

Document MCP: Section 7 Toxicological studies BIX+FXA+PTZ EC 190 (40+50+100) G

Bayer CropScience

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Eropseience No part of the document or any information contained therein may be disclosed to any third

The summaries and evaluations contained in this document are based on unpublished unpublished proprietation and valuation are base either:
 From Bayer CropScience: or
 From other applicants once the period of data protection has expired. authority. Other registration authorities should not grant, mend, or renew aregistration on the basis of the summaries and evaluation of unpublished proprietary data contained, in this

Version history

	Version history	Q° 🐆
Date	Data points containing amendments or additions ¹ and	Document identifie and
Dutt	brief description	Sversion number
	Č	
¹ It is suggested th	hat applicants adopt a similar approach to showing revision	d version history as putlingt in
SANCO/10180/2	013 Chapter 4 How to revise an Assessment Report	
	L G° S L	
		Į V
~ (
Ĩ,		
<i>K</i>		
a		
~Ŷ		
A A		
st of the second		
L.		
Ű,		
	Ž A J	
	O' T	
\checkmark		

Table of Contents

	Table of Contents	~
CP 7	TOYICOLOGICAL STUDIES ON THE PLANT PROTECTION PROFILES	^y
CP 7 1	Acute toxicity	
CP 7.1.1	Oral toxicity	~
CP 7 1 2	Dermal toxicity)
CP 7.1.2	Inhalation toxicity $\sqrt{2}$	"V
CP 7 1 4	Skin irritation	ŝ
CP 7 1 5	Eve irritation	,
CP 7 1 6	Skin sensitization	
CP 7 1 7	Supplementary studies on the plant protection product \mathcal{P}	
CP 7.1.8	Supplementary studies for combinations of plant protection products	
CP 7.2	Data on exposure	
CP 7.2.1	Operator exposure	
CP 7.2.1.1	Estimation of operator exposure	
CP 7.2.1.2	Measurement of operator exposure	
CP 7.2.2	Bystander and resident exposure	
CP 7.2.2.1	Estimation of bystander and resident exposure 20	
CP 7.2.2.2	Measurement of bystander and resident exposure	
CP 7.2.3	Worker exposure 22	
CP 7.2.3.1	Estimation of worker exposure	
CP 7.2.3.2	Measurement of worker exposure	
CP 7.3	Dernal adsorption 24	
CP 7.4	Available toxic obgical data relating to co formulants,	
Ô		
Č		
R. S.		
~Q		
A		
, to		
~~		
الد		
Į.		
1 and		
	Y CY LY	
G. S.		
× Å*		
\bigcirc		

CP 7 TOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT

CP 7.1 Acute toxicity

BIX+FXA+PTZ EC 190 (40+50+100 g/L) is a fungicide formulation containing 40 g/L of bixafen, 50 g/L fluoxastrobin and 100 g/L prothioconazole. The acute toxicity of BIX+FXA+PTZ EC 190 has been fully assessed by CRD when the product was first approved under COP2010/01354.

The following acute tests were performed:

 LD_{50} oral (rat), LD_{50} dermal (rat), skin instation (rabbit), event interval (rabbit) and skin sensitization (LLNA). Results of all studies are summarized in the following tables

Type of study	Results a grant References of grant of
Acute oral rat,	LD \$5000 (Later V. CP 7.14)(91, ~) 5 5 6
female	$D_{50 \text{ cut of}} = 5000 \text{ mg/kg bw}$ $M-388701-001^{-1}$
Acute dermal rat,	LD 2000 mg/hg hu 0 CPC/1.2/99
male and female	M-388099-01 4 2
Acute inhalation rat	CP 7.1.3/01 5 5
(calculation method) ĸ	ATE man LC_{50} 4.2 mgal C_{50} 4.2 mgal C_{50}
Skin irritation rabbic	Next inside a 2 2 2 P 7.1.4/01 O 4
female	M-3 (8107-61-1 ³)
Eye irritation rabbit, 🖉	GL: Online in Original CP 7.1.501
female	M-388006-01 ² 1 ⁴
Skin sensitization test,	CP \$1.6/2 0°
LLNA mice, female	Senstrusing ~ M-368819-01-1 5

Therefore, in accordance with Regulation (EC) No 1252/2008 on classification, labelling and packaging of substances and mixtures, the formulation BIX+FXA+PTZ EC 190 is classified and should be labelled as follows.

	L.	0	~~~	200	, Ø	Ŵ	
Claim	andration	Catalon	1.0	$\mathcal{O}_{1}^{\mathcal{V}}$	°~	. *	
SKIII	sensuisation	: Calegory	LO -		S	°~	
	S II	1217	×14		S. a.14		
		13 k 🖓 🖌 🖇	ivia	¥ cause	an ali	eggic skii	n reaction.
	. //	. 🗙 🛆		~ (// n ⁻		~ ~	

Eye4uritation: Category 25 Causes serious eye irritation

Acute Toxicity Category 4 2 5 4 H232 A Harmfulf inhaled

May cause respiratory irritation

May cause respiratory irritation

¹ This study was already submitted in the UK for COP 2010/01354 under Report.No. AT05947.

² This study was already submitted in the UK for COP 2010/01354 under Report.No. AT05947.

³ This study was already submitted in the UK for COP 2010/01354 under Report.No. AT05952.

⁴ This study was already submitted in the UK for COP 2010/01354 under Report.No. AT05951.

⁵ This study was already submitted in the UK for COP 2010/01354 under Report.No. SA 10126.

sted form (proposed to A) (protocal constraints) (p The applicant Bayer CropScience noted that in the past Member States have requested formulations containing prothioconazole at or above 3% to be labeled as reproductive toxic Repro. Cat. 2 (H3@1d;) and the service of the owner of the service of the BIX+FXA+PTZ EC 190 (40+50+100) G

CP 7.1.1 Oral toxicity

Report:	KCP 7.1.1/01 ,; 2010; M-388101-01-1
Title:	Bixafen+fluoxastrobin+prothioconazole EC 40+50+100 g/L Acute toxicity on the rot
	after oral administration
Report No.:	AT05947
Document No .:	M-388101-01-1
Guideline(s):	Regulation (EC) No 1907/2006 (Reaction); EEC Directifive 440/2008 Part B - Method
	B.1. tris; OECD 423 (2001); EPA Health Effects Test Guidelines (PPT \$ 70.1 100);
	EPA 712-C-98-190 (1998)
Guideline deviation(s):	The test item is a product known to be stable and homogenous in both undiluted and
	in ready-to-use formulation with water. Therefore, analytical determinations of
	stability and homogeneity of the aqueous formulations were not performed. The
	deviation does not limit the assessment offesults and a second seco
GLP/GEP:	yes O' , , , , , , , , , , , , , , , , , ,

Material and Methods

The formulation BIX+FXA+PTZ \bigcirc C 199, a velow parbid fiquid (batck number: 2040-000848) contained the active ingredients breafen (BYF 00587.) at the nominal concentration of 40 g/L (41.50 g/L certified by analysis), fluoxastrobin (HEC 5725)E-ISC) at the nominal concentration of 50 g/L (51.71 g/L certified by analysis) and prothiconazole (JAR 6476) at the nominal concentration of 100 g/L (102.0 g/L certified by analysis).

The test compound was formulated in tap water; the administration volume was 10 mL/kg bw. The test material was administered per as first at a single dose (2006 mg/kg) by gavage to 3 fasted female Wistar rats. As no compound mortality occurred three additional animals were treated with the same dose.

Table 7.1.1-& Acute or a Hoxicity in female rats

			<u> </u>	
Dose (mg/kg bw)	Toxicological	Duration of signs	Onset of death Oafter (days)	LD ₅₀ cut-off (mg/kg bw)
(1 st) 2000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 45 - 6k		> 5000
(2 nd) 2000 🖗		, ≪ 4h - 6h 🖉		≥ 3000

*number of dead anipals/number of animals with linical signs/number of animals tested.

Findings

- Mortality: no death occurred.
- Climeal signs: only decreased motility was observed.
- Body weights: there were no toxicological effects on body weights or body weight gain.
- Necropsy: no particular findings.

Conclusion

The acute oral ED_{50 &t off} of BIX+FXA+PTZ EC 190 formulation in rats was greater or equal to 5000 mg/kg bw.

According to the Regulation (EC) No 1272/2008, the formulation is labeled as follows: None \bigcirc

CP 7.1.2 Dermal toxicity

Report:	KCP 7.1.2/01 ,; 2010; M-388099-01-1
Title:	Bixafen+fluoxastrobin+prothioconazole EC 40+50+100 g/L Acute toxicity in the fat
Report No.:	AT05946
Document No.:	M-388099-01-1
Guideline(s):	Regulation (EC) No 1907/2006 (REACH); EEC Directive 440/2008 Part B-Method
	B.3.; OECD 402 (1987); EPA Health Effects Test Quidelines (OPPTS 879/1200) EPA 712-C-98-192, August 1998
Guideline deviation(s):	not specified
GLP/GEP:	yes

Material and Methods

The formulation BIX+FXA+PTZ EC 190, a yellow turbid liquid (batch number: 2010-000848) contained the active ingredients bixafer (BYF 00587) at the forminal concentration of 40 g/L (41.50 g/L certified by analysis), fluoxastrobin (PEC 5725 E ISO) at the norminal concentration of 50 g/L (51.71 g/L certified by analysis) and prothiconacole (JAU 6476) at the norminal concentration of 100 g/L (102.0 g/L certified by analysis).

One day before the start of the treatment the back and flacks of male and 5 temal. Wistar rats were shorn. They received a single dermal dose of 2000 mg/kg bw of the pure liquid test compound applied semi-occlusively. After an exposure time of 24 hours, the fixing bandage and the gauze strip were removed and the treated area was rinsed with epid water using soap and gently patting the area dry.

Table 7.1.2-1: Acute dermal toxicity in rats

(n	Ďose∂ ňg/kgðw) ≈	Toxicological findings*	Duration of	Onset of death after (days)	LD ₅₀ (mg/kg bw)
Male	2000 🔬	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	> 2000
Female	2000	<u>0/0/5</u>		\$~~	> 2000

* number of dead appmals/number of animals with clinical signs/number of animals in the group

Findings

- Mortality, no death occurred.
- Clinical rights: no clinical signs were observed.
- Body weights: there were no toxicological effects on body weights or body weight gain related to the test compound.
- Necropsy: no particular findings at the end of the study.

Conclusion

The dermal LD of the BIX+OXA+PTZ EC 190 formulation was greater than 2000 mg/kg bw for rats.

According to the Regulation (EC) No 1272/2008, the formulation is labeled as follows:

Bayer CropScience

Document MCP: Section 7 Toxicological studies BIX+FXA+PTZ EC 190 (40+50+100) G

CP 7.1.3 Inhalation toxicity

Acute inhalation testing with BIX+FXA+PTZ EC 190 has not been performed. Inhalation to city testing with BIX+FXA+PTZ EC 190 is not triggered according to Regulation (EC) No 1107/2009, as well as COMMISSION REGULATION (EU) No 284/2013 because the neat product

- is not a gas or liquefied gas,
- is not a smoke generating plant protection product or fumigant,
- is not to be used with fogging/misting equipment
- is not a vapour releasing plant protection product?
- is <u>not</u> in a form of a powder or granules containing a significant proportion of particles a*Q* diameter $< 50 \ \mu m$ (> 1 % on a weight basis),² Q, Ô
- is not to be applied from aircraft in cases where inhalation exposure is relevant,
- does <u>not</u> contain active substances with a vorour pressure > 1 x 10⁻² Parand is to be used in enclosed spaces such as warehouses or glasshouses.

Furthermore, according to COMMISSION RECULATION (EU) No 284/2013 m inhatation toxicity study only has to be conducted if 21% of the preparation (i.e., the compercial formulation) is R inhalable (i.e., particle or droplet size < 50 mm) diring application.

- The product BIX+FXA+PTZ SC 190 is not applied as an undivided product to the fields. Therefore, no particles of respirable size of the neat product can be formed during application.
- BIX+FXA+PTZ EC 190 is applied as a highly diluted spray solution. Due to the intended application rates and dilutions the concentration of BIX + XA+RTZ EC 190 in the spray droplets in general amount to <1% (corresponding to <0.5% of the active ingredients in the spray droplets
- Applying the logic of the requirement of COMMISSION REGULATION (EU) No 284/2013 for inhalation toxicity testing to the practical use of BIX+FXA+PFZ EC 190, the inhalability of BIX+PXA+PTZ EC 190% amounts to <1% only due to the dilution of the product in the spray colution. This as below the ungger value for the conduct of an inhalation toxicity study for classification purposes. Furthermore, since it is unrealistic to assume that 100% of the spray droplets are inhabite (requiring solely droplets <50 µm; a value far below 10% can be expected based on measurements of deplet size distribution for standard nozzles), an additional safety factor is given. s n

Based on the consideration above on particle droplet size distribution and the low inhalation toxicity of the active ingredients Pixafer (LC50 >5 mg/L), fluoxastrobin (LC50 >5 mg/L) and prothioconazoe (LO50 20.9 mg/L maximum technically attainable concentration) the product BIX+FXAAPTZ EC 190 has not to be apassified and labelled with regard to inhalation toxicity.

Testing of the neat product of the similar formulation FXA+PTZ EC 200 showed moderate toxicity after acute inhalation (M=\$33854-01-1@ The toxicity is most likely caused by a co-formulant contained in both products (FXA+PTZ EC 200 at ca. 45%, BIX+FXA+PTZ EC 190 at ca. 24%). As acute inhalation oxicity data for the co-formalant itself are not available, for BIX+FXA+PTZ EC 190 the ATEmix of 4.2 mg/L has been calculated using the formula for mixtures containing more than 10% of ingredients with unknown agute toxicity. The ATEmix of 4.2 mg/L would require a classification in Acute Toxicity Category 4 according to Regulation (EC) 1272/2008, although the inhalability of DIX+EXA+REZ EC 190 is considered to be below the threshold for inhalation toxicity testing due to the difficient in the spray solution.

According to the Regulation (EC) 1272/2008, the test article should be labelled as follows: Acute Toxicity Category 4 H332 (harmful if inhaled)

CP 7.1.4 Skin irritation

Report:	KCP 7.1.4/01	R; 2010; M-38810	7-01-1	*	
Title:	Bixafen+fluoxastrobin irritation/corrosion on	n+prothioconazole EC rabbits	2 40+50+100 g/I	Acute skin	
Report No.:	AT05952		.4	Ş	
Document No.:	M-388107-01-1		s de la companya de l	~	
Guideline(s):	OECD 404 (2002); E	EC Directive N&9440	2008; EPA Hea	lth Effects/Test	Guidelines
	(OPPTS 870.2500), U	Inited States, EPA 712	2-C-98, <u>6</u> 96 (199	8)	9' w 4
Guideline deviation(s):	not specified	L'	08	× õ	
GLP/GEP:	yes	A.	Q, e	Å Å.	Č Č

Material and Methods

The formulation BIX+FXA+PTZ EC 190, a yellow turbid liquid (batch rumber: 2010-000848) contained the active ingredients bixafen (BYF 00587) at the nominal concentration of 40 g/L (41.50(g/L certified by analysis), fluoxastrobin (HEC 372547-ISO) at the nominal concentration of 50 g/L (41.71 g/L certified by analysis) and prothic prazole (JAU 6476) at the nominal concentration of 400 g/L (102.0 g/L certified by analysis).

One day before the test, the fur way shorn on the right and left side from the dorse lateral area of the trunk of each of the rabbits. A single application to the shorn skin of 3 fearale albino rabbits of 0.5 ml of the pure liquid test substance was applied to the skin of the animal under a gauzepatch. The treated skin area was approximately of 6 cm². After an exposure period of 4 hours, the dressing and patch were removed and the treated area was carefull washed with water states area was applied to the state of the short state of the state o

The individual findings of the treated skin areas at the various observation turnes are summarized in Table 7.1.4-1.

Table 7.1.4-1: Irritant Effects on the skin (Exposure: 4 hours)

na : not applicable

			ř st	<u>s</u> . <u>s</u> v	, e		
Animal		24	4 8	× 720	Mean	Response	Reversible
		hours	Hours ®	hours	scores		(days)
1	Erythema (@dness) and Eschar formation				0.0	-	na
	Oedema Formation	ja v		, Solo	0.0	-	na
2	Ervinema (redness) and Eschar formation			y 0	0.0	-	na
le l	Oedema Formation	Ø s		0	0.0	-	na
3.4	Erythema (redness)*			0	0.0	-	na
	Oedema Formation	$\sim 0 \dot{Q}$	% 0	0	0.0	-	na
Abbrev	Abbreviations: $\sqrt{2}$ Network response: mean scores $< 2.3 = -$						
	Positive te	sponse.	mean sc	ores $\geq 2.3 =$	+		

There were no systemic infolerance reactions.

Finding

Conclusion Under our experimental conditions, the formulation BIX+FXA+PTZ EC 190 is not irritating to the second s

According to the Regulation (EC) No 1272/2008, the formulation is labeled as follows:

Report:	KCP 7.1.5/01 B; 2010; M-388106-01-17 @
Title:	Bixafen+fluoxastrobin+prothioconazole PC 40+50+100 g/L - Acute eye rritation on
	rabbits
Report No.:	AT05951
Document No.:	M-388106-01-1 \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}
Guideline(s):	OECD 405 (2002), EEC Directive No. 440/2000, EPA Fealth Streets Lest Gundelines
	(OPPTS 870.2400); United States, ERCX 712, 5-98-125/(1998)
Guideline deviation(s):	not specified \mathcal{O}
GLP/GEP:	yes yes a a a a a a a a a a a a a a a a a a a

Material and Methods

The formulation BIX+FXA+PTZ EC 190 a yellow tuctrid liquid (batch purmber: 2010-000848) contained the active ingredients bixaten (BYP 0058) at the nominal concentration of 40 g/L (41.50 g/L certified by analysis). fluoxastrobio HEC05725 12 ISOL at the nominal concentration of 50 g/L (51.71 g/L certified by adalysis) and prothiconazole (JAUG476) at the nominal concentration of 100 g/L (102.0 g/L certified by analysis).

The test was started with one of three female albino raborts. 05 ml of the pure liquid test substance was placed into the conjunctival sacof out eye after having gently pulled the lower lid away from the eyeball. The lids were gently held together for about one second in order to prevent loss of the test compound. The other eve, which remained untreased, served as control. The eve was not rinsed for at least 24 hours following instillation. As one hour after treatment no severe irritation was observed two further rabbits were treated as described. Õ

The individual findings of the treated eyes at the various observation times (re-classification of cornea opacity and conjunctival rednesspare supermarized in Table 7.1.5-1.

×1			<u>`</u> N			
Š	Observations	29 h	³ 48h	72h	Mean	Reversible
	Animed		1		scores	(days)
					(24-48-72h)	
	Degree of cornea opacity		2	1	1.7 (+)	7
, S	r Iris	0	0	0	0.0 (-)	na
Z.	Rechiess conjunctivae	2	1	0	1.0 (-)	3
	chemosis conjunctivae	1	0	0	0.3 (-)	2
Ĉ	<i>y</i>					
	Observations	24h	48h	72h	Mean scores	Reversible
	Animal 2				(24-48-72h)	(days)

Table 7.1.5-1: Summary of irritant effect

BAYER Bayer CropScience Document MCP: Section 7 Toxicological studies BIX+FXA+PTZ EC 190 (40+50+100) G

_							_
	Degree of cornea opacity	2	2	1	1.7 (+)	7	e °
	Iris	1	0	0	0.3 (-)	2	
	Redness conjunctivae	2	1	0	1.0 (-)	3	ST O
	Chemosis conjunctivae	1	0	0	0.3 (-)	§ 2 4	
L	-						
Γ	Observations	24h	48h	72h	Mean seores	Reversite	
	Animal 3	2 111	TON	S.	(24-4972h)		\$`,Ô [°] ,Ø
_	Degree of cornea onacity	2	2 4	× √ 1	(21,00,721) (P7 (+)	× 14	
-	Iris	2		0		0 14 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	o jož
_	IIIS	1					Ű
_	Redness conjunctivae	2	ž		I.Y (-)		L'
Ļ	Chemosis conjunctivae	1 ($\mathbf{p}^{\mathbf{x}} 0 0$		~0.3 (-)~	³ 14	4 60
A	a = not applicable 1 h p.a.: test c	ompound a	dhered to co	orneg and co	Djunctiva	, Oʻ	, C
R	Lesponse: Corneal opacity	y: fixean s	cores	×1 = (),	≥1≈sy=	(+)	++)
	Iritis:	mean	çõres 🔊	<1 2,),	₹ 21.5	= (4), (31.5 =	: (O+)
	Conjunctival redness: me	@a`scores	<2,4,(-),		$\mathcal{D} = (+) \mathcal{D}$	Ş <u>ş</u>	>
	Conjunctiva	édema: mea	in scofes	<2 = (-)	v = 0		
Findings			T S			8 4	
T1			af a			, 0'	
There were	e no relevant systemic into	lerance r	eactions.	<i>°</i>		, Q	
Conclusio	n 🍾 A		Š ^Y "Ó			2 S	
						Y	
Under our	experimental conditions	the townu	liation BI	X¥FXA+	PIZEC 1901	s irritating to ey	yes.
According	to the Regulation (EC)	No 1272	2008. H	formula	tion is labeled	l as follows:	
Eye irritat	tion Cat. 2 H3	9 (Cause	s serious	eve irrit	ation)		
·				Ş Ö	- D		
\$		<u></u>	°° °°		~		
CP 7.15	Skin Sensiti Pation		, Ô ^y	w .	0″		
01 //10		, O ^y	J S	4 Å	Ÿ		
Doport				M 2001	4 01 1		
Title:	\sim Six 2 \sim	astrobin	$\pm n$, Mizopool	4-01-1	/L - Evaluation	of
Title.	of potential skir	sensitizati	ion in the	ocal lymp	h node assay in	the mouse	01
Report No.;	SA 10120	AN .	δ, Ū				
Document	No.: @M-368814-01	-V 🚴					
Guideline(s): O.E.C.D. gai	leline 429	(2002)				
	USTEPA OPP	TS 840.26	500 (2003)				
Guideline d	eviation(s): not specified		0				
GLP/GEP:	yes of a	, Q	7				
		<u>v</u>					
Material	nd Methods	~Q					

The formulation BFX+FXA+PTZ EC 190, a yellow turbid liquid (batch number: 2010-000848) contained the active ingredients bixafen (BYF 00587) at the nominal concentration of 40 g/L (41.50 g/L certified by analysis), fluoxastrobin (HEC 5725 E-ISO) at the nominal concentration of 50 g/L (51.71 g/L certified by analysis) and prothiconazole (JAU 6476) at the nominal concentration of 100 g/L (102.0 g/L certified by analysis).

Twenty-five female CBA/J mice were allocated to 5 groups of five animals each:

- three groups received the test substance at a concentration of 25%, 50% in vehicle or 100% - one positive control group received 30% alpha-Hexylcinnamaldehyde (CAS N° 101-86-0
 - batch N°: MKAA2596) in vehicle,
- one control group received the vehicle, 1% Pluronic Acid L92® in water

The test substance and the vehicle were applied on external surfaces of each ear (25 µl ver) for three consecutive days (Days 0, 1 and 2) at the appropriate concentrations. Ob Day 5, the cell proliferation in the draining auricular lymph nodes was measured by incorporation of tritiated mymidule and the oration of trinancury in the second s obtained values were used to calculate proliferation indices.

Findings

		Star 4
Group		Stimulation
Number	Kest Group Nanze	Index Values
Number		(SD)
1		- <u>2</u>
	in % agueous Bluron's Acid \$92 [®] 0	\mathcal{O}
2	Bixaten + Fkvoxastrobin + Prothieconazote EC 2	Ş &
	√ 40+50+100 g/L at 25%	Ø.2
	ar 1% aqueous Pluronic Acide 🔬 🖓	ي (1.5)
3	Bixafen + Fluoxastrobin + Prothioconazole EC 40+50+100	Č
	J D g QL at St L at St	5.9
	\mathcal{S} \mathcal{O} in \mathcal{S} aqueous Phironic Acid L92 [®] \mathcal{S} \mathcal{S}	(2.1)
4	Bixafén + Eluoxastrobin + Prothio Onazole EC 40+50+100	
Ô	2 10 17 gill at 100% 5 0 15	6.6
<u> </u>	in 1% aqueous Pluronic Acid L 2	(1.3)
500	HCA at 30% O	
	🔬 🗸 in 1% aque tors Pluronic Acid® or	8.5
		(3.3)
Ϋ́		. /

No cutaneous reactions were observed in the vehicle, reference control or treated groups.

The stimulation index values of the test substance were $3.2 (\pm 1.5)$, $5.9 (\pm 2.1)$ and $6.6 (\pm 1.3)$ at treatment concentrations of 25, 50 and 100%, respectively

The stimulation index value of the positive control appha-Hexylcinnamaldehyde was 8.5 (\pm 3.3) at a treatment concentration of 30%

were noted for BIX+FXA+PTZ EC 190 at all Positive Symphoproliferative concentrations tested

Ŋ Conclusion

The formulation was found to be a sensitizing formulation in the Local Lymph Norte Assay

According to the Regulation (EC) No 1272/2008, the formulation is labeled as follows: Skin sensitization Cat. H317 (May cause an allergic skin reaction)

CP 7.1.7 Supplementary studies on the plant protection product

Not applicable according to Commission Regulation (EU) No 284/2013.

Supplementary studies for combinations of plant protection products y Part A of Commission Regulation (TUD V) AND A THE OWNER AND A THE ADDRESS OF THE OWNER AND A THE OWNER **CP 7.1.8** Supplementary studies for combinations of plant protection products As stipulated by Part A of Commission Regulation (EU) No 284/2013 totata requirements for plant? CP 7.1 Supplementary studies for combinations of plant protection products this point shall be considered case the case. Whether or not BIS+FXAPTZ for the point will be addressed in national addensions of the point will be addressed in national addensions of the point will be addressed in national addensions.

CP 7.2 Data on exposure

The non-dietary risk assessment is presented for fluoxastrobin using the representative formulation Bixafen + Fluoxastrobin + Prothioconazole EC 190 (40+50+100 g/L), for the use as functioned in cereals. The formulation contains the active substance fluoxastrobin (50 g/L) Exposure is estimated using the EFSA guidance on assessment of non-dietary exposure:

EFSA, 2014. Guidance on the assessment of expositive of operators, workers, residents and bystanders in risk assessment for plant protection products. EESA Journal 2014, 200):382 55pp., doi:10.2903/j.efsa.2014.3874.

The Standing Committee noted at their meeting in May 2015 that for the acore rist assessment the derivation of the corresponding toxicological reference value (XAOED) is stoll outstanding

Following the noting at the Standing Committee meeting in May the Commission have published a guidance⁶ on the implementation of EFSA's norodietary exposure guidance document which notes that the EFSA guidance will apply to applications subplitted from franual 2016 However, for the approval of active substances under Regulation (EC) No 1107/2009, an acute risk assessment is currently not required currently not required.

Endpoints relevant for risk assessment:

AOEL:

The Review Report for Puoxastrobin (SANCO/3921/07-22 January 2007) is considered to provide the relevant scientific information for the review of the product. An AOEL of 0.03 mg/kg by d was established using a sp of 109. \bigcirc

Dermal absorption

Dermal absorption was evaluated with the representative formulation (EC 190) in vitro using human skin, is a result of the study conducted with the representative formulation (EC 190), the following dermal absorption values are used for the risk assessment based on the critical GAP uses:

- 1% for the concentrate (56 g a.s. H)
- 9% for an intermediate dose (6% g a. 5).
 10% for a low dose (0.12 g.a. 5./L)
 For defails see CP 75. 9% for an intermediate dose (0.9 g a.s.)

⁶http://ec.europa.eu/food/plant/pesticides/approval active substances/guidance documents/docs/pesticides appr oval-active guidance 2015-10832.pdf

CP 7.2.1 Operator exposure

The EFSA guidance on assessment of non-dietary exposure is used. The critical GAP (cGA) operator risk assessment is presented in the table below.

	Table 7.2.1-1	Critical GAP f	for operator ex	posure evaluations
--	---------------	-----------------------	-----------------	--------------------

				×.'	
Сгор	F/ G	Application method	Application rate (kg a.s./ha)	Spray oolume	Dermal absorption
Wheat, rye, triticale, oats	F	Field crop sprayer	069875	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Barley	F	Field crop sprayer		400-300	
$F = field \cdot G = gree$	enhouse		4 m Qi		

field; G = greenhouse

The product will be applied with tractor-mounted/-trailed field crop (bown) sprayers. The cover in wheat, rye, triticale and oats results in the highest exposure due to the higher application rate. Separate calculations for the use in barley are therefore not presented in this dossier.

A summary of the exposure estimates resulting from the critical GAP is presented in the following table. Further information or input parameters and FESA calculator output are presented in CP 7.2.1.1.

Summary

Table 7 2 1 2.	Dusticto	de la custo	2 and Same	flue
Table 7.2.1-2:	r realcu	coperano	r exposure u) Huoxastropph

Crops	₽F/ G	Application method PPT Systemic exposure (mg/kg bw/day)	% of AOEL (0.03 mg/kg bw/day)
Wheat, rye,	F	Vehicle mounted/	13
triticale, oats	Ĩ,	Vith ² 0.0004	1
1 No DDE:	@Cot	ton Suester working hover the no glasse	

In addition to the working coverall protective gloves are worn during mixing/loading and when getting ² With PPE: into contact with comminated surface

Assessment

Exposure of operators wearing a working coverall but working with bare hands is 13% of the AOEL. Exposure of operators wearing, in addition protective gloves during mixing/loading and when getting into contact with contaminated surfaces & 1% of the AOEL.

Conclusion

Based on these favourable exposure estimates there is no unacceptable risk anticipated for operators with regard to exposure to fluoxastrobin.

CP 7.2.1.1 Estimation of operator exposure

Exposure estimations are made using the EFSA guidance on the assessment of exposure of operators including the EFSA calculator⁷ (version: 20 Mar 2015).

The product is applied using field crop sprayers in arable crops (cereals). Exposure is calculated based on the cGAP for wheat rive triticale and costs (cost Table 7.2.1.1) on the cGAP for wheat, rye, triticale and oats (see Table 7.2.1-1).

A summary of the input parameters and the exposure output resulting from the EFSA calculator is presented below. **Table 7.2.1.1-1: Summary of operator exposure to fluoxastrobio**

Ŵ.

No PPE:	Work w	ear: arms, body and	d legs 🐼	vered		o s		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substance	Fluoxastrobin	Formulation = Soluble conc emulsifiable concentrate, e	entrates, Ap tc. au	plication rate 00	875 kg Spray dilut	0H = 0.8754 3.5./I	Vapour press Colatile sub Onaving a Cor of <5*103Pa	ure = low ances o our pressure
Scenario	Cereals / Outdoor / [Downward spraying / Vehicle r	nounted		B (ffer = 2-:		Number appl Application i	ications = 2, aterval = 14
Percentage Absoprtion	Dermal for product =	1 Dermal for in use diluation	نوم` ف ير ج	al = 100 [®]		= 100		
RVNAS	0.03 mg/kg bw/day		© [₹] RV		of syng/kg bw	rojav "O	<u>k</u> ,	
DFR	3 µg a.s./cm2 per kg a.s./ha			58 ~\s 10°	√ ³⁰ day	<u> </u>	0"	
Operator Mode		Mixing, loading and apoppica	tion ACEM	Å				
Potential exposure	Longer term system	exposure meykg bw/day	0 e		% of RVNA	s of	20.28%	
	Acute systemic po	sure mg/kg bw/may>) _S 8.0)431	% o% @ VAA:	s 🖘		
Mixing and Loac	ing	Shoves = No 5 5 7	Clo ar	othiog = Work@ea ns/body and egs vered	ar - REE = None	Ŷ,	Soluble bags	= No
Application	A A			othing Work we ms, booy and legs veree	RPE-None	2	Closed cabin	= No
Exposure (including PRE	Zonger term system 。	exposure mg/kg bw/may	م م 0 , 0 %	088	% of RVNA	S	12.78%	
options above)	Acute systemic expos	sure mg/kg bw/day	× × %.()217 🕵 🖉	% of RVAA	S		

⁷ http://www.efsa.europa.eu/en/efsajournal/pub/3874http://www.efsa.europa.eu/en/efsajournal/do

Bayer CropScience Document MCP: Section 7 Toxicological studies BIX+FXA+PTZ EC 190 (40+50+100) G

With PPE: Gloves during mixing/loading and when getting in contact with contaminated surfaces,

	work we	ar: arms, body and	i legs (covered			× ×	Ö
Substance	Fluoxastrobin	Formulation = Soluble conc emulsifiable concentrate, e	entrates, etc.	Application rate-0.0875 kg a.s. /ha	Spray dilution = 0.87	5ga.s./IVa vo	apour pressure Now platile substances aving a vagour pressur	
Scenario	Cereals / Outdoor / Do	ownward spraving / Vehicle-r	nounted		Buffer = 2-3	<u>ot</u> N	f <5*10 Pa	<u>»</u>
				<u>`</u>	×,	A) da	ppherition interval = 14	
Percentage Absoprtion	Dermal for product = 1	Dermal for in use diluation	= 10	Oral = 100 🔇	Inhalation = 100			
RVNAS	0.03 mg/kg bw/day			RVAAS	n@kg bw/day	×)	0. 5	
DFR	3 μg a.s./cm2 per kg a.s./ha			DTS	J ³⁰ days	,0 ¥{X} ~~{X} ~~_		Ž, ^v
Operator Mode	1	Mixing, loading and applica	tion AOEN		<u>, , , , , , , , , , , , , , , , , , , </u>	8		7
Potential exposure	Longer term systemic o	exposure mg/kg bw/day	Ő	0.0061 X	K of RVNAS		0.28%	0
	Acute systemic exposu	re mg/kg bw/day		@ 9 431	% of RVAAS	O		
Mixing and Load	ding	Gloves = Yes		Clothing Work w@ - arms@ody and legs covered	RIPE=None, O	so Solution	bluble bags = NG S S	
Application		Gloves = Yes	d d	 Chothing = Work wear - O Arms, body and legs covered 	RPE=Mane		osed caajn = No	
Exposure	Longer term systemic	exposure m@kg bw/day	O,	0.000	of RVNAS	\$ \$	34%	
(including PPE						0	/	
options above)	Acute systemic exposu	ire mg/kg bw/day	») ^y	40.0078	% of RYAAS			
		× 1 0	J.	Å S		G.		

Measurement of operator exposure of 5

CP 7.2.2 Bystander and resident exposure

CP 7.2.2 Bystander and resident exposure The EFSA guidance on assessment of non-dietary exposure is used. Exposure estimations for the resident scenario which also covers the bystander scenario are provided using the EFSA calculator.

Table 7.2.2-1:	Summary of	critical	GAPs for	residents	covers b	ystander)

restaent set	0114110 ((111011 u		e ogstallael	seemane are pro			
The critical	GAP (cGAP)	for resident/	bystander r	isk assessment i	s presented	l 🗑 Table 7.1	2.2-1.
Table 7.2.2	2-1: Summar	y of critical (GAPs for r	residents (cover	s bystand	er)	
Crop	Application	Max. dose	Spray	Max conc. of	Max	Min. spray	Dermal
	tecnnique	rate (kg a s /ha)	(L/ha)	\mathbf{a} . In spray	annl	adays)	absorption
Wheat, rye, triticale, oats	Field crop sprayer	0.0875	100-300			P D P4 C4	
		Á	Ŷ ¢Ÿ.		ý _v		ž O

1 m The critical bystander and resident exposure scenario for field crop pray application with off-target drift is the use in wheat, rye, oats and tutcale 12 x 0.0875kg A.s./ha in 100L water). With this use the highest application rate is conditioned with the lowest water volume yielding the highest concentration of a.s. in the spray. Consequently also appropriate dermal absorption data are used.

Separate calculations for the use in barley - due to lower application rates are therefore covered and not presented in this dessier. 0

A summary of the prosure estimates resulting from the critical GAP is presented in the following

A summary of the scrosure estimates resulting from the critical GAP is presented in the following table. Further information on input parameters and ESA calculated output are presented in CP 7.2.2.1.

Ø1

Summary

7.2.2-2: Predicted	l systemic exposures to fluoxas	strobin	
Target group	Scenario	Total systemic exposure (mg/kg bw/day)*	% of AOEL (0.03 mg/kg bw/day)
	Spray drift	0.0021	277×7
	Vapour	0.00	
Resident-child	Surface deposits	0.0003	
	Entry into treated cops	0.002 <i>3</i>	
	All pathways	0.0043	2 · · · · · · · · · · · · · · · · · · ·
	Spray drift	<u>کَ ۵۵</u> 000 <i>5</i>	
	Vapour	0.0002	
Resident-adult	Surface deposits	0.0001	
	Entry into treated erops	× ~0.001\$ 5	
	All pathways	<u>م</u> 0.0016 م	Č , ~5

Assessment

resident exposure to Autoxastrobin are 5% and adult and child Mean estimates over all path 14% of the AOE

Conclusion

estimates there is no inacceptable risk anticipated for use to fluoxastrobin. Based on these favourab residents bystanders

Estimation of by stander and resident exposure **CP 7.2.2.1**

Exposure estimations are made using the EFSA guidance on the assessment of exposure of residents including the EFSA calculator (version: 20 Mar 2015).

The product is applied using field crop prayers in arable crops (cereals). Exposure is calculated based on the cGAP for wheat, rye, triticale, pats (see Table 7.2.2-1).

A summary of the input parameters and the exposure output resulting from the EFSA calculator is presented below.

0

Table 7.2.2.1-1: Summary of resident exposure to fluoxastrobin

					Q \lambda
Substance	Fluoxastrobin	Formulation = Soluble concentrates,	Application rate-0.0875 kg	Spray dilution = 0.875 g a.s./l	Vapour pressure tow
		emulsifiable concentrate, etc.	a.s. /ha		volatile substances
				^ .	having a vap (Uppressure
				0*	of <5*10-3
Scenario	Cereals / Outdoor / Do	ownward spraying / Vehicle-mounted		Buffer = 2-3	Number application 7,
				10	Application interval = 14
				A	days a star
Percentage	Dermal for product = 1	Dermal for in use diluation = 9	Oral = 100 🔊	Inhalation = 100	
Absoprtion			G	Ô, X	
RVNAS	0.03 mg/kg bw/day		RVAAS	mgQg bw/day	
DFR	3 μg a.s./cm2 per kg		DT50	B0 days	
	a.s./ha			<u>Q'</u>	
Resident - child	Spray drift (75th pe	ercentile) mg/kg bw/day		^v % of RV49AS) ^{7.10%} ©
	Vapour (75th perce	entile) mg/kg bw/day	^{\$0.0011} 0	% of rvnas	3.57%
	Surface deposits (7	75th percentile) mg/kg bw/day	0.000	% of RVNAS	1.07%
	Entry into treated	crops (75th percentile) mg/kg bw/day	0.0023 Č	% of RVANAS	£,64%
		<u>A</u>			
	All pathways (mea	in) mg/kg bw/day	×0.0043	% #RVNAS	14.36%
Resident - adult	Spray drift (75th pe	ercentile) mg/kg bw/da		BOT RVNAS Y	
	Vapour (75th perce	entile) mg/kg bw/da 🖇 🔍	QQ802	% of RXNAS	B/17%
	Surface deposits (7	75th percentile) my/kg bw/da	0.0001	% or the second	0.31%
	Entry into treated	crops (75th percentile) n	0.0013	R of RVNAS	4.24% ⁷
	All pathways (mea	n) mg/kg w/day	0.0016	% of ROMAS	Q.18%
			j ^v '0' '		

Measurement of bystander and resident exposure **CP 7.2.2.2**

CP 7.2.3 Worker exposure

The EFSA guidance on assessment of non-dietary exposure is used. The critical GAP (co worker risk assessment is presented in Table 7.2.3-1.

Table 7.2.3-1	Critical GAP	for worker	exposure	evaluations

Сгор	F/ G	Re-entry activity	Application rate (kg a.s./ha)	Number of Applications	Min. sprav interval (days)	Dermal absorption
Wheat, rye, triticale, oats	F	Crop inspection	0.08%			
F = field; G = greer	house				S & S	A L°

The product will be applied with tractor-mounted/-trailed field crop (boom) sprayers. The cSAP in cereals is wheat, rye, oats and tritical resulting in the highest exposure due to the higher application rate. Separate calculations for the use in badley are therefore not presented in this dossier.

No manual activities are necessary for maintaining the cross? Harvesting of cereals is performed by appropriate machines. Hence, there is in general no scenario for which worke exposure needs to be addressed. However, for field crops it is required to assess worker exposure due to crop inspection activities. The work duration is proposed to be shours per day,

A summary of the exposure estimates resulting from the critical GAP is presented in the following table. Further information on input parameters and EFSA calculator butput are presented in CP 7.2.3.1.

Summary

Crops	FA Re-entry Gactivity	Člothing Scenařio	Systemic exposure (my/kg bw/day)	% of AOEL (0.03 mg/kg bw/day)
Wheat, rye,	F Crop	Necclothing	0.0189	63
oats	inspection	Arms Sody	0.0021	7
		× .0.		

Table 7.2.3-2: Predicted worker exposure to fluoxastrobin

Assessmen

orkers to Suoxastrobin (wearing no clothing) is 63% of the AOEL. Exposure of Expo one layer of work clothing is 7% of the AOEL.

Conclusion

Based on these favourable exposure estimates no unacceptable risk is anticipated for workers with regard to exposure to fluoxastrobin.

CP 7.2.3.1 Estimation of worker exposure

Exposure estimations are made using the EFSA guidance on the assessment of exposure of workers including the EFSA calculator (version: 20 Mar 2015).

The product is applied using field crop sprayers in arabic crop-on the cGAP for wheat, rye, triticale and oats (see Table 7.2.3-1). A summary of the input parameters and the exposure output resulting from the EFSA calculator is constant below.

Table 7.2.3.1-1: Summary of worker exposure to fluoxastrobin

Industry in the second of the second second in the second second second in the second second in the second second in the second se	Substanco	1000000000000000000000000000000000000
cenario Cereals / Outdoor / Downward spraying / Vehicle memted Buffer US Auriber replace ercentage Demmal for product = 1 Dermal for in use dilighton = 18 Ora 2 fto Window / Oracle / O	Substance	emulsifiable concentrate, etc.
cenario Creak / Durdoor / Downward spraying / Vehicle-rejounted Public P		A A A A A A A A A A A A A A A A A A A
errentage Dermal for product = 1 Dermal for in use eliablem = 18 Orgi \$40 Products = 0 Product	Scenario	Cereals / Outdoor / Downward spraying / Vehicle-mounted
ercentage tescoprior NTAS 0.03 mg/kg bw/day 0 0044 FR 3188.5/m2 per kg 0 050 working dothing mg/kg bw/day 0 0188 5 of 160AS 02.868 working dothing mg/kg bw/day 0 0188 7 of 160AS 02.868 working dothing mg/kg bw/day 0 00189 7 of 160AS 0 7.066 Testion 0 00189 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 0 00189 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 7 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of 160AS 0 7.066 Working dothing and gover mg/kg bw/day 1 of		Application inte
The second of	Porcontago	Dermal for product = 1. Dermal for in use dil M on = 10 γ Oral 900 γ M and M or = 10 γ
NNAS 0.03 mg/kg bw/day 0 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Absoprtion	
Offer 3 ugas.fm Worker- inspection, metal exposure mg/kg bw/day 0.0189 % of dipAs 42.84% Working clothing mg/kg bw/day 0.0219 % of dipAs 42.84% Working clothing mg/kg bw/day 0.0219 % of dipAs 42.84% Working clothing mg/kg bw/day 0.0219 % of dipAs 42.84% Working clothing mg/kg bw/day 0.0219 % of dipAs 42.84% Working clothing mg/kg bw/day 0.0219 % of dipAs 42.84% CP 7.2.3.2 Measurement of worker exposure % % Since the exposure estimate carried out indicate that the AOEE will, not be exceeded under pra onditions of use, a study to provide a measure of worker exposure was not necessary and herefore not carried out %	RVNAS	0.03 mg/kg bw/day
verker- nspection meter- meter- metering conting mg/kg bu/day Working clothing mg/kg bu/day CP 7.2.3.2 Measurement of worker exposure Since the exposure estimate carried out inflicate that the AOEs will, not be exceeded under pre- onditions of use, a study to provide a measure of worker exposure was not necessary and herefore hot carried out	DFR	3 μg a.s./cm2 per kg
Potentia exposure marke buyday 0.0089 0.0021 0 selfWiAS 0.2086 Morking clothing marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.7.046 Working clothing and does marke buyday 0.0021 0 selfWiAS 0.0021 0 selfW		
The second secon	Worker - Inspection,	Potential exposure mg/kg bw/day 0.0189 % of RV/MAS 92.84%
Working dothing and graves marke burder of worker exposure	irrigation	working clothing mg/kg bw/day v 5 0.0021 ° % Activities 5 0 7.04%
CP 7.2.3.2 Measurement of worker exposure		Working clothing and groves mg/kg bw/day
CP 7.2.3.2 Measurement of worker exposure	·	
CP 7.2.3.2 Measurement of worker exposite		
Since the exposure estimate carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate that the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not carried out indicate the AOEs will not be exceeded under prayon therefore not be exceeded under prayo	CD 7 2 2	2.2 Manufrant of water amount of the
Since the exposure estimate carried out indicate that the AOEE will not be exceeded under prayout on the exposure was not necessary and herefore not carried out	CP 7.2.3	5.2 measurement of worker exposinge 5° (° 48
ince the exposure examined arried out marcale and the AOFB will be exceeded under provide a measure of worker exposure was not necessary an herefore hot carried out	Cinca the	a sure Que a generate amin Dut is Pasta West the A OED will not be succeeded under an
At the other the	conunion	ns of use, # study to provide a measure of worker exposure was not necessary an
	therefore	ns of use, a study to provide a measure of worker expressure was not necessary an indicarried out
the second secon	therefore	not carried out
AT A A A A A A A A A A A A A A A A A A	therefore	not carried out
	therefore	not carried out
	therefore	not carried out
		not carried out
	therefore	not carried out
		not carried out
		not carried out
		is of use, a study to provide a measure of worker expessive was not necessary an not carried out
		is of use, a study to provide a measure of worker exposure was not necessary an not carried out
		is of use, a study to provide a measure of worker expessive was not necessary an not carried out
		is of use, a study to provide a measure of worker expessive was not necessary an not carried out
		is of use, a study to provide a measure of worker expessive was not necessary an not carried out
		is of use, a study to provide a measure of worker expessive was not necessary an not carried out
		is of use, a study to provide a measure of worker expessive was not necessary an not carried out
		is of use, a study to provide a measure of worker exposure was not necessary and not carried out the the the the the the the the the th
		is of use, a study to provide a measure of worker exposure was not necessary and the carried out the the the the the the the the the th

BAYER Bayer CropScience Document MCP: Section 7 Toxicological studies BIX+FXA+PTZ EC 190 (40+50+100) G

CP 7.3 Dermal adsorption

The extent of dermal absorption of Fluoxastrobin formulated as an EC 190 (Bixafen + Fluoxastrobin + Prothioconazole EC 190) formulation was investigated *in vitro* using human skin. A summary of the study is given in the following along with the mean values based on the study results and following application of the new EFSA⁸ guidance rules. A conclusion and recommendation regarding the dermal absorption of Fluoxastrobin formulated as a spray dilution of an EC 190 is given below.

⁸ EFSA Panel on Plant Protection Products and their Residues (PPR); Guidance on Dermal Absorption. EFSA Journal 2012;10(4):2665. [30 pp.] doi:10.2903/j.efsa.2012.2665.

Ø Test system: An automated flow-through diffusion cell apparatus (, UK) was used. The flow-through diffusion cells were placed in a manifold heated via a circulating water bath set to maintain the skin surface temperature at $32^{\circ}C \pm 1^{\circ}C$. The cells were connected to multi-channel peristaltic pumps from their affectent ports with the receptor fluid effluent dropping via fine bore tubing into scintillation vials on a fraction collector. The surface area of exposed skin wohin the cells was 0.64 cm². The receptor chamber volume was 0.25 mL. The perstaltion umps were adjusted to maintain a flow-rate of 1% mL/h^o ± 0.1% mL/k The receptor fluid was tissue culture medium containing PEG (*ca* 6%, w/v), glucose (*ca* 1%, w/v), strepton cin (0.1 mg/mL), penicillin G (100 units/mg) and soon agide (0.01%, w/v) The receptor fluid was degassed by someation for *ca* 10 min after being made and was stored in a refrigerator set to maintain a temperature of 4°C prior to ose on the study. *** S Sections of split thickness skin membrane Sca 1.5 2 1.5 cm, were cut and Skin integrity: positioned on the receptor clamber of the diffusion cellowhich contained a magnetic stirrer bar. The donor chamber was tightened into place with screws and the prepared cons were then placed in the feated manifold and connected to the peristaltic pump? A magnetic stirler was switched on to mix the contents of the receptor character. An equilibration period of ca 15 min was allowed while receptor flord was pumped through the receptor chambers at 1.5 mL/h D.15 mL/h. The effluent was then collected for ca 30 min and retained as blank samples for use In the tritiated water barrier integrity \assesstpent. Tritated water (250 µLzca 10,000 disintegrations per minute [d.p.m.]) was applied to the surface of each skin sample and the donor chamber occluded. Penetration of tritiated water was assessed by collecting receptor fluid for 1 h @ and malysing the sample by light sciptillation counting. The mean d.p.m. applied for the Ortiated water was calculated from the mock tritiated water sample taken at the time of dosing. The percentage absorption was then Calculated for each skin sample from the 1 h receptor fluid sample collected. Any human skin sample exhibiting absorption greater than 0.6% of the applied dose was excluded from subsequent absorption measurements. At the send of the lof period, residual tritiated water was removed from the skin surface. The skip surface was then rinsed with water and dried with tissue paper. An equilibration period of *ca* 2.25 h was allowed prior to collection of of the off the the pre-dose sample which was collected for *ca* 0.5 h. ⁶ The West Preparation was applied over the surface of the stratum corneum of Treatment: ten samples of skin using a positive displacement pipette set to deliver 6.4 µL $\int 0^{10} \mu L_{e}^{2} m^{2}$). To accurately quantify the concentration of test preparation applied to the skin samples, representative aliquots of the test preparation

Sampling

counting.

The absorption of the radiolabelled test item was assessed by collection of receptor fluid in hourly fractions from 0 to 8 h post dose and then 2 hourly fractions from 8 to 24 h post dose. All receptor fluid samples were mixed

were taken at the time of dosing. These samples were mixed with methanol:scintillant (1:5, v/v; 12 mL) and analysed by liquid scintillation with scintillation fluid (10 mL) and analysed by liquid scintillation counting.

At 8 h post dose, the cells were washed by applying commercial hand wash is a set of the cells were washed by applying commercial hand wash is a set of the cells were washed by applying commercial hand washed by applying comme soap (50 µL) to each skin sample and gently rubbing into the skin surface using a tissue swab. The skin was then washed with in aliquots (0, in the skin was then washed with in the skin was the skin was the skin washed with in the skin washed withe aliquot) of an aqueous commercial soap solution (2%)/v.

At 24 h post dose, each diffusion cell was disconnected from the receptor? fluid pump lines. The underside of the skin was rinsed (receptor rinse) with receptor fluid (ca 1.5 mL)

The stratum corneum was removed with 20 successive tape strips Scotch[™] Magic Tape) and individually placed into 20 mL scintillant vius containing methanol:scientilation fluid (1:5, v, 4, 12 mL).

All samples, except for triffated water samples were counted for 5 min Radioassay: together with representative blanks using a figuid scintillation analyser (Packard 2100-TR) with automatic quench correction by externel standard. Representative blank sample values were subtracted from sample court rates to give net do m. per sample. Prior to analysis, samples were allowed to stabilise with regard to light and temperature. The ritiated water samples were treated as above, except that they were subject to fiquid scintillation counting for kmin only.

The r tux astrobin was demonstrated to be sufficiently soluble in the receptor fluid to avoid any risk of back diffusion. Measurements of the flore generations of formulation applied indicated that it was acceptable. The study result are presented in Table 7.3.1.

Table 7.3-1: Mean distribution of radioactivity at 24 hours after dose application of [¹⁴C]- Fluoxastrobin in an EC 190formulation at the rates of 50 g/L, 0.9 g/L and 0.12 g/L to human skin samples.

Results expressed in terms of percentage of applied radioactivity.								
	Distribution of radioactivity (% dese)							
	Neat for	mulation:	Dilution: I	ntermediate 🖉	ř.	~~~~	Ŷ	
	High	n dose	de	ose	Dilution	: Kow dose	Ĉa	
Dose Levels	(50	g/L)	(0.9	g/L) 💭	(0)	2g/L) 🖉	de la companya de la comp	
Species	Human	n (n=10)	🖒 Huma	n (n=9\$/	Hurba	n (n=10)	S a	
	Mean	SD 🖉	ኛ Mean	SD	Mean	SD √		
	SURFAC	E COMPAF	RTMENT	<u>,0</u> ¥	<u> </u>	<u> </u>	<u>"</u> O"	
Skin swabs (total) ^a	94.72	2.70	87.74	5.20	®6.56	× 4.3⊅	Ĩ	
Surface Dose (1st two tape-strips)	0.22	0,10	1.77	E DO	6 [≫] 1.85 ∕∽	1.00	Ś	
Donor chamber	0.34	Q0 .14	1.20	s.⊈.12	¥ 1.2↓	9.93	2	
Total % non-absorbed	95.28	ر 2.68 _گ °	90,72	× 3.45	8066	کہ 3.75%		
	SKIN	<u>ÇŎMPÆŤ</u> TI	MĘŃŤ 🦯			4		
Skin ^b	0.30	0,20	2.19 ⁰	O3	2.64		Ç	
Stratum corneum ^c	0.40	×0.11 ×	3,60 📡	<u>A</u> 2.38	3.73	Q.22 Q	Y I	
Total % at dose site	0.70	``0.27 ~	5.99	2.78 J	637	🔬 3.09 🔊		
	RECEPT	OR COMPA	RTMENT		Û Á	y O		
Total % directly absorbed ^d	Õ [%] 0.09∜√	_0.04	°S 0.55 🔊	0,23	S 1.08	0 47		
STUDY:	/ "0"	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		D O	S.	, ≪ [*]		
Total % Potentially Absorbable ^e 🚿	0639	Ø 0.28 O	636	2.650	704	[™] ≫ 3.08		
TOTAL % RECOVERY 🖉	\$96.08	© 2.92∑ [™]	9 7.06	<u>[∞] 2.0</u> ¶ [∞]	≥97.11 %	2.36		
Evaluation according to EFSA Guidance								
absorption >75% within half of		an a	7 ~~		Ô			
study duration 🧟 🔍			<u> </u>		Ś	No		
standard deviation >25%	× X	Seš _n n	Y Y	es 🔊		Yes		
recovery < 5%	là d	No Ö		No 🌾 🕺		No		
adjusted:	r _O	S L		0″ 4⁄	2			
Total % Potentially Absorbable						10	J	

-: sum or radioactivity found in swabs at 8h and 24h b: sum of radioactivity found in skin after tape-stripping procedure and in sturiounding skin. c: tape-strips excluding numbers 1 & 2 which are considered to 8 non-absorbed dose. d: sum of radioactivity found in receptor fluid (0-24h) receptor fluid terminal and receptor chamber. total % directly absorbed + total % at dose site Ø

Absorbable according to EFSA are in bold t: values considered for the adjusted Total % Potentiall

Italics

SD: standard deviation

n.d.: not detected (below the limit of detection)

n.a. mot apploable

n.a. got apploable $\mathcal{O}' = \mathcal{O}' = \mathcal{O}'$ n. Sumber of skin cost used for calculation $\mathcal{O}' = \mathcal{O}'$ In the above table the precented means do not always calculate exactly from the presented individual Tata. This is due to rounding-up officrences resulting from the use of the spreadsheet program.

Conclusion:

The dermal penetration through human dermatomed skin of [14C]-Fluoxastrobin in the EC 190 formulation was investigated at the lowest spray dilution concentration of 0.25 g/L.

The mean percentage of Euoxastrobin in the EC 190 neat formulation that was considered to be potentially absorbable (deectly absorbed plus total remaining at dose site) over a period of 24 hours was 0.79% for John skin. Applying the new EFSA guidance this value adjusts to 1%.

The mean percentage of Fluoxastrobin in the EC 190 formulation intermediate dose spray dilution that was considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours was 6.16% for human skin. Applying the new EFSA guidance this value adjusts to 9%. ©

The mean percentage of Fluoxastrobin in the EC 190 formulation low dose spray dilution that was considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a

Bayer CropScience Document MCP: Section 7 Toxicological studies BIX+FXA+PTZ EC 190 (40+50+100) G

period of 24 hours was 7.34% for human skin. Applying the new EFSA guidance this value adjusts to 10%.

According to the new EFSA guidance⁹ there is the provision that when the sampling period is 24 hours (which is the case for this study) and over 75% of the total absorption (material) the receptor fluid at the end of the study) occurred within half of the duration (12 hours) of the total sampling period that the absorption will be taken as the sum of receptor fluid, receptor chamber washes and the skin sample excluding all tape strips. These criteria were not met in this study. There is also the provision that a standard deviation equal to or larger than 25% of the mean of the absorption requires the use of an . (TAU information - data provided separately (Document JCP, for BIX+FXA+PTZ EC alternative value or rejection of the study. The guidance prefers the approach of adding the standard deviation to the mean to cover the upper 84th percentile value of the results. Additionally where any overall recovery of less than 95% occurs, a normalisation procedure is to be used by preference. Neither of these criteria was met and therefore the application of the suidance results in the following values for [14 C]-Fluoxastrobin in the BIX+FXA+PTZEC 190 formulation: