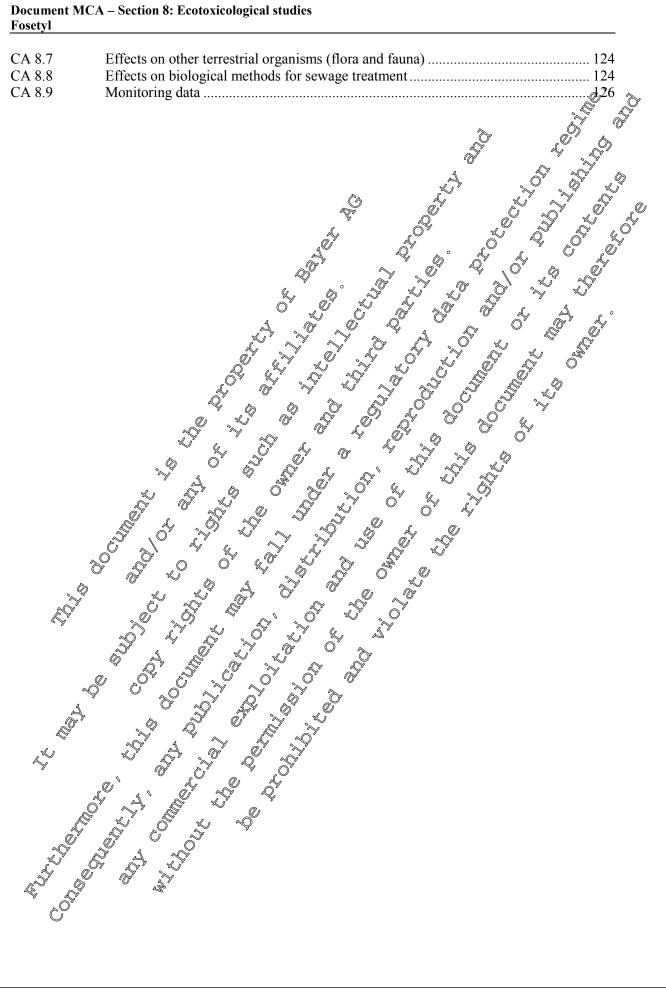

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the from Bayer CropScience; or
 from other applicants once the period of data protection has espired.
 from other applicants once the period of data protection has espired.
 from other applicants once the period of data protection has espired.
 from other applicants once the period of data protection has espired. basis of the summaries and evaluation of inpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based, either:


Version history

Date (yyyy-mm-dd)	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
<mark>2015-10-01</mark>	Original Document MCA – Section 9 of Supplementary Dossier	M-534854-0 🕰 💍
<mark>2016-07-20</mark>	 Dossier update according to "Request for additional information of the supplementary dossier submitted by Bayer CropScience for the approval renewal of the active substance Fosetyl (2015-58653) by RMS France on 2016-04-04 and its follow up on 2016-06-02: BCS responses to RMS requests have been added throughout Section 8. Summaries (including detailed result tables) of the studies used for the first approval of fosetyl and presented in the DAR and addenda to the DAR which are still relevant for the List of Endpoints have been added throughout Section 8. Endpoints from study 1998 M-163531-01-0. KCA 8.2.6.2/01, added to Table 2-1. 	$ \begin{array}{c} M-534854-02-1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ $
		KI KI

Table of Contents

CA 8 ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE 6 e CA 8.1 Effects on birds and other terrestrial vertebrates 7 CA 8.1.1 Effects on birds 8 CA 8.1.1 Effects on birds 8 CA 8.1.1 Short-term dietary toxicity to birds 6 CA 8.1.2 Short-term dietary toxicity to birds 6 CA 8.1.2 Effects on terrestrial vertebrates other than birds 7 CA 8.1.2 Long-term and reproduction toxicity to mammals 26 CA 8.1.2 Long-term and reproduction toxicity to mammals 26 CA 8.1.3 Effects of active substance bioconcentration in prey of birds and manufals 30 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds anammals, reptiles and amplifibriant) 30 CA 8.1.5 Endocrine disrupting properties 30 CA 8.2.1 Acute toxicity to fish 43 CA 8.2.2 Long-term and chronic toXicity to fish 43 CA 8.2.2 Fish early life stage toxicity to fish 47 CA 8.2.2 Fish early life stage toxicity to fish 47 CA 8.2.3 Bioconcentration in fish 47 CA 8.2.4
CA 8.1.1 Effects on Birds 7 CA 8.1.1.1 Acute oral toxicity to birds 8 CA 8.1.1.2 Short-term dietary toxicity to birds 156 CA 8.1.1.3 Sub-chronic and reproductive toxicity to birds 156 CA 8.1.2 Effects on terrestrial vertebrates other than birds 26 CA 8.1.2 Long-term and reproduction toxicity to mammals 26 CA 8.1.3 Effects of active substance bioconcentration in prev of brds and manufulas 27 CA 8.1.3 Effects on terrestrial vertebrate wildlife (birds anamatics) 20 CA 8.1.5 Endocrine disrupting properties 30 CA 8.2.1 Acute toxicity to fish 34 CA 8.2.1 Acute toxicity to fish 34 CA 8.2.2 Fish carly life stage toxicity test 43 CA 8.2.3 Fish carly life stage toxicity test 43 CA 8.2.4 Acute toxicity of aquitic invertebrates 47 CA 8.2.3 Endocrine disrupting properties 47 CA 8.2.4 Acute toxicity of aquitic invertebrates 47 CA 8.2.3 Endocrine disrupting properties 47 CA 8.2.4 Acute toxicity of aquitic inverteb
CA 8.1.1.1 Acute oral toxicity to birds 8 CA 8.1.1.2 Short-term dietary toxicity to birds 15 CA 8.1.1.3 Sub-chronic and reproductive toxicity to birds 15 CA 8.1.2 Effects on terrestrial vertebrates other than birds 26 CA 8.1.2.1 Acute oral toxicity to mammals 26 CA 8.1.3 Effects on aterrestrial vertebrates other than birds 27 CA 8.1.4 Effects on aterrestrial vertebrate wildlife (birds and mamfrals 29 CA 8.1.4 Effects on acutic organisms 30 CA 8.2.1 Acute toxicity to fish 30 CA 8.2.2 Fish can aquatic organisms 30 CA 8.2.2 Fish can be added to fish 43 CA 8.2.3 Bioconcentration in fish 44 CA 8.2.3 Bioconcentration in fish 47 CA 8.2.4 Acute toxicity to a gautaic invertebrates 47 CA 8.2.4 Acute toxicity to a gautaic invertebrates 51 CA 8.2.4 Acute toxicity to a gautaic invertebrate species 51 CA 8.2.4 Acute toxicity to a gautaic invertebrate species 51 CA 8.2.5.1 Reproductive and development toxicity to
CA 8.1.1.2 Short-term dietary toxicity to birds. 156 CA 8.1.2 Effects on terrestrial vertebrates other than birds. 26 CA 8.1.2 Long-term and reproductive toxicity to mammals. 26 CA 8.1.2 Long-term and reproduction toxicity to mammals. 26 CA 8.1.3 Effects on terrestrial vertebrates other than birds. 26 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds pammals, reptiles and amplromase). 30 CA 8.1.5 Endocrine disrupting properties. 30 CA 8.2.1 Acute toxicity to fish. 30 CA 8.2.2 Fish early life stage toxicity to fist. 43 CA 8.2.2.1 Fish early life stage toxicity to fist. 43 CA 8.2.2.3 Bioconcentration in fish. 47 CA 8.2.4 Acute toxicity to fish. 47
CA 8.1.1.2 Short-term dietary toxicity to birds. 156 CA 8.1.2 Effects on terrestrial vertebrates other than birds. 26 CA 8.1.2 Long-term and reproductive toxicity to mammals. 26 CA 8.1.2 Long-term and reproduction toxicity to mammals. 26 CA 8.1.3 Effects on terrestrial vertebrates other than birds. 26 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds pammals, reptiles and amplromase). 30 CA 8.1.5 Endocrine disrupting properties. 30 CA 8.2.1 Acute toxicity to fish. 30 CA 8.2.2 Fish early life stage toxicity to fist. 43 CA 8.2.2.1 Fish early life stage toxicity to fist. 43 CA 8.2.2.3 Bioconcentration in fish. 47 CA 8.2.4 Acute toxicity to fish. 47
CA 8.1.2 Effects on terrestrial vertebrates other than birds 26 CA 8.1.2.1 Acute oral toxicity to mammals 26 CA 8.1.2 Long-term and reproduction toxicity to mammals 29 CA 8.1.3 Effects of active substance bioconcentration in prev of birds and mambrals 29 CA 8.1.4 Effects on attrice vertebrate wildlife (birds mammals, reptiles and amphbianed 30 CA 8.1.5 Endecrine disrupting properties 30 CA 8.2 Effects on aquatic organisms 30 CA 8.2.1 Acute toxicity to fish 43 CA 8.2.2 Fish early life stage toxicity test 43 CA 8.2.2.1 Fish early life stage toxicity test 43 CA 8.2.2.2 Fish full life cycle test 45 CA 8.2.3 Bioconcentration in fish. 47 CA 8.2.4 Acute toxicity to an additional aquatic invertebrates 51 CA 8.2.4 Acute toxicity to an additional aquatic invertebrates 51 CA 8.2.4 Acute toxicity to an additional aquatic invertebrate species 51 CA 8.2.4 Acute toxicity to an additional aquatic invertebrate species 51 CA 8.2.5.1 Reproductive and development toxicity to an additional aquatic
CA 8.1.2.1 Acute oral toxicity to mammals 22 CA 8.1.2 Long-term and reproduction toxicity to mammals 22 CA 8.1.3 Effects of active substance bioconcentration in prey of birds and mambrals 29 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds mammals, reptiles and amphroianov 30 CA 8.1.5 Endocrine disrupting properties 30 CA 8.2 Effects on aquatic organisms 30 CA 8.2.1 Acute toxicity to fish 43 CA 8.2.2.1 Fish early life stage toxicity to fish 43 CA 8.2.2.3 Bioconcentration in fish 47 CA 8.2.4 Acute toxicity of aquatic invertebratos 47 CA 8.2.3 Endocrine disrupting properties 47 CA 8.2.4 Acute toxicity of aquatic invertebratos 47 CA 8.2.4 Acute toxicity of aquatic invertebrates 51 CA 8.2.5 Long-term and chronic toxicity fo aquatic invertebrate species 51 CA 8.2.4 Acute toxicity of aquatic invertebrate species 51 CA 8.2.5 Long-term and chronic toxicity fo an additional aquatic invertebrate species 51 CA 8.2.5 Long-term and chronic toxicity fo an additional aquatic invert
CA 8.1.2 Long-term and reproduction toxicity to mammals 27 CA 8.1.3 Effects on active substance bioconcentration in prev of burds and mambals 29 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds anamals, reptiles and amplibians) 30 CA 8.1.5 Endocrine disrupting properties. 30 CA 8.2 Effects on aquatic organisms 30 CA 8.2.1 Acute toxicity to fish 43 CA 8.2.2.1 Fish early life stage toxicity test 43 CA 8.2.2.2 Fish full life cycle test 43 CA 8.2.2.3 Bioconcientration in fish. 47 CA 8.2.4 Acute toxicity to anather invertebrates. 47 CA 8.2.4 Acute toxicity to anather invertebrates. 47 CA 8.2.4.1 Acute toxicity to anather invertebrates. 51 CA 8.2.4.2 Acute toxicity to anather invertebrate. 53 CA 8.2.5.1 Reproductive and development toxicity to anather invertebrate. 53 CA 8.2.5.2 Reproductive and development toxicity to an additional aquatic invertebrate. 51 CA 8.2.5.3 Development and emergence in <i>Uniformutespecies</i> . 54 CA 8.2.5.4 Sedimpti dwelling organism. <td< td=""></td<>
CA 8.1.2 Long-term and reproduction toxicity to mammals 27 CA 8.1.3 Effects on active substance bioconcentration in prev of burds and mambals 29 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds anamals, reptiles and amplibians) 30 CA 8.1.5 Endocrine disrupting properties. 30 CA 8.2 Effects on aquatic organisms 30 CA 8.2.1 Acute toxicity to fish 43 CA 8.2.2.1 Fish early life stage toxicity test 43 CA 8.2.2.2 Fish full life cycle test 43 CA 8.2.2.3 Bioconcientration in fish. 47 CA 8.2.4 Acute toxicity to anather invertebrates. 47 CA 8.2.4 Acute toxicity to anather invertebrates. 47 CA 8.2.4.1 Acute toxicity to anather invertebrates. 51 CA 8.2.4.2 Acute toxicity to anather invertebrate. 53 CA 8.2.5.1 Reproductive and development toxicity to anather invertebrate. 53 CA 8.2.5.2 Reproductive and development toxicity to an additional aquatic invertebrate. 51 CA 8.2.5.3 Development and emergence in <i>Uniformutespecies</i> . 54 CA 8.2.5.4 Sedimpti dwelling organism. <td< td=""></td<>
CA 8.1.3 Effects of active substance bioconcentration in prev of brds and mambrals 99 CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds mammads, reptiles and amplifolans) 30 CA 8.1.5 Endocrine disrupting properties 30 CA 8.2 Effects on aquatic organisms 30 CA 8.2.1 Acute toxicity to fish 34 CA 8.2.2 Long-term and chronic toxicity to fish 43 CA 8.2.2.1 Fish early life stage toxicity to fish 43 CA 8.2.2.2 Fish full life cycle test 45 CA 8.2.3 Bioconcentration in previous 47 CA 8.2.4 Acute toxicity to aquatic invertebrates 47 CA 8.2.4 Acute toxicity to aquatic invertebrates 47 CA 8.2.4 Acute toxicity to aquatic invertebrates 51 CA 8.2.5 Long-term and chronic toxicity to aquatic invertebrates 51 CA 8.2.5.1 Reproductive and development toxicity to <i>Daphing indepa</i> 53 CA 8.2.5.2 Reproductive and development toxicity to <i>Daphing indep</i> 53 CA 8.2.5.1 Reproductive and development toxicity to <i>Daphing indep</i> 54 CA 8.2.5.2 Reproductive and development toxicity to
CA 8.1.5 Endocrine disrupting properties. 30 CA 8.2 Effects on aquatic organisms 30 CA 8.2.1 Acute toxicity to fish 34 CA 8.2.2 Long-term and chronic toxicity to fish 43 CA 8.2.2.1 Fish early life stage toxicity to fish 43 CA 8.2.2.2 Fish full life cycle toxicity to fish 43 CA 8.2.2.3 Bioconcentration in fish 47 CA 8.2.4 Acute toxicity of aquatic invertebrates 47 CA 8.2.4 Acute toxicity of aquatic invertebrates 47 CA 8.2.4 Acute toxicity to a additional aquatic invertebrate species 51 CA 8.2.4.1 Acute toxicity to an additional aquatic invertebrate species 51 CA 8.2.5.1 Reproductive and development toxicity to an additional aquatic invertebrate species 51 CA 8.2.5.2 Reproductive and development toxicity to an additional aquatic invertebrate species 53 CA 8.2.5.2 Reproductive and all end off toxicity to an additional aquatic invertebrate species 54 CA 8.2.5.3 Development and emergence in Chirohomut species 54 CA 8.2.6.4 Effects on again growth 57 CA 8.2.6.2 Effect
CA 8.2.1Acute toxicity to fish99CA 8.2.1Acute toxicity to fish43CA 8.2.2Long-term and chronic toxicity to fish43CA 8.2.2.1Fish early life stage toxicity test43CA 8.2.2.2Fish full life cycle test45CA 8.2.3Bioconcentration in fish47CA 8.2.4Acute toxicity to aquatic invertebrates47CA 8.2.4Acute toxicity to apphiniaritagnal47CA 8.2.4.1Acute toxicity to apphiniaritagnal47CA 8.2.4.2Acute toxicity to an additional aguatic invertebrate species51CA 8.2.5.1Long-term and chronic toxicity to aquatic invertebrates51CA 8.2.5.2Reproductive and development toxicity to an additional aguatic invertebrates51CA 8.2.5.2Reproductive and development toxicity to an additional aguatic invertebrates53CA 8.2.5.2Reproductive and development toxicity to an additional aquatic invertebrate species53CA 8.2.5.4Sediment dwelling organisms54CA 8.2.5.4Sediment dwelling organisms54CA 8.2.6.2Effects on growth of green algae57CA 8.2.6.3Effects on aquatic macrophytes66CA 8.2.6.4Effects on aduation organisms72CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.2Acute toxicity to bees74CA 8.3.1.4Acute toxicity to bees74CA 8.3.1.4Acute toxicity to bees74CA 8.3.1.4 </td
CA 8.2.1Acute toxicity to fish99CA 8.2.1Acute toxicity to fish43CA 8.2.2Long-term and chronic toxicity to fish43CA 8.2.2.1Fish early life stage toxicity test43CA 8.2.2.2Fish full life cycle test45CA 8.2.3Bioconcentration in fish47CA 8.2.4Acute toxicity to aquatic invertebrates47CA 8.2.4Acute toxicity to apphiniaritagnal47CA 8.2.4.1Acute toxicity to apphiniaritagnal47CA 8.2.4.2Acute toxicity to an additional aguatic invertebrate species51CA 8.2.5.1Long-term and chronic toxicity to aquatic invertebrates51CA 8.2.5.2Reproductive and development toxicity to an additional aguatic invertebrates51CA 8.2.5.2Reproductive and development toxicity to an additional aguatic invertebrates53CA 8.2.5.2Reproductive and development toxicity to an additional aquatic invertebrate species53CA 8.2.5.4Sediment dwelling organisms54CA 8.2.5.4Sediment dwelling organisms54CA 8.2.6.2Effects on growth of green algae57CA 8.2.6.3Effects on aquatic macrophytes66CA 8.2.6.4Effects on aduation organisms72CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.2Acute toxicity to bees74CA 8.3.1.4Acute toxicity to bees74CA 8.3.1.4Acute toxicity to bees74CA 8.3.1.4 </td
CA 8.2.4.1Acute toxicity to <i>Daphna magna</i>
CA 8.2.4.2Acute toxicity to an additional equatic invertebrate species51CA 8.2.5Long-term and thronic toxicity to aquatic invertebrates51CA 8.2.5.1Reproductive and the elopment toxicity to <i>Daphn'a mdena</i> 53CA 8.2.5.2Reproductive and the elopment toxicity to an additional aquatic invertebrate species54CA 8.2.5.3Development and emergence in <i>Chironomus</i> species54CA 8.2.5.4Sediment dwelling organisms54CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6Effects on aquatic macrophytes70CA 8.2.8Further testing on aquatic organisms70CA 8.3Effect on arthropoids72CA 8.3.1Effects on bees74CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.2Acute contact toxicity82CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8.3.1.4Sub-lethal effects99
CA 8.2.5Long-term and thronic foxicity to aquatic invertebrates51CA 8.2.5.1Reproductive and development toxicity to Daphn'a magna53CA 8.2.5.2Reproductive and development toxicity to an additional aquatic invertebrate species53CA 8.2.5.3Development and emergence in Chirohomut species54CA 8.2.5.4Sediment dwelling organisms54CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6Effects on aquatic macrophytes66CA 8.2.8Further testing on aquatic organisms70CA 8.3Effect on arthropods72CA 8.3.1Effects on bees74CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.2Acute contact toxicity82CA 8.3.1.3Effects on honeybe development and other honeybee life stages87CA 8.3.1.4Sub-lethay effects99
CA 8.2.5.2Reproductive and development toxicity to an additional aquatic invertebrate species 53CA 8.2.5.3Development and emergence in Chironomuc species54CA 8.2.5.4Sediment dwelting organisms54CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6.3Effects on aquatic macrophytes66CA 8.2.6Effects on aquatic macrophytes70CA 8.2.6Effects on acting on aquatic organisms72CA 8.2.7Effects on acting on aquatic organisms72CA 8.3.1Effects on bees74CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute contact toxicity82CA 8.3.1.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8.3.1.4Sub-lethal effects99
CA 8.2.5.2Reproductive and development toxicity to an additional aquatic invertebrate species 53CA 8.2.5.3Development and emergence in Chironomuc species54CA 8.2.5.4Sediment dwelting organisms54CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6.3Effects on aquatic macrophytes66CA 8.2.6Effects on aquatic macrophytes70CA 8.2.6Effects on acting on aquatic organisms72CA 8.2.7Effects on acting on aquatic organisms72CA 8.3.1Effects on bees74CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute contact toxicity82CA 8.3.1.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8.3.1.4Sub-lethal effects99
CA 8.2.5.3Development and emergence in Chironomuc species54CA 8.2.5.4Sediment dwelling organisms54CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6Effects on aquatic macrophytes66CA 8.2.8Further testing on aquatic organisms70CA 8.3.1Effects on bees72CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1.2Acute contact toxicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8.3.1.4Sub-lethal effects99
CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6Effects on aquatic macrophytes66CA 8.2.8Further testing on aquatic organisms70CA 8.3Effects on arthropods72CA 8.3.1Effects on bees72CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute contact toxicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.4.2Chrome toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8/3.1.4Sub-lethal effects99
CA 8.2.6Effects on algal growth57CA 8.2.6.1Effects on growth of green algae57CA 8.2.6.2Effects on growth of ar additional algal species64CA 8.2.6.2Effects on aquatic macrophytes66CA 8.2.8Further testing on aquatic organisms70CA 8.3Effect on arthropods72CA 8.3.1Effects on bees72CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute contact toxicity74CA 8.3.1.1Chrome toxicity82CA 8.3.1.1Chrome toxicity to bees84CA 8.3.1.1Effects on honeybee development and other honeybee life stages87CA 8.3.1.4Sub-lethal effects99
CA 8.2.6.1Effects on growth of green algae
CA 8.2.6.2Effects on growth of an additional algal species64CA 8.2.6Effects on aquatic macrophytes66CA 8.2.8Further testing on aquatic organisms70CA 8.3Effect on arthropods72CA 8.3.1Effects on bees72CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.2Acute contact toxicity74CA 8.3.1.2Chronic toxicity to bees82CA 8.3.1.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybre development and other honeybre life stages87CA 8/3.1.4Sub-lethal effects99
CA 8.3.1.1CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute orationicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.4.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8/3.1.4Sub-lethal effects99
CA 8.3.1.1CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute orationicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.4.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8/3.1.4Sub-lethal effects99
CA 8.3.1.1CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute orationicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.4.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8/3.1.4Sub-lethal effects99
CA 8.3.1.1CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute orationicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.4.2Chronic toxicity to bees84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8/3.1.4Sub-lethal effects99
CA 8.3.1.1Acute toxicity to bees74CA 8.3.1.1Acute orab toxicity74CA 8.3.1.1Acute orab toxicity74CA 8.3.1.2Acute contact toxicity82CA 8.3.4.2Chrome toxicity84CA 8.3.1.3Effects on honeybee development and other honeybee life stages87CA 8/3.1.4Sub-lethal effects99
CA 83.1.3 Effects on moneybee development and other honeybee life stages
CA 83.1.3 Effects on moneybee development and other honeybee life stages
CA 83.1.3 Effects on moneybee development and other honeybee life stages
CA 83.1.3 Effects on moneybee development and other honeybee life stages
CA \$\%3.1.4 Sub-lethateffects
CA 8.3.2 Diffects on non-target arthropods other than bees
CA 8.3.2.1 Effects on Aphidius thopalosiphi
CA 8.3.2.2 Effects on Typhlodroma pyri
CA 8.4 Effects on non-barget soil meso- and macrofauna
CA 8.4 CA Starthworm sub-lethal effects
CA 84.2 Effects on non-target soil meso and macrofauna (other than earthworms)
CA 8.4.2.1 Species level testing
CA 8.6.1 Summary of screening data
CA 8.6.2 Testing on non-target plants

CA 8 ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE

Fosetyl was included in Annex I to Directive 91/414/EEC in 2006 (Directive 2006/64/CE of 18 July 2006, Entry into Force on 1 May 2007). This Supplementary Dossier contains only data which were not submitted at the time of the Annex I inclusion of fosetyl under Directive 91/414/EEC and which were therefore not evaluated during the first EU review. All data which were already submitted by Bayer CropScience (BCS) for the Annex I inclusion under Directive 91/414/EEC are contained in the DAR, its Addenda and are included in the Baseline Dossier provided by BCS. These data are only mentioned in the Supplementary Dossier for the sake of completeness and only general information (e.g. author, reference etc.) is available for these data. In order to facilitate discrimination between new data and data submitted during the Annex I inclusion process under Directive 9/414/EEC, the old of data are written in grey typeface. For all new studies, detailed summaries are provided within this Supplementary Dossier. However, for a better understanding of the ecotoxicological behaviour of fosetyl, short summaries including the results of all studies are given at the beginning of the relevant sections. Additional information requested by the RMS France of 2016-04-04 and its follow up on 2016-06-02 during the evaluation of the Supplementary Dossier is including the supplementary Dossier is follow up on 2016-06-02 during the evaluation of the Supplementary Dossier is including the Supplementary Dossier is including the first of all studies are given at the beginning of the relevant sections. Additional information requested by the RMS France of 2016-04-04 and its follow up on 2016-06-02 during the evaluation of the Supplementary Dossier is including the results of all studies are given at the beginning of the relevant sections.

Fosetyl is the ISO common name for ethyl hydrogen phosphonate (UPAC). Due to the fact that the aluminium salt, a variant of fosetyl, is used in the formulated product, it should be noted that the data in this section belong to the variant fosetyl-aluminium (fosetyl-Alu, unless otherwise specified.

In original reports study authors may have used different names or codes for metabolites of fosetyl-Al. In this summary, a single name or a single code is used for each metabolite. A full list containing structural formula, various names short forms, codes and occurrences of metabolites is provided as Document N3.

As some pragmatic approach "phosphonic acid" formed as a major metabolite is reported in this Supplementary Dosper as the free acid for the sake of clarity and unequivocal handling. After application, aluminium tris-O ethyl phosphonate (i.e. to ethyl-Al) dissociates into the O-ethyl phosphonate and aluminium tons. Any phosphonate formed from O-ethyl phosphonate in the following would never be present in the form of the free acid (i.e. phosphonic acid) under the conditions of the environment (pH 4 to 9). This conclusion is supported by the molecular structure and by the dissociation constant observed (dissociation constant for the first step of deprotonation: pKa = 200. Consequently, phosphonates in them fully protonated form are strong acids that spontaneously form salts in contact with coil or natural water with any suitable counter ion present (i.e. sodium, potassium) magnesium calcium). With the ability to readily form salts in the environment phosphonates are, in terms of their acidic or alkaline character, similar to the salts of phosphoric acid (i.e. phosphates) in their environmental behavior. Conclusively, the character of being a salt prevents effects that would be observed when the fully protonated form, i.e. the free acid, would be tested. Consequently, ecotoxicological tests of performed with the sodium or potassium salts rather than with phosphonic acid

The actual name for metabolite, phosphonic acid" follows current nomenclature according to IUPAC for the free acid H_3PO_3 . In the past, i.e. former IUPAC nomenclature, there was used the name phosphorous acid for the same compound. While the actual naming for the salts is "phosphonate" (e.g. disodium phosphonate, Na HPQ₃) the corresponding former naming was "phosphite" (e.g. disodium phosphite) for this class of compounds.

CA 8.1 Effects on birds and other terrestrial vertebrates

CA 8.1	Effects	on birds and	other te	rrestrial	vertebrates	° .
CA 8.1.1	Effects of	on Birds				Reference
Table 8.1- 1:	Endpoints	birds			T.	
Test substance	Test design	Test species		Èndpo	oint of	Reference
	acute toxicity	Bobwhite quail	LD ₅₀	> 8000 1	m Qi.s./kg bw ^{a)}	,; , , , , , , , , , , , , , , , , , ,
	acute toxicity	Japanese quail	OLD SK		mon.s./kg@w	, 197♂M-156803-0451° ĶCA 8.1.€1/02 €
	acute toxicity	Bobwhite	LDso	i,≢\$\$228 €	mag a.s./kg bw fig a.s./kg bw	; 2012; M- 444560-0145 KOA 8.1 1.104
	geomean LD ₅₀	Bobwbite quail	8000 mg bw 0 3228 mg bw 4997 mg		\$982 mg a.s./kg by 4997	5039 mg a.s./kg bw
Fosetyl-Al	dietzy toxiały (chort-tenn)	y quải Sowhite Graii	Dow 5 S LC 50 . LDD 50	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Kmg a.s./kg bw mga.s./kg Øret ng d.s./kg bw/d	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
		Makend duck	C 50 LDL 50	20000 >46164	gg a.s./kg bw/d	; ; 1981; M-159685-01-1 KCA 8.1.1.2/02
A BU	6-weeks Qding chronc, reproduction 7-weeks feeding		NOO NOEL		ng a.s./kg diet g a.s./kg bw/d	;;;; 1999; M-189216-01-1 KCA 8.1.1.3/01 ;; 2008;
	chropic, reproduction		NOÈC NOEL	≥331 m	mg a.s./kg diet ng a.s./kg bw/d	M-298080-01-1 KCA 8.1.1.3/02
	chronic, reproduction,	Ugeomean 4050 «		5039 / 10 = mg a.s./k		

Test substance	Test design	Test species		Endpoint	Reference
Dhamban	acute toxicity	Bobwhite quail	LD ₅₀ LD ₅₀	> 2250 mg test item/kg bw > 675 mg pm/kg bw	M-200039-01- KCA 8.1.1.103
Phosphonic acid	dietary toxicity (short-term)	Bobwhite quail	LC ₅₀ LC ₅₀ LDD ₅₀	 > 5620 mg test item/kg > 1692 mg pm/kg Stet ^{c)} > 508 mg pm/kg bw/d 	M-200041-0121 K(Q, 8.1-Q/03

pm = pure metabolite

3 mortalities from 10 birds tested at 8000 mg/kg w, therefore extrapolation factors (EFSA GP 2009 Table 1) not applicable. Included as $LD_{50} = 8000 \text{ mg/kg}$ by into the calculation of geomean LD_{50} values no mortalities among the 5 birds tested at 2000 mg/kg bw, therefore extrapolation factor of 1.614 (EFSA) b)

- 2009; Table 1) applicable: 2000 x 1.614 = 3228 mg/kg by
- 2 Values were corrected for a purity of 41% prospholic acid weight by xolume which is equal to 30.1% weight by weight. Test substance potassium salts of phosphonic ace has a density of 1.36 Therefore, on L of test substance weighs 1360 g and contains 410 g phosphonic acid (1360 = 0.301) with a weight/weight purity of 30.1%.

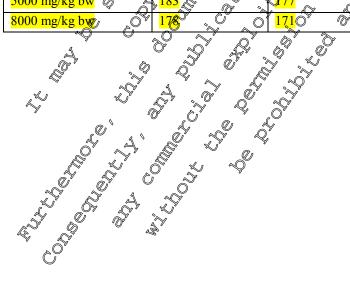
The guideline studies conducted with birds and mammals for use in the reproductive/longterm risk assessments are normally not well suited for EGx calculations. A recont EFSA review assigns a rating of 3 to these guidelines (= "has gerious limitation for the derivation" of reliable EQ_{10} estimations") and concludes that "EC10 and EC20 and their confidence intervals should not be routinely povided."

All studies listed in Table 8.1- P are summarized in the following sections, by order to facilitate discrimination between new data and date submitted for the Annex I inclusion of fosetyl under Directive 91/414/EEC the ord date (summaries from the original DYR prepared by the RMS) are written in grey ty

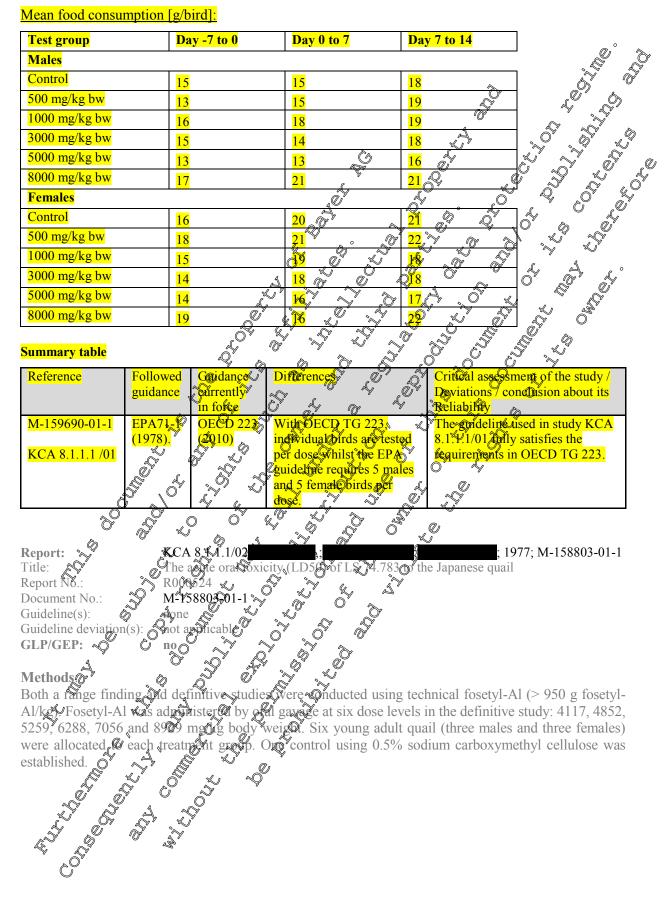
Acute Oral to vicity to bird CA 8.1.1.1

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/FCC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. S K, Ľ

The studies from which the endpoint wilk be used for Fisk assessment (directly or for geomean calculation) are summarised below, where pplic fe based on the evaluations from the original DAR of fosetyl. ð


A	
	[*] KCA 8.1.1 201 ; 1981; M-159690-01-1
Title	The acute ral to Ocity (1950) of LS74.783 to the bobwhite quail
Report No.:	K00098
	∧M-1506690-0€ A Q
	USEPA, Fed. Reg. 163.71-1, 1978
Guideline (s): O Guideline de ation (s):	not specified vo
GLP/GER	Ģes ~
GLP/GEIØ	
Methods:	

range finding and definitive studies were conducted using technical fosetyl-Al (975 g/kg) adminis ded by oral gavage to 5 males and 5 females per dose group, at 5 dose levels in the definitive study (500, 1000, 3000, 5000 and 8000 mg/kg b.w). One control group (10 birds) using corn oil was established.


Results:

	r mungs.							L.Y	
The mortalities observed are presented in the table below:								- And	~
	Dose levels	mg a.s./kg b.w.	0 (control)	500	1000	3000	5000	8000	Ő
	Mortalities	total	0/10	0/10	0/10	0/10	0/10	3/10	N.
		(%)	(0)	(0)		(0)	0/100	(30)	
	LD ₅₀		> 8000 mg a.	s./kg b.w.	¢ V		R	Ø	
					S.			~	Ì Ô

Results:		
Three birds died du	ring the first 3 days following dosing at the highest dose (8000 mg a.s./kg). No	
post-dosage-mortalit	y occurred in any other groups. Slight effects on bodyweight and behavior g.g.	
weakness) were obse	erved at 5000 and 8000 mg a.s./kg bw (recovery at day 4 after dosing).	
Findings: The mentalities chas	much and any second in the table below.	
Dese levels mg e s	lyg by 0 (control) 500 1000 3000 5000 \$ 8000	
Mortalities total	0/10 $0/10$ $0/10$ $0/10$ $0/10$ $0/10$ $0/10$	
(%)	$(0) \qquad (0) \qquad (0) \qquad (0) \qquad (0) \qquad (30) \qquad (30) \qquad (0) \qquad (0$	Ŋ
LD ₅₀	> 8000 mg a.s./kg b.w.	
Comments (RN	IS): acceptable	
Further study infor	mation supplementing the original DAR summary	
Validity Critoria		
Control mortality no	t av coording 10% (fulffilled) 2 a 2 a 2 a 2 a	
Mean hodyweight [g	Whirdly a start of a bar of a	
Test group	Day 0 & Day 3 & C Dago7 & Day44	
Males		
Control	197 194 194 196 9 199	
<mark>500 mg/kg bw</mark>		
<mark>1000 mg/kg bw</mark>	186 A 390 0 6 193 V 6 196	
3000 mg/kg bw	<i>x</i> 19 <i>f x</i> 194 <i>x y φ</i> 198 <i>y y</i> 207	
5000 mg/kg bw		
8000 mg/kg bw	V ¹ 83 × × × × × × × × × × × × × × × × × × ×	
Females	ring the first 3 days following dosing at the highest dose (8000 mg a.s./kg). No ty occurred in any other groups. Slight effects on bodyweight and behavior (e.g., erved at 5000 and 8000 mg a.s./kg bw (recovery at day 4 after dosing). rved are presented in the table below: $\frac{1}{(kg b.w. 0 (control) 500 1000 3000 5000 8000}{(0) 0/10 0/10 0/10 0/10 3/10}{(0) 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/$	
Control	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
500 mg/kgybw		
1000 make hu	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3000 mg/kg bw 5000 mg/kg bw 8000 mg/kg bw	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	183 × 177 × 187 194	
<mark>8000 mg/kg bw</mark> g	<u>_</u> O [*] 178 [°] <u>0</u> 0 1710 [°] 0 [°] 185 197	

Mean food consumption [g/bird]:

Results:

Mortalities were recorded in each group as presented in the table below. With exception of one case at 4852 mg/kg at d 10, all other cases of mortality occurred within the first three days after dosing. The birds became very quiet after dosing, sitting in a hunched position, with feathers ruffled for to a 24 hours. Birds which survived to the end of the study remained in good health throughout the observation period. Food consumption varied between 9 and 18 g/bird/d and there was some vide the that dosing Japanese quail with fosetyl-Al depressed food consumption over the 7-d period after dasing. Moreover, there was no evidence to suggest that body weight was affected. Findings: The mortalities observed are presented in the table below: **Dose levels** mg a.s./kg b.w. 0 (control) 4117 **@8**52 5259 70.Ø 6288 3/6 \$5/6 Mortalities 0/6 3/6 300 total 2/6 500 (50)(%) (0)(33)Further study information supplementing the original DAR summary: Validity Criteria: Control mortality not exceeding 10% (fulfilled). Mean bodyweight [g/bird] Test group Day Day Day 4 Males & females Control 192 4997 mg a.s./kg bwy. (95% CI 3 68-6 7% mg *s/kg bw 4117 mg/kg bw 34 4852 mg/kg bw 86 5259 mg/kg bw 6288 mg/kg bw 192 Å 7056 mg/kg bw <mark>8929 mg/kg bw</mark> Ò 240 Ô Ø Mean food consumption 6 Pir Test groop Day 9 to 7 to 14 Ô Males & females Control 4117 mg/kg bw 4852 mg/kg by 13 5259 mg/kg@w 16 6288 mg & bw 18 7056 mg/kg ba _ 8929 mg/kg ww Ô 17

Bayer – Crop Science Division

Summary table				
Reference	Followed guidance	Guidance currently in force	Differences	Critical assessment of the study / Deviations / conclusion about is Reliability
M-158803-01-1	<mark>EPA71-1</mark> (1978).	OECD 223 (2010)	With OECD TG 223, individual birds are tested	The guideline used in stud XCA 8.1.1.1/02 fully satisfies the
KCA 8.1.1.1 /02	(1770).	(2010)	per dose whilst the study employed 3 males and 3 female birds per dose.	requirements in OECD TG 223
			T.	
treatment level du was confined to 2 250 mg/kg @era stress-associated observation has b in appearance and I Comments (R	Sing the cess ine observations in the observation of the centre of the	t. And 6 off ion period it hibiting sha osing process have low of beasured do mekg bay. 55 mg/kg bay. non fLP st	female at 229 mg/kg exhibits was not considered to be are flow and rapid respiration. lure, the can be considered osages. At all later times all orages whe between 1093 a (> 679 mg H3PO3bg b.w.) v. 105 mgH3PO3bg b.w.) v. 105 mgH3PG/kg b.w.)	
Further study in	formation	supplement	ing the original DAR sum	mary:
Further study in Validity Criteria: Control mortality	not exceed	U ⁷ if g 10% ful 5 5 7 7	filfed).	

Mean bodyweight [g/bird]:

Test group	Day 0	Day 3	Day 7	Day 14
Males	- ••• · •		- , .	
Control	219	218	221	225
292 mg/kg bw	205	209	209	211 6
486 mg/kg bw	204	207		208
810 mg/kg bw	205	209	209 227 216	2120 212
1350 mg/kg bw	220	226 Č3	227	229 N 69
2250 mg/kg bw	211			216 3 × 6
Females			<u> </u>	208 2,120 2,10
Control	<mark>219</mark>	222		248
<mark>292 mg/kg bw</mark>	<mark>222</mark>			
<mark>486 mg/kg bw</mark>	<mark>204</mark>	225 208 222 222 209 209 209 209 209 209	222 y y y 207 y y 223 y y	210 y
<mark>810 mg/kg bw</mark>	220	222	223 0 ² 0 ²	$ \begin{array}{c} 210 \\ 22 \\ 210 \\ 210 \\ 209 \\ 200 \\$
1350 mg/kg bw	220 205	209		210
<mark>2250 mg/kg bw</mark>	204	209 2 ~	208 × 69	200 0
Mean food consumption	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2097 7 7 209 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	209 208 208 5 5 5 5 5 5 5 5 5 5 5 5 5	
Test group	Day 023	Day 4 to 7	Day 8 to 4	
Males		× <u> </u>		v
Control	Day (23 , ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~		24 9 ~ ~ ~	
292 mg/kg bw	34 A	28 <u>27 6</u> 7	21 *** 3 ³ 22 * 3 ³	-
486 mg/kg bw	34 A 36 7 X 87 X	20		-
810 mg/kg bw			21, (5)	-
1350 mg/kg bw	$\begin{array}{c} 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33\\ 33$		21 6 21 21 21 21 21 21 21 21 21 21 21 21 21	-
2250 mg/kg bw Females	$\begin{array}{c} 18 \\ 33 \\ \hline \end{array} \\ 0 \\ \hline \end{array} $			J
Control %				1
Control 292 mg g bw . 0	29 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
486 mg/kg bw			0 7 <mark>16</mark>	
292 mg/kg bw 0 486 mg/kg bw 0 810 mg/kg bw 0			1 /	4
1350 mg/kg bw		24 25 0 ⁷ 0 ⁷ 25 0 ⁷ 0 ⁷	21	4
810 mg/kg bw 1350 mg/kg bw 2250 mg/kg bw	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24 25 0 0 127 0	<u>19</u>	4
			<mark>17</mark>	Ţ
Summar table				
Reference KFollo	Gildance	Differences	Critical access	nent of the study /

Reference Followed	Guidance	Differences	Critical assessment of the study /
	Currently		Deviations / conclusion about its
	in force	Ó.	Reliability
M-200039-061 PA71	OEOD 223	[*] With OECD TG 223,	The guideline used in study KCA
چې <mark>(1978)</mark>	(2010)	individual birds are	8.1.1.1/03 fully satisfies the
KCA 8.1 (1/03 🖓 🖉	Ĵ,	tested per dose whilst the	requirements in OECD TG 223
		EPA guideline requires 5	
		males and 5 female birds	
KCA 8.1671 /03 5 C		per dose.	
<u> </u>			
Ĉ			

One additional study on acute toxicity to birds was performed, which was not submitted for Annex I inclusion on fosetyl under Directive 91/414/EEC and is submitted within this Supplementary Dossier for the approval renewal of fosetyl. This study is summarized below. Q_{μ}°

Report:	KCA 8.1.1.1/04	-	; 2012; M	[-447760-01-1	
Title:	Toxicity of fosetyl-alum	inum (AE F053	616) technical dur	by an acute or	al LD50 with
	the northern bobwhite q	uail (Colinus vir	ginianus) 🔬	Å	
Report No.:	EBFYL024		s de la companya de l	~~	
Document No.:	M-444760-01-1	Ø		×,	
Guideline(s):	OPPTS 850.2100	The second secon	Q.	e i	
	OECD Guideline 223	L.	0×	s d	
Guideline deviation(s):	not specified	4	Q	Å. I	0°, 0°
GLP/GEP:	no	O,			
		~~		~ ^\ *	u v

Objective:

An acute oral toxicity test was conducted to estimate the LDC of tosetyl-aluminium (fosetyl-Al) technical to northern bobwhite quail (*Colimps virginianus*).

Material and Methods:

Fosetyl-Al, technical; Origin Batch No.: 08001; Batch Code No.: AE F053616-01-11; Tox No.: 09393-00, Purity: 98.1% w/w

Northern Bobwhite quail (24-week-old adults) were orally dosed with Fosetyl-OI technical based on body weight at a limit dose level of 2000 ms a.s./kg body weight? Five birds per dose evel (two males and three females) were randomized by body weight into the dose level on experimental Day -1. Birds were capsule dosed on Day -0 and were monitored for 21 days post-dosing. All feed and water was provided *ad libitum*. Adult body weights were taken on experimental Day -6. Day 7, Day 14, and Day 21. Feed consumption was recorded for the first three days of the study and then for Day's 3, 7, 14, and 21. Clinical observations occurred daily. Postmortem examinations were conducted on all birds sacrificed at Study termination.

Dates of experimental work: June 26, 2012 - July 17, 2012

Results

Acute Oral Toxicity to Birds

Acute Oral ED50 With Adult Quail	Exposed to Fosetyl-Al Technical
$LD_{50}: \qquad \bigcirc \qquad $	≥ 2000 mg a.s./kg body weight
Lowest observed adverse effect level (LGAEL);	2000 mg a.s./kg body weight
No observed adverse offect level (NOAEL):	2000 mg a.s./kg body weight
Lowest Lethal Dose (LLD	> 2000 mg a.s./kg body weight

Mortality & Oinical Observations.

No clinical signs of toxicos or mortalities occurred in the control or 2000 mg a.s./kg body weight (bw) dose group. Pose mortem examinations were unremarkable.

There were no statistically significant reductions in body weight or growth at the 2000 mg a.s./kg bw dose level.

Conclusion:

The acute oral LD₅₀ for Fosetyl-Al technical in northern bobwhite quail was >2000 mg a.s./kg bw. Based on all parameters, the NOAEL was 2000 mg a.s./kg body weight and the LOAEL was >2000 mg a.s./kg bw.

Applying the appropriate extrapolation factor of 1.614 for a study with no mortality among 5 birds (as given in the EFSA GD 2009, section 2.1.2), the LD₅₀ can be established at 3228 mg a.s./kg bw.

CA 8.1.1.2 Short-term dietary toxicity to birds

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. Below the dose conversion calculations for the studies with the active substance are given.

7/83 to the bolt hite of hil 159687-KCA 8.1.1.2/01 **Report:** 01-1 The subacute Stary wic Title: R000984 Report No.: Document No .: M-159687-01-1 @ US EP & Fed. R Guideline(s): Guideline deviation(s): not spec **GLP/GEP:** Only one mortality (10%) was been at the top fest level of 20000 ppm of osetyl-Al. The mean bodyweight of birds over thorized by exposure shase at 2000 ppm dis 2007 g/bird. The mean food consumption during the five day proster phase at 2,000 pon was 3.2 g/bird/d. The mean achieved ppm is calculated as (3 x20006≠312cmg/kg bw/d. daily dietary doscat 2000 **Conclusion**: The 5-d LDO 50 of fose Comments (R

Further study information supplementing the original DAR summary:

Validity Criteria: Control mortality not exceeding 00% (fulfilled). Treatment concentrations at least 80% of normal (fulfilled). Lowest treatment level without compound-related mortality or other observable toxic effects (fulfilled).

Bayer – Crop Science Division

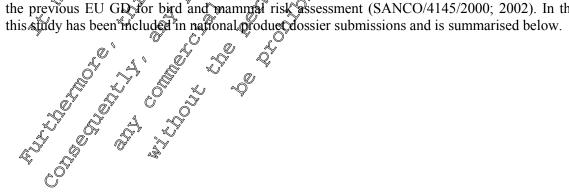
Document MCA – Section 8: Ecotoxicological studies Fosetyl

Treatment	mortality	<mark>bw day 0</mark>	<mark>bw day 5</mark>	<mark>bw day 8</mark>	FC day 1-5	FC day 6-8
1 i cutilititi	[%]	[g]	[g]	[g]	[g/bird ^a]	[g/bird]
Control	0	18	<mark>26</mark>	32	3.6	FC day 6-8 [g/bird] 5 4 4 4 4 4 4 4 4 4 4 4 4 4
Control	0	<mark>17</mark>	<mark>24</mark>	<mark>29</mark>	<mark>3.0</mark>	<u>4</u>
Control	<mark>10</mark>	<mark>17</mark>	<mark>23</mark>	<mark>29</mark>	<mark>2.8</mark>	
2353 ppm	0	18	26	34	<mark>4.6</mark>	
3361 ppm	0	18	27	34	4.0	
4802 ppm	0	18	26	32	4.0	
<u>8800 ppm</u>		18	20	<u>30</u>	2.8 (31.0	
14000 ppm	0	18	25 26	$\frac{30}{32}$	34	
20000 ppm	10	10	24	30 🐇	3.2 ¢	
^{(a} arithmetic m	ean of the 5	daily consur	nption value	s in the repo	ort Q	
		2	•			
General bird	health was	s good thro	ughout the	study and	no adverse	effects were observed in groups
dosed with fo	osetyl-Al dı	uring the tre	eatment per	rød. 🔗	N N	
			.4			
<mark>Summary tab</mark>	le		S,			
Reference	Follo	wed Guida	unce Dif	forences	<u>, 4</u> 0	Critical assessment of the study /
	guida	nce curren	ntli 🤅			Deviations conclusion about its
		in for				Reliability & A
<mark>M-159687-0</mark>	1-1 EPA7	1-2 OEC	205 non	i de se	l S	Studyos no longer required under
	(1978	s) (109/84		o Si		Regulation EC) 1007/2009.
KCA 8.1.1.2	/01	w.		<u> </u>		
		ŵ Ő		Û ^Y 'O		Y Y Q
_		× A			A N	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Report:	×	KCA 8,1.1.2	2/022 × 1	, , ,	~ ¥ 0	; 1981; M-159685-
Title	Ő	The subact	e dieser tox) of 16674 783	of the mallard duck
Report No.:	S.	1000983				
Document No		M-159685-0)[k] 💭			J ^y
Guideline(s):	ð S	US O A, Fe	@ Reg.,\$163	.762, 1978		Dj
Guideline dev	jation(s).	not specifico	1 2 2	S O		-
Report: Title: Report No.: Document No Guideline(s): Guideline dey GLP/GEP	Č			<u>A</u>		
No en artalita				0 [°] 1		to the mallard duck
No mortality	was opser	vequp to is	top est 1		100 psin of 10	ind The mean feed consumption
during the fi		y exposice		ooo ppen v	va 204.3 g/0 7 g/bird/d	ird. The mean food consumption
dose at 2000	0 Rom is Qa	cultured as	(972000)	0.0000	0/1616 mg/kg	g bw/d
dose at 2000	Qapin Red				4010 IIIg/ Kg	The mean achieved daily dietary g bw/d.
Conclusion		° S'	AN .			
The 5-do DI	Joo of tosata	7I-AI 🙀 Ma	llard duer i	s > Å 816 m	ng/kg bw/d	
	-S	A	Y ay		8,180,000	
The 5-d&DI	ts (RMS): :	a Septably	Q 1	5) × 90000 4 5 5 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6		
		A.				
Further stu	dy informa	tionsuppl	menting t	he original	DAR summ	lary:
Â			~			
Validity Crit	eria:	o s	¥			
Control Quort	alty not ex	ceeding 10				
Treatment co						
	tment [©] leve	Without	compound	-related m	ortality or	other observable toxic effects
(fulfilled)						
V						

Bayer – Crop Science Division

Document MCA – Section 8: Ecotoxicological studies Fosetyl

Igl 144 141 142 141 150 139 147 145 143 144 141 150 139 144 145 143 148 noutlier of 90 Followed guidance EPA71-2 (1978)	Igl 262 239 243 250 278 254 259 254 259 254 261 0 g on day 1, Guidance currently in force OECD 205 (1984)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[g/bird * 43.0 40.8 43.4 42.6 49.2 44.6 55.4 a) (49.0)	Ig/bird] 47 48 48 49 52 50 49 50 40 41 42 43 449 50 51 51 52 50 51 52 54 55 55 56 57 57 58 59 50 50 51 52 52 54 55 56 57 58 59 50 50	Sessment of the study s / Onclusion about /
144 141 142 141 150 139 147 145 143 148 1 outlier of 90 Followed guidance EPA71-2 (1978)	262 239 243 250 278 254 259 254 254 261 0 g on day 1, Guidance currently in force OECD 205 (1984)	318 313 321 314 349 331 325 322	43.0 40.8 43.4 42.6 49.2 44.6 55.4 a) (\$49.0	[g/bird] 47 48 48 49 52 50 49 49 45 52 50 49 49 49 49 49 49 52 50 49 49 50 49 50 49 50 49 50 49 51 52 54 54 55 56 57 58 59 50 50 51 52 54 55 56 57 58 59 59 50 50 51 52 54 55 56 57 58 59 59 50 50 51 52 54	s conclusion about y
141 142 141 150 139 147 145 143 148 100tlier of 90 Followed guidance EPA71-2 (1978)	239 243 250 278 254 259 258 254 261 0 g on day 1, 0 g on day 1, 0 g on day 2, 0 g on day 2, 0 g on day 2, 0 g on day 3, 0 g on day 3, 0 g on day 4, 0 g on d	313 321 314 349 331 325 322	40.8 43.4 42.6 49.2 44.6 55.4 ^a (\$49.0	47 48 48 49 45 52 54 49 49 49 49 49 49 49 49 49 49 50 49 50 49 50 50 7 50 7 50 7 50 7 50 7 50 7 50 7	essment of the study
142 141 150 139 147 145 143 143 143 143 100tlier of 90 Followed guidance EPA71-2 (1978)	243 250 278 259 258 254 254 254 254 261 0 g on day 1, Guidance currently in force OECD 205 (1984)	321 314 349 331 325 322	43.4 42.6 49.2 44.6 55.4 ^{a)}	48 49 52 52 50 49 49 49 49 49 49 49 49 50 49 50 49 50 50 50 50 50 50 50 50 50 50 50 50 50	essment of the study
141 150 139 147 145 143 143 144 143 144 143 144 143 144 143 144 144 148 1000000000000000000000000000000000000	250 278 254 259 254 254 254 261 0 g on day 1, Guidance currently in force OECD 205 (1984)	314 349 331 325 322	42.6 49.2 44.6 55.4 ^{a)}	48 49 52 50 49 49 49 49 49 49 49 49 49 49 49 49 49	essment of the study s/ conclusion about tw
150 139 147 145 143 143 1448 noutlier of 90 Followed guidance EPA71-2 (1978)	278 254 259 258 254 261 0 g on day 1, 0 g on day 1, 0 g on day 1, 0 g on day 2, 0 g on day 2, 0 g on day 2, 0 g on day 3, 0 g on day 4, 0 g o	349 331 325 322	49.2 44.6 55.4 ^{a)}	49 45 52 50 49 49 49 49 49 49 49 49 49 49 49 49 49	s/ conclusion about ty
139 147 145 143 144 143 144 144 143 144 144 143 144 143 144 143 144 1000000000000000000000000000000000000	254 259 254 261 0 g on day 1, Guidance currently in force OECD 205 (1984)	331 325 322	44.6 55.4 ^{a)}	45 52 50 49 49 49 2 2 2 49 49 2 49 2 49 2 49 2	essment of the study s/ conclusion about tw
Followed guidance EPA71-2 (1978)	259 258 254 261 0 g on day 1, Guidance currently in force OECD 205 (1984)	325 322	<mark>55.4 ^{a)} ©#9.0</mark>	52 50 49 49 2 49 2 49 2 49 2 49 2 5 5 5 49 2 5 5 5 6 7 5 6 7 6 7 7 6 7 <	essment of the study s / conclusion about tw
Followed guidance EPA71-2 (1978)	Guidance currently in force (1984)	322	C <u>49.0</u>	Study is not	essment of the study s / conclusion about tw
Followed guidance EPA71-2 (1978)	Guidance currently in force OECD 205 (1984)	Jacobia State Sta	49.0 49.6 47.2 be due to spilla	49 49 20 20 49 20 20 49 20 20 49 20 20 20 49 20 20 20 49 20 20 20 20 20 20 20 20 20 20 20 20 20	essment of the study s / conclusion about tw
Followed guidance EPA71-2 (1978)	Guidance currently in force OECD 205 (1984)	Differences	49.0 47.2 Se due to spilla Se due to spilla	2 49 49 2 49 2 49 2 49 2 49 2 49 2 49 2	essment of the study s/ conclusion about tw
Followed guidance EPA71-2 (1978)	Guidance currently in force OECD 205 (1984)	Differences	e due to spilla	Cotical as Deviation its Repabili	essment of the study s / Onclusion about tw
Followed guidance EPA71-2 (1978)	Guidance currently in force OECD 205 (1984)	Difference		Cotical as Deviation its Rejabili	essment of the study s / conclusion about tw
guidance EPA71-2 (1978)	currently in force OECD 205 (1984)	Differences none		Cotical as Deviation its Repability Study is not	essment of the study s / Onclusion about tw
EPA71-2 (1978)	in force OECD 205 (1984)	T inone, t		Deviation its Rorabili	s / conclusion about /
<mark>(1978)</mark>	OECD 205 (1984)	none Mone		its Refrabili	tv.
<mark>(1978)</mark>	(1984) (⁷ none ⁷		Study is not	
	<u> </u>				onger required
KCĄ	- Q a	The second secon		vinder Regu	lation (EC)
KCĄ	Q'			21107/2009.	
M-200 M-200 ASTN (s) not sp on of FSA on of the tes rrs in the co t any of the	Alment Grou Qubstance contra Jor in concentration	OE D: 200 Count (2005 692 mg/kg 562, 2000, 1 Nothern by 100 Nothern by 1	USERA (=EA) 5 - 1 - 79 for figer (equ. to posphore a 080, 3160 an obwhich quail eviated betwee nt group. Furt All birds were	b): E Q1 -2 fosetyl-Al: 505 mg pm/kg cid (<i>ca</i> 400 g p d 5620 ppm. In (10 weeks old; een 100.9 and 1 hermore, there y normal in appea	bw/d) book from nominal vere no clinical signature book from the second second second book from the second second second book from the second second second second book from the second second second second book from the second secon
	I to Oich tre on of the tes rrefrin that it any of the	I to Oth treatment grou on of the test ubstance rregain the contration in it any of the concentration	I to Oth treatment group O on of the tesQubstance in the digit rreating the control or in Ay treatment it any of the concentrations to ted. A	I to Orch treatment group O on of the test ubstance in the die die deviated betwee rreg in the control or in my treatment group. Furt it any of the concentrations taked. All birds were	on of the test substance in the die deviated between 100.9 and 11 ref. in the contral or in any treatment group. Furthermore, there we than of the concentrations to the die deviated between 100.9 and 11 ref. in the contral or in any treatment group. Furthermore, there we than of the concentrations to the difference of the distribution of the concentrations to the difference of the distribution of the concentrations to the distribution of the distribution of the concentrations to the distribution of the distribution of the distribution of the concentrations to the distribution of the di


Further study information supplementing the original DAR summary:

Validity Crit Control mort Treatment co	ality not ex	s at least 80)% of nom	inal (fulfilled		*	ole toxic effects
	tment leve	l without	compound	l-related mo	ortality or	other observat	le toxic effects
(fulfilled).						· ~ /	
Treatment	mortality	<mark>bw day 0</mark>	<mark>bw day 5</mark>	bw day 8	FC day 1-5	Fe day 6-8	
Freatment	[%]	[g]	lg		g/bird]	vertical de la competition de	
Control	0	20	32	43	7	$\mathbb{Q}_{9}^{g,bird}$	1 2 2 4
Control	0	21	31	41	8 2		Q Q V
Control	0	<mark>21</mark>	<mark>33</mark>	43 🕰	<mark>9</mark>		L'U LU
Control	<mark>0</mark>	<mark>20</mark>	<mark>30</mark>	40	<mark>11</mark> 🥎 👢		
<mark>562 ppm</mark>	<mark>0</mark>	<mark>20</mark>	<mark>31</mark>	$\begin{array}{c} 40 \\ 40 \\ 43 \\ 40 \\ 40 \\ 40 \\ 44 \\ 44 \\$		$\begin{array}{c} 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 7 \\ 9 \\ 7 \\ 7 \\$	
<mark>1000 ppm</mark>	<mark>0</mark>	<mark>21</mark>	<mark>32</mark>	<mark>43</mark> 🖉			
<mark>1780 ppm</mark>	<mark>0</mark>	<mark>20</mark>	<mark>31</mark>	40	<mark>7</mark>		ST DT A
3160 ppm	0	20	32	44 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\frac{12}{2}$	
<mark>5620 ppm</mark>	<mark>0</mark>	<mark>21</mark>	32 / ~		8 C		
General bird	1 1/1	1.4					
		good thro	agnout the	study and p	io adverse i	entects were obt	erved ouring the
treatment per	10 <mark>0.</mark>	Ą	, Ø		S i		°
a				o Si	Q [°]	0° 80	4
Summary tab	le	s i a	, Ş	de a	× "O"		0
Reference	Follo guida		ince Dif	fetences te 57 x y y x y		Deviations con	
	*					Reliability	
<mark>M-200041-0</mark>	(// n		205 gnon		<i>a</i> .	Study is no longe	
KCA 8.1.1.2	<mark>/03</mark>	O'		y N		Regulation (EC)	1107/2009.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,0		N D			
CA 0 1 1 2	~ @	- Summe	andra	A Satir Sta	winiter toth		

CA 8.1.1.3 Sub-chronie and reproductive toxicity to birds

For information on studies afready evaluated for the Annex I Aclusion of fosetyl under Directive 91/414/PEC, please effer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer PropScience

One additional, study on chronic/ceproductive foxicity to birds was performed, which was not submitted for the Annex Lonclusion of Posetyl inder Directive 91/414/EEC and is submitted within this Supplémentary Dosser for the tosetyl approval renewal. This study has been conducted at treatment fevels up to 3000 ppm, in order to match the exposure calculation approach introduced by the previous EU GD for bird and mammal risk assessment (SANCO/4145/2000; 2002). In the past, this study has been included in national productions and is summarised below.



Ô

#### **Bayer – Crop Science Division**

#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

had 16 birds housed in pairs (1 female + 1 male).

Report:	KCA 8.1.1.3/01 ; 1999; M-189216-01-1
Title:	Fosetyl-Aluminium: A reproduction study with the Japanese quail (Coturnix coturnix
	japonica)
Report No.:	R014231
Document No.:	M-189216-01-1
Guideline(s):	R014231 M-189216-01-1 OECD: Draft, (1998);
	Equivalent to US EPA OPPTS Guideline No. 850.2300
Guideline deviation(s):	not specified
GLP/GEP:	not specified yes
	yes A O O O
Mathada	
Methods:	
The test substance was	technical substance (purity: 99.6%). Adult birdoro weeks old body weight a
131 to 243 g were a	assigned to three treatment a guins (nominal concentrations of 187 and
1500 ppm). A control s	group (0 ppm) was maintained concurrently with the treatment groups. Each group
1 11(1) 1 1 1 1	

**Results**:

Measured concentrations of the a.s. in diet were close to nominals ( 68 453 ap@1370 ppm). Chere no treatment-related mortalities in any of the beatment groups. Hewever, five juridental mortalities occurred during the course of the study: fork occurred in the 162 ppm deatment groups and a single mortality occurred in the 500 ppm training group All mortalities were males they curred between the first week and the d 4 of wk of the treatment period. Deiden i clinical observations normally associated with penwear or interactions among pennetices were observed on the Ontrol group and in the 167, 500 and 1500 ppm, Soups. Except for incidental findings, all surviving bird in the control group and the 3 treatment groups were normal in appearance and behaviour throughout the test.

There were no treatment-related effects upor splee view liver tester or reproduction tract weight at any of the concentration rested Any differences beween the trotment and entrol groups were not statistically significate. There were no treament related offects upon adult body weight at the 167, 500 or 1500 ppm test conce@rations, and any differences from the control group were not statistically significant at any of the body weight atervals

Due to excessive wastage by some birds, feed onsumption was variable among pens. However, there were no apparent treatment-related effects upon feed consupption at all test concentrations

There were no approach treatment clated effects upon deproductive performance, egg weights, egg shell strength or thickness and basy weights of hatchings or 14-d old survivors at any of the concentrations tested, any determore between the control group and the treatment groups were not statistically somificate for my of the reproductive parameters measured. For all parameters measured, the treatment groups were comparable there exceeded the control group.

Reproduction data for Japanese quail (treatment period) Table B.9.1.3.1-1:

Dietary concentration	0 ppm	167 ppm	500 ppm	1 500 ppm@°
Eggs laid	623	515	610	659
Eggs laid per female	52	52	53,5	54 4 .
Eggs damaged	5	3	<b>3</b> 6	
Eggs damaged / eggs laid (%)	0	1	2	
Mean egg shell thickness (mm)	0	0.246	0.220 0 726 0	
Eggs set	<b>1</b> 754	~623 Q2	726 6	7960
Egg weight (g)		5 12.J	¥¥1.7	12.0 ⁶
Dietary concentration	y Ogen	1670 pm	300 ppGr	\$500 pen
Dietary concentration	\$127 \$			2757 Q
Viable embryos / eggs set (%)		\$ 97 £ 4		0 ⁹⁵⁷
			094	D 757
Live 2-wk embryos				100
Hatchling	\$72 \$ \$	5% %	658	715
Hatchling / live wk erforyos ()	³ 920 g	96 <u>(</u>	Ø5 [°]	95
14-d old surgivors	× 853 ~		643	685
14-d old survivors/ eggs laid (%	1 866 C		90	88
14-Add survivors / Pitchling %)	\$6	, O ^x	98	97
Chick bodyweight at Of d (g	J 8 6 2	Å 8	8	8
		60	59	59
* significantly different from the control at p < ** significantly different from the control at p	805 O			
* significantly difference from the control at $p < 0$ ** significantly different from the control at $p < 0$ EC = 1500 ppm comments (RMS): acceptable				
$EC = 1500 \text{ ppm}_{C}$	У [″]			
Comments (RMS): a@cepta@e				
ther study information supplementing the	e original DA	<b>R</b> summary	•	

Measured test substance concentrations within 20% of nominal (fulfilled).

Minimum of 16 breeding pairs that have produced eggs available at the end of the 6-week treatment period (fulfilled).

Additional validity criteria in the OECD TG version from 1984 for Japanese quail (at least 24 14-d survivor per hen, eggshell thickness at least 19 mm) were also fulfilled.

The treatment period was proceeded by a two-week pre-treatment period, during which measurements of adult and reproductive parameters were made. These measurements were treated as covariates in the analysis of post-treatment responses in order to increase the power of the test to detect treatmentrelated effects.

#### Summary table

related effects.				
Summary table				
Reference	<mark>Followed</mark>	Guidance	Differences	Critical assessment of the study/
	guidance	currently in		Deviations / conclusion about its
		force	Ĉ	Reliability X X
<mark>M-189216-01-1</mark>	OECD 206	OECD 206	With OE TG 206	He guideline used in a dy KCA 8.1.1.3/01 is designed for a higher
	(draft update	<mark>(1984)</mark>	(1984), (at least 12	$\mathbb{S}^{8.1.1.3/01}$ is designed for a higher $\mathbb{O}^{7}$
KCA 8.1.1.3 /01	<mark>1998)</mark>		pairs of birds per	Statistical post of according
			treatment are exposed	reproductive toxicity than the
			over 20 weeks and	SECD TG 206 in its version from
		(	eggs are collected x	1984. The used guideline may not
		C	over av least 8-weeks	be appropriate for
		2	WHITOECD TG 206	bioaccumulating ubstances
		K, A		because a steady state
			weeks of egg hying	bioaccumulating of bstanges because a steady state conceptration may not be
		Q UN	by 16 pairs of proven	achieved sufficiently early in the
			breeders are required.	test. This is not the case for
		Q [*]		Posety CAI, therefore the study can
				be considered as reliable.
	l Š			

2008; M-298080-01 KCA 8.1.103/02 **Report:** Fosetyl-Al: Effects of a dibchromcal dierary exposured japanese quails including Title: effects on reproduction and behaviour 0 BAR REP OLS

Report No.: Document No .: Guideline(s):

 $\bigcirc$ MQ298080001-1 🖄 OECD Praft Guideline 206 for Jesting of Chemicals Avian Reproduction Test"; draft version from 04/2000

Guideline deviation(s) The exposure period was expended of 7 wests, singe the egg batch of week 4 was destroyed when being transferre for the incubator, so that the reproductive parameter this week could not be used for evaluation

#### GLP/GEP

#### **Objective:**

The aim of the study was to setermore effects on reproduction of fosetyl-aluminium (fosetyl-Al) to Japanese quail Coturnix coturnix japonica?

0

#### Material and Methods;

Ò Fosetyl-AI, technical purity: 99.9%, specification (batch No.: OP24550120, CAS. No.: 39148-24-8, LIMS No.: 0717456 Speg No.: #2000002957 Article No.: 05930170); oral administration in diet under laboratory conditions to pairs of sexually mature Japanese Quail (13 weeks old at start of pretreatment); exposure of 20 bleeding@pairs per treatment level at nominal dietary concentrations of 1800, 2325 and 3000 mg a skg diet (ppm) and control; 5 weeks of acclimatisation and stabilisation of sexual matority; 2, weeks of reproductive activity with untreated food (=pre-treatment period) followed by 7 yeeks of exposure. Reproductive data from exposure week 4 were excluded from analysis since a tray of eggs was accidentally dropped and all eggs were damaged. Therefore the study was extended for a week of egg laying under exposure, in order to provide for the 6 egg-laying weet data fequired by the guideline.

Effects on parental birds (behavioural impacts, food consumption, body weight, pathological findings) were recorded as well as reproductive parameters (egg weight, egg laying rate, egg fracture, eggshell thickness, fertility, embryonic viability, hatching success) including a 14-day post-hatch observation of the chicks (behavioural impacts, weight of the hatchlings, 14-day body weight).

For statistical evaluation of possible treatment related effects, the data for testing endpoints were processed as unpaired comparisons of each treatment level with untreated control.

Initially the data were analysed on homogeneous distribution (Kolmogoroff-Smirnov test, p < 0.95). In case the data were homogeneously distributed, they were subjected to an analysis of equal variances (Bartlett's test).

In case of equal variances, subsequent analyses were conducted using parametric techniques (Dunnett's test); otherwise the t-Test for inhomogeneous variances (Bonferon Test) was used.

#### **Dates of Work:**

Study initiation. Start of acclimation: Start of pre-treatment: Start of exposure: Sacrifice of adults; Test termination:

e	À	í "Q	
	A	、Ο ^ν	
(Pa			
2007-07-24	0,Y		
	Q.	. Ø 3	K K
2007-07-30 (start o 2007-09-1	of acclimation)	× õ	
2007-09-17			à à
	~~~ <i>b</i> j	ñ h	4
2007-10-91 [°]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥∖U ĝ	ĮU [*]
2007-11-19 2007-12-204 sacrif			L'
2007 12 200 kacrif	de of analys)	F L	A
200 B12-20 (Sacina)	ec of guickst.	10° L	
A 0 . 0		y 0' 2	ř _a z

Validity Check:

The results can be considered as valid Adult mortal for in the untreated control was 0%. The mimber of eggs laid per hen per day (0.9) and the mean number of 14-day old survivors (0.60 in the controls complied with the typical range specified in the guideline (0.60 to 0.89 eggs per hep per day; 0.34 to 0.71 14-d survivors per hen per day). Eggshell thickness (0.20 to 0.22 mp) was within the specified range (0.19 to 0.22 mm).

The analysis of the food mixtures in the peatment groups revealed that content, homogeneity and stability were within the defined limits.

Findings:

Subchronic and reproduction toxicity to Capanese quait
Test substance
Test object O O O J Japanese qual
NOEC for parental toxicity [ppm] $\sim \sqrt{2}$ $\sim \sqrt{2}$ ≥ 200
NOEC for parental toxicity $[mg a x]/kg kg/d$ > 331
NOEC for reproduction $[ppm]^{\circ}$ $\sim 10^{\circ}$ $\sim 10^{\circ}$ $\sim 10^{\circ}$
NOEC for reproduction [mg/a.s./kg/bw/d] 251

Parental Toxicity

Ô No parameter for parental toxicity showed any statistically or biologically significant difference between control and treatment goups 1

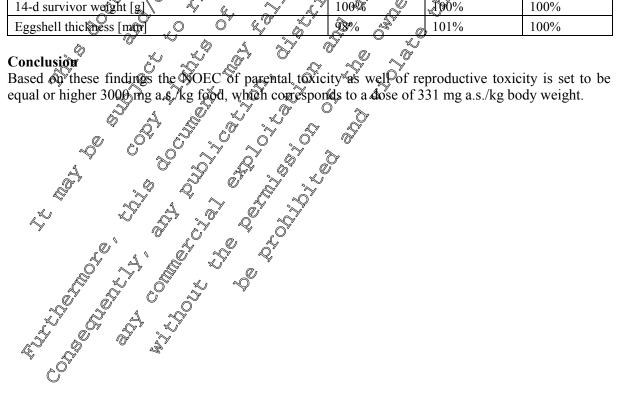
Treatment		Males [g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Females [g]			
[ppm]		Gind of pre-	© End of	Start of pre- treatment phase	End of pre- treatment / start of exposure phase	End of exposure		
0 (control)	248	247	250	289	292	293		
1800 🖉 🕺 🔘	୭ ,⊘339 ,√"	239	237	294	303	289		
2325 6	©248	248	248	298	309	298		
3000 🔊	246	246	243	286	291	287		

Study Week	Control	1800 ppm	23	625 ppm	3000 ppm
pre-treat. week 1	55.7	57.0		56.8	53.9 ₀ °
pre-treat. week 2	57.2	55.0		55.9	54.7
exposure week 1	57.9	57.2		56.9	58.7
exposure week 2	58.2	58.2		57.0	ة 57 ,8 0 ك
exposure week 3	58.8	58.4		59.0	58.1 . 9
exposure week 4	58.7	58.2		60.0	\$8.8
exposure week 5	61.1	61.1		61.0	≈ 60.1 ° ×
exposure week 6	60.5	59.7	<u>S</u>	60,4	58.4
exposure week 7	59.9	61.2	¥°	Q.6	Q 209.2 V
* ·				. O *	
Body weight, food	consumption and	achieved daily	0 🔗	1800	2325 3000
dietary dose	-		(control)	. 0 4	poppi & _U

bouy weight, food consumption	and achieved using	0 🛛	1000	S 2323	3000
dietary dose		(control)	Ű ⁽	🖇 papan'	Q Q'
Mean food consumption during expo	osure [g/pair/d]	° 59,9 s	j ⁷ 59 j Ø	69 .4 🗞	589
Bodyweight per pair at start of expo	sure [g] 🔿 🖉	<u>×</u> 540 <u></u>	<u>5</u> 40	\$ 557	₄ 537
Bodyweight per pair at end of expos	sure [g]	6 543 Q	\$ 25	545	\$30 ×
Mean bodyweight per pair during ex	xposure 🕵 🏹 🕺 🕺	> 541	A 533 A	551	\$ 53 <u>4</u>
Daily dose/pair [mg a.s./d]			1069	A38 🔬	
Daily dose [mg a.s./ kg b.w./d]			199	251	331
		K) ~0			<u> </u>

Neither mortalities nor behavioural changes or impacts were observed of the birds were in good shape at test termination & Small changes (capillary bleeding of the intestine or enlarged gall bladder), and females with plucked head, necks and back were found were found in both the control and the treatment groups. The treated birds were not higher affected. The statistical evaluation of the weight of spheren, liver and testicles in the test groups showed no significant changes related to the control 0 Ô

statistically or biologually significant differences were observed between control and treatment ý, groups. Õ Ô


\$ <u>~</u>	4	, «Ľ		O°						
Reproducti	ve Performatie	e per ben p	er day (v	veekly n	eans per	group, a	bsolute d	ata)		
Parameter	Study	Pre-tre	atment		\sim		posure ph			
Faranieter	group	week		week1	week 2	week 3	week 5	week 6	week 7	mean
mumb on of	0 (control) 1		×Q/9	ر 0.9	0.9 0	1.0	1.0	0.9	0.9	0.93
number of	1800 ppm	0.9		1.0	0.9	1.0	1.0	0.9	0.9	0.95
eggs laid / hen/day	~2325 ppm	01.0	0.9	1°.0/	_0.9	1.0	1.0	1.0	1.0	0.98
	🕺 3000 ppm		$\alpha'\alpha'$	1°.9		0.9	0.9	1.0	0.9	0.92
number of	🕅 0 (control	0.3	Ø.6	≫°0.5 _° ≪	0.6	0.6	0.6	0.5	0.5	0.55
14 day ofd	1800 ppm	Ø.6 🔿	0.6	0.60	0.6	0.6	0.5	0.5	0.4	0.53
suryix@r/	2325 ppm	A 0.6 @	0.	Ŭ.Ø	0.6	0.6	0.6	0.5	0.5	0.57
hen/day	3000 ppm 🥢	$\gamma 0 s$	0.5	0.5	0.6	0.6	0.6	0.6	0.5	0.57
	3000 ppm 0 (control) 1800 ppm 2325 ppm 3000 ppm 3000 ppm		ġ ~Ģ							

Daramatar	Study	Pre-tre	atment				posure ph	ase		
Parameter	group	week 1	week 2	week1	week 2	week 3	week 5	week 6	week 7	mean
	0 (control)	12.3	12.3	12.2	12.3	12.4	12.5	12.6	12.6	§. Ø.3
Egg weight	1800 ppm	12.2	12.3	12.3	12.4	12.2	12.3	12.2	12.3	§9.1 ⁴
[g]	2325 ppm	12.7	12.8	12.8	12.8	12.7	12.7	<u></u> 2.7	12.8 @	9.45
[g] Hatch weight [g] 14-d survivor weight [g] Eggshell thickness [mm] statistically Reproduction Parameter Eggs laid Eggs cracked Eggs cracked Eggs set	3000 ppm	12.3	12.5	12.6	12.6	12.6	12.7 @	12.6	12.7	s9.9
TT / 1	0 (control)	9.0	9.1	9.3	9.0	9.3	9.2	9.4	<u>S</u> S	~87.2
	1800 ppm	8.9	9.1	9.3	9.0	9.1	9Q7	9.1	9.5 >.9.1 .	Ø81.8K
-	2325 ppm	9.3	9.4	9.6	9.0	9.2	a¥.2	9.4 🕷	9.4	87,0
[g]	3000 ppm	9.1	9.4	9.5	9.2	9.4	Q.9.2	9.2	92	8₽.3
1.4.1	0 (control)	88.2	81.3	85.6	\$9 1.1	84.2	88.6	82.9	\$2.5	60.21 \$
	1800 ppm	84.0	78.9	83.3 🔬	84.6 *	70.4Q*	83.7 *	8 4.6		0.21®
	2325 ppm	86.6	82.9	87,50	90.9	<i>~</i> 8 4.9	\$7.6	≪86.2 C	85.	0.2)
weight [g]	3000 ppm	87.2	82.9	85.2	.90.8	86.9	86.7	87,4	87.0	. 0.21
	0 (control)	0.21	0.21	0%.22	0.21	0.21	0.21	0Q0	0.21	9.3
	1800 ppm	0.23	0.23	0.21%	0.22	0,20	020	0.21	0.21	3
	2325 ppm	0.22	0.21	0.220	0.21	0.20)	~ <i>(</i> (0.25	904
[mm]	3000 ppm	0.22	0.22	0.22	0%21	00 20 5	$\mathbb{V}_0 \ge \mathbb{O}$	0.21 0.24	Q.21	
statistically					/// n	<u>y _0'</u>	N.			0
statisticall	y significant (p=0.	obj uniel				2 <u>0.20 ~</u>			Q ^v iz	
	De		ý ď	· ****	N			<u>j s</u>	, L	
ceproducti	ve Performance p				group, a	upsolute (pata)		×~	
Parameter	Study		atmont	O ⁴			posureph			1
	group	week 1	week 2	week1"	week 2	week 3	week 5	week 6	6/	mean
_	0 (control)	6.6	0.2	64	605	% .7	<u>\$76.8</u>	6.6	6.6	6.6
Eggs	1800 ppm 🔍	⁰ 6.6 [♥]	67	0 .7	6.5	∖ 6.7√	6.70	645	6.6	6.6
laid	2325 ppm	6.7	6.4	6.8	6.6	6,7	6.9	69 .7	6.7	6.7
	3000 ppm	6 .6 s	<u>ن 6.6</u>	6.6	6.4	63	\$6.5	°≫ 6.7	6.6	6.6
	0 (control)	0.3		03	9.0	0.2	© 0.4 *	0.2	0.1	0.2
	1800 ppm 🔿	01	۹Ø	0.3	Q0.2 ¢	0.14	0,10	0.0	0.0	0.1
cracked	23 0 5 ppm	Ø <u>∕2</u>	× <u>0.4</u>	¢ 0.1 ג	[♥] 0.1 🍣		<u>,0</u> ,2	0.0	0.1	0.1
	3000 ppm	0.7 ($\bigcirc^{v} 0.4$		<u>(</u>)	49 .1	<i>a</i> , 0.4	0.6	0.2	0.3
	0 (control)	9 5.8 ₆₀	5,8	<u>\$5,6</u>	6 .0	⁰ 6.0 x	6.0	6.0	5.8	5.9
	1800 ppm 🏑	6. V	6 .2	05.9	5.8 C		6.2	6.0	6.0	6.0
set 🖉	2325 ppp	ð § .1	\$5.5	6.2	6,1	. T	6.1	6.2	6.2	6.2
**	3000 ppm	≫ 5.5 ፈ	, 5.85	6.0	<u>ر</u> 5.7	% .0	5.8	6.0	5.8	5.9
	0 (control)	5.5	5%	5.3	5.8	5.7	5.7	5.7	5.6	5.6
Fertile eggs	18000 ppm-	<u>f</u>	6.0	€¥ 5.8	5.6	6.1	6.1	5.8	5.7	5.9
cruic eggs	2325 ppm	×3.8	° 5.4 °	5.70	5.6	5.7	5.5	5.8	5.6	5.7
	~\$3000 ppm _(5.2	5.6	5.9	≈5.5	5.9	5.5	5.8	5.6	5.7
Early #	0 (control) $^{\bigcirc}$	5¢Q	AN .	5.9 59	≈5.5 © 5.7	5.6	5.6	5.6	5.5	5.5
Early	🦉 1800 ppn 🖗	£.9	Ø5.8 g	🗶 5.7 💭	5.6	6.1	6.1	5.6	5.6	5.8
embryos	2325 ppm	« 3.8 ~	5.3	5.¶Q″	5.6	5.6	5.4	5.7	5.5	5.6
embryos	3000⊀ppm	5.20	55	~5,6	5.3	5.8	5.4	5.7	5.5	5.6
¥	$0 \text{ (control)} \mathcal{D}^{*}$	504	5.5	O5.0	5.7	5.6	5.5	5.5	5.3	5.4
Late viable	1800 ppm	<i>6</i> 9 .9	5.8	\$ 5.6	5.6	6.0	6.0	5.5	5.6	5.7
embryos	2325 ppm	\$ 5.8 %	5.3	5.7	5.5	5.5	5.4	5.6	5.4	5.5
-	🖉 3000 ppm 🔊	5.2,	~5	5.5	5.3	5.6	5.2	5.7	5.5	5.5
	0 (control) 0 800 ppm 2325 ppm 3000 ppm 0 2325 ppm 2325 ppm 2325 ppm									

Bayer – Crop Science Division

Document MCA - Section 8: Ecotoxicological studies Fosetvl

	0 (control)	3.7	4.3	3.7	4.2	4.1	4.2	3.8	3.6	3.9
Hatchlings	1800 ppm	4.5	4.3	4.1	4.2	4.1	4.2	3.8	3.0	3.9
(all)	2325 ppm	4.2	4.1	4.1	4.3	4.0	4.4	3.8	3.9	3.9 4 1 °
(ull)	3000 ppm	3.8	4.0	3.8	4.5	4.3	4.4	4.5	3.9	A 2
	0 (control)	3.6	4.2	3.7	4.1	4.1	4.1	3.7	3.5	3.9
Hatchlings	1800 ppm	4.4	4.0	3.9	4.2	4.0	4.0	3.8	2.9 @	3.8
(healthy)	2325 ppm	4.2	4.0	4.1	4.2	3.9	4.3	3.8	3.9	<u>4</u> .0
	3000 ppm	3.8	4.0	3.8	4.5	4.3	4.2	4.5	308	A.2
	0 (control)	3.6	4.2	3.6	4.1	4.1	40	3.7	°≂9.4 .	@*3.8 ×
14-d	1800 ppm	4.4	4.0	3.9	4.Ô	4.0	Å¥.8	3.8	⊌″2.7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,75
survivors	2325 ppm	4.2	3.9	4.1	4.1	3.9	Q 4.2	3.7	328	4.0
	3000 ppm	3.7	3.7	3.8	Å4.3	4.2 C	[»] 4.2	45	<u>.</u> Q.7	<u>6</u> 4.1 &
					\ \	- Q'	<i>la</i> °	<u> </u>	s (
Reproducti	ive performance	in % of	control (r	elatived	lata, 6-we	eek avera	gæš)	<u>~~</u> C) <u>́</u> ĝ	Û
Parameter				¥., [*]	1800	ypm 🔬	23250	opm 🔊	•3000 p	ppm)
Eggs laid / ł	nen / day			Ô [×] (2 102×		AØ5%	Ô.	<u>م 99% م</u>	L c °
14 day old s	survivor/ hen / da	у	A		26%	\sim	4 104%	6	104%	
Eggs laid			Å	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×100%	Ô Á	102%		100%	A V
Eggs cracke	ed		Q U	V 1	50%	× _s oʻ	50%	Į,	\$150%	0
Eggs set		d			162%	5	105%	5° . Ş	100%	
Fertile eggs		Q	, Ôg	<u></u>	D105%		1020%	<u> </u>	Ì02%	
Early viable	e embryos	~C?		107 - A	7 105%		102%		\$√102%	
Late viable	embryos	V k	, õ		106%	4	102%	ð, Ö	102%	
Hatchlings ((all)) O	ŝ	<u> </u>	100%		105%		108%	
Hatchlings (A	à (2 1000°		105%	, Ö	111%	
Egg weight	[g]			ţ,	98%	0*	101%		100%	
Hatch weigh				A	94% 100%	0 d,	100%		100%	
14-d survivo	or weight [g]	S.	<u> </u>	Y L	100%		ĴØ0%		100%	
		Ç () K		%	AN I	, 101%		100%	
		, ĝ	Å	N. N.	and the second s	N N				

CA 8.1.2 Effects on terrestrial vertebrates other than birds

Endpoints ma	ammals				
Test design	Test species		Endpoint		Reference
acute toxicity	Rat	LD ₅₀	$\equiv 5000 \text{ mg as}$		KCA 5.2.104; M=447270201-1
acute toxicity	Mouse	LD ₅₀	2 > 2000 mg a. = 5000 mg a.		₩CA 5.2.1/05 M-459114-04+1
Multigeneration reproduction	Rat	NOAEL	$\equiv 720 \text{ mg/k}$	g bw/d	Document MCA, Section & O Table 5.6-1
Developmental toxicity	Rat C		∑≥ 1000 mg/k	g bw/d	
Developmental toxicity	Rabbit	NOAEL	$\gg 500 \text{ m/s}/k$	g based .	
administration. Sub-chroñwand c revealed any speci carcinggenic ina Taken together, th	Document MCA, Section 5.8.1				
	Test design acute toxicity acute toxicity acute toxicity Multigeneration reproduction Developmental toxicity Developmental toxicity Several studies we metabolite of fose "phosphorous acid in and in relevant species. Phosphonic acid/a administration. Sub-chroñis/and c revealed any speci carcin/genic info/ Taken together, th	acute toxicityRatacute toxicityMouseMultigeneration reproductionRatDevelopmental toxicityRatDevelopmental toxicityRatSeveral studies were carried outfer metabolite of fosetyl-AD phospho "phosphorous acid") which is pres- in and in relevant body compartment species.Phosphonic acid and its salts are ca administration.Sub-chronic feeding are specific effect of or carcinogenic in 27-month feeding traker together, these data-indicate the plant metabolite of fosetyl-AD.	Test designTest speciesacute toxicityRatLD50acute toxicityMouseLD50Multigeneration reproductionRatNOAELDevelopmental toxicityRatNOAELDevelopmental toxicityRatNOAELSeveral studies were carried out for assessing t metabolite of fosetyl-AD phosphonic acid (pre "phosphorous acid") which is present in signifi in and in relevant body compartments of pump species.NOAELPhosphonic acid and its salts are of low acute t administration.Noae of low acute t administration.Noae of low acute t administration.Sub-chronic and chronic feeding studies with p revealed any specific effect of concern sodium carcinogenic in 27-month feeding study in ra Takeo together, these data-indicate the absence the plant metabolite of fosetyl-AT, phosphonicNoae of low acute the absence the plant metabolite of fosetyl-AT, phosphonic	Test designTest speciesEndpointacute toxicityRat LD_{50} > 2000 mg a.acute toxicityMouse LD_{50} > 2000 mg a.acute toxicityMouse LD_{50} > 2000 mg a.Multigeneration reproductionRatNOAEL= 720 mg/kDevelopmental toxicityRatNOAEL> 2000 mg/kDevelopmental toxicityRatNOAEL> 2000 mg/kDevelopmental toxicityRatNOAEL> 500 mg/kDevelopmental toxicityRatNOAEL> 500 mg/kDevelopmental toxicityRabbitNOAEL> 500 mg/kDevelopmental toxicityRabbitNOAEL> 500 mg/kDevelopmental toxicityRabbitNOAEL> 500 mg/kSeveral studies were carried out for assessing the toxicity of the metabolite of fosetyl-AD phosphonic acid (previously teferred to "phosphorous acid") which is present in significant amount in p in and in relevant body compartments of prammatian laboratory species.> 200 mg/kPhosphonic acid and its salts are of low acute toxicity via all for administration.> 200 mg/kSub-chronic and chronic feeding spidies with phosphonates have revealed any specific effect of concern sodium phosphonate have racingenic into 27-month feeding study in rais Take together, these data indicate the absence of any critical to the plant metabolity of fosetyl-At, phosphonic acid.	Test designTest speciesEndpointacute toxicityRat LD_{50} > 2000 mg as./kg bwacute toxicityMouse LD_{50} > 2000 mg as./kg bwacute toxicityMouse LD_{50} > 2000 mg as./kg bwmultigenerationRatNOAEL> 2000 mg as./kg bw/dtMultigenerationRatNOAEL= 720 mg/kg bw/dtDevelopmentaltoxicityRatNOAELDevelopmentalRatNOAEL> 500 ng/kg bw/dtSeveral studies were carried out for assessing the toxicity of the majormetabolite of fosetyl-AD phosphonic acid (previously referred to as "phosphorous acid") which is present in significant amount in plants and in and in relevant body compartments of planmation laboratory apimal species.Phosphonic acid and its salts are of low acute toxicity via all routes of administration.Sub-chronity and chronic feeding studies with phosphonates have not revealed any specific effect of concern sodium phosphonate was not carcinogenic in 27-month feeding studies with phosphonic acid.

Table 8 1 2 1. Endnaints mammals

^{a)} justification for refined dose calculation is provided in Section CA 8 (2

CA 8.1.2

C Active or a toxicity to mammals ~

For information on studies aready evaluated for the Annex Finclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bager CropScience. The conclusion in the DAR on these studies was: "Fosetylaluminium was of low oral, dermal and inhalation oxicity? the acute oral LD₅₀ in rats was greater than 5000 mg/kg.*©

New studies conducted in rato KCA 9.2.1/04, M-447270-01-1) and mice (KCA 5.2.1/05, M-454114-

New studies conducted in ratoKCA 9.2.1/04, M-447270-01-1) and mice (KCA 5.2.1/05, M 01-1) confirm that fosetyl-aluminium is practically non-toxic in acute exposure of mammals.

CA 8.1.2.2 Long-term and reproduction toxicity to mammals

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dessier provided by Bayer CropScience.

As a result of the original evaluation for the Annex I inclusion of fosetyl under Directive 91/414/EEC, the endpoint for long-term risk assessment on wild mammals was established at 6000 ppm, the NOAEL from the 3-generation rat reproduction study (KCA 5.6.1/01, M203019-01-1), \sim

It is proposed to retain the reproductive risk assessment endpoint of 6000, ppm from the rat or reproduction study, but to adapt the dose conversion, the recommendations of the EFSA GD (2009)

S

Table 8.1.2.2- 1:	Effects of fosetyl-Al on reproduction
-------------------	---------------------------------------

Test substance	Exposure	Species Kndpoint Reference
Fosetyl-Al	Long-term risk assessment	$\begin{array}{c c} & & & & & & & \\ \hline & & & & & \\ \hline & & & &$

A good overview on the results of this study is given in the summary in the original DAR, notably in Table 6.6.1-5.Litter data.

In this study, 3 generations of rap were kept under continuous dosing via diet to fosetyl-aluminium (fosetyl-Al) at concentrations of 6000, 12000 and 24000 ppm over nearly 2 years (91 weeks). During that time, 6 litters were produced (F1A, F1B, F2A, F2B, F3A and F3B)

m

Over this prolonged exposure to very high concentrations foseryl-Al did no produce any adverse effects on reproductive performance and tertility in rats over 3 generations. The NOAEL for reproductive performance or Pertility was \$4000 ppm (equivalent to 1782 and 1997 mg/kg bw in males and females of the F0 generation respectively) as no reatment-related effects were observed in any generation.

Most notable with regard to effects of relevance for the ecotoxicological risk assessment, a statistically significant lower body weight oppups was observed in all six litters of all three generations in the 21-d pup weight and/or 21-d itter weight ar 24000 ppm

Only in the F2B generation, this effect on 21-d pup weight was also statistically significant at 12000 ppm. Therefore the NOAEL for development was set at 6000 ppm based on these effects on body weight of F2B generation in the 12000 ppm treated group.

This NOAEL of 6000 ppm in the F2B generation had been converted into a dose of 439 mg/kg bw/d which has been achieved by the parental makes (F0) during the first pre-mating phase before yielding the F1A litter of the first pre-mating phase before yielding the first phase before yielding the firs

However, the achieved dose of the parental males (F0) siring the F1A litter has little if any bearing on the substance intake by sires of the F2B litter:

- 1. The LOAEL on 21-d pup and litter weight of the F1A is 24000 ppm, so if the pre-mating dose of parental males (F0) should be selected for risk assessment, it should be the dose achieved by these parental males at 12000 ppm (865 mg/kg bw/d). This is however not recommended because there is no causal link between the achieved pre-mating dose of males at any generation, and the effect on pup and/or litter weight occurring turing the respective lactation phase of the pups.
- 2. It is more plausible to link this effect on pup and/or litter weight occurring during the respective lactation phase to the exposure of the lactating methers. Thus, the dose conversion of the NOAEL at 5000 ppm should be accomplished based on body weight and food consumption of the lactating <u>temales</u> rather than of the males
- 3. Given that the statistically significant effect at 2000 ppm was established only in the F2B pups, the most appropriate data for dose conversion would be body weight and food consumption of the mothers of the F2B pups during that actation phase.
- However, food consumption during the lactation phases is not reported in M-203019-01-1 (only during the different pre-mating phases).
 Based on these data, the dose associated with 6000 ppm for females from the pre-mating phase prior to littering and nursing the F2B pups is 6503 mg/kg bw/de

6000 ppm F0 806 679 622 577 550 519 476 469 476 429 436 4 6000 ppm F1B 896 893 776 674 570 478 445 477 444 396 578 578 579 569 544 459 436 4 F2B 1160 1026 863 805 731 540 592 568 544 459 378 3 F0 1582 0310 1090 1149 1103 960 928 878 807 808 807 7 12000 F1B 1790 1745 1544 247 1092 949 889 924 898 747 1		~							· u Jl								
(based on Yable) of the original report M-2039/19-01(1, page 31) Females week 1 2 3 4 5 6 5 80 9 10 11 1 6000 ppm F1B 896 693 776 6/4 570 476 469 4/6 429 436 4 6000 ppm F1B 896 893 776 6/4 570 478 444 477 444 396 1 F2B 1164 1026 863 805 731 640 592 568 544 459 378 3 F0 1582 Ø310 1090 1149 1403 963 928 878 807 808 807 7 12000 F1B 1790 1745 1544 247 1692 949 889 924 898 747 pm F2B 1044 1745 1636 1287 938 924 898 747		Ĵ	Ŵ	, ,	, S	es	emał	d] of fe	g bw/	mg/l	ed dos	Chieve	2 A				
Females week 1 2 3 4 5 6 5 8 9 10 11 1 6000 ppm F0 806 6/9 622 577 550 519 476 369 4/6 429 436 4 6000 ppm F1B 896 893 776 6/4 570 478 4445 477 444 396 9 10 11 <	Al	tyl-Al	føsety	ith f	ıdy₩i	stu	tion	roduc	St rep	the l	hases	ting p	ore-ma	the 3 p	luring	Ċ	
6000 ppm F0 806 619 622 577 550 519 476 469 46 436 4 6000 ppm F1B 896 693 776 644 570 478 4445 477 444 396 96 976 429 436 4 F1B 896 693 776 644 570 478 4445 477 4444 396 96 976 429 436 4 F2B 11640 1026 863 805 731 640 592 568 544 459 378 3 F0 1582 4310 4090 1149 1403 963 928 878 807 808 807 7 12000 F1B 1796 1745 1544 247 1092 949 889 924 898 747 ppm F2B 2652 1034 1754 1626 128	(based on Fable 1 of the original report M-203019-01 1, page 31)																
6000 ppm F0 806 69 622 577 550 519 476 969 676 429 436 4 6000 ppm F1B 896 893 776 674 570 478 445 477 444 396 578 568 544 459 378 3 F2B 1160 1026 863 805 731 640 592 568 544 459 378 3 F0 1582 0310 1090 1149 1403 963 928 878 807 808 807 7 12000 F1B 1796 1745 1544 1247 1092 949 889 924 898 747 ppm F2B 1044 174 1636 1287 758 152 206 1054 850 720	2 13 me	12	1	້1	10		9	80		-	Ś	54	, 3		1	week	Females
6000 F1B 896 893 776 674 570 478 445 477 444 396 ppm F2B 1160 1026 863 805 731 640 592 568 544 459 378 3 F0 1582 0.0 1149 110.3 963 928 878 807 808 807 7 12000 F1B 1796 1745 1544 247. 1092 949 889 924 898 747 ppm F2B 104 1745 1544 247. 1092 949 889 924 898 747	01 374 51	401	136	<i>4</i>	409	6	Ð	3 69	×¥76	≫519°	550		622	୍ଟ୍ୟୁ	806	F0	
F2B 1160 1026 863 805 731 640 592 568 544 459 378 3 F0 1582 0310 1090 1149 1103 965 928 878 807 808 807 7 12000 F1B 1796 1745 1544 2247 1092 949 889 924 898 747 ppm F2B 2320 1034 1745 1644 227 928 1052 006 1054 850 720 7	60				396	4	\$44	. 477	445	478	570	674				F1B	
F0 1582 (2310) (090) 1149 1103 963 928 878 807 808 807 7 12000 F1B 1796 1745 1544 5247 (092 949 889 924 898 747 ppm F2B 2820 1044 1745 1626 1287 7258 152 706 1054 850 720 7	95 383 65	395	378	3	459	Ð		568		°~640	, 731	805	863	^y 1026 ⁴	116Ø	F2B	ррш
F0 1582 0310 1090 1149 1103 965 928 878 807 808 807 7 12000 F1B 1795 1745 1544 2247 1092 949 889 924 898 747 ppm F2D 2852 1034 1752 1626 1287 635 152 606 1054 850 720 7	I I					P	~	, Q	<u>.0</u> ~ ~	ð'	, y	Ó	\swarrow	×,	I	۱۹ ۲	
12000 F1B 1790 1745 1544 1247 1092 949 889 924 898 747	38 759 100	738	307	8	808	7	\mathbb{O}_{80}	878	928	26®	1103	1149		@310.	1582		
Ppm E2D 2922 1014 1719 1628 12974 259 1152 1006 1054 950 720 7	118				747		/		889			247	1544	1745	1796	F1B	
	73 753 127	773	/20	7	859	4	105	0996	1153	J1258	1387	1629	17	1041	າສະາ	F2B	
								F F	, V	, Ô	l ~~~~	<u>, 0</u>	<u> </u>	Ô ^v		í í	
F0 3112 2585 2378 2203 3150 2932 2002 1711 1591 1665 1635 15	10 1542 201	1510	535	16	1665	1	159	1711	2032	2032	3¥50	2203	2378	2585	3112	FØ	
24000 TIB 4331 4528 3599 2839 2454 2107 2106 1957 1856	278				1856	7	195	2106	2107	2107×	2454	2839	3529	4528	4331	₽₽B	24000
ppm F2B 4944 4277 3566 2336 2988 2763 2762 2451 2222 1878 1525 16	55 1618 276	1655	525	15	1878	2	222	2451	2762	2763	2988	2336	3566	4277	4944	F2B	ppm 🦼
											<u></u>	Ø [×]			Ŵ		L. L.
										Ox C	» م		, Ô	- Or	~		. A
										,	Q,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ĩ	0	Ø,	L	
											Į,	ש*			, Š	Ő	
											Ş			, O	Å,	Ś	
														1	Û.		\sim
													J			Ô	, s
													, ,	A A A A A A A A A A A A A A A A A A A	102	2	L.S.
× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~																Ĵ [¥]	× ~
\lor																7	C

The EFSA GD 2009 however specifies in section 2.3.1.1 ("Conversion of endpoints from ppm to mg a.s./kg bw/d") that "it is more appropriate to use the consumption relevant to the specific reproductive phase".

Thus, the dose during the premating phase is not fully appropriate for effects during the lactation of phase, but the dose during lactation is not reported.

Therefore the following instructions in that section of the EFSA GD 2009 apply in this case:

Table 2 presents a standard set of factors that can be used to provide internal consistency. When converting concentrations in diet into mg/kg bw/d dose levels for mammals. This should be used only in the absence of specific information in a study report or subsimary (it can, however, be used to give rough check of values cited in a study). Only routine study types, species and ages have been considered.

 Table 2.
 Factors for converting endpoints from mammalian toxicity studies from ppff to ma

 a.s./kg bw/d. Endpoints reported as ppm should be coultiplied by the relevant factor from the table to convert them to mg/kg by/d.
 Image: Convert from the table to convert them to mg/kg by/d.

Species	Age/study						
Rat	28 d and 90 d						
Rat	Two-generation study ost mating Two-generation study overall (females)*						
Rat	Two-generation study overall (females)*						
Mouse	28 d and 90 d a 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2						
Dog							
*The first mating value for a two-generation bidy should be used Cassessment when effects (generation or netwoduction are seen to relate to the pre-mating phase of the first mating of a study, or effects seen they in male to parents at any time for all other aspects of a two-generation study the overall conversion figure should be used.							
the overall conve	ersion figure should be effed.						

(Screenshot of EFSQ GD 2009: Risk Assessment for Birds and Mammals)

6. The dose achieved by the factating mothers during the lactation phase of the F2B pups can therefore be estimated with the generic conversion factor of 0.12 provided in the EFSA GD 2009 (section 29.1.1, conversion of endpoints from ppm to mg cs./kg bw/d). With that factor of 0.012 applied on the dietary concentration of 6000 ppm, the NOAEL is

With that factor of 0.012 applied on the dietary concentration of 6000 ppm, the NOAEL is calculated as 6000 c 0.12 720 ppg/kg bw/d.

Therefore, the dietary concentration of 6000 ppm is equivalent to a NOAEL of 720 mg/kg bw/d. This NOAEL is the appropriate endpoint for reproductive risk assessment on wild mammals for foscevi-AL

CA 8.1.3

Effects of active substance pioconcentration in prey of birds and

L

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if feeding on contaminated prey like fish or earthworms. For organic chemicals, a log $P_{ow} > 3$ is used to trigger on in-appth evaluation of the potential for bioaccumulation.

As the log \mathbf{P}_{ow} of the active substance fosetyl-aluminium and its metabolite is below the trigger (<3), no evaluation of secondary posoning is needed (see Document MCP, Section 10.1.1 for more details).

S. A.

CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds, mammals, reptiles and amphibians)

Information on effects of fosetyl-aluminium on reptiles or amphibians is not available. Risk to birds and mammals is assessed in Document MCP, Section 10.1.

Amphibians and Reptiles

Currently no test methods are established to assess the population relevant effects of chemicals to amphibians or reptiles. While an amphibian metamorphosis test protocol is available, this test was developed to evaluate to potential effect on the thyroid system and not to measure population relevant effects.

A literature review was carried out for fosetyl according to the requirements of the Regulation (F) No 844/2012, which itself refers to Article 8(5) of Regulation (EC) No 1107/2009 The review itself is in accordance with the EFSA Guidance Document No public literature at all was found that could have been evaluated for fosetyl-Al effects on amphibians of reptiles.

Therefore no further studies can be suggested at this time for these groups or organisms.

Wild Mammals

Designated studies on endocrine disrupting (ED properties of fosety aluminium (fosetyl-Al) have not been conducted by the applicant. The existing body of data is sufficient to exclude relevant ED-like potential of fosetyl-Ak. This is based on the absorve of effects on the histopathology or weight of reproductive organs, thyroids and pituitary. In addition, the available fertility studies showed no effects on male or female fertility, which may be considered sensitive targets of ED-like activity. Therefore, based on a complete toxicological data set, there is no widence of any endocrine disrupting potential of fosevyl-Al@n mammals

Birds

The population relevant/effects of fosetyl-Al on birds were studied in a 6-week reproductive toxicity study on Japanese gosil. No statistically significant effects on adult birds, offspring or reproductive parameters were found at the highest tested dose level of 3000 mg fosetyl-Al/kg diet.

As reproduction was not affected in this ayian species even at very high dose levels, it is concluded that there are no population refevant dverse effects of fosetyl-Al.

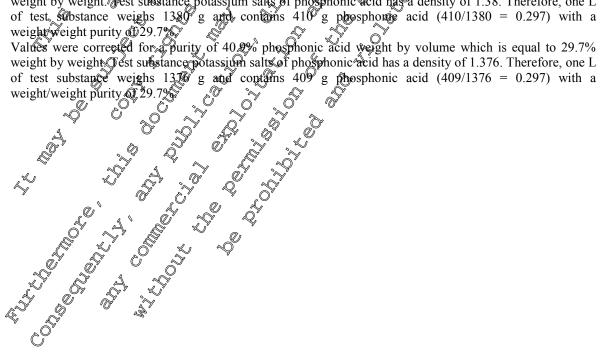
Based on the absence of any indication of relevant effects it can be concluded that fosetyl-Al is not a (potential) endocrine disrupter.

No further testing for endocrine disrupting properties is warranted.

Effects on aquatic organisms CA 8.2

For studies already evaluated during the last EU review of fosetyl-Al, please refer to the corresponding section in the DAR and to the studies in the baseline dossier provided by Bayer CropScience.

In order to complete the aquate risk assessment and to address new data requirements according to Regulation (EG No. 1107/2009, additional studies were performed and are provided within this Supplementa Dossier for approval renewal of fosetyl.

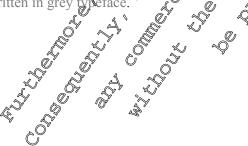

Ŀ

Test substance	Test species	Endpoint	Reference
	Fish, acute Lepomis macrochirus	$LC_{50} > 60 \text{ mg a.s./L (mm)}$	1997; My 1844 92- 01-1 KC 08.2.16
	Fish, acute Oncorhynchus mykiss	LC ₅₀ 5 122 mg a.s./ 9 (mm)	, 1999 ; M 089219-91-1 2KCA-22.1/0
	Fish, acute Cyprinus carpio	LC_{50} > 100 mg a.s./L(mom)	L; 2013; M-449083-01-1 (KCA 8:22.1/05
	Fish, chronic Oncorhynchus mykiss	NOEC 2 2000 mgr.s./L&Om)	1997; M-184572- 0 21 KCA 82.2/01
	Fish, chronic Pimephales promela	NOEC 40213 mg a.s./L (nom)	2003; M-591353- 0-1 XCA \$2.2.1/01
	Invertebrate, ac@e	EC ₅₀ & 100 mgs.s./L (nom)	,; 1996; M-¥70914-01-1 KCA 8.2.4.1/01
	Invertebrate, chrome		,; 1996; M-189214-01-1 KCA 8.2.5.1/01
Fosetyl-Al	Alger Demodestnus subvicaties Scened Smus subspicatus, green gae)		,; 1999; M- 189220-01-1 KCA 8.2.6.1/01
	Algae Pseudokiłchnorcella subcomitatą	70 E _d C ₅₀ 4.99 mg a&/L (mm)	P; 1989; M-163526-01-1 KCA 8.2.6.1/03
	PseudoGitchnergella subcapitata (Sechastrum copricornutum, J green ateae)	7 $\oplus E_dC_{50}$ 4.99 mg a \oplus/L (mm) 7 $\oplus E_dC_{50}$ recate lation 7 $\oplus F_rC_{50}$ 9 \oplus 4 mg a.s./L (mm) 7 $\oplus F_rC_{50}$ 7 \oplus 24.0 mg a.s./L (mm)	オス 2005; M-253825- 01-1 KCA 8.2.6.1/04
	Algae Desmodesmus subspicatus (Scenettesmus Jubspicatus, green algae)	$D_{r}C_{50}$ 24.9 mg a.s./L (nom) $D_{r}C_{50}$ 43.3 mg a.s./L (nom)	کې; 2007; M-289324- 01-1 KCA 8.2.6.1/05
Ly S	Algae Navicula pelliettosa (diatom)	$7d_{e}E_{50}$ 8.93 mg a.s./L (mm)recalculation72h-ErC_{50}18.11 mg a.s./L (mm)	,; 1988; M-163531-01-1 KCA 8.2.6.2/01
	Aquiatic plant	14d-E _y C ₅₀ 79.67 mg a.s./L (mm)	F; 1989; M-163537- 02-1 KCA 8.2.7/01
	Lônna gipba	$\begin{array}{l} \mbox{recalculation:} \\ \mbox{7d-}E_rC_{50} & 166.6 \mbox{ mg a.s./L (mm)} \end{array}$,; 2015; M-525565-01-1 KCA 8.2.7/02

Table 8.2-1: Endpoints used in risk assessment and additional studies for fosetyl-Al and its metabolite

Test species	Endpoint	Reference
Fish, acute, Oncorhynchus mykiss	LC_{50} > 28.6 mg pm/L (mm) ^{a)}	; 1994; M ; 1994; M 179069-01- KCA 8.2, 003
Fish, acute, Oncorhynchus mykiss	$LC_{50} > 400 \text{ mg pm/L (nom)}$	2008; M-310496- 01-10 KGA 8.2 106
Fish, acute Lepomis macrochirus	LC_{50} $> 35.7 \text{ mg port} (\text{nom})^{\text{b}}$,; 1999; M-17;840-0671 0 KÇA8.2.1094 0
Invertebrate, acute Daphnia magna	$E_{\zeta_{50}} \sim 220 \text{ mg pm/L} (m_0)^{a}$,; ;,1994; M 179068-01-1√ KÇA 8.2,≰1/02
Invertebrate, acute Daphnia magna	EC_{3} 2 2 400° mg pm/L (nom)	2008; M-3103+8- 01-K K&A 8.2.4.1/03
		1999, M-171912- 01⊱1 K©A 8.2.5.4/01
Algae Pseudokir Amerielta subcapitata (SeArnastrum capri ornutur), green algoo	$\mathbb{D}_{r}^{2}C_{50} \xrightarrow{\qquad 8.6 \text{ ong pm}/E} (\text{norm})^{\text{b}} \xrightarrow{\qquad 9.4 \text{ mg/m}/L} \xrightarrow{\qquad 9.4 \text{ mg/m}/L} (\text{norm})^{\text{b}} \xrightarrow{\qquad 9.4 \text{ mg/m}/L} \qquad$; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	Oncorhynchus mykiss Fish, acute, Oncorhynchus mykiss Fish, acute Lepomis macrochirus Invertebrate, acute Daphnia magna Invertebrate, acute Daphnia magna Sediment dweller Chironomus riporius Algae Pseudokig merietta	Oncorhynchus mykiss LC_{50} > 28.0 mg pm/L (mm) *Fish, acute, Oncorhynchus mykiss LC_{50} > 400 mg pm/L (nom)Fish, acute Lepomis macrochirus LC_{50} > 35.7 mg rowL (nom) *Invertebrate, acute Daphnia magna EC_{50} > 290 mg pn/L (mo) *Invertebrate, acute Daphnia magna EC_{50} > 290 mg pn/L (mo) *Invertebrate, acute Daphnia magna EC_{50} > 290 mg pn/L (mo) *Invertebrate, acute Daphnia magna EC_{50} > 290 mg pn/L (mo) *Invertebrate, acute Daphnia magna EC_{50} > 290 mg pn/L (mon) *Nuccc Chironomus riporius EC_{50} > 200 mg pn/L (mon) *Algae Pseudokirg/nneriefia EC_{50} > 100.2 mg pn/L (mon) *

- mm = mean measured; non = norkinal a) Values were Corrected for a purity of 41% phosphonic acid werent by volume which is equal to 29.7% weight by weight. Fest substance potassium salts of phosphonic acid has a density of 1.38. Therefore, one L of test, substance weighs 1380 g and contains 410 g phosphonic acid (410/1380 = 0.297) with a
- b)


Recalculations of chronic EC₁₀ values are provided in the table below for both fosetyl-Al and its metabolite phosphonic acid.

<mark>est substance</mark>	Test species	Endpoint	AReference L
	Fish, chronic <i>Oncorhynchus mykiss</i>	EC ₁₀ nd* 95% CL nd	の 184572-01 KCA 8.23/01 人 KCA 8.23/01
	Fish, chronic Pimephales promelas	EC10 0.37 mg a.s./L (non%) 95% CL 0.05 – 0.56	M-57,353-019 K@4.8.2.2701
	Invertebrate, chronic Daphnia magna	EC10 17.7 mg a.s./Qmm), 95% CL d nd**	KCA 8.2.5.1/09
osetyl-Al (a.s.)	Algae Pseudokirchneriella subcapitata (Selenastrum capricornutum), green algae	72-h QC ₁₀ 95% CL 72-h QC ₁₀ 72-h QC ₁₀ 72-637-4.06Q	25382540-1 KCA 8.2.6.1/05
	Algae Desmodesmus subspicatue (Scenedesmus subspicatue), green algae	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Algae Navicula pelliculosa (diatom)	95% CL 0 3.24 9.78 0 €	KCA 8.2.6.2/01
	Aquatic planto O Pd E Lemna gibba	Pd E-C. 65.23 mg a.s./L (mm) 95% (\$) 31.67 89.69	525565-01-1 KCA 8.2.7/02
	Sediment dweller	E510 57 nd*** 0 57 55% CL 57 au 0 77 57 57 57 57	 [™] [™]
nosphonic acid	Algae of seudotrichneriella subcapitata (Sefenastrum capricornutum), &	72-97E ₁ C ₁₀ C 13-94 mg ppv/L (nom) 95% CL 9504 – 1720	5 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

Over the test period growthate inhibition never exceeded 9% for the range of concentrations tested (10, 18, 32, 56 and 100 mg/l) and 100 mg/L). No statistically significant differences between the controls and the 0, 3.2, 10 and 32 mg/L test groups for the number

All studies listed in Table & 1 are summarized in the following sections. In order to facilitate discrimination between party data and data submitted for the Anney Linglusion of feastyl under

All studies listed in Table 2-1 are summarized in the following sections. In order to facilitate discrimination between new data and data submitted for the Annex I inclusion of fosetyl under Directive 91/414/EFC, the old state (sommarks from the original DAR prepared by the RMS) are written in grey typeface.

CA 8.2.1 Acute toxicity to fish

For more information on studies already evaluated for the Annex I inclusion of fosetyl under Diregive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience.

Two additional studies on acute toxicity to fish were performed, which were not submitted for Amex I inclusion of fosetyl under Directive 91/414/EEC and are submitted within this Supplementary possier for the approval renewal of fosetyl.

Report:	KCA 8.2.1/01
Title:	Eastry Al: A outo toxigity for timbout trout (One or One hyperbias)
Report No.:	R014234
Document No.:	
Guideline(s):	
Guideline deviation(s):	
GLP/GEP:	yes of the of the second s
Methods:	
The experimental desi	gn (semi-static lingit test with Gily regwal) Ocludo two Operimental groups
11 0 11 V	

The experimental design (semi-static limit test with Gily reg wal) Ocludo two experimental groups with 2 replicates per group an C10 fish per replicate. The Coperimental groups were a dilution water control and one nominal concentration of forcetyl-Al (120 mg/L; Gurity: 378 g/kg).

Results:

The test substance was solvel is the oilution water at the concentration tested. Measured concentrations ranges from 001 to 103% of normal values at 0 h, from 103 to 104% of normal at 24 h, from 99 to 106% of a month at 75 h and from 8 to 100% of normal at 96 h. No mortality or sublethal toxicity was observed in the control groups or in the two groups of ten fish exposed for 96 h to a mean measured concentration of 422 no/L of tostestyl-Al.

Conclusion?

LC50 - 96h > 122 mg 0.5./L (sean neasured concentration) NOEC - 96 h = 122 mg a.s. % (mean measured concentration) $\sqrt{2}$

Comments (IOIS): Accepta

Further study information supplementing the original DAR summary:

Objective.

The aim of the study was to assess the acute to acity of fosetyl-Al to rainbow trout (Oncorhynchus mykkss), expressed as 96h C_{50} for mortality, under semi-static conditions.

 $\overrightarrow{}$

Materials and methods:

Test item: Fosetyl-A, purity. 978 g/kg, Igot No.: OP9950059

Test was conducted over a period of 96 hours with *Oncorhynchus mykiss* in softened, dechlorinated, filtered laboratory tap water with a chlorine level from 0.02 to 0.09 mg/L and a hardness level of 132 to 168 mg CaGO₃/L A photoperiod of 16 hours light : 8 hours dark was maintained. Fish were not fed during the 96 hours exposure period. The mean standard length was 3.8 cm and the mean body weight was 0.86 g corresponding to a loading of 0.43 g fish tissue/L.

Concentrations of test substance were measured at 0 and 72 hours (fresh media) and 24 and 96 hours (expired media) by chemical analysis. The parameters pH, dissolved oxygen and temperature were measured daily.

Records for any mortalities or incidences of sublethal effects in the fish were made at 0.25, 2, 4, 24, 48, 72 and 96 hours during the test.

\mathcal{Q}_{j}°	~
Findings:	N. O.
Validity criteria:	,
Validity criteria (according to OECD 203, adopted 17.07.1992)	
Mortality in the controls (criterion is $< 10\%$))
Dissolved oxygen concentration in the control and test vessels (criterion is $\geq 60\%$) $\approx 60\%$	_
The second seco	L.
Temperature was 14 to 15 °C, <i>i.e.</i> , in the recommended range of 13 to 47 °C)°
Dissolved oxygen concentration in the control and test vessels (criterion is $\geq 60\%$) $\sim 60\%$ Temperature was 14 to 15 °C, <i>i.e.</i> , in the recommended range of 13 to 7 °C $\sim 60\%$ Analytical findings: $\sim 60\%$	
All results are expressed in terms of mean measured concentration. Measured concentrations ranged	
from 101 to 103% of nominal at 0 hours, 103 to 104% of notinal at 24 hours, 99% 104% of nominal	
at 72 hours and 98 to 100% of nominal at 96 hours of a second s	
The pH values in the test ranged from 7.2 to 8.1, dissolved oxygen concentrations ranged from 7,5 to	
10.3 mg/L and temperature ranged from 14 to 15°C.	
10.3 mg/L and temperature ranged from 14 to K C. Conclusion The acute toxicity of fosetyl-Al to <i>Oncorhynchus mykiss</i> was prestigated and gave the 96 hour LC ₅₀	
The acute toxicity of fosetyl-Al to Parcorbanchus mykiss was arvestigated and gave the 96-hour LC.	
of $> 122 \text{ mg/L}$ (based upon mean measured concentrations). The no observed effect concentration	
(NOEC) was 122 mg/L based of the tack of mortality and sublethat effects at the test concentration.	
Report: ŘČA 8.2.1/02	
Title: Foset (Al: Acote tox Oty to Guegill Sunfish Leponis macrophirus). Report No.: S R011943	
Document No.: Mc184477091-1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Title: Fosetto Al: A date tox Oty to Ouegill Anfish Leponis mase Onirus). Report No.: R011043 Document No.: Mt18447C01-1 Guideline(s): QI (=EEC): 92/69/EEC C1; CECD: 2/3, (1967); Guideline deviation(s) not Secified GLP/GEP: yes ObjectAc: The aim of the study wastlo determine Oie acade toxicity of tosetyl-Al to bluegill sunfish (Lepomis macrochirus), expressed as 96h QC 50 for mort dity.	
Cuideline devision(a) of patient to is EP/pOPPTS Guideline No. (\$50.10%)	
Guideline device on (s) of not specified a star of the second of the sec	
Object 😥 🖉 🏷 🖉 🖓 🖓	
Objective: The aim of the study was to determine to active to write to be a construction of the study was to determine to be active to write to be a construction of the study was to determine to be active to be	
The aim of the study was the determine \mathbf{O} is a case to xicity of settyl-Al to bluegill sunfish <i>(Lepomis macrochirus)</i> , expressed as 96h $\mathbf{O}C_{50}$ for mortality.	
Materials and Methods: Test item: Fosetyl-Al (teo), and yzed Ontent of active substance: fosetyl-Al: 970 g/kg, specified by batch no. (DP9607181.) Test or mism: Blue by sunfist (<i>Lepomis Oucrocorrus</i>) mean body length 4.7 cm mean body weight	
Test item: Fosetyl Al (tea) analyzed Onten of action substance: fosetyl Al: 070 g/kg, specified by	
hatch no a P9607181 a a a a a a a a a a a a a a a a a a	
batch no. 799607181. Test organism: Bluegth sunfish (<i>Izpomis Gacro Grus</i>), mean body length 4.7 cm, mean body weight	
1.12 & The biomass badire for the test was 0.50 g fish tissue/L test medium	
At the start of the study 10 by were placed in each test vessel at random, in the prepared test	
solutions for 960 under semi-static test constitions to a nominal (mean measured) concentration of 100	
(60) mg foset Al/L-again sa water control.	
The test vessels wore the covered to orduce evaporation and maintained at 21°C in a temperature- controlled from with a photoperiod of 16 hours light and 8 hours darkness with a 20 minute dawn and	
dusk travition veriod for 960 ours. The test vessels were aerated via narrow hore glass tubes. The fish	
dusk transition period for 960 ours. The test vessels were aerated via narrow bore glass tubes. The fish were for individually identified and received no food during exposure.	
The number of mortalities and any sub-lethal effects of exposure in each test and control vessel were	
determined 3 and 6 hours after the start of exposure and then daily throughout the study until	
termination after 96 hours.	
The endpoints were expressed as mean measured concentrations.	

The endpoints were expressed as mean measured concentrations.

Dates of experimental work: August 04, 1997 to August 08, 1997 Findings:

Validity criteria:

Validity Criteria	Recommended	Obtained
Mortality in the control	$\leq 10\%$	0%
Constant water quality and environmental conditions during the test	Yes	Yes
Concentration of dissolved oxygen	$\geq 60\%$ V	$\geq 60\%$
	. O	4

All validity criteria for the study were met.

Analytical results:

Analysis of the freshly prepared test preparat Θ is at 92 and 93% of nominal for replicates 1 and 2 respectivel At 24 and 96 hours, analysis of the 24-hour of unsufred ordin gave measured concentrations of between 33 and 39% of nominal. However analysis of the stiffed test metha showed measured concentrations between 94 and 98% or non-spal. Given the low measured concentrations Obtained for the unstirred test media, wasconsidered justifiable to base the results in terms of the tene-weighted mean measured concentration calculated for the initial 24 hour dosing action. The samples obunsticed mean at agen at 20 and % hours showed very similar results and therefore, the 624 hour time-weighted mean measured concentration is considered to be representative of the exposure whole of the study

Biological results: There were no mortesties sed to Otest concentration of 100 mg/L for a period of 96 burs

sunfind to for yl-A& Pased of nomoal consentrations LC₅₀ values for pluegil

, Q	Test substance:				osetyl-Al
	Test object:	S &		🔉 Blut Gill sun 🕅	sh (Lepomis macrochirus)
	Exposure: 🔊			96 hoars, s	tatic test design (limit)
	LG3 96 h:		Ö	60 mg (mea	n measured) test item / L
	6 7		*	_0*	

Conclusions: The 96-hour LC₅₀ ghad man measured concentrations was greater than 60 mg/L and correspo Red Effect Concentration was greater than or equal to 60 mg/L

Comments (R

Ĉ

The summary presented above from the original DAR was already presented with further results and details for the submission of the fosetyl CU AR Supplementary Dossier.

Qî Furtherstudyinformation supplementing the original DAR summary:

a Materials and methods.

Following a preliminary range-finding study, acute bioassay was conducted as a limit test in a semi static test design. Media used in test was laboratory tap water dechlorinated by passage through an activated carbon filter and partly softened giving water with a hardness of approximately 100 mg/L as CaCO₃.

· · · · · · · · · · · · · · · · · · ·	eparations at 0, 24 and 96 hours was carried out by inductively coupled plasma
concentration was con-	oscopy (ICP-AES) for the aluminium concentration. Afterwards, the aluminium verted into a concentration of test material by multiplying by the appropriate
<mark>factor.</mark> The water temperature	, pH and dissolved oxygen concentrations were recorded daily throughout the
study.	
Findings:	, pH and dissolved oxygen concentrations were recorded daily throughout the $^{\circ}$, <i>i.e.</i> , in the recommended range of 21 to 25 °C $^{\circ}$
Validity criteria:	
Temperature was 21 °C	c, <i>i.e.</i> , in the recommended range of 21 to 25 °C , and a set of
Physico-chemical findi	ngs: est ranged from 6.8 to 7.7 Aissolved oxygen concentrations tanged from 8 2 to
	est ranged from 6.8 to 7.7 dissolved oxygen concentrations ranged from 8.8 to perature was 21 C. KCA 8.2.1/03 M-179069-01-1 USEPA (=EPA): 9, 154 not specified yes tout whe randomly assigned to the nominal test concentration of 100 mg/L icid/L) and control reatment (diffetion water). On fish were added to each test performance of the test of the nominal test concentration of 100 mg/L icid/L) and control reatment (diffetion water). On fish were added to each test performance of the test of the nominal test concentration of 100 mg/L icid/L) and control reatment (diffetion water). On fish were added to each test performance of the test of the nominal test concentration of 100 mg/L icid/L) and control reatment (diffetion water). On fish were added to each test performance of the test of test o
8.8 mg/L and water tem	perature was 21 C.
	KCA 8.2.1/03 Potassium salts of phospherous and: Actue toxicity to reinbow bout, <i>Qucorhynehus mykiss</i> , under solic tex conditions. R009323 M-179069,01-1 USEPA (=EPA): 2, 154 yes
Report:	KCA 8.2.1/03
Title:	Potassium salts of phosphotous and a cure toxicity to raynbow yout, <i>Queerhynchus mykiss</i> , under source test conditions.
Report No.:	R009323 O S S S S
Document No.:	M-179069-61-1
Guideline(s): Guideline deviation(s):	USEPA (=EPA); @, 154 @ G G G G G G G G G G G G G G G G G G
GLP/GEP:	ves v a start a sta
	not specified yes trout wore randomly assigned to the normal test concentration of 100 mg/L heid/L) and control reatment (differion water). Den fish were added to each test here's triple ated resulting in 26 fish per treatment. Fosetyl-Al: 678 g/kg of test
Methods:	
Ten juvenile rainbow	rout were randomly assigned to the normal test concentration of 100 mg/L
(ca 400 g phosphorus a	cid/Ly and control greatment (diffuon water). Den fish were added to each test
substance	ienes inplieateux jesuining in aonsi aer neatment. Gosetyi-Ai. 678 g/kg of test
Dogultar	
Potassium salts of phos	storous cid to concorrations rengined ratively stable throughout the 96-h
static exposure. The	fean Seasure concentration of potasoim salts of phosphorous acid was
96.4 mg/L which was	6% of nonvinal. Nortality of rainbow yout exposed for 96 h to potassium salts
of phosphorous acts w	as 5%. Approximately of 6% walcalso observed in the dilution water control. No
sublethal effect was not	as 3%. A mortancy of 3% was also observed in the dilution water control. No
Conclusions:	
LC50 - 964 > 96.4 mg	/L (mean measured concentrations) (> 28.6 mg H ₃ PO ₃ /L)
NOEC $-56 h = 96.4 m$	PL (mQin measured concentrations) (= 28.6 mg H ₃ PO ₃ /L)
Cymments (RMS):	(L (mean measured concentrations) (> 28.6 mg H ₃ PO ₃ /L) (L (mon measured concentrations) (= 28.6 mg H ₃ PO ₃ /L) (= 28.6 mg H ₃ PO ₃ /L)
Further studenform	ation Supplementing the original DAR summary
	autor supprementing the original DAK summary
Objective	
The aim of the study v	was to determine the acute toxicity of potassium salts of phosphorous acid to
rainbow trout (Oncounty	vnchus mykiss), expressed as 96h-LC ₅₀ for mortality, under static conditions.
rainbow troug (Oncorn)	
Ô	

Materials and methods:

Test item: Potassium salt of phosphorous acid containing 410 g/L phosphorus acid, Batch No.: 224-3, Lot No.: CSI 64-F5B.

Test was conducted over a period of 96 hours in a static system with three replicate test vessels and three control vessels. Concentrations of test substance were measured at 0 and 96 hours by a titrimetric analysis followed by LTM-017 method. The parameters pH, dissolved oxygen and temperature were measured daily. Dilution water was a moderately hard freshwater. At test inimation, water possessed a hardness of 70 mg/L as calcium carbonate, alkalinity of 22 mg/L as calcium carbonate and a specific conductivity of 377 µS/cm.

Within the 48 hours prior to the test and during the whole test, fish (Oncorhynchusonykise) were dot fed. The range of individual fish length and weight measured after 96 hours was 3140 + 43 pm (mean = 36.9 mm) and 0.36 to 1.14 g (mean = 0.69 g), respectively. Loading was calculated to be 0.29 g fish tissue/L of test solution. Records for any mortalities or symptoms of togacity in the fish were made at 24, 48, 72 and 96 hours during the test.

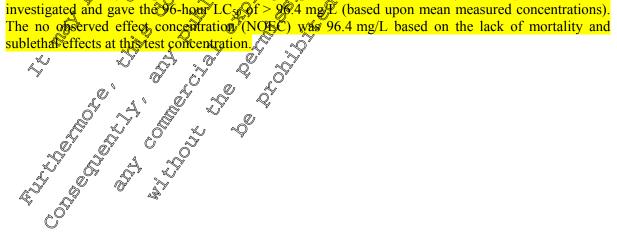
Findings:

Validity criteria:

Validity criteria (according to OECD 203, adopted 17.07.1992 Obtained in this study Ø <mark>0%</mark> Mortality in the controls (criterion is $< \frac{1}{100}$) R Ø Dissolved oxygen concentration in the control and test vessels (criterion is 260%) <mark>> 60%</mark> Ô Ô Ò

Ó Temperature was within 21.7 16 21.9 °C, i.e., in the recommended ange of 21 to 25 Cyand fish had a mean length of 30 mm, in the recommended length of 20 ± 10 nm.

 \bigcirc


Analytical findings:

The pH values in the test ranged from 6.5 to 7.6, dissolved oxygen concentrations ranged from 7.9 to 11.3 mg/L, total hardress of the didution water was 68 to 70 mg/L, conductivity of the water was 377 to 390 µS/cm and temperature ranged from 11.9 to 120 °C.

Biological findings:	y v	õ k			Ū.	
Mean measured		🧟 🗸 🖉 🖉	ulative Numb	er dead fish	(percent mort	t <mark>ality)</mark>
concentration (mg/L)	24 h	our 🦉	48 hour		<mark>2 hour</mark>	<mark>96 hour</mark>
Control S	Ø <u> </u>		[×] <u>0</u> 00 [×]		1 (3)	1 (3)
<mark>96.4</mark>	》) ¹ O [*]	× (0) ×	2	0(0)	1 (3)
	. 0			~		

Conclusion

Conclusion The acute to for the solution solution of prosphorous acid to Oncorhynchus mykiss has been investigated and gave the 6-hour LC_{50} of > 90.4 mg \mathcal{L} (based upon mean measured concentrations).

Fosetyl	
Donoute	KCA 8.2.1/04 オリ; 1999; M-171840-01-1
Report: Title:	EXP10679A (Potassium salt of phosphorous acid): Determination of acute toxicity to
THE.	hluogill gunfich (Lonomia magno chimus)
Report No.:	R005931
Document No.:	M-171840-01-1
Guideline(s):	OECD: 203, (1992); USEPA (=EPA): 540/9-85-006; OPPTS 50.1075
Guideline deviation(s):	not specified
GLP/GEP:	erimental groups with 3 replicate/group and 0 animals or replicate/he of the replicate/group and 120 animals or replicate/he of the replicate/group and 120 animals of the replicate/he of the replicate/group and 120 animals of the replicate/he of
Methods:	
There were two expe	erimental groups with 3 replicats/group and 0 animals for repocate the
experimental groups i	ncluded a dilution water control and a nomipor test concertration of 120 mg/I
(purity: 409 g phosph	orous acid/L). The definitive st was condected as a limit test with our sing
test substance conce	entration because during ange-finding work www Quming test substance
concentrations of 32 an	nd 180 mg/L) no toxic effects were observed.
Results:	
At test initiation ana	lytical measurements showed the measured concentrations were 185% of the 0 mg/L. The measured concentrations after 52 h were 150 mg/L (108% of
nominal value of 120	mg/L. The mersured conceptrations after 52 howere 150 mg/L (10% of
nominal) The nomina	Il concentration was used for the calculation of to being Ques. So mortality or
sublethal toxicity was	observed in the control or test substance groups over the 36-h gposupperiod.
Sublethal toxicity was	al concentration was used for the calculation of toorcity Ques. No mortality or observed in the control or test subscribe gloups over the 96-h exposure period.
Conclusions:	
$I C_{50} = 96 \text{ h} > 120 \text{ mg/}$	L (nonfiguration concentrations) (>35.7 for H ₃ $(D_3)/L$)
NOFC - 96 h = 120 mg/	g/L (nomina conceptrations) (= $36.7 \text{ mg M}_3\text{PO}(22)$
NOLC - 70 II 120 III	
Comments (RMS)	accentate St. C. St. J. S.
□ Comments (RMS)	L (nominal concentrations) (>35.7 mg H ₃ 0 /L) g/L (nominal concentrations) (= 36.7 mg M ₃ PO $\frac{1}{2}$) ; acceptable
Further study inform	nation supplymenting the original DAR summary
Objective:	was to determine the acute toxicity of potassium salts of phosphorous acid to
huagill guffigh (Land	omis macrochirus, expressed as 96byLC ₅₀ for mortality, under flow-through
conditions	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Materials and metho	ds:
Test item: Polassigim s	atteor prosphorous acreation and the second and the second acreation and the second acreation and the second acreation acreation and the second acreation acreatio acreation acreation acr
Test was conducted or	for a period of 6 hours in a fow-through system with three replicate test vessels
and three control vess	sels, dest solutions were tenewed at a nominal rate of 250 mL/min to produce
6./ volume_additions j	per 24 hours. Concentrations of test substance were measured at 0 and 96 hours
	dathe parameters pH dissolved oxygen and temperature were measured daily.
During the whole test	fish (Lepomis macrochims) were not fed. The range of individual fish length
and weight measured	after 96 hours was 24 to 36 mm (mean = 30 mm) and 0.27 to 1.15 g (mean =
0.62 g), respectively.	The mean loading of fish in the dilution water control was 0.017 g/L/day.
Records for any morta	laties of symptoms of toxicity in the fish were made at 24, 48, 72 and 96 hours
during the test.	
A A	
	akities of symptoms of toxicity in the fish were made at 24, 48, 72 and 96 hours
	<u>ک</u>
č?`	
V	

Findings:

Val	lidity	crite	eria [.]
v u	i luit y	UTIC	mu.

Validity criteria:	
Validity criteria (according to OECD 203, adopted 17.07.1992)	Obtained in this sordy
Mortality in the controls (criterion is $< 10\%$)	0% 5
Dissolved oxygen concentration in the control and test vessels (criterion is $\geq 60\%$)	≥ 60% Ø Š
Temperature was 21.7 to 21.9 °C, <i>i.e.</i> , in the recommended range of 21 to	25 °C, and fist had somean
length of 30 mm, within the recommended length of 20 ± 10 mm.	
Analytical findings:	ttion.
Mean measured concentration was 108% of the nominal exposure concentration	ition. O' 😵
The pH values in the test ranged from 6.80 to 7.76 dissolved oxygen concentration was ross of the dilution water from 44.7 to 45.0 mg/	entrations tanged from & 8
to 9.0 mg/L, total hardness of the diffution water was 44.7 to 40.0 mg/F, col	nductivity of the water was
214 to 221 μ S/cm and temperature ranged from 21.7 to 21.9 ∞	
Conclusion A O Q A	
The acute toxicity study to Lepomis macrochirus has been investigated and	gave the 96-hour NOEC of
\geq 120 mg/L and because no mortality was observed the LC was \Im was \Im 120 mg	<mark>/L.</mark> 🖉 🥳 Ő
The acute toxicity study to Lepomis macrochirus has been investigated and ≥ 120 mg/L and because no mortality vas observed the LC ₄₀ was 0120 mg Report: KCA 8.2.1/05 Title: Acute toxicity of fosetyl aluminum (tech.) to 0sh (Cypriconditions (limit test) Report No.: EBFYL025	ST L .G
Report:KCA 8.2.1/052013 @1-449683-01 dTitle:Acute to reicity of fosety aluminatum (tech.) to Osh (Cyprin)	inus Demis) (under statio
Title: Acute toxicity of losetyl aluminum (tech.) to Ush (Cypril conditions (limit test)) Report No.: EBFYL025 Document No.: MA49083-01-1	onus Garpio) sunder statie
Report No.: EBFYL025	
Document No.: MA49083-01-1 0 6 4	
Guideline(s): U.SECA-FIFRA § 72-F; SEP@PA-560/9-85-006 (1982	/1985
\sim OCSAP 850 4 075 (Public Draft, 1996) \circ	S. S
Report No.: EBFYL025 Document No.: M 449083-01-1 Guideline(s): U.SEPA-FIFRA § 725; SEP@PA-500/9-85-006 (1982) OCSEP 8504075 (Public Draft, 1996) OCSEP 8504075 (Public Draft, 1996) Guideline deviation(s): None GLP/GEP: yes Objectives Subset	
(d C C D No. 203 (c v. 1992)	
Guideline deviation(s): none 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Objectives x x x x x x	
	(vprinus carpio) were not
Objective: The aim of the limit test at 600 mg a.s./L was to demonstrate that fish (a affected by the test icon at this test level.	Cyprinus curpic) were not
affected by the test item at this test level. $\int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{2}} \int_{0}^{$	
Matarial and Mathader A A A	
Test item: fosetyl-aluminium (tech, analyzed coment of active substance:	fosetvl-aluminium: 98.1%:
man for the second seco	~ . 00202 00

specified by batch code: AP F053616-01-11, Objgin batch no.: 08001, tox no.: 09393-00.

Test organism: Common carp (Cyprines carpfo), mean body length 4.2 cm, mean body weight 1.2 g. Lot F 10 12 was delivered on July 18, 2012. The bromass loading for this test was 0.45 g fish tissue/L test medium. Thirty, is (fifteen fish per test vessel I and II) were exposed in a limit test for 96 h under static test conditions to a prominal concentration of 100 mg a.s./L against a water control with further ¢ 30 fish.

During the test, fish were examined after four hours and then daily for mortalities and signs of

within the study the pH value the oxygen saturation level and the temperature were measured with commercial measurement devices, daily.

Ley Contractions

Results:

Validity criteria:

Test conditions met all validity criteria, given by the mentioned guidelines: there was less than \$\% mortality within the 48-hour settling-in period and $\leq 10\%$ mortality in the control(s). Dissolved oxygen saturation was greater or equal to 60% throughout the test, and pH variations were ≤ 1.0 units.

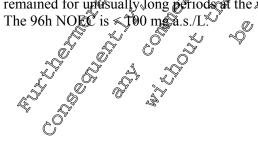
Analytical results:

Dissolved oxygen concentrations ranged from 61 to 101% oxygen saturation, the pH values anged from 6.5 to 7.6 and the water temperature ranged from 2.5 to 23.3°C in all aquaria over the whole testing period. a

The analytical determination of fosetyl-Al (in water by HPLC – MS MS) revealed a recovery \$87 to 92% of nominal over the whole testing period of 26 hours at the limit test concentration of 00 mg a.s./L. Therefore the results of this study are given based on the nominal concentrations.

Biological results:

 \bigcirc There were neither any sub-lethal effects nor any mortality in the control group. 15 B): Cumulative mortality was observed as follows [with a total number of 30 (15A


			() j	, 🔊		¥ ()		Ň		2
Exposure time	4	h	<u></u> 24	κ ή ζ	~ % 8	h 💞		A C	<u>96 کې </u>	h
Test level	no. of	0/ dood	no. of ⁽	× %*×	no. of	2%	Ôĩo. of Ô	<u>%</u>	n e k of	%
[mg a.s. / L]	dead	% dead≰	🖗 dea@	dead		dead	D dead	dead	dead	dead
Control I	0	Q Q	₹.	" <i>O</i> "0 <i>I</i> (`	0	% 0	§ 0	0
Control II	0	×0,×	چ 0 گ		0 "	L)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	» 0 °	0	0
100 I	0	<u>م</u> 0		<u></u>	"Ø	0 ×	$\bigcirc 0 $	Q	0	0
100 II	0	≫°0 ∢	0	A CO	$\swarrow 0 $	° 0 «	i Q	ŝ	0	0
	Ś	Ĩ.	, Ô,	Õ õ		×	() () () () () () () () () () () () () (0		
Conclusion:	ŝ,	<u> </u>		, Ş	de la companya de la	0	0 4	- ¥ 1		

Conclusion:

Test substance:	foses-1-Al (tech.)
	Semmon carp (<i>Cyprinus carpio</i>)
	6 hours, static design
LC50 960 (95% C.I.):	> 100 mg a.s./L
LOEC: lowest concentration with an effect	الإلى المراجع (Marcon 100 mg a.s./L
NOEC: highest concentration without toxic effects	♥ <100 mg a.s./L
NOLEC: highest concentration causing no metality	100 mg a.s./L
100 % mortality:	> 100 mg a.s./L
	Ĵ

The limit test showed that, at 100 mg a.s. 12, foseQI-Al (tech.) did not cause any mortality to Common carp (Cyprinus carpio). The 96h-CC50 is greater than 100 mg a.s./L.

Ten fish at test level (five fishceach aquarium) showed the following symptoms after 96 hours: fish remained for undersually long periods at the water surface, showed labored respiration.

Report:	KCA 8.2.1/06 オリ; 2008; M-310496-01-1
Title:	Acute toxicity of phosphorous acid to fish (Oncorhynchus mykiss) under static
	conditions (limit test)
Report No.:	EBFYL007
Document No.:	M-310496-01-1
Guideline(s):	EBFYL007 M-310496-01-1 EPA-FIFRA § 72-1/SEP-EPA-540/9-85-006 (1982/1985) OPPTS 850.1075 (Public Draft, 1996)
~ /	OPPTS 850.1075 (Public Draft, 1996)
	Directive $02/60/\text{EEC} \subset 1$ (1002)
	OFCD No. 203 (rev 1992)
Guideline deviation(s):	
GLP/GEP:	yes T O O O O

Objective:

A limit test under static conditions at 400 mg/L was performed in order to show that fish (Rainh trout) were not affected by phosphorous acid (H₃RO₃) at this test level

Material and methods: Test item: Phosphorous acid (H₃PO₃), applied as sodium-phosphite-dibasic pentahydrate analyzed purity: 102.3% (used as 100% pure, batch no. EQT 70090) ð The toxicity of the fosetyl-Al metabolite phosphonic acid to rainbow trout, Orcorhonchus nykiss, (mean body length 4.6 cm, mean body weight 0.9g) was determined under static test conditions over an exposure period of 96 h. The biomass loading during testing was 0.68 g fish tissue L test medium. Thirty fish were exposed to a water control and nominal test concentrations equal to 400 mg test substance/L (limit test). Dissolved oxygen, temperature and pH were measured at test initiation and after each test media renewal at 24, 48 and 72 hours. Recoveries of phosphorae acid were measured in all test levels on day 0, day 2 and day V of the exposure period to confirm nominal concentrations. Mortality and physical or behavioural alterations were recorded at 4, 24, 48, 72 and 96 hours after the start of exposure.

Findings:

The test conditions met all validity oriteria, given by the mentioned guidelines. Dissolved oxygen concentrations ranged from 87 to 100% oxygen saturation, the pH values ranged from 6.8 to 8.6 and the water temperature ranged from 11.8 to 13 4 C in all aquaria over the whole testing period.

Based on analytical determination of phosphonic and mean measured values of 97% of nominal were found over the whole testing period of 96 hours. Therefore all results are given as nominal values.

wagobsetwed in the control group as well as in the test group. No mortality or sublethal toxicity

Conclusions: Under the condition of the test neither any mortatuy nor any sub-lethal effects occurred. The 96h-LC₅₀ for this is clearly above 400 mg phosphonic acid (H₃PO₃)/L.

CA 8.2.2 Long-term and chronic toxicity to fish

For more information on studies already evaluated for the Annex I inclusion of fosetyl under Diregive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience.

To fulfill the data requirements of Commision Regulation (EU) No 283/2013 setting out the new data requirements for active substances, an Early Life Stage (ELS) study with fosetyl-alominian was? conducted with Pimephales promelas and is summarized in Section CA 8.2.2.1 (KCA 8.2.2.1/Q), ; 2015; M-531353-01-1). This study resulted in a lower NOFC, which will be

Fish early life stage toxicay test CA 8.2.2.1

· · · · · · · · · · · · · · · · · · ·	2015; M-531353-01-1). This study resulted in a lower NOFE, which will be assessment.
considered in the risk	assessment. 4
CA 8.2.2.1 F	Tish early life stage toxicity test
CA 0.2.2.1	
Report:	KCA 8.2.2.1/01
Title:	Early-life stage toxicity of tosetyl-Al (techn.) to fish (Pimephales promelas)
Report No.:	EBFYN029 \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
Document No.:	
Guideline(s):	EU Directive AV414 FEC AV AV AV AV
	Regulation (507/2009 (Europe)
	US EPA OCSPP & 0.1400 O S S O S S
Guideline deviation(s):	none

GLP/GEP:

Objective:

The objective of the study was to determine the caronic toxicity of fosetyl-aluminium (fosetyl-Al) to the early life-stages of fathead mining w (Pimephales promelas) under fow-through conditions.

Materials and methods.

Test item: Foseytl-AD (tech.), putity 280% www, specified by origin batch no.: 201407089, specification no.: 102000046699, Batch-Code: AE F053616-0026.

2

Fathead minnow (Pimephales promelas), freshly fertilized eggs (<24 hours old) were used at the start of the exposure period. C

Early-life stages of fathead minnow (eggs larvae fry), were exposed to five test concentrations and a control under flow prough conditions with four replicates per treatment group over 32 days (28 days post-hatch). The piological parameters' measured in this study were egg hatchability, survival and larval growth and morphological and behavioural offects

The definitive study was conducted at the nominal test concentrations of 0.213, 0.470, 1.03, 2.27 and 5.00 mg a.s/L.

Water temperature was measured continuously in one control replicate aquaria. Over the entire test duration, temperatures ranged between 24.3 and 26.1 °C. Mean dissolved oxygen (DO) saturation ranged from 98 to 101% and the mean pH values varied between 7.0 and 7.3 in all aquaria over the whole test period. Measured light intensity ranged within 590 to 1075 lux with a photoperiod of 16 hours light and 8 hours dark.

Findings:

Analytical Findings:

The overall pean measured concentrations of fosetyl-Al during the test were 0.208, 0.493, 0.966, 2.39 and 9.41 ma a.s./L. The overall mean measured values correspond to recoveries of 94 to 108% of nominal for all test levels. The results of this study were therefore based on nominal concentrations of fosetyl Al.

Validity:

The test fulfilled the validity criteria of the underlying guideline.

- The dissolved oxygen concentration should be > 60% of the air saturation value throughout the test: The dissolved oxygen concentration ranged between 98 to 101%. Therefore the test $failfilled^{\mathbb{C}}$ this validity criterion.
- The water temperature should not differ by more than ± 1.5 °C between less chambers or between successive days at any time during the test, and should be within 25 ± 1.5 %. The water temperature ranged between 24.3 to 26.1 °C and did not differ by more than ± 1.5 °C between test chambers or between successive days at any time during the test, wherefore the test for filled this validity criterion.
- The compulsory analytical measurement of the test concentrations was performed.
- Overall survival of fertilised eggs and post-hator success in the controls and, where relevant, in the solvent controls should be greater than or equal to 70 respectively 75%: QveralKsurvissi of fertilised eggs was 92.5% and post-hatch success was 90.2%. Therefore the test fulfilled this validity criterion.

Toxicity to fish:

Based on morphological and behavional observations and the statistical analyses of hatching Success, fry survival and fry growth (expressed as wet weight, dry weight and total length), the test repealed the following NOEC, LOEC and EC1Q based on nominal concentrations of fose(y1-A1)?

		<u>~</u> <u>%</u>
Test Substance	Edsetyl-Al and a gradient of the second seco	
Test Object	Father minnow (Pintephales promelas)	L.
Exposure	32 Day, flow-through (ELS)	. Š
Results	[™] NOEC [™] LOEC [™] A [™] NOEC [™] LOEC [™] A [™] Anno and a second and a seco	EC10 (95%-CL) [mg a.s./L]
Hatching success (day 4)*		0.31 (0.05 – 0.56)
Larval Survival 🔗		0.61 (0.48 – 0.73)
Growth (Length)**	0.47 0 003 0.47 0 003 0.47 0 0 1.03	1.18 (0.85 – 2.26)
Growth (Wet Weight)**	1.03 0.470 0 1.03	0.55 (0.01 - 0.75)
Growth (Dry Weight)	0.470 [°] , 0 [°] , 0 [°] , 1.03 [°] 0.470 [°] , 0 [°] , 0 [°] , 1.03 [°] , 0	0.42 (0.03 - 0.62)
Morphological & C Behavioral Effects***		not applicable

- *• Hatching started on day y and lastet with day 11. At concentrations > 0.213 mg a.s./L a statistically significant delay in hatching was obs weed. Development of embryos was similar at all test levels, but at Vhigher concentration a reduction in hatching success was statistically significantly. On day 11, the remaining withatched embtyos at @03 replicate B, 2.27 and 5.00 mg a.s./L were observed as being dead. Possibly the test item of these concentrations impacted the structure or stability of the chorion and consequently hamper of the hatch of the larvae.
- In the two highest test concentrations (2.27 and 5.00 mg a.s./L) only a low number of fish was available at the end of the test, due to reduced hatching. Since the growth of fish is density dependend, it was decided to exclude the respective concentrations from statistical analysis.
- The recalts of morphological and behavioral effects are based on expert judgment. This type of data is not suitable for a statistical analysis.

Observations:

In the control and up to the test concentration of 0.470 mg a.s./L abnormal behaviour and abnormal appearance were observed only in very low numbers. These observations did not show any dose dependence and were not related to the test item, but mirror known background occurrence of this type of observations. Starting at 1.03 mg a.s./L up to the highest test concentration the number of observed abnormal behaviour and appearance increased and followed a dose response pattern.

Conclusions:

The overall chronic NOEC observed in this study is 0.213 mg a.s./L and the respective overall chronic LOEC is 0.470 mg a.s./L (based on hatching success).

Thus, considering that fosetyl-Al is rapidly degradable, fosetyl-Al may be classified according to the criteria of Regulation 1272/2008 as "Hazardous to the aquatic environment - Chonic Category 3" "H412: Harmful to aquatic life with long lasting effects".

CA 8.2.2.2 Fish full life cycle test Please refer to Section CA 8.2.2. Based on the bigger stated in the EU-directive and the Aquatic Guidance Document, a fish full life cycle (FFLC) study is not required. The acute toxicity of fosetyl-aluminium (fosetyl-Al) for fish is >0. Pmg/k, and the chronic toxicity for fish is also low (see Section CA 8.2. No bioconcentration factor in fisk is triggered since for Fosety Al and its log Pow

metabolite phosphonic acid.

Report: 282/492 Title: juvenile gro Report No.: Document No.: -184572-01-1 **OPPTS Guideline No.** Guideline(s): Guideline devia **GLP/GEP:**

Objective;

The study was performed to assess the effect of foset I-Al on growth of juvenile rainbow trout (Oncorhynchus mylass) over 28 days in a water tenew al/test system.

Ľ

Ľ

Materials and Methods:

ò Materials and Methods: 5 Test item: Fosetyl-Ad (tech), analysed content of active substance: fosetyl-Al: 970 g/kg, specified by batch no.: **QP**9607181. Ő

Test was warried out with juverile raidbow thout (Oricorhynchus mykiss). Pre-exposure measurements showed the fish had a mean standard length of 60° cm (sd = 0.3) and a mean weight of 3.53 g (sd = 0.49) In the study 40 L glass exposure vessels were used for each replicate. Based on the mean weight value, this gave a loading rate at initiation of the study of 1.4 g fish tissue /L. Media used in the study was dechloring and laboratory tap water with a total hardness of 134 mg/L as CaCO₃ at initiation and 105 mg/L as CaCQ at termination of the study. Groups of 16 juvenile rainbow trout in a single replicate were exposed to nominal concentrations of fosetyl-Al of 0 (control), 10, 18, 32, 56 and 100 mg/I@for apperiod of 28 days. Test solutions were aerated and renewed every 24 hours with a photoperiod of 6 hours light and 8 hours darkness. Fish were fed daily at a rate of 4% body weight and the length and weight of each fish was determined at 0, 14 and 28 days. Mortalities and adverse reactions to exposure were recorded daily. Water temperature, pH and dissolved oxygen concentrations were recorded daily throughout the study. Test concentrations in solutions were verified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using aluminum as marker. Water samples were taken from the control and all surviving test groups on days 0, 2, 6, 9, 13, 16, 20, 23, 27 (fresh media) and on days 1, 3, 7, 10, 14, 17, 21, 24 and 28 (old media).

Findings:

Analytical Findings:

Analytical verification of test concentrations showed actual test levels to be near nominal (64 to 198%) recovery) over the 28 days study period. Based on the majority of sampling occasions, the measured concentrations were observed to be near nominal; it was thus considered justificable to base the results in terms of nominal test concentrations only.

Temperature was maintained at 14 ± 1 °C. Mean values of pH and concentration of dissolved ϕ xygen were 7.5 and 9.6 mg O₂/L, respectively. There were for treatment-related differences for oxygen Were 7.5 and 9.6 mg O₂/L, respectively. There were no treatment-terated unrespects for oxygen concentration. Concentration-dependent differences in pH were observed in the freshly prepared test media throughout the study. Nevertheless, values obtained were within acceptable timits.
 <u>Validity:</u>
 Mortality in the controls must not exceed 10% at the end of the test.

- No mortality was observed in the control treatment at the end of the study
- Mean weight of fish in the controls must have increased by at least 50% of their mean initial weight over 28 days: Ø Ĩ ° Ô
- Mean weight of fish in the control increased by a factor of 2.5. The dissolved oxygen consentration should be 60% of the air saturation value throughout
- the test: ð \odot Ò Ô \bigcirc Ô The dissolved oxygen concentration was 9% mg 6% L at the temperature of 44 ± 1 °C, thus <mark>> 60%.</mark> Ô K,
- The water temperature must not differ by more than ± 1 °C between test chambers at any one time during the test and should be maintained within a range of 2°C within the temperature range of 12.5 to 16.0 F specified for Oncornynchus my cass: Temperature was 14⁴ 1%, *i.e., in the pecompended range for O. mykiss, and differed not* more than \$1 °C between test and more tang one time during the test.

Biological findings:

Conclusion

Following 28 days of exposure, no mortality occurred in both exposed and control fish. None of the fish shows any behavioral effects. Introduction of growth compared to control values did not exceed 13% (over the period of to 14 days) of 9% (over the period 0 to 28 days) at any of the test levels. Fish weight gain was comparable at all test levels. Á **&** .

 \bigcirc

Nominal concen-		Ĵ [×] <mark>Da</mark>	<mark>* 0</mark> *~			Day	<mark>/ 14</mark>			Day	<mark>y 28</mark>	
tration (mg/L)	Lengt	h (cray)	Weig	ht (g)	E rngt	<mark>h (@))</mark>	<mark>Weig</mark> l	<mark>ht (g)</mark>	Lengtl	<mark>ı (cm)</mark>	Weig	<mark>ht (g)</mark>
4	<mark>mean</mark>	sď	mean	A sd	li mean	∫ Ø <mark>sd</mark>	<mark>mean</mark>	<mark>sd</mark>	mean	<mark>sd</mark>	<mark>mean</mark>	<mark>sd</mark>
Control 🖉 🎾	<mark>6.2</mark>	<mark>்டு</mark> 0.3	3.47	@ <mark>0.46</mark> _	🏷 <mark>7.0</mark> 🔊	♀ <mark>0.3</mark>	<mark>5.66</mark>	<mark>0.57</mark>	<mark>7.9</mark>	<mark>0.4</mark>	<mark>8.69</mark>	1.08
<mark>10</mark>	<mark>6.1</mark> گ	≫ <mark>`0.3</mark> '	≫ <mark>3.48</mark>	0.52	7.Q	<mark>0.4</mark>	<mark>5.66</mark>	<mark>0.95</mark>	<mark>7.9</mark>	<mark>0.5</mark>	<mark>8.45</mark>	1.03
18 🔬	<mark>6.1</mark>	0.3	3.54 ×	0.4	<mark>629</mark>	<mark>0.3</mark>	<mark>5.37</mark>	<mark>0.56</mark>	<mark>7.8</mark>	<mark>0.4</mark>	<mark>8.11</mark>	1.04
32	<mark>6.1</mark> ∞	<mark>0:\$</mark> `	<u>3:4</u> 4		~ <mark>©</mark> 9	<mark>0.3</mark>	<mark>5.31</mark>	<mark>0.66</mark>	<mark>7.9</mark>	<mark>0.4</mark>	<mark>8.39</mark>	<mark>1.19</mark>
<mark>56</mark>	<mark>6, 1</mark>	<u>003</u>	<u></u>	0.61	و <mark>07.0</mark> م	<mark>0.4</mark>	<mark>5.74</mark>	<mark>0.86</mark>	<mark>7.9</mark>	<mark>0.4</mark>	<mark>8.52</mark>	1.39
<mark>100</mark>	@ <mark>6.1</mark>	0.3	∱ <mark>∕3.67</mark>	0.50 C	<mark>∛ 7.0</mark>	<mark>0.4</mark>	<mark>5.76</mark>	<mark>0.82</mark>	<mark>7.8</mark>	<mark>0.3</mark>	<mark>8.66</mark>	<u>1.14</u>
	Y A				1							

Mean lengths and weights of rainbow twout at day 0, day 14 and day 28 of the study

~0 L, The 28 day "No Observed Effect Concentration" (NOEC) is considered to be 100 mg a.s./L (based on nominal concentrations) on the basis that, at this test concentration, there were no mortalities, no behavioural effects and no inhibition of growth observed. Furthermore, all validity criteria of the current guideline were fulfilled and the study can therefore be considered as valid.

Õ, Comments (RMS): acceptable

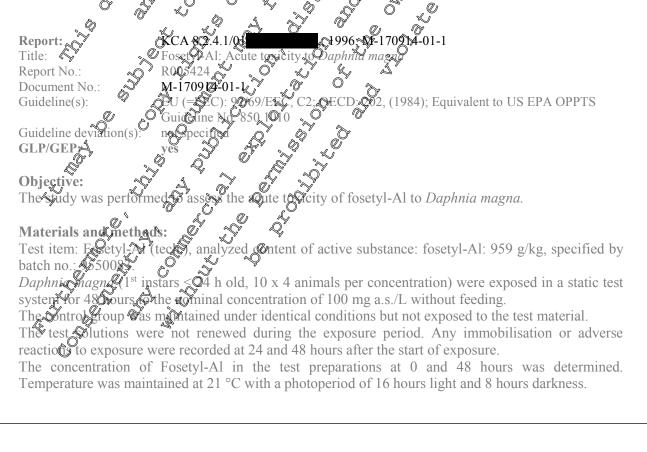
×,"

CA 8.2.2.3 Bioconcentration in fish

Please refer to Section CA 8.2.2. A bioconcentration study in fish is not triggered, since $\log P_{ow}$ values are < 3 for fosetyl-aluminium and its metabolite phosphonic acid.

CA 8.2.3 Endocrine disrupting properties

Fish


Population relevant effects of fosetyl-aluminium (fosetyl-Al) on fish over studied in a (28 d) juvenile growth test with rainbow trout and in an early life-stage test (ELS) with fathead nannow (see Section CA 8.2.2.1). In the 28-d study, no effects on growth or survival were seen at 100 mg/L. Based on the hatching success and growth parameters, a NOEC of 0.213 mg/L was found in the ELS. Although they were not designed to provide comprehensive partornation on all endocrine endpoints, the available studies in fish showed no indication of endocrine-related effects As there is also no indication of an endocrine disruption potential in mammals and birds, no further testing is indicated to evaluate the endocrine disrupter potential of fosetyl-Al to fish

CA 8.2.4 Acute toxicity to aquatic invertebrates

CA 8.2.4.1 Acute toxicity to Daphra magna

For more information on studies already evaluated for the Anney inclusion of fosetyDunder Directive 91/414/EEC, please refer to the corresponding section in the DATE and in the Baseline Dossier provided by Bayer CropScrence. The studies from which the endpoint will be used for risk assessment are summarised below.

One additional study on acute toxicity to *Daphnia magna* was performed, which was not submitted for Annex I inclusion of fossivil under Directive 91/414/2EC and is submitted within this Supplementary Dossier for the approval renewal of fossivil. This study is summarized below.

Dates of experimental work: Findings:

January 15, 1996 to January 17, 1996

Analytical findings:

Analysis of the test preparations at 0 hours showed the measured concentrations to be near mininal. concentration. Analysis of the stirred test media at 48 hours showed the measured concentrations of the near nominal. A Deriod O

Biological findings:

There was no immobilisation in 40 daphnids exposed to a test conceptration of of 48 hours.

There were no adverse reactions to exposure. Toxicity of fosetyl-Al to *Daphnia magna*:

Test Concentration	Exposed 🖉 🗸 Impobilised daptoids
mg a.s./L	daphnids 24 0 48 48
Nominal	$\sqrt{100}$ $\sqrt{10}$
Control	by the of the the the
100	

Conclusions:

st coventration of 30 There was no immobilisation in 240 daphnids exposed to a f L for a period of 48 hours. Inspection of the mmobilisation data gave the following regults:

	Ũc		~~ (U ^Y O	í «C	
Time		¢ EC50		S 95	1% N	_^^ (
(h)	**	Ang ag	/L O	N ng	Q.s./L&	
24	S.	V AN	0 0,	S NI	n.d. C	\mathcal{F}
48		510			n.d@	
n.d.: not determined		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			5° Q	

□ Comments (RMS): acceptable

The summary presented above from the original DAR was already presented with further results and details for the submission of the fosetyl ESFAR Supplementary Dossier.

Further study information sopplementing the original DAR summary *o*

C Materials and methods:

Test was conducted with six replicate fest vessels with duplicate control vessels.

Water temperature was recorded daily throughout the study. Dissolved oxygen concentrations and pH were recorded at the start and termination of the study. Test material concentrations were monitored by the determination of the atuminium concentration by inductivity coupled plasma emission spectrometry (IGP-AES). Water samples were taken from the control and the 100 mg/L test group at 0 and 48 hours

Finding

Validity criter

Validity corteria (according to OECD 202, adopted 13.04.2004)	Obtained in this study
Mortality in the controls (criterion is $< 10\%$)	<mark>0 %</mark>
Dissolved oxygen concentration in the control and test vessels (criterion is	≥ 7.9 mg/L
\geq 3 mg/L)	

Analytical findings:

<u>¹ mary neur miam</u>	50.									
Analysis of the t	Analysis of the test preparations at 0 hours showed the measured concentrations to range between 88									
and 90% of nom	inal (mean	<mark>89%). At 4</mark>	8 hours anal	ysis of the un	stirred test i	media show	zed a marked			
decline in measured test concentration (5% of nominal). Analysis of the stirred test media at 48 bours										
showed the measured concentration to be near nominal (85 to 88%) In order to give at "works case"										
analysis of the d	lata, it was	considered	justifiable to	base the res	ults on the 🛔	48-hour me	an measured			
concentration.					C	ř				
					A	ć	S S . Q	2		
Nominal		<mark>0 hours</mark>		24 hours		48 hours				
<mark>concentration</mark>	pH	mg O ₂ /L	T °C	A	SH	mg. P./L	~ Tec	Ø		
(mg/L)								Ď [¥]		
Control ¹	<mark>7.7 - 7.7</mark>	<mark>8.5 - 8.5</mark>	<u>21.0 - 21.0</u>	2 <u>1.0 - 21.0</u>	ر <mark>7.7 - 7.7</mark>	<u>ð.9 - 8.0</u>	<mark>∛ 210[°]-21.0</mark> °	1		
100 ²	<mark>5.9 - 6.0</mark>	<mark>8.5 -8.5</mark>	21.0 - 21.0	<mark>) 21.0 - 21.0</mark> 🖑	🎖 <mark>6.2₀6.3</mark>	∕∕ <mark>8.1 - &,2</mark>	2 <u>4.0 - 2</u> 1.0			
¹ conducted with 2				\sim		× v				
² conducted with 6	replicates wl	nereas 2 con	tained no daph	mids 5						
			O ^Y (Ŭ Å	4 ~0	à s.	A o			
Conclusion			A. Ö	, v Q		" U	D' A			
The acute toxicit	ty study of f	osetyl-Al t		agna hasbee	n investigat	ed and gave	e the 48 hour			
EC ₅₀ of \geq 100 mg/L. Correspondingly the NOEC was \geq 100 mg/L. \wedge \uparrow										
	- ×	R	Ŵ.C		y _o o	S O	×.			
		Å	The second secon		S A	У "Ş ^ü	L.			
Donort	KCA	8 2 1 1/02				n1_1 ⁰ ³	×			

Report: CA 8.2.4. f/02 9008-01-5 Title: to the war flea *Daphnia magna*, Potassium salts of phosphorougacid: Acute understatic condition Report No.: 9322 \cap M-179068-01-1 Document No.: Guideline(s): SEPA Guideline deviation(s) **GLP/GEP:**

Methods:

Cally assigned to each test ontain with @30 minutes after the addition of 400 g phosphorou acid/L), at onominal test concentration of 100 mg/L. Ten water fleas were Smpartally the test substance (purity; Sibstance treament were troncated. The control (dilution

> K, 0

A

Results:

sorts of mosphorous acid was 100 mg/L which was of daphnids was 0% in both treated and control The mean measured 100% of normal. Kortal groups.

Conclusions: ina concentrations) (> 29.7 mg H₃PO₃/L) EC5Q - 48 h fg/L (sominal concentratives) (> 29.7 mg $\pi_{3}r \cup_{3}L$) mg/L (normal concentrations) (= 29.7 mg H₃PO₃/L) NOEC -48 h

□ Commerce Ø

Ô

Further study information supplementing the original DAR summary:

L, **Objectives**,

The study was performed to assess the acute toxicity of potassium salts of phosphorus acid to Daphnia magna.

Materials and methods:

Test item: potassium salt of phosphorus acid (Batch No.: #2244-3, lot No.: CSI#64-F5B, purity = 410 g/L).

The test was conducted with < 24 hours old neonates in moderately hard freshwater with a hardness of 66 mg/L as calcium carbonate (CaCO₃) and a conductivity of 382 μ S/cm. The bioassay was conducted over a duration of 48 hours and survival of water fleas was monitored daily. And dead or immobilized water flea was removed. Daphnids were not fed during the test.

Water temperature was recorded daily throughout the study. Dissolved oxagen concentrations and pHo were recorded at the start and termination of the study. Test item concentrations were verified at test initiation and termination by titrimetric analysis following method LTM2017.

Findings:

Validity criteria:

		¥		°∼√		N Kľ	~C>
Validity criteria (according to	<mark>DECD 202, ado</mark>	pted 13.04	.2004))°	, S	🔊 <mark>Obtaj</mark>	ned in this	study –
Mortality in the controls (criterio	<mark>n is < 10%)</mark> 🤍). ⁴	õ	No No	ĝ or	2 <mark>0,%</mark> 2	1
Dissolved oxygen concentration	n the control	d testovesse	lecriteri	stais 🦼			
\geq 3 mg/L)			× .~		Ö K	<u>≥ 8.4 mggr</u> J	Ŕ
	Ű.	°~		.0	S S		AS .
Analytical findings:	R C					Û,	0

Analytical findings:

Nominal	0 bours
<mark>concentration</mark> (mg/L)	pH mg O2/L T°C F T % pH mg 05/L T°C
Control	$7.3 \propto 20.5 = 20.2 \sqrt{3.4} = 7.4 = 8.6 = 20.9$
<mark>100</mark>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Conclusion

The acute toxicity study of potassium safes of phosphorus acid resulted in zero percent mortality in D. magna at 100 mg/L. after 48 hours, thus delivering a 48 hour \$C_50 \$600 mg/L. Accordingly, the NOEC was $\geq 100^{\circ} \text{mg/}$

Ô	
Report:	KCA 8 4.1/03
Title:	Acute Doxicity of phosphorous acid to the waterflea Daphnia magna in a static
· · · · · ·	laboratory test system 2 4 2
Report No ·	FREVING TO TO

Report No .: Document No .: Guideline(s):

N-3105 8-01 A DEOD guide the 202 2004 DEEC Directive 92/69/EEC, part C.2 (1992); U.S. EPA Posticide Assessment Guidelines Subdivision E, § 72-2 (1982); OPPTS Guideline 850.1010 public maft 1996 (modified); JMAFF 12 Nousan No. 8147 (2000).

Guideline deviation(s): none Ö GLP/GEP:

Objective:

The objective of the reported study was to verify the absence of treatment-related effects on mobility of Daphnia Ghagner over \$8 hours under static exposure conditions, when exposed to a limit concentration of 400 mg phosphorous and/L. 1

Material and methods:

Test frem: Phosphorous acid (H3PO3), applied as sodium-phosphite-dibasic-pentahydrate, analyzed purity: 10233% (used as 100% pure, batch no. LOT 70090)

The toxicity of the fosetyl-aluminium metabolite phosphonic acid to Daphnia magna was determined under static test conditions. Five daphnids per replicate, ten replicates per concentration, were exposed for 48 h to a water control and nominal test concentrations of 400 mg test substance/L. The test solutions were sampled and analyzed at the beginning and the end of the test period.

Dissolved oxygen and pH were measured at test initiation and termination. Temperature was recorded throughout the study. Immobilization and adverse reactions were recorded at 24 and 48 hours after the start of exposure.

Findings:

Mean measured values of 106 and 117% of nominal of phosphonic acid were found at beginning and at end of the testing period of 48 hours. Therefore, all results are given as nominal values.

No mortality or sublethal toxicity was observed in the control groups as well as in the text groups

Conclusions:

Under the condition of the test, neither any mortality for any sublectional effects occurred. The 48 H-E for *Daphnia* is clearly above 400 mg phosphonic and (H₃PO₃)/L.

CA 8.2.4.2 Acute toxicity to an additional aquatic invertebrate species

No acute studies on an additional aquatic invertebrate species are required since foselyl-aloninium is not an insecticide and does not show an insecticidal mode of action.

CA 8.2.5 Long-term and chronic toxicity to aquatic invertebrates

For information on studies already evaluated for the Annex I inclusion of foetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR, and in the Baseline Dossier provided by Bayer CropScience. The study from which the endpoint will be used for risk assessment is summarised below.

 Report:
 KCA 8.2.5 (01)

 Title:
 Iosetyl-A: Daphnia magna reproduction test

 Report No.:
 No14229

 Document No.:
 M-189214-00-1

 Guideline(s):
 OECD: 202, (1984);

 Guideline (s):
 OECD: 202, (1984);

 Guideline (s):
 Very Specified

 GLP/GEP:
 yes

Objective: The aim of the tudy of s to a sets the effect of for tyl-Adon the reproduction of *Daphnia magna* over a 21 day period.

Materiak and methods

Test item: Fosetyl-Ac (tech), analyzed coment opactive substance: fosetyl-Al: 959 g/kg, specified by batch no.: 9550083.

Based on the results of an actie toricity study, *Daphnia magna* were exposed (4 replicates of 10 daphnids per stoup) to an actie toricity study, *Daphnia magna* were exposed (4 replicates of 10 daphnids per stoup) to an actieve supersion of the test material over a range of test concentrations of 1.0, 3.2, 10, 92 and 100 pc/L for a period of 21 days. The test solutions were renewed 3 times per week. The humbers of a five and dead adult *Daphnia* were determined daily. The numbers of young *Daphnia* falive and dead) were determined at each test media renewal. The *Daphnia* were fed daily with a faixed or gal supersion.

Temperature was maintained at 21°C with a photoperiod of 16 hours light and 8 hours darkness for a period of 21 days.

Dates of experimental work:

February 12, 1996 to March 4, 1996

Page 52 of 126 2016-07-20

Findings:

Validity criteria:

Validity Criteria	Recommended	Obtained	
Control mortality	$\leq 20\%$	2%	
Dissolved oxygen	$\geq 60\%$	\$88%	
pH (controls)	Deviation ≤ 0.3	0 .1 ▲	
First young (control group)	Produced within 9 days	🔊 7 days 👡	
Cumulative young per female	\geq 20 aft 14 days	22	
Cumulative young per female (control group)	\geq 40 after 21 days	49 0	
Number of broods per control group	$\mathcal{O}^{Y} \geq 3$	O A	
			- U K

Analytical findings:

Analysis of the freshly prepared test media of day Oshows the Heasured congritrations to be near nominal. Analysis of the expired test media spowed marked decide in greasured concentrations with concentrations ranging from 0 to 96% of paminal@These@ow and variable recelts are considered to be due to analytical variation given that the theoretical conceOration of all miniuw at the low stest concentrations is near to the limit of etection of the analytical pethody dsorption to the glossware and/or algal cells given as feed for the saphnes, and probloms associate with sampling from and/or algal cells given as feed to the wapnings, any protoning as octained with standing the mean measured test concentrations. Biological findings

Lethal Effects on the Parental Generation

Mortality (immobilisation) occurred predomonantly within the first 96 hours of posure at the highest nominal test concentration of 100 resulting a 1003 mort ity by day 5 No mortalities occurred at the test concentrations of 1.0, 36, 10 and 32 mg/L thoughout the duration of the study.

There was a significant effect on size and colouration of the ophnic as a result of exposure to fosetyl-Al in the prviving daphyids at the test concentration of 100 mg/L were markedly smaller in size and patr in plour than the control animas on day 4 totil 100% immobilisation was observed on day 5. 🖉

The daple ds at the test concertration of and 2 mg were observed to be the same size and colour as the control animals À

Sublethal Effects on the Rarente

After both 14 and 21 was, there was no statistically significant differences between the controls and group in terms of the number of young produced per adult. The young on anys 14 and 21 due to 100% mortalities being observed the 1.0, 3.2, 0 and 2 mol test you 100 mg/L test group proceed 20 prior to these time points

Effects on the Filian Generation 🔈

Information on the effects of Gsety Al on the F, generation is limited, since, by study design, the young are remeved soon after liber from the brood pouch. However, an assessment made at each media renew showed the filial" daphneds produced by the 1.0, 3.2, 10 and 32 mg/L test groups were in the same general condition as the young produced by the controls over the duration of the study.

Numbers If unlocked eggs and dead young were low in all control and treatment groups surviving to maturation.

Effects of fosetyl-Al to Daphnia magna:

Nominal concentration	Mean measured test	<mark>%</mark> survival	% No. of live No. of dead survival young young		<mark>No. o</mark>	f unhatched eggs 🌒		
(mg/L)	concentration (mg/L)	of P1	<mark>Total</mark>	Per female (cumulative)	<mark>Total</mark>	Per female (cumulative)	<mark>Total</mark>	eggs Per female (cumetartive)
Control	Control	<mark>100</mark>	<mark>1962</mark>	<mark>49</mark>	<mark>3</mark>	<1 🔊	<mark>3</mark>	
1.0	<mark>0.47</mark>	<mark>100</mark>	<mark>1826</mark>	<mark>46</mark>	2	< <u>1</u>	7	
<mark>3.2</mark>	<mark>1.97</mark>	<mark>100</mark>	<mark>1884</mark>	<mark>47</mark>	<mark>3</mark>	<mark><1</mark>	<mark>6</mark>	
10.0	<mark>4.54</mark>	<mark>100</mark>	<mark>1872</mark>	<mark>47</mark>	<mark>4</mark>		3 🖉	
<mark>32.0</mark>	<mark>17.0</mark>	<mark>100</mark>	<mark>1807</mark>	<mark>45</mark>	2	. (*	3 ₀ , C	. <mark>Ø</mark>
100.0	<mark>88.6</mark>	0	0		0	L, O	0 7	

Conclusions:

The "No Observed Effect Concentration" (immobilisation and *production) 17 mg/L based on mean measured test concentrations on the basis that at this est concentration were no mortalities (immobilisation) observed in the parental generation (P1 and that there significant differences ($P \ge 0.05$) between the control and t terms of numbers of young produced per adult on days 14 and

□ Comments (RMS): acceptable

The summary presented above from the original D forther fesults and details for the submission of the feetyl EU AR Supplementar Dossier. Ô

Ô

A Further study information supplementing the original DAR summary:

Amendment

Validity criteria, according to OECD&11, adopted n

Ø1

Materials and methods: 4

Test was conducted in reconstituted water which was the same as that used to maintain the stock animals. The number of alive and dead adult Daphnia were determined daily and the number of young Dapnia (aliver and dead) were determined at each test media refewal.

Temperature of the test solutions was recorded daily throughout the study. Dissolved oxygen concentration, pH and temperature were recorded before and after each test media renewal.

Test item concentrations were monitored by the determination of the aluminium concentration by inductivity coupled plasma emission spectrometry (ICPAES).

Reproductive and revelopment toxicity to Daphnia magna CA 8.2.5.1

Please refeato Section CA 8.2. Due to the low toxicity of fosetyl-aluminium observed in above tests, no further testing was deemed necessar

CA 8.2.5.2 Reproductive and development toxicity to an additional aquatic invertebrate species

No chronic studies on an additional aquatic invertebrate species are required since fosetyl-aluminium is not an insecticide and does not show an insecticidal mode of action.

Let Contract of the second sec

CA 8.2.5.3 Development and emergence in *Chironomus* species

Please refer to Section CA 8.2.5. The three main criteria considered for deciding the need of conduct testing on invertebrates living in the sediment are persistence in soil, in aquatic environments, adsorption to sediment and aquatic invertebrates toxicity. Fosetyl-aluminium (fosetyl-Al) is not persistent in soil or water, does not partition into the sediment and is practically non-toxic to representative invertebrate species (*Daphnia magna*).

As fosetyl-Al does not trigger the endpoint values for any of the three criteria, it is justified that there is no need to conduct this test with the parent compound. However, a chronic study has been conducted with the main fosetyl-Al metabolite, physionic acid of (see Section CA 8.2.5.4).

CA 8.2.5.4 Sediment dwelling organisms

For information on studies already evaluated for the Armex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. The study from which the endpoint will be used for risk assessment is summarised below.

Report:	KCA 8.2.5 (01) (1999; M-171) (2-01-0)
Title:	EXP10679A (Potassium all of poosphotous acid): Tox etty to the sediment dwelling
	EXP10679A (Polessium alt of peospherous acte): To Pity to be sediment dwelling chiron and lawae (<i>Chironomorripartus</i>) - 28 Qays
Report No.:	
Document No.:	M-171912-01-1 5 0 10 10 10 10 10 10 10 10 10 10 10 10 1
Guideline(s):	BSA: (1995); Equivalence to US CPA OPPTS Guideline No. 850 1790 1. Biological asservations was not performed on Day 17 of the test, the study
Guideline deviation(s):	1. Bio Dical asservations we have not performed on Day 17 of the test, the study
á s	that daily desired be an formed during the emergence period of adult
L. C.	that daily observations would be softformed during the emergence period of adult rodges The blume of dilution water in each test research way 2,600 ml instead of 2,500 ml
ð.	
CLP/CEP	Todges. 2. The folume of dilution water in each test resel was 2 600 ml instead of 2 500 ml as stoled in the protocol according Canalyse al measurements.
GLP/GEP:	ves a a a a a a a a a a a a a a a a a a a
GLI/GLI	
Objectives:	
The nurnose of this st	dy way to stimut the to vity of FXP (679A (not assign salts of phosphorous
acid) hereafter referred	to as EVM 0679% on the sedment dwelling life stage of <i>Chironomus ringrius</i>
in a static sediment-wa	werning the stage of Chironomus ripurtus
	dy vas to estimate the toxicity of EXPA)679A (potassium salts of phosphorous to as EXP10679A on the sed thent dwelling life stage of <i>Chironomus riparius</i> of system. ds: A (potassium salts of phosphorous acid), analysed purity: 409 g/L phosphonic
Matarials and Matha	
Materials and Method Test item 5XP106794	(asta 2) and a grant grant grant and a sector of the secto
acid and field by betal	(potasspun serve of phosphorous actu), analysed punty. 409 g/L phosphoric
aciu, spesified by bata	no.: (\$960971.) nisma (25 per replicates 4 replicates per test group) were exposed to 4
A total of 500 organ	nism a , (25 geer replicates 4 replicates per test group) were exposed to 4
concentrations of EX	Pho79A and a dilution water-sediment control for an exposure period of
21 days. The deputitive	e test was carred out sing the nominal concentrations of EXP10679A of 42.1, ng/L the corresponding nominal concentrations of phosphonic acid were as
84.3, 168.5 and 3374r	ng/L The corresponding nominal concentrations of phosphonic acid were as
follows 12.5 25.0 30.	1 arg 100,2 mg/L
The disclived average	concerplation remained above or equal to 4.0 mg/L., the water pH values ranged
from 6.56 to 977 and	he water temperature ranged from 20.7 to 21.9 °C.
The est solutions were	e Schipled and analyzed for the presence of phosphorous acid one hour after test
initiation after 7 days	and at test termination (Day 21).
initiation (days)	and at cost commution (Duy 21).

Dates of work: November 26, 1998 to December 17, 1998

Findings:

One hour after test initiation, analytical verification of the nominal test concentrations of phosphorous acid in the overlying dilution water demonstrated the measured values to be close to the nominal concentrations (85 to 115% recovery). Seven days after application of the test substance, the measured concentrations of phosphoroes acid remained stable in the overlying water (88 to 104% recovery of the initial measured values). At test termination (Day 21), percentage recoveries (compared to the initial measured values) of the three highest concentrations of phosphorous acid were 96, 117 and 88%, respectively. The Swester concentration of 12.5 mg/1 of phosphorous acid slightly decreased with 64% recovery compared to the initial measured concentration.

The results of this test are reported in terms of nominal concentrations of EXPU milligrams per liter (mg/L).

The validation criteria for pH (6.0 to 9.0 units) and oxygen (> 2.3 mgA) were both me

Biological results:

At least 84% emergence was observed in each replicate of the dilution water control group and the mean development rate for larvae in this group was 0.088 (range 0.055 to 0.000). Therefore, the biological validation of derivation the control group, pere for fulliled the control group and mean development rate within the range 0.05. (0.1).

No physical or behavioral alterations were observed in any of the set groups coopare to the control. The emergence of adult midges from first instat larvae was not significantly reduced at any of the concentrations tested. No ognificant effect on the development rate of adult midges was observed at any of the concentrations tested.

Influence on emerge we and development ate ator 21 days (based on nominal initial concentrations of the test item in the verying water?

Concentration nomina	Number of mergen midges	Emergence of Shserted	Development rate (pooled sex) (1/d)
mg test icom/L		🔴 Total (%)	
Control	0 ~ 90 g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.088
4 2.1		0° × 87.20	0.088
84.3		9440	0.087
168.5	<u>5</u> 091 5 40	O 891.0	0.088
337.0	Q 5 89 0 m	\$ \$ 89.0	0.087

Test conditions met all variative reria. Qven by the pentioned guideline.

Conclusions:

The to Observed Effect Concontration (NOEC) is estimated to be the highest test substance concentrations of 337.0 Mg/L EXP106796 corresponding to 100.2 mg/L of the active ingredient phosphorous action.

Commeters (RAIS): a Septable

The summary presented above from the original DAR was already presented with further results and details for the submission of the fosetyl EU AR Supplementary Dossier.

Further study information supplementing the original DAR summary:

Materials and methods:

The test was conducted with first instar larvae (2 to 3 days old) in 3 L glass beakers measuring 10 to 13 cm in diameter and with a height of approximately 27.5 cm. Dilution, water considered of reconstituted water (80% DSW, 20% LC-oligo) and was the same used in daphnid testing (Sediment used in the test was artificial sediment containing 10% sphagnum peat, 20% kaolin clay and 70% industrial sand. Before testing, each beaker was filled with artificial sediment to a heigh of 2 an and left to stand for 24 hours. Overall, each test vessel contained 200 g of sediment and 2.6 L of dilution water (depth of approximately 20 cm).

water (depth of approximately 20 cm). During the test, larvae were fed at least 3 times per week at a rate of approx. 1 mg fish bod per day per larvae, and food was reduced to 50% when 50% of midges had emerged. Lighting was provided with a photoperiod of 16 hours light : 8 hours darkmess at an intensity of 1012 1145 fux. a? During the period of emergence, a daily check of emerged midges was performed, and sex and number of adults emerging was recorded at each observation, time. Concentration of test substance in the test of adults emerging was recorded at each observation time. Concentration of this method was approx. 10 mg/L. Findings: Validity criteria:

	\mathcal{Q}		O	~	\sim
Validity criteria (according to	OECD 249, ado	pted 13.04.20		ð	Otained in this study
Emergence in the controls (crite			× 0 [×] .		0 [°] 90 %
Dissolved oxygen concentration	in the control and	l tost vessel/(c	riterion is	<mark>/0%)</mark> 🧹	َ <mark>کې 260 %</mark>
pH in the control and test vessel			S.	<i>S</i>	7.3 to 7.5
Water temperature should not di				×~	$\frac{00}{20.7}$ to 21.9
Period of C. riparius phergence	to adults from co	ntrot vessels (criterion is be)ťween ∲	11 to 14
12 and 23 days)				. O	
	× 4. ~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Biological results:	· · · · · · · · · · · · · · · · · · ·	N D	S.		

0			, Ø		Õ.
Endpoint 🔊	After 21 days	\$ A		õ,	, W
NOEC [mg/L]	100.2 A	" Q"			
LOEC [mg/L]	<u> ∞_0100.2</u>		° °O∗	<i>&</i> ″	\sim
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		L.	×	A "
		,	000	$\bigcirc$	

#### **Conclusion**

Under laboratory conditions, the 21 day no observed effect concentration (NOEC) is estimated to be the highest test substance concentrations of 337.9 mg/L of EXP10679A corresponding to 100.2 mg/L of phosphorous acid. The Towes Dobserved effect (LQEC) was reported to be in excess of the highest test conceptration of 333.0 mg/L of E&P10629A (corresponding to 100.2 mg/L of phosphorous acid).

2

Ø

Ĺ

# Request from the RMS:

0

The chronic toxicity endpoint for Chironomy Priparius (phosphonic acid) should also be expressed in mg a.s./kg sediment as phosphonic and has potential of accumulation in the sediment.

#### **Response from BCS:**

The chroftic toxic to appoint of phosphonic acid for *Chironomus riparius* is derived from the study 41999 M-171912-01-1, which provided a NOEC > 100.2 mg/L. In this study, by phosphonic acid concentrations were measured only in the overlying water after 1 hour, 7 and 21 days. The analytical results (see Table 2 in the study report) show that the recovery of phosphonic acid was close to 90%, without decrease with time, for the three highest concentrations tested (*i.e.*, 25, 50.1) and 100.2 mg/L). This indicates that, over the experimental period, phosphonic acid remained in the water phase, and did not accumulate in the sediment. Results were therefore expressed with respect to the matrix where phosphonic acid was present (*i.e.*, the overlying water), so as mg/L.

### CA 8.2.6 Effects on algal growth

For more information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. The studies from which the endpoint will be used for risk as essment are summarised in the following sections.

# CA 8.2.6.1 Effects on growth of green algae

Two additional studies on effect on the growth of green algae and a recalculation of an  $\mathbb{PC}_{50}$  value were performed, which were not submitted for Annex I inclusion of fosetyl under Directive 91/414/EEC and are submitted within this Supplementary Dossier for the approval renewal of tosetyl. These studies are summarized below.

	¥	
Report:	KCA 8.2.6.1/01	M-189220-0071 tion assay on Scenedesmu Subspicatus , Method 3: OECD: 291; Equivalent & US EPA
Title:	Fosetyl-Al: Algal growth in hoi	tion assay on Scenedesmu Qubspicatus
Report No.:	R014235	
Document No.:	M-189220-01-1 & &	
Guideline(s):	M-189220-01-1 EU (=EEC): 6/69/E&C, Part OPPTS Guideline NO. 850.5400	tion assay on <i>Scenadesmu Subspicatus</i> & U , Method 3: GECD: Sel; Equivalent & US EPA
	OPPTS Guideline NO. 850.5400	
Guideline deviation(s):	not specified of the	
GLP/GEP:	yes v v	
<b>Objectives:</b>		
The study was conduc	cted to assess the inhibitory	offect of fosetyl-aluminium (fosetyl-Al) on the
growth of the unicelly	lar green algee Scenedesmus	subspicatus, expressed as NOEC and EC _x for
growth rate and algal	iomas@(cells per volume)	
		subspication in the subspication of the subspication of the subspication $\mathcal{L}_{X}$ for $\mathcal{L}_{X}$ and $\mathcal{L}_{X}$ for $\mathcal{L}_{$
Methods:		Y S O S
The following minal	oncentrations of formyl-Ak	urity: 978 gs g) were used: 0.68 1.5 3.3 7.3
16 and 35 mg/		
Results		
Mean measured concer	trations were 0.64 cr.4, 3, 7 inacturate decause the ateal co	7.1, 16 and 36 mg/L. Cell counts in the 36 mg/L
group were conside	inacturate Decause the abal co	ely were clumping around the rim of the flask and
in the media which m	the the Count Very disticult	in thiOgroup. For this reason the calculation of
tovicity values were re	the forboth areas with and	without the data for the 36 mg/L test level. Taking
into account the incoher	ale in oses, on anow	Annoge the data for the 50 mg/L test level. Taking
into account the inaced	acyor counts at 35 mg/1, it w	acconsidered that the toxicity values most reliable
were those corresponding	ng to data which exclude such	Øst level.
Conclusions:	A & W Y	
Taking into account the	Perhapt Class Laws	
	e ingliest dose level.	
Yes of A		No
	©s./L (voean measured	ErC50 - 72 h > 16 mg a.s./L (mean measured
conceptration D		concentrations)
EbC - 72 = 6.1 mg	g a 5,4L (C.I. 95% : 5.1 –	EbC50 - 72 h = 5.9 mg a.s./L (C.I. 95% : 5.3 –
7 & mg/L) WOEC - 72	he 1.4 mg a.s./L	6.6 mg/L) NOEC - 72 h = 1.4 mg a.s./L
	č	
Ű		
□ Comments (RMS):	acceptable. Calculations exclu-	ding the highest dose were considered valid.

#### **Request from the RMS:**

Further explanations are required to justify that the study of the effects of the preparation on Scenedesmus subspicatus ( 1999; M-189220-01-1) are still reliable for the risk since the coefficient of variation is estimated to be 57% for the control.

#### **Response from BCS:**

The RMS is right: the study by ______; 1999; M-189220-01-1 does not meet the validity criteria according to the OECD TG 201. BCS's calculations resulted in a value of 57.2% for the mean of coefficient of variation for section-by-section specific growth rates of controls. However, a new, more recent study was made available 2007; M-289324-0421 wkłch fulfills the validity criteria according to the OECD TG 201 and therefore delivers reliable endpoint that can be considered for the risk assessment of fose 1-Al.

1999€M-171844-01≦ **Report:** KCA 8.2.6.1/02 EXP10679A (Potassiur Salt of phosphyrous and): Topicity to the green alga Title: Selenastrum capricomutum Report No.: R005933 Document No.: M-171844-01 Guideline(s): EU (=EEC): Guideline deviation(s): not specified GLP/GEP: ves

#### **Objectives:**

**Objectives:** The aim of the study was to determine the influence of *EX* acid) on exponentially growing *Selenatorum apricocontuur* or owth rate of algal biomass (cells per volume). influgree of EXP10879A potass fim sets of phosphorous expressed as SOEC LOEC and EC_x for

## Materials and Methods:

Ş an ysed ourity: 409 g/L phosphorous Test item: EXP1, 979A, Ootassium salts of phosphas acid, specified by batcono.: OP960941. Ø

Selenastrum aprica muture, were exposed in a chronic multiplener in test for 3 days under static exposure conditions to the nominal concentrations of 0.73, 1.6, 3 7.7, 17, 37, 82 and 180 mg/L in comparison to a culture median concell. The test system consisted of three replicate vessels per test level and six replicate essels per control the initial cell number was 10,000 cells/mL.

Growth inhibition was calculated sing agae bromass per volume. The surrogate for biomass was cell density (used as prons parameter).

The pH values ranged from 75 to 96 in the controls and the incubation temperature ranged from 24.0 to 24.4 °C (Geasur G in an additional incubated glass, vessel) over the whole period of testing at a continuous illumination o $\mathbb{O}$ 7680  $\mathbb{O}$ ix. Ň

Findings: Validity of the study: S S Study Validity Criteria
vancery of the study.
vullarly cherrar of our net als study.
Increase of homass increased in the control by more than 16-fold within the evaluation

#### Analytical results:

The measured concentrations at the start of the test ranged from 82 to 108% of the nominal values. The measured concentrations in the blanks after 72 hours ranged from 100 to 124% of the nominal values. The overall mean measured concentrations determined ranged from 94 to 116% of the nominal values. On the basis of the analytical results the nominal concentrations were used for the calculation and reporting of all results.

#### **Biological results:**

Effect of EXP10679A on Freshwater Algae (Selenastrum capfornutum) in g 52 h growth individue tes

Nominal concentration [mg test item/L]	Cell number after 72 h Grecific growth rates Reduum control [6]
	(means) per mL A [days a control of the control of
Culture medium control	2 790 000 0 1.840 9
0.73	
1.6	3 010 000 0 0 2 2 2874 0 2 101
3.5	
7.7	
17	1865,000 2 0 2 1 2 3 2 2
37	40000
82	40,000 × × × 264* × × × × × × × × × × × × × × × × × × ×
180	

#### **Conclusions:**

The (0 - 72h)- $E_r C_{50}$  is 9

Ò

Comments (RMS): acceptable

The summary presented above from the original DAR was already presented with further results and details for the abmission of the fosetyl E& AR supplementary Dossigr.

n

Further study information supplementing the original DAR summary:

#### Materials and methods:

Test vessels were conical flasses of 50 mL nominal capacity. During test, cultures were shaken at 160 rpm. Six replicate cultures of the control and riplicate cultures of each concentration of the test substance were employed. The control consister of culture medium. Cell density was obtained every 24 hours. Concentration of test substance in the test solutions was carried out by a titrimetric method. The limit of quantification of this method was approximately 10 mg/L.

The areas under the growth curve (biomass) and average growth rate of each replicate culture was calculated for day 0 to 3.

Findings:	
Validity criteria:	
Validity criteria (according to OECD 201, adopted 23.03.2006)	<b>Obtained in this study</b>
	control
Biomass increased of the control within the evaluation period (criterion is $\frac{1}{2}$ 16-fa(d).	<mark>279-fold</mark>
Mean coefficient of variation for section by section specific growth	<mark>11.1%</mark>
rates (days 0-1, 1-2, 2-3) in the controls (criterion is $\leq$ 35%)	
Coefficient of variation for average specific growth rates during the 0 to 72 hour test period in replicate control cultures (criterion is $\leq 10\%$ ).	<mark>2.97%</mark>

#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

#### **Biological results:**

<mark>Endpoint</mark>	After 72 hours
E _b C ₅₀ [mg/L] (95% CI)	<mark>29 (15 – 75)</mark>
NOEC	<mark>7.7</mark>
LOEC	<mark>17</mark>
ErC50 [mg/L] (95% CI)	<mark>99 (36 – 180)</mark>
NOEC	<mark>7.7</mark>
LOEC	<mark>17</mark>

#### **Conclusion**

Under laboratory conditions, EXP10679A (potassium salts of phosphorous acid) had an effect on the biomass and the growth rate of Selenastrum capricornutun. The 22 hour EbCs was calculated to be 29 mg/L (15 to 75 mg/L, 95% CI) and the 72 Mour ErC50 was categolated to be 99 mg/L (36 to > 180 mg/L, 95% CI) The NOEC (no observed effect concentration) and the LOEC (lowest observed effect concentration) was calculated to be 7.7 and 17 mg/L tespectively.

#### **Report:**

Title: Report No.: Document No .: Guideline(s): Guideline deviation(s): **GLP/GEP:** 

24501-1 in a start of the start 1989; Mc163526-01-1 KCA 8.2.6.1/03 The toxicity of msety 141 to Selenastrum capricornum. R002887 R002887 M-163526 )-1 USEPA (=EPA none and ves

**Objectives:** The objective of the study was to determine the d-day  $EC_{25}$  and  $EC_{50}$  values of fosetyl-aluminium (fosetyl-Al) for Selemastrum capricornut an. The no observed effect Concentration (NOEC) was also determined.

### Materials and Methods:

0 Test item: Fosetyl-Artechnical, Batch #DA498_98.5% Fa.s.).

 $\bigcirc$ 

Selenastrum capricornutum was exposed over a 7-day period to six concentrations (1.0, 1.8, 3.2, 5.6 and 10 mg/L nominal) of fost yl-Al rechnical and a control. Biomass was determined by cell counts on days 2, 3, 4 and 7A X Ľ

Percent inhibition, relative to the control, was calculated for each concentration based upon the mean standing crop in cells/ $\mu$  at 2 days. The EC₂₅ and EC₅₀ values were determined by weighted least squares nonlinear regression of the log of concentration against cell counts.

The test system consisted of three replicate vessels per test level and per control. The initial cell number was 3000 cells/mL. Ľ

The pH values were in the range of  $7.5 \pm 0.5$  in the controls, and the incubation temperature was in the range of  $24 \pm 2.0^{\circ}$  C (measured in an additional incubated glass vessel) over the whole period of testing at a continuous illumination of  $4306 \pm 646$  lux was given.

Samples were analyzed for the actual concentration of fosetyl-Al present in the test solutions on Day 0 and at the end of the test.

intental work: December 12 1988 to December 19 1988 Dates of

# Result

#### Analytical sults:

The mean measured concentrations were 1.33, 2.28, 4.28, 9.01 and 12.50 mg/L. When calculating the mean, the unusually low value on Day 0 for the highest test concentration was omitted.

#### **Biological results:**

Mean measured concentration [mg a.s./L]	Cell number after 7 days (means) per mL	Inhibition of mean standing crop after 7 d [%]	
Control	2 793 333		
1.33	2 720 000	2.6	
2.28	2 353 333	15.8	
4.28	1 766 667	36.8 _ 🖉	
9.01	151 667	94.6 🕅	
12.5	9 667	99.\$	
nclusions:			
e 7-day EC ₂₅ is 3	.89 mg/L (95% con	fidence limits 3.53	to 4.29 mg/D) and the 7-day $EC_{50}$
1 ma/1 (05% conti	dance limite / 62 to	5 26 ma/a	
no observed effe	ct concentration (NC	)EC) based upon the	equean standing crop alues on day

The 7-day EC₂₅ is 3.89 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95% confidence limits 4.63 to 5.36 mg/L) 4.99 mg/L (95\% confidence l was determined by an analysis of variance and Donnett stest to be 2.28 mg/b

#### **Request from the RMS:**

It should be indicated if the study of the effects of foretyl-Akto Selenastrum capricornutum ( ; 1989; M-163526-01-1) cospects the validity priteria at least on the period of 3 days (i.e. the number of cells after 24h should be reported). Could you, please, provide these data to allow the validation of the toxicity endpoints from this study? In addition, if the coefficient of variation is above 35% some justifications would be necessary to demonstrate the reliability of the results of this study.

 $\bigcirc$ 

#### **Response from BCS**

The validity of the study of Pseudokirchieriella subcapitata (Selenastrum capricornutum) by

Ø1

; 1989; M-163526 91-1 has been checked. As noted by the RMS cell density at 24 hours is missing. The conteria were therefore checked over a 72-hour period from day 2 to day 4. In these conditions, the study meets the validity criteria according to the OPCD TG 201. In particular, the mean coefficient of variation for section by section specific growth rates of controls was 16.6%, and the coefficient of variation of average specific growth rates in replicate controls was 0.239%. Such low CV values in the control replicates indicate a small dispersion of the data. In addition, visual inspection of the growth curves shows that there was no inflexion within the 0-96 h period in the control. These warrant the robustness of the comparison between control and exposed algae.

benefited from a complete re-calculation, using the ToxRatPro In addition, the study by 1: 2005; M-253825-01 ). The purpose of this re-calculation was to derive toxicological endpoints according to the requirements of the OECD TG 201. This re-calculation provided a 72-h  $E_rC_{50}$  of 9.50 mg/L, a LQErC of 4.28 mg/L, and a NOErC of 2.28 mg/L (see KCA

signed signed

Report:	KCA 8.2.6.1/04	; 2005; M-2538	25-01-1	
Title:	Pseudokirchneriella subcapitata	(formerly name	ed Selenastrum	capricornutum) -
	growth inhibition test with Foset	yl - Al		
Report No.:	DOM 25005			
Document No.:	M-253825-01-1			X R
Guideline(s):	Originally reported under US-EF	PA FIFRA § 122	2-2 and 123-2	Recent recale ration is
	based on OECD 201 (June 1984)	) "Alga, Growth	n Inhibition Sest	" under consideration
	of the new draft revised proposal	l for updating O	ECD 201 (Oct.	22 2004) [°]
Guideline deviation(s):	none		4	
GLP/GEP:	no	Ĉa		
			Ū, ^v	

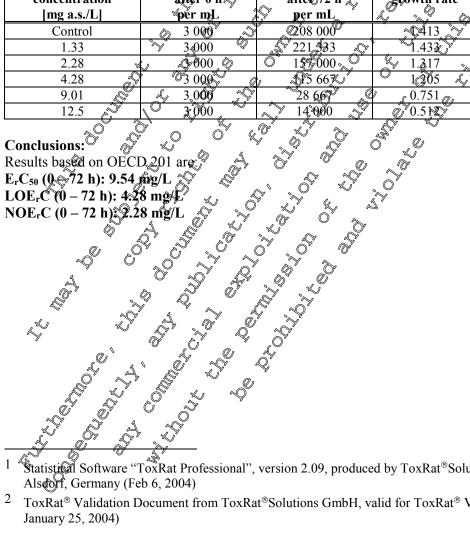
 Objectives:

 The aim of this non-GLP recalculation report was to calfil the new OECD guideline 201 requirements, which ask for the EC₅₀ (0-72h) for growth rate.

 Materials and Methods:

 Recalculation was done using the commercial program TooRat Professional^{1.2}.

 Results:


 Cell numbers, average growth rates and % intribution.

 Mean measured
 Cell number

 Cell number
 Cell number

Cell numbers,	average	growth	rates	and	%	indribiti	oñ;
---------------	---------	--------	-------	-----	---	-----------	-----

Mean measured concentration [mg a.s./L]	Cell number after 0 h per mL	Cell number after 72 h	(0-72h)-average	Philbition of average growth rate (0-72h) [%]
Control	6 3000° S	208 000 ⁰	<b>A4</b> 13 <b>A</b>	
1.33	°≫° 3 ₄ 000 ∅	\$ 221,593	1.433	-1.4
2.28 🕷	\$ 000 Q	0 15 000 S	× 1.217 .	6.8
4.28		\$₽\$5 667€√	0 1 <u>3</u> 05 ~~	14.7
9.01	~~ 3,0 <b>00</b>	28 667	0.751 _@	46.8
12.5	2000	14,000 5	0.5 H	63.8



- Statistical Software "ToxRat Professional", version 2.09, produced by ToxRat[®]Solutions GmbH, 52477 Alscorf, Germany (Feb 6, 2004)
- 2 ToxRat® Validation Document from ToxRat®Solutions GmbH, valid for ToxRat® Version 2.09 (released January 25, 2004)

Report:	KCA 8.2.6.1/05 ; 2007; M-289324-01	1-1	
Title:	Desmodesmus subspicatus growth inhibition test with	h Fosetyl-Al	
Report No.:	EBFYX019		
Document No.:	M-289324-01-1		Inhibition Test
Guideline(s):	OECD Guideline 201: Freshwater Alga and Cyanob	acteria, Growth	Inhibition Test
	M-289324-01-1 OECD Guideline 201: Freshwater Alga and Cyanob (March 23, 2006)	ð	a a
Guideline deviation(s):	none	<i>S</i>	4.0
GLP/GEP:	yes	4	
		A.	

#### **Objective:**

The aim of the study was to determine the influence of the test stem on exposentially Desmodesmus subspicatus expressed as NOEC, LOEC and ECx for growth rate of algal bromass per volume).

#### Material and methods:

Test item: Fosetyl-Al, purity: 99.3% w/w, specified by batch no. OF X no.: 07062-00 and development no.: 3000312323.

The toxicity of the active substance fosetyl-alumining (fosetyl-Al) to unteellular freshwater anga Desmodesmus (Scenedesmus) subspicates was determined over a period of 72 hours. Cultures of alga were exposed to a dilution water control and to nominal test concentrations of the fest formulated product (3 replicates of each concentration, & replicates of control) equar to 0.954, 3.05, 9.77 31.3 and 100 mg/L.

Measurements of culture density were made artest initiation (0 hours), a 24 an 048 hours and at test termination (72 hours). Actua Concentration of fosetyl-Al present in the test medium was determined at 0 and 73 hours.

#### **Findings:**

Test conditions met al validity criteria, given by the guide ine mentioned above The analytical findings of fosety al in the treatment levels found on day 0 and 3 were 104 to 110% (average 107%) and 94 @ 106% of nominal vaverage 101%), respectively. All results are based on nominal test concentrations of the test/item

The pH value ranged from 8.0 to 10.6 in the controls and the incubation temperature ranged from 22.0 to 22.6% (measured in an additional incubated gass vessel) over the whole period of testing at a continuous illumination of 6374 lux.

The static 72 hour agae growth inhibition test provided the following effects:

Nominal Q	Cell Number	(0272h) Average	Inhibition of	Doubling Time of
Concentration	Cafter 72 h	Specific Growth	Average Specific	Algae Cells
[mg a.s./L] 🔬	(means) per mL	Rates days	Growth Rate [%]	[days]
control	537 000 ° 0°	1,326		0.523
0.954	512 000	£.310 ~ ×	1.3	0.529
3.05 🔬 🔬	J 520 00 0	Q1.317X	0.7	0.526
9.77	420 000	1.25	5.1	0.551
31.3	202 006	1,000	24.6	0.693
100	A 8 00 0 2	-0.077	105.8	

#### Conclusio

As 43.3 mg a.s./L (95 % CI: 31.3 to 56.8 mg a.s./L) and the –72-h NOErC The 72 E

#### Page 64 of 126 2016-07-20

#### Document MCA - Section 8: Ecotoxicological studies Fosetyl

#### CA 8.2.6.2 Effects on growth of an additional algal species

Studies on non-green algae (e.g., the diatom *Navicula pelliculosa*) are not required for fungicides, unless they drive the risk assessment. This is not the case for fosetyl-aluminium (fosetyl-Al and .; 1988; M-163525-01-1. therefore the following study report, on *Navicula pelliculosa* ( KCA 8.2.6.2/01), was initially not submitted within the Supplementary Dossier for the EU approval renewal of fosetyl. However, this study was used as supportive information to the BCS response to the request from the RMS about the toxicity of the representative formulation Fosetyl-Al of Fluop colide WG 71.11 (please refer to the respective Document MCP, Section CP 10.2). Therefore the study summary is provided below; calculation of 72-h EC₅₀ is included as it is needed for comparison to the endpoint derived for Fosetyl-Al + Fluopicolide WG  $7 k_{.11}$ .

Ŵ

Report:	KCA 8.2.6.2/01
Title:	The toxicity of fosetyl-akto Navigula pelbculosa $\sqrt{2}$
Report No.:	R002890 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Document No.:	
Guideline(s):	$\begin{array}{c} \text{OSELLA} (-\text{ELA}) \cdot \sqrt{423} - \sqrt{47824}  \text{OSELLA} (-1) \cdot \sqrt{423} - \sqrt{47824}  \text{OSELLA} (-1) \cdot \sqrt{47824}  $
Guideline deviation(s):	USEPA (=EPA): 15/23-2, (1982)
GLP/GEP:	Yes Q Q Q Q Q Q Q Q Q
<b>Objectives:</b>	

#### **Objectives:**

**Objectives:** The objective of the study was to determine the 7 stay Estimates and EC₅₀ Calues of fosetyl-aluminium concentration (NOEC) was also (fosetyl-Al) for Navicula perficulosa. The no observed effect determined.

 $\bigcirc$ 

#### Materials and Methods:

 $\bigcirc$ Test item: Fosetyl-Algechnical, Batch #DA498, 98,5% (a.s.).

Navicula pelliculose was exposed over a 7-day period to six concentrations (1.25, 2.5, 5.0, 10, 20 and 40 mg/L nominal of fosetyl-Altechnical and a control. Bromass was determined by cell counts on days 2, 3, 4 and  $\mathcal{T}$ . ð Š Æ °°

Percent inhibition, relative to the control, was calculated for each concentration based upon the mean standing crop in cells/mL at 7 days. The EC and Constant series were determined by weighted least squares populinear regression of the log of concentration against cell counts.

The test system consisted of three replicate vessels per test level and per control. The initial cell number was 3000 cols/mL

Ô ×. The pH values were in the range of  $\frac{3}{2} \pm 0$  in the controls, and the incubation temperature was in the was given ASamples were analyzed for the actual concentration of fosetyl-Al present in the test solutions on day 0 and at the end of the test. **Results:** Validity criteria:

The study was conducted over a 7-day period. Therefore, cell density at 24 hours is missing. The criteria were therefore checked over a 72-hour period from day 2 to day 4.

Visual inspection of the growth curves shows that there was no inflexion within the 0 to 72 hours period (even  $\mathcal{O}$  (even  $\mathcal{O}$  in the control. In addition, over the 0 to 72 hours period, the pattern of to the effects was already set, with a concentration-response relationship fully consistent with the final result of the study. These warrant the robustness of the comparison between control and exposed algae over the first 72 hours.

Validity criteria (acco	rding to OECD 201, adopted 23.03.2006)	<b>Obtained in this study</b>
		control
<mark>is ≥ 16-fold).</mark>	ne control within the evaluation period (criterion	40-fold
<mark>(days 0-1, 1-2, 2-3) in t</mark>	iation for section by section specific growth rates he controls (criterion is $\leq 35\%$ )	<u> </u>
	for average specific growth rates during the 0 to eplicate control cultures (criterion is $\leq 10\%$ ).	<u>3.51%</u>
Analytical results:	Č	<u>10.1%</u> <u>3.51%</u> <u>3.51%</u> <u>5</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>
The mean measured co	oncentrations were 1.58, 2.76, 5.16, 9.27, 17.3	and 28.2 mg/L a S
Biological results: Effects ranged from 29	9.3% to 99.7% inhibition.	
Effect of fosetyl-Al on N	<i>avicula pelliculosa</i> in a / d growth innotition test	
<mark>Mean measured</mark>	Cell number KInhibition of mean	
concentration	after 7 days standing crop after	
[mg a.s./L]	(means) per mo	
Control 1.58	3 353 332 $35.4$ $35.4$	8 8 5 V
2.76	$\frac{2 100 \text{ def}}{2 376,000} \sqrt{37} \sqrt{37} \frac{33.4}{29.2} \sqrt{37} 37$	
5.16	2 370,000 x 329.5 x 4 2 0 000 x 38.6 x 20	
9.27	1 330 000, C 460.3 m	
<mark>17.3</mark>	74 000 74 000 75 0 75	
<mark>28.2</mark>	<u>~</u> <del>74 000</del> <del>7</del> <del>97.8</del> <del>~</del> <del>7</del> <del>10 567</del> <del>8</del> <del>9967</del> <del>8</del> <del>8</del> <del>8</del> <del>9967</del> <del>8</del>	
Conclusions:	870 mg/L 195% confidence limits: 5.38 to 54	
The 7-day $EC_{25}$ is 6.	87 mg/L 195% confidence limits: 5.38 to \$	77 mg/L) and the 7-day $EC_{50}$ is

8.93 mg/L (95% Confidence limits: 7651 to 10.63 mg/L). The no observed effect concentration (NOEC), based upon the mean standing crop values on day 7,

was determined by an analysis of variance and Dunnets's test to be less than 1.58 mg/L.

was determined by an analysis of variance and Dunnet's test to be less than 1.58 mg/L. The 72-h B/C₅₀ recalculated from this dataset using. ToxRatPro Version 2.10@ was 18.11 mg a.s./L (95% confidence limits: 14.6% to 22.85 mg/L).

#### CA 8.2.7 **Effects on aquatic macrophytes**

For information on studies already evaluated for the Annex I inclusion of fosetyl under Diregive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. As an overview the original summary from the DAR is given below.

; 1989; M-163537-02-1 **Report:** KCA 8.2.7/01 Title: The toxicity of fosetyl-Al to Lemna gibba G3 Report No.: 1163-01-1100-5 Document No .: M-163537-02-1 Guideline(s): USEPA (=EPA): J. 123-2 Guideline deviation(s): none **GLP/GEP:** yes Endpoint according to EFSA Scientific Report entrájion = 79.67 14 d-EC₅₀ 100 of foset I-Al Surity: mg/I Biomass was Methods: Lemna gibba was exposed wer 985 g/kg). Mean measured test concentrations determined by frond counts on d 2. 9.01 and 14 **Results**: Exponential g Effects ranged from 3.3% k 99.5 ved at all treatment % inhibition M levels with exception of the two uppermost √64.68 mg a \$€L) 3.07 @g a.s.Q 69.52 - 9109 mg/s.s./L) 20 s./T □ Comments QR acceptable Ô Further study information supplementing the original DAR summary Q. A Material and methods:  $\bigcirc$ Test item: Fosety Al techn. Batch No. DA498 Lemna gibba was exposed over a 14 d period under static conditions to the nominal concentrations of 0 (control), 10 20, 40, 80, 40 and 320 mg a.s. Is of fosetyl-Al (purity: 985 g/kg) with three replicates per concentration. At test start 120 ronds were added to each test vessel. Percent inhibition, relative to the control, was calculated for each concentration based upon the mean standing crop in frond numbers at 14 days (i.e. the formula for determination of effects on yield was employed). The test was performed under continuous fight at a temperature of  $25 \pm 2$  °C. **Results:** Analytical findings: Mean measured test concentrations were 12.1, 20.4, 41.0, 89.4, 162 and 305 mg a.s./L. The results are reported lased on the mean measured concentrations (mean of day 0 and day 14).

# Biological findings

Exposure to increasing concentrations of fosetyl-Al had increasingly inhibitory effects upon the population growth of *Lemna gibba* G3. Growth was almost completely inhibited in the two highest concentrations. Effects of the test material on frond number yield on day 14, relative to the control, ranged from 3.3 to 99.5% inhibition.

<mark>Mean</mark> measured		1	Mean frond n	umber (S.D.)			° Percent	~
concentration [mg a.s/L]	Day 2	<mark>Day 4</mark>	<mark>Day 7</mark>	Day 9	Day 11	Day 14	Percent inhibition	
Control	<mark>25 (0.577)</mark>	<mark>47 (0.0)</mark>	<mark>112 (7.37)</mark>	<mark>189 (11.1)</mark>	347 (22)	* <mark>599 (22.3)</mark>	4 <mark>-</mark> 2	
<mark>12.1</mark>	<mark>22 (1.0)</mark>	<mark>42 (1.0)</mark>	<mark>109 (8.96)</mark>	180 (7.55)	389 (33.0)	579 (29.24	~ <mark>&amp;</mark> *	)
<mark>20.4</mark>	<mark>24 (1.53)</mark>	<mark>46 (2.0)</mark>	<mark>111 (12.4)</mark>	<mark>175 (17.6)</mark>	306 (36.3)	541 (50%)	. ≈ <mark>9.8</mark>	
<mark>41.0</mark>	<mark>23 (0.577)</mark>	<mark>44 (2.89)</mark>	100 (7.77)	<b>¥\$6 (6.08)</b>	25 (15.9)	472 04.5)	° 21 €	Ľ
<mark>89.4</mark>	<mark>24 (0.577)</mark>	<mark>43 (2.52)</mark>	<mark>83 (4.36)</mark>	∦ <mark>116 (9.07)</mark>	₽ <mark>70 (5.29)</mark>	284 (8.000	<mark>\$9.6</mark> &	)
<mark>162</mark>	<mark>21 (1.15)</mark>	<mark>27 (2.52)</mark>	<u>32 (1.53)</u>	<mark>36 (0.577)</mark>	39 <b>&amp;</b> 3°06)	√ <mark>38 (3√79)</mark>	0 <mark>95.5</mark>	
<mark>305</mark>	<mark>19 (2.0)</mark>	<mark>22 (1.0)</mark>	21 (19)	20 (1.53)	<b>18 (0.577)</b>	15 (1.73)	2 <mark>99.5</mark>	
L					N K	<u> </u>		

#### Frond production recorded for Lemna gibba over 14 days exposure to fosetyl-Al

#### **Request from the RMS:**

Further details in the summary of the study of the effects of tosety all to Lomna etbba ( 1989; M-163537-02-1) should be provided. A table indicating the percentage of effects and the percentage of inhibition at each observation time would be helpful for a better understanding of the study results. A clear precision of the validity criteria would be also suitable in combination with a justification on the reliability of the study considering the powed of date requirement for such study (if needed). O

m

Ø

 $\tilde{\bigcirc}$ 

# Response from BCS:

L According to the current guideline QECD 21 (March 2006) the relevant time frame for a growth inhibition study on Lomna of is Idays, Accordingly, effects on the measurement variable frond number on the Assessment Days & 2, 4 and 7 in this D4-day study ( P: 1989: M-163537-02-1) are provided in the following. For further details reference is made to the corresponding re-2015; M-525555-01-V) which is provided in KCA 8.2.7/02. calculation report (

Ô

Number of fronds at each	assessment dax based	on arithm. mean me	astred concentrations

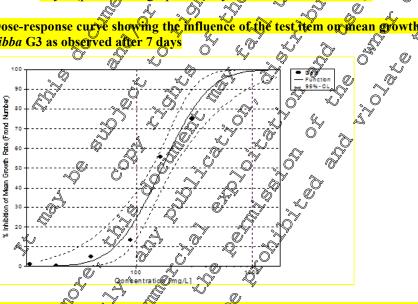
Time	Mean m Control	easured co	20.4		9 89 <u>,4</u>	<b>162.0</b>	<mark>305.0</mark>
Day 0	12.0	🖇 <mark>12.0</mark> 🛠	129	<mark>* 12.0</mark>	120	1 <u>2.0</u>	<mark>12.0</mark>
Day 2	<mark>24.7</mark> 🖏	22-0	<b>2.</b> .7	, <mark>23.8</mark>	23.7	) <mark>20.7</mark>	<mark>19.0</mark>
Day 4	47.0	<mark>4<u>3</u>7.0</mark> ×	P <mark>46.0</mark> 🖉	4 <del>4</del> ,3	එ <mark>ੱ42.7</mark> ි	<mark>26.7</mark>	<mark>22.0</mark>
Day 7	11€Q3	©109,3	111.3	<b>1</b> ∕00.3	∕ <mark>83⊳0</mark>	<mark>32.3</mark>	<mark>21.0</mark>
	4	Ô,	~0″	R R	Ŵ		

Ø Inhibition of yield (frond number) at each assessment day based on arithm. mean measured concentrations

<u> </u>	~//	y A		Qi 📎			
N.S.	Mean mea	isuredco	onc, mg a.s	AL N			
Time	Control	12.1	ړ <mark>کې.4</mark> مړ	41.0	<mark>89.4</mark>	<mark>162.0</mark>	<mark>305.0</mark>
Day 0	<mark>0.0</mark>	3 <mark>0%0</mark>	@ <mark>0.0</mark>	0.0	<mark>0.0</mark>	<mark>0.0</mark>	<mark>0.0</mark>
Day 2	0 <u>0</u> 0 ~	≱ <mark>21.5</mark> €	7.89	2 <mark>10.53</mark>	<mark>7.89</mark>	<mark>31.58</mark>	<mark>44.74</mark>
Day 4		14,00°	2.86		<mark>12.38</mark>	<mark>58.1</mark>	<mark>71.43</mark>
Day 7	0.0 °	2.99	0 <mark>1.0</mark>	<mark>11.96</mark>	<mark>29.24</mark>	<mark>79.73</mark>	<mark>91.03</mark>
			ý				

Inhibition [%] of growth rate (frond number) at each assessment day based on arithm. mean measured **concentrations** 

	Mean measured conc. [mg a.s./L]						
<mark>Time</mark>	<mark>Control</mark>	<mark>12.1</mark>	<mark>20.4</mark>	<mark>41.0</mark>	<mark>89.4</mark>	<mark>162.0</mark>	<mark>305.0</mark>
Day 0	<mark>0.0</mark>	<mark>0.0</mark>	<mark>0.0</mark>	<mark>0.0</mark>	<mark>0.0</mark>	<mark>0.0</mark>	0.0
Day 2	<mark>0.0</mark>	<mark>15.95</mark>	<mark>5.92</mark>	<mark>7.72</mark>	<mark>5.75</mark>	<mark>24.68</mark>	36.72
Day 4	<mark>0.0</mark>	<mark>8.25</mark>	<mark>1.62</mark>	<mark>4.38</mark>	<mark>7.17</mark>	<mark>41.73</mark>	<mark>55.69</mark>
Day 7	<mark>0.0</mark>	<mark>1.25</mark>	<mark>0.53</mark>	<mark>5.08</mark>	<mark>13.51</mark>	<mark>55.69</mark>	7.50
							- W -


From the results presented above a  $7d-E_rC_{50} = 166.6$  mg/a.s./L can be derived for frond number base on mean measured concentrations. This figure should be used to address the risk towards aquatic macrophytes as it is in accordance with the requirements of guideline OECD 22 Q March 2006 and is in line with current state-of-the-art regarding the preference of growth rate overbiomass endpoints, The *Lemna gibba* study by P; 1989; M-163537-02, can be regarded as a reliable source of information for the macrophyte risk assessment as it preets the following relevant points:

- the study was conducted according to GLP Õ
- the validity criterion of OECD 227 for the doubling time of frond number in the control Qi.e. seven-fold increase in 7 days) is fulfilled as the factor for frond number increase between J S day 0 and day 7 was 9.4. K) K) Ð.

6

- the amount of substance present in the test medium was analytically determined at the start and at the end of the study anyhow, all results are based on mean measured concentrations.
- the current guideline ØECD 221 asks for a minimum of 5 test ten Concentrations and a control; in the Lempa sp. study by 6 test concentrations were tested besides the Ø control. Ô Č, ° N
- as requested by the current guideline QECD 221 three replicates per test level have been used.
- a reliable dose-response can be observed for the effects on growth rate of frond number on day 7 (please see graph directly below and table above). L  $\cap$

Ő Dose-response curve showing the influence of the test item or mean growth cate (frond number) of Lemna gibba G3 as observed after 7 days



However, it has to be achowledged that the currently valid guideline OECD 221 asks for data on two measurement variables. I.e. frond no and in addition frond area or dry weight. In the study at hand measurements were performed on the variable frond number only which was in line with the guideline valid at that the (158 EPA FIFRA 123-2, 1982).

A recalculation of the endpoints was performed and is submitted within this Supplementary Dossier for the approval renewal of fosetyl. This recalculation is summarized in KCA 8.2.7/02.

#### **Bayer – Crop Science Division**

#### Page 69 of 126 2016-07-20

#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

<b>Report:</b> Title:	KCA 8.2.7/02 B; 2015; M-525565-01-1 Fosetyl-Al (tech.): Recalculation of growth inhibition stu	udy with Lem	na gibba
Report No.:	M-525565-01-1		
Document No.:	M-525565-01-1		
Guideline(s):	not applicable		
Guideline deviation(s):	not applicable	ð	
GLP/GEP:	no		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#### **Introduction:**

A 14-day static Lemna gibba growth inhibition study with the test item fosetyl-Al (tech) has been conducted by in 1989 (M-163537-02-1) according to the test guideline valid at that time *i.e.* US EPA FIFRA 123-2 (1988). This study has been accepted in the original DAR for fosety (Feb 2005). However, with regard to the approval renewal of fosetyl, it seems appropriate to recalculate the assessment endpoints for the study at hand based on the current state of science and the currently relevant guideline, i.e. OECD 221 from March 2006. Even though the current guideline asks for the measurement of 2 variables (frond number and frond area, dry weight or fresh weight), only frond number was measured in this Lemna study which is in accordance with the guideline in place at that the Consequently this statement presents NOEC, LOEC and EC₅₀ values for growth rate after 7 days as calculated by FoxRat Professional version 2.10.

#### **Material and Methods:**

$$\mu = \frac{\ln N_n - \ln N_0}{t_n} \, [\text{day}^-$$

**Material and Methods:** The average specific growth rate (ii) is calculated on the basis of changes in the logarithms of frond numbers for a specified period according to the following equations  $\mu = \frac{\ln N_n - \ln N_0}{t_n} [day^{-1}]$  where: No = nominal number of fronds at time to (fest state) Nn = measured number of fronds at time to (fest state) Nn = measured number of fronds atter to the probit analyses were obtained with the following formula:  $I\mu = \frac{\mu c - \mu t}{\mu t} * 100\%$  where:  $\mu = mean growth rate in the control$  $<math>\mu = mean growth rate in the treatment group <math>\mu$  for the probit analyses were obtained with the following formula:

$$I\mu = \frac{\mu c - \mu t}{\mu t} * 100\%$$

where:  $\mu_c = \text{mean growth rate in the control}$   $\mu_{\mu} = \text{mean growth rate in the tree set of the tree s$ 

**Results:** The alidity criterion states in OECD 201 (2006) for the doubling time of frond number in the control was fulfilled in the present study. According to the guideline it has to be less than 2.5 days (60 h) which corresponds to approximately a seven-fold increase in seven days. The factor for frond number increase between Day 0 and Day 7 measured in the control of this study was 9.4.

Detailed outputs of the statistical analysis are provided in the Appendix of the report.

### **Bayer – Crop Science Division**

#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

The static 7 days growth inhibition test provided the following effects on frond number:

Mean measured test concentration [mg a.s./L]	Frond number (day 7), mean values from 3 replicates	% inhibition of mean growth rate for frond number
control	112.3	
12.2	109.3	\$ 1.25 \$ \$
20.4	111.3	0.53
41.0	100.3	5.08× × ×
89.4	83.0	
162	32.3	5.69 • 3 <u>5</u>
305	21.00%	

• Results which were significantly different (based of Williams Multiple segmential test pocedure) from the control

#### Conclusion

cations A summary of the calculated endpoints based following table:

Endpoint (0-7 da	y) Eff	ect/on meany gro rond number [p	web rate of ag a.s./LD		
ErC50 (CI 95%)		<b>کې 166.6</b> 135.1 - 208	3.3)	8 8	8° %
LOErC		Q 41.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		) Ø
NOErC		20.4			

#### urther testing on aquatic organisms CA 8.2.8

No further testing on aquatic arganisms is deemed necessary ducto the sesults presented in Sections CA 8.2.1 to CA 8.2

## **Request from the RM**

The application of fosety Al could expose the non-target organisms to aluminium. The potential impact of Al to the non-target organisms should be discussed and documented. Could you, please, provide further data on this concern?

## **Response from BCS:**

In the EFSA conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl (2013), it was considered that "for coils at  $\beta H > 5$  (most European cultivated soils), aluminium derived from fosety aluminium (fosety Al) is expected to be immediately adsorbed (ion exchange) and/or rapidly turned into insoluble forms" thus being not available for transfer via run-off and drainage to surface water. "For soils at pH 35, aluminium (Al) derived from fosetyl-Al is expected to join the exchangeable fraction". However, for the intended uses of fosetyl-Al, the concentration that would result in soil is negligible compared to natural exchangeable Al present in soils. Overall, the amount of Al that might be transferred to surface water via run-off and drainage is negligible.

Another Foute of entry of Alanto surface water that should also be considered is spray drift. As for soils, the intended uses of fosetyl-Al result in the introduction of negligible amounts of Al³⁺ ions in surface waters. Furthermore, due to its reactivity, the  $Al^{3+}$  ion rapidly links to other compounds, so that Al does not occur as free ion in aquatic environments (Ščančar and Milačič, 2006). Complexation of Al in water is influenced by a wide variety of environmental parameters including pH, temperature, dissolved organic carbon, and the nature of the available ligands. In fact, Al chemistry strongly depends on water pH. Above pH 5, Al-hydroxides are the most common Al species in water. Since

95% of European surface waters ( $n = 3075$ ) with a documented history of exposure to plant protection
products fall within the pH range 7.0 - 8.5 ( <b>1999</b> and <b>1999</b> <i>et al.</i> , 2016), Al-hydroxides are the dominant,
though labile (Ščančar and Milačič, 2006), water-soluble species of Al in arable landscapes. Other Al 📎
species are Al-sulphates and -chlorides, which concentrations depend on the environmental conditions.
Al-hydroxides, -chlorides and -sulphates were recently evaluated by ECHA Registration Dossiers
updated in March-April 2016), which has identified no hazard for all these Alspecies for freshwaters,
including sediment.
In conclusion, because of its prominence as a major constituent of the earth's crust, natural weathering?
processes far exceed the contribution of releases to air, water, and land associated with human
activities (Lantzy and MacKenzie, 1979). Accordingly, EFSA concretion pointed to the fact that
"aluminium resulting from the use of fosetyl-Al is expected to have no significant impact on the of environment". BCS information concurs to this conclusion.
environment". BCS information concurs to this conclusion.
Representation and a second seco
M., M., M., M., M., M., M., D., and D., and R. 2016. Narrow pt range of surface water bodies
receiving pesticide input in Europe. Bull Environ Contant Toxicol. 96, 387, and the set of the set
Ščančar J. and Milačič R. 2006. Aluminium spectation in inviropental samples: arteview Anal. Biganal Chem. 389, 999–
<b>Request from the RMS</b> One of the major metabolite of fosetyl-Al in water system and soil is ethanol. Therefore non-target
Request from the KNIS
One of the major metabolite of fosetyl-Al in water system and full is ethanol. Therefore non-target
organishis could be significantly exposed of ethanon. The potential impact organianon to the non-target
organisms should be discossed and documented. Could you, please, provide further data on this
concern?
concern? Response from BCS:
Response from BCS
Response from BCS2 By reference to the most recently updated (April 9, 2016) evaluation of ethanol by ECHA, the
By reference to the most recentry updated (April 9, 2016) evaluation of ethanol by ECHA, the
PNEC freshwater is 0.96 mg/L (this includes an assessment factor of 19).
On a molecular basis ethan to is formed as three equivalents from fosetyl-Al. In a worst case situation,
considering that fosetyl-Al is transformed instantane usly and completely into ethanol, the ethanol
concentration would thus be 55,8 µg/@ for the highest foseryl-ALPEC value derived from a FOCUS
Step3 scenario (late application on pome fruit). With a foset A-Al PEC value less than 21.3 µg/L
(corresponding to the NOEd value derived from the figh EL Sectudy) the ethanol concentration would
(corresponding to the NOEC value derived from the fish ELS study), the ethanol concentration would be 8.3 $\mu$ g/L.
be 8.3 $\mu$ g/L.
In the context of the ontended uses of lose tyl-Adv the concentration of ethanol resulting from the
transformation of fosetyl-AC in water is therefore far below the PNEC freshwater of ethanol. In these
conditions, no unacceptable risk for the aquatic environment is to be expected.
This is further supported by the EFSA conclusion on the peer review of the pesticide risk assessment
of the active substance fosety (2013). According to the EFSA conclusion, "in surface water systems
fosetyd-Al degrades rapidly to form ethanol (which also degrades rapidly so is only transient)";
"ethanol is further dissipated by volatifisation or degraded and incorporated in natural constituents of
plant and animatitissues".
target aquatte organisms.
In conclusion as a degradation product of fosetyl-Al, ethanol is not expected to adversely affect non- target aquatic organisms.

#### **Request from the RMS:**

Following the application of fosetyl-Al, it is expected that a significant amount of phosphate ions will be released in the environment (soil and water). All valuable statements and information about affis concern should be provided, especially concerning eutrophication that may occur.

#### **Response from BCS:**

In the EFSA conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl (2013), it was considered that the intended uses of fosetyl-Al do not add significant levels of phosphate to soil compared to the amounts naturally present in, or routinely added to, agricultural soils.

With respect to the aquatic environment, the metabolite phosphonic acid  $(H_3PO_3)$ , in contrast to C phosphate (PO₄), is not a macro-nutrient and as such does not contribute of e.g. atgal flooms Phosphonic acid and its salts (phosphites) adsorb gurckly (DT_{50,sw}  $\neq$  9.2 days) to the sediment, and are only slowly (DT_{50,water/sediment} = 105 days) oxidized to phosphate under aerobic conditions.

; 2005; M-251520-01-1). In this study, it was also shown that no physphate was formed, probably because bacteria incorporate it for their own growth. S Ø In another context, reference can be made to Council Diffective \$1/27,1/EEC concerning upon wastewater treatment. Its objective is to protect the environment from the adverse effects of what wastewater discharges and discharges from certain industrial sectors. This Directive sets emissions of phosphate to the threshold values of 1,000 to 2,000 µg (see Annex III of the Brective). These levels, as continuous emissions, ainfing at protecting surface waters from adverse effects, are 10 times higher than the highest phosphate concentrations resulting from fasetyl AP applications according to the intended uses (FOCUS Steps; poine fruit, 3 x 3.0kg a & ha).  $\bigcirc$ 

The second secon From this information, it can be therefore concluded that, in arable landscapes, fosetyl-Al does not contribute significantly to cutroplucation of aquatic ecosystems.

### CA 8.3

#### $\bigcirc$ Effects on bees CA 8.3.1

For information on studies already evaluated for the Annex inclusion of fosetyl under Directive 91/414/EEC please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience.  $\bigcirc$ 

The following additional studies on toxicity to boney bees and honey bee brood have been performed with technical fosetyl-aluminium (fosetyl-Al) and the formulated product Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80) according to current guidelines, guidance documents or the current understanding of the state-or the are of testing:

Chrour 10 day toxicity toadult bees under laboratory conditions,

Effect on arthropods

- Acute contact toxicity to bumble bees under laboratory conditions,
- A colony feeding study following Opmen et al. 1992 (using a realistic worse case spray solution concentration and covering exposure for effects on brood (eggs, young and old larvae) and their development, nurse bee @-going behavour in brood care and colony strength),
- Semi-field brood feeding studies following OECD Guidance Document No. 75 (using a more realistic spray scenar on the flowering *Phacelia* at the maximum application rate for the approval renexal of @setyl and covering exposure for effects on brood (eggs) and their development and colony parameters). 1

These studies were not submitted for the Annex I inclusion of fosetyl under Directive 91/414/EEC and are submitted within this Supplementary Dossier for the approval renewal of fosetyl. The studies are summarized in the following sections.

Test substance	Test species/ study type	Endpoint	References
	Honey bee, 48 h	LD ₅₀ – oral > 140 $\mu$ g a.s./bee LD ₅₀ – contact > 100 $\mu$ g a.s./bee	1997; M-484568 01-1 KCA Ø3.1.1601 KQ58.3 1.12/01
Fosetyl-Al	Honey bee, 48 h	LD ₅₀ – oral $462 \ \mu g a.s./bce^{a}$ LD ₅₀ – contax > 1000 $\ \mu g Q$ ./bee	, , , , , , , , , , , , , , , , , , ,
	Honey bee, 48 h	$LI_{200} - oral > 158.5 \ \mu g as./bee LD_{200} - compet > 000 \ \mu g as./bee LD_{200} - compet > 000 \ \mu g a s./bee $	M-440802-01-1 KGA 8.3. 5-1/04 KCA 8.3 5-1.2/94
	Honey bee, 48 h	$\mathcal{O}$	→ → → → → → → → → → → → → → → → → → →
Phosphonic acid	Honey bee, Ø 48 h	$Q^{*}$ $D_{50}$ conta $Q^{*}$ > $2Q.7 \mu g \beta m./bee b$	; 1995; M-179067- 01-1 , CA 8.3.1.1.2/03
	Honey bee, A	$ID_{50} - contract \approx 1050 \ \mu g \ p.m./bee$	KCA 8.3.1.1.2/05
, Q	Choney bee, 10 d chronic adutt feeding study	NOE 750 mg a.s $kg$ $L \leq 0$ 750 mg a.s./kg NOEDD 7.3 µg a.s./be@day $\Delta = 2DD_{50} > 37.3 µg a.s./be@day$	; 2015; M- 527665-01-1 KCA 8.3.1.2/01
Fosetyl-Al WG 80	Hypney bee brood	Slightly significantly increased termination rate of eggs, young and old larvae; comparable brood nest development as in controls brood index and brood compensation index displayed continuous increase, indicating a successful development of	お; 2015; M-508986-01-2 KCA 8.3.1.3/01
L. C.	Honey bee brood feeding Oomer <i>et al.</i> , 1999	increase, indicating a successful development of the brood No effects on the survival of adult bees and pupae, colony strength and overall colony conditions by feeding honey bee colonies sugar syrup at a desetyl. At concentration of 2.4 g a.s./L	
		(2.97 g test items()).	
		brood compensation index displayed continuous increase, indicating a successful development of the brood. No effects on the survival of adult bees and pupae, colony strength and overall colony conditions by feeding honey bee colonies sugar syrup at a desetyl. At concentration of 2.4 g a.s./L (2.97 g test item).	

 Table 8.3.1-1:
 EU evaluated and additional studies on bee toxicity of fosetyl-Al and phosphonic acid

Test	Test species/	Endpoint	References
substance	study type		
	Semi-field honey		;; <i>"</i> °
	bee brood study	No adverse effects on mortality, flight intensity,	2015; M-526896
	(according to	brood development (brood termination rate, brood	01-1
	OECD 75; forced	index, compensation index) as well as on colony	KCA 8.3.1.0702
	exposure	strength and brood and food abundance at 3600g	
	conditions) in	a.s./ha.	
	Phacelia;	No adverse effects on mortality, flight intensity,	
	application during	colony strength and brook and food abundance at	KCA 8.3.1.2002
	full-bloom and	570 g a.s./ha.	
	bees actively	Stogussina.	
Fosetyl-Al	foraging		
WG 80	Semi-field honey		;
	bee brood study		2015; M-928899
	(according to		Q91-1 × v
	OECD 75; forced	No adverse offects on mortality, flight intensity,	2015; M-\$28899 01-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	exposure	behaviour, brood development (bood termination	O' Q' A
	conditions) in	rate, brood index, compensation index as we as	
	Phacelia;	on colorny strength and brood and food abundance	
	application during	at 500 g a s sha.	Ô,
	full-bloom and		
	bees actively	at 500 g a s ha.	õ v
	foraging		
<b>D</b> . 1 . 1	Bumble bee		,, 2013,
Fosetyl-Al	48 h	$\&$ $D_{50}$ contact $\geq 250 \ \mu$ g a.s./bumble beg	M-525339-01-1
			CA 8.3.1.1.2/06

a) 96h-endpoint

^{b)} Values were corrected for a purity of 41% phosphonic acid weight by volume, which is equal to 29.7% weight by weight fest substance potassium salts of phosphonic acid has a density of 1.38. Therefore, one L of test substance weights 1380 g and contains 440 g phosphonic acid (410/1380 = 0.297) with a weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weight/weigh

All studies isted in Table 8.3. 1 are summarized in the following sections. In order to facilitate discrimination between new data and data submitted for the Annex I inclusion of fosetyl under Directive 91/414/EEC the data (summaries from the original DAR prepared by the RMS) are written in grey type ace whereas studies in black type face are studies of the Supplementary Dossier for the active substance or the representative formulation Foretyl-Al WG 80.

# CA 8.3.1.1 Acute toxicity to Dees CA 8.3.4.1 Acute ocal toxicity

For more information on studies abready evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. A can operview the original summaries from the DAR are given below.

Additional bee acute studies were performed, which were not submitted for the Annex I inclusion of fosetyl under Directive 914014/EEC and are submitted within this Supplementary Dossier for the approval renewal of posetyl. These studies are summarized below.

# **Bayer – Crop Science Division**

# Document MCA – Section 8: Ecotoxicological studies Fosetyl

184568-01-1Title:Laboratory testing for toxicity (acute contact and oral LD50) of fosetyl-Al to honey bees (Apis mellifera L.) - (Hymenoptera, Apidae)Report No.:R011791Document No.:M-184568-01-1Guideline(s):EPPO: No.170, (1992) not specifiedGuideline deviation(s):not specified yesMethods (acute contact test):yes30 worker honey bees (four to six weeks old) in 3 replicates of 1(Owere exposed to first dosates of fosetyl-Al (purity: 970 g/kg) ranging from 6.25 to 100 µg/bee overat 48 hour study period.Results:Six of the 150 bees (4%) exposed to fosetyl-Avdied by the end of the experiment. Mortality occurred in the 6.25 up and 12.5 up (both is are dead by 2.24) and the following from 6.25 up and 500 µg/bet by a dead
Results $Q^{\gamma}$ $\gamma$ $Q^{\gamma}$ $Q^{\gamma}$ $Q^{\gamma}$ $Q^{\gamma}$ $Q^{\gamma}$
Results $Q^{\gamma}$ $\gamma$ $Q^{\gamma}$ $Q^{\gamma}$ $Q^{\gamma}$ $Q^{\gamma}$ $Q^{\gamma}$
Six of the 150 bees (4%) exposed to fosetyl-Ardied w the pid of the experiment. Mortality occurred
in the 6.25 $\mu$ g and 12.5 $\mu$ g (both : one dead bee, 3.3%) and in the 05.0 $\mu$ g and 59.0 $\mu$ g (both two dead bees: 6.7%) test substance per bee treatment group. Modality pattern did no follow a dog response relationship, because no mortality occurred in the poup related with 400 $\mu$ g (bosth $A$ ) per bee. Behavioral abnormalities of a few beg like apathy and moving coordination problems (ccurred in all groups except in the highest dosage group (200 $\mu$ g). In the toxi (25tandard (disethore)) group 29 bees (96.7%). No bee died in the solvoit control as well as in the untreated negative controls within the experimental observation period.
<b>Methods</b> ( <i>acute oral test</i> ): 30 worker honey bees (10 bees of four to six weeks old per cage) were coposed to five dosages of fosetyl-Al ranging from 8.7 to 410 µg/bee over a 480 our sordy period. Acetone was used as a solvent. One solvent (acetone) and a brank control, as well as one toxic chandard (dimethoate) test were run in parallel.
<b>Results</b> : After ingestioo of desiges of fosety-Al, mortality occurred in the 8.7 mg/bee group only, when two of the 30 bees in this group were found doad (6.7%). No mortality occurred in the other dosage groups. All of the dees in the topic standard group died within 24 yours of the experimental procedure. In the solvent control, no be died throughout the cours of the experiment.
Contact $D_{50}$ - 48 h > $00$ µg a.s./bec $0^{\circ}$ $0^{\circ}$ $0^{\circ}$ Oral LD ₅₀ - 48 h > $10^{\circ}$ µg a.s./bec $0^{\circ}$ $0^{\circ}$
Results:         After ingestio0 of docages of losetyl-Al, mortality occurred in the 8 Joug/bee group only, when two of the 30 bees in this group were trand doug (6(9)). Nomortality occurred in the other dosage groups. All of the bees in the tools standard group hour bin 24 yours of the experimental procedure. In the solvent control, no bed died throughout the cours of the experimental procedure. In the solvent control, no bed died throughout the cours of the experimental procedure. In the solvent control, no bed died throughout the cours of the experiment.         Contact (Dos - 48 h > 00 μg c.s./hg         Oral I D so - 48 h > 100 μg c.s./hg         Image: Contact (RMS): acceptant.         Contact (RMS): acceptant.         Contact (RMS): acceptant.         Contact (RMS): acceptant.

Report:	4; ; ; 1999; M- 189217-01-1
Title:	Laboratory testing on the acute contact and oral toxicity of fosetyl-Al to honey bees • (Apis mellifera L.), (Hymenoptera, Apidae) - Final report
Report No.: Document No.: Guideline(s): Guideline deviation(s): GLP/GEP:	P014232
Endpoint according to I	M-189217-01-1 EPPO: 170, (1992); Equivalent to US EPA OPPTS Guideling No. 850.3024 none yes EFSA Scientific Report (2005) 54 1-79 for fos y1-A1: Contact LD ₅₀ - 48 h $\approx$ 1 000 µg a.s. Ore Oral LD ₅₀ - 96-h = 42 µg a.s./beo <i>t test</i> ): ided 8 experimental groups Pach, group had 3 teplicates with 10 bees per applied at the following rominal closes; 0000, 500, 640, 512 and 410 µg/bec.
In addition to the foset	<i>t test</i> ): inded 8 experimental groups Pach, poup had 3 peplicates with 10 bees per as applied at the following rominal closes: 0000, 800, 640, 512 and 414 µg/bee. yl-Al-treated groups one splvent (water and Adhasit) control, one \$0 ₂ treated he positive control with a toxic standard (0.2 µg dimethod) bee) groups were st):
Methods ( <i>acute oral te</i> . The study design inclureplicate. Fosetyl-Al (99, 410 μg/bee. The avera Duration of the test wat treated groups, one sol with a toxic standard <b>Results</b> :	ided 7 experimental goups Cach group had 3 oplicaOs with 10 bees per
Oral 4 Oral 4 Oral 4 Oral 4 Oral 6 Oral 6 Oral 6 Oral 6 Oral 6 Oral 6	TLD ₅₀ = 248 k > 1 000 µg ar,/bee 4-h LD ₅₀ = 9902.6µg as /bee ( $95\%$ C.I.= 809/1 – 1006.9 µg/bee) 5-h LD ₅₀ = 718/8 µg a.s./bec ( $95\%$ C.I.= $655.0 - 788.9$ µg/bee) 2-h LO ₅₀ = 542.2 µc a.s./bec ( $95\%$ C.I.= $471.0 - 624.1$ µg/bee) 6-h $D_{50} = 7461.8$ Og a.s./bee ( $95\%$ C.I.= $367.6 - 580.2$ µg/bee) 2-h $D_{50} = 7461.8$ Og a.s./bee ( $95\%$ C.I.= $367.6 - 580.2$ µg/bee) 2-h $D_{50} = 7461.8$ Og a.s./bee ( $95\%$ C.I.= $367.6 - 580.2$ µg/bee)
high expanse rate	So g/ggtwas applied at the following nongraft doges: 1000, 800, 6400, 512 and age doses areasured were 1128.3, 882.7, 12.5, 370.9 and 487.9 µg/bee. s, chended to 96 h, ducto ingreasing mortality. Isoddition to the fosetyl-Al- vent (were and Adhasit, areadheside agent) control approne positive control 2 µggamethaate/bee) groups were used to the fast. LD ₅₀ 448 k> 1 000 µg as bee 4 h LD ₅₀ 4902 Gµg as bee (15% C.I.= 803.1 – 1006.9 µg/bee) 5 h LD ₅ = 7180 µg a.s./bee (95% C.I.= 803.1 – 1006.9 µg/bee) 6 h LD ₅₀ = 542.2 µg.a.s./bee (95% C.I.= 805.0 - 788.9 µg/bee) 6 h LD ₅₀ = 7461.8 Gg a.s./bee (95% C.I.= 367.6 - 580.2 µg/bee) 7 h LD ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee) 7 h LO ₅₀ = 7461.8 Gg a.s./bee (15% C.I.= 367.6 - 580.2 µg/bee)

<b>Report:</b> Title:	KCA 8.3.1.1.1/03 ;; 2000; M-238701-01-1 Laboratory Testing for Toxicity (Acute oral LD50) of EXP10679A (Potassium salts of Phosphorous acid) on Honeybees (Apis mellifera L.) (Hymenoptera, Apidae)
Report No.: Document No.: Guideline(s): Guideline deviation(s): GLP/GEP:	8341036 M-238701-01-1 EPPO: 170 (1992); Equivalent to US EPA OPPTS Guideline to . 850.3020
Endpoint according to I	yes EFSA Scientific Report (2005) 54.6.79 for fosets Al: Oral LD ₅₀ – 48-h > 212 kg H ₃ PO ₃ /be f $f$ $f$ $f$ $f$ $f$ $f$ $f$ $f$ $f$
bees, 10 per test unit 5 dosages in addition	10679A ( <i>ca</i> 401 g phosphorous acid/L) was appred to Q to 6 ceeks old female . Three replicates per dose level/ wore user. EXP10679A was applied in to one solvent control and one positive control with to ac standard ( $0.2 \mu g$ average dosages ingested in this del tes were 212.0, 409.0555.7 $\Rightarrow$ 7.2 and
Results: Oral LD ₅₀ – 48	$S n > 212 \mu Q H_3 P D_3 / Dee 2 C 2 2$
Comments (RMS):	acceptible
Report: Title:	Effects of fosefyl - Al tech. (acute contact and oral) on honey bees (Apis mellifera L.)
Report No.: Document No.: Guideline(s): Guideline deviation(s) GLP/GEP:	M-440802-01-1 OECD 214 and 214 (4998) not specified <b>yes</b> How was to determine the acute contact and oral toxicity of fosetyl-aluminium thoney fore (A. mellitären L.)
<b>Objective:</b> The purpose of this stu (fosetul Al) teach the the	dy was to determine the acuto contact and oral toxicity of fosetyl-aluminium thomey bee (Appenlinger L.)
(10500)11111 (00011.300 0119	as used as the toxic endpoint. Subjethal effects, such as changes in behaviour,
Test item: Fosetyl-A0 ⁴ No.408001, TOX-No: 0	ech 98.1% w/w analysed), Specification No.: 102000016699, Origin Batch
Under laboratory condi single dose of 000.0 442	tions <i>Apps meltifera</i> 1, 50 worker bees per dose were exposed for 48 hours to a g a.s. Ger bee by topical application (contact limit test) and 50 worker bees per 48 bours for feeding (oral limit test, value based on the actual intake of the test
	al dose): 0.30, 0.20, 0.15 and 0.10 $\mu$ g dimethoate/bee (contact test); 0.30, 0.15, thoate/bee (oral test); control: tap water with 0.5% Adhäsit (contact test); 50% est).

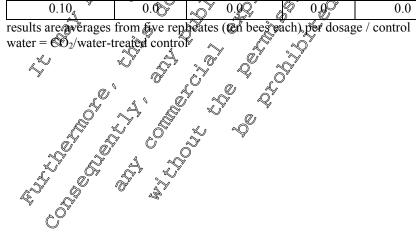
**Dates of experimental work:** May 21, 2012 – May 24, 2012

#### **Results:**

Validity criteria:

Validity Criteria	Recommended	Obtained S
Control Mortality - Contact Test	$\leq 10\%$	
Control Mortality - Oral Test	$\leq 10\%$	\$ 0.0% \$
LD ₅₀ of Reference Item (24 hours) - Contact Test	$0.10 - 0.20 \ \mu g \ a.s./bee$	0.21 μg@s./bee
LD ₅₀ of Reference Item (24 hours) - Oral Test	0.10 – 0.35 μg a.s./bec	0.14 yug a.s./bee

The contact and oral tests are considered valid as the control mortality in each case was < 30% and the  $0^{-1}$  LD₅₀ values obtained with the reference item (dimetholate), were within the required ranges. , V


#### Toxicity to Honey Bees; laboratory tests

• • •	
Test Item	Fosety Al test
Test Object	
Exposure	(softwin in Adhäsit (0.5 %) water (sugar solution)
LD ₅₀ µg a.s./bee	0 $10000$ $1000$ $1000$
LD ₂₀ µg a.s./bee	0 × × 100.0 × × × × × × × × × ×
LD ₁₀ µg a.s./bee	$\mathcal{A}_{\mathcal{A}}^{\mathcal{V}}$ $\geq 100.0$ $\mathcal{A}^{\mathcal{V}}$ $\mathcal{A}^{\mathcal{V}}$ $\mathcal{A}^{\mathcal{V}}$ $\mathcal{A}^{\mathcal{V}}$ $\mathcal{A}^{\mathcal{V}}$
NOED µg a.s./bee*	$\mathcal{O}_{\mathcal{A}} \qquad \mathcal{O}_{\mathcal{A}} \geq 100.0 \qquad \mathcal{O}_{\mathcal{A}} \qquad \mathcal{O}_{\mathcal{A}} \geq 108.5$

* The NOED was estimated using Fisher Dxact Test (pairwise comparison, one-sided greater,  $0^{2}$  0.05).

# Mortality and behavioural abnormalities of the pees in the contact toxicity test

		A L				
	🔬 Afte	r 4 hours O	After	24 hours 🔬	🔍 🔊 After	48 hours
Dosage	Mortality	Bebavioucal abnormalities	Mortality	Benavion al Abnormalities @	Mortality	Behavioural abnormalities
[µg a.s./bee] 💭	Mean %	🖌 Mean % 🌱	Mæan % *	Mean %	Mean %	Mean %
ð		0 4	Test item	Ő. Ø		
100.00	0.0		0.00	0,00	0.0	0.0
water	¢Ŭ ĉ				0.0	0.0
		K AR	eference item			
0.30	S 0.0 ×	§ 6.0	800	6.0	84.0	0.0
0.20	<u></u>		A4.0	8.0	62.0	0.0
0.15	02.0 Č	<u>`~</u> 0.0~	22.0	2.0	30.0	0.0
0.10	0.0	0.0Q	\$ 0. <b>0</b> \$	0.0	0.0	0.0



	Afte	r 4 hours	After	24 hours	After	• 48 hours
Ingested	Mortality	behavioural abnormalities	Mortality	Behavioural abnormalities	Mortality	Behavioural abnormalities
[µg a.s./bee]	Mean %	Mean %	Mean %	Mean %	Mean %	Mean %
			Test item		- Or	
108.5	0.0	0.0	0.0	0.0	0.0	0° 89 ,4
water	0.0	0.0	0.0	0.0	0.0	× 19.0
		R	eference item	Q.		
0.33	20.0	80.0	96 😽	0.00*	96.0	Q 99 4
0.16	2.0	58.0	66.0	QÓ È	<b>Å</b> 6.0	Q.0
0.08	0.0	2.0	Q10.0	2.0	14.0	Q 0.0 Q
0.05	0.0	2.0 《	10.0°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <b>Q</b>	°∼ 0.°0″

#### Mortality and behavioural abnormalities of the bees in the oral toxicity test

results are averages from five replicates (ten bees each) per dosage / compole water = water/sugar treated control

#### **Observations:**

### Contact Test:

At the end of the contact toxicity test (48 hours after application), the mortality occurred at 100.0 μg a.s./bee. There was no mortality on the control group (spater +0.5% Adhäsit)

#### Oral Test:

In the oral toxicity test, the maximum nominal test level of fosetyl-Al tech. (i.e. 100  $\mu$ g a.s./bee) corresponded to an actual intake of 108.5  $\mu$ g a.s./bee. This cose level led to no nortality after 48 hours. In the control group (50% aqueous sugar solution) to mortality occurred.

No test item induced behavioural effects were observed at any time in the contact or oral toxicity tests.

### Conclusions:

The toxicity of foset Al tech. was tested in both, an acute contact and an acute oral toxicity test on honey bees. The contact  $LD_{50}$  (48 h) was > 100.0  $\mu$ g a.s./bee. The oral  $LD_{50}$  (48 h) was > 108.5  $\mu$ g a.s./bee

#### **Report:**

Title:

u; 2010; M-389965-01-1 Effects of EXP106797 (potassium salt of phosphorous acid) (acute contact and oral) on boney bess (*Apis mellifera* L.) in the laboratory 60231035

Report No.: Document So.: Guideline(s): Guideline deviation(s) GLP/GEP:

M-389**96**5-0

**Objective:** 

The purpose of this study was to determine the acute contact and oral toxicity of EXP10679A (potassium salt of phosphonic acid) to the honey bee (*A. mellifera* L.).

Mortality of the bees was used as the toxic endpoint. Sublethal effects, such as changes in behaviour, were also assessed.

# Materiakand Methods:

Test item: EXP10679A (potassium salt of phosphonic acid): Batch ID.: 2010-005144, TOX09104-00, content of phosphonic acid (AE 0540099): 31.9% w/w, 437.7 g/L (analysed); Synonym: AE 0540099 SL 400 g/L.

Under laboratory conditions Apis mellifera 30 worker bees per treatment were exposed for 48 hours to doses of 1050, 583, 324, 180 and 100 µg p.m. (p.m. = pure metabolite) per bee for topical application (contact) and for 48 hours to doses of 848, 719, 577, 411 and 278 µg p.m. per bee for feeding (@fal, value based on the actual intake of the test item). 0

Reference item (nominal dose): 0.30, 0.20, 0.15 and 0.10 µg dimethoate/bee (contact test); 0.30, 0.20, 0.5, 0.08 and 0.05 µg dimethoate/bee (oral test); control: tap water with 0.5% A@häsit (contact test); 50% sucrose solution (oral test). sucrose solution (oral test).

# **Dates of experimental work:** August 2, 2010 – August 2, 2010

### **Results:**

Validity criteria:

<u>validity cificila.</u>	. 49		N M	
Validity Criteria		Recommend	led 🖉	S Obtained
Control Mortality - Contact Test	.4	$C \leq 100^{\circ}$	<u> </u>	0.0% ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Control Mortality - Oral Test		$\leq 10\%$	A	0.0%
LD ₅₀ of Reference Item (24 hours) -	Contact Test	@10−,0.20µg a	s./bee y	20.20 µg/a.s./bee
LD ₅₀ of Reference Item (24 hours) -	Org Test &	0.10 0.35 µg a	.s./bee	0.19 ug a.s./bee
	l a s			

The contact and oral tests are considered valid is the control portation in each case was <10% and the  $LD_{50}$  values obtained with the reference item (dimethoate), were within the required ranges.

1

ð

# Toxicity to Honey Bees; laboratory dests

· · · · · · · · · · · · · · · · · · ·	
Test Item	© CXP10C#9A. (Setassium salt of phosphonic acid)
Test object	Apis mellifera
Test Item Test object Exposure Dose [µg p.m@bee]	CXP19679A (petassium salt of phosphonic acid) Apis mellifera contact (solution pr Adhissit (0.5%)/waters (sugar solution)
Dose [µg p.m.Wee] 🔊 🗸	^O 1050, 583, 624, 186 and 166 848, 719, 577, 411 and 278
LD ₅₀ [µg p.m./bee]	24 and 48 hrs: > 1050 0 24 and 48 hrs: > 848
Dose (µg p.m.seee) LD ₅₀ [µg p.m./bee] LD ₅₀ [µg p.m./bee] L	v         contact         oral (sugar solution)           1050/583, 024, 180 and 100         848, 719, 577, 411 and 278           224 and 48 hrs: > 1050         24 and 48 hrs: > 848

	Afte	r 4 hours	After	24 hours	After	• 48 hours 。
Dosage	Mortality	Behavioural abnormalities	Mortality	Behavioural abnormalities	Mortality	Behavioural abnormalities
[µg p.m./bee]	Mean %	Mean %	Mean %	Mean %	Mean %	Mean %
			Test item		Ø	
1050.0	0.0	0.0	0.0	0.0	0.0	0° 66 19
583.0	0.0	0.0	0.0	0.0	0.0	× 19.0 ~~
324.0	0.0	0.0	0.0	0.0	0.0	\$ 0.0 ×
180.0	0.0	0.0	3.3	0.0	3 %	Q 6 X
100.0	0.0	0.0	<b>A</b> 0	QÓ os	A9.0 K	Q.0 2
water	0.0	0.0	Q 0.0		~~0.0 VO	
		R¢	eferencøjtem			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.30	0.0	3.3 C	20.0	\$ <del>`3</del> \$	<b>90</b> .0	<u> </u>
0.20	0.0	0.0	s_050.0~€	20.0	\$73.3 °	3.3
0.15	2.0	0.0	Y 133Y	16 %	30.0	« 4Q
0.10	0.0	×, 00	<u>, 0,0</u>	× 33	Q.0	§ 9.3

#### Mortality and behavioural abnormalities of the bees in the contact toxicity test

results are averages from five replicates (ten bass each) per dosage / control behav. Abnorm- = behavioural abnormality; water = CO2/water-treated control

Mortality and behavioural abnormalities of the bees in the oral toxicity test

	~				<u> </u>	
	<b>A</b> fte	r 4 hours 🔊	After		After	48 hours
Ingested		abiloginanties	Withtally		Mortality	Behavioural abnormalities
[µg p.m./bee]	Mean %	Mean 🏀	Mean %	Mean %	Mean %	Mean %
Ê	, O		Test item	5 0 5		
848.0	Ø.0	0.0 k 0	×30.0 m	\$0.0 ×	33.3	0.0
719.0		0.0	16.7	0 3.3	16.7	0.0
577.0	0.0				13.3	0.0
41.0	<u></u>	Ø.0 N	<u>_</u> 00.0 ≪	0.00 v	3.3	0.0
278.0	0.0 J	0.0 °	× 0.0 ×	۵.0 ک	0.0	0.0
water	0.0	0.00°	0.0	<b>0.0</b>	0.0	0.0
		× A	eference item	V 2		
0.31 🔊	016.70	40.0	×100 <u>4</u>	0.0	100.0	0.0
0.16	0.0		¶ ∾// h	13.3	43.3	16.7
0.68	», Ø.0 «	0.0	×90.0	0.0	6.7	0.0
0.06	× 0.0 ×	0.0	0.0	0.0	3.3	0.0

results are averages from five replicates (ten bees each) per dosage / control

behav. Abnorm- Behavioural abnormal@es; water = water/sugar treated control

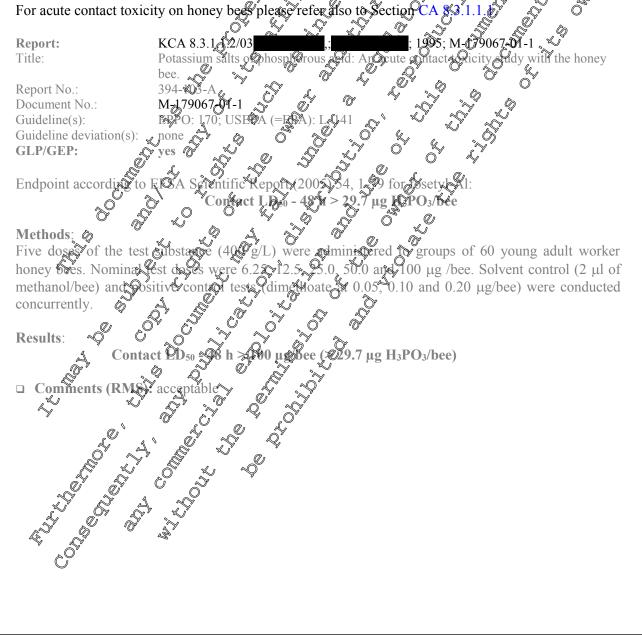
# Observations

# Contact Lest

Only one single bee was found dead in the 180 µg p.m./bee dose level at test end (48 hours following the application). No bee died after the treatments with any of the other test item dose levels (1050, 58% 324 and 100 µg p.m./bee). No mortality occurred in the control group (water + 0.5% Adhäsit). There were no signs of behavioural abnormalities in any of the dose levels at any time.

### Oral Test

In the oral test, the maximum nominal dose levels of the test item (1266 and 844 µg p.m./bee) could not be achieved, because the bees did not ingest the full volume of treated sugar solution even when offered over a period of 6 hours. Mortality occurred in the four highest dose levels (848, 719, 57 and . 411  $\mu$ g p.m./bee) in a dose related pattern at the end of the test (48 hours after application). All mortality levels were below 50 %, therefore a LD₅₀ could not be determined. No mortality occurred in the 278 µg p.m./bee group and in the control group.


A few single bees in the 848, 719 and 577 µg p.m./bee dose groups were found apathetic during the 4 and 24 hours assessments. 48 hours following the application, no behavioural impairments could observed anymore.

#### Conclusions

The toxicity of EXP10679A (potassium salt of phosphonic acid) was tested in both on acute contact and an oral toxicity test on honev bees. The L Des 48 h) was 2050 mere that in both on acute contact and an oral toxicity test on honey bees. The LD50 48 h) was >1050 µg p.m/bee in the contact toxicity test. The LD₅₀ (48 h) was > 848  $\mu$ g p.m./bee in the orabitoxicity tes

#### CA 8.3.1.1.2 Acute contact toxicity

For acute contact toxicity on honey best please refer also tos



An acute contact toxicity study with bumble bees was conducted with fosetyl-aluminium technical.

<b>Report:</b> Title:	KCA 8.3.1.1.2/06 Fosetyl-AL technical: Acute under laboratory conditions	,; 2015; M-525 e contact toxicity		bee, <i>Bombus</i> i	errestnes L.
Report No.:	S14-00625			ð	
Document No.:	M-525339-01-1			Ş	4 . 6
Guideline(s):	No specific guidelines are a	vailable. The tes	t design is base	d on OEPP/E	PO 170(4)
	(2010), OECD Guideline 21	4 (1998), and or	the review, arti	cle of VAN	ER STEEN
	(2001)	Ò	L'	L.Y	
Guideline deviation(s):	not applicable	- A	<u> </u>		
GLP/GEP:	yes	L.	Ő¥		× 4° 40'

#### **Objective:**

The objectives of this study were to determine possible effects of fosetyl-aluminium (fosetyd-Al) technical on the bumble bee, *Bombus terrestris* L., from contact exposure and to determine whether the LD₅₀ value was greater or lower than the tested dose.

#### **Material and Methods:**

Test item: Fosetyl-Al technical: 98.0% (analysed), Batch No. 201407089 certificate No. AZ 10659. The test was carried out with young adult worker bundle bees from disease-free and queen-right colonies.

In the laboratory 50 bumble bees (*Bombus ferrestris* L.)  $\sqrt{5}$  replicates with  $\sqrt{0}$  individuals) were exposed for 48 hours to a single dose of 250 µg fosetyl-Al/bumble bee by topical application (limit test). In the control group the bumble bees (3 replicates with 10 individuals) were treated by topical application with tap water. The bumble bees of the reference item group were treated with 13 µg dimethoate a.s./bumble bee. Mortality and sub-lethat effects (symptoms of poisoning or any abnormal behaviour in comparison to the control) were assessed 24 and 48 hours after application.

Dates of experimental work: Kebruary 3, 2015 - February 5, 2015

### **Results:**

#### Validity criferia:

The reference item mortality of 93.3% at the end of the test (48 hours after application) was within the required range.

In the control group treated with the water, no mortality was observed during the 48 hour test period. Since in the reference item group mortality was  $\geq 50\%$  and in the control group mortality was  $\leq 10\%$  at the end of the test the test can be considered to be valid.

# Contact toxicity to Bumble Bees Paboratory tests

	$\sim$	
Test Iten 🕺	Fosetyl-Al tech.	
Test Qbject	Bombus terrestris	
Exposure	contact	
$ LD_{50} \mu g a.s./bupable bee  \mathcal{A}$	> 250.0	
LD ₂₀ [µg a.s./bumble bee]	> 250.0	
LD ₁₀ [µg a.scbumble bee]	> 250.0	
NOED [µg a.s./bumble bee]*	> 250.0	

* The NOED was estimated using Fisher Exact Binomial Test (pairwise comparison, one-sided greater,  $\alpha = 9005$ ).

# **Observations:**

In the test item treatment group, mortality of 10% was observed at the dose level corresponding to  $250 \ \mu g$  fosetyl-Al/bumble bee at the final assessment after 48 hours. In the test item treatment group single affected bees and moribund bees were observed during the entire test period.

# **Conclusion:**

The 48 hour contact LD₅₀ value for Fosetyl-Al technical was determined to be > 250 µg fosetyl-Al/bumble bee. The contact NOED (48 h) was determined as 250 µg fosetyl-Al/bumble bee.

#### CA 8.3.1.2 Chronic toxicity to bees

A 10 day chronic oral toxicity study with honey bees was conducted with Fostyl-Al WG 80.

Report:	KCA 8.3.1.2/01
Title:	Fosetyl-AL WG 80H W - Assessment of effects on the adult honeybee, April 2010
	mellifera L. in a 10 days chronic feeding test under aboratory conditions
Report No.:	$S14-00180$ $a^{\gamma}$ $a^{\gamma}$ $a^{\gamma}$ $a^{\gamma}$
Document No.:	M-527665-01-1
Guideline(s):	M-52/665-01-1 based on OECD 213 (1998) and CEB No. 230 with modifications and current
	recommendations of the ring test group (2014) $\sqrt{2}$ or $\sqrt{2}$
Guideline deviation(s):	
GLP/GEP:	

### **Objective:**

The objective of this study was to determine the effects of the test them Fosetyl- & WG \$0 on the adult honey bee, Apis mellifera L., in 2 10-day chronic feeding Test in the aboratory. The Lethal Concentration (LC₅₀), Lethal Dietary Dose (LDD₅₀), No Observed Effect Concentration (NOEC) and the No Observed Effect Dietary Dose (NOEDD) were determined at the end of the test period.

### **Materials and Methods:**

Test item: Fosetyl-Al WG 80, Specification No. 102000024225-01, Baten D: EV36003202, Sample description: TOX10146-00, 800 g/kg (nominal), 81% w/w (malysed).

Over a period of 10 days, hove bees were exposed to 50% (vov) aqueous sucrose feeding solution, with target concentrations of 46.88, 93.75, 187.9, 375 and 750 mg fosetyl-Al/kg feeding solution by continuous and addibitum feeding. The control group was exposed for the same period of time under identical exposure conditions to untreated 50% (w/v) aqueous sucrose feeding solution. Mortality and sub-lethal effects were assessed every day throughout the 10-day exposure period. Furthermore, the daily consumption of feeding solution, the mean uptake of test item and the accumulated mean uptake of test item were determined

Samples of the feeding solutions prepared freshloevery day throughout the 10-day exposure period were taken daily for ubsequent chemica Qanalysis in order to reveal the actual concentration of the test item. During the chtire test period the bees were kept under constant darkness except during the assessments.

Reference item (nominal dose): 0.85 mg dumetheate/kg feeding solution, 50% (w/v) sucrose solution.

23, 2014

Dates of experimental work: Hily 8,2014 Fully.

#### **Results:**

Validity Criteria

The study is considered valid because:

The study is conside	ered valid because:			l de de la companya de la
• The mean m	ortality in the control	was $\leq 15\%$ at the e	nd of the test.	ae test.
• The mean m	ortality in the referen	ice item group was ≥	$\geq 50\%$ at the end of	ae test.
	•		Š	4 .C?
Cumulative mortality	y, overall mean consur	nption of feeding solu	ution, dietary dose (E	D), accumulated
mean uptake of test i	y, overall mean consu tem as well as the LC5	, LDD ₅₀ , NOEC and	NOEDD	
	10-day	Overall mean		
	cumulative mortality		Dietaty dose (DD)5	Sccumplated mean
Treatment	(Mcorr ⁴ )	feeding solution		uptake of tem
[mg a.s./kg]				
	[%]	[mg/bee/day]	🕎 [μg tøsetyl- 🌂	ug fosetyl-Aldee]
-			Al/pee/dayg	
$C^{1}(0.0)$	2.5	<u> </u>		
$R^2(0.85)$	57.5 (56.4)	<u>, 29.2</u>	0.03	
Fosetyl-Al WG 80 ³	s e		$\approx A \delta'$	
46.88	0.0 (-2.6)	¢ ¢ ¥46.90 ¢ , √	0 [×] 2.20 [×] ×	22.0 × 43.3
93.75	2.5 (0.0)	467		43.3
187.5	7.5 (5.1)	°¥6.6 ∜	↓ 4.0 ↓	\$ <b>\$ %</b> 4
375	2.5 (0.6%	چ 50.2	DI 8.8	õ °4/88.1
750	5.0 (26)	6 [×] 49 K	₹ ⁷ 37.30 ×	<b>3</b> 72.6
LC ₅₀		$\sim 750^{\circ} > 750^{\circ} n$	ng a@./kg 🔗 🚬	
LDD ₅₀		^Δ 2 > 37 ³ μg	a.ś./bee/day	à
NOEC			ga.s./kg	4) ⁴
NOEDD		<u></u> (3 ⁴ 7.3 µб)	i.s./bee/day	¥
¹ Feeding solution: 50	% Wy aqueous succose	solution N N	i k. v	/

- ¹ Feeding solution: 50% V/v aqueous sucrose solution
   ² Feeding solution: 50% W/v aqueous sucrose solution containing Perfekthion (a.s. dimethoate)
   ³ Feeding solution: 50% W/v aqueous sucrose solution containing Eosetyl-Al WG 60 (a.s. fosetyl-Al)
- ⁴ Corrected morality according to SCHNEIDER-ORELLI (1947)
- ⁵ Dietary Dose (OD): mean uptake of test item (Calculation based on the replicate values)

Lethal Concentration LC

LDD Lethal Dietary Dose 🔬

No Observe Effect Concentration based on mortality not statistically significantly different NOEC compared to the control: Fisher's Exact Test, Bonferconi-Holms corrected, one-sided greater,  $p \le 0.050$  $p \le 0.05$ 

Ľ

L.

No Observed Effect Dietary Dose Based on morelity (not statistically significantly different NOEDD *Æxact Test, Sonferroni-Holms corrected, one-sided greater, compared to the control; Asher p,≨9.05) ⊘

# **Observations:**

After 10 days of continuous feeding, the mortal of at the test item treatment levels of 46.88, 93.75, 187.5% 875 and 750 mg foselyl-Allxg feeding solution was not statistically significantly different when compared to the control group.

The cumulative control mortality was 2.5% as determined at the final assessment after 10 days. The cumulative mortality at the concentration levels of 46.88, 93.75, 187.5, 375 and 750 mg fosetyl-Al/kg feeding solution was 0.0 2.5, 7.5, 2.5 and 5.0%, respectively (corrected: -2.6, 0.0, 5.1, 0.0 and 2.6%, respectively) at the final assessment.

In the reference item treatment group, mortality increased during the test period and reached 57.5% (corrected 56.4%) after ten days. Exceeding the 50% mortality threshold set as validity criterion, the reference item treatment group showed that the test design is suitable to determine toxic effects in a chronic Oposure scenario.

In the control group no sub-lethal effects could be observed. At the concentration level of 375 mg fosetyl-Al/kg feeding solution one affected bee could be observed at assessment E3.

#### Page 86 of 126 2016-07-20

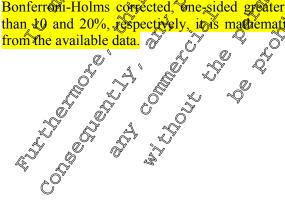
#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

The overall mean daily consumption of feeding solution (i.e. the average consumption/bee over 10 days) was not statistically significantly different (lower) when compared to the untreated control group (46.9, 46.1, 46.6, 50.2 and 49.7 mg/bee/day at the concentration levels of 46.88, 93.75, 187,5, 375 and 750 mg fosetyl-Al/kg feeding solution, respectively compared to 43.8 mg/bee/day, is the control group). In the toxic reference item group, the overall mean consumption was 29.2 mg/bee/day. At the end of the 10-day exposure period, the mean accumulated uptake of the test item at the concentration levels of 46.88, 93.75, 187.5, 375 and 750 mg fosetyl-Al/kg feeding solution was 21.99, 43.25, 87.36, 188.09 and 372.59 µg fosetyl-Al/bee, respectively (based on the actual consumption of feeding solution by the honey bees). The corresponding daily mean uptake was therefore 2:20, 4.32 8.73, 18.8 and 37.3 µg fosetyl-Al/bee/day, respectively.

Analytical Results: The actual concentration of fosetyl-Al in the feeding solutions, determined for each preparation day, was in the range from 73 to 107% of the nominal account of th was in the range from 73 to 107% of the nominal concentration. The average actual concentration of fosetyl-Al over a period of 10 consecutive days, per individual test item treatment level was within the range of 87 to 95% of the nominal concentration. No residues of to setyl-  $\mathcal{A}$  above the LOQ (10  $\mu$ g/kg) were found in any of the control samples. , Ø were found in any of the control samples. 

#### **Conclusions:**

Conclusions: The NOEC for mortality after 10 doss of continuous or exposure was determined to be 750.0 mg fosetyl-Al/kg feeding solution. The corresponding NQEDD, based of the totual consumption of the respective feeding solutions, was determined to be 37. ug a bee/day.


The LC₅₀ after 10 days of continuous oral exposure was determined to be >0/50 mg fosetyl-Al/kg feeding solution. The corresponding LDD (Lethel Dietary Dose), based on the actual consumption of the respective feeding solutions, was determined to be >37.3 µg a.s./bee/day.

### **Request from the RMS:**

A justification of the robustness and the reliability of the SOEC values from chronic toxicity study should be provided. In addition when it is possible, EC10 estimations should also be provided for all ~ ~ ~ O BAR chronic studies X

### Response from BCS:

For bees one chronic oral feeding laboratory studo has been submitted ( U; 2015; M-527665-01-1). This study was performed as a dose-response test at concentrations ranging between 46.88 and 750 mg a.s./kg (corresponding to 2.2 to 37.3 up a.s./bee/day). Until the end of the test mortality ranged between 0.0 and 7.5% ocorresponding to -2,5 to 5,1% corrected mortality) in the different treatment levels. The highest test concentration of 750 mg 2.5./kg that resulted in 5% mortality was determined to be the NOEC (corresponding to 37.3 ag a.s. Dee/da being the NOED) since it was not statistically significantly different compared to the control that resulted in 2.5% mortality (Fisher's Exact Test, Bonferroni-Holms corrected, one-sided greater, p 20.05). Consequently, since mortality was lower than 10 and 20%, respectively, it is mathematically not possible to calculate LD₁₀ and LD₂₀ values from the available data.



### CA 8.3.1.3 Effects on honeybee development and other honeybee life stages

Report:	KCA 8.3.1.3/01
Title:	Fosetyl-AL WG 80H W - A honeybee brood feeding study to evaluate potential ""
	effects on brood development and mortality of the honeybee Apis mellifera .
	(Hymenoptera: Apidae)
Report No.:	20130047
Document No.:	M-508986-01-2
Guideline(s):	Oomen, P. A., de Ruijter, A. and van der Steen, J. (1992). Method for honeybee brood
	feeding tests with insect growth-regulating insectiones. EPPO Bubetin, 22, 613-606
Guideline deviation(s):	none
GLP/GEP:	yes by y by by by

#### **Objective:**

The aim of the honeybee brood feeding study was to evaluate potential side effects of an application of Fosetyl-Al WG 80 on brood development and mortality of adult worker hone bees (*Apis melliferqQ*.).

#### **Materials and Methods:**

Test item: Fosetyl-Al WG 80, Specification No.: 10200002422501, Batch ID EV36003202, 800 g/kg (nominal); 81% w/w (analysed).

The study included three treatment groups with three replicates (colonies) each: One aqueous sucrose solution treated control group (C), one test-item group (T) and one reference item group (R). The bees were flying freely, with principally, unlimited access to natural foraging recourses (e.g., nectar and pollen) in the surroundings. Colonies were set up 7 days before treatment (Applications were made in the evening after flight activity and the colonies were monitored for 22 days. Weather conditions in the pre-application phase were stable with no rain and during post-application phase favourable with rain events 1, 5, 8, 9(10, 13, 14, 15 and 20 days after treatment (DAT). The application rate of the test item fosetyl-Al WS 80HOW way 2.4 g a.s./L. Aqueous sucrose solution was applied at 50% (w/v) in the control group and Insegar 25 WG was applied at 3 g product/K in the reference item group (corresponding to 0.75 g feroxycarb/L). Freatments were administrated through in-hive feeding of 1 L 50% (w/v) aqueous sucrose solution per colony.

To document the number of dead bees and pupae carried out of the hives, a dead-bee trap was fixed to each hive. For brood development images of entire frames with combs were taken using a Canon EOS 5D Mark II with a macro lens for five runs, each run last for 22 days (developmental cycle of a honeybee worker takes 21 days). One day before application brood areas were fixed (brood area fixing date = BFD) (selection of eggs, young and old largae for detailed brood assessment). The honeybees were observed until 22 days after treatment. Dead-bee traps were inspected daily and behaviour was also monitored on a daily basis. Food patake was inspected daily after the start of feeding and lasted until complete consumption of the treatment solution. Colony conditions were assessed two times during the study, spectrically on DAT -2 and DAT 22.

The following endpoints were assessed:

- Total and mean mortality of adult worker bees and pupae recorded in dead-bee traps
- Behaviour of bees at the hive entrances
- Colony conditions/performance (brood nest, different brood stages, nectar, honey and pollen Stores and sacant colls)
- Corony strongth (number of bees per colony)
- A Brood development success (brood termination rate, brood index and compensation index)
- Duptake of feeding solutions

**Dates of experimental work:** 13 June 2013 – 12 July 2013

#### **Results:**

#### Validity of the Study

The daily mean mortality of adult honey bees (14.26 workers/colony) and pupae (0.65 pupae/colony) in the control treatment during the post-application phase of the study remained low. According to statistical analyses, the overall daily mean pupal mortality in the reference item treatment was significantly higher as compared to the control, indicating that the test system was principally adequate to demonstrate potential effects on honey bee brood.

In addition, there was a statistically significant increase of the mean Brood Termination Rate in the toxic reference treatment for all monitored brood stages on BFD 22 (eggs: 66.67%, young latvae: 40.00%, old larvae: 20.00%) as compared to the control (eggs: 19.33%, young larvae) 3.67%, old larvae: 1.67%). Regarding the overall performance of the reference item and control treatment, the study validity criteria were fulfilled.

### Effects of Fosetyl-Al WG 80 on Honeybee Mortality and Honeybee Brood Development

		0°	
	🔍 Control 👋	Test Incm	Reference Item
Assessment period	∑n=3 ∠	Å n <del>≥</del> 3 Å	≪ n=3 🖉
	Worker Morta	hty / Colony and day	$v$ (Seans $\pm$ SD)
Pre-Application (DAT -3 to 0)	18.00 ± 2.88	£.50 ±4.77 ू	123 ± 5.01
Post-Application (DAT 1 to 22)	14.26 ± 2.05	∠ ⁰ 15.24 ^Q 1.64	9.59 ± 3.92
	🖉 🖗 Rupal Me	vality / Colony Me	anş ± SD)
Pre-Application (DAT -3 to 0ba) &	√y 0.25 ≠ 0.25 √y	≥0.25 ± 0.43	$0.75 \pm 0.50$
Post-Application (DAT 1 to 22)	0,65±0,55	€ 0.44€ 0.09	$34.83\pm27.06^{\scriptscriptstyle\Delta}$
		pt of selected Eggs (N	Means $\pm$ SD)
Brood Termination Rate (%) aPBFD 22 (DAT 21)	13.3 <b>3€</b> # 4.73 [©]	$2533 \pm 13.20^{\Delta}$	$66.67\pm16.56^{\scriptscriptstyle \Delta}$
Brood Index at BFI222 (DAT 21)	403 ± 0.24	<b>₹</b> 3.63 <b>@</b> 0.66	$1.67 \pm 0.83*$
Compensation Index at BFD 22 (DAT 21)	4.44 ± 0.21	$3.76 \pm 0.70$	$1.90 \pm 0.81*$
		selected Young Larv	rae (Means $\pm$ SD)
Brood Terngination Rate (%) at BFD 22 (DAT 21)	3.67 ± 1.15	$11.33 \pm 3.51^{\Delta}$	$40.00\pm14.73^{\rm \Delta}$
Brood Index at BFD 22 (DAT 20)		$4.43 \pm 0.18$	$3.00 \pm 0.74*$
Compensation Index as BFD 22 (DAT 21)	4.84 ± 0.08	$4.57\pm0.19$	$3.04 \pm 0.67*$
	Development o	f selected Old Larva	e (Means $\pm$ SD)
Brood Termination Rate (%) at SFD 22 DAT 27	1.67 ± 15	$11.00\pm10.44^{\Delta}$	$20.00\pm20.88^{\Delta}$
Brood Index a BFD 2 (DAT 21)	. [©] [*] 4.89 ₽0.05	$4.44\pm0.52$	$4.00 \pm 1.04$
Compensation Index at BFD 22 (DAT 21)	$4.93 \pm 0.03$	$4.60\pm0.40$	$4.01\pm1.05$

^A Statistical significantly greater as compared to the control

* Statistically significantly smaller as compared to the control

DAT Days After Start of Treatment

BFD Brood area Fixing Day

In-hive worker mortality (dese bee baps):

No significant differences between treatment groups were detected for the entire post-application phase.

### In-hive pupal mortahiv:

As compared to the control, there was a statistically significant increase of pupae mortality in the reference tem throughout the entire post-application phase, but not in the test item.

Ũ

#### Behaviour:

In none of the treatment groups abnormal honeybee behaviour was observed during the whole study period.

#### Colony strength:

There was a significant negative influence on the relative change of the colony strength of reference item treatment group as compared to the control

#### Brood nest (eggs/larvae/pupae):

No significant differences could be detected between treatment group

#### Stores (pollen/nectar/honey):

No significant differences could be detected between treatment groups

No significant differences could be detected between treatment groups.

st. rength of the Brood Termination Rate: Brood Termination Rates in the test itent treatment were statistically significantly bigher as compared to the control in all selected brood stages at study end. However, despite the detected statistically significant differences the brood termination rates were generally on a low level with 13.3% (eggs), 3.7% (young larvae) and 1.7% (old farvae) in the control and with 27.9% (eggs), 11.9% (young larvae) and 11.0% (old larvae) in the test item. Also for the reference, item all brood stages exhibited statistically significantly increased Brood Termination Rates as compared to the control at study end with 66.7% (eggs), 40.0% (young larvae) and 20,0% (old larvae), showing that the test system was sensitive to detect potential effect of plant protection products on hopey bee brood

### Brood Index:

Overall, the Brood bodices of the control and test item displayed comparable increases, indicating a successful development of the brood. Statistical analyses showed that Brood Indices in the test item treatment were not significantly decreased as compared to the control. In contrast, mean brood indices of the reference item reatment for eggs and young larve were statistically significantly decreased as compared to the control.

# Brood Compensation adex O

Overall, the Brood Compensation Indice of the control and test item displayed comparable increases, indicating a successful composation of brood losses. Statistical analyses showed that Brood Compensation Indices on the less item treatment were no significantly decreased as compared to the control. In contrast, the mean Brood Compensation Indices of the reference item treatment for eggs and young larvae were statistically significantly decreased as compared to the control at study end.

á

### Conclusion:

To assess the potential effects of Foset Al WG 80 on honeybee brood development, the test item was administered in 1 L/50% (w/v) aqueous sucrose solution at a concentration of 2.97 g formulated test item/L (=  $2 \oplus g$  fosetyl-A) per colony during summer 2013.

The administration of fosetyl-Al WG 80 at a concentration of ~2400 ppm fosetyl-Al to honeybee colonies via seeding of 1 kine spiked sucrose solution has neither resulted in adverse effects on worker or pupal portality nor in behavioural abnormalities as compared to the control.

Regarding brood development, Brood Termination Rates of the test item treatment were moderate, yet, as compared the control a statistically significant increase was detected at study end, although the Brood Termination Rates in the test item were overall on a low level. However, neither Brood Indices nor Brood Compensation Indices were significantly increased as compared to the control for any brood stage, indicating that these indices performed comparable to the control, including compensations of previous brood losses.

At the level of whole colonies, the performances of overall brood nest size were comparable to the control. Mean colony strength and amounts of stores increased on average and no statistically significant adverse effects were detected at the level of entire colonies.

Despite some short-term effects on Brood Termination Rates, according to the overall results of this study, Fosetyl-Al WG 80 did not adversely affect honeybee colony performance and vitably at a concentration of 2.97 g test item/L (= 2.4 g fosetyl-Al/L).

Report:	KCA 8.3.1.3/02
Title:	Assessment of side effects of Fosety AL WG 80H of on the honeybee (April melligera
	L.) in the semi-field after one application on <i>Phacelia tanacetifold</i> in Germany 2914
Report No.:	S14-00160
Document No.:	M-526896-01-1
Guideline(s):	OECD Guidance Document to. 75 (2007) and current recommendations of the A
	Bienenschutz (PISTORIUS et al 2012) 2 2012
	OEPP/EPPO Guideline (6. 170/4) (2010)
Guideline deviation(s):	
GLP/GEP:	yes

### **Objective:**

This study was designed to determine the potential effects of Fosetyl-AbWG 80 on the honeybee (Apis mellifera L.) after one application on Phacelia tanacetifolia in Germany in a semi-field brood study.

### Materials and Methods:

Test item: Fosetyl-Al WG 80; Specification No.: 102000624225 01, TOX10146-00; Batch-ID: EV36003202; 800 g/kg (neminal), 81.0% w/w analysed).

The study included from treatment groups with four representation one tap-water treated control group (C), the test-ritem groups (A4 and D2) and one reference item group (R).

Applications were made at full flowering (BBCH 69-65) with hencybers actively foraging on the crop. The target application rate of the test item Fesetyl-Al WG 80 in the treatment 1 (T1) was 570 g a.s./ha (actual rate applied 588 g a.s./ha) and in the treatment 2 FT2) 3600 g a.s./ha (actual rate applied 3880 g a.s./ha), respectively. Tap water was applied in the control group and Insegar was applied at a target rate of 1200 g product/ha in the reference item group (corresponding to 300 g fenoxycarb/ha). The spray volume wa@400 L/ha in all treatment groups.

The honeybees remained in the tunnels for 12 days and colonies were assessed once before set-up, twice during and four times after the end of the confined phase.

The following endpoints were assessed:

- Total and mean number of dead bees (worker and pupae separately) on the linen sheets in tunnels, in the dead bee bottoms before as well as after the start of exposure in T4, T2 and the application in @ and R respectively.
- Flight intensity (mean number of forager Dees/m² *Phacelia tanacetifolia*) before as well as after the start of exposure in TF/T2 and the application in C and R, respectively.
- Behaviou of the bees in the crop and around the hive.
- Condition of the colonies (colony strength and area of the different brood stages and food storage per colony and assessment date).
- Development of the bee brood assessed in individual brood cells. For this particular assessment, between 209 and 262 individually marked cells per colony were selected.

Dates experimental work: 22 July 2014 – 22 August 2014

#### **Results:**

#### Validity of the Study

The daily mean mortality of pupae (1.7 pupae/colony) in the control treatment during the sestapplication phase of the study remained low. According to statistical analyses, the overall daily mean pupal mortality in the reference item treatment (17.2 pupae/colony) was significantly higher as compared to the control, indicating that the test system was principally arequate to demonstrate potential effects on honey bee brood.

In addition, there was a statistically significant increase of the mean Brood Termination Rate in the toxic reference treatment at study end. Regarding the overall performance of the reference item and control treatment, the study validity criteria were fulfilled.

			"0" ."Y 0		
Treatment group	(	Control	⊂ Test item √ →(T1) →	Test item ∕ ⑦ (T2),{	Reference
	4DBA to 0DB	\$59.9±46.0	98.5 ± 36.7	\$48.3 ± 12.9	62.2 23.0
Daily mean mortality (dead worker bees/colony)	ODAA	27.00 6.7	346 ± 4.7	2408 ± 6,5	36.8 ± 10.7
± STD	0DAA to DAA	793 ± 16.8	$106.0 \pm 16.7$	\$2.8±\$4.0	
	0DAA 0 27DAA		≎54.9*⊕ 16.7	31.8 11.4	34.3 ± 9.8
	4DEA to ODBA	0.8 ± 0.2	$22 \pm 2.6$	$0.6 \pm 3\%$	$1.2 \pm 1.2$
Daily mean mortality (dead larvae+pupae/colony) ± STD	ODAA & O	2.3 ± 22	¥2.5±23.7 s	© 7.5 ± 14.3	$1.8 \pm 1.5$
	0DAA to 7DAA	€ 1.3∳0.4	4.2° ± 6.2, €	2 ± 5.5	$2.2 \pm 2.8$
	00 AA to 27DAA		3.2 ± \$\$	≥>2.7 ± 3.8	$17.2^* \pm 6.0$
		. 19		γ/	

#### Effects of Fosetyl-Al WG 80 on Honeybee Mortality

DAA: days after application; DBA: days before application; OTD: soundard deviation

* statistically significantly higher than control group

¢Ø Throughout the period before exposure, mortality of adult bees across all treatments was similar with exception of test item treatment (T1) In three of four colonies in this treatment, the number of dead adult bees indicated higher sensibility of these colories to restricted conditions in the tunnels. During exposure from day Muntil day 7 after application, mortality of adult bees across all treatments was similar, indicating to effect of the test item. In the test item treatment 1 (T1) higher mortality values were observed from day 16 until day 22. Since higher mortality in all treatments was observed during this period it gould be explained by rainfall that occorred on day 15 and 20. Nevertheless the difference between mean values in the control and T1 in the period 0DAA to 27DAA was statistically significant (Dunnett's t-Test, and sides,  $\alpha = 0.05$ ). No effect of test item treatment 2 (T2) on the mortality of adult bees was observed during the whole exposure period. The number of observed dead pupae and larvae before exposure was similar in all treatments groups. On the day of application higher numbers of dead pupae and large were observed in one of the hives of T1 (T1b), the mean value was not statistically higher than the control but this inclination remained until end of exposure period. Since this phenomenon was observed only in one hive, it indicated higher sensibility of this colony to respicted conditions in the turbel. The mean value of the pupae and larvae mortality in the reference item treatment was statistically significant over the period 0DAA to 27DAA (t-Test pooled, one sided,  $\alpha = 0.05$ ).

Treatment group		Control (C)	Test item (T1)	Test item (T2)	Reference Item (R)
Daily mean flight	4DBA to 0DBA	$11.7 \pm 1.5$	$12.5 \pm 1.0$	12.3 ± 1.1	$127.5 \pm 0.5$
intensity (bees/m ² ) ± STD	0DAA	$14.1 \pm 1.2$	$12.5 \pm 1.8$	9.3* ± 1.6	£ 6.6* £ 0.6
	0DAA to 7DAA	$15.5 \pm 1.5$	15.0 ± 1.7	14.8 ± 2.8	$167 \pm 0.5$

Effects of Fosetyl-Al WG 80 on Honeybee Flight Intensity

DAA: days after application; DBA: days before application; STD: standard deviation * statistically significantly lower than control group

Foraging rates were similar across all treatments before exposure (DBA and 0DBA). On the day of application a short rainfall ca. two hours after the application of reference item occurred. This unfavourable weather condition led to the reduced foraging activity of the bees and was observed during the assessment two hours (2HAA) and four hours (4HAA) after application in R, and four hours (4HAA) after application in C, T1 and 2, respectively. The observations done on 4HAA in all treatment groups and also on 2HAA (only for R) were excluded from the evaluation of the mean values, STD and statistical analysis. On the day of application (DAA) statistically significantly (Dunnett's t-Test, one sided,  $\alpha = 0.05$ ) reduced numbers of foraging bees were observed in the test item treatment T2 and reference item treatment (R). From 1DAA to ODAA foraging activity was similar in all treatments group and no test item and reference item related adverse effects on flight-intensity were observed.

### **Behaviour of the Bees**

In the control group bees with locomotion problems, cramping bees and inactive bees were observed during entire study. The abnormal behaviour of the bees described above were more noticeable in the test item group T1 and T2 and reference item group R compared to control group C. Hanging bees, bees clustering at hive, trembling, aggressive to other bees or bees aggressive to observer were additionally observed in T1, T2 and R. Observed abnormal behaviour was related to the exposure phase in the tunnels (0DAA to (DAA). From day \$DAA some behaviour abnormalities still occurred but were on the similar level as in the control and are not seen as an effect related to the test item.

Treatment	Bro		npensation in area fixing day		© ⁴ After	Termination rate (BFD+21)
	le de la companya de	× * *	~ + <b>10</b> .	· + <b>1.5</b>	+21	[%]
Control	1.00 / 1.00	2 6 / 2,20	2:37/2.52	2.36/2.59	2.94 / 3.54	41.24
STD	€ 0.00 / 0.00	0.44 0.42	0.68 / 0.61	≪0.68 / 0.57	0.84 / 0.49	16.86
Test item TV	1.00 / 1.89	0.75*/1.01*	0.82 / 1.20	0.82* / 1.35	1.00* / 2.09*	79.92*
STD	0.00/0.00	0.52 0.62	0.71/0.77	0.71 / 0.99	0.86 / 1.13	17.26
Test item T2	1.000 / 1.000	2 2 / 2.28	2.63 / 2.88	2.55 / 2.89	3.18 / 3.77	36.50
STD	0.0050.00	0.84 0.65	1.25 / 0.90	1.21 / 0.80	1.54 / 0.93	30.83
Reference item R	1.00 / 1.00	0.67* / 0.50*	0.00* / 0.69*	0.00* / 0.78*	0.00* / 1.32*	100.00*
STD S	× 0.00 / 0.00	0.08 / 0.30	0.00 / 0.49	0.00 / 0.56	0.00 / 1.07	0.00

# Development of Honeybee Brood in Individual Cells

BFD: Brood area fixing day; STD: Standard deviation

*: Statistically significantly lower (brood and compensation indices) or higher (termination rate) compared to the control

Fosetyl

# Document MCA - Section 8: Ecotoxicological studies

In the control group C, successful development was observed in the majority of the marked brood cells, indicating a healthy development of brood. The mean termination rate at the end of the observation period (BFD+21) was at 41.24%.

In the test item treatment group T1 the brood development was reduced and mean termination rates were higher than in the control. The mean brood index as well as the mean termination rate on  $\partial M$  BFD^O dates were statistically significantly different from the respective values in the control (Dumnett' ob-Test, one-sided,  $\alpha = 0.05$ ). The mean compensation index was statistically significantly different from the respective values in the control (Dunnett's t-Test, one-sided,  $\alpha = 0.05$ ) on BFD+ $2^{11}$ . The mean termination rate at the end of the observation period (BFD+21) was at 79.92%.

In the test item treatment group T2 the brood development and mean termination rates were similation the control without statistically significant differences. The mean termination rate at the end of the C observation period (BFD+21) was at 36.50%.

In the reference item treatment group R, the post treatment mean valoes of the brood and compensation indices were clearly lower than hose observed in the control, indicating a strong adverse effect. The mean brood and compensation indices as well as the mean termination rates in R were statistically significantly different from the respective values of the control on BFD+21s (Satterthwaite t-Test, one-sided,  $\alpha = 0.05$ ). The mean termination rate at the end of the observation period (BFD+21) was 100.00%, indicating that none of the mitially marked eggs had completed its development.

Overall, the quantitative assessments of brood development in individually marked cells, revealed that Fosetyl-Al WG 80, applied to full-flowering *Phacelic tangetifolis* during daily honeybee flight at a rate of 3600 g a.s./ha (test item treatment T2), did not cause any reatment-related adverse effect on honeybee brood development. X, 1 al

The application rate of \$70 g Q.s./hg (test them treatment T1) gave indication for statistically significantly effects on the brood development. This effect should not be seed as test item related, since three of four colories in T1 were much more sensitive to restricted conditions in the tunnels than colonies in C and 72. This could be observed in higher mortality of adult bees and pupae already before exposure.  $\bigcirc$ 

It is known that the assessments of the brood development are a big interterence in the condition of the colonies and the method its of can cause areversible changes to the fragile eggs. The development of the colonies observed during the golony assessment in this treatment was similar to that in the control and no effects on brood were seen on that level.

# Strength of the Colonies

No test-item related adverse effects on colony strength were observed.

# Development of the Brood Area

### Development of the Food Storage Area

No test-item related adverse effects on the development of the food storage area were observed.

### Conclusion:

Fosetyl-Al NG 80 was applied at two rates corresponding to 570 g a.s./ha (treatment T1) and 3600 g a.s./ha (treatment T2), cat full flowering Phacelia tanacetifolia, during daily honeybee foraging activity. No biologically relevant test-item or rate-response related adverse effects on mortality were observed in Fr and 2. A short-term reduction in foraging activity was seen in T2 and 0DAA. Testitem felate effects on behaviour were observed only on the day of application (0DAA) in T1 and T2. The quantitative assessments of brood development in individually marked cells performed in this study revealed that Fosetyl-Al WG 80 at the rate of 3600 g a.s./ha (T2) did not cause any treatmentrelated adverse effect on honeybee brood development.

In contrast effects on brood development (termination rates, brood and compensation indices) of Fosetyl-Al WG 80, applied at the lower rate of 570 g a.s./ha (T1) on individually marked cells were observed. The exact reasons for this finding could not be determined. It may be explained by the fact that three out of four colonies in T1 were much more sensitive to restricted conditions in the tubnels than colonies in C and T2 (as confirmed by higher mortality during the pre-exposure phase) Heavy rainfall occurred at least twice during monitoring phase and may have increased sensitivity. Ô The overall honeybee brood development in the test item treatment groups, measured as mean number of cells covered with the different types of brood per colony was neither affected in treament DI nor in T2. Therefore, the effect on brood in T1 was only visible on the level of the development of the individual marked eggs but not on the level of the whole colony. Ø No test-item related adverse effects on colony strength or on the development of the food storage area were observed in T1 and T2. Fosetyl-Al WG 80 applied at 570 g a.s./ha to flowering Phacelia tandoetifolia in presence of honey bees did not result in test item or rate-response related effects on mortality, flight intensity and colony strength. Effects on brood were seen on the level of the development of individually matked eggs but not on the level of the whole colony. 8ª Fosetyl-Al WG 80, applied at 3600 g a.s./ha to flowering Phacedia tanacetifolia in presence of honey bees (T2) resulted in reduced foraging activity on the day of application but did not vause Request from the RMS: Further explanations are considered required to conclude on the reliability of the semi-field study in an ; 2015; MI-526896-01-1) for the risk assessment Could you please apple orchard ( indicate if some data are available to precise the level of exposure of the exposed colony? Could you, also, precise if the single application in this study is sufficient to assume that the exposure of bees would be representative of the exposure following the application of the preparation according to the intended GAP (muth-application)? Ŵ Ø Without these precisions the reliability of this study could be challenged during the peer-review . . L. process. X Ø Response from BCS: 2015, M-526896-07-1 was not performed in an apple orchard but in The study by Phacelia tanacetifolia. This study with specific focus on bee brood development was performed following the OECD Guidance Document 75 that is referenced in the data requirements as set out in Commission Regulation (EU) No 284/2013, The intention is to monitor a complete developmental cycle from egy to adult houreybee. The study design includes a 2 to 3 day acclimatisation period followed by a 7 day direct exposure period after application inside the tunnels under confined conditions before the bees are eventually moved out of the tunnels. Single applications are foreseen by the methodology and in the case of fosety Al, with a minimum application interval of 7 days, multiple applications are virtually impossible to perform when aiming to be compliant with the guidance document. As described in the OECD OD 75 The bees and their brood are put into an acceptable worst case situation by this test design". It is also stated that "The test chemical has to be applied during full bee flight (e.g., for phacelia, an average of at least 10 bees/m² should be counted at a given time t), to ensure that the colony, is exposed to the test chemical." This requirement was completely fulfilled by counts that took place before the application that confirmed the presence of 12.1 bees/m² in the control, 2.9 bees/m² in T1, 11.9 bees/m² in T2 and 12.9 bees/m² in the toxic reference item. Additional evidence on exposure after application is available from the flight assessments that were performed from 15 minutes onwards after the application until day 7 after the application. In the test item treatment groups high foraging activity was found at the majority of timepoints after application

(for details, please refer to the study report).

#### Page 95 of 126 2016-07-20

#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

of at least 150 g feno: present study included expected effect on bro	t also states that a toxic reference item is to be included in the test and the use xycarb/ha is recommended. As recommended in the guidance document the a toxic reference item applied at 300 g fenoxycarb/ha, which showed the od mortality. The application in all treatment groups was performed, with a boom sprayer simulating a commercial application. Several criterio were
	lition for performance of the application to ensure appropriate exposure. Wind
	0 m/s, no rain occurred within the at least 2 hours after the application and the
	tet application rate was $+3.22$ and $+7.77\%$ in the test item and $57.77\%$ in the
toxic reference item.	
	e available data on monitoring of fight activity the use of a toxic standard the
	ogical conditions encountered during and after the application, combined with $\bigcirc^{\vee}$
	sure in the guidance document that was followed and that as valid at the time of
	ant is of the opinion that exposure of bees in this study before and after
application is sufficient	ly confirmed and fully compliant with surrent requirements in place at the time
of submission.	
In a second study follo	wing the same test design Carification was sought on the findings of the lower
application rate. The da	ta obtained is precented in the study summary below
11	
Report:	KCA 8.3.1.3/02 (1/2
Title:	KCA 8.3.1.3/0 <b>Constant of Sector</b> ; 2015; M-528899-09-1 Assessment of side effects of fosetyl-AL WG 80HOW on the hone bee (Apris mellifera
	L.) in the semi-field after one application on Phacelia topacetifeld in Germany 2015
Report No.:	S15-02966
Document No.:	M-528899-01-1
Guideline(s):	OECD Guidance Document No. 75 (2007) and current recommendations of the AG
	Bignenschutz (PISTORIUS et al., 2012) $\sim$ $\sim$ $\sim$
*	OEPP/EDPO Guideling No. 179(4) (2000) & 0
Guideline deviation(s):	no major deviations
GLP/GEP:	M-528899-01-1 OECD Guidance Document No. 75 (2007) and convent recommendations of the AG Bienenschutz (PISTORIUS <i>et al.</i> , 2012) OEPP/EDPO Guideline No. 176 (4) (2000) no major deviations yes
Objective: 🖉 🔅	
This study was designed	d to determine the potential effects of Fosetyl-Al WG 80 on the honeybee (Apis

mellifera Loafter one application on Placelia in acetifolia in Germany in a semi-field brood study.

Materials and Methods: EV36003889; 800 g/kg (nominal); 80 5% w/w/(analysed).  $\sim$ 

 $\bigcirc$ 

ð The study included three treatment groups with four replicates (tunnels) each: one tap-water treated control group (C), one test item group (R) and one reference item group (R).

Applications were made at find-flowering (BBCH 64-65) with honeybees actively foraging on the crop. The target application rate of the test item Fosetyl-Al WG 80 in the treatment (T) was 570 g a.s./ha/(actual rate applied \$78 g @s./ha) Tap water was applied in the control group and Insegar was applied at a target rate of 1200 g product/ho in the reference item group (corresponding to 300 g fenoxycarb/ha) The spray volume was 4000/ha in all treatment groups.

The honeybees remained in the turnels for 12 days and colonies were assessed twice during and four

times after the end of the confined phase

The following endpoints were assessed:

- Total and mean number of dead bees (worker and pupae) on the linen sheets in tunnels, in the dead bee traps and in the dead bee bottoms before as well as after the start of exposure in T and the application in C and R, respectively.
- Flight intensity (mean number of forager bees/m² Phacelia tanacetifolia) before as well a the start of exposure in T and the application in C and R, respectively.
- Behaviour of the bees in the crop and around the hive.
- Condition of the colonies (colony strength and area of the different brood stages and food storage per colony and assessment date).
- per corony and assessment date). Development of the bee brood assessed in individual brood cells For this particular assessment, between 210 and 253 individually marked cells per colony were selected. tes of experimental work: 08 June 2015 10 July 2015

# Dates of experimental work: 08 June 2015

### **Results:**

### Validity of the Study

The daily mean mortality of pupae @2 pupae/colony) in the control freatment during the postapplication phase of the study remained low. According to statistical analyses the overall daily mean pupal mortality in the reference trem treatment (25.3 pupal colory) was significantly higher as compared to the control, indicating that the test system was principall adequate to demonstrate potential effects on honey bee brood.

In addition, there was a statisticatly significant@ncrease of the mean Brogd Terphnation Rate in the toxic reference treatment at study end. Regarding the overall performance of the reference item and control treatment, the study validity cateria were for filled

Treatment group	Reference item (R)
4DBACto 0DBA 49.2 6.7 45 3 ± 11.3	$59.9 \pm 10.3$
Daily mean mortality $0$ $0$ $AA$ $288 \pm 183$ $0.8 \pm 4.4$ (dead worker bees/cobary)	$20.5\pm6.9$
$+$ STD $\sim 0^{3^{\circ}}$ $\downarrow 0$ DAA $\sim 7$ DAA $\sim 70.3 \pm 25.5$ $\sim 39.0 \pm 21.7$	$49.7\pm41.2$
$ \begin{array}{c} -510 \\ \hline \\ $	$22.0\pm13.0$
$ \begin{array}{c} \bigcirc & \bigcirc $	$0.2\pm0.2$
Daily mean mortality $0DA$ $0.0$ $0.0$ $0.3 \pm 0.5$ (dead larvie pupae/cology) $0DA$ $0.0$ $0.3 \pm 0.5$	$0.0 \pm 0.0$
$\pm \text{ STD} \qquad \qquad$	$0.5^*\pm0.2$
3000  A do  2700  A do  27000  A do  270000  A do  270000  A do  270000  A do  270000  A do  2700000 A do  2700000 A do  27000000 A do  27000000 A do  2700000000000000000000000000000000000	$25.3* \pm 15.1$

DAA: days after application, DBA days before application; STD: standard deviation

* statistically significantly high than control group

Throughout the period before exposure, mortality of adult bees across all treatments was similar. During posure from day 0 antil day 7 after application, mortality of adult bees across all treatments was on the same level. The number of dead worker bees in the test item treatment was not statistically significant  $\alpha$  - Test pooled? one sided,  $\alpha = 0.05$ ) in comparison to the control during this period. Throughout the period from 0DAA to 27DAA the number of dead worker bees remained similar across all treatments. Mortality observed in the test item treatment was not statistically significant (t-Test pooled, one sided,  $\alpha = 0.05$ ) in comparison to the control during this period. No effect of test item treatment on the mortality of adult bees was observed during the whole exposure period.

The number of observed dead pupae and larvae before exposure and during exposure in the tunnels was similar in all treatments groups. The mean value of the pupae and larvae mortality in the test item treatment was not statistically significant over the period 0DAA to 27DAA (t-Test pooled, one sided,  $\alpha = 0.05$ ).

The mean value of the pupae and larvae mortality in the reference item treatment was statisfically significantly different over the period 0DAA to 7DAA and 0DAA to 27DAA (t-Test polled, one sided,  $\alpha = 0.05$ ).

#### Effects of Fosetyl-Al WG 80 on Honeybee Flight Intensity

		10.00	(I) [*]	Ĉ,	S W
Treatment group		Control (C)	Test item	Reference Item (R) Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Daily mean flight	4DBA to 0DBA	12 4 ± 0.7	12.8 ± 2.50°	A.8 ± 1/7	
intensity (bees/m ² )	0DAA	$13.8 \pm 1.7$		≥ 21.8 1.8 ≪	
± STD	0DAA to 7DAA*		21, 0/± 3.2 0	$15 \pm 1.3$	A

DAA: days after application; DBA: days before application; STD: stangard deviation * Assessments on day 5 and 7 excluded from valuation due to poor weather conditions (rain) on these days

 $\bigcirc$ Foraging rates were similar across all treatments before exposure (4DBA) and (2DBA). On the application day the cloudiness charged from 95% (start of application in Ca) to 40% (assessment 15 minutes after the application in Ra) what affected the number of foraging bees lower rates in the control and higher in the test them and reference inem treatments. No test item related effects were observed on that day. From 1DAA to DAA foraging activity was similar and no statistically significant (t-Test pooled one fided,  $\omega = 0$  ) reduction, in any of the treatments occurred in comparison to the control?

Ø)

### Behaviour of the Bees

Behaviour of the Bees Abnormal behaviour such as locomotion problems, Gamping, trembling inactive bee, hanging bees and intensive cleaning were observed throughout the duration of the study in all treatments. On few occasions unusual behaviour was observed in Tytrom day of application until the end of the study. Often comparable behaviour was also observed in the sontrol. Overall the number of affected bees in the test item was always very low (max 24 bees in all test item tents on the day of application).

Treatment		od index / Co.	mpensation in area fixing da	dex at x days y (BFØ) 2416	after +21	Termination rate (BFD+21) [%]
Control	1.00 / 1.00	2.3502.36	2.87 2.92		3.52 / 4.11	29.63
STO	0.00 / 6.00	650/050	69/054	0.66 / 0.35	0.83 / 0.25	16.45
Test item T	1.00/ 1.00	2.25 2.26	2.62 2.65	2.58 / 2.74	3.20 / 3.68	36.11
STD	\$0.00 × 0.00	Ø.71 / 9.72	~000 / 1.03	0.96 / 1.01	1.24 / 1.26	24.79
Reference item R	1.00 / 1.00	0.44* 0.44*	0.15* / 0.37*	0.10* / 1.43*	0.12* / 2.91*	97.63*
STD (	0.00 / 0.00	\$0.35 / 0.34	0.19 / 0.26	0.11 / 0.91	0.14 / 0.83	2.74

# Development of Honeybee Brood in Individual Cells

BFD: Brood area fixing day; STD: Standard deviation

*: Statistically significantly lower (brood and compensation indices) or higher (termination rate) compared to the control

In the control group C, successful development was observed in the majority of the marked brood cells, indicating a healthy development of brood. The mean termination rate at the end of the observation period (BFD+21) was at 29.63%.

In the test item treatment group T the brood development and mean termination rates were similar to a the control without statistically significant differences. The mean termination rate at the end of the observation period (BFD+21) was at 36.11%.

In the reference item treatment group R, the post treatment mean values of the brood and compensation indices were clearly lower than those observed in the control, indicating a strong adverse effect. The mean brood and compensation indices as well as the mean termination rates in R were statistically significantly different from the respective values in the control for all post treatment assessments (Satterthwaite t-Test, one-sided,  $\alpha = 0.05$ ). The mean termination rate at the end of the C observation period (BFD+21) was 97.63%, indicating that the most of the initial marked eggs hadn? completed its development.

Overall, the quantitative assessments of brood development in individually marked cells revealed that Fosetyl-Al WG 80, applied to full-flowering Phacefla tangettifolia during daily honeybee flight at a rate of 570 g a.s./ha (test item treatment-T), diconot cause any treatment-related adverse effection honeybee brood development.

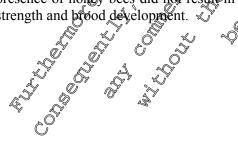
#### **Strength of the Colonies**

Strength of the Colonies No test-item related adverse effects on colony strength were o 2°

### **Development of the Brood Acea**

test item treatment not affected when grou Overall, honeybee brood development in the compared to the control. s 0

### Development of the Food Storage Area


 $\bigcirc$ The majority of the colonies were well provided during the course of the study. Thus, no test-item related adverse effects on the development of the food storage area were observed.

### Conclusion: **?**

Fosetyl-Al WG 80 Was applied at a target rate corresponding to 540 g a.s./ha (treatment T), at fullflowering Phacelia tangeetifold, during daily honeybee for aging activity. The effects on honeybee colonies under confined conditions considering mortality flight intensity, behaviour, colony strength, amount of brood and brood cell development were evaluated. No test-item related adverse effects on mortality were observed. No reduction in foraging acfivity was seen in T throughout the study. On few occasions unusual behaviour was observed in T. Often comparable behaviour was also observed in the control. Overall the pumber of affected bees in the test item was always very low.

The quantitative assessments of brood development in individually marked cells performed in this study revealed that Fosetyl-ALWG & at a target tate of 570 g a.s./ha did not cause any treatmentrelated adverse effect on honeybee brood development. No test-item related adverse effects on colony strength or on the development of the food storage area were observed in T.

Fosetyl-Al WG 80 applied at a target rate of 570 g a.s./ha to flowering Phacelia tanacetifolia in presence of honey bees did not result in test item related effects on mortality, flight intensity, colony strength and brood development.



#### Request from the RMS:

Further explanations are considered required to conclude on the reliability of the semi-field study in an apple orchard (**1999**, B.; 2015; **1999**, 2015; M-528899-01-1) for the risk assessment. Could you please indicate if some data are available to precise the level of exposure of the exposed of colony?

Ô

Without these precisions the reliability of this study could be challenged during the pref-review process.

#### **Response from BCS:**

; 2015; M-528899-01-1 was not performed in an apple orchard but in The study by Phacelia tanacetifolia. This study with specific foeus on bee brood development was performed following the OECD Guidance Document 75 that is referenced in the data requirements as set out in Commission Regulation (EU) No 284/2013. The intention is to monitor a complete developmental cycle from egg to adult honeybee. The study design includes a 2 to 3 day acclimatisation period followed by a 7 day direct exposure period after application inside the tunnels under confined conditions before the bees are eventually moved out of the unnel. Single applications are foreseen by the methodology and in the case of fosety Al, with a minimum application interval of 7 days, multiple applications are virtually impossible to perform when aining to be compliant, with the guidance document. As described in the OECD GD \$5" "The bees and their brood are but into an acceptable worst case situation by this test design". It is also stated that The test chemical has to be applied during full bee flight (e.g., for phagelia, an average of at least 10 bees m² should be counted at a given time t), to ensure that the colory is exposed to the test chemical." This requirement was completely fulfilled by counts that took place before the application that confirmed the presence of 11.3 bees/m² in the control, 15.5 bees/m² in the test item and \$5.0 bees/m² in the toxic reference item. Additional evidence on exposure after application is available from the flight assessments that were performed from 15 minutes onwards after the application unter day of after the application. On the majority of timepoints after application (for details, please refer to the study report) even higher foraging activity than before the application was seen.

The guidance document also states that a toxic reference item is to be included in the test and the use of at least 150 g fenorycarb/ha is recommended. As recommended in the guidance document the present study included a toxic reference/item applied at 360 g fenorycarb/ha, which showed the expected effect on brood mortality. The application in all treatment groups was performed with a calibrated portable boom sprayer simulating a commercial application. Several criteria were established on the condition for performance of the application to ensure appropriate exposure. Wind speed was low with 1.4 m/s, no rain occurred within the at least 2 hours after the application and the deviation from the target application rate was +1.43% in the test item and +0.41% in the toxic reference item.

Therefore, based on the available data on moniforing of flight activity, the use of a toxic standard, the technical and meteorological conditions encountered during and after the application, combined with the description of exposure in the guidance document that was followed and that is valid at the time of submission, the applicant is of the opinion that exposure of bees in this study before and after application is sufficiently confirmed and fully compliant with current requirements in place at the time of submission.

# CA 8.3.1.4

Sub-tethal effects

There is no particular study design / test guideline to assess "sub-lethal effects" in honey bees. However, in each laboratory study as well as in any higher-tier study, sub-lethal effects, if occurring, are described and reported.

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience.

Studies on non-target arthropods have been performed with the representative formulations and are presented in the respective Document MCP, Section 10.3.2.

#### Effects on Aphidius rhopalosiphi CA 8.3.2.1

sentative formulations and are Studies on non-target arthropods have been performed with the repr presented in the respective Document MCP, Section 10.3.2.

#### CA 8.3.2.2 Effects on Typhlodromus pyri

form Mation and are epresentative Studies on non-target arthropods have been performed with presented in the respective Document MQP. Section 10.3

#### Effects on non-target soil meso and ma CA 8.4

#### CA 8.4.1 Earthworm, sub-lethal effec

For information on studies already evaluated for the Annex I inclusion of foseful under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. The study from which the endpoint will be used for risk assessment is summarised below from the original DAR of foretyl.

In order to address new data requirements according to Regulation (EC) No 1107/2009, an additional study on chron exposure to carthworms with Fosetyl-Al-WG & has been performed and is submitted within this Supplementary Dossier for the approval renewal of Osetyl

Ecotoxicological endpoints - additional earth form reproduction studies with active Table 8,4.9-1: substance fosetyl-Al and its metabolite S.Y

Test item Test species, Ecotoxicological endpoint	Reference
Fosetyl-ALWG 80	,; 2015; M-531997-01-1 KCA 8.4.1/02
Phosphonic acid $Eixenia fettya$ Borroduc Gon, Borroduc Gonroduc Gonrodu	,; 1999; M-189218-01-1 KCA 8.4.1/01
Eisenju fetide Reproduction, NOEC <693 mg pm/kg dws	; 2009; M-327177-01-1 KCA 8.4.1/03

dws = dry weight wil; a.s active substance; prod. = product; pm = pure metabolite grey type acce = study is part of the Baseline Dossier

Values we corrected for a purity of 41.8% phosphonic acid weight by volume which is equal to 29.9% weight by weight Test substance potassium salts of phosphonic acid has a density of 1.397. Therefore, one L of test substance weighs 1397 g and contains 418 g phosphonic acid (418/1397 = 0.299) with a weight/weight purity of 29.9%.

All studies listed in the Table 8.4.1-1 are summarized below.

In order to facilitate discrimination between new data and data submitted for the Annex I inclusion of fosetyl under Directive 91/414/EEC, the old data (summaries from the original DAR prepared to the a RMS) are written in grey typeface whereas studies in black typeface are studies of the Supplementary Dossier for the active substance fosetyl-aluminium or the representative formulation Fosetyl aluminium WG 80.

**Report:** Title:

Report No.: Document No .: Guideline(s): Guideline deviation(s): **GLP/GEP:** 

Endpoint according to EFSA Scientific

#### Methods:

KCA 8.4.1/01 Effects of EXP10679A (Potassium salts of phosporous acid) on eproduction and growth of earthworms Eisenia (2nda (Savigny 3/26) in artificio soil R014233 M-189218-01-1 BBA: VI, 2-2, (1994); I8O: 112(8-2, (198)) none yes EFSA Scientific report (2005); 74, 1-37 for (Setyl-At: NOCC = 1067 ms product/kg stil rthworm@adults.approximates 6 m@uths.opt with an imeridud bodyweight at from 3/1 to 568 ms (10 adults per replicad, 4 replicates per experimental group) / There wate 9 a province to 1 A total of 360 adult earthworm adults approximately start of the test ranging from 3 to 568 mg 0 adults per replica 4 replicates per experimental group) were used in the study. There were 9 seperimental groups: a control, 7 concertinations of the test substance and a toxic standard (carb@dazig@at 2.02 mg/kg soit) The Stominal concentrations of EXP10679A (418 g/L) were 26, 62, 164, 2080 417, 83 and 667 kmg/kg soil (equivalent to 7.78, 15.56, 31.12, 62.24, 124.77, 249.24 and 498.79 mg phose onic wild/kg Soil, respectively). Chemical analysis to measure actual concentrations wars of conducted

#### **Results**:

In the control group wo adolt worms were foun dead on one oplica resulting in an overall mortality of 5%. No wortality occurred in any of the grows exposed to the test substance or to the toxic standard. From the start to the encoof the gest, agent earthworn gain of weight in the control and all test substance groups. Bodyweight acrease in the control was 9.6% and in the sest substance groups ranged from 10.7 to 24.7%. There were no statistic by significant differences between the control and the five lowest test substance concertrations (26, 5, 104, 208 and 417 mg/kg). The bodyweight increase observed in the two highest concentrations of the text substance (863 and 6667 mg/kg) was significantly higher than in the control.  $\sim$ 

No behavioural or morphological abroanalities we observed in adult worms exposed to the test substance As the potential effect ob erved in these two groups was bodyweight increase rather than decrease, these charges should not be seken into account to establish the NOEC value. Worms significantly lost weight in the toxic standard group.

The mean number of offspring broduced in each of the test substance-treated groups (ranging from 331 to 460) did not differ statistically from that of the control group (464). The number of juveniles in the to 400) and nor anter statistically itom that of the control group (464). The number toxic standar Ogroup was very low (13) and significantly different than in the control. Food consumption was no affected by the treatment.

 $EC_{10}$  cannot be calculated, since the data do not indicate a dose response. The data meet the guideline requirements (coefficient of variation of the control reproduction <30%). The NOEC is therefore

requirements (coefficient of variation of the control reproduction <30%). The NOEC is therefore considered reliable. NOEC = 1667 mg/kg soil (nominal concentration) (499 mg H₃PO₃/kg soil; nominal concentration)
Comments (RMS): acceptable
Further study information supplementing the originat DAR summary: Current Guideline: OECD. (2004), Test No. 222: Earthworm Reproduction Test (Eisenia fetidadDisenia tandrei), OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, Mortality
Weight change
Reproduction
Exposure according to current guideline: Reproduction
Exposure according to current guideline: Reproduction
Exposure according to current guideline: Test containers made of glass or other Chemically fort material of about one to two liters capacity should be used. The container's should have a cross sectional area of approximately 200 cm² so that a moist substrate depth of about 5 to 6 cm is achieved when 500 (600) gdry mass of substrate is added. The design of the container's cover should have a cross section of a paper substrate is added. moist substrate depth of about 5 to form is achieved when 500 to 600 gdry mass of substrate is added. The design of the container cover should peopil gaseous exchange between the substrate and the atmosphere and access to light fe.g. by means of a performed transparent cover, whilst preventing the worms from escaping. If the mount of test substrate used is substantially more than 500 to 600 g per test container the dumber of worms should be increased proportionately. A solution of the test substance in de-jobrised, water is prepared infraediately before starting the test in a quantity sufficient for all replicates of one concentration. A consolvert may be required to facilitate for the preparation of the test solution. It is convenient to prepare an amount of solution necessary to reach the final moisture content (400 to 60% of maximum water holding capacity). The solution is mixed thoroughly with the soil substrate before introducing it into a test container. The test containers are first filled with the moistered soil substrate and the weighed worms are placed on the surface.

#### 4 8 Evaluation according to current guideline:

 $\sim$ 

On day 28 the living adult sorms are removed from the test vessels, counted and weighed. Any worms not found at this time are to be recorded as dead. If the soil has been removed from the containers it is then returned minus the addit worms but containing any cocoons that have been produced of the soil is then incubated for four additional weeks under the same test conditions except that feeding only takes place once at the start of this phase of the test. At the end of the second 4-week period, the number of juveriles watched from the cocoons in the test soil and cocoon numbers are determined. All signs of harmor damage to the worm should also be recorded throughout the test period.

# Validity Criteria

	<b>Guideline</b>	Test result
Number of juveniles produced in each replicate (containing 10 adults) antil the end of the study for the control	≥ <u>30</u>	<mark>464</mark>
Coefficient of variation of reproduction on the control	<u>≤ 30%</u>	<mark>13.1%</mark>
Adults mortality over the initial 4 weeks on the control	<u>≤10%</u>	<mark>5%</mark>

#### Study Remarks:

No major differences were found between the current guideline and the developed study. However, there were some small and not significant variations observed. The temperature values increased for 1 and for 7 hours by 2 °C compared to the upper limit (22 °C) stated in the guideline. This minor deviation is not expected to have a significant influence of the study results.

#### **Conclusion:**

The test design of the actual study is in line with the requirements of the current gordeli validity criteria of the current test guideline were fulfilled Due to the fact that no dose response was observed and no mortality occurred calculated.

Report:	KCA 8.4.1/02
Title:	Fosetyl-Al WG 80 W: Sublethal poxicity to the earthwarm Eiserna fetida in artificial
	soil O' C' E' O' C O' L A C'
Report No.:	
Document No.:	M-531997-01-1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Guideline(s):	M-531997-01-1 OECD 222 (2006), ISO 1268-20 1998)
Guideline deviation(s):	none Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
GLP/GEP:	OECD 222 (2006) ISO 4 1268-20 1998)
<b>Objective:</b>	

#### 1 A The purpose of this study was to determine the sublethat effects of the test item on reproduction, mortality and growth of the earthworm Fisenity fetida by dermal and alimentary uptake using an artificial soil in a laboratory test.

#### Materials and Methods:

Test item: Fosetyl-& WG 80, Short name: FEA WG 80, Supplier batch No.: EV36003889, Sample description: TOX 50884-00, Specification Nov 102090024225, as prove instedient (analysed content): 80.5% w/w fosefyl-aluminium (LS 74783), water solubility: dispersible

Ô Õ Adult earth gorms ( $Eisenia fetidAgabout 3 months old 8 \times 10$  animats for the control group and  $4 \times 10$ animals per test concentration of the treatment group) were exposed in an artificial soil (with 10% peat content) to the nominal test concentrations of 18, 92, 56, 400, 178, 316, 562 and 1000 mg test item/kg soil dry weight (d. vQ). The test item was mixed unto the soil.

Artificial soil composition was \$9.5% quartz sand, 20% kaolin clay, 10% sphagnum peat and 0.5% CaCO₃. The vessels were kepr in a temperature-controlled room at 19.0 to 22.0 °C under a 16-hour light to 8-hoor darkness photoperiod and a light intensity at light period of approximately 530 lux. Earthworms were fed withdried brse manures

Toxic standard: 5 and 10 mg Nutdazim 50 DLOW/kg soil d.w.; control: untreated, solvent control: none.

### **Findings:**

#### Effects on mortality, growth and reproduction of the earthworms

Test item Test object Exposure					Eisen	-Al WG 80 <i>ia fetida</i> icial soil	ð	<i>a</i>	
		Μ	Iortality		Bioma	ss change	<i>Ś</i>	Reproduc	tion 🔗
					[mg test i	tem/kg d.w	·.] <u>.</u>		S ¢
NOEC LOEC			≥ 1000 > 1000		₹	1000 (k) 1000 (k)		316 557 360 294 - 67	
EC ₁₀ ¹⁾ (95% confidence	limits)		-		¢ ⁷	- Q	,° Q	∑ 360 √ 294 – #a	0 [°] 0 39) 0 [°]
$EC_{20}$ ¹⁾ (95% confidence	limits)		-	<u> </u>				4 <b>59</b> (396 - 53	
¹⁾ based on Probit <b>Observations:</b>	analysis					× "{			
				osetyl-A	WG 89 n/kg d.w.] 0 100			562×	)
(	Control	18	320	<b>\$</b> \$6	0 100	178	0316	562	1000
		N and the second	lortality c	of adult w@	rms after 4	weeks	<u> </u>	×	
Mortality (%)	1.3	0.0	چ ج 0.0 گ	2.5	0.0	<b>€</b> 0.0	0,00	2.5	5.0
Bio	mass cha	ng¢Qchange	in fresh v		r A weeks r	elative to in	nitial fresh	weight)	
Mean (mg)	128.3	145.74	131.1	A 24.9	14 weeks 1 1474	<u>141.9</u>	¥°1342	135.6	127.8
			Ø. 1		2000	- Vac Ma		25.0	

Mean (mg)	120.3	143.4	121.1	A124.20	1464	¢ ^{141.9}	× 134,4%	155.0	127.0
Mean (%)	33.3	37	√ 34 1	32,4°	38.0	° ^{36.4} ≪	349	35.2	33.1
Number of prveniles per striving adult worm after 8 weeks									
Mean	13.8	©15.3 ×	15.9	<b>≜</b> 16.2 €	$\bigcirc$ . $ \square$	ð <b>3</b> .7 «	16.2	10.1	5.0
Number of juvoniles per replicate after weeks									
Mean	^{O*} 1554	¥52.5	158.8 🏷	158.0	¢ 57.0 🔇		162.0	98.5*	48.0*
Reproduction Compared to control (%)									
% to control	100	98	102.4	√ 101.8	107.3	$\bigcirc$ I01.1	104.5	63.5	31.0

No statistically significant differences between the control and test item were calculated for mortality (Multiple Sequentially-rejective Fisher Test After Bonterroni Folm,  $\hat{Q} = 0.95$ , one-sided greater)

* statistically significantly different compared to control for biopass and reproduction

(Williams-t-test,  $\alpha = 0.005$ , one sided smaller)  $0^{10}$   $0^{10}$ 

The mortality of adult worms was 0 to 5.0% in the freated groups and 1.3% in the control group. No statisticatly significant mortality compared to the control was observed at any test item concentration (Multiple Sequentially-rejective Fisher Test After Bonferroni-Holm,  $\alpha = 0.05$ , one-sided greater). No pathological symptoms and no effects on behaviour (including feeding activity) of the worms were observed during the test.

The weight change of adult worms ranged between 33.1 and 38.0% in the treated groups and was 33.3% in the control group. The test iter caused no statistically significant change in biomass (change in fresh weight after 4 weeks relative to initial fresh weight) compared to the control group at any concentration tested (Williamy-t-test,  $\alpha = 0.05$ , one-sided smaller).

Statistically significant effects (Williams-t-test,  $\alpha = 0.05$ , one-sided smaller) on number of juveniles compared to the control group were recorded at concentrations of 562 and 1000 mg test item/kg d.w.

s°°

### **Bayer – Crop Science Division**

#### Page 105 of 126 2016-07-20

#### Document MCA – Section 8: Ecotoxicological studies Fosetyl

Validity Criteria	Recommended	Obtained
Adult mortality	$\leq 10\%$	1.3%
Number of juveniles per replicate	≥ 30	156, 125, 173, 166, 134, 187, 130, 169
Coefficient of variation of reproduction	$\leq 30\%$	14.7%

All validity criteria for the study were met.

In a reference test, the number of juveniles was reduced by 46 and 100% by the toxic standard Nutdazim 50 FLOW (Carbendazim, SC 500) at concentrations of 7 and 10 mg/kg d.w. in comparison to the control. Therefore, the observed effects assure a high sensitivity of the test system.

 $EC_{10}$  value has been reported and has been included in the summary. The data meet the guideline requirements (coefficient of variation of the control reproduction < 30%). The NOEC is therefore considered reliable.

#### **Conclusions:**

Fosetyl-Al WG 80 showed no statistically significantly adverse effects on mortality and biomass of the earthworm *Eisenia fetida* in artificial soil up to and including 1000 mg test item/kg soil dx weight, i.e. the highest concentration tested. The test item showed statistically significantly adverse effects on reproduction at 562 and 1000 mg test item/kg soil d.w.

Therefore, the overall No-Observed-Effect-Concentration (NOEC) was determined to be 316 mg test item/kg soil d.w., and the overall Lowest-Observed-Effect-Concentration (LOEC) was determined to be 562 mg test item/kg soil d.w.

# **Report:** Title: Report KCA8.4.1/03 KCA8

Document No.:  $M_{2}^{2}$  M₂ 2  M₂ $^$ 

Guideline(s): ISO 11268-2: 1998 (E) and OEOD 222; April 13, 2004

Guideline deviation(s): Aim of the study was to test the effects of phosphite on the survival, growth and reproduction of Eisen a fetide. In this study phosphite is formed by the degradation of faseryl-At in soil. Therefore the fosetyl-Al was mixed into artificial soil 7 days before the earth corms were added to the test system.

**GLP/GE** 

**Objective:** 

The purpose of this study was to assess the effect of the soil metabolite of fosetyl-aluminium (fosetyl-Al), phosphite on survival growth and eproduction on the earthworm *Eisenia fetida* during an exposure into an artificial soil at 4 different test concentrations.

# Material and Methods:

Test item: Fesetyl-Al (Specification No.: 102000002957; Article No.: 05930170; Batch Code: AE F05361.001-07 Origin Batch No.: PF90205140; TOX-No.: 08344-00; content of a.s. (analysed): 99.6% w/re).

ĉ

#### Page 106 of 126 2016-07-20

#### Document MCA – Section 8: Ecotoxicological studies Fosetyl

Fosetyl-Al was mixed into artificial soil (10% peat) at nominal test concentrations of 1100, 1980, 3366 and 5722 mg/kg dwt soil 7 days before the test organisms, adult *Eisenia fetida* (approx. 8 months old, 8 x 10 animals for the control group and 4 x 10 animals per test concentration) were added. During an incubation period of seven days fosetyl-Al (DT₅₀ 0.125 days) rapidly degrades to form the major soil metabolite phosphite [equivalent to phosphonic acid] (DT₅₀ 119 days). The nominal test concentrations of the active substance correspond to nominal amount of phosphite formed of 603, 1247, 2121 and 3605 mg phosphonate/kg dwt soil, confirmed analytically.

After 28 days of exposure the earthworms were removed after counting of survivors and noting their weights. After further 28 days, the number of offspring was determined

#### **Findings:**

Effects on mortality and changes in body weight of the adults after an exposure period of 28 days and the number of offspring per test vessel after 56 days.

			NY X			s)
Test object		O K	Eisenia f <i>e</i> tida	ı 🏷 Ö		4
	Control		🖉 Treatmen	nt Groupsy	0. %	, ' (
Nominal concentration of fosetyl-	,	$\sim 100 \sim$	), 1 <b>9</b> 80	3360	لا 5722 €	, s
Al [mg/kg dwt soil]	<u> </u>			s á		Õ
Nominal concentration of	jen k	6903	\$ 1247	£121 £	3605	
phosphite [mg/kg dwt soil]	S O			õ õ	\$ V	
Analytical verified amount of	×6	\$731 °C	£374 (	2,162	© 353 î≯	
phosphite [mg/kg dwt soil]		° à'		O" &		
Mortality of adult earthworms	0 ag	0		\$ 0 \$	$\bigcirc_0$	
[%] after 28 days		ay a	* [*] *		Ô	
Mean change of body weight of	+ 5209	\$ ⁴ 56.7	₹\$0.5 €	+28.5	- 5.3	
the adults from day 0 to day $28$			Ô ^v &	, ~ . Ô	*	
[%] 💭 🕅	L ^Y		× 0'	X X		
Standard Devention	5 ± 8,5	ચ ⁴ 5.6 ⊅	₩,5.2	± 5.9	± 10.6	
Statistical comparison to the	y _w	∽y n.s	Øn.s. A	~~~~	S.	
control 1)		Y A		Ś		
Mean number of offspong per@est	Q46.9%	<b>9</b> 5.8	343	21.0	0.0	
vessel after 56 days	Ô.1		×			
Standard Deviation	± 25.4	$0^{\circ} \pm 48.7^{\circ}$	<u></u> <u></u> 13.2 [©]	± 9.5	$\pm 0.0$	
Statistical comparison to the	\$ <u>-</u>		Ç ş.O	S.	S.	
control 2)	s ô	<u></u> &.	A Y			
	A X	· · · · · · · · · · · · · · · · · · ·	~ ~ -			

¹⁾ Result of a Williams Multiple Sequential t-test, two-sided  $\Omega = 0.05$ 

²⁾ Result of a Williams Multiple Sequential t-test, one-sided smaller,  $\alpha = 0.05$ 

n.s.: mean value not statistically significant different compared to the control ( $p \ge 0.05$ )

s.: mean value statistically significant different compared to the control (p < 0.05)

### **Observations:**

No mortality of adult earthworms was observed after 28 days of exposure at any test concentration of the test item in this study and a state of the test item in this study and a state of the test item in the study of test item in the study of test item in test item in the study of test item in the study of test item in test item in the study of test item in test it

No statistically significant different values for the number of juveniles per test vessel relative to the control were observed at the test concentration of 1100 and 1980 mg a.s. fosetyl-Al/kg dry weight artificial soft equivalent 6 693 and 1247 mg a.s. phosphite/kg dry weight artificial soil. Statistically significant different values for the growth relative to the control were observed at the test concentrations of 3366 and \$722 mg a.s. fosetyl-Al/kg dry weight artificial soil equivalent to 2121 and 3605 mg a.s. phosphite/kg dry weight artificial soil.

Statistically significant different values for the number of juveniles per test vessel relative to the control were observed at the test concentration of 1100, 1980, 3366 and 5722 mg a.s. fosetyl-Al/kg dry weight artificial soil equivalent to 693, 1247, 2121 and 3605 mg a.s. phosphonate/kg dry weight artificial soil.

### **Bayer – Crop Science Division**

#### Document MCA - Section 8: Ecotoxicological studies Fosetvl

Validity Criteria	Recommended	Obtained					
Adult mortality	$\leq 10\%$	0.0%	e° r				
Number of juveniles per replicate	≥ 30	246.9 (control)					
Coefficient of variation of reproduction	$\leq 30\%$	11.1%					
All validity criteria for the study were m	The second secon	ince the fact on root					
Calculation of an EC ₁₀ value is not considered appropriate since the effect on reproduction was in the range of 61 to 100%. No NOEC was derived from these study results.							
Before start of the study, the nominal application rates of the test item were calculated based on the amount of dry soil. The samples taken for analytical verification of the concentration of phosphonic acid were in wet (humid) state and were extracted in that state. However, the humidity of the samples was determined. The recoveries given in Appendix V Table A5 (report page 50; see column 'actual concentration of phosphorous acid' wet soil [%]) were by mistake calculated by comparing the concentrations based on dry soil which results in wrong recovery calues.							

on wet soil with the nominal rates based on dry sou which results in wrong recovery values, The correct nominal and the analyses residue values based on dry son are reported in section 2.4.4 on page 19 of the report. Based on the residue vaties (related to the div weight soil the correct recovery values have now been calculated and are presented in the table below.

*	. × .			ý ô
Nominal test			Analysed test	<b>Recovery</b>
concentration	concentration		concentration -	refcentage of noninnal
mg a.s. fosetyl-Al/kg das*	ng a.s. phosph	nite/kg dws	mg as. phosphite/kg dws	* /> Test concentration
1100				[≫] <mark>105%</mark>
1980	1247		1374 5 2 5	<mark>110%</mark>
3366	21 O		2163 2 ⁴	<mark>102%</mark>
5722	3605 Q		<mark>∂§31</mark> 🔬	<mark>98%</mark>
* dws = Dry weight artificial s	ioil a co			

The new calculated recovery values based on the dty weight soil residue values showed that the analyzed concentrations of phosphonate confirm the nominal test concentration in the test system. A GLP amendment of the report with a corrected version of Table A5 in Appendix V has been initiated and can be provided on request.

# Conclusions:

The NOEC for growth was 1980 mg foset Al equivalent to 1247 mg phosphite/kg dwt soil. The MOEC for reproduction was 7110 mg for etyl-Al equivalent to < 693 mg phosphonate/kg dwt

Ŵ

The NOEC for reproduction was in 100 mg fosetyl-Al equivalent to < 693 mg phosphonic acid bg dwt soil], the lowest concentration tested.

Table 8.4.2- 1:

Ò

,V

Document MCA – Section 8: Ecotoxicological studies Fosetyl

# CA 8.4.2 Effects on non-target soil meso and macrofauna (other than earthworms)

No studies were submitted for the Annex I inclusion of fosetyl under Directive 91/414/EEC, therefore testing on springtails (*Folsomia candida*) and soil mites (*Hypoaspis aculeifer*) was performed with the representative formulation Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80) and the metaboure phosphonic acid. The corresponding summaries are provided below in Section CA 8.4.2.1

Ecotoxicological endpoints - Collembola and soil mittes reproduction studies with

a		yl-Al and its metabolite
Test item	Test species, test design	Ecotoxicological endpoint
Collembola, reprod	uction	
Fosetyl-Al WG 80	Folsomia candida reproduction 28 d, mixed	NOEC 562 mg prod/kg dvs 459.4 mg 5./kg dvs KCA 8.4 21/01
Phosphonic acid	Folsomia candida reproduction 28 d, mixed	;; 20,5;
Soil mites, reproduc	tion	
Fosetyl-Al WG 80	Hypoaspis aculeife reproduction	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $
Phosphonic acid	Hypbaspis acaleifer reproduction 44 d, mixed	532897-01-1
lws = dry weight soil	a.s. = active solstance	pm = pure metabolic, prod. = product
CA 8.4.2.1	Specie Olevel Testin	

CA 8.4.2.1 Species level testing
<b>Report:</b> Title: KCA \$7.2.1/0 2015; Nr-52932-01-1 Fosety-Al WG 80 W: Effects on the reproduction of the collembolan <i>Folsomia</i>
Title: Fosety-Al WG 80 W. Effects on the reproduction of the collembolan Folsomia
S candida S S L L L
Report No : $\sqrt{3}$ is 10.48/0/41 Set $\sqrt{3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Guideline(s): $O$ OE( $\Phi$ 2324(2009), [SO 142(97) (1999)]
Guideline deviation(s): note $\mathcal{A}$
GLP/GEP
GLP/GEP

The purpose of this study was to determine potential effects of different concentrations of Fosetylaluminium WG 80 (Fosetyl-Al WG 80) of the reproductive output of the collembolan *Folsomia candida* as a representative of soil micro-arthropods during a test period of 28 days. After 4 weeks the number of output of the collembolans were counted.

# Material and methods:

S

Test item: Fosetyl-AFWG 80, Short name: FEA WG 80, Supplier batch No.: EV36003889, Sample description: TOX10884-00, Specification No.: 102000024225, active ingredient (analysed content): 80.5% www fosetyl-aluminium (LS 74783), water solubility: dispersible.

10 Collembola (9-12 days old) were exposed to 18, 32, 56, 100, 178, 316, 562 and 1000 mg test item/kg dry weight of soil containing 74.7% quartz sand, 20% kaolin clay, 5% sphagnum peat and 0.3% CaCO₃, at 19.2 to 22.0 °C and a photoperiod: light : dark = 16 h : 8 h (540 lx) and were field weekly with granulated dry yeast. Mortality and reproduction were determined after 28 days.

Toxic standard: 44, 67, 100, 150 and 225 mg boric acid/kg soil d.w; control: untreated, control: none.

### **Findings:**

### Mortality:

Mortality rates of 2.5 to 10.0% were recorded in the test item treatment groups. 25% parental mortality was observed in the control. No statistically significant effect (Wultiple Sequentially rejective Fisher Test after Bonferroni-Holm,  $\alpha = 0.05$ , one-sided greater) on parental montality was found for any concentration tested. No effects on behaviour of the collemborans were observed during the test.

### **Reproduction:**

C The mean number of juvenile collembolans counted four weeks after introduction of the parental collembolans into the test vessels was 1072 in the control and 1063, 1073, 1065, 1083, 1041, 1075, 1004 and 909 at concentrations of 18, 32, 56, 106, 178, 916, 562 and 1000 mg test tem/kg soil d.w., respectively. Statistically significant effects (Williams-t-tes)  $\alpha = 0.05$  one-sided smaller) on the number of juveniles compared to the control group was recorded at a concentration of 1000 mg test item/kg soil d.w.

Test item Test object	G 80 🗸 🔨	
Test item Test item Test object Following Control Cont	udida 🔍 🔊	
Fynosure ( C C A Artificial s	oil 🗸 🗸	
mg test item/kg Adult Mean number of juveniles soil dry weight mortality for test vessel	Reproduction	Significance
son ury weight a mortanity per test vesser (	(2) of control)	0
nominal concentration (%) standard deviation		(*)
$Control \sqrt{2} \sqrt{2}$	.0 -	
	S 99	-
23 1073 ± 382 >	100	-
$  \langle \langle \rangle \rangle 56 \langle \langle 0 \rangle 5 \rangle   \langle 1065 \rangle 0 \pm 1150$	99	-
$100  \sqrt[3]{2.5}  \sqrt[3]{2.5}  \sqrt[3]{1083}  \sqrt[4]{42}$	101	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97	-
316 $0$ $30$ $0$ $10$ $10/5$ $10/5$	100	-
562 0 22.5 × 0 2004 × 0 ± 0 175	94	-
	85	+
	Reproduction	
NOEC _{reproduction} (mg test item/kg soil dry weight)	562	
LOEC reproduction (mg test item/kg soil div weight)	1000	
	Reproduction	
$EC_{10}$ (mg test item/kg soil dry weight) ¹⁾ 95% confidence fimits $\sqrt{2}$	774	
95% confidence fimits	(676 - 887)	
$EC_{20}$ (mg test@em/kg soil dr weight) ^A )	1191	
95% confidence limits ~ ~ ~	(999 – 1420)	

The calculations were performed with unrounded values

1) Logit analysis

(*) = Williams-t-test one-sided-smaller,  $\alpha = 0.05$ , + = significant, - = not significant)

Percent reproduction:  $(R_t/I_c) * 100 \%$ 

 $R_t = mean fumber of juveniles observed in the treated groups$ 

 $R_c = mean$  number of juveniles observed in the control group

### Validity of the study:

Validity criteria for the untreated control of the study according to OECD 232 (2009).

Validity criteria	Recommended by the guideline	Obtained in this stridy
Mean adult mortality	$\leq$ 20%	2.5%
Mean number of juveniles per replicate (with 10 collembolans introduced)	$\geq 100$	
Coefficient of variation calculated for the number of juveniles per replicate	≤ 30%	0.0% °

All validity criteria were met. Therefore this study is valid.

In a separate study (BioChem project No. R 15-10 48 003 S, dated August 04 **2015). the** E (reproduction) of the reference item boric acid was calculated to be 03 mg/kg soil dry weight results of the reference test demonstrate the sensitivity of the test system.

EC₁₀ value has been reported and has been inclosed in the submary data moet the guideline requirements (coefficient of variation of the control reproduction NOEC is therefore considered reliable.

 $\bigcirc$ 

### **Conclusion:**

Fosetyl-Al WG 80 showed no statistically significantly adverse effects on adult mortality and reproduction of the collembor Folsomia Candida in artificial soil at concentrations up to and including 1000 mg test item/kg d.w,

including 1000 mg test item/kg d.w. Fosetyl-Al WG 80 caused a significant reduction of reproductive of the collembolan Folsomia candida in artificial soil at 1000 mg test item s soil ary weight. Therefore, the overall No-Observed-Effect-Concentration (NOEC) was determined to be 562 mg Fosetyl-Al WG 80/kg soil d.w. and the overall Lowest-Observed-Effect-Concentration COECY was determined to be 1000 mg Fosetyl-Al WG 80/kg soil d.w@

### **Report:**

KCA 8.4.2 1/02 2015 M-531 7-01-9 Fosetyl-AFWG 80 W: Effects on the reproduction of the predatory mite *Hypoaspis aculeter* Title: 15 10,48 142 Report No. 

Document No .: M4531417-01-1 QECD 226 (2008) Guideline(s): Guideline(s): Guideline(s): Qnone **GLP/GEP:** 

### Objective

The purpose of this study was to determine potential effects of Fosetyl-aluminium WG 80 (Fosetyl-Al WG 80) on the mortality and the reproductive output of the soil mite species Hypoaspis aculeifer (Canestrini) as a representative of soil micro-arthropods during a test period of 14 days.

# Materials and Methods:

Test item: Fosety Al XG 80, bater No.: EV36003889, Sample description: TOX10884-00, Specification No 102000024225, analytical findings: 80.5 % w/w fosetyl-aluminium (LS 74783).

Ten adult, forhale Hypoaspis aculeifer per replicate (8 control replicates and 4 replicates for each test item concentration) were exposed to control (water treated) and treatments. Concentrations of 100, 178, 31, 562 and 1000 mg test item/ kg dry weight soil were tested. In each test vessel 20 g dry weight artificial soil were weighed in. The Hypoaspis aculeifer were of a uniform age not differing more than three days (35 days after start of egg laying). During the test, they were fed every 2 - 3 days with Tyrophagus putrescentiae (Schrank).

During the study a temperature of 19.7 to 21.9 °C and light regime of 523 Lux, 16 h light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 74.8% fine quartz sand, 5% sphagnum peat, 0.2,% CaCO₃ and 20% kaolin clay.

After a period of 14 days, the surviving adults and the living juveniles were extracted by applying  $a^{\mathbb{C}}$ temperature gradient using a MacFadyen-apparatus. Extracted mites were collected in a fixing liquid. All Hypoaspis aculeifer were counted.

Findings:	J.	
Validity Criteria	Recommended	Obtained &
Mean mortality of adult females	20%	
Mean number of juveniles per replicate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Coefficient of variation (mean number of juveniles per replicate)	<u></u> ≤ 90%	<u>12.9%</u>
All validity criteria for the study were met.		
Effects on mortality and reproduction of Hypoaspis aculeiter		

### Effects on mortality and reproduction of Hypoaspis/aculeifer

Test item Test object Exposure	Fosety - Al WG 80 Hypbaspis couleifer Artificial soil
	(ng test@tem/kg soil d.w.)
NOEC	
LOEC	

EC10 and EC20 values could not be determined due to mathematical reasons.

### Reference test:

In a separate study (BioChem project No R 14, 10, 48, 001, S, dated June 10, 2014), the EC₅₀ (reproduction of the reference item Dimethoate was calculated to be 6,2 mg/kg soil d.w. The results of the reference test demonstrate the sensitivity of the test system. Ő

Observations:	St St L			
Endpoint Control	y a a a a a a a a a a a a a a a a a a a	reatment grou est item/kg soil 316	p	
Endpoint Q S S		est item/kg soil	d.w.)	
Endpoint	₩ ^{O^Y . O^Y 178^{O^Y}}	316	562	1000
Mortality of soil 9				
miles \$6.3 \$	7.5	0.0	2.5	2.5
after 14 days (%)				
juveniles 262.5 28	8.5 0 282.8	266.0	314.8	301.0
		200.0	511.0	501.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.0 7.7	21.5	4.8	6.1
Reproduction (% of Control)	) 10 108	101	120	115
(% of control)		101	120	115

Not statistically significantly different compared to the control (Chi² 2x2 Table Test with Bonferroni Correction for mortality,  $\alpha = 0.05$ , one-sided preater; Welch-t-test for Inhomogeneous Variances with Bonferroni-Holm Adjustment for reproduction  $\alpha = 0.05$ , one-sided smaller)

Calculation were done using unrounded values

Percent reproduction:  $(R_t/R_c) * 100 \%$ 

 $R_t$  = mean number of juvenile mites in the treated group(s)

 $R_c$  = mean number of juvenile mites in the control group

CV (%) = Coefficient of variation

### Mortality:

In the control group a parental mortality of 6.3% could be observed. The mortality in the test item treatment groups ranged between 0.0 and 7.5%.

### Reproduction:

Fourteen days after introduction of the parental mites into the test vessels, the mean pumber of juveniles was 262.5 in the control and 288.5, 282.8, 266.0, 314.8 and 301.0 at concentrations of 200. 178, 316, 562 and 1000 mg test item/kg soil d.w., respectively.

EC10 cannot be calculated, since the exposure to test term did not desult in an adverse reproduction. The data meet the guideline requirements (coefficient of variation of the reproduction < 30%). The NOEC is therefore considered reliable.

### **Conclusion:**

The test item Fosetyl-Al WG 80 showed no statistically significantly adverse effects on adult mortality and reproduction of the predatory mite Hypogspis aculeifer in Artificial soil, at all tested concentrations.

No-Observed-EffecteConcentration (NOEC) and Lowest-Observed-Effect-Therefore, the Concentration (LOEC) for mortality and for reproduction were determined to be  $\geq 1000$  and  $\gg 1000$ Fosetyl-Al WG 80/kg soil d.w., respectively

### **Report:**

Report No.:

Document No.:

Guideline(s): Guideline deviation **GLP/GEP:** 

Title:

KCA & 2.1/03 2015: M-529297-01-1 Dipotassium phosphonate (BCS-CZ96503) Effects on the reproduction of the collembolar Folsancia cardida Î5/10 48 206 S ∠M-529267-01€b OECD 232 (2009)

**Objective Objective Objec** phosphonate (salt of phosphonic acid) on the reproductive output of the collembolan Folsomia candida as a representative of soil micro-arthropoes during a test period of 28 days. After 4 weeks the number of offspring (juveniles) and surviving parental collembolans were counted.

### Material and methods?

Test item: Dipotassium physphonate (BCS-CZ96503), Batch code: BCS-CZ96503-PU-01, Origin Batch No.: SÉS 12947-10, Ceroficate No.: 62 2005, LIMS No.: 1510480, CAS No.: 13492-26-7, analytical Findings: 98.5% w/w? ()

10 Collembola (9 to 12 days old were prosed to 27, 48, 85, 100, 178, 316, 562 and 1000 mg pure substance/kg dry weight of soit containing 79.7% quartz sand, 20% kaolin clay, 5% sphagnum peat and 0.3% CaC( $\mathcal{G}$ , at 18.0 to  $\mathcal{Z}$ .0 °C and a photoperiod: light : dark = 16 h : 8 h (530 lx) and were fed weekly with granulated dry east. Mortality and reproduction were determined after 28 days.

Toxic standard: 4, 67, 400, 50 and 225 mg boric acid/kg dws; control: untreated, solvent control: none. 🔬

# Findings:

### Mortality:

Mortality rates of 0 to 7.5% were recorded in the test item treatment groups. 5.0% parental mortality was observed in the control. No statistically significant effect (Multiple Sequentially-rejective Fisher Test After Bonferroni-Holm,  $\alpha = 0.05$ , one-sided greater) on parental mortality was found for any concentration tested. No effects on behaviour of the collembolans were observed during the test.

### Reproduction:

The mean number of juvenile collembolans counted four weeks after introduction of the parental collembolans into the test vessels was 1037 in the control and 103101037, 1034, 065, 1000, 1013 1025 and 1037 at concentrations of 27, 48, 85, 100, 178, 316, 562 and 1000 mg pure Substance/k dws, respectively. No statistically significant effect (Williams-t-test,  $\alpha = 0.05$  (one-sided smaller) the number of juveniles was found for any conceptration tested.

Test item	Dipotassium phosphonate (BCS-CZ96	503)
Test object	Fofsomia cundida	
Exposure	Artificial soil 👋	
mg pure substance/kg	Adult Mean number of juveniles Benrodu	
dry weight soil	mortality (1) (Northest vessel) (1)	
nominal concentration	(%) standard deviation of con	
Control	5.0 Q 1037 4 1280 0 C	
27	0.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	<u> </u>
48	$1037 \% \pm 202 \% 1000$	° ~ - 1
85	7.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5 % = 0.5	-
100	$05.00$ $1005 \pm 74$ $1003$	- K
178	[™] 5.0 [™] 3000 m [±] 89 [°] 5.0 [™] 96 3	- S
316 🐇	\$5 9 010130 ± 52 5 62 98	<i>"</i> »
562	$2.5$ $1025$ $\pm 2.5$ $0$ $1025$ $\pm 2.5$ $87$ $0$ $99$	-
1000	2.5 1061 a 122 x Q102	-
	bstance/kg soil dry weight)	≥1000
	ibstance/kg son dry weight)	>1000

The calculations were performed with unrounded values

(*) = (Williams-t-test one-sided-smaller,  $\alpha = 0.05$ ,  $\beta = \text{significant}_{\mathcal{O}} = \text{not}_{\mathcal{O}}$  gnificant)

Percent reproduction:  $(R_t CR_c) * 00\%$  $R_t = mean number of junctual poserved in the greated,$ 

groups 🖏  $R_c =$  mean number of Quveniles observed in the control group

# Validity of the study:

Validity Critona for the uptreated control the study according to OECD 232 from September 07, 2009.

Validitý criteria	Recommended by the guideline	Obtained in this study
Mean adult mortality	$\leq 20\%$	5.0%
Mean number of juveniles per reglicate (with 10 collem follows introduced)	$\bigvee_{\gamma}^{\bigcirc^{\gamma}} \geq 100$	1037
Coefficient of variation calculated for the number of joweniles per replicate	≤ 30%	12.3%

All validity criteria were met. Therefore this study is valid.

In separate study (BioChem project No.: R 14 10 48 003 S, dated July 30, 2014), the EC₅₀ (reproduction) of the reference item boric acid was calculated to be 104 mg/kg soil dry weight. The results of the reference test demonstrate the sensitivity of the test system.

 $EC_{10}$  cannot be calculated, since the exposure to test item did not result in an adverse effect on reproduction. The maximum deviation from the control was < 10%. The data meet the guideline requirements (coefficient of variation of the control reproduction < 30%). The NOEC is therefore considered reliable.

### **Conclusion:**

Dipotassium phosphonate (salt of phosphonic acid) showed no statistically significantly adverse effects on adult mortality and reproduction of the collembolan Folsomia candida in artificial soil at concentrations up to and including 1000 mg pure substance/kg dws. Therefore, the overall No-Observed-Effect-Concentration (NOEC) was determined to be  $\geq 1000$  @ pure substance/kg dws, and the overall Lowest-Observed-Effect-Concentration (LOEC) was determined to bc > 1000 mg/pure ( substance/kg dws.

Report:	KCA 8.4.2.1/04
Title:	Dipotassium phosphonate (BCS-CZ9(503): Influence in morality and reproduction
	of the soil mite species Hypeospis acule if erfected in artificial soil $\bigcirc^{*}$
Report No.:	E 428 4713-9
Document No.:	M-532897-01-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guideline(s):	EU Directive 94144EFC; Regulation (EC) Se. 11072009; AS EPADOCSPP: Not
	Applicable; QECD 226 from October 03, 2008: OFCD guideline for the Jesting of
	Chemicals Predatory mite (Hyppaspis (Geolaelans) acute fer) reproduction test in
	soil Q L' & L' Q' A' C' A' C' A' C'
Guideline deviation(s):	none of the second seco
GLP/GEP:	yes which a which a set of the se

### **Objective:**

The purpose of this study was to assess the effect of dipotas the phosphonate (salt of phosphonic acid) on mortality and reproduction of the sont mite species Hypodspis_aculeifer tested during an exposure of 14 days in artificial soil comparing control and treatment.

# Materials and Methods: 🖌

Ĉ Test item: Dipotassium phosphonate (BCS-CZ96503) (analytical findings: 98.5% w/w (BCS-CZ96503 batch code: BCS-CZ96503 PU-01; certificate and: AZ 20059; origin batch no.: SES 12947-1-1).

Ten adult, fertilized remaie Hypodspis sculeifer per replicate (8 replicates for the control group and 4 replicates for each treatment group) were exposed to compol and treatments. Concentrations of 100, 178, 316, 562 and 1000 mg pore substance/kg dry weight artificial soil were tested.

During the test, the Bypoaspis acideifer were fed with nematodes bred on watered oat flakes. During the study a temperature 20 ± °C and light regime of 400 to 800 Lux, 16 h light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 75% fine quartz sand, 5% Sphagnum peat, air dried and finely ground, 20% Kaolin Chay. D

After a period of 14 days, the priviling adults and the living juveniles were extracted by applying a temperature gradient using Machadyer apparatus. Extracted mites were collected in a fixing solution. All Hypoaspis acuteifer were counted under a binocular.

### Findings

Validity Criteria	Recommended	Obtained
Mean mortality of adult females	$\leq 20\%$	2.5%
Mean number of juveniles per replicate	$\geq 50$	205.6
Coefficient of variation (mean number of juveniles per replicate)	$\leq 30\%$	12.9%

All validity criteria for the study were met.

10/14, January 005

### Document MCA – Section 8: Ecotoxicological studies Fosetyl

### Effects on mortality and reproduction of Hypoaspis aculeifer

Test item Test object Exposure	Dipotassium phosphonate (BCS-CZ96503) Hypoaspis aculeifer Artificial soil		
	Adult mortality Reproduction		
	(mg pure subst	tance /kg soil d.w.)	
NOEC	≥ 1000	$\geq 1000$	
LOEC	> 1000	$1000^{\circ}$ $3^{\circ}$ $3^{\circ}$	

The EC_{10, 20} -values could not be determined due to mathematical reason

### Reference test:

The most recent non-GLP-test (

2015) with the reference item dimethoate was performed at dest concentrations 10, 1.8, 3.2, 5.6 and 10.0 mg dimethoate/kg dry weight artificial sol. Dimethoate EC 400E G showed an EC₅₀ of 5.47 mg a. 6/kg (95% confidence limits from 4.09 mg

Dimethoate EC 400E G showed an EC₅₀ of 5.47 mg a. $\sigma$ /kg ( $\sigma$ 5% confidence limos from 4.09 mg a.s./kg to 7.30 mg a.s./kg) for reproduction according Propit analysis using maximum likelihood regression.

This is in the recommended range of the guideline, indicating that an  $C_{50}$  based on the number of juveniles of 3.0 to 7.0 mg a.s./kg dry weight artificial soil shows that the test organisms are sufficiently sensitive.

### **Observations:**

Test item	Dipotassium phosphonate (BCS-CZ96503)	
Test object	A Hypoaspisaculeifer W S	
Exposure	🖉 🖉 🖉 🖉 Artiticial soit 🔬 న	
mg pure	Addit Significance Mean number of juveniles Reproduction	Significance
substance/Kg	metrianty ( ) ( ) ( ) per test vesser ( ) ( ) ( ( ) ( ) ( )	(**)
dry weight	tstandard dev. Of S	
artificial soil _®		
Control	233 x 208.6 ± Q Q 6.6 U	
100	0.0 < 3.0 < 3.1 < 0.0 < 3.1 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0	-
178 316	$0.0\%$ $ 3\%$ $246\% \pm \sqrt{2}$ $153$ 120.0	-
316	244.8 ± 119.0	-
562	∑2.5 ( ) · · · · · · · · · · · · · · · · · ·	-
1000	0.00 5 - 0 2660 ± 23.7 129.4	-

Calculations were done with uncrounded values.

(*) = Fisher's exact Binomial Test with Borderroni Correction, one-sided-greater,  $\alpha$ =0.05, "-": non-significant; "+": significant

(**) =  $\frac{1}{2}$  illiam's-t.-test, one sided smaller;  $\alpha = 0.05$ ; "- $\frac{1}{2}$  non-significant; "+": significant

# Mortality:

In the control group 2.5 of the adult *Hypoasous aculeifer* died which is below the allowed maximum of  $\leq 20\%$  mortality.

Concerning the mortality of the adult ter organisms statistical analysis (Fisher's Exact Binomial Test with Bonterroni correction, one-sided greater,  $\alpha = 0.05$ ) revealed no significant difference between control and any freatment group.

# Reproduction:

Concerning the number of juveniles statistical analysis (William's-t test, one-sided smaller,  $\alpha = 0.05$ ) revealed no significant difference between control and any treatment group.

 $EC_{10}$  cannot be calculated, since the exposure to test item did not result in an adverse effect on reproduction. The data meet the guideline requirements (coefficient of variation of the control Dr Land Carlor reproduction < 30%). The NOEC is therefore considered reliable.

### **Conclusion:**

Overall NOEC: ≥1000 mg pure substance/kg dry weight artificial soil Overall LOEC: >1000 mg pure substance/kg dry weight artificial soil

### CA 8.5 Effects on soil nitrogen transformation

For information on studies already evaluated for the Annex I inclusion of fosefyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Bossie provided by Bayer CropScience. The study from which the endpoint will be Red for risk assessment is summarised below from the original DAR of fosetyl.

Additional N-transformation studies were performed, which were not submitted for the Annex I inclusion of fosetyl under Directive 91/4147EEC and are submitted within this Supplementary Dogsier for the approval renewal of fosetyl. These studies are summarized below.

		<u> </u>		N V
Test substance	Test species/study		Endpoint 2	<b>References</b>
Fosetyl-Al	Study duration 28 d	ono una estable effects	20,0 1115,4.0.7 115,4.9.0	M-184321-01-1 KCA 8.5/01
Fosetyl-Al WG 80	Studyauration 42 d	unacceptable effects	9874kg prod./ha 13040mg prod./kg dŵs 1967 mg a.S./kg dŵs	,; 2008; M-307736-01-1 KCA 8.5/02
	Study duration 42 d	no unacceptable effects	38.98 kg pm/hb 65.34 mg pm/kg dws	T; 2015; M-528580-01-1 KCA 8.5/03
dws = dry weight soil,0	a.s. = active substance;	pm ≍ pure meta	bolite, prod = product	
grey typefac = study is <b>Report:</b> Title:	pact of the Daseling Do			
Report:	KCA 8.5491	,; <b>19</b> 98; MJ 8	4321-01-1	
Title:	A labor fory assessm	netwof the effect	s of fosetyl-Al on soil mi current EU guidelines.	croflora respiration and
Report No.: 🔷 Č	R00 660 Y			
Document No.:	MO184320-01-1.0			
Guideline .	EPPO; Bulleti 24, 1	- (4, (1994)		
Guidelinedeviation(s):	Ynot specified			
GLP/GEP:	yet of O			

Studies on nitrogen transformation with fosets PAI and its merabolite Table 8.5-1:

Endpoint accor Report (2005) 54, 1-79 for fosetyl-Al:

significant effect (±25%) at 20 kg a.s./ha

Methods A solution of cosetyl-Al (purity: 993 g/kg) was applied to either a low and high organic matter loamy sand foil (apprding to Duten standard NEN5795; BBA-German classification: both loamy sand soils; ADATS-UK@classification both sandy loam soils) at a concentration of 26.6 mg/kg assuming 100% distribution in the soil with a bulk density of 1.5 g/cm³ to a depth of 5 cm (equivalent to a concentration in the soll following direct application of 20 kg/ha).

### **Bayer – Crop Science Division**

### Page 117 of 126 2016-07-20

### Document MCA - Section 8: Ecotoxicological studies Fosetvl

The effects of fosetyl-Al on microbial respiration were investigated using short term respiration experiments conducted after 0, 13 (15 in the case of the humus loamy sand), and 28 d. On each occasion, aliquots of soil were amended with a non-limiting quantity of glucose and carbon dioxide evolution measured over the subsequent 24 h period. The effects on nitrogen transformations, ammonification and a nitrification were investigated in soil amended with ground lucerne grass. An annual test with toxic reference (dinoseb acetate) was performed.

### **Results**:

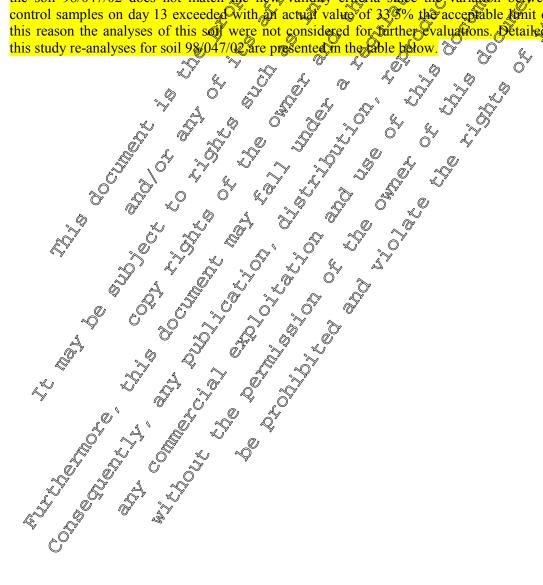
A small amount of ammonium was sometimes detected control: 0.09 poin and 2 x field 0.07 ppm, respectively). This leads to a high percentage visition. However, this percentage deviation. on soil micoflora respiration and was not found to be significant at 5% level.

No statistically significant effects greater than  $\pm 25\%$  control value soil nitrogen transformations.

□ Comments (RMS): acceptable

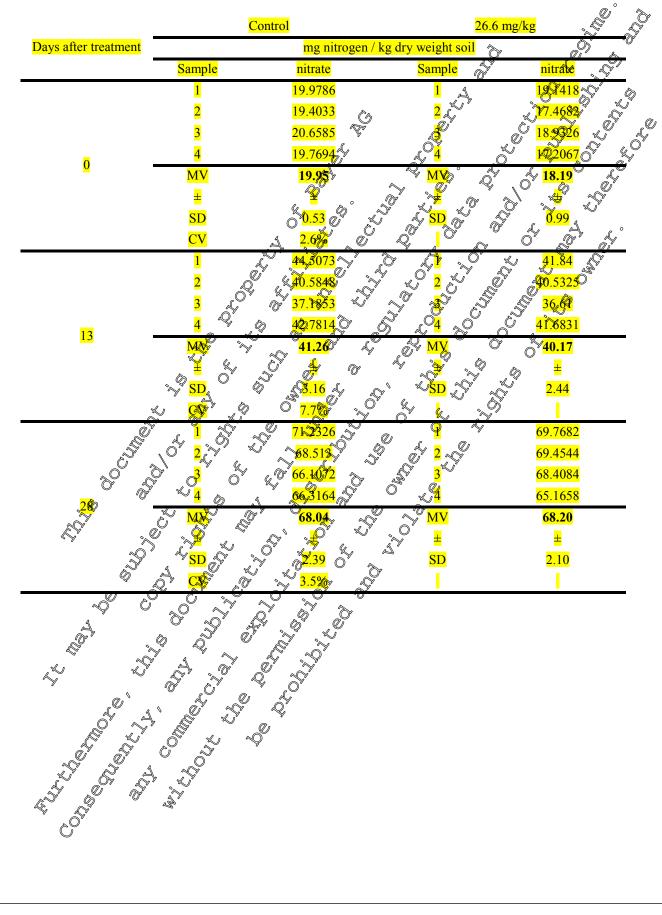
OECD. (2000), *Test No. 216: Soil Microorganisms Nitrogen Transformation Fest*, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. **Test endpoints according to current guideline:** • Nitrate formation rate Exposure according to current guideline: Test containers made of chemically mert modeline: compliance with the procedure used for incubation of soils i.e. incubation in bulk or as a series of individual soil samples, Gare should be taken both forminingse water loss and to allow gas exchange during the test (e.g. the test containers may be covered with perforated polyethylene foil). Containers should be of absize such that approximately one quarter of their volume is filled with the soil sample. The soil is divided into three portions of equal weight. Two portions are mixed with the carrier containing the product, and the other is mixed with the carrier without the product (control). A minimum of three replicates for both treated and untreated soils B recommended. Care should be taken to ensure homogeneous distribution of the test substance in the treated soil samples. During mixing, compacting or balling of the soil should be avoided.

# Ö Evaluation according to current guideline:

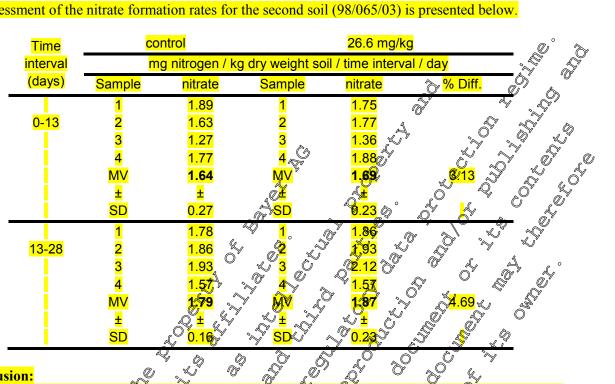

Soil samples are analyzed for nitrate or gays 9/7, 14 and 28. Nitrate is extracted from soil by shaking samples with a suitable extraction solvent, e.g. a 0.1 M potassium chloride solution. The mixtures are centrifused or filtered and the liquid phases are analyzed for nitrate. The rate of nitrate formation in treated samples is compared with the rate in the controls, and the percent deviation of the treated from the control is calculated All tests run for a Cleast 28 days. If, on the 28th day, differences between treated and uncreated soils are equal to or greater than 25%, measurements are continued to a maximum of 100 days. If a prolonged test is required, further measurements should be made at 14 days intervals after day 28. The amount of nitrate formed in each treated and control replicate is determined at each sampling time.

### Validity Criteria:

	Guideline	Test res	
		Soil sam	ple X
		<mark>98/047/02</mark>	98/063/03
Variation between replicate control samples	<mark>&lt; 15%</mark>	33.5% (13 days)	3.5 (28 days)
	· · · · · · · · · · · · · · · · · · ·	107	\$ <u>\$</u>


### Study Remarks:

No major differences were found concerning the design and conduct between the current guideline and the actual study with the exception that according to the current guideline, when analoging agrochemicals, two different concentration rates should be tested. In the study here present, only one concentration was used, nevertheless the test item rates used in this study were higher than the field used rate, and therefore can be considered acceptable for risk assessment. "Q" Ó The study here presented was evaluated according to an older guideline, thus, the evaluations were based on the nitrate concentrations at the different points in time and not based on the nitrate formation rates. Ô. Xì Ò The reported data have been re-analysed for the sested soils based on the reported data to derive the nitrate formation rates as requested in the current guidelines. It could be concluded that the results for the soil 98/047/02 does not match the new validaty criteria since the variation between replicate control samples on day 13 exceeded with an actual value of 33,5% the acceptable limit of 15%. For this reason the analyses of this soil were not considered for barther evaluations. Detailed results for




	Contro	<mark>)l</mark>	<mark>26.6 r</mark>	ng/kg
Days after treatment		<mark>mg nitrogen / k</mark> a	g dry weight soil	
	Sample	nitrate	Sample	nitrate 🖉 🖉
	<mark>1</mark>	<mark>13.1</mark>	1	nitrate 0 6
	<mark>2</mark>	<mark>12.8904</mark>	2	13.04%
	<mark>3</mark>	<mark>14.41</mark>	<mark>3</mark> Õ	12,9428 ×
-	<mark>4</mark>	15.8772	4	<b>0</b> 4.934
0	MV	14.07 Č	M	× 13.83 ~
	<u>+</u>	<b>↓</b>		
	SD	1.38		∫ ¶ <u>.52</u> 0 4
	CV	9.80%		
	1	, <mark>12.4712</mark> , ∘	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	12,9428 04.934 13.43 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55
	2	, <mark>12.4712</mark> ∘ 012.36@ 13.9984 ~ ©	× 2 ~ ~	20.0168
	3	13.9084		0 14.2004
	4 L	29.2132		U 10.3752
<mark>13</mark>	3 4 4 MV SD SD 4 5D 4 5D 5D 5D 50 50 50 50 50 50 50 50 50 50	× 15.50	K MV O	S ^{15.39}
	± 4 0	⁴ √ <mark>15.50</mark> γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	~ ~ 5	
	SD ^Q o	22.50 C	ST CSD C	$\tilde{\mathcal{A}}$
		5.19 0 33.5%		×
	SD × ¢ CX × ×	35% 748		nitrate 11.2136 13.0476 12.9428 04.934 12.9428 12.9428 13.0476 13.0476 13.0476 13.0476 12.9428 13.0476 13.0476 12.9428 13.0476 13.0476 12.9428 13.0476 13.0476 12.9428 13.0476 13.0476 12.9428 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 13.0476 14.2004 10.3752 15.39 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10
		<b>26.7764</b>		ی <u>32.6976</u>
	3 3	0 32.6976 · O		18.2352
	ŞÎ <mark>Î</mark> LÎ Û	269336		31.0732
28		~ <mark>30.47</mark> ¢	MV V	24.80
Ö	⇒ ± ⁴ % a	, [*]		±
ð í	S KN O' K	. <mark>4233</mark>	O . &D	8.22
	x CV X A	014.2% °		T I
<u> </u>	$\begin{array}{c} \mathbf{r} \\ $	N 0 ⁸ 4 ⁹	$\overline{)}$	
			A A A	
and the second se		L ^O O		
a,				
~~~ (		N N		
A				
, A		L ^O ^v		
Å.				
	SD (A) (A) (A) (A) (A) (A) (A) (A)			
O A	U N I			
J R 4	A ~ S			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	S.			
õ				

A re-assessment of the results for the second soil (98/065/03, see table below) indicate that the criteria in the currently guideline are met, and therefore can be considered valid for the re-evaluation.



### An assessment of the nitrate formation rates for the second soil (98/065/03) is presented below.



**Conclusion:** 

A re-assessment of the results for the second soil (98/065/03, see table above) indicate that the criteria in the currently guideline are met, and therefore can be considered valid for the re-evaluation. The re-assessment of the second soil (98/065/03) concerning the nitrate formation rates indicated that it meets the current guideline requirements. A deviation percentage of 3.13% with intrate formation rate was observed for the first is days after preatment between the treatment and the control. Afterwards, from day 13/ to day 28, a percentage deviation of 4.69% was found for the same parameter. Therefore, fosetyl-Al applied at a rate of 26.6 for a.s and soft did not deviate in excess of  $\pm 25\%$  from the control concerning the nitrate formation state after 28 days.

Ô		Q	A. X	O'a.			
° M	×,						
Report:	_KCA	\$\$/02	Z; 200	& M-307736	5-04-7		
Title:	🎢 Fost	tyl-Al WG	80CW: Dete	rmination of	effects on nit	ogen transforma	tion in soil
Report No.:		-N-106/08		i i i i i i i i i i i i i i i i i i i		-	
Document No.:	б ^у <u>М</u> -3	07756-01-1	K K	Ŭ ô		a for the Testing	
Guideline(s)			Inted Denugru	or march	CD Guidalin	o for the Testing	of Chamicala

OECD 216; adopted Fanuary 21, 2000 OECD Guideline for the Testing of Chemicals, Soil Microorganisms. Nitrogen Transformation Test Guideline(s)

Guideline deviation(s): nône GLP/GEP

### **Objective:**

The objective of the test was to determine the miluence of 130.4 mg and 1304.0 mg of Fosetyl-Al WG 80/kg dry weight soil on nitrogen transformation in an agricultural soil.

K)

# Materials and Methods;

Test item: Foset Al WG 80 (analytical finding: 81.8% w/w, specification No.: 102000001579, batch No.: EV\$8000056, TQX-No. FAR01374-00).

A silts, sand soil was exposed for 42 days to 130.4 mg and 1304.0 mg product/kg dry weight soil by mixing into the soft. Application rates were equivalent to 97.8 kg and 978 kg test item/ha. Lucernegrass-green meal was added to the soil (5 g/kg dry weight soil) to stimulate nitrogen transformation.

### **Findings:**

The coefficient of variation in the control at the end of the study was 2%. Therefore the validity criteria for the study, which requires a coefficient of variation  $\leq 15\%$  in the control was fulfilled.

Effects on non-ta	rget soil microorg	ganisms		ð		0"
			Application rates	Â.	4 . 4	
Time interval		mg Fosetyl-	Al WG 80/kg dry	weight_soll		~
(days)	0	13	0.4	130	4.00° 🔗 🗸	Q.
	Nitrate-N ¹⁾	Nitrate-N ¹⁾	% difference to	Nitrate-N ¹⁾	% difference	, 
			control	ý v	torontrol	Ľ
0-7	$-0.66 \pm 0.08$	-0.75±0.01	13 ^{n.s.}	0.43±0.04	35 *	, O ^v
7-14	0.52±0.18	0.53±0.10	√ 1 ^{n.s.}	1,04±0,02		¥.
14-28	1.53±0.02	1.60±0.11	5 n.s.	2.20±009	43 *	
28-42	$1.59 \pm 0.05$	1.46±0.03	8 n.s.*	1.24±0.14	× 22 ** × × ×	

1) Rate: Nitrate-N in mg/kg dry weight soil/time integral/day, mean ôf 3 repticates and standard deviation

* = Statistically significant difference to the control Student Test two-sided,  $\sigma = 0.05$ ).

n.s. = No statistically significant difference to the cooperative (Student-t Qest, two-sided,  $\alpha = 0.05$ ).

** = Statistically significant difference to the control (We)ch-t Test for inhomogoneous variances, two sided,  $\alpha = 0.05$ ).

n.s.* = No statistically significant difference to the control (Welch-t Fest for inhomogeneous variances, twosided,  $\alpha = 0.05$ ).

### **Observation:**

During the 42-day test, 130,4 mg Fosetyl-Al WG 80 had no relevant influence on nitrogen transformation in a silty sand soil supplemented with Lorcerne-grass-preen meal. The 10-fold dose of the test item caused a temporary stimulation of the daily nitrate rates at the time intervals 0-7, 7-14 and 14-28 days after treatment. At the end of the experiment (28-42 day interval), differences in the nitrate-N rates between control soil samples and preated soil samples are < 25% and meet the trigger values of above mentioned guidebbe for a termination of the study.

# Conclusions:

Fosetyl-Al WC 80 should not have an impaction nitrogen mansformation in soils up to 1304 mg product/kg dwt soil.

### Report: Title:

KCA 8.5/03 KCA 8.5/03

Report No.: 15 10 48 065 N Document No.: M 28580 01-1 Guideline deviation(s): 0ECD 296 (200 GLP/GEP: yes

# **Objective:**

The purpose of this study way to determine the effects of dipotassium phosphonate (salt of phosphonic acid) on the activity of soil microflora with regard to nitrogen transformation in a laboratory test. The test was performed in accordance with OECD guideline 216 (2000) by measuring the nitrogen turnover

# Materials and Methods

Test item: Dipotassium phosphonate (BCS-CZ96503), Batch Code.: BCS-CZ96503-PU-01, Origin Batch No.: SES 12947-1-1, LIMS No.: 1510480, CAS No.: 13492-26-7, Certificate No.: AZ20059, analysed purity: 98.5% w/w.

A silty sand soil (DIN 4220) was exposed for 42 days to 6.54 mg test item/kg soil dry weight and 65.31 mg test item/kg soil dry weight. Application rates were equivalent to 4.90 kg test item/ha and 48.98 kg test item/ha. The nitrogen transformation was determined in soil enriched with lucerne meal (concentration in soil 0.5%). NH4-nitrogen, NO3- and NO2-nitrogen were determined is an a Autoanalyzer at different sampling intervals (0, 7, 14, 28 and 42 days after treatment).

Findings:	•, •	6.1	G. 1						Â		s fulfiled fre	'n
Findings:Validity Criteria of the StudyThe coefficients of variation in the control (NO ₃ -N) were maximum 7.3% and thus faltilled the demanded range ( $\leq 15\%$ ).Effects on nitrogen transformation in soil after treatment with dipotassium phosphonate;Time												
Effects on	Effects on nitrogen transformation in soil after treatment with diporassium phosphonate:									_		
Time Interval (days)		Control 6.54 mg test item/kg soil dry weight equivalent to 4.90 kg test item/ha equivalent to 48.98 kg test item/ha										
	Ni	trate-	-N ¹⁾	Nit	trate		% difference to/control	Ni Ni	itræe-N		% differ orce to control	
0-7	3.98	±	0.42	4.27	S≠ K	0.30	+7.4 %.5.	4.940	±	0.57	+24.2 ^{n.s.}	
7-14	2.30	±	0.42	2.40	0+	0.34	+ <b>8.5</b> ^{n.s}	× 103		g Å2	∞~-24.7 ^{n.s.}	
14-28	1.35	±	0.37	<b>2</b> .70	¥¥ ,	0.19	+26 1 ^{4.s.}	Q1.90	0 ± (	0.14	+ <b>40.4</b> ^{n.s.}	
28-42	0.86	±	0.36	0.69	± S S	0.12	-109.9 n.s.	Q TA	A Contraction	0698	<b>-17.2</b> ^{n.s.}	

The calculations were performed with unrounded values ¹⁾ Rate: Nitrate-N in mg/kg soil-dry weight/time interval/day, mean %f/3 replicates and standard deviation

n.s. No statistically significant difference to the control (Student-t-test for homogeneous variances, 2-sided,

S In a separate stody thereference item Dingerb caused stimulations of the nitrogen transformation of +39.1%, +62.5% and +112.0% at 6.80 mg, 16.00 mg and 27.00 mg Dinoterb per kg soil dry weight, respectivelydetermined 28 days after application (time interval 14,28).

# **Observation:**

 $p \le 0.05$ )

The test item dipotassium phosphonate caused temporary stimulation of the daily nitrate rate at the tested concentrations of 6,54 ms test jeen/kg/soil dry weight and 65.31 mg test item/kg soil dry weight at time interval 14-28 days after application  $\bigcap$ 

However, no adverse effects of dipotassium phosphopate on nitrogen transformation in soil could be observed at both tested concentrations at the end of the test, 42 days after application (time interval 28-42). Differences from the control of 49.9% (test concentration 6.54 mg test item/kg soil dry weight) and -17.2% (test concentration 65.3) mg test item kg soil dry weight) were measured at the end of the 42-day incubation period (time interval 28-42)

# Conclusions:

Dipotassium Phosphonate Salt of phosphonic acid) caused no adverse effects (difference to control < 25%, OECD 2167 on the soil pitrogeneral formation (expressed as NO₃-N-production) at the end of the 42-day inculation period. The study was performed in a field soil at concentrations up to 65.31 mg test item/kg soft dry weight, which are equivalent to application rates up to 48.98 kg test item/ha.

### CA 8.6 Effects on terrestrial non-target higher plants

For information on studies already evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC, please refer to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer CropScience. Studies have been conducted with the representative formulation Fosetyl-aluminium WG 80 and summaries can be found in Document MCP, Section 10.6.2.

### CA 8.6.1 Summary of screening data

According to the data requirements for plant protection products (Commission Regulation No 284/2013), screening data shall be required for plant protection products other than those exhibiting herbicidal or plant growth regulator activity. However, for the representative formulations of the fungicide and bactericide fosetyl, guideline studies are available and are presented in the respective Document MCP, Section 10.6.2.

# CA 8.6.2 Testing on non-target plants

Guideline studies have been conducted with the representative formulations, i.e. Fosetyl-alumnium WG 80 and Fosetyl-alumnium + Europicolide WG 71.11, and are presented in the respective Document MCP, Section 10.6.2.

# CA 8.7 Effects on other terrestrial organisms (flora and fauna)

In view of the study results presented above no studies on other terrestrial organisms are considered necessary.

# CA 8.8 Effects on bological methods for sewage treatment

For information on studies already evaluated for the America I inclusion of fosetyl under Directive 91/414/EEC, phase inter to the corresponding section in the DAR and in the Baseline Dossier provided by Bayer GropScience. The study from which the empoint will be used for risk assessment is summarized below from the original DAR Grosety

Table 8.8-1: Study on sewage treatment with fasetyl-Al	
Test substance	References
Fosetyl-Al, Och. $O$ Activitied skude, $O$ $S_{50}$ $> 100 \text{ mg a.s./L}$	,; 1999; M-179088-01-1 KCA 8.8/01
Rena 2 K 6 8 8/0 1999: M-179088-01-1	
Report. Title: Report No.: Document No Guideline(s)	
Title: forsety of: Activated soldge - Respiration inhibition test.	
Report No.: R009 2	
Document No M-159088-01-1	
Guideline(s) ESC = EEC): Dir rive 88/302; OECD: 209	
Guideline (viations): Oot specified	
GLP/GRO: yes	
Guideline Wiations): Oot specified GLP/GSC: Ves	

# Fable 8.8-1: Study on sewage treatment with fasetyl-Al

The stude included the following groups: control (untreated, 2 replicates), test substance (1 replicate at 1 mg/L 1 replicate at 10 mg/L and 3 replicates at 100 mg/L), and reference compound (3,5-dichlorophenol at 3.0, 10 and 32 mg/L). Purity of the test substance (978 g/kg).

**Results**:

 $EC_{50} - (3 h) > 100 mg/L$ 

□ Comments (RMS): acceptable

### Further study information supplementing the original DAR summary

### Material and methods:

The effect of fosetyl-Al (Lot number OP 9950059, purity 97.8%) on the respiration rate of activate sludge was assessed by the methods detailed in EC, Directive 88/392, 'Biodegradiation' Activated Sludge Respiration Inhibition test' and OECD Test Guideline 209, 'Activated Sludge Respiration Inhibition test'.

Samples of activated sludge (suspended solids 1, 6 g/Lo, fed with synthetic sewage were exposed to the test substance at nominal concentrations of 1010 and 100 mg/L for three hours Single mixtures were prepared at 1 and 10 mg/L and the highest level was prepared in triplicate. Their rates of oxygen consumption were determined and compared with those of controls, containing activated sludge and synthetic sewage alone, which were established at the beginning and end of the culture series. Ľ

The reference inhibitor 3,5-dichlorophenol (3,5-DCP) was employed at 3.0, 10.0 and 32.0 mg/L as a positive control.

X

### Temperature, pH and measurements of pespiration rate

		<u> </u>			- S	. 🔍		
<mark>Test mixture</mark>	Temp-e	<b>crature</b>		H C	Measured	Dissolved	<b>Respiration</b>	<mark>%</mark>
	<mark>۹۵ کې</mark>	<mark>C)</mark> 🖉 🔍			ٍلاس 🖉 🖉	gen Ö	🞸 <mark>rate</mark>	<mark>inhibition</mark>
		λ, . 63			³ Concen	itration	_{//} (mg O ₂ /g/h)	<mark>0*</mark>
	N° NC	) 'Y'			mg (	itration Og/L)		<u> </u>
	Initia	<b>Final</b>		<b>Final</b>	[®] Initial	<b>Final</b>		
			<u>Ínitial</u>	<b>F</b> Mai		rillai 201	<b>a</b> <i>c c</i>	
Control (1)	<mark>2103</mark>	≪ <mark>20.0</mark> ©	7,5 0	8.2 0	≥° <mark>6.5</mark> ♥	<u></u>	<mark>36.6</mark>	-
	, K		E.	0, 0,				
FOSETAD-AL		Š			Ň.	$D^{v}$		
(mg/L)	21.7 A	X K	, 8	N V				
_		× §	°~γ					
1	6 <mark>21.7</mark> 4	, <mark>204</mark>	<mark>∕⊒.5</mark> ¥	^{ان} 8.0	<b>C</b> P	<mark>2.5</mark>	<mark>39.8</mark>	<mark>0 (3)</mark>
		20.0 ×	, 5° , 5° , <del>1</del> 2.5 , 7 <u>5</u> , 7					
<mark>10</mark> ~	2107		y <mark>7.5</mark>	_^≈ <mark>8,0</mark>	<mark>. 6.0</mark>	<mark>2.5</mark>	<mark>42.3</mark>	<mark>0 (9)</mark>
×		S ~			)*			
100 💭	21.3	200 [°]	<mark>Ø.8</mark> %	7.9	<mark>6.5</mark>	<mark>2.5</mark>	<mark>42.9</mark>	<mark>0 (10)</mark>
		R.		50 7.9 7.9 7.9 7.9				
<mark>√1,00</mark>	<mark>219</mark>	A20.0	× <mark>6.8</mark> *	° 7.9	<mark>6.5</mark>	<mark>2.5</mark>	<mark>42.9</mark>	<mark>0 (10)</mark>
$\sim$		20.0 20.0 20.0	-Q	~~				
<mark>100</mark>	_ ∿ <mark>21.1</mark> ″0	20 <u>9</u>	@. <mark>6.9</mark> 🔍	<mark>0</mark> 7.9	<mark>6.5</mark>	<mark>2.5</mark>	<mark>42.9</mark>	<mark>0 (10)</mark>
		Ő Å	Q Q					
3,5-DCP (mg/D)	$\sim$	Å 4	ĵ					
3.0	× <u>20.5</u>	ົ້ງ <mark>20.3</mark> ເ	~ <mark>\$05</mark>	<mark>8.3</mark>	<mark>6.5</mark>	<mark>2.5</mark>	<mark>32.6</mark>	<mark>16</mark>
Ű	ŝ, O	⁷ 20.2 5 20.3 0	<u>4</u>					
3.0 5 10 6 5 32.0 2	20.5	~20.7	<mark>7.5</mark>	<mark>8.3</mark>	<mark>6.5</mark>	<mark>2.5</mark>	<mark>22.1</mark>	<mark>43</mark>
	20 <u>5</u>	K,						
220 C	20.5	^{20.3}	<mark>7.6</mark>	<mark>8.2</mark>	<mark>7.8</mark>	<mark>5.5</mark>	12.5	<mark>68</mark>
	<u> 20.0</u>	- 20.5	1.0	0.2	<mark>7.0</mark>	<del></del>	12.0	
Contral (2)	<mark>20.9</mark>	<b>20.8</b>	<mark>7.5</mark>	<mark>8.0</mark>	<mark>6.0</mark>	<mark>2.5</mark>	<mark>41.0</mark>	
* Values siver		20.0			<u>.</u>	<u> </u>		uto an af tha

Values given in parentheses refer to actual increases in respiration rate, expressed as a percentage of the mean control value (38.8 mg  $O_2/g/h$ ).

Sludge respiration rates were progressively reduced in the presence of increasing concentrations of 3,5-DCP. The three hour 50% effect concentration ( $EC_{50}$ ) for 3,5-DCP was calculated by the Moving Average method to be 14.0 mg/L (95% confidence limits 10.9 to 19.1 mg/L).

The specific respiration rate of the control culture established at the end of the test (41.0 mg was 112% of the rate of that established at the start (36.6 mg  $O_2/g/h$ ).

These results show that the test was valid and that the sample of activated sludge enployed was sensitive to inhibition. The three-hour EC50 for 3,5-DCP (14.0 mg/L) fulfilled the validity stiterion relating to sensitivity to inhibition (acceptable  $EC_{50}$  range 5 to 30 mg/L), and that relating to the respiration rates in the control (variation not greater than 15%) was also satisfied.

Ø)

### **Conclusions:**

**Conclusions:** The criteria of validity specified in the test guideline were fulfilled in this study. Fosetyl-Al had no inhibitory effect on the respiration rate of activated sludge at any of the L. concentrations employed in the test. The EC₂₀, EC₂₀ and EC₈₀ of the test substance could therefore pot be calculated but these must be greater than 100 mg/L, the highest level tested  $\sqrt{2}$ OF STON

CA 8.9 Monitoring data No monitoring data have been collected by the applicant nor have oney been reported in any of the public literature references as replaced in The public literature references as evaluated in Documest MCG, Section 9. Due to the low to moderate

No monitoring data have been collected by the appleant northave they been reported in any of the public literature references as evaluated in Document MCA. Section 9. Due to the low to moderate acute and chronic ecotoxicity of foster lauminium as presented in Sections CA 8.0 to CA 8.9, no monitoring of non-target organism them to be necessary.