

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer crop science. No part of the document or any information contained therein may be disclosed to any third

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the authority. Other registration authorities should not a basis of the summaries. From Bayer CropScience; or From other applicants once the period of data protection has expired. basis of the summaries and evaluation of unpublished proprietary days contained in this

Version history

Date	Data points containing amendments or additions ¹ and	Document identifier and
	brief description	version number
		version number
	T S	
¹ It is suggested the	nat applicants adopt a similar approach to showing revisions ar	nd version bistory & outlined in &
SANCO/10180/2	013 Chapter 4 How to revise an Assessment Report	
		7 . Š . Š . Q
		4
	nat applicants adopt a similar approach to showing revisions are only control of the property	J'
8		
_		
~0		
4		
, W		
/		
e ⁽		
Ô		
Ű		
- 29 £		
U	Data points containing amendments or additions¹ and brief description at applicants adopt a similar approach to showing revisions at 2013 Chapter 4 How to revise an Assessment Report	
	and applicants adopt a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to showing revisions are properly as a similar approach to show in the similar	

Table of Contents

		Dogge
CA 6	RESIDUES IN OR ON TREATED PRODUCTS, FOOD AND FEED	age SS
CA 6.1	Storage stability of residues	7
CA 6.2	Metabolism, distribution and expression of residues	320
CA 6.2.1	Metabolism, distribution and expression of residues in prants	~ 36
CA 6.2.2	Poultry	Ž
CA 6.2.3	Lactating ruminants	
CA 6.2.4	Pigs O	
CA 6.2.5	Pigs	
CA 6.3	Magnitude of residue trials in plants	
CA 6.3.1	Barley and Oat	.4. 95
CA 6.3.2	Wheat and Rye	25° 15°1
CA 6.3.3		
CA 6.4	Onion A A A A A A A A A A A A A A A A A A A	
CA 6.4.1	Poultry S S S S S S	a 179
CA 6.4.2	Ruminants S S S S	192
CA 6.4.3		196
CA 6.4.4	Fish Y Y Q Y	
CA 6.5	Effects of processing O A A A A A	198
CA 6.5.1	Nature of the residue	198
CA 6.5.2	Distribution of the residue in medible peel and rulp	198
CA 6.5.3	Magnitude of residues in processed control dities	198
CA 6.6	Residues in fotational crops Metabolism in retational crops	226
CA 6.6.1	Metabolism in retational crops	
CA 662	Magnitude of residues in rotational crops as	226
CA 6.7	. Proposed residue definitions and maximum residue levels	232
CA 6.7.1%	Proposed residue definitions	232
(`A 6 %?	Pronose@maxx@im residue levels@MR lev and listification of the	
	acceptability of the levels proposed	232
CA 6.7.3	Proposed maximum residue levels (MRLs) and justification of the	
	acceptability of the levels proposed for imported products (import toleran	ce) 251
CA 6.8	Proposed safety intervals	252
CA 6.9	Estimation of the potential and actual exposure through diet and other	
Ø	sources . Q Q X	254
CA 6₄10	Other stidies 2	266
CA 6.10.1	Effect on the residue level in pollen and bee products	266
	acceptability of the levels proposed Proposed maximum residue levels (MRLs) and justification of the acceptability of the levels proposed for imported products (import toleran Proposed safety intervals Estimation of the potential and actual exposure through diet and other sources Other studies Effect on the residue level in pollen and bee products	

CA 6 RESIDUES IN OR ON TREATED PRODUCTS, FOOD AND FEED.

As published in <u>Commission Directive 2008/44/EC of 04th April 2008</u> and with an Entry into Corce (EIF) date of 01st August 2008, the fungicide fluoxastrobin was first included in Annual I to Commission Directive 91/414/EEC.

Now, with the aim to achieve European Re-Approval under Regulation 11072009 Bayer CropScience (BCS) provides this 'Supplementary Dossie'. It contains only new data which were not submitted at the time of the Annex I inclusion of fluoxastrobio under Commission Directive 91/414/EEC and which were therefore not evaluated during the first European review.

In addition to submitting the above mentioned Supplementary Dossier, all studies relied upon under 91/414 and contained in the Draft Assessment Report and its Adderda are for the convenience of the reviewers – included in what BCS calls 'Baseline Dossier' Document (Sevel Only).

In order to ease the reviewers' orientation on old' studies in the Baseline Dossier versus 'new' studies in the Supplementary Dossier, BCS has decided to apply the following basic principles?

- 1. Conversion of the Document K part of the old EU dossic structure into the new structure (acc. to Commission Regulations 283/2013 and 284/2010 and linking the old studies to the new structure according to the cross-walk tables provided in Guidance Document SANCO/10181/2013 rev 2.1 of 13th May 2019.
- 2. On a case-by-case basis and where useful for the reader, old studies from the Baseline Dossier are occasionally summarised on the Document M level of the Supplementary Dossier; the text of those summaries is formatted in grey but cover.
- 3. For any referenced old study, its bibliographic information (e.g. author, year, document number) is formatted in grey font colour.
- 4. For an new study, its bibliographic information and its free flow summary text and table content is formatted in standard black for colour.

Where applicable, the above formating rules apply to all dosper elements (e.g. MCA, MCP, JCA etc.).

According to the guidance of FSA on the Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009" (EFSA Journal 2011; 9(2):2092), literature for the active substance and its metabolites needs to be presented, covering the last 10 years prior to the submission of this Annex I renewal dossier. In relation to this section 6 no adequate scientific peer-reviewed open literature was identified which would need to be reported. There were no findings in the scientific peer-reviewed open literature for the active substance fluoxastrobin and its metabolites which might have a possible impact on an end-point or the risk assessments.

The crops, for which uses were supported in the initial Annex II dossier were wheat, rye and barley (seed dressing followed by two spray applications with an FS 080 and EC 100, respectively). The evaluated representative uses as fungicide comprised foliar spraying to control a range of fungal diseases in wheat, rie and barley at an application rate of 2 ×200 g fluoxastrobin per hectare.

The scientific information evaluated in the EU peer review is summarised in the DAR (June 2005) including addenda and the EFSA Scientific Report (2007) 102, 1-84, Conclusion on the peer review of fluoxastrobin (rev 2007), finalized the 13th June 2007.

Confirmatory data related to the residue section were evaluated by the RMS UK and the assessment was made available with Addendum 8 to the DAR (initially January 2011 and a revised and updated version, April 2012). After assessment of the confirmatory data, the revised review report (SANCO/3921/07 dated 28 September 2012) was issued.

Fluoxastrobin was evaluated in the frame of the review of the existing MRI according to Art For Reg. (EC) 396/2005 (EFSA Reasoned opinion; 2012; 10(12):3012).

This Supplementary Dossier contains only detailed study summaries of additional studies which were not part of the dossier during inclusion in Annex I of Directive 1/414 and were, therefore, not evaluated during the first EU review of this compound. The summaries on the relevant endpoints were taken from the EFSA-DAR and its Addenda, from the EFSA Conclusion and the EFSA Reasoned Opinion on existing MRLs and are supplemented with additional information (additional studies and further comments).

MRL application

An MRL application for barley, oat, wheat and rye will be submitted along with and as part of this supplementary dossier. Since the crops concerned in the MRL application form (barley, cats, wheat and rye) and the crops selected for the representative uses are the same the procedure to combine the supplementary dossier and the MRL application is considered to provide more transparency and efficiency for the evaluation process. The process was agreed with the RMS UK.

All data relevant to the MRL application—including the summary forms of the supervised residue trials - are included in the supplementary dossion. The representative uses and the MRL application for the corresponding crops are supported by the same desidue data.

Note: Denomination of the active substance and its isomers

In the original ceports the active substance and the E-and Z somer are sometimes denominated differently. Initially the common name fluorastropin (chemical code HEC 5725) was assigned to both, the E-and Z isomer as a sum and thus in some reports the active substance fluorastrobin is used as a synonym for both isomers as a sum During the E-I people view it was agreed to define the active substance fluorastrobin as the E-isomer only and the Z-isomer was assigned as an impurity. The definition of the active substance is laid down in the LFSA Scientific Report (2007) 102, 1-84 and in the Inclusion Directive 2008/44 EC (4 April 2008).

Nevertheless, malytical results are always available for both isomers and the total residue is calculated as the sum of both isomers.

Throughout this dossier section the following denominations are used:

- Flooxastrobin (NEC 5725 E-isomer), Tuoxastrobin (E-isomer)
- WHEC 5725 Zasomer Z-isomer of Maoxastrobin
- Total residue HEC 725 (Sum of HEC 5725 E-and Z-isomer, calculated)
- Parent compound: mixture or sim of huoxastrobin and its Z-isomer (in the metabolism chapter). The livestock metaboliste HEC 5725-phenoxy-hydroxypyrimidine is also addressed as M55 or HEC 7154 in the study reports.

For substance codes synonyms and abbreviations please refer to 'Document N3 - 'Substances and metabolites structure, codes, synonyms – Fluoxastrobin'.

CA 6.1 Storage stability of residues

The storage stability of the residue for fluoxastrobin (HEC 5725 E-isomer) are HEC 5725 C-isomer was examined in plant matrices. The results are given in detail in the DAR (2005) up to storage periods of 12 and 24 months (interim reports ; 2001; M-068950-01-1 and

; 2002; M-069819-01-1) and in Addendum 1 up to 30 conths (final proof M-085223-01-1). These data were peer reviewed during the Annex Localusion proofs.

The results demonstrate that, under freezer conditions residues of thoxastrobin GEC 525 E-comers and its Z-isomer were stable over a storage period Aup to 30 months.

Following the Annex I inclusion additional data were generated in order to cover all relevant commodity categories as outlined in OECD guideline 506 or in order to address US data requirements for the processed commodities.

A brief summary of the data is presented in Table 6.1

Table 6.1-1: Summary of storage stability data for fluoxactrobit in plant matrices

Compounds	Plant matrix	Stability O	Strage Onditions	Dosster reference	Reference
HEC 5725-E-isomer HEC 5725-Z-isomer	Wheat forage Wheat grain Wheat straw Potas tuber Comatorruit Lettuce Rad	At legit for 30 months		(30 months)	EFSA Scientific Report (2007), 102 List of endpoints
	Rape seed Rape green	At least for 34	≤ 98°C %	; 2005; M- 261360-01-1	CA 6.1
HEC 5\$25-Z-isomer	from barle grain (beer, brewers' malt, brewers' grain, and thalt	At Jeast for 12 months	\$ \$ -18°C	;; 2004; M- 075659-01-1	CA 6.1
	Orange Fruit	A least for 6 whonths (phase repen)		;; ;; 2015; M-531541-01-	CA 6.1

In addition, wishort ferm storage stability study is reported addressing stability of HEC 5725 E-and Z-isomers under conditions relevant to those which occurred during shipment of field samples from a residue study on onions. For some field samples the requested storage temperature of -18°C was exceeded during the transportation. The impact of this temperature deviation is addressed by a short-term storage stability experiment under conditions relevant to these samples.

The supplementary information is summarized below.

KCA 6.1/04 S; 2005; M-261360-01-1 Report:

Storage stability of fluoxastrobin in/on rape seeds and green material during free storage for 24 months Title:

storage for 24 months

Report No.: MR-203/02 Document No.: M-261360-01-1

EU Ref.: EU Council Directive 91/474/EEC Guideline(s):

US EPA Residue Chemistry Test Guideline OPP

Guideline deviation(s): **GLP/GEP:** yes

Storage stability of fluoxastrobin (HEC 5729 E-is@mer) and HE in/on rape seeds and green material during freeze ostor The study was exaluated on national level in EU member states.

Test system:

somer and HEC The test conditions of the storage stability study on fluoxastrobin of 5725 Z-isomer were as follows:

Test substance: HEC \$725, containing 90% E-isomer (fluoxastrobin) and 10% Z-isomer 0.50 mg/kg/HEC 725 m/on rape green material, i.e. (non-mal) 0.45 mg/kg Fortification level:

Exisomer and 0.05 ms kg Z-isomer

0.2 mg/kg fleoxastrobin incon rape seed i.e. (gominal) 0.18 mg/kg E-isomer

and 0.02 mg/kg Z isomer

rape green material and Plant matrices:

Storage temperature:

material additionally 115), 180, 330, 540 and 720 Storage intervals:

Test Commodities

udies and included rape green material and oil seed rape Control material was taken from sesidues (seed).

Test Procedures

Untreated samples were prepared by shredding with dry ice in a cutter. The spiked samples for storage were prepared by spraying a large aliquot of each ownogenised sample material in deep-frozen state in a cutter bowl with a suitable amount of standard solution of fluoxastrobin and its Z-isomer resulting in a target fortification level of the 10fold LOQ for each plant material. After spraying, the fortified sample material in the cutton bow was komogenised again with dry ice and small aliquots were transferred into polystyrene containers for storage. The used fortification procedure is only semiquantitative, as losses of sample material and losses of spiking solution can occur when the spiking solution is sprayed into the open cutter bowl. The actual fortification level achieved was determined via the analysis of the day samples. For rape seed, the actual fortification levels of the test substances were 83% for E-isomer 1% for Z-isomer and 84% for the total residue of HEC 5725 relative to the target argount. For rape green material, actual fortification levels of 117% for E-isomer, 127% for Zisomer and 118% for the total residue of HEC 5725 were achieved. The average recovery found in the spiked samples on day 0 was defined as 100% for each substance and each sample material and the recoveries from later storage intervals were calculated as relative recoveries from that value.

Results and discussion

The residues of fluoxastrobin were determined according to method 00649/M001 (2004); 2001; Moli 137093-01-1_). The LOQ of the method is 0.045 mg/kg for green material and 0.018 mg/kg in seed for the HEC 5725 E-isomer and 0.005 mg/kg in green material and 0.002 mg/kg in seed for HEC 5725 Z-isomer (calculated LOQ for the total residue HEC 5725 is 0.05 and 0.02 mg/kg, respectively). A full set of validation data is reported in CA 4.1.2.

Method 00649/M001 was validated during the study by sets of pre-running and/or concurrent recovery experiments at each storage interval. These recovery experiments were performed by spiking control samples with HEC 5725 E- and Z-isomer. In the case of pre-running recovery experiments for method validation, control samples were fortified at a fortification level corresponded to the QOQ. On the case of concurrent recoveries, the fortification level corresponded to the QOQ.

Pre-running recovery sets for method validation were conducted at the nominal storage intervals of 0, 180, 330, 540 and 720 days. For this purpose, stored control samples were freshly fortified with the test substances at the respective LOQ evel. The freshly fortified samples were then extracted earned up and analysed before or concurrently with the control and spiked samples of the corresponding nominal storage intervals. The obtained recovery data for method calidation are presented in Table 6.1-2.

Concurrent recoveries were conducted at the nominal storage intervals of 30, 90, 480, 330, 540 and 720 days, and, for green material only, also at the nominal storage interval 115 days. For this purpose, stored control samples were freshly fortified with the test substances at the respective 10 fold LOQ level. The freshly fortified samples were then extracted cleaned up and analysed concurrently with the control and spiked samples of the corresponding nominal storage intervals.

The relative recovery values for HEC 5725 E and Z somer and the calculated total residue at the different storage intervals for rape sect and green material in spiked samples are reported in Table 6.1-3 and Table 6.1-4 along with the obtained concurrent recovery data. The values presented in these tables were not corrected for the concurrent recoveries at the respective intervals. At each storage interval, control samples were analysed concurrently with the spiked samples. The blank values for all control samples malysed were below 10% of the respective LOQ values for HEC 5725 E-and Z-isomers.

The mean relative recoveries to day wat all storage intervals were between 93 and 115% for sample material of rape seeds and between 78 and 98% for rape green material for fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the calculated total residue (sum of E-and Z-isomer).

It can be concluded that residues of fluorastrobin (HEC 5725 E- isomer) and HEC 5725 Z-isomer feature good stability during deep-frozer storage for a period of (at least) 24 months in commodities of high oil content (rape seed) and in plant green material. There was no trend indicating that decomposition may occur in a time dependent mode after longer storage periods.

Table 6.1- 2: Recovery data for method validation for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 – Z-isomer

	T	1			I		I	
Analyte	Sample Material	Fortifi- cation Level [mg/kg]	Date of Extraction	Nominal Storage Interval	Indiv Recov [%	idual 🖔 veries 💸 6] 🔗	Mean [%]	Ø ØRSD (V [%].C
Fluoxastrobin	Rape Seed	0.018	2002-11-18	0	90 ≴	√ 91	:29T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(HEC 5725 E- isomer)			2003-05-21	4.80	8907	92	91	y"- ,@
			2003-10-20	330	(39)	92 🏑	P 915	-\$
			2004-05-05	<u>√</u> 540	Ø 88 Z	. 85 [©]	87	
			2004-11-08	720	86	% 6	O 86) - Ô
			Overall Mean and	RSP°[%]			89	2.8
Fluoxastrobin (HEC 5725 E-	Rape	0.045	2002-11 🛛 8		Ø 97 S	986	98 O 92	4-
isomer)	Green Material		2003 -1 05-21。©	~1 % 0	& 91 °	€ 92	O 92	, - , <u> </u>
			2003-10-20	330	494	94	94,	
			2004-05-05	5407	ى چ 95 كى		6 7	, Q
			Ç 2004@1-08 🖔	#20 <u>~</u>		38 9	\$ 89	P _
		~	Overal Mear and				947	4.1
HEC 5725 Z- isomer	Rape Seed	0.002	°~2002-11-18	0 A	92	80	© \$8	-
isomer			2003 605-21	∂ 80 €	/ <u>83</u> /	281	82	-
	%	9) (2003-10-20	330	₩ 392	S 90 S	91	-
	₩		©2004-0©05		89	, (Q)	87	-
			2004-11-08	\$20	90°	% 81	86	-
	S, C		Overall Mean and			V	87	5.2
HEC 5725 Z- isomer	Rape	0.005	(£,2002-j.j.×18		Ø 95∜J	101	98	-
	Green Material	\$\int_{\infty}\$	2003-05-21	\$80 O	80	93	92	-
	4		2 0 93-10-29	7330 ₀	1 00	95	98	-
Ş	, O		2004-05-05	540°	O ^y 102	100	101	-
Ů			200-11-08	€ 720 Å	86	87	87	-
		<i>V'</i>	Overall Mean and	RSD [%	ı		97	4.5
Total residue HEC 5725	Rape Seed	0002	2002-11-18		90	90	90	-
			2003/-05-21	180	89	91	90	-
	Ď		2 603-10-20	330	90	92	91	-
			2004/03-05	7 540	88	85	87	-
*			2004-11-08	720	86	85	86	-
			Overall Mean and	I			89	2.8
Total residue HEC 5725	Kape \	6 6 6 6	2002-QI-18	0	97	99	98	-
	Material		20 2 3-05-21 2003-10-20	180	91	92	92	-
Į Ž			2003-10-20	330	95	94	95	-
		Ş	2004-05-05	540	96	98	97	-
Total residue HEC 5725		Ž	2004-11-08	720	88	89	89	-
		1	Overall Mean and	KSD [%]			94	4.0

recoverys [%]

Document MCA: Section 6 Residues in or on treated products, food and feed Fluoxastrobin

Table 6.1- 3: Storage stability data and concurrent recoveries of fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and total residue HEC 5725 in rape seed

Recovery day 0 = 100%; RSD: relative standard deviation

Nominal Interval Day 0 Day 30 **Day 90 Day 180** Day 330 Day 540 HEC 5725 Z-Isomer Substance Nominal Fortification Level 0.02 Ø [mg/kg] 04 Stored Samples 99 93 99 Relative Recovery 99 99 93 104 104 99 104 93 [%] 99 99 Stored Samples 93 100 Rel. Mean [%] RSD [%] 2.5 0.0 Number of Values, n Concurrent recoveries 86 Mean concurrent recovery [%] Fluoxastr@bin (HEC Substance Nominal Fortification Level [mg/kg] Stored Samples 105 Relative Recovery 105 110 101 [%] Stored Samples 107 104 Rel. Mean [% RSD [%] 5.7 2.2 Number Values, n 3 3 92 Concurrent recoveries 85 86 [%] 92 86 86 Mean concurrent 91 86 86 recovery [%] ₹925 Total Residue Substance Nominal Nominal Fortification Eevel 0.2 [mg/kg], Stored Samples 102 109 101 104 Relative Recovery 105 109 113 104 [%] 105 100 111 100 Stored Samples 102 104 106 108 103 Rel. Mean [%] RSD 🖓 0.9 1.7 4.7 5.9 2.0 0.6 Number of Values, n 3 3 3 3 3 3 Concurrent Precoveries 86 91 92 90 89 82 91 90 91 95 92 Mean concurrent 91 91 91 84 97 91

Table 6.1- 4: Storage stability data and concurrent recoveries of fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and total residue HEC 5725 in rape green material

Recovery day 0 = 100%; RSD: relative standard deviation

Nominal Interval	Day 0	Day 30	Day 90	Day 115	Day 180	Day 330	Day 540	Day 720
Substance	2, 0	24,00	24,70	HEC 5725	•	Z Z		
Nominal Fortification Level [mg/kg]				© 0.	05	Y		
Stored Samples Relative Recovery [%]	104 95 101 101 99	98 98 96	77 85 87	87 82 85	8.5 95 87 87 9	85 90 4 874 7	94Q, 98 0 91	
Stored Samples Rel. Mean [%] RSD [%] Number of Values, n Concurrent recoveries	3.5 5	97 0.9 3 91	6.1	85 U 3.8 3.3 3.3	4.7, A	87 ° 87 ° 87 ° 88 ° 88 ° 88 ° 88 ° 88 °	3.9	85C° 8.6 3 88
[%] Mean concurrent		92 4 i	98 5	92	92 5	104	\$ 95 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91 90
recovery [%] Substance	×	9 12 ° ~		estrobin (HI				
Nominal Fortification Level [mg/kg]	.~J	A			À5 0	5 5	<u> </u>	
Stored Samples Relative Recovery [%]	701 796 1057 1017 101		73 78 78 83 40	837 34 -088	90 % 93 0 84 0 91/0	917 94 Ø 89	89 86 84	92 86 91
Stored Samples Rel. Mean [%] RSD [%]	© 100 ♥ \$\displays{2}{\displ	98 2 168	78×7	\$6 ₹ 2.7€	91	90 1.7	86 3.0	90 3.8
Number Walues, n	5 3	3	\$\frac{3}{3} \times \times	3 3 4	3	3	3	3
Concurrent recoveries		\$\frac{\angle 93}{\infty} \sigma_{\infty}	94%	92	94 93	98 98	98 95	89 92
Mean concurrent recovery [%]		95	097 °C	950	94	98	97	91
Substance	Ö	9 4		HE 5725 T	otal Residue	<u> </u>	I.	
Nominal Fortfication Level [mg/kg]				0	.5			
Stored Samples Relative Recovery [%]	10 f 96 101 101 10f	\$99 \$\text{98}\$ \$\text{96}\$	74 (77) 74 (77) 283	85 84 88	89 92 89	91 91 89	89 87 84	91 85 91
Stored Samples Rel. Mean [%] PSD 194	190	98	79 5.0	86	90	90	87	89
RSD [%] Number of Values, n	7, 2. Į ¥ 5, 5, 5, 7	1.6 3	5.9 3	2.5 3	2.3	1.5	2.6	3.9 3
Concurrent Coveries [%]		92 95	95 99	92 94	94 93	98 99	98 95	89 92
Mean concurrent recovery [%]		94	97	93	94	99	97	91

Report:

Storage stability of fluoxastrobin in/on processed products from barley grain (Berr, brewers' malt, brewers' grains, and malt sprouts) decided. Title:

brewers' malt, brewers' grains, and malt sprouts) during freezer storage for 12 poinths

Report No.: MR-555/00 Document No.: M-075659-01-1

Guideline(s): EU Ref.: EU Council Directive 91/414/EEC

US EPA Residue Chemistry Test Guideline OPPTS

Guideline deviation(s): **GLP/GEP:** yes

Test system:

The test conditions of the storage stability study on fluoras robin (HEC \$725) 5725 Z-isomer were as follows:

HEC 5725, containing 90% E-isomer (flooxastrobin) and 10% Z-isomer Test substance: 0.50 mg/kg HEC 3725 in /on brewer malt brewer grain and malt sprouts, Fortification level:

> i.e. (nominal) 4.45 mg/kg Exisomer and 0.05 mg/kg Z-isomer; S 0.125 mg/kg on beer, i.e. (rominal) 0.1125 mg/kg E-isomer and

0.0125 mg/kg Z-isomer

Processed commodities: beer, bower's malt, boewer's

≤ -18€€ Storage temperature:

Storage intervals:

Test Commodities

's grain, malt sprouts) and a retail Control material was aken store (beer).

Test Procedures

A deep-freezer storage stability study was conducted with HEC 5725 E-and Z-isomer in sample materials from beer processing. Samples of beer, bewer malt Drewer's grain and malt sprouts were fortified at a level well above the Inhit of Quantification (LOQ) for all matrices.

Untreated samples of brewer's malt frewer's grain and malt sprouts were prepared by shredding with dry ice in a cotter. The spiked samples for storage were prepared by spraying a large aliquot of each solid sample material in deep Pozen Prate in a cycler bowl with a suitable amount of a standard solution FEC 5725 and Sisomer (ratio E/Z > 0/10) in dichloromethane. The target fortification level was approximately 0.5 mg/kg/HEC 3725 for all sample materials. After spraying, the fortified sample material in the softer frowl was homogenised again with dry ice and small aliquots were transferred into polystyrene containers for storage. The used fortification procedure for the solid sample materials is only semi-quantitative, as losses of sample material and losses of spiking solution can occur when the spiking solution is prayed into the open cutter bowl. The actual fortification level achieved was determined by the analysis of the day 0 samples. The actual fortification levels of the test substances for Arewers malt were between 62% and 66%. For brewer's grain, the actual fortification Devels ranged from 57% to 60% and for malt sprouts from 58% to 61%. Deviations between the fortification results for the different test substances can be attributed mainly to rounding effects and analytical variations. For beer, fortification was performed by weighing aliquots of 2.0 g of beer into individual brown-glass bottles with plastic caps and adding a small volume of a suitable spiking solution to each sample, resulting in a fortified amount of 0.125 mg/kg for the sum of both isomers. The liquid sample material beer was homogenised by shaking.

The actual fortification levels obtained for HEC 5725 E-and Z-isomers and the calculated total residue at the nominal storage interval day 0 were used as the basis for the evaluation of the storage stability of residues of fluoxastrobin. The average recovery found in the spiked sample on day 0 was defined as 100% for each substance and each sample material, and the recoveries from later storage intervals were calculated as relative recoveries from that value ('relative recoveries to day 0').

Results and discussion

In the solid sample materials, HEC 5725 E-and Z-isomer were analysed according to method 0064% (2001; M-137093-01-1) and for beer method 00604 (2001; M-05551). M-05551) was used. The LOQ for the total residue NEC 5725 was set at 0.05 mg/kg for residues in on beer, brewer's malt, brewer's grain and mark sprouts. To validate the method at this LOQ level, samples were fortified with a reference substance containing 90% E-isomer and 10% Z-isomer. The validated LOQ for HEC 5725 E-isomer can therefore be calculated as 0.045 mg/kg for all sample materials included in this study. Accordingly, for HEC 5725 Z-isomer and LOQ of 0.005 mg/kg was validated for all sample materials. Both methods are reported in the initial Annex II dossier and were evaluated in the EU peer review.

The analytical methods 00649 and 00604 were varidated during the study of sets of pre-running and/or concurrent recovery experiments at each storage interval. These recovery experiments were performed by spiking control samples with HLC 5725 E- and Z-isomer. In the case of pre-running recovery experiments for method validations control samples were fortified at a fortification level corresponding to the LOQ. In the case of concurrent recoveries the fortification level corresponded to approximately the adual fortification level of the spiked stored samples.

Pre-running recovery cots for method validation were conducted at the nominal storage intervals of 0, 180 and 360 days. For this purpose, stored control amples were freshly fortified with the test substances at the respective LOO level. The looshly fortified samples were then extracted, cleaned up and analysed before or concurrently with the control and spiked samples of the corresponding nominal storage intervals. The obtained recovery that for method validation are presented in Table 6.1-5.

Concurrent recoveries were conducted at the nominal storage intervals of 30, 90, 180, and 360 days. For this purpose, stored control samples were freshly fortified with the test substances at a fortification level corresponding to the fortification level samples. The freshly fortified samples were then extracted cleaned up and analysed concurrently with the control and spiked samples of the corresponding normal storage intervals.

Low recoveries around 50 to 60% for HEC 5/25 Z-isomer were obtained as concurrent recoveries for brewer's malt at the nominal storage interval of 30 days. As the corresponding results for fluoxastrobin (HEC 5725 E isomer) and the calculated total residue were within the acceptable range, a repetition of the analytical sections are not considered necessary. At the nominal storage intervals 90 and 180 days, several concurrent recoveries were out of range in the initial analyses of the sample sets, so that the whole sets were repeated including stored samples and concurrent recoveries. It was observed, that these low recoveries were due to the fact that the dry residues after an evaporation step were not dissolved sufficiently. If extensive ultrasonic treatment was applied, all recoveries were well within the acceptable range (see for instance the results obtained at the nominal storage interval of 360 days).

The relative recovery values for HEC 5725 E-and Z-isomer and the calculated total residue at the different storage intervals for beer, brewer's malt, brewer's grain and malt sprouts in spiked samples are reported in Table 6.1- 6 to Table 6.1- 9 along with the obtained concurrent recovery data. They values presented in these tables were not corrected for the concurrent recoveries at the respective intervals. At each storage interval, control samples were analysed concurrently with the spiked samples. The blank values for all control samples were below 10% of the respective Loc values for HEC 5725 E-isomer, Z-isomer and the calculated total residue.

For beer, the mean relative recoveries to day 0 at all storage interval over between 83% and 106% for fluoxastrobin Z-isomer, fluoxastrobin (E-isomer) and the calculated total residue of fluoxastrobin. For brewer's malt, the mean relative recovery values to day 0 at all storage intervals were between 81% and 101% for all three compounds, with the exception of the nominal storage interval day 30, where relative recoveries between 49 and 66% were obtained. However, this was not considered as an indication for a degradation of the residues of fluorastrobin as the concurrent recoveries at that storage interval were also low, and as the relative recoveries at the following intervals were considerably higher again. The low residues obtained were probably due to problems which occurred during extraction of the stored samples.

For brewer's grain, the mean relative recovery values to day of at all storage intervals were between 69% and 106% and for malt sprouts they ranged between 82 and 114%.

oy% and 106% and for malt specific between 82 and 151%. The concluded, that the residues of huovastrobin (B-isopter) and HEC \$725 \(\mathbb{Z}\) isomer feature good stability during deep frozen storage for a storage period of (at least) 12/months in beer, brewer's malt, brewer's grain and malt sprouts.

Table 6.1- 5: Recovery data for method validation for fluoxastrobin (HEC 5725 E-isomer), .
HEC 5725 Z-isomer and total residue HEC 5725;

RSD: relative standard deviation

Analyte	Sample Material	Fortifica tion Level [mg/kg]	Date of Extraction	Nominal Storage Interval	Recov [%		Mean [%	O C RSB (S)
Fluoxastrobin (HEC 5725 E-	Beer	0.045	2001-10-24 2002-05-22		109 🕏	72	∜91 ^ Ø 985	7 - Ö
isomer)			2002-10-22	360 a 2 360	\$99		100	-\$ 0\$
						. 1010	2 000	13.1
	Duarrania	0.045	Overall Mean		103		105	13.1
	Brewer's Malt	0.045	2001-10-24				102	V
			2002-0\$\dot22	\mathcal{L}_{i} $10 \mathcal{L}_{i}$		1000	101	J-
			2002=10-22	360	98	~~ \$98	98	- 0
			Overall Mean	and RSD [%]		<u> </u>	194	332
	Brewer's Grain	0.045	\$2001@07-24		108	100	3 08	-)
			2002-05-22	180	y 98°	300	\$ 99W	-
			2002-10-22	360	5 97 () 980	98	-
			Overall Mean	and RSD [%]			Qő1	4.8
	Malt Sprouts	0.045	200 -10-20	00	HOS	≯ 105 €	0 104	-
	**	4	2002-05-22	Ø 180₽ `	104	J 1000	102	-
		8 4	2002-10-22	360	O 100 €⁄	jr00	100	-
		, , , 5	Oygrall Mean]	a n	102	2.2
HEC 5725 Z-	Beer	0.005	2001-40-24		Ø 94 A	× 81	88	-
isomer			2002-05-22	180 2	95 98	87	91	-
			2002-10-22	€\$60 C		99	99	-
		8	Øverall Mean		- //		92	7.6
	Brewer'® Malt	O 0005	2001-10-24		94	101	98	-
			2002-05-22 2002-10722	O y C C	100	97	99	-
			Overal Mean	360	101	94	98 98	3.4
~	Brewer's	0.005	2001-10-24×		102	99	101	-
<u> </u>	Grain 0		2902-05€ 2 22	© 180	109	117	113	_
	, Q		©2002-20-22 %	360	98	96	97	-
4,			Overall Mean	N]		104	7.7
¥	Malt Sprous	0.005	2001-10-24	0	121	93	107	-
			©2002-03-22	180	97	101	99	-
Ć			2002-10-22	360	98	101	100	-
<u> </u>	L & ´, Ó		O@rall Mean	and RSD [%]		102	9.7

Analyte	Sample Material	Fortifica tion Level [mg/kg]	Date of Extraction	Nominal Storage Interval	Indiv Recov [%	idual veries 6]	Mean [%]	RSI
Total residue	Beer	0.05	2001-10-24	0	107	J.	90 🔏	<u> </u>
HEC 5725			2002-05-22	180	99	² 95	97	-\$
			2002-10-22	360	99 §	رگ 101	100	
			Overall Mean	and RSD [%	i Ĉ	?	° 96 ° 0	712.3
	Brewer's Malt	0.05	2001-10-24	§ 0		105 ≼	104	-\$
	iviait		2002-05-22	ے 180 میں ا	Q100 _	· 101	101	õ
			2002-10-22	360	√ 98Ø [*]	98	O 98 0	- (
			Overall Mean	and RSD (%	i V			ว ∜യ″
	Brewer's Grain	0.05	2001-10-24	\$360.	1 07 8	100	4 07	
	Grain		2002-05-22	780	× 9 <u>9</u>	¥02	101 🗣	- 0
			2002-10-22		9 7	97.5	27	O
		(Overall Mean	and RSD [%	lo s		¥Õ1	4.4
	Malt Sprouts	0.050	2001-10-24	0 Q	105	904	105	-
			20 02-0 <i>5</i> 022	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	2 103	0 1000	4 02	-
			2002-0-22	360	([©] 100	100	900	-
	, ¢		Overall Mean	and RSD [%			102	2.2
, © "								
		9						

Table 6.1- 6: Storage stability data and concurrent recoveries of fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and total residue HEC 5725 in beer Recovery day 0 = 100%; RSD: relative standard deviation

Nominal Interval	Day 0	Day 30	Day 90	Day 180	pay 3600
Substance		HI	EC 5725 Z- Ison	ner [©]	
Nominal Fortification Level [mg/kg]		_	0.0125 🖋		
Stored Samples Relative Recovery [%]	108 100 100 100 92	92 75 85	100 Ø 92 Q 140	92 & 92 Ø	92 5 92 5 85 4
Stored Samples Rel. Mean [%] RSD [%] Number of Values, n Concurrent Recoveries [%]	100 5.9 5	830° 100° 0 3 0	99 J 99 J 93 J	800 3 3 0 110	\$ 85.4 \$ 5.4 \$ 97.5 \$ 97.5
Mean Concurrent Recovery [%]		, \$99 , \$	Ø109 S	194 \$107	97
Substance	Q 20	Fluoxastro	bin (HEC 3725	I Somer	**************************************
Nominal Fortification Level [mg/kg]	D , V		0.025		,
Stored Samples Relative Recovery [%]	105 % 1023 939 2002 0	101 7 87 87 91	1045 1045 95	93	96 94 91
Stored Samples Rel Mean [8] RSD [%] Number of Value, n	100 4.5 5	950 7%6 & 2 3 %	190	© 93 7.5 3	94 3.0 3
Concurrent Recoveries [%]		95,5	105	111 105	94 98
Mean Consurrent Recovery [%]	~ · · · · · · · · · · · · · · · · · · ·	98 4	Oľ06	108	96
Substance \(\sqrt{y} \)		W WHEC	5\$25 Total Re	sidue	
Nominal Fortification Level [mg/kg]	\$\times_0106 \times_0		0.125	•	
Stored Samples & Control Relative Recovery [%]	106 0 100 100 100 100 100 100 100 100 10	0100 07 860 94	102 102 96	93 100 86	96 93 90
Stored Samples Rel. Mean [8] RSD [%] Number of Values, n	100 4.3 5 5	92 7.8 3	100 3.8 3	93 7.6 3	93 3.1 3
Concurrent Recoveries [%]		95	108	111	95
	, - _x	102	108	105	98
Mean Concurrent Recovery [%]	-	99	108	108	97

Table 6.1-7: Storage stability data and concurrent recoveries of fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and total residue HEC 5725 in brewer's nadt Recovery day 0 = 100%; RSD: relative standard deviation

	1	ı	1	<u> </u>	()
Nominal Interval	Day 0	Day 30	Day 90	Day 180	Day 3600
Substance		HI	EC 5725 Z-Ison	ner®	
Fortification Level [mg/kg]			nal 0.05 (Actua	J.0.03)	
Stored Samples	96	51	103	93	777
Relative Recovery [%]	103	54	106Q	93 @	\$ 87\$ <u>.</u>
	99	437	96,	_ & ~ ~	S 80, 8
	103		Y Q		
	99				
Stored Samples Rel. Mean [%] RSD [%]	100 2.7	490			≫ 8³N 26.0
Number of Values, n	5			3 0	70.0 73 &
Concurrent Recoveries [%]	- 2	50	2 105	0 108	990
	V ()	7 .6V %	y 10 «	106	104
Mean Concurrent Recovery [%]		\$56.29	0103	\$107 Ø	<u></u> 102
Substance		» Fluoxastro	bin (HE© 5725	Sessomer	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Fortification Level [mg/kg]	1		Wal 0.45 (Actua		
Stored Samples	4 100 S	68		86	81
Relative Recovery [%]	98	69	990	86	88
	100	\$ 62 A	98 4	F 20	86
L Ş	, 4 000 O				
Ž Š	102 _©	\$ 2"		4	
Stored Samples Rel Mean [8]	190	,66	90	v 84	85
RSD [%]	1.6 ×	(6)3 ×		3.7	4.2
Number of Values, n	0,2 6,0	3 3	3 3	3	3
Concurrent Recoveries [%]		683	0 10 <u>1</u> 0	103	103
		81	1	101	103
Mean Concurrent Recovery [%]	<u> </u>	0.75	Q101	102	103
Substance	\$.X	(//¥	5725 Total Re		
Fortification Level@mg/kg		Nomi	nal 0.50 (Actua	1 0.33)	
Stored Samples O	~	, O 66 O	100	87	81
Relative Recovery [%]	980	680	99	87	88
		, 6 9	98	81	86
	100 × 102				
Star & Samples Bal Man 1971	(m² 1020° 1000° (m² 1000°	4	99	05	0.5
Stored Samples Rel. Mean [88] RSD [%]	7 100 7 100 7 2 7	65 6.6	1.1	85 3.5	85 4.4
Number of Values, n	5 9	3	3	3.3	3
Concurrent Resoveries [%]		66	101	103	102
	Y -	79	100	101	103
Mean Concurrent Recovery [%]	-	73	101	102	103
	1	l	l	L	

Table 6.1- 8: Storage stability data and concurrent recoveries of fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and total residue HEC 5725 in brewer's grain Recovery day 0 = 100%; RSD: relative standard deviation

	1	T	ı		
Nominal Interval	Day 0	Day 30	Day 90	Day 180	Day 3600
Substance		H	EC 5725 Z-Ison	ner	
Fortification Level [mg/kg]			nal 0.05 (Actua	Ĵø.03) 😽	
Stored Samples	109	70	113	102	102
Relative Recovery [%]	106	74	102-	1060	\$\frac{1}{2} 95 \qquad
	92		1.02	186	Q 29 %
	102				
	92				
Stored Samples Rel. Mean [%]	100 8.1	(695) 10 (1			999
RSD [%] Number of Values, n	5			3 0	
Concurrent Recoveries [%]		77	2 108	0 111	104
Concurrent Recoveries [70]		70	100	7 164	1006
Mean Concurrent Recovery [%]		(0107	208 D	© 105
Substance		Electron et an		T (\$	%)
	7, 4		bin (HEC 5725		* Y
Fortification Level [mg/kg]		Nomi	wal 0.45 (Actua	P0.27	,
Stored Samples	101	81	\$\int_102 \tag{9}	94	96
Relative Recovery [%]	0' 983	82	970	969	92
, ,	99		¥ 98		93
L Z F	96 @				
Stored Samples Rel Mean [%]	100	70	9.0		93
RSD [%]	4.4	Ž , Š.Ž S	2 .3 ,\$	1.8	2.3
Number of Value, n	5 4°	√ 3 ≈	3	3	3
Concurrent Recoverie [%]	6 -4 A	835	0 101	106	100
		84	V ~1 9 2	102	102
Mean Concurrent Recovery [%]	- ~	, O84 V	©102	104	101
Substance Substance		MEC	5725 Total Re	sidue	
Fortification Level@mg/kg		Noma	nal 0.50 (Actua	1 0.30)	
Stored Samples	102, 0	80	103	95	96
Relative Recovery [%]	990	820°	98	97	92
		D' JY	99	94	93
	1 107 S				
	→ 95 V	<u> </u>			
Stored Samples Rel. Mean [86]	100 4.3	78	100	95	94
RSD [%]	4 .3	5.4	2.7	1.3	2.5
Number of Values, n	J 5 3	3	3	3	3
Concurrent Recoveries [%]	₩	82	102	106	100
Mean Concurrent Recovery [%]	-	83	102 102	102 104	103
	•				

Table 6.1- 9: Storage stability data and concurrent recoveries of fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and total residue HEC 5725 in malt sprouge Recovery day 0 = 100%; RSD: relative standard deviation

Nominal Interval	Day 0	Day 30	Day 90	Day 180	P ay 3600
Substance		Н	EC 5725 Z-I son	ner Ö	
Fortification Level [mg/kg]		Nomi	nal 0.05 (Actua	(j.03)	
Stored Samples	107	90	90	114	103
Relative Recovery [%]	97	76 *	93	107@	3 97 V
	100 97		1,44		
	100				
Stored Samples Rel. Mean [%]	100	€ 8 2 ©°,	S 102 3		× 102
RSD [%]	4.2) ₄ 8.8	∤ \$.6 €	7 B.6 L	≨ 5.1 ॢ 。
Number of Values, n	5 🔏	~ 3 ~ C	Q 3	3 0	© "3 🗳
Concurrent Recoveries [%]	-2	83) 10 0	O 105	925
		× 87 ×			ž 9 6
Mean Concurrent Recovery [%]	10 <u>-</u> %	~\$85 \$\frac{1}{2}	~ ©97 ~ S	\$99	<i>₯</i> 94
Substance	Q" b	Fluorastro	bin (HE©5725	B-Isomer)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fortification Level [mg/kg]		Nomi	nal 0.45 (Actua	P0.276 &	•
Stored Samples	A ()	L 98 ~	√y 93 ×√y	\$ 109°	104
Relative Recovery [%]	(104) (98)	& 88 ° 0	93/\$	1049	101
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	99) 119 ≪) 403 1	105
L F	997 102 W				
Stored Samples Rel Mean [8]	100	90	D 161	© 105	103
RSD [%]	2.6	/ <u>~5</u> 73 2	4 .7 28	2.8	1.8
Number of Value, n	5 €°	₩ ³ 3 >	3	3	3
Concurrent Recoveries [%]	© -1 1	895	93	103	95
		24	994	95	98
Mean Concurrent Recovery [%] 5	- 0	©92 V	°€94	99	97
Substance S 4		AHEC	5725 Total Re	sidue	
Fortification Level mg/kg		Nom	nal 0.50 (Actua	1 0.30)	
Stored Samples	~_104_O	97.	93	109	104
Relative Recovery [%]	~ 98Q ^y	\$70°	92	104	101
		\$ \ \dot \ \tag{\psi}	119	104	105
	97				
	7 102 ×				
Stored Samples Rel. Mean [86]	102 7 108 20.7	91	101	106	103
RSD [%]	2.7 O.	6.0	15.1	2.7	2.1
Number of Valres, n			3	3	3
Concurrent Recoveries [%]	Ų Q	89	94	103	95
	r –	93	94	95	98
Mean Concurrent Recovery [%]	-	91	94	99	97

KCA 6.1/06 : 2015: M-531541-01-1 Report:

Storage stability of fluoxastrobin (HEC5725) in/on orange (fruit) and bean (dry seed) Title:

for 24 months

Report No.: MR-15/121 Document No.:

Guideline(s):

Guideline deviation(s):

GLP/GEP:

MR-15/121
M-531541-01-1
OECD Guidelines for the Testing of Chemicals. Stability Pesticide Residues in Stored Commodities. 506. 2007-10-16.
US EPA OCSPP 860.1380, Storage Stability Data
Yes, no impact, see original report
yes

ation please refer to results and discussion on the following page. For description of deviation please refer to results and discussion of the following page

The stability of fluoxastrobin (HEC5725 E-isomer) and HEC5725 Z-isomer was investigated in the plant commodities orange fruit and dry bear (seed Tepresenting commodities of high acid and high protein content for about 6 months (180 days) under frozen storage conditions. Results of the storage stability study are summarized up to 6 months in this phase ongoing up to 24 months.

Test system:

The test conditions of the storage stability study on fluorestrobits (HEC somer) and HEC 5725 Z-isomer were as follows:

HEC 5725 E-ison er (fly exastrorin) and HEC Test substance:

Fortification level: Q 09 mg/kg (100 LOQ For HEC 5725 E-isonder;

Plant matrices: orange fruit and day bean seed

Storage temperature

nominally 0, 30, 90, and 180 days. The surdy is ongoing. Samples at 360, 540 Storage intervals

and \$\textit{0}20 das wilk be analysed in the further.

Test Commodities

Control material of orange fruit was taken from Bayer CropScience residue studies. Control material of dry bean seed was obtained from a local gro

Test Procedures

Untreated samples were shredded in a outter with divice. 5-g aliquots of the homogenised control materials were weighed into plass bottles individual amber glass bottles were used as storage containers for each sample. This procedure allow extraction of the whole fortified sample in the bottle itself HEC 5725 P-isoner and HEC 725 Z-isomer were spiked separately to separate control material, resulting in fortification levels of 0.09 mg/kg for HEC 5725 E-isomer (10x LOQ) and 0.01 mg/kg for Z-isomer (100 LOO) for both matrices. After fortification, the solvent was allowed to evaporate.

In addition, untreated camples of each sample material were prepared for control and recovery experiments. Subsequently the bottles were closed and stored deep frozen until analysis, except for the day of samples. On day of (zero time analyses) five spiked samples and one control sample were analysed in addition, three recoveries spiked at the respective LOQ level and three recoveries spiked at the respective 10 fold LOQ level were performed for both isomers.

At each storage interval following day 0, three fortified and three control samples were removed from the deep-freezer and allowed to reach room temperature. Subsequently, two of the control samples of

each sample material were freshly fortified with the test items to determine the concurrent recoveries. Fortification levels were at the same magnitude as the spiked storage samples. The samples were extracted and analysed concurrently with the control sample and the spiked storage samples.

The residues of fluoxastrobin were determined according to method 00649 M003 (
; 2010; M-387385-01-1). The LOQ of the method is 0009 mg/kg for the HEC 5725 E-isomer and 0.001 mg/kg for HEC 5725 Z-isomer (calculated LOQ for the total residue HEC 5725 is 0.01 mg/kg). Orange (fruit) was extracted with acetone/water (31, v/v) using a blender. Bean (dry seed) was extracted with acetone/water (3/1, v/v) using applicate microwave extraction. The extract was evaporated to dryness and the residues were re-dissolved in a grandard solution containing isotopically labelled internal standards. HPLC-MS/MS in the positive ico mode was used for quantification.

Results and discussion

In order to assess the accuracy of the residue analyses, concurrent recoveries were determined by analyzing freshly fortified samples alongside with the stored for fried samples. At all storage intervals concurrent recoveries were determined at the 10-fold LOQ level (0,00 mg/kg for HEC 5725 E-isomer and 0.01 mg/kg for HEC 5725 Z-isomer). For day 0 apartysis durther concurrent recoveries were determined at the LOQ level 0.009 mg/kg for HEC 5725 E-isomer and 0.00 kmg/kg for HEC 5725 Z-isomer). The mean concurrent recoveries determined from freshly to trified samples were in a range of 91% - 111%.

At each storage interval at least one control sample per matrix was malysed and the residues were always below 30% of the LOQ.

After a deep-freezer storage period of about 6 months, the mean recovery rates from the stored samples of orange front and dry bean seed were 99% and 107% for fluoxastrobin (HEC 5725 Eisomer) and 105% and 100% for the HEC 5725 Z-isomer, respectively.

Normalised to day 0, mean recoveries were 100% in both commodities for HEC 5725 E-isomer and 104% and 94% for INC 5725 Z-isomer in orange fruit and dry bean seed, respectively after a storage period of 6 months.

Deviation to guideline: During the study conduct a deviation occurred. The targeted storage temperature of -18±2°C was exceeded due to a technical problem with the freezer on day 159 of storage. The threshold temperature was exceeded for about 6 hours and the storage temperature rose up to -1.5°C for a port time period. However, the average temperature during this event was still -16°C and the samples remained frozen during the complete occurrence. Also, any potential degradation of the analytes would have become evident at the next (6 months) storage interval. Since there was no oddication of degradation after 6 months of storage the deviation is considered to have no negative impact on the quality of study.

Altogether, the study results Demonstrate that the residues of HEC 5725 E-isomer and HEC 5725 Z-isomet are stable in commodities of high acid and high protein content for at least 6 months under deep-freeze storage conditions.

Table 6.1- 10: Concurrent recoveries for HEC 5725 E-isomer and HEC 5725 Z-isomer in orange, fruit

Sample Material	Date of Extraction (yyyy-mm- dd)	Storage Interval [days]		Conc Fortification I E-isomer: 0.009 Z-isomer: 0.001	evel mg/kg	Ecceveries [%] Fortification E-isomer: 0.09 Z-isomer: 0.01	mg/k/g
	uu)	nominal	actual	Single Values	Mean	Single Values	Mean
	2014-11-03	0	0	93, 93, 96	9 5	97, 19 4, 10 2 9″	101
Orange, fruit HEC 5725	2014-12-01	30	28	~ - L	P*	40 1, 10 2 0	№ 02 §
E-isomer	2015-01-29	90	87	Ĵ Q	æ °	√ 104,≵02 °	J 103 _C
2 isomer	2015-05-13	180	191	🌂 .	<u> </u>	100,99	100
	2014-11-03	0	&	697, 915 9 0	√ 93 _% ∫	930102,96	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Orange, fruit HEC 5725	2014-12-01	30	9 8´ ,		~0°	@101, 1 00 _2	101 .
Z-isomer	2015-01-29	90	,A, 87 @	~ _ Q	4		102
2 231101	2015-05-13	180 🔏	191		~ °~	1 96, 103	2 05

Table 6.1-11: Concurrent recoveries for HEC 5725 E-isomer and HEC 5725 Z-isomer in bean, dry seed

Sample Material	Date of Extraction (yyyy-mm-	Storage Interval		F-isomer: 0.009 mg/kg F-isomer:			/6] cation level : 0.09 mg/kg : 0.01 mg/kg	
	add) S	% <i>I</i>	Zactual\$	Single Values	Mean		Mean	
	2 014-11204 ∘	? 0 ?	Q,	, 900, 98 101 <u>4</u>	1000	105, 106, 106	106	
Bean, dry seed	2014 12-03	3,00	29		45	112, 104	108	
HEC 5725 © E-isomer	20075-01-20	9 0	₹ 86 €	Ö 🕉	<i>0</i> ,	92, 95	94	
D Isomer Ö	2015-05-13	© 180 ∡	1907	~ - <u>.</u> %)	110, 112	111*	
_ %	2014 11-04	0,0	0 ,	× 89,03,94	92	102, 104, 104	103	
Bean dry seed	204-12-03	30	₹ ²⁹ %	27		107, 103	105	
HEC 5725 Z-isomer	2 015-01-29	\$ 90 ×	865	~ <u>-</u>		89, 92	91	
	2015-05-13	180	\$ 19 0	» &		105, 111	108	

^{*}The mean value is slightly out of the range of 70% 10%. In wever concurrent recoveries determined from freshly fortified samples were of about the same magnitude as the recoveries from stored samples. All other recoveries are well within the range of 70% 10% and therefore this mean recovery does not denote a deficit of the analytical method.

Table 6.1-12: Storage stability data and recovery data for HEC 5725 E-isomer and HEC 5725 Z-isomer in orange fruit

							. & 4
	Storage	Residue	Level in Store	ed Samples	Day-0	Average %	&verage)
Commodity	Period (days)	mg/kg (ppm)	% of nominal spiking level	Average % recovery	Normalized Recovery		Corrected % Recovery
	HEC 5725	E-isomer		Ö	*	\	
	0	0.0869 0.0890 0.0891 0.0870 0.0888	97 99 99 97 99	98	\$\frac{1}{2}\frac{1}{2	Ø8* ¢	900
	28	0.0878 0.0884 0.0882	, ,	©98 ©98 ©	7100 V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	96
	87	0.0906 0.0942 0.0957	101 105 106	104	, 140, °C	1,0,3	100
Orange, fruit	191	0.0888 0.0873 © 0.0899	967 900	\$ 90°	7 100°	\$\frac{100}{9}\$	© © 99
Orange, nuit	HEC 5725		, Q Q				¥
	0	0.010% 0.010% 0.0100 0.0102	006 100 102	101 101	100 .	95*	107
	2 8 7	Ø.0107 Ø Ø.0110√ 0.010₹	d10 \$	108	0 10 1	101	107
	287 5 87	0.0105 0.0103 0.0104	105 103 104	1045	103	102	102
	87 191	0.0106 0.0109 0.0101	104 106 109 101	\$105	D	105	101

^{191 0.0109 101 005 104 105 101}a Norman Zed Recovery = (Average & Overey) average recovery average recovery average of ficsh concurrent recoveries) X 100%

b Corrected percent recovery = (Average & Overeovery) (stored) / Average of ficsh concurrent recoveries) X 100%

*Average of both fortification levels (E & Somer: 0.009 mg/kg and 0.09 mg/kg, Z-Isomer: 0.001 mg/kg and 0.01 mg/kg) as given in Table 6.1.3 10.

Table 6.1-13: Storage stability data and recovery data for HEC 5725 E-isomer and HEC 5725 Z-isomer in bean, dry seed

			i ili <u>bcall, ul</u>	, 5000			A
	Storage	Residue	Level in Store	ed Samples	Day-0	Average % Sof Fresh	&verage
Commodity	Period (days)	mg/kg (ppm)	% of nominal spiking level	Average % recovery	Normalized Recovery	10 an ann ann a	Corrected % Recovery
	HEC 5725	E-isomer	~ F S · · · ·	Ö			
	0	0.0935 0.0953 0.0975 0.0963 0.0975	104 106 108 107 108	2 107	\$\frac{1}{2}\dots	©03*	904
	29	0.082 0.085 0.084	92 95 93	93	7 88 V		
	86	0.0815 0.0802 0.0837	\$1 \$89 \$93		8 ⁴ , 6	24	80
Bean,	190	0.0954 0.0961 0.0974	106 107 107 108	100	100	\$ 111 F	© 96 ∜
dry seed	HEC 5725	Z-isomer	, Ø Ø				Y
	0	0.0107 0.0112 0.0107 0.0107	1000 1000 1011 1050 1050	197		98*	109
	297	0.010 0.010	99 99 \$104	997 297	954	105	94
*	86	0.0092 0.0094 0.0090	1 (~3 2 0 %	92	86.5	91	102
	190	0.0098 0.0103 0.0100	398 103 100	Ø100)	108	93
Normalized Rec Corrected percei *Average of both given in Table 6.1	nt recovery = (Toerage Wree Els (E Some	ecovery (stored) r: 0,009mg/kg a	/ Average of fr nd 609 mg/kg	100% esh concurrent red; Z-Isomer: 0.001	coveries) X 100 mg/kg and 0.01	% mg/kg) as
Ą Į							
4)			
Corrected percent Average of both given in Table 6.1							
		% /					

KCA 6.1/07 : 2015: M-480441-03-1 Report:

Title: 7 Days freezer storage stability study with different combinations of a total of 61

analytes (parent and metabolite molecules) and five matrix types (high water / acidic

starch / protein / oil) - 2nd Interim report

Report No.: M-480441-03-1 Document No.: M-480441-03-1

Guideline(s): Commission Regulation (EU) No 544/2011 of 10 June 2011 implementing Regulation

(EC) No 1107/2009 of the European Parliament and of the Council as regards the data

requirements for active substances

US EPA Residue Chemistry Test Guideline OPP 8 860.1380: Storage Stability Data OECD Test Guideline 506, addpted 16 Octobe 2007 not specified yes

Guideline deviation(s):

GLP/GEP:

The study was performed to address temperature deviations which occurred during shipment of field samples from residue studies. Storage stability of in total 61 analytes (active substances and metabolites) was investigated in tomato (fruit), wheat (green material), onion (builbs), grape (bunches), wheat (grain), potato (tuber), peas (dry peas) and oilseed rape (seeds) covering the worst case conditions which occurred as temperature deviations during shipment of Field samples (period of 8 hours at +1°C followed by 7 days at 2°C). Storage Hability of HRC 5725 E-and Z-isomer was tested in commodities of high water content (among others in onion bulb) addressing temperature deviations during shipment from study 13-2939 (grad 01) reported in chapter CA 63.3. In this onion residue study, the maximum temperature during shippent was -10 4°C, thus exceeding the requested value of -18°C. The average temperatore was -13.54°C for the period in which the reguired value was not met (29 hours).

In the present dissier only stability data for I E-and Sisomer on onions are reported which are relevant to the issue at Kand

Test system:

The test conditions of the storage stability study on fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer were as follow

25 Cisomer (fluoxastropin); HEC 5725 Z-isomer, fortified as a Test substance

1.0 mg/kg for both compounds Fortification level:

@OniomBulb Plant matrices:

Storage conditions: 7 days at -7°C

Storage intervals:

Test Commodities

for fortification were purchased in local markets or taken from other GLP Control materials studies

For the storage stability experiment, aliquots of 5 g of onion bulbs were fortified with a mixture of the analytes at a fortification level of 1.0 mg/kg. The samples were stored in plastic containers (50 mL centrifuge tubes with screw caps) at +1°C for 8 hours and at -7°C for the following 7 days. Samples were analysed on day 0 and after a storage interval of 7 days.

On day 0, five freshly fortified onion specimen fortified at 1.0 mg/kg were analysed together with a control sample. After a 7 day storage interval, five stored fortified and one stored control sample were analysed for fluoxastrobin (HEC 5725 E Isomer) and HEC 5725 Z Isomer. In addition two freshly fortified onion samples were prepared from stored control samples and analysed together with the stored fortified samples as procedural recoveries.

Prior to analysis of the stored samples, the method was validated at 1.0 mg/kg for both malytes. The method procedure and all validation data for HEC 5725 E-and Z-isomers are described within the storage stability report. The method is based on the Qurchers method, however using a deviating ratio of the solvents (acetonitrile/water 4/1, v/v). After addition of a salt mixture $(Mg_2SO_4/NaC_1/Na_4)$ citrate 2 H_2O/Na_2H citrate 6 H_2O) (4/1/1/0.5, M_2W/W) and centrifugation, an aliquod of the acetonitrile phase was diluted (1:100) with method / water (1/1, W) prior to the HPIC-MSMS determination. Samples were quantified using matrix matched standards.

Results and discussion

The residues of fluoxastrobin were determined according to the method as described in the storage stability report. All validation data are included in the storage stability report. Detailed information on the method validation data are reported in section (A 4.1.2).

In the control samples of onion (bulbs), residues of the analytes flux astrobin (Fisomer) and HEC 5725 Z Isomer were below the LOQ (\$0.01 mg/kg).

Method validation was performed at 1.0 mg/kg for both analytes based on five individual samples. The mean recoveries were in the range of 70 × 110% with RSD × 20% and proved the method performance (cf. Table 6.4 14, Table 22 in the study teport)

For procedural recoveries, on day 0 and at the storage interval following day 0 recovery experiments were performed by fortifying stored control samples with a mixture of the abalytes (1.0 mg/kg each). On day 0 five recovery experiments were performed and two freshly fortified samples were extracted on day 7 and analysed concurrently with the control and stored spiked samples. Procedural recoveries were all in the range of 70 – \$\tilde{0}10\%\$ (Pable 6.1-15) Table 00 in the report).

The recoveries of the stored samples showed that the residues of both analytes were stable in onion bulbs under the conditions investigated (8 hours at 1°C followed by 7 days at -7°C). For onion bulb, recoveries were 76 and 73% for the E-and Z-isomer, respectively. When normalised to the day 0 value recoveries were 80 and 79% for the E-and Z-isomer, respectively. Detailed data are compiled in Table 6.1- 16 (Table 103 and 404 in the report) below. It is concluded that the temperature deviations which occurred during shipment of the field samples had no negative impact on the quality of the residue study.

Table 64 14: Recovery data for method validation for fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer of onion bulb

			}	Fortifica- tion Level	Reco	very in	valid	ation s	ample	s	
Analyte	Commodity	Transit	ion [*]	[mg/kg]	Indiv [%]	'idual	Values			Mean [%]	RSD [%]
Fluoxastobin (HEC 5725 E Isoner)	Onion (haptb)	459 / 188	Q	1.0	103	96	106	100	99	101	3.8
E Isomer)	(hýrib)	459 / 427	С	1.0	98	99	107	113	84	100	11
HEC 5725	Onion	459 / 188	Q	1.0	101	95	104	101	98	100	3.4
Z Isomer	(bulb)	459 / 427	С	1.0	105	110	90	90	113	102	11

^{*}Q: Quantification, C: Confirmation; RSD: relative standard deviation

Table 6.1- 15: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in onion bulb

Analyte	Fortifica- tion Level [mg/kg]	Date of extraction	Storage interval [days]		Indivi	dual red [%]	coverie		Mean [%]	RSØ)	SD®
Fluoxastrobin	1.0	2014-04-14	0	97	92	96	96	95	95, 7	2.0	1.9
(HEC 5725	1.0	2014-04-22	7	89	₹8 8		Ŵ.		89	~OY	, Q
E Isomer)	Overall mea	an, RSD and star	ndard devia	tion [%	6]		5	9	9 3	3 3.9	₹3.6 ₍ , (
HEC 5725	1.0	2014-04-14	0	9®	95	910	92 。	91	92 🧷	1.8	1.7
Z Isomer	1.0	2014-04-22	7	(F)	89	~ .		Ž,	89	<u>~</u>	ō
Z Isomer	Overall mea	an, RSD and star	ndard devia	tion [9	[6]	O' ,	`\\	~ ~	N .	<2.4 ^	2 .1

Table 6.1- 16: Storage stability data and concorrent recoveries of Quoxastrobin (HEC 5725 E isomer) and HEC 5725 E-isomer in onion bulb

	1					N N
Analyte	Storage Period (days)	mg/kg nommal	Stored Average Vo	Day-O Normalized Recovery	Everage % of Fresh Concurrent Recoveries	Average Corrected % Recoveryb
Fluoxastrobin (HEC 5725		0.966 © 94 0.923 © 22 0.956 © 96 0.964 © 96 0.954 © 96		189	NA	100
E Isomer)		20.767 70 70 70 70 70 70 70 77 8 77 8 77 8	76 W	© 80	89	86
HEC 5725		0.915 920 0.915 91 0.915 920 0.915 920		100	NA	100
Z Isome		0.746 75 0 0.745 75 75 75 75 75 75 75 75 75 75 75 75 75	73	79	89	82

aNormalized Recovery (Average recovery / average recovery at day 0) x 100%

Storage stability in animal commodities

Tissues and milk samples from the cow feeding study (<u>See Submitted</u> with the Annex II dossier and evaluated in the DAR were stored frozen for less than 1 month before being analysed.

bCorrected porcent provery € (Average % recovery (stored spiked sample) / Average of fresh concurrent recoveries) x 100% NA = No opplicable

Tissues and eggs of laying hen from the hen feeding study (reported in the present dossier were also analysed within 30 days, except for few egg samples collected at the day of sacrifice, from control animals or collected during the pre-dosing period. Thus are storage stability study was not considered necessary.

However, storage stability investigations were performed in the livestock metabolism studies (see below).

Storage stability investigations in the livestock metabolism studies

In the livestock metabolism studies with radiolabelled fluoxastrobin (see intoduction to chapter CA 6 and Table 6.2-3, chapters CA 6.2.2 and CA 6.2.2 all first extractions and analyses for quantification of parent compound and metabolites were performed within 6 months after collection of the samples. However, samples of commodities were extracted again in the course of the metabolism studies and the metabolic profiles were compared with the first profiles, this generating data of storage at -18°C for periods of up to almost two years (see Table 6.1-17). Except for a minor degradation of a group of hydroxylated metabolites in the hen liver sample, no change of the radioaetive residue due to storage was observed.

The radioactive residues include fluoxastrobin, its some and the metabolite HEC 5,725-phenoxyhydroxypyrimidine (M55). These three compounds are the analytes of the residue analytical methods (see document MCA section 4 Frapters 4.1.2 and 4.2) and also the components of the residue definition for risk assessment and the proposed residue definition for enforcement (see chapter CA 6.7.1).

Fluoxastrobin (HEC 5725E-isomer) was detected in all commodities of the four livestock metabolism studies, its Z-isomer (HEC 5723 Z-isomer) was detected as a trace or romor component in only some of the matrices. The metabolite HEC 5725-phenoxy-hydroxypyrimidine (M55) was detected in all commodities of the goat and heremetabolism studies with [chlorophenyl-UL-14C]fluoxastrobin, it was not detectable in the studies with [methoxyiminotolol-ring \(\mathbb{L}\)L-14\(\mathbb{L}\) fluoxastrobin (see Table 6.1-17).

In egg and muscles storage stability of fluorestrobin, its Z-isomer and the metabolite HEC 5725phenoxy-hydrox voyrimatine (\$255) at 18°C was demonstrated for at least 5 and 4 months in the hen metabolism study with [chloropheryl-ULO] C]flooxastrobin, and in the hen metabolism study with [methoxyiminotolyl-ring 192-14C) Muoxastrobin stability of fluoxastrobin and its Z-isomer was shown for at least 7 months. In liver storage stability of all three components was shown for at least 11 months, stability of fluoxastrobin for access 2 months. In kidney, stability of fluoxastrobin was shown for at least 10 months and considering the results in liver, similar stability can be assumed also for the Z-isomer and the metabolite HEC 5725-phenoxy-hydroxypyrimidine (M55). In milk, stability of fluoxastrobin and the metabolite TEC \$25-phenoxy-hydroxypyrimidine (M55) was shown for at least 10 months and considering the results in the other matrices, similar stability can be assumed also for the Z-isomer of fluox strobin.

In the livestock metabolism studies, no experiments were made on storage stability of residues in fat. However, considering the results of the tested five diverse animal matrices, similar storage stability can be assumed also in fat.

In summary, it is concluded that residues of fluoxastrobin, its Z-isomer and the metabolite HEC 5725phenoxy-hydroxypyrimidine (M55) are stable in livestock commodities for periods of at least 4 - 22 months.

Experiments in livestock metabolism studies on storage stability of radioactive **Table 6.1-17** residues: commodities, covered components of the residue definitions and periods of demonstrated storage stability at -18°C

				@ V		· 🔍
	milk	egg	muscle	P at	liver	S kidney
Goat metabolism study with [chlorophenyl-UL-	10 months,	- 4	ř - (y -	11 Conths,	
14C]fluoxastrobin,	fluoxastrobin, M55		Q° ,5		fluoxastrobin, its Z-isomer;	
2002; M-034595-03-1					3 155	.1
Hen metabolism study	-	5 months o	4 months,	A-	months,	
with [chlorophenyl-UL- 14C]fluoxastrobin,		Huoxastrobin.	fluoxasirobin,		fluoxastrobin	
,; ,; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;		its Z Tsome C	its Aisomer M55		M55 V D 25 -	
Goat metabolism study with [methoxyiminotolyl-				y - 8	22 months	11 months,
ring-UL- ¹⁴ C]	. ~				Maoxastrobin	fluoxastrobin
fluoxastrobin,				J 5		
2001; M-036881-02-1				&		
Hen metabolism study		months,	months,		7 months*,	-
with [methoxyiming lyl- ring-UL- ¹⁴ C]					fluoxastrobin	
fluoxastrobin,		its Z-isomer	it Z-isomer	W L		
2002; M-059027-01-1				ď		

^{*} minor degradation of agroup of hydroxylated metabolites was observed

^{*} minor degradation of a group of hydrox lated metabolites was observed

This is a recently amended version of document M.030690 01-1, see chapter CA 6.2.2.

CA 6.2 Metabolism, distribution and expression of residues

In the EU Annex II dossier of fluoxastrobin submitted in March 2002, plant and livestock metabolism were summarised in Section 4, Point 6. Wheat metabolism studies (three radiolabels) tometo metabolism studies (two radiolabels), confined rotational crops studies (three radiolabels), lactating goat metabolism studies (two radiolabels) and a laying hen metabolism study (one radiolabels) were submitted and summarised. However, the tomato metabolism studies were neither addressed in the DAR nor peer reviewed during the evaluation.

Excerpt from the EFSA Scientific Report (2007) 102, 1-84, Conclusion on the peer review of fluoxastrobin (rev 2007), finalized the 13th June 2007:

"Based on the primary plant metabolism and processing data submitted for wheat residues invereal crops should be defined as fluoxastrobin and z-isomer for monitoring and risk assessment purposes. However, due to the fact, that the investigation of the metabolic behaviour of fluoxastrobin is limited to cereals only, a final residue definition for plants in general can not be proposed."

Additional plant metabolism studies in peanuts (two radiolabels) and obseed tape (one radiolabel) as well as another laying hen metabolism study (another radiolabel) were conducted in 2002/2003. This laying hen metabolism study was submitted during the evaluation (November 2002), it was included in the DAR and peer reviewed. The peanut and oilseed rape metabolism studies were submitted in an addendum to the EU Annex II dossier to the United and to the Notherlands for the registration of a plant protection product used in potatoes, but these studies were never peer reviewed at EU level. In the "Reasoned opinion on the review of the existing maximum residue levels (MRLs) for fluoxastrobin" EESA annotated that "Q. a complete peer review of these inetabolism studies at EU level is still desirable" [EESA Journal 2012;10(12):3002].

Therefore in this dossier, the metabolism studies which have not yet been peer reviewed are summarised i.e. the tomato, peanat and pilseed rape metabolism studies.

Table 6.2-1 gives an everview on the plant metabolism studies, Table 6.2-2 on the confined rotational crops studies and Table 6.2-3 on the tivestock metabolism studies available for fluoxastrobin. The table includes information on the labelling positions, the presentation of the reports in the submissions and whether or not the have been peer reviewed at EU level.

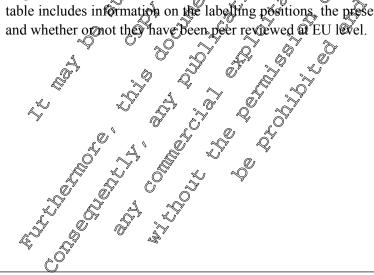


Table 6.2-1: Fluoxastrobin: Overview on plant metabolism studies

Crop	Application	Label	Report		nission	Peer revie
=	scenario			EU dossier,	Presented in the	during
				Annex II,	addendum to	evaloratio
				Section 4,	t bae "	~ ~.
				Point 6	EU dossier*,	\$ ~
				(submitted in	Annex II,	
				March 2002)	Section 4,	
				Vand	Point 6	~Q" «
				 	and in 🗸	
				dossier	supplementary	
					dossier	evaluation of the state of the
wheat	seed treatment &	ring 3	,; 200 f,© M-090419-04,-1	includ		yes (
	2 foliar	ring 1	; 2901; ₄		8 - 8	e 1900
	applications	Tilig I	,, 2001, M-091320-01-1	inclided of		
	applications	ring ?	M-091320-01-14の 歩; 2001	, Walucki	A	8 1100
		ring 2	M-09) 386-01-1	The ludge		yes,
	sood	rina ?		V individual XI		
	seed	ring 3	□ 2001;	included		yes
4	treatment	1	10-091406-01-1°			7%. //
tomatoes	3 foliar	ring 1	;; 2001;	mcluded but	O des O	°≫ no
	applications	, Q	M-990608-00-1	not geer		
		. D-	y ~	reviewed 💇		D .
		ring 3	;; 2001	ingluded but	CA TES O	no
			MI-040028-01-3	not peer		
	2.01:	, , , , , , , , , , , , , , , , , , ,		g reveried		
peanuts	3 toliar	rıng 🏋	w; 2002;	1 47 O	Yes	no
	application	- A	1-070947-01-		U ~Y	
		mg 2	,; 2002;	Q & 4	<i>⊗</i> Yes	no
	Ö	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	M-074227-01-1		J'	
oilseed	seed S	ring 3	Ų, Š		Yes	no
rape	treatment	W ,	; 2003, M-			
	Q	Lı Ü	109 45 9-01-**\bar{\bar{b}}"		*	
*submitted	to the United		and to The Nether	lands for the regi	stration of a plant p	protection pro
used in p	otatoes 🚿					
	.\$9*	4 4				
		A &				
)" .Š		y Q		
		O A		**************************************		
	4		Y Q' 29'			
li di				L)		
		7 Q		*		
J.		4				
	* \odds'	By W				
//	- 4	"O" , C'	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
		O'Y				
			L y			
		T S	v			
(l						
<u> </u>		43				
Ş						
S, S						
			;; 2001; M-090608-00-1 ;; 2001; M-090638-01; M-090638-01; M-070007-01; 2002; M-074227-01-1 ;; 2003; M-109459-01-0 and to The Nether			

Table 6.2-2: Fluoxastrobin: Overview on confined rotational crops studies

Rotational	Application	Label	Report	Submission	Peer reviewed during the EU
crops	scenario			EU dossor, Anna II,	during fre EU veva Cation
				Section 4,	
				(Somitted in Varch 2002)	
				O and S baseline dos Ger	
wheat, Swiss chard,	1 spray application on bare soil	ring 3	,; 2001; M-090320 (01-1 ©	Anclucof	yes by
turnips		ring 1	2002; M-091191-Q	Gclude &	
			2002, M-091191-3		A ASS OF
			200 M-091 62- 01 A	ingluded 5	
<u> </u>		K O'			

Table 6.2-3: Fluoxastrobin: Overview on livestock metabolism studies

Animal	Label Report Submission Submission Submitted to MS	Peer
	Annewly, (UKPSD) wring Ovaluation (Sulfmitted in the March 2002), (Sulfmitted in the March 2002) DAR and in Jaseline dossier	reviewed during the EU evaluation
laying	ring ; 2001; ; 2001; ; 2001; ; 2001;	yes
	Yes (M-059)027-014	yes
lactating Aat	ring 3 julided - 1036881-024	yes
4	M-036881-02-4 included - 2001	yes

^{*}The study report was recently amended resulting in document M-030690-02-1, see chapter CA 6.2.2.

The metabolism of fluoxastrobin in the plant and in livestock was investigated using [chlorophenyl-UL-¹⁴C]-, [cyrimidine-2-¹⁶C]- and [methoxyiminotolyl-ring-UL-¹⁴C]-labelled fluoxastrobin. Metabolism studies on a specific test material were generally done using all three labels. In those cases, where not all labels were tested in parallel, the [methoxyiminotolyl-ring-UL-¹⁴C]-label was always included because this ring is considered to be the best description of the pharmacophore and is one of the two central rings. The chemical formula of fluoxastrobin and the position of the used ¹⁴C-labels are presented below:

Nos. 1-3 indicate position of 14 Cabel

- 2 =

The test compound used in the metabolism studies was a mixture of fluorastrobin (HEC 5725 Eisomer) and its Z-isomer JAEC 5725 Zosomer at a ratio of about 98/2 to 97/3. Hence, in the studies and in the summaries presented in this chapter the mixture of the sum of flooxastrobin and its Zisomer is denoted as parent compound. However the Exisomer only is defined as the active substance and the Z-isomer was declared as an impurity (see background information in chapter CA 6).

Categorisation naming and presentation of metal vites

For an easier nomenclature and categorisation of the metabolites of fluoxastrobin, the rings of the molecule were numbered as 1, 2, 3 and 4, which is shown in the elemical formula above. The various metabolites of fluoxastrobin were grouped by the rings (or fragments of rings) they still contained, i.e. "ring 3,4 metabolics" still contain ring 3 (methoxyminotolyl-ring) and ring 4 (dioxazine-ring). Furthermore, there are "ting 1,23,4 metabolites", "ring 2,34 metabolites", "ring 1,2 metabolites" and "ring 1 metabolites".

The names of the metabolites consist of the code number parent compound as prefix (HEC 5725-) followed by a unique suffix (Qg. HEC 572S amide). The prefix (HEC 5725-) was preferably omitted when the name of the metabolite was identical with the chemical name of the compound (e.g. salicylic acid, 2-chlorophenol). Isomerisation of the oxomether (methoxyimino) group was a common process. In several cases the stereochemical orientation of the chemical structures of the metabolites was determined and this was intricated in the report name by either inserting the letters "E" and "Z" or adding "Excomer or "Zosomer". In other cases the structures of the metabolites which still contain the oximether were drawn as E-isomers since this is the most likely configuration, however, any indication in the report name was omitted. A list of metabolites contains the structures, various names, short forms and code numbers attributed to the metabolites and the matrices in which the metabolites were identified are also included in this list (see document N3).

CA 6.2.1 Metabolism, distribution and expression of residues in plants

The behaviour and metabolism of fluoxastrobin was investigated in wheat, tomatoes, peanute and (chloropheny)-UE Clares (chlor oilseed rape under simulated field conditions. So far only the wheat metabolism studies were evaluated under peer review at EU level. Therefore the tomatoes, peanuts and offseed rape metabolism

apph

.natoes wei
C]fluoxastrobin:

.A 6.2.1/07

.A 6.2.1

Executive Summary

The metabolism of [chlorophenyl-UL-¹⁴C]fluoxastrobin (= [chlorophenyl-UL-¹⁴C]HEC \$725) formulated as an SC 360 was investigated in tomatoes following three foliar pray applications. The first application was performed shortly after BBCH 64 (small tomatoes visible and a few flowers were still open). The second treatment was performed when the majority of the fruits had reached prox & 50% of the final size, corresponding to approx. at BBCH 72. The third treatment was three days before harvest, approx. at BBCH 83 (30% of the tomato fruits showed the spical ripe colour). The single application rate was approx. 144 g a.s./ha, the total application rate was approx. 430 g a.s./ha.

The total radioactive residue (TRR) in tomato fronts amounted to 0.28 mg/kg, expressed as agrive substance equivalents. Most of the radioactivity (91.5% of the TRR, 0.389 mg/kg) was extracted by surface wash with methanol. After homogenisation of the tomato of ruits and extraction with acetonitrile/water the TRR was extracted almost quantitative (99.8%). The radioactive of the acetonitrile/water extract was partitioned mainly into the dohloromethane phase and only a small amount of radioactivity remained in the aqueous phase.

The major component of the TRR 94.8%, 0.396 mg/kg) was Tuoxastrobin HEC 725 Lisomer). In total, parent compound (sum of fluoxastrobio and 0s Z-isomer) accounted to 98.0% of the TRR (0.410 mg/kg) in tomatoes. Three metabolites were also identified: HEC 5725-phenoxy-aminopyrimidine (M56), HEC 5725-amide (M38) and MEC 5725-kerone (M34), each below 0.5% of

Based on the metabolites identified the following metabolic routes were deduced:

- cleavage of the molecule at the pyrimidine-methoxyiminotoly ether group followed by
- cleavage of the dioxazine ring and formation of an amide group and
- hydrolysis of the methoxymino group and formation of a kero group.

I. Materials and Methods

A. Materials

1. Test Material:

Chemical structure	only E-isomer only E-isomer displayed
	position of the
	* radiofabel radiofabel
Radiolabelled test material	[chlorophenyl-UL-146]fluoxastrobin
Specific radioactivity	3.87 MBq/mg (1045 μCi/mg)
Lot number	12712/1 and 12703/1 Q
Ratio of	978.2.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
fluoxastrobin (HEC 5725 E-isomer)/ Z-isomer (HEC 5725 Z-isomer)	
Z-isomer (HEC 5725 Z-isomer)	9748.2.2 \$ \$ \$ \$ \$ \$ \$
Radiochemical purity	9788.2.2 \$\frac{1}{2}\$ \$
I	

2. Soil: Standard Soil T

3. Plant: Tomato, variety "Bonset Flo

B. Study Design &

1. Experimental conditions:

One tomato that (variety Bonse F1) planted in a St L pot filled with "Standard Soil T" was cultivated in the greenhouse of the test facility controlled temperature, humidity and light conditions).

The tomato plant received three applications of the test compound [chlorophenyl-UL
14C]fluoxastrobin. For each application an adequate amount of the test compound was mixed with a

blank formulation in a test tube using a mini totary mixer and two small steel balls to yield an SC 360

formulation. The radio labelled formulation was suspended in 40 mL water and applied onto the
tomato plant with a sprayer equipped with a flat fan nozzle. The first application was performed
shortly after BBCH 64 (small tomatoes visible and a few flowers were still open). The second
treatment was performed when the majority of the fruits had reached approx. 50% of the final size,
corresponding to approx. at BBCH 72. The third treatment was three days before harvest, approx. at
BBCH 83 (30% of the tomato fruits showed the typical ripe colour). The targeted total applied amount
was approx. 17 org a.s., Based on a planting density of 25,000 plants/ha, the amount corresponded to a
targeted total application rate of approx. 432 g a.s./ha. and to a single application rate of approx. 144 g
a.s./ha.

2. Sampling:

The sed and slightly red coloured tomato fruits were harvested three days after the last application when the plant had a growth stage of approx. BBCH 85 (approx. 50% of the tomatoes showed the typical type colour). The harvested fruits were divided into aliquots and either processed for analysis or stored frozen at -20°C or below.

C. Analytical Procedures

1. Extraction:

An aliquot of the harvested tomato fruits was surface-washed with methanol, cut into pieces and extracted four times with acetonitrile/water (4:1, v:v) using a high-speed blender After each extraction step, extracts and solids were separated by filtration. The acetonitrile/water@extracts were combined and concentrated to the aqueous remainder using a rotary evaporator. The aqueous remainder was partitioned with dichloromethane.

The radioactivity in the surface wash, the combined acetonitrile/water extract, the dichloromethane phase and the aqueous phase was determined by lighted scintillation counting (LSC). The solids were combusted. The CO₂ produced by combustion was absorbed in a CO₂ absorbed / sciontillation coclosial mixture and the radioactivity was measured by LSC. The actual TRR on the tomato fruits was calculated by summing up the radioactionty preasured in the surface wash, the combined acetonitrile/water extract and remaining solids. The TRR was expressed in mg a.s. equivalents per kg sample weight. Amounts of radioactive residues in the extracts were expressed as percentage of the TRR and also as mg a.s. equivalents perkg sample weight.

2. Identification and characterisation:

The surface wash, dichloromethane phase and aqueous phase were analysed radiodetection (flow-through radiodetector equipped with a wild scintillator glass cell). Parent compound and metabolites were identified by HPLC cochromatography using reference compounds. The identification was supported by LCMS/MS analysis.

3. Storage stability:

All samples (fruit and surface wash solutions) were stored frozen at -20°Cor below. The surface wash and the extraction of tomatoes for the metabolism study were conducted one day after sampling. The radioactivity was extracted almost completely and the first quantitation of the metabolite pattern was achieved within 3 weeks. Furthermore, based on other plant metabolism studies, no significant change was expected for the pattern of parent compound or metabolites during storage of samples or extracts. It was concluded that no special storage stability investigations were necessary.

Results and Discussion

The metabolism of [chlorophenyl-UL-14C]HEC 5725) formulated as an SC 360 was investigated in tomatoes following three foliar spray applications, at a single rate of approx, 144 g. s./h. and a letal rate of approx. 432 g a.s./ha.

The total radio active residue (TRR) in tomatoes harvested 3 days after the last application amounted to 0.418 mg/kg active substance equivalents (Table 6.2.1-1).

TRR value on tomato fruits after foliar spray application of [chlorophenyl-UL-¹CTiluoxastrobin

Matrix	Teming and Application	PHI (days)	TRR (ppm, mg a.s. equiv./kg)
tomato fruits	three foliar spray applications, at BBCH 64, BBCH 72 and BBCH 83; 3 x approx. 144 g a.s./ha	3	0.418

Most of the radioactivity (91.5% of the TRR, 0.383 mg/kg) was extracted by surface wash with methanol (Table 6.2.1-2). The tomatoes were homogenised and further extracted using \bigcirc acetonitrile/water. The total extraction was very effective and amounted to 99.8% of the TRR Following concentration of the radioactivity of the acetonitrile/water extracts. The major portion was partitioned into the dichloromethane phase (7.3% of the TRR, 0.030 mg/kg) and a small amount remained in the aqueous phase (0.9% of the TRR, 0.004 mg/kg). The recovery of radioactivity indicated no significant losses.

Table 6.2.1-2:

	e (0.9% of the TRR, 0.004 mg/kg). The recovery of radioactivity
indicated no significant losses.	
Table 6.2.1-2: Distribution o	f radioactivity in the extracts of the tomato fruits after foliar tion of [chlorophenyl-UL-14C]fluoxastrobin Tomato fruits
spray applicat	tion of [chlorophenyl-UL-14C]fluoxastrobin
	Tomato fruits 0(418 & 5
TRR [mg/kg] =	
	% OI JRR OF entry /kg Q O' & ' &
Surface wash with methanol	191.5 V 20.383 V 2 V 2 V
Acetonitrile/water extracts	(8.2) (0.034) (0.034)
Dichloromethane phase	
Aqueous phase	0.034) 74 0.9 0.004) 0.9 0.004)
Total extracted	91.5 (8.2) (0.034) (0.09 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Solids (non-extractable residue)	
Accountability	100°.0 0°.418
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
The surface wash, dichloroged	than phase and aqueous phase were analysed by HPLC with
radiodetection. Parent compou	nd and metabolites were identified by co-chromatography with
rafaranca compous surverted	RICMS/MS analysis & Committee of the com

The surface wash, dighlorogethan phase and aqueous phase were analysed by HPLC with radiodetection. Parent compound and metabolites were identified by co-chromatography with reference compounds, supported by LCAMS/MS analysis.

In the methanor surface was solution (Table 6.2,1-3), Prioxastrobin (HEC 5725 E-isomer) accounted for 88.1% of the TRR (0.368 mg/kg), the amount of the Z-isomer of fluoxastrobin was significantly lower (29% of the TRR, 0012 mg/kg). Three metabolites were detected in small amounts: HEC 5725-phenoxy aminopyrimidine (MSS), HEC 5725-amide (M38) and HEC 5725-ketone (M34) (0.1% – 0.3% of the TRR, 0.001 pig/kg each), by the dichloromethane phase fluoxastrobin (HEC 5725 E-isomer) accounted for 6.7% of the TRR (0.028 mg/kg). The Z-isomer of fluoxastrobin (0.4%, 0.002) mg/kg) and two minor metabolites were diso deceted: DEC 5725-phenoxy-aminopyrimidine (M56) and an unknown, each 6.9% of the TRR, <0.001 riog/kg. Four minor unkno detected in the aqueous phase (0.1% - 0.6% of the TRR, <0.001 - 0.002 mg/kg). and an unknown, each 0.9% of the TRR, <0.001 log/kg. Four minor unknown metabolites were



Table 6.2.1-3: Distribution of parent compound and metabolites in the extracts of tomato fruits after foliar spray application of [chlorophenyl-UL-¹⁴C]fluoxastrobin

	700	- ·	1
		o fruits	
TRR [mg/kg] =	0.418		
Compound	% of TRR	mg a.s. equiv./kg.♣	
Surface wash with methanol	Ò	J.	
parent compound, sum of	(90.9)	(0.386)	
fluoxastrobin (HEC 5725 E-isomer)	88.1	<b>Q</b> .968	
and its Z-isomer (HEC 5725 Z-isomer)	29	©.012 ₀ °	
HEC 5725-phenoxy-aminopyrimidine (M56)	0.3	0.000	
HEC 5725-amide (M38)	( 0.1 ₀ °	~ Q.OO 1 ~ O	
HEC 5725-ketone (M34)		Ø.001, ®	
Total in surface wash	1.5 W	Q 0.383	
Dichloromethane phase			
parent compound, sum of		y (0 <del>,0</del> 30) ×	
fluoxastrobin (HEC 5725 E-isomer)	\$ \square \text{56.7}	© 0.028	
and its Z-isomer (HEC 5/25 Z-isomer)	1 . ().4	.S ^y 0.992 C	
HEC 5725-phenoxy-aminopyrimidine (M56)		P <6.001 &	
unknown	Ø.1 V	&0.00 <b>}</b>	
Total in dichloromethane phase	7.3 0	0,030	
Aqueous phase			
unknown unknown unknown unknown	<b>6</b> 8.1 0	<b>%</b> 0.00₁ .	
unknown	\$\times 0.1 \times \tag{7}	O.001 ~	1
unknown & A S		Q.002	
unknown S & & &	J 10.2 S	Ø.001, \$	
Total in aqueous phase O &	0.9	0.004	
Total extracted	99.8	0.417	
Solids (non-extractable residue)	0,2	<b>0.001</b>	
Accountability	<b>10</b> 0.0	0.418	
	, , (	, ¶ ,	

A total of 98.7% of the TRR (0.413 mg/kg) was identified trable 6.2.1-4). The parent compound (sum of fluoxastrobin and its Z-isomer) accounted for 8.0% of the TRR (0.410 mg/kg) in tomato fruits. Fluoxastrobin (HEC 5725 E-isomer) was the predominant component (94.8% of the TRR, 0.396 mg/kg) whereas its Z-isomer (3.4% of the TRR, 0.014 mg/kg) was only minor. The ratio of the two isomers (96.6/3.4) was nearly unchanged compared to the ratio at the beginning of the study (97.8/2,2).

HEC 5725-pheroxy-aminopylimidite (M56) was the main identified metabolite in tomato fruits, however amounting to only 0.4% of the TRR (0.002 mg/kg). Furthermore the metabolites HEC 5725-amide (M38) and VIEC 5725-ketone (M34) were detected in traces of 0.1% and 0.2% of the TRR (each 0.001 mg/kg). Five minor metabolites remained unknown (each  $\leq$ 0.6% of the TRR,  $\leq$ 0.002 mg/kg).



Table 6.2.1-4: Summary of characteristomato fruits after foliate 14C]fluoxastrobin		ication of radioa on of [chloropher	<u> </u>
	Tomat	o fruits	
TRR [mg/kg] =	0.418		
Compound	% of TRR	mg a.s. equiv./kg	
parent compound, sum of	(98.0)	(0.416)	
fluoxastrobin (HEC 5725 E-isomer)	94.8	9.996	
and its Z-isomer (HEC 5725 Z-isomer)	3.3	.00.014	
HEC 5725-phenoxy-aminopyrimidine (M56)	©0.4	0.002	R O B
HEC 5725-amide (M38)	0.1	\$\tilde{\pi}' \ \Q\delta \delta 1 \ \tilde{\pi} 1	
HEC 5725-ketone (M34)		Ø:001, °	
Total identified	<b>8</b> 8.7 V	Q,0.413	
unknown	0.1	O . KOO. O	
unknown	Q.P' %	\$\infty \square                                                                                                                                                                                                                                                                                                                                   \qquad                \	
unknown	\$\tag{9.1 \\ 7\text{9}'	\$0.001°	
unknown	0.6	0.002	
unknown		D \$4,001 D	
Total characterised	P.O &	Ø.004	
Total extracted	§ \$99.8 @	0.417	
Solids (non-extractable residue)	0.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Accountability	196.0	% _{0.418}	

After foliar spray application of [chlorophenyl-Ula 4C]fluoxastrobin, residues in tomato fruits consisted almost completely of parent compound accounting for 98.0% of the TRR. The ratio of fluoxastrobin and its Zisomer remained nearly unchanged during the course of the study. Only a small number of metabolics were detected in low amounts.

Based on the identified metabolites the following metabolic routes were deduced:

- cleavage of the molecule at the pyrimiding methoxyiminotolyl ether group followed by amination, deavage of the dioxazine ring and formation of an amide group and
- hydrolysis of the methoxyonino group and formation of a keto group.

The metabolic pathway is proposed in Figure 6.2.1-1.



Figure 6.2.1-1: Proposed metabolic pathway of [chlorophenyl-UL-14C]fluoxastrobin in tomatoes HEC 5725-ketone (M34)HEC 5725-phenoxy aminopyrimidine 2001; M-029638-01-1 Report: Metabolism ( methoxyimin tolyl-mg-UL-14C HEC5725 in tomatoes Title: MR 129/01 Report No.: MP090638-01-1 Document No.: Guideline(8): Carrada PMRA Ref.: DACO 6.3; EU 91/414/EEC Guideline deviation(s): GLP/GEP: Executive Summary

The metabolism of [methoxyminotolyl-ring-UL-¹⁴C]fluoxastrobin (= [methoxyminotolyl-ring-UL-¹⁴C]HRO 5723 formulated as an SC 360 was investigated in tomatoes following three foliar spray applications. The fast application was performed shortly after BBCH 64 (small tomatoes visible and a few flowers were still open). The second treatment was performed when the majority of the fruits had reached approx. 50% of the final size, corresponding to approx. at BBCH 72. The third treatment was three days before harvest, approx. at BBCH 83 (30% of the tomato fruits showed the typical ripe colour). The single application rate was approx. 144 g a.s./ha, the total application rate was approx.



The total radioactive residue (TRR) in tomatoes fruits amounted to 0.635 mg/kg, expressed as active substance equivalents. Most of the radioactivity (91.1% of the TRR, 0.578 mg/kg) was extracted by surface wash with methanol. After homogenisation of the tomato fruits and extraction with acetonitrile/water the TRR was extracted almost quantitatively (99.8%). The radioactivity of the acetonitrile/water extract was partitioned mainly into the dichloromethane hase and only a small amount of radioactivity remained in the aqueous phase.

The major component of the TRR (94.5%, 0.600 mg/kg) was fluoxas fluoxa total, parent compound (sum of fluoxastrobin and its Z-isomer) accounted for \$8.0% of the TR (0.622 mg/kg) in tomatoes. Three metabolites were also mentified: HEC phenylketone (M78), HEC 5725-amide (M38) and HEC 5725-ketone (M34), Cach below (25% of the TRR.

### A. Materials

### 1. Test Material:

Based on the metabolites identified the following metabolic route, were deduced:  • cleavage of the molecule at the pyrimidine-methoxyiromotoly ether group  • cleavage of the diovagine ring and formation of an axide group of the diovagine ring and formation of an axide group of the diovagine ring and formation of an axide group of the diovagine ring and formation of an axide group of the diovagine ring and formation of the diovagine ring and d
• cleavage of the molecule at the morning in the common of the count in the common of the count in the count
• cleavage of the dioxazine ring and formation of an arhide group and
• hydrolysis of the methoxying proup and formation of Wketo group \$\infty\$
<ul> <li>cleavage of the molecule at the pyrimicupe-methoxyiromotoly/lether group</li> <li>cleavage of the dioxazine ring and formation of an arnide group and</li> <li>hydrolysis of the methoxyiromotograp and formation of a keto group</li> </ul>
W KMaterrals and Methods & & & &
<ul> <li>cleavage of the dioxazine ring and formation of an amide group and</li> <li>hydrolysis of the methoxyinino group and formation of a keto group.</li> </ul> A. Materials
1. Test Material:
Chemical structure Sonly E-isomer
displayed
* position of the
radiolabel
N O N O CH ₃ Q
1. Test Material:  Chemical structure  * position of the radiolabel red test material  Radiolabel red test material  [metboxyiminotol@-ring-VL-14C]fluoxastrobin
Specific radioactivity 3,70 MBQ mg (100 μCQmg)
Lot number
Ratio of fluoxastrobin (HEC 525 Extrement)
fluoxastrobin (HEC 5/25 E. Somer)
Z-isomer (HDC 5725 Z-isomer) 797.7:23/
Radiochemical purity \$\infty \ \phi \phi

- 2. Soil: Standard Soil
- 3. Plant: Tomato,

### B. Study Design

### 1. Experimental conditions

One Comato plant (Wariety: Bonset F1) planted in a 35 L pot filled with "Standard Soil T" was cultivated in the greenhouse of the test facility (controlled temperature, humidity and light conditions).

The tomato plant received three applications of the test compound [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin. For each application an adequate amount of the test compound was mixed with a blank formulation in a test tube using a mini rotary mixer and two small steel balls to yield an SC 360



formulation. The radiolabelled formulation was suspended in 40 mL water and applied onto the tomato plant with a sprayer equipped with a flat fan nozzle. The first application was performed shortly after BBCH 64 (small tomatoes visible and a few flowers were still open). The second treatment was performed when the majority of the fruits had reached approx 30% of the mail size, corresponding to approx. at BBCH 72. The third treatment was three days before harvest, approx at BBCH 83 (30% of the tomato fruits showed the typical ripe colour). The tatgeted total applied was approx. 17 mg a.s.. Based on a planting density of 25,000 plants/ha, the amount corresponded to a targeted total application rate of approx. 432 g a.s./ha and to a single application rate of approx. 144 g a.s./ha.

### 2. Sampling:

The red and slightly red coloured tomato fruits were harvested three day pafter the last application when the plant had a growth stage of approx. BBCH 85 tapprox 50% of the comatoes showed the typical ripe colour). The harvested fruits were divided into aliques and either processed for malysis or stored frozen at -20°C or below.

C. Analytical Procedures

1. Extraction:

An aliquot of the harvested tomato fronts was surface-washed with menanal ocut into pieces and extracted four times with acetonitrile/water (4:1, v:v) using a highespeed blender. After each extraction step, extracts and solids were separated by filtration. The acetonitric water extracts were combined and concentrated to the adueous remainder using a sotary evaporator. The aqueous remainder was partitioned with dichloromethane.

The radioactivity of the surface wash, the combine Oaceton trile/water extract, the dichloromethane phase and the agreeous chase was determined by liquid scrittillation counting (LSC). The solids were combusted. The CO2 produced by combustion was absorbed in a CO2 absorbent / scintillation cocktail mixture and the radioactivity was measured by LSC. The actual TRR in the tomato fruits was calculated by summing up the redioactivity measured in the surface wash, the combined acetonitive/water extract and the remaining solid. The TRR was expressed in mg a.s. equivalents per kg sample weight. Amounts of radioactive residues in the extracts were expressed as percentage of the TRR and also as ong a.s. equivalents per kg sample weight.

### 2. Identification and characterisation:

The surface wash, dichloron thane phase and aqueous phase were analysed by HPLC with radiodetection (flow through radiodetector equipped with a solid scintillator glass cell). Parent compound and metabolites were identified by HPLC co-chromatography using reference compounds. The identification was supported by LC-MS/MS analysis.

### 3. Storage stability

All samples (fruit and surface wash solutions) were stored frozen at -20°C or below. The surface wash of tomatoes for the metabolism study was conducted on the same day as sampling (harvest). The extraction was continued within the first week and the radioactivity was extracted almost completely. The First quantitation of the metabolite pattern was achieved within 3 weeks. Furthermore, based on other plant metabolism studies, no significant change was expected for the pattern of parent compound or metabolites during storage of samples or extracts. It was concluded that no special storage stability investigations were necessary.

### II. Results and Discussion

The metabolism of [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin (= [methoxyiminotolyl-ring-UL-¹⁴C]HEC 5725) formulated as an SC 360 was investigated in tomatoes following three foliar spray applications, at a single rate of approx. 144 g a.s./ha and a total rate of approx. 432 g a.s./ha.

The total radioactive residue (TRR) in tomatoes harvested 3 days after the last application amounted to 0.635 mg/kg active substance equivalents (Table 6.2.1-5).

Table 6.2.1-5: TRR value in tomato fruits after foliar spray application of methoxyimmotoly ring-UL-14C|fluoxastrobin

Matrix	Timing and Application		′ .,°	BHI (days)	TRR (ppm, mg a.s. equiv./kg).
tomato fruits	three foliar spray applications BBCH 72 and BBCH 83;	©at BB©H 64 approx. 144@	ŀ,♥ ya.s./hat		O' 9835 D

Most of the radioactivity (91.1%, 0.578 mg/kg of the FRR) was expracted by surface wash with methanol (Table 6.2.1-6). The tomatoes were homogenised and turther extracted using acetonitrile/water. The total extraction was very effective and amounted to 09.8% of the TRR. Following concentration of the radioactivity of the acetonitrile/water extracts, the major portion was partitioned into the dichloromethane phase (7.5% of the TRR, 0.050 mg/kg) and a small amount remained in the aqueous phase (0.8% of the TRR, 0.005 mg/kg). The recovery of radioactivity indicated no significant losses.

Table 6.2.1-6: Distribution of adioactivity in the extracts of the tomato fruits after foliar spray application of [methoxyiminotoly] ring UL-14 (fluoxastrobin

	Tomato fruits
TRR [mg/kg©=	\$\frac{1}{2} \tag{635} \tag{6}   \tag{635}
	% of TRR pass. equiv./kgs
Surface wash with memanol *	1.1 0 0.578
Acetonitrile/water atracts  Dichloromethan@phase	(8.7) $(0.95)$
Dichloromethan@phase O	© 050 00.050
Aqueous phase	0.8 0 0.005
Total extracted	99.8 0.634
Solids (non-extractable residue)	0.001
Accordatability	0.635

The surface wash, dichloromethane phase and aqueous phase were analysed by HPLC with radiodetection. Parent compound and metabolites were identified by co-chromatography with reference compounds, supported by LCMS/MS analysis.

In the methanol surface wash solution (Table 6.2.1-7), fluoxastrobin (HEC 5725 E-isomer) accounted for \$7.3% of the TRR (0.354 mg/kg), the amount of the Z-isomer of fluoxastrobin was significantly lower (3.6% of the TRR, 0.019 mg/kg). Four metabolites HEC 5725-dioxazinyl-phenylketone (M78), HEC 5725-amide (M38), HEC 5725-ketone (M34) and an unknown were detected in small amounts (0.1% - 0.3% of the TRR, 0.001 - 0.002 mg/kg each). In the dichloromethane phase fluoxastrobin (HEC 5725 E-isomer) accounted for 7.3% of the TRR (0.046 mg/kg). The Z-isomer of fluoxastrobin



(0.4%, 0.003 mg/kg) and three minor unknown metabolites were also detected (<0.1% - 0.1% of the TRR, <0.001 - 0.001 mg/kg). Six minor unknown metabolites were detected in the aqueous phase (<0.1% - 0.3% of the TRR, <0.001 - 0.002 mg/kg).

TRR, <0.001 - 0.001 mg/kg). Six minor unknown metabolites were detected in the aqueous phase $\bigcirc$				
Table 6.2.1-7: Distribution of parent compound and metabolites in the extracts of formato fruits after foliar spray application of methoxyiminotolyl-ring-Ut-  14C fluoxastrobin  TRR [mg/kg] = 0.635  Compound % of TRR mg a sequix kg  Surface wash with methanol  parent compound, sum of fluoxastrobin (MEC 5725 E-isomer) 87.3 0.554				
Table 6.2.1-7: Distribution of parent	compound and metabolites in the extracts of formato			
fruits after foliar spray	y application of Imethoxyiminotolyl-ring-UD 💉 💉 💢			
¹⁴ C]fluoxastrobin				
	Tomato fruits			
TRR [mg/kg] =	A 0.635 Q 00 A 0			
	mg a set Q O Q			
Compound	% of TRR Gequive kg			
Surface wash with methanol				
parent compound, sum of	(9003) (Q.573) (Q.573)			
	** \sqrt{87.3 \sqrt{9}  0.55                                                                                                                                                                                                                                                                                                                                                \q			
and its Z-isomer (HEC 5725 Z-isomer)	3.00 7 0.002 7 7 0.002			
HEC 5725-dioxazinyl-phenylketone (M®)	\$\tag{9}\$ \$\tag{9}\$ \$\tag{9}\$ \$\tag{9}\$ \$\tag{9}\$			
HEC 5725-amide (M38)	0.1 0.1 0.000			
HEC 5725-ketone (M34)	87.3 9.05\$\$\$ 0.002 0.1 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002			
unknown				
Total in surface wash	© <b>3</b> 1.1			
Dichloromethane phase 😽 🧳				
parent compound, sum of	(178) (19049) (10049)			
fluoxastrobin (HEC\$725 E-Bomer)	0.046			
and its Z-isomer (FEC 5725 Z-isomer)	$\begin{array}{c c} 0.4 & 0.903 \\ \hline \end{array}$			
unknown & &				
unknown	<b>30</b> .001			
unknown				
Total in dichloromethane phase	7.9 0.950			
Aqueous phase & S				
unknown				
unknown S A S S	0.001			
unknown	0.002			
unknown d	<0.001 0.20 0.001			
unknown	0.001 0.001 0.001			
Total in aqueous phase	0.001			
Total maqueous phases	99.8 0.634			
Solids (non-extractable residue)	0.2			
Accountability Accountability	100.0 0.635			
Accountability	100.0 0.033			

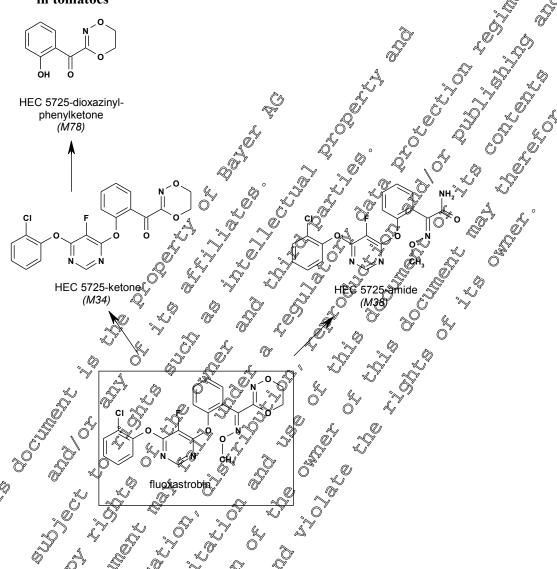
A total of 8.7% of the ORR (6.27 mg/kg) was identified (Table 6.2.1-8). The parent compound (sum of fluorastrobin and its Z-isomer) accounted for 98.0% of the TRR (0.622 mg/kg) in tomato fruits. Fluorastrobia (HE 5725 E-isomer) was the predominant component (94.5% of the TRR, 0.600 mg/kg) whereas its Z-isomer (3.4% of the TRR, 0.022 mg/kg) was only minor. The ratio of the two isomers (96.5/3.5) was nearly unchanged compared to the ratio at the beginning of the study (97.7/2.3).



HEC 5725-dioxazinyl-phenylketone (M78) and HEC 5725-ketone (M34) were the main identified metabolites in tomato fruits, however amounting to only 0.3% of the TRR (0.002 mg/kg) wich. Furthermore the metabolite HEC 5725-amide (M38) was detected in traces (0.1% of the TRR 0.0010) mg/kg). Ten minor metabolites remained unknown (each  $\leq 0.3\%$  of the TRR,  $\leq 0.0002$  mg/kg).

mg/kg). Ten minor metabolites remained unknown (each $\leq 0.3\%$ of the TRR, $\leq 0.002$ mg/kg).			
Table 6.2.1-8: Summary of characteris	sation and identification of radioactive residires in 🛇 📉 🔘		
tomato fruits after folia	r spray application of [methoxyiminotoly]-ring-W-		
¹⁴ C]fluoxastrobin			
	sation and identification of radioactive residues in respray application of [methoxyiminotoly]-ring-UL-		
TRR [mg/kg] =	<u>A</u> 0.635 Q & C		
Compound	r spray application of [methoxyiminotoly]-ring-U-  Vomato fruits  0.635  mg ds. equiv./kg  (980)  (980)		
parent compound, sum of	0 (98 <b>(9)</b>		
fluoxastrobin (HEC 5725 E-isomer)			
and its Z-isomer (HEC 5725 Z-isomer)	3.4 0,022 0		
HEC 5725-dioxazinyl-phenylketone (M78)			
HEC 5725-amide (M38)			
HEC 5725-ketone (M34)	0.3 0.002 0 0.6627		
Total identified unknown			
	0.1 5 0.00 0		
unknown			
unknown unknown			
unknown unknown unknown unknown unknown			
unknown			
unknown & S	0.001		
unknown			
unknown ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.1		
Lunknown O N N			
unknown Total characterised			
	○Y.1 ♥ ○ 0.007		
Total extracted $\sqrt{}$	99.8		
Solids (non-extractable residue)	0.2 0.001		
Accountability Accountability	100.0 0.635		

III Conclusions


After foliar spray application of methody iminotolyl-ring-UL-14C] fluoxastrobin, residues in tomato fruits consisted almost completely of parent compound accounting for 98.0% of the TRR. The ratio of fluoxastrobin and its Z-isomer remained nearly unchanged during the course of the study. Metabolites were detected in low-amounts.

Based on the identified metabolic routes were deduced:

- Cleavage of the molecule at the pyrimidine-methoxyiminotolyl ether group,
- cleavage of the dioxazine ring and formation of an amide group and
- hadrolysis of the methoxyimino group and formation of a keto group.

The metabolic pathway is proposed in Figure 6.2.1-2.

Figure 6.2.1-2: Proposed metabolic pathway of [methoxyiminotolyl-ring-UL-14C]fluoxastrobin in tomatoes



# appocation)

Metabolism in peanuts (foliar Metabolism studies in peanuts the pyrimidine-2-14C]- and [methoxyiminotolyl-ring-UL-14C Juoxastrobin.

Report: V; 2002; M-070947-01-1

Metabolism of [methoxyiminotolyl-ring-UL-14C]HEC5725 in peanuts Title:

MR-531/01 Report No. ØM-070997-01-1 Document No

Guideline(s): US ERA OPPTS 860.1300; Canada PMRA Ref.: DACO 6.3; EU 91/414/EEC

amerided by 96/68/EC

Guideline deviation(s): mone GLP/GEP yes



### **Executive Summary**

The metabolism of [methoxyiminotolyl-ring-UL-14C]fluoxastrobin (= [methoxyiminotolyl-ring-UL-4C]fluoxastrobin (= [metho ¹⁴C]HEC 5725) formulated as an EC 100 was investigated in peanuts following three following applications. The applications were performed at BBCH 66, BBCH 79 and BBCH 88. The single application rate was in the range of 234 - 275 g a.s./ha, the total application rate was 781 a.s./ha

The total radioactive residue (TRR) in peanut hay amounted to 141.82 mg/kg. Conspared to hay, the TRR in nutmeat was very low and amounted to just 0.055 mg/kg. From hay most of the radioactivity. (95.2% of the TRR, 135.03 mg/kg) was extracted with methanol/water and was subsequently partitioned mainly into the dichloromethane whase with only a small amount of radioacticity remaining in the aqueous phase. From nutmeat, a portion of 1.1% of the TRR 0.028 mg/kg was extracted with hexane and a further portion of 24.5% of the TRR (0.010 mg/kg) was extracted with methanol/water. The radioactivity of the methanol/water extract@as partitioned with@ichlo@methane and remained mainly in the aqueous phase.

In hay, the radioactive residues mainly consisted of parent compound (sum of Tuoxastrobin and its Zisomer), amounting to 83.1% of the TRR. The metabolism of [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin in hay showed a complex pattern and a total of 17 metaboutes were identified. However, no metabolite exceeded 2.7% of the TRR.

In nutmeat, 68.2% of the TRR was identified as natural products. The largest portion (51.1% of the TRR) was identified as fatty acids after a kaling sapon fication, hence originally representing fat. Smaller portions represented carbonydrates and proteins. All these 14C labelled natural products probably resulted from an intensive mineralisation of the methodyiming olyl ring of fluoxastrobin residues in soil subsequent assimilation of 14CO2 released from soil by the peanut plants and deposition of assimilates in nutment. Only a few minds components, (each < 10% of the TRR and ≤ 0.005 mg/kg) were characterised as metabolites of flooxastrobin in nutmeat.

Neglecting the formation of natural products after assimilation of 14CO2 and based on the identified metabolites, the following metabolic routes were deduced:

- isomerisation of the oximether with the formation of the Z-isomer,
- oxidative ring opening and degradoion of the dioxazine ring,
- cleavage of the ownether?
- nucleophilic substitution of the chlorophenol ring by glutathione, followed by a stepwise degradation of the glutathione moiery,
- cleavage of the parent movecule mainly at the pyrimidine-methoxyiminotolyl ether group and • to a very minor extent hydroxylation of the chlorophenyl ring.
  - conjugation of hydrogyl and thiol groups to glucosyl and glucosyl-malonyl conjugates and



### I. Materials and Methods

### A. Materials

### 1. Test Material:

	\$ ON 9
Chemical structure	O only E-isomer displayed
	N CH * position of the gradiolabel
Radiolabelled test material	[methoxyminotolyl-ring JL-14C]fluosastrobin
Specific radioactivity	3.70 MBq/mg (100 µC/mg)
Ratio of	
fluoxastrobin (HEC 5725 E-isomer)/	98:2 (normal dose and overdose experiment)
Z-isomer (HEC 5725 Z-isomer)	9777:2.3 (franslocation experiment)
Radiochemical purity	> 99% (HPI&)

2. Soil: "Soil: "Soil:

Three individual experiments were conducted.

Normal dose experiment: This experiment simulated agricultural practice and was the main experiment within the present study. Eighteen permut plants were grown in a plant container (surface area 1 m²) and a depth of 60 cm filed with a sandy loam soil only half of the container (0.5 m²) was used for the experiment. Hence, nine plants were sprayed with [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin formulated as an E@100 The remaining hine plants were not part of the experiment. The envisaged use pattern at initiation of the stirry included up to four spray applications, each 203 g a.s./ha, resulting in a maximum annual field rate of 812 g a.s./ha. The first field application was proposed after pegging to be mining of postdevelopment (growth stage BBCH 66 – 75) and the last application 14 days before harvest. The metabolism studies simulated the envisaged use pattern and were based on the maximum proposed application rate. For simplification, only three applications were performed each at increased actual rates of 234 g a.s./ha (BBCH 66), 272 g a.s./ha (BBCH 79), and 275 g a.s. fra (BECH 88). This resulted in at total applied rate of 781 g a.s./ha, which was slightly less as compared to the epsisaged total application rate of 812 g a.s./ha. The time intervals between the single applications were 42 days between the first and the second and 20 days between the second and the third application. The third application took place 14 days before harvest.

Overdose experiment: This experiment was set up for metabolite isolation and identification, if necessary. Two plants were grown in 7.5 L pots (1 plant/pot) filled with a sandy loam soil. Approximately the same amounts of the EC 100 formulation, which were applied onto nine peanut plants in the normal dose experiment, were applied onto 2 peanut plants in the overdose experiment.

Hence, an approx. 5X application rate was achieved (20.02 mg a.s./plant in three applications) as



compared to the normal dose experiment. The first application was performed at BBCH growth stage 67, the second at BBCH 79 and the third at BBCH 88. The time intervals between the single applications were 42 days between the first and the second and 20 days between the second and the third application. The third application took place 14 days before harvest.

Translocation experiment: This experiment was set up to obtain information on the translocation of radioactivity after seed treatment. Two plants (seeds) were grown in 7.5 L pots (1 plant pot) filled with a sandy loam soil. The application of this experiment was performed with non-formulated [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin. The amount for see of treatment was calculated from a weight of ca. 0.5 g for a peanut seed and assuming an application rate of 25 g a.s./100 kg seeds. Hence, 0.13 mg a.s. per seed should be applied. Two peanut seeds were treated with 0.17 mg a.s. each, which was an exaggeration of approx. 30%.

All experiments were performed in the greenhouse with a day night rhythm of 1400 hours and an average temperature of 24/23°C (day) and 17/160°C (night) and a relative humidity of 60%.

### 2. Sampling

In all experiments peanut plants were removed from soil at BBCH growth stage 97 and dried for 4 days. After four days of drying in the greenhouse, all plants were separated into Day, fruits and roots. The fruits were manually separated into seeds (= nutment) and shells. Hay and nutment were the raw agricultural commodities (RACs) of interest. Roots and shells were not investigated. All samples were weighed, homogenised in iquid nitrogen and shered at 20% or below until analysed.

### C. Analytical Procedures

Hay and nutment of the formal dose experiment were extracted and the extracts were analysed by HPLC and TLC From the RACs of the other experiments (overdose and translocation), only the TRR was determined (by combustion). Due to the low TRR in the RACs of the translocation experiment, no extraction was performed. However, nutment of the overdose experiment was used for method development, but the RACs of the overdose experiment were not needed for isolation and identification of metabolities.

### 1. Extraction and fractionation:

The homogenized hav of the normal dose experiment was soaked in methanol/water (1:1, v/v) before being extracted using a high speed blender. The extraction was repeated using methanol/water (1:1, v/v) and methanol. The suspensions were vacuum filtered and combined, yielding the methanol/water extract combined filtrates) and solids. The methanol/water extract was evaporated to the aqueous remainder. The aqueous remainder was partitioned against dichloromethane leaving the aqueous phase and the dichloromethane phase. The solids of hay were not further investigated since they were accidentally loss. However, an exhaustive microwave extraction was performed with the analogous solids 1 of a expeated extraction (third extraction of hay, see below). A second extraction of hay was performed analogously to the first one in order to have sufficient amounts of aqueous phase of hay for semi-preparative solation of metabolites. Finally, a third extraction of hay was performed analogously to the first one and analysed to prove the storage stability of residues in hay. An aliquot of solids 1 from this third extraction was subjected to an additional exhaustive extraction step with methanol water (1:1, v/v) using a microwave assistance. After extraction, the suspension was filtered, yielding solids 2 (non-extractable residues) and the microwave extract.



The homogenised nutmeat of the normal dose experiment was twice macerated with n-hexane. The suspensions were vacuum filtered and combined, yielding the n-hexane extract (combined filtrates). Subsequently, the solid residue was soaked in deionised water and macerated after adding methanol The extraction was repeated twice with methanol/water (1:1, v/v) and methanol/The suspensions were vacuum filtered and combined, yielding the methanol/water extract (combined filtrates) and solids 1. The methanol/water extract was evaporated to the aqueous remainder. The aqueous remainder was partitioned against dichloromethane leaving the aqueous phase. The dichloromethane solution was evaporated yielding the dichloromethane phase. The hexane extract was subjuitted to alkaline saponification. An aliquot of the n-hexane extract was rotary evaporated to the oily residue. The oily residue was dissolved with alkaline ethanol (10 KOH in 100 mL ethanol water 95:5, v) apd refluxed for 10 h. The hydrolysate was partitioned against n-hexane, yielding the n hexane phase 1 and (alkaline) water/ethanol phase 1. After acidification with conc HCl, the hydrolysate (i.e. water/ethanol phase 1) was again partitioned against notexan vielding the n-herane phase 2 and (acidic) water/ethanol phase 2. The aqueous phase of the numeral extraction was subspitted to further investigation. The aqueous phase was evaporated to dryness The residues were to fluxed in 6 MHCl and subsequently partitioned against effyl acetate, leaving the H2O phase 2. The solids 1 of outmeat were exhaustively extracted following a mornfied sell wall fractionation procedure, i.e. omitting steps for dissolving pectin, lignin and hemicellulose. An aliquot of solided was first washed with buffer solution and then successively treated with those different enzymes. During reaction, the batches were stirred with a magnetic stirrer. After reaction, the remaining solds were separated from the enzyme solution by centrifugation.

The radioactivity in liquid samples was determined by Piquid scintillation counting (LSC). Solid samples were combusted. The  $CO_2$  produced by combustion was absorbed in a  $CO_2$  absorbent/scintillation cocktail mixture and the radioactivity was measured by LSC.  $\mathcal{Q}$ 

For the normal dose experiment, the total radioactive residue (TRR) was determined by summation of the radioactivity of the combined extract(s) and of the remaining solids. For the translocation and overdose experiments, the TRR was determined by combinion of sliquots. The TRR was expressed in mg a.s. equivalents for kg sample weight. Amounts of radioactive residues in the extracts were expressed as percentage of the TRR and also a ring a sequivalents per kg sample weight.

### 2. Identification and haracterisation:

For elucidation of metabolism extracts and phases were analysed by HPLC and/or TLC with radiodetection. Metabolites were either identified by LC/MS/MS of isolated peaks (in some cases supported by NMR) or by co-chromatography with authentic reference compounds using two independent chromatographic methods with different selectivity (e.g. HPLC and automated multiple development TLC). ¹⁴Cabelled natural products were identified or tentatively identified by their chemical/biochemical behaviour and or TLC co-chromatography.

### 3. Storage stability:

Storage cability investigations proved that the metabolic profile of the dichloromethane and aqueous phases of all ACs and not change significantly during storage at -20°C for more than three years. However, some agreement of the aqueous phase of hay was observed.

### II. Results and Discussion

The metabolism of [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin (= [methoxyiminotolyl-ring-UL-¹⁴C]HEC 5725) formulated as an EC 100 was investigated in peanuts following three foliar spray applications, at single rates of 234 - 275 g a.s./ha and a total rate of 781 g a.s./ha.

In the normal dose experiment the TRR in hay amounted to 141.82 mg/kg (Table 6.2.17-9). This high TRR can be explained by the growth conditions in the vegetation area where the plants, in contrast to a field situation, were protected from rain, and hence surface wash of was completely inhibited. It is very probable, that under field conditions the residue level would be much lower. Compared to have the TRR in nutmeat was very low amounting of only 0.055, mg/kg. In the overlose experiment (approx. 5X application rate) the TRR in hay and nutment amounted to 34.51, mg/kg, and 0.086 mg/kg, respectively. In the translocation experiment (normal application rate of 25 g a.s./

Table 6.2.1-9: TRR values in peanul matrices after application of methoxyminotolyl-ring-UL-14C]fluoxastrobin

Matrix	Timing and Application	PHI Ć	TRR ppm,
		Qdays)	mg a.s. equiv./kg)
hay	normal dose experiment.	14	© 141.82
	three foliar spray applications, at BBCH 66, BBCH 79 and		ò
nutmeat			0.055
	3 x 234 - 275 g a.s./ha total f g a 4 ha 6 4		
hay	overdose experiment (5X):		534.51
	three foliar spray applications, at BBCH 67, BB@H 79 and	<i>N</i>	
nutmeat		<b>&gt;</b>	0.086
. (	approx 5X of the rates in the pormal sose experiment	ý	
hay	transfocation experiment:	144	0.138
nutmeat 💸	seed treatment at a nominal rate of 25 g ws./100 kg seeds		0.014

The peanut matrices of the normal dose experiment were extracted, the extracts were analysed by HPLC and TLC and parent compound and metabolites were identified. In the overdose and translocation experiments, only the TRRs of the matrices were determined. Nutmeat of the overdose experiment was extracted and used for method development. However, the matrices of the overdose experiment were not needed for isolation and identification of metabolites.

From peanut hay, a portion of 95.2% of the TRRQ(35.03 mg/kg) was extractable with methanol/water and methanol (Table 6.2.10). After portitioning, the dichloromethane phase contained 89.4% of the TRR (126.79 mg/kg) of the TRR and the aqueous phase contained 5.8% of the TRR (8.24 mg/kg). Microwave extraction of the remaining solids solubilised 2.9% of the TRR (4.16 mg/kg). In total, 98.1% of the TRR (739.12 mg/kg) was extracted/solubilised and only 1.9% of the TRR (2.63 mg/kg) remained from extractable in the solids (solids 2).

From nutment, a portion of 51.1% of the TRR (0.028 mg/kg) was extractable with n-hexane. Methanol/water and methanol extracted further 24.5% of the TRR (0.013 mg/kg). After partitioning of the aqueous remainder of the methanol/water extract against dichloromethane, the dichloromethane phase contained 1.2% of the TRR (0.001 mg/kg) and the aqueous phase contained 23.4% of the TRR (0.013 mg/kg). However, 24.3% of the TRR (0.013 mg/kg) remained in the solids (solids 1). The radioactivity in these solids was almost completely released/solubilised by treatment with buffer



solution (4.9% of TRR, 0.003 mg/kg) and enzymatic digestion with diastase (11.6% of TRR, 0.006 mg/kg), pronase (1.2% of TRR, 0.001 mg/kg) and cellulase (4.3% of TRR, 0.002 mg/kg). In tell, 97.7% of the TRR (0.054 mg/kg) was extracted/solubilised and only 2.3% of the TRR (0.001 mg/kg) remained non-extractable in the solids (solids 2).

Table 6.2.1-10: Distribution of radioactivity in the extracts of the peartut matrices after foliar spray application of [methoxyiminotolyl-ring-UL-14C] fluoxastrobin (normal dose experiment)

		*	_~~.	
	ha	ay J	) * muti	neat 💍 🖔
TRR [mg/kg] =	141.82	A Q'	&°	
	% of TRR	mg a.s.	% of TRR	ang a s C Zequivakg
n-Hexane extract	- O v		51.1 <del>%</del>	0.028
Methanol/water extract	(95,2)	(13 <b>3</b> /.03) Q	(24.5)	(Q013) (Q
Dichloromethane phase	89.4	~126.75° ,	Q'.2 👟	0.00
Aqueous phase	Ø 5.8 V	<b>8.2</b> 4 ,0	23.4	© 0. <b>©</b> 3
Solids 1	(4,8)	7 (6.79) 0	(24.25)	<b>(%)</b> 013)
Microwave extract	2.9	4.160	0 0 - 2°	-
Buffer soluble	, L - &		6 4.9 6 4.9 7 4.9	0.003
Buffer soluble Diastase extract			6 11.6	0.006
Pronase extract	~ \$ - \$ 4	~ · ~ ~	\$ \P2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0.001
Cellulase extract	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		4.3	0.002
Total extracted/solubilised,	\$ 98.10° 7	13 <b>9</b> 19 📞	( 97.70)	0.054
Solids 2 (non-extractable residue)	<b>2</b> 9 \$	2.63 [©]	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.001
Accountability &	D . 190.0	141.8	<b>2</b> 00.0	0.055

For elucidation of metabolism, the extracts or phases were analysed by HPLC and/or TLC with radiodetection. Metabolites were either identified by LC/MS/MS of isolated peaks (in some cases supported by NMR) of HPLC co-chromatography with authentic reference compounds using two independent chromatographic methods with different selectivity. ¹⁴C-labelled natural products were identified or tentatively identified by their chemical/biochemical behaviour and/or TLC co-chromatography.

In the dichloromethane phase of hay (Table 6.2)-11) parent compound (sum of fluoxastrobin and its Z-isomer) was by far the main compound representing 81.9% of the TRR (116.16 mg/kg); metabolites were only minor, each representing  $\leq 2.6\%$  of the TRR. In the aqueous phase and in the microwave extract, parent compound and several metabolites were detected in trace amounts (each  $\leq 1.0\%$  of TRR).

The complete radioactivity detected in the hexane extract of nutmeat (51.1% of the TRR, 0.028 mg/kg) was identified as fatty acrds after alkaline saponification, hence originally representing fat (e.g. friglice) des. peanut oil). The dichloromethane phase contained only 1.2% of the TRR (0.001 mg/kg) and was not analysed. In the aqueous phase at least five components were detected at low levels feach 10% of the TRR and  $\leq$  0.005 mg/kg); approx. 50% of the radioactivity was characterised as metabolites of fluoxastrobin after acidic hydrolysis. After treatment of the remaining solids with buffer, diastase, pronase and cellulase, 4.9% of the TRR (0.003 mg/kg) was characterised as buffer soluble, 11.6% of the TRR (0.006 mg/kg) was identified as starch, 1.2% of the TRR (0.001 mg/kg) was identified as proteins and 4.3% of the TRR (0.002 mg/kg) was identified as cellulose.

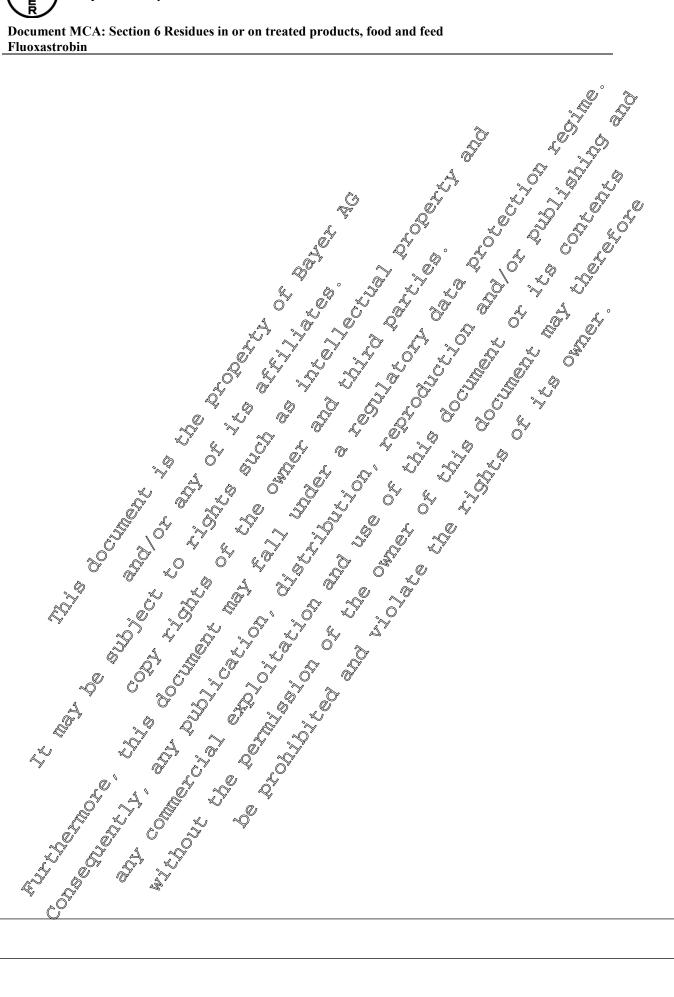





Table 6.2.1-11: Distribution of parent compound and metabolites in the extracts of peanut matrices after foliar spray application of [methoxyiminotolyl-ring-UL
14C] fluoxastrobin (normal dose experiment)

Chiavasti opii (noi mai aose expe			_	
TDD [/L.]	ha		nutr	AL. — — //
TRR [mg/kg] =	% of	11.82 ®		0.055
Compound	TRR	mg <u>a</u> s. equiv./kg	% of TRO	mgCat.s.
Hexane extract	Ø			
fats / fatty acids	-	Q	Ø 51. j.	Q.928
Total in hexane extract		<del>-</del>	5 KQ.	∂9.028§
Dichloromethane phase	- Q.	. 0 /		G &
parent compound, sum of	(81,.9)	<b>%</b> 116.16	, O	co - 0)
fluoxastrobin (HEC 5725 E-isomer)	. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	≫ 83⁄8 <del>7</del> 3	<b>~</b> . ≪	
and its Z-isomer (HEC 5725 Z-isomer)	22.9	<b>3</b> 2.43	- ×	_ <u>-</u>
Ring 1,2,3,4 metabolites ^{a)}	Ö (ZB)	0.45)	<u>o, -</u> 7	- 1.°
HEC 5725-hydroxyphenyl metabolites HEC 5725-dioxazine-OH and ring 4 degradates: HEC 5725-dioxazine-OH (M19) HEC 5725-CA-glycol ester (M39) HEC 5725-E-amide (M38)	(traces)	(traces)	_ <u> </u>	- 0
HEC 5725-dioxazine-OH and ring 4 degradates:	(6.4)	(9,9)	&	
HEC 5725-dioxazine-OH (M19)	0.959	×0.07	7 - X	0-
HEC 5725-CA-glycol ester (M39)	\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exiting{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{	3.13		-
HEC 5725-E-amide (M38)	2.6	<b>3</b> 3 <b>7</b> 19	\$\text{5} \text{'} \text{'}	<i>-</i>
HEC 5725-Z-amide (M38) HEC 5725-carboxylic acid (M40) HEC 5725 oximather elegange metabolites:	005 22 22.6 1.20 0.36 (89)	©73	O - '>	-
HEC 5725-carboxylic acid (M40)	0.36	©.50	- %	-
HEC 5725 camether cleavage metabolites:	~ (O!9)	<b>(</b> (1.32)		-
HEC 5725 oximether cleavage metabolites: HEC 5725-ketone (M34)	Ø ~9.9	1,32	<i>گ</i> -	=
Sum of 2 unknowns	\ 0.1K)	<b>* * 0</b> .18	Ž'-	-
Total in dichloromethane phase	89.4	126.79	1.2	0.001
Aqueous phase & & & .			, "	
parent compound, support		(0.36)	-	-
fluoxastrobin (HSC 5726 E-isomer)	© 0, <b>2</b>	<b>%</b> .29	-	-
and its Z-isomer (HEC \$725 Z isomer)		0.07	-	=
Ring 1,2,3,4 merobolites O O &	(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(0.27)	-	-
HEC 5725-dioxazine-OH and ring 4 degradates:	(0.2)	(0.27)	-	-
Aqueous phase parent compound, support fluoxastrobin (HEC 5725 E-isomer) and its Z-isomer (HEC 5725 Z isomer)  Ring 1,2,3,4 mandbolites HEC 5725-dioxazine-OH and ring 4 degradates: HEC 5723-OH-CA-Glc (M42)  Ring 2,3 metabolites	© Q.20	0.27	-	-
HEC 5725-OH-CA-Glc (M42)  Ring 2,3 metabolites  HEC 5725-des-chlorophenyl-Glc (M48a)  HEC 5725-des-chlorophenyl-S-consugates  HEC 5725-des-chlorophenyl-S-consugates	*[\(\int_{\infty}\)) \[ \  \( \lambda \infty \rangle \) \[ \  \( \lambda \infty \rangle \) \[ \  \  \( \lambda \infty \rangle \) \[ \  \  \  \( \lambda \infty \rangle \) \[ \  \  \  \  \  \  \  \  \  \  \  \  \	(0.70)	-	-
HEC 5725-des-chlorophenyl degradates:	(0.1)	(0.18)	-	-
HEC 5725-des-chlorophenyl-Grown HEC 5725-des-chlorophenyl-Grown HEC 5725-des-chlorophenyl-Grown HEC 5725-des-chlorophenyl-S-consugates HEC 5725-des-chlorophenyl-S-Glc (450)	0.1	0.18	-	-
HEC 5725-des-chlorophenyl-S-conjugates.	$\bigcirc$ (0.4)	(0.52)	-	-
HEC 5725-des-chlorophenyl 3-Glc (y150)	0.2	0.23	-	-
HEC 5725 des-chloropher 4-S-Glc MA (M51)	0.1	0.19	-	-
HEC 5725-des-chloroph@ryl-cyg/M486	0.1	0.10	-	-
Ring 3,4 merabolites ^{a)} HEC 5728-des-pyrimidine metabolites:	(1.4)	(2.06)	-	-
HEC 5/25- E. dos Wimidia Cla 4/75-26	(0.4)	(0.62)	-	-
HEQ 5/25-E-des pyrimidme-Glegyl/5a)	0.3	0.48	-	-
HEC 5725 dog pyrimiding assigned as a least a	0.1	0.14	-	-
HEC 5725-des-chlorophenyl-S-confugates  HEC 5725-des-chlorophenyl-S-Glc (150)  HEC 5725-des-chlorophenyl-S-Glc (150)  HEC 5725-des-chlorophenyl-cyc (150)  HEC 5725-des-chlorophenyl-cyc (150)  HEC 5725-des-pyrimidine metabolites:  HEC 5725-des-pyrimidine-Glc (150)  HEC 5725-des-pyrimidine-Glc (150)  HEC 5725-des-pyrimidine oximether cleavage metabolites:  HEC 5725-des-pyrimidine-dioxazine-OH and ring 4 degr.:  HEC 5725-des-pyrimidine-dioxazine-OH and ring 4 degr.:	(0.9) 0.9	(1.23)	-	-
HEC 5725-de Syring ine-dioxazine-OH an aring 4 degr.:	(0.1)	1.23 (0.21)	-	-
HEC 5725-phenyl-glyoglic acit/(M90)	0.1	0.21	_	
Sum of unknown C	3.4 ^{b)}	4.83 ^{b)}	23.4 ^{c)}	0.013 ^{c)}
Total in aqueous phase	5.8	8.24	23.4	0.013
Microvave edract	5.0	0.24	23.4	0.013
parent compound, sum of	(1.0)	(1.40)	_	_
fluoxistrobin (HEC 5725 E-isomer)	0.8	1.10		
and its Z-isomer (HEC 5725 Z-isomer)	0.8	0.30		
Ring 1,2,3,4 metabolites ^{a)}	(1.0)	(1.41)	_	_
HEC 5725-dioxazine-OH and ring 4 degradates:	(0.9)	(1.41) $(1.29)$	_	<u>-</u>
HEC 5725-CA-glycol ester (M39)	0.2	0.35	_	_
1120 3/23 011 513001 03001 (14137)	0.2	0.55	l	l

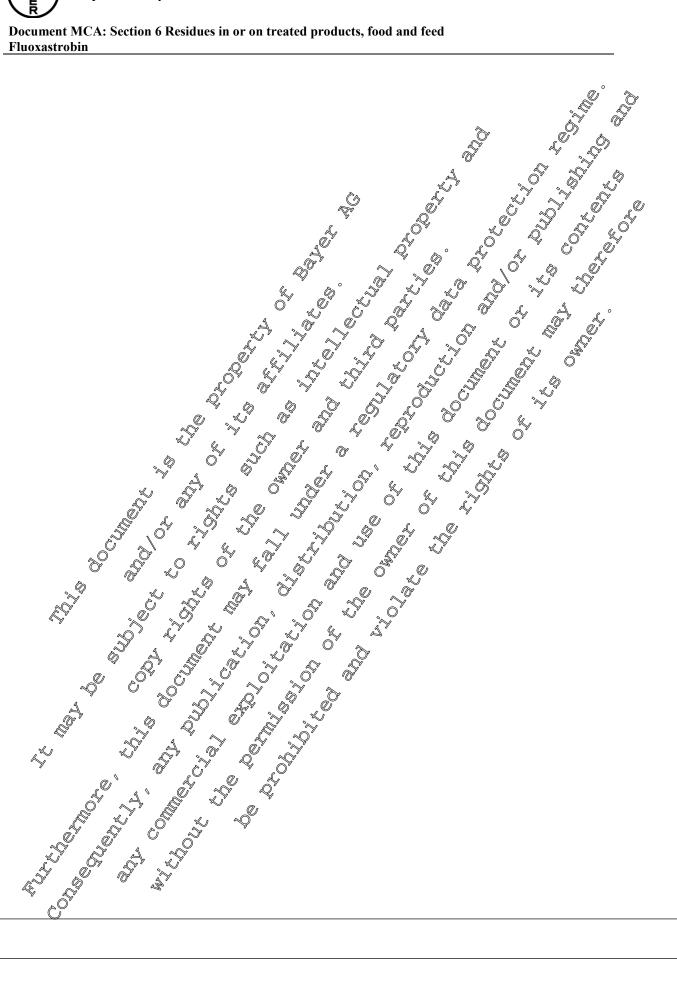


	h	ay	nutn	neat 。
TRR [mg/kg] =		41.82		0.055 🗶
Compound	% of TRR	mg a.s. equiv./kg	% of TRR	mg a.s. equiv./kg
HEC 5725-E-amide (M38)	0.1	0.190	-	Z - Z
HEC 5725-carboxylic acid (M40)	0.4	0.59	-	*
HEC 5725-des-dioxazine-nitrile (M38a)	0.17	<b>20</b> ,24	- Õ"	
HEC 5725 oximether cleavage metabolites:	(0.1)	(0.12)	-,**	. ~ j~ _ j
HEC 5725-ketone (M34)	0.1	0.12		Y - 07
Ring 3,4 metabolites ^{a)}	(0.4)	$\Re$ (0.58)	@	
HEC 5725-des-pyrimidine-dioxazine-OH and ring 4 degr.	(0.4)	(0.58)	~ ~ Q	
HEC 5725-phenyl-glyoxylic acid (M90)	0,2,	©°0.28	\$ <del>-</del> 4,	0 - 29
salicylic acid (M91)	~0.2	© 0.30 €	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- V
Sum of ≥6 unknowns	© 0.5 ₄	007	%- ~~	7-1
Total in microwave extract	2. <b>%</b>	<b>7</b> .16	Ş - , "	4 -
Buffer soluble		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·0· ~~	
Total buffer soluble	~~~	1 - \$	4.94	<b>0.0</b> 03
Diastase extract				
starch (tentatively)	~ · ·	<b>~</b>	<b>V</b> 197.6	$\bigcirc$ 0.006
Total diastase extract		~ ~ ~	<b>2</b> 11.6	<u>ۇ</u> 0.006
Pronase extract				
proteins (tentatively)			1.2	0.001
Total pronase extract	4 - 3	-	Ŷ <b>%</b> 1.2	0.001
Cellulase extract	, 4			
cellulose (tentatively)	- ~	Ş' <u>-</u> X	4.3	0.002
Total cellulase extract	Q - ,	45	4.3	0.002
Total extracted/solubilised	98/1	& 139.19	97.7	0.054
Solids 2 (non-extractable residue)	/ 1.9	© 2.63°	2.3	0.001
Accountability	<u></u> Ø100.0g	144,82	100.0	0.055

a) ring 1 = chlorophenyl, ring 2 = pyrimidine, ring 3 = methoxyinomotol 4 ring 4 dioxazine (see also page 34); b)  $\geq$ 24 compounds, each 1.0% of TRR c)  $\geq$ 5 compounds, each <10% of TRR and  $\leq$  0.005 mg/kg

The radioactive residues in hay mainly consisted of parent compound (sum of fluoxastrobin and its Z-isomer) amounting to 83.1% of the TRR (Table 6.2.14.72). Isomerisation of the oximether group was the main reaction and was assisted by light Fluoxastrobin (HEC 5725 E-isomer) was found at 60.0% of the TRR and its Z-isomer at 2.1% of the TRR. This corresponds to an E:Z ratio of approx. 70:30, changed from an initial ratio of 98:2 in the applied formulation. The metabolism of [methoxyiminotolyl-ring-UI_2 C]fluoxastrobin in hay showed a complex pattern and a total of 17 metabolites were identified. However no metabolite exceeded 2.7% of the TRR. Numerous minor metabolites (each < 1% of the TRR) were characterised by the extraction procedure, partitioning behaviour and retention time. Most of the metabolites identified in hay contained all four rings or at least three rings and fragments of the devazint ring (abbreviated as ring 1,2,3,4 metabolites). This metabolite group accounted for 8.6% of the DRR (12.14 mg/kg). The prevailing metabolite group in hay was the DEC 5725-dioxazine OH and ring 4 degradates representing 7.5% of the TRR (10.71 mg/kg) of which the HEC 5725 E-amide (M38) was predominant (2.7% of the TRR, 3.89 mg/kg).

In nutment, 68% of the TRR (0.037 mg/kg) were ¹⁴C-labelled natural products. The largest portion (51.1% of the TRR 0.028 mg/kg) represented fat (e.g. triglicerides, peanut oil). Smaller portions represented carbohydrates (15.9% of the TRR, 0.008 mg/kg) and proteins (1.2% of the TRR, 0.001 mg/kg). All these ¹⁴C-labelled natural products probably resulted from an intensive mineralisation of the methoxyiminotolyl ring of fluoxastrobin residues in soil, subsequent assimilation of ¹⁴CO₂ released from soil by the peanut plants and deposition of assimilates in nutmeat. Only a few




minor components (each < 10% of the TRR and  $\le$  0.005 mg/kg) were characterised as metabolites of fluoxastrobin in nutmeat.

Table 6.2.1-12: Summary of characterisation and identification of radioactive residues in peanut matrices after foliar spray application of [methoxyminotolyl-ring-UL-14C] fluoxastrobin (normal dose experiment)

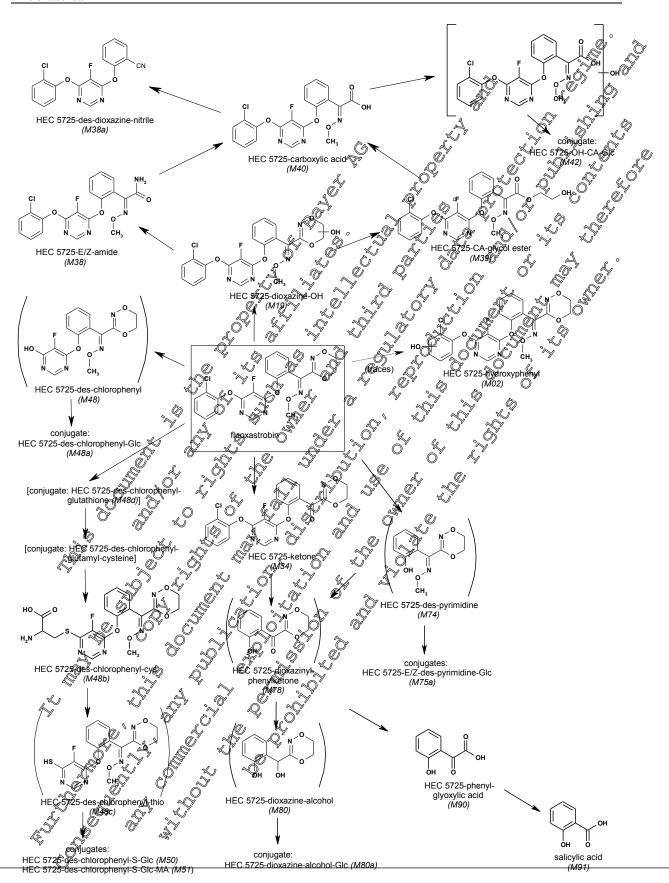
•				<del>, , , , , , , , , , , , , , , , , , , </del>
TDD 5 / / J	<del> </del>	ay 🐴	norn	neat
TRR [mg/kg] =		41.82		0.0\$5
Compound	% of TRR	Øag a.s. Squiv.∕kg	% OF TRR	mg a & equiv kg
parent compound, sum of	(83.1%	(117.92)	0 - Q	
fluoxastrobin (HEC 5725 E-isomer)	60.0	85.12		4
and its Z-isomer (HEC 5725 Z-isomer)	<b>2</b> 3.1	∑© 32.80°	1 0	Q - W
Ring 1,2,3,4 metabolites ^{a)} HEC 5725-hydroxyphenyl metabolites HEC 5725-dioxazine-OH and ring 4 degradates; HEC 5725-dioxazine-OH (M19) HEC 5725-CA-glycol ester (M39) HEC 5725-E-amide (M38) HEC 5725-Z-amide (M38) HEC 5725-carboxylic acid (M40)	\$ (8.6)	(12.94)	🕉 - 🤝	<b>√</b> -> [™]
HEC 5725-hydroxyphenyl metabolites	(8.6) (traces) (7)	(traces)	~ .	<b>4</b> -
HEC 5725-dioxazine-OH and ring 4 degradates		@f0.71)		D - K
HEC 5725-dioxazine-OH and ring 4 degradates; HEC 5725-dioxazine-OH (M19) HEC 5725-CA-glycol ester (M39) HEC 5725-E-amide (M38) HEC 5725-Z-amide (M38) HEC 5725-carboxylic acid (M40)	× 0.1	<u> </u>	«	
HEC 5725-CA-glycol ester (M39)	0.1	<b>3</b> ,48	\$ - \$	3
HEC 5725-E-amide (M38)		<u>~</u> 3.89∑	Ø - Ş	O -
HEC 5725-Z-amide (M38)	Ø:2	1.73		<b>Ö</b> -
HEC 5725-carboxylic acid (M40)	<b>№</b> 0.7			∤ - I
HEC 5725-carboxylic acid (M40) HEC 5725-OH-CA-Glc (M42) HEC 5725-des-dioxazine-nitrite (M38a)	2.7 0:2 0.7 0.2 0.2 0.3 (0.0)	9.27	~ ~ <i>"</i>	-
HEC 5725-des-dioxazine-nitrite (M38a)		0.24	Ø -ÿ√	-
HEC 5725 extense (M34)	N	(1.44)		-
HEC 5725-des-dioxazine-nitrite (M38a) HEC 5725 oximether cleavage metabolites: HEC 5725-ketone (M34) Ring 2,3,4 metabolites ^a HEC 5725-des-chlorophenyl degradates:	1.0~	<b>Y</b>	<u> </u>	-
	(0.5) ((4))	(0,71)	g -	-
HEC 5725-des-chlorophenyl degradates:		(0.18)	P) -	-
HEC 5725-des-chlorophen d-Glc (M48a)	Q0.1 Q(0.4) Q 0.2 Q 1	0.18	-	-
HEC 5725-des-chloroghenyl-S-conjugates:	<b>(0.4)</b>	(0.52)	-	-
HEC 5725-des-Groropl@nyl-Scote (M50)		9.23	-	-
HEC 5725-des-chlorophenyl degradates:  HEC 5725-des-chlorophenyl-S-conjugates:  HEC 5725-des-chlorophenyl-S-clic (M30)  HEC 5725-des-chlorophenyl-S-Clic (M30)  HEC 5725-des-chlorophenyl-S-Clic (M30)  HEC 5725-des-chlorophenyl-S-Clic (M30)	10071	<b>₹</b> 0.19	-	-
HEC 5725-des-chlocopheny Deys (M98b)  Ring 3,4 metabolites   HEC 5725-des-chlocopheny Deys (M98b)	0.1	0.10	-	-
Ring 3,4 metabolites ^a HEC 5725 des-pyrimiding metabolites:	(1.9)%	(2.64)	-	-
TIEC 3/23 acs-pyrimume anetabornes.		(0.62)	-	-
HEC 5725-des-pyrimidine metabolives:  HEC 5725-E-des-pyrimidine Gle (M-Sa)	©.3 20.1	0.48 0.14	-	-
HEC 5725-E-des-pyrimidine Glc (M75a)  HEC 5725-Z-des-pyrimidine Glc (M75a)  HEC 5725-des-pyrimidine oximethe Cleavage metabolites  HEC 5725-dioxazine-alcohol-Gc (M80a)	(0.9)	(1.23)	_	-
HEC 5725-dioxazine-a-cohol-Gic (Ms0a)	0.9	1.23)	_	-
	(0.6)	(0.80)	_	_
HEC 5725-des-pyrimiding dioxa ine-OH and ring 4 degr.: HEC 5725 Thenyl-glyoxylic acid (M90)	0.3	0.49	_	_
HEC 5725 The phenyl- Typoxylic acid (M90) salicylic acid (M91)  [14C] natural products fats / Satty acids carbohydrates (starch & cellulose gentatively)	0.3	0.49	l -	_
[14C] natural products	- 0.2	- 0.50	(68.2)	(0.037)
fats / Patty acids	_	_	51.1	0.028
carbohydrates (starch & cellulose@entatively)	_	_	15.9	0.008
proteins (tentatively)	_	_	1.2	0.001
Total identified and tentatively identified (	94.0	133.41	68.2	0.037
Characterised metabolites  diables and the second state of the second se	1			3,327
dichloromethane phase, sobtotal	0.1	0.18	1.2	0.001
aqueous phase subtotal	3.4 ^{b)}	4.83 ^{b)}	23.4 ^{c)}	0.013 ^{c)}
microwave extract, subtotal	0.5	0.77	_	-
buffer soluble fraction of solids 1	_	-	4.9	0.003
Total characterised &	4.0	5.78	29.4	0.017
Total extracted/solubilised	98.1	139.19	97.7	0.054
Solids 2 Pron-extractable residue)	1.9	2.63	2.3	0.001
Accountability	100.0			

a) ring 1 = chlorophenyl, ring 2 = pyrimidine, ring 3 = methoxyiminotolyl, ring 4 = dioxazine (see also page 34); b) >24 compounds, each <1.0% of TRR; c) >5 compounds, each <10% of TRR and < 0.005 mg/kg





### III. Conclusions


After foliar spray application of [methoxyiminotolyl-ring-UL-14C]fluoxastrobin, the residues in peanut hay mainly consisted of parent compound, amounting to 83.1% of the TRR. The ratio of flug astropin and its Z-isomer changed from an initial ratio of 98:2 in the applied formulation to a ratio of approx. 70:30. A large number of metabolites were detected in low amounts. In numeat, the identified portions of the TRR (68.2%) was represented by natural products i.e. fat, carbonydrates and proteins only few minor components were characterised as metabolites of fluoxastros in.

Neglecting the formation of natural products after assimilation of M4CQ20 and based metabolites, the following metabolic routes were duced:

- isomerisation of the oximether with the formation of the Z-isomer.
- oxidative ring opening and degradation of the dioxidine ring
- cleavage of the oximether,
  nucleophilic substitution at the chlorophenol ring by glutathione, followed by a stepwise
- degradation of the glutathione moiety, at the pyrimidine ether group and to a minor extent at the chlorophenyl-pyrimidine ether group conjugation of hydroxy and thiol groups to phase the chlorophenyl in a conjugates and

• to a very minor extensive to a very minor

obin the state of acceptant of the state of the s The state of the s





KCA 6.2.1/10 Ä; 2002; M-074227-01-1 Report: Metabolism of pyrimidine-2-14C]HEC5725 in peanuts Title:

Report No.: Document No.:

Metabolism of [pyrimidine-2-14C]HEC5725 in peanuts
MR-532/01
M-074227-01-1
US EPA OPPTS 860.1300; Canada PMRA Ref.: DACO 6.3 EU 91/414/EFC
amended by 96/68/EC
none
yes

Executive Summary Guideline(s):

Guideline deviation(s): **GLP/GEP:** 

The metabolism of [pyrimidine-2-14C]fluoxastrobin [pyrimidine-2-14C]HEC 725) formulated as sin EC 100 was investigated in peanuts following three foliar spray applications. The applications were performed at BBCH 66, BBCH 79 and BBCH 89. The single application rate was in the range of 261 -274 g a.s./ha, the total application rate was 804 g a 4/ha.

The total radioactive residue (TRR) in peanut hay arounted to 129.86 mg/kg. Compared to hav, the TRR in nutmeat was very low and appounted to just 0.146 mg/kg. Fron hay most of the radioactivity (94.6% of the TRR, 122.90 mg/kg) was extracted with methan water and was subsequently partitioned mainly into the dichroromethane phase with only a small amount of radioactivity remaining in the aqueous phase. From nutmeat, a portion of 56,5% of the TRR (0,083 mg/kg) was extracted with hexane and a further portion of 24.4% of the TRR (0.031 mg/kg) was extracted with methanol/water. The radioactivity of the methanol/water extract was partitioned with dichloromethane and remained mainly in the aqueous phase.

In hay, the radioactive residues nownly consisted of parent compound (sum of fluoxastrobin and its Zisomer), amounting to 85.5% of the TRR. The metabolism of [provimiding-2-14C]fluoxastrobin in hay showed a complex pattern and a total of 6 metabolites were identified. However, no metabolite exceeded 2.2% of the TRR

In nutneer, 85.0% of the TRO was dentified as patural products. The largest portion (56.5% of the TRR) was identified as fatty acids after alkaline saponification, hence originally representing fat. Smaller portions represented carbohydrates, lighin and proteins. All these ¹⁴C labelled natural products probably resulted from an intensive of intensive from a position 2 of the pyrimidine ring of fluoxastrobin desidues in soil, subsequent assimilation of ¹⁴CO₂ released from soil by the peanut plants and deposition of assimilates in Outment

Neglecting the formation of natural products after assimilation of ¹⁴CO₂ and based on the identified metabolites, the following metabolic routes were deduced:

- isomerisation of the owneth with the formation of the Z-isomer,
- oxidative ring opening and degradation of the dioxazine ring,
- cleavage of the orimether,
- procleophilic substitution of the chlorophenol ring by glutathione, followed by a stepwise degradation of the anathione moiety,
- clearage of the parent molecule, mainly at the pyrimidine-methoxyiminotolyl ether group and to minor extent at the chlorophenyl-pyrimidine ether group and
- conjugation of hydroxyl and thiol groups to glucosyl and glucosyl-malonyl conjugates.



### I. Materials and Methods

### A. Materials

### 1. Test Material:

I I USC I I I I USCI I I I I I I I I I I I I I I I I I I	
Chemical structure	CI F
	CI F O N * position of the
	* position of the gradiolapel
Radiolabelled test material	[pyrimidine 2-14C]fluoxastrobino °
Specific radioactivity	4.18 MBq/mg (113 µC/mg)
Ratio of fluoxastrobin (HEC 5725 E-isomer)/	98.1.1.9 (normal close and overgose experiment)
Z-isomer (HEC 5725 Z-isomer)	978:2.2 (translocation experiment) \$\infty\$
Radiochemical purity	normal dosegand overdose xperiment: 39% (KIPLC and
	TLE) trænslocation experiment: >92% (HPEC), \$8% (TEC)

3" (sand Goam from German), pH (CaCl) = 6.3, 57.4% sand 33.0% silt and 9.7% clay, 1.98% organic carbon, cation exchange capacity (CEC) of 10 meq/100 g 

3. Plant: Peanut, variety:

### **B. Study Design**

### 1. Experimental conditions:

Three individual experiments were conducted.

Normal dose experiment: This experiment simulated agricultural practice and was the main experiment within the present study. Eighteen peanut plants were grown in a plant container (surface area 1 m²) and a depth of 60 cm2 filled with a sandy loam soil. Only half of the container (0.5 m²) was used for the experiment. Honce, whe plants were sprayed with [pyrimidine-2-14C]fluoxastrobin formulated as an EC100. The remaining nine plants were not part of the experiment. The envisaged use pattern at initiation of the study included up to four spray applications, each 203 g a.s./ha, resulting in a maximum annual field rate of 81 g a.s. The first field application was proposed after pegging to beginning of pod-development (growth stage BBCH 66 - 75) and the last application 14 days before harvest. The metabolism studies simulated the onvisaged use pattern and were based on the maximum proposed application rate. For simplification, only three applications were performed, each at increased actual rates of 261% a.s. ha (BBCH 66), 269 g a.s./ha (BBCH 79), and 274 g a.s./ha (BBCH 89). This resulted in at total applied rate of 804 g a.s./ha, which was slightly less as compared to the envisaged total application rate of 812 g a.s./ha. The time intervals between the single applications were 2 days between the first and the second and 20 days between the second and the third application. The third application took place 14 days before harvest.

experiment: This experiment was set up for metabolite isolation and identification, if necessary. Two plants were grown in 7.5 L pots (1 plant/pot) filled with a sandy loam soil. Approximately the same amounts of the EC 100 formulation, which were applied onto nine peanut plants in the normal dose experiment, were applied onto 2 peanut plants in the overdose experiment.



Hence, an approx. 4X application rate was achieved (18.96 mg a.s./plant in three applications) as compared to the normal dose experiment. The first application was performed at BBCH growth stage 67, the second at BBCH 79 and the third at BBCH 89. The time intervals between the single applications were 42 days between the first and the second and 20 days between the second and the third application. The third application took place 14 days before harvest.

Translocation experiment: This experiment was set up to obtain information on the translocation of radioactivity after seed treatment. Two plants (seeds) were grown in 7 L pots (1 plant/pot) filled with a sandy loam soil. The application of this experiment was performed with non-formulated of [pyrimidine-2-14C]fluoxastrobin. The amount for seed treatment was calculated from a weight of calculated from a w 0.5 g for a peanut seed and assuming an application rate of 25 s.a.s./100 kg seeds. Hence, 0.13 mg. s.s. per seed should be applied. Two peanut seeds were treated with 0.12 mg a.s. each, which was slightly less (-8%) as compared to the envisaged amount.

All experiments were performed in the greenhouse with a day/night rhytlin of 44/10 hours and an average temperature of 24/23°C (day) and 17/16C°C (night) and a relative humidity of 60%.

### 2. Sampling

In all experiments peanut plants were removed from soil at BBCH grown stage 97 and dried for 4 days. After four days of drying in the greenbouse, all plants were separated into hay cruits and roots. The fruits were manually separated into seeds ( nutmeat) and shells. Hay and nutmeat were the raw agricultural commodities (RACs) of interest. Roots and shells were not investigated. All samples were weighed, homogenised in liquid nitrogen an Ostore at - 20°C or below, until analysed.

### C. Analytical Procedures

Hay and nutment of the normal dose experiment were extracted and the extracts were analysed by HPLC and TIG. From the RACs of the other experiments (overdose and translocation), only the TRR was determined (by combustion) Due to the low TRRon the RACs of the translocation experiment, no extraction was performed. However nutmeat of the overdose experiment was used for method development, but the RAC of the overdose experiment were not needed for isolation and identification of metabolites.

# 1. Extraction and fraction aton:

The homogenised have of the normal dose experiment was soaked in methanol/water (1:1, v/v) before being extracted using a high speed blender. The extraction was repeated using methanol/water (1:1, v/v) and methanol. The suspensions were recump filtered and combined, yielding the methanol/water extract (combined threates) and solids. The methanol/water extract was evaporated to the aqueous remainder. The aqueous remainder was partitioned against dichloromethane leaving the aqueous phase and the dichloromethane phase. The solids of hay were not further investigated since they were accidentally lost. However an exhaustive microwave extraction was performed with the analogous solids 1 of a repeated extraction (second extraction of hay, see below). A second extraction of hay was performed analogously to the first one in order to have sufficient amounts of aqueous phase of hay for semi-preparative isolation at metabolites and for storage stability investigations. An aliquot of solids 1 from this second extraction was subjected to an additional exhaustive extraction step with methanol water (1:1, v/v) using a microwave assistance. After extraction, the suspension was filtered, yielding/solids 2 (non-extractable residues) and the microwave extract.



Nutmeat of the normal dose and overdose experiment was extracted. Purpose of the nutmeat extraction of the overdose experiment was method development, i.e. alkaline saponification of peanut oil and determination of fatty acids. After method development, the alkaline saponification and determination of fatty acids was not repeated for the n-hexane phase of the normal dose experiment, at TRRs, extraction efficiencies etc. were very similar to the overdose experiment and the nature of the radioactivity in the n-hexane phase was regarded to be the same.

The homogenised nutmeat of the normal dose and overdose expeription was twige macorated with n-hexane. The suspensions were vacuum filtered and combine vielding the n-hexane extract (combined filtrates). Subsequently, the solid residue was soaked in deionised water and macerated after adding methanol. The extraction was repeated twice with methanol water (1:10 v/v) and methanol. The suspensions were vacuum filtered and combined, yielding the methanol water extract (combined filtrates) and solids 1. The methanolowater extract was revaporated to the aqueous remainder. The aqueous remainder was partitioned against exhloromethane leaving the aqueous phase. The dichloromethane solution was evaporated yielding the dichloromethane phase. The nhexane extract of the overdose experiment was submitted to alkaline saponification. An aliquo of the n-hexane extract was rotary evaporated to the only residue. The oil residue was dissolved with alkaline ethanol (10 g KOH in 1000mL ethanol/water 95:5, v/x) and refluxed for 10 m. The Hydrolysate was partitioned against n-hexane, yielding then hexare phase 1 and (alkaline) water/ethanol phase 1. After acidification with conc ACI, the hydrolysate (i.e. water/edianol phase 1) was again partitioned against n-hexane, yielding the n-hexane phase 2 and cacidic) water ethanol phase 2. The aqueous phase of the nutmeat extraction of the formal close experiment was submitted to further investigation. An aliquot of the aqueous phase was evaporated to rynes. The residues were refluxed in 6N HCl and subsequently partitioned against entity accounte, leaving the H₂O phase 2. The H₂O phase 2 was further investigated by SPE. The \$120 phase 2 was given onto an SCX column, ringed with 1% aqueous acetic acid/methanol (50/50 x:v) and bluted with 1% aqueous ammonia/whethan (50/50 v:v). The SCX rinse was adjusted to pH Qusing aqueous ammonia, given onto an SAX column, rinsed with 1% aqueous ammonia/methanol (50/50 v.v) and eluted with YN H@/methanol (50/50 v.v). The solids 1 of nutmeat of the normal dose experiment were exhaustively extracted following a modified cell wall fractionation procedure, i.e. omitting steps for assolving pectin and hemicellulose. An aliquot of solids 1 was first washed with buffer solution and then successively treated with three different enzymes. During reaction, the batches were stirred with a magnetic stirrer. After reaction, the remaining solids were parated from the ozyme solution by centrifugation. As considerable amounts of radioactivity were no dissolved after the cellulase treatment, a lignin dissolving step with dioxane/Hel treatment (up to 78°C, 51) was added.

The radioactivity in liquid samples was determined by liquid scintillation counting (LSC). Solid samples were combusted. The CO₂ produced by combustion was absorbed in a CO₂ absorbent/scintillation constant mixture and the radioactivity was measured by LSC.

For the normal dose experiment the total radioactive residue (TRR) was determined by summation of the radioactivity of the combined extract(s) and of the remaining solids. For the translocation and overdose experiments, the TRR was determined by combustion of aliquots. The TRR was expressed in mg. as. equivalents per log sample weight. Amounts of radioactive residues in the extracts were expressed as percentage of the TRR and also as mg a.s. equivalents per kg sample weight.



### 2. Identification and characterisation:

For elucidation of metabolism, extracts and phases were analysed by HPLC and/or TLC with radiodetection. Metabolites were either identified by LC/MS/MS of isolated peaks (in some cases supported by NMR) or by co-chromatography with authentic reference compounds using two independent chromatographic methods with different selectivity (e.g. HPLCand automated multiple development TLC). 14C-labelled natural products were identified or tentatively identified by their chemical/biochemical behaviour and/or TLC co-chromatography.

5. Storage stability:

Storage stability investigations proved that the metabolic profile of the dichloromethane and aqueous phases of all RACs did not change significantly during storage at -20°C for more Than theree However, some aglycon formation in the aqueous phase of having served

### II. Results and Discussion

The metabolism of [pyrimidine-2-14C] Puoxastrobin [pyrimidine] EC 100 was investigated in peanuts Tollowing three folial spray applications at single rates of 261 -274 g a.s./ha and a total rate of 80. a.s./ha.

In the normal dose experiment the TRR in hay amounted to 129 for mg/kg (Table 6.20-13). This high TRR can be explained by the growth conditions in the vegetation area where the plants, in contrast to a field situation, were protected from raid, and bence surface wash off was completely inhibited. It is very probable, that under field conditions the residue level would be much lower. Compared to hay, the TRR in nutmeat was very low amounting to only 0.146 mg/kg. In the overdose experiment (approx. 4X application rate) The TBR in hay and number amounted to 540.02 mg/kg and 0.193 mg/kg, respectively. In the translocation experiment (normal application rate of 25 g a.s./ 100 kg seeds) the TRIS in has and notinear amounted to 0116 mg/kg and 0.016 mg/kg, respectively.

Table 6.2 Y-13: TRR values in peacht matrices after application of [pyrimidine-2-14Clf uoxastrobin

Matrix	Timing and Application	PHI (days)	TRR (ppm, mg a.s. equiv./kg)
hay	normal dose experiment:	14	129.86
nutmeat	three folian spray applications, at BBCH 66, BBCH 79 and BBCH 89, 3 x 26 2 - 274 a.s./ha total 804 g a.s./ha		0.146
hay	overfose experiment (4X) three foliar spray applications, at BBCH 67, BBCH 79 and		540.02
nutmeat	BBCH 89;		0.193
hay	translocation experiment: @	144	0.116
nutmeat 💮	seed treatment at a nominal rate of 25 g a.s./100 kg seeds		0.016

The poanut matrices of the normal dose experiment were extracted, the extracts were analysed by HPCC and TLC and parent compound and metabolites were identified. In the overdose and translocation experiments, only the TRRs of the matrices were determined. Nutmeat of the overdose experiment was extracted and used for method development, it was also used for the identification of fatty acids. However, the matrices of the overdose experiment were not needed for further isolation and/or identification of metabolites.



From peanut hay (Table 6.2.1-14), a portion of 94.6% of the TRR (122.90 mg/kg) was extractable with methanol/water and methanol. After partitioning, the dichloromethane phase contained 90.9% of the TRR (118.05 mg/kg) of the TRR and the aqueous phase contained 3.7% of the TRR (4.84 mg/kg). Microwave extraction of the remaining solids solubilised 3.5% of the TRR (4.58 mg/kg). In total, 98.2% of the TRR (127.48 mg/kg) was extracted/solubilised and only 1.8% of the TRR (2.39 mg/kg) remained non-extractable in the solids (solids 2).

From nutmeat, a portion of 56.5% of the TRR (0.083 mg/kg) was extractable with n-hexane. Methanol/water and methanol extracted further 21.4% of the TRR (0.031 mg/kg). After partitioning of the aqueous remainder of the methanol/water extract against dichloromethane, the dichloromethane phase contained 0.5% of the TRR (0.001 mg/kg) and the aqueous phase contained 20.8% of the TRR (0.030 mg/kg). However, 22.1% of the TRR (0.032 mg/kg) remained in the olids (solids 1). The radioactivity in these solids was almost completely released/solubilised by treatment with buffer solution (4.3% of TRR, 0.006 mg/kg) and enzymatic digestion with diastase (9.8% of TRR, 0.014 mg/kg), pronase (2.2% of TRR, 0.003 mg/kg) and cellulase (1.0% of TRR, 0.002 mg/kg) followed by treatment with dioxanc TCl (3.9% of TRR, 0.006 mg/kg). In total, 99.2% of the TRR (0.145 mg/kg) was extracted/solubilised and only 0.8% of the TRR (0.000 mg/kg) remained non-extractable in the solids (solids 2).

Table 6.2.1-14: Distribution of radioactivity in the extracts of the peamet matrices after foliar spray application of pyrimidine-2, 14C|fluoxastrobin formal dose experiment)

			y nutr	neat
$TRR [mg/kg] = \emptyset$	7 2 129086		0.146	
TRR [mg/kg] =	% of TRIK	mg Øs. equiv./kg	of TRR	mg a.s. equiv./kg
n-Hexane extraor		~ <del>-</del> 0	© 56.5	0.083
Methanol/water extract	(4.6)	@122.99)	(21.4)	(0.031)
Dichloromethane phase	90.9	\$\text{1}\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.5	0.001
Dichloromethane phase  Aqueous phase  Solids 1		4.84	20.8	0.030
Solids 1	×(5.4)	O (6.96)	(22.1)	(0.032)
Microwave extracts  Buffer soluble	3.5	A\$8	-	-
Buffer soluble @ SO SO SO		, O, -	4.3	0.006
Diastase extract		<b>~</b> -	9.8	0.014
Pronase extract		<b>-</b>	2.2	0.003
Cellulas xtract		<b>y</b> -	1.0	0.002
Dioxage/HCl extract	, M - 7, M	-	3.9	0.006
Cellulas extract Dioxage/HCl extract  Total extracted/solubilised	98.2	127.48	99.2	0.145
Solids 2 (non-extractable residue)	18	2.39	0.8	0.001
Accountability	1 <b>9</b> 0.0	129.86	100.0	0.146

For elucidation of metabolism, the extracts or phases were analysed by HPLC and/or TLC with radiodetection Metabolites were either identified by LC/MS/MS of isolated peaks (in some cases supported by NMD) or HPLC co-chromatography with authentic reference compounds using two independent chromatographic methods with different selectivity. ¹⁴C-labelled natural products were identified or tentatively identified by their chemical/biochemical behaviour and/or TLC co-chromatography.



In the dichloromethane phase of hay (Table 6.2.1-15), parent compound (sum of fluoxastrobin and its Z-isomer) was by far the main compound representing 83.7% of the TRR (108.64 mg/kg); metabolites were only minor, each representing  $\leq 2.1\%$  of the TRR. In the aqueous phase and in the microwave extract, several metabolites were detected in trace amounts (each < 0.5% of TRR). Parent compound was a minor component in the microwave extract (1.9% of TRR).

The complete radioactivity detected in the hexane extract of number (56.5% of the TRE, 0.083 mg/kg) was identified as fetty saids after 11.11 0.083 mg/kg) was identified as fatty acids after alkaline aponification, hence originally representing fat (e.g. triglicerides, peanut oil). The dichloromethane phase contained only 0.5% of the TRR. (0.001 mg/kg) and was not analysed. After acidic hydrolysis of the aqueous phase 7,3% of the TRE (0.011 mg/kg) was partitioned into ethyl acetate. The remaining aqueous phase was investigated by ion exchange SPE. Only 1.9% of the TRR (0.003 mg/kg) was found in the acidic SAX eluate. The main portion of radioactivity (11.6% of the TeR, 0.007 mg/kg) was found in the peutral fraction (SAX rinse), which was identified as glucose, probably originally representing starch. After treatment of the remaining solids with buffer, diastase, pronase, cellulase and dioxanc IICl, 4.3% of the TRR (0.006 mg/kg) was characterised as buffer solible, 9.5% of the TRR (0.004 mg/kg) was identified as starch, 2.5% of the TRR (0.003 mg/kg) was identified as proteins, 1.6% of the TRR (0.002 mg/kg) was identified as cellulose and 3.9% of the TRR (0.006 mg/kg) was identified as lightin. remaining solids with buffer, diastase propase, collulase and dioxane PICI, 4.3% of the TRR (0.006 mg/kg) was characterised as buffer soluble, 93% of the TIPR (0.014 mg/kg) was identified as



Table 6.2.1-15: Distribution of parent compound and metabolites in the extracts of peanut matrices after foliar spray application of [pyrimidine-2-14C]fluoxastrobin (normal dose experiment)

	h	av 🧟	nutr	nest 💍
TRR [mg/kg] =		29.86	1	0.146
Compound	% of TRR	mg <u>a</u> s. eq <b>y⊀v</b> .∕kg	% of TRO	mgQa.s. equav./kg<
Hexane extract	Ö			
fats / fatty acids	-	[Q, -	© 56.5	Q.983
Total in hexane extract	- 4	<del>)                                    </del>	560	∂9.083°
Dichloromethane phase				O e
parent compound, sum of	(83.7)	Ø 108.64)	, ô'	to - 01
fluoxastrobin (HEC 5725 E-isomer)	(8).7) ©60.0	77/292	<u></u> ×	
and its Z-isomer (HEC 5725 Z-isomer)	23.7	39.72	- "Y	<u> </u>
Ring 1.2.3.4 metabolites ^{a)}	Û (6D)	(8.07)	0, -X	4
HEC 5725-hydroxyphenyl metabolites	(P) \(\sigma_{\cute{1}}\)	4 60	_ O'	\$ ' - \$\tag{7}
HEC 5725-hydroxyphenyl metabolites HEC 5725-dioxazine-OH and ring 4 degradates: HEC 5725-dioxazine-OH (M19) HEC 5725-CA-glycol ester (M39) HEC 5725-E-amide (M38)	(5.4)	(6.99)	₩ - , °	
HEC 5725-dioxazine-OH (M19)	0.05	<b>3</b> 0.07	\$ - X	0-
HEC 5725-CA-glycol ester (M39)	15	2.00		
HEC 5725-E-amide (M38)	2.1	2.7		<b>%</b> -
HEC 5725-E-amide (M38) HEC 5725-carboxylic acid (M40) HEC 5725 oximether cleavage metabolites:	2.1 2.1 1.4 0.29 (88)	O80		_
HEC 5725-carboxylic acid (M40)	0.29	0.38	Q - \( \)	_
HEC 5725 oximether cleavage pretabolites:	~ (SES)	©(1.08)		_
HEC 5725-Z-amide (M38) HEC 5725-carboxylic acid (M40) HEC 5725 oximether cleavage metabolites: HEC 5725-ketone (M34) Ring 1,2 metabolites ^a		1.08	<i>©</i> ₀-	_
Ring 1,2 metabolites ^{a)}	ν.	(100.97)	W -	-
Ring 1,2 metabolites ^a HEC 5725-phenoxy-hydroxypyrimidine-metabolites: HEC 5725-phenoxy aminopyrimidine (M56)	(0.7)	(0.97)	<b>-</b>	-
HEC 5725-phenoxy aminopy midino (M56)	. Nov. 7	% 0.97	-	-
Sum of 7 unknowns	0.3	0.38	_	_
Total in dichlorometane phase	Ø 90.95		0.5	0.001
Aqueous phase O A & A				
Ring 2,3,4 metabolites O	(A)	(0.41)	_	_
HEC 5725-des-chlorophenyl degradates:	$\mathbb{Q}_{0.1}$	(0.05)	_	-
	© <0.0 (63)	0.05	_	-
HEC 5725 des-chlorophenyl-S-conjugates.	$\mathcal{I} \qquad (\cancel{0.3})$	(0.35)	-	-
HEC 3725-des-chlorophenyl-S-Gle (M50)	20.2	0.27	_	-
HEC 5725-des-chlorophenyl-Gic (M482)  HEC 5725-des-chlorophenyl-S-onjugates.  HEC 5725-des-chlorophenyl-S-Glc (M50)  HEC 5725-des-chlorophenyl-S-Glc (M51)  Ring 1.2 metabolites	0.1	0.09	-	-
Titles 1,2 memoring	0.4)	(0.61)	-	-
HEC 5725-phenoxy-hydroxypyrimidine metabolites:	(0.1)	(0.17)	-	-
HEC 5725 Panaya budray DMIACIa (M55a)	0.1	0.17	-	-
HEC 5725-QH-phenoxy-hy@oxypyrimidineQnetaborites:	(0.3)	(0.44)	-	-
HEC 5725-OH-phenoxy-amino PMD (M57) 4 HEC 5725-OH-phenoxy-amino PMD-Glc (M57a)	0.2	0.21	-	-
HEC \$725-OH-phenexy-amino-PMD-Glc (\$957a)	0.1	0.18	-	-
HEC 5725-OH-pheroxy-amino-PMD-GleMA (M57b)	< 0.1	0.05	-	-
Sum of unknowns	2.9 ^{b)}	3.83 ^{b)}	-	-
Ethyl acetate phase after acidic hydrolysis	-	-	7.3	0.011
Acidic SAX elutue after acidic by drolysis	-	-	1.9	0.003
SAX rinse after acidic hydrologis (starch)	-	-	11.6	0.017
Total in aqueous plase	3.7	4.84	20.8	0.030
Microware extract O	•			
parent compound, sum of	(1.9)	(2.45)	-	-
flacxastrochn (HEC 5725)E-isomer)	1.4	1.76	-	-
and its Zisomer (HEC \$725 Z-isomer)	0.53	0.69	-	-
Ring 1,294 metabolites ^{a)}	(0.6)	(0.88)	-	-
HEC 5725-dioxazine-OH and ring 4 degradates:	(0.6)	(0.88)	-	-
HEC 5725-CA-glycol ester (M39)	0.2	0.23	-	-
HEC 5725-E-amide (M38)	0.1	0.17	-	-
HEC 5725-carboxylic acid (M40)	0.2	0.32	-	-



	ha		nutr	neat 。
TRR [mg/kg] =		29.86		0.146
Compound	% of TRR	mg a.s. equiv./kg	% of TRR	mg a.s. egwyv./kg
HEC 5725-des-dioxazine-nitrile (M38a)	0.12	0.160	7 -	L - D
Ring 1,2 metabolites ^{a)}	(0.6)	(0.7 <b>%)</b>	-	2
HEC 5725-phenoxy-hydroxypyrimidine-metabolites:	(0.6)	( <b>4</b> 70)	- , Ô	
HEC 5725-phenoxy-hydroxypyrimidine (M55)	0.4	0.46	-,~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HEC 5725-phenoxy-aminopyrimidine (M56)	0.2	© ^y 0.24	<u>.</u>	~ - W
Sum of 5 unknowns	0.4	0.53		
Total in microwave extract	3.50	4.58	<u>o - Q</u>	
Buffer soluble	Q	<u> </u>	4 4	
Total buffer soluble	<u>~</u>	, Q' - ~~	4.3	0.006
Diastase extract	- 5° ×			
starch (tentatively)	\$ - \$	<u> </u>	9.5	0.014
Total diastase extract		O'-	³ 9.5	0.014
Pronase extract	' > '	A Ô		
proteins (tentatively)	. 4 <del>-</del> 6	Y	25	20.003
Total pronase extract	J - J		<b>2</b> .5	0.003
Cellulase extract	J ~ 0	Z Š		, Q
cellulose (tentatively)	D'	<u> </u>	1:0	0.002
Total cellulase extract			(1.0°	0.002
Dioxane/HCl extract	Y 03	<u></u>		
lignin (tentatively)	-4	🌂 - , 🕅	3.9	0.006
Total dioxane/HCl extract	<u>√</u> «∠		3.9	0.006
Total extracted/solubilised	98.2	<b>1</b> 27.48	99.2	0.145
Solids 2 (non-extractable residue)	§ ∂.8	£ 2.39	0.8	0.001
Accountability	100.0	© 129. <b>%</b> 6	100.0	0.146

The radioactive residues in hay mainly consisted of parent compound (sum of fluoxastrobin and its Z-isomer) amounting to 85.5% of the TRR (Table 6.2.1%). Isomerisation of the oximether group was the main reaction and was assisted by light (Fluoxastrobin (HEC 5725 E-isomer) was found at 61.4% of the TRR and its Z-isomer at 24.2% of the TRR. This corresponds to an E:Z ratio of approx. 70:30, changed from an initial catio of approx. 98:2 in the applied formulation. The metabolism of [pyrimidine-2-14C] fluoxastrobin in hay showed a complex pattern and a total of 16 metabolites were identified. However no metabolite exceeded 2.2% of the TRR. Numerous minor metabolites (each < 0.5% of the TRR) were characterized by the extraction procedure, partitioning behaviour and retention time. Most of the metabolites identified in hay contained all four rings or at least three rings and fragments of the dioxazine ring (abbreviated as ring 1,2,3,4 metabolites). This metabolite group accounted for 6.9% of the TRR (8.9% mg/g). The prevailing metabolite group in hay was the HEC 5725-dioxazine-OH and ting 4 degradates representing 6.1% of the TRR (7.87 mg/kg), of which the HEC 5725 E-amide (Mass) was predominant (2.2% of the TRR, 2.91 mg/kg).

In nutmear, 85.0% of the TRR (0.125 mg/kg) were ¹⁴C-labelled natural products. The largest portion (56.5% of the TRR 0.083 mg/kg) represented fat (e.g. triglicerides, peanut oil). Smaller portions represented carbon drates (22.1% of the TRR, 0.033 mg/kg), proteins (2.5% of the TRR, 0.003 mg/kg) and lignin (3.9% of the TRR, 0.006 mg/kg). All these ¹⁴C-labelled natural products probably resulted from an intensive mineralisation of the carbon atom at position 2 of the pyrimidine ring of fluoxastrobin residues in soil, subsequent assimilation of ¹⁴CO₂ released from soil by the peanut plants and deposition of assimilates in nutmeat. No metabolites of fluoxastrobin were detected



Table 6.2.1-16: Summary of characterisation and identification of radioactive residues in peanut matrices after foliar spray application of [pyrimidine-2
14C]fluoxastrobin (normal dose experiment)

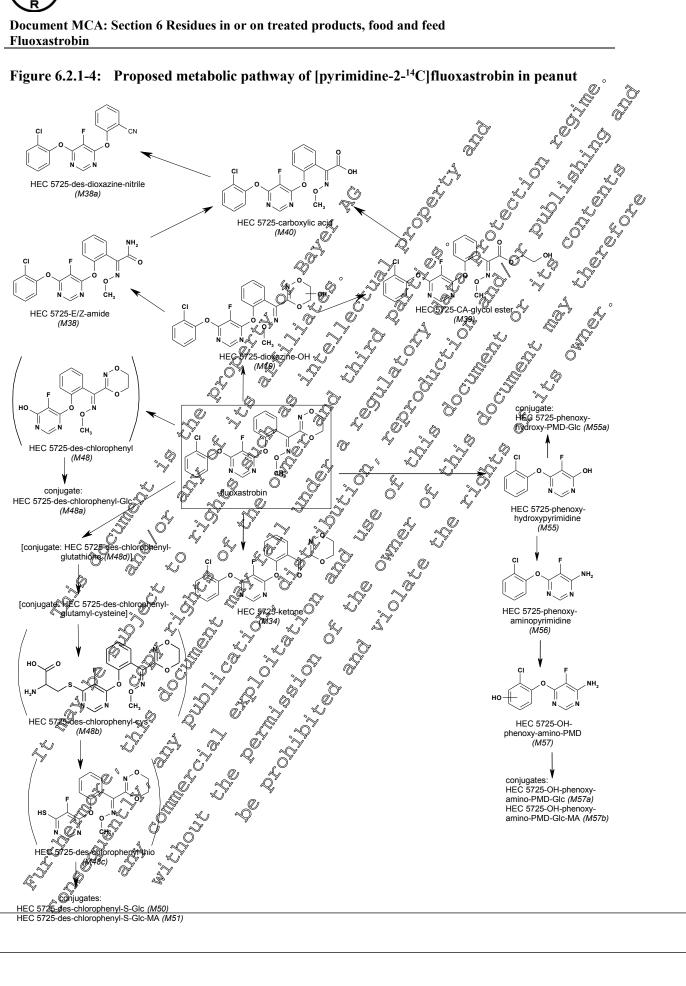
Cjiidoxasti obiii (noi mai dose expe	,		<b>N</b>	<u> </u>
	h	ay	nutr	neat Ó
TRR [mg/kg] =	1	29.86	1	0.146
Compound	% of TRR	mg <u>av</u> s. equiv./kg	% of TRO	mgca.s. egynv./kg<
parent compound, sum of	(85.5)	11.09)		S - 05
fluoxastrobin (HEC 5725 E-isomer)	61.4	Q 79.68	Q- 3	?` <u>~</u>
and its Z-isomer (HEC 5725 Z-isomer)	24.2	P 31.41	😂 - 👸	
Ring 1,2,3,4 metabolites ^{a)}	(6, <b>Q</b> ),	(8.96)	Ç -x.	O (0
HEC 5725-hydroxyphenyl metabolites	~ (-)		, O	6 - Ñ
HEC 5725-dioxazine-OH and ring 4 degradates:	。 <b>(6.1)</b>	~ (7. <b>%</b> 7)	~\~ . ×	~ <u>~</u> ~
HEC 5725-dioxazine-OH (M19)	(A) 0.1	9.07	- ×	. <u>~</u>
HEC 5725-hydroxyphenyl metabolites HEC 5725-dioxazine-OH and ring 4 degradates: HEC 5725-dioxazine-OH (M19) HEC 5725-CA-glycol ester (M39) HEC 5725-E-amide (M38) HEC 5725-Z-amide (M38) HEC 5725-carboxylic acid (M40) HEC 5725-des-dioxazine-nitrile (M38) HEC 5725 oximether cleavage metabolites:	0.1°	2.23	o' -4	<b>4</b>
HEC 5725-E-amide (M38) HEC 5725-Z-amide (M38) HEC 5725-carboxylic acid (M40) HEC 5725-des-dioxazine-nitrile (M38) HEC 5725 oximether cleavage metabolities:	<b>9</b> .2	2.9d	( O	- 7
HEC 5725-Z-amide (M38)	/ ⁷	.190	<b>&amp;</b> -	
HEC 5725-carboxylic acid (M40)	0,50	<b>%</b> .70	\$ - X	<u> </u>
HEC 5725-des-dioxazine-nitrile (M389)		© 0.16	, _O'	-
HEC 5725 oximether cleavage metabolities:	(8.8)	(1.08)		J -
HEC 5725-ketone (M34)	0.8	O 1908	Ö- °	-
Ring 2,3,4 metabolites ^{a)}	(0. <b>25</b> )	( <b>0</b> .41) 4	S - &	-
HEC 5725-des-chlorophenyl degradates:	~~ (< <b>@</b> )	(0.05)	<b>o</b> '	-
HEC 5/25-des-chlorophenyl-Glc M48a)	Ø <b>~</b> 0.1 ₂	0.08	<i>®</i> -	-
HEC 5725-des-chlorophenyl-Glc (M48a) HEC 5725-des-chlorophenyl-S-Glc (M50) HEC 5725-des-chlorophenyl-S-Glc (M50)	0.3	(40,365)	₩ -	-
HEC 5725-des-chlorophenyl-SiGlc (M50)	0.2	<b>₩</b> 0.27	<b>5</b> -	-
	<b>0</b> 7.1	& 0.09 ₃	-	-
Ring 1,2 metabolites ^a $\mathbb{Q}^{\mathbb{V}}$	(1.8) (1.4) (2) (1.4)	© (2.29)	-	-
HEC 5725-phenoxy bydroxy yrimidine-metabolites:	(1.4)	1	-	-
HEC 5725-phonoxy-hydroxypyrimidine (M55)	2° 04	0.46	-	-
HEC 5725-phenoxy Pydroxy-PMD (M.55a)	<b>3</b> 0.1	0.17	-	-
HEC 5725-phenoxy-hydroxypy midine (M58) HEC 5725-phenoxy-hydroxypy midine metalogites:	y'   \Q 0.9 _{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\ti}}}}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\tex{\text{\texi}\text{\text{\texi}\text{\texi}\text{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi}\texi{\texi{\texi{\texi{\ti}\}\tint{\texi{\texi}\texi{\texi{\texi{\texi{\texi{\texi{\texi}}	, · · · - ·	-	-
	$ \begin{array}{c c} (0.37) \\ (0.32) \\ (0.22) \end{array} $		-	-
HEC 5725-OH-phenory-amino PMD (M57)	SA / ( )	0.21	-	-
HEC \$725-OH-phenexy-ammo-PMD-Glc (M57a)	\$\int 0.1 \\ \alpha < 0.1	0.18	-	-
HEC 5725-OH-phonoxy-amino-PATD-GLOMA (\$457b)	/ [△] <0.1	0.05	- (0.5.0)	- (0.10.5)
[14C] natural products \( \times \)	~ -	-	(85.0)	(0.125)
fats / fatty acids Q * S		-	56.5	0.083
fats / fatty acids carbohydrates (starch & cellulose, tentatively) proteins (tentatively)	_	-	22.1	0.033
fats / fatty acids carbohydrates (stare) & cellulose, tentatively) proteins (tentatively) lignin (tentatively)	[*]   -	-	2.5	0.003
lignin (tertatively)		100.74	3.9	0.006
Total identified and tentatively identified	94.5	122.74	85.0	0.125
Characterised metabotics  chichloromethane phase, subtotal  aqueous phase, subtotal  microwave extract, subtotal	0.2	0.20	0.5	0.001
dischloromethane phase, subtotal \( \text{\$\frac{1}{2} \\ \text{\$\frac{1} \\ \text{\$\frac{1}{2} \\ \$\fra	0.3	0.38	0.5	0.001
aqueous phase, subtotal	2.9 ^{b)}	3.83 ^{b)}	-	-
	0.4	0.53	- 73	- 0.011
einvi aceiate/nnasa aner agsgic nvorotysis	-	-	7.3	0.011
acidic SAX eluate after midic hydrolysis buffer oluble faction of solids 1	-	-	1.9	0.003
Total above torical	- 2.6	- A 77 A	4.3	0.006
Total characterised	3.6	4.74	14.0	0.021
Total extracted solubified	98.2	127.48	99.2	0.145
Solicis 2 (nonextractable residue)	1.8	2.39	0.8	0.001
Accountability	100.0	129.86	100.0	0.146

a) ring # chlorophenyl, ring 2 = pyrimidine, ring 3 = methoxyiminotolyl, ring 4 = dioxazine (see also page 34);

b) ≥27 compounds, each <0.5% of TRR



## III. Conclusions


After foliar spray application of [pyrimidine-2-14C]fluoxastrobin, the residues in peanut hay mainly consisted of parent compound amounting to 85.5% of the TRR. Z-isomer changed from an initial ratio of approx. 98:2 in the applied formulation to a ratio of approx. 70:30. A large number of metabolites were detected in low amounts. In numeat, the identified portion of the TRR (85.0%) was represented by natural products, i.e. fat, carbohydrates, proteins and highin.

Neglecting the formation of natural products after assimilation of CO2 and based metabolites, the following metabolic routes were deduced:

- isomerisation of the oximether with the formation of the Z-isomer
- oxidative ring opening and degradation of the dioxazine ring
- cleavage of the oximether,
- glutathione, followed by stepwise nucleophilic substitution at the chlorophenol rug by
- degradation of the glutathione molecule, manyly at the pyrimidine methody iminatolyl einer group and

 cleavage of the parent molecule, mainly at the pyrimidine method viminotolyl either groups to a minor extent at the chlorophenyl-pyrimidine other-group and conjugation of hydroxyl and thioj groups to glocosyl-grid glycosyl-malonyl conjugates.

The metabolic pathway is proposed Figure 6.2.1-4. The metabolic pathway is proposed Figure 6.2.1.



Dijugates:
HEC 5725-Jes-chlorophenyl-S-Glc (M50)
HEC 5725-des-chlorophenyl-S-Glc-MA (M51)



## **Metabolism in oilseed rape (seed treatment)**

A metabolism study in oilseed rape was conducted with [methoxyiminotolyl-ring-UL-¹⁴Clfluoxastrobin:

Report:

KCA 6.2.1/11
Metabolism of [methoxyiminotolyloing-UL-14C]HEC5725 in oilse d rape after seed dressing
MEF-487/02
M-109459-01-1
US EPA OPPTS 860.1300 EV 91/414/EEC amended by 96/88/ECC none
yes Title:

Report No.: Document No.:

Guideline(s):

Guideline deviation(s): GLP/GEP:

91/414/EES amended by 96/68/EC The metabolism of [methoxyiminotolyl-ring-UL-10]fluoxastrobih (= Umethoxyiminotolyl-ring-UL-¹⁴C]HEC 5725) formulated as an #\$\text{140} was investigated in vilsee rape #\text{vilouing} seed treatment. The application rate was approx. 3.5 g a.s. a corresponding to approx. 70 g a.i./100 kg seed. Additionally, a 10x overdose experiment was conducted.

the normal

in forage, < 0.001 m

cuvity, (85.5 - 94.1% of the Ti

aution with Chichloromethane the ma

of the TRR). From seeds, 7.8 - 23.5% of t

1% of the TRR with methanol/water and methanol.

are tractable with methanol/water and methanol.

no identification and quantitation of parent compound and metabolites in

aw was performed. A low fate of uptake and translocation of fluoxastrobin and/or

avoiltes fato the action pairs of the pight was calculated (0.3% of the applied atvity). The total radioactive residues (TRRs) in forage seeds and straw were very low. The TRRs amounted



## I. Materials and Methods

## A. Materials

## 1. Test Material:

11 1 050 1/14/01/41/	,
Chemical structure	only E-isomer of displayed
	* position of the gradiolabel
Radiolabelled test material	[methoxyimixotolyl-ring-LCL-14C]fluoxastrobinQ 0
Specific radioactivity	3.62 MB (97.8 μCi/mg) (97.8 μCi/mg)
Ratio of	
fluoxastrobin (HEC 5725 E-isomer)/ Z-isomer (HEC 5725 Z-isomer)	97.8.2.2 & & & & & & & & & & & & & & & & & &
Radiochemical purity	©99%(MPLC) > 98%(TLC)

2. Soil:

5.9, 95.8% Sand, 49.0% Sint and 5.2% <u>":</u> loamy sand from GermanyopH (CaCl₂)& soil " clay, 1.38% organic carbon, cation exchange capacity (CEC) of 5. Reg/100 g Standard Soil T: 85% white moor peat from Northern Germany, 15% class pH (CaCl₂) = ca. 5.8, 0.28% organic carbon, cation exchange capacity (CEC) of 50 meg/100 g

The treated seeds were germinated for 10 days in small pots containing a mixture of 75% of the soil and then transplanted to 35 L planting buckets containing soil '

3. Plant: Symmer Rape

## B. Study Design

## 1. Experimental conditions

Two individual experiments were conducted

Normal dose experiment: This experiment simulated the envisaged seed treatment use pattern and was based on a maximum proposed application rate of 70 g a.i./100 kg seed resulting from a maximum of 500 mL FS 140/100 kg seeds. This rate corresponds to 3.5 g a.s./ha assuming a seed rate of 5 kg seeds/ha. Each seed was treated with 3 52 μg of [methoxyiminotolyl-ring-UL-14C]fluoxastrobin formulated as an FS 140. This resulted in an actual application rate deviating by +0.6% from the maximum proposed application rate. A total of 110 seeds were sown in soil pots, 96 of which were transplanted after germination to eight 25 L planting-buckets (12 seedlings per bucket).

Overdose experiment (10X overdose): This experiment was set up for metabolite isolation and identification, if secessary. In this experiment [methoxyiminotolyl-ring-UL-14C]fluoxastrobin formulated as an FS 140 was applied at a rate of approx. 33 µg/seed. This resulted in an actual application rate deviating by -5.8% from the envisaged 10X rate. A total of 25 seeds were sown in soil pots, 23 of which were transplanted after germination to two 35 L planting-buckets.



Both experiments were performed in the greenhouse with a day/night rhythm of 14/10 hours and an average temperature of 19/20°C (day) and 13/14C°C (night) and a relative humidity of 60%.

## 2. Sampling

Two plants per planting bucket were sampled at BBCH growth stage 34 (46 days after the apprentices) for the forage samples. Aliquots of the forage samples were homogenised.

At maturity (BBCH growth stage 88 – 89, 160 days after the application), the aerial parts of the plants were harvested. Seeds were collected from the pods. The empty pode and the rescor the harvested plants were combined to yield the straw samples. Aliquots of the straw samples were homogenised.

All samples were stored at -20°C or below until analysed.

C. Analytical Procedures

1. Extraction and fractionation:

The forage was extracted twice with methanol water (1.1, v) and force with methanol using Chigh speed blender. The individual suspensions were vacuum filtered and the residue was washed with methanol. The filtrates were combined, yielding methanol water extracts. The methanol/water extract was rotary evaporated (approx. 40°C) to the aqueous remainder which was partitioned against dichloromethane (3 times) yielding the aqueous phase and the dichloromethane hase. An aliquot of the dichloromethane phase was concentrated by rotary evaporation

The seeds were macerated twice with hexago using a high speed blenger. The suspensions were vacuum filtered and the filteres combined, yielding the hexane extract. The solid residue was extracted twice with methanol/water (4/10v/v) and once with methanol. The filtrates were combined yielding the methanol/water extract.

The straw was extracted two with methanol/water (10, v/v) and once with methanol using a high speed blender. The suspensions were vacuum filtered and the filtrates combined, yielding the methanol Water extract

The radioactivity in liquid samples was determined by liquid scintillation counting (LSC). Solid samples were combusted. The CO₂ produced by combustion was absorbed in a CO₂ absorbent / scintillation cooktail mixture and the radioactivito was measured by LSC. The TRR was determined by summation of the radioactivity of the combined extract(s) and of the remaining solids. The TRR was expressed in mg a.s. equivalents per kg sample weight. Amounts of radioactive residues in the extracts were expressed as percentage of the TRR and also as mg a.s. equivalents per kg sample weight

## 2. Identification and characterisation:

Due to the very low TRR the extracts were not analysed with chromatographic methods and no identification and quantitation of parent compound and metabolites in forage, seeds and straw was performed.

All samples were stored frozen at -20°C or below. All sample materials (forage, seeds, straw) were extracted and the radioactivity partitioned within one week after sampling. From the experiences with the a.s. and metabolites made so far, alterations of the composition during storage affecting the residue levels or partitioning behaviour between organic and aqueous phases are not expected. The results can

therefore be regarded as representative after seed dressing of oilseed rape with Fluoxastrobin FS 140 under the mentioned use pattern and growth conditions.

## II. Results and Discussion

The metabolism of [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin (= [methoxyiminotolyl-ring-UL-¹⁴C]HEC 5725) formulated as an FS 140 was investigated in oilseed rape following seed treatment. The application rate was approx. 3.5 g a.s./ha corresponding to approx. 70 g a.i./100 kg seed. Additionally, a 10x overdose experiment was conducted.

The total radioactive residues (TRRs) in forage, seeds and straw were very low (Table 6.21-17). The TRRs amounted to 0.001 mg/kg (expressed as active substance equivalents) in all matrices of the normal dose experiment. In the 10X overdose experiment, the TRRs were 0.002 mg/kg for forage, < 0.001 mg/kg for seeds and 0.005 mg/kg for straw.

Table 6.2.1-17: TRR values in oilse of rape matrices after seed treatment with [methoxyiminotolog-ring] L-14C] fluoxastrolon

Matrix	Timing and Application		TRR (ppm,
	Timing and Application	(days)	ng a.s. Quiv./kg)
forage	normal dose experiment:	~ A 6 C	0.001
seeds	seed treatment at appointing rate of	, 1600	0.001
straw	seed treatment at a coming trate of 500 mL \$\frac{1}{5}\text{140}100 kg seeds confessioning to 70 g as 100 kg/seeds or to 3.5 g a.s. ha overdose experiment 10X). Seed treatment at approx 10X of the rate of the pormal dose experiment.		0.001
forage	overdose experiment (10X):	46	0.002
seeds	seed treatment at approx. NOX of the rate on the	160	< 0.001
straw	normal dose experiment	, 100	0.005

The results of the normal dose experiment are as follows:

From forage, 85.5% of the TBR (< 0.001 mg/kg) was extractable with methanol/water and methanol (Table 6.2.1-18). After partitioning, the dichloromethane phase contained < 0.1% of the TRR (< 0.001 mg/kg) and the aqueous phase contained 85.3% of the TRR (< 0.001 mg/kg). Only 14.5% of the TRR (0.001 mg/kg) remained in the solids. From seeds, 7.8% of the TRR (0.001 mg/kg) was extractable with house. Methanol/water and methanol extracted further 13.1% of the TRR (< 0.001 mg/kg). However, 79.5% of the TRR (0.001 mg/kg) remained in the solids. From straw, 54.1% of the TRR (< 0.001 mg/kg) was extractable with methanol/water and methanol and 45.9% of the TRR (< 0.001 mg/kg) remained in the solids.

The results of the overdose experiment (10X) are as follows:

From forage, 94.1% of the PRR (0.002 mg/kg) was extractable with methanol/water and methanol. After partitioning, the dichloromethane phase contained 42.5% of the TRR (0.001 mg/kg) and the aqueous phase contained 51.6% of the TRR (0.001 mg/kg). Only 5.9% of the TRR (<0.001 mg/kg) remained in the solids. From seeds, 23.5% of the TRR (<0.001 mg/kg) was extractable with hexane. Methanol/water and methanol did not extract further radioactivity. However, 76.5% of the TRR (<0.001 mg/kg) remained in the solids. From straw, 71.2% of the TRR (0.003 mg/kg) was extractable with methanol/water and methanol and 28.8% of the TRR (0.003 mg/kg) remained in the solids.



Table 6.2.1-18: Distribution of radioactivity in the extracts of the oilseed rape matrices after seed treatment with [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin

						~ ~ ~
	for	forage		eds ,	straw 🐧	
		noi	mal dose exp			
TRR [mg/kg] =	0.0	001	0.0	001		001
	% of	mg a.s.	% of	mg∕â.s.	% of O	nog a.s.
	TRR	equiv./kg	C TRR	equiv./kg	TRR.	ěquiv./kg
n-Hexane extract	-	- "	<b>₹</b> 7.8	0.001	0 ×	Q' -\J
Methanol/water extract	(85.5)	(<0.004)	13.1	© * <0.001	₩ 54£	<b>5</b> 9.001 ¢
Dichloromethane phase	< 0.1	< 0.4001	- Q		~ ~ ~	
Aqueous phase	85.5	Ø.001	~	, Ø -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Total extracted/solubilised	85.5	& <0.001°	\$\\\ \partial \\  \\ \partial                                                                                                                                                                                  \	<0,001	54:1	<b>≤0,001</b>
Solids (non-extractable residue)	14.5	O <0,001	79	<b>©</b> :001	<b>45.9</b>	<u></u>
Accountability	100.0	<b>©</b> :001	1000	4 0.00£		0. <b>00</b> 1
			verdose expo	riment (90X		
TRR [mg/kg] =	0,0	QQ2 V	*** \$0°	301 👏 .	<b>Ö</b> . ŠÕ.	0050
	% of	mg a.s.	of water	nog a.s.	%of	⋛mg a.s.
	TRR	eguiv./kg	TRK	Quiv./Kg	₽ŘR 🦠	^J equiv./kg
n-Hexane extract	, , , ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	© 23.54	∕ <b>&lt;0</b> ,901	O - (,	-
Methanol/water extract	(94.1)	(0.002)	~ <000°	Ø0.001	<b>O</b> 1.2	0.003
Dichloromethane phase	425	© 0.001	r -~	- · · · · · · · · · · · · · · · · · · ·	, & -	-
Aqueous phase	Ø1.6	0.00	~2 ×		~ -	-
Total extracted/solubilised	Ø 94.10		, O ^v 2345	<0.001	71.2	0.003
Solids (non-extractable residue)	509	<b>₹</b> 0.002		0.00¢	28.8	0.001
Accountability	P) 100.0	0.000	J00.0	<0@001	100.0	0.005

Due to the very low FRRs to identification and quantitation of parent compound and metabolites in forage, seeds and straw was performed in neither the normal dose now the overdose experiment.

For the overdose experiment (10X), it was calculated that the amounts of radioactivity found in the forage at BBCH stage 34 and in the straw at harvest each corresponded to 0.3% of the applied radioactivity. This indicated a low rate of uptake and translocation of fluoxastrobin and/or possible metabolites into the agricultural parts of the plants.

# III. Conclusions

After seed treatment with [methoxylmin folyl-ring-UL-14C] fluoxastrobin at the envisaged use rate and at a Y0X overdose rate, the residues in forage, seeds and straw of oilseed rape were very low. The TRRs did not exceed 0.001 frg/kg in seeds, 0.002 mg/kg in forage and 0.005 mg/kg in straw. No identification and automatication of individual components of the TRR was performed. Fluoxastrobin and/or possible metabolites were taken up and translocated into the aerial parts of the plant only to a very small extent.



## Overall conclusions on plant metabolism

For the overall conclusion on the plant metabolism of fluoxastrobin, the results of all available plant metabolism studies and the confined rotational crops studies are briefly summarized in the following. Detailed summaries of the wheat metabolism and confined rotational crops studies, which were already peer reviewed at EU level, were presented in the Annex II dossier submitted in 202 (see also Table 6.2-1 and Table 6.2-2). Detailed summaries of the tomato, peanut and oilseed rape metabolism studies, which have not yet been peer reviewed at EU level, are presented above (pages 36-to 80).

The metabolism of fluoxastrobin was investigated in primary crops and rotational crops from three different crop groups with different positions of radiolabel following foliar application (wheat, tomato, peanut) and soil application (wheat seed treatment, rotational grops). Due to very low TRRs, the nature of residues was not investigated in oilseed rate after seed treatment.

The parent compound (sum of fluoxastrobin and its Z-isomer was mostly by far the major component of the residue in the primary crops wheat, comato and peanut (see Table 6.2.519). After the foliar applications, parent compound occurred at 51.6. 98.0% of the TRR in the plant matrices and the highest amount of an individual identified metabolite did not exceed 5.0% of the TRR. The highest concentrations in a food or feed commodity excluding peanut has were found in wheat straw with 54.34 - 62.42 mg/kg for parent compound and 1.79 2.10 mg/kg for an individual identified metabolite, however, the highest amount of a metabolite did not exceed 2.1 % of the TRR in straw.

Following seed treatment only, patent compound was predominantly the major component and occurred in all wheat matrices in a range of 17.3 34.9% of the TRR. In wheat forage, hay and straw the major identified metabolite was found at 4.5 - 200% of the TRR, the devels were low and did not exceed 0.08 mg as equiv /kg to metabolite was identified in wheat grain

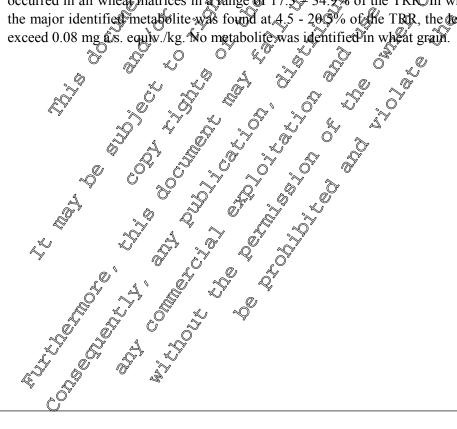





Table 6.2.1-19: Plant metabolism studies: parent compound (sum of fluoxastrobin and its Zisomer) and the major identified metabolite

								o. 🗬
Crop	Label	Type of	Single	Sample		compound		or ^{d)} identified
		application	application	material	`	fluoxastrobin	) met	abolité 💍
			rate		and its	z Z-isomer)		
			(total appl.		% of TRR	mg/kg∢	% of &	mg@s.
			rate)			<b>₩</b>	TRR	mg@s. equiv./kg
			[g a.s./ha]		Ö	<u> </u>	, L	
Wheat	ring	seed treatment	53-64	forage a)	22.3-27.0	<0.01-0.02	9.1-14.4	\$0.01 <b>-0.0</b> 1
	1, 2, 3	+ 2 foliar	281-317	hay	<b>A9</b> .1-88.0	8.34-46.38	<b>₹</b> 2-2.2.€	0.22 <del>5</del> 0.84 ዩ
		spray	(651-696)	straw 🚄	72.3-79.9	\$4.34 <u>-</u> 62.42	2.4-2.7	1.¶9-2.10
		applications		grain	51.6-86.0	0.30 0.45	2.49.0	<b>3</b> 0.01-0.04
	ring 3	seed treatment	54	forage	28.6	<b>6.03</b>	<b>6</b> 4.5 %	~ 0.0)×
				hay	<b>%</b> 34. <b>%</b>	\$ 0.04	\$18.5	0.02
				straw 🍣	1 <i>7</i> ,3	0.07	20گ	₩.08 L°
			X.	grain	~30.0 _~	<b>A</b> 005	-	~ <u>~</u>
Tomato	ring	3 foliar spray	144	fruit	@ 98.0L	0.2410-0,632	3-0.4	0.002
	1, 3	applications	(432)					0
Peanut	ring	3 foliar spray	234-275	May 🤝	83;4£85.5 <u>~</u>	9111. <b>99</b> 117.92	2.2	<b>2</b> 91-3.89
	2, 3	applications	(781-804)	nutmeat	% - b) ₽	(O b)	8 ( )	- b)
Rape	ring 3	seed treatment	@ 3,5\\\	foræge,	\$ 000	0° 0° 0°	O c) ((,	c)
				straw,				
		. ~		seeds 5			Č	

- a) Forage was sampled before the two foliar spray applications were conducted.
- b) In nutmeat, the identified portion of the TRR (\$8.2 88.0%) was represented by natural products.
- c) Due to the very low TRRs no identification and quantitation of parent compound and metabolites in forage, seeds and straw was performed.

  d) metabolite with highest of TRE value in the individual radio belled studies and straw was performed.

After soil application and planting of the totational crops parent compound (sum of fluoxastrobin and its Z-isomer) was the predominant component of the residues in the plant matrices with up to 73.6% of the TRR in wheat, up to 32.6% of the TRR in Swiss chard and up to 50.3% of the TRR in turnips (Table 6.2.1-20). It was the major component in the plant matrices of the first rotation and in most matrices of the second and third rotation In turnip leaves of the second and third rotation and in Swiss chard of the second rotation it occurred at amounts comparable to the major identified metabolite. In the individual plant matrices of the three rotations, the major identified metabolite represented up to 26.4% of the TRR. The residue levels of the metabolistes were low and did not exceed 0.03 mg a.s. 26.4% of the TRR. The residue levels of the metabolises were low and did not exequiv./kg in the edible matrices wheat grain, leaves of Swiss chard and turnip roots.



Table 6.2.1-20: Confined rotational crops studies: parent compound fluoxastrobin (E- and Z- isomer) and the major identified metabolite

Label	Application	Rotation,	Rotational	Sample		astrobin	The majo	ra) identified @
	type and	plant back	crops	material	`	Z-isomer)	Ç met	abo@ore 🙈 🛚
	rate	interval			% of	mg/kg 🕜		mg a.S.
					TRR	1	TRR	r eqvxtx:/kg ∂
ring	1 spray	1 st rotation,	wheat	forage	34.5-51.0	0.04	7.9-9.3	√0.010 X
1, 2,3	application	30 days after		hay	<b>4</b> .4-43.9	0.18-0.89	13.5-20.5	<b>%</b> 10-0. <b>2</b> 7
	onto bare	application		straw	22.1-49.5	<b>₽</b> 90-1.18	10.8/18.6	0.25,0.45
	soil at			grain 👸	≤65.4	<b>√</b> ≤0.02	<b>3</b> .0-9.8	<b>©</b> .01
	683 – 846 g a.s./ha		Swiss chard	leaves	13.2-32.6	♥ 0.0 <b>₺</b> ;0.06	9.0-124	0.01-0.044
	a.s./11a		turnips	leawes	11.6-35,6	0.004-0.02	3,0 12.4	\$ <0.0°
			<u> </u>	croots 🖔	28.930.3	&0.006- <b>0.6</b> 1	<b>6</b> \$-14.9°∕	<6.01
		2 nd rotation,	wheat C	forage	42.8-67.60	0.0 <b>5</b> 0.09	Ø4.9-11(9	0.01-0.02 •
		157-175	<u>,</u>	hay	§2.2-37.9/	0410-0.38	9.0-24.0	Ø.08-000
		days after		straw ^	26.0 \$5.6	Q.34-049	11.2-16.0	0.15 9.21
		application		grain g	<b>≥</b> 73.6 _≪	© ≤0, <b>%2</b> ″	Ø2.1-8.1	<b>©</b> .01
			Swoss chard	leaves	₹30.6°		11.5 ₇ 25.3	<b>3</b> .01-0.03
			turnips	leaves 😞	4.0-19-3	0-902-0.00	8,5 26.4	0.002-0.01
		a n	Li G	Foots S	<i>≤4</i> 92.8	√ ≤0.0	12.6-17.5	< 0.01
		3 rd rotation,	Wheat	forage	<b>6</b> √9-65.90	0.0½-0.04	[©] 4.0-1∂6	<0.01-0.03
		301-328		hafy a	∂6.0-33.V	0.03-0.06	11,8-14.4	0.02-0.08
		daysafter		hay a	7.4-26.3	Ø.06-002	<b>8</b> .6-16.8	0.03-0.13
		application		grain	64.5 🐇	≤0.03	2.6-6.9	0.002
			Swiss chard	leaves ,	Ø.5-12.©	≤0.03 ≤0.01 ≤0.002	13.1-22.4	0.01-0.030
	<u>E</u>		turnings	leaves &	r ≤1@n,0	₹0.002	6.9-13.5	< 0.01
				roots	Ş.		-	-

a) metabolite with highest % of TRR value in the individual radiolabethed studies

The following metabolic routes of fluoxastrobirt in the plant were observed:

- cleavage and degradation of the dioxazine ing (vineat, tomato, peanut, rotational crops),
- hydroxylation of the chloropheny ring wheat peanut, rotational crops),
- cleavage of the parent molecule at the pyrimidine-methoxyiminotolyl ether group (wheat, mato, peanut, rotational crops),
- cleavage of the parent molecule at the thlorophenyl-pyrimidine ether group (wheat, peanut, rotational crops)
- cleavage of the oxime ther (wheat, tomato, peanut),
- nucle philies substitution at the chlorophenol ring by glutathione, followed by a stepwise degradation of the glutathione moiety (wheat, peanut, rotational crops),
- conjugation of hydrocyl and thiol groups to glucosyl and glucosyl-malonyl conjugates (wheat, peansy, rotational crops) and
- isomerisation of the oximether with the formation of the Z-isomer (wheat, peanut, partly otational crops).

The metabolic pathway of fluoxastrobin in the plant is proposed in Figure 6.2.1-5.

b) Due to the Cry low TRRs no identification and quantitation of parent compound and metabolites in turnip roots of the 3rd rotation was performed.



OH HEC 5725-5-hydroxyphenyl (M04) W, RC

S-E-Z-4-OH-Glc (M97) W, RC

J. FHEC 5725-E-Z-4-OH-Glc MA (M09) W, RC

OH-Glc NA (M09) W, RC

OH-Glc NA (M09) W, RC

OH-Glc NA (M09) W, RC Figure 6.2.1-5: Proposed metabolic pathway of fluoxastrobin in the plant conjugate: EC 5725-OH-CA-Glc (M42) W, P, RC HEC 5725-des-dioxazine-nitrile HEC 5725-OH-CA(M41) W (M38a) **P** HEC 5725-CA-glycol ester (M39) N, P, RC HEC 5725-carboxylic acid (M40) W, P, RC HEC 5725-E/Z-amide (M38) W, P, T, RC HEC 5725-E/Z-3-hverpxyphen (1/03) W, RC conjugate: HEC 5725-des-chlorophenyl-Glc (M48a) P ĊН, HEC 5725-E/Z-des 5-E/Z-des-chlorophenyl (M48) **W**, **RC** HE65725-hydroxyphenyl (M02) P conjugate: HEC 5725-phenoxy-hydroxy-PMD-Glc (*M55a*) **P** HEC 5725 сн₃ «Д HEC 5725 des-pyrimidine HEC 5725-resichlorophenyl-dioxazine-Old (M49) W, RC HEC 5725-phenoxyhydroxypyrimidine (M55) **W**, **P** conjugates: HEC 5725-E/Z-despyrimidine-glc (M75a) P 5725-dioxazinyl-HEC 5725-des-chloropheny HeC dioxazine (M54) RC phenylketone (M78) W, T HEC 5725-phenoxy aminopyrimidine (M56) W, P, T HEC 5725-dioxazine-HEC 5725-phenylalcohol (M80) W glyoxylic acid (M90) P HEC 5725-des-chloropy HEC 5725-OHconjugate: HEC 5725-dioxazinephenoxy-amino-PMD (M57) W, P, RC alcohol-Glc (M80a) P HEC 5725-des-chlorophenyl-thio (M48c) conjugates: HEC 5725-OH-phenoxyacid (M72) conjugates: HEC 5725-des-chlorophenyl-S-Glc (*M50*) **W**, **P**, **RC**HEC 5725-des-chlorophenyl-S-Glc-MA (*M51*) **W**, **P**HEC 5725-des-chlorophenyl-S-Glc-SA (*M52*) **W** salicylic acid amino-PMD-Glc (M57a) P HEC 5725-OH-phenoxy-amino-PMD-Glc-MA(M57b) P (M91) P HEC 5725-des chlorophenyl-glycol-MA (M70) W
HEC 5725-des chlorophenyl-glycol-Glc-MA (M71) W

Metabolite identified in wheat (W), peanut (P), tomato (T), rotational crops (RC)



The metabolic routes observed in the tomato and peanut studies were also observed in the wheat metabolism studies. The metabolic routes found in three rotational crops were also found in the primary crops. Overall no metabolic route unique for any of the investigated crops was observed, and the metabolic routes in all studies are similar. The primary crops represed three different crop categories (cereals, fruit and pulses & oilseeds) covering foliar and soil application. Therefore is concluded that the nature of residues in the plant after application of Auoxastrobin is sufficiently understood and that no further studies are needed.

Overall, parent compound, i.e. the sum fluoxastrabin and its 2-isomer, was observed as the predominant portion of the residues. Metabolites were only minor components after foliar applications (≤ 5% of the TRR) and not exceding 0.08 mg fis. equiv./kg after seed treatment or 0.03 mg fis. equiv./kg in edible commodities of rotational crops. Therefore, it is concluded that fluexastrobin and its Z-isomer are the appropriate components of the residue definition for risk assessment and for enforcement purposes in all plant commodities.

Conclusions on the metabolism in potatoes after soil application

For supplementing the conclusion on a residue definition for all trop groups (see pages 81 - 85), a rationale on the metabolism in potatoes after soil application is a solution in the second seco rationale on the metabolism in potatoes after soil application is provided here. Suchoa rationale was provided by Bayer CropScience to the member states in the course of the examuation of a dossier for a registration of a plant protection product used for in furrow application in potatoes, submitted to The and The Netherlands. The rationale showed that the data from the available plant metabolism studies gover an in-factow treatment of potato tubers at Prate of 390 g fluoxastrobin/ha and that the nature of the residue following this use is Sufficiently known. In the "Reasoned opinion on the review of the existing maximum residue levels (MRLs) for Juoxastrobin' EFSA points out that "... metabolism in sotatoes was not in estigated but in this case assumed to be covered by the available stadies ... and that " a complete peer review of these thetabolism studies at EU level is still desirable" [EFSA Journal 2012; 10(12):3012]. Mence, the rationale is provided in the following.

According to the SECD guideline 501, "Metabolism in Crops", an in-furrow application (or seed treatment) is considered as a soll application. From the date of the confined rotational crops studies in roots of turning sow, 030 days after soil application, the nature of the residues in potatoes after infurrow application or seed treatment of fluorastroom is derived. The data are recalculated to compensate for the different application rates of the confined rotational studies and the potato use pattern considering the dissipation of fluorastrobin during the 30 days plant back interval

This calculation is based on the results of the eight field dissipation trials reported by 2001; M-136679-01-1. The first order DT50 values of fluoxastrobin in soil found in this study were in the range of 06.2 to 119 days with an arithmetic mean of 82 days. Based on these DT50 values the percentage of fluorastrolon remaining in soil 30 days after application can be calculated. The amounts calculated for that date are in the range of 27.7 - 84.0% (mean 77.6%). The following Table 6.2.1-21 shows the percentages related to the individual trials.



2390         Germany         16.2         27.7         2404         Great Britain         119         84.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0         34.0			DT50	Percent of fluoxastrobin
2390         Germany         16.2         27.7         0           2404         Great Britain         119         84.0         3           2412         France (North)         85.4         78.4         78.4           2420         Great Britain         105         82.0         82.3           2439         France (North)         107         82.3         80.8           2447         Italy         97.3         80.8         80.8           2455         France (South)         77         76.3         63.8         63.8           4202         Germany         46.2         63.8         63.8         63.8         63.8	Trial	Country	(days)	remaining in soil at day 30
2404         Great Britain         119         84.0           2412         France (North)         85.4         78.4           2420         Great Britain         105         82.0           2439         France (North)         107         82.3           2447         Italy         97.3         80.8           2455         France (South)         77         76.3         °           4202         Germany         46.2         63.8         °	R812390	Germany	16.2	27.7
2412         France (North)         85.4         78.4           2420         Great Britain         105         82.0           2439         France (North)         107         82.3           2447         Italy         97.3         80.8           2455         France (South)         77         76.3         °           4202         Germany         46.2         63.8         °	R812404	Great Britain	119	84.0
2420         Great Britain         105         82.0           2439         France (North)         107         82.3           2447         Italy         97.3         80.8           2455         France (South)         77         76.3           4202         Germany         46.2         63.8	R812412	France (North)	85.4	78.4
2439       France (North)       107       82.3         2447       Italy       97.3       80.8         2455       France (South)       77       76.3         4202       Germany       46.2       63.8	R812420	Great Britain	105	82.0
2447     Italy     97.3     80.8       2455     France (South)     77     76.3       4202     Germany     46.2     63.8	R812439	France (North)	107	82.3
2455       France (South)       77       76.3%       °         4202       Germany       46.2       63.8       °	R812447	Italy	97.3	80.8
4202 Germany 46.2 63.8 0 4	R812455	France (South)	77	76.3Q°
	R814202			\$ 63 ₇ 8
percentages of fluoxastrobin present in the soil 30 days after the soil app	ırithmetic	mean:	82 ₍₄	, , , , , , , , , , , , , , , , , , ,

after the son.

nips in the confi.

rater used (846 g. a.

estimated amounts of a.

r. the soil application) were gharmals where degradation was.

onnient) the estimates tange from a dig/fablor 2.1-22. by multiplying them with the three different application rates used 846 g a.s./ha 841 5 g a.s./ha and 683 g a.s./ha, depending on the labelting position). The estimated amounts of throwastrobin at the time of sowing turnips of the first rotation (30 days after the soil application) were in the range of 189 -710 g a.s./ha. Using the data from seven of the eight mals where degradation was slowest (and in line with the behaviour of fluoxastoobin in the environment) the estimates range from 436 710 g a.s./ha.



Table 6.2.1-22: Fluoxastrobin: Estimated amounts at the start of the first rotation (day 30) of the confined rotational crops studies in g a.s./ha

	Field dissipation	study			nal crops studies
Trial	Country	Percent	Label	Application	Estimated an Gunts of
		fluoxastrobin	ring	rate d	fluoxastrobin at day 30
		remaining in soil at		(g a.s./ha) _{	(g & 3./ha)
		day 30			
R812390	Germany	27.7	Ø	846	2344
			2	840.5	23391
			<b>√</b> 3	£83	\$9.2 \$ \( \)
R812404	Great Britain	84.0	1	<b>2846</b>	710.4° (°
			2	841,5	Q' 0 7066 6
		. ~	。3	683 m	573.5
R812412	France (North)	78.4 👺		₹ <b>3</b> 846 🛫	663.2
			20	®841. <b>™</b>	659.6
				\$ 683 ° √	5359
R812420	Great Britain	82.0	\sqrt{1} \(\infty\)	<b>347</b> , O	694.0
			2 👋	©41.5×	\$90.3
			30	683 ©	Ø 560,3
R812439	France (North)	820si "Y	*\psi	846	\$ 6966
		~ . b . b	© 2 6	\$\frac{9}{2}1.5\times	© 6 <b>9</b> ⁄2.9
			° کا	€83 °	\$ \$562.4
R812447	Italy 💸	80.8	1	√ 846©	© 683.2
	· ·		<b>©</b> 2	840×5	679.6
	***		3	√ √6 <b>8</b> 3 √Ç″	551.6
R812455	France (South)	76.3	10	846	645.8
			2×	O 841\\$	<b>∀</b> ″ 642.4
	Q ^v		\$3 €	, 683	521.4
R814202	Germany 6	√ 463.8 √ √	19 1 Ø	\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\	539.4
			2	841.5	536.5
	2 2 .0		<b>*</b>	683 ₂	435.5
arithmetic n	yean O 🔍	\$77.6 \$\frac{1}{2}\tag{7}	\$ 1	<b>&amp; 4</b> 6	656.5
			2 @	<b>2841.5</b>	653.0
				© ⁹ 683	530.0
* * *			6	<u></u>	mean: 613.2
	(A) (A) (A)		~ ~	*	

The factors representing the overdose of filtroxastrobin expected to remain in the soil after 30 days compared to the highest supported field rate of the potato use (390 g fluoxastrobin/ha) are compiled in Table Table 6.2.1-23 The estimated amounts of fluoxastrobin available at sowing / planting the root / tuber crop, for the first rotation are lagher than the intended application rate of the potato use by a mean factor of 1.57. The data from nearly all field dissipation trials suggest an overdose (factors > 1) in the confined rotational everys study, the only exception was one field dissipation trial (conducted in Germany, R812390) resulting in factors of 0.49 to 0.6 based on the lowest DT50 value of 16.2 days.



Table 6.2.1-23: Comparison of the estimated amounts of fluoxastrobin (g a.s./ha) at the first rotation (30 days after soil application) in the confined rotational crops (CRC) studies and the intended application rate of fluoxastrobin for the potato use

Trial	Country	Label	Estimated amounts of	Factor for amounts of fluoxastrobin in
		ring	fluoxastrobin at day 30	CRC vudies at day 30
			(g a.s./ha)	« versus « «
				application rate of fluoxastrobin for the
			Ö	potato rise (390 g fluovastrobur/ha)
R812390	Germany	1	234.4	Q 0.6 <b>0</b> \$ \$
		2	233.1	
		3	1893	Q
R812404	Great Britain	1	7,00.4	Q1.820 0 07
		2	, 706.6	
		3	\$\sqrt{573.5}\text{\$\gamma}\$\qquad \qquad \qqquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	
R812412	France (North)	1	6632 0	7.70 S
		2	√A √659.6 √ .	[ \$\times 1.69 \times 1.69 \ti
		3	\$35.4\gamma' \( \bar{0} \)	137
R812420	Great Britain	1	© 6940° ×	
		2 6	(\$\sqrt{90}\displays                                                                                                                                                                                                                                                                                                                                                  \qu	
		3	© 560.3 ° ′	7 6 6 1.445 4
R812439	France (North)	<b>₩</b>	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 10 7
		₽2 ×	J	Q
	×	3 "	562.4	1.44 ^Q
R812447	Italy	l å∀	Ø83.2 °°	1.76
	***	<u>,</u> 2	\$ \$\infty 679.6\( \tag{\chi}\$	\ \times \ \gamma^\times \gamma^\times \gamma^\times \gamma^\times \ \gamma^\times \gamma^\times \gamma^\times
	2	₹ 3	\$ 551\@ \$	§ 6₹.41
R812455	France (South)		643.8	O' 1.66
		\ \text{\$\int_{\infty}'}	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.65
	\$ \O'	~3° °	U > 521,49 Q	1.34
R814202	Germany	~ 1 &	5344	1.38
		20	539,4	1.38
	<u> </u>	<i>®</i> }	₹35.5°	1.12
arithmetic	ytean 🐥 🦼		656.5° S	1.68
	, Ø , ¢	z 2 😂	6 <b>5</b> 7:0	© [*] 1.67
- y			[ 5 30.0 c/ 5	1.36
				mean: 1.57

The results of the contined rotational crop studies show that the amount of TRR found in turnip roots sown 30 days after soil application with divoxagrobin was low and ranged from 0.012 to 0.034 mg/kg. Table 6.2.1.24 shows the TRRs for the different labels.

Table 6.2.1-24: Total radioactive residues (TRRs) in roots of turnips sown 30 days after soil application with Thoxastrobin

Report & Y	Label ring	TRR
	4	(mg a.s. equiv./kg)
MR-392-00 ^{a)}	1	0.032 ^{b)}
MR-124/01a) 😽 🛴	2	0.034
MR 986/01 0 X	3	0.012

a) presented in: EU-Dossier, March 2002; IIA, 6.6

b) = recalculation of TRR with 3 digits (0.032 mg/kg), data from report MR-392/00, Appendix 15, page 112



Even though the TRRs were extremely low, a number of compounds were identified. The highest residue compound identified in turnip roots was the parent compound with a maximum of 0.012 mg/kg. Several metabolites at even lower levels were identified in the different labels. One of the identified metabolites and none of the characterised compounds exceeded 0.01 mg/kg. The highest level of any metabolite observed was HEC 5725-E-4-OH-Glc-MA at 0.00 mg/kg. The amount of parent compound and metabolites in the roots of turnips sown 30 days after soil application with fluoxastrobin are summarised in Table 6.2.1-25.

Table 6.2.1-25: Summary of characterisation and identification of radioactive residues in turnip roots from the first rotation of the CRC studies

Compound	<i>Q</i> 0		/ . Q	abel 🖁	\O'	
	k r R	ing°1 🔊	$\mathbb{Z}^{\mathbb{Z}}$ R	ing 🤊 🐧	r" »\$	ing 3
		∑ mg a⊈s.	<b>%</b> of ₂	omg a.s. equiv./kg	% of	mg a.s.
	TRR	equis kga)	∱¶TRR	©equiv./kg	₽ĸĸ	aquiv./kg
parent compound, sum of	(385)	( <b>0</b> .012)	(28,4),	(6010) ₄	(50.3)	(0,005)
fluoxastroin (HEC 5725 E-isomer)	<b>36.0</b>	$\mathbb{Q}^{y}0.012$	26.8	√°0.009€	47:5	<b>©</b> 005
and its Z-isomer (HEC 5725 Z-isomer)	√ 2.6	0,001	<b>₹</b> 2.1	O.00	28	<i>₹</i> 0.001
HEC 5725-E-3-hydroxyphenyl (M03)	n.d.	<b>≪n</b> .d. ∧	Ø 0.7		"Sn.d.	n.d.
HEC 5725-E-4-hydroxyphenyl (M04Q)	3.2	$\gg 0.001$	2.4	Ø.001	n.d.	n.d.
HEC 5/25-5-nydroxypnenyl (MUS _m )	₽ n.d. 4	C n.d	<b>₩.4</b>	0.0010	<b>∂</b> .9 °	< 0.001
HEC 5725-E-4-OH-Glc (M07)	, 1.9 [©]	0.6901	ŵ‱n.d.∂	n.d.	ري.d.	n.d.
HEC 5725-E-4-OH-Glc-MA (M08) 📞 💍	149	<i>⊗</i> 9.005 [⋪]	n.đy	√ ¶Qd.	n.d.	n.d.
HEC 5725-dioxazine-OH (MP)	<b>%</b> 1.0	$< 0.001_{\circ}$	'nd.	n.d. 🖔	n.d.	n.d.
HEC 5725-amide (M38)	(a) 0.Z@	) < 0.00° l	🗽 n.d.	n.d	n.d.	n.d.
HEC 5725-OH-CA-Glc (M42)	4.9	Ø9002 (	5 K			
HEC 5725-E-des-chlo@phenyl (M48)	Ŝ	<b>7</b>	8.8	0.003	6.5	0.001
HEC 5725-2-chlorophenol-6/c (M&V)	5.8%	9 0.000	<b>4</b>			
Sum identified	71,6	0.023	\$\frac{42.2}{2}		60.7	0.007
Characterised ^a Characterised	1699	9.003	⁸ 46∰	0.016	26.3	0.003
Subtotal identified and characterised	<b>%</b> 1.9	© 0.026	88.6	0.030	87.0	0.010
Non-extractable residue	18.1	0.006	<b>1.4</b>	0.004	13.0	0.002
Total & O O	1,000	0.032 %	2 100	0.034	100	0.012

n.d. = not detected

For the purpose of waiving a potato metabolism study, residues in potato tubers can be estimated based on the findings in turnip roots in the CRC studies, since turnip and potato belong to the same crop group according to OECD guideline 501.

Taking the worst case factor derived from the trial with the fastest degradation into account, the amount of flooxastropin in soil at the time of sowing of the turnips can be estimated to represent approx. 50% of the potato use rate. Therefore the amounts of parent compound and metabolites found in turnip roots of the 1st rotation of the rotational crops studies are divided by a factor of 0.5 (see Table 6.2.1-26). This calculation indicates a presence of the metabolite HEC 5725-E-4-OH-Glc-MA at 0.01 mg/kg. However taking into account all other available data on the dissipation of fluoxastrobin it would be more realistic to divide residues by a mean factor of approx. 1.5, resulting in levels below 0.01 mg/kg for all metabolites. However, parent compound (sum of fluoxastrobin and its Z-isomer) would still be the highest residue compound.

a) = recalculation of RR with 3 dots (0.032 mg/kg), data from report MR-392/00, Appendix 15, page 112

b) = Unassigned metabolities were characterised by extraction behaviour, phase partitioning and chromatographic behaviour. All characterised peaks amounted to < 0.004 mg/kg, each.



f turnips of the first of equiv./kg) Table 6.2.1-26: Results of the confined rotational crops study in roots of turnips of the first rotation divided by a factor of 0.5 (expressed as mg a.s. equiv./kg)

Compound		Label	
1	Ring 1	Ring 2	Ring 3 ®
parent compound, sum of	(0.025)	(0.020)	(0.014)
fluoxastrobin (HEC 5725 E-isomer)	0.023	0.018	0.01
and its Z-isomer (HEC 5725 Z-isomer)	0.002	0.002	< 000002
HEC 5725-E-3-hydroxyphenyl (M03)	n.d.	< 0.002	₩.d.
HEC 5725-E-4-hydroxyphenyl (M04)	0.002	0.002	Çn.d.
HEC 5725-5-hydroxyphenyl (M05)	n.d	< 0.002	< 0.0002
HEC 5725-E-4-OH-Glc (M07)	<b>000</b> 02	n.d.	. ₽d.
HEC 5725-E-4-OH-Glc-MA (M08)	& 0.010 m	n d	n.d.
HEC 5725-dioxazine-OH (M19)	© 0.002	jn∙d.	√ n,d.⊘
HEC 5725-amide (M38)	< 0.002	©n.d. Q	n.d.
HEC 5725-OH-CA-Glc (M42)	0.003		A . 0
HEC 5725-E-des-chlorophenyl (M48)		_0: <b>0</b> 06	0.002
HEC 5725-2-chlorophenol-Glc (M84)	¥ 0.0 <b>0</b> ¥		

Although no specific metabolism study on potatoes after soil application was performed, sufficient information can be obtained from the available confined rotational crops studies of derive the nature of residues in potato after in furrow spray application. The residue levels of metabolites anticipated to be present in potato tubers a harvest after soil application are expected to be very low. The only compound that is anticipated to be detected at quantifiable levels is the parent compound. Only in one worst case scenario assuming an underdose in the confined rotational crops studies (overdose factor of 0.5) compared to the supported porato use rate of up 300 g a.s./ha, the highest concentration of only one metabolite was estimated to be at 0.01 mg/kg while parent compound was estimated to represent the highest residue compound. In a prore realistic scenario with an overdose factor of approx. 1.5, all metabolites were expinated below 0.01 mg/kg. Therefore, it is considered unlikely that metabolites would need to be considered for risk assessment purpose and it is concluded that the definition of residue After in-furrow application of iluoxastrobia in/oa potato should be the parent compound, i.e. the sum fluoxastrobin and its Z-isomer.

This proposal for the residue definition is perfectly in line with all other results from the metabolism studies with Afroxastrobin after spray application (wheat, peanut, tomato) and seed treatment (wheat, oil seed rape) and the results from the other crops (wheat, Swiss chard) in the confined rotational crop studies, and therefore with the conclusion on the residue definition for all plant commodities (see pages 81°- 85).

Since these conclusions can be drawn from confined rotational crops studies with a root crop, an additional potato metabolism study is not needed to supplement the already extensive metabolism database.



# Metabolism studies in the laying hen were conducted with [chlorophenyl-UL-14C]fluox 3 robing ( ; 2001; M-030690-01-1) and [meth-Cyiminotolyl-ing-Ub-14C]fluoxastrobin ( ; 2002; M-059027-01-1). These studies were seer reviewed at EU level (see also introduction to chapter CA 6.2 and Table 2-3). A shoo summary is given below.

Laying hens were dosed with radiolabelled fluoxastrobin at 10 mg/kg bw. The concernation in the feed was calculated to be 187 - 198 mg/kg, corresponding to appear. 425 - 450 times the exposure of poultry (based on the maximum dietary burden of poultry of 0.44 ng/kg, representing the 1N cose level, see chapter CA 6.4 and Table 6.4-Q). These studies demonstrated that the bulk of the radioactivity was excreted (72%) and therefore transfer of residues in each and the tisques was relatively low (approx. 2%). The TRRs accounted for up to 0.82 mg/kg in each, 0.30 - 0.62 mg/kg in muscle, 0.62 - 0.93 mg/kg in fat and 8.14.9.7 mg/kg in viver.

In eggs and tissue samples, two pajor imporents were identified as paint compound (sum of fluoxastrobin and its Z-isomer) and the metabolite BEC 525-phonoxy-ydroxy byring line (M55). They accounted together for up a 36% TRR reggs in to a 75 k in rescless to 69% TRR in fat and up to 22% TRR in liver several other metabolites were identified and several unknowns were noted, which individually were prosent as evel of either not higher than approx. 60% of TRR (liver) or less than 0.07 mg/kg (eggs, muscle, fat).

As the studies were arrived out thigh vexas perated loses compared to the expected exposure to poultry, it is unlikely that any of the compounds, except flux astrotion and its metabolite M55, would be present at levels greater than 0.01 kmg/kg ut studies with a 1N dose rate.

The report M-030690-01-1 of the laying hen study conducted in 2001 with [chlorophenyl-UL
14C] fluorostrobin and already evaluated under 94/414 was recently amended. The reason for the amendment was solely due to eperimental details on the procedure used for the extraction of eggs and resulted in document M-030690-02-1. These details are referred to in an analytical method developed for animal matrices (see document M-A section 4 chapters 4.1.2 and 4.2; [13] s; [13] (2015; M-536049-01-20).

# CA 6.2.3 Lactating ruminants

Metabolism studies to the lactating goat were onducted with [chlorophenyl-UL-\textsuperioring the lactating goat were performed by the lactation goat were performed by the lactation goat were performed by the lactating goat were performed by the lactation goat were p

Lactating fasts were doold with radiolabelled fluoxastrobin at 10 mg/kg bw. The concentration in the feed was calculated to be  $180^{\circ}$ - 265 mg/kg, corresponding to approx. 98 - 145 times the exposure to dairy and most runding based on the maximum dietary burden for running of 1.83 mg/kg, representing the 1N dose evel, see chapter CA 6.4 and Table 6.4- 2). These studies demonstrated that the bulk of the radioactivity was excreted (56 - 63%) and therefore transfer of residues into milk and the tissues was relatively low (1.3 - 1.8%). The TRRs accounted for up to 0.4 mg/kg in milk, 0.25 - 0.54 mg/kg in muscle, 0.36 - 0.65 mg/kg in fat, 8.3 - 18 mg/kg in liver and 2.6 - 3.9 mg/kg in kidney.



In milk and tissue samples, two major components were identified as parent compound (sum of fluoxastrobin and its Z-isomer) and the metabolite HEC 5725-phenoxy-hydroxypyrimidine (\$\sqrt{95}\$). They accounted together for up to 12% TRR in milk, up to 60% TRR in muscle, up to 75% TRR in fat, up to 16% TRR in liver and up to 29% TRR in kidney. Several other met polites were centified and several unknowns were noted, which individually were present at levels of either not higher san approx. 15% of TRR (liver, kidney) or less than 0.05 mg/kg (milk, muscle sat).

As the studies were carried out at highly exaggerated to see compared to the experted posure to ruminants, it is unlikely that any of the compounds except fluorestrobin and its methodity would be present at levels greater than 0.01 mg/kg, it studies with 1N dose rate.

## **CA 6.2.4 Pigs**

The general metabolic pathways in rodents and run mants were found to comparable; the findings in ruminants can therefore be extrapolated to pros. The is also the conclusion of the Reasofed opinion on the review of the existing maximum resides level (MRIS) for Quoxastrobin according to Article 12 of Regulation (EC) No 396/905'4/PFSA Journa 2012 [9(12) 2012]

Metabolism studies on pigs are the fore not required and were not conducted.

## **CA 6.2.5 Fish**

In March 2013 EU Commission Regulation 283/2013 was published setting out the data requirements for active substances in accordance with Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market. This Regulation contains the new data sequirement:

## "6.2.5 Fish Metabolism &

Metabolism studies on fish may be required where the plant projection product is used in crops whose parts or products, also after processing, are fed to fish and where residues in feed may occur from the intended applications."

These new data requirement do not include definitive triggers for when studies are required and unlike for ruminant and poultry there are currently no agreed test guidelines for the conduct of fish metabolism studies.

The procedure when no agreed text methods of guidance documents are available is described in the "Guidance Document for applicant on preparing dossiers for the approval of a chemical new active substance and for the renewal of approval of a chemical active substance according to Regulation (EU) No 283/2013 and Regul

"In some cases, agreed test methods or guidance documents are not yet available for particular data requirements. In these cases, vaiving of these particular data requirement points is considered acceptable as long as no test methods or guidance documents are published in form of an update of the Commission Communications 2013/C 95/01 and 2013/C 95/02."

In the sommary report of the Standing Committee on Plants, Animals, Food and Feed (26 and 27 January 2015) the Commission recommended relative to the data requirements and acceptance of waivers / the implementation of document SANCO/10181/2013 that Member States are invited to follow the procedures agreed when taking note of Guidance Document SANCO/10181/2013 in order



to harmonise the procedures, i.e. to accept as a general line the waiving for cases where no test guidelines are available. (A26).

No 2832013.

No 2832013.

A distribution of the state of Sign of the state At the time when the present document was prepared, no corresponding guidance document published or listed addressing Reference 6.2.5 of the Annex to Regulation (EU) No 283/ Therefore no fish metabolism study was conducted. At the time when the present document was prepared, no corresponding guidance document The state of the s



## CA 6.3 Magnitude of residue trials in plants

Fluoxastrobin is a broad spectrum fungicide with mainly uses in cereals but also in some vegetables? (potatoes, onions). The compound belongs to the chemical class of strobilurines (methoxyaerylates). The fungicidal activity is based on the inhibition of complex III in the mitochondrial respiratory chain. When applied as a foliar spray, the fungicide shows leaf-systemic action; when applied as seed dressing, the action is loco-systemic.

Fluoxastrobin is usually co-formulated with other functioned such as prothioconazole and/or bivafen. The representative products for the renewal of the approval of fluoxastrobin are for uses in/on small grain cereals: 'Fluoxastrobin + Prothioconazole EC 200' (100+100 g/L) for the northern climatic zone and 'Bixafen+Fluoxastrobin+Prothioconazole EC 190' (40+50+100 g/L) for the southern climatic zone. As an additional representative use in/on vegetables the EC 200 is supported in the southern zone for use in/on onions.

A use on small grain cereals was already supported with the dosser for into Annex I of Directive EC 91/414. The representative product was an EC 100 straight formulation.

For the <u>northern climatic zone</u>, the critical GAPs for wheat, we and barley evaluated in the EU peer review for Annex I inclusion based on the use of the straight product EC 000 will not be supported in the Post AIR process and this the critical GAP will be replaced by the representative use for the product 'Fluoxastrobin + Prothiocorazole EC 200'.

For the <u>southern climatic zone</u>, the GAPs on wheat, recand barley evaluated in the EU peer review for Annex I inclusion for 'duoxastrobin CC 100' do no longer exist and are replaced by new critical GAPs which are considered to establish the risk envelope for the representative use of 'Bixafen + Fluoxastrobin + Prothiocofrazole CC 190'.

Thus complete sets of new data for the new critical CAPs are provided for both zones with the supplementary dossier. The new data for the the southern zone are also meant to address the request in the EFSA Reasoned Opinion (2012) for additional residue trials complying with the southern cGAP for barley and oats.

In order to establish appropriate MRLs for the new critical GAPs an MRL application form is submitted along with the present dossier. All dita retevant to the MRL application - including the summary forms of the supervised residue trials, are included in the supplementary dossier for renewal of approval of fluorastroom. The representative uses and the MRL application for the corresponding crops are supported by the same residue data.

The detailed tables (Tier summary forms) of the supplementary trials and the processing trials are submitted in a separate document as additional information for the evaluator.

In this document, the reside data for barley and wheat evaluated in the EU peer review are also included for easy reference.



KCA Section 6/02 : 2015: M-542197-01-1 Report:

Tier 1 summary forms of the studies on the magnitude of residues in plants and the Title:

magnitude of residues in processed commodities for fluoxastrobin

Report No.: M-542197-01-1 M-542197-01-1 Document No.:

Guideline(s): none Guideline deviation(s): none **GLP/GEP:** no

## **CA 6.3.1 Barley and Oat**

Representative uses for renewal of approval o

arecsum The representative uses supported for the renewal of appro Table 6.3.1-1.

Summary of the GAPs of the representative uses supported for renewal of Table 6.3.1- 1: approval for flugsastrobin

Crop	Region		Maximum Number of Applications	Minimum Application Interval	Cuaran	Maximum Rate Auoxastrobin per application Xg a.s./ha)	Minimum PHI (days)
Barley, oat	EU-N	Fandango)		14-240	30-61	125	*
Barley	Ö	PIX+FXA+PTZ	2 2	714-21.	<b>W</b>	75	
Oat a)	Ø5U-S ≫	EC 190 (Variano XV) (Variano XV)		© 14-21,	<b>5</b> 0-61	87.5	*

EU-N = northern Europe DU-S & Southern Europe

FXA+PTZ EC 200 containing 100 Duoxastrobin/L 100 g prothiocopazole /L BIX+FXA+PTZ EC 190 containing 40 g bivafen/L 00 g flaoxastrobin/L , 100 g prothioconazole/L

For the northern zone, the cGAP for the active substance evaluated in the EU peer review for Annex I inclusion will not be wither supported post AIR out will be replaced by a new cGAP examined with the supplementary data. For the northern region, the GAP of the representative use and the cGAP for the MRL application are the same (GAP EL N 2, Table 6.3.1-2) and pertaining to the same product (Fluoxastrobing Prothiocon Toole FC 200): Q

For the southern zone the supplementary data reported in the present dossier were generated to support the critical GAP in the southern region (GAP EU-S 2 for the product 'Fluoxastrobin + Prothioconazole E@150' The GAP of the representative use of 'Bixafen + Fluoxastrobin + Promoconazole EC 190 involves slightly lower individual application rates (GAP EU-S 3).

Table 6.0.1- 2 summarises the old and new critical GAPs for the compound and the GAPs of the representative uses.

^{*} The PHI is defined by the growth stage at the last application

in France, for oats the product is registered up to 1.75 L/ha (corresponding to 87.5 g fluoxastrobin/ha)



Table 6.3.1- 2: Summary of the previous and new critical GAPs and the GAP of the representative uses for fluoxastrobin in/on barley and oats

						•		° % - 4
GAP no ^{a)}	Crop	Region *	Product	Maxim. Number of Appli- cations	Minim. Applica- tion Interval (Jays)	Growth &	strobin per application (g as ha)	Mini- muan PM (days)
Northern E	urope: Critic	al GAP ev	aluated for Ar	nnex I inclus	ion in the EU	Joeer reviev	v (will not be	new(d)
EU-N 1	Barley	EU-N	FXA EC 100		14 (refer to grown	7 26-69 27 27		
Northern E (GAP inclu	urope: GAP ided in MRL	of the rep applicatio	resentative use n form)	e = Critical (	GAP for thic	xastr <b>o</b> ðin Po	, Q	
EU-N 2	Barley, oat	EU-N	FXA+#TZ ECQ00		74-21	30-61	125%	*
Southern E	urope: Critic	al GAP ev	alysted for Ar	nnex l'Inclus	ion in the EU	J por revie	v (obsovete), 🗸	7
EU-S 1	Barley	EU- <b>S</b> S	FXA EC		Gefer to growthy stage)	26569 27	20	35
Southern E	urope: Critic	al GAP fo	r fluoxastrobij	r GAP jo člu	ided in MRL	application	fârm)	
EU-S 2	Barley (	EU-S	FXA+PTZ SEC 150	\$2 \tag{5}	14-21	30-69,	87.5 100	35*
Southern E	urope@GAP,	of the rep	esentative use	Y LY				
EU-S 3	Barley	EU-S	BPX+FX		14-21	30-61	75 87.5	*

EU-N = northern Europe EU-S — southern Europe a) for better reference in the test below numbers are assigned to the different GAPs

* As per growth stage (the PUI of 3.5) lays was due to a former requirement in France but will not be applicable Post AIR)

FXA EC 100: Containing 100 g flux asstrobing L + 100 g prothioconazole /L

FXA+PTZ EC 200 containing 50 g flux asstrobing L + 100 g prothioconazole/L

BIX+FXA-DTZ EC 190 containing 60 g bixareh/L + 50 g flux asstrobin/L + 100 g prothioconazole/L



Summary of the residue data evaluated for Annex I inclusion (as reflected in the baseline dossier)

Table 6.3.1- 3 summarises the critical GAP evaluated in the EU peer review.

Table 6.3.1-3: Summary of GAPs evaluated for Annex I inclusion and usal for setting MRL of fluoxastrobin (GAPs EU-N 1 and EU-S 1)

Crop	Region	Mode of application	Maximum Number of Appli- cations	Min. interval between applications	(Sw.s./ha) Ger Papplisation	Minonum Ple Reference Olays)
Barley	EU-N EU-S	Overall Spray	2	14 star 06  We fer to Growth GBCH  star 06		Schntific 35, AReport . (2007) 102, 84

EU-N = northern Europe. EU-S = southern Quro

## Summary of the trials evaluated a

With the Annex II dossier residue data on the following critical A Seed treatment of barley wing (Or floor) Seed treatment of barley gain (Og flug astrofbin/dt seed) was followed by 2 wray applications at application rates of 200 g as/Laup to grow Stage & BCLO 9. The representative formulation for the spray application was an E@100 Armulation containing 100 g fluorastrobus/L. In the Monograph only the spray use sas evaluated nowed in the trials ovolving both application types - seed treatment



Table 6.3.1-4: Overview of European residue trials conducted in barley per geographical region and evaluated in the EU peer review (GAPs EU-N 1 and EU-S 1)

Region	GAP	Crop	Formu-	ľ	Number of	Trials		Report-No		707
	(appl. rate for	СТОР	lation		etation per		Total	Report-No. Reference		1
	fluoxastrobin			1998-	1999	1999-		A	4 . 4	"
	)			1999	(spring	2000	4	_<		Ĉ.
				(winter	barley)	(winter		~\O`	* \$\disp\ \disp\ \dinp\ \disp\ \disp\ \disp\ \disp\ \dinp\ \ding\ \ding\ \ding\ \dinop\ \dinp\ \dinp\ \dinp\ \dinp\ \dinp\ \dinp\ \dinp\ \dinp\ \dinp	J.
				barley)	Ğ	barley)	<b>*</b>	<u></u> &"		7
EU-N	ST 5 g a.s./dt	Barley	FS 110		· W.	Q,		RA- <b>20</b> 24/99	9 25	
	and		and	, (	7)			301. 1 000	100 401	
	SPI 2 x 200 g		EC 100		- A	Q.	° 8 &	2001; M-089	+78(U)1-1	y
	a.s./ha			- Q	7			RA 2025/99	498 (5) - 1	
					رُيْ مُ				C .	
				0′ ,(		Ž,		001; Mc087	238401-1	0
EU-S	SPI 2 x 200 g	Barley	EC 100	\$\frac{4}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\f				RA-20 <b>2</b> 6/99		
	a.s./ha			7,3	1 ~ × · · · ·			2001; M-089	101 04	
	ST 5 g a.s./dt	Barley	FS 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>%</b>	\\ \\ \'	2 VI. IVI-US	+74-001	
	and		and	* * * \$			y 9 4	RA-2@7/99	, Ò	
	SPI 2 x 200 g				2 ×	) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		M; 200	Y: M-	
	a.s./ha	0						08816-01-1	•	
		3				Ů,	h	<u> </u>		
T: seed tro	eatment	SPI: spray			0	* **	~	Ò		
U-S: Sout	thern Europe		LON: Nort	rern Eulope	wh 10 ~ +=1 \	10000 X 11-17		Š		
O 110. II0 C 100∙ en	wauie concentrate	rate confa	g 100 g IRAO mino 1400 o	rasugrin/L a fluoraetroki	ne to a read	conazore/L	W ^v	Z		
. 100. CII		, and an offi	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ~		O &		~) 1		
	Ű	. (*		Ų Į	S A		4			
	, Š.	0 %			9 , b		. W			
		\\	· &,	Z" .4	y J		J'			
			0' (							
		. **	Ø A							
				O, V		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Ž.	,	, "Š				, O´				
		(Y)	& . ć		&, £	( )				
- 3	~O "	~		· ~	- 37	7)				
- 3	\$°	4			0,	<b>-</b>				
- 2						<u>a</u>				
- 2						<u>a</u>				
- 2										
- 2										
- 1										
\$\times_1										
A A										
				Fern E. Ope xastro in/L a fluo astro is in/L a fluo is in/L a f						
	a.s./ha  eatment thern Europe owable concentrate nulsifiable concept									



Table 6.3.1- 5: Overall summary of residue data for the total residues of HEC 5725 (sum of E-and Z-isomers) in barley trials evaluated in the EU peer review (*GAPs EU-Ny and EU-S I*)

									(h)
Application	Region	Formu-	Sample	n	Resid	lue level (r	~ 1/2/	Refe	ence (5)
Rate	Region	lation	material	11	Min.	Max.	STMR	Ş	
Seed treatment (5 g a.s./dt seed) followed by 2 spray	EU-N	FS 110 and	Grain	8	<b>©</b> 0.02	0.0	0.03* ¿		
applications at 200 g a.s./ha		EC 100	Straw		0.14	Q 2.800°	044	Scie Report	n <b>o</b> ic \$2007;
Seed treatment (5 g a.s./dt seed) followed by 2 spray applications at 200 g a.s./ha or 2 spray applications at 200 g a.s./ha alone	EU-S	FS 110 and EC 100 or EC	Grain Grain Straw		60.02 A		9 0.05 0.05 0.05 0.05 0.05 0.05	Reas	o2 ond SSA Ø Sorgal Onn 2;10 :3012

EU-N: northern Europe

EUS; southern Eurose

## Evaluation in the EFSA Regioned Opinion on existing MRLs (EFSA Journal 2012;10(12):3012)

Northern Farope: The trials evaluated in the EU peer review for AI inclusion were found to be compliant with the old fritical GAP (Buoxastrobin C 100 GAP U-N 1).

Southern Europe: The data package evaluated in the FV peer review (for fluoxastrobin EC 100; GAP EU-S 1) was found to be not compliant with the critical GAP since the trials were considered to be overdosed. The current critical GAP (GAP EU-S 2) is attributed to the mixture Fluoxastrobin + Prothioconazole EC 50. The information in the FSA document on the registered product is erroneous Therefore, a data gap was identified in the Reasoned Opinion relative to barley in southern Europe since the available residue trials were supporting a more critical GAP (exceeding the 25% deviation). Tentative MRIA were derived from these data but 8 trials complying with the current southern cGAP are still required.

The supplementary data subjuitted with the present dossier are also meant to fill this data gap.

## Re-approval profess / new studies

Northeth Europe: A set of new residue data is reported supporting the critical GAP for barley and oats in northern Europe ost Annex I renewal for 'Fluoxastrobin + Prothioconazole EC 200' (GAP EU-N 2, cf Table 63.1-2). This GAP is considered in the MRL application form jointed to the dossier. Since the cGAP and is also the GAP for the representative use in the northern region all residue data supporting the cGAP also support the representative use.

This GAP involves 2 spray applications at 125 g fluoxastrobin/ha.

^{*} In the EFSA Scientific Report STM Ovalue is taken from the Monograph.

^{** 5} trials out of 9 were selected for LL setting

^{***} This value is derived from the OSA covolusion. In the ISA RG (2012) De STM was est mated to be 1.25 mg/kg since more trials and also to lower rates wise included in the evaluation.



Southern Europe: A complete data package of supplementary trials was generated supporting the critical GAP for barley (Fluoxastrobin + Prothioconazole EC 150, GAP EU-S 2). The cGAP for Fluoxastrobin + Prothioconazole EC 150 is considered in the MRL application form jointed to the dossier. The cGAP can be used to establish the risk envelope for the GAP of the representative use for Bixafen + Fluoxastrobin + Prothioconazole EC 190' (GAP EU-S 3). The representative use involves a slightly lower individual application rate compared to the cGAP (75 g/ha vs 87.5) as/ha@ for barley and 87.5 g/ha vs. 100 g/ha for oat; cf Table 6.3 2).

According to the EU guidance document SANCO 7525/VI/95-rev 9 of March 2011 ('Guidelines of comparability, extrapolation, group tolerances and data requirements from the same obtained from the same of the same o obtained from trials conducted on barley can be extrapolated to gat.

Trials reported in support of the cGAPs / representative tises in the northern and southern climatic zone are summarised in Table 6.3.1-6.



Supplementary residue trials conducted per geographical region and vegetation **Table 6.3.1- 6:** period

	periou						-C
Year	GAP rate last appl.	Formulation	N° of trials	Study number		Reference	<i>\( \text{O'} \)</i>
Barley fo	liar spray residue t	rials – northern EU	•		<del>. O.</del>		Ĉ
2000	2 x 125 g a.s./ha BBCH61-69	EC 200 (100 g/L fluoxastrobin, 100 g/L prothioconazole)	<b>♡</b> <b>₹</b> 4	RA-2963/00		Y: 00 M-082920-01-V	
2000	2 x 150 g a.s./ha BBCH61-69	EC 150 (75 g/L fluoxastrogith, 75 g/L tebuconazol	3 (4*)	RA-206200		,; 2003; 574486-01-1	1 <b>0</b> 0- ³
2013	2 x 125 g a.s./ha BBCH61	EC 200 (100 g/L fluovastrobyn, 100 g/L prothioconazolo)		213-21 <b>3</b>	S S	s; 2015; M-50171	0
2013	2 x 125-135 g a.s./ha BBCH61	EC 200 (100 L fluoxastrobin, 100 g/L prothiogonazole)		213-2158 7	<b>V</b> 20	14; <b>1</b> 2501509-01-1	;
TOTAL	northern EU regio	on Q Z G G	115 (1 <b>2</b> *)			, w	
Barley fo	liar spray residue t	rials southern E			Ò	<b>O</b>	
2003	2 x 75 g a.s./ha BBCH61-65	EC 300 (75 g Huoxastrobin, 150 g/L prothiocomizole 75 g/L offloxystrobin)		RA-2017/03		;; 2015; M-06260 03-1	69-
2010	2 x 75 g a ha BBCH 61	EC 600 (40 eH bixæren, 50/g fluoxastrobin/L, 100 g/Læprothioconazole)		© 49-2206 ©		;; 2011; 1 414709-01-1	M-
2010	2 x 87.5 g a. Tha	EC 150 (50 g/L fluoxastrobin, 5	(50)	\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		;; 2011; M-40319 02-1	9-
2011	2 x 87.5 g a.s/ha BBCH 61.89	EV 150 (50 g/L Brioxastrøbin, 100 L prothnoconazole)	5 Å	11-2111		,; 2013; M-43498 04-1	30-
TOTAL	souther EU regio		(16**)				
* In on ** In on	e trial the last applica e toal the interval bet	then was Carried of that a larger grown s ween applications was only 3 days, the	tage (BBC e trial is d	CH 83); the trialisregarded in the	l is disreg ne summa	garded in the summar ary	у
4							
, A		then was carried of that a larger grown is sween applications was only 3 days, the					
(							



## **Supplementary field trials – northern Europe:**

Report: KCA 6.3.1/05 ; 2001; M-083920-01-1

Determination of residues of HEC5725 & JAU6476-Desthio on winter barley Title:

following spray application of HEC5725 & JAU6476 200 FC in

Great Britain and Germany

Report No.: RA-2013/00 M-083920-01-1 Document No.:

EU-Ref: Council Directive 91/414/REC of July 15 (1991), Annex III part A section 8
Residues in or on Treated Products, Food and Feed none
yes Guideline(s):

Guideline deviation(s): **GLP/GEP:** 

## **Test system**

In the season 1999/2000, four residue that were conducted on winter barrey in northern Europe. The , the porth of France the United studies were located in and German

In each trial, barley was treated twice also product rate of 1.25 L/ha Flue astrobar + Prothioconazole EC 200' corresponding to 0.55 kg s.s./ha fluoxastrobin. The water rate was 300 17ha. The spray interval ranged from 10 - 22 days. The application dates were growth wage related; BBCH 37 - 39 for the 1st and BBCH 61 for the 2nd application. In one instance, the second treatment was carried out at a slightly later growth stage that originally intended drowe of still during flowering (BBCH 69 instead of BBCH 61 in trial no. 015400).

Samples were taken at the following intervals.

- prior to and immediately after the final application,
- on day 35 36 following the final treatment as well as at harvest maturity 47 71 days after the final treatment. On day 35 the crop had set not reached a development stage which would allow for collection of harvestable grain and straw, therefore ear and rest of plant were collected instead at this sampling event. Finally grain and straw were sampled at full maturity of the crop.

Residues of fluoxastro on (HEC 5725 E-isomer), LEC 5725 Z-isomer and the total residue HEC 5725 (sum of E-and Z-isomer), were determined according to method 00649. The Limit of Quantification (LOQ), for barley rest of Plant and straw was 0.045 mg/kg for HEC 5725 E-isomer and 0.005 mg/kg for HEC 725 Z-isomer (corresponding to the retical LOQ of 0.05 mg/kg for the calculated total residue of HEC 5725). The LOQ for grain ear was set at 0.018 mg/kg for HEC 5725 E-isomer and at 0.002/mg/kg for HEC 5725 Z-isomer (Corresponding to 0.02 mg/kg for the calculated total residue of HEC 5725).

concurrently with the residue analyses by spiking control samples with HEC5725 for all matrices relevant to this study ( ; 2001; M-137093-01-1). The method was submitted with the initial Annex Jodossier and evaluated in the EU peer review. Overall mean values for procedural recoveries at fortification levels at the LOQ and tenfold LOQ levels for HEC 5725 E-isomer and HEC 5725 Zisomer were within the range of 70-110 % with RSD <20%.



Table 6.3.1-7: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on barley

The LOQ is marked in bold

Study					Fortifi-	I	Rec∳ĭ	ery (%			
Trial No.					cation		T T		~		
GLP	Crop	Portion	a.s./metabolite		level (mg/kg)	Individua	Min	Maẋ̀∾		D CAV	ł
Year	Стор	analysed	a.s./illetabolite	n	(IIIg/Kg)	recoveries	IVIIII	IVIAX	Mean	RSD	
RA-	Barley	rest of	fluoxastrobin	3	0.045	97; 102; 3	97	<b>20</b> 3	301	3.2	8
2013/00	winter	plant			0.045		9	$\vee$	(O)		ľ
R 2000				4	<b>2</b> 0.45	104; 104; 106;°	16/3	106	104	1.2	
0152/5				_ ~	011			_ \	\$\footnote{\pi_0}\$\footnote{\pi_0}\$\square \footnote{\pi_0}\$\square \f		
			HEG 5505 7		overåll		91	<b>O</b> r06	≈ 103 s	<b>2</b> .7	ļ
R 2000			HEC 5725 Z- (Isomer	₽3 <i>[</i>	<b>₩.005</b> &	98; 1667; 97	9%	1000	984	1.6 .	
0153/3				A N		104; 101; 01;	100	<b>≪</b> }04	102	1.6 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
R 2000					0:05	\$00 O				\$1.7	
0154/1				7	overall 🗘		27	1040	100	2.3	
R 2000			total residue	3	0,05	93;101;102	) 97	<b>2</b> 002	*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.6	
0156/8			HEC 57250	© 04	<b>3</b> 5 6				. %		
		* */		4	Ø9.5 €	104; <b>10</b> 4; 105;	100	105	104	0.8	
GLP: yes		, Ø		70	overall		Ø 1.97.	, <b>9</b> 05	102	2.6	
2000		straw	fluoxastrobin		Ø.045	×96; 97; 99	96	× 99	97	1.6	
		\$ # # # # # # # # # # # # # # # # # # #		4	0.45	1060 86; 160, 94	~86 ~86	106	97	8.9	
				7	overall		86	106	97	6.3	
	5	F .O"	HEC 5725 Z- &	3	~9.005 ~	98; 92 100	92	100	97	4.3	
			INEC 5725 Z- Isomer	<b>1</b> ×							
	v Os			40	0.05	101; 80; <b>9</b> 8; 90	80	101	92	10.2	
%	<b>Q</b>	No.		\disp'	overall @	U QÕ	80	101	94	7.9	
			otal residue HEQ 5725 also	3 (	5 [™] 0.05√	96; <b>9</b> 7; 99	96	99	97	1.6	
Ť			HEQ 5725		<b>6</b>		0.6	105	06	0.5	
	Ď	r A			(C) &	105; 86; 100; 94	86	105	96 97	8.5	
			G	/ 5^	overall 0,018	00.06.00.06	92	105 99	96	6.1 2.8	l
	~Q~	grain/ear	fluoxostrobin	5°~ ©	0.018	98; 96; 99; 96; 92	92	99	90	2.8	
# @	<b>&gt;</b>	i i			© .18	75; 77; 98; 99;	75	101	92	11.8	
						101; 95; 96					
	,				overall		75	101	94	9.1	
. *			MEC 5725 Z- Somer	OS"	0.002	104; 105; 101;	93	105	101	4.7	
		1 2	Somer S	]_	0.02	100; 93	72	100	02	141	
		Y J		7	0.02	77; 73; 95; 103; 109; 92; 95	73	109	92	14.1	
(P)	Y		Ž , Y	12	overall		73	109	96	11.5	
		A ,	total residue	5	0.02	98; 97; 99; 96;	92	99	96	2.8	
			HEC 5725 a)			92					
	<b>*</b> (2)			7	0.2	75; 77; 98; 99;	75	102	92	12.0	
				12	ovorall	102; 95; 96	75	102	0.4	0.2	
	1	i —		12	overall	1	75	102	94	9.2	1

^{*}Sample material ear is validated by recoveries for grain

a) Residues calculated as sum of residues of HEC 5725 E- and Z-isomer

- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 310 day for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the storage periods investigated in the stability studies.

Study number	Sample material	Maximui	m storage period	(days)
	Grain		251	, O
RA-2013/00	Ear	Ö	349	, L
KA-2015/00	Rest of plant	N.	Ø.08	0, %
	Straw	4	_©Ž50	

- Residue results: The findings indicate that resultues of fluorastrobin decline web with time. The impact of the first application, for instance, had obviously decreased significantly until the point in time when the second treatment was conducted. This becomes evident when comparing the results for samples, which were collected either just before or shortly after the second treatment took place. Residues caused by the second and final treatment declined well again.

At the time of harvest, residues in grain were at or below the LOQ for the calculated total residue HEC 5725 (<0.02 to 0.02 mg/kg) in oral ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged total ranged from 0.14 to 0.44 mg/kg for stranged from 0.44

- No residues above the respective LOQs of 0.042 mg/kg (E-isomer for rest of plant and straw), 0.018 mg/kg (E-isomer for grain / ear), 0.005 mg/kg (Z-isomer for rest of plant and straw) or 0.002 mg/kg (Z-isomer for grain fear) were detected in any of the corresponding control samples.

Table 6.3.1-8: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 In / on barley treated with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole EC 200) in the field in northern Europe

Study Trial No.			J.	Ö	Applice	prion _	**************************************	Portion		Residues		
Plot No.	·/	Coursury	£				″ <b></b> ≪					
GLP	Crop	Country		Nø	Rg/ha	Ak∕g/h	68	Portion	DALT	Fluoxa-	HEC	total
Year	Variety	A	<i>(</i> )		(a.s.)	(as.ñ∾		analysed	(days)	strobin (mg/kg)	5725 Z- Isomer	residue HEC
	w "C					(a.s.)	a a	7		(mg/ng)	(mg/kg)	5725
- ~ Ç	) (				Ŷ,		ð					(mg/kg)
RA-2013/00	Barley,		200 EC	2	0.125	0.042	<b>K</b> 1	ear	0* 0	< 0.018	0.005	0.02
R 2000 015075 0152-00	winter \$		EC ~	0					35	6.6 0.03	0.14 0.01	6.7 0.04
GLP: yes	Jura 🏈	Europe,		d	<i>©</i> ″ «			rest of	0*	0.53	0.17	0.70
2000	_ 0	Nagrh	)	~ @ r		)*		plant	0	2.5	0.18	2.6
	Ø .1		4	<b>W</b>					35	0.39	0.21	0.60
				. 6	Q			straw	47	0.26	0.15	<u>0.41</u>
Ţ,	_~~	, O	),	N	?			grain	47	< 0.018	0.003	0.02
RA-2013/96 R 2000 (1)33/3	Parley, winter	France O	200 EC	2	0.125	0.042	61	ear	0* 0	0.05	0.007 0.07	0.06 5.5
0153-0 <del>1</del>	Nickel	у Г - Д	EC						35	5.4 0.02	<0.002	0.02
GLÆ, yes	1 (10 pg	Legeope,						rest of	0*	0.37	0.15	0.51
0153-50		North						plant	0	2.0	0.16	2.1
									35	0.12	0.05	0.17
								straw	54	0.15	0.07	0.22
								grain	54	<0.018	<0.002	<u>&lt;0.02</u>



Study					Applica	ition				Residues	3	
Trial No. Plot No.												
GLP	Crop	Country	FL	No	kg/ha	kg/h	GS	Portion	DALT	Fluexa-	HEC	total "O"
Year	Variety				(a.s.)	L		analysed	(days)	strobin	5725 Z	residine
						(a.s.)				(@orge/kg)	Isomer (medica)	5725
									<i></i>	<b>\</b>	(mg(kg)	(mg/kg)
RA-2013/00	Barley,	United	200	2	0.125	0.042	69_(	🤌 ear	(See	< 0.018	×0.002×	7 CO OF
R 2000 0154/1	winter	Office	EC		0.123	0.042	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	S Cai		( )	0.002	663
0154-00	Regina	GB-					2		<u> 36</u>	6.0 0.02	0.00	<b>20</b> .03 6
GLP: yes						.1	V"	rest of	0*。	0:92	e0.05	0.16
2000							<b>b</b>	plant		<b>Q</b> .4	0.12	2.5
							0	. 7	356	0.18	0.10	Q.\$8
					<b>§</b>	<b>V</b>		straw	[™] 56 🐇	ĭ 0. <b>2</b> ∜	0.17	<u>0.44</u>
								© grain	56 ×	0.25 <0.018	Ø.003	0.02
		Europe, North							.1			<u> </u>
D 4 2012/00	D 1		200	2.5	× 125%	0/042				0. 3	05/0.07	0.03
RA-2013/00 R 2000 0156/8	Barley, winter	Germany D-	200 EC	20	ľ 🗶 /	Ø.042 «	Ø∕ľ J	************	O*.J	7 0.6Q	0.007	5.6
0156-00	Theres	D-	LC (	Ď,				9 0	35	<b>5</b> 0.01	© 0.003©	0.02
GLP: yes	a			1	, Ox	, %	<b>A</b> .	recolof	0*	0.40	0.145	0.55
2000			7. Y	4				aplant 2	\$ 0 %	3 70	₂ 0.22	3.4
2000							ř		35	<b>©</b> 21	Ø.10	0.31
		Europe,	&.			4	8	straw	°731	© 0.09	0.05	0.14
		North	0	Č		Ŵ Ç	4	grain	\$\text{71} \q	<0.048	< 0.002	<u>&lt;0.02</u>

prior to last treatment &

Residues for total residue AEC 5720 (determined as HEC 572) and Z-isomer separately and calculated as HEC 5725 (sum

of E- and Z-isomer)) 
Note: For the calculation of the otal residue unrounded values w ere used therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation

Report: Title:

; 200**3** M-074486-01-1 Determination of residuce of HEQ 5725 & tebuconazole on winter barley after spray

application of APEC 5725 & HWG 1608 150 EC in the field in

France, Great Britai Qand Gomany O

Report No.:

Document Mo.:

EU-Roj Council Directive 91,714/EEC of July 15, 1991, Annex II, part A, section 6 Guideline (9)

Annex NJ, part A, section 8

Residues in or of reated Products, Food and Feed

Guideline deviation(s): GLP/GEP:

In the season 1999 2000, Your residue trials were conducted in northern Europe. The studies were the sorth of France, the United located in and Germany.

In each trial, winter barley was treated twice at a product rate of 2.0 L/ha 'Fluoxastrobin + Tebuconazole EC 150' (75 g fluoxastrobin/L + 75 g tebuconazole/L). The application rate corresponded to 0.150 kg fluoxastrobin/ha. The employed water rate was about 300 L/ha. The spray



interval was 21 / 22 days in three trials and 49 days in one trial. The application dates were growth stage related: BBCH 37 – 39 for the 1st and BBCH 61-69 for the 2nd application. In one instance the second treatment was carried out at a later stage as originally intended (BBCH 83-85) because erroneously the last application was performed 35 days prior to the expected date of harves (trial R 2000 0281/5).

Samples were taken at the following intervals:

- Samples of ear and rest of plant were taken just prior to and immediately after the fund application in all trials;
- Following the second and final application, samples of barley points were collected on day 35 36 (initially intended pre-harvest interval) following the final treatment as well as at the commercial harvest date 40-47days after the final treatment. Since in two trials on day 35 the crop had not yet reached a development stage which allowed for collection of harvestable grain and straw, ear and rest of plant were collected instead at this sampling event. The later sampling interval was needed to ensure that samples of mature plants (grain and straw) were available.

Residues of fluoxastrobin (HEC 5725 E-isomer), ISEC 5725 Z-isomer and the total residue ISEC 5725 (sum of E-and Z-isomer) were determined according to method 00649 with LOOF for the different commodities and for both isomers as described above for study RA 2013/09.

## **Findings**

- Method performance: Method 00649 was varidated by recovery experiments prior to and concurrently with the residue analyses by spiking control samples with HEC5725 for all matrices relevant to this study (137093-01-4). Mean values for procedural recoveries at the LOQ and tenfold LOQ fortification levels for HEC 5725 E-isomer and HEC 5725 Z-isomer were within the acceptable range of 70-114 with RSD 20%.

Table 63.1-9: Procedural recoveries for fluorastrobin (HEO 5725 E-isomer) and HEC 5725 Z-isomer in on backey

	Ca	2		n	(( )	r				
Study Trial No.				° ° ©	Fortification		Reco	very (%	<b>5</b> )	
Plot No.	<b>*</b>				çation Qvel					
GLP	Crop	Portion	a.s./metabolite	n 🆫	(mg/kg)	Individual	Min	Max	Mean	RSD
Year 🝣		anjälysed		~O	7	recoveries				
RA- 👟 2062/00	Barley winter	rest of plant	flu@kastrol@h		0.045	104; 105; 105; 105	104	105	105	0.5
		praga		<b>D</b> *		ĺ .				
R 2000				6	0.45	75; 83; 93; 94; 95; 96	75	96	89	9.5
0278/5 0278-00				10	overall		75	105	96	10.6
027000			PIEC 5725 Z- Isomer	4	0.005	95; 102; 109; 110	95	110	104	6.7
R 2000 0279/3 0279-00			15011101	6	0.05	71; 84; 88; 90; 92; 96	71	96	87	10.1
				10	overall		71	110	94	12.5
R 2000 0280/7			total residue HEC 5725 a)	4	0.05	104; 104; 105; 105	104	105	105	0.6



0280-00		I	6	0.5	74. 92. 02.	74	95	89	06 1
			0	0.5	74; 83; 93; 94; 94; 95	/4	93	89	9.6
R 2000 0281/5			10	overall		74	105	95	NO.8
0281-00	straw	fluoxastrobin	5	0.045	79; 79; 81; 92; 93	79 5 79	93	85 0	8.4
GLP: yes			5	overall	4	79	93	<b>8</b> 5	8.4
2000		HEC 5725 Z- Isomer	5	0.005	94; 98; 105; © 108; 117	⁹ 94	117%	7104 ×	8.6
			5	overall	R	94	J10V7	104	8.6
		total residue HEC 5725 a)	5	<b>20.</b> 05	81; 83 83; 93; 93 6°	81 (	93	<b>%</b> 7 S	6.8
			5%	overall		81	<b>X</b> 3	8.7 [©]	<b>6</b> .8
	Grain/ear	fluoxastrobin	<b>4</b>	<b>©</b> 018	93; 97, 400; < 100	93 ©	900	*98 \ \	3.4
			5. (	0.45	90,91; 96; 97; 101		10P	950	<b>6</b> 8
			<b>X</b> 9	øyerall 🔏		90 Ĉ	101 🔏	96 Ô	4.2
		HEC \$\square 25 Z \square 1 Sopher	4 %	0.002	87.98; 100 108	8	108	99 Ø	8.9
			Ş	05 05 05	92; 94(95; 8 97; <b>9</b>	92	98 (4	95	2.5
	*		94	overall	4 .~	<b>8</b> 7	108	97	6.1
		total residue NEC 5725 a)	Ş	<b>9.02</b>	94; 96z 700; « 7101.	94	<b>J</b> 01	98	3.4
		NEC 5725 a)	5	0.5	91092; 96% 96; 101	\$1\sqrt{5}	101	95	4.2
			9	ŵ Perall		91	101	96	3.8

^{*}Sample material ear is validated by recoveries for grain

- Storage periods: The maximum storage period of deep frozen samples was up to 476 days for fluorastopin (HEC 5025 E domer) and HEC 5025 Z-risomer and is covered by the storage period investigated in the stability studies.

Study number	Sample material &	Maximum storage period (days)
	Grain 🔪 🛴	441
¥	Ear Q Q	476
RA-2062/00	I DESLON DIALIAN V	476
	Straw	441

- Residue results: The findings indicate that residues of fluoxastrobin on ear and rest of plant decline well with time. The impact of the first application had obviously decreased significantly until the point in time when the second treatment was conducted. Residues caused by the second and final treatment declined well again.

At the time of barvest, residues in grain ranged between 0.02 and 0.03 mg/kg for the calculated total residue HEC 7725 on the three trials were the last application was performed at the proper growth stage and were 0.3 mg/kg in the remaining trial were the 2nd application was delayed (application at BBCH 85-85). This result was not considered for MRL calculation.

Residues in straw were between 0.47 and 0.72 mg/kg in the trials with the regular treatments and at 1.3 mg/kg in the trial with the delayed application.

a) Residues calculated as sum of residues of NEC 5723 E- and Z-isother



- No residues above the respective LOQs of 0.045 mg/kg (E-isomer for rest of plant and straw), 0.018 mg/kg (E-isomer for grain / ear), 0.005 mg/kg (Z-isomer for rest of plant and straw) or 0.002 mg/kg (Z-isomer for grain / ear) were detected in any of the corresponding control samples.

Table 6.3.1- 10: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in on barley to ated with a fluoxastrobin EC formulation (Fluoxastrobin + Tebuconazole EC 150) in the field in northern Europe

							P		$\bigcirc$ $\forall$	, •	~J*	
Study					Applica	ition	Ž	<i>p</i>	Residues		$\mathbb{Q}^{1}$	
Trial No.						1	No.	Q		4		
Plot No.						000	<i>V</i>	~		Q' (	o ^y .	Ñ
GLP	Crop	Country	FL	No	kg/ha	kg/h	GS	Portion	I 4N-2∧IT ⊘	⊬ Fluo⁄æ	HEQ	Stal
Year	Variety				(a.s.)	& L	Ò	analysed	days 🗸	a.	5728 Z-	residue
					()C	(a.s.)				strobi	Asomer A	. HEC∘
					29	. 6		7) Q.	0		Omg/kg@	5,725
						, °~y		<b>*</b>		mg/k		(mg/kg)
					\$ ·,	Y			4"	g)(S	<b>L</b> 1	-8)
RA-2062/00	Barley,		150	a O	0.16	0.050	J _C 1	Y (		20010	Ø.004	0.02
R 2000 0278/5		S-	150		0.150	0.050	61 ∝ ≪	Ç ear		14	© 0.54.	15
	winter	5-	EC		- 🎻 0.159		. "			2 14 S	0.34	0.07
0278-00	Jura	Europe,	-Q"	(	0.139	٨	Ô			0.65	0.02	
GLP: yes		North	D .	<b>K</b>		)	Ş	est of	Ø* <b>©</b> *	<b>2024</b> 7	¢0,16	0.64
2000		North	•			"(	ľ	🍫 plant	/ <u>&amp;</u>	$\checkmark$ 2.6	0.24	2.8
		***	&		. O	4	0	· . &	235	ۇ 0.59	0.33	0.91
		Ď	0"			Ŵ.	,	straw ,	2947 ~	0.44	0.28	0.72
		"N" A		(C		N C	, Y	Sgrain &	J ⁴⁷ J			
			b .	Ò	0		,		17	<b>6</b> 018	0.006	<u>0.02</u>
RA-2062/00	Barley, C	France	150	<b>₽</b> 2	0,150	0.930	694	^y ear [©]	<b>*</b>	0.03	0.003	0.03
R 2000 0279/3	winter	F-	ÉC	~	Ö.	N'	Š	Øn.	0	⁹ 6.5	0.08	6.6
0279-00	Nichal		<b>V</b>	*	j" ~		Ŷ	sest of		0.33	0.12	0.45
GLP: yes		Burope, 🖔	, (	<b>.</b> .			7	n lont(Ox	6	2.2	0.12	2.4
2000	0	₽North_	Ó	<b>Y</b>			2	Plant	000			
2000			_		~			strav	<b>@</b> 5	0.40	0.16	0.57
. 🖔			, Ø	4	A. ?	<b>~</b>	<i>®</i> ′′	<b>(</b>	<b>∜</b> 43	0.39	0.19	<u>0.58</u>
			<i>y</i>				, 4	@grain	35	0.02	0.009	0.03
	٥. (	v S	0	() ()	~		⋞		43	< 0.018	0.007	0.03
RA-2062/00	Barks	United	150	2	©150	<b>10.0</b> 50	&6.	ear ear	0*	< 0.018	< 0.002	< 0.02
R 2000 0280/7	Dalkey	United	SEC.	2%		<b>*60</b> 030	69/	eai *	0	7.3	0.002	7.5
	winter			<b>4</b>	, <b>«</b>			Ž,	36	0.05	0.22	0.06
0280-00	Regina	ŒB-	É	10			l a	NP S				
GLP: yes	S	GB-	. 8				~	rest of	0*	0.22	0.08	0.30
2000				A	Q," ,	<b>\</b> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ö	plant	0	2.9	0.17	3.1
			y	1	7¥ (	9 4			36	0.25	0.13	0.38
	٥,			<b>(</b> )		°~/		straw	56	0.30	0.17	0.47
***	~0	»		1	4	,~Q`			5.0			
	W,	, V	, <i>®</i> ″					grain	56	< 0.018	0.004	<u>0.02</u>
<b>"</b>		Elooope,		^	<b>∜</b> .∈	<b>)</b>						
	. W) \	North &	_	Ø	4							
RA-2062/00 R 2000 0281/5 0281-00 GLP: yes 2000	Barley,	<u> </u>	150	2	0 150	0.050	83	Aor	0*	< 0.018	< 0.002	< 0.02
R 2000 0281/5	winter		FC	²	0.150	0.030	0.5	ear	0	2.5	0.002	2.6
0201 00	WILLEY.	3	S.		<b>)</b>							
0281-00	Incres		r e					rest of	0*	0.29	0.14	0.43
GLP: yes								plant	0	5.4	0.17	5.5
2000								straw	36	0.76	0.51	1.3
	<i>\@</i> '	î							40	0.73	0.48	1.2
		Europe,						arain				
, Oʻ		North						grain	36	0.17	0.04	0.21 0.30
-	l	ļ		$\vdash$			<b>.</b>		40	0.24	0.06	0.30

^{*} prior to last treatment



Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation

Report: KCA 6.3.1/07 .: 2015: M-501711-03-1

Determination of the residues of fluoxastrobin and profficonazole in Spring Title:

barley after spray application of fluorastrobin & profitioconazole EQ 200 in German

Report No.: 13-2137 Document No.: M-501711-03-1

Regulation (EC) No 1107/2009 of the European Parliament and of the Council of Guideline(s):

October 2009 concerning the phacing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/474/EEC EC Guidance working document 3029/V195 rev 5 (1997-07-22)

Guideline deviation(s): **GLP/GEP:** 

#### **Test system**

EC Guidance working document 7029/V 95 rev 5 (1997-07-22)
OECD 509 Adopted 2009-09-07, OECD GUIDELINE FOR THE TESTING OF CHEMICALS, Crop Field Teal
US EPA OCSPP Guideline No. 860/1500
none
yes In 2013, two trials were performed in northern Europe (Germany) on spring barley with a fluoxastrobin EC formulation Fluoxastrobis + Prothioconazol EC 200) Containing 100 g fluoxastrobin/L. The product was applied twice at application rates of 0.125 kg fluoxastrobin/ha. The treatments were performed with intervals of 6-14 days. The last application was performed at BBCH

Both trials were designed as decline series. Samples of green plant material were taken prior to the last application, immediately thereafter, and in addition on day 7, 1421 and 28 post treatment. In addition, samples of green plant material were collected at growth stage BBCI \$\sqrt{83}\$ (on day 35 and 42) which is considered appropriate for silage production Samples of grain and straw were collected at harvest maturity (BBCH 89) after 68% 69 days. In one trigit additional soraw and grain samples were taken 35 days after the last treatment.

Residues of fluoxastrologie (HEC 5725) E-isomer), HCC 5725 Z-isomer and the total residue HEC 5725, were determined according to method 00649/M003 ( ; 2010; M-387385-01-1). The analytical method was valuated by recovery experiments prior to and concurrently with the residue analyses by spiking control samples. The limit of quantitation was 0.009 mg/kg for fluoxastrobin (HEC 5725 Exisomer), 0.00 mg/kg for HEC 5725 Z-isomer and nominally 0.01 mg/kg for the calculated total residue for all commodifies.

# **Findings**

- Method performance: Validation recoveries for method 00649/M003 for the matrices not included in the method validation report wheat and barley green material, straw) were generated within studies 2012 M-403199-02-1) and 10-2156 ( ; 2011; M-399682-02. The studies including validation recoveries are reported further below (please cf. Table 6.3.1-19 and Table 6.3.2- 19).

Mean values of procedural recoveries at fortification levels from 0.009 to 4.5 mg/kg for HEC 5725 Eisomer and 0.001 to 0.5 mg/kg for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD <<del>20%.</del>



Table 6.3.1- 11: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z isomer in/on barley

The LOQ is marked in bold

							~~		- 10	(0)
Study					Fortifi-		Rec	overy (	%) 🚿	
Trial No.					cation	4	<u> </u>			Ş" (5)
Plot No.					level	Į.	<b>&gt;</b>	%		)
GLP	Crop	Portion	a.s./metabolite	n	(mg/kg)	Individual	Min	Max	Mêan	RSD
Year		analysed			**************************************	recoveries		, W	%) Heavn	RSD
13-2137	Barley,	green	fluoxastrobin	2 0	^y 0.009	90\$106	90 €	106		y &
13-2137-01	spring	material		4		Q" ~	4			<i>L W</i>
13-2137-01-			L.	bl.	0.9	90 🔎	90	\$P	900	W ^Y
T			<b>(</b>	1 1	°4.5.ॐ	944	94 .	<b>\$</b> 94	~94 ×	D ^y
and 13-2137-02				4.	¥		900			0.0.
13-2137-02-			4	45	ovecall		90.0	106	95	8.0 °
T			HEC 5725 Z-		0.001	89;120	<b>S</b>	120 « 🗸 //	10\$	Q Q
GLP: yes			Isomer	@			Y A	<b>&gt;</b>		
2013			Isomer		0.1		82@	(7)	>82 ○	
				Ţ,	*Q15 ~	85 S	82 ©	8\$	850	
			q' b b	4 (	)overall	ر آن	) 82	<u>0</u> 20	°9 ₄ 4	18.7
		grain		1	0.989	80, O	85	85 🖔	<i>t</i> 85	
			<b> </b>	r 1	<b>0.099</b>	Ø1 ~	<b>9</b>	91	91	
		Ö		2 .	overall		\$85 s	Ø1	88	
			HEC 5705 7	10	• • •	. //	<u> </u>	· ·	ļ	
			HEC 5725 L Isomer	8	0.001	74 0 %	746	74	74	
	S			<b>7</b>		99 0	89	99	99	
		\$(	5 29 . ~	1		199	99			
				2	overall		74	99	87	
		straw *	fluoxastropin	J ^y	0.009	<b>8</b> 5	85	85	85	
				1	Ç0.90 ○	89 2 9	89	89	89	
				1	1.80	870	87	87	87	
	. (			3	overall .	0 7	85	89	87	2.3
* */			HEC 500 5 7-4	1 (	<b>∜0.001</b> △	105	105	105	105	
			Isomer .	1 (	% U.UUF =	105	103	103	103	
	Q .		fluoxastroon	Æ		85	85	85	85	
	<i>w</i> , (			Ö"	0.01 0.2	88	88	88	88	
	y U			7 1 4	D)*	00				11.6
				3 Q	overall		85	105	93	11.6

- Storage periods: The maximum storage period of deep-frozen samples was up to 340 days for fluoxastrobin (HEC 5729 E-isomer) and HEC 5725 Z-isomer and is covered by the storage periods investigated in the stability studies.

Study number Sample material	Maximum storage period (days)
C Grant	305
13-2137 A Straw	305
Green material	340

-Residue results: In the northern European field trials, at a growth stage representative for commercial harvest (BBCH 89), the residues in grain ranged from < 0.01 - 0.026 mg/kg and were 0.17 - 0.18 mg/kg in straw for the total residue of HEC 5725. Residues in green material declined well with



time as shown with the findings prior to the second treatment and with the samples of the decline series taken thereafter.

- No residues above the LOQ of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were deected in any of the corresponding control samples except for HEC 5725 Z-isomer which was present at a level of 0.001 mg/kg in a single straw sample resulting in a total residue of 0.01 mg/kg in the control sample of straw due to summation with the LOQ of the E-isomer

Table 6.3.1- 12: Application data and residues of fluoxastrotion (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total vestidue HEC 5725 in / on barley treated with a fluoxastrobin EC formulation Fluoxastrobin + Prothioconazole EC 200) in the field in northern Europe

			1			- C	n	,			
Study				Appli	cation	Q i		0	Residue	60° -00°	y 4
Trial No.							~ ¥	1	Residue		<i>\(\psi\)</i>
Plot No.				√,	~~ "	,\Y		~ ~		A 11	o total
GLP	Crop	Country	FL 1	kg/h¢a	kg/hk (a.s.)	GS S	Fortion ana	PDALT	Fluoza-		total
Year	Variety		lô	(a.\$.)	(a.\$C)	~Ç	ana 🎢	(days)	strobin	&725 Z≈	residue
				` <i>\\</i> '		W	ana lys <b>e</b> d		(ing/kg)	\$725 Z	HEC
			Q.	à	(n)	ď		ر آ		(mg/kg)	5725
						F a	W L	<b>*</b>		&,	(mg/kg)
13-2137	Barley,	Germany	200	0.405	0.0417	61	greek	. 69	0.23	O 0.079	0.30
13-2137-01	spring		E	0.405	0.0417		**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.8	0.11	3.9
13-2137-01-T	Conch-		0				rial .	2 7 A	3.8 0 0.52 0.53	0.14	0.66
GLP: yes	ita	Europe,				1	$\mathbb{Q}^{\cdot}$	T 14 ≪	0.23	0.076	0.33
2013		North 💸			8			2,1	~ <b>9</b> 21	0.035	0.15
2013		North &		Q ₁	Ş			21 38 35	£ 0.070	0.024	0.094
					~y"	S'	.0	35	0.070	0.026	0.096
			7				grain,	35 35 69	1		
			<b>∤</b>		'	. *	orain	3₺	< 0.009	< 0.001	< 0.01
			O ^v				Similar	<i>6</i> 69	< 0.009	< 0.001	<0.01 <0.01
		<b>y</b>	to l	\		Ş	0		0.009	0.001	
	7	&J *	J I		Ď* "'	Ψ.	© straw	<b>b</b> ~			
				<i>y</i>			straw	35	0.12	0.051	0.17
	<		.,,		~ O		·~	69	0.12	0.058	<u>0.18</u>
	~(			$\mathbb{Q}^{\nu}$		$\langle \rangle$					
13-2137	Barley,	Germany	1/2/00 L 3	0.125	90.0313- [©]	61 '	green mate-	0*	0.48	0.082	0.56
13-2137-02	spring		EC		0.0407	4	mate-	0	2.7	0.10	2.8
13-2137-02-T	Pace				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W.	rial	7	0.29	0.047	0.34
GLP: yes	<b>Y</b>	Europ© North				b		14	0.23	0.041	0.27
2013		North å	9'		\$5°@	7		21	0.13	0.026	0.15
2013								28	0.11	0.027	0.14
2013		~, ~	· .		~O*			42	0.11	0.031	0.14
, «		r A		W ^y							
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				<b>R</b> 1	<b>X</b>		grain	68	0.020	0.005	0.026
					1		8		0.020	0.000	<u>0.020</u>
			W	<i>@1</i>			straw	68	0.13	0.044/	0.17
	F W			<b>₽</b>						0.001**	/0.010**
0,7				Ī							
	- W	(° ))								_	

prior to last treatment \

Residues for total residues HEC 5725 (determined as HEC 5725 E- and Z-isomer separately and calculated as HEC 5725 (sum of E- and Z-isomer))

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation

residue in control



; 2014; M-501503-01-1 KCA 6.3.1/08 Report:

Title: Determination of the residues of fluoxastrobin and prothioconazole in/on barle, and

spring barley after spray application of Fluoxastrobin & Prothicconazole EC

France (North)

Report No.: 13-2158 Document No.: M-501503-01-1

Regulation (EC) No 1107/2009 of the European Parliament and of the Council Guideline(s):

October 2009 concerning the placing of plant protection

products on the market and repealing Council Directives 79/117/PEC and 91/414/EEC

EC Guidance working document 7029/VI/95 (1997-07-22)

EC Guidance working document 7029/VI/95 tev. 5 (1997-07-22)
OECD 509 Adopted 2009-09-07, OECD GUIDELINE FOR THE DESTING OF CHEMICALS, Crop Field Trial
US EPA OCSPP Guideline No 60.1500

Guideline deviation(s):
none
yes

Test system

In 2013, two trials were performed in northern France on barley with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconagole EC 200) containing 1000 fluoxastrobin/L. The product was applied (Fluoxastrobin + Prothioconazole EC 200) containing 100g fluoxastrobin/L. The product was applied twice at application rates of nominal 0.125 kg flyoxastrobin/ha/In one trial the 1st and 2nd treatment were overdosed at 6.3 or \$3%, respectively, resulting in actual application rates of 0.133 and 0.135 kg a.s./ha. The last application was conducted at BBCH 61. The treatments were performed with intervals of 15 or 20 days.

Both trials were designed as decome secres. Samples of green material were taken prior to the last application and infimediately thereafter, and in addition on day , 14, 21 (and 28 in one trial). In addition, samples of green plant material were collected at growth stage BBCH 83 (on day 17 or 31 post treatment) which is considered appropriate for silage production. Samples of grain and straw were collected after 35 and/or 43 days.

Residues of fluoxastrobin (HEC 5225 E-Somera) HEC 5725 Disomer and the total residue HEC 5725. were determined according to method 00649/M003 ; 2010; M-387385-01-1).

#### **Findings**

relevant to the analytical method were as described above for study - Method performance: Aspects

Mean values of procedural recoveries as fortification levels from 0.009 to 9 mg/kg for HEC 5725 Eisomer and from 0.001 to 1 mg/kg for HEC 5725 E-isomer and from 0.001 to 1 mg/kg for HEC 5725 for the Z-isomer were within the range of 70-110 %, with RSD <200%.



Table 6.3.1- 13: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on barley

The LOQ is marked in bold

									Ò	1 102
Study					Fortifi-		Rec	overy (	%) ˌ <i>©</i> ´ʻ	RSID
Trial No.					cation		F		~	
					level	4	Ā			
GLP	Crop	Portion	a.s./metabolite	n	(mg/kg)	Individual	[≫] Min	Max	Mean	RS
Year		analysed			G	recoveries			<b>\\ \\ \\ \</b>	RSP
13-2158	Barley	green material	fluoxastrobin	1	, Ŏ.009 ⊁	\$ 2 P	93	<b>©</b> 3	93 Q	
13-2158-01				r	1.8	\$ 86 & °	86	86√	86	L. (1)
13-2158-02			4	70°	4.5	₹ 86 €5° 7 96	86 96	86\$ \$6	96	
GLP: yes			W	3	Poverati)		) 86 A	[©] 96	1 <b>9</b> 92 °	⁵ 5.6
2013			HEC 5725 Z- Isomer	***	0,901	89 0	89®			
			Isomer	1	¥0.2 €	\$3 × ×	89 89	\$83	(83 E	
				1	0.5	<b>3</b> 89 5	89.	89	₹89 ©	1.0
			\$	<b>3</b> °	overall ^	Y D	83	XQ.	87	4.0
		grain	Muoxastrobin ©	1	0.008	\$\sqrt{9}2  \text{\$\infty}	) 92 2 (	©92	92	
		grain		10	0.09	94	940	94	94	
		. ~		<b>\$</b> 2	øxerall 🖟		<b>, 9</b> 2	94	93	
			HEC 5725 Z.	1	0.001			<b>4</b> 00	100	
	,				©' 20201 (	% 0 7 <b>%</b> /	78	78	78	
		4, (		2	overally		, 78 , 78	100	89	
		\Straw_	fluoxastrohin	1	0.009	Ø ⁸⁹ S	89	89	89	
				(J ^y	3.8	aN λ N I	81	81	81	
				1	\$9 O	\$ 01 \$3	83	83	83	
				3	overall		81	89	84	4.9
	~		HÊČ 5725 Z-	<b>O</b> y	0,001 %	94	94	94	94	
	`\$		HEC 5725 Z-	1	10.2%	79	79	79	79	
					15	77	77	77	77	
				<u> </u>	overall		77	94	83	11.1
	A		N 0' 60'	(	Dy 101411	1	, ,	<i>/</i> '	00	11.1

- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 360 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the storage period investigated in the stability studies.

Study number	Sample mater al	Maximum storage period (days)
	Grain	325
3-215.8° 0	Strow	325
	Green material	360

-Residue results: In the two northern European field trials the residues in grain ranged from 0.011 - 0.020 mg/kg and were 0.44 - 2.7 mg/kg in straw for the total residue of HEC 5725. Residues in green material declined well with time as shown with the findings prior to the second treatment and with the samples of the decline series taken thereafter.



- No residues above the LOQ of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were detected in any of the corresponding control samples.

Table 6.3.1-14: Application data and residues of fluoxastrobin (HEC 525 E-isomera), HEC 5725 Z-isomer and the total residue HEC 5725 in / on barley treated with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole EC 200) in the field in northern Europe

								(4)	**		W/ / .	
Study					Applic	cation	<b>\</b>	<b>)</b>		Residues		Total.
Trial No.							L		, O V	<b>4</b> 5		
Plot No.							Ŵ	<i>(</i>	9		<b>*</b>	
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALF	Fluoxa-	~ %11LC	
Year	Variety				(a.s.)	(a.s.)		analŷ <b>sø</b> d	(d&/s)	strøbin 🔏	O5725 🕏	restatue
						6	Ö °			@mg/kg∂	Isomer	MEC
						o ²	Đ,	[K) 4	,		(mg/kg)	5725
					4	~ <u>~</u>	<u> </u>			'U'	* *	(mg/kg)
13-2158	Barley	France	200	2	0.125	0.0625	64	green material	<u> 4</u> 0*	<b>\$</b> 0.11	0.036	Q.Q.5
13-2158-01	Esterel		EC		4	.~\		material	1, 70 °, D 7 «,	3.4	0.088	25.5
13-2158-01-T					<b>V</b>			~//	P 7 📞	0332	970	0.42
GLP: yes		Europe,		0	4 K		^		140	0716	<b>3</b> 7.051	0.21
2013		North	٤	\$	TO'	~~ <u>`</u>	. **			30.15	0.050	0.20
			4	<b> </b>	Ò					0.15	0.048 0.061	0.16 0.22
			@	٥, ٩	(J [*]	<i>©</i> '	Ş	S grain	A 21 O	0.6	©.001	
		~ {	<b>,</b>		/ ~C	, °(	1	∜ grain	35	<0.009	0.002	0.011
			( <u> </u>	<b>V</b>		~\foots	70	~	*A3*	<i>(</i> @01014	0.006	0.020
		~\ \\					.r	straw .	35	0.092	0.042	0.13
			1		-41			S .	43 ∜	0.90	0.14	<u>0.44</u>
13-2158	Barley,	France	200	Z,	0.133	0.062 0.0625	61,	y green	%Q*	~ <b>0</b> .30	0.099	0.40
13-2158-02	spring @		EÇ≪	<b>&gt;</b>	- @	0.0625		motorial	$\mathbb{Q}_0$	<b>√</b> 4.1	0.13	4.2
13-2158-02-T	Sébas				0.435				c. 7 0	0.50	0.16	0.66
GLP: yes	Sébas tian		#200 EC	1.	~		A.		7 14 7 210	0.42	0.17	0.59
2013					<b>~</b>	"			21€	0.28	0.12	0.39
2013		©urope,© North		o'	W				\$\frac{1}{6}^7	0.30	0.12	0.41
Ö.	) "©	vivorth™			4.			grain	<b>₩</b> 35	< 0.009	0.002	0.011
					D, h			grain	35	1.8	0.92	2.7
			<b>%</b>		~	ļ Õ	1 4	Silaw /	33	1.0	0.72	2.1

prior to last treatment

3125 E and Z-isomer separately and calculated as HEC 5725 (sum Residues for total residue HEC 5 1/25 (determined as HEC

of E- and Z-isomer)

Note: For the calculation of the total session and occur when the values given in the table accurately and the table accurately accur values given in the table are used. O Underlined values are used for ARL calculation

#### southern Europa Supplementary trials

Report:

;; 2015; M-062669-03-1

Title:

Amondment No. 2 to report no: RA-2017/03 - Determination of residues of fluckastrobin (HEC5725), prothioconazole (JAU6476) and trifloxystrobin

(CGA27)202 in/on barley following spray application of HEC 5725 & JAU 6476 &

CGA209202 (300 EC) in France, Italy and Spain

RA 2017/03 M-962669-03-1 Document

Guideline(s EU-Ref: Council Directive 91/414/EEC of 15 July, 1991, Annex II, part A, point 6

and Annex III, part A, point 8

Residues in or on Treated Products, Food and Feed

Guideline deviation(s): **GLP/GEP:** yes

none



# **Test system**

In 2003, four trials were performed in southern Europe (southern France, Key (2) and Spain) on barley with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole + Trifloxystrobin EC 300) containing 75 g fluoxastrobin/L, 150 g prothioconazole/L and 75 g trifloxystrobin/L. The product was applied twice at application rates of nominal 0.075 kg fluoxastrobin ha. The water rate was about 300 L/ha in all trials. In one trial the 2nd application was sightly overdeded by 6.3%

The applications were growth stage related and performed at growth stages BBCH 37-41 and BBCH C 61-65 corresponding to intervals between 13 and 18 days.

All trials were designed as harvest trials. Samples of 'rest of plant' and ear were taken prior to the last application and immediately thereafter (day 0 samples). Samples of grain and straw were collected at harvest maturity (BBCH 89) on day 35 - 69 after the last treatment in two trials two sets of grain and straw samples were collected: at day 35 (which was initially the intended pre-harvest interval) and the later date when full harvest maturity was reached.

Residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5723 Z-isomer and the total residue HEC 5725, were determined according to method 00649 (1992 E-isomer and the total residue HEC 5725, were determined according to method 00649 (1992 E-isomer and 2004). The LOQ for barley 'rest of plant' and straw was 0.045 ptg/kg for HEC 5725 E-isomer and 0.005 mg/kg for HEC 5725 Z-isomer (corresponding to a theoretical LOQ of 0.05 mg/kg for the calculated total residue of HEC 5725). The LOQ for grain and ear was set at 0.018 mg/kg for HEC 5725 E-isomer and at 0.002 mg/kg for HEC 5725 Z-isomer (corresponding to 0.02 mg/kg for the

## **Findings**

calculated total residue of HEC 5725

- Method performance: Method 00649 was wallidged by recovery experiments prior to and concurrently with the residue analyses by spiking control samples with HEC5725 for all matrices relevant to this study.

Mean values for procedural recoveries at partification levels between 0.045 - 4.5 mg/kg (rest of plant, straw) and 0.018 - 8 mg/kg (ear, grain) for HEC 5725 E-isomer and 0.005 - 0.5 mg/kg (rest of plant, straw) and 0.002 - 0.2 mg/kg (grain, car) for HEC 5725 Z somer were within the range of 70-110 %, with RSD <20%.

Table 6.37 15: Procedural recoverses for Muoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on barley

The LOQ is marked in bold

Study Trial No. Plot No.		Portion			Fortifi- cation level		Re	covery	(%)	
GLP Year	Crop *	Portion analysed	a.s./metabolite	n	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Individual recoveries	Min	Max	Mean	RSD
RA-2017 3 R 2005 013274 0132-03	- Om	rest (D)	fluoxastrobin	2 2	<b>0.045</b>	91; 94 87; 91	91 87	94 91	93 89	
0132-03	٥			2	4.5 overall	98; 100	98	100	99	5.2
0253/3			HEC 5725 Z- Isomer	2	0.005	87; 89	87	89	88	3.2
0253-03			130mer	2	0.2	96; 97	96	97	97	



Study Trial No.					Fortifi- cation		Re	covery	(%)	<i>a.</i> °
Plot No.					level					
GLP Year	Crop	Portion analysed	a.s./metabolite	n	(mg/kg)	Individual recoveries	Min	Max	Mean	RSD 4
D 2002				2	0.5	95; 111	95	111	103 😽	
R 2003 0254/1				6	overall		<u> 4</u> 87	111	96🖓	~8×8
0254-03			total residue HEC 5725 a)	2	0.05	90; 93	<b>₽</b> 90	93	×92 ×	
R 2003			TIEC 3723	2	<b>Z</b> .0	88; 9 <b>Q</b> ,	88	9 <b>2</b>	90	
0256/8				2	₹ 5.0	97(101	97	joi j	9 <b>Q</b> ,	0 P
0256-03				<b>6</b>	overall	Q' Q	° 88	√101 ¢	94	5.1
GLP: yes		ear	fluoxastrobin	)Ž	0.018	98; 99 [©]	98	29	99	
2003			<b>Y</b>	2	0.45	97, 99	<b>% y</b> /	<b>399</b>	98/	
			4	25 M	1.8	<b>98</b> , 99 S	98	Ø'99	<b>(</b> 99 🚊	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			WEC \$725.7	<i>y</i> 6		04.200	970	99	98	0.8/
			HEC 5725 Z	²	70.002	940109			102 ©	
				<b>F</b>	.055 ×	<b>9</b> 5; 965	95\$	96	96 🔊	
				2	0.2	95;	95)	28 ⁰	97	
		Ş		6,\$	over		<b>)</b> 94 _@	<b>Q</b> 09	98	5.8
		J'	total residue MEC 5725 a)	2	0.02	<b>9</b> 8; 99 🖏	98	99 (	99	
		, Ø		ر 2 ہ	0.5	96298	% ©6	×98	97	
			REC 5725 a)	20°	0.5 2.0	<b>9</b> 8; 99, *	98 6	99	99	
				<b>6</b>	everall (		96	99	98	1.1
		grain (	Juoxastrobin	6	0.018	96; 98;	<i>@</i> 96	99	97	1.3
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			D ^a	96;797; ~	7			
		7 0		6	overall o	W O	96	99	97	1.3
	<i>"O"</i>		HEC <b>5</b> 725 <b>Z</b>	6	0.002	92: ¥04;	90	104	96	5.5
			Isomer	Ş	ZŽ	8; 90				
« <del>»</del>	~~			√6 (	overall	7	90	104	96	5.5
	J.		total residue	6 (	0.02	95; 99;	95	99	97	1.9
			ПР ₂ 3723 ²	Š		96; 97; 99; 95				
4	Q O	<u>_</u>		6	11		95	99	97	1.9
A		straw Ş	fluoxestrobito	2 Ø	0.045	81; 90	81	90	86	
	9/				0.9	94; 95	94	95	95	
	S			72	1.8	80; 81	80	81	81	0.0
* *			иш <i>т 5725</i> г	2	overall <b>0.005</b>	78; 89	80 78	95 89	87 84	8.0
	\$ A		total residue  HEC 5725 Z- J. Somer  total residue HEC 5725 Z- J. Somer  total residue HEC 5725 a)		0.003	10, 09	70	07	04	
				2	0.1	97; 99	97	99	98	
		0 3 N	7	2	0.2	80; 88	80	88	84	
Ş				6	overall	00.00	78	99	89	9.7
			total residue HEC 5725 a)	2	0.05	80; 90	80	90	85	
				2	1.0	94; 95	94	95	95	
				2	2.0	81; 81	-81	81	81	
				6	overall	Ì	80	95	87	8.0



- Storage periods: The maximum storage period of deep-frozen treated samples was up to 287 day for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the storage period investigated in the stability studies.

tudy number	Sample material	Maximum storage period (days)
	Grain	233 240 287 287
RA-2017/03	Straw	
KA-2017/03	Ear	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2
	Rest of plant	√ ,0 ² 87 √ ,0°
		for the total residue of HEG5725
No residues above th	e respective LOQs of 0.04	15 mg/kg/E-isomer for Pest of plant and straw, 0.018
No residues above th 3/kg (E-isomer for g	e respective LOQs of 0.04 grain / ear), 0.005 mg/kg/	15 mg/kg/E-isomer for rest of plant and straw, 0.018 Z-isomer for rest of plant and straw) or 0.002 mg/kg

Table 6.3.1-16: Application data and residues of fluoxastrobin (HEC 5725) E-isomer), HEC 5725 Z-isomer and the total residue HPC 5725 in Son barley treated with a fluoxastrobin EG formulation (Fluoxastrobin + Prothioconazole Trifloxystrobin EC 300) in the field in southern Europe &

		<u> </u>	( )		~\J*				~4( )/	· »		
Study				Ć.	Applic	ation (	,			Residue	S	
Trial No.			<b></b>	Ò	Õ	5"	٠. C	) ^y &,	<i>*</i>	. 65		
Plot No.	20	Country	×	1			~~ <u>~</u>	O		**************************************		
GLP	Crop @	Country		No∞	<b>k</b> g∕ha	<b>k</b> ₩/hL	%S	Portion Sana-	DALT	Pluoxa-	HEC	total
Year	Variety		Y)	K	∫(a.s.)⊾	(a.s.)	)	ana-	(days) @		5725 Z-	residue
		7, 4	, (g				*	) lysed		(mg/kg)	Isomer	HEC
			O	8	W.00	<b>*</b> \'	Ô		<i>a</i> .		(mg/kg)	5725
			(h)		V			0	W W			(mg/kg)
RA-2017/03	Barley	France	<b>3</b> 00	2≈	<b>№</b> 0.075 (	Ø.025 ''	⁷ 55-	grest of	0*	0.32	0.17	0.49
R 2003 0132.4	Print		EC ,				65~	gest of a	0	3.2	0.22	3.4
0132-03	%		4		Q'	. *\	,	çaş,	0*	0.02	0.009	0.03
GLP: yes	.\$	Europe,	Ş	%			<b>Y</b>		0	2.8	0.03	2.9
2003		South	<i>(</i> )					grain	35	< 0.018	< 0.002	<u>&lt;0.02</u>
								straw	35	0.48	0.27	<u>0.74</u>
RA-2017/03	Barley	Italy	300	2 ,	0.075	<b>6</b> 025	<b>%</b> 1	rest of	0*	0.07	0.04	0.10
R 2003 0253	Aliseo	I-	SEC	4	34 ° 6	ď, ď	7	plant	0	0.78	0.05	0.83
0253-03 GLP: yes	٥,		,	Ŵ		**************************************		ear	0*	< 0.018	< 0.002	< 0.02
GLP: yes	Ş	Europe, South			a G				0	4.2	0.12	4.4
2003	<b>W</b>	South	~ O	Q	D. ^	$\mathbb{Q}^{'}$		grain	35	< 0.018	0.009	0.03
, v		"O" (C	ر ا	(A)	Y L	)			45	0.02	0.01	<u>0.04</u>
		\	<b>~</b>	) } !	Q,			straw	35	0.06	0.04	0.10
			<b>W</b>		@)				45	0.09	0.06	<u>0.15</u>
RA-2017/03	Barley	Spain &	<b>≸</b> 300	2	0.075	0.025	61	rest of	0*	0.13	0.05	0.17
R 2003 0254/1	Æspa-		EC		-			plant	0	1.3	0.09	1.4
0254-03	Mic 🛋	<i>∞</i> ( <i>&gt;</i> )			0.079				35	0.17	0.09	0.26
GLP:	nic Z	Eutralia						ear	0*	< 0.018	0.003	0.02
2000	<u> </u>	Europe, South							0	4.1	0.13	4.2
GLP: 498 2000		South							35	< 0.018	0.008	0.03
								grain	69	<0.018	0.003	0.02
								straw	69	0.39	0.22	<u>0.61</u>



Study Trial No. Plot No.					Applic	cation				Residue	es		
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion ana- lysed	DALT (days)	Fluexa- strogin (@g/kg)	HEC 5725 Z Isomer (mg/kg)	total 'O	2
RA-2017/03 R 2003 0256/8 0256-03 GLP: yes 2003	Barley Sonora	Italy I- Europe, South	300 EC	2	0.075	0.025	610	rest of plant ear grain	00 0* 00 00 00 00 00 00 00 00 00 00 00 0	3.8 <0.058 4.5 9.018 <0.018	<0.002	0.45 4.2 0.02 5.0 0.02 0.20 0.23	

prior to last treatment

eparately and calculated as HEC 5725 (sum Residues for total residue HEC 5725 (determined as HE of E- and Z-isomer)

Note: For the calculation of the total residue (mrounded) values given in the table are used.

Underlined values are used for MRL calculation.

Report:

Determination of the residues BYF 00587 HEC 5725 and Nothioconazole in/on Title:

barlen after spray application of bixaten & throxastrobin & prothioconazole EC 190 in

the field in France South) and Italy

Report No.:

Document No .:

-Ref. Comcil Directive \$1/414/BEC of My 15, 1991, Annex II, part A, section 6 Guideline(s):

and Annex III, part A, section 8

and Annex III, part A, section 8 Residues in or of Treated Products, Food and Foed

EC guidance working document 7029 VI/95 EV. 5 (1997-07-22)

Guideline deviation(s);

GLP/GEP:

# Test system

Two residue trials were conducted in 2010 on barles with 'Bixafen + Fluoxastrobin + Prothioconazole EC 190 containing by g bixafen/L, 50 cfluoxastrobin/L and 100 g prothioconazole/L. The test locations were in southern France and Maly. The product was applied twice at the required rate of 1.5 L product/ha corresponding to 0.075 kg. Quoxastrobin/ha. The treatments were carried out at the growth stages BBCH, 37-51 and BBCH 610 Depending on the study, the spray interval was 14 or 15 days. The water rate range from 300 - 400 L/ha.

Samples of green material were taken just prior to and immediately after the final application in both trials. In one total, first grain and straw samples were taken on day 34 (BBCH 87); and an additional set of samples was taken on day 47 (BBCH 89). In the trial from Italy grain and straw samples were collected only at BBCH 89 (day 52).



Fluoxastrobin Residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725, were determined according to method 00649/M003 ( ; 2010; M-387385-0\(\varphi\). The total residue of HEC 5725 was calculated as the sum of both isomers. The LOQ was 0.00\( \) mg/kg\( \) for the E-isomer and 0.001 mg/kg for the Z-isomer for all sample materials, resulting in a theoretical LOQ of 0.01 mg/kg for the total residue of HEC 5725. **Findings** - Method performance: Validation recoveries for method 00649/M003 for the matrices not included in the method validation report (wheat and barley green material, Straw) were generated within studies ; 2011; M-403199-02-1 and 10-215 (2) 399682-02-1). The studies including validation recoveries are reported further below (please cf. Table 6.3.1- 19 and Table 6.3.2- 19). Additional validation recoveries for method 00649/M003 for all matrices relevant to this study (green material, straw and grain) were also reported within this study and obtained from studies 10 2206, 10-2207, (10-2204 and 10-2205 not reported in the present dossier). Individual and offician recoveries at fortification levels between 0.069 and 3.6 mg/kg for HEC \$\sqrt{25} E_0\sqrt{25} E_0\sqrt{25} emer and 0.4 mg/kg for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD 20% The control sample used for 2 recoveries of HEC 5725 E-isomer in green material Fortification level 0,009 mg/kg) and for HEC 5725 Z-isomer (fortification level 0.000 mg/kg) contained more than 30% of the LOQ and therefore the recoveries were background corrected for the signal present in the control sample. The reason was a fluoxastrobin containing product which was erroneously another study (trial 10-2204301, neurelevant to the present dossier). reason was a fluoxastrobin containing product which was erroneously used for maintenance in



Table 6.3.1- 17: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on barley

The LOQ is marked in bold

		1	1		1	т			<u>()</u>	* 10
Study Trial No.			,		Fortifi- cation		Recove	ery (%)		
Plot No.	Crop	Portion	a.s./	n	level	Individual	Min	Max	∭ Mean∂	RSD
GLP	Сгор	analysed	metabolite		(mg/kg)	<b>∞</b> // /	, "	% 2		
Year						recoveries				, O'Y
1 cui					· "	₩.		<i>\( \( \)</i>	Š	Ž
ъ .				8	0.009	86;91;95	86	<b>113</b>	<b>₩</b> 99 🛴	)* 9.0×
Recoveries					~~~	(130°), <b>%</b> /, &	Q,		<i>P</i> ₀	
were generated				4	<b>)</b> .	102, 108	M V			
during			Fluoxa-	Wy.	Q°;	(103		) }		
analysis of 4			strobin	4	<b>5.09</b>	93;98,905;100	93	105	100	5(6°
studies			4	1 %	27	84 4	<b>%</b> 4	. 84	<b>&amp;</b> 4	
(10-2204				1	3.6	87 7	× 87	\$87	ي. الاير 87 ع	
and		Green		4	Overall		840	113%		9.0
10-2206		material		8 9	0.001	81;8997;980	8	120	100	12.7
(barley)				Po	× ×	(227*);	Ö			
and			7, K	Ö,		<b>902</b> ;11 <b>3</b>			<i>V</i>	
10-2205 and 10-2207		Ç,			( ° )	(242*) 05;	O'		<i>b</i>	
(wheat))			HEC 5725©	. @	<i>y</i>	120%	Ď			
(wilcat))				4 🖤	0.01	88;115;8897	<b>₹88</b>	JP15	97	13.1
GLP: yes				<b>%</b>	039	\$6 ° «	86		86	
2010	, (C			14 6	040	91 📡	910)	91	91	10.2
		<b>A</b> (,			Øvera∯ <b>0.009</b>	78,87;9 <u>4</u> ;91;96@	- <b>%</b> 1 √81	120 98	98 91	12.3 8.1
	Barley, wheat		Fluoxa- ^	6	O.auy	\$8,87,9#,91,90@ \$98	/ / 0	98	91	0.1
			strobin, O	4	( <u>0</u> .09 🌭	88;102;92;98	88	102	95	6.5
		Grain		IJ "		0 ,0	78	102	92	7.5
	)	Stain &		<b>O</b> ''	0.001	<b>&amp;</b> 2;86;9 <b>%</b> ;90;75	75	90	85	6.9
	(		HE\$5725	<u></u>		7,89				
	<b>%</b>		HE©5725 Z-Isome	4 %	0.01	88,91;93;93	88	93	91	2.6
	3	~~	2-Isomos	16	Overall	2000000	75	93	88	6.3
	Q .	Grain		(6°	0.009	<b>3</b> 7;88;86;93; 103;92	86	103	92	6.9
*			Muoxa	4 °×	0.09	89;75;104;96	75	104	91	13.5
4	8	8	strokin	10	2.70	84	84	84	84	
				<b>N</b>	\$3 ⁸ .60	82	82	82	82	
	~~ ~~	Straw		12~	Överall		75	104	90	9.3
		Su <u>a</u> w	, oʻ <u>v</u>	6	0.001	69;76;89;109;	69	116	93	19.8
"\	,			I(O).		116;98				
	_ @ `` .		HE <b>©</b> 5725	<b>√</b> 4	0.01	85;69;91;86	69	91	83	11.5
	6× ~4		Zisomer	1	0.30	85	85	85	85	
				1	0.40	85	85	85	85	
			ř	12	Overall		69	116	88	16.2

*recovered before correction; the control sample used for 2 recoveries of HEC 5725 E-isomer (0.009 mg/kg) and for HEC 5725 Z-isomer (0.004 mg/kg) in green material contained more than 30% of the LOQ and therefore the recovered was background corrected for the signal present in the control sample. The control sample originated from study 10-2204 which is not relevant to the present dossier.



- Storage periods: The maximum storage period of deep-frozen treated samples was up to 312 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the storage interval investigated in the stability studies.

Study number	Sample material	Maximum storage period (days)
	Grain	269
10-2206	Straw	269 × 0°
	Green material	(h) 31Q 4

- Residue results: In the two southern European field trials, the total residue of FEC ranged from 0.01 - 0.02 mg/kg and was 0.03 - 0.16 mg/kg in straw
- No residues above the LOQ of 0.009 mg/kg (E-isomer) or \$601 mg/kg (2-isomer) any of the corresponding control samples from this study.

Table 6.3.1- 18: Application data and residues of fluoxastrobin (HEO 5725 E-isomer), AEC 5725 Z-isomer and the total residue HIC 5725 in Jon harley treated with a fluoxastrobin EC formulation Bixafen + Fluoxastrobin Prothioconazole EC 190) in the field in southern Europe

G: 1		0	·n 8	Applica	tion			4	Residue	S (L)	
Study Trial No.		~ OFI	ĹN	/kg/ha	kg/h	<b>G</b> S	Portion	DALT	Fluoxa	HEC 5725	total
Trial No. Plot No.	Crop	Country	Q o	(a.s.)	L "		analysed	DALT (days)	strobin	Z-Isomer	residue
GLP	Variety	Country	O ^V	(a.sə)	L (a.O)	4	9	S	(ing/kg)	(mg/kg)	HEC
Year				Q ⁻		W.	Ő W			,	5725
i cai			, ia	١ ((	1)) 2	×		<i>"</i>			(mg/kg)
10-2206	Barley	France 719	90 Z	0.075 Ø	0.025	61 °	green O	*0*	0.10	0.05	0.14
	Ketos	E			S,	Ź	material	$_{0}$	1.2	0.16	1.4
10-2206-01		y   %	<b>V</b>	K)	<b>^</b> ,	, Ô	material grain	34	<b>@</b> /01	0.006	0.02
GLP: yes	Õ	Europe,	"   <u>&amp;</u> ,	~			Ď'	<b>@</b> 47 /	×0.009	0.004	0.01
2010		~ (~)	Š	W O	ľ "K	¥ .	straw 🔊	34 27 34	0.08	0.04	0.12
	O _k		, 0	<i>i</i> ~		L		47 Ø	0.11	0.06	<u>0.16</u>
	Ò		Q	4	`∂>`	W ³	0.				
10-2206	∕Barley	Italy	0 2	<b>0</b> 0.075	0.019	6,1	green /	<b>F</b>	0.07	0.04	0.11
	Ketos	E C		.~	, C	) "	Movaterial C	0	1.4	0.08	1.5
10-2206-02			*			&	grain 🔏 🌂	52	< 0.009	0.001	0.01
GLP: yes	*			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0		52	0.02	0.01	0.03
2010	D)	Errope,			Ų į	<b>\</b>					
		Extrope, South		<u> </u>		ð"	straw				

prior to last Preatment

Residues for total residue HEC \$725 (defermined as HEC \$725 Found Z-isomer separately and calculated as HEC 5725 (sum

of E- and Zapomer)

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation.



KCA 6.3.1/11 .: 2011: M-403199-02-1 Report:

Determination of the residues of fluoxastrobin and prothioconazole in/on barley and Title:

winter barley after spraying of fluoxastrobin & prothioconazole EC 150 in the field in France (South). Spain Italy and Greece

France (South), Spain, Italy and Greece

Report No.: 10-2157 Document No.:

Guideline(s):

Guideline deviation(s): **GLP/GEP:** 

# **Test system**

Residues in or on Treated Products, God and Feed EC guidance working document 7029/VI/95 rev. 201997-07-22) none

yes

carried out in 2010 with Fluoxastrobin and Greece (101). Five residue trials were carried out in 2010 with Fluoxastrobin Prothioconazole EC 150 on bacey in France (2), Italy, Spain and Greece. 'Quoxastrobin, Protheconarole EC 150' was applied twice at the required rates of 1.75 L product/m corresponding to 0.0875 is fluorastrollin/ha, The treatments were carried out at proper timing (BBCH 4) 57 and BBCH 61-69). Depending on the study the spray interval was 13 or 14 days except for trial 10,2157202 where the onterval was only 3 days due to unexpected fast crop development and in order to meet the requested growth stage for the 2nd application. The water rate was 300 or 400 Cha in all trials.

Samples of green material were taken just prior to and immediately after the fival application took place in all trials. Three trials were designed as decline series and in two trials comples were collected at harvest only. In the decline trials green material samples were collected on day 7, 14 and 28 at growth stages ranging from BBCD 67, \$7. Grain and straw samples were collected on day 35 and a later date (up to day 60 after the final treatment) in case the growth stage relevant for commercial harvest (BBCLQ89) had not yet been reached at the first sampling event. If grain and straw could not be sampled 35 days post treatment the sample materials ear' and 'rest of plant' were sampled instead.

Residues of fluoxastroom (HBC 5725 E-isomer), DEC 5725 Z-isomer and the total residue HEC 5725, were determined according to method 0.0649/M0.03 ( 2010; M-387385-01-1).

## **Findings**

- Method performance: Validation recoveries for method 00649/M003 for matrices relevant to this study were generated. Recoveries for both analytes were obtained from green material, straw and grain samples. The sample materials chosen served to represent all relevant sample materials collected in these trials. Method performance was acceptable. Mean recoveries at fortification levels between 0.009 - 0.9 mg/kg (grain), 0.009 - mg/kg (straw) and 0.009-20 mg/kg (green material) for HEC 5725 Essomer and 0001 - 0.1 mg/kg (grain), 0.001 - 1 mg/kg (straw) and 0.001 - 2 mg/kg (green material) for HEC 725 Z-isom were within the range of 70-110 %, with RSD < 20%.



Table 6.3.1- 19: Recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on barley

The LOQ is marked in bold

		-	1			1	- A		<i>U</i>	10
Study		ļ ļ			Fortifi-		Recei	ery (%	) <i>"©"</i>	Ó
Trial No.		ļ ļ			cation		T.		~	~~~~~
Plot No.					level	4	Ĺ			Ş ^v
GLP	Crop	Portion	a.s./metabolit	n	(mg/kg)	Individua∤∜	^y Min	Max	Mean	RSID
Year		analysed	e		S	recoveries		Ž,		W//
10-2157	Barley	green	Fluoxastrobin	4	0.009	95; 93; 😪	93	,1 <b>0</b> 01	26	\$3.6 _[10]
10-2157-01		material*			@\\	101			Ŗ, ć	ď &
10-2157-02-		ļ		4	<b>€</b> >0.09	96; 98, 96; <b>9</b> 4°	94	97🍫	96 [©]	1.3
10-2157-03		ļ		120	9		99	<b>1</b> 0000	300	, Q"
10-2157-04 10-2157-05			(	#2	2000	10° × × × × × × × × × × × × × × × × × × ×	M	000	**************************************	
10-2137-03			Ċ	<b>&gt;</b>	W/// .~~	86; 86; 83	) 83 j	» 80 "	4	2.0
GLP: yes		ļ	4	12	overall 🔍		83	101	93	5,0°
2010		ļ	HEC 572572-	4~	0.001	<b>,9</b> 0; 107; <b>,9</b> 5;	<b>\$</b> 0	107	98	¥.5
		ļ	Isomer			¥01 👋 ′ 🏃	Y A			
			l Q "	4	50.01	94; 95; 93;93	93.	95	[™] 94 [©]	1.0
		ļ		1 %	1	97	.907°	25	97	
				<b>(3</b> )	j r	78. 79. 97 (	077	079 079	78	1.3
		(		<b>7</b>	overall.		77	107		
				12	7/		770	107	92	10.1
		Grain**	Fknoxastrobin	4	0.009	93 93; 90; 93	900	93 93 93	92	1.6
				A C	0.09	90; 91, 91; 930	<b>9</b> 90	<b>4</b> 93	91	1.4
				1 🤌	Ø0.9 Ô	79 🐇 . 🐃	798	79	79	
				9.0	overall	0 %	13	93	90	4.9
		<i>y</i>	PDEC 5725 Z-	1	Ø001 a	W02: 02: 00: -	γ	104	100	5.0
			Isomer Z	<del>4</del>  ∕	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	\$\text{\$\psi_03; 93: 99; }\tag{104 }\tag{5}\$	93	104	100	5.0
				1			0.4	0.1	0.0	2.2
			0' 4		0.0	91588; 87; 84	84	91	88	3.3
Ö	] "@		Q 3 9	A.	95	64 🔏	64	64	64	
Ę,	1			96	overall (		64	104	90	13.4
	<	@straw 🔊	Fluoxastrobin	6,0	0.009/	83,85;86;88;	83	90	87	3.0
,					<b>%</b>	<b>8</b> 9,90				
		[ 4		103 [°]	P.09 8	74;90;90	74	90	85	10.9
	Q			13 4		78; 71; 69	69	78	73	6.5
	W (	© straw	Fluoxastrobin	30	, , , , , , , , , , , , , , , , , , ,	70, 71, 02				
~					overall		69	90	83	9.4
4				<b>2</b> 6	<b>9</b> .001	81; 82; 88;	81	119	96	18.6
		~ Q	Isomer	% ^^	<b>y</b>	88;119;119				
× 1	2	P A		3	0.01	77;88;92	77	92	86	9.1
No.	***		Y Q ?	<b>3</b>	1	69; 72; 69	69	72	70	2.5
	@ \			12	overall		69	119	87	19.3
*recoveries	fár/green	enaterial als	o walidate the sa	mnle	material 'r	est of plant'	l	l		
** recoveries	for grain	n alse Valida	ate the samble m	nateria	al 'ear'	or prunt				
	, <b>59.</b>									
	, Q"		y .							
	y F									
		The same	o waldate the sa							



- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 208 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the storage period investigated in the stability studies.

Study number	Sample material	Maximui	n storage period	(days)
	Grain		167	Q
	Straw		167	° 0,
10-2157	Ear	Ĉ	173	Z)
	Rest of plant	V	<b>4</b> 73	0 4
	Green material	L	208	

-Residue results: The findings from the decline series indicate that residues of fluorastrobin decrease well with time. Residues due to the first application had decreased significantly until the point in time when the second treatment was conducted. Residues caused by the second and final treatment declined well again.

At the time of harvest, for the trials with proper pray intervals (i.e. excluding trial 10-2157-02) residues (total residue HEC 5725) in grain were 0.01 - 0.34 mg/kg in grain and ranged from 0.23 – 1.7 mg/kg in straw.

In trial 10-2157-04 initially ear samples were collected instead of grain, however cars were threshed in the laboratory for sample preparation and proper sample material was available for residue analysis. The elevated residue finding in grain from this trial might be considered as an outlier when compared to the residue levels found in other trials from the southern climatic zone. However, it appeared also within the data set for the previous critical GAP that in exceptional cases significantly elevated residue levels may be found in barley grain (cf. EFSA Conclusion, 2009, and Ver 1 summary forms reporting two trials with residues at 0.24 and 0.27 mg/kg). Although the application rate for the new critical GAP is lower, it cannot be excluded that this is a 'true' residue value and the value was considered for MRL calculation.

Residues levels from trial 10-2157-02 where the interval was only 3 days were not considered for MRL calculations although the residue findings were in an Expected range.

- No residues above the LOO of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were detected in the corresponding control samples except for one control grain sample from trial 10-2157-05 which contained residues of BEC 5725 Z-isomer at the EOO level (0.001 mg/kg). This sample was not used for procedural recoveries.



Table 6.3.1- 20: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on barley treated with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole EC 150) in the field in southern Europe

										- K.A.		
Study					Applicat	ion				Residues		
Trial No.									4	1		
Plot No.						1		<b>~</b>	$\sim$	У	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALY	Fluoxa-	HEC	total
Year	Variety				(a.s.)	(a.s.)	\	analysed	(days)	strobin	¹ 5725 P	residue
							7			(mg/kg)	Isomer	PIEC (
						کہ	<i>(</i> )	Q	, , , o		(mg/kg)	5725 (mg/kg)
10.21		_				200	7	· · ·		Q"(		(D)
10-2157	Barley,	France	150	2	0.0875	0.029	61	græn månerial	×0*	© 0.76\	0,23	<b>₹</b> .0
10-2157-01	winter	F-	EC		\$	<b>V</b>		material		3.5	0.22	<b>∜</b> 3.8
10-2157-01-T	Ketos					<b>1</b>	9	ک ک	1/0	0.75	$0.33 \le 0.28$	1.2
GLP: yes		Europe,				~ O			28	©0.41	0.18	<b>©</b> 2.59
2010		South						Ď.	Z	0" %	~	
					Ů Ú	y" _1	Q"	lear (	D" 33 &	y 0. <b>0</b> 54	<b>Q</b> ,023	n -
					}	Ö	*	rest of	350	6.62	© 0.27	0.89
				Y	O'		1	plant				
			4	) *	Ö	Ĉ	<b>8</b>	grain	ٍ Ošo _ (	0.012	<b>6</b> ,006	0.02
			@	8	Ŭ (	r ,	Ţ	Straw Q	50 D		<b>%</b> _√ 0.34	0.97
10.2157	Dani.	France &	150		0.08	0.000	r (1		, 50 %		O	
10-2157 10-2157-02	Barley, winter	France F-	150 _© EC⊝	, 2 \$/	0.0878	0.029	61	green material		Ø 1.2 ≫ 3.0 Ø	0.22 0.27	1.4 3.3
10-2157-02 10-2157-02-T	Carpa-		r.Q			Cy Cy	1. J	material				
	nil		4	ھ	4	, @	) Y	Çear	ິ 35 ຝູ	<b>0.0</b> 17	0.006	0.03
GLP: yes	1111	Europe,	<b>y</b> "				%	rest of	35,	° <b>√</b> 0.046	0.015	0.06
2010	(C	South	~ (C	) }	<i>\text{\text{\$\pi}}</i>	\$\text{y}'		plant	O	\$		
							<b>~</b>	Ø. Berain	Ç, 60 _@	< 0.009	0.002	0.01
				(n		*	ď	grain straw	600	0.038	0.016	0.05
10.2157	<u>, O</u>	(( ))		~ Q	0.0875	0 % X		1				
10-2157 10-2157-03	Barley,	Spain © E-	150	~2	0.08/15	00029	650	green material	©0*	0.16 1.4	0.065 0.099	0.23 1.5
( )	WIIICI	Ľ-	E <b>©</b>	,	2 2	D'Y	10		~ 0 7 7	0.24	0.099	0.32
10-2157-03 ² %	Gra- phic	a a	Ş						14	0.24	0.054	0.32
GLP: yes	Pine		) ,,	*		, O'	, %		28	0.10	0.037	0.14
2010	.≪C			J	( O v	<b>W</b>		grain Straw	35	< 0.009	0.001	0.01
				8		ď	$\cup$	\ \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \	52	< 0.009	0.001	0.01
	W)		Ž)	@ @		S		9				0.27
	Q ,	South	%	) *				y straw	35 52	0.19 0.22	0.084 0.096	0.27
*	¥ (	2000 C	~	"	10 mm							
10-2157	Barley	Italy		2	\$9.0875 C	0.022 ≪	<b>46</b> 81	green	0*	0.028	0.015	0.04
10-2157-040	Baraka	1-	PEC	W			,	material	0 7	3.4	0.47	3.9 4.2
10-2157-04-T	~		<b>"</b>	y		·29.			14	2.9 1.4	1.4 0.69	2.0
GLP:	< <	Eurone	~ ©	7					28	0.67	0.69	1.1
2010	(	Europe, South	, D"	6	[ *	) ["]						
	[ _@ `	4 0	y ,	Ø,	Q,			grain	35	0.24	0.11	0.34
	Ó ~		×	Ĵ	- <i>@,</i>			straw	35	1.0	0.66	<u>1.7</u>
10-2157	Barlew The Sa- lowiki	Green GRE	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	2 4	<b>©</b> 0875	0.029	61	green	0*	0.30	0.13	0.43
10-2157-05	The Sa-	GRE _	ÆČ		ν			material	0	2.3	0.14	2.4
10-2157 <b>-65</b> 2T	lomaki		)						7	1.4	0.56	1.9
10-2157-65-T GLP: yes									14	0.82	0.34	1.2
2010	ľ Ø	Europe,						grain	35	< 0.009	< 0.001	< 0.01
		South							28	< 0.009	0.001/0.0	<u>0.01</u> /0.01
		South									01**	**
								straw	35	0.038	0.021	0.06
									28	0.15	0.078	0.23



prior to last treatment

** residue in control sample

Residues for total residue HEC 5725 (determined as HEC 5725 E- and Z-isomer separately and calculated as HEC 5725 sum of E- and Z-isomer)

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation.

; 2013; M-434980-04🕏 KCA 6.3.1/12 Report:

Title:

fluoxastrobin and prothioconarole in/on winter parlex after spray application of fluoxastrobin & prothioconarole EC 150 in souther Francis tells.

Report No.: 11-2111

M-434980-04-1 Document No.:

15, 1091, Annex II fart A section 6° Guideline(s): EU-Ref: Council Directive 91/414/ELPC of July

and Annex III, part A section 8

Residues in or on Freated Products, Food and Feld

Guideline deviation(s): **GLP/GEP:** 

### **Test system**

Residues in or on Treated Products, Food and Feed
EC guidance working document 7029/1/95 rev. 5 (1997-07-20)
US EPA OCSOP Guideline No. 860 1800
none
yes Five residue trials were carried out in 2011 with Fluorastrobin + Profinoconazole EC 150' on barley in France (2), Italy (2) and Spain. The product was applied twice at the required rates of 1.75 L product/ha corresponding to 000875 kg fluexastroßin/ha. The treatments were carried out at proper timing with the last application conducted during flowering (BBCH 37-43 and BBCH 61-69). Depending on the study, the spray interval was 13 -20 ways. The water rate was 300 or 400 L/ha in all trials.

Samples of green material were taken just prior to and immediately after the final application took place in all trials. Three trials were designed as harvest trials and in two trials samples of green material were collected additionally and day 7, 14 and 28 after the final treatment. Grain and straw were sampled we harvest materity (BBCH 89) 51 -63 days after the final application.

Residues of fluoxastrobin (PEC \$725 Epsomer) HEQ 725 Z-isomer and the total residue HEC 5725, were determined according to method 00649 M003 ; 2010; M-387385-01-1). Aspects relative to the analytical method were as described above for study 10-2206.

# Findings

- Method performance: Validation recoveries for method 00649/M003 for the matrices not included in the method validation report were generated within studies 10-2157 ( 2011; M-403199-02-1) and 10@156 ( ; 2011; M-399682-02-1). Validation recoveries are reported in Table 6.3.1-19 and Table 6.3.2-19.

Additional validation recoveries for method 00649/M003 for all matrices relevant to this study (green material straw and grain) were also reported within this study.

Procedural recoveries for both analytes were obtained from green material, straw, and grain samples. Method performance was acceptable. Mean and individual recoveries at fortification levels between 0.009 - 0.09 mg/kg (grain), 0.009 - 0.9 mg/kg (straw) and 0.009 - 3 mg/kg (green material) for HEC



5725 E-isomer and 0.001-0.01 mg/kg (grain), 0.1 mg/kg (straw) and 0.001-0.3 mg/kg (green material) for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD <20%.

Table 6.3.1- 21: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 isomer in/on barley

The LOQ is marked in bold

a 1					-CA			~// ~	<del>/                                    </del>	- R
Study					Fortifi-		Reco	overy (	%) 🔊	
Trial No.					eation	Q.		Ø)	Ž	<b>~</b>
				<i>a</i>	level 🖟				Q . Ć	)) ///
GLP	Crop	Portion	a.s./metabolite	á	(mg/kg)	Andividual	Mih	Mark	Q (	R\$®
Year		analysed		@" "	^	recoveries	Mih,		(0/)	W///
11-2111	Barley,	green	0.0	3 ,	°0.003	61:77,83	99 &	83	·Ž¥ ;	<b>3</b> 5.4
11-2111-01	winter	material		3.0	0.05	96,00.00	99 🍣	99 .	99 .4	0.0
11-2111-02				Z Or	0.C	Q1	9.4	₹99 8₽	04	0.0 。
11-2111-03			Fluoxastrobin	or /	NA S	<b>8</b> 4	84	84	84	Q"
11-2111-04				2 0	≯3.0 °	97;108	997 ***********************************	<b>≸40</b> 8 .	103	S.
11-2111-05				94	overall		61,@	108	>90 ∪	16.3
			HEC 5725 Z-	Ž	<b>*0.001</b> ∧	93;78	, D	78	760	
a			<b>O</b> somer	3 (	> 0.01	90;92;93 ू	$\stackrel{\circ}{\circ}90$	Ĉ93	92	1.7
GLP: yes		Ş	Osomer	18	0.01	70	78	78 ^K	. 70	
2011		<b>7</b> 9		140%	0,10		780	98	0.5	
				2	0.30	√91;98 _~ ,°	<i>9</i> ₃ 1	98		
		, Q		8	overall	Z .	³ /73	J98	87	10.4
		grain		20	0.009	<b>&amp;</b> 1;86	816	86	84	
		grain	Phdoxastrobin	<b>)</b>	<u>0.09</u>	\$1;86 \$0 \$0	<b>20</b>	90	90	
		\$		3 🔊	overal@		, 81	90	86	5.3
		10. V	HEC 5725 Z	,2(*)	0.001	90,95 .79	90	95	93	
			HEC 5725 Z	Š	<b>%</b> :01	<b>2</b> 91	91	91	91	
				3 0	Överall	\$ 5 T W	90	95	92	2.9
	Ī	Straws			0.099	<b>7</b> 2,80	72	80	76	
	. (	Straw S		2 Q	WW9					
**			Fluoxastrobin 🦠		0.90	78;80	78	80	79	
	, F			4 (	overall		72	80	78	4.9
	٩		HE 5725 2	2	0.10	70;80	70	80	75	
			HE 5725 Z	<b>Q</b> "	overall		70	80	75	
	*(_ <i>)</i>				1	L				

- <u>Storage periods</u>: The maximum storage period of doep-frozen treated samples was up to 228 days for fluoxastrobin (HEC 5725 E-isomer) and NEC 5725 Z-isomer and is covered by the storage period investigated in the stability studies.

Study number @	Sample material	Maximum storage period (days)
4 4 "	Grain	160
11,211	Straw	160
	Green material	228

#### Findings

- <u>Residue results</u>: Residue levels of the green material samples taken from the decline series and collected prior to the final application show that residues decline well with time.

At the time of harvest, residues in grain were 0.01 - 0.03 mg/kg for the calculated total residue HEC 5725 in grain and ranged from 0.28 - 1.4 mg/kg in straw.



- No residues above the LOQ of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were determined in any of the corresponding control samples except for one green material control sample from frial 11-2111-02 which contained residues of HEC 5725 E-isomer at 0.01 mg/kg and 0.006 mg/kg for HEC 5725 Z-isomer. This sample was not used for procedural recoveries.

Table 6.3.1-22: Application data and residues of fluoxastrobin (HEC) 725 E-isomer), JEC 5725 Z-isomer and the total residue HEC 5725 in Lon barley treated with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole EC 150) in the field in southern Europe

Study Trial No.					Applica	tion &	Y	S.	Résidues	Ö	Q	
Plot No.								~~		Õ.		
GLP	Crop	Country	FL	No	kg/ha	<b>k</b> ⊗hL	GS	Portion	JALT	Fluoxa	HEC	∝πextal
Year	Variety	_			(a.s.) 🖇	(a.s.) Ø	) )	an alysed	(days)	strobin	5725 Z-	≪røsidue
					0	" <i>"</i> ©	\$		~~~	(mg/kg)	Isomer 4	HEC
					, ¶		9)		O,	<u> </u>	mg/kg	5/25
					W)	<b>*</b>	$\searrow$	~ ¥	4 6	A.		(mækg)
11-2111	Barley,	France	150	2	Ø\$0875 ×	$0.0292_{\odot}$	61	green 0	0*>	Q:25	<b>≈</b> 0.075	0.33
11-2111-01	winter		EC				~	material	8	<b>2</b> .0	\$0.071	2.0
11-2111-01-T	Ketos							Į "O		\$ 0.32	0.1	0.42
GLP: yes		E	Ó	y	, 0	. 6			0'14	0.205 0.01	0:071	0.27
2011		Europe, South	@.	P ~					28,0	$\bigcirc$	0>047	0.16
		South «	Ø>,	%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L	grainQ'	51	<b>6</b> 018	0.011	0.03
		4	y V	<i>,</i>	Š	4	<i>~</i>	stataw	×\$1	ۇ 0.47	0.26	<u>0.73</u>
11-2111	Barley,	Franc@	15©	2	gg 9875	0.029	61	green		126	0.059/	1.6/
11-2111-02	winter		ÆC			" . Ø?		material		0,000	0.006**	0.016**
11-2111-02-T	Cam-	4		Ţ	0		°~/		²²	~ O}	0.039	0.14
GLP: yes	panil	20°	~(	<b>%</b>	_@		<b>L</b>			رم 0.097		
2011		Europe, South						Øgrain 🗸	55 _Q	< 0.009	0.004	<u>0.013</u>
			\$	Q.,			~	stray "	<i>\$</i> \$	0.18	0.10	0.28
11-2111	Barley, winter	Chaly O	150	02	0.0875	0,022	60	green	@. O*	0.27	0.083	0.35
11-2111-03	winter @		E		4 ,		Ş	material /	$\mathcal{O}$ 0	1.6	0.093	1.7
11-2111-03•T	Lutece		45			) " " " " " " " " " " " " " " " " " " "	)°	O , O	7	0.57	0.20	0.76
GLP: yes		Europe,			<i>y</i>	Ş			14	0.20	0.073	0.27
2011	9	South , O	) ~	, ~	Q"	~~			28	0.085	0.039	0.12
	\$	)					<b>Y</b>	⁄grain	63	< 0.009	0.006	<u>0.015</u>
	Ö		Ì	% @	Y . W	) ~		🌣 straw	63	0.18	0.11	<u>0.29</u>
11-2111	Barley,	thally ?	15Q	0	0.0833	0.00	640	green	0	2.6	0.13	2.7
	Winter (		EC ×	<b>Y</b>				material	13	0.33	0.18	0.51
11-2111-04-7	Ketos		Z)"				)	grain	43	0.013	0.006	0.019
GLP: yes		Europe,		Ø				straw	43	0.91	0.45	<u>1.4</u>
2011	~	South 3	<b>&gt;</b>	y	Z.	,~9"		Straw	13	0.51	0.15	<u> </u>
11-24	Barley,	Spain	150	2	√Q0875 ≈	0.029	69	green	0	2.2	0.15	2.3
11-2111-05		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		_ 	1, 1, 1, 1, C	)* · · · - /	-	material	10	0.31	0.11	0.43
11-2111-05-T	winter Gra-		8 4	Ş.	Ž,			grain	49	< 0.009	0.001	0.010
GLP: yes	Thic		**	2	_W			straw	49	0.35	0.18	0.52
2011		Europe,	2	a	<b>\$</b> _			Suaw	7/	0.55	0.10	0.32
		South										
		A. N				•			_			

^{*} prior to last tournent * prior to last tournent * prior to last tournent * residue in Control sample * Residues for total residue HEC 5725 (determined as HEC 5725 E- and Z-isomer separately and calculated as HEC 5725 (sum of E- and Z-isomer))

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation.

# Overall conclusion on barley

# Northern Europe:

The GAP evaluated for Annex I inclusion for Fluoxastrobin EC 100 will not be supported following the renewal of approval of the active substance. Therefore, a set of new residue data is reported supporting the critical GAP for barley and oats in northern Europe post Annex of renewal for 'Fluoxastrobin + Prothioconazole EC 200' (GAP EU-N 200f Table 6.3 4-2). This GAP is considered in the MRL application form. Since the cGAP and is also the GAP for the representative use in the northern region all residue data supporting the cGAP also support the representative use.

In order to support the cGAP/representative use of fluoxastrobin with the product 'Fluoxastrobin + Prothioconazole EC 200' on barley and oats 1 supplementary tripls are reported using different EC formulations containing fluoxastrobin (EC 200 of EC 150 with prothicconazole or rebuconazole as mixing partners). The trials were performed in 2000 or 2013 and according to GLP principles an all trials fluoxastrobin was applied twice with the final application made at growth stage BBCH 65 or 69 in 2 trials). The application rates ranged from 0.125 = 0.150 kg fluoxastrobin/ha. For some trials two sets of grain and straw samples were collected (e.g. at a 35 d PHI and at a later date). For the summary and MRL calculations always the highest residue tevel has been considered.

Eleven trials are considered adequate to support the critical GAP/ the representative use and are used for MRL calculations.

Table 6.3.1-23: Spinmar of residue data from barkey trials with Juoxastrobin: Sum of HEC 5725 F- and Z-isomer

8			Wa of X	Total residues of HEC 572	25 (sum of E-ar	nd Z-isomer)
Commodity (	Region	Ase pattern	No of trials	Individual Desidue Pevels	HR	STMR
, Q	4			mg/kg)	(mg/kg)	(mg/kg)
Supplementar	'y data 💍					
	, O	2 2		<0.01, 0.01, <0.02;		
Barley grain	~O"	3.L L		< <b>0</b> ,02; 0.0 <del>2</del> , <u>0.02; 0.02;</u>	0.03	0.02
	northern		<b>3</b> €11	0.92; 0.920; 0.026; 0.03		
	northern a Europe	at <b>&amp;</b> out & 0.125 kg/h <b>&amp;</b>		0.14; <b>Q</b> 17; 0.18; 0.22; 0.41; <u>0.44</u> ; 0.44; 0.47;		
Barley straw	v "Oʻ	(C125-0.130	~° ~°		2.7	0.44
		◯kg as (tra)	Q."	0,53; 0.72; 2.7		

# Southern Europe:

The critical GAP of the product 'Diuoxa trobin' Prothioconazole EC 150'(GAP EU-S 2) is supported by a set of new residue data. This cGAP involves 2 applications at 0.0875 kg fluoxastrobin/ha with the last application be made at growth stage BBCH 61 for barley. The cGAP for Fluoxastrobin + Prothioconazole EC 150' is considered in the MRL application jointed to the dossier. The cGAP can be used to establish the risk envelope for the GAP of the representative use.

The representative use supported for the re-approval (Bixafen + Fluoxastrobin + Prothioconazole EC 190) involves a slightly lower application rate compared to the critical GAP (*i.e.* 0.075 kg as/ha for barley) (GAP EU-S 3; cf Table 6.3.1-2).



In total 15 trials are reported in the present dossier which are considered appropriate to support the critical GAP. The trials were performed in 2003, 2010 and 2011 with different EC formulations containing bixafen, prothioconazole and trifloxystrobin as mixing partners. All trials were performed according to GLP principles.

In all trials fluoxastrobin was applied twice with the final application carried out at growth stage BBCH 61-69. The application rate of fluoxastrobin was either 0.075 kg as/ha (6 trials) or 0.0875 kg as/ha (9 trials). The application rates used in the trials adequately support the cGAPs for barley and out since the rates did not exceed the 25% deviation. Since the difference between the application rates of the cGAP and the GAP of the representative use is small the application rates used in the supporting residue trials also fall into the ± 25% range relative to the GAP of the representative use.

As for the northern zone, in some trials two sets of grain and straw samples were collected (e.g. of day 35 and a later date). In the summary table below and for MRL calculations always the highest value has been used. As explained above for trial 102157-04, the elevated residue finding to grain is included in the data set although the Dixon's Q-test highlights this value as an outlier and the experimental conditions showed deviations to the usual sampling procedure (threshing in the laboratory) which may serve as an explanation. The decision to nevertheless consider this result is based on the experience with the data from the previous critical GAP where it also appears that in individual cases significantly elevated residue levels were found in varley grain (of EFSA conclusion, 2007). Therefore the information from the outlier testing is handled with caution because it cannot be ruled out that this is a 'true' residue value and the value was not excluded from the data set.

Table 6.3.1-24: Summary of residue data from barley trials with fluoxastrobin: Sum of PEC 5/25 Eand Z-Somet

	8 × ×	NOX of	Total residue of HEC572	5 (sum of E-and	d Z-isomer)
Commodity Regi	on   Le pattern	No of trials	Individual residue bevels	HR	STMR
<i>(</i> 0	. 9	AN "XX."		(mg/kg)	(mg/kg)
sonshi	1 1 1 . h		0.03; 0.04; 0.34	0.34	(< 0.02)
Barley straw	pe 0.075-0 0.0875		0.03; 0.15; 0.16; 0.23; 0.23; 0.28; 0.29; <u>0.31;</u> 0.53; 0.61; 0.73; 0.74; 0.00; 1.4; 1.7	1.7	0.31

#### Relevance for MRK setting

All supplementary residue data from the northern and southern region were well below the existing MRLs of 0.5 mg/kg for barles and outs as set out with Regulation (EC) 839/2008 or by the (tentative) MRL proposals EESA made in their Reasoned Opinion on existing MRLs (EFSA Journal 2012;10(12) 3012) which was 0.5 mg/kg for both crops.

However the tentative MRL were proposed since EFSA found that the residue data evaluated for Annex inclusion were overdosed relative to the exsting GAP in the southern region and a set of residue trials corresponding to the new cGAP was requested.



### Important note:

For the northern region, the GAP of the representative use and the cGAP for the MRL application are the same (GAP EU-N 2) and pertaining to the same product (FXA+PTZ EC 200). This, all supplementary trials (reference KCA 6.3.1/05; /06, /07, /08) are considered appropriate for MBL setting.

For the southern region, the cGAP (GAP EU-S 2) and the GAP of the representative use (GAP EU-S 3) are different. The cGAP is related to the product FXA+PTZ EC 150, while the representative use of BIX+FXA+PTZ EC 190. All supplementary trials reference KSA 6.3.1/09, \$\text{00}, \text{10}, \text{12} \text{ fare considered to adequately support the cGAP and therefore are appropriate for the MRL calculation. The set of new residue data reported in the present dossier supporting the new critical GAP for fluoxastrobin in southern Europe in barley and bats shall address the deficiency identified in the EFSA Reasoned Opinion on existing MRLs (EFSA Journal 2012;10(12):30(10)).

An MRL application for barley and oats (M-S 3078 01-1) will be submitted along with and as part of

An MRL application for barley and oats (M-\$\mathbb{A}30/\mathbb{S}\mathbb{O}1-1) will be submitted along with and as part of this supplementary dossier in order to obtain final MRLs for the two crops.

MRL calculations for the supplementary data are provided in chapter CA 6.7.2

# CA 6.3.2 Wheat and Rye

Representative uses for renewal of approval of flaoxastrobin

The representative uses supported for the renewal of approval for fluoristrotor are summarised in Table 6.3.2-1.

Table 6.3.2-1: Summary of the GAR of the representative uses supported for renewal of approval for fluorastrobin

Crop Region	<b>E</b> roduco (	Maxim Number of Appli- cations	Migimum Application Onterval (days)	Growth Stage (BBCH)	Maximum Rate fluoxastrobin per application (g a.s./ha)	Minimum PHI (days)
Wheat (incl. EU-N rye	FX OPTZEC		94-21	30-69	150	*
Wheat (nicl. triticale),	BIX FXA PTZ EC 100			30-69	87.5	*

EU-N = northern Europe/EU-S Southern Europe/

* The PHI is defined by the growth stage at the last application

FXA+PTZ ©C 200 mitaining 100 galuoxastrobin/L + 100 g prothioconazole /L

BIX+FX PTZ Let 190 containing 40 g bixafen/L, 50 g fluoxastrobin/L, 100 g prothioconazole/L

For the northern zone, the cGAP for the active substance evaluated in the EU peer review will not be further apported post AIR but will be replaced by a new cGAP examined with the supplementary data. For the northern region, the GAP of the representative use and the cGAP for the MRL application are the same (*GAP EU-N 2*) and pertaining to the same product (FXA+PTZ EC 200).



For the southern zone, the supplementary data reported in the present dossier were generated to support the critical GAP in the southern region (GAP EU-S 2) for the product 'Fluoxastrologi' + Prothioconazole EC 150'). The GAP of the representative use of 'Bixafen + Fluoxastropin + Prothioconazole EC 190' involves slightly lower individual application rates (QP EU-S 3). Table 6.3.2- 2 summarises the old and new critical GAPs for the compound and the GAPs of the representative uses.

Summary of the previous and new critical GAPs and the GAP of the representative uses for fluoxastrobin in/on wheat and rve **Table 6.3.2- 2:** representative uses for fluoxastrobin in/on wheatand rye

GAP no ^{a)}	Crop	Region	Product	Maxim. Number of Appli- cations	Minim. Applica- tion Interval (days)	Growth stage (BBCH)	Maxim Rate fluoxa- Solobin per application (g ag.//ha)	Marim. PHI (days)
Northern E	urope: Critic	cal GAP ev	aluated for Anı	nex l'inclusio	n in <b>O</b> e EU	peer review	v (wWnot be re-no	ewod)
	Wheat Rye	EU-N	aluated for And		y (reteroo growth Dage)	\$26-69 \$		35
Northern E	urope: GAP ded in MRL	of the repr	resentative use n form)	= Critical GA	Æ√for flv∞xa	strobin Pos	stAIR Ö	
EU-N 2	Wheat Rye	ÉÚ-N	FXA TTZ EÇ 200		\$\frac{1}{21}	30469	150	*
Southern E	urope: Crit	al GAlev	aluated for Ani	nex Anclusio	n in the EU j	poř revidy	v (obsolete)	
EU-S 1	Wloat Qye	EU-S	FXA EC		14 Frefer to growth stoge)	##-69	200	35
Southern E	irope: Critic	akGAP fo	fluoxortrobin FXX+PTZ\	GAP includ	ed@n MRL©a	pplication	form)	
EU-SQ,	Wheat Rye	EUS	FXA+PTZ\ EC 150		14-21	30-69	100	35*
Southern E	urope: AP	of the rep	sentative use	<i>y</i> 0	Ď			
EU-S 3	Wheat (incl. Circlincl) Triticale) Rye	Py-S	BYX+FXA+ PTZ BC190		14-21	30-69	87.5	*

EU-N = porthern Europe EU-S = southern Europe Europe a) for sotter reference in the text below immbers the assigned to the different GAPs
* As per growth stage the PHP of 35 days was due to a former requirement in France but will not be applicable Post AIR)
FXA EC 100: copy fining 100 g flux astrobio L
FXA+PTZ EC 200 containing 100 g flux astrobio L
FXA+PTZ EC 200 containing 100 g flux astrobio L
FXA+PTZ EC 200 containing 100 g flux astrobio L
FXA+PTZ EC 200 containing 100 g flux astrobio L

FXA+PTZ EC 50 containing 50 g fluoxastrobin + 100 g prothioconazole/L BIX+FXA+PVZ EC 50 containing 40 g bixafen/L + 50 g fluoxastrobin/L + 100 g prothioconazole/L



Representative use evaluated for Annex I inclusion (as reflected in the baseline dossier)

Table 6.3.2- 3 summarises the critical GAP evaluated in the EU peer review.

Table 6.3.2- 3: Summary of critical GAPs evaluated for Annex I inclusion and used for the EU MRLs of fluoxastrobin(GAPs EU-N 1 and EU-S 1)

Crop	Region	Mode of application	Maximum Number of Applications	Min. interval between applications	Growth stage	Macomum Rote Sya.s./ha) per application	Policy Space of the state of th	Reservence
Wheat Rye	EU-N EU-S	Overall Spray	2	14 0 (refer@ growth Aage)	start 26 to BBCH	. <i>W</i>	7 35 7 35	Report (2000) 102@-84

EU-N = northern Europe

EU-S = Southern Europe

Summary of the trials evaluated in the Far peer veview

With the Annex II dossier reside data in the following criteral God were submoded:

Seed treatment of wheat grant (10 g fluoristronbin/dt seed) was followed by 2 spray applications at application rates of 200 g cos./ha Op to g with dage BBCH 69. The representative formulation for the any application for the Monog of Applications of the Monog of the Mo



Table 6.3.2-4: Overview of European residue trials conducted in wheat per geographical region evaluated in the EU peer review (GAP EU-N 1 and EU-S 1)

Region	GAP	Crop	Formu-	Nu	mber of Trial	S	Report-No.	
-8	(appl. rate for		lation		tion period	Total	Doc NO	
	fluoxastrobin)			1999	1999-2000		Ö	~ .J'
EU-N	ST 10 g a.s./dt and SPI 2 x 200 g a.s./ha	Wheat	FS 110 and EC 100	4		8 P	RA-2013/99 M; 2001; M RA-2016/99	30861 <u>1</u> 301-1 30802-321
EU-S	SPI 2 x 200 g a.s./ha	Wheat	EC 100	2 <b>5</b>			RA-2016 9 085052-01-1	2001;
	ST 10 g a.s./dt and SPI 2 x 200 g a.s./ha	Wheat	FS 110 and EC 100				085052-01-1 085052-01-1 08922501-1	2001; M- 22001; Q-

ST: seed treatment

SPI: spray

EU-S: Southern Europe

FS 110: flowable concentrate containing 100 g fluoxastrofin/L and EC 100: emulsifiable concentrate containing 100 g fluoxastrofin/L

Table 6.3.2-5: Over all suppriary of residue date for H what trials evaluated the ISP peer veview (GAIOEU-NY and EU-S 1)

		<u> </u>	e (	a.		
Application PC Consider For	mu- Fon Sai	nplo n	Resig	ze level (	mg/kg)	Ref.
Application Byte Region For	#OD <i>^ \\</i>	Stini S	Min.	Max.	STMR	
		7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -		<0.02	<0.02	EFSA Scientific
a.s./ha	St	razo 8	0.14	0.97	0.63	Report (2007) 102
Seed treatment (10 g a dit seed) follow by 2 spray applications at 200		rain 8	<0.02	0.02	<0.02	EFSA Reasoned Opinion
a.s./ha or 2 spray applications at 200 g a.s. Qualons	100 WW 111 St	raw 8	0.50	6.0	0.76	2012;10 (12):3012

EU-N: north in Europe U-S: southern Europe



Evaluation in the EFSA Reasoned Opinion on existing MRLs (EFSA Journal 2012;10(12):3012)

Northern Europe: The trials evaluated in the EU peer review for AI inclusion were found to be compliant with the old critical GAP (fluoxastrobin EC 100; *GAP EU-N 1*).

Southern Europe: The use pattern evaluated in the EU peer review for the EC 100 straight formulation and also addressed in the EFSA Reasoned Opinion has been replaced by the new critical GAP for the mixture product 'Fluoxastrobin + Prothioconazole EC 150' which involves lower individual rates (GAP EU-S 2). However, no data GAP was identified for wheat / Eye likely due to the fact that residues in grain remained always at or below the LOQ in both climatic regions when applied according to a more critical GAP.

# Re-approval processs / new studies

Northern Europe: A set of new residue studies is reported supporting the critical GAP for wheat and rye in northern Europe post Annex I renewal for Pluoxastrobin Prothioconazole EC 200 GAP GU-N 2). This GAP is considered in the MPL application form ointed to the clossic. Since the cGAP is also the GAP for the representative use in the northern region, all residue data supporting the cGAP also support the representative use.

This GAP involves 2 spray applications at 150 of fluoxastrobia ha.

Southern Europe: A complete data package of supplementary trials was generated supporting the critical GAP for wheat (Flavoxastrobin + Prothicconazole EC 150, GAP ELS 2) which is included in the MRL application form jointed to the dossier. The GAP can be used to establish the risk envelope for the GAP of the representative use for Bixafer Fluoxastrobin + Prothicconazole EC 190' (GAP EU-S 3). The representative use involves a slightly lower individual application rate compared to the cGAP (87.5 g a.s. Tha vs. 000 g a.s. ha; cf Table 6.3.2 2).

According to the EL guidance document SANCO 7525/VI/95 rev. 90 of March 2011 ("Guidelines on comparability, extrapolation, group total requirements for setting MRLs") the data obtained from trials conducted on wheat can be extrapolated to rev.

Trials reported in support of the GAPs representation uses in the northern and southern climatic zone are summarised in Pable 6.3.2-0



Table 6.3.2- 6: Supplementary residue trials conducted per geographical region and vegetation period

Year   GAP rate   Isar appl.   Formulation   No of trials   number   Reference		periou				, Q
2 x 150 g a.s./ha   BBCH 69   EC 200 (100 g/L fluoxastrobin   2 (4*)   2011/00*   2002; Mp09152F   2002   Mp09152F   2001/00*   2 x 150 g a.s./ha   BBCH 69   EC 150 (75 g/L fluoxastrobin   75 g/L tebuconazole)   2 x 150-158 g   a.s./ha   BBCH 69   EC 200 (100 g/L fluoxastrobin   100 g/L prothicconazole)   3	Year		Formulation			Reference
2000   BBCH 69   100 g/L prothioconazole)   (4*)   2011/00*   2002; 304913 LF	Wheat fo	liar spray residue t	rials – northern EU			
2 x 150-158 g   a.s./ha   BBCH 69   BCH 69	2000				A- 2011/00*	2002; M009152}-
2013 a.s./ha BBCH 69  2013 a.s./ha BBCH 69  EC 200 (100 g/L fittoxastrobin, 100 g/L prothioconazole)  2013 a.s./ha BBCH 69  EC 200 (100 g/L fittoxastrobin, 100 g/L prothioconazole)  EC 200 (100 g/L fittoxastrobin, 100 g/L fittox	2000	_		1 (4**)	R2A- 2060/00*	
2013 a.s./ha BBCH 69 100 g/L thioxastrobin BBCH 69 100 g/L thioxastrobin 2 13-2159 301715-01-1  TOTAL northern EU region  Wheat foliar spray residue trials – southern EU  2003 2 x 75 g a.s./ha BBCH 69 50 g/L prothioconazole, 75 g/L trifloxystrobin, 100 g/L prothioconazole, 100 g/L prothioconazole, 100 g/L prothioconazole, 100 g/L prothioconazole)  2 x 87 g a.s./ha BBCH 69 50 g fluoxastrobin/lg 2 10-2156 2011; M-414694-01-1  2010 2x 100 g a.s./ha BBCH 69 100 g/L prothioconazole) 7 10-2156 2011; M-399682-02-1	2013	a.s./ha	EC 200 (100 g/L fluoxastrobin, 100 g/L prothioconazole)	3 Q	13-2138	
Wheat foliar spray residue trials – seuthern EU  2003  2 x 75 g a.s./ha BBCH 69  2 x 87 g a.s./ha BBCH 69  2 x 87 g a.s./ha BBCH 69  2 x 100 g a.s./ha BBCH 69  3 x 100 g a.s./ha BBCH 69  4 x 100 g a.s./ha BBCH 69  5 x 100 g a.s./ha BBCH 69  6 x 100 g a.s./ha BBCH 69  6 x 100 g a.s./ha BBCH 69  7 x 10-2156  2 x 10-2156	2013	a.s./ha	EC 200 (100 g/L Alioxastrobin, 100 g/L protificconazole)	2 %	13-2159	
2003 2 x 75 g a.s./ha BBCH 69	TOTAL	northern EU regio		(13*)		
2003 BBCH 69 BCH 69 BBCH 69 BB	Wheat fo	liar spray residue t	rials – søythern EU 🖇 🥡	4		
2010 2 x 87 x g a.s. ha BBCH 60 50 g fluoxastyobin/L 2 10-207 ; 2011; M-414694-01-1 2010 BBCH 69 80 g/s prothioconazole) 7 10-2156 2011; M-399682-02-1	2003		350 g/L prothic conazole,		RAS 2019/03 %	
BBCH 690 300 gA prothioconazote) 7 10-2136 2011; M-399682-02-1	2010	_ (1 \	🖴 50 g fluoxastrobin/Jc, 🗡 🕜	\$\frac{1}{2}\$	10,2 <b>2</b> 07	; ; 2011; M-
TOTAL southorn Filmogic V V V V V V V V V V V V V V V V V V V	2010	· · · · · · · · · · · · · · · · · · ·		© 7 ~	10-2156	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
TOTAL southern Edwegion 2 2 2 2	TOTAL	southern EO regio		W _A		

^{*}A set of 4 trials from study RA-201/1/00 and RA-2010/00) was conducted side-by-side reducing the effective number of independent trials to 8 in the fore also not considered. The trials were conducted at the same site but with different experimental conditions (formulations) and therefore the trials with the highest residue were selected and counted from the respective study.



## **Supplementary field trials – northern Europe:**

Report: KCA 6.3.2/09 ; 2002; M-091521-01-1

Determination of residues of HEC 5725 & JAU 6476-desthicon winter where Title:

following spray application of HEC 5725 & JAU 6476 200 C in

Great Britain and Germany

Report No.: RA-2011/00

Document No.:

M-091521-01-1

Guideline(s):

Directive 91/414/EEC, residues in oven treated products, food and direct; July 15, 1991, Annex II, part A, point 6 and Annex III, part A, point 8, Residues are or on Treated Products, Food and Feed

Guideline deviation(s):

none

yes

Test system

In 2000, a set of 4 residue trials was conducted in northern Europe. The studies were located in the north of France, the United and Germany. The trials were neglected in the located in the north of France, the United and Germany. The trials were neglected in the located in the north of France, the United and Germany. The trials were neglected in the located in the north of France, the United and Germany. The trials were neglected in the located in the locate side with trials from study RA-2060 00 (Flooxastrobin + Vebuconazote EC 150) reported below. In each trial, wheat was treated twice at a product rate of 1 L/ha Flux astrobio + Prothioconazole EC 200' (100 + 100 g/L) corresponding to 0.15 kg throxastrobin/hQ. The water the was 300 L/ha in all trials. The time of the first application was when the flag leaf sheath was opening (BBCH 47) in 3 trials and beginning of heading (BBCH 1) in one trial. The second treatment was performed at the end of flowering (BBCH 69) in 3 trials and at early dough stage (BBCH 81) for one trial. The spray interval was 19 days in 3 trials and 37 days in the total whore the final application was delayed.

Samples of ear and 'rest of plant' were taken prior to and mmediately after the final application as well as on day 35 following the final application in three totals. Grain and straw samples were collected at harvest 2-61 days after the final theatment and additionally on day 35 in the trial with delayed application.

Residues of fluoxas pobin (MEC 5) 25 E-Romer HEC 5725 Z-isomer and the total residue HEC 5725. were determined according to method 00649 2001; M-137093-01-1). The method was submitted with the initial Annex I dossier and evaluated in the EU peer review. The limit of quantitation was 0.045 mg/kg for Muoxas robins/HEC 3725 E-isomer), 0.005 mg/kg for HEC 5725 Zisomer and nominally 0.05 mg/kg for the calculated total residue for straw and 'rest of plant'. For ear and grain, the LOQ was 0.018 mg/kg (E-somer), 0.002 mg/kg (Z-isomer) and 0.02 mg/kg for the calculated total residue.

# **Findings**

- Method performance: Wethod 00649 was validated by recovery experiments prior to and concurredly with the desidue analyses by spiking control samples with HEC5725 for all matrices relevant to this study. Procedural recoveries for both analytes were obtained from 'rest of plant', straw and grain Sear. Mean and individual recoveries at fortification levels between 0.018 -038 mg/kg (grain, ear), 0.045 – 0.45 mg/kg (straw, rest of plant) for HEC 5725 E-isomer and 0.002 - 0.02 Prig/kg (grain, ear), 0.005-0.05 mg/kg (straw, rest of plant) for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD <20%. All results of the method validations were in accordance with the general requirements for residue analytical methods.



Table 6.3.2-7: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on wheat

The LOQ is marked in bold

	The I	LOQ is mark	ed in bold						*/ &	Y Ô	Ŋ.
Study Trial No.					Fortifi- cation		Rec	overy (	%) \$\int \text{Mean} \text{Mean} \text{Q7}		
Plot No.					level (mg/kg)	Į.	1			S C	
GLP Year	Crop	Portion analysed	a.s./metabolite	n	(mg/kg)	Individual recoveries	Min	Max €	Mean	RSD W	\$ \$
RA-2011/00	Wheat, winter	Rest of plant	Fluoxastrobin	6	[⊮] 0.045	885,89; 99,84; 85;86	84	91	<b>%</b> 7 C	3.0	
R 2000 0144/4			<i>Q</i>	4	°0.45 °°	95: 170;	% Ø95	910 O	, <b>j</b> ož	©' 56.0	
0144-00					overall .	100; 101	84	110	93	9.G °	
R 2000 0145/2			HEC 5725 Z-Isofrer	76 s	0.005	85; 8 <del>5</del> 89, 76;	<b>7</b> 6	<u> 8</u> 9	848	93° \$5.6	
0145-00					\$\int_{0.05}^{\infty} \pi	86; 80 91: 94		195	97\$	6.2	
R 2000 0146/0 0146-00		Q _n		100	over	105:98		گُ [*] 105 پر	.89	9.6	
R 2000		Ş	total residue	6	0.05	88; 89;© 90; 83%	83	900	87	3.0	
0147/9 0147-00				40	0.5	85; 86 Q5; 109;	95	ر 109	102	5.6	
				10	overall,	0102; 101	83	109	93	9.3	
GLP: yes 2000		\$\text{gtraw}\$	1 1000/10301/00/111	6%	0.043	86; 87; 86; 68;	68	87	80	8.8	
				6	0.45	*78; 7 <b>8</b> 72**73; 7100;	71	100	78	14.3	
	~			Ő ₹12 (	ى {@verall	3; 77	68	100	79	11.4	
	, P		HEQ 3725 . O	6	0.095	81; 86;	70	90	80	9.0	
	W ,C		HEQ \$725 Z-Isomer	ő		90; 70; 77; 76					
				6	0.05	83; 78; 79; 100; 69; 80	69	100	82	12.5	
		4		P ₁₂	overall		69	100	81	10.5	
			total residue 57 HEC 5725	6	0.05	83; 87; 87; 68; 78; 78	68	87	80	9.0	
. S				6	0.5	73; 73; 72; 100; 73; 77	72	100	78	14.0	
4. A	2 2			12	overall	, 5, , ,	68	100	79	11.2	
		Creain*	total residue HEC 5725	6	0.018	100; 93; 96; 97; 97; 99	93	100	97	2.5	
<u> </u>				8	0.18	91; 77;	77	97	92	6.7	
						93; 95; 97; 94; 92; 93					
	1	l	I	1		- <del>-</del> ,	l	1	l	1	1



Study Trial No. Plot No.					Fortifi- cation level		Rec	overy (	%) Mean	
GLP Year	Crop	Portion analysed	a.s./metabolite	n	(mg/kg) (mg/kg)	Individual recoveries		Max	Melan	
Tear		anarysed		14	overall	recoveries	77	100 %	94 6	5.92
			HEC 5725 Z-Isomer	6	0.002	97; 101 95; 104, 88; 02	88	104	96	
				8 <u>4</u> ©	0.02	90,77; 100;94,9	77.C	100	92	8.00
				D C		/96; 93 89;4100	~ '	Ď,		<b>V</b> '
				149 E	overall	99: 94:	77 ®	104 <u>.</u> 99	94 4	7.3 ·
			HEC 5725	, Q	l	96; 97	ĺŎ.			<b>2</b> 0
				<b>8</b> 7	29 ⁴ ~	91; 77; 94; 95;	77	970	92	6.8
		Q1	R à à	\$		97; <b>%</b> ;   92, 94				
		Ş		, 14	overall		77	990	94	5.7

^{*}Sample Material ear is validated by recoveries for grain

- Storage periods: The maximum storage period of deep-frozen treated samples was up to 250 days for fluoxastrobin (HEC \$725 E some) and HEC \$725 Z isomer and is overed by the storage interval investigated in the storage stability studies.

Study number Q	San	iple material 💇 🔠	√ Maximu	m storage period (	days)
<u> </u>	© Gra	in 🏂		© ₄ /209	
D A S 01 1 /00	≼ , Stra	wy A C	) "O"	210	
RA 3011/00	© Eag		\$ 75	250	
<b>⟨</b> √, '	Res	of plant 🗬 🐩		<b>247</b>	
		. ()	/ · × · · ·	7	

-Residue results. The findings from the car and rest of plant' samples taken prior to the final application of mmediately thereafter show that residues declined well with time.

At harvest residues in grain were always < 0.02 mg/kg for the calculated total residue HEC 5725 and ranged from 0.31 – 0.86 mg/kg in straw from those trials with proper application date. In trial R 2000 0147/9 with delayed application at BBClt 81 straw and grain residues were not elevated, however, this trial may be disregarded for MRC calculation and the STMR estimate. Since all trials were conducted side-by-side with the trials from stray RA 2060/00 below only the trials (0145/00 in France and 0146/00 in the UK) which from the highest value from a pair of trials performed at the same location are taken into account for calculation of the MRL and STMR estimate. The values considered for MRL calculation STMR estimate are underlined in the table below.

- No sesidue above the respective LOQs were determined in any of the corresponding control samples of grain, or, straw and rest of plant.



Table 6.3.2- 8: Application data and residues of fluoxastrobin (HEC 5725 E-isomer),
HEC 5725 Z-isomer and the total residue HEC 5725 in / on wheat treated with a
fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole EC 200) in the
field in northern Europe

											. کی	<i>y</i> 0)
Study Trial No.					Applic	ation				®esidues ₫		
Plot No.							•		×	7		
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DAL (days)	Fluoxa- strobin	THEC \$ 5725 29	total residue
							W.			(mg/kgX)	Isomer (mg/kg)	TEC (2) 5725 (2)
							<b>&gt;</b>					(mg/kg)
RA-2011/00 R 2000	Wheat, winter	S-	200 EC	2	0.150	0.050	65 (§)	ears.		0.14 4.2	0.05	©19 ©4.5
0144/4 0144-00	Tarso				29	O' <u>k</u>	W [*] I		¥ 35 @	0,00	0.05 0.27 0.03 0.09	0.11
GLP: yes 2000		Euro pe, North						rest of plant		0.24 1 &	0.09	©.33 1.9
				Õ				S O	35		0.09 642 6.10	$\bigcirc$ 0.32
			ć	<b>Y</b>	, Ö			straw		0.21		0.31
		~			/ <u> </u>		7	grain	610	≤0.018	© 0.002	< 0.02
D. 4. 2011/00	***		٥	8	©150	Ø	of o	ľ		7 0.08		0.00
RA-2011/00 R 2000 0145/2	Wheat, winter	France F	200 EC	2	(	Ø50		Çvar O (4)	0* \( \) 0 35\( \)	· ~~v	0.02 0.07	0.09 2.2 0.12
0145-00	Shango	Euroft,				5		,		(20) (7.09	0.03	0.12
GLP: yes 2000		North		( <u>/</u>	~			sest of plant	0*5	0.19 2.7	0.06 0.09	0.25 2.8
			È	Oʻ	40			plant	35	0.53	0.22	0.74
							, O **	Straw ~	48	0.41	0.18	0.59
				<i>)</i>				grain	48	< 0.018	<0.002	<u>&lt;0.02</u>
RA-2011/00 R 2000	Wheat,	Lanted A	\$200 EC≽	E	0.150	0.050	69	ear	0* 0	0.06 2.1	0.007 0.10	0.06 2.2
0146/0	W 1 1 (	GB-		<b>y</b>	R				35	0.11	0.10	0.15
0146-00 GLP: yes 2				<b>Q</b>			<b>y</b>	rest of	0*	0.14	0.05 0.11	0.19
2000	2			7	Q,			plant	0 35	2.4 0.45	0.11 0.20	2.5 0.65
		Europe, (	, V ,	Q J		<b>Y</b>		straw	58	0.60	0.26	0.86
		Europe, D		4	Q			grain	58	<0.018	<0.002	<u>&lt;0.02</u>
RA-2011/00 R 2000 0147/9	Wheat, &	Germany D-	200 EC	2	0.150	0.050	81	ear	0* 0	<0.018 1.7	<0.002 0.04	<0.02 1.7
014%9	Flair								A.4.	-0.045	0.005	0.05
GLP: yes								rest of plant	0* 0	<0.045 2.9	0.005 0.09	0.05 3.0
2000								I see				



Study Trial No.					Applic	ation				Residues	3	
Plot No. GLP	Crop	Country	FL	No	U	kg/hL	GS	Portion	DALT	Fluoxa-	HEC	Stotal "G
Year	Variety				(a.s.)	(a.s.)		analysed	(days)	stresin (100g/kg)	S725 Z- Isomer (mg/kg)	residio HFC 5725 Ong/kg)
		Europe, North					, O	©straw grain 4	35	0.11 0.08 0.08 <0.018	0.06	0 6 0 11 0 11 0 <0.02
							, ,		35 42 2	<b>₽</b> 018	0.002	0.02 0.02 0.032

* prior to last treatment
Residues for total residue HEC 5725 (determined as HEC 5725) and Lisomer Separately and calculated as HEC 5725.

Note: For the calculation of the total residue unrounded values values given in the table are used.

Underlined values are used for MRL calculation

Report:

Determination of residues of fluoxastrobin (HEC 5725) and tebuconazole (HWG Title:

1608) in/op winter wheat the spray application of HEC 5/25 & WWG 1608 150 EC

Morthern France Great Britain and Germany

RA-20**∕50**/00 ⊘ Report No.:

Document No.: M-106≱410-02€/Ì

Directive \$1414/FCC, residues in or on preated products, food and feed; July 15, Guideline(s):

1991, Amex II, part A, point 6 and Annex III, part A, point 8, Residues in or on

Treated Products, Food and Fled

Guideline deviation(s): **GLP/GEP:** 

# **Test system**

residue trials was conducted in norther Europe ( , the north of France, the In 2000, a set of (3) and Germany), using 'Fluoxactiobin' Tebuconazole EC 150' (75 +75 g/L). The trials were performed ode-by-side with arials from study RA-2011/00 (Fluoxastrobin + Prothiocogazole EC 150) reported above.

In each fail, wheat was treated twice at a product rate of 2.0 L/ha 'Fluoxastrobin + Tebuconazole EC 150' corresponding to 15 kg fluo sestrobin ha. The water rate was 300 L/ha in all trials. The spray applications were carried out at growth stages 47-51 and 65-69 except for trial R 2000 0273/4. In this trial, the growth stage at second application was delayed (BBCH 81) since the last treatment was conducted 35 days prior to the expected date of harvest. The spray interval was 19 days in 3 trials and 37 days in the trial where the final application was delayed.

Samples of ear and 'rest of plant' were taken from the treated plots before the last application, on day 0 after the last application and on day 35. At harvest time, grain and straw samples were taken between day 42 and 61 and on day 35 in addition in the trial with the late application.

Two additional grain samples were taken from the treated plots in studies R2000 0269/6 and R 2000 0273/4, each, for processing purposes. The processing studies are reported in chapter CA 6.5.3 (report no 3060/00).



Residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725, were determined according to method 00649 (2001; M-137093-01-1). Aspects relative to the analytical method were as described above for study RA-2011/00.

# **Findings**

- Method performance: Method 00649 was validated by recovery experiments prior to and concurrently with the residue analyses by spiking control samples with HEC5725 for all matrices relevant to this study. Procedural recoveries for both analytes were obtained from 'rest of plant', straw and grain / ear. Mean and individual recoveries at fortification levels of 0.018 mg/kg (grain ear), 0.045 mg/kg (straw, rest of plant) for HEC 5725 E-isomer and 0.002 mg/kg (grain, ear) and 0.005 mg/kg (straw, rest of plant) for HEC 5725 Z-isomer were within the range of 70 d 10 % with RSD <20%.

Table 6.3.2- 9: Procedural recoveries for fluorastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on wheat The LOQ is marked in fold

Study				Y	Fortifi.		ê Re	covers	(%) <del>\</del>	
Trial No.				(	cation		Pre			
Plot No.		~			le <b>v</b> €l		ð _?	, O	& ,	
		\$ P	(A) A	. "0"	le Øl (mg/kg)		,			
GLP	Crop	Portion	a.s./metabolite	⊮ n	(mg/kg)	Individual	Min	Max	Mean	RSD
Year	1	amalysed		4		Individual recoveries	Ş',			
RA-2060/00	Wheat,	Rest of plant	Fluoxastroon	B	0.045	<b>8</b> 5; 87;		) 100	91	5.0
	winter «	plandor		)   		₽88; 88;	4			
R 2000		. J (			D _ C	88; 90;				
0269/6					S,	88, 90, 92, 92; 96, 100	<b>X</b>			
0269-00					overall 4	<b>3</b> 0, 10 <b>0</b> 0	85	100	91	5.0
R 2000	Wheat, winter winter		**************************************	10	(/ S)	00805				
0271/8	·		OHEC <b>5</b> 725 Z-Isomer	10 @	<b>70.005</b>	80×85;	80	96	90	6.0
0271-00			Z-Isomer		4 G	91: 91:				
02/10%	%		4, \$7 %			94; 96;				
R 2000	.\$				8	96; 96				
0272/6	Q .			10	overall		80	96	90	6.0
0272-00	), (Q_		total residue	ĴÓ	0005	85; 87;	85	100	91	5.1
*	Ç C	~ ~	PAEC 5795		<b>&gt;</b>	88; 88;				
R 2000 0273/4		O* .\$		Q Q		88; 91; 90; 94;				
0273/4	<b>%</b>	Q Q				96; 100				
0273-00 ₩ « n	Ş	A		10	overall		85	100	91	5.1
4	<b>*</b>	Frain*	Fluoxastropio	6	0.018	91; 92;	91	103	95	4.8
GLP: yes	<i>@1</i>	Srum O	Fluoxastrou	O	0.010	92; 95;	71	103	75	1.0
2000	4 . 4					97; 103				
			,	6	overall		91	103	95	4.8
			HEC 5725	6	0.002	90; 93;	86	97	93	4.4
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	S .1		Z-Isomer			86; 93;				
						96; 97				
	10°	Grain*		6	overall		86	97	93	4.4
GLP: yes 2000			total residue	6	0.02	91; 91;	91	102	95	4.4
			HEC 5725			93; 95;				
						96; 102		400	0.5	
				6	overall		91	102	95	4.4



Study					Fortifi-		Re	covery	(%)	٥
Trial No.					cation					
Plot No.					level					
					(mg/kg)			>		
GLP	Crop	Portion	a.s./metabolite	n	(mg/kg)	Individual	Min	Max	Meash	RS D
Year		analysed				recoveries	-4			
		Straw	Fluoxastrobin	5	0.045		<b>₩</b> 8	72	<i>7</i> 9°.	©Ž.6 √
					Ž,	69; 71; <b>4</b>	•	Ď		\$2.6 L
				5	overall	JO.	68	ZŽ	7,85	<b>Q</b> .6 g
			HEC 5725	54	0.005	69; 70: 72: ©	。64	⁹ 74	70 (	) 5.4 ©
			Z-Isomer	þ		70; 72; 74 ×	Q ~			
			<b>\$</b>	5	overati)		<b>4</b> 64	.\$4	70/	3.4
			total residue	) *}}	0.05	<b>8</b> ; 69; 0	68	°71 €	70	1.9ǰ
			HEC 5725	5 L	overall	89; 71; 71	\$\int\tag{\int}{68}	\$\tag{\pi}{\pi}1		1.9ç°

^{*}Sample material ear is validated by Pecoveries for grain.

*Sample material ear is validated by Pecoverres for grain."

- Storage periods: The maximum storage period of deep-frozen treated samples was up to 419 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is govered by the storage interval investigated in the storage stability studies

Study number	Sample material Maximum storage period (days)
	Gran J Sy 7 7
RA-2060/00	Straw S S S S S S S S S S S S S S S S S S S
KA-2000/00	Ear V V V V 419@
و من المناسبة	Rest of plant 40

- Residue results: As for the previous study, the findings from ear and 'rest of plant' samples taken prior to the final approcation immediately, thereafter and at day 35 post treatment show that residues declined well with time.

At harvest, residues in grain were always 0.02 mg/kg for the calculated total residue HEC 5725 and ranged from 0.162-0.62 mg/kg (day 28 - 61) in star from those trials with proper application timing. In total R 2000 0273/4 with delayed application at BBCH 81 grain and straw residues were not elevated, however, this tripping the disregarded for MRL calculation and the STMR estimate.

Since at trials were conducted side-by-side with the trials from study RA-2011/00 above only the Athat shows the highest value from a pair of trials performed at the same trial (0269/00 in location is taken into account for calculation of the MRL and STMR estimate.

The values considered for MRL calculation STMR estimate are underlined in the table below.

- No residues above the respective LOQ were determined in any of the corresponding control samples of grain@ear, straw and rest of plant'.



Table 6.3.2- 10: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on wheat treated with a fluoxastrobin EC formulation (Fluoxastrobin + Tebuconazole EC 150) in the field in northern Europe

											A	9 (0)
Study				Application					Residues O			
Trial No. Plot No.									/A	,		
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DAT/T	Fluoxa-	MEC ~	tota
Year	Variety	Country	12	1,0	(a.s.)	(a.s.)		analysed	(days)	strobin	5725 <b>Z</b> O Isome	residue
							\$	a a	OA	(mg/kg)	Isomer (mg/k/g)	AGEC &
						4	1	Q	, S		(mg/spg)	్రో 5725 @ (mg/k⁄s)
D.A. 20(0/00	3371 4		150	2	0.150	0.630	(5	· *>	, Ø ₁	0.19		(ing/ <b>N</b> g/
RA-2060/00 R 2000	Wheat, winter		150 EC	2	0.150	0.080	65 8	agar 		2.5	0.06 6,11	25.7
0269/6	Tarso		20		Ċ	) <u> </u>			350	<b>1</b> 5		« 0.21
0269-00		F			A		, @		, O,	~	0.05	
GLP: yes		Europe, North						rest of	<b>₽</b> -1 (	0.38,	0.10	<b>20</b> .48
2000		North		_@		7	D" .	Splant C		2.07 Ø2.18	Ø!11	2.2
			(	8			~		32	W.18	Ø 0.07	0.25
			4		<i>\@</i> '	*\ \frac{1}{2}'					0.10 0.10 0.11 0.07 0.902	
			~	.//		Q (	Ö,	grain (	O 61	(0.0 <b>6</b> )	<0.002	<u>&lt;0.02</u>
		al al	<b>%</b>		1 ."	Ô	r d				<b>4</b>	
		≪	" (Ly	ľ	Ş	4	<i>~</i>	straw	<b>60</b>	© 0.46	O 0.18	<u>0.64</u>
		_	$\bigcirc$	- (		<u> </u>		\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		√' Ø		
RA-2060/00 R 2000	Wheat, winter	France	150 EC	2 %	0.150	0.050 &	<b>/</b> 69	ear &	0.25	20:05	0.01 0.06	0.06 1.3
0271/8	Shango		> <b>a</b> LC / ≪	D J	0				0	₹ 70.09	0.03	0.11
0271-00	Snango		Ş	*	Ø.	Š	Ž	(I)	0	~~		
GLP: yes	گِ ا	Europe		*	<b>)</b> ~	/ %	P	Prest of		0.14	0.04	0.18
2000		North	¥ (	$\searrow$		/\$/			*0,	1.4	0.07	1.4
	8		C	1	W.	, Q			© ³⁵	0.23	0.10	0.33
6	ĈQ	.U		4			O ⁷	8	Y			
	*	0 3		Ö	1		~	strawy	48	0.22	0.09	0.31
Ky v			) & 1	~	Q"	°~	~ ~	°~,				
		9" 4"	G.	9/				gain	48	< 0.018	< 0.002	< 0.02
	Ö			W M		0		<u> </u>				
RA-2060/00 R 2000	Wheat, winter	Upited	7 150 E	Z	0.150	0.056	69	ear ear	0* 0	0.07 1.7	0.008 0.08	0.08 1.8
0272/6	, Abbot	ĞB-	EC	ير ا		\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	ď		35	0.10	0.03	0.14
0272-00	<b>A</b>		\$	25		ď Z	J.					
GLP: yes				<b>(</b> )				rest of	0*	0.22	0.07	0.29
2000				1	O V			plant	0	2.1	0.07 0.11	2.2
~~				A		S.			35	0.14	0.07	0.21
	@ \	Europe,		Ø)	\ \f\							
		TYORIN &		7	~			straw	58	0.11	0.05	0.16
,		Europe, North	<b>%</b> 1	~	<b>D</b>							
~ W	Y ÉŞ		5	,	*			grain	58	< 0.018	< 0.002	< 0.02
- 2		1 .0	<i>y</i>									
RA-2060/00	Wheat,	Oermany D-	150	2	0.150	0.050	81	ear	0*	< 0.018	< 0.002	< 0.02
R 2000 0273/4	Winter " Flair	<b>⊎</b> D-	EC						0	1.8	0.05	1.8
0273-00	Fiall								0.4	0.14	0.00	0.10
GLP: yes								rest of plant	0*	0.14 3.4	0.06 0.13	0.19 3.5
2000		Europe,						Piuni		5.7	0.13	3.3
l	1	Larope,	l	1	1	ı	I	ı	I		1	1



Study Trial No. Plot No.					Applica	tion			Residues			Stotal 6
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS	Portion analysed	DALT (days)	Fluoxa- strevin strevin strevikg)	HEC 5725 Z- Isomer (mg/kg)	Ostotal Vresidu
		North						grain	36°	0.08 0.018 0.018 0.018	0.003	0 0 12 0 12 0 <0.02 0 <0.02

prior to last treatment

Residues for total residue HEC 5725 (determined as ALEC of E- and Z-isomer)

Note: For the calculation of the total residue unrounded values given in the table are used.

Underlined values are used for MRL calculation

Report:

Determination of the residues of fluoxastrobin and prothic onazolo in/on spring wheat Title:

æfter after spray application of fluoxastrobin & prothioconazole EC 200 in the field in

Germany and United

Report No.: 3-2128

M₋501083♣**0**2-1 Document No.:

Guideline(s):

October 2009 concerning the placing of plant protection products on the market and repeating Council Directives 99/11 DEEC and 91/414/EEC

EC Guidance working document \$29/VI/95 rev.\$ (1997-07-22),

QECD 509 Adopted 2009-09-07, OECD GUID LINE FOR THE TESTING OF

CHEMICALS Crop Field Trial

Guideline deviation

**GLP/GEP:** 

### Test system

Three residue trials were carried out in 2015 with Fluoxastrobin + Prothioconazole EC 200'. The test locations were in Germany (2) and the United . The product was applied twice at the required rates of 1.5 L/6a contesponding to 0.150 kg fluoxastrobin/ha. In trial 13-2138-03, the 1st application was slightly overgosed (* 6%) (The treatments were carried out at proper timing (BBCH 47-49 and BOCH 69). Depending on the study, the spray interval was 14 - 19 days. The water rate ranged between 200 and 400 LAd.

Green material samples were collected on day 0 (prior to the final application and thereafter), 7, 14, 21 and 28 in order to demonstrate decline of the residues. In all trials samples of green plant material we've collected at growth stage BBCH 83 which was between day 24 and 35 post treatment. The growth sage was considered representative for silage stage. Grain and straw were collected at harvest maturity (BBCH 89, day 35 - 57). In one trial an additional set of grain and straw was sampled 35 days after treatment, however grain was not fully ripe (BBCH 85) at that time.

residue in control



Residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725, were determined according to method 00649/M003 (EEEE 2010; M-387385-0-1). The limit of quantitation was 0.009 mg/kg for fluoxastrobin (HEC 5725 E-isomer), 0.001 mg/kg for the calculated total residue for all commodities.

#### **Findings**

- Method performance: Validation recoveries for method 20649/M003 for the matrices not included in the method validation report (wheat and barley green material, straw) were generated within studies 10-2157 (2011; M-403199-02-1) and 10-2156 (2011; M-403199-02-1). Validation recoveries are reported in Table 6.3.1-19 and Table 6.3.2-19).

Procedural recoveries for both analytes were obtained from green material, straw, and grain samples. Method performance was acceptable. Mean recoveries at fortification levels between 0.009 - 9 mg/kg (green material, straw) and 0.009 - 0.09 mg/kg (grain) for HEC 5725 D isomer and 0.001 mg/kg (green material, straw) and 0.001 - 0.0 kmg/kg (grain) for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD <20%. Lower recoveries (mean 65%) were obtained for HEC 5725 Z-isomer in green material at the highest fortification level of 1 mg/kg. However, this deviation was considered acceptable since this value is only slightly below the acceptable range and the recoveries at the other fortification levels of 0.0012-0.5 mg/kg, were acceptable (73, 95%). The lower recovery obtained at 1 mg/kg is considered to be incidental and does not denote a deficit of the analytical method.

Table 6.3.2- 11: Procedural recoveries for fluorastrobin (HEC 5725/E-isomer) and HEC 5725 Z-isomer in/on wheat

The LQQ is marked in bold

Study Trial No.			Fortifi- Scation		Reco	overy (	2%)	
Plot No.		"(	level	~~~		1		
Plot No.  GLP Crop Portion  Year	a.scmetabolite	Ô	(mg/kg)	Individual	Min	Max	Mean	RSD
Year analyse	I STORY	Ý (		≠ recoveries				
13-2138 13-2138-01 13-2138-01- T	Fluerastrobile	3 €	0.009 28	93; 95; 98	93	98	95	2.6
13-2138-01 spring materia		Q	Z,					
13-2138-01- T	~°° ~°	b,		85	85	85	85	
		1 🧳	<b>3</b> 4.5	75	75	75	75	
13-2138-02		20	9	66;74	66	74	70	
13-2138-02- 13-2138-02- T	FILLENSITOON	Ö ⁷	overall		66	98	84	14.7
	HEC 5/25 Z-Isomer	3	0.001	92;96;98	92	98	95	3.2
13-2138-03	Z-Isomer O							
13-2138-03-		1	0.2	88	88	88	88	
T CI Pi and	I ~	1	0.5	73	73	73	73	
13-2138-03 13-2138-03- T GLP: yes 2013	<b>4 9</b>	2	1	63;67	63	67	65	
		7	overall		63	98	82	17.5
sgrain	Fluoxastrobin	1	0.009	96	96	96	96	
13-2138-03 13-2138-03- T GLP: yes 2013		1	0.09	94	94	94	94	
		2	overall		94	96	95	
	HEC 5725 Z-Isomer	1	0.001	94	94	94	94	
		1	0.010	96	96	96	96	



Study Trial No.					Fortifi- cation		Rec	overy (	%)	
Plot No.					level					
GLP	Crop	Portion	a.s./metabolite	n	(mg/kg)	Individual	Min	Max	Mean	RSD
Year		analysed				recoveries			4	RSD
				2	overall		94	96	95y	
		straw	Fluoxastrobin	2	0.009	95;93	[®] 93	95 %	94 🚕	
				1	43	85	85	85	850	
				1 ,	4.5	89	89	89	89 ⁷	\$ (¢
				230	9.0	96.95 °	91	95	93	
				6	overall ~		8\$/	20	910	<b>4</b> 2
			HEC 5725	² 2	0.00₺	102.98	<i>©</i> 98	<b>3</b> 02	100	
			Z-Isomer		°0.001		©98 86	8Q	86	%.°
				Ø* ∤1 /	0.5	89 🐴	<b>8</b> 9	~89	86	
				2	1	90009	90		95 Ĉ	
				6	overall		86	102	94 👸	6.9

- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 351 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by time period examined in the storage stability studies.

Study number	Sample material Maximum storage period days)	
.e	Graphi C S S S S S S S S S S S S S S S S S S	
13-2138	Straw S S S S S S S S S S S S S S S S S S S	
	Green material 3510	

- -Residue results. As shown with the three decline series (huoxastrobin derived residues decreased well with time in green material of wheat. Residues for the calculated total residue of HEC 5725 were at or below the LOQ ( $\leq 0.01$  mg/kg) in grain and ranged from 0.10 to 2.3 mg/kg in straw at the time of commercial harvest (RBCH 89).
- No residues above the respective LOOs of 0.009 mg/kg (E-isomer) and 0.001 mg/kg (Z-isomer) were present in any of the corresponding control samples.

Table 6.3.2-12: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on wheat treated with a fluoxastrobia EC formulation (Fluoxastrobia + Prothioconazole EC 200) in the field in porthern Europe

Study	lication			Residues		
Year Variety V		Portion analysed	DALT (days)	Fluoxa- strobin (mg/kg)	HEC 5725 Z- Isomer (mg/kg)	total residue HEC 5725 (mg/kg)



Study Trial No.			Application				Residues						
Plot No. GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/h L (a.s.)	GS	Portion analysed	DALT (days)	Fluexa- stredin (@g/kg)	HEC 5725 Z Isomer (mgQrg)	total reside	
13-2138 13-2138-01 13-2138-01-T GLP: yes 2013	Wheat, spring Taifun	Germany Europe, North	200 EC	2	0.15	0.050	69	green material	14 21 28 35 57	0.061 3.9 0.2½ 0.093 0.067 0.044 0.054 0.059 0.059	\$\infty 0.024 \rightarrow 0.024 \rightarrow 0.000 \rightarrow 0.00	0.085 3.9 0.27 0.13 0.095 0.025 0.078 <0.01 <0.01 0.025	
13-2138 13-2138-02 13-2138-02-T GLP: yes 2013	Wheat, spring Kadrilj	Germany Europe, North	200 EC			0.038	69 × × × × × × × × × × × × × × × × × × ×	green material material grain Strawk	07 07 14 21 28 35 54	0.49 0.48 0.48	0.070 0.34 0.29 0.25 0.18 0.24 0.001 0.29	0.25 3.2 1.3 1.0 0.89 0.56 0.73 0.010 0.77	
13-2138 13-2138-03 13-2138-03-T GLP: yes 2013	Aldero	Onited Officers of the Control of th	2007		03/5- 9:158			green mærial grain straw	0 0 7 14 21 28 24 35 35	0.57 6.1 2.9 2.4 0.55 0.70 0.67 <0.009	0.18 0.28 0.95 0.89 0.22 0.30 0.28 0.001	0.75 6.3 3.9 3.3 0.77 1.0 0.96 0.010 2.3	
* prior to la Residues for to of E- and Z-iso Note: For the c values given in Underlined	st treatment tal residue on the table at the sare use	of the total reare us of the total are used to the total	Fetermic sidure u	ingo d	as High	7 57251 calues w	E- and						



KCA 6.3.2/12 : 2014: M-501715-01-1 Report:

Determination of the residues of fluoxastrobin and prothioconazole in/on wheat and Title:

spring wheat after spray application of fluoxastrobin & prothioconazole EC 200 m

France (North)

Report No.: 13-2159 M-501715-01-1 Document No.:

Guideline(s):

Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21
October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EC and 91/41/EEC
EC Guidance working document 7029/VI/95 rev 201997-07-22)
OECD 509 Adopted 2009-09-07 DECD GUIDFPINE FOR THE TESTING OF CHEMICALS, Crop Field Trial
US EPA OCSPP Guideline No. 860.1500
none
yes

Test system

Two residue trials were conducted in 2013 with Fluorastrobia + Prothioconazole & C 200' (100 + 100 g/L) in northern France. In trial 13-2159-01, the product was applied twice at the required rates of 100 g/L) in northern France. In trial 13-2159-01, the product was applied twice at the required rates of 1.5 L/ha corresponding to 0.150 kg fluo astrolan/ha th trial \$2-2159-02, the rate for the 1st application was slightly less than requested (-9 %, 0.136 kg/ha) and slightly higher for the 2nd application (+6%, 0.159 kg/ha). The treatments were carried out at proper timing (RBCH 39 - 49 and BBCH 69). Depending on the study, the spray interval was 19 - 21 days. The water rate ranged between 181 and 200 L/ha.

Green material samples were collected or day 0 prior to the final application in one trial and thereafter in both trials. One trial was designed as decline series and samples of seen material were collected additionally on day 7, 4, 21 and 28. In both trights samples of green waterial (whole plants without roots) were also collected at growth stage BBCH 83 on day 15 or 34 post treatment. The growth stage was considered representative for siles stage. Grain and straw were collected at harvest maturity (BBCH 89, day 35 or 49).

Residues of fluoxastrobin (HEC \$725 B) somer, HE \$5725 Z-isomer and the total residue HEC 5725, were determined according to method 00649/M003 ( ; 2010; M-387385-01-1). Aspects relevant to the analytical method are as described for study 13-2138 above.

## Findings 4

- Method Gerformance Validation recoveries for method 00649/M003 for the matrices not included in the method validation report (barley and wheat green material, straw) were generated with study 10-2011; M-399682-02-1) and 10-2157 ( ; 2011; M-403199-2156 ( 02-1). Validation recoveries are reported in Table 6.3.1- 19 and Table 6.3.2- 19).

Procedural recoveries for both analytes were obtained from green material, straw and grain samples. Individual and mean recoveries at fortification levels between 0.009 – 9 mg/kg (green material, straw) and 0.009 – 0.09 mg/kg (grain) for HEC 5725 E-isomer and 0.001 – 1 mg/kg (green material, stray, and 2001 20.01 rkg/kg (grain) for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD 20% demonstrating acceptable method performance.



Table 6.3.2- 13: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on wheat

The LOQ is marked in bold

		1	I		1	1	_			<del>)                                    </del>
Study					Fortifica		Reco	overy (	%) <i></i> (	
Trial No.					tion		O,		~ %	
Plot No.					level	4	1			Ş' Ç
					(mg/kg)			<u>^</u>	7 %	
GLP	Crop	Portion	a.s./metabolite	n		Individual	Min	Max . ©	Mean	RSD
Year		analysed			₽	recoveries		,Õ		
13-2159	Wheat	green	Fluoxastrobin	3 0	[⊮] 0.009	87,90;95	87 (	95	<b>9</b> 1 8	¥ 4.5
13-2159-01		material	Tuoxastiootii			8 £90;95 ₹70	\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}	&		4.5 V
13-2159-01-			L.	þΪ	1.8	∤70 _~ ©'	70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	70 [©]	
T and			<b>&amp;</b> ,	16	)°9.0,	770 × 4	91 <i>@</i>	©9 ₁	~9/1 ×	
13-2159-02				<b>5</b>	ovecall		700	95 🐇	87 🐴	11,2 °
13-2159-02-			HEC 5723	TO T	9.001	82.06400		(( //	95	# T 1 12
T			7-Isopher	/ ³	, <b>3</b> 001	92;9698	<b>6</b> 2	98 ∜J	93\$	<b>3</b> .2
a			Z-Isomer S	18/1	0.3		₹ 69.©	69	69	<b>5</b>
GLP: yes							090	( <i>(//)</i>		
2013				<b>)</b>	*4_40 ^	93	939	93	93 🖗	
				$\sim$	overall y		69	<b>©</b> 8	<b>`9</b> 90	13.1
		grain	Fluoxastrobin	18	0.009	20° , 0	97	97 🖔	₹97	
		W [*]	( ) E	1	0.09	94 🔊	<i>9</i> 4	94	94	
		, Ø		2	overall o		§94 s	<b>9</b> 7	96	
		A	HFC 5725 Zelsomer	10	0.001	26	96	96	96	
	,		Zelsomer	S)		n' 🐃				
	Į į			1	50.01 ₀ ,	101	î01	101	101	
				2°	overall		96	101	99	
		straw	Fluoxastrobin	3	<b>20,009</b>	<b>\$</b> 85;86 [™]	85	86	86	
_				1 ,	$\mathfrak{S}_{1.8}$ $\circ$	84 🖑	84	84	84	
ĘĠ	1		Figoxastr@in  Figoxastra.  Figoxast	2	9 🗶	92092	92	92	92	
EŞ'	٠. (			2 3	overall⋄	O ^y	84	92	88	4.4
, ,	~O`		HEC5 25	2	<b>∜0.001</b> △	95;102	95	102	99	
			Z-Isømer 🧷		)					
		Q . S		A.	03	86	86	86	86	
*				<u>1</u> 2 <i>a</i>	1	95;96	95	96	96	
4	3		Y Q' ŞÎ	5, Q	overall		86	102	95	6.0
		L		ر کھا	o voium		00	102	1,5	0.0

- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 378 days for fluorastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the interval investigated in the storage stability studies.

Study number Sample material	Maximum storage period (days)
Graids Graids	329
\$3-2159 Straw	329
Green material	378

-Residue results: Residues for the calculated total residue of HEC 5725 were below the LOQ (< 0.01 mg/kg) in grain in both trials and ranged from 0.58 to 1.5 mg/kg in straw.

Isomer) were the state of the s The state of the s the state of the s



Table 6.3.2-14: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on wheat treated with a fluoxastrobin EC formulation (Fluoxastrobin + Prothioconazole EC 200) in the field in northern Europe

										4.8	<u> </u>	
Study					Applic	ation				Residues		
Trial No. Plot No.									, L	<del>,</del>		
GLP	Crop	Country	FL	No	-	kg/hL	GS	Portion	DAL	Fluoxa-	PIEC >	total
Year	Variety				(a.s.)	(a.s.)	` ا	analysed	(days)	strobin (mg/kg)	S725 ZO Isoprêr	residue
							Ű		\$		(mg/kg)	\$725 @
							<b>&gt;</b>		y Sign	<i>2</i>	4	(mg/kg)
13-2159	Wheat	France	200	2	0.15	0.07\$	69 。	green	` <b>\</b>	0.11	0.040	~ <b>0</b> 714
13-2159-01	Siala		EC					green material	& 0 .	( ) 4.3	0:67 2 0 43	₩5.2 4 1.2
13-2159-01-T		Europe,			<i>a</i>				7.7	0.34	0.43	0.50°
GLP: yes 2013		North							21	<b>№</b> 0.28	0.15	<b>QQ43</b>
2013					X				(28)	0.23	0.12	0.35
						Y E	Ÿ,		495	0.4	Q 13	0.39
							¥	S grain O	495	\$6009	Ø0.001	
			Q	)"		- (2)	8	straw	J. Seg	0.37		<u>0.58</u>
13-2159	Wheat,	France	<b>20</b> 0	2 8	<b>0</b> .136	<b>6</b> 075-	69 D	green Spaterial		) 2.60 0.91	<b>€</b> 0.079	2.6
13-2159-02	spring	~ K	CEC			, 0.0, 0					© 0.17	0.57
13-2159-02-T GLP: yes	Val- bona	Ž0		V	0.159F		0	grain	<b>35 35 35 35</b>	\$0.009 _Q	0.001	<u>&lt;0.01</u>
2013	Dona		4	1	Q		4	strâw	€35 °	Ş 1,0 Ş	0.45	<u>1.5</u>
2013		Europe,		, ÖQ					6	, Š		
		COILLI O	<u>*</u>	<b>₩</b>	(7) n			» O	<b>&amp;</b>	٧٠		

prior to last treatment

(determined as HE Residues for total residue H and Z-Comer separately and calculated as HEC 5725 (sum of E- and Z-isomer)

Note: For the calculation of the total residuo inrounded values were (sed, therefore minor deviations may occur when the values given in the table we used

Underlined values are used for MRL calculation

#### gùthernEurop**e** Supplementary trials

Report: 2004; M-060549-02-1

Determination of resolues of IEC 5025, JAU 6476 and trifloxystrobin in/on wheat Title:

following spray application of HEC 5725 & JAU 6476 & CGA 279202 300 EC in the

field in Southern France and Spain

Report No Document No.:

ELERef: Council Prective 91/414/EEC of July 15, 1991, Annex II, part A, section 6 Guideline(s):

and Annex III, part A, section 8
Residers in order Treated Products, Food and Feed

Guideline deviation GLP/GEF

Two residue trials were conducted in 2003 in southern Europe (France and Spain) using the formulation 'Fluoxastrobin + Prothioconazole + Trifloxystrobin EC 300' (75 + 150 + 75 g/L).

Wheat was treated twice at a product rate of 1.0 L/ha corresponding to 0.075 kg fluoxastrobin/ha. In the Spanish trial the application rate was slightly less (-5.2%) than intended for both treatments. The



water rate was 300 L/ha in both trials. The spray applications were carried out at growth stages 47-61 (1st application) and 69 (2nd application) with intervals of 10 and 15 days.

In the French trial samples of ear and 'rest of plant' were collected on day 0 before the 2nd application took place and immediately thereafter. In both trials, two sets of grain and straw samples were collected; the first one on day 34/35 post treatment which was initially the desired waiting period and at a later date at harvest maturity (day 41 and 46).

Residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue DEC 5725 were determined according to method 00649 ( 2001; M 207093-01-1). Aspects relative to the analytical method were as described above for study RA-2011@0 and RA-2060/00.

#### **Findings**

- Method performance: Method 00649 was validated by recovery experiments prior to and concurrently with the residue analyses by spiking control samples with HEC5725 for all mattices relevant to this study. Procedural resoveries for both analytes were obtained from test of plant', straw, grain and ear. Mean and individual recoveries at fortification levels of 0.018 mg/kg (grain), 0.018 – 0.45 mg/kg (ear), 0.045 – 4.5 mg/kg (straw, fest of plant) for HEC 5725 Ensomer and 0.002 mg/kg (grain), 0.002 – 0.05 mg/kg (ear) and 0.005 – 0.5 mg/kg (straw, rest of plant) for HEC 5725 Z-isomer were within the range of 70-110 % with RSD < 20%.

Table 6.3.2- 15: Procedural recoveries for Huoxastrobia (HEC 5725 Exisomer) and HEC 5725 Zisomer in/gor whear
The LOQ is mark of in both

		)		<i>w</i>			
Study Trial No. Plot No.		Fortifi- cation level		Re	covery	(%)	
Plot No.		cation level	,				
	ž   n 4	(mg/kg)	ing yrauar		Max	Mean	RSD
Year Crop Portion a.s./metabolat	Ş		recoveries				
DA 2010/02 Wheat & rest of Hugyastropin	o. 🛩	0.045	91; 93	91	93	92	
RA-2019/03 Wheat rest of fluoxastrooin plant of	2	4.50	96; 99	96	99	98	
10134-03   @ \O* \& \\\		o@rall		91	99	95	3.7
19 9 NHEC 5875 (		0.005	90; 91	90	91	91	
0257/6	27/	0.5	104; 110	104	110	107	
total recidue	4	overall		90	110	99	10.0
GLP: yes 2003	2	0.05	90; 93	90	93	92	
GLP: yes 2003	2	5.0	97; 101	97	101	99	
	4	overall		90	101	95	5.0
ear fluoxastrobin	2	0.018	97; 98	97	98	98	
	2	0.45	99; 100	99	100	100	
	4	overall		97	100	99	1.3
GLP: yes 2003  ear fluoxastrobin  HEC 5725 Z-Isomer	2	0.002	85; 88	85	88	87	
	2	0.05	100; 102	100	102	101	
	4	overall		85	102	94	9.1



Study Trial No.					Fortifi- cation		Re	covery	(%)	© °
Plot No.		D. C	/ , 1 1',		level			ا مدا	اعدا	
GLP Year	Crop	Portion analysed	a.s./metabolite	n	(mg/kg)	Individual recoveries	Min	Max	Mean	RSD
1 4 4 1		anary sea	total residue HEC 5725	2	0.02	96; 97	96	97	970	
				2	03	99; 100	99	100 %	Î00 🔊	i "Ş
				4	overall	Q	96	100	9859"	1/9
		grain	fluoxastrobin	5 Ó	[∀] 0.018	96, 101; 100;	96	₫04 /	190	2.9
			- L	/	- 11	104; 100	€ E	120		<b>O</b> '
			WEG 5725	5	overall overall	& "	908 5 93	1 <b>04</b> °	100	5.5
			HEC 5725 © Z-Isomer		0.992	937100; 97; 99; 108 _	\$ 93	Pros C	99	
				5 @	overall,	7 T		108	90	\$ .5
			total residue	5	9.62	06; 101°C	96		Soo	2.6
				y 7		101			\$\frac{1}{2}	
		<i>_</i>		5	over		)96 _?		100	2.6
		straw	fluoxastretoin	2	0.045	<b>%</b> 1; 9,1 🗞	91		91	
		, Ø		1	<b>%</b> .9	96	96	260	96	
				20	4.5\$	89; 95	J89 g	<b>\$9</b> 5	92	
				Ø,	overall	D &	89~	96	92	3.2
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MEC 5/25 Z-Isomer	2	50.005	87; 91	87 W	91	89	
			¥ , Z' ,	A\$\frac{1}{2}	0.1	Q\$ - Û	93	93	93	
				2	<b>9</b> .5 6	90; 94	90	94	92	
	7			5	overall		87	94	91	3.0
	~		toral residue HEC 5725	\$ ⁷	0.05	<b>9</b> 0; 91	90	91	91	
	3			1	1.0	95	95	95	95	
	٩			<b>₹</b>	5,00	90; 94	90	94	92	
		P [*] Ö		<b>)</b>	overall		90	95	92	2.5

- Storage periods: The maximum storage period of deep-frozen treated samples was up to 246 days for fluoxastrobin (HEC \$725 E isomer) and HEC \$725 Z-isomer and is covered by the interval investigated in the storage stability studies.

Study number	Sample material	Maximum storage period (days)
	Grain V	217
DA 4010/02	Straw 🔊	219
RA-2019/03	Ear	244
J Z A	Rest of plant	246

-Residuc results: In both southern European field trials, the calculated total residues of HEC 5725 in grain was at or below the LOQ (< 0.02 - 0.02 mg/kg) and 1.0 - 1.5 mg/kg in straw.

Relative to the critical GAP (*GAP EU-S 2*) of the southern zone the trials were under dosed by -25 or -29 % (75 or 71 vs 100 g as/ha). Although for the Spanish trial this application rate would nominally



fall out of the range for comparability it is suggested to consider this trial for MRL setting since residues in wheat grain and straw were at the upper end of the range of residue data in the southern region.

- No residues above the respective LOQs of 0.045 mg/kg (E-isomer for rest of plant*/ straw), 0.018 mg/kg (E-isomer for grain / ear), 0.005 mg/kg (Z-isomer for rest of plant straw) and 0.002 mg/kg (Z-isomer for grain / ear) were found in any of the corresponding control samples.

Table 6.3.2- 16: Application data and residues of fluoxastrobin (HEC 5725 E-isomer) HEC 5725 Z-isomer and the total residue HEC 5725 ip 7 on wheat treated with a fluoxastrobin EC formulation (Fluoxastrobin + Prothiocorazole + Trifloxystrobin EC 300) in the field in soothern Europe

					- (	. (	<i>'</i>		× ~ 0*	n e	r 4	
Study				A	pplic	ation 🖑	a			Residues		
Trial No.				*	<b>&gt;</b>	~~~		~ ~	1	\$		<i>&amp;</i> '
Plot No.				-4		<b>"</b>	`\	O'	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		- <del>\</del>	
GLP	Crop	Country	FL		g/ha/		<b>GS</b>	Portion (	₽ďalta	Fluo	HEC (	total
Year	Variety		(		1. <b>%</b> .)	(a.sQ		analysed	DALTA (days)	strobin	<b>®</b> 725 Z-	residue
			Z)		&,		*		8	(mg/kg)	Isomer	HEC
			Q,	b		Ĉ	Ò		ر آگر		(mg/kg)	5725
		(	7)	<b>V</b>	a	<b>)</b>	y		Y 0	7 20	(y	(mg/kg)
RA-2019/03	Wheat	France F	300 E	<b>2</b> 0.	075	0.025	69 4	rest of plant	05	0.31	$\bigcirc^{9} 0.14$	0.44
R 2003 0134/0	Frelon	F-	E		Ĵ	4	0	plana		<b>Q</b> 2.2	0.31	2.5
0134-03			O'		9		,	0 9				
GLP: yes		Europe,	Δ.		2		¥	ear &	0**		0.05	0.17
2003	,	South	n S		0		%		<b>%</b> 0,	~20°	0.33	2.4
					7)	Ş	\&\)'		% <b>Q</b> /	4	0.55	2
		- √ .	92, ×					Qrain		,		
		\0. \( \( \)		"\"	<u> </u>	<b>%</b>	7	grain (	35 a) Q 41	< 0.018	< 0.002	< 0.02
		<b>b</b> , ,	( <u>\$</u>	<b>∀</b>   .	, D , D	14			4 <b>/</b> _/	< 0.018	< 0.002	<0.02
7			O	🖟	, ¥				<i>0</i> 1			
Č	0	, and the second	Ô	4	<b>^</b>		# T	straw	₩ ₩35 a)	0.69	0.34	1.0
			) )		(				<b>9</b> 41	0.65	0.36	<u>1.0</u>
į G	(	W // ( // // )	d		_ 0		1	n (( ))				
RA-2019/03	Wheat	Spain	360	2 6	071	Q.024	<b>6</b> 9	grásin	34	< 0.018	0.003	0.02
R 2003 0257/6	Vecora	E-	EC.		,	%)	<b>.</b>		46	< 0.018	0.005	0.02
0257-03	Yecora				, <b>«</b>			straw	-			
GLP: yes			Ĉ					<b>y</b> '	2.4	0.06	0.42	1.2
2003 S	r o	Europe,	~~\		<b>U</b>	~~~		straw	34 46	0.86	0.43	1.3
2003		South			,				40	0.95	0.51	<u>1.5</u>
*		<i>P</i> o **		6,5								
				_	1000	*						

^{*} pror to last treatment

Residues for total residue HEC 5725 (determined as HEC 5725 E- and Z-isomer separately and calculated as HEC 5725 (sum of E- and Z-isomer)

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation.

During analysis of the samples of frial R 2003 0134/0 a sample mix-up occurred between two trials. The plots of trial R 2003 0167/7 (triflexystretim and tebuconcole, wheat, study RA-2028/03) were situated directly beside the plots of trial R 2003 0134/0. The corresponding grain and straw samples taken at day 35 in trial R 2003 0167/7 labelled with the above mentioned truly number and sample numbers were therefore analysed with regard to residues of fluoxastrobin (HEC5725) and these results are reported.



KCA 6.3.2/14 ; 2011; M-414694-Report:

01-1

Determination of the residues of BYF 00587, HEC 5725 and prothioconazole in on Title:

wheat after spray application of bixafen & fluoxastrobin & prothioconazole E0 190 in the field in France (South) and Portugal

Report No.: 10-2207 Document No.: M-414694-01-1

M-414694-01-1
EU-Ref: Council Directive 91/414/EEC of July 15, 1991, Annex II, part A, section 6
and Annex III, part A, section 8
Residues in or on Treated Products, Food and Feed
EC guidance working document 1029/VI/95 rev. 3 (1997-07-22)
none
yes Guideline(s):

Guideline deviation(s): **GLP/GEP:** 

#### **Test system**

Two residue trials were conducted in 2010 with Bixasen + Foroxastrobin Prothioconazole E(\$190') (40 + 50 + 150 g/L) on wheat. The test locations were in southern France and Fortugal. 'Boafen + Fluoxastrobin + Prothioconazole ECO190' was applied twice at the required rate of 1.75 L product/ha corresponding to 0.0875 kg fluoxostrobin/ha. The treatments were carried out at the requested growth stages BBCH 45 - 57 and BBCH 69. Depending on the study, the spray interval was 14 or 21 days. The water rate was 300 L/ha in both trials.

Samples of green material were taken just prior and immediately after the final application in both trials in order to evaluate the impact of the funal application. In one trial, first grain and straw samples were taken on day 35 (BBG) 87), and an additional set of camples was taken on day 38 at full maturity (BBCH 892 In the trial from Roxugal grain and straw samples were collected only at BBCH 89 (day 63) since barvestable material was not yet available at the parly sampling date.

Residues of fluoxastropin (HEC 5725 E-isomer, and the total residue HEC 5725, were determined according to method 00649 00003 ( ; 2010; M-387385-01-1). Aspects relevant to the analytical method are as described for stuffy 13-2138 above.

#### **Findings**

Validation recoveries for method 00649/M003 for the matrices not included in the method validation report (wheat and barley given insterial straw) were generated with study 10-2156 ( 2011; M-399682-02-13 and 10-2157 ( ; 2011; M-403199-02-1). Validation recoveries are reported in Table 6.3.1- 19 and Table 6.3.2- 19).

Validation recoveries for method 00649 M003 for all matrices relevant to this study (green material, straw and grain, were also reported within this study and obtained from studies 10-2206, 10-2207, (10-2204 and 10-2205 not reported in the present dossier). Individual and mean recoveries at fortification evels/between 0.009 and 3.5 mg/kg for HEC 5725 E-isomer and 0.001 and 0.4 mg/kg for HEC 5726 Z-isomer were within the range of 70-110 %, with RSD <20%. The control sample used for 2 recoveries of HEC \$725 Sensomer in green material (fortification level 0.009 mg/kg) and for HEC 5725 Z-isopær (for frication level 0.001 mg/kg) contained more than 30% of the LOQ and therefore the recoveries were background corrected for the signal present in the control sample. The reason was a fluoxastrobin containing product which was erroneously used for maintenance in another study (trial 10-2204-01, not relevant to the present dossier).



Table 6.3.2- 17: Procedural recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on wheat

The LOQ is marked in bold

									(O)	) <u> </u>	
Study					Fortifi-		Receiv	ery (%	) <u>"</u> ©"	Ô	1
Trial No.					cation		O T		~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Plot No.					level	<i></i>	A	ī		Ş' ç	Ì
GLP	Crop	Portion	a.s./metabol	n	(mg/kg)	Individual	" Min	Max	Mean,	RSI	
Year		analysed	ite			recoveries		Ö			<u> </u>
	Wheat	green	Fluoxa-	8	0,009	86;91;95	86	₂ 19/3	99	<b>3</b> 9.0	ď
Recoveries		material	strobin		į Č	97:102:	) ،		Q ,C		١
were				- 9	<b>*</b>	97;102;	Ø. Y	4	<b>∞</b>	A.	
generated during						(1,44*);113;	<i>∞</i>	~\	45		
analysis of 4						Ø*03 ° ≪		Š,	, A	<b>Y</b>	
studies				4	© 0.09	93;98;105;10	930	1054	100 🚄	5,6 •	
(10-2204				~~		4 &	\$\hat{84}	0'	100	5,6 0	
and					2.7	,884 <u>,</u> 7 %	<b>9</b> 84	<b>≪</b> 84	,84	G .	
10-2206				<b>1</b> 4	<b>₹3.6</b> %	87 «° »	์ 87 ®	* 87 K	787 Õ	8)	
(barley)				14	overall	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	84	118	980	9.0	1
and			PIFC 5725	&	0.901	\$1:87:90.98	81	<u>(1)20</u>	190	12.7	
10-2205 and 10-2207		<i>@1</i>	PIEC 5725 Ž-Isamer 4	8)		227* 102; ©			190	12.7	
(wheat))		~Q			O L	113(342*)	8	Ô			
(wilcat))		, w			<b>~</b>	120;		Ö			
GLP: yes				G,	ASVO1 6	88:115:88: 92	`" 7 88≪C	√ ¥115	97	13.1	
2010			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. ^	Ø.01 Ô	1 ′& . ′ ′ ~	867	06		13.1	
					0.30	860 %	849y"	86	86		
		4, (	5 .7	N	0.40		<b>9</b> 1	91	91		
		\0' \\\^		<b>⊮</b> 14	ayerall		81	120	98	12.3	
		grain '	Fluoxa-	6 4	Ø 0.009	78,87;94;91,	78	98	91	8.1	
	o ŝ		a.		6909 _@	85,98 ₄ @					
	•			<b>54</b>	WZ.	88;102;92; 98	88	102	95	6.5	
	(			10	Sverall 9		78	102	92	7.5	
**	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		AHEC 5725	6	0,001	82,86;90;90; 75;89	75	90	85	6.9	
	, F		Z-Isomer	<b>7</b>	o 🔊	J.					
	٩			4	_{&gt;} 0.01	88;91;93;93	88	93	91	2.6	
				100	overa		75	93	88	6.3	
2		Straw ~	FluoxQ,	<b>6</b>	<b>9</b> 009	87;88;86;93;	86	103	92	6.9	١
			strobin 🛴			103;92					
	9	¥ . Q		4.0	¥ 0.09	89;75;104; 96	75	104	91	13.5	
, W					2.7	84	84	84	84		
				Ĭ	3.6	82	82	82	82		
				12	overall		75	104	90	9.3	1
			HEC 50705	6	0.001	69;76;89;109;	69	116	93	19.8	l
		, 6° , 4	Z-Isomer	0	0.001	116;	09	110	93	17.0	
						116; 98					
		, ,,,,,,		4	0.01	85;69;91;86	69	91	83	11.5	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	0.30	85	85	85	85		
		130		1	0.40	85	85	85	85		
[12	overall		69	116	88	16.2	l
		1	1	1 + -	v v vi aii	1	U)	110	00	10.4	1

^{*}recovery before correction; the control sample used for 2 recoveries of HEC E-isomer in green material (0.009 mg/kg) and for HEC 5725 Z-isomer in green material (0.001 mg/kg) contained more than 30% of the

LOQ and therefore the recovery was background corrected for the signal present in the control sample. The control sample originates from study 10-2204.

Recoveries in italic were generated using control samples obtained from study 10-2207.

- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 326 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and its covered by the interval investigated in the storage stability studies.

Study number	Sample material	Maxin	num stor	age pe	riod (da	√s) Q
	Grain	4	\mathbb{Q}^{r}	2630	~	
10-2207	Straw		~	26 3	Q,	, O ,
	Green material			×326	. 6 7	

-Residue results: The total residue of HEC 5725 in grain was < 0.01 mg/kg in both trials and ranged between 0.41 – 0.71 mg/kg in straw.

- No residues above the LOQ of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were determined in any of the corresponding control samples from this grudy.

Table 6.3.2-18: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z isomer and the total residue HEC 5725 in on wheat treated with a fluoxastrobin EC formulation Bixafen + Fluoxastrobin Prothioconazole EC 1960 in the field in southern Europe

Study Trial No. Plot No. GLP	&Cron	"Country"	FIG			Ø/hL) Jes	Portion Vana-	'MS/ALI	Fluoxa- strobin	HEC 5725 Z-	total
Year 🔌	Variety				(a.s.)	(a.s.)	Wy.	lysed	(uays)	(mg/kg)	Isomer (mg/kg)	residue HEC 5725 (mg/kg)
10-2207	Wheat Cezanne	France	EC	2 0	0.0875	0.0291	69 0	Ögreen material	0* 0	0.40 2.2	0.19 0.28	0.59 2.5
10-2207-01 GLP: yes	Cezanne	Europe		Y		° ~ ~		grain	35 38	<0.009 <0.009	<0.001 <0.001	<0.01 <0.01
2010		Sound	}	y "				straw	35 38	0.42 0.51	0.19 0.20	0.61 <u>0.71</u>
10-2207	- 1	Portugat	1960 EC	2 2	875	0.0291	69	green material	0* 0	0.05 1.6	0.02 0.08	0.07 1.6
10-2207-02 GLP: yes		É. Hans	y	5				grain	63 63	<0.009	<0.001	<u><0.01</u>
2010		Entrope &	2	Ç	(straw	03	0.28	0.13	0.41

^{*} prior to fast treatment

Residues for total residue NEC 5725 (determined as HEC 5725 E- and Z-isomer separately and calculated as HEC 5725 (sum of E- and Z-isomer)

Note: For the Calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation.

; 2011; M-399682-02-1 KCA 6.3.2/15 Report:

Determination of the residues of fluoxastrobin and prothioconazole in/on durum Title:

wheat and winter wheat after spraying of Fluoxastrobin & Prothioconazole EC 50 in the field in France (South), Spain, Italy, Portugal and Greece

Report No.: 10-2156

Test system

Seven residue trials were carried out in 2010 with Fluorastrobiro Prethiocon 100 g/L) on wheat according to the critical GAP in south of Europe 2), Italy (2), Spain, Portugal and Greece. The predict of t rate was 300 or 400 L/ha in all trials.

Samples of green material were taken just prior to and immediately after the final application took place in all trials. Four trials were designed as decline series and in three trials amples were collected at harvest only. In the decline trials green material samples (whole plants without roots) were collected on day 7, 14 and 21 or 28 at prowth stages ranging from BBCH 67, 85 and thus also covering adequate growth stages for silage production. In prost of the trials two sets of grain and straw samples were collected the set was collected on day \$4/35 post treatment and the 2nd set on a later date at commercial harvest (day 41 - 53, BBH 89) in case maturity of the crop was not yet reached at the first sampling event.

Deviation to guideline: In the Spanish trial, grain and straw samples were deep-frozen 31-32 hours after sampling and that exceeding the requested time of 24 hours. Technical problems with the thresher allowed threshing only at the following day, however, a potential impact is considered to remain minor.

Residues of fluoxastropin (HEC 5725 E-isomer), OEC 5725 Z-isomer and the total residue HEC 5725, were determined according to method 0649 1003 (; 2010; M-387385-01-1). Aspects relevant to the analytical method are as described for study 13-2138 above.

Findings

- Method performance: Validation recoveries for method 00649/M003 for all matrices relevant to this study were generated within this study. Recoveries for both analytes were obtained from green material straw, and grain samples. The sample materials chosen served to represent all relevant sample materials collected in these trials. Mean recoveries at fortification levels between 0.009 - 0.9 mg/kg (grain), 0.009 – 4 mg/kg (straw) and 0.009 - 9 mg/kg (green material) for HEC 5725 E-isomer and 0.001 - 0.1 mg/kg (grain), 0.001 - 0.5 mg/kg (straw) and 0.001 - 1 mg/kg (green material) for

HEC 5725 Z-isomer were within the acceptable range of 70-110 %, with RSD <20% demonstrating

acceptable method performance.

Table 6.3.2- 19: Recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on wheat

The LOQ is marked in bold

					(%)			×Lj	/	
Study					Nortifi-	Øʻ	Rec	ovegy (%) <u></u>	RSD
Trial No. Plot No.				F	cation level	TO A		V.		\$ 4
GLP	Cron	Portion	a.s./metabolite	Øn V		Individeal	Ver) I Mas	Moon	້ ທ້າ ກ¢ເກ
Year	Crop	analysed			(mg/kg)	recoveries	Mon	Max	Niean	
10-2156	Wheat	green	Fluoxastrobi	3 6	<u> </u>	02:80 .00 d	82 "(98	~89 °	V 9.0
10-2130	wilcat	material*		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.009	04,00,90	, 02 (T	,	4	7.0
10-2156-01			.A. s.	7	~ (P.9)	88 4 T	88	QQ"	886	
to				4 4	$\sqrt{2}$	84.87.89.	0 84	4 91	/88	\$\int 3 4
10-2156-07				*\			y 0 .		,	3
GLP: yes 2010			Fluoxastrobin	F	. 2° ×	6 8;76.3		90 91 76	72 🗞	
2010				10 %	overall	.0	6 8	<u> </u>	*\$ ⁵	9.8
		Ş.	HEC 725 O	3	0.001	82.83:97 O	82	97 &	,87	9.6
		29	Z-Isomer	, "O"	\$			O ³		
		<i>P</i> a		¥1	% .1	80 💸	×\$0	\$	80	ļ
		2×1 4		4 🔏	0.2	82,85;88;	82 🖟	91	87	4.5
						(Q) (()				
				§ 2	J	67;69	£7	69	68	
		\ \frac{1}{2} \qua		10	overal	L, Q		97	82	11.1
		Grain**	Flaoxastrobin	AC, "	0.009	\$;	83	88	86	2.5
	8	70		V		87;88;86				ļ
Ö		. ~ .		3	\$0.09 [♥]	85;88;92	85	92	88	4.0
					0.8	79 ⁰	79	79	79	
	×			® ^y	overall 🛬	() 1	79	92	86	4.5
		\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HEC-5-925 Z-Isomer	4	∀0.001 [△]	90;90;93;	73	93	87	10.5
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		~		73				
				F	A 1	74;81;86	74	86	80	7.5
4	*Q* 0			1 4	0.1	63	63	63	63	
	,			8. C	overall		63	93	81	12.9
	9/	strav	Fluoxastron		0.009	62;65;66;	62	86	76	14.5
, L						84;84;85; 86				ļ
	^		Tiuoxasippiii 7	5	0.09	69;84;86;	69	92	84	10.9
	[3	0.07	91;92	0))2	04	10.5
ú				1	4	85	85	85	85	
Ş			~ ©	13	overall		62	92	80	13.0
			HEC 5725	7	0.001	60;69;75;	60	87	78	13.1
			Z-Isomer			82;83;87;				
	Y O	Ž.				87				
		79		5	0.01	63;81;84;	63	86	80	12.0
				1	0.5	85;86	01	0.1	0.1	-
				1	0.5	91	91	91	91	10.0
Ì		1		13	overall		60	91	79	12.3

- *Validation data for the sample material 'green material' also validate the sample material 'rest of plant'.
- **Validation data for the sample material 'grain' also validate the sample material 'ear'.
- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 194 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the investigated in the storage stability studies.

Study number	Sample material	Maximu	m storage peri	od (days) 🛴 🔘
	Grain	(°A)	159	
	Straw	V	46 1	
10-2156	Ear	L	_ © ₹59	
	Rest of plant	4°	159	0 4
	Green material		1994	Q. ~

-Residue results: The findings from the decline series indicate that residues of Tuoxastrobin in green plant material deceased well with time. Residues of the to the first application had decreased significantly until the point in time when the second treatment was conducted. Residues caused by the second and final treatment declined well again.

At the time of harvest, residues were 0.0% 0.02 mg/kg (BBCH 87-89) for the calculated total residue HEC 5725 in grain and ranged from 0.2% – 3.7 mg/kg in stray for the same interval.

- No residues above the LOC of 0.009 mg/kg (E-isomer) or 0.000 mg/kg (Z-isomer) was found in any of the corresponding control samples

Table 6.3.2- 20: Application data and residues of Fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z somer and the total residue HEC 5725 in Con wheat treated with a cluoxastrobin EC formulation (Fluoxastrobin Profileconazole EC 150) in the field in southern Europe

a 1	A-	O'V	, C	'n	. 4				- 4	- · · ·		
Study	Q	& n	₩ j	4	Applica	ition "	"((Residues		
Trial No.	/	Ö		d	Ö							
Trial No.		, Ü ,	Ō)	~	»	× 0.	\mathbb{O}'	W .,	Ô			
GLP	Crop &	Country	FL	1 46	kg/k@ (a.s.)	kg/h/L	GS (√Portion A	DALT	Fluoxa-	HEC	Total
Year	Variety.	3			(a.s.)	(a,	C	analysed	(days)	strobin	5725 Z-	residue
	Variety (Ž			×2 i				(mg/kg)	Isomer	HEC 5725
	<i>Q</i> 1		'Um		i G	\gg		analysed		(8 8)	(mg/kg)	(mg/kg)
10-2156	Wheat	France	150^	7	0.10	0.038	69 %	y green	0*	0.19	0.055	0.24
	,	Tanco	E48	%	0.10	0.0.0	09 (material	0	2.3	0.033	2.4
<i>⊭</i>	Pesca-	4	ESS Q		0.5			materiai	7			
10-2156-010	dou	Ö	Q.				°~/		· ·	0.22	0.061	0.28
10-2156-010 GLP: yes					Á	, ~)		14	0.14	0.046	0.18
2010.	9	Extrope,	, , ,	<i>`</i>	Q		ř		27	0.069	0.027	0.10
GLP: yes * 2010,**		South	, S	r i	Q,			grain	34	< 0.009	< 0.001	< 0.01
		0			Ø)	4		C	41	< 0.009	< 0.001	< 0.01
		.4 0	V V	, Q	a q	Ŗ,		straw	34	0.32	0.16	0.48
	O" 4		8 .	W"	an a	Ť		Suaw	41	0.52	0.16	
			4		W				41	0.33	0.20	<u>0.79</u>
10-2156	∕Wheat©	Spai@	150	2	0.10	0.025	69	green	0*	0.069	0.018	0.09
	Nogal		1.539 (D)C			-		material	0	1.5	0.086	1.5
10-2156-02	Wheat Nogal		y .			0.033		grain	35	< 0.009	< 0.001	< 0.01
GLP: Ses	W G							gram	43	< 0.009	< 0.001	<0.01 <0.01
GLP: Ses	<i>Q</i>	Europæ,							_			
2010/		South						straw	35	0.60	0.23	0.83
									43	0.93	0.41	<u>1.4</u>

Study Trial No.					Applica	ation				Residues		Q°
Plot No.												
GLP	Crop	Country	FL	No	kg/ha	kg/hL	GS	Portion	DALT	Fluoxa-	HEC	of otal "O
Year	Variety				(a.s.)	(a.s.)		analysed	(days)	strobin	5725 Z-	(Presidue)
										(mg/kg)	Isomer	HEC 5725
										<u>,1</u>	(mg/kg)	(mg/kg)
10-2156	Wheat,	Italy	150	2	0.10	0.033	69	green	0* 🕺	୬ ^୭ 0.21	°49,072	× 0.28
	durum		EC					material	0	3.3	≈ 0.096	3.4
10-2156-03	Perseo							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	17.Q	1.2	0.45	
GLP: yes		Europa					6	/	140 "	0.60√ 0.39○	0.0	0,57
2010		Europe, South									J. 137	\ \tilde{
		South					O, 1	grain 🚕	35 0	<00009	0.001	<0.07
							?		42	<0.009	\\\ <0.00 f	<u> </u>
								straw	35	0.64	0.26	6 .90
						0		Ö	A2 ~) 0. 87	@.39	<u> 1.3</u>
10-2156	Wheat,	Italy	150	2	0.10 🛎	0.033	® 9	green	Ŷ 0*₄ Ŭ	©29 ©2.6 &	00.11	0.40
	durum		EC					material	Q~	_∞ ©2.6	0.20	2 38
10-2156-04	Saragol				Ŵ		@	grain	Q ×	√20.0 €	Ø.002	6 0.01
GLP: yes	la	E		(Q.				44 D	<0<0009	Ø.001	< 0.01
2010		Europe, South		4			Y	straw ~	25 %	£0.68	\$\int 0.33\inf	10 I
		South		Q"	Ö	٨	6	Suaw	440	0.48	0.22	0.70
10-2156	Wheat,	France	150	2 ·	2 0 ,10	0.033	690	green	Ø.0*	0.0	Ø:034	0.14
10-2130	winter	Tance	K F.C	2	~ ~	©.033	, 0,0	material		J.4	$\bigcirc_{0.057}^{0.054}$	1.5
10-2156-05	Aubuss		\$2.0	Wy.			Y	<i>™</i>		∞ 000 0	A.	
GLP: yes	on		. '	0	6		٦ [grain	34	\$0.009 \$<0.009	© 0.002 <0.001	<0.01 <0.01
2010		Europe,	4		r R		~ W	Ô	© 24			
2010		South		*			S,	straw	© 34 (v)	0 73	0.062	0.21
		(7) i	9	Ş		1 ~	7		33 (C)	Æ9.32	0.15	<u>0.47</u>
10-2156		Portugal/	150 EC	/2	0.10	0,025	69~	green	* 0*	© 0.28	0.083	0.37
	winter		FC.	Q	? .			material		1.4	0.058	1.5
10-2156-06	Poison			Ó	¥ (4)		W"	8	40° /	1.1 0.87	0.29 0.27	1.4 1.1
GLP: yes	l. O		,	<u> </u>	7		1	Ç O	14 (V) 24 (V)	0.68	0.27	0.85
2010	Q	× 1	4	9			"(0° - <i>Q</i>	, %			
	*	Eur óp e,		d			Ş	- Sar	~\psi_8	0.34	0.14	0.48
		South 🔩	(Y)	d ,	Š	» »		rest of	28	0.39	0.18	0.57
		Q " ~		? ? ?	, O,			plant				
		r 1	w w	2 /	W 7			grama	48	0.015	0.005	0.02
	@.		Ī	Ĉ				Faw	48	1.9	0.86	<u>2.7</u>
10-2156	₩Qeat,	Greece O	150⊳	2	0.10	0.033	69 4	green	0*	0.97	0.24	1.2
10 2100	winter		ECO	y	.Q	0.0TQ		material	0	2.9	0.22	3.1
10-2156-07	Yecora		EQC Q		W.		l. V		7	1.5	0.44	1.9
GLP: yes			4	~	م ا		6		14	0.70	0.22	0.92
2010		Aurope, A	,		Ô	0.033	1		28	0.45	0.18	0.62
2010]	South &	2		Q,			grain	35	0.020	0.004	0.02
	_@ [^]	, w			W .	4		straw	35	2.4	1.3	3.7
		L 4 & (7) ^V	L AC	, A	O.	1	Sauvi	1 33	2.1	1.5	5.1

* prior to last roatment

Residues for total residue HEC 525 (determined as HEC 5725 E- and Z-isomer separately and calculated as HEC 5725 (sum of E- and Z-isomer)

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underfined values are used for MRL calculation.

Overall conclusion on wheat

Northern Europe:

The GAP evaluated for Annex I inclusion will not be supported following the renewal of approval of the active substance. Therefore, a set of new residue data is reported supporting the representative use (Fluoxastrobin + Prothioconazole EC 200) which will become the critical GAP for wheat and rye in northern Europe post Annex I renewal (*GAP EU-N 2*); of Table 6.3.2-2. This GAP is considered in the MRL application form jointed to the present dossier. Since the GAP and is also the GAP for the representative use in the northern region all residue data supporting the cGAP also support the representative use.

In order to support the cGAP/representative use of fluox strobin with the product 'Fluoxastrobin + Prothioconazole EC 200' on wheat and rye supplementary trials are reported using different fluoxastrobin containing EC formulations (EC 200 or SC 150 with prothioconazole or tebuconazole as mixing partners). The trials were performed in 2000 or 2013 and according to LP principles. In all trials fluoxastrobin was applied twice at a rate of about 0.750 kg fluoxastrobia fia (126 – 159 g as/ha) with the final application made at growth stage BBCH 69.

Two sets of trials, each consisting of 4 trials, were conducted side-by-side using two different formulations (study RA-2011/00 and RA-2060/90). The data are not considered as independent trials but have to be understood as different experimental conditions within the same experimental site reducing the effective number of trials in the zone. From a pair of data points the highest residue was selected for MRL calculation and STMR estimate as proposed in EFSA's document on 'Residues trials and MRL calculations, proposals for a harmonised approach for the selection of the trials and data used for the stimation of the MRL' (September 2015, issued on the DG SANTE website).

Two trials from these side by-side sets cone from each study received the last application late at BBCH 81 and are therefore also not considered for conculations. However, the number of trials does not fall below the minimum number (&) required.

For easy reference the individual values of the site by-side trials are compared in the following table: (values in bold were used for STMR estimates and MRV calculations)

Table 6.3.2- 21: Comparison of residue data from trials conducted side-by-side in / on wheat with fluorastrobin containing EC formulations in northern Europe

Trial no	& Sh	idy 0 2 2	Trial no	Stu	ıdy	
Location	RX-20		Location	RA-20	060/00	
*	Grait	o Straw 💢		Grain	Straw	
	(mg@kig) ്രൂ ⁴	(m¥g/kg√0°		(mg/kg)	(mg/kg)	
0144/00	\$\frac{1}{2}\cdot \cdot	\$\tag{0.3}	0269/00	< 0.02	0.64	
0145/00 France (north)	1 1 1 1 1 1 1 1 1 1	0.59	0271/00 France (north)	<0.02	0.31	
0146,000 VK	0.02	0.86	0272/00 UK	< 0.02	0.16	
Ø147/00 [©]	Appl. at I	BBCH 81	0273/00	Appl. at BBCH 81		
Germany	(not con	sidered)	Germany	(not considered)		

In case that two sets of grain and straw samples were collected (*e.g.* at day 35 and a later date), the highest value was selected for the summary table below and calculations.

The following individual residue values were identified (the values in parentheses give the lower values originating from side-by-side trials):

Table 6.3.2- 22 Summary of residue data from wheat trials with fluoxastroom: Sum of HEC 5725 E-and Z-isomer

Commodity	Region	Use pattern	No of	Total residues of HEC \$\)25 (sum of Eand	Zisomer)
			trials	Individual residue levels	₩R ~	*STMR*
				(mg/kg) 💇	(mgkg/kg)√C	(mg/kg)
Supplementar	ry data					
Wheat grain	EU-N	2 applications at about 0.150	8 Q	©.01;<0.01;<0.01; 0.010; 0.010;<0.02;<0.02; 0.02; (<0.02); (<0.02); (0.02);		© 0.010 (< 0.62*)
Wheat straw		kg/ha (0.136-0.159 kg as/ha)		0.50; (0.16); (0.34); (0.31); 0.58; 0.59; <u>0.64; 0.77;</u> 0.86; 1.5; 25	2.3**) (2.4*)	0.71 (0.59*)°

EU-N northern Europe

Southern Europe:

The critical GAP of the product 'Huoxastrobin's Prothioconazole EC 150' (GAP ELJ-S 2) is supported by a set of new residue data. This cGAP involves 2 applications at 0.100 kg fluoxastrobin/ha with the last application be made at growth stage BROH 69. The CGAP for Fluoxastrobin + Prothioconazole EC 150' is considered in the MRL application so intent to the dossier. The cGAP can be used to establish the risk envelope for the CAP of the representative se.

The representative use supported for the re-approval Bixafe + Fluoxastrobin + Prothioconazole EC 190) involves a dightly lower individual application rate compared to the critical GAP (i.e. 0.0875 kg as/ha for wheat and rec; GAPEU-SB).

In total 11 trials are reported in the present dessier which are considered appropriate to support the critical GAP. The trials were performed in 2003 and 2010 with different EC formulations containing bixafen, prothic conazor and triflox strobin as mixing partners. All trials were performed according to GLP principles.

In all trials fluoxastroom was applied twice with the final application carried out at growth stage BBCH 69. Depending on the study, the application rates ranged from 0.075 (0.071)— 0.100 kg a.s./ha. Relative to the critical GAP, the amount of the active substance applied did not exceed the 25% deviation except for an individual trial where the target rate of 0.075 mg a.s./kg was erroneously under dosed (0.071 kg a.s./ha). However, in this trial the residue findings were at the upper end of the range of all residue data from the data set and thus all 11 trials are considered for the MRL calculation and the STMP estimate.

Since the difference between the application rates of the cGAP and the GAP of the representative use is small the application rates used in the supporting residue trials also fall into the \pm 25% range relative to the GAP of the representative use.

As for the northern zone, in some trials two sets of grain and straw samples were collected. In the summary table below and for MRL calculations always the highest value is used. The residue levels in grain and straw are summarised in Table 6.3.2-23 below.

^{*}A set of trials was conducted side-by-side and there fore not all trials are council individually. The and FMR are derived from 8 independent trials. From an individual pair of trials the highest values were considered. The and TMR values as obtained from all data are given in parentheses.

Table 6.3.2-23: Summary of residue data from wheat trials with fluoxastrobin: Sum of HEC 5725 E-and Z-isomer

		Use	No of	Total residues of HEC 572	25 sum of E-an	ıd Z-isomer)	
Commodity	Region	pattern	trials	Individual residue levels	® HR	STMR	
		pattern	uiais	(mg/kg)	(mg/kg)	(m)g/kg) 👌	
		2		<0.01; <0.01; <0.01;			
Wheat grain	EU-S	applications		<0.01 0.01; 0.01; 0.01;	0.02	× 0.01	
		EHC	0.075	11	<0.02; 0.02; 0.02; 0.02		
		(0.071) -	11	9 , 1; 0.47; 0.71; 0.79;			
Wheat straw		0.100 kg/ha		1.0; <u>1.0;</u> 1.3; 1.9; 1.5; °	& 3.7 L	© 1.0 (°	
			00	2.7; 3.7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Q' (Ö"	à Û	

EU-S southern Europe

Relevance for MRL setting
All residue data from the northern and southern region were well below the existing 0.05 mg/kg for wheat or 0.5 mg/kg for ve as set out with Regulation (EC) \$39/2008.

Residue levels found in the supplementary trials are at or below the MRL proposal EFSA made in their Reasoned Opinion on existing/MRL9 (EFSA Journal 2012;10(12):3012) which was 0.02 mg/kg for both crops.

Important note:

For the northern region, the GAP of the epresentative use and the GAP for the MRL application are the same (GAP EU-N 2) arta pertaining to the same product (FXA+PTE EC 200). Thus, all supplementary trials Geference KCL 6.3.2/09; /LG /11, LT2) ar Palso Ensidered appropriate for MRL setting.

For the southern Pegion, the cGAP (GAP EU-S 2) and the GAP With representative use (GAP EU-S 2) are different The cOAP is related to the product FXA PTZ & 150, while the representative use is for BIX+FXA+PTBEC 190. All supplementary trads (reference KCA 6.3.2/13, /14, /15) are considered to adequately support the BAP and therefore are appropriate for the MRL calculation.

An MRL application for wheat and rye (M-543078-014) will be submitted along with and as part of this supplementary dossier in order to ensure that wheat and rye MRLs do not drop to 0.02 mg/kg. MRL calculations for the supplementary data are provided in chapter CA 6.7.2.

CA 6.3.3 Onion

Representative uses for renewal of approval of fluoxastrobin

The GAP for the representative use on onions in the southern climatic zone summarised in Table 6.3.3-1. The GAP for the representative use also forms the critical GAP in the southern zone. The use in/on onions was not evaluated for the first Annex I inclusion. The use was recently registered for Greece.

Table 6.3.3-1: Summary of the GAP for the representative use supported for renewal of approval for fluoxastrobin

Crop	Region *	Product	F, Maximum Rate A	PHI (days)
Onion	EU-S	FXA+PTZ EC 200	0 F 2 10 15-47 5 125 7	21

EU-S: southern Europe

F Field; G Greenhouse; I Indoor.

Evaluation in the EFSA Reasoned Opinion on Existing MRL (EFSA Journal 2010 10(12); 3012

The use in northern Europe has been evaluated on the PFSA Reasoned Opinion on existing MRLs according to Art 12 of Regulation (EC) \$56/2005 (EFSA Journal 2012;10(12):3012). The residue data were found to be compliant with the registered GAP EFSA concruded that the available residue data on onion are considered sufficient to derive an adequate MRL proposal as well as risk assessment values.

At the time of harvest, the following residues were determined in onton bulbs:

Sum of the oxastrobin (FIEC 55.25 E-fromer) and HbC 5725 Z-isomer: $8 \times 0.02 \text{ mg}$; $1 \times 0.03 \text{ mg/kg}$ The critical GAP established in the northern region is compiled in Table 6.3.3- 2.

Table 6.3.3-2; Summary of the critical CAP of fluoxastrobin in/on onion (northern Europe)

Crop		Minimum Application Interval (days)	Growth stage (BBCH)	Maximum rate Fluoxastrobin per application (g a.s./ha)	PHI (days)
Onion	OU-N FXA PTZ F 1-4	5	40-47	125	14

EU-N: northern Europe

F Field; G Greenhouse; I Indoor.

Comparing the critical GAPs of both climatic regions shows that the use pattern supported in the southern zone is less critical than the authorised GAP in northern Europe because it has less applications (2 instead of 4), longer intervals between applications (10 vs. 5 days) and a longer preharvest interval (21 vs. 14 days).

Annex I renewal process / new studies

New residue data to support the representative use in the southern climatic zone are summarised Table 6.3.3- 3.

Table 6.3.3-3: Supplementary residue trials in/on onion conducted in the southern regio

Year	GAP last appl.	Formulation 💸	N° of trials	Study Onumber	Reference
2012	2 x 114-124 g a.s./ha BBCH 47	EC 200 (100 g/L fluoxast obin, 100 g/L prothiocorazole)		12-F CL BY	478892-0.01
2013	2 x 125 g a.s./ha BBCH 47/48	EC 200 (100 g/L throxastrobin, 100 g/L prothioconazole)		13-2139	M-478312-01√1
2014	2 x 116-125 g a.s./ha BBCH 47	EC200 (100 g/L Phyoxastrobin, 190 g/L prothioconazole)	40	14.2175	<u>1.20%;</u> <u>M. 18082 (1.1</u>

Report:

Determination of the residues of fluoxastrobin and prothioconazole in/on onions after Title:

spraying of luoxastrobin & Prothioconazole EC 000 in the field in Spain - Season

Report No.:

Document No.:

Guideline(s): October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 19/117/EEC and 91/414/EEC EC guidance working document 7029/VI/85 rev. 5 (July 22, 1997)

Guideline deviation(s) GLP/GLP.

Test system

In 2012, 4 residue trials were conducted in southern Europe (Spain) according to the use pattern of the representative use. In eacotrial onions were treated with 2 applications. The targeted product rate was 1.25 L/har Fluoxastroloin + Prothio Chazole EC 200' (100 + 100 g/L) corresponding to 0.125 kg fluoxastrobin/ha. The actual rate was slightly less (0.114-0.124 kg fluoxastrobin/ha). The water rate ranged from 456 to 49802/ha. The 10 treatment was conducted at BBCH 44 - 45, and the 2nd application was carried out at BBCH 47, 20 days before the anticipated commercial harvest. The interval between the two applications was 911 days.

Two trials were designed as decline series and two trials were set up to yield harvest values only. In the decline series bulb samples were taken on day 0 prior to the last application and immediately thereafter. In addition bulb samples were collected at day 3, 7, 12-13, and 20 after the last application. In the harvest trials bulb samples were collected at day 20 only.

Residue of fluoxastrobin (E-isomer) and HEC 5725 Z-isomer were analysed using method 00649/M003 (2010; M-387385-01-1) by HPLC-MS/MS. The analytical method was designed to measure HEC 5725 E- and Z-isomer separately. The total residue of HEC 5725 was calculated as the sum of both isomers. The Limit of Quantification (LOQ), defined as the lowest

validated fortification level, was 0.009 mg/kg for the E-isomer and 0.001 mg/kg for the Z-isomer, resulting in a theoretical LOQ of 0.01 mg/kg for the total residue of HEC 5725.

Findings

- Method performance: Recoveries for both analytes were performed prior to analysis of the field samples in order to validate the method and concurrently with the residue analysis of the study samples. Method performance was acceptable for onion bulb. Individual and mean recoveries at fortification levels between 0.009 and 0.9 mg/kg for HEC 5725 E-Romer and 0.001 and 0.1 mg/kg for HEC 5725 Z-isomer were within the range of 70-110 %, with RSD <20%. All results of the method validation were in accordance with the general requirements for residue analytical methods.

Table 6.3.3- 4: Recoveries for fluoxastrobin (HEC 5725)E-isomer and HEC 5725 Z-isomer in/on onion

The LOQ is marked in bold

Study				**************************************	Fortifi-	Individual	Rec	overy (%) 0	
Trial No.				F	cation		Ž			
Plot No. GLP	Cran	Portion_		6		In about 1	D'	اگلام	Mean	RSD
Year	Crop	analyse	a.s./nietabolite	n		recoveries i		IVIAX	, Mean	KSD
12 F CL BY	Onion	bulb	(duoxastrobin	35	Q.009 A	91; 93;	84	93	90	3.8
P/A			duoxastrobin	v .e		89; 🗱 91		93 ©		
12 F CL BY				30	0.090	101; 98; ©	86%	101	95	8.4
P01					\$\frac{1}{2}\text{0.90}	86 83; 82	\$2	02	02	
12 F CL BY P02					50.90 20.90	83,82	82	83	83	7.1
12 F CL BY				10	overald		02	101	90	7.1
P04			HER 5725	5	0.001	₩06; 93; 103; 9 9;	93	106	99	5.7
12 F CL BY	-0			r G	0.001	94				
109					0.0	96 ; 91; 84	84	96	90	6.7
GLP: yes 2012	%			3 9	0.10	0 80; 82	80	82	81	
2012				10 €	overall		80	106	93	9.4
	Ď									

- <u>Storage periods</u>: The maximum storage period of deep-frozen treated samples was up to 227 days for fluoxastroom (HEC 5725 Ensomer) and HEC 5725 Z-isomer and is covered by the interval investigated in the storage stability studies.

Study number	Sample material 🖇	Maximum storage period (days)
12F CL BY P/A	Option builty 💛	227

Residue results. At the sampling event on day 0 immediately after application residues of 0.022 and 0.011 mg/kg (total residue) were found in onion bulbs, however, all samples from the two decline series were dree of residues on day 3, 7 and 13-14. In the four southern European field trials, no fluexastroom related residues (E-or Z-isomer) were determined in onion bulb at the envisaged PHI of 21 (actual 20) days. Residues were always less than the LOQ of the E-and Z-isomer (0.009 and 0.001 mg/kg, respectively), and thus the total residue HEC 5725 resulted in < 0.01 mg/kg.

- No residues above the LOQ of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were determined in any of the corresponding control samples.

Table 6.3.3-5: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on onion created with 'Fluoxastrobin + Prothioconazole EC 200' in the field in southern Europe

Gt. I					Applica	tion			<u></u>	Residu		
Study Trial No.			FL	No	kg/ha	1 /1 T	ĞS	Portion &	ØALT	Fluox	HEC	total
Plot No.	Crop	Country			(a.s.)	kg/hL (a.s.)	,	analysed	(days)	strøbin	5725 Z-	@ésidue ∕∕
GLP	Variety	Country				A		Q.	la °	(mg/kg)	(Isomer (HEC
Year						Q2		~	ذ Ø	~ \C	(mg/kg)	5725
					,	¥	o				, & '	(mg/kg)
12 F CL BY	Onion	Spain	200	2	0.114-	0.0249	47 🐰	, ballb		<0.00	<0.001	0.01
P/A	Civitatum		EC		0.116		(C)		0	0.002	₹ 0.001 <u>1</u>	
12 F CL BY						~ @	Ŵ,	Q,	3 0)<0.00 1 0	<0.01
P01		Europe,					7	là G	∰ <u>,</u>	₹0.009 <0.009	<0.001	< 9.91 20.01
GLP: yes		South		.0		, .,	°	, O	20 %	<0.009 <0.0009	<0.901 ©0.001	©0.01
2012				Q			~		200	~00009 -		<u>~0.01</u>
	0	Spain	200	\sim	0.196	0.0250-	47	bulb		0.009	<0.00	< 0.01
12 F CL BY P/A	Onion	Spain	200 EC	02	0.116 Q	0.0230- Øa.0251 €	→ /			0.011	<0.001	0.011
	Ciclope		@ 	~/	j q	Ø.0251	(<0.019	€9.001	< 0.011
12 F CL BY		Europe,)	°~	.~	\mathcal{O}'	4		720	<0.009	0.001	< 0.01
P02		South *	k	,		4	~	4	N3 .	2 0.009	< 0.001	< 0.01
GLP: yes			0		Ž,	<i>\(\text{\text{\$\psi}}' \)</i>	* <i>O</i>		20	<0.009	< 0.001	< 0.01
2012			4	(ø		W.	~@		
12 F CL BY	Onion	Spajn (×200	2	0.11	0.0250	47°	bulb	20	< 9 0009	< 0.001	<u><0.01</u>
P/A	Pandero	,	EC	Ç'	0216		L 1	0		Č [®]		
12 F CL BY	2		Ô	9	Ž,		"	.0 .	<i>@</i> .	<i>y</i>		
P04	Ţ			*	ى [*]		*					
GLP: yes				Wy.		, L	_ ~		W			
2012	8	South O	(D'			Ö		17 n			
	& ·	Sprin	200	2 .	10.11.0	X 0240@	17	hulb (20	< 0.009	< 0.001	<0.01
12 F CL BY	1	Spain	\$ C	2 %	₹ 0 .114-€	0.0249-0	4/	Duip O	20	<0.009	<0.001	<u><0.01</u>
P/A	Valero) PEC	Ma.	0.124	0.0259		bulb T				
12 F CL BY			1	,	Q'							
P09	<u></u>			8			1					
GLP: yes		Europa		K		pr O	Ĉ	>				
2012		Eurobe, South	**				Ş					
		Legum 0	—⋋	\bigvee_{α}			"OF	<u> </u>	i	l	1	

prior to last theatment O

Prior to last tweatment Prior

Note: For the calculation of the total residue unrounded values were used, therefore minor deviations may occur when the values given in the table are used. Underlined values are used for GRL calculation.

KCA 6.3.3/02 ;; 2014; M-478312-01-1 Report:

Determination of the residues of fluoxastrobin and prothioconazole in/on onion after Title:

spray application of fluoxastrobin & prothioconazole EC 200 in Spain, Italy, southern

France and Portugal

Report No.: 13-2139 Document No.: M-478312-01-1

Regulation (EC) No 1107/2009 of the European Parliament and of the Council Of Guideline(s):

Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21
October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/41/EEC
EC Guidance working document 7029/VI/95 rev. 01997-07-22).
OECD 509 Adopted 2009-09-07 DECD GUIDELINE FOR THE TESTING OF CHEMICALS, Crop Field Trial
US EPA OCSPP Guideline No. 860.1500
yes, no impact; see report
yes

Test system

In 2013, a set of 4 residue trials was conducted in southern Europe (Spain) Italy Southern France and Portugal) according to the use pattern of the representative use. He each trial, omions were treated with Portugal) according to the use pattern of the representative use. We each trial, onions were treated with 2 applications at the targeted product rate of 1.25 L/ha Pluoxastrobia Prothioconazole EC 200' (100 + 100 g/L) corresponding to 0.125 kg floorast obin/ha. The water rate was either 400 or 800 L/ha. The 1st treatment was carried out at BBC 45 - 47 anothe 2nd application was performed at BBCH 47/48 with a pre-harvest interval of 21 days. The interval between the two applications was 10-11 days. Two trials were designed to generate decline series and two trials were so up to yield harvest values

only. In the decrine series, bulb samples were taken on day or prior to the last application and immediately thereafter. In addition samples were collected at day 3/4, 7, 14 and 21 after the last application on the harvest trials boild samples were collected at day 24 only.

5,725 Z₄ somer were analysed using method Residues of fluoxastrobin (E-isomer) and HEC 2010 M-38 385-01-1) by HPLC-MS/MS. The analytical 00649/M003 experiments during the analysis of the samples by spiking control method was validated by recovery samples.

Deviation guideline For some samples from trial 13-2139-01 (Spain) the maximum temperature during shipment increased to 10.14°C, thus exceeding the requested value of -18°C. The average temperature for the period in which the required value was not met (29 hours) was -13.54°C. The impact of this temperature deviation is addressed in a short-term storage stability experiment under conditions relevant or more unfavourable to these samples (cf. CA 6.1/07; Table 6.1- 16

Findings.

- Metrod performance: Recoveries for both isomers were performed prior to residue analysis in order to validate the method and concurrently with the analysis of the study samples. Mean recoveries at fortification levels between 0.009 - 0.9 mg/kg for HEC 5725 E-isomer and 0.001 - 0.1 mg/kg for HEC 5725 Z-isomer were within the range of 70-110 % with RSD <20%. All method validation data are in compliance with the guideline requirements for data collection methods.

Table 6.3.3- 6: Recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on onion

The LOQ is marked in bold

									()	1
Study Trial No.					Fortifi- cation		RQC	covery (%) (V) (Mean)	ľą,
Plot No.					level	4	<u> </u>		\$ ^	Ş" b
GLP	Crop	Portion	a.s./metabolite	n	(mg/kg)	Individua⊎	[™] Min	Max	Mean	RSD/
Year		analysed				recoveries			. ~	RSD
13-2139	Onion	bulb	fluoxastrobin	3	, 0 .009	92;93,93	92	© /3	93	©0.6(
13-2139-01 13-2139-01-				3	0.09	95,93;93	91	93	92 S	1.3
T					0.9	87;88	8Q,	88	88	W
to 13-2139-04-			4	8	overall®		<i></i> ₹87	3 3	, 9 ⁽ 4) ⁸	5 2.7
T			HEC 5725	3 Ø	0.001	8998;99%	89	, 99 L	95	5.8
a. n			Z-Isomer	Ø,	[Q	O	94	Q).
GLP: yes				13	9.01	93;94,95	Ø ³ 3	9 5		J.1
2013				2 €	0.1	79079	* 79 &	ľ	7 9 6	2
					oyerall		790	99@	91	8.7
				,						

- storage periods: The maximum storage period of deep trozen treated samples was up to 260 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5705 Z isomer and is covered by the intervals investigated in the storage stability studies.

Study number	Sample materia	il 🧪	Maximan	m storage period (days)
13-2139	Onion bulb	Y		2.60

-Residue results: In the two dectine series it was shown that residues decline well with time from initially 0.044 and 0.085 mg/kg on day 0 following the 2nd treatment to 0.010 and 0.011 mg/kg, respectively. Fluoras frobin related residues (sum of E-and Zisomer) in onion bulb ranged between < 0.01 and 0.021 at the envisaged PHI of 21 days.

- No residues above the LOg of 0.009 mg/kg (E-nomer) or 0.001 mg/kg (Z-isomer) were determined in any of the corresponding control samples.

Table 6.3.3-7: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on onion treated with 'Fluoxastrobin + Prothioconazole EC 200' in the field in southern Europe's

	1	1									1	
Study Trial No. Plot No.					Applica	tion				Residues	J.	
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/h L (a.s.)	GS	Portion analysed	DALT	Fluoxa- strobin (mg/kg)	HEC 5/25 Z Isome (mg/kg)	Total Tresided Tresided HICC 5725 Ong/kg
13-2139 13-2139-01 13-2139-01-T GLP: yes 2013	Onion Beira	Spain Europe, South	200 EC	2	0.125	0.03	*47 © V	bulb To	3 7 140 21	30.007	0.005 0.05 0.021 0.006 0.002 0.002	0 3 15 0 93 0 0.058 0 0.015 0 0.011 0 0.011
13-2139 13-2139-02 13-2139-02-T GLP: yes 2013	Onion Cala- brese; Pink bulb onion	Europe, & South	200 EC					purb			\$9,001	\$0.01
13-2139 13-2139-03 13-2139-03-T GLP: yes 2013	Onion UX051	France Europe, South	200 EC		©.125	9.016	4	chailb	0*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.009 0.010 0.009 <0.009 <0.009	0.002 0.003 0.003 0.002 0.002	0.011 0.044 0.013 0.011 0.011 <u>0.011</u>
13-2139 13-2139-04 13-2139-04 _s T GLP: yes 2013	Star; Onion Early	Prtugal	200 C EC 2				48	bulls 5	21	0.018	0.003	0.021

* prior to last Gatment Residues for total residue HEC 5725 (determine as HEC 5725 F and Z-isomer separately and calculated as HEC 5725 (sum

Note: For the calculation of the total ciscular unrounded values were used, therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MPL calculation.

KCA 6.3.3/03 : 2015: M-518082-01-1 Report:

Determination of the residues of prothioconazole and fluoxastrobin in/on onion after Title:

spraying of fluoxastrobin & prothioconazole EC 200 in the field in Spain, Italy

France

(South) and Greece

Report No.: 14-2175 Document No.: M-518082-01-1

M-518082-01-1
REGULATION (EC) No 1107/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009 oncerning the facing of plant protection products on the market
OECD 509 Adopted 2009-09-07 OECD GUIDEPINE FOR THE TESTING OF CHEMICALS, Crop Field Trial
US EPA OCSPP Guideline 18. 860.1500 none
yes Guideline(s):

Guideline deviation(s): **GLP/GEP:**

Test system

A set of 4 residue trials was conducted in southern Europe (Spain, Italy, Southern France and Portugal) in 2014 according to the supported use pattern. In each trial, on one were treated twice at the targeted product rate of 1.25 L/ha with 'Fluoxastrollin + Prothoconagole EQ 200 (100 4 100 g/L) corresponding to 0.125 kg flyexastrobin/ha. In one trial the actual application rate was slightly less (0.116-0.118 kg/ha) but within the acceptable ronge for comparability (max -8%). The water rate ranged between 500 and 800 I Pha. The 1st treatment was conducted at BBCH 45 and the 2nd application was carried out at BBCH 47 in all trials. The pre-harvest interval was 21 days and the interval between the two applications was 9-10 days.

Two trials were designed as declare series and two trials were set up to yield harvest values only. In the decline series, bulb samples were taken on day 0 prior to the last application and immediately thereafter. In addition samples were collected at day 3/4, 7, 13/34 and 21 after the last application. In both harvest trials both samples were collected at day 25 only.

Residues of fluoxastrobin of isomer) and HEO 5725 Z-isomer were analysed using method 00649/M003 (201@M-387385-Q1-1) b&HPLC-MS/MS.

Findings

- Method performance: The analytical method was validated by recovery experiments during the analysis of the samples by spoking control samples. Mean recoveries at fortification levels between 0.009 0.9 mg/kg for HEC 5725 E-isomer and 0.001 - 0.1 mg/kg for HEC 5725 Z-isomer were within the range of 70,410 with PSD 20%. The method performance meets all guideline requirements for residue analytical methods.

Table 6.3.3-8: Recoveries for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer in/on onion

The LOQ is marked in bold

Study Trial No. Plot No. GLP	Crop	Portion	a.s./metabolite	n	Fortifi- cation level (mg/kg)	Individa (a)	Rec Min	overy (%) &	RSD
Year	1	analysed				recoveries				
14-2175 14-2175-01 14-2175-01- T to 14-2175-04 14-2175-04- T GLP: yes 2014	Onion	bulb		3 0	oyerall , 0.001 , 0.01	102 03; 106;106; 107; 103; 101; 103; 105; 103; 105; 103; 105; 103; 105; 103;	100 101 101	107	106 103 103 104 102 104 100 102	2.4 2.4 0.6 1.1 1.2

- storage periods: The maximum storage period of deep frozen reated samples was up to 139 days for fluoxastrobin (HEC 5725, E-isomer) and HEC 5725 Z-icomer, and is covered by the interval investigated in the storage stability studies.

Study number	Sample m	aterial 🧳 🛮 🖡	aximum størage per	riod (days)
14-2175	Onion bull		139	

- -Residue results: In the two decline series the total residues of HEC 5725 (sum of E-and Z-isomer) declined well with time from intrally \$025 and 0.032 mg/kg on day 0 to 0.010 and 0.017 mg/kg, respectively, on day 25 After the pre-harvest interval of 27 days the total residue HEC 5725 in onion bulbs ranged between < 0.00 0.017 mg/kg in the four southern European field trials.
- No residues above the LOQ of 0.009 mg/kg (E-isomer) or 0.001 mg/kg (Z-isomer) were determined in any of the corresponding control samples.

Table 6.3.3- 9: Application data and residues of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and the total residue HEC 5725 in / on onion treated with 'Fluoxastrobin + Prothioconazole EC 200' in the field in southern Europe

										^	_	O) U
Study Trial No. Plot No.					Applic	ation			.4	Residues	J.	
GLP Year	Crop Variety	Country	FL	No	kg/ha (a.s.)	kg/hL (a.s.)	GS F	Portion	DAIsT (dass)	Fluoxa- strobin (mg/kg)	STEC 5725 Z Isomer (mækg)	total control to
14-2175 14-2175-01 14-2175-01-T GLP: yes 2014	Onion Figueres, redish onion for dry harvest	Spain Europe, South	200 EC	2	0.115 - 0.118 ©		47	bulb	21	0.009 0.02N 0.004 9909 0.009	0.001 0.004 0.007 0.002 0.001 0.001	0 010 025 0.021 0.011 0.010
14-2175 14-2175-02 14-2175-02-T GLP: yes 2014	Onion Dorata di Parma, Medium maturation	Europe, South	200 EC		9.125°,	9.0208 9.0208						0.01
14-2175 14-2175-03 14-2175-03-T GLP: yes 2014	Onion UX051, Production type	France Survey Europe, South	200 E.C.		0.125	0.015	47 4		7 7 14 Ø1	0.009 0.030 0.010 0.009 0.009 0.0014	0.001 0.002 0.003 0.002 0.002 0.003	<0.01 0.032 0.017 0.011 0.011 0.017
14-2175 14-2175-04 14-2175-04-T GLP: yes 2014	Onion Snowball, white Specifical bulb	Greece GR			(125)			bulb	21	<0.009	<0.001	<0.01

^{*} prior of last treatment

Residues for total residue NEC 5725 (determined & HEC 5725 E-and Z-isomer separately and calculated as HEC 5725 (sum of E- and Z-isomer)

Note: For the calculation of the total residue untounded values were used therefore minor deviations may occur when the values given in the table are used.

Underlined values are used for MRL calculation.

Overeal Conclusion of onion

In total 12 trials on onion were conducted between 2012 and 2014 in the field in southern Europe using the product 'Fluoxastrobin' + Prothioconazole EC 200'. The trials were designed to comply with the GAP of the representative use and were carried out according to GLP principles. 'Fluoxastrobin + Prothioconazole EC 200' was applied twice at rates of 1.25 L/ha corresponding to 0.125 kg fluoxastrobin/ha. In few trials the application rates were slightly less (up to -9%), however, the deviation to the target rate it well within the range of the EU's tolerance criteria for comparability (± 25%). The treatments were carried out at proper timing during the growth stages BBCH 44-47 and BBCH 47/48 with a pre-liarvest interval of 19-21 days.

Table 6.3.3-10: Summary of residue data on onion with 'Fluoxastrobin + Prothioconazole EC 200' (sum of HEC 5725 E-and Z-isomer)

Commodity	Region	Use pattern	No of trials	Total residues of HEC 572 Individual residue levels (mg/kg)	S (sum of E-and 2-isome) HR STMR (mg/kg) (mg/kg)
Onion bulb	EU-S	2 applications at about 0.125 kg/ha PHI 21 days	12	<pre><0.01; <0.01; <0.01; <0.01; <0.01; <0.01; <0.00; <0.01; 0.010; 0.011; 0.017; 0.02</pre>	

EU-S: Southern Europe

The findings demonstrate that residues arising from the GAP supported in the southern communications are well covered by the existing MRL of 0.05 mg/kg_Regulation, 859/2008) and by the MRL proposed in the EFSA Reasoned Opinion (EFSA Journal 2012;10(12):3012) of 0.04 mg/kg_ the Regulation following the review of existing MRLs is not per published (SANCO/11739/2013). A modification of the established or prop/sed MRLs is not necessary.

An MRL calculation for the data so is provided in chapter C 8.6.7.2. are well covered by the existing MRL of 0.05* (ag/kg Regulation, 899/2008) and by the MRL proposed in the EFSA Reasoned Opinion (EFSA Journal 2002;10(12):3012) of 0.04 morks. The

CA 6.4 Feeding studies

Evaluation for Annex I inclusion

A feeding study was conducted on dairy cattle and evaluated in the EU peer eview. Flug astrologic (HEC 5725 E-isomer) and HEC 5725 Z-isomer was fed to dairy cows in a ratio of 65% E-isomer Z-isomer in order to reflect the isomer ratio occurring in potential feed items

Animals were dosed at 6, 30 and 100 mg/kg feed corresponding to 0.22, 1.09 and 3.64 mg/kg day). Fluoxastrobin, the Z-isomer and metabolite M55 TEC 5725 pt hoxy-hydrox pyrixo analysed, and positive results were found in milk and tissue sampos. For milk residues above the LOQ (0.01 mg/kg for the sum of E-and Z-isomer and M55, each were only found at the 100 mg bw dose level and reached a plateau after 12 day For musclemeat, wean residues overe \$0.01, and 0.08 mg/kg for the 6, 30 and 100 mg/kg dose levels, respectively. For fat, coean residues were 0.02, 0.10 and 0.20 mg/kg for the three dose ovels, for live, megt residoes were 0.02, 0.09 and 0.25 mg/kg and for kidney 0.04, 0.17 and 0.41 mg/kg for the 630 and 100 mg/kg groups, respectively. The lowest dose level was considered to reffect the N race for beef cattle based on the highest residue in the crows (DAX 2004). The study was MRLs for commodities of animal or Qin (ENSA Conclusion 20

Based on the cereal uses evaluated for Anno I incusion her feeding necessary due to predicted in Kes being less than 0.1 mg/kg fec@ (EFSA Conclusion 2007). The hen metabolism study indicated that revidues in powerly products would not be (DAR 2003). nificant (<0.01 mg/kg)

Animal dietary burden calculation

Animal dietary burden calculation of the first the new data requirements (Regulation (EC) 283/2013), the animal dietary burdens have to be estimated considering the OECD feeding still tables and OECD approaches presented in the guidance document on residue on livestock No. 73%, The estimated dietary burdens of total HEC 5725 residues (sum of HEC 2725 E-and Z-isomer) based in EU grop residue data and the European diet in the OECD feeding tables, are calculated below for the mine livestock species (cf. Table 6.4-2).

For the dietary but den calculation input data (CY. Table 6.4-7 below) are used as obtained from the supplementary residue trials on wheat and barley condited according to the critical GAPs as described in the chapters above. Since for the Morthern region the cGAPs and the GAPs of the representative uses for wheat and varley are the same and in the southern region the cGAPs for wheat and barley establish the risk envelope for the representative uses there the results of the dietary burden calculation do not differ for the representative uses or the critical GAPs since the same input values are applicable for small grain cereals.

However, additional information is given (in italics) on input data for other crops for which fluoxastrobio uses are granted and which provide feed items. The reason for reporting this additional information is to help to understand the dietary burden calculation for all uses. In CA 6.4.1 (poultry) and CA 6.4.2 (chiminant) details on the dietary burden are presented for both scenarios:

> The dictary burden arising from the critical GAPs/representative uses supported in the present dossier

The dietary burden arising from all uses and which form the reference for the exaggerations in the (hen) feeding studies.

In the OECD feedstuff tables, new feed items such as immature cereals (forage, hay, silage) have been introduced. Following the recommendation in the EFSA document 'Estimation of animal intakes and HR, STMR and MRL calculations for products of animal origin' (September 2015, issued on the DG SANTE website) uses on cereals are — by default — understood as 'uses on cereals or grain production' and therefore, only residues in grains and straw from cereals are considered for the animal dietary burden calculation below.

Residue levels are reported based on a residue definition that takes into account the sum of the E-and Z-isomer. This residue definition is anticipated to be in force when this dossier will be evaluated.

Table 6.4- 1: Input values for the dietary burden calculation for fluoxastrokin

		<i>™</i> "	· _\()	0° 68	. ~~~
	Relevant data set	Maximum dig	tary burden	Median die	tary burden
	(cf summary tables: 🐇				Input
	Table 6.3.1- 23		Input value	F L	- √value. ∘
Commodities	Table 6.3.1- 24	Comment	Residue	Comment	Residore
	Table 6.3.2- 22		7 T.7) & .,	level
	Table 6.3.2, (23)		(mg/kg)		(📆 g/kg)
Proposed enforcement	and risk assessment residue of	lefinition: Sum of	fluoxastrobin a	nd its Z	r 🕲
Wheat, triticale &	EU-N; EU-Ş©	S CIÔND A		S⊅PMR [™]	0.01
rye grain	EO-IN, EO-S		0.01	Sevik (0.01
Barley and oat grain	EGN; EUS	STMR*∀	© 0.02	STMRO	0.02
Wheat, triticale &	ELOS S	HR		Ø √ ST Ø ID	1.0
rye straw					1.0
Barley & oat straw	W. BU-NO O	HR	& 2.7 °	Ç ÓS TMR	0.44
Brewer's grain	For Corivation of PE;	STMXX		STMR ×	
(dried)	1 Toccssing Guares war-	*(P(1) &	0.02	PF(1)	0.02
(unled)	3924/99 and 13-3401			11(1)	
	For derivation of PF.				
Wheat milled by-	Processing study RA-	STMON X	© 02	$STMR \times$	0.02
products	3.960/00 🗎 💍	PF(9.75)	~ O 2	PF(1.75)	0.02
	© (bran)				
Rape forage	EUW S	`≈ HR	≫ 0.01	STMR	0.01
Rape meal		$STMR \times_{\sim}$	0.02	$STMR \times$	0.02
Rape meal		PF(2)	0.02	<i>PF</i> (2)	0.02
Potato tuber (calls)	O EU-NU O	$\mathbb{Q}^{\mathbb{Z}} HR \mathbb{Q}^{\ell}$	0.05	STMR	0.01
ELLN	PELLON AND FORMANDE	. 7/			

EU-N northern Europe, EU-SO southern Europe

In the following table the results of the dietary burden calculation which may arise from the representative uses are summarised following the guidance given in pesticides mrl guideline animal intake mrl 2015 en.pdf and using the official spreadsheet pesticides mrl guidelines animal prodel 2015 en.xls (September 2015). Both files can be downloaded from the DG SANTE site here ('Technical Guidance'/'Guidelines for residue data under Directive ('New Guidelines 2015'):

Table 6.4-2: Calculated dietary burden for fluoxastrobin residues in livestock arising from the representative uses according to OECD feeding tables (EU diet); **RWCF** approach (Reasonable worst case feed)

Animals	Median burden	Maximum burden	Above 0.004 mg	Maximum burden	Highest contributing
	(mg/kg bw)	(mg/kg bw)	/kg bw	(mg/kg DM)	*commodities
Beef cattle	0.006	0.022	Yes	9.93	Barley straw
Dairy cattle	0.009	0.036	Yes	_e *0.93	Barley straw S
Ram/Ewe	0.016	0.061	Yes	1.83	Barley Straw Q
Lamb	0.020	0.078	Yes	1.83	Barl∰° ∫ straw√
Pig (breeding)	0.001	0.001	No♥o	0.02	Barrey grain
Pig (finishing)	0.001	0.001	Ø Vo	0.02	Barley & Fain 😽
Poultry broiler	0.001	0.001	Q _{Vo}	Q:02	Barley Fgrain
Poultry layer	0.009	0.030	A Yes O	Ø.44 Q	Wheat straw 2
Turkey	0.001	0.001	Ney	~ 0.0 2	Barrey O grain

As evident from the calculations above, the trigger value of 0.004 mg/kg bw/day is sceeded also for poultry (layer). Therefore, residues in eggs and poultry tissues were investigated in a feeding study on laying hen.

CA 6.4.1

At the time when the study protocol for the poultry feeding study was set up there were uncertainties about the need to include impature cereals as feeding items into the poultry. Thet since such feeding items are included in the OECP reeding tables for the EU poultry diet Guidance document on residues in livestock, series on pesticides no. 73 (ENV/M/MONO(2003)8)), 10 July 2013). As discussed and a reed with the RMS in a pre-subpossion meeting the dose groups were determined taking into account both scenarios, 9.e. with and without impature gereals as relevant feeding items. As a pragmatic solution the study was designed with odose levels y.e. approximately 1N reflecting a scenario without immatore cereals, 1 reflecting the scenario with immature cereals and 5N relative to the second dose level thus covering the range of the dietary burden for both scenarios. The dietary burden and the dose levels for the feeding study were calculated taking into account not only the representative uses on cereals, but allowes where feeding items can be derived.

Thus the following nominal target dose lovels were calculated:

- 0,52 mg/kg feed approximating the LN dose level for poultry layer without consideration of mmature cereals (addressed as 0.2N in the study)
- 2.6 mg/kg loed approximating We 1 Valose level taking into account feeding items from immature cereal For Calculation of the dietary burden residues were adjusted to the dry matter content from weshly sampled green plant material. The dose level is addressed as 1N dose Level in the feeding study. Q
- 130 mg/kg feed as an intermediate 5N dose level between 3N and 10N dose level relative to the 2.6 frg/kg dose. C

The test substance used in the study should be representative of the residue in the feeding items. In the case of Maximum of the residue in plants is formed by parent compound, whereby HEC 5725 E-and Z-isomer were found in varying ratios.

The main residues which might be taken up by poultry layer originate from cereal straw. Therefore, the test item was fed in a 70/30 ratio of HEC 5725 E/Z-isomer according to the occurrence in straw in

the metabolism studies conducted with three different radiolabels. This approach was already followed for the conduct of the dairy cattle feeding study and considered reasonable in the EU peer review.

Table 6.4.1- 1 and Table 6.4.1- 2 below compile the dietary burdens arising from cereal commodities when treated according to the use pattern of the <u>representative uses</u> and when considering all EU uses, from which feeding items can be derived, i.e. cereals, rape and potatoes. This additional calculation is presented because it forms the reference for the exaggerations in the her feeding study summarised below. (Spread sheet used as published on the DG SANTE website.)

Table 6.4.1-1: Detailed results of the dietary furden for poultry byer according to OFCD feeding tables (EU diet) arising from the representative uses on cereals; RWCF approach (Reasonable worst case feed)

Maximum			Poultry	\$	Ş		Ÿ
Intake	Broiler		Layer	1.9∜ kg 0≪U3 kg≈	Turkey	\$\frac{1}{2}\text{\$\tex{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitit{\$\tex{\$\exitit{\$\text{\$\exititin{\exitit{\$\text{\$\texi\\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	kg kg
(mg/kg bw/d)	0.001	mg/kg bw/d	0:930 spig/kg/by	w/d	9.30 01 2	mg/kg w/d	%
Contributor 1	Barley		Wheat stray	ٍ 10	Barley O	grain	50
Contributor 2	Wheat	milled bypats 20 PE	Barley graun	90	Wheat	milled bypdts	20
Contributor 3					<u> </u>	O T	
Contributor 4	()	
Median intake	0.001	mg Ag bw	0.000 mg kg b		0.00	mg/kg bw	

	Intakes e	xpressed on the	e dry mater bas	s is (mg/.	DM)
**************************************	Poulty Broiler 0.02 0.02 0.02	xpressed on the			
	'U D :1. "	Layer	Türkey		Intake >0.1 mg/kg DM
Maximum Median	002	0.44	\$\text{0.02}		in red characters
Median	0.02	0.15	0.02	y	
			A ~ O		
A					
			9 ″		
Z)			,7		
O					
S. S					
		v			
	4 7				
	8 toller 6 002 5 1000 5				

Table 6.4.1- 2: Detailed results of the dietary burden for poultry layer according to OECD feeding tables (EU diet) arising from all EU uses; RWCF approach (Reasonable worst case feed)

Maximum					Poultry			L.	
Intake	Broiler	1.7 0.12	kg kg	Layer	1.9 0.13	kg kg _≪	Turkey		kg 5.5 kg
(mg/kg bw/d)	0.003	mg/kg bw/d	%	0.032	ng/kg bw/d	**	0.005	mg/kg by	× .
Contributor 1	Potato	culls	10	Wheat	straw	QI0	Potato @	culls	20
Contributor 2	Barley	grain	70	Potate	culls	10	Barley	gran	56
Contributor 3	Wheat	milled bypdts	20	Barley	grain 🦠 🛴	8 0	Wheat \	amilled () Dbypd@	20
Contributor 4			Q.	. <i>(</i> 20)		7 0 .			Ž
Median intake	0.002	mg/kg bw	0	0.00	mg kg bw	Š	0.002	mg/kg bw	

	Intakes expressed on the dry mater basis (frg/kg DM) & & &									
	Poultry									
	Broiler	Lelyer Turkey Intake 0.1 mg/kg DM								
Maximum	0.04	U.46 9 30.07 9								
Median	0.02	0.030								

Report:

572\$z-isomer - Magnitude of the Title: Fluoxastrolon (HE**©**5725

residue in Paying hen

Report No .: Document No.

D Guidelines for the testing of chemicals, Number 505 Residues in Livestock, Guideline(s):

S: EPA Residue Chemistry Test Godelines OPPTS 860.1000 "Background"

Guideline deviation(s GLP/GEP:

Sixty nature laying hens *Gallus Gallus Gomes Geus*) were dosed orally, via capsule, for 28 consecutive days with fluoxastrobin (HEC, \$725 F, and Zesomer in a 70/30 ratio) at nominal dose rates of 0 mg/kg feed/day (control; 9 hens, 2 subgroups) 0.52 mg/kg feed/day (low dose group B; 12 hens, 3 subgroups), 2.6 mg/kg feed/day (mid dose group C; 12 hens, 3 subgroups), 13.0 mg/kg feed/day (high dose group D; 120rens, a subgroups). In order to investigate the depuration an additional group of hens (dose group E 5 hens, 3 subgroups) were dosed at the highest rate and subsequently held untreated for 1 Q and 2 weeks until sacrifice.

Dose rates used in this study were calculated according to Annex 1 (feedstuff tables) of the OECD Guidanco Document on residues in livestock, series on pesticides no. 73 (ENV/JM/MONO [2013]8.

The dose levels were calculated taking into account all possible feeding items that originate from EU uses (cereal commodities and potatoes). The dose levels in the study were initially derived from the calculated dietary burden of 2.6 mg/kg feed (defined as 1X and including immature cereals as hen

feeding items, see frame in bold in the table below). The other levels were approximately 0.2X and 5X the anticipated maximum dietary burden arising from all uses of fluoxastrobin in Europe.

During the reporting stage of the study it was confirmed that immature cereals would not need to be considered for the EU livestock diets and thus the <u>1N rate was calculated based on all EU ases but without immature cereals (0.46 mg/kg feed; cf. Table 6.4.1-2). Therefore the the lowest target dose level in the study (0.52 mg/kg feed) corresponds to 1.1N. Considering a scenario without immature cereals as relevant poultry feeding items the target dose levels reflect 1.1X, 5.5X and 28% of the anticipated dietary burden.</u>

The target and actual dose levels employed in the saidy are summarized below in Table 6.4.1©3. The dose rates were adjusted weekly, based on the actual weekly feed consumption by the hous in each dose group during the previous week. The table includes the calculated mean values for the whole dosing period.

Table 6.4.1-3: Summary of target and actual HEC 5725 Cand Z-rsome dose administration

			·	~ ~		
		Dose group	Pose group		Dose Wels	
		Calculated		And And	eed S	Per animal
		based of EU	Calculated based			, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Dose	Number	relevant reciding	on EU relevant	Targetin	Actuation	& <u>_</u>
group	of hens	Sata ¹	residue data ²	stocky 3 🙈	study 4	O Actual ⁵
Sions	01110110	(without	(reported in		Spary Sparo/ko ©	(mg a.s./kg
		consideration of	stody report	(mg/kg	feed)	b.w./day)
	. //	immature	RAHEX 096) (feed)		
	2	Sereals)		0, %		
A	9 0	cot	Mrol S S		~√0	0
В		0 1.1 X√d ose ≪	~0,2X dô\$e	0. 5 \$	@ 0.60	0.032
C	\mathcal{G}_2	5.5X dose	1X dose	Q.6 ×	2.9	0.17
D	12	« ₁ ∠oΛ uosc	√ 5\$\$dose,	○13.0 @	14.5	0.83
E Q	15	28 X d ose 🐴	⊗X dos€	U KØ	14.4	0.82
	13	(deparation)	(depuration)		14.4	0.02

<u>Footnotes:</u>

- 1: EU dose rate exaggerations are based on EU distary burden of **0.46 mg a.s./kg feed** (all EU uses, i.e. cereals + potatoes) without consideration of impature coreals as relevant poultry feeding items (target dose level); Table 6.4.1-2.
- 2. EU dose rate exaggerations are based on EU dietary burden of **2.61 mg a.s./kg feed** (all EU uses, i.e. cereals + potatoes) taking into account immature cereals forage hay, silage) as relevant poultry feeding items.

 Report RAHEX096 mainly uses the exaggerations relative to the mid dose considered as 1N, dose levels reported there as 0.2 X/X and XX.
- 3: Target dose levels were calculated based on EU tretary burdens according to Annex 1 of the OECD Guidance document on residue in reverse No. Frank and derived from 2.61 mg a.s./kg feed initially considered as 1N.
- 4: Actual dose based on average feed consumption data collected from the study and average amount (mg) test substance for each dose group over the entire dosing period
- 5: Actual dose based on average amount (mg) test substance and the average body weight for each dose group over the entire dosing period.

The hensewere dosed orally once per day each morning after collection of eggs and feeding. The control animals received a placebo (empty capsule) concurrently with the treated animals.

Sampling

Eggs were collected twice daily (afternoon and morning prior to the day's dosing). The eggs collected in the afternoon from each sub-group were combined with the eggs collected the following morning from the same sub-group. The egg contents were combined (shells discarded by sub-group into a labeled container, weighed, and thoroughly mixed by vigorous shaking. Composite egg samples collected on days 0, 2, 4, 7, 10, 14, 17, 19, 21, 24, 27 (from all groups), on day 30 and 33 (from all depuration subgroups), on day 35, 37 and 40 (from 2 depuration subgroups) and on day 42, 44, 46 and 48 from the last depuration subgroup. The composite samples per subgroup were deep-from on the same day and shipped to the analytical laboratory for homogenization and subsequent analysis.

On day 28 of the study, twelve hens from the highest dose group (group D) and all liens in the groups receiving the low dose (group B) and the mid-dose (group C) along with 6 control hens were sacrificed within 6 hours of the administration of the final dose. Liver (entire), muscle (leg and breast), and fat (abdominal and subcutaneous with overlaying skin) were collected, shipped to the analytical laboratory for homogenization in the presence of dry ice. Other homogenization, the samples were shipped to the analytical test site on the same day.

Eighteen hens (3 from the control group and 15 from the highest dose group entered into a 21-day depuration phase following the administration of the final dose. Egg samples were collected throughout the depuration phase and tissue samples were collected on study days 35, 42, and 49 for analysis.

Analysis

Fluoxastrobin (HEC 5725 Exponer) its Zosomo and its metabolite HEC 7054 (M55, HEC 5725 phenoxy-hydroxypyr midine) were analytically determined using analytical method 00691/M002 (2015 M-536049-01-1), which was validated prior to and concurrently with the residue analysis of the samples. The LOQ was 0.000 mg/kg for HEC 5725 E-isomer, 0.001 mg/kg for HEC 5725 Z-isomer and 0.00 mg/kg for HEC 7154 (expressed in parent equivalents).

Findings

The mean values of the concurrent recovery rates per compound, sample material, and spiking level were in the range of 02-102%, with relative standard deviations less than 20%. Details of recovery data are shown in Table 6-21-7 to Table 6.4.1-20.

Feed consumption, body weights, and egg production were not adversely affected by treatment with HEC \$725 E-and Zeisomers. In fact, feed consumption remained stable during the dosing period. The dose levels (mg a.s./her in a given dose group), which were calculated using the mean feed consumption from the previous 5 days, also remained stable during the 28-day dosing period, as shown in Table 6.4 1. An exception occurred for the first week of dosing where the dose was not calculated based on the previous average feed consumption instead the animals from each dose group received in unaffusted amount of the test item resulting in about 150% of the nominal target dose.

In the groups representing the nominal worst-case EU dietary burden without consideration of immature cereals as feeding items (<u>low dose group B</u>, actual 0.60 mg/kg feed, target 1.1X, reported in the study as 0.2X), residues of HEC 5725 E-and Z-isomer and HEC 7154 (HEC 5725 phenoxy-hydroxy-pyrimidine) were measured at sacrifice in poultry tissues and were always less than the LOQ (0.009 mg/kg for HEC 5725 E-isomer, 0.001 mg/kg for HEC 5725 Z-isomer and 0.01 mg/kg for HEC

7154) in muscle, fat with overlaying skin and in liver. In eggs taken throughout the study duration, fluoxastrobin derived residues in the group receiving the lowest rate were also less than the LOG for all analytes.

In tissues from hens belonging to the <u>mid dose</u> group C (actual 2.9 mg/kg fcod, target 5.5%, reported as 1X in the study report), no residues above the respective LOQs of HEQ 5725 E-and F-isomer and HEC 7154 were found at sacrifice. In eggs taken throughout the study duration, fluoxistrobin derived residues in the group receiving the mid dose were also less than the individual LOQs for all analytes.

In tissues from hens belonging to the <u>high dose</u> group D (actual 10.5 mg/kg feed, target 28X, reported as 5X in the study report), no residues above the espective LOQs of MEC 5725 E-and Z-isomer were found at sacrifice. No residues of HEC 7154 above the EOQ of $0.0 \,\mathrm{kmg/kg}$ were found in muscle from the group receiving the highest dose. The live samples were found to contain residues of HEC 7154 in the range of $0.017 - 0.025 \,\mathrm{mg/kg}$ (mean of $0.020 \,\mathrm{mg/kg}$, expressed as parent equivalent. Residues slightly above the LOQ were found in some samples of skip with that (< $0.01 - 0.011 \,\mathrm{mean} > 0.01 \,\mathrm{mg/kg}$) from the highest dose group.

In eggs, residues of HEC 7154 in the range of <0.011 mg/kg (expressed as parent equivalent) were determined only on day 7. The average from the 3 subgroups was 0.010 mg/kg. Following day 7, the residue levels dropped to varies below the LOQ or all subgroups and temained at this level for the rest of the dosing period.

No residues of HEC 5725/E- and Z-isomer and HEC 7154 were found in the tissues of the <u>depuration group E</u> (actual 14.4 mg/kg feet), target 28X Peported as 52 in the study report.

Depuration occurred quickly. No residues of HEC 7154 were found in Diver or any other tissue of hens from the depuration group sacrificed already one week after ressation of the dosing.

The residues found in the eggs and issues collected from laying hense during dosing, at the end of the dosing period, and during the deparation phase are summarised in Table 6.4.1-5 and Table 6.4.1-6

Conclusions

A feeding study was onducted with fluorastrobin (mixture of HEC 5725 E-and Z-isomer in a 70/30 ratio) on poultry in order to clucidate the evels of relevant residues in poultry tissues and in eggs.

Fluoxasteobin and its Z isomer was administered orally (via capsule) to laying hens for 28 consecutive days at nominal average dose rates of 0.72 mg/kg feed (approximating the 1X [0.46 ppm] dose not considering immature capeals as poultry feeding items), 2.6 mg/kg feed (1X dose taking into account immature cereals as feed items) and 13.0 mg/kg feed. Feed consumption, body weights, and egg production were not adversely affected by compound administration.

Based on the actual feed on takes of the birds from the individual dose groups and the amount of test item (HEC 5728 E-and Z-isomer) received via the capsules the actual dose levels for the three dose groups were disculated as to hows:

0.60 mg/kg feed for the low dose, 2.9 mg/kg feed for the mid dose and 14.5 mg for the high dose group and 14.4 mg/kg for the depuration group. The dose rates were adjusted weekly according to the actual feed intake per dose subgroup.

The fact that the first dose was somewhat higher than the calculated target dose (about 150%) for a very limited period of time is not considered to adversely affect the quality of the study since the

overdose occurred at the very beginning of the study and residue levels were very low in eggs and tissues from all dose groups.

Based on the actual bodyweights of the hens the following dose rates in term of mg/kg bw/day are derived: 0.032 (low dose group), 0.17 (mid dose group), 0.83(high dose group) and 0.82 mg/kg bw/d for the depuration group. The dietary burden expressed as mg/kg bw per day administered to the lowest dose group is very well in line with the calculated dietary burden for the 1N dose evel for both scenarios, the representative uses on cereals only and when considering all EU uses (please of Table 6.4.1-1 and Table 6.4.1-2).

After the final dose, the animals were sacrificed and the key edible tissues were analysed for the relevant residues of fluoxastrobin. Data were generated for three analyses (HEC 5720E-and Z-isomer, HEC 7154) in the study itself corresponding to the proposed residue definition in the EFSA documents for enforcement and risk assessment (EFSA conclusion (2007) and EFSA Reasoned Opinion [Art. 12 review, 2012]). The combined residues from the three andividual analytes were calculated for eggs and tissues. A theoretical LOQ of 0.02 mg/kg can be derived for the three components by summing up the individual LOQ levels. The calculation of the combined residue follows the 'traditional' methodology considering all residue below the LOQ being at the LOQ.

Residue levels in eggs:

In the course of the study, no residues of Hist 5728 E- and Z-Isomer above the LOQ of 0.009 and 0.001 mg/kg, respectively, were found in the eggs from any of the dose groups.

No residues of HEC 7154 above the LOO of 601 mg/kg were found in eggs from all dose groups except for the highest dose level (group D) where residues in the range of 0.01 – 0.011 g/kg (expressed as parent equivalent) were determined only on day 7. The average from the 3 subgroups was 0.010 mg/kg. Following day 7, the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the LOO and remained at this level for the residue levels dropped to values below the look of th

As a consequence the combined residues were always < 0.02 mg/kg for the dose level representing the EU dietary burden (0.032 mg/kg bw/d for all EU duoxa drobin uses)

No residues of HEC 5725 E-and Z-isomer and HEC 7155 above the respective LOQ were found in eggs or ressues collected from animals of the deputation groups.

Residue levels in issues

While no residues of both parent compound isomers were found in any of the hen tissues (muscle, fat with skin and liver) and at any dose level, low levels of the metabolite HEC 7154 were found in liver from the highest dose group 10.017 10.023 mg/sg; mean of 0.021 mg/kg, expressed as parent equivalent). Residues sightly above the LOO were found in some samples of skin with fat (< 0.01 – 0.01) mean < 0.01 mg/kg) from the highest dose group.

The combined residues & HEC 725 E-and To somer as well as HEC 7154 were < 0.02 mg/kg for the dose level group reflecting the EU distant borden.

No residues of HEC 5725 E- and Z-isomer and HEC 7154 above the respective LOQ were found in eggs or tissues collected from animals of the depuration groups.

All this we samples from her were analysed within 30 days of collection and therefore the investigation of the storage stability was not required for hen's tissues. Also the eggs samples were usually analysed within 30 days of collection, except few egg samples either collected on the day of sacrifice, from the control group or during the pre-dosing period. For these egg samples the storage interval was up to 44 days. However, given the fact that the samples from the control group or collected during the pre-

dosing did not contain residues and from treated animals the residue levels in eggs were very (< LOQ) up to the highest dose group a freezer storage stability study on eggs was not considered necessary.

Table 6.4.1- 4: Dosing regime used in the poultry feeding study (dosing in capsules)

			_		*	Ziu cupsures)	
Dose		Dose rate*	Feed i	intake 💍	Administer	Average body	Average
Group	Timing		fresh	dry 🔻	dose 🔍	weight	and Z-isomer, (
(nominal)		(mg/kg feed)	(g/bird/d)	(g/bird/d)	(mg)	(kg)	(mg/kg bw)
Control	4 Weeks	0	106	93	\$ _\&	698	0
				Q)			
1.1X	Week 1	0.77	104 🖔	. 9 2	_\$~0.0 76 √	1.64P	°>√ 0.6443
(0.2X in	Week 2	0.50	110	4 97	0.0048	9 1 .67 9 L	.029 。
study	Week 3	0.51	144		%050 ₄	€1.737 O	0.029
report)	Week 4	0.60	, (99° ^	y 87\y'	0.052	√ [©] 1.7 6 2	0.029
Overall Average		0.60	Q, 107 Y	294 °) 0: 95 5	1906	0.032
			· "O"	~ ~			W.
5.5X	Week 1	3.5	Q 110	<i>1</i> × ×	0.34	O 1.644	0.21
(1X in	Week 2	2,5	115	∂ ð1 ∠	0,25	1084	0.15
study	Week 3	2.3 Q	1.59	104	Ø.26	©1.740	0.15
report)	Week 4	\$3.1 ○ [♥]	2001	89	0.27	1.772	0.16
Overall Average		2.9	Q 1110	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ø.28 ×	16710	0.17
			. O	\$' &'		4	
28X	Week	\$18.0	\$108 X		1.7	© 1.594	1.07
(5X in study	Week 2	12.9%	109	J 6 &		1.638	0.76
report)	Week 3	y 13.5 €	W 10 "	% 99 &	\$1.2	1.693	0.73
. ,	Week 40	4.5	<u>⊿</u> 102 🏂	y 9 9 5	1.34	1.715	0.76
Overall Average	. (D 145 .	108	S95 S	35	1.660	0.83
	*O '		. 0 4		2		
Depuration	Week	18.6	105	9 Q *	1.7	1.615	1.06
group	Week 2	12.6	© 110	£97 £	1.2	1.659	0.73
28X (5X in	Week 3	Ø.1 💸	10 .	98	1.3	1.700	0.75
study report)	Week 4	0.1	112		1.3	1.737	0.75
Overall Average	Ī	4.4.0	Pio S	96	1.38	1.678	0.82
* dose rate in ** these weig	n feed calculation to the control of	d on a de weight bar determined at the e	Sis Sis and of Other given	study week			

Table 6.4.1-5: Levels of the relevant residues of fluoxastrobin in eggs

	Group		Residue	levels of individua	al analytes	Combined
	dose level			(mg/kg)	~	residue evels
	in feed					(mg/kg)
	(nominal)				©.	
Group	Dose group	sampling			≱ ₩EC 7154 ≥	
	level	day	HEC 5725	H © C 5725	MIEC /154	Sum of HEC
	actual		E-isomer	Z -isomer	OQ = 0.01	5725 E-and Z-
	(mg/kg		LOQ = 0.009	QOQ = 0.001	(expressed in parent compound	5725 E-and Z- isomer #HEC 7934
	bw/d)		LOQ 0.007	\$\int_{\infty} \text{0.001} \text{Q}	equivalents	
В	1.1X	0	< 0.009	< 0.00	₹ 50.01 ₹ 0.01	<0.02
	(0.2X in	1	< 0.069/	<pre> < 0:001</pre>	\$\times_0.0\frac{1}{\times_0}	* * 0 .02
	study	3	< 0.009 🐇	©.001°	₹ < 0.09°	0.02
	report)	5	€ 0 2009 ×	0.001	\$\frac{\partial 0.01}{\partial \partial 0.01}	<0.02
	0.032 mg/kg	7	× 0.009	(0.001	× 0.01	
	bw/d	10	$Q_{1} < Q_{2} $	\$\frac{1}{2}\text{\$\text{\$\sigma\$}\text{\$\text{\$01\$}}}{2}\text{\$\text{\$\text{\$\color{1}}\text{\$\color{1}	~ 0.01 v	0.02
		14 🔏	<0:009 ×	2 0.001	\$\vec{9.01}{\sqrt{01}}	<0.02
		17	Ø 0.00 %	\$\infty < 0.00 1	© 0.01	<0.02
		19	< 0.009	\$ \(\frac{1}{2}\)	< 0.0	<0.02 √
		24 4	<0.009 %	< 0.004	< 60.01	< 0.02
		\$ 24 O	0.009	< 0.001	0.01	<0.02
		274	< 0.009	Z <0.001 ₆	< 0.0	< 0.02
С	5.5X	8 ×	\$\begin{align*} \text{\$< 0.009 \text{\$\sigma}} \end{align*}	√×0.00°	<0.01	< 0.02
	(1X in study	L 1 5	0.009	< 0.001	< 0.01	<0.02
	report	3(7)	< 0.009	\$\frac{1}{2} \leq \frac{1}{2} \text{0.001 } \text{0.001}	< 0.01	< 0.02
		5	\(\frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\firan}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	\$ 0.00 ₁ \$	< 0.01	<0.02
	0 mg/kg	₩ 7 »-	< 0.009	\$ < 0.091	< 0.01	< 0.02
%	Jow/u	10	~ 0.0 9	< @001 ~ 0	< 0.01	<0.02
į Ģ		10	<0.009 O	0.0010	< 0.01	< 0.02
« ¥		17 7 2	00.00%	% < 0.00T	< 0.01	< 0.02
		19.0	< 0.009	© <%001	< 0.01	<0.02
		25	O < 0000	6 0.001	< 0.01	<0.02
		024	\$0.009 ⁵ \$	< 0.001	< 0.01	< 0.02
Α	K	©′27≈©″	0.00	< 0.001	< 0.01	<0.02
D Ø	28X (5X in study report)	Q.	< QQ009 >>	< 0.001	< 0.01	< 0.02
D &	(5X in study	41	Ø,0.009~	< 0.001	< 0.01	< 0.02
4	report)	3	Q 0.00	< 0.001	< 0.01	<0.02
	0.8 @/2011-0		© < 95009	< 0.001	< 0.01	< 0.02
	low/d *	\$7 \tilde{\infty}	< 0.009	< 0.001	0.10	0.02
		5 10 K	⋄ 0.009	< 0.001	< 0.01	< 0.02
Ĺ		16°	< 0.009	< 0.001	< 0.01	< 0.02
	D A	797	< 0.009	< 0.001	< 0.01	< 0.02
		7 19	< 0.009	< 0.001	< 0.01	< 0.02
		21	< 0.009	< 0.001	< 0.01	< 0.02
<u> </u>	(3X in study report) 0.8 9 mg/kg \ lov/d	24	< 0.009	< 0.001	< 0.01	< 0.02
		27	< 0.009	< 0.001	< 0.01	< 0.02

Table 6.4.1-5(cont'd): Levels of the relevant residues of fluoxastrobin in eggs

	· · · · · · · · · · · · · · · · · · ·	Ecvels of C		siddes of fidoxi	istrobin in eggs	
Group	Group		Residue	levels of individ	ual analytes	Combined
	dose level			(mg/kg)	*	residue evels
	per feed					(mg/kg)
	(nominal)				10°	
E1-E3	Dose group	sampling			11180 7154	
	level	day	HEC 5725	<u>HE</u> Ĉ5725	H E € 7154	Sum of HECS
	actual		E-isomer	Z-isomer	LQQ = 0.01	© 57250L-and 2/2-
	(mg/kg		LOQ = 0.009	Q = 0.001	©pressed in parent	isomer + REC
	bw/d)		LOQ - 0.009		equivalents)	
	28X	10‡	< 0.009	< 0.001	< 0.01	<0.02
	(5X in	14	< 0.00	©<0.Q01	30.01	<0.02
	report)	17	< 0.009	< 6 001	₩ 0.01	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	0.82 mg/kg	19	\$0.009	≈0.004 ₆ , *	< 0.6	<0.02
	bw/d	21	# 0.0 0%	@<0.0 0 1	O ≤0.01 S	<0352
		24	S < 0.009	× <90001	0.01	<0.02
		27	< 0.009	< 0.001	\$\int \left\ 0.0j	> <0.02
E1- E3**		30*	√ © 0.00 %	× 0.000	L <201 0	<0.02
		35	°>√ < 0.009	© < 0.901	< 0.01	<0.02
E2, E3**		35* 📞	< 0 .009	© 0.001 [♠]	× < 0.090	< 0.02
		³⁷ * 37* □	\$ 0.00 0	< 0.001	√ < © 01 √	< 0.02
	₩	40*	© < 0.009 °	♥ < 0 0 01 &	(0.01 6)	< 0.02
E3**		4 2*	√ <b.009 \$<="" th=""><th>₹0.001</th><th>0.01</th><th>< 0.02</th></b.009>	₹ 0.001	0.01	< 0.02
		\$\ 44*\D	\$0.009	~~~~ 0.00€V	< 0,01	< 0.02
		46%	< 0.009	< 0.001	∑ ⁰ .01	< 0.02
		₫8* C	[♥] < (0,0 09 🔏	3 9.001	< 0.01	< 0.02

depuration phase, no dosing (sampling days 30-48)

residue values from the depuration groups reflect the average of all Mogroup funtil the day of sacrifice for a given Õ.

tinis value reflects the proposed residue definition, and as such calculates each composition.

Sample collection for the depuration subgroups started 10 days after start of dosing this value reflects the proposed residue definition, and as such calculates each component at or above the respective LOQ

Table 6.4.1- 6: Levels of the relevant residues of fluoxastrobin in poultry tissues

Company Comp			n.	<u> </u>	Danida - 1	- دادان المساعد ما المسا	- 	Combie
Croup Infect Per Infect Per Infect Infect Per Infect In		Group					•	
Four		dose			(me	_	ibs)	residuetevels
The continual (actual)	~	level				[mg/kg]		∦mg/kg]
B	Group	in feed (nomin	animal (actual) [mg/kg		E-isomer	Z-isomer	LOQ = 0.01 (expressed in parent compound	J 67. - - 11.00 F
B			-			<u> </u>	equivalents)	
C 5.5X 0.17 27 6.009 6.001 0.01 <0.02 D 28X 0.83 27 <0.009		1		1	- "()	· *		
D						V ~ V	5 0.01	
E1							(%)	<0.02
E2 28X 0.82 48* 20.009 20.001 20.001 20.002 POULTRY LIVER B 1.1X 0.032 27 20.009 20.001 20.001 20.002 C 5.5X 0.17 27 27 20.009 20.001 20.001 20.002 D 28X 0.83 22 27 20.009 20.001 20.001 20.001 E1 28X 0.82 33* 20.009 20.001 20.001 20.002 E2 28X 0.82 48* 20.009 20.001 20.001 20.002 E3 28X 0.82 48* 20.009 20.001 20.001 20.002 E4 28X 0.82 48* 20.009 20.001 20.001 20.002 E5 5.5X 0.17 27 20.009 20.001 20.001 20.002 E6 5.5X 0.17 27 20.009 20.001 20.001 20.002 E6 5.5X 0.17 27 20.009 20.001 20.001 20.002 E6 5.5X 0.17 27 20.009 20.001 20.001 20.002 E7 28X 0.83 27 20.009 20.001 20.001 20.002			0.83		< 0.00	C< 0.000°	(0.01 € 0.01 €	¥ 6.02€°
E3 28X 0.82 48* 0.009 0.001 0.001 0.002 POULTRY LIVER B 1.1X 0.032 27 0.009 0.001 0.001 0.002 C 5.5X 0.17 27 0.009 0.001 0.021b 0.031 E1 28X 0.83 27 0.009 0.001 0.021b 0.031 E1 28X 0.82 38* 0.009 0.001 0.001 0.021b 0.002 E2 28X 0.82 48* 0.009 0.001 0.001 0.002 E3 28X 0.82 48* 0.009 0.001 0.001 0.002 C 5.5X 0.17 27 0.009 0.000 0.001 0.001 0.002 C 5.5X 0.17 27 0.009 0.000 0.001 0.001 0.002 D 28X 0.83 27 0.009 0.001 0.001 0.002 E1 28X 0.83 27 0.009 0.001 0.001 0.002 E1 28X 0.83 27 0.009 0.001 0.001 0.002 E2 28X 0.83 27 0.009 0.001 0.001 0.002	E1	28X	0.82		× 0.009	< 40.001	69.01	<0.00
B	E2	28X	0.82	42*	<i>p</i> . <i>y</i>	. ₹ 0.001	× 0.010	₹ ₹ 02
B 1.1X 0.032 27 0.009 0.001 0.001 0.002 C 5.5X 0.17 27 0.009 0.009 0.001 0.001 D 28X 0.83 27 0.099 0.001 0.021 0.031 E1 28X 0.82 35 0.009 0.001 0.001 0.002 E2 28X 0.82 0.82 0.009 0.009 0.0001 0.000 E3 28X 0.82 0.82 0.009 0.009 0.0001 0.000 POUL BY MUSCLE 0.009 0.009 0.0001 0.001 0.002 C 5.5X 0.17 27 0 0.009 0.009 0.001 0.001 0.002 D 28X 0.83 20 0.009 0.0001 0.001 0.002 E1 28X 0.83 20 0.009 0.0001 0.001 0.002 E2 5.5X 0.17 0.27 0 0.009 0.0001 0.001 0.002 E1 28X 0.83 20 0.009 0.0001 0.001 0.002 E2 28X 0.83 20 0.009 0.0001 0.001 0.002	E3	28X	0.82	48* 🍣	&\$\display 0.009\$\display	~~~ 0.0 0	C < 0.01	7 < 0.02
C 5.5X 0.17 27 0.009 0.009 0.009 0.001 0.021 D 28X 0.83 2% 0.009 0.001 0.021 0.001 0.002 E1 28X 0.82 32 0.009 0.001 0.001 0.002 E2 28X 0.82 48 0.009 0.001 0.001 0.002 E3 28X 0.82 48 0.009 0.001 0.001 0.002 B 1.1X 0.032 27 0.009 0.009 0.001 0.001 0.002 C 5.5X 0.17 27 0.009 0.001 0.001 0.002 D 28X 0.83 0.009 0.001 0.001 0.002 E1 28X 0.82 35* 0.009 0.001 0.001 0.002 E2 28X 0.82 42* 0.009 0.001 0.001 0.001 0.002		Poul	LTRY LIVER		0' "		F S S	
D 28X 0.83 27√ 0 < 0.009 < 0.001 0.021 b 0.0031 E1 28X 0.82 35* 0.009 0.001 0.001 < 0.02	В	1.1X	0.032	27		\$9.001	% 0.0b	<0.02
D 28X 0.83 27√ 0 < 0.009 < 0.001 0.021 b 0.0031 E1 28X 0.82 35* 0.009 0.001 0.001 < 0.02	С	5.5X	0.17	~\$\forall 27 \cdot \forall	< 0.009°	₹ 0.0 0	< 0.09	< 0.02
E1 28X 0.82 35* 0.009 0.001 0.001 0.002 E2 28X 0.82 48* 0.009 0.0001 0.001 0.002 E3 28X 0.032 27 0.009 0.009 0.001 0.001 0.002 E 0.002 0.001 0.001 0.002	D	28X	0.83	27/4	\$\infty < 0.9\delta 9	× < 0.001	Q.621b)	0.031
E3 28X	E1	28X	0.82	₂ 35* @	~ Q 009 <u></u>	€0.001€	~ 0.01°	< 0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E2	28X	0,82	#2* Ø	60.002°	0.001	< 0.0	< 0.02
B 1.1X 0.032 27 0.009 0.009 0.000 0.001 0.02 C 5.5X 0.17 27 0.009 0.001 0.01 0.02 D 28X 0.83 0.009 0.001 0.001 0.02 E1 28X 0.82 0.82 0.009 0.009 0.001 0.01 0.02 E2 28X 0.82 0.42* 0.009 0.001 0.01 0.002	E3		(7) n°	0 48* T	O.009	Ç [™] < 0.601 (\$0. 01	< 0.02
B 1.1X 0.032 27 0.009 0.009 0.000 0.001 0.02 C 5.5X 0.17 27 0.009 0.001 0.01 0.02 D 28X 0.83 0.009 0.001 0.001 0.02 E1 28X 0.82 0.82 0.009 0.009 0.001 0.01 0.02 E2 28X 0.82 0.42* 0.009 0.001 0.01 0.002		Poul	LIBY MUSACI	LE 💭 🦼	<u> </u>			
D 28X 0.83 27 0.009 0.001 0.001 0.002 E1 28X 0.82 35* 0.009 0.001 0.01 0.02 E2 28X 0.82 42* 0.009 0.001 0.01 0.02	В				≫0.009°	₹ 0.0 0 €	< 0.01	< 0.02
D 28X 0.83 27 0.009 0.001 0.001 0.002 E1 28X 0.82 35* 0.009 0.001 0.01 0.02 E2 28X 0.82 42* 0.009 0.001 0.01 0.02	С	5.5X	©0.17,	D 27 0 v	% < 0.009	O < 0.0001 a	< 0.01	< 0.02
E2 $28X$ $0.82 > 42*$ 0.09 0.001 0.01 0.02	D		0.83	_2Z)		< 0.001	< 0.01	< 0.02
E2 $\sqrt[8]{28X}$ $\sqrt[9]{6.82}$ $\sqrt[9]{42*}$ $\sqrt[9]{6.00}$ $\sqrt[9]{6.00}$ $\sqrt[9]{6.00}$ $\sqrt[9]{6.00}$	E1	28X	6.8 2	35*	< 0.009	0.001	< 0.01	< 0.02
	E2 4	₹ <u>2</u> 8X	%0.82 %	9 42*	20.009°		< 0.01	< 0.02
	E3	28X	© "0.82\sqrt	***/	0" < 0.009 0	W. 4	< 0.01	< 0.02

depuration phase no dosing (sampling days 30-48)

LOQ

a) The individual values from the three subgroups were: \$0.01, <0.011 mg/kg (mean < 0.01 mg/kg)

b) The individual values from the three subgroups were: \$0.017, 0.022, 0.025 mg/kg (mean 0.021 mg/kg) this value reflects the poposed esidue definition, and a cuch calculates each component at or above the respective

Procedural recovery data for the relevant residues of fluoxastrobin in poultry **Table 6.4.1-7:** eggs

	eggs										
Sample Material	Analyte	FL [mg/kg]		Indiv	idual V [%]	alues		Mean Value [%]	Ş ⁶ %1	n	ĎÔQ √mg/kgĎ)
		E & & & .	85	81	91	85	90	Ô	6.6		~ - ~ ·
			90	97	84	82	84	4		O S	
		0.000	85	87	87	900		84,	6.6 ≼	<u>2</u> 6	
	Elas assantanala in	0.009	89	79	81	85%	75	84	ق ا	A	by ~%,
	Fluoxastrobin (HEC 5725		75	81	79	£73	84	JO.	*		
	E-Isomer)		80		کے	<i>U</i>	4		CO.	* **	Ø.009 Ø
	,		85	85	800	82	82		Ŗ゛ĸŎ	,	b Î
		0.09	81	80	83	87 <i>©</i> 84 .	85 ⁷	\$\int_{\infty}^{\infty} 83 \tilde{\infty}	3Qr)	12	
			78 84	81 ⁸	¥85 ≼	§ 84 .	<u></u> 84	83 0		(,	4 .
	Overall Recove	ery for HE						<u> </u>	7 5 6 C	43 &	
	Overall Recove	ery for HE	75	12-JS011 √99 ∘	99	@100	20 1	A04 08	7 5.6		
			84O.	,799 °, 9 <u>1</u> %	98 🔏	Ø 99. å	× 99 s		Ţ		0
		0.001	.89	92	101	89	88.7		§ 70.8		Ò
			0.88	» 86	293	≥ 91	X9v"		7.0		\forall \text{'}
	HEC 5725	Q1	94%	98 @	98	©104	2 99		20	C)	
EGG	Z-Isomer	~\$~	947		~	4			O'	X	0.001
		~ ~ ~	\$90	Q Ø	90	8 %	84	\$\frac{1}{2}\frac{1}{88}\frac{1}{2}\frac{1}{3}\frac{1}{) Ö		
		°≈0.01 ₄	980 g	86 g	€ 88	<u>85</u>	8.7	W 885	~Ã.5	17	
	√		95	87 108	87.	78	95 🖔	1 (1 °	6)		
	0 11 0		86°				0	92	7.7	42	
	Overall Recove	ery for HE	<i>√</i> ≪/	Ison			<u> </u>	92	7.7	43	
		\ \ \{\ \'\ \\ \'\ \'\ \\ \'\ \\ \\ \\ \\ \\ \	90 [*]	105	¥ 105% 102∜	97	\$901 1016	Q" 2\\ \			
		,ø, 9 1	99	96, ⁷ 104	1027	94	101	@ ₂ QQ	5.2	26	
		\$ 501 \$ 6	94 🚣	92 %	88	% 01	92		3.2	20	
	7		100	108	99	103	(/ // n	\ \{\tau}			
	HEC 7154*		104	Q [°]		***	**************************************	Ť			0.01
	THE TIST	4 4	\$94 s	% 1	49 4	\$9 0	87				
		4 0.1 2	902	777	91	O ₈₉	≫82	89	5.0	17	
			\$ 9 0'	94	87\$	96	89		3.0	1,	
			% 8 8	~ § *)				0.7			
	Qverall Recove					<u> </u>		95	7.0	43	
*Final deter	Thination as: ation level; LOO: ive Standard Devi	HEC 7154	W	. ,	Resid	des calc	ulated a	s: HEC 57	25 parent	equiv	alent
FL: Fortifie	ation level; LQQ:	limit of qua	intiticati	ionų Žirii i		.00					
KSD Kelai	ive Standard Devi	auguzn. Isu	mader of	Haivia	varu	ies.					
	_ (. <i>W</i>	A.							
	A A										
			, ~								
(Ť Š		·	v							
	' Z A	7. G									
	Onination as: Ation level; LOO: ive Standard Devi										
	Ğ										
Ĉ,)) ·										

Procedural recovery data for the relevant residues of fluoxastrobin in poultry fat **Table 6.4.1-8:** with overlaying skin

								0, 0 m
Sample Material	Analyte	FL [mg/kg]	Val	idual ues 6]	Mean Value [%]	RSD	n	&OQ \$\fmg/kg\
	Fluoxastrobin	0.009	73	80	76	<u>-</u>	2 6	
	(HEC 5725 E-Isomer)	0.09	71	72 Ĉ	72	-		0.00
	Ov	74	5.7 🎣	4 4				
	HEC 5725	0.001	84	₄ ♥02	23		2	
FAT	Z-Isomer	0.01	79	* [*] 87	~83 %	Q,	Õ	© 0.001
	Ov	erall Recovery	:	<i>*</i> °°°	Ø 88,7	<i>∞</i> 11.2 %	4 📡	0.001
	HEC 7154*	0.01	% 7	Ø 95	W 94) } }	2	
	HEC 7154*	0.1	98 🖔	, 88 ©		-	Ť	60.01 %
	Ov	erall Recovery			\$ 92 ↑	, ©Š.8 _≪	, 4	

*Final determination as:

HEC 7154

FL: Fortification level; LOQ: limit of quantification; & RSD: Relative Standard Deviation; n: Number of single values

esiddes of Dioxas Pobin in poultry Table 6.4.1-9: Procedural recovery data for the relev liver

Sample	Analyte FL Wrividual Mean Value RSD [%]	y n	LOQ
Material	Analyte / [mg/kg] Values / (%) [%]		[mg/kg]
	Fluox as trobin	2	
	72 72 7	2	0.009
	Overall Recovery 3 82 14.4	4	
		2	
LIVER	Z-Isomer 0.00 76 86 8 -	2	0.001
		4	
	0.01 99 98 96 -	2	
	HEC 7154* 0 1 90 98 94 - O O O O O O O O O O O O O O O O O O	2	0.01
	Q Overall Recovers 95 4.2	4	
*Final determin	Rayon as: HEO7154 Residue calculated as: HEC 5725	parent equ	ivalent
FL: Fortification	on level; LOQ: In that of quantification; Standard Deviation: n Number of single-values \(\text{\text{\$\sigma}} \)		
RBD: Relauge	Standard De Witton, in Admitocopy single Cyclinds.		
4	Overall Recovery 95 4.2 Residue calculated as: HEC 5725 on level; LOQ: limit of quantification; Standard Deviation; n Number of single values		
Ş			
Z			

Table 6.4.1- 10: Procedural recovery data for the relevant residues of fluoxastrobin in poultry meat

									<u> </u>
Sample Material	Analyte	FL [mg/kg]	Individ	dual Va [%]	lues	Mean Value [%]	RSD %]	n	ĎŎQ (mg/kď)
	Fluoxastrobin	0.009	88	92	92	91	2.5	30	
	(HEC 5725 E-Isomer)	0.09	80	80	Ò	80	- «	×2	0.00
	Overall Recovery:				Ţ,	86	7.0	5 %	
	HEC 5725	0.001	88	. 888 ×	85	√87	, D	Ą,	
MUSCLE	Z-Isomer	0.01	84	82	<i>></i>	830	Ž	₹2	0.00
	Overall Recovery:		W.) I Ŝ	. T	r" \ \ 8 5 _@	3.4	5%	0.001
	HEC 7154*	0.01	1001	J Ø3	191	\$\frac{1}{2} \tag{7}		3	4
	HEC /134*	0.1	<u>_</u> 104	99_	V .	Q 102	- O	2	00Y
	Overall Recovery:					492	1	\$	OSY

*Final determination as:

HEC 7154

Residues calculated as:

HEC 572 Coarent equivalent

FL: Fortification level; LOQ: limit of quantification;

RSD: Relative Standard Deviation; n: Number of single values.

CA 6.4.2 Ruminants

The magnitude of fluoxastrobio residues in cominants has been investigated it a feeding study with lactating cows. The study was evaluated in the EU peer review and was considered sufficient for deriving MRLs in ruminants and bigs. For details please see chapter CA 6.4. No further studies are provided.

The dietary burden was calculated using the input stata arising from residue field trials supporting the

The dietary burden was calculated using the input stata arising from residue field trials supporting the representative uses/ortical GAPs described above as well as for other uses for which registrations are granted and the feeding tables as provided in the OECD guidance document No 73 (Annex I). Immature cereals as feeding them are not considered as input data (Table 6.4-1).

Table 6.4.2-1 and Table 6.4.2-2 below compile the Oletary burdens arising from cereal commodities when treated according to the use pattern of the representative uses and when considering all EU uses, from which feeding trems can be serived i.e. cereals, rape and potatoes. However, the calculations result in very similar intoke varies. (Calculations were performed using the official spreadsheets pesticides animal model 2015 en 1sts (September 2015) downloaded from the DG SANTE website.)

In Table 6.4.2-3 the dietary burden is compared to the dose levels of the dairy cow feeding study.

Table 6.4.2- 1:	Detailed r represents RWCF ap	esults of the di ative uses on co oproach (Reaso	etary e <u>reals</u> nable	burden for according worst case	r ruminants <u>arising from the</u> to OECD feeding tables (EU diet);			
Maximum			(Cattle				
Maximum Intake	Beef	500 12	kg	Dairy	mg/kg bw/g/ 5traw 20 grain 40 milled bypotts 30 mg/kg bw/d 5 3			
(mg/kg bw/d)	0.022	mg/kg bw/d	%	0.036	mg/kg bw/g/			
Contributor 1	Barley	straw	30	Barley	straw Q 30 3 2 4			
Contributor 2	Barley	grain	70	Bærley	grain 40 Q			
Contributor 3			0	heat	milled bypots 30			
Contributor 4				b i	Sme/kgr hw/d			
Median intake	0.0059	mg/kg bw/d		0,9093				
			\					
3.6		Į.		heep				
Maximum Intake	Ram/E	Sheep A O A O A O A O A O A O A O A O A O A						
(mg/kg bw/d)	0.061	mg/kg bw	/d 🙈	% 0.07	8 mg/kg bw/d 93			
Contributor 1	Barley	a straw	W.	60 Barle	Stan & OO			

Marinana			heep >	
Maximum Intake	Ram/Ewe	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	kg Lamb	40 % 0 1.7 % kg
(mg/kg bw/d)	0.061	Omg/kg bw/d	% 0.078	mg/kg bw/d %
Contributor 1	Barley	straw &	60 Barley	straw & 000
Contributor 2	Barley	grain	40 Barley	Zain 🔊 💛 40 (
Contributor 3			\$0 0 °	
Contributor 4			Ž	
Median intake	0.0156	m@kg bw@	0 P99	ung/kg/bw/d

In	ntakes expressed on the dry mater basis (mg/kg/M)
mg/kg DM	Cattle Some Speep
, O,	Beef Dairy Ram/Ewe Camb
Maximum	0.93 0.93 0 1.83
Media	025 0 0.24 0 0.47
	Cattle Ram/Ewe Amb 0.93 0.93 1.83 0 1.83 0.24 0.47 0 0.47

m all EU uses Table 6.4.2-2: Detailed results of the dietary burden for ruminants arising from all EU uses according to OECD feeding tables (EU diet); **RWCF** approach (Reasonable worst case feed)

Marinana		Cattle							
Maximum Intake	Beef		500	kg	Dairy		650 kg		
Intuke	Beer		12	kg	Dairy		25 kg		
(mg/kg bw/d)	0.024	mg/kg bw/d		%	0.038	mg/kg w/d	_ @		
Contributor 1	Barley	straw		30	Barley	straw	_030		
Contributor 2	Potato	culls		30	Potato	curls 🔊	30		
Contributor 3	Barley	grain		40	Barley	ygrain, 💯 🗽	. 40		
Contributor 4			\$	∀ 0			, SO		
Median intake	0.0061	mg/kg bw/d	4) %	0.000	fog∕kg bood	<i>**</i> **********************************		

Maximum Intake	Skreep St. Skreep
	Ram/Ewe 2 75 kg Lamb
(mg/kg bw/d)	0.063
Contributor 1	Barley Straw 60 Barley straw 60
Contributor 2	Potato culle Do Potato culle 20
Contributor 3	Barley grain Barley grain 520
Contributor 4	
Median intake	0.0459 mg/kg/bw/d 0.0254 mg/kg/bw/d

	Swine Swine	
Maximum Intake		kg
	Breeding 2600 kg Finishing 100	kg
(mg/kg bw/d)	0.003 mg/kg,bw/d % 0.004 mg/kg bw/d	%
Contributor 1	Potato V culls 750 Potato culls	50
Contributor 🔏	Rape fotage 20 Barley grain	50
Contributor 3	Barley Prain 50 50	0
Contributor 4		
Median intake	0.001 mg/kg bw/d 0.001 mg/kg bw/d	

Intakes expressed on the dry mater basis (mg/kg DM)								
mg/kg DM	A Cattl	le 🗸 🦼	eep Swine					
		Dairy O	Ram/Ewe	Lamb	Breeding	Finishing		
Maximum @) 0.99 S	0.99	1.90	1.87	0.14	0.14		
Median	25	0.25	0.48	0.47	0.04	0.04		
				Intake >0.1 m	g/kg DM <mark>in red</mark> c	haracters		

Table 6.4.2- 3: Overview on the dietary burden of ruminants and residues obtained in the dairy cow feeding study

									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			Resul	ts of livesto	ock feeding	g study	Highest	Median	<b>R</b> emark [©]
	Median	Max.					residue	residue	0' à
	EU	EU					<b>₽</b> y	e)	
C			Dose	No of	Results	for enforce	em <b>é</b> nt = res	sults før	
Commodity	Dietary	Dietary Burden	level b)	animals	P _A	risk asse	ssment c)		
	Burden	a)			Pro	posed reA	due definiti	on C	
	,	)			Fluoxas	trobin 🕉 Z-	isomer+ H	EC 7154	
					Ű	(=N			
		(mg/kg	(mg/kg		> Mean	Max @	(mg/kg)	(mg/kg)	
		bw/d)	bw/d)		(mg/kg)	(mg/kg)	m 2		
Cattle meat	(0.006	(0.022		<b>3</b> /	~0.02~~	0.02	0.02	0.02	Dietary
Cattle fat	for	for		3 %	0.02	Ø.02 °	0.02	0.02	Aurden °
Cattle liver	beef)	beef)	*	3	0,02	0.02	0.02	0.02	from dais
Cattle	0.009	0.036	0.22	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0) L		\$ 0.02 @ S		carly carle
kidney	for	for	Q,	~ 3 ×	(J 0.04)	<b>Q.0</b> 5	0.02	0.02	waitie .
	dairy	dairy							Þ
Cattle milk	0.009	0.036	$Q^{r}$	30	<b>≈</b> 0.02 ≰	0.02	£02	JØ.02 👋	
Sheep meat		Q		<b>O</b> *	S0.02	0.02	00.02	0.02	Dietary
Sheep fat			, ~	3	0.02	Ø.02 Q	0.02	0.02	burden
Sheep liver	0.020	0.078	© 9.22 ~	3	<b>©</b> 02	0.02	0.02	Ø9.02	from lamb
Sheep		0.078		, S	\$0.048	0.05	\$\sqrt{0.02}\$\sqrt{\sqrt{0.02}}\$	0.02	
kidney	3		Ď		0.04	0.05	0.02	0.02	
Sheep milk	á.	7 0		30		0, 9			Dietary
	0.016	0.061	<b>6</b> √0.22	30	©.02 ©	0.02	0.02	0.02	burden
	Š					O Y			from ewe

- a) The dietary buden was calculated for the European livestock diet using the OECD feeding tables issued with the OECD guidance Document to 73 to the representative uses and without taking into account immature cereals (forage, hay, silage) as deeding items (cf. Table 64-2). As a conservative approach the higher level calculated for dairy cattle is considered applicable also for be cattle.
- b) The lowest dose level of ruminant feeding study was 0.2 mg/kg bw/d. Results from other dose levels are not listed here since the anticipate dietary burden in less than the lowest dose level of the feeding studies
- Data based on an incipated residue definition for enforcement and risconsessment involving fluorastrobin (E-isomer) and its Z-isomer and HEC 225-phonoxy-hydroxypy miding (HEC 254; M55). Therefore, a conversion factor to adjust from the enforcement residue definition to the lask assessment residue definition is not required. Residues of individual components of the residue definition below the LOQ were calculated as being at the LOQ and summed up.
- d) Highest residue value (tissues) of mean recidue value (milk) according to the enforcement residue definition, derived by transfer factor (OECD vaidance document No 75) or interpolation/extrapolation of the maximum dietary burden between the relevant feeding groups of the study (FAOC 2009) No calculation is made here except for liver and kidney (transfer factor) since residues were LOC.
- Median residue value (tissues, phik) according to the enforcement residue definition, derived by transfer factor (OECD guidance document No 73) as interpolation/extrapolation of the median dietary burden between the relevant feeding groups of the study PAO, 2099). No calculation is made here except for kidney since all residues were < LOQ.



#### **CA 6.4.3 Pigs**

The general metabolic pathways in rodents and ruminants were found to be comparable and the findings in ruminants can therefore be extrapolated to pigs. This is also the conclusion in the 'Reasoned opinion on the review of the existing maximum residue levels (MRLs) for fluorastrolom according to Article 12 of Regulation (EC) No 396/2005' [EFSA Journal 2012,10(12):3012].

The dietary burden for swine was calculated above (cf. Table 6.4-2) using the input data arising from residue field trials described above and the feeding tables as provided in the OECD guidance document no 73 [Annex I]). The threshold value of 0.004 mg/kg bw/d was not exceeded for swine (breeding or finishing) taking into account the residue levels in cereals arising from the representative uses / critical GAPs.

Feeding studies on pigs are therefore not required and no applementary study has been generated following the inclusion of the active substances in Armex Lof Directive \$7414/2EC.

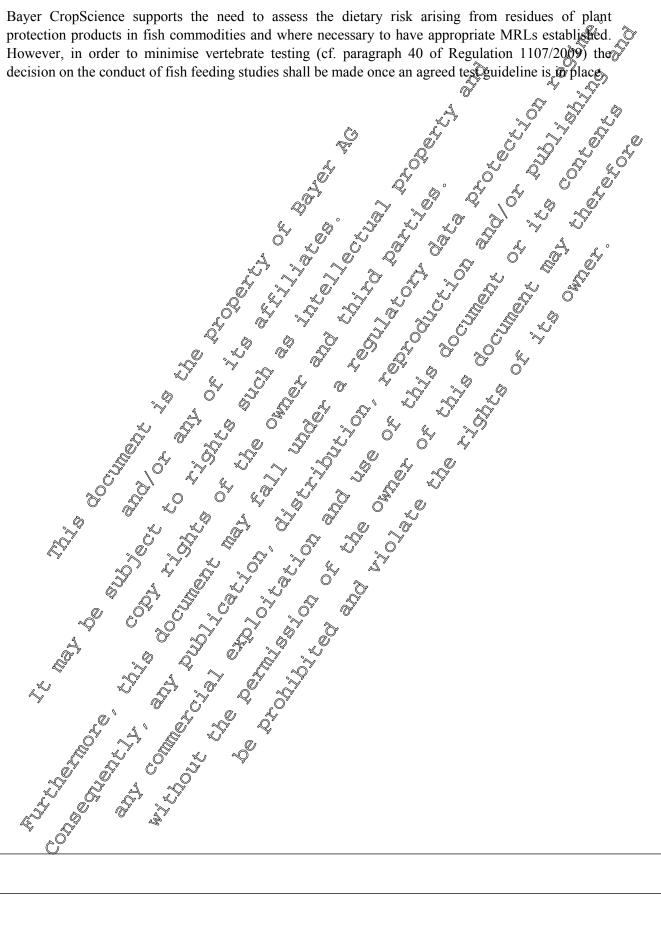
#### **CA 6.4.4 Fish**

In March 2013 EU Commission Regulation 283/2013 was published setting out the data requirements for active substances in accordance with Regulation (FG) No. 107/2009. This Regulation states:

# 6.4.4 Fish Feeding

A fish feeding study may be required where residues at levels above 0.01 mg/kg may be reasonably expected in edible tissues, based on the findings of the fish metabolism study and the estimated maximum residues which might occur in fish feed Particular attention should be laid on lipophilic substances with an intrinsic tendency for accumulation.

Unlike for ruminant and poultry, there are currently no agreed lest guidelines for the conduct of fish feeding studies. The procedure when no agreed lest methods or guidance documents are available is described, in the "Guidance Document for applicants" on preparing dossiers for the approval of a chemical new active substance and for the renewal of approval of a chemical active substance according to Regulation (ED) No 283/2013 and Regulation (ED) No 284/2013 (SANCO/10181/2013-rev 3, 12 December 2014). The focument states:


In some cases agreed test methods or guidance documents are not yet available for particular data requirements. In these cases, waiving of these particular data requirement points is considered acceptable as long as no test methods or guidance documents are published in form of an update of the Commission Communications 2013/C 93/01 and 2013/C 95/02.

In the summary report of the Standing Committee on Plants, Animals, Food and Feed (26 and 27 January 2015) the Commission recommended relative to the data requirements and acceptance of waivers / the implementation of document SANCO/10181/2013 that Member States are invited to follow the procedures agreed other taking note of Guidance Document SANCO/10181/2013 in order to harmonise the procedures i.e. to accept as a general line the waiving for cases where no test guidelines are available. (\$\frac{1}{2}\$6).

At the when the present document was prepared, no corresponding guidance document was published or listed addressing reference 6.4.4 of the Annex to Regulation (EU) No 283/2013 and no fish feeding study was conducted.



Bayer CropScience supports the need to assess the dietary risk arising from residues of plant protection products in fish commodities and where necessary to have appropriate MRLs established. However, in order to minimise vertebrate testing (cf. paragraph 40 of Regulation 1107/2009) the decision on the conduct of fish feeding studies shall be made once an agreed test guideline is places





#### **CA 6.5** Effects of processing

#### **CA 6.5.1** Nature of the residue

A study on the stability of fluoxastrobin in aqueous solutions simulating representative conditions processing was conducted with [methoxyiminotolyl-ring-UL-14C]fluoxastrobin ( M-032458-01-1). This study was peer reviewed at FIJ level. Flugxastrobin was shown hydrolytically stable under conditions relevant to predeurisation 20 minutes & 90% boiling/brewing/baking (60 minutes at 100°C, pH 5) and sterilisation 20 minutes of 120°C all solutions, recovery of the total amount of applied radioactivity was greater than 95% (mean It is concluded that fluoxastrobin does not degrate under conditions industrial of domestic processing. Thus, for processed commodities the same reside definition to for the raw agricultural commodities is applicable.

#### CA 6.5.2 Distribution of the residue in wedible peel and pulp

The distribution of the residue in peel and putp is not relevant for the supported corps.

CA 6.5.3 Magnitude of residues in processed commodities

Processing of barley

Study evaluated for Annex I inclusion

In the DAR a study commission processing violet to be beginning to be a study commission.

In the DAR, a study composing processing rials on barrey we evaluated. Barley grain was processed into bee and year! Orley Residues of luoxa trobin and JEC 5725 Z-isomer were determined in the end product as well as a several by product. On analysis of the grain residues were 0.03 and 0.04 pig/kg on the day a fricultival commodis. On processing the grain samples, residues in the processed samples had not increased significantly with the exception of pearl barley rub off which had increased by factor of 3. The study was onsidered acceptable in the DAR. In the ISSA Conclusion (liston endpoints, 2007) Processing Lansfer factors were set for barley rub off (3), malt sproughd brewer's walt (19), brewer's wain (15) and for beer, pearl barley, hops draff, LOX of the malytical method was higher for the processed fractions and brewer's year (1). Since the (0.05 mg/kg) than the sidus barlo grain (0.03 / 0.04 mg/kg) the processing factor of 1 might be in Picative.

# Evaluation in the EFSA Reasored Opinion on existing MRLs (EFSA Journal 2012;10(12):3012)

EFSA concluded that the processing factors reported for barley in the List of Endpoints should be indicative as they are only supported by 2 studies. Nevertheless, additional processing studies were not required as they are not expected to affect the outcome of the risk assessment. However, EFSA concluded that for the purpose of derivation of more robust processing factors, additional studies would be sonsidered necessary

Two additional studies were conducted and are summarized below.

Argoverview on all data old and new) from barley processing is provided following the summary of the new Garley processing studies.



KCA 6.5.3/02 : 2015: M-513062-03-1 Report:

Title: Determination of the residues of fluoxastrobin and prothioconazole in/on barley,

> spring and the processed fractions (malt sprouts; brewer's malt; brewer's grain; tops draff; brewer's yeast; beer; pearl barley rub off; pearl barley) after spraying of

> fluoxastrobin & prothioconazole EC 200 in the field in Germany and France South

Report No.: 13-3401 Document No.: M-513062-03-1

Regulation (EC) No 1107/2009 of the European Parliament and of the Council Guideline(s):

October 2009 concerning the placing of plant protection products on the market and

repealing Council Directives 79/117/EEC and 91/Q4/EEC

EC guidance working document (2029/VI/95 rev. 3 (July 22, 1997) OECD 509 Adopted 2009-09-07, OECD GUIDELINE FOR THE TESTING OF

CHEMICALS, Crop Field Total

OECD 508 adopted 3 October 2008, OECD Guideline for the testing of chemicals, magnitude of the pesticide residues in processed commodities.

us EPA OCSPP Guideline No. 860.1520
US EPA OCSPP Guideline No. 860.4500, Crop Field Trial

Guideline deviation(s): **GLP/GEP:** yes

#### **Materials and Methods**

and southern European recipients to to 1 Two trials were conducted in the porthern and southern European residue regions, one in Germany the other in France (south), in order to deforming the total residues of HEC \$725 in unprocessed spring barley grain and then in the primary processed product beer and pearl barley, as well as in byproducts, including malt.

'Fluoxastrobin Prothioconazole EC 200 was sprayed wice in the field at application rates of 0.375 kg fluo astrobio ha and a water volume of 300 L Da. The application rate reflects an overdosing (3N and 4.3N relative to the new oritical GAPs in northern and southern Europe, respectively) in order to ensure that detectable residues would be found in the relevant raw commodities at harvest, thus allowing derivation processing factors. The last application was done at BBCH 61 (beginning of flowering), the first application was done 4 days before the last application.

Spring barley (grain) camples to be processed were sampled at commercial harvest (BBCH 89), 50 or 69 days after the last application

After processing (described below), residuc analysis was performed according to method 00649/M003 ; 20th); M-38738\$01-1\$7 The Limit of Quantification (LOQ), defined as the lowest validated fortification level, was 0.009 mg/kg for the HEC 5725 E-isomer and 0.001 mg/kg for the Z-isomer, resulting in a theoretical LOO of 0.01 mg/kg for the total residue of HEC 5725 for all

The processing of barley grain into the processed fractions (malt sprouts; brewer's malt; brewer's grain, hope draff; brewers yeast; beer; pearl barley rub off; pearl barley) was performed simulating the compain industrial processes (cleaning, malting, brewing, pearl barley production).

# Cleaning:



The field specimens for processing were cleaned using a "Windsichter", which allows the separation of soil particles and other contaminations from the grain in a steady air flow.

### Malting:

Before malting was started, the grain was sieved (sieve mesh 2.5 mm). The steeping process was conducted as a combined wet and dry steeping. Sieved barley grain was cansferred into a special steeping vessel. During steeping water is supplied to the interior of the ketnel. As a result the entry meson become active and germination begins.

For proper performance the duration of germination, the mean temperature of wet air and the relative humidity of the air around the kernels was controlled. During the intensive respiration, the steeped good was turned over continuously. After germination, the life processes were terminated by kilming. Kiln-drying was conducted in a dry chamber. During kilning the water content of green malt is lowered down to < 10%. After kiln-drying, the germ = malt sprofts) was removed mechanically by a trimmer. Brewer's malt and malt sprouts were sampled immediately after end of malting." brewing (approx. 4 weeks malt rest), the malt was stored at room temperature.

#### Brewing:

Before mashing, the brewer's mallowas dry milled in a special malt was mixed with brew water. Mashing was started in a hearable ton where the mash was heated up to 76°C.

After mashing, the wort was separated from the insoluble malt components (brewer's grain). The extract remaining in the brewer's grain was extracted by washing with hot water Ofrst filter runnings). The wort separation was done or sing crefining vat. After separation, the brewer grain was sampled.

Hop pellets were added and the separated wort was boiled about 90 min at normal pressure). After boiling, the flock (hops draff) were separated in a whirlpool, edusing the sludge to deposit on the bottom in the hape of a code. For cooling and ventilating the wort, an intra-plant circulation was used. By adding oxygen (intra-plant circulation), the conditions for the start of the fermentation were prepared Mops draff was sampled.

In the pilot plant the classical pomary fermentation flow fermentation) was carried out in bottomfermentation containers. The fermentation temperature was 9°C. Fermentation heat was dissipated by means of room yentilon. As soon as the extraction tend of the fermented young beer was 2% higher than the final attenuation the storing time began. Before maturation, the young beer was cooled down. During the main fermentation, the yeast deposited on the tank bottom and was sampled as brewer's yeast.

At the beginning of materation, the young beer was stored at room temperature (warm maturation to break down the diacetyl) in sasks Then the young beer was stored under pressure (approx. 0.7-2.1 bar) at 2°C (Old maturation) for about 4, weeks. In this time, the remaining extract was fermented. Unwanted flavour and of prous substances were decomposed or expelled. Sludge particles and yeast settled at the bottom. The rack beer was filtered using a special filter combination. During filtration, all organisms barming the beer (bacteria and yeast) were removed and sludge particles were separated. The Dinal product beer was sampled.

Pearl barley production:



Before beginning pearl barley production, an optimal moisture content of barley grain of about 15% / 16% is required. Since the moisture content of the specimens was already nearly optimal 4.7-15.5%), it was not necessary to dry or moisture the grain.

The specimens of spring barley were hulled using a vertical hulling machine. Each sample was hulled until the stipulated abrasion for pearl barley of 30-35% was reached. The degree of abrasion (pearling) dust/bran and flour) was determined by the proportion of pearl barley with respect to the total portion

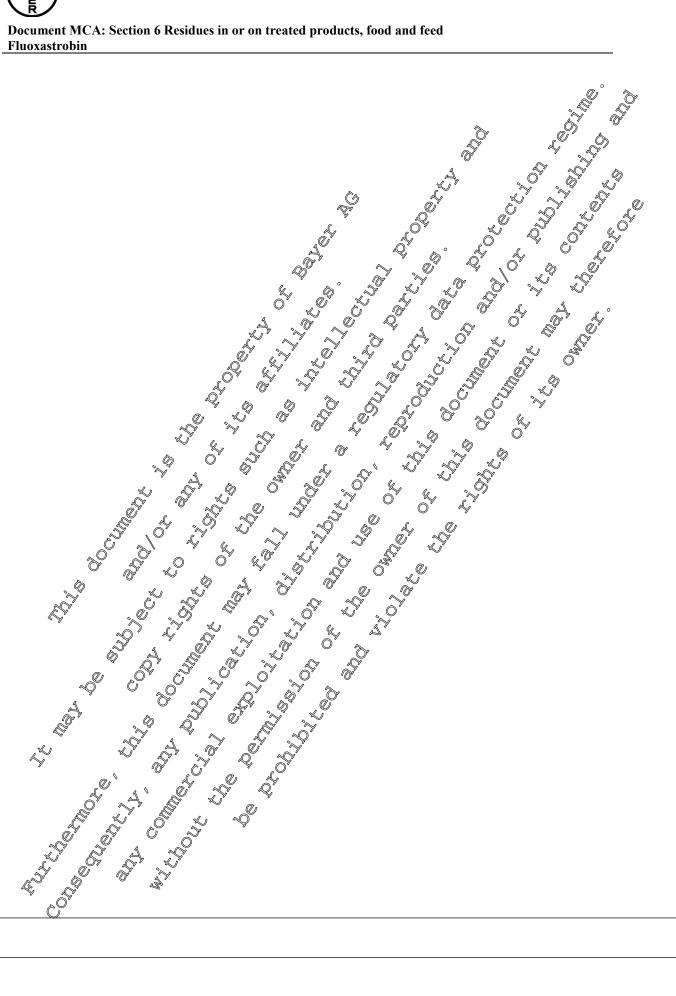
The processes are illustrated in flow Diagram 6.5.3-4, Diagram 6.5.3-2 and Diagram 6.5.3-3.

Findings

The validation of the sample materials beer and hops draff was conducted within the present study. The sample material hops draff is considered to be representative for sample material because A full set of material because the sample A full set of validation recoveries of cereal grain has been generated during bethod development of 2010; M-387385-01-1). These recoveries for cereals grain can be considered to also validate the sample materials brewer's grain brewer's male male sprouts, pearl barley and stored grain. The limited number of procedural recoveries for brewer's Grain conducted during the study is therefore considered acceptable.

In beer, recovery samples for fluorastronin (DEC 5725 Edsomer) were spiked at levels of 0.009 mg/kg and 0.00 mg/kg, in hops draff at 0.009 and 0.90 mg/kg and in brewer's grain recovery samples for fluoxastrobin were spiked at levels of 0,609, 0.09 and 0.90 mg/kg. Mean recoveries for all matrices were 88-99% with RSDs is the larger validation sets (n 2) of 0.6-4.5%.

For HEC 5725 Z-Isomer samples were spiked at levels of 0.001 mg/kg and 0.01 mg/kg in beer, at 0.001 mg/kg and 0.10 mg/kg in hops draff and at 0.000, 0.01 and 0.10 mg/kg in brewer's grain. Mean recoveries for all matrices were 86-100%, with RSDs in the larger validation sets (n > 2) of 1.0-4.7%.


A tabular summary of the recovery values is presented below in Table 6.5.3-6.

The mean (uncounded) residue values of harves and barrey grain ("grain, stored") at BBCH growth stage 89 were used for the calculation of processing factors. In this summary the processing factors for the total residue HEC 5725 (sum of Frand Z-rsomer) are reported according to the residue definition for enforcement and risk assessment proposed by FFSA (EFSA conclusion, 2007 and EFSA Reasoned Opinion on existing MRTs, 2012). Athough the currently established residue definition for enforcement includes fluoxastrobin (HEC 5705 E-isomer) only, it is anticipated that the sum of both isomers will constitute the future residue definition also for monitoring. Combined residues of HEC 5725 E-and Disomer were calculated considering residue levels below the LOQ as being <u>at</u> the LOQ.

# Raw agricultura Commoditic Dbarley grain

For brewing: On the two independent trials, residues in stored barley grain (mean of two individual samples) were < 0.009 and 0.01 mg/kg for fluoxastrobin (HEC 5725 E-isomer), 0.002 and 0.004 mg/kg for HEC 5725 Z-isomer and 0.011 and 0.014 mg/kg for the total residue of HEC 5725.

For pearl barley production: Residues in stored barley grain (mean of two individual samples) were < 0.009 and 0.011 mg/kg for fluoxastrobin (HEC 5725 E-isomer), 0.001 and 0.004 mg/kg for HEC 5725 Z-isomer and 0.010 and 0.015 mg/kg for the total residue of HEC 5725.





## • Malting:

Malt sprouts: The residues of fluoxastrobin (E-isomer) in malt sprouts were at or below LOQ \$\infty\$0.00% -0.009 mg/kg), residues of HEC 5725 Z-isomer were at 0.002 mg/kg. The levels of total residue HEC 5725 were at 0.011 – 0.012 mg/kg. The residue levels lead to a (mean) processing factor of 1.05 for total residue HEC 5725 (sum of E-and Z-isomer).

Brewer's malt: The residues of fluoxastrobin (HEC 5725)E-isomer) in Frewer's malt were below (<0.009 mg/kg), residues of HEC 5725 Z-isomer were at 0.001 and 0.003 mg/kg. The levels of total residue HEC 5725 were at 0.010 and 0.012 mg/kg. The residue levels lead to a (mean) proces factor of 1.0 for total residue HEC 5725.

The processing factors for malt sprouts and brewer's malt show the total residues of HEC 5725 remaining at the same level.

Brewer's grain: In brewer's grain the residues of fluoxastrobin (HEC 5725 E-isomer) were below

LOQ (<0.009 mg/kg), residues of HEC 5725 %-isomer were at 0.001 and 0.003 ong/kg. The levels of total residue HEC 5725 were at 0.010 and 0.012 mg/kg for the two independent trids. The residue levels lead to a (mean) processing factor of 1.0 for total residue HEC \$725.

Hops draff: The levels of fluorastrokin (HEC 5725 E-isomer) in hops draff were below LOQ (<0.009 mg/kg), levels of HE\$ 5725 Z-isomer were at 0.001 and 0.002 mg/kg. The levels of total residue HEC 5725 were at <0.01 and 0.011 mg/kg. The residue levels lead to a (mean) processing factor of <0.9 for the total residue DEC \$\frac{1}{2}5.

Brewer's yeast and beer: In brewer's yeast and beer, the levels of flaw astrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and total residue PIEC 5725 were below LOO (<0.009, <0.001, and <0.01 mg/kg, respectively); leading to a (mean) processing factor of <0.9 for the total residue HEC 5725.

The results of the processing factors during the brewing process indicate a reduction in the total residue of HE@ 5725 for the end product beer.

#### • Pearl barley production

Pearl barley rub-off. For the two independent trials, the residues of fluoxastrobin (HEC 5725 Eisomer) in pearl barley rob-off were at 0.015 and 0.037 mg/kg, residues of HEC 5725 Z-isomer were at 0.006 and 0.005 mg/kg. The levels of total residue HEC 5725 were at 0.020 and 0.052 mg/kg. The residue level Gead to a meas processing factor of 2.8 for the total residue HEC 5725.

Pearl barley the levels of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and total residues HDC 5725 were below LOQ (<0.009, <0.001, and <0.01 mg/kg, respectively); leading to a mean processing factor of <0.9 for the total residue HEC 5725.

These findings indicate that residues of the total residue HEC 5725 (sum of E-and Z-isomer) remain to a larger extent in pearl barley rub-off and can be removed from barley grain by cleaning and hulling, resulting in residues below LOQ in the end product pearl barley.



The processing factors for the total residues of HEC 5725 are summarised below in Table 6.5.3- and Table 6.5.3- 2. All trial data are summarised further below in Table 6.5.3- 4 and Table 6.5.3- 3 and in greater detail in the Tier 1 summary forms. Recovery data are reported in Table 6.5.3- 6.

Table 6.5.3-1: Summary of the total residues of HEC 5725 (sum of E-and Z-isomer) in pig/kg and processing factors (in italics and parentheses) to barley RACs and processed products (processing into malt and beer)

Trial number	grain	malt sprouts	brewer's 🐧 malt 🕜	brewer's grain	hops draff	(brewer's yeast	beer
13-3401-01	0.0105	0.011 (1.0)	0.010	0.010 6 (1.95	\$0.01 \$\frac{1.0}{2}\$	\$0.01 \lambda \text{\$1.0} \text{\$\sqrt{\$1.0}}	
13-3401-02	0.014	0.012 (0.9)	0.912 \$(0.9)	0.032 (0.9) &	0.010	(<00) (<00)	<0.01 (<0.7)
Mean proces	ssing factors:	(1.0)	(1.0)	(1.0)	(1 ³ 0.9), O	(S0.9) °	( <q<b>Q;9)</q<b>

< value: in case the residue level in the RAC is LOO but residues in the processed commodities we < LOO, the processing factor is calculated as to be below the value calculated with the LOO of the processed commodities.

Table 6.5.3-2: Summary of the total residues of HEC 5725 (som of E-and Z-isomer) in mg/kg in barley RACs and processed products (processing into pearl barley) and processing factors (in stalics and parentheses)

Trial number 🎣 🗼	Øgrain O S	pearroaries rub on	pearl barley
13-3401-01		≪″ 0.020 ~ √	<0.01
13 3401 01		© (2.0)	(<1.0)
13-3401-02	L 0.015 2		<0.01
	<u> </u>	(30)	(<0.7)
	Mean processing factors:	\$2.8) Q	(<0.9)

< value: in case the residue level in the RAC is 2000 but residues in the processed commodities are < LOQ, the processing factor is calculated as to be below the value calculated with the 2000 of the processed commodity

#### Storage periods:

The sample material "grain, stored" served as RAC samples for the beer and pearl barley processing, which was done in fresh state. "Grain, stored" samples were taken in the field at the same time as the bulk samples for processing, stored and shipped under the same conditions as the samples for processing and deep frozen at \$18° (at the very time when the processing started. As the processing processes proceeded, anquots of the individual processed fractions were deep-frozen on the same day they were generated during malting, brewing and pearl barley production. The maximum periods of deep-frozen storage are compiled in Table 6.3.3-3. The storage periods are covered by the interval investigated in the storage stability studies.



Table 6.5.3- 3: Maximum storage periods of barley grain (RAC) and processed commodities under deep-frozen conditions

Study number	Sample material	Maximum storage time [days]
	Grain, stored	270
	Beer	89
	Brewer's grain	122
	Brewer's malt	138
13-3401	Brewer's yeast	116
	Hops draff	124
	Malt sprouts	1380,
	Pearl barley	250 0 2
	Pearl barley rub off	

#### **Conclusions**

In order to determine processing / transfer factors for the total residue HEC 5725 (sum of E-and Z-isomer) from barley grain in malo and beer as well as in pearl barrey, two processing studies were conducted.

For malt sprouts and brewer's malt mean processing factors were 1.0 for residues of HEC 5725 E-and Z-isomers.

The mean processing factors were 1.0 in brewer's graph and <0.9 in hops traff, brewer's yeast and beer. These results indicate a reduction of residues for the end product beer during the brewing process.

The mean processing factor for pearl barley rub-off was 2.8 for residues of HEC 5725 E-and Z-isomers; the mean processing factor for pearl barley was 2.9. Three findings indicate that residues of HEC 5725 remain to a larger extent in pearl barley rub-off and can be removed from barley grain by cleaning and hulling resulting in residues below LOQ in the end product pearl barley.

alt sprouts and brewer's malt

Sungies or spectrom on the spidsycal of the The state of the s

Industrial processing of brewer's malt into beer Diagram 6.5.3- 2: heps draft brewer's malt heps draft

hops draft

would

samples or thations to be masseed. grinding

J and feed

a into pearl barley

conditioning describation of the pear barley

samples or fraction up to a grain set. The state of the s



Table 6.5.3-4: Application scenario in residue processing trials conducted in/on barley after spraying with 'Fluoxastrobin + Prothioconazole EC 200' in northern and southern Europe

southern E	au opc				Ó	O,
Study No.				Application	.(V	Ô
(Trial No.)						G"
Country	~			1		
Location	Crop	FL		kg/ha 🦃	lza/ha	
Location	Variety	L O	No.	(a.s.	(Sec.)	<b>GS</b>
Region				fluoxastrokun)		
Vear		L	, ô ^v			, p
13-3401	harley spring	200 FC	No.	Application  kg/ha  (a.s. fluoxastrokin)	kg/hi (a.s.) 0.1©5 Ø ₂ 125	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(13-3401-01)	Conchite	Z O L C		Q.275	0.125 @.125	@Z1
Germany	Concinta			Q.3/3		Ø01
D-	<b>4</b>		)		* " " " " " " " " " " " " " " " " " " "	
	0				0.1 <b>25</b> 0.125	ه م
EU-N	, A ,	o v				7
2013				° O _x ~ · ·	S &	7
13-3401	harley spreng	200 EC %	Y 20°	V 0.675	0.123	37
(13-3401-02)	Henley O			175	0.125	61
France					23 23	
F-	Q b				Ŋ	
				0 %		
EU-S		- W	[			
2013				(a.s. fluoxastrokin)  0375 0375 0375 0375 0375		
FL = formulation	4 (R = growt	h staoe BBC	Scode) at freatr	nen s		
EU-N = northern European residue	resion &EU-S € Sou	them European	residue region			
			0'	, , , ,		
Ø 4.		) J	<i>@1</i>	* **		
		~^Q _@		, Q		
				J*		
			. 0			
Ž A			7			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
4		,				
Ö, k						
		~Q"				
		7				
, y						
@ `						
	4.1 ×					
T F O	\$ "					
	9					
	¥					
A G						
Č						
Region Year 13-3401 (13-3401-01) Germany D- EU-N 2013 13-3401 (13-3401-02) France F- EU-S 2013 FL = formulation EU-N = northern European residue						

Fluoxastrobin							
Table 6.5.3- 5			ocessing trials con thioconazole EC 2		arley after sprayir	ng with	
Study No.				Residues (mg/kg) &		
(Trial No.)	Portion	DALT	Fluoxastrobin				
Country	analysed	(days)	(HEC 5725 E-	HEC 5725 Z-	total residue of HEC 5725		
GLP			Isomer)	Isomer	HEC 5/25		
13-3401	grain	69	<0.009	<0.001	<0.0Y		
(13-3401-01) Germany	grain, stored	69	<0.009	0.06	«€010 D		
Germany	(RAC for beer production)	69	<0.00	602	·		
GLP: yes	production)	mean*	₹0 , 0 09	~ 0.0020°	0,0005	b _W	
	malt processing		W. D°				
	malt sprouts		0<0.00	Ø 002 %	0.01d,	4.	
	brewer's malt		√\$ <0,0009 ~	Q0.004	© 0.090 £		
	beer production						
	brewer's grain	Q	<0.009	20.001	0.04		
	hops draff		~ ₹ ₹ ₹ ₹	\$\tag{0.00}	<0.45 × «		
	brewer's yeast		© \$0.00°	<0.001	0 60.01 ×		
	beer		<0.00	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	©<0.0 %		
	grain, stored	69	\$\square\$009 \tag{\text{\text{\$\infty}}}	\$\int 0.004\forall	0,010		
	(RAC for pearl barlev)	G9	© ~0.00 2	0:001	% .010		
	W Q	mean	S <0.209 .	©	(a) 0.010		
	pearl barley production a S & S						
	pear barley rub-		0.0150	0.006	0.020 **		
	pear Parley		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	20.001	< 0.01		
	Ograin Ograin	\$50	0.020	0.008	0.028		
(13-3401-029	grain, stored	50 2	0.010	~0.004	0.014		
France	(RACa or beer)	4 & 3	0.9010 ×	0.003	0.014 **		
GLP: yes	production	50 roean*	0.010	0.0035	0.014		
	malt processing						
_	malt©prouts		, O , O 0 0 0 0	0.002	0.012 **		
, ~	brewer's malt		00009 00009 00009	0.003	0.012		
	beer production			l			
	brewer's grain		€ € © 0 0009	0.003	0.012		
	heps drack		2 0.009	0.002	0.011		
V	brewer's yeast		<0.009	< 0.001	< 0.01		
	beer O		<0.009	< 0.001	< 0.01		
	grain, stored	√ ₂ 50 ≈	0.010	0.004	0.014		
	(RAC for pearl of barley)	50	0.012	0.004	0.016		
		mean*	0.011	0.004	0.015		
	pearl barley pro	duction					
	pearl barley rub- off		0.037	0.015	0.052		
Ű	pearl barley		< 0.009	< 0.001	< 0.01		
	pearroarrey		\U.UU <i>7</i>	\0.001	\0.01		

RAC = raw agricultural commodity. The samples "grain, stored" served as RAC samples for the beer and pearl barley processing, which was done in fresh state. They are samples which were taken in the field at the same time as the samples for processing, stored and shipped under the same conditions as the samples for processing and deep frozen at \leq -18°C at the very time when the processing started.

*mean = For the calculation of the processing factor the average of the residues in the two RAC amples was taken

** The total residue HEC 5725 was calculated by summing up the individual results (unrounded values) for 🗐 and Z-isomer. Therefore slight deviations may occur when the values as displayed in the table are used.

Table 6.5.3- 6: Recovery data for fluoxastrobin (HEC 5725 Ein barley grain and processed commodities

The LOQ is marked in bold

Study No.			%	1	Fortifi-		Recoy	very (% Max	o) ^{**}	
GLP	Crop	Portion	Analyte	n,	«cation	Individual	Min	Max	∕ Mean	RSD°
Year		analysed		2/2	level (mg/kg)	recoveries		4		Ø'
13-3401	barley	brewer's	flugga-	<u>≫</u> ∀2	(mg _y kg) √0.009 %	87; 92, ×	¥ √87_(92	³ 90 €	
13-3401	barrey	grain*	strobin	2	\$\sqrt{9.009}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	07.6	8.F	7 92 s	90) -
GLP: yes		S	STEC 5725	2%	<i>y</i>	87:96		963	920	-
2013			fluoga- strobin & AFEC 5725 E-Isomer)	² 6	080	87; 92 87: 96 88, 90		9 90	89 9	-
		Z,		O	*(<i>O</i>) &L.		- · · ·			3.9
			HEĆ 5725	2	0.001 0.01	84; 88	84 81	88 [©]	86	-
		0 N	Z ∠Isomer	Ø)			8 1	\$ 2	87	-
				2	Ø.10 É	84; 90	ھِ 84 گُ	§ 90	87	-
				6	overall	0 %	81 7	92	87	4.8
	Į.	beer	Huoxa	1	n anno		@ 96	101	99	2.7
			strobing (HEC 5725)	3	\$0.09 \(\)	97; 97, 98	© 96 ₹ 97	98	97	0.6
			HQsomer)	00	Overans		96	101	98	2.0
	ر ال		HEC 3 725 🦂	*	07001	91; 92;	91	96	93	2.8
Ş	Ž		Z-Isomer	3		7100;7101; 102©	100	102	101	1.0
***	Ž Q	b)		% 6	overall	1020	91	102	97	4.9
		hops draff	fluoxa- 📞	3	0.009	84; 88; 92	84	92	88	4.5
	_@/		strobin >	3 (5 0.90	87; 89; 89	87	89	88	1.3
	*	hops draff	E-Isopoer)		overall		84	92	88	3.0
<u></u>	∤ }		LHF <i>6</i> ₺5725‰₰	3	40. 001	85; 87; 93	85	93	88	4.7
	4		Z-Isomer	3.0	0.10	86; 87; 91	86	91	88	3.0
Z,	*			6	overall		85	93	88	3.5

^{*} A full set of validation recoveries of cereal Grain has been generated during development of method 00649/M003. These recoveries can be considered to also validate the residue determination in the sample materials brewer's grain, brewer's malt, malt sprouts, pearl barley and stated grain. arley and stored grain.

Which is a specific and a stored to be representative for sample material brewer's yeast.

Summary of residue data and processing factors from all barley processing studies

The following table compiles residue data and processing factors from study RA-3024/99 (2001; M-089502-01-1), which was peer reviewed for Annex Lonclusion, anothe new study 13-3401. For easy reference the old and new data are both provided in the Tier I summary forms.

According to the OECD guideline 508 the median processing factor was calculated an addition to the mean value - for commodities where more than 2 individual processing factors were derived.

It might be considered to disregard the processing factors derived from the two trials from study RA-3024/99 in those cases where residues in the processed commodities were less than the LOQ (highlighted in grey) because the LOQ was higher than the level of residues determined in the RAC and thus the processing factor is of limited value.

Table 6.5.3-7: Summary of the total residues of IDC 5725 (sum of E-and Z-isomer) in mg/kg in barley RACs and processed products and processing factors (in thalics and parentheses) (processing into malt and beer)

		~	10 . A				<u>, </u>
Trial number	Grain (stored)	malt√ sprouts ≪	breweg's mage	Prewers grain	hops draff	brewer's 🔊 Veast	beer
RA-3024/99 R 1999 0117/8	0.03	5.05/0.05V (1.74 ₄)	0.55/<0.05 0(1.7) Ly	<0.0 5 /0.05 (V < (C) 5 (A) .7) Q	<0.© (<1.7)	<0.05 (<1.7)
RA-3024/99 R 1999 0118/6	0.04		0.05	0.05	(<1.3)	\$0.05 \$(<1.3)	<0.05 (<1.3)
13-3401-01	0.0405	0.01 kg	0.010	0010	Ø01 Ø1.0)	<0.01 (<1.0)	<0.01 (<1.0)
13-3401-02	5.014	(0.012 & (0.9)	0.012	0.012	\$\int 0.011\text{\$\pi\$} \tag{0.3\$\text{\$\pi\$}}	<0.01 (<0.7)	<0.01 (<0.7)
Mean proce. Median proce.	Ang factors: S	(1.3)	(1.2)	J(1.2)	(1.2)	(<1.2) (<1.2)	(<1.2) (<1.2)
Mean pyoce. Medjan proce.	ssing factors! ssing factors:	n¥(1.1) © \$\frac{1}{3} (1.0)\$	n=3 (1.1) n=3 (1.0)	n=3 (1.1) $n=3$ (1.0) (n=2 (0.9)	n=2 (<0.9)	n=2 (<0.9)

< value: in case the residue level in the RQC is > DQ but residues in the processed commodities are < LOQ, the processing factor is calculated as no be below the value calculated with the LOQ of the processed commodity</p>

Table 6.5.3- 8: Summary of the total residues of HEC 5725 (sum of E-and Z-isomers) in mg/kg and processing factors (in italics and parentheses) in barley RACs and processed products (processing into pearl barley)

Trial number	Grain (stored)	pearl barley rub-off	pearl bayley
RA-3024/99 R 1999 0117/8	0.03	0.085	9.05 C
RA-3024/99 R 1999 0118/6	0.04	0.115 F	\$\ \langle 0.05 \\ \langle \langle \qquad \qq \qquad \qq \qu
13-3401-01	0.010	0.020	Q0.01 0 4 (×1.0) 0 (V
13-3401-02	0.015		Q* 0.01 07 (407) 27
Mean processing factors: Median processing factors:		(2.8) (2.8) (3.8) (4.8) (4.8)	(¥1.2) F (<1.2)
Mean processing factors:			n=2 (0.9)

< value: in case the residue level in the RAC is LOQ but residues in the processed commodities are < LOO, the processing factor is calculated as to be below the value are ulated with the LOQ of the processed commodities.

Processing of wheat

Report: KČA 6.43/03

Title: Determination of residues of Quoxastrobin (HEC 5/25) and tebuconazole (HWG

1608) in/op winter wheat after spray application of OHEC 5 1/25 & HWG 1608 150 EC

in the field in the Northern Prance Great Britain and Germany

Guideline(s): Directive 91/414/EEC, restaues in or on treated products, food and feed; July 15,

1991, Annex II, part A, point 6 and Annex III, part A, point 8, Residues in or on

Treated Products, Food and Fred

Guideline deviation(s); none GLP/GEP: vest

Report: ; 2004; M-104435-02-1

Title: Determination of esidue of fluo astrobin (HEC 5725) in processing products from

winter wheat (grain, flour, brant white bread, whole-meal flour, whole-meal bread,

semolina, semolina bean, wheat germs) after spray application of HEC 5725...

Guideline(s): EU-Ref Council Directive 91/414/EEC of July 15, 1991, Annex II, part A, section 6

\and Amnex HQ part AQ section 8

Residues in or on Freated Products, Food and Feed

Guideline deviation(s): none &

GLP/GERE Yes

Materials and Methods

In order to determine the magnitude of the residues of fluoxastrobin in/on processed fractions of wheat, two trials were conducted in the northern European residue region, in and Germany. Residues of fluoxastrobin (HEC 5725 E-Isomer), HEC 5725 Z-isomer, and total residue HEC 5725 were determined in unprocessed wheat grains and then in the processing products flour and bread (white and whole meal), semolina, germ, and by-products bran and semolina bran.

Fluoxastrobin + Tebuconazole EC 150 (called HEC \$725 & HW 1608 in the report was strayed twice to winter wheat at application rates of 150 g fluoxastrobin/ha and a water volume of 300 L/ha. The last application was done at BBCH 65-69 or \$1, the first application was done at BBCH 47. Wheat (grain) samples to be processed were sampled at harvest, 61 of 36 days after the last application. For each trial, the collected grain sample was divided into two portions which were processed independently.

After processing (described below), residue analysis was performed according to methods 00649 and 00604. Both methods were reported in the initial Affinex II dossic and considered acceptable in the EU peer review (please cf. to baseline dossier).

Method 00649 (2000, M-17093 01-1); Residues of DEC 5725 in wheat grain and the processing products flour, bran, semolina, semolina bran, whole meal flour and germs were determined by HPLC-MS/MS according to method 00649 after extraction and clean-up by solid-phase-extraction on a Bond-Elut ENV-cartridge. The analytical method allows separate determination of HEC 5725 E- and Lisomers. The total residue of HEC 5725 was calculated as the sum of both isomers. The Limit of Quantitation (LOO), defined as the lowest validated fortification level, for wheat grain, (semolina) from and flow was set at 0.018 mg/kg for HEC 5725 E-isomer and 0.002 mg/kg for HEC 5725 E-isomer (corresponding to 0.02 mg/kg for HEC 5725 E-isomer and 0.005 mg/kg for HEC 5725 E-isomer (corresponding to 0.05 mg/kg for the calculated total residue of HEC 5725).

Method 0604 (201: M-0555 1-01-1) Residues of HEC 5725 in white bread and whole-meal bread were determined by HPLC-MS/MS according to method 00604 after accelerated solvent extraction and clean-up by solid-phase-extraction on a Bond-Elut ENV-cartridge. The analytical method was designed to measure HEC 5725 and Z-isomer separately; in addition the total residue of HEC 5725 was calculated as the sum of both isomers. The Limit of Quantitation (LOQ) for white bread and whole-meal bread was 0.045 mg/kg for HEC 5725 E-isomer and 0.005 mg/kg for HEC 5725 Z-isomer (corresponding to a theoretical LOQ of 0.05 mg/kg for the calculated total residue of HEC 5725).

Wheat processings

The processing of wheat samples into the processed fractions semolina, semolina bran, bran; white flour, white bread, whole meal, whole meal bread, and wheat germ was performed to simulate industrial procedures at a laboratory scale

Cleaning and conditioning of wheat grain:

Frozen field samples for processing were defrosted and cleaned with the "Labofix" purifier. Letter cleaning the grain was conditioned to a moisture content of approx. 15-16%. For reaching moisture content in this range, the wheat grains of trial R 2000 0269/6 were dried in a dry box at 4000 for 3 hours. The wheat grains of trial R 2000 0273/4 were moistened in a special box for 6 hours.

Milling of flour (type 550) and baking of white bread:

The grain was milled to flour and bran in a "Bühlen Mahlautoma". Intermediate products were semolina and semolina bran. Samples of bran, flour, semolina and semolina bran were coffected.

For baking of white bread, flour type 550, year (5%), salt (1.5%) and water were mixed. The resulting dough was kneaded for 1 min. After kneading the Gugh rested for 20 min. The dough was further moved for 10 min followed by a second rest of 50 minutes in a form. The temperature during the rest times was 31-33 °C. The baking was conducted at 230°C for 30 min. Afterwards, a sample of white bread was taken.

The process is illustrated in flowDiagram 65.3-4

Milling of whole meal and baking of whole-meal bread

For the generation of whole meal and whole meal bread, the whole grain was ground by crashing with baffle plates. After impact grinding (milling), whole meal flour was sampled.

For baking, whole meat flour yeast (%), salt (1.5%), and water were mixed. The resulting dough was kneaded for 1 minute. After kneading the dough sested for 20 min. The dough was further moved for 10 min. and a second rest of 50 minutes in a form followed the temperature during the total rest time was 31-33 °C. The baking was conducted at 210 °C for 50 minutes. Afterwards, a sample of whole meal bread was taken.

The process is illustrated in flow Diagram 6.5.3-5.

Production of wheat germ:

Wheat grain was proken to "broused grain" in a special mill. The fraction 400-1000 µm was collected, the fraction above 1000-1250 µm was broken once more This milling/sieving process was performed a total of three times. The fraction obtained below \$00 µm was completely excluded from further processing.

The fraction $400-1000~\mu$ m, a mixture of bran semolina and germs, was put in a special separator ("Leichtgewichtsausleser"). Due to the different specific weights of the bran, semolina, and germ, the semolina/germ frixture was separated from nost parts of the bran.

The semolina/gerin mixture was milled to flour and small wheat germ discs in a mill with a pair of smooth rollers. The wheat geon with parts of bran was then manually sieved and sorted to remove the remaining path of bran. A sample of wheat germ was taken.

The process is illustrated in flow Diagram 6.5.3-6.

The analytical methods 00649 and 00604 were validated prior to analysis by running a set of recoveries at the LOQ and the 10-fold LOQ (for bread within method 00604, for grain and wheat sprouts within method 00649). In addition, during analysis of the samples pre-validation and concurrent recovery experiments were performed by spiking control samples with HEC 5725 (E- and Z-Isomer).

In wheat grain, germ and bread, recovery samples were spiked at levels of the respective LOQ for HEC 5725 E- and Z-Isomer within the conduct of the street.

In bran / flour / semolina / semolina bran, recovery samples for fluoxastrobin (REC 5723 E-Isomer) were spiked at levels of 0.018 mg/kg (=LOQ), 0.045 mg/kg and 0.05 mg/kg.

For HEC 5725 Z-Isomer samples were spiked plevels of 0.002 mg/kg (=BOQ), 0.005 mg/kg and 0.05 mg/kg in bran / flour / semolina / semolina bran.

A tabular summary of the recovery values is presented below in Table 6.3.3-12

The residue values of harvested wheat grain at BBCH growth stage 89/92 were used for the calculation of processing factors. In this summary the processing factors for the total residue HEC 5725 (sum of E-and Z-isomer) are reported. It is anticipated that both components will form the residue definition for enforcement and risk assessment in the future according to the residue definition proposed in EFSA documents see above).

For most processing fractions no processing factors could be calculated, since residues in both the raw commodity and in the processed product were below LOO Only for brain and semolina bran processing factors could be calculated.

• Grain, semoling, white flour, whole meal flour:

The residue levels of fluoxastrobin (HEC 5725 E-isomer), HEC 5725 Z-isomer and total residue HEC 5725 were below LOQ (0.018, <0.002, and <0.02 mg/kg, respectively); no processing factors were calculated.

• White bread, whole meal bread, gerins

The residue levels of fluor astrobin (HEC 5725 Z-isomer), HEC 5725 Z-isomer and total residue HEC 5725 were below LOQ (<0.045 <0.005, and <0.05 mg/kg, respectively); no processing factors were calculated.

• Bran and semolina bran

The residues of fluorastrobin (HEC 5725 E-isomer) in bran were at < 0.018 or 0.04 mg/kg, residues of HEC 5725 E-isomer) in bran were at < 0.018 or 0.04 mg/kg, residues of were at 0.02 or 0.05 mg/kg. The residue levels lead to a mean processing factor of > 1.75 for total residue HEC 5725.

The residues of fluoxastrobin (HEC 5725 E-isomer) in semolina bran were at < 0.018 and 0.03 / 0.04 mg/kg, residues of HEC 5725 Z-isomer were at < 0.002 or 0.003 mg/kg. The levels of total residue HEC 5725 were at < 0.02 or 0.04 mg/kg. The residue levels lead to a mean processing factor of > 2.0 for total residue HEC 5725.

Table 6.5.4 in greater to the first augideraik

augide The processing factors for the total residues of HEC 5725 are summarised below in Table 6.5 9. All trial data are summarised further below in Table 6.5.3- 11 and Table 6.5.3- 12 and in greater details in the Tier 1 summary forms. Recovery data are reported in Table 6.5.3- 12 Action of the state of the stat The state of the s

Table 6.5.3- 9: Summary of the total residues of HEC 5725 (sum of E-and Z-isomer) in mg/kg in wheat RACs and processed fractions and processing factors (in italics and parentheses) in wheat processed products

Trial number	wheat grain	Sub sample	bran	semoli- na	semolina bran	flour	white bread (meal	whole mear	wheat Serm
	(RAC)						4	flour	bcead ,	
RA-3060/00		A	0.02	< 0.02	< 0.02	< 0.02	<00.03	< 0.02	~~0.05	0.05°
R 2000	< 0.02		(>1.0)	(n.c.)	(n.c.) 💍	(n.c.)	(v.c.)	(n.c.)) *		(A , E.)
0269/6	\0.02	В	0.02	< 0.02	<0.02	< 0.02	0 .05	<0.02	<0.95	4 \$0.05 ₽
			(>1.0)	(n.c.)	(n.E _r)	(n.c.)	(n.c.)	(n.&))	(0,c.)	S(n.cQ)
RA-3060/00		A	0.05	< 0.02	Q .04	<0.00	<0.05	£0.02	ු <0.05 ථ	<0.05
R 2000	< 0.02		(>2.5)	(n.c.)	(2.0)	(n.c.)	Fa.c.)	$\mathbb{Q}(n.c.)$	$(n.c_{\nu})$	(ji,c.)
0273/4	<0.02	В	0.05	< 0.02	0.04。	®0.02 ¾	×<0.05	<0.02	<0.05	≈ ©0.05
Germany			(>2.5)	(n.c.) (n.c.)	(>20)	$\mathcal{N}(n.c.)$	(n.c.)	(nco.)	(M.c.)	(n.c.)
Mean proc	essing fac	ctors:	(>1.75	(n.c.)	\$2.0) C	(n_G)	(6)c.)	(n.c.)	√ (n.c.)	(n .¢.)

n.c.: Not calculated . No processing factor can be calculated (residues < 1.00 in ROC and in processed commodity)

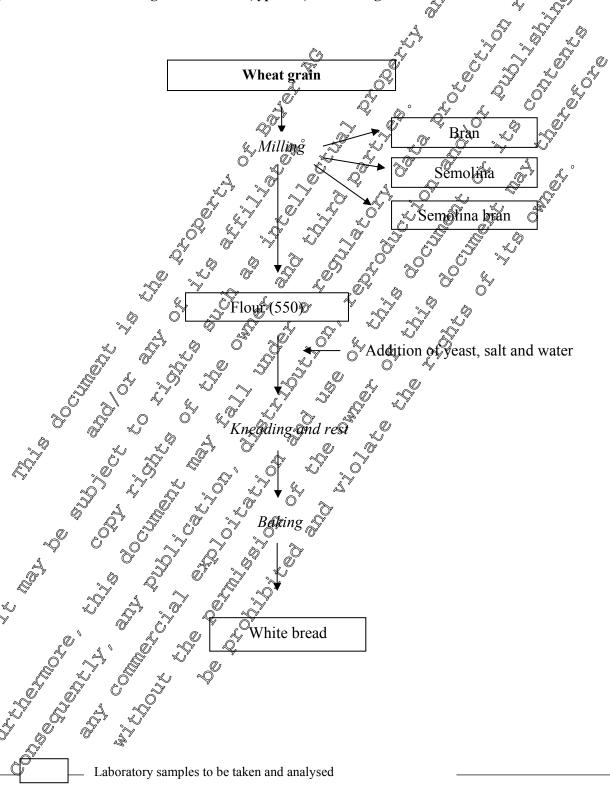
Storage periods: The maximum storage periods of deep-frozen treated samples was up to 377 days for fluoxastrobin (HEC 5725 E-isomer) and HEC 5725 Z-isomer and is covered by the interval investigated in the storage stability studies.

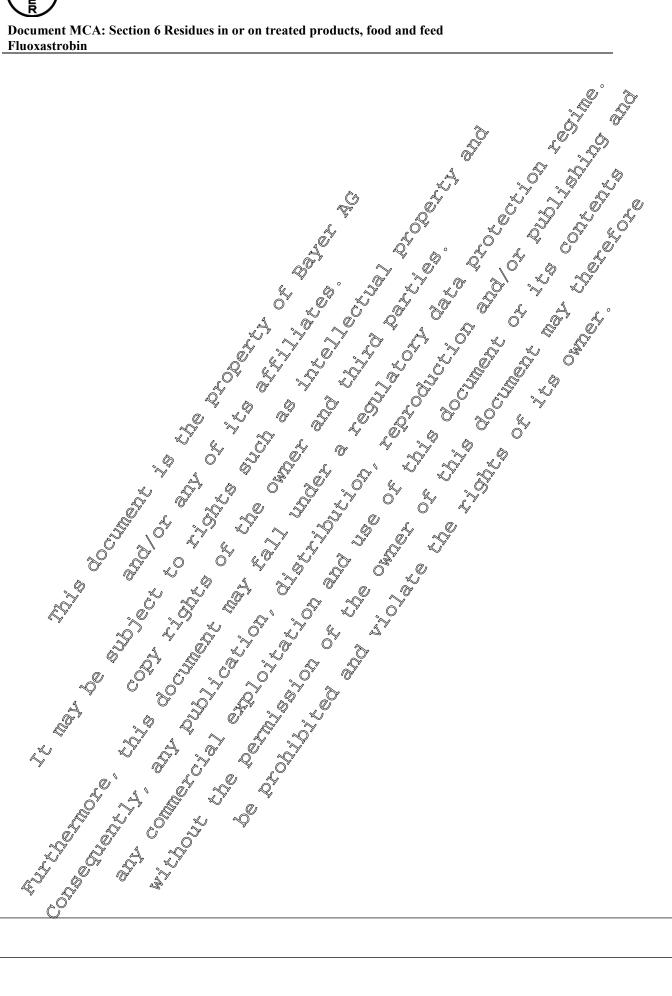
Table 6.5.3- 10: Maximum rorage periods of wheat grain and processed commodities

Study number	Sample material	Maximum storage time [days]
	Gran	₹ \$ 37 6 7 \$
	Bran V	272
	Whole meal bread	\$\tilde{Q}\$ \tilde{Q}\$ \tilde{Q}\$ \tilde{Q}\$
	Flour 🦃 🕰	272
RA-3060/00	Semoling bran	27%
RA-3000/00	Whole weal flour	, , O' , , 29/2
_	Semolina 💝 . O	<u> </u>
Š	White bread w	∑© © ≥ 265
Q	Moreat germs 0	\$ 266

Conclusions

In order to determine processing transfer factors for the total residue HEC 5725 (sum of E-and Z-isomer) from wheat grain to bran, semolina bran, semolina, white flour, white bread, whole-meal flour, whole-meal bread, and wheat germ, two processing studies were conducted. Per study, two processing procedures were cerformed independently with two sub-samples.


In both trials, wheat was treated twice at 0.150 kg as/ha which corresponds to the application rate of the new critical GAP for the product 'Fluoxastrobin + Prothioconazole EC 200' in the northern climatic region.


Formost processing fractions no processing factors could be calculated, since residues in both the raw commodity and in the processed product were below LOQ. Only for bran and semolina bran processing factors were calculated using the LOQ of the raw agricultural commodity.

> value: in case the residue level in the RACO LOO but residues in the processed commodities are \(\) LOO, the processing factor is calculated as to be above the value calculated with the LOQ of the RAC

Indication of concentration was observed in bran and semolina bran, however at very low absolute residue levels.

Diagram 6.5.3- 4: Milling of white flour (type 550) and baking of white fread

Whole meal flow

Addition of yeas, salt and water

Kneeding and rest

Whole meal from

Whole meal flow

Addition of yeas, salt and water

Diagram 6.5.3- 6: Production of wheat germ

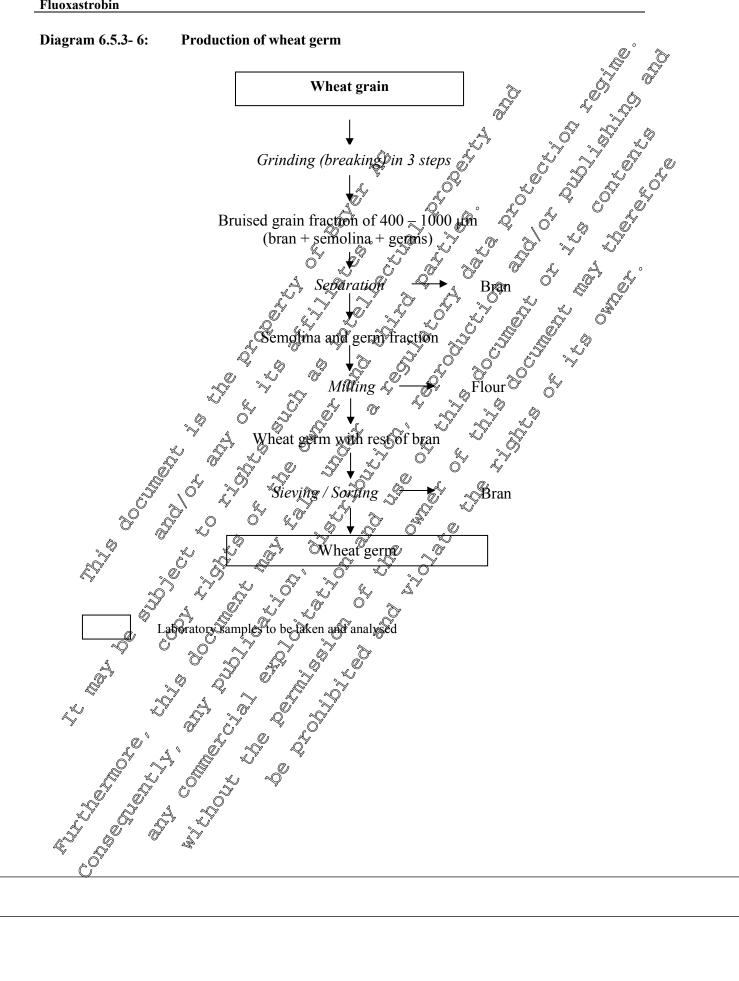


Table 6.5.3-11: Application data in residue processing trials conducted in/on wheat after spraying with 'Fluoxastrobin + Tebuconazole EC 150' in northern Europe

			Application			pe S
					a a	
Crop			Fluoa-	Fluo@- ²	GS ®	PHI
	FL	No.		20 ADDIII	(BBCh)	days)
				*kg/hlj		Payi Gays)
				V (a.s.)		
wheat	150 EC	24,	0.15 20	0.050	W 170	- Sei (
	130 EC	4 V	0.15	0.030	65.60	
			0.13	9.030	0,7-09	
wheat)		~ ~	~			
·	<u> </u>	ۣ ڰۄ؞				√V ^v
	O T	& J		~ O		4 .
	4		V Q		0′ (
				1 > . ⊙′		₽,
wheat	Ø50 E€	,2 ^W	₹ 0.15,©	20.0 50 m	47	5 36
Flair (winter	54 K,		Ş" 0.18	\$\times_0.050\$	J	
wheat)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					ľ
1						
	" \$\text{S}	J	(*) * *			
		Ÿ ®	- ×C		Ď	
					¥	
	⊜ GS =@rov	vth stage (B	BQH-code) at t	reatment 🔊 🔊	•	
residue negion &	j [*]		, O,			
l S			W .) V		
	♠			~~		
~ ~ ¢				N.		
, O)					
, ~ , Q	1	i T		•		
		~ 4				
y . S		" Q _A ,	J" "O"			
		7 &	Š			
			*			
<i>5</i> }						
)* &* [©]		, O, ()**			
	\$ \Q	, O				
	W. Z					
* 4 * ~		~ Q`				
		A. A				
O' D'	" A O					
	7 ¥					
O S	V					
(/ N						
, "J						
		wheat Tarso (winter wheat)	wheat Tarso (winter wheat)	Variety FL No. strobin [kg/ha] (a.s.) wheat 150 EC 2 Tarso (winter wheat) Tarso (winter wheat)	Wheat Tarso (winter wheat) Wheat Flair (winter wheat) Tarso (0.15) Wheat Flair (winter wheat) Wheat Flair (winter wheat) Wheat Flair (winter wheat)	Variety FL No.

Table 6.5.3-	12: Results of resid 'Fluoxastrobin		sing trials conductated and the conductated in the conductate EC 150' in the conductated and the conductat		eat after sprayin rope	ng with
Study No.			R	esidues (mg/kg) 🔈	
(Trial No.) Country GLP	Portion analysed	DALT (days)	Fluoxastrobin (HEC 5725 E-Isomer)	HEC 5725 Z-Isomer	otal residue of HEC 5725	eg with
RA-3060/00	grain (RAC)	61	<0.018	<0.002	<0.02	
(R 2000	milling of white flo	ur and bak	ing of white breac	ı Ş	, W . S	
0269/6)	bran		<0.05	0.003	6 .02 Q	
	bran		< 0.18	8002 ₆ °	0.02	
GLP: yes	semolina		₽ 0.018	~<0.00 2	<0.02	Q _Q'
	semolina		& <0.0 18 °	<0.002	© <0.02 ×	
	semolina bran		0 < 0.648	002	₹0.02x	A
	semolina bran	A		©0.002	<0.00	
	flour		×20.018	~ <0.0 0	© < QL 02	
	flour	Ű	~ \$\frac{1}{2} < 0.0\frac{1}{2} \qua	<00002 × 1	20 02 2	
	white bread	& 4	√ < © 045 ° ♥	80 005 80 005	\$\infty\{\infty\}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<i>P</i> a
	white bread	\$ 0	0.045	<0.000	<0.05	S) J
	milling of wholeme	al and Paki	· · · · · · · · · · · · · · · · · · ·	Pread &		
	whole meal flow	`\\	<0.0018	8.002	0.02	
	whole meal flour	¥ , Z	\$0.018 ₀	~~0.0 0 2/	© <0.02	
	whole-meal Gread	Õ ĮŠ	<0.045	<0.005	~0,05	
	whole-meal bread	. Q	\$\leq 0.00\d45 \\ \S	©0.005 ©	20.05	
	germ production	- (2)				
	weat germ		\$0.045	@, <0.003	< 0.05	
	heat gorm		~ <0.095 2	\$9.005	< 0.05	
RA-3060/00	grain (RAC)	\$36 a	\$6,018	©0.002	< 0.02	
(R 2000	milling of white flo					
0273/4)	"O'1	à A	0.04	0,697	0.05	
Germany	bran 💍	Ø, »	0.04	≈0,0 06	0.05	
GLP: yes	semmalina 💍		^ 0 .018 < √ ′	©0.002	< 0.02	
GEI. yes	semolina		£0.01 %	∠3° < 0.002	< 0.02	
	semolina bran		0.09 °	0.003	0.04	
	semolina bran		9 0:04	0.003	0.04	
d	O Dour O	`~~~	©.018 © ©<0.018	<0.002	< 0.02	
. 4	flour white bread) ^y	© <0.01 % <0.0¶45	<0.002	<0.02	
	white bread white bread Q	Ö i		<0.005 <0.005	<0.05 <0.05	
	milling of wholeme	al and half			<0.03	
	whole meat Plour	an and Daki	(0.018	<0.002	< 0.02	
- ¥	whole meal flour	y * \	<0.018	< 0.002	< 0.02	
			<0.045	< 0.005	< 0.05	
_	whole-meal broad whole-meal bread	& *]	< 0.045	< 0.005	< 0.05	
	gern production	, 🤷				
	wheat germ		< 0.045	< 0.005	< 0.05	
	wheat germ?		< 0.045	< 0.005	< 0.05	

DALT days ther last reatment, RAC = raw agricultural commodity

Table 6.5.3- 13: Recovery data for fluoxastrobin (HEC 5725 E -Isomer) and HEC 5725 Z-isomer, in wheat grain and processed commodities

Study No					Forti-		Recov	very (%)) Å	7 0
GLP Year	Crop	Portion analysed	Analyte	n	fication level (mg/kg)	Individual recoveries	Mon	Max	Mean	RSD
RA-2060/00 RA-3060/00	wheat	grain	fluoxastrobin (HEC 5725 E- Isomer)	6	0.018	91; 92; 92; 95, 97; 103	91	103	957	4.8
GLP: yes 2000			HEC 5725 Z-Isomer	6	Ø 002	90; 93, 86; 93; 96; 98, 69°	90	5 97 <i>*</i>	₽ 93 ₆ C	4.4
	wheat	germs	fluoxastrobin (HEC 5725 E-& Isomer)	40)	0.045	96,399; 10°,	98 G		\$ \$99 \$\times\$	¥.4
			HEC 5725.4 Z-Isomer	4@	0.00	100296; 108;	26	1003	1000	5/A
	wheat	bran, flour, whole- meal flour, semolina bran,	fluoxagobin (HEC 725) (Isomer)	³ 2 2 7	©018 0.045 0.45 Overall	92; 90094 98; 31 93; 88	90 94 288 88 88	94 94 93 93 98	92 5 95 91 92	2.2
		semolina	HEC \$725 Zasomer	3 2 2	0.002 0.005 0.05	100 % 7; 105 91; 87 97: 84	87 \$87 84	10©″ Ø91 Ø97	97 89 91	8.8
				7 (overall		84 ⁰	103	93	7.9
	wheat	white bread, whole- comeal	froxastrofin FIEC \$725 E Isomer)		0.645	84; 87; 96, 86	*84	90	87	2.9
			JEC 5725 Z-Isopier	A .	0,005	83; 89; 89; 81	81	89	86	4.8

Fluoxastrobin use in/onlong

The use of fluoxastrobin in phion according to the representative use does not result in significant residues (i.e. 0.1 mg/kg) of fluoxastrobin in onion bolb at harvest. Furthermore consumer intakes are low and consumption of the ADI or ARfD above 60% can be excluded. Therefore, supplementary processing studies are not considered necessary.

CA 6.6 Residues in rotational crops

CA 6.6.1 Metabolism in rotational crops

Confined rotational crops studies were conducted with [chlorophen l-UL-14C]fluoxastrobin (2002; M-091191-02-1), [pyrimidine-2-14C]fluoxastrobin (2003; M-091162-01-1) and [methoxyiminotolyl-ring-UL-14C]fluoxastrobin (2004; M-090320, 01-1). These studies were peer reviewed at EU level (see also introduction to chapter (2004; M-090320, 01-1). A short summary is given below (see also overall coordinates on plant metabolism on page 85).

Following application at 683 - 846 g/ha on bare set, the total radioactive residues in the plant matrices decreased from the first rotation planted 30 days to the third rotation planted 30 days after application. Maximum total radioactive residies were found in wheat graw of the first rotation at approx. 1.4 - 2.4 mg/kg falling to 0.21 - 0.35 mg/kg in the third obtain. Total radioactive residues in wheat grain and the matrices of Swiss chard and Jurnips, were pelow to mg/Qg.

After soil application and planting of the rotational crops, Parent compound (son of Ploxastrobin and its Z-isomer) was the predominant component of the residues to the point matrices with up to 73.6% of the TRR in wheat, up to 32.6% of the TRR in Swiss charded dury to 50.5% of the TRR in turnips. It was the major component in the plant matrices of the first votation and in Swiss chard of the second and third rotation. In turnip leaves of the second and third rotation and in Swiss chard of the second rotation it occurred at any unts comparable to the major identified metallolite. It the individual plant matrices of the three rotations the region identified metallolite expresented up 26.4% of the TRR. The residue levels of the metabolites were low and did not exceed 0.6 mg as a equiv./kg in the edible matrices wheat grave, leaves of Swiss chard and turnipoots.

CA 6.6.2 Magnitude of residues in rotational crops

Evaluation in the EU peer review (ELSA conclusion, 2007) and EFSA Reasoned Opinion on existing MRLs (2012)

Occurrence of fluctuatroble residues in otational cross was evaluated in the EU peer review. It was concluded that except for wheat staw fluorastrobin plated residues are unlikely to occur in succeeding cross. However, is fluorastrobed is focuse of cereals as a primary crop, it is unlikely that residues of fluorastrobin to the state would constitute ignificantly to the residue in following cereal crops treated with fluorastrobin incertifications.

- the Setabolism studies were conducted at a voverdose factor of 2N (relative to the evaluated (A)P).
- in the rotational crop metabolism studos, fluoxastrobin was applied to bare soil, thus any reduction doe to intercept in is of reflected in the residue levels found.
- the GAP ovaluated in SE EU peer review involved 3 applications and not one as in the rotational crop netabolism stroy: The critical field GAP involved seed treatment (12 months before the following cop planted) ollowed by two spray applications (5 months and 3 months before the following cop planted) which would allow for degradation during the intervals.

In the list opendpoints it was concluded that no data on field trials are required.

In the EFSA Reasoned Opinion (2012), it was concluded 'that residues of fluoxastrobin resulting from soil uptake will not exceed the LOQ of 0.01 mg/kg, except in wheat straw.'

In wheat straw, higher amounts of fluoxastrobin (0.06 - 1.2 mg/kg) and metabolites (up to 0.51 mg/kg) were quantified in the above study [rotational crop metabolism study]. Nevertheless, considering the overdosing factor and potential foliar interception, levels of parent compound are expected to be significantly lower than those resulting from the primary use.

Furthermore, non-rat metabolites are neither considered for enforcement purpose nor relevant for risk assessment but further information about the toxicity of metabolite M82 found in straw in primary crops is anyhow required It is concluded that specific plant-back restrictions related to the use of fluoxastrobin are currently not required, provided that fluoxastrobin is applied in compliance with the GAPs reported in Appendix A [up to 2 x 200 g as/ha far cereals and Dx 125 g as/ha for opions].

Thus, the reasoning applies all the more as the GAPs of the representative uses supported in the present dossier involve significantly lower application rates and/or less application compared to those evaluated in the EFSA documents.

Additional information on the straw metabolites non common to the fat was submitted by the notifier as confirmatory data and evaluated by the RMS (UK CRD) in Addendum 8 to the DAR (canuary 2011). This was circulated to Member States and the EFSA for comments which were incorporated into a reporting table by the RMS in January 2012. As a result of these confirments the evaluation has been updated to reflect both the northern and southern EUSAP involving higher application rates at that time. Changes from the January 2011 version are included in the revised and updated version of the DAR from April 2012. Information on the toxicological profile of metabolite M82 (2-chlorophenol) may be found in CA 5.81. The other straw metabolites are considered as sufficiently addressed by the arguments and data provided earlier and resulting in Addendum 8 to the DAR, 2012. This conclusion is supported by the EFSA reasoned opinion on existing MRLs (EFSA Journal 2012:10(12):3012) where reference is made exclusively to M82 and M84 (clucoside of M82).

Estimate of fluoxastrobin residues aken up from soil offer reseated use of fluoxastrobin containing products

In the Inclusion Directive 2008/44/ECP art B and in the Review Report SANCO/3921/07 (2012) it is noted that Member States should pay particular attention to the risk of accumulation in the soil surface, if the substance is used in succeeding grops in rotation.

In the following paragraphs calculations are provided addressing the question whether the potential for accumulation may result in fluorastrobin residues taken up from soil by replanted crops if fluorastrobin containing products are used year on year. The calculations presented below provide an estimate of the contribution of the active substance present in soil due to previous applications. The overall soil loading arising from the maximum seasonal rate and supplemented by residues in soil from previous treatment are compared to the application rates used in the rotational crop metabolism studies.

In order to estimate the concentration is soil and the contribution of residues that might be present in soil from previous treatment oredicted environmental concentrations (PEC) in soil – as presented in CP 9.7.3 (PEC) in soil – as presented in the calculation. Input parameters for the PEC of calculation were derived from field soil dissipation studies. The behaviour of fluorastrobin was investigated in a terrestrial field soil dissipation study designed to determine the dissipation under representative European field conditions on cropped and uncropped plots (

; 2001; M-136670-01-1), cf. baseline dossier CA 7.1.2.2.1.

PEC_{soil} calculations were performed for (but not limited to) the following scenarios reflecting the GAPs of the representative uses in/on cereals and onions per climatic residue zone. The highest application rates per FOCUS crop are highlighted in bold.

Table 6.6.2- 1: Use pattern in small grain cereals and onions for which predicted environmental concentrations in soil were calculated _____

Crop	FOCUS	Rate	Interval	Plant	BBCH 🔊	Amount \$
Region	crop		V	interception	stage	reaching(soil
		[g a.s./ha]	[days]	[%] [©] *		(g a Sha] &
Wheat; EU-N	cereals	2×150	44	2-80	36/- 69 🛴	2×30.0
Barley; EU-N	cereals	2×125	20 14	~2×80 @	30 - 61 O	©2×25 0°
Wheat; EU-S	cereals	2×87.5 俟	14°	2×80	20° 30 - 69°	2×1/2/5
Barley; EU-S	cereals	2×75 ©	₂ 94	2 2 30 0	× 30 61	2*15.0
Onions; EU-S	onions	2×125	© 10 €	2 10 ₄	15 - 47 0"	Ø 1125

EU-N = northern climatic zone; EU-S = southern climatic zone

PEC_{soil} calculations were conducted for the maximum soil concentration after application of the maximum seasonal rate and for the long-term plateau concentration after coeated application.

The degradation of the active substance fluoxastrobin was predicted assuming a bi-phasic DFOP (double first-order in parallel) model from the data of field degradation trials. As input parameter for the PEC_{soil} calculation the longest DT₀/DT values (non-hormatised) reflecting a worst case scenario were derived from 8 field dissipation trials. More detailed information on input parameters may be found in the original report 2015 M-537905-01 . A bulk density of 1.5 kg/L and a soil mixing depth of 5 cm was used as a commended (European Commission, 1995, 2000; FOCUS, 1996) for calculation of the soil concentration after application of the maximum seasonal rate. Crop interception was taken into account according to the BBCH growth stage (EFSA guidance document to obtain Deg 50 values, FESA Journal 2014; 12(5):3662).

The accumulation potential of flux astrobin after long term use was also assessed considering a soil mixing depth of (a) and 20 cm science ally, for long-term assessments the substance distribution in soil for annual crops with tillage should be calculated for (a) 20 cm soil layer. However, when the soil loading is translated into an application rate in (a) per bectare the soil layer taken into account for the calculation is of no relevance since the absolute amount of the compound in soil remains unchanged (cf. Table 6.6.2-2). Soil concentrations after long-term use of the compound with applications in succeeding years is calculated taking in account some carry-over of residues from one year to the next. This results in the oppical saw-tooth soil concentration curve, with annual peaks at the time of application, and with dissipation between the annual peaks. The lower limit of the saw-tooth curve converges to a constant value (plateau) when the equilibrium between application and dissipation is approached after long-term use of the compound.

The following characteristic parameters are calculated in 2005; M-537905-01. To address a scenario with applications at the maximum annual rate in succeeding years:

⁻ long-tenn background (PEC $_{plateau}$): maximum of the lower saw tooth curve, which can be considered as background concentration after multiple year use. For fluoxastrobin, the plateau is reached after approximately 3-4 years.

- PEC _{soil, total}: the maximum residue of one year (distributed in 5 cm) is added to the long-term background concentration (PEC_{plateau}) in a 20 cm soil layer to take into account a conservative shadow distribution just after an annual application.

The calculation for a 20 cm soil layer is appropriate to describe the situation for annual cops with tillage.

In the table below calculations are made for the highest application rates for cereals (and covering the remaining cereal uses) and for the use on onions involving two applications.

Table 6.6.2- 2: Predicted environmental soil concentrations of fluoxastrobin following multiple year use and conversion to the corresponding application rate of (application rate per hectare in italic and parentheses)

	Residues	Maximum >	Long-term	PECsoil total (from.
	distributed	seasonal PEC soil	hackground/	background + max
GAP	over	[mg/kg]	PEC plateau	
GAF	[cm]		y mg/kgky	mg/kg
	ĺ	(corresponding to	(corresponding to	(corresponding to
		g/ha)		S gAba)
Representative GAP (N-	5	Q .075°) Q	(b) 022 ((c)	0.097
EU):		(=56 g as/ha)	$(=173 \text{ as/ha})^{(6)}$	$f(=73\% as/ha)^{b)}$
Winter cereals, spray,	≈ 20 _€		0.005	0.080
2*150 g/ha,			(= 15 g as/ha) b)	\$\int_{g} \ as/ha)^{b)}
14 d interval,				
2*80% interception	\$ 5 × 5 × 5			
Representative GAP (5 5	0.286°) 5	0.081	0.367
EU):		J¥ 215 g as/haQ	S= 61 s(as/ha) V	$(= 275 g as/ha)^{b)}$
onion, spray, 2*125 g/ha	2 0 &,		0.020	0.306
10 d interval;			(=\$0 g as/ha) b)	$(= 275 g as/ha)^{b)}$
Representative GAP (SEU): onion, spray, 2*125 g/ha 10 d interval; 2*10% interception	*			

- Maximum seasonal PEC maximum soil residue calculated for one season
- long-term background or PEG lateau: maximum of the lower saw tooth curve which reflects background concentration after multiple year use.
- PEC $_{soil,\ total}$: Constrined concentration in a 5 $_{soil}$ soil layer arising from the long-term background concentration and the maximum unitual rate from an additional individual application.

Note: The PEC soil (total) comprisine the background resulting from previous applications plus an additional application is calculated based on the rounded values reported in the PEC soil report (2015; M\$37905-01-1). Therefore slight deviations may occur for the amount per hectare calculated from the different soil layers (5 and 20 cm). Canculation example for conversion of max seasonal PEC soil into application rate (g a.s/ha):

 $0.075 \text{ mg/kg} \times 500,000 \text{ dm}^3 \times 1.5 \text{kg/L}/1000 = 50 \text{ g as/ha}.$

Calculation example for PEC soil total over 20 cm:

 $(0.075 \text{ mg/kg} \times 500 000 \text{ dm})^3 1.5 \text{ kg/L} / 1000) + (0.005 \text{ mg/kg} \times 2,000,000 \text{ dm})^3 \times 1.5 \text{ kg/L} / 1000) = 56 + 15 \text{ g}$ as/ha

a) calculation based on input parameters as reflected in (2015; M-537905-01-1)

b) Assuming sold density of 1,5 kg/L;

c) Predicted foil concentration of fluoxastrobin on day 0. Soil concentration on day 28 which approximates the 30 day short form plant back interval would correspond to 77% of the day 0 concentration.

From the calculations above it can be concluded that the contribution due to the plateau concentration reached after repeated use to the overall predicted soil concentration is low.

The calculated PEC soil total (from background + extra max. seasonal rate) corresponds to a maximum of 275 g as/ha arising from the use on onions, while for cereals the combined soil concentration corresponds to a rate of 71 g as/ha.

Confined rotational crops studies were conducted at 846, 841 and 683 & a.s./ha. The exaggration factor of the dose applied in the rotational crop metabolism studies amounts to 2.5-3 YN for onions and 9.4-11.6N for the cereals relative to the GAP involving the highest supported application, rates (2 × 150 g as/ha) for the representative uses.

From the table 6.6.2-2 above it is evident that the individual application at the maximum seasonal rate (simulating a crop failure) contributes most to the overall soil concentration (PEC oil total). Taking into account that in a rotational crop scenario crops are replanted after 30 days in the short term plant back interval and fluoxastrobin degrades fast directly after application only 77% of the day amount would be present after 28 days.

Moreover, cultivation of the same cross on the same field for more than years and using the same product at the maximum label rate of unlikely and not according to agronomic practice and would contradict any resistance management strategy.

In order to estimate whether the properties of the soil used in the confined rotational crops study and the characteristics of the soil showing the slowest degradation in the terrestrial field dissipation study which was from an uncropped trial can be considered comparable both soils are compared in the table below.

Table 6.6.2-3: Comparison of soil characteristics from the rotational crop metabolism study and the trial site providing the slowest degradation in the field dissipation study

	Field dissipation study (,; 2001; M-
soil for the three madiolabels; e.g.	<u>1</u> 36670-61-1)
,,2001; M-090200-01-v	XT: 1 X
	longest DT ₅₀ (119 d);
soil diagram: = sandy load	texture analysis according to USDA soil diagram
Soft diagram. Sandy long	(0-30 cm): = sandy clay loam
sand[%]	52.1%
silt[%] 310% 5	18.1%
clay[%]	29.8%
Organic arbon [%] Q 1.988	1.34
pH(CaCl ₂)	7.6

Both soils were characterized by a high confint of sand and a medium content of organic carbon. The trials from the soil dissipation study also show that the DT_{50} values for soil were higher for trials conducted on unctopped fields. Therefore, residues found in the rotational crop metabolism study where the compound was also applied on bare soil are not considered to reflect an underestimate due to differences of the DT_{50} values from different soil types or cropping.

It can be concluded that the application rates used in the rotational crop metabolism studies cover a scenario where succeeding crops might be exposed to residues present in soil from previous applications and where an additional maximum seasonal rate is added simulating a crop failure situation. Residues in succeeding crops are not anticipated when considering

- the exaggerations in the dose applied in the rotational crop metabolism studies (2.5-3.1N) for agricultural practice where the total spray amount is split into 2 individual applications a crop failure situation and short-term replanting would be a specific to a crop failure situation and short-term replanting would be a specific to a crop failure situation and short-term replanting would be a specific to a crop failure situation and short-term replanting would be a specific to a crop failure situation and short-term replanting would be a specific to a crop failure situation and short-term replanting would be a specific to a crop failure situation and short-term replanting would be a crop fail
- a crop failure situation and short-term replanting would be unlikely after a second application made at late growth stages

 DT₅₀ values are shorter when the fail

Based on these considerations no additional field studies are considered necessary in solw of the representative GAPs. The evaluation EFSA made is, the Conclusion (2007) and in sole Regioned Opinion on existing MRLs (2012) is still appropriate and does not need to be advanged in the view of representative uses. Based on these considerations no additional field studies are considered necessary in view of the

CA 6.7 Proposed residue definitions and maximum residue levels

CA 6.7.1 Proposed residue definitions

The results of the metabolism studies in tomato and peanuts (see summaries in chapter CA 6.2.1) confirmed the metabolic pathways and distribution of fluoxastrobin and metabolites already observed in the wheat metabolism and confined rotational crops studies. Parent compound, i.e. the sum of fluoxastrobin and its Z-isomer, was observed as the predominant portion of the residues and it was stable under conditions simulating industrial and domestic processing (see chapter CA 6.5.1). Therefore, it is proposed that the residue definition for risk assessment and forenforcement purposes (monitoring) in plant commodities is the sum of fluoxastrobin and its Z-isomer.

The results of the livestock metabolism studies (see chapters CA 6.2.2 and CA 6.2.3) showed that parent compound (sum of fluoxastrobin and its risomer) and the metabolite HEO 5725 phenoxyhydroxypyrimidine (M55, HEC 7154) were observed as the medominant components of the residues. Therefore, it is proposed that the residue definition for risk assessment and for inforcement purposes (monitoring) in animal commodities of the sum of Puoxastrobin at Z-isomer and the metabolite HEC 5725-phenoxy-hydroxypyrimidine (M55), expressed as fluoxastrobin.

These plant and animal residue definitions have also been proposed by EFSA (see Table 6.7.1-1).

Table 6.7.1-1 Proposed residue definitions by EESA

Matrices	Residue definition	Reference
Food of animal origin	Sum of fluoxastrobin and its Z- isomer # Sum of fluoxastrobin and its Z- isomer # Sum of fluoxastrobin and its Z- isomer # Sum of fluoxastrobin its Z-isomer and the metabolite HEV 5725- phenoxy-hydroxy-pyrimidine (M55), expressed as fluoxastrobin Sum of fluoxastrobin, its Z-isomer and the metabolite HEC 5725- phenoxy-hydroxy-pyrimidine (M55), expressed as fluoxastrobin	EFSA Scientific Report (2007) 102, 1- 84, and EFSA Reasoned Opinion according to Art 12 of Reg. (EC) No 396/2005 (EFSA Journal 2012;10(12):3012)

^{*} In the EFSA Scientific Report the residue definition for monitoring food of plant origin is given as the sum of E-isomer (fluoxastrobin) and Z-isomer. The residue definition for monitoring food of animal origin is given as sum of E-isomer (fluoxastrobin) Z-isomer and the metabolite HEC 5725-phenoxy-hydroxypyrimidine (M55) expressed as fluoxastrobin. In Fegulation EC 576/2005 amended by Regulation (EC) 839/2008 the residue definition refers only to fluorastrobin (HEC 5725 E-isomer).

In the EFS Scientific Report (2007) 102 3-84 the proposed plant residue definitions were limited to cereals only.

CA 6.7.2 Proposed maximum residue levels (MRLs) and justification of the acceptability of the levels proposed

The EUMRLs for fluoxastrobin were set in Annex III A of Commission Regulation No 839/2008 amending Regulation (EC) 396/2005. Following the publication of the EFSA Reasoned Opinion on existing MRLs according to Article 12 of Regulation (EC) No 396/2005 (EFSA Journal

2012;10(12):3012 a draft Regulation (SANCO/11739/2013) is under preparation but not yet published when the present dossier was prepared. The most recent draft Regulation SANTE/11195/2015 does not consider the modifications made following the MRL review according to Art 12.

In the EFSA Reasoned Opinion (2012) it was noted that for <u>barley and oar</u> grain the critical AP identified for the southern climatic region was not adequately supported by the residue at a since the application rates used in the trials were overdosed. Since the established MRLs for barley and oats to not present a consumer health concern these MRLs were ragged as tentitive MRLs.

For wheat and rye grain the Reasoned Opinion proposed to lower the MRLs from 0.05 mg/kg and 0.5 mg/kg, respectively, to 0.02 mg/kg for both cops. This proposal was likely based on the fact drat residues were found to be below or at the LOQ of 0.02 mg/kg fn wheat grain

The more recent supplementary data reported in the present dossfer were generated using a method providing an LOQ of 0.01 mg/kg for the sum of HEC 5720 E-and Z-isomers, but nevertheless resulting in residue levels of 0.02 mg/kg in some residue trials. Therefore P is proposed to apply the OECD calculator to the new data set in order to derive appropriate MRLs for wheat and one grain.

Important note:

Since there is a delay with the finalization of the MRL review according to Art 22 and the voting of the draft Regulation SANCO 1739/2013 it is open which MRL will begin place when his dossier will be evaluated. As a precautionary measure Boyer CropScience submits on MRL application (M-543078-01-1) along with and as part of this supplementary dossier in order to avoid an unsuitable lowering of the wheat and rye TRLS.

In addition this supplementary dosser provides appropriate residue that for the new critical GAP for barley in the southern dimatic 2 one to address the define ency identified in the EFSA Reasoned Opinion. Bayer CropScience proposes to use this data set to define appropriate MRLs for barley and oat in order to convert the ontative MRLs into final MRLs. The new proposed barley and oat MRLs are also part of the MRL application submitted along with the present dossier.

The residue levels I tained from the wials reported in the supplementary dossier which were conducted according to the critical GAPs were used for calculation of the proposed new MRLs. All the trials are included in chapter (§ 1.1 (barley), and 6.3,2 (when) of the supplementary dossier.

Relative to bonions, the use in the northern zone has been evaluated in the EFSA reasoned opinion on existing MRLs according to Art 12. The residue that were found to comply with the critical GAP and an MRL of 0.04 mg/kg was proposed. The use in the southern zone forming the representative use was found to not result in residues exceeding this MRL and thus a modification is not required.

Table 6.7.2- 1: Established EU MRLs (Regulation EC 839/2008) and proposed MRLs (EFSA Reasoned Opinion [EFSA Journal 2012;10(12):3012]) of fluoxastrobin

Code number	Commodity	MRL EC 839/2008 [mg/kg]	Proposed in FFSA © RO 2012 () (draft Regulation SANC 9/11739/2013) (mgAg]
Commodities of plant origin		7,1	
Enforcement residue definition (existin,	g): fluoxastrohin	,	. T Z Z .
,	red): sum of fluoxa@robin and its Lison	ner 🖔	
0220020	Onion	© 0.055	0.04
0500010	Barley grain	0.5	√0.5 (a) √
0500050	Oat grain 📞	40.5	70.5 (a)
0500070	Rye grain	0.5	
0500090	Wheat grain	0.05*	02 02
Commodities of animal origin			
Enforcement residue definition (existin	g);Huoxqsqxobin 🗸 💝 🎺	* ®	
Enforcement residue definition (propos	A). Sum of flug astrolin, its Disome	Sand the me	tabolite HEC 5725-
phenoxy-hydroxy-pyrimidine metabol	$(M55)$, expressed as fluoxastrobin ${\cal O}$		
1011010	Meat (swinge)	Ø.05 €	Ø 0.02* (a)
1011020	Fat (swine)	_{0.05}	O 0.02*(a)
1011030	Liver Gwine 7	Q.P	© 0.04*(a)
1011040	Kidney (sydne)	39.1	9 0.04*(a)
1012010, 1013010, 1014010, 1015010	Muscle (Soving Sheep, Wat, equine)	0.05	0.02*(a)
1012020, 1013020, 1614020 1015020	Fat Covine, sheep wat, equine)	Ø .05	0.05 ^(a)
1012030, 1013030, 1014030, 1015030	Miver (bovine, sheep, goat, equal)	0.05	0.04*(a)
1012040, 1012040, 1014040, 1015040,	Kichey (bovine, sheep, gost, equine)	0.1	0.1 ^(a)
1016010	Muscle (poultry)	0.05	No new proposal
1016020	Fat (poultry)	0.05	No new proposal
1016030	Liver (poultry)	0.05	No new proposal
1016040	Kidne (poults) &	0.1	No new proposal
1020010,1020020. 1020030	Milk (cattles heep goat)	0.2	0.02*
1030000	Bird's eggs	0.01*	No new proposal

^{*:} indicates that the MNV is set at the LOQ

New MRL proposals for wheat rye darley and oats

For easy reference the table below provides an overview on the GAPs per crop and region for which new MRL calculations are provided (Pable 6.7.2-2). The GAPs from the northern zone reflect the cGAP which with be applicable post AIR. The GAPs from the southern zone reflect the cGAPs already in place today.

⁽a) MRLs proposed by EFSA for barley and out as well as for the animal commodities are tentative

Table 6.7.2-2: GAPs for which MRL calculations are provided

					(I) \(\int_{\infty} \)
GAP no (cf. Table 6.3.1- 2 and Table 6.3.2- 2)	Сгор	Maximum Number of Applications	Minimum Application Interval (days)	Growth stage (BBCH)	Maximum Rate per Application (g a.s./ha)
		No	orthern Europe		
EU-N 2	Wheat, Rye	2	14-24	30-69	\$0 \$\sqrt{\sq}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sq}}\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
EU-N 2	Barley, Oat	2	4 -21	3 0-61	125 Q 0 * * * * * * * * * * * * * * * * * *
		Sc	outhern Europe		
EU-S 2	Wheat Rye	2	14-21	30 -69 7	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
EU-S 2	Barley, Oat	2	\$14-21\$ \$\infty\$	\$0-61 \$09 (oat)**	87.5/ 100 (oat)**
	Onion	2, ~	J in S	15-47	√ √125 ° 21

^{*} as per growth stage; the PHI is defined by the growth stage at the last application

The following Table 6.7.2-3 provides kew information on the residue data summarised above in CA 6.3.1, CA 6.3.2 and CA 6.7.3 (median and highest residues) and the corresponding results of the MRL calculations. All data are based on the proposed residue definition involving the sum of fluoxastrobin (E-isomer) anotis Z-somer.

The table includes a hyperlink to the respective MRL calculation (Table 6.7.2- 5 to Table 6.7.2- 11).

In addition to the individual SRL calculations person, commodity (grain, straw) and region (EU-N, EU-S) a calculation of presented for barley grain from the southern region merging the data sets from the new cGAP and the previous cGAP evaluated during the EU peer review. The reason for this exercise is to define appropriate MRLs for barley and our grain based on a broader data set and to assess the relevance of the individual elevated residue finding in barley grain. For this purpose all residue results are scaled to the application rate of the cGAP (0.0875 kg as/ha) applying the proportionality approach (cf. EFSA document on Residue trials and MRL calculations; proposals for a harmonised approach for the selection of the trials and data used for the estimation of MRL, STMR and HR; September 2015, For this exercise, all data were scaled to the cGAP rate, also those which fall in the ± 25% range. From the 18 (grain) and 19 (straw) individual data points 10 results reflect the cGAP, 4 (5) results fall in the ± 25% range and 4 data points are outside this range (results from applications fater than BBCH 69 or from fields with laying down at application are not considered). This approach is also in line with the most recent 'OECD Draft Guidance Document on Crop Field Trials' (August 2015).

Paragraph 25. The OECD decided to use the principles and guidance as adopted by Codex Alimentarius Commission.

^{**} The residue trials on barley conducted at the ordividual application rate of 75 – 87.5g a.s./kg and supporting the critical GAP for barley (individual are of 87.5 g.a.s./ha) are also suitable to support oats although the critical GAP for oats involves a slightly higher individual application rate a.e. 100 g a.s./kg), because the trials rates fulfill the requirement to stay within the ±25% toterance range. Therefore the extrapolation from barley to oats is considered acceptable.

c) All data points under consideration, i.e. data points corresponding to application rates within/outside the acceptable range of \pm 25% of the nominal application rate, should be adjusted to the nominal (1x) application rate to prevent issues of bias.'

Table 6.7.2-3: Summary of MRL calculations, median and highest residues on small grain cereals (grain and straw) and onion bulb in northern and southern Europe

				Results of MRL calculation (OECD calculator)			
Crop	Region	GAP Dose rate (kg a.s./ha)	Commodities	MRL & proposat	Median (residue (mg/kg)	Highest & residue (mg/kg)	MRE input Onta and result tables
	NEU	2 x 0.125 BBCH 61 (new trials)	Grain Straw	00.05 (n=11) (n=11)	0.02	0.03 O	Vable 6.7.2-5
Barley Oat	SEU	2 x 0.0875 BBCH 61 (barley) (new trials)	Grafy	0,4 (n=05) (n=15)	(<0,62)	50.34 51.7	Table 8.7.2- 6
	SEU	Merged data sets 0.075 – 0.2 kg/kg/ BBCH 61-69 scaled to cCAP	Straw	(n=18) \$\frac{1}{2}\$ (n=49) \$\frac{1}{2}\$	0.31	2.06	Table 6.7.2- 7 and Table 6.7.2- 8
Wheat	NEU	2 59.150 P BBCH 69 Thew thats)	Grain	0.04 (n=8)	00.01	2.3	Table 6.7.2- 9
Rye	SEV	2 x 0.100 BBCL 69 (new@rials)	Grain Straw	0.04 (n=Pl) (n=kl)	0.00	3.7	Table 6.7.2- 10
Onion	S-EU	X x 0.125 BBCH 5247 PHO21 d interval 10 © (new trials)		No new MRIO proposal [0.03] (n=2)	0.01	0.021	Table 6.7.2- 11
		PHO21 d interval 10 0 (new trials)					

Conclusion

Barley: The highest residue level of the total residue of HEC 5725 (sum of fluoxastrobin and its Z-wisomer) found in barley grain was 0.34 mg/kg from the southern European data set, while the highest residue in straw appeared in the northern region (2.7 mg/kg). Merging the data set of the new critical GAP and suitable trials (application during flowering) from the previous cGAP evaluated during the EU peer review by application of the proportionality approach stall results in an MRL proposal of 0.4 mg/kg which is driven by the highest residue of 0.34 g/kg from trial 10-2157-04. When disregarding this result appoint of 0.4 mg/kg would be adequate.

The applicant suggests that the competent authority takes the new data into account for setting new MRLs for <u>barley grain (0.4 mg/bg) and straw (4 mg/kg)</u> based on the submitted data in order to convert the tentative MRLs into tonal MRLs. By means of extrapolation these MRLs shall apply also to oat.

Wheat: The highest residue levels of the total residue of TEC 5725 (sum of Duoxastrobin and its Zisomer) found in wheat grain was 0.02 mg/kg from the southern Furopean data set. Highest residues in straw appeared also in the southern region (3.7 mg/kg)

All residue findings obtained from the supplementary residue trials are covered by the existing MRLs for wheat of 0.05 mg/kg or rye of 0.5 mg/kg thowever, in the EESA Reasoned Opinion (2012) new MRLs for wheat / rye of 0.02 mg/kg are proposed. Taking into account that residues at 0.02 mg/kg (Loo of the method 0.04 mg/kg) may appear it is proposed to set the MRL at 0.04 mg/kg in wheat we grain and not to lower to 0.02 mg/kg. For wheat and rye straw an MRL of 6 mg/kg derived from the data of the southern zone is considered adequate.

Onion: Residues in onion bulb originating from the southern European GAP are covered by the existing (0.05 mg/kg*) or the proposed (EFSA (10, 2012) MRL of 0.04 mg/kg which is derived from the northern European GAP. Residue levels of the total residue of HEC 5725 (sum of fluorastrobin and its Z somer) up to 0.021 mg/kg were found in onion bulbs in the southern zone. An MRL calculation for the southern European data results in an MRL proposal of 0.03 mg/kg when using the OECD calculator methodology. Thus a modification of the existing or proposed MRL is not necessary.

MRLs, in commodities of animal origin

Table 6.7.2- 4 below compiles the information on the dietary burden arising from the representative uses on small grain cereals and the case levels used in the feeding studies on dairy cows and laying hen and compares to the proposed MRLs (EFSA Reasoned Opinion (2012) and draft Reg. SANCO/11/39/2013) for mimal tissue milk and eggs.

The proposed or the established MRLs (Reg. (EC) 839/2008) MRLs are found to sufficiently cover the residue situation arising from the representative uses supported in the supplementary dossier.

Note

In RegCEC) 839/2008 the MRL for eggs was set at the default level of 0.01 mg/kg. No new proposal was made for eggs in the draft Regulation SANCO/11739/2013. Since the proposed residue definition for enforcement includes fluoxastrobin and its Z-isomer and the metabolite HEC 5725 phenoxy-hydroxypyrimidine (M55), expressed as fluoxastrobin it is proposed to set the MRL for eggs to the

The state of the s The state of the s The state of the s

Table 6.7.2-4: Overview of the dietary burden, the residue levels derived from livestock feeding studies and proposed MRLs (EFSA Reasoned Opinion, 2012)

	٥, ٥
Results of livestock feeding study	
Commodity Dietary SANCO/11730990	3 Remari
Burden Results for enforcement results for risk	Remark
Dose No of assessment	91 <i>y</i> ,
level animals Proposed residue definition:	
Fluorastrobin + Z-isomer+HEC 7534 (=M\$5)	
(mg/kg (mg/kg Mean Max Amg/kg) (mg/kg)	
DW/U) DW/U) (IIIg/kg) kilg/kg	
Pig meat 0.001 0.22 b), 3 0.02 0.02 0.02 0.02*	Dietary °
Pig fat 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	burden
Pig liver $\begin{vmatrix} 3 & 0.02 & 0.02 & 0.02 \end{vmatrix} \approx 0.02 $	from
Pig kidney 0.04 0.05 0.04 0.05	finishing
1 ig kidney	and
Cattle meat 0.036 0.22 c) 3 0.02 0.02 0.02 0.02* 4.02*	Dietary
Cattle fat	burden
Cattle liver 3 0.02 0.02 0.02 0.049f)	from
	dairy
	cattle
Kidney 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Sheep meat 0.078 0.22 c) 3 0.02 0.02 0.02 0.02* Sheep fat 3 0.02 0.02 0.02 0.05 Sheep liver 0 0.02 0.02 0.02 0.04*f)	Dietary
Sheep fat 3 0.02 0.02 0.05	burden from
Sheep liver	lamb
Sheep	lamo
Sheep mark 0.061 0.22 0	Dietary
Sheep mark 0.001 0.022 0.02 0.02 0.02	burden
	from ewe
Poultry 0.030 0.032 0.02 0.02 0.02 0.05 g)	Dietary
Meat S S S S S S S S S	burden
Poultry fat 12 0 0 0 0.02 0.05 g)	from
Poultry 12 0.02 0.02 0.05 g)	poultry layer
	layer
Eggs 0.02 0.02 0.01*g)	

a) The dietary burden was calculated for the European Evestock diet using the OECD feeding tables issued with the OECD guidance Document No 73 without taking into account immature cereals (forage, hay, silage) as feeding items (cf. Table 6.4-2). The Cetary burden we calculated for the representative uses.

- b) The dose levels used for the cow freeding study can be used to extrapolate to pig.
- c) Lower dose level of ruminant feeding study was 0.22 mg/kg bw/d and for the poultry feeding study the lowest dose level was 0.032 mg/kg bw/d. Results from other dose levels are not listed here since the anticipated dietary burden is less than the lowest dose level of the freeding studies.
- d) Data based on anticipated residue definition for enforcement and risk assessment involving fluoxastrobin (E-isomer) and its Zisomer and HEC 5725-phenoxy-hydroxypyrimidine (M55). Residues of individual components of the residue definition below the LOQ were calculated as being at the LOQ and summed up

- e) Highest residue value (tissues, eggs) or mean residue value (milk) according to the enforcement residue definition, derived by transfer factor (OECD guidance document No 73) or interpolation/extrapolation of the maximum doary burden between the relevant feeding groups of the study (FAO, 2009).
- f) With the previous enforcement method the LOQ for liver and kidney was 0.02 mg/kg for flow astrobin and its bisomer and 0.02 mg/kg for HEC 5725-phenoxy-hydroxypyrimidine (HEC 7154, M55) resulting in a LOQ of 0.04 mg/kg for the total residue.
- g) MRLs for poultry tissues and eggs were set with Reg. (EC) 839/2008. No new proposals were made in the EFSA Reasoned Opinion on existing MRLs (2012). It is suggested to elevate the MRL for eggs to 0.02* mg/kg based on the findings of the poultry feeding study and the proposed residue definition.

Table 6.7.2- 5: Input data for MRL calculation on barley in northern Europe from supplementary trials supporting the critical GAP (OFCD calculator)

N°	Crop	FL Type	GAP Dose rate FXA (kg a.s./ha)	Commodities	Residue Rel of total residue HEC 5725 ward DAD 1 (mg/kg)	Report No.
1	Barley	EC 200	2 x 0.1250	©rain 🌂 ⊘ Strav⊘	0.02	ÑA-26 3/00 ≪ 0 \$2-00 >
2	Barley	EC 200	2 x 0 125	Grain C	\$0.02 \$\tilde{\pi}\$ 0.22\(\frac{1}{2}\)(54)	PA-2012/00
3	Barley	EC 200	≈ x 0.125	Grain Staw	0.02	RA 2013/00 \$154-00
4	Barley	EC 200	2 x 0.125	Grain S Straw	0.02 0.02 0.04 (71)	(RA-2013/00 0156-00
5	Barley	E 150	F O O'	Grain Straw	0.72(47)	RA-2062/00 0278-00
6	Barley	EC 150	2 x 0.150	Grain, Straw	0.03 0.58 (49)	RA-2062/00 0279-00
7	Barley	EC 150	2 × 0.150	Grain, O Straw	© 0.02 © (56)	RA-2062/00 0280-00
	Barley	E C 150		Grain Straw	Not considered since last apply ation at BBCH 83	RA-2062/00 0281-00
8	Barley	EC 200	©x 0.125	Grain Straw	<0.01 Ø 0.18 (69)	13-2137 13-2137-01
9	Barley	EC 200	⇒ . %'	Straw Straw	0.026 0.17 (68)	13-2137 13-2137-02
10	Barley	EC 200	2 x 0 925	Gr o n Straw	0.020 (43) 0.44 (43)	13-2158 13-2158-01
11	Barl	EC 200	0.135	Grain Straw	0.011 2.7 (35)	13-2158 13-2158-01

⁽⁾ days after ast treatment

FL = formalation

DALT days after last application

Results for barley grain (northern Europe)

Total number of data (n)	11	Standard deviation (SD) 0.006
Lowest residue	0.01	Percentage of censored data 27 27
Highest residue	0.03	Number of non-censored data Correction factor for consoring (CF) 0.818
Median residue	0.020	Correction factor for consoring (CF) 0.818
Mean	0.020	
Proposed MRL estimate for bar Highest residue Mean + 4 SD	rley/oat grain (nort	Correction factor for consoring (CF) 0.818
Highest residue	0.02	
Mean + 4 SD	₃ 0.042	
CF x 3 mean	0.0	
Unrounded MRL	0,04	
O III O MITAGO I VII CE		
Rounded MRL	6 €0 .05	
Rounded MRL Results for barley straw (northous	en Europe)	
Rounded MRL Results for barley straw (northough Total number of data (n)	em Europe)	Standard deviation (SDV 0.724
Results for barley straw (norther Total number of data (n) Lowest residue	era Europe) 6	Percentage of censored data 0
Results for barley straw (norther Total number of data (n) Lowest residue Highest residue	era Europe) 0 11 0 0.140	Percentage of censored data 9 0 Namber of non-censored data 9 11
Results for barley straw (norther Total number of data (n) Lowest residue	era Europe) 0 11 0 0.140	Percentage of censored data 0

Proposed MRL estimate for barley/oat grain (northern Europe)

CF x 3 mean Unrounded MRL	0.048
Unrounded MRL	0.046 V
Rounded MRL	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Results for barley straw (northern Europe)

Total number of d	ata (n)	lí1 🛇	Standard deviation (SD)	0.724
Lowest residue		0.14	Percentage of censored data	0
				11
Highest residue		2.7	Namber dishon-censored data	11
Median residue		0.440	Correction factor for consoring (CF)	1.000
Mean		0.58		

rroposea wiki	timate for t	arley / @	at straw	(northern	Enrope)	
Proposed MRL Highest residue Mean + 4 SP	10	, Q	2,3	~~ O	7	/ %
Mean + 4 SD			3 0485			~
Mean + 4 SD CF x 3 Spean	, O .,	<u></u>	1.765			∞
Unrounded MRL	√ 0, √		3.483		7 4	, "
Highest residue Mean + 4 SD CF x 3 Syean Unrounded MRL Rounded MRL					Farope)	
A STATE OF THE STA					J 👸	
~~~~	Ö _C				<i>₩</i>	
4.	Ö	\$9"			J.	
Ø,	, Ø		V į	y ~~		
				,~Q"		
		`\	Ø.			
		, Č "	0, d	Oʻ		
	, 40	Ÿ ×	, Q	y		
Ŏ,			Qj			
		$\mathcal{L}$	~Q~			
		Õ				
		Ş				
$_{\triangleright}\mathbb{O}^{v}$						



	1		 		Dosiduo lovol of total	
N°	Crop	FL Type	GAP Dose rate FXA (kg a.s./ha)	Commodities	Residue level of total residue HEC 5725 and DALT (mg/kg)	T-1 al Nia 2
1	Barley	EC 300	2 x 0.075	Grain Straw	0.02 0.74 (35)	RA-2017703 0132-03
2	Barley	EC 300	2 x 0.075	Grain Straw	0.04 0 0.15 (45)	RA-2017/03 9253-03
3	Barley	EC 300	2 x 0.075-0.080	Grain Straw	0.02	RA-2017/03 0132-03 RA-2017/03 9253-03 RA-2007/03 0254-03
4	Barley	EC 300	2 x 0.0875	Gran Straw	0.02 0.23(40)	Ra-2017/03 0256 3
5	Barley	EC 190	2 x 0.075	Grain/ Straw	0.92 (34) 3.16 (4)	0256 6 3 15-2206 16-2206 01
6	Barley	EC 190	2 x 0.075	Frain Straw	0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	10-2206 10-2206-02
7	Barley	EC 150	2 x <b>0.0</b> 875	Gram 6	© 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-2157 10-215\(\text{01}\)
	Barley	EC 150	y	Straw 6	Not considered the to an interval of 3 days	10-2157 10-2157-02
8	Barley	EC 156	2 x 0.0875	Grain Straw	0.00	10-2157 10-2157-03
9	Barley	EC 150,	2 x 0.6875	Gfain Straw	9.34	10-2157 10-2157-04
10	Barley	EC 130	2 ^x x 0.08 <b>3</b> 5	Grain Straw	0.0 (28) 0 0.23 (28)	10-2157 10-2157-05
11	Barley	EC 150	2 * 90875	Grain Strawy	0.03© 0.13*(51)	11-2111 11-2111-01
12	Barley	E <b>©</b> 150	2 x 0 0 75	Grain Straw	0.013 0.28 (55)	11-2111 11-2111-02
13		EC 150	2 0.0875	Grain Straw	0.015 0.29 (63)	11-2111 11-2111-03
14	Barley	EC 150	2 x 0.9875	Grain Straw G	0.019 1.4 (43)	11-2111 11-2111-04
15	Barley	EC 150	2 x 0.0875	© Grând Straw	0.010 0.52 (49)	11-2111 11-2111-05
) _ = fo ALT :	days at rmulation days afte	for last fr	eatmeat 🕅	~Ç		
			lication &			



#### Results for barley grain (southern Europe)

Total number of data (n)	15	Standard deviation (SD)	0.083
Lowest residue	0.01	Percentage of censored data	7
Highest residue	0.34	Number of non-censored data	14 🗬 🚡
Median residue	0.000	Correction factor for censoring (CF)	0.956
Mean	0.040		

### Proposed MRL estimate for barley / oat grain (southern Europe)

Highest residue	0.34
Mean + 4 SD	0.374 📞 💍
CF x 3 mean	0.114
Unrounded MRL	0.374
Rounded MRL	

### Results for barley straw (southern, Europa)

Lowest residue	0.01	Percentage of censored data \$\infty\$ 7	
Highest residue	0.34	Number of non-censored data 14	
Median residue	0.000	Number of non-censored data 14 Correction factor for censoring (CF) 0.56	
Mean	0.040		
Proposed MRL estimate for barley / o		heim Europe)	
Highest residue	0.34		
Mean + 4 SD	0.374		<b>€</b> ′
CF x 3 mean	0.114		A.°
Unrounded MRL	0.374		
Rounded MRL	0.4		
Results for barley straw (southern Eu	cop®		_
Total number of data (n)	¥5 🔊	Standard deviation (SD) 0484	
Lowest residue	0.03		
Highest residue	1.9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Number of non-censored data 15	
Median residue	<b>3</b> 0.310 O	Correction factor for consoring (CF) 1.000	
Median residue Mean	0.55 💯 🍣		

Ivicali	<u> </u>	0.52			,
Proposed MRL Highest residue Mean + 4 S D		rley /oat/stra	w souther	n Europe)	Ø.
Proposed MRL®	stimate for ba	rley /oat/stra	w/souther	n Europe)	
Highest residue	<i>6</i> ***	© 1.7			)
Mean + 4°SD		<b>2 2 3 3 3</b>	3 O,		
CF x 3 mean	, Ü ,	) 1.67g	F, ~0,		
Unrounded MRL	9 4	2.499			1
Rounded MRL		<b>3</b>	″,∜		
			0, 20,		
	stimate for ba				
	Ön .			w J	
		4			
4					
v and a second	,, \		S.		
, S	'.A` &		Q`		
			,		
Ű (	F & .				
		7			



Table 6.7.2- 7: Input data for MRL calculation on <u>barley in southern Europe</u>

for merged data sets from supplementary trials (new critical GAP) and scales

trials conducted according to the previous critical GAP

					Dosiduo lovol	of total residue	Pasidua	level of total
						C 5725	~ >>	HEC 5725
				GAP	IIL	3723	9 1051440	DALT C
				Dose rate	GR	RAIN 🔊	SA	RAW.
N°	FL Type	Report No.	Trial No.	FXA		g/kg)	l sta	ng/kg)
				(kg		Scaledito	01	Scale
				a.s./ha)	measared	cGAP rate	measured	CGAD rate
					A	(0.0875 kg/hå)	A sa	(0.0895 kg/kg)
19		RA-2017/03	0132-03		1 Da	Not considered	<del>\</del> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
(straw	EC 300	KA-2017/03	0132-03	2 x 0.075%	Ø.02	since residues	0.0 (35)	<b>20</b> .863
only)	2000					\$LOQ		4
1	EC 300	RA-2017/03	0253-03	2 x 0.075	004	Q 0.047	0.15	0.75
	EG 200	RA-2017/03	0254-03	2 x 0.075-	0.02		0, (69)	\$ \$\tilde{\pi}_{7.10}
2	EC 300			Ø .080 ×		7 0.023°	(1.6) (69)	() 20.712
3	EC 300	RA-2017/03	0256-03	2 x 0.0875			\$ 0.23 (P)	, &
4	EC 190	10-2206	10-2206@1	2 x 0.075	<b>%</b> 02 (34)	Ø.023	0.16 (47)	0.187
5	EC 190	10-2206	10-2206-02	'ॐx 0.075©	0.010	0.01	203 (5 <b>%</b> )	, 0.035
6	EC 150	10-2157	16/2157-01	2 x 0 3575	0.02	4 2	0.97 (50)	
	EC 150	10-2157	پُو0-2157 <b>©</b> 02	2 8 9.0875	Not Not	considered due to	an interval of 3	days
7	EC 150	10-2157	10-24-57-03	2 x 0.08	0.016	(	31 (41)	
8	EC 150	10-21	1002157-04	2 x 0 9875	\$ 20.34	0' 5	1.7 (35)	
9	EC 150	10.2157	\$10-215 <b>₽</b> \$5	2, 0.0875	Ø1 (28)	V 4 V	0.23 (28)	
10	EC 150	© -2114	11-2¶1-01	2 x 0.08 \$5	0.03		0.73 (51)	
11	EC 150	© 11-2 <b>1</b> €	JP2111-02		© Q913	. W	0.28 (55)	
12	EC 1500	11-2111	11-2119203	2-40.087	2	, ~ ~	0.29 (63)	
13	E <b>C C</b> 30	11-2111	112 11-04	x 0.0875	\$ 0.01\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.4 (43)	
14	EC 150	11-2111	17-2111-05	2 x 6 0875		<u> </u>	0.52 (49)	
	EC 100	RA 2026/99	012009	√3 x 200 J	Not considere	d, last application	at early milk si	tage (BBCH 73)
15	EC 100	RA-2026	0026-99 E	2 x 200	S OF	0.01	2.6 (35)	
	,,	QRA-2098/99 "	00129=99	2x200		d last application a		
	EC 100	RA-2026/99	0130799	2 x 200	^ ·	dered, laying down		
	<i>E€</i> 000	RA-2027/99	0123-99	2 x 200		d, last application		
F	¥₽C 100	RA-24027/99	0124099	2 x 200		d, last application		
16	EC100	RA-2027/99	V W/	Z, 2 x 200	0.08 (35)	0.035	0.25 (42)	
17	EC 100	<i>№A-202</i> ₹/99	J. 28-99	2 x 200	0.02	0.01	0.38 (57)	
18	EC 100	RA-2027/99	₹071 <b>0-</b> 99	£ 200	0.24	0.105	4.7 (35)	2.056

Results in adlic of ginate from the data included in the Annex II dossier; for details please refer to Tier I summary forms. In cases two sets of residue data were available from the same trial the highest residue value was selected.



Document MCA: Section	on 6 Residues in or on trea	ated products, food and feed
luoxastrobin		
Гable 6.7.2- 8: MRI	colculation on barley (	grain and straw in southern Europe for merged
		ary trials (new critical GAP) and scaled trials
cond	lucted according to the	previous critical GAP
Crop	Barley grain	grain and straw in southern Europe for merged  try trials (new critical GAP) and scaled trials previous critical GAP   Barley straw EU-S  Asst appl. BBCH 61-69  18  Naturalier  1.94  2.05  2.00  2.00  3.00
Region	EU-S	EU-S
PHI		
other	last appl. BBCH 61-69	Sast appl. BBC 61-69
Number of values	18	
mean	0.04	\$\tag{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\tint{\tint{\tint{\text{\tint{\tint{\text{\tint{\text{\tint{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\tint{\tint{\text{\tint{\tint{\text{\tinit{\text{\text{\text{\text{\tint{\text{\text{\tinit}\xitilex{\text{\tinit}\\ \tint{\tinithtet{\text{\tinit}\text{\tinithtet{\text{\ti}\tint{\text{\tinit}\xi}\\ \tint{\tinithtet{\text{\tinit}\xi}\\tint{\text{\tinithtet{\text{\tinit}\xi}\tint{\text{\tinithtet{\tinithtet{\tinithtet{\tiint{\tinithtet{\tiint{\tiin\tinithtet{\tii}\tint{\tiint{\tiint{\tiin\tinithtet{\tiint{\tii}\tiint{\
Dixon Test	0.89	0.35 0
Q10%	0.42	
Result	Outlier O	No putlier 1.94
Rber	0.06	© Q1.94 ° O
Rmax	0.23	
Rounded EU-MRL	0.30	
Highest residue	0.340	2.06.5
mean+ 4 SD	005	2.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CF x 3 mean Rounded MRLoeco	0.13 V 0	3 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		2.00
HR STMR	3 0.02	
	0.02	0.01
	2, 0.01%	1 0 Y
	0.00	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u> </u>	0.01	20.18
	√ 0.01 . ″ %	5 00.19
<b>*</b> 6	« <b>M</b> O1	
(C)		9.23
<b>3</b>		0.28
9	\$\frac{1}{2}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}\text{0.02}0.02	0.29
2 100 11	0.02	0.31
		0.52
12	© 0202 U 54	
12	0.02	0.73
		14 0.86
15	\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.05}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}{0.00}\$\frac{0.00}	15 0.97
16	0.05	
	0,11	1.10
194 194 194	(J) _AUI:34	10
<u> </u>		2.06



Input data for MRL calculation for wheat in northern Europe Table 6.7.2- 9:

Table	Table 6.7.2- 9:       Input data for MRL calculation for wheat in northern Europe from supplementary trials supporting the new critical GAP (OECD calculator)								
N°	Crop	FL Type	GAP Dose rate FXA (kg a.s./ha)	Commodities	Residue level of total residue HEC 5725 and DALT (mg/kg)	Report No.			
	Wheat	EC 200	2 x 0.150	Grain Straw	Not considered because side- by side with trial 0269/00 from study RA-2060/00	RA-201/1/00 % 01/1/4-00			
1	Wheat	EC 200	2 x 0.150	Grain Straw	0.02 0.59 (48)	RA-2011/00 0148-00			
2	Wheat	EC 200	2 x 0.150	Grain Straw	0.000° 0.36 (584,	RA-2011790 \$0146-00	Z		
	Wheat	EC 200	2 x 0.150	Grain Straw	Not considered since last application at BBCM 81-85	RA-2911/00 0147-00			
3	Wheat	EC 150	2 x 0.150	Grain Straw	© <002 0 5 0.64 (&) 0	%A-2060/00 02@-00			
	Wheat	EC 150	2 x 0.150	· ~// >/	Not considered begause side- by side with trial 0145-90 from study RA 2011/00	RA 2060 00 0271-00			
	Wheat	EC 150	2 © 0.150 O	Straw	Not considered because side by side with trial 0146-00 from study RA-2011/00	RA-2060/00 20272-00			
		EC 150	1 L, Oi	Grain Straw	Not considered since fast apprication at BBCH 81-83	RA-2060/00 0273-00			
4	Wheat	EC 200	2 x 0.130	Grain Sooaw	0.10 (57)	13-2138 13-2138-01			
5		EC 200		Grain Straw	0.0P 0.0P 0.077 (5.40)	13-2138 13-2138-02			
6		EC 200		Grain O Straw	2.3 (35)	13-2138 13-2138-03			
7	Wheat	EC 200	4 0) ³	Grain Straw O	©01 ©0.58 (49)	13-2159 13-2159-01			
8	Wheat	EC 200	2 x 0.150 2 x 0.150	Q Grain	<0.01 1.5 (35)	13-2159 13-2159-02			

Trials from study RA-2011/00 and RA-2060/00 were conducted side-by-side at the same location using different products. From a pair of trials residues in grain were always 0.02 mg/kg. From the pairs, the trial showing the highest residues in straw was selected for MRL calculation as recommended in the EFSA document on 'Residue trials and MRL calculations, proposals for a harmonised approach for the selection of the trials and data used in the estimation of MRL, STMR and HR' (September 2015) () days after last if eatment () days after last application () DALT = days after last application ()



#### Results for wheat grain (northern Europe)

Fluoxastrobin	ies in or on treat	eu products, rood and reed	
			_ 0
Results for wheat <u>grain</u> (northern	Europe)		
Total number of data (n)	8	Standard deviation (SD)	0.005
Lowest residue	0.01	Percentage of censored data	75
Highest residue	0.02	Number of non-censored data	
Median residue	0.010	Correction factor for censoring (CF)	0.590
Mean	0.014		
Proposed MPI estimate for when	t / rvo grain (per	them Europe)	
Proposed MRL estimate for whea	t / Tye grain (Ay)	them Europe)	
Mean + 4 SD	0.93A		
CF x 3 mean	Q,021		
Unrounded MRL	0.034		
Rounded MRL	0.04		<b>&amp;</b>
Results for wheat straw (northers	4 5	Standard deviation (SD)	
Q Results for wheat straw (northers	Europe)		
Results for wheat <u>straw</u> (norther)	Europe, 200		
Total number of data (6)		Standard deviation (SD)	0.681
Lowest residue	9 0.1	Percentage of censored data	0
Highest residue		Number of non-censored data	8
Median residue	© 40.705	Correction factor for censoring (CF)	1.000
Mean &	0,918		

### Proposed MRL estimate for wheat / rye grain (porthern Europe

Highest residue	0.02
Mean + 4 SD	0.934
CF x 3 mean	(0,021,0
Unrounded MRL	0.034
Rounded MRL	<b>0.04</b>

# Results for wheat straw (northern Europe)

Total number of data (A) Total number of data	0.681
Lowest residue	0
Highest residue Wumber of noncensored data	8
Median residue 20.705 Confection factor to censoring (Ci	1.000
Mean 25 0 018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

### Proposed MRL estimate for wheat / ref stray (northern Europe)

		× /		۰, ۰
Highest residue			2	
Mean + 4 D CF x 3 mean	, Ög , ¿			340 🎺
CF x 3 mean			ŽŽ.7	7539
Unfounded MRL			Q 3.	\$40
Rounded MRL	, 4			4
Rounded WIKE				



N° Crop	FL Type	GAP Dose rate FXA (kg a.s./ha)	Commodities	Residue level of total residue HEC 5725 and DALT (mg/kg)	Curope from (OECD calculator) Report No. Trial No.	
1 Whea	EC 300	2 x 0.075	Grain Straw	0.02	RA-2019/03 0134-03	! !
2 Whea	EC 300	2 x 0.071	Grain Straw	0.02 0 1.5 (46)	RA-2019/03 0237-03*	
3 Whea	EC 190	2 x 0.0875	Grain Straw	<0.01 (38)	RA-2019/03 0134/03 RA-2019/03 0237-03*	Ž
4 Whea	EC 190	2 x 0.0875	Gran Straw	0.41 (Q3)		
5 Whea	EC 150	2 x 0.100	Grain Straw	20.79 (41) × 5	10=2156 10=2156-00	
6 Whea	EC 150	2 x 0.100	Straw	0.04	\$\int 10-24\\$6 \\ \tag{9}\\ 10-24\\$6-02\\$	
7 Whea	EC 150	2 x 0 00	Graffi Straw	(42) (35) (42) (5)	10-2156-03	
8 Whea	EC 150	2 0.100	Grain V Straw	<0.01	10-9156 19-2156-04	
9 Whea	EC 150	2 x 0.100	Grain Straw	0.47 (53)	10-2156 10-2156-05	
10 Whea	ECT50	2 x 0.490	Grand Straw	2.7 (48)	10-2156 10-2156-06	
11 Whea		2 x 0.1005	Grain Q A. Stra	0.00 27 (35)	10-2156 10-2156-07	
stribution and days a large day	are therefore for the control of the	re considered for Mattheway	VIRL offeulation	and straw were in the upper		



#### Results for wheat grain (southern Europe)

Fluoxastrobin	ucs in or on treat	eu products, 1000 and 1000		
			Q° Z	<b>)</b>
Results for wheat grain (souther	a Europe)			
Total number of data (n)	11	Standard deviation (SD)	0.005	
Lowest residue	0.01	Percentage of censored data,	<u>64</u> 8	
Highest residue	0.02	Number of non-censor data	457 457 6576 57	, <b>©</b>
Median residue	0.000	Correction factor forcensoring (CK)	10576 F 407	1
Mean	0.014			
Proposed MRL estimate for whe	at / rye grain (sou	there, Europe)	& \$\frac{1}{2} \cdot \c	
Mean + 4 SD	0.03			
CF x 3 mean	\$ \( \tilde{Q} \) \( \tilde{Q}			
Unrounded MRL	0.034			
			<u>~</u>	
J.			0	
Results for wheat straw (souther)  Total number of data (15)	n Europe)			
		Standard deviation (SD)	1.000	
Lowest residue	0.41	Percentage of censored date	0	
Highest residue		Number of non-vensored data	11	
Median residue	1.000	Corportion factor for censoring (CF)	1.000	
	* 10°			

### Proposed MRL estimate for wheat / rye grain (southern) Europe

Highest residue	0.02
Mean + 4 SD	0.034
CF x 3 mean	0,024
Unrounded MRL	0.034
Rounded MRL	

	O [*]
Results for wheat straw (southern Europe)	
Total number of data (10) Total number of da	1.000
Lowest residue 5 0.41 Percentage of censored date	0
Highest residue 3.7 Yumber of noncensored data	11
Median residue  Al 1.000 Competion factor for censoring (CF)	1.000
Mean 27 1,362 5 27 0	

### Proposed MRL estimate for wheat ryestraw (southern Europe)

	.// )) *		<i>®</i> %	
Highest residu				3.7°°
Mean + 4 SD	ð		R'	5. <b>36</b> 9 0
CF x 3 mean		Ž,	V'	1.085 ×
Unrounded MRL				5.364
Rounded MRL			Q.	5.364
Rounded MRL				,



Table 6.7.2-11: Input data for MRL calculation on <u>onion in southern Europe for supplementary trials</u> supporting the GAP (OECD calculator)

	supplementary trials supporting the GAP (OECD calculator)							
N°	Crop	FL Type	GAP Dose rate FXA (kg a.s./ha)	Commo- dities	Days after application	Residue level of total residue HEC 5725 (mg/kg)	Trial No. Report No.	Country
1	Onion	EC 200	2 x 0.125	bulb	19	<0.010	14-2175-02-07 14-21 <b>75</b>	Ataly O
2	Onion	EC 200	2 x 0.115- 0.116	bulb	© 20	Q' (0.01) (0.01) (0.01)	°12 F & BY P04 / \ 12 F CL B P/A	Spain S
3	Onion	EC 200	2 x 0.125	bulb	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	© Q.010	3-2139-01-T	
4	Onion	EC 200	2 x 0.125	broup		0.017 0.017	14-2175-03-T 14-2175	Fronce
5	Onion	EC 200	2 x 0.114- @ 0.124				0 F CL BY PP	Spain
6	Onion	EC 200	2 x 0×114-3 20.116 \$	bulb		\$\sqrt{0.01}	PO / PO / 12 F CL BY P/A	Spain
7	Onion	EC \$	2 0.125	bulb &	21/		1 <b>%</b> +2175-04-T /	Greece
8	Onion	ÉC 200	2 x 0.125	g bulby	218	0.040	14-2175-01-T / 14-2175	Spain
9	Onion	EC 200 &	x 0.125	Soulb S			13-2139-04-T / 13-2139	Portugal
10	Onion	EC [©]		onlb		0.011	13-2139-03-T / 13-2139	France
11	Option	EC 200	2 0.11 Q	burb		<0.01	12 F CL BY P02 / 12 F CL BY P/A	Spain
12	Onion	EC 200	2 x 0.125	bodb	21	<0.01	13-2139-02-T / 13-2139	Italy
FL = fo	ormulation of the second of th							



#### Results for onion (southern Europe)

		1	
Total number of data (n)	12	Standard deviation (SD)	0.004
Lowest residue	0.01	Percentage of censored data	58,00
Highest residue	0.021	Number of non-censored data	
Median residue	0.010	Correction factor for censoring (CF)	Ø.611°7° &
Mean	0.012		58,000
Proposed MRL estimate for onion (sou	ithern Europe		
Highest residue	0,021		
Mean + 4 SD	0.026 @		
CF x 3 mean	0.024		
Unrounded MRL	Q 6926		<b>Y</b> 0
Rounded MRL	<b>∞0.03</b> ≈		K.
Proposed max acceptability of talerance)  There are no relevant import tolerance.	imain resid of the levels es established	Percentage of censored data  Number of non-censored data  Correction factor for censoring (CF)  ue levels (MRLs) and instification proposed for imported products  at EU level and no CXLs are set.	n of the (import

### Proposed MRL estimate for onion (southern Europe)

Highest residue	0.021
Mean + 4 SD	△0.026 👸
CF x 3 mean	0.024
Unrounded MRL	Q 6926 X
Rounded MRL	<b>₹0.03</b>

**CA 6.7.3** acceptability of the levels proposed for imported product talerance)

There are no relevant import tolerances established at EU level and no CXLs are set.



#### CA 6.8 Proposed safety intervals

#### Proposed pre-harvest intervals for envisaged uses, or withholding periods and justification

The intervals and waiting periods proposed all pertain to the herein supported representative uses, namely foliar applications in small grain cereals (wheat, rye, barley and oat) and prioring. The representative uses on small grain cereals in the northern climatic zone and on onion in the southern zone are represented by the GAPs for the product 'Florexastrobin + Prothioconazole EC 200'. The representative uses on small grain cereals in the southern zone are represented by the product 'Brafen + Fluoxastrobin + Prothioconazole EC 190'.

#### Pre-harvest interval for each relevant crop &

The use patterns for the representative uses of fluo astrobin containing products in small grain cereals and onions are specified in Table 6.3.1- 1 Table 6.3.2- 1 and Table 6.3.3- 6 No. PHI is proposed for wheat, rye, triticale, barley and oat. The proposed use patterns specify that applications be made at particular growth stages and thus the pre-harvest interval is defined by the period between the growth stage at the last application and harvest.

For the representative use on organs, the use pattern prolyce a PH of 21 days.

The results of the calculations on dietary exposure demonstrate that the supported use patterns are acceptable with regard to consumo protection.

#### Re-entry period for bivestock to areas to be grazed

It is not relevant to define a reentry period for livestock after use of the products on small grain cereals or onion since these crops are not intended to be grazed by livestock.

#### Re-entry period for man to crops, buffldings or spaces treated

The products are applied in the field to cereals of onions via tractor mounted field crop sprayers and there is no reason to enter the grop shortly after treatment. No manual activities are necessary for maintaining the grops. Harvesting is performed by appropriate machines. It is therefore not necessary to define particular recentry times for workers. As a general rule, however, treated fields should not be re-entered until the spray deposit is completely dry.

#### Withholding period for animal feedingstuffs

According to the agreements in the EFSA document on 'Estimation of animal intakes and HR, STMR and MRL calculations for products of animal origin' (September 2015) the representative uses on small grain coreals are understood as uses for grain production and therefore, only residues in grain and straw from coreals are considered as relevant feeding items of the EU livestock diet.

The highest levels of fluoxastrobin related residues likely to be present in these commodities were taken into account as appropriate, to estimate the dietary burden of livestock. The calculation of chronic and acute intakes by consumers shows that the residue levels in animal tissues, milk and eggs are low and do not cause a consumer health concern. It is not necessary to define a withholding period

for animal feeding stuff.

Onions are not a relevant feeding item according to the OECD guidance (N°73) document.



### Waiting period between last application and sowing or planting the crops to be protected

The product is always applied as a foliar application after sowing cereals or onions to be protected. Therefore, there is no need to define a waiting period between last application and sowing or planting the crops to be protected.

## Waiting period between last application and handling treated products

Handling of treated cereals is generally not required before parvest, which is always stone mechanically. The use on onions is restricted to mechanical harvest after a minimum wasting period of 21 days. Furthermore, the residue levels of fluoxastrobin in grain or orion but are low. Therefore, there is no need to define a waiting period between application and handling treated products.

# Waiting period between last application and sowing or planting succeeding crops

Rotational crop metabolism studies were conducted on wheat Swiss chard and turnips at exaggerated rates. Residues of the parent compound (FEC 5/25 E and Z somet) and metabolites are not anticipated in cereal grain, in leafy of root crops taking into account the overdose of the confined rotational crop studies, interception of the crop at application and agricultural practice of applying split applications. Possible residues in straw are low and not expected to significantly contribute to the residues found in straw from the primary crops.

In the EFSA reasoned opinion on existing MRL (2012) it is concluded that specific plant-back restrictions related to the use of fluorastrobin are not required provided that huoxastrobin is applied in compliance with the GAPs evaluated in the document and which involve higher application rates or more treatments of many and the concept and which involve higher application rates or more treatments of many and the concept and which involve higher application rates or more treatments of many and the concept a

As outlined in CA 6.6.2 the contribution of fluoxastrobin residues present in soil from previous treatments to the overall soil concentration is low. The staggerations used in the CRC studies and applied to bare soil by far exceed predicted soil concentrations resulting from the maximum seasonal rate and potential log-over-after year-on-year use.

Therefore, it is not necessary to set a waiting period before sowing or planting succeeding crops for the purpose of limiting the residue levels in these crops.

### Estimation of the potential and actual exposure through diet and other **CA 6.9** sources

The toxicological reference values (ADI, ARfD) as published in the EFSA Scientific Report (2005) and the Review Report (SANCO/3921/07 final - 28 September 2012) are summarized in the lable below. 

Toxicological endpoints for fluoxastrobin **Table 6.9- 1:** 

Endpoint	Value (mg/kg bw/day)	Study	SafeQ factor	Reference
Acceptable Daily Intake (ADI)	0.015	dog-1@ear stu@		EFSA Scientific Report (2007)  702, 1884  and  7 Review Report  7 ANCO 3921/97 finals
Acute Reference Dose (ARfD)	0.3	dog-tirst week of 90days and layear study	£ 100 £	Review Report (SANCO392167 final)

## Acceptable Daily Intake (ADI) and Dietary Exposure Calculation

Since the MRL application joined to the present dossier concerns only the representative uses (barley, oats, wheat, rye) and the same sets of residue data are used to support the MRL application as well as the representative uses the TMD or NEDI calculation according to EFS A PRIMO do not differ (cf. LoEP) for

- a consumer risk assessment when including the representative uses and uses related to an MRL application and
- a consumer risk assessment limited to the representative use

The Theoretical Maximum Daily Intake (TMDI) was calculated using the EFSA PRIMo rev. 2 and compared with the toxicological reference value, looput values for three scenarios are used.

- Established MRLs(as published in the EU Pesticides database on the EU Commission website which are in place where he dossier was prepared (Reg. (EC) 839/2008).
- MRLs as proposed in the FSA Reasoned Opinion (review according to Art 12 of Reg. 396/2005) and drafted in Regulation SANCO/11739/2013 rev 0.
- As above for scenario 2 but with MRLs for barley, oat, wheat and rye as proposed in the present dossier.

All fixed data were entered at the lowest level of aggregation. Table 6.9- 2 compiles the input data for the calculations

Table 6.9- 3 Table 6.9- 4 and Table 6.9- 3 summarise the results of the TMDI calculations. When running the calculation with the existing MRLs, the total calculated intake values accounted up to 43.1% of the Apri for the Datch child with milk and milk products as the highest contributing commodities The MRL for milk of 0.2 mg/kg is unrealistically high and was subject to change already in the EFSA Reasoned Opinion (2012).

The 2nd cateulation using the MRLs as drafted in the Regulation SANCO/11739/2013 rev 0 result in a maximum usage of 5.9% of the ADI for the IE soult with barley grain contributing most.

Replacing the MRLs as proposed in the EFSA Reasoned Opinion (2012) by the new MRL proposals for small cereal grain (cf. Table 6.7.2-3) and eggs in the present dossier results in a slightly higher



usage of the ADI (6.4%). Milk and milk products are then again the highest contributors to the diet of the Dutch child.

TMDI calculation: Input values according to the representative uses for the **Table 6.9- 2:** chronic consumer risk assessment

EFSA Reasone Opinion (2012 ISANCO 11739 Outraft)  EFSA Reasone Opinion (2012 ISANCO 11739 Outraft)  and new MRL propo	<b>d</b> √
\\ \tilde{\pi} \	013
draft)	2. C
EXMRL O new MRL propo	sals
(EC) EFSA Reasoned of office small graft	
EC WRL  (EC)  EFSA Reasoned  for small graft  839/2008  Opinion (2002)  cercals and eggs	
(mg/kg) (SANCO/11739/2013) present dossie	
Commodity (mc/kg) (SANCO/11/39/2013 present dossie (mg/kg) (draft)]	. 0
Commodities of plant origin A	/
Opions 40.05% 40.01%	
Barley 0.5 0.5 0.4 0.4	
Oat 20.5 2 40.4	
Wheat (spelt, triticale)  0.02  0.04  0.04	
Commodities of animal origin	
Swine meat  *Commodities of Animatyoright*  \$\sqrt{0.05}                                                                                                                                                                                                                                                                                                                                            \qu	
Swine fat 0.05 0.02* 0.02*	
Swine liver 0.04*	
Swine kidney 0.04* 0.04*	
Bovine, sheep, goat, equine, other factor animals: 0.05 0.02* 0.02*	
Bovine, sheep, goat, equine, other facts animals: 0.05 0.02* 0.02* meat	
Bovine, sheep, god, horse other farm animals: 0.05 0.05	
fat 0.05	
Boving sheen goat Morse of the farm animals: $1 \le 3000$	
Bovine, steep, goat, horse other farm anomals:    O.1	
Poultry fat         0.05         0.05         0.05           Poultry liver         0.05         0.05         0.05	
Poultry liver 0, 0.05 0.05	
Poultry kidney 0.1 0.1	
Milk 3 0.02* 0.02*	
1288	
Other terrestrial animals and their products 0.01* 0.01*	
* indicates that the MRL is set at the TOQ of the analytical method	
Other terrestrial animals, and their products \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	



Table 6.9-3: TMDI calculation for the representative uses of Fluoxastrobin and based on MRLs as published with Regulation (EC) 839/2008 (in place when the dossier is prepared); EFSA PRIMo rev. 2

	place when the	e aossiei	r is prepared	1);	Kiivio rev	/. Z			,,4	1 .ce	} ⁹⁹ ` @
				flu	oxastro	bin	. Boje		Frepa	re workbook for refine calculations	d
			Status of the active	substance:		Code no.	<b>&amp;</b>	[			
			LOQ (mg/kg bw):			proposed LOQ:	0" & 0		A 0		
				Toxic	ological end	l points 🎺	O.	. ~ 6.	Une		6 p
			ADI (mg/kg bw/day)		0,015	ARfD (mg/kg/bw):	Ø,3		∛y Undo	refined calculations	
			Source of ADI:		FESA 2007	South APID:	6,3 EFSA, 2007	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, ,		
			Year of evaluation:		Li OA, 2007	Xear of evaluation.	J LI OA, 200		# 10°		\$ O -
colain choice of toxicologi	ical reference values		rear or evaluation.			I Jack or evaluation			20	0- 6	O. Y
o rick accessment has h	een performed on the basis	of the MRI s	collected from Memb	or States in Anril 20	06 For and	eticide/@mmodity	the highest national M	Nas identified	(proposed tempore)	N MPI = parmier	
ne nTMRIs have heen sub	omitted to FESA in Sentemb	her 2006	conceted north wiering	ci otates in April 20	Oo. Tor carein po	.sticide.cogginiodity	The lightest national wife	was lucitimed	(proposca temposa	y with - project.	
ie privince nave been out	ical reference values. een performed on the basis omitted to EFSA in Septemb	DC1 2000.		Chi	onic risk	assessment		O	* OD		efore
					TMDI (range	e) in % of An			ord contributed of ADI)	Or Way	
					Painimum	ı - mAxanximum		*			
				<b>N</b>	O Minimum	43			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X, OP	
			No of diets exceed	ina ADI:	Es.		, O )		77 7 7 1 1 1 1 1		
Highest calculated			Highest contributor	ADI:	. \$	2nd contributor to	2		Grd contribute (1)	Dr. Way	pTMRLs at
TMDI values in %			to Mescalar	Commodity /	, Ś	2nd commoutor to	Commodity / group of commodities	£ 34	Jara Continuação	Comprédity /	LOQ
of ADI	MS Diet		to MS diet	group of commoditive		O(in % of ADJ)	group of commodition		Air (A) of A DI	Commodities	(in % of ADI)
43.1	NL child		39,1 A	Milk and milk product	sto: Cottle @	1,6	Wheat - 4	* <del>*</del>	() OF OF	The continuountes	(III % OI ADI)
35.1	FR infant		34.3	Milk and milk produc	ste: Cattle	~(0,9)	Wheel		0,0	Bovine: Meat	
24,4	DE child	, Ş	39,1 34,3 19 <b>7</b>	Milk and milk produc	ts: Oaftle	2.6	Rive /	)"	0,6	Wheat	
19.8	ES child		16 7	Natik and milk produc	ts: Cattle .	1,5	wheat wheat wheat wheat wheat wheat			Bovine: Meat	
18,8	SE general population 90t	th percentile	16,5	Milk and milk produc	ts: Cattle				1,0	Rye	
18,0	DK child	p	117 🖎 🤍	Dua Ca	( ( ) ( ) M	a 1\\20°	Wheat		1,3	Oats	
12,6	WHO Cluster diet F		\$5®	Milk and milk production with and milk production with and milk production milk production with and milk production with and milk production with a manufacture of the milk and milk production with a milk and milk and milk and milk production with a mil	ts: Cattle	2,5	Wheel O		2,0	Barley	
12,0	WHO cluster diet D		63 8,7 4,0	Milk and milk produc	ts: Cattle 🔌	(a) 22 a	Whoot Wa	2	1,4	Rye	
11,8	NL general		8,7 .0	Milk and milk poodu	ts: Cattle	1,20	Barley	_O	0,7	Wheat	
10,9	WHO cluster diet E	C	4,0,	Milk and milk produc	cts: Cattle	72.7°	Barren		1,4	Rye	
10,5	IE adult		44	Barley Meend milk produc	1	2,2		s: Cattle	0,8	Wheat	
10,3	LT adult		. 6 3.3	Mekend milk produc	ts: Cattle 。	» 3, <u>6</u>	Rye 💥 🧶		0,4	Wheat	
10,2	WHO regional European di	iet	6,4	Milk and milk produc	ts: Cattle 🎾	3,6	Rye Barley Barley		1,0	Wheat	
9,9	ES adult WHO Cluster die		6,6	Milk and wilk production Milk and milk production	ts: Catille	1,8	Barley		0,8	Wheat	
9,7	WHO Cluster die			Milk alod milk produc	cts Cattle	1,8° 0 2,8 1,1 4	Walleat		0,9	Barley	
-,-			2,3 2,3 2,2 1,3 0,9 0,9	Milk and milk produc	≱s: Cattle	1,1			0,2	Poultry: Meat	
3,6	DK adult		2,3	Rye		<b>8</b>	Wheat		0,4	Oats	
3,0	FI adult		2,30	Rye		(V),3	Wheat		0,3	Oats	
2,3	IT kids/toddler	V"	2,2 \$	Wheat s	\$ ~ ~	0,0	Onions		0,0	Barley	_
2,1	PT General population	. 1	1,3	vviieat	/O	, 0,5	Rye		0,1	Onions Davita v Mant	
1,9 1.8	FR toddler UK Infant	, "	0,9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wheat What	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,4	Bovine: Meat Oats		0,3 0.1	Poultry: Meat Onions	
1,8	UN IIIIdill	<i>a</i> 1	0,9	Whom		0,8	Oats		0,1	Onions	
1,6	UN TOUGIE!	12		VVI II TO S	<u> </u>	0,2	Onions		0,1	Barley	
1,4	I IK versetseich		07 00	Wheat O	·	0,0	Onions		0,0	Onions	
0,8	UK Infant UK Toddler IT adult UK vegetarian UK Jerit Jegeneral population		1,3 0,9 0,9 1,4 0,7 0,6 0,1	Wheat Wheat Wheat Wheat Wheat Wheat Wheat Wheat Conions Con		0,2	Barley		0,1	Onto	_
0,8	Ak general nomination	~0*	0,0	Onion		υ, ι	FRUIT (FRESH OR FR	ROZEN)	0, 1	FRUIT (FRESH OR FROZEN)	_
0,1	general purposes (OII		- KO, 1	@			THOM (TREOTHORT)	(ULLIV)		TROTT (TREOTT OR TROZEN)	



TMDI calculation for the representative uses of Fluoxastrobin based on proposed MRLs in the FESA Reasoned Opinion (EFSA Journal 2012;10(12):3012 EFSA PRIMo rev. 2 **Table 6.9-4:** 

	(EFSA Journal	2012;	10(12):3012	EFSA PRI	Mo rev.	2	- 21	<i>)</i> .	30 [©] ,"	i Ozr	
				flu	oxastro	bin .			Prepar Prepar	re workbook for refined calculations o refined calculations	
			Status of the active su	bstance:		Code no.	, - */	~ D.O.	% O.		* W
			LOQ (mg/kg bw):			proposed EQQ:	2 O		N. N.	P. J.	
				Toxic	ological end	points		,~		00	e C
			ADI (mg/kg bw/day):			ARBD mg/kg bw	0,3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Undo	refined calculations	
							EFSA 2007	3		~O, , , , , , , , , , , , , , , , , , ,	
			Source of ADI:		EFSA, 2000	Source of ARTO: Year of evaluation:	EFS/A, 2007		4		2,×
abaina of tayinalagi	and reference values		Year of evaluation:			rear or evaluation.		¥ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	y and		
choice of toxicologi	cal reference values. een performed on the basis of to mitted to EFSA in September	the MDI e	a alla ata d'franc Manchau	C4-4 in A mail 28	00		the bighest refer NAD	V2 Q2	(&Q)	TABL S	
ASSESSMENT HAS DE	en penormed on the basis of t	2006	collected from Member	States in April 20	Up. For each pa	Streade/commodes	ine nignest namografi wiki	L was agentilled	(proposed <del>te</del> mporar	y MRL privire.	
ARLS have been sub	milled to EFSA in September	2006.		<del>- ;                                   </del>	<del></del>	, OS	<del></del>	1.00			0
				'≫'Chi	Ollifo Mak	assessinent		b 319			
					TMDI (range	of ADI maximum	\$C9			Weign Only	
			No of diets exceeding	a ADI:	- K &	20/12	- VO* - ~ V	DV (		, S	
Highest calculated			Highest contributor			2nd contributor	Commodition 1 group Dommodities 2 Wheat	, Ġ	3rd contributor to	1 0	pTMRLs a
TMDI values in %			MS diet	mmodity /	)°	MS diet	Commoditi®. \$	102	MS diet	Commodity / group of commodities	LOO
of ADI	MS Diet		(in % of ADN) gro	oun of compadition	s # D	(in % of ADI)	group of commoditios		Sin % of ADIX	Froun of commodities	(in % of A
5,9	IE adult	9	4,1 Ba	rley	3 400	(III 20 (1)5 (DI)	Mate C		0.4	Milk and milk products: Cattle	(111 /0 01 /-
5,8	NL child		3,9 Mi	Kand milk proder	AND CONTINUES OF	0,0	Wheat		0,4	Oats	
4.8	WHO cluster diet E	1	2,7	rlov	se Callie		J	. •	N. V.4	Milk and milk products: Cattle	
4,0	WHO Cluster diet E		2,0 Ba	rlev . Ĝ	, E.O.	0,5 A/5	Wheat Milk and milk products	The o	0,5	Oats	
3,9	FR infant		2,0 Mi	rley	rte:«Cattle	. K 3/2	Project Most	yattic , S	0,3	Wheat	
3.7	DE child		ANI ON ANI	and milk produc	Re: Cattle	0,7	Oats Oats	<b>%</b>	0.5	Wheat	
3,5	WHO Cluster diet B		.33 11 60	feat Think product	S source S	0,2 0,7 0,9 0,8	Oats Barley Wheat		0.4	Milk and milk products: Cattle	
3,2	ES child			k and malk produc	rts: Cattle	0,9	Wheat	" NI	0.4	Poultry: Meat	
3,2	WHO regional European diet	0	1,7 Rs	rley	. Oattic	0,00	Milk and milk products  Milk and milk products  Barley  Milk and milk products	Cattle	0,4	Wheat	
3.2	ES adult	10°	0,9 Ba			0,6	Milk and milk and dicts	Cattle	0,3	Wheat	
3.1	WHO cluster diet D . 1			heat \	, , ,	0,7	Barley (2)	· Oattic	0.6	Milk and milk products: Cattle	
3,0	NL general		12 A B	rlev @		0,7	Milk and milk products	Cattle	0,3	Wheat	
2,7	NL general DK child		1,2 O Ba	rley tts on milk production and milk production	~ *	0,9	Wheat	· Outile	0,6	Rye	
	SE general population 90th p	ercentile	19 Mi	k and milk produ	Cattle	0,4	Wheat		0.1	Onions	
	LT adult	,0,00,,,,,,	9 0,5	k and milk produc	ts: Cattle 🔊	0.33	Oats		0,2	Barley	
	UK Infant	90	0,8	its 20	ts: Cattle	0,3	Wheat		0,0	Onions	
1,2	FR all population	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	P (1)	neat@.	@ D	@e.4	Milk and milk products:	Cattle	0,2	Poultry: Meat	
1.0	FR toddler	$\vee$	4.d 2 1/1/	2001	\$\vec{v}	0.3	Poultry: Meat		0.2	Bovine: Meat	
1,0	IT kids/toddler	1		reat and		0,0	Barley		0.0	Onions	
0.9	DK adult		0.4 %	ts - The state of	, K	0,3	Wheat		0,1	Rye	
0.8	PT General population	.4 1	0,4 0,5 W 0,5 W 0,5 W 0,5 W 0,3 W 0,6 W W	reat the state of	, with	0,1	Barley		0,1	Barley	
0.8	LIK Toddler & S	131"	<i>∞</i> 0 8 W	neat	12	0,2	Oats		0,1	Onions	
0,6	FI adult	7	0,3 0,6 W W	rts 🔊	4	0,1	Wheat		0,1	Rye	
I 0.6	II avaivity and the		0,6 W W	neat 🔊		0,0	Barley		0,0	Onions	
0,6	OK vegetarian		0.3 W	neat 🔷 🗡		0,2	Oats		0,1	Barley	
0,4	Dok Adult	,	, % 0.2 W	negat V		0,1	Barley		0,1	Oats	
0.4	5. W &		-1)	$\sim$		·	EDILLE (EDEALL OD ED	07510	·	EDULT (EDEALL OF EDATEL)	

FRUIT (FRESH OR FROZEN)

FRUIT (FRESH OR FROZEN)



Table 6.9-5

TMDI calculation for the representative uses of Fluoxastrobin based on proposed MRLs in the FESA Resoned Opinion (EFSA Journal 2012:10(12):3012 and new MRL proposals for small grain cereals and eggs: FESA PRIMo rev. 20

			fluoxastr	obin ຼ	of so		Prepa	re workbook for refine calculations	
		Status of the active sub	stance:	Code no.	***	1120	O 4		
		LOQ (mg/kg bw):		proposed COV:			· <	2, 2, 20	,
			Toxicological er	nd points					60
		ADI (mg/kg bw/day):	0,015	(m g/kg bw).*\	0,2	20°0	and c	o retined calculations	
		Source of ADI:	EFSA, 2007	Source of ARD	EF.S. 2007				
		Year of evaluation:	<u>\</u>	Year of Whation:			~ ~		<b>Y</b>
choice of toxicologic	cal reference values. een performed on the basis of the mitted to EFSA in September 20			å			<b>10</b>		
assessment has be	een performed on the basis of the	e MRLs collected from Member :	States in April 2006 For each	pesticade/commodity	the highest national MRL	. was ide thed (prop	os 🚳 ၾ m pora	ry M pTM RL).	
IRLs have been sub	mitted to EFSA in September 20	006.				9 × 1	<u> </u>		
			% ♥Chroni&risk	( assessment		<u>,                                    </u>		ETI ONTER.	
			DI (ran	ge) in 😘 of ADI		20		×,	
			✓ 🎝 minimy	naximum 🧳	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		7 2/1/16		
				60,2	7		, and	le. Oas	
		No of diets exceeding	ADI: 0° G	- 7			724		
Highest calculated		Highest Contributor	7 10°C	200 Contributor to	commodity / group Commodities West Wheat W	was in the property of the pro	contributorto	Commodity / group of commodities	pTMRLs a
TMDI values in %		2000 5 diet √ dok	products: Cattle	MS dig 6	Commodity /		diet	Columodity /	LOQ
ofADI	MS Diet	% of ADI) Optoi	ip of commodities	(in % of (D)*)	group of Commodities		n % of ADI)	group of commodities	(in % of A
	NL child	3,9 M ill 3,3 Ban	and mill products: Cattle	10 Me	Woheld		0,3 0 2	Oats	
	IE adult	3,30 Ban		0,6	Wheat		5 -	Oats	
	WHO cluster diet E WHO Cluster diet B	2,2 B& Who	<u>~</u>		Parlet 0	, "\"   _ 2		Milk and milk products: Cattle Milk and milk products: Cattle	
	WHO Cluster diet F	2,3 Who	eat ey Adrik products Cattle And milk products. Cattle and milk products. Cattle		Barley Wheat Wheat		0,4	Milk and milk products: Cattle	
	DE child	N O Milk	and wilk products a Cattle	1 1			0,5	Oats	
	FR infant	3 M	and milk products Cattle	0,2 1,2 0,6	Wheat Wheat Rye M I Quand milk product		0.2	Poultry: Meat	
	ES child	1.7	and milk protects: Cattle	1.2.0	Wheat	. 0,	0,4	Poultry: Meat	
3,8	DK child	1,5 % Wh	eat V		Rye N		1,1	Oats	
3,8	WHO cluster diet D	@. 121 Who	eat 1	0,8 0,7 0,8 0,7 0,8 0,9	M illand milk products.	Cattle	0,6	Barley	
3,3	WHO cluster diet D WHO regional European diet	De De Bar		0,8	Wheat While and mike products: Milk and mike products: Milk and mike products:		0,6	Milk and milk products: Cattle	
5,1	ES adult	Q \$3 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ey \	0,7	Milk and mik products:	Cattle	0,6	Wheat	
3,0	NL general SE general popular 90th per	1,0 % ar	ey O	0,9	Milk and Mik products:	Cattle	0,6	Wheat	
2,8	St general population 90th per	1,7 Wh 1,5 Wh 1,5 Wh 1,5 Wh 1,5 Wh 1,0 Wh 1,0 Wh 1,0 Wh 1,0 Wh	an and products. Cache	0.8 0.7 0.7 0.7 0.9 0.0 0.3	W (Gar) Spions Rye		0,1	Onions	
1,8 1,8	∏ kids/toddler LT adult €		Z	0,0	D		0,0	Barley	
1,6	LT adult FR all population		eat	) , j	Milk and milk products:	Cattle	0,3	Wheat Poultry: Meat	
	UK Infant	0.700 Wh	eat 40 % 0 %	- 40 P	O ats		0,0	Onions	
	FR toddler	1,7 1,5 Wh 1,7 1,5 Wh 1,0 B an 1,0 B an 1,0 Wh 1,0 Wh 1,0 Wh 1,7 Wh 1,0		0,3	Poultry: Meat		0,2	Bovine: Meat	
	PT General population	, o awh	eat % S	0,1	Onions		0,1	Barley	
1,3	UK Toddler € 0 1	1,0	eat C	0,1	0 ats		0,1	Onions	
1,2	DK adult	0,5 Wh	eat a	0,3	0 ats		0,2	Rye	
1,2	IT adult	JI JO Wh	40°	0,0	Onions		0,0	Barley	
0,8	UK vegetaria	Who was		0,1	0 ats		0,1	Onions	
0,8	DK adult  IT adult  UK vegetarian  FI adult  UK, Adult	0,3 % h	eat Color	0,2	0 ats		0,2	Rye	
	UK POPE	0,4 Wh	eat	0,1	Barley	(T.N)	0,0	Oats	
0,1	general população	C   0,1 -   0ni	wa A .		FRUIT (FRESH OR FRO	ZE (N.)		FRUIT (FRESH OR FROZEN)	
W. C		centile 7 Wh	·, ·						
· ·		40° "Y"							



### **NEDI** calculation

For wheat, rye, barley, oat and onions the median residues as described in the present dossier are used as input data. For wheat, rye, barley and oat the median values are derived from the residue data reflecting the critical GAPs for these crops. Residue levels in food of animal origin are estimated to remain at the LOQ of the analytical method.

Table 6.9- 6 compiles the input values for the NEDI calculation using EFSA PRIMo rev 2. In addition the chronic exposure is calculated using the UK 10 consumer group model based on the same input values. Calculation details are compiled in Table 6.9- 7 and Table 6.9- 8 below.

Input values for the chronic consumer risk assessment (NEDI) for thoxastrobin **Table 6.9- 6:** 

	T.A.	D"	<del> </del>
Commodity	<b>Input value</b>	Comment	Source S
	(mg/kg)		
			<i>™</i> *
Proposed risk assessment residue definition: surfof j	luoxastrobijt (E-ise	iner) and Z-isomer	L A .
Onions	0.02	STMR,	O Present dossier
Barley and oats grain	<b>4 4 9 2 3</b>	SŢMOŘ ✓	Present dossier
Rye and wheat grain	Ø0.01. 4	STMR S	Present dossier
Proposed risk assessment residue definition: Am of	Tuoxastrobin (Exis	omer and Zisomer	s and the
metabolite M55 (HEC 5725 phenoxy-hydroxypyrimid)	ine) 🔊 🧬		
Swine meat	0.02***	Median *	Walues reported in
Swine fat (free of lean meat)	0.02*	🏅 🗖 edian a)	© EFSA Journal
Swine liver	0.02*b)	Median (b)	2012; 10(12):3012
Swine liver Swine kidney	₹0.02*b\^	Median a) b)	adjusted to the
Meat (bovine, sheep, goat)	> 0.Q2€	Median 🕏	residue levels as
Fat (bovine, sheep, goal)	0.02*,	Median	anticipated from
Liver (bovine, sheep goat)	002* @	Median a) b)	the dietary burden
ST O ST V	~0.02*	Median a) b)	using the OECD
			feeding tables and
Kidney (bovine sheep goat), O O &		<i>Q</i> 1	the residue levels
		Ž	reported in the present dossier
Poultry agat	\$ 0.02\$	Median a)	present dossier
Poultry Pat	0.02*	Median a)	
Poultry liver	0.02*	Median a) b)	Present dossier
Poultry kidney	0.02*	Median a) b)	
Found y Kidney	0.02	Median a)	EFSA Journal
Milk O O O S	D. 0.02	Median "	
	7 02*	M - 1: a)	2012; 10(12):3012
Eggs O' O' S'		Median a)	Present dossier

The highest NEDI was calculated to exhaust 4.8 % of the ADI. The highest contributor (3.9%) was milk and milk products from cattle for the Dutch children diet. According to the UK model the highest intake was determined for the consumer group of infants where the NEDI was found to represent about 14% of the ADI.

It is concluded that long-term exposure to fluoxastrobin residues in food does not cause any unacceptable risk to consumers.

^{*} indicate that the input varie is set at the LOC of the analytical method

a) In the EFSA Reasoned Opinion (2012) the median residue for food of animal origin was used for the consumer risk assessment derived by interpolation/extrapolation/from the testing stroy for the median detary burden.

b) In the EFSA Reasoned Opinion (2012) the median was estimated at 0.04 mg/kg for ruminant and pig liver and kidney derived from the calculated EU dietary burden and the EU teeding tables (guidance document 7031/VI/95 rev 4) and taking into account the LOQ of the previous enforcement method. The new method based on QuichERS reported in CA 4.2 achieves an LOQ of 0.01 mg/kg for the sum of fluoxastrobin and (15 Z-isomer and 0 to mg/kg for M55. Therefore, it deems justified to use an input value of 0.02 mg/kg for the total residue derived from the reeding study. derived from the eding study.



					fluoxastro	bin	Je ^T	PĠ	Prepa	re workbook for refine	d
			Status of the activ	e substance:		Code no.	(20°0)			, 20. W	
			LOQ (mg/kg bw):			proposed LOQ:	6	Í			
					Toxicological en						N.P
			ADI (mg/kg bw/da	y):	0,015	ARfD (mg/kg þw):	<b>93</b> \$		S Und	o refined calculations	3.IL
			Source of ADI:		EFSA, 2007	Source of ARD:	EFSA, 2007				
	cal reference values. een performed on the basis mitted to EFSA in Septem		Year of evaluation:			Year of evaluation:		y ~~		orefined calculations  MRL = pTMRs.	
in choice of toxicologi	cal reference values.								* 0°		&O"
sk assessment has b	een performed on the basis	s of the MRLs	collected from Mer	nber States in	April 2006. For each	esticide/commodity	the highest national MF	RL www identified	proposed tempor	MRL = pTMR).	
TMRLs have been sub	mitted to EFSA in Septem	nber 2006.									
					TMDI (rang	e) n % of ADL			" Offin		
					mininarun	n - maximæn		A . *	2		
				1 5		5					
			No of diets exce	39							
Highest calculated			Highest contributo		ai s ^r	2nd contributor to	Commodity /	40°	MS diet (in % d) Di)	Commodities	pTMRLs
TMDI values in %	140 D: 1		to MS diet				Commodity /		MS diet	Commodity	LOQ
of ADI	MS Diet NL child		(in % of AOt)	group of com	modifice 2	of ADI)	Mheat	<u>, O,                                  </u>	(in % (at)(AtDI)	group of commodities	(in % of A
4,8 3,7	FR infant		3,4	New and mile	products: Cattle	0,3	Bovine: Meat	, \$	(in % (in % (in %))	Poultry: Meat	
2.6	ES abild			Milk and milk	products: Cattle		Wheat		0,2 &	Bovine: Meat	
2,6	DE child	, \$	1,9,7	Milk and milk	products. Cattle	1 1 0.3	Wheat Wheat	, 5	0①	Birds' eggs	
2,0	DE child  SE general population 90	Oth percentile	3,4 1,7 1,7 1,7	Mill@nd mill	products: Cattle 🤌	0,2	Wheat Wheat Milk and wilk product Wheat Wheat Wheat		å 0,1	Birds' eggs	
1,0	Who cluster diet b	* 1	0.6	Weneat		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Milk and Wilk product	s: Cattle	₩ 0,1	Poultry: Meat	
1,5	WHO regional European	diet	0,6	Milk and mill	products: Cattle	\$ 19.2°	Wheet	· · · · ·	0,2	Swine: Meat	
1,5 1,4	WHO cluster diet D NL general			Milk and milk	products: Cattle	0,4	Wheat Wheat	~~~	0,1 0,1	Bovine: Meat Swine: Meat	
1,4	WHO Cluster diet F		30 8,9 5 2	and milk	products: Cattle	0,1	Wheat O		0,1	Swine: Meat	
1,3	WHO cluster diet E	Ô	0,4	Milk and mile	products: Cattle		Wheat Wheat		0,1	Poultry: Meat	
1,3	ES adult	<b>₽</b>	2.7		products: Cattle			<u> </u>	0,1	Bovine: Meat	
1,0	IE adult	10°	_<\\(\)0\\\}*	Mark and mill	products: Cattle	0,2	Barley Swine Meat		0,2	Wheat	
, .	LT adult		0,5 N	Whilk and mill	products: Cattle	20,70	Swine: Meat		0,1	Rye	
0,9	DK child	,	0,4	Wheat		6,3	Rye O*		0,1	Birds' eggs	
0,8 0,7	PR all population		Q(4)	Milk and mill Bowe: Meat	products: Cattle	0,2	Wheat		0,1 0,1	Poultry: Meat	
0,7	IT kids/foddler			Wheat <	0 > _	0,2	Onions		0,1	Birds' eggs Barley	
0,3	UK Infant	~ ~ ~	0,2	Birds' eggs	F- ON	0,2 0,0 0,2 0,1 0,1	Wheat		0,0	Oats	
0,4	UK Toddler		0,30		62	0,1	Birds' eggs		0,0	Onions	
0,3	DK adult			Wheat Wheat	, SV A		Bovine: Meat		0,0	Birds' eggs	
0,3	PT General population	>, 1	0,3	Wheat		0,0	Onions		0,0	Rye	
0,3	IT adult			Wheat Wheat		0,0	Onions		0,0	Barley	
0,2 0,2	UK vegetarian UK Adult	~ 4 1		Wheat	`,`\D <i>"</i>	0,0	Birds' eggs Birds' eggs		0,0	Onions Onions	
0,2	FL adult		[	VVIII (Spall	M. M.	0,0	Rye		0,0	Onions Birds' eggs	
0.0	FI adult Place of the Place of	m	0.0	Wheat Onions	) "	3,0	FRUIT (FRESH OR FI	ROZEN)	3,0	FRUIT (FRESH OR FROZEN)	
	-F-F	( )) (S	-,//-/-				. , .==::::::::				_



Table 6.9- 8: Fluoxastrobin - Details of the NEDI-calculation according to the UK 10 consumer group model (2006)

ADI: 0.015 mg/kg body weight/day Body weight: see individual populations

	Residue		Total Maxim	um Daily Intake	[mg/k@w/d]		ř
Commodities	level (STMR)	Adult	Infant	Toddler	Child 4-6 yrs.	Child (7) 7-10 xx8.	
	[mg/kg]	(76.0 kg bw)	(8.7 kg bw)	(14.5 kg bw) 🐇	(20.5 kg bw)	(30.9 kg bw)	
commodities of plan	ıt origin		Ö	) A	, V		
Onions	0.01	0.00001	0.00001	0.00004Q	0.0000	\$0.000¢1	,
Oats	0.02	0.00001	0.00004	0.00002	0.00002	Q 0.0 <b>06</b> 01 &	<b>*</b>
Barley	0.02	0.00000	LAC.	0.00001	° 0, <b>%</b> 9001 4,	0.60002	١
Wheat	0.01	0.00004	Ø 0003	<b>~</b> 9∕00008 Ø	%0000g ©	Ø0.00007©"	
Rye	0.01	0.00001	Ø.00001 °	©0.00000°		0.0000	
commodities of anim	nal origin					3 .	
Poultry	0.02	0.00003	0790003 @	000006,	Q,00006 O	<b>©</b> 00004/	
Meat fat	0.02	0.00000	Ø.0000L	©0.00004T	_ O0.000 <b>0</b> }	0.000 <b>Q</b> r	
meat excl. poultry	0.02	0.000@4	× 0.00008 ×	\$\text{0.00008} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0.09907	) 0.0 <del>60</del> 06	
All types of kidney	0.02	0.06001 &	0. <b>00</b> 001 ~\$	0 <b>0</b> 0003 💭	0.00001	<b>Q</b> .00000	
All types of liver	0.02	Ø90001 °C	0.00004	0.00005	D.0000D	<b>₹</b> 0.00001	
All types of offal	0.02	Ø.000@	Ø0.000	6 0.00 <b>004</b>	0.000002	[≫] 0.00002	
Eggs	0.02 😞	0.00002	0.000009	0.99007	0.00005	0.00003	
Milk	0.02 🐇	رُم 000016.	<b>Q</b> .00195	AQ00112	<b>3</b> 9.00059	0.00036	
Total die [m	tary inta <b>ke:</b> ng/kg bw/d]	0.00024	0.002/2	\$\ 0 ₀ 00126	0.00074	0.00048	
% ADI e	xhanstion;		A. , 7	8% &	∑√5%	3%	

Ĵ	Residue		→ Total Maxim	um Daily Intake	mg/kg bw/d]	
Commodities	level	<b>Child</b>	Sprild "	Vegetarian	Elderly	Elderly
	STMRO	1914 yrs	15-18 yrs		(own home)	(residential)
	[mg/kg]		(63.8 kg/hw)	(66.7 kg/bw)	(70.8 kg bw)	(61.6 kg bw)
commodities of plan				,		
Onions	$\sqrt[\infty]{0.01}$	0.00001	~0,00001	20,00001	0.00001	0.00000
Oats	0.02	Ø.00001 ⁰	<b>₹</b> 0.000 <b>0</b>	[△] 0.00001	0.00001	0.00001
Barley	<b>£</b> 02	0.0 <b>060</b> 0 s	ى 0.00000 ۋ	0.00001	0.00001	0.00000
Wheat	Ø.01 &	0,00005	/ 9 <b>30</b> 004 💸	0.00004	0.00003	0.00003
Rye 🗳	0.01	<b>0</b> 2000000	°>∕9.00000	0.00001	0.00000	0.00000
commodities of anim	ıal origin	2° 4° .	Ď, Ũ			
Poultry 0	©.02 L	0.00003.	0.00003	0.00003	0.00003	0.00002
Meat fat	$\bigcirc$ 0.024	0,00001	~ <b>0</b> 00000	0.00000	0.00000	0.00000
meat excl. poultry	0.60	~0.000@	<b>\$</b> 0.00004	0.00001	0.00004	0.00003
All types of kidney	0.02	© 0.0 <b>9</b> 900 4	0.00001	L/C	0.00001	0.00001
All types of liver	∡ \0.02 @	<b>9:0</b> 0001 Q	0.00001	L/C	0.00001	0.00001
All types of other	0.02	0.00002	0.00002	0.00001	0.00002	0.00001
Eggs Will	0.92	× 0.00003	0.00002	0.00002	0.00002	0.00003
	4 0.02	0.00024	0.00019	0.00019	0.00017	0.00024
Joral diea	ary intake					
Total diet	g/kg bw/d]	0.00032	0.00027	0.00025	0.00024	0.00030
% ADI ex	chaustion:	2%	2%	2%	2%	2%

L/C = Low consumption (<0.1 g/day) or low number of consumers (<4)



# Acute Reference Dose (ARfD) and Dietary Exposure Calculation

In order to evaluate the potential acute exposure to fluoxastrobin residues through the diet the National Estimated Short Term Intakes (NESTI)/International Es

In addition, also the short-term consumer risk for the active substance according to the UK 10 consumer group model was estimated.

The assessment of the acute intake of residues as a result of fluoxastrobin treated crops is based on the highest residue values (sum of fluoxastrobin and its described under CA6.3 in the present dossier. Since the same residue data support the critical GABs relevant to the MRL application for wheat, rye, barley and oat submitted as part of this dossier and the representative uses the same input data (HR values) are applicable for the acute risk assessments.

For commodities of animal origin the highest residues are estimated based on the findings from the livestock feeding studies extrapolated to the calculated dictary burden presented in CA 6.4 Table 6.4-2. Actually no residues according to the proposed residue definition for animal commodifies above the LOQ of the data generation method or the new enforcement method reported in CA 4.2 are anticipated.

Table 6.9-9 below compiles the input data for the acute dietary risk assessments. Table 6.9-10 shows the output of the EFSA PRIMO (rev. 2) Calculation. Table 6.9-11 summarises the calculation according to the UK 10 consumer group model (2006).

The highest calculated NESTI according to the EFSA model results in an ARID usage of 0.8% for adults by intake of bardey and 0.8% for children by intake of pink and milk products. The calculation according to the UK model yields the highest result (08% of the ARID) for milk for intake by infants. Therefore, the short term intake of fluoxastrobia residues is inhikely to present a public health concern.



**Table 6.9-9:** Input values for the acute consumer risk assessment (NESTI) for fluoxastrobin

			<i>O1</i>
Commodity	Input value	Comment	Source
	(mg/kg)	ð	
Proposed risk assessment residue definition: sum of flu	ioxastrobin (E-i	isomer) and Zosomer	
Onions	0.02	HR	\$ 25 0
Barley and oats grain	0.34	FAR"	Present dossier
Rye and wheat grain	0.02	ØHR	
Proposed risk assessment residue definition: sum of fl		isomer) and Z- isom	ws and The
metabolite M55 (HEC 5725 phenoxy-hydroxypyrimidin			Q O S
Swine meat	0.02*	Q HR a) S	Values reported in
Swine fat (free of lean meat)	0.02*,	⁄ ÇÜHR a) ∜	DFSA Journal 20012;
Swine liver	0.02*,	HR avor	10(12):3012
Swine kidney	© 0.02	HR Jb)	adjusted to the
Meat (bovine, sheep, goat)	~ 0. <b>9</b> 2*, ,	PR a)	residue tevels as
Fat (bovine, sheep, goat)	©0×02*, ~	A HR a	anticipated from the
Liver (bovine, sheep, goat)	@0.02*L	HR	dietary burden using
Q Q'	<b>₩</b> 0.02 <b>%</b>	HAR (a) b)	the OECD reeding Lables and the
			residue levels
Kidney (bovine, sheep, goat)			reported in the
			©present dossier
Poultry meat	0.02*	OHR .	0
Poultry fat	Ø02*	HR~	
Poultry liver	« 0.02 <b>*</b> °	The The	Present dossier
Poultry kidney	0.00	( HR ( )	
	Q.02*	HR a)	EFSA Journal 2012;
Milk & L & S			10(12):3012 and
			present dossier
Eggs	√ 0.02* <u>4</u>	Ç ✓¥ÎR	Present dossier

indicates that the input value is set at the LOQ of the analytical method

a) In the EFSA Reasoned Opinion (2012) the highest residue for food of animal origin was used for the acute consumer risk assessment derived by interpolation/extrapolation from the relevant dose level of the feeding

study and for the highest dietary burden.

b) In the EFSA Reasoned Opinion (2012) the highest residue was estimated at 0.03 mg/kg for ruminant fat, 0.04 mg/kg for ruminant liver and 0.06 mg/kg for ruminant kidne oderived from the calculated EU dietary burden and the EU feeding tables (guidance document 2031/VI/95 rev 4). The HR of 0.04 mg/kg for pig liver and kidney is based on the LOO of the previous enforcement method.



Table 6.9-10: NESTI calculation for Fluoxastrobin: EFSA PRIMo rev. 2

	Acute risk a	ssessmenf	t/children			Acute risk assessment / adults / general population					
	7.00.00 1.10.11 0.	2000								population 3	()-
The acute risk ass	essment is based on the	ARfD.					41°		S.		
For each commod	ty the calculation is bas	ed on the highest	t reported MS cons	umption per kg bw	and the correspond	ing unit weight from	uthe offs with the critic	al consump	॥ र्ग no data on the un	nit weight was available from that MS	S an average
	tht was used for the IES		·		·	6	<b>V</b>				
In the IESTI 1 cald	ulation, the variability fac	tors were 10, 7 c	or 5 (according to J	MPR manual 2002	), for lettuce a variab	ility factor of 5 was	used.		× (		
	ulations, the variability fa							, d			
Threshold MRL is	the calculated residue	level which would	d leads to an expos	sure equivalent to 1	100 % of the ARfD.						Ϡ.
					a			~~~		C 10 D	9
	es for which ARfD/ADI		No of commodities			No of commodities				es for which ARfD/ADI is 0 "	
is exceeded (IES	TI 1):		ARfD/ADI is exce	eded (IESTI 2):	-0 -0	ARfD ADI Is excee	déd (JESTI1):	<u> -20°</u>	exceeded (UBSTI	2):	
IEOTI 4	*)	**)	IESTI 2	*)	**) P	Berij 🛴	(*) . «( [©] )	**)&1	IESTO2		**)
IESTI 1					(//					W 1/2	T 101 (
IES II 1		pTMRL/			pTMRL©	24		∜ pMRL/ _≪		V =	pTMRL/
Highest % of		pTMRL/ threshold MRL	Highest % of	*X	pTMRLG threspolouMRL	Highest % of	ED C	threshold MRD	Highest of	l d	· ·
	Commodities	threshold MRL (mg/kg)	ARfD/ADI	Commedities	threston MRL (mg/kg)		Commodities O	threshold MR2	Highest of	Connodities	threshold Mi (mg/kg)
Highest % of	Milk and milk	threshold MRL		Commerciaties Milk and milk	threspold	ØARfD/ADI	Commodities Barley	threshold MRD		Commodities Barley °	threshold M (mg/kg) 0,34 / -
Highest % of ARfD/ADI		threshold MRL (mg/kg)	ARfD/ADI		threston MRL (mg/kg)	0,8 0,20	Barley Oats O	threshold MR2		Barley Oats	threshold MI (mg/kg)
Highest % of ARfD/ADI 0,8	Milk and milk	threshold MRL (mg/kg) 0,02 / -	ARfD/ADI 0,8		threshold MRL (mg/kg) 0,02 / -	0,8 0,20	) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	threshold MR2		Oats Milk products: Cattle	threshold MI (mg/kg) 0,34 / -
Highest % of ARfD/ADI 0,8 0,5	Milk and milk Oats	threshold MRL (mg/kg) 0,02 / - 0,34 / -	ARfD/ADI 0,8		threst of the th	0,8 0,20	Barley Oats O	threshold MP2 (m3/4) 9-34 / - 0,34 / -		Barley Oats	threshold M (mg/kg) 0,34 / - 0,34 / -

Edil Under May Eall Under May Eall Whis document Eurthermore and and publication of the stribution of any and stribution of any and of the stribution of any and of the stribution of the s and the countered and the counter of the analysis of and use of this richts continer the permission of the ariches the Rernizs Lond and Wiolate the rights of be prohibited



Table 6.9- 11: NESTI calculations for fluoxastrobin according to the UK CRD model (2006)

Acute Intakes (97.5th	
nercentiles)	

P	0,00024 0.00031 0.00023 0.00012 0.00003 0.00011 0.00001 0.00010	0,1 0,1 0.1 0.0 0.0 0.0 0.0	0,00045 0.00107 0.00000 0.00026 0.00013 0.00014 0.00004	% ARfD 0,2 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0,00036 0.00105 0.00025 0.00026 0.00002 0.00017 0,00004	% ARfD 0,1 0.4 0.1 0.1 0.0 0.1 0.0 0.1	0,0003 0.00062 0,00060 0,00029 0.00004 0,00004	0,1 0,2 0.2 0.2 0.0 0.0	0.00003 0.0004	0.00
	0.00031 0.00023 0.00012 0.00003 0.00011 0.00001	0.1 0.1 0.0 0.0 0.0 0.0	0.00107 0.00000 0.00026 0.00013 0.00014 0.00004	0.4 0.0 0.1 0.0 0.0	0.00 105 0.00 25 0.00025 0.00002 0.00017 0.00004	0.4 0.1 0.1 0.0 0.1	0.00062 0.00060 0.00029 0.00004 0.00019	0.2 0.2 0.0 0.0 0.0	0.00076 0.00091 0.00022 0.000036 0.00044	0.00
	0.00023 0.00012 0.00003 0.00011 0.00001	0.1 0.0 0.0 0.0 0.0	0.00000 0.00026 0.00013 0.00014 0.00004	0.0 0.1 0.0	0.00025 000026 0.00002 0.00017 0.00004	0.1 0.1 0.0 0.1	0.00029 0.00004 0.0019	0.2 04 0.0 0.0 0.1	0.00001 0.00022 0.00003 0.0004	0.00
	0.00012 0.00003 0.00011 0.00001	0.0 0.0 0.0 0.0	0.00026 0.00013 0.00014 0.00004	0.1	0,00026 0.00002 0.00017 0.00004	0.1	0.00029 0.00004 0.00019	0.0 0.0 0.1	0.00022 0.00003 0.0004	0.00
	0.00003 0.00011 0.00001	0.0	0.00013 0.00014 0.00004	0.0	0.00002 0.00017 0.00004	0.0	0.00004	©.0 ©.0.1	0.00003 0.0004	0.00
	0.00011	0.0	0.00014 0.00004	0.00	0.00017	0.1	06019	Q 0.1	0.00003 0.0004	0.00
	0.00001	0.0	0.00004		0.00004		, ·	Q 0.1		<i>₽,</i> Ø
						@0.0	*\hat{\partial} \hat{\partial}		. // *	_
	0.00010	0.0							0.00003	£ 50.0
		0.0	0.00024	0.1	Ø.00028C	0.14			0.00016	0.1
	0,00003	0,0	0,0 <b>00</b> 05	~0,0  ~0,0	©, 00008 ©, 00008	0,0	(0,00005 [©]	0,4	0,00003	\$0,0
	0,00005	0,0		°~	0,000137	~ ~	0,00004	<b>5</b> 0,0	Ø,00005	0,0
	0,00006	0,0Q		10°			\$ . \$\frac{1}{2}	0, <b>6</b> 5	0,60011	0,0
	0.00006 %	$\bigcirc^{7}0.0_{\emptyset}$		0,1	0.00016	<b>20</b> .1	0.00013	0.0	0.00010	0.0
	0.00026	0.10	0.00248	Ø.ĸ	0.00147		Ø:00093	0,3	0.00060	0.2
		0,00006	0,00006 0,00	0,00005 0,0 0,00016 0,00006 0,0 0,00015 0.00006 0.0 0.00025 0.00026 0.0 0.00248	0,00005 0,0 0,00016 0,0 0,00006 0,0 0,00015 0,0 0,00006 0.0 0,00025 0,1	0,00005 0,0 0,00015 0,0 0,00013 0,000014 0,00006 0,0 0,00015 0,0 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,00016 0,000	0,00005 0,0 0,00015 0,0 0,00013 0,0 0,00016 0,0 0,00006 0,0 0,0002\$ 0,1 0,00016 0,1 0,00016 0,1 0,0002\$ 0,1 0,00016 0,1 0,0002\$ 0,1 0,00016 0,1 0,0002\$	0.00006 0.0, 0.00015 0.0 0.00014 0.0 0.00016 0.1 0.00013 0.00025 0.1 0.00016 0.1 0.00013 0.00025 0.1 0.00016 0.1 0.5 000003	0.00006 0.0 0.00025 0.1 0.00016 0.1 0.00013 0.0 0.00026 0.0 0.00248 0.8 0.00147 0.5 0.00093 0.3	0,00005 0,0 0,00016 0,1 0,0003 0,00004 0,0 0,00005 0,000011 0,00006 0,00 0,00015 0,0 0,00014 0,0 0,00011 0,0 0,00011 0,00006 0,00 0,00

			@ ¥	<b>*</b>	y W				O *	4		
			11-14 ve:	ar oldØ)	15-18 year	old .	Vegetaria	<b>M</b>	Elderly,-	own	Elderly -	
	Į.	Ž	child		child _	<b>Y</b>	'Y' J'	Q)	home		residential	
Commo-	HRO	P	NDSTI /	%	VESTI O	% %		% ARRED	NESTI	%	NESTI	%
dity	6	١,	\$ 2	ARfD		ARD	/L //		. @	ARfD		ARfD
Onions	∂J.02	,	0,00031	9,\$	0,00025	<b>7</b> ,1	<b>%</b> 0030	0,1	<b>√</b> 0,00019	0,1	0,00012	0,0
Oats	0.34		0.00031	<b>9</b> .1	<b>29</b> 00049	0.2	>0.000 <b>4</b> 0	0.1	0.00025	0.1	0.00022	0.1
Barley	0.34		°,0.90015,	$\bigcirc 0.1$	0.00024	0 D	0.00025	<b>20.</b> 1	0.00017	0.1	0.00011	0.0
Wheat	0.02	1	D0.00018√	0.1	0.00917	<b>40</b> .1	0.00016	0.1	0.00009	0.0	0.00009	0.0
Rye	0.02		0.00001	<b>2</b> 00	Ø.00002×	9	0.0000	0.0	0.00002	0.0	0.00001	0.0
Poultry	0.02		0.00012	0.0	C0.0001	0.6	0.00023	0.1	0.00009	0.0	0.00005	0.0
Meat fat	<b>6Q</b> )2		@.0000		[♥] 0.000002	Ø20	0,00001	0.0	0.00001	0.0	0.00001	0.0
Meat excl.	0.02		0.000	39	0.00011	<u>(</u> 0.0 في	<b>Ø</b> :00005	0.0	0.00007	0.0	0.00006	0.0
poultry & @ offal	. V			Q ,								
All types	0.02	- ≪	0,00003	0,0	0,00004	0,0	0,00000	0,0	0,00003	0,0	0,00003	0,0
of kinney					Q,							
All types	0.02	٥	0,00008	(P,0	<b>@</b> ,00004.(	0,0	0,00000	0,0	0,00005	0,0	0,00004	0,0
of liver			4 4		Ç Q							
Other	<b>QQ</b> 2	^	70,0000		0,00005	0,0	0,00002	0,0	0,00005	0,0	0,00005	0,0
types of	(C)2	$\ll$			~Q`							
01141	$\alpha$	» <u> </u>	Ü			0.6						
Eggs S	0.03		Q.00008		0.00006	0.0	0.00008	0.0	0.00004	0.0	0.00005	0.0
Milk	9902	6	Ç0.00Q4%	0.1	0.00035	0.1	0.00030	0.1	0.00022	0.1	0.00029	0.1



### CA 6.10 Other studies

The studies reported in the baseline dossier and already evaluated for Annex I inclusion according to Directive 91/414 as well as the studies submitted in the present supplementary dossier are considered to provide the necessary information on the metabolism and residue behaviour of fluoxastrobin. No other studies are considered necessary.

# CA 6.10.1 Effect on the residue level in pollen and bee products

The objective of such studies is the determination of the residues in pollen and bee products for human consumption resulting from residues taken up by hope bees from crops at blosson (Section 6.00.1 of Com. Reg (EU) No 283/2013).

The Annex of Commission Regulation (EC) No 283/2013 setting out the data requirements for a give substances in accordance with Regulation (EC) No 280/2009 states that the type and conditions of studies to be performed shall be discussed with national competent authorities.

At the time when the present dossier was prepared no corresponding guidance document was published which addresses reference 6.10.1 of the Annex to Regulation (EL) No 283/2013 and which lists the crops concerned or provides an agreed test methodology.

In the EFSA guidance document on the risk assessment of plant protection products on bees (EFSA Journal 2013;11(7):3295; Appendix Dy a list of crops visited by bees for the collection of nectar and/or pollen as complete as possible based on the data available in the iterature is compiled. In Appendix D to the guidance document small grain capeals (Barley, oat, wheat, rye) are considered as non relevant for nectar collection and they are not attractive for pollen collection.

According to the French proposal for a guideline of setting MRL in honey and bee products (Hazards of pesticides to bees 10th international symposium of the ICP-Bee Protection Group) it is proposed in a decision tree that if a coop is not attractive to bees and has no molliferous capacity a specific MRL would not be required

Onions intended for human consumption can also be considered being not a relevant bee feed item because they are harvested before flowering doing the normal production.

The last application of fluorastrobin containing products to cereals may be before (all small grain cereals) or during only wheat and rye flowering according to the GAPs of the representative uses. However, as evident from the residue decline studies fluorastrobin residues decline well with time and residues are very low in cereal grain. There is no indication from the residue findings that the compound shows persistence in plant commodities of a high potential for translocation in the upper parts of the plant. The findings in the plant metabolism studies demonstrate that the parent compound (E-and Z-isomers) constitutes by far the most abundant residue in cereal grain (52-86% TRR) and measurable residue levels for metabolities are not anticipated.

Small grain cereals are typically wind polanated and no feeding item for bees. Since according to Appendix D of the EFSA guidance document on the risk assessment of plant protection products on bees (EFSA Journal 2013;11(3):3295) small grain cereals are not relevant for nectar collection fluoxastrobin residues in mature honey are very unlikely (pollen content in honey 0.5%). If in individual cases hopey bees may visit small grain cereals during flowering and forage pollen this would result in mixtures of pollen from various plant species and no genuine or homogeneous bee product solely from cereals would be produced which results in further dilution of potential residues.

The current MRL for fluoxastrobin residues in honey and bee products (Code 1040000) is 0.01* mg/kg according to Part A of Annex I to Reg. 396/2005). No exceedance of this MRL was



noted in the past, although fluoxastrobin products are authorized and marketed in the EU since more than 10 years.

A cope hope at the cope of the In the absence of a test guideline about how to investigate the residues in pollegrand bee products this point was not addressed experimentally. Since the bee-relevant commodities are not expected to contain residues of fluorastrobin a dictary risk for consumers due consumption of helpey and beep products as well as an exceedance of the current MRL of 0.01* mg/kg can be excluded. THE STATE OF THE S In the absence of a test guideline about how to investigate the residues in pollegand bee products this are n and of the excluded by t point was not addressed experimentally. Since the bee-relevant commodities are not expected to