80) on the population development of predatory mites (Acarr: *Phytoseiidae*).

Materials and Methods:

Test item: Fosetyl-Al WG 80 (8,12) 9, Spatch ID EV38000066.

S09-01000-01

The trial S09-01000-01 included three treatment groups, one test item treatment with Fosetyl-Al WG 80, a water treated control and a reference item treatment. A

The test item Fosetyl-Al WG 80 and the control were applied three times with a 2 days spay interval in mid-April. The target application rate for the test item was 3.6 kg/ha in 800 L/ha water for all applications. The reference item (Bulldock) was applied once at the Pst application of the test item at an application rate of 0.70 // ha. The same amount of the water used for the fest item and reference item was applied in the comrol plots?

S09-01000-02

Ì The trial \$09-01000-02 Included for treatment groups two test item treatments with Fosetyl-Al WG 80 water treated control and a reference ited treatment.

The test item Fosety) Al WG 80 and the control were applied three times between mid-April and mid-May with a spray interval of 12 21 days. The target application rate was 4.0 kg product/ha for the first test item treatmenQ(T1) and 7.2 kg product/he for the second test item treatment (T2). The spray volume was adapted to the actual growth stage, starting with 800 L/ha for the 1st application up to 1200 L/ha at the 3rd application The reference Item Bulldock) was applied two times, at the 1st and the 3rd application of the test item at application rates of 0.7 L/ha. The same amount of tap water used for the test item and reference item was applied in the control plots.

The population development of naturally occurring predatory mites was assessed in all treatment

groups by determining the number of initiation leaf samples, using the washing method (Boller, 1984).

(M)

Results and Discussion:

S09-01000-01

In the pre-sampling the population density was between 0.45 and 0.50 predatory mites per leaf. No relevant reduction of predatory mites was observed in the test item group (Fosetyl-Al WG 80) during the whole trial. The calculated effects of the test item on the predatory note populations ranged between -25.0% and 1.7%. L

For the reference item a maximum effect of 63.5% was observed. The mean number of predatory mites in the toxic reference item treated plots was statistically significant reduced when compared to the control in all post-application assessments (one sided Dunnett's Arest, Wilcoxon Two-sample Test, $\alpha = 0.05$).

Summary of effects of Fosetyl-Al WG 80 and the reference item on predatory mites according Abbott (1925): (M

la la	
Trial S09-01000-01	
Assessment before / after application no. 🐧 For	set M-Al XG 80 [%] 5) Reference Item [%]
4 DBA1	4° 3° 3°
5 DAA3	3.0^{3} β
26 DAA3	ntrol data
DBA = Days before application, DAA _ Days after ap	plication 7 7 5 5 6 0 ontrol 7 7 7 5 5 5 5 6 0 data
* Statistically significant difference compared to the compared to the	ontrol
¹⁾ Dunnett's t-Test ($\alpha = 0.05$), one-sided, with original ²⁾ Dunnett's t-Test ($\alpha = 0.05$), one-sided, with transform ³⁾ Wilcoxon Two-Sample Test ($\alpha = 0.05$)	ontrol data me@data
²⁾ Dunnett's t-Test ($\alpha = 0.05$), one sided, with transform	me@data 🖉 🖓 🔊 🏷
³⁾ Wilcoxon Two-Sample Test ($6 \neq 0.05$)	
⁴⁾ Bulldock	A C A A A A A A A A A A A A A A A A A A
⁵⁾ All effect values are generated with non-rounded me	ean values of the state of the second s
	ean values of the transformed at
²⁾ Dunnett's t-Test ($\alpha = 0.05$), one sided, with transform ³⁾ Wilcoxon Two-Sample Test ($\alpha = 0.05$) ⁴⁾ Bulldock ⁵⁾ All effect values are generated with non-rounded me	

- Dunnett's t-Test (α = 0.05), one-sided, with original data ²⁾ Dunnett's t-Test (α = 0.05), one-sided, with transforme@data ³⁾ Wilcoxon Two-Sample Test (α = 0.05)

S09-01000-02 In the pre-sampling the population density was between 0.49 and 0.53 predatory mites per leaf.

The effects of the test item Rosety]-Al WG 80 applied three times at a rate of 4.0 kg/ha on the predatory mite populations ranged between 25,0% and -32.4%. A maximum effect of 25.0% was observed in the 4th ossessment (5 DAA3). In the last assessment (20 DAA3) an effect of 7.6% was observed.

The effects of the test item Fosety Al WG 80 applied three times at a rate of 7.2 kg/ha on the predatory mite populations ranged between 39.9% and -42.5%. A maximum effect of 39.9% was observed in the 3r assessment (PDAA2). In the last assessment (27 DAA3) an effect of 25.2% was observed.

For the reference item a maximum effect of 860% was achieved. The mean number of predatory mites in the toxic reference item treated plots was statistically significant reduced when compared to

mites in the foxic reference item treated plots was statistically significant reduced whethe control in all post-application assessments (Dunnett's t-Test, one-sided, $\alpha = 0.05$).

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

Summary of effects of Fosetyl-Al WG 80 and the reference item on predatory mites according to Abbott (1925):

Trial S09-01000-02			
Assessment before /	Fosetyl-Al WG 80	Fosetyl-Al WG 80 📎	Reference
after application no.	3 x 4.0 kg/ha [%] ²⁾	Fosetyl-Al WG 80 3 x 7.2 kg/ha [%] ²)	
4 DBA1	3.7	-3.1	-1.6
9 DAA1	-32.4	-42.5	77.2* . 2 . 2
9 DAA2	-6.0	39	J.4* V 0 0
5 DAA3	25.0*	29.0*	86.6*
26 DAA3	7.6	25.2* Q 0	64.2*

DBA = Days before application, DAA = Days after application

one-sided, * Statistically significant difference compared to the control (Dunnettos

¹⁾ Bulldock ²⁾ All effect values are generated with non-rounded mean values &

Conclusions:

Based on the results of this study and according to the corresponding guidelines Heinann-Delefsen, et al., 2000), no Quinacceptable effects on predatory make populations (Acari: 1991: Phytoseiidae) were observed if Eosetyl-Al WG 80 was applied three times at an application rate of 3.6 kg/ha and a spray interval of 2 days, or applied three times at an application rate of 4.0 kg/ha and a spray interval of 18 - 21 days well as at an application fate of 2 kg/ha and a sprag interval of 18 -21 days in an apple orchard in Southern France.

Request from the RMS:

J.; 2000; M-267548-01-1), 70-75 flower bud clusters In the study from before the applications, and 150 Meaves for the first sampling post application had to be sampled to reach or to be chosed to the recommended density of 30 mites. This indicates a low density of the mite At al. (2000) the density of 30 mites could be populations since according to the guideline reached with sample of 25 leaves? Could you blease provide further data to support the robustness and the reliability of the results from this study? S

 \bigcirc

In addition, it is RMS opinion that some significant effects without recovery at the end of the test are observed for 3 applications at a rate of 7,2 kg product/ha.

 \bigcirc

0

Response from BCS

Ô The guideline requests that a "minimum" of 25 leaves should be sampled per replicate. Furthermore, if the mean number of mite per replicate in the intreased control is less than 30 the number of sampled leaves should be increased. This has been done in the study in line with the guideline requirements. The number of mites per replicate in that SOP01000-01 is provided in Table 41 of the report. Calculating the mean number of mites for the control treatment results in values of 34.6, 44.8, and 129.4 mites/sample for the 3 sampling dates. This indicates that the sample size was in line with the guideline requirements. The statistical evaluation is based on the number of mites per replicate and the number of leave does not influence the evaluation. The results are therefore considered as reliable.

The number of nittes peor replicate in Fail S09-01000-02 is reported in Table 42 of the report. The mean numbers mites for the control treatment are 38.4, 27.8, 173.8, 136.8, and 158.8 mites/sample. The pre-application sampling (38.4 mites/sample) and the 2nd, 3rd, and 4th post-application samplings (173, \$, 136, 8, and \$38.8 mites/sample, respectively) clearly meet the guideline requirement. Only for the first post-application sampling the mean number of mites was slightly below (-7%) the recompresented minimum number. Since the pre-application density and the 2nd to 4th post-application density assessments in the control clearly meet the guideline requirements that study can be considered as reliable since the statistical evaluation is based on the number of mites per replicate and the number of leave does not influence the evaluation.

R

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

At the end of in trail S09-01000-02 there was still a statistically significant difference between the control and the 3 x 7.2 kg/ha treatment group. Even though statistically significant the difference was only 25.2%. According to the IOBC/WPRS criteria are effects in field studies classified as harmless or slightly harmful if the observed effects are in the range of 0 to 50%. In line with this classification requires the test guideline for predatory mites (*et al.*, 2000) that the sampling period needs only to be prolonged if the calculated treatment effect differs by more than 50% from the control of can be concluded that a difference of 25.2% observed in a predatory mite field study is not biological relevant.

Report:	KCP 10.3.2.4/02 カ; 2012; M-475378-0 6 く く な の
Title:	A field study to evaluate the effects of fosetyl AWG 80 percent w/w or predebry
	mites (Acari: Phytoseiidae) in an apple orchard in Germany
Report No.:	S13-01518
Document No .:	M-475378-01-1 ($(A_{1}, A_{2})^{\circ}$) $(A_{2}, A_{2})^{\circ}$ $(A_{2}, A_{2})^{\circ}$ $(A_{2}, A_{2})^{\circ}$
Guideline(s):	IOBC, BART and EPPO Guidance Document (BLÜMA) et al 2000)
Guideline deviation(s):	not specified
GLP/GEP:	yes A A A
Objective:	

Ĉà

Objective:

The purpose of this study was to investigate short and long term effects of the pest item Fosefyl-Al WG 80% w/w on the population development of leaf-dwelling phytoseiidomites (Acari Phytoseiidae) in an apple orchard.

Material and Methods:

Material and Methods: Fosetyl-Al WG 80% www (nominate content of cactive ingredient); Posetyl-Aluminium 81.0% (analysed content of active ingredient); Specification No. 102000024225-01; Bach No.: EV36003202 The trial included six treatment groups, three test item treatment groups (T1, T2 and T3), two water treated control groups (C1 and 62) and a reference item treatment group R. The test items were applied at three different Pates and time intervals between beginning and and of June 2013. Test item treatment T & 3 x 4.5 kg product/pa with an application interval of 3-4 days Test item treatment 72: 3 x 7.5 kg product/ha, with an application interval of 7 days Test item treatment T3: 3 x 3.75 kg product/ha with an application interval of 9 days All spray applications over conducted with an application volume of 1000 L water/ha. The control treatment C1 was applied at each application of P1 and T2, the control treatment C2 was applied at each application of 93. The reference item, Karate Zeon, (0.075 L/ha) was applied two times between beginning and mig of June 2012, at the first and the last application of the test item treatment T2. The field site was located in , Germany.

Natural occupring populations of predatory intes (Acari: Phytoseiidae) were exposed to three applications of the test item in apapple or hard at three different rates. The population development of predatory mites was assessed by determining the total number of mites on leaf samples.

Nay 21 2013 September 19, 2013 Dates of experimental work:

Results:

The mean number of mite per leaf after the first application was between 0.38 and 0.57 in the control treatment CI, between 0.33 and 0.73 in the control treatment C2, between 0.31 and 0.40 in the test item treatment **P**, between **QO** and 0.40 in the test item treatment T2, between 0.32 and 0.52 in the test item treatment TS and between 0.00 and 0.03 in the reference item treatment R.

The effect of the test item on the predatory mite populations ranged between 12.1% and 26.0% for test item treatment T1, between 12.4% and 42.3% for test item treatment T2 and between -40.2% and 29.0% for test item treatment T3. The difference between the predatory mite numbers observed in the plots treated with the test item was not statistically significant compared to the control at any sampling date. The maximum effect was 26.0% for test item treatment T1 at the third sampling date S3

(6 DAA3/4), 42.3% at the last sampling for test item treatment T2 (30 DAA6) and 29.0% at the last sampling (26 DAA7) for test item treatment T3.

In the plots treated with the reference item a maximum reduction of 100.0% was observed at seventh sampling date S7 (27 DAA3/4). The reduction in the reference item treatment was statistically significant at all assessments after the first application (Pooled T-test, Satterthwaite T-test or Wilcoxon® test, all two sided with $\alpha = 0.05$).

Summary of effects of test item and the reference item on predatory mites according to Abbott (

Sample Code	Timing / Date	Test item group T1 [%] ⁴⁾	Test item Fest item
S1	14 DBA1 21/05/2013	-1.9	-0.3 Q 0° - 10 1 -0.1 2
S1-R	0 DBA1 04/06/2013	23.6	· 19.1
S2	3 DAA2 / 6 DAA1 10/06/2013	12.1 ×	2 12.40 -40.2 of 97.1*1) 4 °
S3	6 DAA3/4 17/06/2013	26.0	Y 43.5 5
S4	7 DAA5 20/06/2013		
S5/6 ⁵)	9 DAA6 / 5 DAA7		
S7	27 DAA3/4 08/07/2013		
S8/9 ⁵)	30 DAA6 / 26 DAA7 0 18/07/2013		42.3 × 29.6 98.4*3)

DBA = Days before application DAA = Days after application, S1-R. Repetition of Sty

* Statistically significant difference compared to the control

¹⁾ Pooled T-test, two sided ($e \neq 0.05$)

²⁾ Satterthwaite T-(0.05)

³⁾ Wilcoxon test, Φ wo sided ($\alpha = 0.05$)

4) All effect values are generated with non-rounded mean values

⁵⁾ Samplings \$5 and S6 and sampling S8 and S9 were performed on the same day S.

Conclusion:

Based on the results of this study and according to the corresponding guideline (et al., 2000), no unacceptable effects on predatory prite populations (Acari: Phytoseiidae) were observed when the test item Fosetyl-Al Wor 80% w/w was applied 30 mes apapplication rates of 4.5 kg/ha, 7.5 kg/ha and 3.75 kg/ha in 9000 L water ha in an apple orchard.

Request from the RMS:

In the study from D, 2010, M-4\$3378-01-1), the number of mites observed per sample (150-200 leaves per sample) seems to indicate a low density of mites. Could you please provide further data to support the robustness and the reliability of the results from this study?

In addition the observed offects up to 26% (T1: 3 x 4.5 kg product/ha), 42.3% (T2: 3 x 7.5 kg product/hay and 29% (19: 3 x 7.5 kg product/ha) are not significantly different from the control. Further explanations are required to support that these effects would not have to be considered as biologically somnificant.

Response from BCS:

The guideline requests that a "minimum" of 25 leaves should be sampled per replicate. Furthermore, if the mean number of mites pre replicate in the untreated control is less than 30 the number of sampled leaves should be increased. This has been done in the study in line with the guideline requirements Table 32 of the report is listing the number of mites per sample. All single control replicates exceeded the number of 30 mites/sample. All mean numbers per sample are between 50 and 110 mites and an clearly exceeding the guideline requirement of a mean value of 30 mites per sample. The statistical evaluation is based on the number of mites per replicate and the number of leave does not influence the evaluation. The results are therefore considered as reliable. Concerning the observed differences of T1, T2, T3 in the range of 26 to 42.3% in needs to be considered that the test design is appropriate to detect effects of more than 59% as statistically significant in 90% of the cases as stated in the guideline (et al., 2000). Purthermore, abes the predatory mite field study guideline indicates that the assessment needs only to be prolonged if the effects observed in the treatment group exceed 50%. Ø According to the IOBC/WPRS criteria are effects in field studies classified as harmless or slightly harmful if the observed effects are in the range of 0 to 50%. The observed differences are therefore not considered as biological relevant. CP 10.3.2.5 Other routes of exposure for non-target arthropods No relevant exposure of non-targeoarthropods is expected by other rootes of exposit

CP 10.4 Effects on non-target soil meso and macrofauna

The risk assessment procedure follows the requirements as given in the Council Directive 91/414/EEC (Annex III), Council Directive 97/57/EC (Annex VI) and the Guidance Document on Terrestrial Ecotoxicology.

Predicted environmental concentrations used in risk assessment

The PEC_{soil} values below are taken from Document MCP, Section 9.10.

Table 10.4.1: Initial max PECsoik alues (bold values were used in the tier 1 risk assessment)

		Jn		. 0	×Q	°~
Compound		Drchards		Ň	se la constante de la constant	Ś
2	× 1	PEGoil, max	\sim ϵ	d (ວ໌ 😞	>
Fosetyl-Al 🦃	J 920	ng a.s./kg	dws	C.	Â,	r
Phosphonic wid	0 3.930	mg pm kg	dw©″	$\sim 0^{v}$	O,	
~Q		\sim	<u> </u>	ñ	ð	

 Table 10.4 2:
 PEC_{soil accu} values (mixing depth of 5 cm for plateau calculation; bold values were used in the tier 1 risk assessment)

*			ļ
Compound	S S S	Ørchards	
	PECcori, pla	teau 🖏 🔊	PEC _{soil, accu} ^a
	hng/kg		[mg/kg]
Phosphonic		kg dws 6.4	62 mg pm/kg dws
^a PEC _{soil, accu} accans	the sum of PEC toil, ma	ax are PECsoil, pla	teau
	y o y	v	
	A A A		
	"O"		
× Ô×			
Cĭ			

CP 10.4.1 Earthworms

able 10.4.1-1:	Endpoints used in ris	k assessment
Test item	Test species, test design	Ecotoxicological endpoint
Fosetyl-Al WG 80	<i>Eisenia fetida</i> reproduction 56 d, mixed	NOEC 316 mg prod./kg dws 2045; M-539997
Dhamharianid	<i>Eisenia fetida</i> Reproduction, 56 d, mixed	NOEC $\Delta = 2498.79$ for pm/kg dws $A = 1000$ M 18921801-1 $C = 1000$ M 189218001-1 $C = 1000$ M 18921801-1 $C = 10000$ M 189218000-1 $C = 10000$ M 189218000-1 $C = 10000$ M 189218000-1 $C = 100000$ M 189218000-1 $C = 100000$ M 1892180000-1 $C = 1000000$ M 1892180000000000000000000000000000000000
Phosphonic acid	<i>Eisenia fetida</i> Reproduction, 56 d, mixed	NOFC 693 mg pm/kg dws 64.32/177-01-1 KCA 8.44.03

 Table 10.4.1-1:
 Endpoints used in risk assessment

dws = dry weight soil; a.s. = active substance; prod.= product pm = pare metabolite; grey typeface = study is part of the Baseline possier

a) Values were corrected for a purity of \$\vert 1.8\vert phosphoric acid weight by velume which is equal to \$29.9\vert weight by weight. Test substance potential is of phosphoric acid has a density of 1.397\$Therefore, one L of test substance weighs 1397\$Lead to \$29.9\vert and \$\vert which is equal to \$29.9\vert weight weight purity of \$29.9\vert and \$\vert weight and \$\vert weight and \$\vert all s \$\vert

Table 10.4.1- 2:	Ecotoxicological endpoints -	earthworm field	studywith	formulated product

Test item		Bxicological endpoint	Reference
Fosetyl-Al WG80	and 30 days after 1 st		,; 2010; M-398002-01-1 KCP 10.4.1.2/01

Risk assessment for earthyorms

A

		and the		Ś
Table 10.4.1-3:	TERcalculations	for ea	rthwor	ms,∕

Compound	Species, study type	₩.V	point g/kg]	worst case PEC _{soil,max} [mg/kg]	TER _{LT}	Trigger
Fosetyl-Al W68	0 Sarthworm, reproduction	NOEC	254.4	1.920	132.5	5
Phosphonic	Earthworm reproduction	NOEC	\geq 498.79	6.462	≥77.2	5

All TER values calculated with the worst case $PEC_{soil, max}$ values clearly exceed the trigger value of 5 indicating that no macceptable adverse effects on earthworms are to be expected from the intended uses of Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80). This conclusion is also in line with the results of an mailable earthworm field study (**1999**, G.; 2010; M-398002-01-1) which indicated no unacceptable effects after the application of Fosetyl-Al WG 80 at a rate of 184.1 kg prod./ha followed by 2 applications of 97.8 kg prod./ha.

CP 10.4.1.1 Earthworms sub-lethal effects

CP 10.4.1.2 Earthworms field studies

Please refer to Docu	ment MCA, Section 8.4.1.
CP 10.4.1.2	ment MCA, Section 8.4.1. Earthworms field studies
Report: Title:	KCP 10.4.1.2/01
The.	Fosetyl-aluminium WG 80C W: Effect of spray application on the earthworm Fauna within one year R09-152 M-398002-01-1 ISO 11268-3 (1999): Soil quatity Effects of pollutants on earthworms Part 3: Guidance on the determination of effects in field situations;
Report No.:	R09-152
Document No .:	M-398002-01-1
Guideline(s):	ISO 11268-3 (1999): Soil quatity Effects of pollutants on earthworms Part 3.
	Guidance on the determination of effects in field situations;
	\sim
	recommendations for the update of the SO Eathworn of ield fest Guideline ISO
	11268-3);
	ISO 23611-1 (2007) Soil quality Sampling of soil invertebrates, Part 1: Pland-
	sorting and formal mextraction of earth worms of the second second second second second second second second se
Guideline deviation(s)	: none Q^{-} Q^{+} Q^{+} Q^{+} Q^{+} Q^{+} Q^{+} Q^{+} Q^{+}
GLP/GEP:	recommendations for the update of the ISO Earthworn Field Fest Guideline (ISO 11268-3); ISO 23611-1 (2007) Soil quality Sampling of soil invertebrates, Part 1: Hand- sorting and formal in extraction of earthworms none yes

Objective:

The aim of the current study was to identify possible effects of the fungicide Foetyl-aluminium WG 80 (Fosetyl-Al WG 80) on a pratural site-specific carthworm community on a grassland area in Germany.

Materials and Methods:

Test item: Fosetyl-AWG &0 (818) /kg (setyl-aruminium analysed), batch ID EV38000066.

The study was conducted between 27.04.2009 and 27.04.2010 of grasshand (meadow) near Germany. The study design compresed the test item with three application \$2(first application 184.1 kg (plateau concentration² + single application rate), second and third application 97.8 kg Fostyl-Al WG 80/ha), a reference item (approx. 10.0 kg carbendazim/ha) and a control (tap water). For the reference item only one application (0 DAA) was performed. The control was treated with tap water at each of the three applications. Each treatment consisted of four replicates. Earthworms avere sampled using a combination of excavation/hand-sorting and formalin extraction. Samplings were conducted once before application (pre-sampling, 10 DBA) and three times after the first application (approx one month (39 DAA), five months (148 DAA) and approx. one year (333 DAA)). Earthworn data were analysed using for the one test item rate recommended non-parametric (Mann-Whitney-U-Test) statistical procedures.

The pre-sampling on the spectral site showed that the criteria recommended by *et al.* (2006) for conducting earthworm field studies were met

1. Total density ≥ 100 earthworm individuals/m²;

 \bigcirc

2. Sufficien@abundance of representatives of the two ecological earthworm groups 'anecics' (Lumbricus terrestring) and Sendoreces' (Allolobophora chlorotica, Aporrectodea caliginosa). Further, hoppingeneity of the study field was confirmed at the pre-sampling, *i.e.* no significant differences between any of the three treatment groups occurred.

² Estimated concentration level after repeated use of the test item

After the first application, the measured residues of the phosphonic acid in the soil samples were within the recommended range of 50 to 150% (67.6%). The results of the soil samples taken after 2nd and 3rd application needed to be corrected by the residue concentration existing in the soil prior to the respective application. This resulted in recovery rates of 79 and 32.1% of the nominal desired application rate (converted to phosphonic acid equivalents). The low recovery rate after the last application could be explained by the high variability of the replicates (-22, 68, 22 and 61% corrected recovery) and other factors that possibly influenced this recovery rate. However the analysis of the spray solutions from each application confirmed that the actual desired test item concentration was correctly applied to the study field (± 10% of nominal concentration). Hence exposure of the earthworms to the desired test item concentrations could be confirmed for all three applications.

r indings: Earthworm abundance of the study field was sufficient at each sampling event (230, 290, 131 and 294 individuals/m² in control plots at pre-sampling first second and about the study of t individuals/m² in control plots at pre-sampling, first, second and tord sampling, respectively, see Table below). The earthworm community comprised eight different species, representing all ecological groups (epigeic, endogeic and anecic earthworms). Three of these species (Allolobophora chlorotica, Aporrectodea caliginosa and Linnbricus terrestris) were analysed separately because their abundance exceeded 10 individuals/m² in the control plots in least during one sampling event after application. No dead or moribund earthworms were found on the soil surface of test item treated study plots after application.

each application. The total biomass of earthworms was significantly reduced in the reference item treatment by 51, 64 and 34% compared to the control at the first second and third post-application sampling, respectively. Further, the total number of earth worms was significantly reduced by 23% at the third post-application sampling

the third post-application sampling. In the test item treatments to statistically significant adverse effects on abundance or biomass of total earthworm population, total acult and total avenue earthworms, morphological groups (tanylobous and epilobous) or single species (representatives of anecic and endogeic arthworms), could be

earthworm population, total adult and total adventile earthworms, morphological groups (tanylobous and epilobous) or single species (tepresentatives of anecic and erdogeic earthworms), could be detected at any of the three postapplication sampling events (approx. one month, five months and approx. one year)

Summary Table: Mean abundance and biomass of the total earthworm population, total juveniles, total adults and of the dominant species, L. terrestris, A. chlorotica and A. caliginosa in the control, the test item treatments and the reference item treatment

Mean (n=4); In brackets: the percentages compared to control; Statistic: comparisons test item treatments v_s . control: Mann-Whitney-U-Test; comparisons reference vs. control: Mann-Whitney-U-Test; bold: significant from control ($p \le 0.05$) ð Ø Ô

		Abundance (Individuals/m ²)				Biomass (g/m ²)			
		Sampling	ee (marvia	uuis/ iii)		Sampling S S			
	Treatment	Pre ^a	1 ^b	2 ^c	<u>څ</u> ه	Pre ^a	1 ^b «	20 ~~~	3ª\$
	Control	230.3	199.8	130.5	224.3	10Q,8	94.3	572	440.5
		242.5	196.0	163.5	245.5	Q12.8	88.2	63.9 0	121,4
Total	Fosetyl-Al	(105.3%)	(98.1%)	(125,3%)	(109.5%)	(1040%)	(A.0%)		(86.4%)
earthworms		249.3	152.0	78.3	172.3		46.4	21(0)	93.5
	Reference	(108.3%)	(76.1%)	(53.8%)	(76,8%)	¢105.6%)	(49.2%)	(36.5%)	(66.5%)
	Control	91.8	67.8	61 3	\$3.5	62.10	52.1	42.6	88.0
		113.0	73.3	Ž2%3 ~	91.5	72.0	51.9	45.7	9 5.7
Total adults	Fosetyl-Al	(123.2%)	(108.1%)	(118,0%)	(10%)		(995%)	J07.28	(86.1%)
	D. C	106.3	Q18.8 🔊	30.6	9 2 .3 ~ ~	68.75	18.1	13.1	62.6
	Reference	(115.8%)	(72,0%)	(49.0%)	(107,9%)	(60.7%)	(34.9%)	(30,7%)	(71.1%)
	Control	124.5	<u>1</u> 26.5 (65.3	132,8	¥1.1 O	39,0 (13.6	46.2
	Fosetyl-Al	110,5	116.8	83.8	146.8	36.80	33.6 C	17.6	39.4
Total juvenil	r usetyi-Ai	¢94.4%	(92,3%)	(2 8.4%) ⁽	(110.5%)	(89.6%)	(84.6%)	(128.9%)	(85.2%)
	Reference	134,8	94.5	37.0	74.3	¥1.4 🛷	24	6.6	23.1
	Q	(108.2%)		(56,9%)	¢\$5.9%)	(100,9%)	(61.0%)	(48.6%)	(50.0%)
	Control	66.5	55.0	19.5	46.3	7.9	6.5	1.8	8.5
Allolobophora	Fosetyl-Ad	64.0	56.0	24.8°		8.1	6.9	2.7	13.7
chlorotica		(%.2%)	(101,8%)	(140.4%)		(103.0%)	(106.7%)	(155.6%)	(161.6%)
(endogeic)	Reference	² 68.3	47.0	x19.5 S	37.5 [©]	& .3	6.6	1.1	7.7
l N		(102.6%)	(\$.5%)	(60.0%)		(105.8%)	(102.0%)	(62.9%)	(90.3%)
	Control Ø	1890	17.8 °	36.0	36.5 ° O	10.0	10.8	13.9	32.0
Aporrectodea	Fosetor-Al	\$6.0	20,00	42 .0 ×	~	14.9	12.3	17.7	25.0
caliginosa		(144.4%)	(112.7%)	(116.7%)	(89.6%)	(148.9%)	(113.9%)	(127.2%)	(78.2%)
(endogeic)	Beference		13.0 0	210	B 4.8	12.2	8.0	8.8	49.1
4	(9116.7%)	(732%)	\$8.3%	(150.0%)	(121.6%)	(73.7%)	(63.1%)	(153.4%)
J. J	Control	23.5 26.8	2.0 ×	16,0%	23.3	56.3	44.6	29.8	55.9
Lumbricus	Fosetyl-XI		,23.5		18.0	56.9	44.5	28.0	45.6
terrestriš	· V 4	(113.8°)	<u>(105.8%)</u> ≈	h	(77.4%)	(101.0%)	(99.8%)	(94.1%)	(81.5%)
(anecic) [°]	Reference	27.00	₽ ,5 ,	2.0	3.0	56.5	6.8	3.2	4.2
	A A	(194.9%)	(20.5%)	(12.5%)	(12.9%)	(100.3%)	(15.2%)	(10.8%)	(7.5%)

^a= Pre-treatment sampling (19 days before application) ^b= 1st post-treatment sampling (~1 month after application) ^c= 2nd post-treatment sampling (~2 months after application) ^d= 3rd post-treatment sampling (~12 months after application)

Conclusions:

The current study meets all criteria required for a valid earthworm field study as requested by the available guidance for earthworm field studies (ISO 11268-3 1999; et al., 2006). At three sampling dates (39, 148 and 333 DAA) after three applications of the test item Fosetyl-Al WG 80 (a.s. fosetyl-aluminium) the abundance and biomass of earthworms were not significantly directed. Therefore, it can be concluded that application of 1x184.1 kg (plateau concentration 4 single application rate) and two following applications of 97.8 kg Fosetyl-Al WG 80/ha have no adverse effects on natural earthworm field communities.

Request from the RMS:

Further results of the study from **Control** (**Control**, G.; 2010; **M**-398002-01-9) should be further justified. Without these precisions the reliability of this study could be challenged during the poetreview process.

- a) The recoveries of the soil concentrations after the third application are quite low and below the trigger of 50%. One replicate indicates a negative recovery (22%) which is difficult to understand without further explanations.
- without further explanations.
 b) More details on the statistical analysis of the results would be suitable since some important effects of the reference are not statisticably significant (n.e. 51%) of effects on total adult abundance at sampling 2).
 c) The relevance of the lower abundance (83.6%) and biomass (78.2%) of Aportpectodeg caliginosa
- c) The relevance of the lower abondance (83.6%) and biomass (78.2%) of *Aportectoded caliginosa* compared to the control at the last sampling date spould be discussed.
- d) The trend of effects on Luppricus terrestris should be discussed as the abundance and the biomass of this species had a decreasing percentage compared to the control decrease during the study duration.

Response from BCS

a) The amount of test substance to set view of spray solutions, the content of active substance in spray solution as analytically verified, and the residual volumes temaining in the spray tanks after application. The data allow for the calculation of the total rate of fosetyl-Al applied to the field. The actual application rates (mean amounts of test item per hectare) of the test item Fosetyl-Al WG 80 at the three applications were thus well within the range of 10% of target amount for each application (see Table 10) indicating that the amounts actually applied to the field were correct.

With fosetyl-Al undergoing very tast microbiak transformation in soil, phosphonic acid was chosen as analytical target to describe the exposure of carthworms to the relevant residues from use of fosetyl-Al.

However, physiphonic acid proved to be a difficult analytical target undergoing spontaneous fixation to soil particles following its contact with the soft matrix. Being called as 'ageing' of residues it is a common observation for 'organic', i.C carbon containing chemicals, but also observed for 'inorganic' compounds like physiphonates and phosphates. The phenomenon was also observed in aerobic soil degradation tests.

The analytical method for determination of phosphonic acid was fully validated according to actual standards for two methods of extraction, i.e. use of aqueous ammonium or aqueous sulfuric acid as solvents. In trend, recoveries were higher for lower test concentrations in soil and from use of sulfuric acid to be in the acceptable range of 690 about 100%.

Sufficien@rainfail (the amount was set to the standard minimum rainfall amount of 10 mm/m²) was regarded as necessary to ensure the transport of fosetyl-Al residues from the grass to soil and to enable the full formation of phosphonic acid from fosetyl-Al.

Residues of fosetyl-Al were allowed in this study to age typically for 2 to 3 days after application in the field before soil sampling. However, since phosphonic acid was not applied directly to the field, the formation process (separation from formulation ingredients, change of physico-chemical characteristics from fosetyl-AL to phosphonic acid) increased the variability (i.e. inhomogeneity) of the distribution of the analyte in soil samples under conditions of the field. Moreover, the ageing

period to fulfill the 10 mm criterion reduced the recovery of phosphonic acid significantly by, as indicated above, fast formation of non-extractable residues in the silty clay field soil. While the use of ammonia as a mild solvent did not result in high recoveries from this silty clay field soil, extraction has to be regarded as harsh by use of sulfuric acid (0.5 M). Its use enhanced recoveries, but the harsh extraction resulted in darker colored extracts difficult to analyze. The use of on even harsher extraction method is not recommended since it would further degrade addisturb the soft matter which is clearly not the objective in development of analytical methods. ° A calculation of residues after each application and shortly before the next application was presented in Table 7 within section 5.3 of the analytical phase report in the attachment at the end of the report. In this study, the recovery values of the 2nd and the 3rd application were calculated each by subtraction of the phosphonic acid concentration value measured directly before application from the value obtained after application ('differencial calculation') They were given in Table 3 of the report. For illustration in this document a table is composed from the two tables mentioned above in which the calculated recovery values from Table 13 are added on the right to Table 7 from section 5.3 (see below). Ŵ X, Ô Following the 1st application, the recovery of physphonic acid was \$7.6% of the nominal value (average of all replicates, value corrected by analytical recovery of 91%). Following the second application, the recovery was 79% (average of all replicates, calue corrected by analytical recovery of 91%). These two values are thus well above the threshold of 30%. T1 in a negative calculated value (-22% recovery) and in case of 43 in a lower value than expected (+22% recovery). The values of the other two replicates (+68% and +61% recovery) were in the range of recoveries expected from the 1st and the 2^{std} application. ° Ô The inconsistencies in these phosphonic acid recovery values for the 20 application can be well explained by a certain infromogeneity during formation and most importantly by the rapid fixation of phosphonic acid residues to the field soil during ageing thereby reducing the extraction efficiency. The table shown below for illustration is created from Table 7 in section 5.3 of the analytical phase

The table shown below for illustration is created from Table 7 in section 5.3 of the analytical phase report included in the study. In the table the ammonia extract values and the control values (all below detection limit) were omitted. Additionally, the calculated phosphonic acid recovery values are included as columns on the right

Sample ID Plot co	ode Sampling date		Fosetyl-Al	Phosphonic	Phosphonic Phosphonic	Nominal	Recovery of
			Nº A	acid	acid	calculated	phosphonic
~	v _k ov s			(suffuric	(sulfuric	concentration	acid from soil
â				acid	acid	value per	after
A A A A A A A A A A A A A A A A A A A	bde Sampling date	P		Phosphonic acid (suffuric acid extract) Values per plot [mg/kg]	extract)	application	subtraction of
				Values per	<mark>Mean</mark>	<mark>[mg/kg]</mark>	value before
N.				<mark>plot</mark>	values		application [%]
				[mg/kg]	[mg/kg]		
<mark>69</mark> <mark>T1</mark> "	² 11 ₄ 05 <u>2009</u>	4 dá Sáfter	Q <mark>≪LOQ</mark>	<mark>43.2</mark>			
70 T_2°	13/05/20/498		< LOQ	<mark>40.5</mark>	41.43	(7 (
71	11.052009	application	< LOQ	<mark>42.7</mark>	<mark>41.4*</mark>	<mark>67.6</mark>	
72 T 4	∑ <u>11.0</u> 5.2009	(2009-05-07)	< LOQ	<mark>39.3</mark>			<mark>67.6% *</mark>
	11.05,2009 11.05,2009 11.05,2009 44.06,2009	1 day before	< LOQ	<mark>30.5</mark>			
73 🔅 🕺	04.06.2009	2 nd	< LOQ	<mark>33.7</mark>	21.0*		
<mark>74 ⊳₽[¥]T3</mark>	<mark>04.06.2009</mark>	application	< LOQ	<mark>36.0</mark>	<mark>31.9*</mark>		
75 T4	<mark>04.06.2009</mark>	<mark>(2009-06-05)</mark>	< LOQ	<mark>27.5</mark>			

Table 7 Analytical results for beetyl-Al and phosphonic acted in dry soil

Bayer – Crop Science Division

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

Sample ID	Plot code	Sampling date	Comment	Fosetyl-Al	Phosphonic	Phosphonic	Nominal	Recovery of
					acid	acid	calculated	phosphonic
					<mark>(sulfuric</mark>	<mark>(sulfuric</mark>	concentration	acid from fil
					acid	acid	value per	after 2
					extract)	extract)	application	subgraction of
					Values per	Mean	<mark>pog/kg]</mark>	value before
					<mark>plot</mark>	values 🔬	, ĉ	application [%]
_					[mg/kg]	[mg/kg]		
<mark>85</mark>	T1	<mark>08.06.2009</mark>	<mark>3 days after</mark>	< LOQ	565	(mg/kg) 0 54/2*	38.6 O	
<mark>86</mark>	T2	<mark>08.06.2009</mark>	2 nd	< LOQ	C <mark>76.9</mark>	54 2*	286	
<mark>87</mark>	T3	<mark>08.06.2009</mark>	application	< LOQ	<mark>46.9</mark>		38.0 0 ₹	
<mark>88</mark>	T4	<mark>08.06.2009</mark>	<mark>(2009-06-05)</mark>	< LOO		$. \qquad \square^{S}$		<mark>29,0% *</mark> Ø
<mark>144</mark>	T1	<mark>03.07.2009</mark>	3 days before	<a>AOQ	57.1 55.9 40.9 50 50 50 50 50 50 50 50 50 50	Q, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0		20% * 0 ⁴
<mark>145</mark>	T2	<mark>03.07.2009</mark>	3 rd	Q ^l oq (A
<mark>146</mark>	T3	<mark>03.07.2009</mark>	application	< LQQ	49.º	S/ .		
<mark>147</mark>	T4	<mark>03.07.2009</mark>	(2009-07-06)	< LOQ	<mark>\$4.2</mark>	Ţ,		-229 * *
<mark>157</mark>	T1	<mark>08.07.2009</mark>	2 days after	KIOQ 🔬	48.6 ×		Û Ş	-22%
<mark>158</mark>	T2	<mark>08.07.2009</mark>	3rd O	< LOQ	<mark>63%)</mark>	58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 50 58.3 59.3 59 59 59 59 59 59 59 59 59 59		<mark>68% **</mark>
<mark>159</mark>	T3	<mark>08.07.2009</mark>	application	< I@Q	<mark>36.3</mark>	28.30		× <mark>22% **</mark>
<mark>160</mark>	T4	08.07.2009	Q <mark>2009-07-06)</mark>	Poq	64.5	Q ^Y Ö		<mark>61% **</mark>
* Mean valu ** Individua	ies al values for o	each replicate; Me	ý ~		1% ×			

Effects of the toxic reference on earthworms were statistically evaluated by the Mann Whitney U-test (separate from the analysis of the test item) as recommended by get et al. 2006. Effects were statistically not significant as the variability of the abundances in the reference treatment group is relatively high (CS = 7.68%). However, the CV in the control was relatively low with 36.7%. The observed variability of total adult abundances in the control are well in the range of the natural variability of carthworm populations in the field of the reference treatment on biomass of total However, the strong statistically significant effects of the reference treatment on biomass of total

O

1

Ŀ,

earthworn's and total adult earthworn's at the 1st and 2nd sampling confirm the overall sensitivity and the validity of the test system as recommended by the al. 2006.

s

The observed reduction of the addindance A. colliginosa by the test item compared to the control 1 year after application is clearly within the range of natural variability and cannot be regarded as an adverse effect. The abondances of *A. caliginosa* in the period of one year in the control shows a mean CV = 36.64. Reductions of 16.4 and 2,58% cannot be reliably interpreted as an adverse effect on earthworm populations. Furthermore, reductions in abundances of A caliginosa were neither seen at the 1st sampling nor at the 2st sampling after application. Thus, these reductions are not considered being treatmont related. *©*

The development of the abundances of L. to restris compared to the control during the year with 107, 97, and 77.4% compared to the control should not be interpreted as a trend (same for the biomass data). The observed reduction of 22.6% of the abundance of L. terrestris in an earthworm field study at the end of the study is not an adverse effect as this difference to the control is low (compared to the usual variability in the field and statistically not significant. Differences observed in this order of magnitude representation of the test system and cannot be reliably interpreted as an effect.

CP 10.4.2 Effects on non-target soil meso- and macrofauna (other than earthworms)

	earthworms)	k assessment
Table 10.4.2- 1:	Endpoints used in ris	k assessment
Test item	Test species, test design	Ecotoxicological endpoint
Collembola, reprod	uction	
Fosetyl-Al WG 80	Folsomia candida reproduction 28 d, mixed	NOEC 562 mg prod./kQ dws 452.4 mg a.s./kg dws KCA 8:4.2.1.9
Phosphonic acid	Folsomia candida reproduction 28 d, mixed	NOEC \geq 1000 mg pm/kg dws $M = 529267-01-1$ KCA 8 4.2.1/63
Soil mites, reprodu	ction	
Fosetyl-Al WG 80	Hypoaspis aculeifer reproduction 14 d, mixed	NOEC ≥ 805 mg a.s. kg dys KCA3.4.2.102
Phosphonic acid	Hypoaspis aculeiter reproduction Q 14 d, mixed	NOEC ≥ 1000 mg pmc kg dwo KCX 8.4.2.1/04

dws = dry weight soil; a.s. = active substance: Sm = pure metabolite prod. = produce Bold values: endpoints used for risk @sessment

Risk assessment for other non-target soft meso and macrofauna (other than earthworms)

Table 10.4.2- 2:	C TER cal	culations for	othernon	-target s	soiDmeso-An	d macrofauna
			(Canal)		~.v	~

Compound	Species	,¢ ,4	♥ ♥ ♥ ♥ ♥ ■ ¶mgØ	innt Ö gl	PKC soil, max	TER _{LT}	Trigger
Fosetyl AFWG 80	Folsomia	andida	NOE	¥\$2.4	1.920	235.6	
rosetyles wG 80	Hypoaspis	aculeifer 🖁	NÔ ĐƠ 🐇	$\geq 805^{\circ}$	1.920	≥ 419.3	5
Phosphonic acid	🕈 Folsomia c	m dida N	NODEC O	$\sim \geq 1000$	(1()	≥154.8	5
	Hopoaspis		`∕~NOE€	×1000	6.462	≥ 154.8	
		°~~~~~		U			

All TER values calculated with the worst case PEC_{s@, max} values clearly exceed the trigger value of 5 indicating that no unacceptable advecse effects on soil macro-organisms are to be expected from the intended use of Foset Valuminium WG 80 (Foset V-Al WG 80).

CP 10.4.2.1 Species level testing

Please refer to Document MCA, Section 8, 4.2.1.

CP 10,42.2 SHigher Fer testing

In view of the results presented in Section CP 10.4.2, no further testing is necessary.

CP 10.5 Effects on soil nitrogen transformation

Test item	Test design	Endpoint	Ő	Reference
N-transformation		1	Ĩ	
Fosetyl-Al	Study duration 28 d	no unacceptable effects	20.0 kg a.s./ha	, J.; 1098; M-147321-02-1 KA 8.5701
Fosetyl-Al WG 80	Study duration 42 d	no vinacceptable ffects	978 kg procQha 1304 mg.prod./kg dws 1067 mQ.a.s./kg dws	M-300736-051 KCA 8.5/02
Phosphonic acid	Study duration 42 d pil; a.s. = active substance	no unacceptable effects	48.98% g pm/ha 65.91 mg pm/kg dws	, д.; 2016 M-528580-01,1 VKCA 8.5/03
Bold values are use Risk assessment Table 10.5- 2:	for Soil Nitrogen Tra	nsformation soil micro-organism		
Compound	Species	Endpoint mg a.s./kg	PECGil,max [mg a.s./kg]	Refinement required
	Soil micro-organisms	26,60	× 0 [×] 1.9 2 0 2×	No
Fosetyl-Al	Solution of Barriston			
	Soil micro-organisms	\$ 1067 ~ ³	2 1.920 2 4.62 2 4.6	No

According to regulatory requirements the risk is acceptable, if the effect on nitrogen transformation at the maximum PEC_{soil} values is 25% after 100 days. In no case, deviations from the control exceeded 25% after 28 up to 42 days, indicating low risk to soil micro-organisms.

CP 10.6 Effects on terrestrial non-farget nigher plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 rev2 final 2002). It is restricted to off-field situations, as non-target plants are defined as non-crop plants located outside the treated area. Spray drift from the treated areas may produce residues of a product in adjacent off-crop areas.

Tier limit tests have been conducted with the formulation Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80) according to OECD testing guideline 208B (vegetative vigour study from 2000) and OECD testing guideline 208 (see ting emergence study from 2015). For the vegetative vigour study submitted for the Annex Finclusion of fosetyl under Directive 91/414/EEC, please refer to the Baseline Dossier provided by Bayer CropScience and the DAR. Additionally, a short summary is provided in gree typeface in Section CP 10.6.2 in this Supplementary Dossier. An additional Tier 1 study on seeding energence was performed, which was not submitted for Annex I inclusion of fosetyl under Directive 91/414/EEC and is submitted within this Supplementary Dossier for the approval renewal of fosetyl. A summary of this study can be found in Section CP 10.6.2.

Since study results were originally reported on an active substance basis, the summary of endpoints and subsequent TER calculations are provided on an active substance basis as well.

The findings from these studies are summarised in the following table.

Table 10.6- 1:	Endpoints used in risk assessment

Test organism	Study type	Max. effects	Most sensitive species	Referencês
Maximum appl	ication rate: 80 kg a.s.	./ha	ŵ ^y	
Terrestrial non-target plants; 6 species	Vegetative vigour; Tier 1 single dose Tier 2 with cabbage and tomato 21 days	No effects ≥ 25 % at a rate of 80 kg a.s./ha (Tier 1) Tomato: EC ₂₅ = 8.61 G a.s./ha; EC ₅₀ > 80 kg a.s./ha (Tier 2)	A Stomato	M-199640-01 KCIS0.6.244
Maximum appl	ication rate: 7 kg a.s./	ha 🔺 🤻		A C A
Terrestrial non-target plants; 10 species	Seedling emergence; Tier 1 single dose 21 days	33.3% mhibition of emergence at a fate of 7 kg a.s. ha	Oilseed rape	©015; M-\$25769-01-1 KCP 10-6,2/02 •

In the case of Fosetyl-Al WG 80, the fier ty egetative visiour study showed no phytotoxic effects >50% at the tested rate of 80 kg as /ha requivalent to 100 kg product/has Theorer 1 seedling emergence study showed no phytotoxic effects >30% at the tested rate of 7 kg a.s./has

Risk assessment for Terrestoral Non-Target Higher Plants

Risk assessment for Terrestrial Non-Target Higher Plants Effects on non-target plants are of concern in the off-field environment, where they may be exposed to spray drift. To demonstrate the low risk of the formulation to non-target plants, FER calculations have been performed for the representative use in orchards. The lest rate of 7 kg as that was used as a most conservative endpoint estimate (ER > 7 kg a.s. ha). For three applications to pome fruit 11.01% of the full application rate of 3.6 kg 3.5./ha are assumed to reach areas at 3 m from the edge of the crop. The amount of spray drift from three applications reaching off-gop habitats is calculated using the 77th percentile estimates derived by the BBA (2000)³ from spray-drift predictions of Ganzelmeier & Rautmann (2000)⁴. According to Table 13 in the Guidance document for Risk Assessment on Birds and Mammals (EFSA, 2009⁵) a multiple application factor of 2.0 (MAF_{mean}) has to be applied for three applications in pome fuit with a 7 of interval. It should be pointed out that the use of MAFmean for residues on plant surfaces is also supported by the new ESCOR V 3 document (cf. $, 2012^{6}$). A deterministic risk assessment is provided in the following

- ³ BBA (2000) Buodesanzeiger Jg 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtriffeckwerte, die bei der Pfüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain. Ś
- ⁴ Ganzelmster H., Rautmann D. (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2009, Pesticide Application. Public domain.
- ⁵ European Food Safet Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA EFSA Journa, 2009; 7(12):1438. [139 pp.].
- P. (2012): Rationale for harmonization of the multiple application factor (MAF) approach in ecotoricological risk assessment. In:

(eds.): ESCORT 3:

Linking Non-Target Arthropod Testing and Risk Assessment with Protection Goals. pp. 90-94. SETAC Press

Bayer – Crop Science Division

Document MCP - Section 10: Ecotoxicological studies Fosetyl-aluminium WG 80

Сгор	Use pattern	Distance from field edge [m]	Drift [%]	MAF _m	PER [kg a.s./ha]	TER (Trigger (# 5)
Pome fruits	3 x 3.6 kg a.s./ha (7 days interval)	3	11.01	2.0	Q.793	8.8

Table 10 6- 2. Deterministic risk assessment based on the FR $_{20} > 7$ kg as /ba

 From the calculations above, it is concluded that effects of the product on non-target terrestrial plants are not to be expected.

 CP 10.6.1
 Summary of screening data

 Not necessary as guideline GLP studies for terrestrial non-target plants are available (see Section CP 10.6.2).

 CP 10.6.2
 Testing on non-target plants

 Vegetative vigour
 Image: studies of the product of the product

Report:	KCP 10@.2/01
Title:	Determination of efforts on vegetative vigor of six point species AliQie (R) 80WG
Report No .:	
Document No.:	M-199640-01-1 6 6 6 6 6 6
Guideline(s):	OECD Draft Guideline No. 2007 Part 6 Equippent to JS EPA OPPT Guidenne No 850.4250
	Equippent to US EPA OPPTS Guidenne No 850.4250

Guideline deviation(s) Routine sch and wher scr aning malyses for pestilides, PEBs and toxic metals were orducted using and and U.S. DA providures by GeoCabs, Inc., Braintree, Massachusette, Physical characterization of

Massachusette, Physical characterization of the soil was orfformed by Advise Loss, Northwoods, North Dakota. These data were not collected in accordance with God Laborator, Practice procedures (i.e., no distinct protocol Study Orector, etc).

GLP/GE

Methods:

Nethods: The study was conducted in a seenhopse. As jest initiation the 8 replicate pots of each treatment level for each species were rouged together and spray with the appropriate treatment solution. The plant species testerQincluded two monorotyletuns: gron (Allium cepa) and oat (Avena sativa), and four dicotyledoms: cabbage (BrassiczQolerador), cosumbe@(Cucumis sativus), soybean (Glycine max), and tomato (*Geopersicon Geuleroum*). The maximum application rate of ALIETTE 80WG was 80 kg a.s./ha. The test substance application volume was 200 L/ha. Fosetyl-Al: 786 g/kg of test substance. Effects on shoot dry weigh were evaluated 21 d after the application of ALIETTE 80WG to the plant

nonage. Her I testing was conducted at the maximum application rate with all six species. Based on the adverse effects observed in corbage and torbato, respectively, Tier 2 tests were conducted for these two species at 5.010, 26 40 and 80 kg a.s./ha foliage. Tier 1 testing was conducted at the maximum application rate with all six species. Based on the

Results:

The measured concentrations of fosetyl-Al for both applications were 92 and 94% of the nominal mined: concentration. Due to effects on tomato, the following toxicity values were determined:

 EC_{25} (tomato) = 8.6 kg a.s./ha EC_{50} (tomato) > 80 kg a.s./ha NOEC (tomato) = 5.0 kg a.s./ha

□ Comments (RMS): acceptable

Further study information supplementing the original DAR summary: Â,

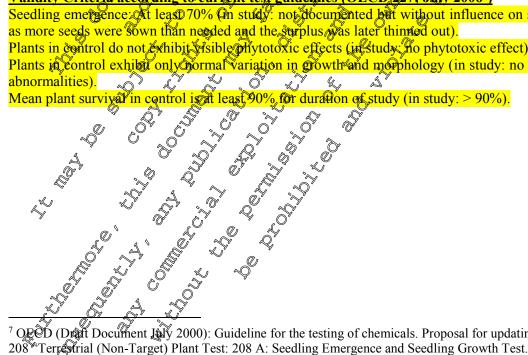
Methods:

The test design was based on the OECD 208 Borraft guideline from July 2000. The test substance Aliette 80 WG (= Fosetyl-Al WG 80) was applied to leaves and other above-ground portion of the test plants at the 2 to 4 leaf stage. The plant species tested included two memocot dedons; onion (Allium cepa) and oat (Avena sativa), and four dicetyledons: cabbage (Brassica oleracea), cucumber (Cucanis sativus), soybean (Glycine max), and tomato (Lycopersicon esculentum), giving a total of six plant *o* families. The test species cucumber, oat, onion and soybean were exposed to one test rate which was 80 kg

,Ø

a.s./ha. For the species cabbage and tomato a tier-2 test design was applied consisting of five test rates, i.e. 5.0, 10, 20, 40 and 80 kg a.s./ha. The test substance application folume was 200 L/ha for all species Ŵ Å, tested. °~/ L, \bigcirc

For each species eight replicate pots, each with five plants, were maintained for the control and each application rate. The pots were 1 Dcm tall with a diameter of 13 cm Before and after application the pots were kept in a greenhouse Water was provided by suborigation. Ś


The test species were assessed for morphological promatities and mortality on a weekly basis, shoot dry weight was determined at the cord of the study period of 21 days.

°~ \sim Ś Ô Validity Criteria according to current test guidelines (OECD 27; July 20068)

Ŵ

Seedling emergence: At lease 70% On study: not documented but without influence on study outcome Plants in control do not exhibit sible phytotoxic effects (in study: no phytotoxic effect).

Plants in control exhibit only formal variation in growth and morphology (in study: no morphological

⁷ OPOD (Draft Document July 2000): Guideline for the testing of chemicals. Proposal for updating Guideline 208 "Terrestrial (Non-Target) Plant Test: 208 A: Seedling Emergence and Seedling Growth Test. 208 B: Vegetative Vigour Test.

⁸ OECD Guideline 227 (July 2006): Guideline for the testing of chemicals, Terrestrial Plant Test: Vegetative vigour Test.

Findings

The measured concentrations of fosetyl-Al for both applications were 92 and 94% of the nominal concentration. In the following table effects on shoot dry weight of the single test species and corresponding endpoints, where available, are summarized.

Species		, ER25 and ER50 values xposing six plant species		
species	ER25 (kg a.s./ha)	<mark>ER50</mark> (kg a.s./ha)	NOER (kg a.se ha)	Difference
Cabbage	<mark>>80</mark>	<mark>>80</mark> 😵	S	(0, 1, 5, 6, -1)
Cucumber ^a	NA	NA Ky	ÓŇA	
Oat ^a	NA	NA	Q [®] NA ° K	^م ی ک <mark>8-</mark> کی ا
Onion ^a	NA	No.	NA V	
Soybean ^a	NA	(<mark>NA</mark> ()	S SNA S	Q × 4
Tomato	<mark>8.6</mark>	<u> </u>	67 <mark>5.6</mark> 7 6	18, 30, 26, 40, 33 ^b ₀

a For Tier 1 tests, ER and NOER values were not calculated.

b Tier 2 testing was conducted at 5.0, 10, 20, 40 and 80 kg a/s./ha pespectively

Ø

×Ô in L ° Details of the observations of morphological abnormalities (at tost terromatice) and mortality in this vegetative vigour study are provided in the following for each test species.

	~ ()	7, 4,	Cabbage	alities* 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×
Nominal	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N N	Cabbag®	~ ~ ~	-Ro	O' <u>'</u> Y
Application	<i>©</i> ″	Morphologi	cal Abnorm	alities ^a 🎸 🗠	S O	Cumulative
Rate	Nec 👸 🤇	∶h∰¶Phy		lities" 4	> Leaf >	Mertality (#) ^b
(kg a.i./ha)	ln 🍾 🛛	In 🖓 In	S Fry	Flo ──	Curt	Day 21
Control		2h0 2Phy In 2 In 0.0 2 0.0 0.0 2 0.0	5 Fru 5 P 2 5 P 2 P 2 5 P 2 P 2	00 (\$*0 \$	0
5.0	5 0.0 0 02		· · · · · · · · · · · · · · · · · · ·			0
10 🚕		0.0 0 0.0	, 5°0 (0
20 0	0.0 0, 0.077 0	095 <u>4</u> 0.0	~~~ 00 ⁷		0	2
20 G	0.007	0.36	Q		1	1
80	\$0.24 ×	× × 0.81			16	3

Necrotic, chlorotic and phytotoxic inclices size shaded and Considered significant when +1.0. The ā index ranges from Riowest to 4 (ghest)

index ranges from Plowesty to 4 (nighest)
 Number of plants that die throughout test period.
 Nec In = necrotic index.
 Chi In = colorotic index.
 Phy In = phytotoxic index.
 Fru = thuit present
 Flo = flowering present

Document MCP – Section 10: Ecotoxicological studies	
Fosetyl-aluminium WG 80	

Nominal			Cucu	mber			
Application		Mor	phological		ities ^a		Cumulative
Rate	Nec	Chi	Dhy			Leaf	Mortality (#) ^b
(kg a.i./ha)	In	In	In	Fru	Flo	Curl	Day 21
Control	0.0	0.0	0.0	0	0	0 📎	0_0/
						100 V	Å
80	1.0	1.0	1.0	40	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Necrotic, c	hiorotic and p	inytotoxic in	ndices are	shaded an	d considere	d significa	nt when ••1.6
Index range	es from 0 (low	est) to 4 (ni	ignest).	Ŭ,	Ő	Ş.	
Number of	plants that die	a inrougno	ut test pend	ia. V	Q,		
ec In = necrotio	index			Å.	10×	*	
I In = chlorotic	index			A	Ŵ,	» ~ ~	. ° ° °
ny in = phytoto	xic index			de v		? Q'	N° A
u = fruit preser	nt		. ~	0			
= flowering p	resent		Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	Ô,	S N	× c	
			0	l õ		S O	4 A
			A	y		~~~~	O` <i>Q</i> ^`(
ble 9.	Observation	ns of mo	rphologic	al abnor	malities (at te št te	Day 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	and mortal	ties (three	sughout t	he@test.p	eriod	oat (Av	ena sativa
	plants expo	sed to A	iette [®] /80W	G during	the vege	ative or	rmination) ina sativa) or test.
Nominal		Å	Ø Ö	át 🔍	\rightarrow \approx		~~ ~,
Application		Mor	phological	Abnorma	ties' O	<u> </u>	Cumulative
Rate	Nec	OCLI V	DLON	50		CLeaf	Mortality (#) ^b
(kg a.i./ha)	In 🚽	🖓 In 🚿	~Chn	Fru	Pio (> Cur	
		× *		° O'		~	ò
Control	0.0	0.0	õ 0.00	. O	\ Q() [™]	~~~0 *	ý 0
Control	0.0	0.0	- M - M - M - M	ô° ô	 >` >`	\$°\$	ý O
Control 80	0.0 29.0	0.0 5 1.0 2	67 0.05 0.0 2	¢ ¢	* % * *		ý 0 0
80	6.0	5 ⁷ 1.0	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			پ 0 0
80 Necrotic, c	640 higetic addr p	hydowic i	0.0 Dices are	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0 0 Int when • •1.0.
80 Necrotic, c	hlosotic ager p		0.0 Ndices are	shaded ar	considere	ed &ignifica	
80 Necrotic, c	hlosotic agy p		0.0 ndices are ighest). but test perio	shaded ar	considere	ed &ignifica	0 0 Int when • •1.0.
80 Necrotic, c index range Number of	hlogetic and p s from & (low plants Piat die		0.0 Ndices are	shaded ar	considere	ed &ignifica	0 0 Int when • •1.0.
80 Necrotic, c index range Number of ec In = negrotic	9.0 hloeptic and p s from & (low plants that die c index	T 1.0 hytorexic in esti) to 4 (hi d througho	0.0 ndices are ighest) but lest perio	shaded ar	considere	ed &ignifica	0 0 Int when ••1.0.
80 Necrotic, cl index range Number of ec In = negrotic hl In = coortic	9.0 hloeptic and p s from & (low plants that die c index	T 1.0 hytorexic in esti) to 4 (hi d througho	0.0 ndices are ighest) out test period	shaded ar	considere	ed &ignifica	0 0 Int when ••1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hy In Chytoto	9.0 hloeptic and p s from & (low plants that die c index	T 1.0 hytorexic in esti) to 4 (hi d througho	0.0 ndices are ighest) out test period	shaded ar	considere	ed &ignifica	0 0 int when • •1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hy In Chytoto u = fruit prese	hlocotic and p s from Q (low plants that die c index c index xic index nt		0.0 ndices are ighest) but lest perio	shaded ar	considere	ed &ignifica	0 0 int when • •1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hy In Chytoto u = fruit prese	hlocotic and p s from Q (low plants that die c index c index xic index nt	T 1.0 hytorexic in esti) to 4 (hi d througho	0.0 ndices are ighest) out test period	shaded ar		ed &ignifica	0 0 int when • •1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hl In = chorotic y In Chytoto u = fruit presen o = Flowering	hloeptic and p as from 0 (low plants that die c index c index xic index nt c present	T 1.0 hytorexic in esti) to 4 (hi d througho	0.0 ndices are ighest) put test period		considere	ed &ignifica	0 0 Int when • •1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hy In Chytoto u = fruit preset o = Flowering	hloeptic and p as from 0 (low plants that die c index c index xic index nt c present	The state of the second	0.0 ndices are ighest) put test period	shaded and d		ed &ignifica	int when • •1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hy In & phytoto u = fruit preset o = Flowering Nominal Application	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The state of the second	0.0 ndices are ighest) put test period	shaded and d		ed &ignifica	nt when • •1.0.
80 Necrotic, cl index range Number of ec In = necrotic hl In = chorotic hy In & phytoto u = fruit preset o = Flowering Nominal Application Rate	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The state of the second	0.0 ndices are ighest) put test period	shaded ar of on Abrormal	Consider Con	ed &ignifica	Cumulative Mortality (#) ^b
80 Necrotic, cl index range Number of a In = necrotic In In = chorotic y In Chyroto y In Chyroto Chyroto y In Chyroto Chyroto Chyroto Chyroto Chyroto Chyroto Chyroto Chyroto	hloeptic and p as from 0 (low plants that die c index c index xic index nt c present	The state of the second	0.0 ndices are ighest) put lest period out lest perio	shaded and d		ed & ignifica	nt when • •1.0.
80 Necrotic, cl index range Number of the In = chorotic y In Chorotic y	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The state of the second	0.0 ndices are ighest) put lest period out lest perio	shadled and d. b b b b c c c c c c c c c c c c c c c	Consider Con	ed &ignifica	Cumulative Mortality (#) ^b
80 Necrotic, cl index range Number of c In = necrotic I In = chorotic y In & phytoto i = fruit presen o = Flowering Nominal Application Rate (kg a 2/ha)	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The state of the second	0.0 ndices are ighest) put lest period out lest perio	shaded and d. d. d. d. d. d. d. d. d. d. d. d. d.	Consider Con	ed &ignifica	Cumulative Mortality (#) ^b Day 21
80 Necrotic, cl index range Number of c In = necrotic I n = chorotic y In & phytoto i = fruit presen o = Flowering Nominal Application Rate (kg a 2/ha)	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The state of the second	0.0 ndices are ighest) put lest period out lest perio	shadled and d. b b b b c c c c c c c c c c c c c c c	Consider Con	ed &ignifica	Cumulative Mortality (#) ^b
80 Necrotic, cl index range Number of c In = necrotic I n = chorotic y In Chorotic y I	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The set of	0.0 ndices are ighest) put lest period out lest perio	shaded and d. d. d. d. d. d. d. d. d. d. d. d. d.	Consider Con	ed &ignifica	Cumulative Mortality (#) ^b Day 21
80 Necrotic, cl index range Number of c In = necrotic I In = chorotic y In chytoto i = fruit presen b = Flowering Nominal Application Rate (kg a 2/ha)	hloestic and p s from Q (low plants that die c index c index xic index nt g present	The state of the second	0.0 ndices are ighest) put lest period out lest perio	shaded and d. d. d. d. d. d. d. d. d. d. d. d. d.	Consider Con	ed &ignifica	Cumulative Mortality (#) ^b Day 21
80 Necrotic, cl index range Number of In = necrotic In = chorotic In = c	hloeptic and p shoeptic and p shoept	The set of	0.0 ndices are ighest) put test period potological Phy In 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	shaded and on Abrormali y Fru 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of the In = necrotic In = necrotic In = necrotic y In Chorotic y	hloretic and p as from 0 (low plants that die c index c index xic index nt present Nec ir 0.05	1.0 hytofoxic i est) to 4 (hi d througho Chi in Chi 0.0 hytofoxic i hytofoxic i hytofo	0.0 ndices are ighest) put test period prological Phy Cn 0.0 0.0 0.0 0.0 0.0 0.05 ndices are	shaded and on Abrormali y Fru 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of cln = necrotic l ln = chorotic y ln chytoto a = fruit preset b = Flowering Nominal Application Rate (kg a l/ha)	hloretic and p as from 0 (low plants that die c index c index xic index nt present Nec ir 0.05	1.0 hytofoxic i est) to 4 (hi d througho Chi in Chi 0.0 hytofoxic i hytofoxic i hytofo	0.0 ndices are ighest) put test period prological Phy Cn 0.0 0.0 0.0 0.0 0.0 0.05 ndices are	shaded and on Abrormali y Fru 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of c In = necrotic I In = chorotic y In chytoto i = fruit presen b = Flowering Nominal Application Rate (kg a 2/ha)	hloeptic and p as from 0 (low plants that die c index c index nt c present Nec Nec 0.05	Morp Morp Morp Morp Morp Chi No No No No No No No No No No	0.0 ndices are ighest) put test period pological Physical Physical O.05 ndices are sighest).	shaded and d. b on Abrormal y Fru 0 0 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of c In = necrotic I In = chorotic y In & phytoto = flowering Nominal Application Rate (kg a 7/ha)	hloretic and p a from 0 (low plants that die c index c index xic index nt plants that die Nec 17 0.05 plants that die 0.05	Morp Morp Morp Morp Morp Chi No No No No No No No No No No	0.0 ndices are ighest) put test period pological Physical Physical O.05 ndices are sighest).	shaded and d. b on Abrormal y Fru 0 0 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of In = necrotic In = chorotic In = chorotic In = phytoto = fruit preset = Flowering Nominal Application Rate (kg a 2/ha)	hloretic and p a from 0 (low plants that die c index c index xic index nt plants that die Nec 17 0.05 plants that die 0.05	Morp Morp Morp Morp Morp Chi No No No No No No No No No No	0.0 ndices are ighest) put test period pological Physical Physical O.05 ndices are sighest).	shaded and d. b on Abrormal y Fru 0 0 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of In = necrotic In = chorotic In = chorotic In = phytoto = fruit prese = Flowering Nominal Application Rate (kg a 2/ha)	hloretic and p s from 0 (low plants that die c index c	Morp Morp Morp Morp Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Chi In Chi In Chi In Chi Chi Chi Chi Chi Chi Chi Chi	0.0 ndices are ighest) put test period pological Physical Physical O.05 ndices are sighest).	shaded and d. b on Abrormal y Fru 0 0 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of In = necrotic In = chorotic In < phytoto = fruit prese = Flowering Nominal Nominal (kg a.L/ha) Control 80 Necrotic, cl index range Nomber of In = recrotic In = recrotic In = recrotic	hloretic and p s from 0 (low plants that die c index c index nt present Nec fr 0.05 forotic and p s from 0 (low plants that die c index	Morp Morp Morp Morp Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Chi In Chi In Chi In Chi Chi Chi Chi Chi Chi Chi Chi	0.0 ndices are ighest) put test period pological Physical Physical O.05 ndices are sighest).	shaded and d. b on Abrormal y Fru 0 0 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21 0 0
80 Necrotic, cl index range Number of In = necrotic In = chorotic In = chorotic In = phytoto = fruit preset = Flowering Nominal Application Rate (kg a 2/ha)	hloretic and p s from 0 (low plants that die c index c index c index nt present Nec fr 0.0 0.0 0.05 prototic and p ss from 0 (low plants that die c index xic index fr	Morp Morp Morp Morp Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Morp Chi In Chi In Chi In Chi In Chi Chi Chi Chi Chi Chi Chi Chi	0.0 ndices are ighest) put test period pological Physical Physical O.05 ndices are sighest).	shaded and d. b on Abrormal y Fru 0 0 0	Consider Consider Consider Flo	Leaf Curl 0	Cumulative Mortality (#) ^b Day 21

Flo = flowering present

Nominal			So	bean			
Application		Mor		Abnormali	ties ^a		Cumulative
Rate	Nec	Chl	Phy			Leaf	Mortality (#)
(kg a.i./ha)	In	In	In	Fru	Flo	Curl	Day 21
						6 ²	Day 25,7
Control	0.0	0.0	0.0	0	0	10 ³	n n
001100	0.0	0.0	0.0	Ũ	·	Ĩ	
00	0.70	0.00	0.70	•	0	st and a start of the start of	
80	0.78	0.98	0.78	Q Q	0	ay U	
Necrotic, chie index ranges	arotic and	obutotovic i	dices are	shaded and		od eignificae	whee • • 1.0 ~ T
index ranges	from 0 (low	vest) to 4 (bi	indices are				
Number of pl			ut test ner	ical	Q"	a° A	i O
riamosi ei pi		ee in oughe	Q	b	\sim . C		
lec In = necrotic i	ndex		C,	× ^^ ^^	Ç X	Ø ð	
hi in = chlorotic i	ndex		Ő	Ű,	Ś	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e 4
hy In = phytotoxi			.1				
ru = fruit present			S. S.		× A.	S.	Č Š "
lo = flowering pre	esent	<i>a</i>		ar L	y "{y"		
				shaded and iso 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	×	ed significant	Cumulative Mortality (#) ^b
Nominal		-0×	To	nyato 🗸		y st	S. Q
Application		Mor	hologica	Abnormalit	Nes' O		Cumulative
Rate	Nec	Chl /	Phys			Leaf O	Mortality (#) ^D
(kg a.i./ha)	In	, In `	ln	[™] Fru √	É lo	Curl	Day 21
							à
Control	0.0 Ø	ر ۵۵	^ب ې 0.0 لاړ	Ű,Ő	ୢୄୄୣୄୄ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0
		50.0 5 5 6 7 9 0.0 %			·	w S	<i>c</i>
5.0	20	0.0 Q	040			G ON	0
40			\$ 0.0 ^{\$}	y "S		" Ş"	~
10	0.0		y U.U °	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U U	_© ۲	0
20 🖉	l al	S		ja s	""¢"	ŝ o	0
20 ₀ 0			KON S		AN C	~ V	U
40 🧄	80.0 ×		«`°0.0°~»°	/ S		0	0
	19 Contraction of the second s	S 1.0 S	÷ č	" ⁰ "	, O	Ū	Ū.
80	1.9	\$ 1.0 \$				0	0
Necrotic, chic	rotis and t	shytotoxic in	dices are	shaded and	consider	ed significant	when • • 1.0. T
index ranges	ftom 0 (low	est) @ 4 (hi	ghest).			3	
index ranges Number of particular ec In = necrostic in hI In = chlorotic in hy In = physiotoxic ru = fruit present lo = flowering pre- onclusion: he validity ofter	ints that die	ed througho	ut test peri	iod. Ö			
<i>Q</i> ₁	~~~~	S. C	N I	Î Î			
ec In = necrosic ir	ndex 0		\sim	1 😞			
hl In = chlorotic ir	ndex 📎	~~~~ 4	S. R.				
hy In = ptytotoxic	index	ð í		, Kj			
u = fruit present		\sim	L' a	ŐY			
o = flowering pre	sen A	> . °°'	o" in	N 1			
\sim	Ĩ						
onclusion:		~~ Q	Á				
e validity criter	ia of the g	urrent test	guideline	were fulfille	d. No adv	erse effects	> 50% were for
any species te	sted at the	maximum	applicati	on rate of 8	80 kg a.s./	ha. Therefor	e, the ER ₅₀ is
80 kg a 🜮 ha. 🔍	× ~ ~	2	8				
		Õ					
he validity chier any species te 80 kg a ha.		Y					
	Ø X						
the Ca	L'S						
č°°							
\checkmark							

Seedling emergence

ÿ
a
, W 1

Objective:

The aim of this study was to determine potential offects on seedling mergeoce and early growth of higher plants following a single application of Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80) (6) the soil surface directly after sowing. The endpoints of the study were emergence, plant survival, assessment of visual injury and shoot dry weight, in accordance with the requirements specified in the OECD Guideline 208 (July 2006) Terrestrial Plant Test, Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test.

Material and Methods:

The test item was specified by batch no, EV36003889 and specification no 20200024225 (analysed content of fosetyl-Al: 80.5% w/w). Control: Defonised water was used as the control treatment for the Î L, soil surface application. \bigcirc

A Tier I bioassay was carried out using Tkg a stha of Fosety Al WG 80 at 200 L water/ha. Maize (Zea mays), oat (Avena sativa), onion (Alliumcepa), ryegrass (Lolium perenne) Loucumber (Cucumis sativus), oilseed rape (Brassice napus), soybean (Quycine max (G. soja)), sugar beet (Beta vulgaris), sunflower (Helianthus, annuas) and tomato (Solanum, propertion), were assessed for effects on emergence, survival and phytotoxa ity for a test period of 21 days after 50% emergence in the control (DAE). After the final observation at 21 DAE the short dry weights were determined.

Glasshouse lighting was set to achieve a 16 8 hour light: dark cycle for the duration of the study.

Temperature ranged from 105-34.3 C and huminity was between 162-85.1%.

There were two minor deviations from the recommended temperature range of 12 to 32 °C, but as the validity criteria for all species (ested (except cucumber) were met, these were considered to have had no impact on the emergence, growth and health of the plants.

Results:

Confirmatory analysis of the soncerfration of foseryl-Alsh the spray solution of Fosetyl-Al WG 80 was conducted as a delegated phase. The measured lexels of fosetyl-Al were within 80 to 120% of the

was conducted as a delegated phase. The measured levels of fosetyl-Al were within 80 to 120% of the nominal concentration (100.4 and 102.2%) and verified the concentration of fosetyl-Al in the spray solutions

	Application rate (7 kg fosetyl-Al/ha) Percentage difference relative to the control treatment at 21 days after 50% emergence in the control (21 DAE)					
Species						
	Emergence (%)	Survival (%)	Shoot dry weight			
Maize	-21.1	0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Oat	14.3	0.0				
Onion	21.4		5 -10.4 5 × 6			
Ryegrass	5.9	× 0.0				
Cucumber	-6.3	14.3				
Oilseed Rape	-33.3	-20.6 0 -20.6 0 -20.6 0 -20.6	2 10° 398			
Soybean	11.1	0 Q-4.7 ×				
Sugar Beet	0.0	A & 0.00 Q				
Sunflower	0.0	1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Tomato	5.6		A totha unscripted sectoral (2)			

Negative figures indicate that there was a reduction when compared to the unterated control (2)

This study has fulfilled the validity criteria stated in QECD Guideline 208 seedling emergence for all the species was at least 70%, the control plants showed no perible signs of phytotoxic injury to individual plants and all replicates maintained good growth throughout. Qverall mean plant survival was at least 90% for the control plants, with the exception of cucumber at \$8%, for the study duration. This was due to the slow growth and poor cotyledon development of one plant in replicate five and eight causing them of die after emergence. This was considered to be a natural variation and did not have an impact on the varidity of the bioassay as remaining plants in the control grew well with good vigour

Conclusions:

The soil surface application of Fesetyl-Al WG so at a rate of 7 kg a st/ha to ten terrestrial plant species did not produce effects on emergence survival and shoot by weight reaching or exceeding the 50% threshold for further desting. The data for all plant species freated with the test item were not statistically significantly different compared to the control data

Extended laboratory studies on non-target plants CP 10.6.3 a

In view of the results presented in Section CP 40.6.2, no further studies are deemed necessary.

Semeticid and field tests on non-target plants In view of the results presented in Sections CP 10.6.2 and CP 10.6.3, no further studies are deemed necessary.

CP 10.7 Effects on other terrestrial organisms (flora and fauna)

and chronic ecotoxicity of Fosetyl-aluminium WG 80 as presented in Sections CP 10.1 to CP 10.6 Additionally, no public literature reference as evaluated in Document MCA, Section 9, reported on an adverse effect. No further tests on other terrestrial organism deem to be necessary due to the low to moderate acute

CP 10.8 Monitoring data

No monitoring data have been collected by the applicant nor have they been reported in any of the public literature references as evaluated in Document MCA. Section 2 No monitoring data have been collected by the applicant nor have they been reported in any of the public literature references as evaluated in Document/MCA, Section 9. Due to the lock to moterate acute and chronic ecotoxicity of Fosetyl-aluminium, WG 80 as presented in Sections CP 10.7 to CP 10.7 no monitoring of non-target organism is deeffed to be necessary of the target of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target of the target organism is deeffed to be necessary of the target organism is deeffed to be necessary of the target of t public literature references as evaluated in Document MCA, Section 9. Due to the low to moderate, acute and chronic ecotoxicity of Fosetyl-aluminium WC 80 as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium WC 80 as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute and chronic ecotoxicity of Fosetyl-aluminium we are acuted as a proset to acute a construction of the prosetyle acuted acuted and the proset of the proset of the prosetyle acuted acute the periodicities and interest the art of th