





**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

### **OWNERSHIP STATEMENT**

This document, the data contained in it and copyright therein are owned by Bayer Eropseience No part of the document or any information contained therein may be disclosed to any third

The summaries and evaluations contained in this document are based on unpublished Incompared and evaluation of a second proprietable of a second proprise second proprietable of a second proprietable of a second prop authority. Other registration authorities should not grant, amend, or review aregistration on the basis of the summaries and evaluation of unpublished proprietary data contained, in this



Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin





### **Table of Contents**

|                       | I able of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | age                      |
| CA 5                  | TOXICOLOGICAL AND METABOLISM STUDIES ONOTHE ACTIVE<br>SUBSTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 6                     |
| CA 5.1                | Studies on absorption, distribution, metabolism and excretion in manmals?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×<br>8⊘                  |
| CA 5.1.1              | Absorption, distribution, metabolism and excretion by oral exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| CA 5.1.2              | Absorption, distribution, metabolism and excretion by other routes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ĝo e                     |
| CA 5 2                | Acute toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                     |
| 0110.2                | Summary acute toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                       |
| CA 5 2 1              | Oral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| CA 5 2 2              | Dermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×12                      |
| CA 5 2 3              | Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                       |
| CA 5 2 4              | Skin irritation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| CA 5 2 5              | Eve irritation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $v_{12}^{*2}$            |
| CA 5 2 6              | Skin sensitization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                       |
| CA 5 2 7              | Phototoxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 <i>2</i><br>1 <i>4</i> |
| CA 53                 | Short-term toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                       |
| CH 5.5                | Summary short-term the signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                       |
| CA 5 3 1              | Oral 28-day and a contract of the contract of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20<br>24                 |
| CA 5 3 2              | Oral 90 day study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24<br>24                 |
| CA 5.3.2              | Other routes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                       |
| CA 5.3.3              | Genotovicity Asting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24<br>25                 |
| CA J.4                | Summary constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                       |
| $C \wedge 5 \wedge 1$ | In our official of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                       |
| CA 5.4.1              | In vivo studios in comptine alla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| CA 5.4.2              | In vive studies in series office of the series of the seri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                       |
| CA 5.5                | Louge terretoxicity and carcinogenity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29                       |
| CA J.J                | Summer long-termedicit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                       |
| $C \wedge 5 6 $       | Peproductive toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| CA J.                 | Support for the formation of the formati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| CA561                 | $Cohere tional solidies \overset{\vee}{\sim} \overset{\vee}{\sim} \overset{\vee}{\circ} \overset{\vee}{\circ} \overset{\vee}{\sim} \overset{\vee}{\circ} \overset{\vee}{$ | 52                       |
| CA 5.6.1              | Developmental towarty studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| CA 5.7                | Neuratovienu stillies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/                       |
| CAJ./                 | Summar Pneutotoxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/                       |
| CA 57 10              | Neurolaxiaito studia in radante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J+<br>3/I                |
| CA 5 7 2              | Debyed nelvneur mathematica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54<br>34                 |
| CA 5.7.2              | Other to realized studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| CA 3/.0               | Summary torigity studies of matchelites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                       |
| k                     | ULE C 5725 and solutions of metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                       |
| Q                     | Further restabilition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                       |
| Ś                     | The formation of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                       | Споторненоч (M82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                       |
|                       | Towitzer diag of matchalitag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37                       |
| CA 2,0.1              | 2 shlars handl (M 22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                       |
|                       | 2-childrophenol (W 62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30<br>52                 |
| CA 3.8.2              | Supprementary studies on the active substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33                       |
|                       | Summary of supplementary studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                       |
|                       | minunotoxicological studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                       |





Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

# CA 5 TOXICOLOGICAL AND METABOLISM STUDIES ON THE ACTIVE SUBSTANCE

As published in <u>Commission Directive 2008/44/EC of 04<sup>th</sup> April 2008</u> and with an Entry into Force (EIF) date of 01<sup>st</sup> August 2008, the fungicide Fluoxastrobin was first included in Annex is to Commission Directive 91/414/EEC.

Now, with the aim to achieve European Re-Approval under Regulation 1007/2009, Bayer CropScience (BCS) provides this 'Supplementary Dossier'. It contains only new data which were not of submitted at the time of the Annex I inclusion of fluoxastropin under Commission Directive 91/414/EEC and which were therefore not evaluated during the first European review

In addition to submitting the above mentioned Supplementary Dossler, all studies relied upon under 91/414 and contained in the Draft Assessmen Report and its Addenda are – for the convenience of the reviewers – included in what BCS calls 'Baseline Dossies' (Document K level only).

In order to ease the reviewers' orientation on old' studies in the Baseline Dossier versus' new studies in the Supplementary Dossier, BCS has decided to apply the following basic penciples

- 1. Conversion of the Document K part of the old EL dossier structure into the new structure (acc. to Commission Regulations 283/2013 and 284/2013 and linking the old studies to the new structure according to the cross-walk tables provided in Guidance Document SANCO/10181/2003 rev. 2.1 of 13<sup>th</sup> May 2013.
- 2. On a case-by-case basis and where useful for the reader, old studies from the Baseline Dossier are occasionally sumparised on the Document M-level of the Supplementary Dossier; the text of those summaries is formatted in any for colour. However, where useful additional information is occasionally given either in the summary text or summary tables in black font.
- 3. For an Creferenced old study, its bibliographic information is gamatted in group font formation is formatted in group for the formatted in g
- 4. For any new study, its bibliographic information and its free flow summary text and table content is formatted in standard black font colour

Where applicable, the above formatting onles above apply totall dossier elements (e.g. MCA, MCP, JCA etc.).

According to the guidance of EFSA on the Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009" (EFSA Journal 2011; 9(2):2092), literature for the active substance and its metabolites needs to be presented, covering the last 10 years prior to the submission of this Annex I renewal dossier. In relation to this section 5 no adequate scientific peer-reviewed open literature was identified which would need to be scientifically considered. There were no findings in the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature of the scientific peer-reviewed open literature of the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature open literature for the active substance for the scientific peer-reviewed open literature open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active substance for the scientific peer-reviewed open literature for the active scientific

For substance codes, synonyms and abbreviations please refer to 'Document N3 - 'Substances and metabalites: splicture, codes, synonyms – Fluoxastrobin'.

Note: Deromination of the active substance and its isomers

In the original reports the active substance and the E-and Z-isomer are sometimes denominated differently. Initially the common name fluoxastrobin (chemical code HEC 5725) was assigned to both, the E-and Z-isomer as a sum and thus in some reports the active substance fluoxastrobin is used as a



synonym for both isomers as a sum. During the FU per review it was agreed to define the active substance in laid down in the EFSA Scientific Report (2007) 102, 1-3 and in the Inclusion Directive 2008/44/EC (4 April 2008). And the second of the second o synonym for both isomers as a sum. During the EU peer review it was agreed to define the active and a superior of the second and a second an and the permanent of the owner owner



### Studies on absorption, distribution, metabolism and excretion in mammals CA 5.1

CA 5.1 Studies on above r CA 5.1.1 Absorption, distribution, metabolism and excretion by oral exposure The scientific information of the studies in Table 5.1.1-1 and Table 5.1.1-2 are evaluated in the EU peer review for inclusion of fluoxastrobin into Annex I of Directive 91/414/EEC (2008).

|  | Table 5.1.1-1: | ADME experiments | conducted | with race labelled | flugastrobin | in rats |
|--|----------------|------------------|-----------|--------------------|--------------|---------|
|--|----------------|------------------|-----------|--------------------|--------------|---------|

| Type of experiment                     | Dose*                      | Test ani             | mals 🖌  | Radiz                                            | Kefer@ce/rep.R                            |
|----------------------------------------|----------------------------|----------------------|---------|--------------------------------------------------|-------------------------------------------|
|                                        | (mg/kg bw)                 | Sex                  | jan.    |                                                  |                                           |
| Expiration,<br>single low dose         | 1                          | male                 |         | [chlor@pheny]. UL-14@j                           | ;; 2002;<br>Qr-041524-01-1                |
|                                        | 1                          | make                 |         | CyrimicQe-2- <sup>14</sup> C                     | M-033650-01-1                             |
|                                        | 1                          | Q male A             |         | [methoxyingmoto]                                 | ,; <b>20</b> 01;<br>M-02 <b>9</b> 29-01-1 |
| Single low dose                        |                            | male                 |         | [chlorophenyoUL-146]                             | ,; 2002;<br><b>M</b> -041524-01-1         |
|                                        |                            |                      |         | [pyrimin me-2,10]                                | ,; 2001;<br>M@33650-01-1                  |
|                                        |                            | male &               | 4 804   | [monoxyiminotoly]<br>wgg-UI_C] &                 | ₩-033929-01-1                             |
| Single high dose                       |                            | reche & '<br>temale  | 94 & 4° | [metloxyiminotolyl-<br>ringUL- <sup>14</sup>     | ;; 2001;<br>M-033929-01-1                 |
| Repeated low do                        | $\left(14y+1x\right)^{\#}$ | maleOx<br>female     |         | Smethor Siminotolyl-<br>ring-IO-14C]             | V; 2001;<br>M-033929-01-1                 |
| Bile-duct conhulation, single log dose |                            |                      | 6       | [ch@ropheifyl-UL- <sup>14</sup> C]               | U; 2002;<br>M-041524-01-1                 |
|                                        | A                          |                      |         | [metl Xyiminotolyl-<br>ring UL- <sup>14</sup> C] | ,; 2001;<br>M-033929-01-1                 |
| Whole body<br>autoradiographo,         |                            | malox<br>fervale     | 6× 8    | Chlorophenyl-UL-14C]                             | ,; 2002;<br>M-041524-01-1                 |
| prior collegion of urine<br>and faece  |                            | female &             |         | [pyrimidine-2- <sup>14</sup> C]                  | ,;<br>2001; M-033650-01-<br>1             |
|                                        |                            | male &<br>Ø femation | 5&5     | [methoxyiminotolyl-<br>ring-UL- <sup>14</sup> C] | K; 2001;<br>M-033929-01-1                 |

\* dosed orally of a suspension of 0.5% queous Tragacanth # 14 daily doses with non abelled fluox strobin and another last dose with radiolabelled fluox astrobin

### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

 Table 5.1.1-2:
 ADME experiments conducted with the radiolabelled metabolite 2-chlorophenol (M82) in rats

| Type of experiment        | Dose*         | Test animals  |        | Test animals    |                | Radiolabel | Reference/reort |
|---------------------------|---------------|---------------|--------|-----------------|----------------|------------|-----------------|
|                           | (mg/kg bw)    | Sex           | No.    |                 | \$<br>\$<br>\$ |            |                 |
| Single low dose           | 5             | male          | 4      | [phenyl-UL-14C] | ,;2002;        |            |                 |
| including expiration      |               |               |        | à 4             | M-041282-014   |            |                 |
| * docad arally on a 0.00/ | adjum ablarid | a colution in | Tuotor |                 |                |            |                 |

\* dosed orally as a 0.9% sodium chloride solution in water

Conclusion from the EFSA Scientific Report (2007) 402, 1-84, "Conclusion regarding the per of the pesticide risk assessment of the active substance fluoxastrobin fip?lised: 23 June 2007."

Fluoxastrobin is rapidly and nearly completely absorbed from the gastrophtesting tract (80 - 92% of administered dose of 1 mg/kg bw within 24 - 30 hours rost administerion). It is whely distributed within the body of the treated animals at generally low concentrations. The lighest concentration of elected in liver, kidneys and bladded as well as in the gastrophtesting tract. No, indication of significant accumulation in the body is observed. Excretion of fluoxastrophin religied residues occurred fast and at a high rate. The major roue of excretion is extensively metabolised (37 24 72 hours post dose the portion of unchanged parent compound its 100% of the administered radioactivity). The metabolic pattern is complex and 50 metabolites are identified. Only a few metabolites were found to be prominent: they were hydroxylited metabolity, which still contained all origins, notably M12 and M25, as well as HEC 572. E-des chlorophenye (M48) and HEC 5728-des chlorophenye (M49). Metabolism in rats is qualitatively signar to contained and here.

### Comparative in viro metabolism studies

For comparative in-vitro metabolism studies, test methods or puidance documents published in form of an update of the Commission Communications 2013/C 95/01 and 2013/C 95/02 are not yet available According to point 4 (Documents to be included in a submission) of the current version of the Guidance Document for Applicants on Preparing Dossiers for the Approval of a Chemical New Active Substance and of the Ronewal of Approval of a Chemical Active Substance According to Regulation (EU) No 283/2013 and Regulation (EU) No 289/2013 (SANCO/10181/2013), waiving of these particular data requirement points is considered acceptable and is requested hereby.

For Fluoxastrobin, no comparative in-viteo metabolism study was conducted.

The notifier occasionally has conducted in-vitro metabolism studies in cases when a special experiment could address pecific questions related to the toxicological profile of an active substance to supplement the existing data of in an attempt to address the new data requirements of the regulation (EC) No. 1107/2009 after their publication.

However, a general call or of comparative in-vitro metabolism studies to routinely address the nonspecific requirements of the regulation (EC) No. 1107/2009 is deemed premature. Several methods to perform m-vitro assays are published in the literature. A variety of test parameters leads to numerous test parameter combinations and therefore to numerous possible tests. The objectives of the published experiments and the interpretation of the results vary in many aspects. In the absence of an adopted guideline, the appropriate selection of the study parameters is uncertain. The same applies to the evaluation and interpretation of the results. Therefore, no study was conducted for fluoxastrobin.







#### CA 5.2 Acute toxicity

### Summary acute toxicity

Summary acute toxicity Acute toxicity studies summarized in Table 5.2-1 were evaluated in the EU per review for fictusion of fluoxastrobin into Annex I of Directive 91/414/EEC (2008), new studies are added.

| Study type /        | Sev        | Results                           | Test substance                         | Reference                |
|---------------------|------------|-----------------------------------|----------------------------------------|--------------------------|
| Study type /        | SCA        | Results                           | Purity % a s                           |                          |
| species             |            |                                   | $\approx (4:7)$ isomer vatio for a.s.) |                          |
| Oral fasted         | M/F        | LD <sub>50</sub> : >2000 mg/kg hw | HEC 5725                               | Û 1996 Û                 |
| Rat                 | 111/1      |                                   | 98.9 (100.8)                           | M-092717-01-1            |
| Oral, fasted        | M/F        | LD <sub>50</sub> : >2000 mg/kg bw | HEC 57 9 N, K                          | ,; 1,998;                |
| Rat                 |            | Ŏ                                 | 199.3 (2:8) A m                        | M-012735-01-1            |
| Dermal,             | M/F        | LD <sub>50</sub> : >2000 mg/kg bw | HE6, 5725,0 0                          | , 199 <b>X</b>           |
| Rat                 |            |                                   | 109.2 (100:0)                          | M-012730-01-1            |
| Inhalation, 1x4 h   | M/F        | $LC_{50}$ : >5 mg/L               | Fluoxaguobin                           | ,; 19 <b>99</b> , M-     |
| Rat                 |            |                                   | 94.5 (99:1)                            | Ø08826-01-1 <sup>O</sup> |
| Skin irritation     | М          | not irritating                    | HEC 5725 0 5                           | <b>3</b> , 1999;         |
| Rabbit              |            |                                   | <u>88.9 (1009)</u>                     | M=012662=02-1            |
| Eye irritation      | М          | slight reversible                 | MEC 5005, L                            | ;; 1999;                 |
| Rabbit              |            | instation C                       | 98.9,000:0,5                           | DM-012669-02-1           |
| Sensitization       | F          | Mot sensitizine                   | HEC 5725                               | ,; 1996; M-              |
| (Magnusson &        | <u></u>    |                                   | 98.9 (100:0)                           | 012720-01-1              |
| Kligman)            | ~          | A                                 |                                        | BCS response M-          |
| Guinea Pig          | ĸ          |                                   |                                        | 2070785-01-1 <u>)</u>    |
| Sensitization       | SΜ         | Phot sens Itizin                  | HEC 5725 0" "                          | ,; 2003;                 |
| (Magnusson &        |            |                                   | 8 <sup>9.6</sup> 0                     | M-105571-01-1            |
| Kligman)            |            |                                   |                                        |                          |
| Guinea Pig          | <u>ð`</u>  |                                   |                                        |                          |
| Sensitization O     | F 🔬        | not sensitizing                   | HEC 5725                               | ,; 2006;                 |
| (Magnusson &        |            | 19 A A                            | ØŠ.3                                   | M-278315-01-1            |
| Kligman) Suinea Pig | $\sim$     |                                   |                                        |                          |
| Phototoxicity       | Ø- 、       | 🐼 phototoxic 🔪 🔿                  | HEC 5725 O                             | ;;                       |
| (BALB/c 3T3 cells)  | <u>}</u> { |                                   | <b>9</b> 6.4 ,                         | 2014; M-497574-01-1      |

#### **Table 5.2-1** Summary of acute toxicity studies

Purity of a.s as state. In study reports. E:Z ratios from additional information supplied by applicant ( .; 2002; M-077209-01-1)

EFSA Scientific Report (2007) 102, 1-84, "Concrusion regarding the peer review of the pesticide risk assessment of the active substance fluox astroban finalized: 13 June 2007" on acute toxicity:

The oragioxicity of those strength is low,  $5^{\circ}$ . LEV > 2000 mg/kg by as well as inhalation LC<sub>50</sub> >5 mg/Legir. The toxic v via derma routers low LD50 >2000 mg/kg bw). It is not a skin or an eye irritant. No skin sensitistion potential was observed in a study with HEC 5725 (100%E). However, the material tested was of much higher purper than the preliminary proposed technical specification. The rapporter Member State required the evaluation of the toxicological significance of impurities in fluoxastrobic in skip sense sation. The sue was dealt with in the addendum 1 and it was concluded that only fre impority (01) is specified at 1% or above (cut off criteria). Therefore a skin sensitisation study with patch containing 3.5 % of impurities of the technical specification for which appropriate study a negative result was obtained, showing that fluoxastrobin impurities have no securitising potential. The experts agreed with this conclusion.

After improvement of the production process (for details see document JCA 1.8), an additional sensitization study was conducted in order to support the new technical specification of fluoxastrobin. This study confirmed the absence of a skin sensitisation potential. Furthermore, fluoxastrobin does not show a phototoxic potential.



Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### CA 5.2.1 Oral

All necessary studies were presented and evaluated during the EU process for Annex I listing. refer to the DAR, addenda and the baseline dossier of fluoxastrobin.

#### CA 5.2.2 Dermal

CA 5.2.2 Derman All necessary studies were presented and evaluated during the EU process for Annex Misting Pleas refer to the DAR, addenda and the baseline dossier of flux astrobin.

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the DAR, addenda and the baseline dossier of fluoxastrobing

#### CA 5.2.4 **Skin irritation**

All necessary studies were presented and evaluated during Please refer to the DAR, addenda and the baseline dossier of fluoxastropin.

#### CA 5.2.5 Eye irritation

Skin sensitization

All necessary studies were presented and evaluated during the EU process for Appex I listing. Please refer to the DAR, addenda and the baseline dosier of fluoxestrobin.

### CA 5.2.6

In addition to the studies on skin sensitization already available in the DAR and baseline dossier, a new Magnusson Kliggnan test was performed in 2006 with a representative final full production batch and submitted in order to support the new technical specification. ≪. Ľ

m

| Ê <sup>Ç</sup>              |                                                                                                                                     |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Report: KÇÂ                 | 5.2.6794                                                                                                                            |
| Title: Fluos                | astrobin (HEC 5722) (Project: Fluoxastrobin (HEC 5725)) - Study for the skin                                                        |
| a sonsi                     | ization effect in guinea pigs (guinea pig maximization test according to                                                            |
| © Mag                       | ngsson and Kligman) O T                                                                                                             |
| Report No.: 🖓 🛛 🔍 ATO       | 336~ ~ ~ ~ ~                                                                                                                        |
| Document №0.: M=27          | 8315-01-14-7 0 0                                                                                                                    |
| Guideline (9):              | Dor06; Guideline 96/54/EC, Method B.6.; US-EPA 712-C-03-197, OPPTS                                                                  |
| × × 870,2                   | 600 ~ ~ ~ ~                                                                                                                         |
| Guideline deviation(s) Apa  | tical determinations of the stability of the paste in Cremophor EL/sterile                                                          |
| poysi                       | ological saline solution 2% v/v for administration were not performed.                                                              |
| GLP/GEP:yes                 | $\tilde{\rho}_{j}^{Y} \sim \tilde{Q}_{j}^{Y}$                                                                                       |
|                             |                                                                                                                                     |
| I Materials and methods     | × ×                                                                                                                                 |
| 1. Wrater was and succusors |                                                                                                                                     |
| A. Materials                |                                                                                                                                     |
| 1. Test material: 0         | Fluoxastrobin technical                                                                                                             |
| Synonym(s):                 | HEC 5725                                                                                                                            |
| Chemical name:              | (E)-Methanone, [2-[[6-(2-chlorophenoxy)-5-fluoro-4-<br>pyrimidinyl]oxy]phenyl](5,6-dihydro-1,4,2-dioxazin-3-yl)-, O-<br>methyloxime |
|                             |                                                                                                                                     |



# Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin



### A. Mortality and observations

One artified (65, 30) of the best item group died at day 12 of the study. Appearance and behaviour of the test item group were not different from the control group. At the end of the study, the mean body weight of the treatment group animals was in the same range than that of the control group animals.

After the intradermal induction (first induction) the animals in the control group and test item group showed red wheals at the injection sites after 48 hours. After 7 days at the injection sites encrustations were observed in the control group and wheals and encrustations were observed in the test item group.

**Bayer CropScience** Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### **B.** Findings

The incidence of skin reactions following the challenge is summarized below:

|                    |                              |                               |       |                      | 0   |                            |          | $\sim$ | C    | <u>v</u> or | L |
|--------------------|------------------------------|-------------------------------|-------|----------------------|-----|----------------------------|----------|--------|------|-------------|---|
|                    | Test item group (19 animals) |                               |       |                      |     | Control group (10 animals) |          |        |      |             |   |
|                    | Те                           | Test item patch Control patch |       | Test item patch Cost |     | Centro                     | l pateh  | Ĉ      |      |             |   |
| Hours              | 48                           | 72                            | Total | 48                   | 72  | \$ 48                      | 72 🔊     | Total  | °~48 | , ©72 ≰     | Ĵ |
| Challenge<br>62.5% | 0                            | 0                             | 0     | 0                    | 0   | <b>₹</b> 0                 | <b>B</b> | 0      |      |             |   |
| III. Conclus       | sion                         |                               |       |                      | , Ó |                            |          | Š      | Ą    |             |   |

#### Table 5.2.6-1: Number of animals exhibiting skin effects

#### **III.** Conclusion

Under the conditions of the maximization test and with the evaluation criteria flooxastrobin respect to exhibits no skin-sensitisation potential.

#### CA 5.2.7 **Phototoxicity**

According to the new data requirements (COMMISSION REGUDATION (ELS No 283/2063 of 1 March 2013; Official Journal of the Buropean Union, L 991, 3.42013) (1), the conduct of an in vitro phototoxicity study is required "where the active substance absorbs dectroppagnets" radiation in the range 290-700 nm and is liable to reach the eyes of lightexposed areas of skin, either by direct contact or through systemic distribution. If the Ultraviolet sible molar extinction/absorption coefficient of the active substance is less than  $10 \text{ k} \times \text{mol}^{-1} \times \text{cm}^{-1}$ , no toxicity testing is required."

Since this coefficient exceeds the trigger of 100 x mgl<sup>-1</sup> x cm<sup>-1</sup> for thoxastrobin, a phototoxicity study was conducted. Ô

| <b>Report:</b> $\sqrt{KC} \sqrt{KC} \sqrt{27/6}$ | 2014: M-497574-01-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:                                           | TCS vtotoxicity as a v in the solution of the |
| NR) test dur                                     | ing simultareous production with artificial sunlight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Report No.: 01611000                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Document No.: 5 M-497574-01                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Guideline(s) Commission                          | Regulation (PC) No 440/2008 B 4 Committee for Proprietary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Medicinal Pro                                    | oducts (CPMP) Note for Guidance on Photosafety testing, EMEA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Č <sup>y</sup> "©CPMĎŠWP/                        | $398/01$ OECD $032$ $\sqrt[4]{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Guideline deviation(s) none N                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GLP/GEP: N yes                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I Materials and methods                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A. Materians                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Test materials:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\swarrow$ Name: $\checkmark$                    | Fluo Castrobit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Synonyms:                                        | AÉ 1228 (96, technical substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Descripțich:                                     | White powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lot/Batch no 🏑 🖉 🐇                               | <sup>9</sup> HEC <sub>2</sub> 21596-1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purity: 🖉 🖉                                      | 96.9% (w/w)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  | (dose calculation was not adjusted to purity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Stability of test compound:                      | Guaranteed for study duration; expiry date: 2016-06-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Vehicle and or positive control:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vepicle:                                         | Dimethylsulfoxide (DMSO), 1% (v/v) in Earle's Balanced Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ĉ <sup>O.</sup>                                  | Solution (EBBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solvent control                                  | EBSS containing 1% (v/v) DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Positive control                                 | Chlorpromazine dissolved in EBSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



### **Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

#### 3. Test system:

Cell type: Culture medium:

Cell culture:

BALB/c 3T3 cell clone 31

Test item

Positive

control 0

xastróbin

Dulbecco's Minimal Essential Medium (DMEM) supplemented with 10% (v/v) Newborn Calf Serum (NCS). Large stocks (Master Cell Stock) of the BADB/c 3T3 31 cell line are A working stored in liquid nitrogen in the cell bank, of cell stock is produced by multiplying from the master cell stock Thaved stock cultures were propagated at  $37 \pm 1.5$  °C in 75 cm<sup>2</sup> plasses flasks. Seeding was done with about 1 x 10<sup>6</sup> cells per flasto in 15 mL DMEM, supplemented with 10 % DCS. Cells were sub-chlured wice weekly. The cell cultures were incubated at  $37 \pm 0.5$ Ç in∛a 7.≸° carbon dioxide timosphere.

Final concentrations in the

0.49 0.98 1.95 3.91 7.81 15.6 31.3 (range findin (RFE)) 49 @98 1.25 3.91 & 81 15 & 31.3 62.5 (main experiment (ME)). « 24 0.49 0.98 1 95 3.96 7.81 15.6 31.3 (confirming experiment (CE))

6.25, 12.5, 25, 37, 50, 75, 100, 200

#### **B.** Study design and methods

Solar simulator

Seeding of cultures

Treatment & pradiation:

Replicates:

1. Treatment:

Dose:

0.125, 0.3 0.5, 075, 1.0 1.5, 2.0, 4.0 unc test item in the RFE and in the ME was 62.5 ug/mb The thrit of solubility for the test item was obviously reached with this concentration, since the solution became turbid 5 after preparation a CV was a concentration of 31.3 µg/mL.

UVB fradiation keep as low as possible. The produced wavelength of the solar simulator with the filter was >320 nm. Due to the heterogeneous distribution of hyadiation intensity the UVA intensity was measured at the complete area with a UV-meter. The homogeneous area was marked and the cultures were irradiated in this area. The colar simulator, was switched on about 30 min prior to the spart of experiment. The absorption spectrum of the test item was deternmed in the range from 270-800 nm. The test item showed absorption maxima at 272.9 and 278.0 nm.

 $2 \times 104$  colls per well were seeded in 100 µL culture medium in two 96-well plates two plates, one was exposed to artificial sunlight, one was kept in the dark)

2 (Spe for Exposure to irradiation, one for treatment in the dark, further replicates as described under "Treatment". Solvent controls were measured 12 times)

24 Mafter seeding the cultures were washed with EBSS. 100 µL of the dissolved test item were added/well and the plates were pre-incubated for 1 hour in the dark. Afterwards one plate was irradiated at 1.65 mW/cm2 (4.95 J/cm2) for 50 min at 25-28°C, the other plate was stored for 50 min at 25-28°C in the dark. The test item was removed and both plates were washed twice with EBSS. Fresh culture medium was added and the plates were incubated overnight at  $37 \pm 1.5$  °C and  $7.5\% \pm 0.5$  CO2.

Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

| Cytotoxicity determination: | For measurement of Neutral Red uptake the medium was removed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | 0.1 mL serum-free medium containing 50 µg Neutral Red / mL være                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | added to each well. The plates were incubated for another 3 hours at 37%C hofers the medium was removed completely and the order was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | y c, before the medium was removed completely and the ceus were was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | washed with EBSS. For extraction of the dye $0.15$ mL of a solution of $40\%$ ( $y/y$ ) detention with $50\%$ ( $y/y$ ) at her $50\%$ ( $y/y$ ) ( $y/y$ |
|                             | 4970 (v/v) defonized water, 5070 (v/v) ethanoi and 170 (v/v) accreted to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | temperature and a brief agitation the plates were transferred to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | migroplate agained with a 540 pm filter to determine the processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | of the extracted dye. This absorband showed a linear relationship with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | the number of surviving cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. Evaluation               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | The mean absorption (OD540) value per concentration was calculated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | The ED50 values were determined by creve fitting by software. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | Photo-irritancy factor (PUF), as well as the Mean Phototoxic effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | (MPE) was calculated according to OEOD guideline 32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Evaluation criteria:        | PIF $\ll 2^{\circ}$ or MRE < 0.17 $\approx$ no phototoxic potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | PIE 2 and 2 5 or 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | MPE > 0.15 => probable phototexic potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Â                           | $\Psi$ IF > 5 or MRE 0.15 $=$ $\Psi$ photoexic potential $\Psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Acceptability criteria:     | - after irradiation with a LOVA dose of 5 Lem <sup>2</sup> the cell viability of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -<br>M                      | x solven controls >80% of not irradiated cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Â.                          | $2^{\circ}$ the positive control RIF between the two ED30 values is >6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ф (4                        | - the mean QD540 of solvent controls is > 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### II. Results and discussion

In the range finding experiment (RFE) and in the confirming experiment (CE) cytotoxic effects did not occur after exposure of fluorastrophy to the cells neither in the presence nor in the absence of irradiation with artificial sunlight. Therefore, ED, values or a PIF could not be calculated. The resulting MPE values were 0.033 and 0.009 respectively.

In the main experiment (ME) a slight cytotoxic effect occurred after irradiation of the highest tested concentration of 62.5  $\mu$ g/mL. The cell viability decreased to 60.40%. In the non-irradiated test group cytotoxicity was not detected Since the viability was not reduced below 50%, ED<sub>50</sub> values could not be calculated, following also a PIF value could not be determined. The MPE value was calculated as 0.154 indicating a phototoxic potential

However, the reason for the differing results of the RFE and the ME is most likely slight turbidity observed 5 minutes after preparation of the highest test frem concentration of 62.5  $\mu$ g/mL of the RFE and of the ME solutions. Obviously, the limit of solubility of the test item was reached with the concentration of 62.5  $\mu$ g/mL. According to the QFCD guideline no test item precipitation should occur in the irradiated cultures. Therefore, the confirmatory experiment was performed with a reduced highest test item concentration of 31.3  $\mu$ g/mL. Which completely confirmed the results of the RFE. According to these results the test item is classified as not phototoxic.

The mean of solvent control values of the irradiated versus the non-irradiated group met the acceptance of teria. The positive control chlorpromazine induced phototoxicity in the expected range in the presence of irradiation.

The results are summarised in the following tables.

R/

### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### Table 5.2.7-1: Optical density at 540 nm (OD<sub>540</sub> values) in the Neutral Red assay of the range finding experiment (RFE) Ø $\gg$

|            |                 |                 | · /                              |                                        |                    |                 | . ~               | , C   |
|------------|-----------------|-----------------|----------------------------------|----------------------------------------|--------------------|-----------------|-------------------|-------|
|            | <b>OD</b> 540 W | vith artificial | sunlight                         |                                        | OD540 wit          | thout artificia | al sunlight 4     | 0°    |
| Con-       | Mean            | SD              | % of                             | Con-                                   | Mean               | SD SD           | , 🕉 of 💍          |       |
| centration |                 |                 | solvent                          | centration                             | 4                  | È.              | solvent           | 1     |
| [µg/mL]    |                 |                 | control                          | [µg/mL]                                | 4                  | Ŭ               | 🗘 control         | Ĉo    |
|            |                 | Т               | reatment with                    | fluoxastrobir                          | n 💭                |                 | Z<br>Z<br>Z<br>Z  |       |
| Solvent    |                 |                 |                                  | Solvent                                | <u>v</u>           | ڻ<br>٢          |                   | l s O |
| control    | 0.6932*         | 0.0167          | 100.00                           | control                                | 0,7039*            | 0,0285          | ് 100,00          | Ů,    |
| 0.49       | 0.7348          | 0.0247          | 105.99                           | ¢ <sup>۲</sup> 0.49                    | <b>%</b> .7477     | 00151           | 100.23            | ×     |
| 0.98       | 0.7025          | 0.023           | 101.34                           | 0.98                                   | ‴≫0.76 <b>5</b> 9° | 0.0304          | 108.8             |       |
| 1.95       | 0.6944          | 0.0403          | 100.16                           | 1.95 💭                                 | 0,7\$76            | 0.0168          | 2107 62°          |       |
| 3.91       | 0.6834          | 0.0404          | 98.58                            | ی °3.91                                | 207205 0           | 0,00098 ≽       | × 10 <b>23</b> 5  |       |
| 7.81       | 0.6684          | 0.0527          | 96. <b>©</b> ″                   | @ 7 <b>.81</b>                         | × 0.730            | 0204            | 103.71            |       |
| 15.6       | 0.6277          | 0.0294          | <u>90</u> .55 🍙                  | 15.6                                   | 0.7235             | 0.0236          | @02.78            |       |
| 31.3       | 0.6414          | 0.0126          | ×92.52 ×                         | 31.3                                   | 0 <u>:0</u> 948 C  | 0.0101          | <sup>6</sup> 98.7 |       |
| 62.5       | 0.5875          | 0.0376          | 84.75 <sup>y</sup>               | @ 62,5%                                | Ø.5894 ×           | 000253 <u>×</u> | 83.33             |       |
|            |                 | Treatmen        | with positive                    | controlehlor                           | romazine           |                 | \$<br>0           |       |
| Solvent    |                 |                 | 100 . 18                         | Solvent                                |                    |                 | \$₽<br>N          |       |
| Control    | 0.7168*         | 0.086           | <u></u><br>$\hat{Q}$ 100         | Contro                                 | @,7314 <u>*</u> O  | 0.0226          | ≫ 100             |       |
| 0.125      | 0.7001          | 0,0962 %        | 97.69                            | 6.25                                   | Q 0.728            | 0.0226          | 99.52             |       |
| 0.250      | 0.0693          | Ø.0058          | × 267                            | 12.50 "                                | 0.467              | ا% 0.028        | 63.84             |       |
| 0.500      | 0.0712          | © 0.003         | . 9.94                           | 25.00                                  | QC1789 ~           | 0.0\$559        | 24.46             |       |
| 0.750      | 0.073 🗞         | y 0.0065        | 10.1                             | _√y 37.50 <sup>∿</sup>                 | Ø.0678             | <b>0</b> 0057   | 9.27              |       |
| 1.000      | 0.0701          | 0,0049          | b) 9Ø8 🎓                         | 50.00                                  | 0.0751             | s 00.0063       | 10.26             |       |
| 1.500      | 0.067           | <b>0</b> .0053  | <i>9</i> .45 S                   | <b>\$5.00</b>                          | 0.6569 🔎           | 0.005           | 7.77              |       |
| 2.000      | 0.0682          | L 0.004         | م <sup>ح</sup> 9.51 <sup>م</sup> | <b>100.00</b>                          | 0.0564             | 0.0045          | 7.72              |       |
| 4.000      | 0:0727          | 0.0086          | 10.15                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0.058              | 0.0046          | 7.98              |       |

\*

2.000 0.0082 0.0049 0.008 4.000 0.0082 0.0086 10.19 200.00 0.008 mean OD<sub>4</sub> (out of (2 wells of the first o

### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### Table 5.2.7-2: Optical density at 540 nm (OD<sub>540</sub> values) in the Neutral Red assay of the main experiment (ME) Ø $\sim$

|                 | ( )                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <b>OD</b> 540 W | vith artificial                                                                                                                                                                | sunlight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OD540 wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | thout artificia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al sun hight 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0°                                                     |
| Mean            | SD                                                                                                                                                                             | % of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SD SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 🗞 of 💍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
|                 |                                                                                                                                                                                | solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | centration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ð,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                 |                                                                                                                                                                                | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [µg/mL]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🗘 control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĉa                                                     |
|                 | Г                                                                                                                                                                              | reatment with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fluoxastrobir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>v</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ڭ ر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s.                                                     |
| 0.8069*         | 0.0822                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5%75*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , Ô <sup>¥</sup>                                       |
| 0.8381          | 0.0832                                                                                                                                                                         | 103.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¢ <sup>۳</sup> 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ø.7922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø0839 <sup>~</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                      |
| 0.8198          | 0.0489                                                                                                                                                                         | 101.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>≈</sup> ∕0.78 <b>4</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 106.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| 0.7513          | 0.0855                                                                                                                                                                         | 93.11 🛇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.95 💭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,7508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| 0.7187          | 0.058                                                                                                                                                                          | 89.0 <b>Z</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | چ 3.91 ک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 207591 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0513 🏾 🌣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
| 0.688           | 0.0608                                                                                                                                                                         | 85. <b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 7. <b>8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | @.0271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103.71 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| 0.6607          | 0.0705                                                                                                                                                                         | <b>\$1</b> .88 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>135.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gr02.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 0.5694          | 0.059                                                                                                                                                                          | ¥70.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~31.3 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 <del>.7</del> 289 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| 0.4874          | 0.0576                                                                                                                                                                         | Ø 60, <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | @ 62.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>g</b> \$9537 😤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
|                 | Treatmen                                                                                                                                                                       | with positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | controlichlory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pomazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|                 | ĺ ĺ                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
| 0.7433*         | 0.043                                                                                                                                                                          | 2 9 100 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>0</b> 7407*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>9</sup> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
| 0.669           | 0.0661 >                                                                                                                                                                       | y 90.01 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ° 6 <b>1</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | €×0.7476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø.0727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| 0.1044          | 0.0676                                                                                                                                                                         | ₫ <b>₽</b> .05 "Հ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.50 🗳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
| 0.0683          | © 0.005©                                                                                                                                                                       | \$9.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 091071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0,183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
| 0.0706          | 0.0067                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A 37.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,0079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
| 0.0744          | 0.0074                                                                                                                                                                         | 2 10.01 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °∼ Ø.0074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| 0.1002          | 0.05950                                                                                                                                                                        | Ø3.48 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0678 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓ 0.0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| 0.019           | ✓ 0.005                                                                                                                                                                        | 9.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~Õ100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
| 0721            | 0.6955 🔬                                                                                                                                                                       | 9:69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>≫</sup> 200 <b>.0</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |
|                 | OD540 W<br>Mean<br>0.8069*<br>0.8381<br>0.8198<br>0.7513<br>0.7187<br>0.688<br>0.6607<br>0.5694<br>0.4874<br>0.669<br>0.1044<br>0.0683<br>0.0706<br>0.0744<br>0.0083<br>0.0706 | OD540 with artificial           Mean         SD           0.8069*         0.0822           0.8381         0.0832           0.8198         0.0489           0.7513         0.0855           0.7187         0.058           0.6607         0.0705           0.5694         0.059           0.4874         0.0576           Treatment           0.7433*         0.043           0.669         0.0661           0.1044         0.0676           0.0706         0.0063           0.0706         0.0067           0.0744         0.0595           0.1062         0.0595           0.0714         0.0676           0.0721         0.6955 | OD540 with artificial sunlight           Mean         SD         % of solvent control           Treatment with         Treatment with           0.8069*         0.0822         100           0.8381         0.0832         103.86           0.8198         0.0489         101.6           0.7513         0.0855         93.11           0.7187         0.058         89.02           0.6607         0.0705         \$1.88           0.5694         0.059         70.57           0.4874         0.0576         60.44           0.7433*         0.043         100           0.669         0.0661         90.01           0.1044         0.0676         44.05           0.0683         0.0053         9.18           0.0706         0.0067         9.58           0.0744         0.0074         10.01           0.1044         0.059         43.48           0.0744         0.0053         9.68           0.0744         0.0053         9.68 | OD540 with artificial sunlight         Con-<br>centration<br>[µg/mL]           Mean         SD         % of<br>solvent<br>control         Con-<br>centration<br>[µg/mL]           Treatment with fluoxastrobin         control         0.08069*         0.0822         100         control           0.8069*         0.0822         100         control         0.49         0.49         0.8198         0.0489         101.6         0.98           0.7513         0.0855         93.11         1.95         0.7187         0.058         89.02         3.91           0.6607         0.0705         \$1.88         \$2.6         7.81         0.0667           0.5694         0.059         70.57         \$1.3         0.043         0.043         0.043         0.025           0.4874         0.0576         0.04         \$0.25         \$0.010         \$0.25         \$0.010         \$0.25           0.0683         0.0050         \$9.18         \$0.02         \$0.25         \$0.001         \$0.25           0.0683         0.0050         \$9.18         \$25.00         \$0.0043         \$0.00         \$0.0744         \$0.0074         \$0.00         \$0.0950         \$3.48         \$5.00         \$0.0744         \$0.00         \$0.0595         \$0.248 <td< th=""><th>ODs40 with artificial sunlight         ODs40 with artificial sunlight         ODs40 with           Mean         SD         % of solvent control         Con-centration [µg/mL]         Mean           Treatment with fluoxastrobin           0.8069*         0.0822         100         control         0.7975*           0.8069*         0.0822         100         control         0.7975*           0.8381         0.0832         103.86         0.49         0.7922           0.8198         0.0489         101.6         0.98         0.7848           0.7513         0.0855         93.11         1.95         0.7508           0.6688         0.0608         85.26         7.81         0.7649           0.6607         0.0705         81.88         13.6         0.7289           0.4874         0.059         70.57         31.3         0.7289           0.4874         0.0576         60.4         62.5         0.6222           Treatment with positive control chlor promazine         Solvent         0.74289           0.4874         0.0576         90.01         6.25         0.7476           0.669         0.0661         90.01         6.25         0.7476           0.7433*</th><th>ODs40 with artificial sunlight         ODs40 without artificial sunlight         ODs40 without artificial sunlight         ODs40 without artificial sunlight           Mean         SD         % of solvent control         Con-<br/>rentration         Mean         SD           0.8069*         0.0822         100         control         0.975*         0.1466           0.8069*         0.0822         100         control         0.975*         0.1466           0.8381         0.0822         100.6         0.98         0.7922         00839           0.8198         0.0489         101.6         0.98         0.7848         0.0343           0.7513         0.0855         93.11         1.95         0.7649         0.0185           0.6607         0.0705         81.88         13.6         0.754         0.0115           0.6607         0.0705         81.88         13.6         0.754         0.0175           0.6607         0.0705         81.88         13.6         0.754         0.0175           0.4874         0.0576         60.44         62.5         0.6223         90337           0.4874         0.0576         60.5         0.757         31.3         0.7407         0.0175           0.669<!--</th--><th><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></th></th></td<> | ODs40 with artificial sunlight         ODs40 with artificial sunlight         ODs40 with           Mean         SD         % of solvent control         Con-centration [µg/mL]         Mean           Treatment with fluoxastrobin           0.8069*         0.0822         100         control         0.7975*           0.8069*         0.0822         100         control         0.7975*           0.8381         0.0832         103.86         0.49         0.7922           0.8198         0.0489         101.6         0.98         0.7848           0.7513         0.0855         93.11         1.95         0.7508           0.6688         0.0608         85.26         7.81         0.7649           0.6607         0.0705         81.88         13.6         0.7289           0.4874         0.059         70.57         31.3         0.7289           0.4874         0.0576         60.4         62.5         0.6222           Treatment with positive control chlor promazine         Solvent         0.74289           0.4874         0.0576         90.01         6.25         0.7476           0.669         0.0661         90.01         6.25         0.7476           0.7433* | ODs40 with artificial sunlight         ODs40 without artificial sunlight         ODs40 without artificial sunlight         ODs40 without artificial sunlight           Mean         SD         % of solvent control         Con-<br>rentration         Mean         SD           0.8069*         0.0822         100         control         0.975*         0.1466           0.8069*         0.0822         100         control         0.975*         0.1466           0.8381         0.0822         100.6         0.98         0.7922         00839           0.8198         0.0489         101.6         0.98         0.7848         0.0343           0.7513         0.0855         93.11         1.95         0.7649         0.0185           0.6607         0.0705         81.88         13.6         0.754         0.0115           0.6607         0.0705         81.88         13.6         0.754         0.0175           0.6607         0.0705         81.88         13.6         0.754         0.0175           0.4874         0.0576         60.44         62.5         0.6223         90337           0.4874         0.0576         60.5         0.757         31.3         0.7407         0.0175           0.669 </th <th><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></th> | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |



### Fluoxastrobin Table 5.2.7-3: Optical density at 540 nm (OD<sub>540</sub> values) in the Neutral Red assay of the

|            | confir          | ming exper               | iment (CE)      |                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | ð                |
|------------|-----------------|--------------------------|-----------------|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
|            | <b>OD</b> 540 W | vith artificial          | sunlight        |                     | OD540 wit             | thout artificia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al sunkight         | ð,               |
| Con-       | Mean            | SD                       | % of            | Con-                | Mean                  | SD SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No of A             | 1                |
| centration |                 |                          | solvent         | centration          |                       | a start and a start a | Solvent             |                  |
| [µg/mL]    |                 |                          | control         | [µg/mL]             | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗘 control           | Ĩa               |
|            |                 | Т                        | reatment with   | fluoxastrobin       | n L                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                  |
| Solvent    |                 |                          |                 | Solvent             | <u> </u>              | Ú.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                  |
| Control    | 0.6533*         | 0.087                    | 100             | Control             | 0.5051*               | 0,0,915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S 100 /             | , Ó <sup>v</sup> |
| 0.24       | 0.6918          | 0.1229                   | 105.9           | ¢ <sup>۷</sup> 0.24 | Ø.7288                | ©1039 <sup>~</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.35              | ×                |
| 0.49       | 0.6795          | 0.0698                   | 104.02          | 0.49                | <sup>™</sup> 0.68652  | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.31 🎸             |                  |
| 0.98       | 0.6306          | 0.0417                   | 96.52 🖉         | 0.98 💭              | 0,706                 | ₹0.0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29100 H             |                  |
| 1.95       | 0.6136          | 0.029                    | 93.9 <b>Q</b>   | 6)°1.95,5           | ×0.6925               | 0,0388 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y 98%21             |                  |
| 3.91       | 0.6287          | 0.0227                   | 96.🕰 🖌          | Ø 3.91              | £0.77250°             | Ø.0771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.55 。            |                  |
| 7.81       | 0.6364          | 0.0459                   | <u>9</u> 2.41 🖉 | <b>7281</b>         | 0.6965                | ₀ <sub>∞</sub> 0.044Q″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ø98.77 ×            |                  |
| 15.6       | 0.6516          | 0.0319                   | <b>\$99</b> .74 | <b>15.6</b>         | 0. <del>6</del> 951 C | 0.01,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>~~</sup> 98,55 |                  |
| 31.3       | 0.625           | 0.0278                   | @ 95,67 ·       | <i>©</i> 31.3 √     | <b>0</b> .6699        | <b>g</b> \$164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l A                 |                  |
|            |                 | Treatmen                 | with positive   | contrôl chlory      | pomazine              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .Ø                  |                  |
| Solvent    |                 | <i>.</i> 0. <sup>×</sup> | ·0              | Solvent             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |
| Control    | 0.7103*         | 0.0873                   | 2 100 S         | Control             | Q.6915                | ©104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>*</sup> 100    |                  |
| 0.125      | 0.632           | 0.0295 %                 | 88.98           | 0 6 <b>15</b>       | €¥0.59 <u>9</u> 7     | @.0278 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.72               |                  |
| 0.250      | 0.2055          | ¥9.074&                  | 28.93 L         | 12.50 🖑             | 0.2007                | <u>ۇ 0.07</u> 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.02               |                  |
| 0.500      | 0.0628          | ©0.009©″                 | ×8.84           | 25.00               | 0,0624                | 0,0988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.02                |                  |
| 0.750      | 0.0712          | ₽ 0.0276                 | 10.02           | ⊘× 37.50×           | 0.071%                | 200262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.28               |                  |
| 1.000      | 0.0573          | 0.9057                   | 8.07            | 59,00               | 0.057                 | ∞0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.24                |                  |
| 1.500      | 0.05            | 0.001                    | Ø.65 S          | 75.00               | 0\$\$4 *              | 0.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.8                 |                  |
| 2.000      | 0.0571          | 0.002                    | 8.04            | ~Õ100.0 <b>9</b>    | Q.0568                | 0.0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.22                |                  |
| 4.000      | 0.055           | 0.6925                   | 7.74            | <u>~ 200.00 [</u>   | ©0.05#4               | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.86                |                  |

\*: mean OD out of 2 wells

Ò Summary of the results of the Neutral Red assay

| ÊŞ            | Substance<br>(+UV)<br>(µg/mL] | EP50<br>~(+UV)<br>~fug/mL | P        | MPE   | % viability of solvent<br>control of irradiated<br>vs. non-irradiated<br>plate |
|---------------|-------------------------------|---------------------------|----------|-------|--------------------------------------------------------------------------------|
| Range finding | Fluoxastroland 💭 🖓 🔿          | . 0                       | <i>~</i> | 0.053 | 98.5                                                                           |
| experiment 🔊  | Positive control ~ 0.18       | Å1¥.83 🏷                  | 83.63    | 0.787 | 98.0                                                                           |
| Main 🕰        | Fluoxastrobin 🖉 🚑 🔬           | Q* , Ŭ                    |          | 0.154 | 109.4                                                                          |
| experiment    | Posiți 🕼 control 🛛 🖗 18 🖉     | 1453                      | 80.84    | 0.739 | 100.3                                                                          |
| Confirming    | Flaoxastrobin 🥎 🖓             | ~ <u>^</u>                |          | 0.009 | 92.6                                                                           |
| experiment    | Positive control 0.20         | × 9.57                    | 48.36    | 0.706 | 102.7                                                                          |

PIF: Photo-Irritancy-Factor

Photo-Irritancy-Factor MRP. Mean Phototoxic Effect No cytotoxic effects occurred oper exposure of to the cells, neither with nor without irradiation with --: artificial sunlight? Therefore, ED<sub>50</sub>-values or a PIF could not be calculated. ¢

III. Conclusion

Based on the study results fluoxastrobin does not possess any phototoxic potential.

Table 5.2.74:



#### CA 5.3 Short-term toxicity

| CA 3.3                                   | Short               |                         | icity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . O°                 |
|------------------------------------------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Summary short-t                          | erm to              | <u>oxicity</u>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| Short-term toxicity nclusion of fluoxast | studies<br>trobin i | s summariz<br>nto Annex | ed in Tab<br>I of Directi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le 5.3-1 were<br>ve 91/414/EE | e evaluated<br>C (2008). | in the EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | peer review tor      |
| Fable 5.3-1Su                            | ımmar               | y of short-             | term toxici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ity studies                   | ×                        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| Study<br>Deses tested                    | Sex                 | NO(A)EL                 | LO(A)EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Main finding                  | s at LO(&)               | EL Õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference 0          |
| Doses lesteu                             |                     | Pl<br>(mg/kg            | hw/dav)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Å                             | 0×                       | t de la companya de l |                      |
| Rat                                      |                     | (ing/kg                 | Dw/uay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                             |                          | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 28-day oral (diet)                       | М                   | 100                     | 500 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | adrenal natha                 | Nov (small               | cyton Msmic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ý.                   |
| 0_100_500_2500_                          | IVI                 | (12)                    | (64) «                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vacuoles)                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                    |
| 10000 ppm                                |                     | (12)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          | V Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,<br>1997: M-012683- |
| $(M/E \cdot 0.12/11.64/55)$              | F                   | 100                     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INduced Cong                  | tigetivity               | plasma d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1))/, M-012003-      |
| 282/265 1020/14/1                        | 1                   | (11)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | right mides                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| $\frac{565}{205-1950}$                   |                     | (11)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          | . O* ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| (1000/E)                                 |                     |                         | 0° in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l O S                         | Ö <sup>y</sup> v         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| $\frac{100\% E}{28}$                     | 14                  | 100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | <u> </u>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 28-day oral (diet)                       | IVI                 |                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Neducea nepa                  | TICOACTIVITS (           | N-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,,                   |
| J-100-500-2500-                          |                     | (100                    | (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | demethylase z                 | stivity 9                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>1000 M 017457   |
| 10000 ppm                                |                     | and a start             | K and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                          | ð <sub>s</sub> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1999; M-01/45/-      |
| M/F: 0-10/9-50/43-                       | F                   | ~\$ <del>9</del> 00 %   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reduced pody                  | weight gair              | n Or (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64-1                 |
| 237/222-1017/892                         |                     | × (43)                  | (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | ~ ~                      | Ŵ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                    |
| ng/kg bw/d)                              | Č.                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | , Si                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 92:8 <i>E:Z</i> )                        | Ĭ~                  | 4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          | <u>v xv</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| 28-day oral (diet)                       | M                   | J00 0                   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | locauced Ocpa                 | ticactivity (            | N- <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,,                   |
| )-100-500-2500-                          | Ş                   | 0(7-8)                  | (34-42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | demethylase a                 | ictivity 5               | ~~ <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2002; M-040721-      |
| 10000 ppm                                | ¥                   |                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01-1                 |
| comparison of                            | - 40                | 500                     | ≈ 2500y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hepatic effect                | s ( <b>AS</b> ¥ ↓*~      | &£T↓, N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| Fluoxastrobin                            | ð,                  | (38-53)                 | (198-261)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | demethylase a                 | ictovity ↓),≪            | Irenal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| 99:1 E:Z)                                | S.                  | , O                     | × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pathol@y (cy                  | tomegaly in              | the cortex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| (M/F: 0-8/10-42/53- "                    | Ø .                 | , ¢                     | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 210/261-1906/1452                        | N.                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| mg/kg bak/d)                             |                     | 67 4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ô <sup>y</sup> W              | , O'                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| HEC 5725 A                               | ð,                  | Y L                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other comme                   | <u>ne</u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| (63:35 E:Z)                              | ř, î                |                         | N W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bothinaterial                 | s show very              | similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| (M/F: 0-7/7-34/38)                       | A                   |                         | V .V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NOÁEL 2011                    | LOAEL (mg                | /kg bw/d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| 81/198-801/1136                          | õ¥                  | N 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the ame                   | spectrum of              | effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| ng/kg bw/d)                              | Û,                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 90-day oral (diet)                       | MÕ                  | 105                     | \$1000 <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reduced hepa                  | tic function             | (plasma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;                    |
| 0-125/25                                 | Ô                   | A) (                    | (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trigiycerides .               | .)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                    |
| 1000/2000-                               |                     | .~~~,                   | Å.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ú <sup>y</sup>                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1998; M-012710-      |
| 3000/16000 ppm 🖌                         | F                   | A 2000 ×                | @6000 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reduced hepa                  | tic function             | (plasma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-1                 |
| M/Fr 0-9/22-70/163-                      |                     | (169*)                  | Q1416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | triglycerides .               | ), urinary tra           | act lesions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| 580/1416 mg/kg                           |                     | L .C                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (one animal),                 | *serum AL7               | ↓ <del>borderline</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| ow/d)                                    | 3                   | Į "Š                    | , and the second | of not an adve                | erse effect              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| (100% E)                                 | j k                 |                         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 4-week der hal                           | MÔ                  | 100                     | Q>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No adverse ef                 | fects seen at            | the top dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| 0-100-30 1000                            | Ŭ                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of 1000 mg/k                  | g bw                     | - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ; 2000;              |
| mg/kg by                                 | ₹F                  | \$1000                  | >1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-027714-01-1        |
| (99:12:Z)                                | \$*_>               | P.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| A A A                                    |                     | 1                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| * ***                                    |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Ĉĭ                                       |                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

# BAYER Bayer CropScience

# Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

| Study                           | Sex      | NO(A)EL                                | LO(A)EL                                 | Main findings at LO(A)EL                            | Reference       |
|---------------------------------|----------|----------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------|
| Doses tested                    |          | PI                                     | om                                      |                                                     | Į,              |
|                                 |          | (mg/kg                                 | bw/day)                                 |                                                     |                 |
| Mouse                           |          |                                        |                                         | ~                                                   | S . 'a'         |
| 2-week oral (diet)              | М        | 450                                    | 1800                                    | Reduced hepatic activity (reduced                   |                 |
| 0-100-450-1800                  |          | (92)                                   | (354)                                   | serum ALT)*                                         | 1999; M-018299- |
| ppm                             |          |                                        |                                         | 1                                                   | 0257 5 9        |
| (M/F: 0-20/37-                  | F        | 450                                    | 1800                                    | non-GLP limited endpoints                           |                 |
| 92/115-354/571                  |          | (115)                                  | (571)                                   |                                                     | j N O           |
| mg/kg bw/d)                     |          |                                        |                                         |                                                     |                 |
| (99:1 <i>E:Z</i> )              |          |                                        |                                         |                                                     | Q O S           |
| 3-month oral (diet)             | М        | < 450                                  | 450                                     | Raduced hepatic Rtivity (reduced                    |                 |
| dose-ranging study              |          | (< 81)                                 | (81) 🔏                                  | Frum ALT primarily in females *                     |                 |
| 0-450-1800-7000                 |          |                                        | ()                                      |                                                     | 1998, M-012706- |
| ppm                             | F        | < 450                                  | 450                                     |                                                     | 01-1            |
| (M/F: 0-81/135-                 |          | (< 135)                                | (135)                                   |                                                     |                 |
| 313/539-1304/                   |          |                                        |                                         |                                                     |                 |
| 2257mg/kg bw/d)                 |          |                                        | $\mathcal{A}$ $\mathcal{N}$             |                                                     |                 |
| (100% E)                        |          |                                        |                                         |                                                     | Q O             |
| Dog                             |          | ,,Ô                                    | ×                                       |                                                     |                 |
| 90-day oral (diet)              | М        | 50                                     | \$\$50                                  | No adverse effects set 5                            | ;;              |
| 0-25-50 ppm                     |          | (1.4**)                                | Cop> 1.5 Co                             |                                                     | ;               |
| (M/F: 0-0.7/0.7-                |          |                                        |                                         |                                                     | 2001; M-088674- |
| 1.4/1.5 mg/kg                   | F        | ی¥50 (                                 |                                         |                                                     | <b>401-1</b>    |
| <b>bw/d)</b> (99:1 <i>E:Z</i> ) |          | 1.5%                                   | S <sup>1.5</sup>                        |                                                     | ••              |
| 90-day oral (diet)              | M °∼γ    | × <100                                 | \$100\$                                 | Reduced by gain 4                                   | A;              |
| 0-100-800-2500                  | <i>«</i> | (53**) 0                               | (30)                                    |                                                     | ;               |
| ppm                             | S.       |                                        | Mar a s                                 |                                                     | 2001; M-088684- |
| (M/F: 0-3/3-25/24-              | ØF       | 1005                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Reduced by gain and lepatic function                | 02-1            |
| 76/75 mg/kg bw/d)               | × 0      | 2 ( <u>3</u> ***)                      | L' (24)                                 | $(PROT \downarrow, ACB \downarrow)$ uncreased serum |                 |
| (99:1 E:Z) O                    |          | × 4                                    |                                         | atcaline phosphatase                                |                 |
| 1-year oral (diag               | S.       | j⊙ 50 O″                               | Q\$0                                    | Micrea del serue alkaline phosphatase               |                 |
| 0-25-50-250-1200                | 10       | V (17)                                 | A (8)                                   |                                                     | ;               |
| ppm (M/F; 0/0.8/                | ×.       |                                        | S O                                     |                                                     | 2002; M-088509- |
| 0.7-1.7/1028/8-                 | . P      | ₹¥ <sup>50</sup> &                     | 250                                     | Koduced w gain and increased serum                  | 02-1            |
| 35/37 mg/kg bw/d)               | Š.       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | A48) *                                  | alkaline phosphatase                                | BCS response:   |
| (99:1 <i>E:Z</i> )              | Q`^      |                                        |                                         |                                                     | M-057922-01-1   |

\*serum ALT/AST deduction borgarline and not adverse effect (please refer to DAR Addendum 1), \*\* for setting overall 96 day NOAEL is dogs (aking it is a count effects seen in 1-year study), body weight effects are not considered be the critic of effect is a count of the second secon

### Details can be taken from the DAR and Addendum to the DAR:

Dietary studies in rai

Males were more sensitive three females to the effects of fluoxastrobin/HEC 5725 on the liver and urinary tract.

Changes in Szyme activity in liver tissue were seen: reductions in cytochrome P-450 related enzymes and increases in some phase B enzymes. Reductions in serum levels of triglycerides, ALT, AST, alkaline phosphalase also proole evidence of reductions in certain hepatic activity. Hepatic effects in the 90 day radiud vere eversible. Limited histopathological evidence of hepatic changes was seen only in 28 may studies: hepatocytomegaly with HEC 5725 A (63%:35% *E:Z*, mostly at a high dose) and reduced glycogen at a high dose of HEC 5725 (100% E). Reduced liver cell proliferation was observed at a high dose in a 28-day study with HEC 5725 (100% E).

Kidney/urethra/bladder lesions (calculi and /or hyperplasia/inflammation), increased calcium oxalate crystals in urine and increased serum calcium levels were seen at high doses in the 90-day rat study.

### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

These changes were further investigated in a special 9-week dietary study in rats, (please refer to MCA 5.8.2).

Two types of adrenal lesion showed an increased incidence: uniformly small cytoplasmic vaces in two studies (shown to be reversible), adrenal cytomegaly in another study at the two studies.

Some slight reductions in red blood cell parameters were seen at a high dose in the 90-day study

No substance-related adverse immunotoxic effects were seen, which sprees with the finding of special immunotoxicity study in mice and a new immunotoxicity study in rats (please refer to McA 5.8.2).

Fluoxastrobin (99% E: 1%E) and HEC 5725 A (63%E: 35%Z) were shown to have an almost mentic toxicity profile and NOAEL in a 28-day study of this response way also generated similar to the findings from 28-day studies with HEC 5725 (100% E) and Hoc 5725 N (92% E: 2%Z), 4

### Dietary studies in mice

Studies in mice indicated they were not a particularly sensitive species to the precise of fluorestroper.

In the range-finding 90-day study with HEC 5725 (200%, 1), his pathological changes in the liver (indicative of induction and toxicity) and reduced real block cell parameters were reported at high dose levels.

In a subsequent special 2-week, study, with throwaster bin a closes of up to 35,0571 mg/kg bw/day, there was evidence for hepatic induction (increased glutatione & transferase) and for educed hepatic activity (reduced serum alanine artinotrace rease activity). Liver cell proliferation was increased but this is not considered to be a clear adverse effect in the absence of proliferative kepatic lesions in the 90-day and carcinogenicity studies with mice

### Dietary studies in dog

Reduced body weight gao was a key finding in dog Sudies with thoxast obin. However the findings were not consistent between studies with respect to the effect on body weight gain over the first 3 months (see Toble BG 20 of the DAR). A king into a count the observed variability, it is considered that 250 ppp (8 mg/kg bw/day) as the overalt NOAbl. for effects on body weight after exposure for 3 months (irom days (ito 84 of 91) based on effects at 600 ppp) and above. (The overall 90-day NOAEK or dogs is based on observed serum alk One physical set based on the physical set based on the

Reduced body weight gain was also seen over the first week of exposure at 800 ppm and above and this seemed to bedue in arge beasur to a reduction in food consumption over this period, (see Table B.6.20 of the DAR). Sowers as mean body weight los of 0.5-0.7 kg was seen over the first week at 3,000 ppm it ould seem router to consider 1,200 ppm as a NOAEL of possible relevance for setting an acute reference dose. Mean bot subjunce otakes over the first week of exposure were c. 40 mg/kg bw/day a 9,000 ppm and c. 30 mg/kg bw/day at 1,200 ppm.

There was evidence of both herefic induction (eg hepatocytomegaly, increased cytochrome P450 activity) and impaired indicion activity (eg <u>deduced</u> serum albumin and cholesterol and <u>increased</u> alanine aminotomsferase and gample glutomyl transpeptidase). Marked increases in absolute and relative liver weight of males also suggest potentially adverse effects but there was no histopathological condence of liver dample.

Hepatic, fiduction probably occunted for the observed transient decrease in serum levels of the thyroid hornone 7 in 7 90-day study, which is consistent with the increase in UDP-glucoponos firansito as activity. The study investigators also propose that hepatic induction may have resulted increase erythrocyte viability in a 90-day study.

Kidney Effects included degenerative histological changes and increased pigmentation.

Alkaline phosphatase activity was increased in dogs (it is notable that the serum activity of this enzyme was <u>reduced</u> in the 90-day rat study). Although it is possible that this increased enzyme



activity could reflect hepatic induction, it can also be indicative of toxicity to liver, intestine and bone. It is considered necessary to regard the increased activity as a potentially adverse effect because: 🖉

- there was evidence of impaired hepatic function in the dog (although increases in Akaline® phosphatase were seen at a lower dose than clear increases in alanin Caminotrans Gase gamma glutamyl transferase).
- the potential for effects on bone (effects were seen in rats at the top dose after 2 years, see • Section B.6.8.4.c of the DAR). It is notable that Educed serum calcium levels were observed in dogs, and bone was investigated directly in dogs only by histopathological paminunon following standard H and E staining (there were no specialised investigation) of bre dogs).

#### Dermal study in rats

In a 4-week dermal study with fluoxastroph in Rs, wither system toxicological importance were observed up to the highest dosp level @sted (1,000 mg/ks tw/day). The study included an investigation of score clinical chemistry parameters of hepatic activity but there was no investigation of effects on calcium and phosphorus humeosters. Fitroxasters bin was more than the state of th with water, which is not representative of the SC formulation for which pproveds sought.

Overall 90-day NOAEL in dogs 5 100 from (3 mg/kg bw/dg) bacd on chereas d serum alkaline phosphatase at 250 ppm after 87 days to the 13/ear of study. This is a so supported by effects at 800 ppm in the first 90-day do study.

#### Conclusion from the EFSA Scientific Report (2007) 102 1-84, Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin figalised 13 June 2007" on short-term toxicity: Ő O

The short-term toxic of fluoxast obin he been nvestbated in dieta studies in rats (28-day and 90day studies), mice & week and 29 day and does (90 day and 1-yee studies). A 28-day dermal toxicity study in outs has also been conducted,

The liver is the main farget of gan in all tested sportes (res, mist and dogs). Histological changes were seen in the grinary system of rate high Aoses) and dog. Male rates are more sensitive than females to the effects of fluoxastrobin/40-C 5,05 on the liver and urinary tract. Other target organs were adrenals erythrocytes and the Did. Reduced body Deight gain was a key finding in dog studies.

In a 28-day derned study with fluor strobin in ros, neither systemic nor local skin effects of toxicological imp@rtang were beerval up to the highest dose level tested (1000 mg/kg bw/day).

No repeated the inkalation were showing no required.

The NOAL in the 1-year dog Sudy of 1.5 mg/kg J%/day (time point 12 months). The overall short term NQEEL in dogs is 3 mgQg bw/day based on increased serum alkaline phosphatase at 8 mg in the

term NCREL in dogs 15/3 mg@g bw/day backd on pricreased serum alkaline phosphatase at 8 mg in the 1-year dog study a the 90 day time post. This is also supported by effects observed at 24 mg/kg bw/day in the first 90-day dog study.



**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

CA 5.3.1 Oral 28-day study All necessary studies were presented and evaluated during the EU process for Annex I listing. Pease



#### **Genotoxicity testing** CA 5.4

Genotoxicity tests summarized in Table 5.4-1 were evaluated in the EU peer eview for inclusion of fluoxastrobin into Annex I of Directive 91/414/EEC (2008), new studies are added

A.

|                                         |                                          | in the second se | a                                                                                                               |                                         |
|-----------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Test System                             | Concentration/                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Te@/item,                                                                                                       | Reference 0                             |
| ·                                       | Dose                                     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bourity (E:                                                                                                     |                                         |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zisomer                                                                                                         |                                         |
|                                         |                                          | A. Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ratio)°                                                                                                         |                                         |
|                                         | La L | Witro 🕎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                         |
| Ames test                               | Up to 5000 µg/plate (plate               | Negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEC 5725                                                                                                        | ALL |
|                                         | incorporation)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.9 (20:0) 5                                                                                                   | 1996; M-012700-                         |
|                                         | Up to 3162 µg/plate (with pre-           | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                         |
|                                         | incubation)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A S                                                                                                             |                                         |
| Ames test                               | Up 5000 µg/plate (plate                  | Negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPEC 5725 N                                                                                                     | : 1998;                                 |
|                                         | incorporation and pre-ingoation          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.7 (92:8)                                                                                                     | M-@r2732-@1-1                           |
| Ames test                               | Up 5000 μg/plate (plate                  | Negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluoxastrokun                                                                                                   | ; 2006;                                 |
|                                         | incorporation and profincubation)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 903 0                                                                                                           | M-278030-01-1                           |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $k^{\prime} \approx .6$                                                                                         | , 'Y                                    |
| Chromosome                              | Up to 320 µg/ml 🔗 🗞                      | Nogative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEÇ 5725, O                                                                                                     | カ; 1996;                                |
| aberration                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98 9(100:8)                                                                                                     | M-012703-01-1                           |
| V79 cells                               |                                          | × 10° 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                         |
| Forward                                 | Up to 200 pg/ml                          | Negative 🔊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HEC 5 25, ~~                                                                                                    |                                         |
| mutation assay                          |                                          | A O' &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98,9 - 99.4                                                                                                     | ,; 1997; M-                             |
| V79-HPRT                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (160:0)                                                                                                         | 012722-01-1                             |
| Forward                                 | Up to 160 µg/ml S ~                      | Negevive O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluoxastrobin                                                                                                   | ; 2003;                                 |
| mutation assay                          |                                          | *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.7 (9:1)                                                                                                      | M-078586-01-1                           |
| V79-HPRT                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | star and a star a st |                                         |
| (                                       |                                          | yvivo of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŵ                                                                                                               |                                         |
| Micronucleu                             | Up to 300 mg/kg b@day, 🔬 🔬               | Negotive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Muoxastrobin,                                                                                                   | R; 1999;                                |
| test                                    | administered on 2 days bop               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.5 (99:1)                                                                                                     | M-012747-01-1                           |
| NMRI nace                               |                                          | Stear exidence Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                         |
| , i i i i i i i i i i i i i i i i i i i |                                          | systemic toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                         |
|                                         | 5 6 7 7 6                                | and Oor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                         |
|                                         |                                          | fluoxastration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                                         |
|                                         |                                          | Ond/or Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                         |
| A C                                     |                                          | metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                         |
| A                                       |                                          | rea@ning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                         |
| Į,                                      |                                          | bone marrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                         |

Table 5 4-1. Summary of genotoxicity studies

Some uncertainty as to the sensitivity of this Ope of assay. RMS prefers a mouse lymphoma assay.

EFSA Scientific Report (2007), 192, 1-84, "Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin finalised: 13 June 2007" on genotoxicity:

There is no order to of good and potential of fluoxastrobin in any of the submitted genotoxicity studies. However most of vitre studies were conducted on material of higher purity than that for which approval sought. Hence for additional easier once that the impurities in fluoxastrobin are not of genotoxic concern, the

applicant we asked to conduct an Ames study with a representative final full production batch. The issue of to acological effects of impurities has been discussed in the experts' meeting where a review of the too city data on different batches and impurities summarised in the addendum 1 to the DAR was reviewed. The meeting agreed that a satisfactory investigation of the impurities had been performed and no further genotoxicity data were required.

#### **Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

A new Ames test was performed in 2006 with a representative final full production batch which also supports the new technical specification. The new Ames test confirmed that there is no evidence of a genotoxic potential of fluoxastrobin.

#### Photomutagenicity

According to the new data requirements (COMMISSION REGULATION DEU) No 283/2013 of March 2013; Official Journal of the European Union, L 93/1, 3.4.2013), special testing requirements in relation to photomutagenicity may be indicated by the structure of a molecule. If the Ultraviolet/visible molar extinction/absorption coefficient of the active substance and its moor metabolites is less than 1000 L  $\times$  mol<sup>-1</sup>  $\times$  cm<sup>-1</sup>, photomutagenicity testing is not regured.

et al., 2011 (Considerations on photochemical genotoxicity. II: Report of the As described by 2009, International Workshop on Genotoxicary Testing Working Group M-528387-0121), photogenotoxicity testing and photosafety testing in general should follow are red approach.

The first tier is the molar extinction coefficient, will no photosafety testing required for compounds with a molar extinction coefficient below 1000 Lo mole cm? As the molar extinction coefficient of fluoxastrobin exceeds this limit, it was tested in a standard phototexicity study and was shown to be negative (see MCA 5.2.7, document M@97574/01-1)

The second step of the evaluation process is triggered by the results of the phototoxicity study, and the following is found on page 99 of the cited reference:

"If an in vitro 3T3 NRU phototoxicity test is negative there is no need for a photogenotoxicity study. Given the similarity of the underlying principles involved in inducing the different endpoints it is very unlikely that a clearly kon-phototoxic compound could have a pelevant photogenotoxic potential."

Based on this statement by the International Working Group on Genotoxisity Testing in 2009, photomutagenicity testing of Juoxastrobin is not traggered and ionot required

Moreover, for photomutagenicity testing agreed test methods or guidance documents are not yet available.

### In votro studies

CA 5.4.1 In votro studies



**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

#### I. Materials and methods A. Materials 1. Test material: Fluoxastrobin technical Description: Fine white powder BID 4012-143 Batch no: 95.3% Purity: guaranteed for study duration; expiry date: 2009-06-26 Stability of test compound: 2. Vehicle and/or positive control: DMSO: Sodium ažide (Na-azide), Nitrofurantoin (NF), 4-perce 1,2-phenylene diamine (4-NPDA), Cumene hydroperoxide (Cumene), 2-aminoanthracene (2-A°A) deionised water mitomycin C (MMC) 3. Test system: Salmonella typhimurium strains TA1935. TA98, JA102 Metabolic activation: S9 mix **B.** Study design and methods 1581-000 µg/plate Eluoxastrobin:@-16-56-158-600 Dose: Positive controls: **@**µ́g/plate 0.2 µg/plate $0.5+10 \,\mu g/plate$ 0.2 µg/plate 50<sup>°</sup> μg/plate µg/plate Application volume Incubation time: 🔊 48 hrs. 3 II. Results and discussion Doses up to and oncluding 5000 µg per plate fluoxastrobin, showed no bacteriotoxic effects. Substance precipitation started at 1580 µg per plate. Therefore 5000 and per plate could not be used for

Ĩ assessment. Evaluation of individual dose groups with respect to recevant assessment parameters (dose effect,

reproducibility) revealed no pologically relevant variations from the respective negative controls. In spite of the low doses used, positive controls increased the mutant counts significantly compared with negative controls, and thus demonstrated the system's high sensitivity.

Despite this sensitivity, no indications of mitagenic effects of fluoxastrobin could be found at assessable doses of up to \$81 µp per plate in any of the Salmonella typhimurium strains used.

er per plate in any

### Table 5.4.1-1: Summary of results

| - 4010 0.711 1  | Jul                                         |                                         |                                                                                                                 |                                   |                                              |                     | ^^            |  |  |
|-----------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|---------------------|---------------|--|--|
|                 |                                             | <b>.</b>                                | Mean                                                                                                            | revertants per                    | plate                                        |                     |               |  |  |
| Substar         | nce                                         | S9 mix                                  | TA 1535                                                                                                         | T + 100                           | Strain                                       | <b>A</b>            | ja of         |  |  |
| Dose (µg/]      | plate)                                      |                                         | 1A1535                                                                                                          | 1A100                             | 1A1537                                       | U'A98               | OF ATU2       |  |  |
| F1              | 0                                           |                                         |                                                                                                                 | e incorporation                   | 7                                            | <u></u>             |               |  |  |
| Fluoxastrobin   | 0                                           | -                                       | 11                                                                                                              | 97                                |                                              | 26                  |               |  |  |
|                 | 10                                          | _                                       | 13                                                                                                              | 107                               |                                              |                     |               |  |  |
|                 | 50                                          | —                                       | 16                                                                                                              | 10/ 0                             | 5 08                                         | 26%                 |               |  |  |
|                 | 158                                         | _                                       | 13                                                                                                              | 105 *                             | R.                                           | <b>S</b>            |               |  |  |
|                 | 500                                         | -                                       | 11                                                                                                              | Ð.                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       | ×28 ~               |               |  |  |
|                 | 1581                                        | -                                       | 10                                                                                                              | _104                              | Q <sup>3</sup> <sup>°</sup>                  |                     | 0210 v        |  |  |
|                 | 5000                                        | _                                       | -                                                                                                               | Q0 <sup>40<sup>4</sup></sup> 73   | <u>~ _0`</u>                                 | ~~ (0)              | <u>ò Qʻ</u>   |  |  |
| Na-azide        | 10                                          | _                                       | 663                                                                                                             | & B°                              |                                              | Ø D` >              |               |  |  |
| NF              | 0.2                                         | _                                       |                                                                                                                 | o <sup>v</sup> 262 /              | <u>~</u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                     |               |  |  |
| 4-NPDA          | 10/0.5                                      | -                                       | .1                                                                                                              |                                   |                                              | 157                 |               |  |  |
| MMC             | 0.2                                         | _                                       | s s s s s s s s s s s s s s s s s s s                                                                           |                                   | s A                                          |                     | × 47          |  |  |
| Fluoxastrobin   | 0                                           | +                                       | 14                                                                                                              | 100                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       | y <u>38 _</u> <     | ) <u>2</u> 37 |  |  |
|                 | 16                                          | +                                       | Star in the second s | ~~ <u>%</u> 08                    | × × 8 &                                      | J 40 Š              | ©255          |  |  |
|                 | 50                                          | +                                       | L <sup>012</sup>                                                                                                | ′ <sub>∿</sub> ∽¶23 √∂            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       | S 45                | <i>Q</i> 286  |  |  |
|                 | 158                                         | +                                       | Q* 10                                                                                                           | 114                               | p' o a                                       |                     | 274           |  |  |
|                 | 500                                         | +                                       | , Ľ                                                                                                             | ~ 126                             | N 46 8                                       | , 0 <sup>39</sup> ( | 235           |  |  |
|                 | 1581                                        | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | `~? <sup>9</sup>                                                                                                | 018                               |                                              | 0° 41 0             | 194           |  |  |
|                 | 5000                                        | +20                                     | <u> </u>                                                                                                        |                                   |                                              | <u> </u>            | -             |  |  |
| 2-AA            | 3                                           | <u> </u>                                | <u>0.155 m</u>                                                                                                  | <u> </u>                          | <u>~~</u>                                    | <u>× 1091</u>       | 664           |  |  |
|                 |                                             | ·× A                                    | Y Pr                                                                                                            | evincubation                      | $\langle \nabla $                            |                     |               |  |  |
| Fluoxastrobin   |                                             | ) – Ş'                                  |                                                                                                                 |                                   |                                              | × 19                | 213           |  |  |
|                 | 165%                                        |                                         |                                                                                                                 | <u>⇒</u> 136≈                     |                                              | N 17                | 233           |  |  |
|                 | <b>\$0</b>                                  | OF SA                                   |                                                                                                                 |                                   | \$ 4 <sup>8</sup> Q                          | 19                  | 231           |  |  |
|                 | J58                                         | \                                       | ( <u>14</u> ~                                                                                                   | × 2188 ×                          |                                              | 20                  | 228           |  |  |
| -               |                                             | .0                                      | 014 60                                                                                                          | ي 151 €                           | 6                                            | 14                  | 242           |  |  |
|                 | <sup>©</sup> 1584 <sub>6</sub> <sup>×</sup> | w .                                     |                                                                                                                 | × 144S                            |                                              | 13                  | 202           |  |  |
|                 | 5000                                        | <u> </u>                                | i s                                                                                                             | <u>6 109</u>                      | <u>0                                    </u> | -                   | -             |  |  |
| Na-azide        | 10                                          | 9 - 28                                  | <b>6</b> 62                                                                                                     |                                   |                                              |                     |               |  |  |
| NF «>>          | 0.2                                         | 2                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                          | مَحْ 493                          | AN A                                         |                     |               |  |  |
| 4-NPDA          | 10/05                                       | × i                                     |                                                                                                                 |                                   | 116                                          | 141                 |               |  |  |
| Cumene          | ©50                                         | A - S                                   | / &`.*                                                                                                          |                                   | Õ,                                           |                     | 445           |  |  |
| Fluoxastrobin   | 0, 00                                       | <u> </u>                                | <u></u>                                                                                                         | . N185 🖗                          | 10                                           | 29                  | 299           |  |  |
| $\sim$          | ) 160 (                                     | ~~~ <i>`</i>                            | ·گر 13 م                                                                                                        | مُرْ 194                          | 7                                            | 33                  | 273           |  |  |
|                 | 50                                          | ·0~+ <                                  | ) 13                                                                                                            | 65° 1.00                          | 7                                            | 24                  | 257           |  |  |
| Ĩ               | 158 (                                       | \$ + ^ <sup>*</sup>                     | ØØ 🌋                                                                                                            | y <u>\$</u> 201                   | 9                                            | 29                  | 254           |  |  |
|                 | 500                                         | , + ×                                   | ~ 10 5                                                                                                          | <sub>م</sub> ي×ي <sup>7</sup> 166 | 10                                           | 30                  | 274           |  |  |
| k≪              | 1581                                        | A v.                                    | & 12 <i>©</i>                                                                                                   | 194                               | 7                                            | 31                  | 272           |  |  |
| "¥              | 5000                                        | <u>i</u> + <u>i</u>                     | × <u>~</u> ×                                                                                                    | 0 <sup>×.</sup> -                 | -                                            | -                   | -             |  |  |
| 2-AA            | @ <sup>°3</sup>                             | + 4                                     |                                                                                                                 | 1487                              | 335                                          | 1152                | 615           |  |  |
|                 |                                             |                                         |                                                                                                                 |                                   |                                              |                     |               |  |  |
| III. Conclusie  |                                             |                                         |                                                                                                                 |                                   |                                              |                     |               |  |  |
| Fluexastrobin   | has to be                                   | régarded                                | as non-muta                                                                                                     | igenic.                           |                                              |                     |               |  |  |
| Č0 <sup>*</sup> |                                             |                                         |                                                                                                                 |                                   |                                              |                     |               |  |  |
|                 |                                             |                                         |                                                                                                                 |                                   |                                              |                     |               |  |  |



All necessary studies were presented and evaluated during the EU process for Annex I listing. Please Please

A definition of the providence of the providence

### CA 5.5 Long-term toxicity and carcinogenicity

#### Summary long-term toxicity

Long-term and carcinogenicity studies summarized in Table 5.5-1 were evaluated in the EU per review for inclusion of fluoxastrobin into Annex I of Directive 91/414/EEC (2008).

1

| Table 5.5-1 Summary of long-term and carcinogenicity studies w |     |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |     |  |
|----------------------------------------------------------------|-----|--------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----|--|
| Study type                                                     | Sex | NOAEL              | LOAEL                                  | Findings at LO(A)E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference 0                   | Ø   |  |
| Doses tested                                                   |     | pr                 | m                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 0 J A .                     | 6×  |  |
|                                                                |     | (mg/kg             | bw/day)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | , ° |  |
| 2-year chronic tox.                                            | М   | 1000               | 5000                                   | Toduced bw gains of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,; ,Ç                         |     |  |
| /carcinogenicity rat                                           |     | (53)               | (272)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>\</u>                      |     |  |
| (diet)                                                         |     |                    | <u> </u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2001; M-                      |     |  |
| M: 0-40-100-1000-                                              | F   | 500                | 2506                                   | rofuced two gain a start of the | 137193-01-1                   |     |  |
| 5000 ppm (0-2-5-53-                                            |     | (35)               | (181)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |     |  |
| 272 mg/kg bw/day)                                              |     |                    | \$ N                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BC&response                   |     |  |
| F: 0-100-500-2500-                                             |     |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M_057922-01-1,                |     |  |
| 12500 ppm (0-7-35-                                             |     |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>M</b> -0822 <b>4</b> -01-1 |     |  |
| 181-1083 mg/kg                                                 |     | 0                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BCSgesponse                   |     |  |
| bw/day)                                                        |     | Ŵ,                 | A- A-                                  | test substance not owogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w update                      |     |  |
|                                                                |     |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-549514-01-1                 |     |  |
| 18-month                                                       | Μ   | ~~ <sup>00</sup> ~ | 4200                                   | ocr. relative live, weight, (redioe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d 🚆 ; 2001;                   |     |  |
| carcinogenicity                                                |     | × (135)            | 8 <sup>76)</sup> 4                     | plasma ALT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ₩ M-072442-01-1               |     |  |
| mouse                                                          |     |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |     |  |
| (diet)                                                         | F   | 100                | Q 7005                                 | (reduced clasma ALT)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BCS response                  |     |  |
| 0-100-700-4200 ppm                                             | ×,  |                    | (20)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-057922-01-1                 |     |  |
| (M: 0-19-135-776                                               | Ş   |                    | 0.5                                    | No adverse effect observed at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |     |  |
| mg/kg bw/day                                                   | 5   |                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | top dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |     |  |
| F: 0-30-204-1265                                               |     |                    | $\sim$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |     |  |
| mg/kg bw/day)                                                  | ð   |                    | 1.0 <sup>7</sup> 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |     |  |
|                                                                | Ç×  |                    | L Š Š                                  | <u>test substancesnot oncogenic</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |     |  |

| Table 5 5-1  | Summary | of long_term | and carcino | genicity studies |
|--------------|---------|--------------|-------------|------------------|
| 1 abic 3.3-1 | Summary | or rong-term | and carcino | genicity studies |

M: males, F: females; not considered adverse (see DAR Addendum 1)

EFSA Scientific Report (2007) 102, 1-84, Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluox strobin finalised: 13 fune 2007" on long-term toxicity:

A chronic toxicit care to generate the starty in tasts and a care to genicity study in mice with fluoxastrobin (99% E : 1% 20% ere Onduced.

There was no evidence of sub-once-related incogenic response in either species. A higher incidence of utering adenocarcing and in high the real compared to concurrent controls was noted; possible influences of fluoxastrobin on the temale indocone system (including mechanistic information) was discussed at the experts' meeting. The applicant provided further information (particularly for controls in the concurrent study mentioned in the DCR, M-082214-01-1; as requested by RMS UK in their letter COP 2016/00206, Ref W0017216420BCS response is updated in new document M-549514-01-1) to support the view that the increased incidence of uterine lesions at the top dose (adenocarcing and focal grandulty hypeoplasing are more substance related and hence are not of concern for hazard or risk assessment of fluoxastrobol. Notably:

- 1. Occurrence of these turburs was similar in high dose and study controls, and also as compared with constrols in a consumment study.
- 2. The Ocidence of focal and diffuse glandular hyperplasia at the top dose was lower than the incidence of glandular cystic hyperplasia in controls in a concurrent study (the applicant indicates that, although the terminology differs slightly, the lesions are comparable).



#### **Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

- 3. As reported in the DAR, incidence of adenocarcinoma at the top dose was lower than in controls in the concurrent study.
- with 4. There were no significant effects on reproductive performance in the multi-generation study fluoxastrobin (indicating that fluoxastrobin does not induce endocrine effect

In addition to glandular hyperplasia, also endometrial hyperplasia and metaplasia were seen dur study. The rapporteur Member State considered that these other hyperplastic lesions do tot supp evidence of a substance related effect.

The experts' meeting agreed that the historical control data and particularly dat@from\_a concurrently suggested that the finding of utering adenocarcing ma was inglental and t@at concurrent control was low.

Adverse Adaptive effects on the liver (reduced functional capacity, as shows by reduced plasma and/or AST) were seen in both rats and mice increded liver weight and hepatorellular were also seen in mice.

There was evidence of altered calcium and phosphate meosphis in Trats notably decreased phosphate excretion and decreased caloum content of bone How over there were no stear substance related pathological effects on the kide y ocurinary blade of raps or more.

related pathological effects on the kindley or unan operators in Orats portably decreased related pathological effects on the kindley or unan operators in monotopy of the end o

#### CA 5.6 **Reproductive toxicity**

#### Summary reproductive toxicity

Reproductive and developmental toxicity studies summarized in Table 5.6-1 were evaluated in the Deper review for inclusion of fluoxastrobin into Annex I of Directive 91/414/EØC (2008).

| 1 abic 5.0-1.      | Jummary of reprodu                            |                                                       | ientar toxicativ studies     |                  |
|--------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------|------------------|
| Study type         | NOAEL                                         | LOAEL                                                 | Effects at LOAEL             | Reference 0      |
|                    |                                               | e v                                                   |                              | J J A            |
| 2-generation rat   | Parental toxicity                             | Parental togicity                                     | Reduced by gain, ocr.        |                  |
| (diet)             | 1000 ppm                                      | 10000 ppm                                             | liver weight, reduced        |                  |
|                    | (74-87 mg/kg bw/d)                            | (764-85 mg/kg                                         | symus@reight \$              | ; 2004QM-        |
| Dose: 0-100-1000-  |                                               | bw/d)                                                 |                              | 088589-0221      |
| 10000 ppm          |                                               |                                                       |                              | e 4              |
| (Premating:        | Reproductive                                  | Reproductive                                          | adver@ effects on            |                  |
| M: 0-6.8-74-764    | outcome:                                      | putcome.                                              | reproductive officome        | LE L             |
| mg/kg bw/d         | 10000 ppm                                     | >10000 ppm                                            |                              |                  |
| F: 0-8.1-87-871    | (742-764 mg/kg                                | (~~42-764 mg/kg~                                      |                              | Ç <sup>®</sup> O |
| mg/kg bw/d         | bw/d) _O♥                                     | <b>Sy</b> /d) <b>S</b>                                |                              | 0<br>Ø           |
| Gestation:         | Ô <sup>Y</sup> .                              |                                                       |                              |                  |
| 0-7-75-742 mg/kg   | Developmental                                 | Developmered C                                        | Reduced body weight          | , * ¥            |
| bw/d               | toxicity ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | toxicity of                                           | gand delayed                 |                  |
| Lactation:         | 100 <b>0</b> pror*                            | \$\$000 ppm*                                          | development (delay in        |                  |
| 0-16-171-1625      | (1671 mg/kg W/d                               | (1625 <del>7)</del> mg/kg                             | preputial separation)        |                  |
| mg/kg bw/d)        | in lactating dams)                            | bw of in lactating                                    | reduced thy fous and         |                  |
|                    |                                               | donis)                                                | spleen weight                |                  |
| Developmental      | Materno toxicto                               | Maternet toxicity                                     | Oo adverse effects           |                  |
| toxicity, rat      | 1000 mg/kg w/d                                | >1000 mg/kg w/d                                       |                              | ;                |
| (gavage)           |                                               |                                                       |                              | 1007 M           |
| D                  | evelopmental &                                | Developmental                                         | adverse effects              | ; 1997; M-       |
| Dose: $0-100-300-$ | 0 0 x 1 c (t) 0 0                             | 1000 mg/left                                          | ONLa targeta comia officiata | 012/25-01-1      |
| Douolonmoral       | 1000 mg/kgaw/u                                | >1000 mg/kg bw/d                                      | No kindlogenic effects       |                  |
| tovicity           | Demalka Such a                                | 100 mg/lsbw/d                                         | Reduced 100d                 | ,,<br>1000: M    |
| (gayaga)           | G <sup>9</sup> IIIg/KG OW/U №                 |                                                       | Consumption, slight          | 1999, M-         |
| (gavage)           |                                               | ¢ <sup>×</sup> <sub>k</sub> <sup>×</sup> <sub>k</sub> | distinct weight loss         | 01/440-01-1      |
| Dose: 0-25-100-400 |                                               |                                                       | distillet weight 1055        |                  |
| mg/kg hw/d         | Develop Pentale?                              | Developmental                                         | Slight dilation of brain     |                  |
|                    | otoxicia ~~ ~                                 | Joxicity                                              | ventricles                   |                  |
|                    | 100 g/kg W/d                                  | 400 mg/kg bw/d                                        |                              |                  |
| A h                |                                               |                                                       | No clear evidence of         |                  |
| L.                 |                                               |                                                       | teratogenic effects          |                  |

\* A conservative NOAEL for ed of only visight effect (reduced thymus weight) in pups at 1,000 ppm. Addendum 4 to the DAR (August 2004): The additional histological investigation of the thymus of F2 pups from Automating + to the DAK (regust 2004): The additional histological investigation of the thymus of F2 pups from control and 1000 ppm dose groups grovided sufficient evidence to support raising the NOAEL for developmental offects in the gat multigeneration study to 1000 ppm, which is in line with the applicant's proposal. At the next higher bose (10000 ppm) there were clear adverse effects on pups (reduced body weight gain, delayer development, reduced thymus and spleen weight).

EFSA Spientifie Report (2009) 102, 1-84, "Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin finalised: 13 June 2007" on reproductive and deselopmental toxicity:

A 2-generation reproductive toxicity study in rats and a developmental toxicity study in rabbits were conducted with a batch of fluoxastrobin that was quantitatively very similar to the preliminary proposed technical specification. The developmental toxicity study in rats was conducted with HEC

### **Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

5725 (a.s 100% E isomer, 98.9% purity) which was of higher purity than the preliminary proposed technical specification.

In the 2-generation study, adverse developmental effects, ie reduced body weight gain, Rayedo development (e.g. time to preputial separation) and reduced weight of thymus and spleen of raps were seen at the top dose. NOAEL for reproduction is 10000 ppm (742-764 mg/kgow/day) and the parental NOAEL is 1000 ppm (74-87 mg/kg bw/day) based on reduced body weight gain and reduced the muse weight in females at 10000 ppm (764-871 mg/kg bw/day)

The applicant was asked to submit histopathological data of the thypus from mulgenergtion at and the evaluation of these data was presented in the addendup of the NOAE of the stud was discussed at the experts' meeting. The NOAEL for development effects in the rat multigeratice study is 1000 mg/kg bw/d ppm (171 mg/kg bw/doy) based on effects observed at 60000 ppm (1625 mg/kg bw/day) was agreed on at the experts' meeting.

In the rabbit developmental toxicity study, there way evidence for a slight delay in feral development (slight dilation of lateral brain ventricles) At the top dos On the presence of severe Datern O toxisty. There was also questionable evidence for a slight substance related increase in the incidence of a common rib cartilage malformation and equivocal equivocal equipocal of a light increase in the incidence of one rib variation.

The NOAEL for maternal toxicity in the rabbit teratogen v/day and the developmental is 100 mg/kg bw/day. 1

In the rat developmental scicity study, there was is substances related advecte maternal or developmental effect. The reductive in oscilication of one digit from with forelimbs of fetuses at 300 and 1000 mg/kg bw/day is not considered to by a substance-related adverse effect. The maternal and developmental NOAEL is 1000 mg/kg bw/dg in ra@

adverse developmental effects Overall, it is concluded that fluorestrobio is no fleratogenic and the adverse developmental effects could be a consequence of subplance islated parents toxicity. Classification of fluoxastrobin for reproductive toxicity is not justified.

#### Generationalstudies CA 5.6.1

All necessary studies were presented and evaluated during the PU process for Annex I listing. Please refer to the DAR, addenda and the baseline dossier of fluoxastrobin.

## CA 5.6.2 Developmental toxicity Studies

All necessary studies were presented and evaluated during the EU process for Annex I listing. Please refer to the DAR, addenda and the baseline dossier of fluoxastrobin.





#### **Neurotoxicity studies** CA 5.7

### Summary neurotoxicity

Acute and subchronic neurotoxicity studies summarized in Table 5.7-1 were evaluated in the review for inclusion of fluoxastrobin into Annex I of Directive 91/414/EEC (2008).

A

| Table 5.7-1:                                                                       | Summa         | ary of neur  | otoxicity st                                                                                                                     | udies                                                  | J.                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                        |
|------------------------------------------------------------------------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|----------------------------------------|------------------------|
| Study                                                                              | Sex           | NO(A)EL      | LO(A)EL                                                                                                                          | Main findings at L                                     | O(&)EL               | Refe                                   | rence 0                |
| Doses tested                                                                       |               | pr<br>(mg/kg | om<br>bw/day)                                                                                                                    |                                                        |                      |                                        |                        |
| Acute oral neurotoxicity, rat                                                      | М             | 2000         |                                                                                                                                  | No neurotoxicity &                                     | genæal syst          | dose of                                | ,;                     |
| 0-200-500-2000<br>mg/kg bw)<br>(99:1% <i>E:Z</i> )                                 | F             | 2000         |                                                                                                                                  | 2000 mg/kg \$.                                         |                      | 2001<br>Ø1-1                           | ; M-088080-            |
| Subchronic oral<br>neurotoxicity, rat<br>(diet)                                    | М             | 1000<br>(60) | (474)<br>(474)                                                                                                                   | Reduced body weig                                      | hta or               | 2902                                   | Q;<br>;<br>; MQ)74246- |
| 0-200-1000-7500<br>ppm<br>(M/F: 0-13/15-60/7:<br>474/582 mg/kg bw//<br>(99:1% E:Z) | F<br>2-<br>d) |              | * 750<br>(382)<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | Paduced Body Vong<br>No Pidenco f sub<br>no otoxic fy. | ht 5 5<br>jance Pate |                                        | ġ                      |

EFSA Scientific Report (2007) 102, 1-84, "Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin finalised: 93 June 2007" on neurotoxicity:

Fluoxastrobin gave negative sult of ray in pracute neurotoxicity assay which included neuropathology and a functionatooser wition battery Where was also no eddence of substance-related neurotoxicity in Subsequent subchronic neurotoxicity assay in

#### Neurotoxicity studies in rodents, CA 5.7.1

All necessary studies were presented and evaluated during the U process for Annex I listing. Please refer to the DAR, addenda and the baseline dossier of thoxastrobin.

# CA 5.7.2 O Delayed polyne ûr opathy studies

CA 5.7.2 Deláyed polyneuropathy stýdies No data submitted. Since fluoxestrobin's not a member of a chemical class associated with delayed neurotoxicity is not required

BAYER Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

### CA 5.8 Other toxicological studies

### Summary toxicity studies of metabolites

Toxicity studies on metabolites summarized in the table below were evaluated in the EU peer review for inclusion of fluoxastrobin into Annex I of Directive 91/414/EEC (2008), new studies are added

| 1 4010 010 11  | ,                                      |                               | Ĉ.                                     | a                |               |
|----------------|----------------------------------------|-------------------------------|----------------------------------------|------------------|---------------|
| Test item,     | Test System                            | Concentration/                |                                        | Regults          | Reference 0   |
| , i            | ·                                      | Dose                          | × ×                                    | Q , Q            |               |
| HEC 5725-des-  | Ames test                              | Up to 5000 µg/plate           | y ,                                    | Negative O       |               |
| chlorophenyl   |                                        | 4                             | í - Ç                                  |                  | 42003· M− "   |
| (M48)          |                                        |                               | $\sim$                                 | l o              | 0 105288-01-0 |
|                | HPRT                                   | Up to 3520 µg/plate           | »°                                     | Negative O       | ¥;            |
|                | (V79 cells)                            |                               |                                        |                  | 2004; M-      |
|                |                                        |                               |                                        |                  | 123315-01-14° |
|                | Chromosome                             | Up to 3500 µg/m               |                                        | Nagative S       |               |
|                | aberration                             | Up to \$50 µg/mL (pr          | ncubation)                             |                  | 2004; Mz      |
|                |                                        |                               |                                        |                  | \$23340-01-1  |
| 2-chlorophenol | in vivo rat                            | 5 Qg/kg ht                    |                                        | rapid & complete | ,;            |
| (M82)          | absorption,                            |                               |                                        | al@orptic@,      | ) 2002, M-    |
|                | metabolism &                           |                               |                                        | conjugation &    | 041282-01-1   |
|                | excretion study                        | NY O                          |                                        | hydroxylatio     | Å I           |
|                | ≪u <sup>v</sup>                        | 4. N L                        | s 4                                    | very fast renal  | Ψ             |
|                |                                        | <u>or s d</u>                 | <i>"0"</i>                             | cretion          | )             |
|                | Ames test                              | Up to \$000 ge plate          |                                        | Negative of      | 力;            |
|                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | w. S             | 2016; M-      |
|                | S O                                    |                               | <u>v</u> 0                             | <u> </u>         | 539465-01-1   |
|                | Micronucleus test                      | €p to €000 µg/mL (4           | treatment)                             | Positive         | 力;            |
|                | in vitro O                             | Up to 500 µg/mL (24           | h treatment)                           |                  | 2016; M-      |
|                |                                        |                               | <u> </u>                               | ×,               | 539476-01-1   |
| Ő              | Micronucleus test                      | 2 x 0.06 mL/kg                |                                        | Negative         | E;            |
| , Ô            | in vivo (mouse)                        | $2 \times 0.30 \text{ mL/kg}$ |                                        |                  | ; 1980;       |
|                |                                        |                               |                                        |                  | M-538343-01-2 |
| K. Y           | Micromicleus                           | 2 №0.06 mk/kg 0 <sup>v</sup>  | \$\$ <sub>\$</sub> 0                   | Negative         | ;             |
|                | in vivo (mouse)                        | 2x 0.36mL/kg                  | & A                                    |                  | ; 1980; M-    |
|                |                                        |                               |                                        |                  | 538349-01-2   |
|                | Mucronucleus test                      | Study ongoing                 | -G                                     |                  |               |
|                | in vivo(fat)                           |                               | 103                                    |                  | 2016; M-      |
| ~Q             |                                        |                               | ð                                      |                  | 539480-01-1   |
| 4              | U AC                                   | ) 4,7 ,6° ,0                  | 0                                      |                  |               |

#### Table 5.8-1: Summary of studies with metabolites

# HEC 5725-des-chlorophen (M48)

### DAR section B.6.8 2, and Addendrum 1 to the DAR:

M48 (E-isomer) is a profilinent inetabolite of fluoxastrobin in the rat, being found at up to 15% of the applied dose (being found mostly includes and bile, but also in urine at up to 4% of applied dose). It is also considered to be an include metabolite and so the amount of M48 formed in the rat is likely to be greater than 15% M48 a formed from fluoxastrobin by cleavage of the ether bridge between the chloroph and the pyromidine ring.

M48 has no fluctured alerty for DNA reactivity according to the model of Tennant and Ashby (1991) and was found to be regative when tested in an Ames assay conducted to modern standards. Additional reassurance that M48 is not genotoxic is provided by the genotoxicity assays with parent, all of which were negative. Since M48 is regarded as an initial metabolite of fluoxastrobin in rats, the negative result in an *in vivo* mouse bone marrow assay is particularly notable although it is

**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

acknowledged that there might have been only transient, low-level exposure of the bone marrow to M48.

According to the "Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive" (SANCO/221,2000 -rev.10,2001,25) February 2003) HEC5725-des-chlorophenyl (M48) was screened for genotopicity in an Ames test, a gene mutation test with mammalian cells, and a chromosome aberration test. All tests left to negative results. Thus, HEC5725-des-chlorophenyl (M48) is considered to be non-genotoxic. The refined risk assessment for consumers has been performed, based on the ADI of fluoxastroom ( ; 2004; M-128831-01-1).

### **Further metabolites**

EFSA Scientific Report (2007) 102, 1-84, "Conclusion regarding the peer review of the pesticide risk EFSA Scientific Report (2007) 102, 1-84, "Conclusion regarding the peer review of the pesticide ris assessment of the active substance fluoxastropin finalised: 12 June 2007" on whear metabolites: The following metabolites have been identified in wheat that not or rat metabolism M34 = HEC 5725 - ketone M39 = HEC 5725 - CA -glycol ester M40 = HEC 5725 - carboxylic acid M41 = HEC 5725 - OH-CA + (MQ = glycosides of M41) M57 = HEC 5725 - OH-CA + (MQ = glycosides of M41) M70 = HEC 5725 - OH-phenoxy-amino PMDo M70 = HEC 5725-des-chlorophen y carboyylic acid

- Ø
- M72 = HEC 5725-des-chlorophen & carbo ylic gyd
- M82 = 2-chlorophenol +  $\sqrt{984} = giycoscie of \sqrt{9}$

No genotoxicity tests weither *viv* nor *in vitro* acute toxic y test, were povided to define their toxicity. Therefore they should be considered as toxicologically relevant and the ADI for fluoxastrobin used i the sensum risk sessment, agess now data are mode available.

Confirmatory data related to residues were evaluated by the RMS UK and the assessment was made available with Addendum S to the DAR (initially January 2011 and a revised and updated version, April 2012 After assessment of the confirmatory data, the revised review report (SANCO/3921/07 dated 28 September 2012) was issued

In order to address concerns raised during the BU review of Muoxastrobin regarding the toxicity of metabolites in cerear straws, the pplicare provided a catement (

; 2008; M25762702-1) This tatement addressed the potential toxicity of metabolites along with an ostimation of the actual exposite of vestor to these metabolites, based on data from metabolism studies and resQue field triak subracted in the DAR for Annex 1 inclusion.

exception a metabolite 2-chicopheod (M82) and its glucoside (M84), the calculated With the residue levels for a worker metabolites are below the toxicological trigger value of 0.05 mg/kg for raw animal fodder. Levels of these betabolites in graw can therefore be said not to be of concern based on the proposed uses

### 2-ChlorophenoK/M82

The tox coking behaviour of the metabolite 2-chlorophenol (M82) was investigated in a study on the absorption, perabolorin and excretion in male rats after a single oral dose of [phenyl-UL-<sup>14</sup>C]2chleropheroj at 5 mg/kg bw ( ; 2002; M-041282-01-1). 2-Chlorphenol was rapidly and completely absorbed from the gastrointestinal tract. Excretion was very fast and occurred almost exclusively with the urine. Already within 4 hours after dosage about 81% of the dose was excreted renally. Faecal excretion was minor (2.2% of the dose). The overall excretion was fast and nearly complete during the test period of 72 hours. Very low radiolabelled residues were found in the GIT,
#### **Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

carcass and skin at sacrifice (0.06% of the dose). 2-Chlorophenol was extensively metabolised in the rat, mainly by conjugation with glucuronic acid and sulfate. Hydroxylation was a minor path way. Major metabolites were 2-chlorophenol-GA (M85, 63.6% of the dose) and 2-chlorophenol-SA M83 28.2% of the dose). 2-Chlorophenol-OH-GA (M86, 2.3% of the dose) and probably 2-chlorophenol-OH-SA (M87, 1.1% of the dose) were minor metabolites. The excreted portion of the test compound 2-chlorophenol was low (3.7% of the dose).

The genotoxic potential of 2-chlorophenol was investigated in in station and in vivo stests. chlorophenol did not induce mutations in bacteria with and without metabolic activation but showed micronucleus formation in V79 cells. In two micronucleus tests in reace 2-chlorophenolyevealed no genotoxic potential in vivo. In total 4 batches of 20 hlorophenok were tested, all resulted not ative However, the studies were conducted in 1980 not according to current guidelines and therefore, a new micronucleus test according to current testing guidelines was initiated frorder to confirm these results.

E:Z isomerism DAR section B.6.8.1: Metabolites with the methoxyimino group have the petential to undergo E/Z isoperism. This focess is aided by the presence of light. A 26 day oxicity dudy folicates that planging from 98% E:2%Z to a 64%E:36%Z isomer ratio has noveffect on the toxicity profile ... It is therefore assumed that a similar change in the isomer ratio for metabolites of fluor stroky ways have no effect on their toxicity 0 toxicity.

Not change in the isomer ratio forenetapolities of thoosenering works have no effect on their toxicity. No Z isomer metabolites have been detected in the metabolities audit Fond Z Somers. However as the highest proportion of a Z somer found 36 be accent for a plant metabolity was not much higher than the 36%Z used as the 26 day toxicity study with EPC 5705, no significant effect on toxicity is expected.



#### CA 5.8.1 Toxicity studies of metabolites

#### 2-chlorophenol (M 82)

In the "Reasoned opinion on the review of the existing maximum resider levels (MRLs) for fluoxastrobin …", EFSA Journal 2012;10(12):3012 further information about the toxicity of metabolities M82 and M84 found in straw is required. Genotoxicity studies according to modern standards are not available in the public literature. Therefore, the genotoxicity potential of 2-chlorophenol (M22) has been further investigated in *in vitro* and *in vivo* tests.



**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

#### **B.** Study design and methods

| Dogo  |  |
|-------|--|
| Dose. |  |

| 1. Treatment                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dose:                          | Test item concentrations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 10-25-50-160-500-1600-5000 μg/plate@+/- S9-mix), 🦉 💦 🔥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                | Positive controls:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | NaN <sub>3</sub> : 5 $\mu$ g/plate (TA1535, TA100) $\sqrt[3]{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                | 4-NPDA : 10 $\mu$ g/plate (TA <b>353</b> 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | 2-NF: $(T_{0})$ $(T_{0})$ $(T_{0})$ $(T_{0})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                | MMC : $(0.2 \ \mu g/plate (A102))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | Cumene : $0^{\circ}$ 50 µg/plate (TA102) <sup>a</sup> $0^{\circ}$ $2^{\circ}$ $0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 2-AA: 3 µg/plates+ S9 mix (attestrains)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                | $6 \mu g/plate + S9 (TA 102) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | For each test solution or control 3 plates were used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | a: only in pretincubation trades of a fraction of a fraction of the fraction o |
| Application volume:            | $0.05 \text{ mL}(\text{post solution})/\text{pQate} \bigcirc \bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Incubation time / temperature: | TA102: 37°C, 48h; TA1535, TA100, TA1537, TA98: 72b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| II. Results and discussion     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# A. Bacteriotoxicity, precipitation and controls

A. Bacteriotoxicity, precipitation and controls is a sufficient bacterial density in the suspension, leading to spontaneous revertant frequencies that matched the langes of the prstorical Controls.

The Salmonella/microsome plate mcorporation test, employing deses of up to \$000 µg per plate, showed the test item produced bacteriotoxic effects at the dose of 5000 µg per plate.

Substance precipitation was not observed. Evaluation of individual dose proups, with respect to relevant assessmen@parameters@dose\_effect, reproducibility) revealed no biologically relevant variations from the respective solvent controls

The Salmonellamicrosome test, using prenecubation for 20 mightes at 37 °C and employing doses of up to  $5000 \ \mu g$  per plate, showed the test item to produce strain-specific bacteriotoxic effects at the dose of  $1600 \ \mu g$  per plate up to the higher dose. Substance precipitation was not observed. In agreement with the plate pecorporation assay Sevaluation of individual dose groups of the



**Bayer CropScience** Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### **B.** Mutant counts

BAYER



## **BAYER** Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

|                |                |                         |                                   | Strain                                 |                           | . 4              |
|----------------|----------------|-------------------------|-----------------------------------|----------------------------------------|---------------------------|------------------|
| Group          | µg/plate       | TA1535                  | TA100                             | TA1537                                 | TA98                      | <b>TA102</b> 🔗   |
| Plate incorpor | ation test     |                         |                                   |                                        | Č,                        | , VÍ S           |
| 2-Chloro-      | 0              | 12                      | 127                               | 12                                     | <i>2</i> 4                | 242              |
| phenol         | 10             | 11                      | 129                               | 11                                     | <u>م</u> 21               | \$* ~248 m       |
|                | 25             | 10                      | 115                               | 10 🛒                                   | 24 👡                      | <b>2</b> 44      |
|                | 50             | 10                      | 123 🦉                             | 7 🐥                                    | 20 💉                      | 243              |
|                | 160            | 11                      | 126                               | 9 Q                                    | 22                        | 2 <b>58</b>      |
|                | 500            | 14                      | 127                               | 7,0°                                   | 26 2                      | 276 X            |
|                | 1600           | 11                      | 102                               | Ŵ,                                     | ×24                       | ©252 °           |
|                | 5000           | 7                       | <b>3</b> 4                        | i i i                                  |                           | õ 360 ×          |
| 2-AA           | 3              | 91                      | 2060 。                            | _@″260°∽                               | <i>™</i> 11 <b>34</b> ,   | K 517            |
|                | 6              | -                       | × - 2                             |                                        | <u>Ý Qũ í</u>             | 1210             |
| Preincubation  | test (µg/Plate | <u>e)</u>               |                                   | <u>y</u> w de                          |                           | à là             |
| 2-Chloro-      | 0              | 14                      | > ~_ <b>19</b> 33 ~_√             | ×11 A                                  | \$ 33                     | 25Ø              |
| phenol         | 10             | 12                      | ×119×                             | O 114                                  | ~ 28 .                    | 239              |
|                | 25             | 13                      | & 134 S                           | × 19 ×                                 | 1 <i>(</i> )              | ©245             |
|                | 50             | 120 5                   | ∫∕, <u>1</u> \$5                  | × 014 ~~                               | £ 24 £                    | م<br>کي 283      |
|                | 160            | <u></u> <sup>4</sup>    | 126                               | 12 0                                   | ِنَ <sup>نَ</sup> 33 کَکَ | 🔊 293            |
|                | 500            | 12 0                    | 2 129 °                           | 05 8 v                                 | °, 2°, '                  | <sup>≫</sup> 272 |
|                | 1600           | 9%                      | <sup>10</sup> 995 "               |                                        | `∂23 ≶                    | 232              |
|                | 5000           |                         |                                   |                                        | <u>ه</u> 0                | 0                |
| 2-AA           | 3 🔊            | ) ( <sup>39</sup> 9 , 5 | Ø <sup>1</sup> 980 <sup>"Ø"</sup> | 394                                    | × 15,190                  | 534              |
|                | 6 🍾            | <i>♀</i>                | \$* - <del>\$</del>               | ~~`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                           | 1096             |

| Table 5 8 1-2:  | Summary | of mean    | values | (mutant | counts) | with S9 mix |
|-----------------|---------|------------|--------|---------|---------|-------------|
| 1 abic 3.0.1-2. | Summary | UI IIICAII | values | Imulant | county, |             |

The positive controls sodium azide, 4 mitro-1,2 phenylene-diamine, 2-nifrofluoren, mitomycin C, cumene hydroperovide and 2-anunoanthracene increased matant counts in the low doses used to well over those of the solvent controls, and thus demonstrated the system's sensitivity and the activity of the S9 mix.

None of the five strains used showed a dose related and biologically relevant increase in mutant counts caused by 2-chlorophenol over those of the solvent controls in the plate incorporation test. This applied both to the tests with and without \$9 mix and was confirmed by the results of the preincubation trials

Despite this sensitivity no indications of mutagenic effects of the test item could be found at doses of up to 5000 µg/per plate in any of the Salmonella typhimurium strains used in the plate incorporation assay as well as in the prejecubation modification.

### III. Conclusions

Due to these results 2-chlorophenol has to be regarded as non-mutagenic.

 Report:
 KC 5.8.1/09
 C; 2016; M-539476-01-1

 Title:
 KC 5.8.1/09
 C; 2016; M-539476-01-1

 Report No:
 KC 5.8.1/09
 KC 5.8.1/09

 Document No:
 M-539476-01-1

 Guideline (s):
 M-539476-01-1

 GLP/GER
 yes

Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### I. Materials and methods

B/ F

| I. Materials and methods         | Q° 🎘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Materials                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Test material:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name.                            | 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Synonym <sup>.</sup>             | AE C505780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CAS No:                          | 95-57-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description.                     | Colourless liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lot/Batch no.                    | SES 12956-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Purity.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stability of test compound.      | guaranteed for study duration: expiry date: 2015-10-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 Vehicle and positive control:  | Vehicle MSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2. Venicie and positive control. | Mitopavcin Cain culture medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  | Cyclophosphamide in culture medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | Vinblastine sulfate salt in DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. Test system.                  | Chinese hamster V79 cells A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Metabolic activation:            | 89 fraction grenared from livers of Afficiar 1954 induced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | male Sprattice Davley rate (propen content 270 mg.per ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | Catactor volution per 25 ml 89 mis: 40.7 mg Mar lav6Ha0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ŷ.                               | 1 5 mg K C1 28 mg lucase 6 phone hat 4 78 mg NADP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q . K                            | (disodium with) 10 mL odium phosphyte buffer (100 mM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | n (disourini vari), is nil sourini phospoare officer (100 milli),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Culturing of V79 cetts:          | Thawef stock cultures were propagated at 37 °C and 5 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | Constrained at the state of the |
|                                  | Culpure modiums MEM Farle's with ClutaMAX and 25 mM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  | HOPPES) When Strep 10% FICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S & S                            | Cells were sob-cultured twice weekly after trypsination of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | adhevently growing cell ensuring an ample number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  | viable cells for the experiments performed in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B. Study design and methods      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Troationt                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Treatment                     | Tastitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  | $\frac{1}{100}$ to $\frac{1}{100}$ 5 1 5 1 5 10 100 162 5 225 650 1200 ug/mI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | Exercise $0.1-0.5-1-3=0-50-100-102.5-525-050-1500 \ \mu g/IIL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  | (4 IL with all without metabolic activation, 24 II without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | Main study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | Actain Stelly. $15,50,150,200,450,600,750,1000, \mug/mI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  | $\approx$ 11 usanicity 15-50-150-500-450-000-750-1000 µg/iiiL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | 2/15 transformer: 0.5.1.2.5.5.10.25.50.100.150.200.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | 24 in iterational 0.5-1-2.5-5-10-25-50-100-150-200-250-<br>500  µg/mL (- S9-mix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  | Positive controls:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | Miximucin C: $0.1  \mu g/m I$ (A h treatment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S A & S                          | Cvclophosphamide: 2 ug/mL (4 h treatment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | Vinblactine sulfate salt: $0.002 \ \mu g/mL(24 h treatment)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Applicatien voluge               | 0.05 mL (test solution)/5 mL culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Evaluation on micronucleated     | Adherently growing cells exposed in situ to 0.4% KCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cells a s                        | hypotonic solution and fixed in glacial acetic acid/ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | (1+3) staining with May-Grünwald and Giemsa solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | 2000 cells (1000 cells per slide) per concentration were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| õ                                | scored Only cells which divided at least once and therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | formed colonies of $> 2$ cells were evaluated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Document MCA: Section 5 Toxicological and metabolism stud | ies |
|-----------------------------------------------------------|-----|
| Fluoxastrobin                                             |     |

| Assessment criteria: | The test item is classified as mutagenic if:                   |
|----------------------|----------------------------------------------------------------|
|                      | - one of the test substance concentrations induce a            |
|                      | micronucleus frequency that is three times higher than         |
|                      | the micronucleus frequency of the concurrent solvent           |
|                      | control.                                                       |
|                      | - there is a reproducible concentration-related increase in    |
|                      | the micronucleus frequency, Such an evaluation may be          |
|                      | considered independently of the enhancement factor for         |
|                      | induced micronucleus frequencies.                              |
|                      | In the evaluation of the test results historical control data  |
|                      | obtained in the laborator and scientific plausibility is take  |
|                      | into consideration. 🔨 🖉 🖓 🖓                                    |
|                      | Any positive test result should be galuated for its biological |
|                      | relevance.                                                     |

#### **II. Results and discussion**

#### A. General Remarks

The test item, dissolved in DMSO, was examined for moragenic activity in the micronucleus test in vitro. The 4 hours treatment was conducted with concentrations of 10- 1000 µg/nor without S9 mix and of 15 - 1000 µg/mL with \$9 mig In the independent repeat test The treatment time in the experiment without S9 mix was extended to 24 hours with concentrations of 0.55500 frg/mL.

#### **B.** Cytotoxicity

Without S9 mix cytotoxite effects occurred at 600 pg/mL and above after 4 hours treatment and at 50 µg/mL and above after 24 hours treatment. With S9 mix cytotoxic effects were observed at 15 μg/mL and above Precipitation in the gedium did not occur.

#### C. Main study

Concentrations of 150 600 ug/mL (with out S9 mix, 4 hours freatment) and 150 - 450 µg/mL (with S9 mix, 4 hours treatments were chosen for reading. Higher concentrations were excluded from evaluation for micronuclei due to excessive cytotoxicity. A)

The repeat experiment (24 hours treatment withour S9 mix) way not evaluated for proliferation index and micronucleus frequency based on the esults of the experiments with 4 hours treatment.

Solvent control adimethyl suffoxide and appropriate Sositive controls with known mutagens (mitomycin C cyclopbosphamide) demonstrated the suitability and sensitivity of the test system.

| 1 able 5.8.4.5: 5            | ummary of results of | a 4 nours t | reatment (22      | in narvest      | )                   |        |
|------------------------------|----------------------|-------------|-------------------|-----------------|---------------------|--------|
| Kxperimental 🏷               | Concentration        | S9 Mix      | Cytotoxicity      |                 | 1-5 MN <sup>1</sup> | ≥6 MN  |
| ر المراجع (Group راجع) Group | A. a a.              |             | RICC <sup>2</sup> | PI <sup>3</sup> |                     |        |
|                              | Ş∕γµg/mISγ           | <b>-/+</b>  | Mean %            | Mean %          | Mean %              | Mean % |
| Solvent contro               | √ 1 % Ø/v) √         | -           | 0                 | 0               | 0.6                 | 0.0    |
| 2-Chlorophenol 🔬             | × × 50 ×             | -           | 16                | 6               | 0.4                 | 0.0    |
|                              | 300 Ø                | -           | 34                | 12              | 1.1                 | 0.0    |
|                              | ° ,                  | -           | 57                | 36              | 3.3                 | 0.0    |
| Mitomycin C 🦉 👔              | 0 0.1                | -           | not tested        | 30              | 13.2                | 0.0    |
| Solvent control              | 1 % (v/v)            | +           | 0                 | 0               | 1.0                 | 0.0    |
| 2-Chlorophenol               | <sup>م</sup> ر 150   | +           | 38                | 20              | 6.0                 | 0.0    |
|                              | 300                  | +           | 39                | 33              | 5.9                 | 0.0    |
| $\sim 0^{\prime}$            | 450                  | +           | 58                | 41              | 6.7                 | 0.0    |
| Cyclophosphamide             | 2.0                  | +           | not tested        | 57              | 13.7                | 0.0    |

<sup>1</sup>: MN = Micronuclei; <sup>2</sup>: RICC = Relative increase in cell count; <sup>3</sup>: PI = Proliferation index

Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### **III.** Conclusions

In conclusion, it can be stated that under the reported experimental conditions the test item did induce chromosome breakage (structural chromosomal aberrations) or misdistribution of chromosomes leading to micronucleus formation in V79 cells in vitro either in the absence of presence of presence of presence of the tabolic activation. Ô

| Report.                 | KCA 5.8 1/10                                                                      |
|-------------------------|-----------------------------------------------------------------------------------|
| Title:                  | Study of the possible mutagenic potential of ortho-phonochlorophenol (coprainers) |
|                         | 5244 to 5357 of February 1980) in the mouse by the micronucleus technique         |
| Report No.:             | 445 A Q & A A C                                                                   |
| Document No.:           | M-538343-01-2                                                                     |
| Guideline(s):           | not specified                                                                     |
| Guideline deviation(s): | none                                                                              |
| GLP/GEP:                |                                                                                   |
| I Matariala and math    |                                                                                   |
| 1. Materials and meth   |                                                                                   |
| A. Materials            |                                                                                   |
| 1. Test material:       |                                                                                   |
| Name:                   | Q Qitho-monochlorophenel Q & &                                                    |
| Synonym:                | 2-chlorophenol                                                                    |
| Description:            | Cobourless Ciquid                                                                 |
| Lot/Batch no:           | Containers 5244 to 5397 of 12 February 1980                                       |
| Purity:                 | $\int \int \partial x dx d$                      |
| Stability of test comp  | QOOd: Y Notestated S & S                                                          |
| 2. Vehicle / postive co | ntrol; Vehicle peaput oil                                                         |
| Or Ar                   | Cortho-monochlorophenol@issolved in peanut oil dissolved in a                     |
| ×Q.                     | $\sim$ concentration of 2.4 and 12.0 µJ/mL                                        |
| Ê9 <sup>1</sup> a       | C Resitive control Methanesultonate (MMS) soluble in water                        |
|                         | $dissolved$ in a concentration of 2 $\mu$ L/mL                                    |
| , ST                    | Cisplatin suspended in peanut oil at a concentration of                           |
| 2 Tast animals          | A G G G                                                                           |
| 5. Test animals         |                                                                                   |
| Species:                |                                                                                   |
| Strain:                 | Softss C.F.L.P. ( ) strain                                                        |
| Age: 🖏                  | $\sqrt{3}$ $\sqrt{8} - 11$ weeks $\sqrt{3}$                                       |
| Weight at dosing ∞      | Males: 25-30 g                                                                    |
| Source:                 | "O Not stated                                                                     |
| Acclimatisation perio   | d: Not stated                                                                     |
| Diet:                   | Not stated                                                                        |
| Water:                  | کّ گَ <sup>*</sup> Not stated                                                     |
| Housing: 🖉 着            | Not stated                                                                        |
|                         |                                                                                   |
|                         | 45                                                                                |
| Ċ                       |                                                                                   |
|                         |                                                                                   |

06 Ø

**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

Negative control:

Positive control:

MMS

Cisplatin

Oral, gavage

25 mL/kg bw 23

10 per dose grou

Ortho-monochlorophenol

Ortho-monochlorophenol

#### **B.** Study design and methods

#### 1. Animal assignment and treatment

Dose:

Application route:

Application volume: Group size:

Observations:

No. of cells scored:

#### 2. Evaluation

Method:

Statistics:

mortality, clinic Not stated by BOLDER and SCHMID out using the Student's t-test According 1970) and SCHMID (1975) comparison of two means carried out which is valid for small

hours apa

peanut oil peanut oil

peanut of

peanut oil

water

#### **II. Results and discussion**

#### A. Clinical observations

The dose of 2 x 0.30 ml ortho-monochlouophenst per g weight caused signs of severe bod prostration in the animals. The dose was considered to be the maximum dose in this experiment.

### B. Microscopic Evaluation

The mean percentages of micronacleated polychromatophilic erythrocytes are not statistically significantly increased in the groups of animals treated with ortho-monochlorophenol compared to the mean percentages in the control group. ñ

In contrast, the mean percentages of micronucleated polychromatophilic erythrocytes obtained in the groups treated with MMS of cisplatin, used as positive controls, increased statistically significantly (p < 0.05) compare Q to the mean percentages in the control group.

#### Summary of results Table 5.8.1-4:

| Experimental groups                            | A Percentage of    |
|------------------------------------------------|--------------------|
|                                                | moronucleated P.E. |
|                                                | 🔊 Mean + 2SD       |
| Negative control pearlut oil                   | $0.25 \pm 0.08$    |
| Ortho-monochlorophenot 2x 0:06 mL/kg           | $0.28 \pm 0.06$    |
| Ortho-monochlorophenel $2x \cancel{30} $ mL/kg | $0.31 \pm 0.07$    |
| MMS 2x 65 mg/kg 🔨 🖉 🖓                          | $2.60 \pm 0.60 *$  |
| Cisplatin 2x90 mg/kg                           | 2.56 ± 0.85 *      |

\* Statistically significant different from control p <= 0.05

# Conclusions 2

Exposure of ortho-monochlorophenol to mice via the oral route at doses of 2x 0.06 and 2x 0.30 ml/kg did not cause an increase in the percentage of micronucleated polychromatophilic erythrocytes.



| <b>Report:</b><br>Title: | KCA 5.8.1/11 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |
|--------------------------|--------------------------------------------------|
| Report No.:              | 446                                              |
| Document No.:            | M-538349-01-2                                    |
| Guideline(s):            | not specified                                    |
| Guideline deviation(s):  | none                                             |
|                          |                                                  |
| I. Materials and meth    | ods (see M-538343-01-2 for all study details     |
| A. Materials             |                                                  |
| 1. Test material:        |                                                  |
| Name:                    | Ortho-monochlorophenor                           |
| Synonym:                 | 2-chloropheno                                    |
| Description:             | Colourless Liquid 2 & A O &                      |
| Lot/Batch no:            | Containers 5759 to 5788 of 12 March 1980 2 2 0   |
| Purity:                  | Not staged in it is a stage                      |
| Stability of test comp   | bound: Notestated a b b b b b                    |
|                          |                                                  |
| II. Results and discus   | sions of Star and Star and Star                  |

### A. Clinical observations

The dose of 2 x 0,30 ml orthognonocolorophenol per kg body weight caused signs of severe prostration in the admals. The dose was considered to be the maximum dose in this experiment.

### B. Microscopie Evaluation

The mean percentages of micronucleated polychromatophilic erythrocytes are not statistically significantly increased in the groups of animals treated witt ortho monochlorophenol compared to the ő mean percentages in the control group.  $\bigcirc$ \$ 1

In contrast, the men percentages of missionucleated polychromatophilic erythrocytes obtained in the groups treated with MMS or coplating used as positive controls, increased statistically significantly (p < 0.05) compared to the mean percentages in the control group.

| Table 5.8.1-5       | Summary of result    |       | Č,                               |
|---------------------|----------------------|-------|----------------------------------|
| Experimental grou   | ups of O             |       | Percentage of                    |
|                     | 5 A. 7 Ø             | * ~Om | icronucleated P.E.<br>Mean + 2SD |
| Negative control pe | eanutoil 🖉 👘         | ,Õ    | $0.25 \pm 0.08$                  |
| Ortho-monochiorop   | phenol 2x 0.06 mL/kg | )>    | $0.19\pm0.05$                    |
| Ortho-moncohlore    | shenol x 0.30 mL/kg  | /     | $0.18\pm0.05$                    |
| MMS 2x 5 mg/kg      |                      |       | $2.60 \pm 0.60$ *                |
| Cisplatic 2x 10mg   | /kg <sup>O</sup>     |       | 2.56 ± 0.85 *                    |

\* Statistically significant different from control p <= 0.05

, and the second second

## III Conclusions

Exposure of ortho-monochlorophenol to mice via the oral route at doses of 2x 0.06 and 2x 0.30 ml/kg did not cause an increase in the percentage of micronucleated polychromatophilic erythrocytes.



#### **Publications**

| <u>I ubiications</u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report:                 | KCA 5.8.1/13 ,; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | ; 2013; M-486887-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Title:                  | Comparative susceptibility of newborn and young rats to six industrial chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report No.:             | M-486887-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Document No .:          | M-486887-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Guideline(s):           | not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline deviation(s): | not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>GLP/GEP:</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Report:                 | KCA 5.8.1/14 ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | ; ; ; 2013; M-486886001-1 , * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Title:                  | Pediatric susceptibility to 19 industrial chemicals a comparative analysis of newborn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | with young animals & 6° 5° 5° 5° 5° 5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Report No.:             | M-486888-01-1 O Q & A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Document No.:           | M-486888-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Guideline(s):           | not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guideline deviation(s): | not applicable $\mathcal{A} \sim \mathcal{A} = \mathcal{A} \sim \mathcal{A} \sim$ |
| GLP/GEP:                | no Q V X X X X X X Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Abstract (verbatim from the publication):

,0, "To elucidate the comparative susceptibility of newborn Pats of chemicals Gewborn and young animals were administered signdustrial chemicals by gavage from postnatal days (POD) 4 to 21, and for 28 days starting at 5–6 weeks of age respectively, under the same experimental conditions as far as possible. As two new toxicity endpoints specific to this comparative analysis, presumed no-observedadverse-effect-levels (pNOAEE) were estimated based of results of both main and dose-finding studies, and presumed unequipocal witoxic levels (pUETLS) were also decided. pNOAELs for newborn and young rats were 40 and 200 for 2-chorophenol, 100 and 100 for 4-chlorophenol, 30 and 100 for p-(a,a-dimethylber zyl) prenol, 100 and 40 for (hydroxyphenyl) methyl openol, 60 and 12 for trityl chloride, and 500 and 300 mg/kg/day for 1,3,5-trihydroxybenezene, respectively. To determine pUETLs, dos Pranges were adopted in several wases because of the limited results of experimental doses. Values for newborn and young rate were thus estimated as 200–250 and 1000 for 2-chlorophenol, 300 and 500 for 4-chlorophenol, 300 and 500–800 for p-( $\alpha,\alpha$ -dimethylbenzyl) phenol, 140-160 and 1000 for (hydroxyphenyl) methyl phenol, 400-500 and 300 for trityl chloride, and 500 and 1000 mg/kg/da@for 1,\$,5-trihydroxy@enzere, respectively. In most cases, newborn rats were 2-5 times more susceptible than young rate in terms of both the pNOAEL and the pUETL. An exception was that young rats were dearly more susceptible fran their newborn counterparts for trityl chloride." ~Õ

The results from this study have been re-evaluated in M-486888-01-1. Here, the susceptibility of young rats compared to new form rats was assessed by the BMDL ratio. However, the susceptibility based on the BMDL ratio of young and newborn rats is in the same range as the pNOAEL ratio presented in the current publication, i.eQ4.1 and 4.0-5.0 (BMDLs/pNOAELs are 4.1/4-5 times higher in young rats than in newborn rats, respectively. Hence, the re-evaluation did not identify new relevant information

Page 48 of 78 2016-03-10

Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin



Staff of t<sup>1</sup>



#### **B.** Study design and methods

#### 1. Animal assignment and treatment

18-day repeated dose study in newborn rats ("newborn study") 0, <u>20, 100</u>, 500 mg/kg bw

Dose-finding study:

Dose-finding study:

Main study:

Main study:

Treatment period:

Dose<sup>\*</sup>:

Application route: Application volume: Fasting time: Group size:

Post-treatment observation

<u>Main study:</u> <u>Gastric intubation</u> Not specified <u>See observations</u> <u>Dose-finding study:</u> <u>Main study:</u> <u>Main study:</u> <u>Main study:</u> <u>Main study:</u> <u>See observations</u> <u>Dose-finding study:</u> <u>Main study:</u> <u>Main study:</u> <u>See observations</u> <u>Dose-finding study:</u> <u>See observations</u> <u>See observations</u> <u>Dose-finding study:</u> <u>See observations</u> <u>See observations</u> <u>See observations</u> <u>Dose-finding study:</u> <u>See observations</u> <u>See observations</u> <u>See observations</u> <u>See observations</u> <u>Dose-finding study:</u> <u>See observations</u> <u>See o</u>

<u>0, 8, 50, 300</u> mg/kg bw

PND 4-21

PND 4-21

Lups (half of behavior, body, weij unistry, macroscopic findings, dr each week, respectively. Surface realiting and visu attering aeflex for refex oriogens; fur appearance, inciso oruption, eye opening, proputial separation, vaginal opening and estrous eyele Urinalysis (color, pf? ocell blood, protein, glocose, ketone bodies, biblibin, drobilinogen, sediment, yolums of the drine and estrous eyele of the last treatment, blood was collected under anesthesia from the abdomen of all animals in the safeduled sacrifice group. Ho the recovery-maintenance group, this was conducted at 85 days of age after over-starvatian Blood was examined for hematological witch as the red blood cell count, hemoglobin compuscular Volume, mean corpuser-corpuscular volume, and for albumin group phase. Selimer
 Selimer

All studies were conducted in compliance with the Good Laboratory Practice Act of the Japanese Government.

R

#### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

| 28-day repeated dose study in                                                                                   | newborn rats ("young study")                                                      |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Dose <sup>*</sup> :                                                                                             | <u>Dose-finding study:</u> 0, 100, 200, <u>500</u> mg/kg bw                       |
|                                                                                                                 | <u>Main study:</u> 0, 100, <u>200</u> , <u>1000</u> mg/kg bw                      |
| Treatment period:                                                                                               | Dose-finding study: 14 days                                                       |
|                                                                                                                 | Main study: 28 days                                                               |
| Application route:                                                                                              | Gastric intubation                                                                |
| Application volume:                                                                                             | Not specified                                                                     |
| Group size:                                                                                                     | Dose-finding study: 3/group 5                                                     |
|                                                                                                                 | Main study: V 12/group                                                            |
| Post-treatment observation                                                                                      | <u>Main study:</u> 14 days for the recovery groups fialf of the $\langle \rangle$ |
| period:                                                                                                         | animals of the main study) $Q^{*}$                                                |
| Observations:                                                                                                   | Dose-finding study: general behavior, body weight, food                           |
|                                                                                                                 | consumption hematology, blood bigehemistry, macroscopic                           |
|                                                                                                                 | findings and organ weights.                                                       |
|                                                                                                                 | Main study: general pehavior, body weight, food consumption,                      |
|                                                                                                                 | urinalysis, hematology and blood brochemistry, hecropsy                           |
|                                                                                                                 | findings organ weights and histopathological findings                             |
| BCS Comment:                                                                                                    | Osed doses were in the toxic sunge. Harmonized                                    |
| ×                                                                                                               | Classification. Acute Tox 4, H302, H372, H332; LD 50 [rat] ~                      |
| - Â                                                                                                             | 600-700 mg/kg try 2 0 0 0 0                                                       |
| Ŵ                                                                                                               | Used doses are ambiguously stated. The investigated doses                         |
| Â.                                                                                                              | are not given in the materials and methods section but have to                    |
|                                                                                                                 | v be derived from the results section. 📿 🖒                                        |
|                                                                                                                 | * effects of underlined doses are given in Table 1.                               |
| 2. Statistics                                                                                                   |                                                                                   |
|                                                                                                                 | Quantitative data were analyzed by the test (                                     |
|                                                                                                                 | 1987) for homogeneity of distribution. When homogeneity was                       |
| , Š <sup>×</sup> , O' , Š <sup>×</sup>                                                                          | recognized. The second test (1964) was conducted for                              |
|                                                                                                                 | comparison between control and individual treatment groups. If                    |
| The second se | not homogenous the data were analyzed using Steel's multiple                      |
|                                                                                                                 | comparison test 1959 or the mean rank test of the                                 |
|                                                                                                                 |                                                                                   |
|                                                                                                                 | (ypc)                                                                             |
| \$\$`\$'\$                                                                                                      | For qualitative data such as histopathological findings, the                      |
|                                                                                                                 | $U_{\text{Cest}}$ (1947) or the                                                   |
| a. 4 5                                                                                                          | exact test (1973) were performed.                                                 |
| BCS Comment:                                                                                                    | Based on the result of Test, data were either                                     |
|                                                                                                                 | submitted to the second test that assumes normal data or                          |
|                                                                                                                 | multiple comparison test that does not assume normal                              |
|                                                                                                                 | $\vee$ data However, both tests assume similar variances between                  |
|                                                                                                                 | groups. which have not been assessed in the performed                             |
|                                                                                                                 | statistical analyses. It is unclear whether groupwise                             |
|                                                                                                                 | Comparisons were performed with the U-test and if alpha was                       |
| ja La                                                                       | sufficiently corrected. Hence the Type I error rate might not                     |
|                                                                                                                 | be sufficiently controlled (resulting in an increased rate of                     |
|                                                                                                                 | "false positive" statistical findings).                                           |
| D' D' A M                                                                                                       | J                                                                                 |
|                                                                                                                 |                                                                                   |
|                                                                                                                 |                                                                                   |
|                                                                                                                 |                                                                                   |
| $\lor$                                                                                                          |                                                                                   |



Fluoxastrobin

#### II. Results and discussion

#### A. Mortality

All newborn animals treated with 500 mg/kg in the dose-finding study died by the 9th dosing day.

The <u>newborn investigation</u> was conducted at doses of 0, 20, 100, and 500 mg/kg for the dose-finding and 0, 8, 50, and 300 mg/kg for the main study.

The <u>young investigation</u> was conducted at doses of 0, 100, 200, and 500 mg/kg for the dose and 0, 8, 40, 200, and 1000 mg/kg for the main study.

Body weights of both sexes were only transiently, but not finally reduced, at 300 mg/kg in the one newborn main study. Clinical signs in newborn rats were not observed at doses of 20 and 100 mg/kg in the dose-finding study.

Major toxic effects on the central nervous system (CNS) were found in both seves of newborn and young rats. In the newborn study, tremors appeared within five minutes and disappeared within four hours in most animals at 300 mg/kg. Hypoactivity and an abnornal gait were also observed in a few cases. The histopathological examination showed slight to moderate basophilic renal tubules in thore than half the animals of both sexes, without relative kidney weight enarges increase by 8% for males, 4% for females). In addition to these effects, the body weights of both sexes at his dose were transiently decreased. At 50 mg/kg, only one female showed tremors once from 15 to 30 minutes on day nine after the dosing start. There were no chemical-related charges in developmental parameters. In the young study, most animals of both sexes sporadically showed various effects on the CNS such as tremors, hypoactivity, and an abnormal gait within three hours after dosing at 1000 mg/kg. Most animals also exhibited slight centralous hypertrophy of hepatocytes, suggesting a compensatory response to a requirement for hepatic metabolism. In the close-finding study, no toxic signs were observed, but the information was limited because of the small number of animals, the short administration period, and the lack of histopathological examination. There were no chemical-related abnormal fuer were no chemical-related abnormal study in the nain study.

Although the NOAEL was 8 mg/kg/day for newborn rats based on the main study results, this value was concluded to be too low because of the absence of dinical signs at 20 and 100 mg/kg in the dosefinding study, and only one female showed tremors once at 50 mg/kg in the main study. The pNOAEL for newborn rats was therefore estimated to be 40 mg/kg/dag, a little below the 50 mg/kg.

## BCS Comment: The lack of a clear dose response relationship, even with small animal numbers in the dose-finding study, apparently casts doubt on the reliability of the study. The pNOAEL is based on an isolated observation of 15 min fremor of a single female on treatment day 9.

For young rate, the PNO/CEL can be considered to be 200 mg/kg/day because of the limited information at 500 mg/kg in the dosefinding study. The toxicity at 300 mg/kg for newborn rats seemed to be slightly higher than that at 1000 mg/kg for young rats, because of the transient depression of body weight found limited to the former cases, although the toxicity profile regarding the CNS was very similar in newborn and young rats. The dose for newborn rats showing the same toxic intensity, as that for young rats at 1000 mg/kg, is considered to be slightly lower than 300 mg/kg, at 200–250 mg/kg/day. Therefore, pUETILs of 200–250 and 1000 mg/kg/day may be considered equivalent doses for newborn and young rats, respectively.

for newborn and young rats respectively.

O

#### Toxicity findings for 2-chlorophenol in the newborn and young rat main studies

|                           | Newborn study (mg/kg) |         |              |           |                    |                 | Young study (mg/kg) |               |                                        | Ő      |
|---------------------------|-----------------------|---------|--------------|-----------|--------------------|-----------------|---------------------|---------------|----------------------------------------|--------|
|                           | 0                     | 20†     | 50           | 100†      | 300                | 0               | 200                 | 500†          | 1090                                   | Ĩ      |
| Male                      |                       |         |              |           |                    |                 | ð                   |               |                                        | \$     |
| General behavior          |                       |         |              |           |                    |                 | Ş                   | Þ             | 5                                      | ,D     |
| Tremors                   | 0/12                  | 0/4     | 0/12         | 0/4       | 11/12              | 0/12            | 0/12                | 0/3           | 4/12                                   |        |
| Hypoactivity              | 0/12                  | 0/4     | 0/12         | 0/4       | 2/12               | 0/12 /=         | 0/12                | 0/0           | 8 12                                   | , Ô    |
| Abnormal gait             | 0/12                  | 0/4     | 0/12         | 0/4       | 1/12               | 0/12            | 0/12                | 08            | °~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\sim$ |
| Histopathology            |                       |         |              |           |                    | Ň               |                     | Ô "C          | Y .Ó                                   | , ¢    |
| Renal tubules, basophilic | 0/6                   | no data | 0/6          | no data   | 4/6                | A.              | 0/6                 | @no data      | 0/6                                    | . 8    |
| Centrilobular hypertrophy | 0/6                   | no data | 0/6          | no data   | 0/6                | 0/6             | 0/6                 | no dela       | , Or                                   | s -    |
| Female                    |                       |         |              | A         | -Q                 | A               | Š                   | L             | °,                                     | ,Ø     |
| General behavior          |                       |         | Q            | nor '     | $\sim$             | , Ű             | R.                  | \0′_ <i>0</i> |                                        | Ý      |
| Tremors                   | 0/12                  | 0/4     | 1/12         | 0/40      | Ø/12               | 0/12            | @0/12 ?             | 0/3           | 5/12                                   |        |
| Hypoactivity              | 0/12                  | 0/4     | 0/12/        | 114 ×     | ° 3/12 √           | 0/12            | 0/12                | 0/3           | 5/12                                   |        |
| Abnormal gait             | 0/12                  | 0/4     | 0/12         | × 0/4 0   | 1/120              | 0/2             | 0/12                | A913          | A7/12 (                                | 0      |
| Histopathology            |                       | 1       | 4 %          | ý ~       | <u></u>            | .1              | S                   |               | ,<br>Î                                 | /      |
| Renal tubules, basophilic | 0/6                   | no data | 0/6~         | no dyta   | Ø16                | Ç076 🗤          | O <sub>0/6</sub> 🐇  | 🥒 no data 🎽   | 040                                    |        |
| Centrilobular hypertrophy | 0/6                   | no da   | <b>8/6</b> 7 | no data 🗞 | ( <sup>™</sup> 0/6 | ວັ <u>0/6</u> 🔬 | 0/6                 | no data       | <u> </u>                               |        |

Only data for items showing change are included in this rate. Data are numbers of an totals with the change of the real exampled. †indicates dose and data from the dose-finding oddy. All newborn animals died by the hi dosin day at 50 mg/kg, when downinding study. Body weights of both sexes were only transiently but not gally reduced, at 30 mg/kg, when newborn main study. Charical signs in newborn rats were not observed at dose of 20 and 100 mg/kg in the dose-finding study.

#### **III.** Conclusion

According to the authors newborn rate seem to be 5-times more effects of 2-chlorophenol. eptible than young rats to the

M

| Reliability (Klimisch Score): Not remable (Klimisch code 3)                                                       |
|-------------------------------------------------------------------------------------------------------------------|
| Details:                                                                                                          |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                             |
| - diet and cage type not specified                                                                                |
| application volume not stated                                                                                     |
| so a statistical analysis for qualitative data not well documented                                                |
| study results mainly not reported (e.g. hematology, blood                                                         |
| Siochemistry organ weights etc.)                                                                                  |
| Relevance: 6 A & Notrelevant O                                                                                    |
| Details:                                                                                                          |
| $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ results from pre-test were used to derive endpoints (small                       |
| A Size C                                                                                                          |
| BCS Conclusion                                                                                                    |
| data reliability and human relevance.                                                                             |
| $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ The study results have no impact on the overall conclusion |
| for the active substance fluoxastrobin.                                                                           |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
| $\mathcal{O}^{\vee}$                                                                                              |



#### Supplementary studies on the active substance CA 5.8.2

#### Summary of supplementary studies on fluoxastrobin

Supplementary studies on the active substance summarized in Table 5.8.2-1 and Table 5. evaluated in the EU peer review for inclusion of fluoxastrobin into Annex I of Directive 9 (2008), new studies are added.

| 1 able 5.8.2-1: 5                        | umma                  | iry of supp        | lementary                     | studies on iluoxastroom                                                                                         | õ                |                        | ¢۵ |
|------------------------------------------|-----------------------|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|------------------------|----|
| Study                                    | Sex                   | NO(A)EL            | LO(A)EL                       | Main findings at LOA)EL                                                                                         | Reference        | N. A.                  | Ő  |
| Doses tested                             |                       | pr                 | om                            |                                                                                                                 |                  | ₹ <sup>°</sup> 0, ¥    | ¥  |
|                                          |                       | (mg/kg             | bw/day)                       | A ~ o°                                                                                                          | A 4              |                        |    |
| Mouse                                    |                       |                    | L.                            |                                                                                                                 |                  |                        |    |
| 5-week immuno-                           | Μ                     | 7000               | 🗶                             | No zdverse stects in a                                                                                          |                  |                        |    |
| toxicity mouse                           |                       | (1543)             | $\bigcirc^{\nu}$              | plaque-forwing cells assa                                                                                       | 2000, M-076      | 778-01-1               |    |
| (diet)                                   | _                     |                    | 4                             | The second se |                  | D' A                   |    |
| 0-450-1800-7000                          | F                     | 7000               |                               |                                                                                                                 |                  |                        |    |
| ppm                                      |                       | (2383)             | Î in                          | W NY OY NY                                                                                                      |                  |                        |    |
| (M/F: 0-10//15/-                         |                       |                    |                               |                                                                                                                 |                  | <b>0</b>               |    |
| 36//660-1543/2383                        |                       | 4                  | O S                           |                                                                                                                 | S S              |                        |    |
| mg/kg DW/d)                              |                       | -Q'                | <i>`</i> a <i>`</i> a         |                                                                                                                 |                  | $\sim$                 |    |
| (99.1 E.Z)<br>Dot                        |                       |                    | u <sup>x</sup> o <sup>x</sup> |                                                                                                                 | L <sub>2</sub> O |                        |    |
| Nai<br>28 day oral (diet)                | М                     | × 8000             |                               | Immunotovicity no effect                                                                                        |                  | · 2011· M-             |    |
| male rat                                 | IVI                   | = (637)            |                               |                                                                                                                 | 441886201-1      | ,, 2011, I <b>v</b> I- |    |
| 0-125-1000-8000                          |                       |                    | Ŷ Ñ                           | 4 6 4 79                                                                                                        |                  |                        |    |
| ppm                                      | <i>.</i>              | A a                |                               |                                                                                                                 | , B              |                        |    |
| (0-10-81-637 mg/kg                       | Ç,                    | R S                |                               |                                                                                                                 |                  |                        |    |
| bw/d)                                    | Y L                   |                    |                               |                                                                                                                 | <i>¥</i>         |                        |    |
| 9-week mechanist                         | MO                    | كلام ا             | 1000                          | Effects on prine and                                                                                            |                  |                        |    |
| study in rats                            | ð                     | (7) 🖌              | (69)                          | phosphate and opcium 🗸                                                                                          | ; 2001; M-       | 136709-01-1            |    |
| particularly of Fects                    | S,                    |                    | V Q                           | home Pasis.                                                                                                     | supplementar     | ſy                     |    |
| on urinary system                        | F                     | 20050              | A 16000                       |                                                                                                                 | information/o    | lata:                  |    |
| (diet)                                   | õ                     | ( <sup>146</sup> ) | <b>p</b> (1544)               | Effects op strine and                                                                                           |                  | 2                      |    |
| 0-62.5/220-125/250-                      | Ű                     |                    |                               | Orosphate and Ocium                                                                                             | ;<br>2001 M      | ,                      |    |
| 1000/2000-                               | ) ×                   |                    | , 0° «                        | nomeostasis.                                                                                                    | ; 2001; M-       | 0/2428-01-1            |    |
| 3000/16000  ppm                          | 1                     |                    |                               |                                                                                                                 | ; 20             | 01, M-                 |    |
| (IVI/F. U-4/9-//18-9)<br>60/146_520/1544 | Q,                    | S 2                |                               | S S                                                                                                             | 001000-01-1      |                        |    |
| $mg/kg hw/d \gg 0$                       | $\mathcal{L}^{\circ}$ | ĴŬ N               | ~~ ~~                         |                                                                                                                 |                  |                        |    |
| (99·1 E·7) «                             | 6                     |                    | R'R'                          |                                                                                                                 |                  |                        |    |
|                                          |                       |                    |                               |                                                                                                                 | 1                |                        |    |

Summary of supplementary studies on fluo Table 5.8.2-1.

In the short-term toxicity studies summarised in document MCA 5.3 (M-012683-01-1, M-017457-01-1, M-012710-01-1) immunotoxicity investigations are included which showed no effect on immunotoxicity. Ř

EFSA Scientifie Report (200) 102 -84, Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin finalised: 13 June 2007" on supplementary studies:

Studies in rate and make disconst reveal any adverse immunotoxic effects following dietary exposure for 4.43 we as to high doces. Two studies included the plaque forming cell assay. There was however no pecific investigation of the thymus, an organ for which reduced weight was observed in adults and pups in One multigeneration study. The new immunotoxicity study in male rats (M-441880-01-1) confirmed that fluoxastrobin shows no immunotoxicity potential. Furthermore, there were no substance-related effects on spleen and thymus weights.

#### **Calcium-phosphorous homeostasis**

Following further mechanistic investigations, it was concluded that exposure to fluoxastrobin regited in reduced phosphate absorption in the intestine. A potential phosphate denoter, the regulated by reduced renal excretion of phosphate and renal hyper-excretion of palcium. It is proposed that increased calcium excretion in urine, together with an increase in unhary pH, led to cabuli formation. in reduced phosphate absorption in the intestine. A potential phosphate deficiency was sumter of 

#### Summary of supplementary studies on impurities of fluoxastrobin

| 1 able 5.8.2-                   | 2: Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of supplementary studies w                                               | ith impuraties of fluo xa           | strokon ov ka                 |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|-------------------------------|
| Test item (purity) <sup>#</sup> | Type of study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dose range tested                                                        | Results Q                           | Reference                     |
| Impurity 7<br>99.2%             | Acute oral,<br>rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000 mg/kg bw & &                                                        | $155_{50} > 2200 \text{ mg/} $      | 2002; M-066922-<br>064        |
|                                 | Reverse mutation*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 <sup>st</sup> : 16-500 μg/plates<br>2 <sup>nd</sup> : 100-3 0 μg/plate | Negative A O                        | ,; 2002;<br>M-073511-01-1     |
|                                 | In vitro HPRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-80 μg0nL (+ \$\$9-mite)                                                | Negative 2                          | ,, 2004;<br>1079@0-01-1       |
|                                 | In vitro<br>chromosome<br>aberration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4h treatment: 20-80 μg/m<br>18h treatment: 3-35 μg/m                     | Negative                            | M <sub>2</sub> 002507-01-1    |
| Impurity 15<br>98.9%            | Acute oral, rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200¢ mg/kg Sk Ly O                                                       | LD S>2500 fng/kgQ                   | 2003; M-075146-<br>01-1       |
|                                 | Reverse 🗶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathcal{P}^{s}$ and $\mathcal{P}^{d}$ :16-5900 µg Flate                | Negative ( )                        | ;; 2002;<br>M-073977-01-1     |
| Impurity 20<br>99.1%            | Acuto ral,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 <b>0</b> mg By bw                                                     | 1950 >2500 mg/gg                    | ;;<br>2002; M-063677-<br>01-1 |
| Č.                              | Reverse & w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <sup>st</sup> and 2 <sup>nd</sup> :16#5000@g/plate                     | Noative C                           | ;; 2002;<br>M-073957-01-1     |
| Impurity 77<br>99%              | Acute oral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coloo make bw                                                            | 2D <sub>50</sub> 3500 mg/kg         | +;<br>2003; M-075063-<br>01-1 |
|                                 | Reverse<br>mutation*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107and 22776-5000 µg/pl@e                                                | Negative                            | ,; 2002;<br>M-073941-01-1     |
| Impurity 22<br>98.6%            | Pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000 Hg/kg QV O O                                                        | LD <sub>50</sub> >2500 mg/kg        | ;;<br>2003; M-075100-<br>01-1 |
|                                 | Reverse Mutatie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 <sup>st</sup> : 16-5000 µsplate<br>2 <sup>nd</sup> : 541581 {k/plate   | Negative                            | ,; 2003;<br>M-082964-01-1     |
| Imparity 23<br>94.5%            | Acute Vial, Acute | 290 and 2000 ms to bw                                                    | $LD_{50} > 300 < 500 \text{ mg/kg}$ | ;;<br>2002; M-090369-<br>01-1 |
| Impurity 23<br>99.1%            | Beverse<br>mutation*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 <sup>st</sup> : 19-5000 µg/plate<br>2 <sup>rd</sup> : 2-480 µg/plate   | Negative                            | か; 2002;<br>M-036525-01-1     |

----~

\* Plate incorporation in first experiment, pre-incubation in second experiment <sup>#</sup> Impurity demominations are deciphered in Document JCA.

6



#### **Immunotoxicological studies**

In order to fulfil US EPA requirements an additional immunotoxicity study in rats was conducted in 2011. The respective study M-441880-01-1 is owned by Arysta LifeScience (ALS). ALS provides at Letter of Access for the benefit of Bayer CropScience (see document M-532402-01-1).



Ē

#### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

| Housing:       Group-housed (maximum of 3 rats per cage) upon recent and individually housed during the dosing phase for the dosing phase of the d                                                                                                                                                                                                                                                                                                                                                                                                                 | Water:                             | Tap water, ad libitum                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|
| and individually housed during the dosing phase of the<br>study. Animals were housed in Ondividually sentilated<br>plastic cages containing bedding material. The bedding<br>and treatmedregimen. Individually sentilated<br>plastic cages containing bedding material. The bedding<br>and treatmedregimen. Individually sentilated<br>by tail marking<br>Antigen stimulation:<br>Identification<br>Source of SRBC<br>Preparation of SRBC<br>Observations:<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Observations:<br>Administration of SRBC<br>Administration of SRBC                                                                                                                                                        | Housing:                           | Group-housed (maximum of 3 rats per cage) upon receipt    |
| <ul> <li>study. Animals were housed in Ondividually schelling deding material. The bedding material. The beddi</li></ul>                                                                                                                                                                                                                                                                                                                                                               |                                    | and individually housed during the dosing phase of the    |
| <ul> <li>Assess</li> <li>Administration of SRBC:</li> <li>Administ</li></ul>                                                                                                                                                                                                                                                                                                                                                               |                                    | study. Animals were housed in Ordividually centilated     |
| and treatment realized with the study number animals were identified by tail marking.         B. Study design and methods         1. Animal assignment and treatment         Treatment:         application route:         Exposure:         Group size:         Antigen stimulation:         Identification:         Source of SRBC:         Preparation of SRBC         Observations:         Administration of SRBC:         Anti-SRRC ECISA:         Anti-SRRC ECISA:         String and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | (bed-o'cobs®) was changed at least once weekly Each       |
| and treatments regimen. Individual animals werendentified by tail marking B. Study design and methods I. Animal assignment and treatment Treatment: Application route: C. Application route: C. Application route: C. Antigen stimulation: C. Antigen stimulation: C. Antigen stimulation: C. Administration of SRBC: Preparation of SRBC: C. Administration of SRBC: C. Administrat                                                                                                                                                                                                                                                                                                                                                                         |                                    | cage was labeled with the study number; animal number,    |
| B. Study design and methods         1. Animal assignment and treatment         Treatment:       0, 125, 1000, 8000 ppm,<br>(equivalent to 3pprox 0, 10, 81, 637 mg/kg bw/dg))         Application route:       2, 24 ars         Exposure:       2, 24 ars         Group size:       20 animals/group (St) fats in total).         Antigen stimulation:       3her red blood cell (SRBC) sensitization         Source of SRBC:       USA         Preparation of SRBC       USA         Preparation of SRBC       USA         Observations:       USA         Administration of SRBC       Each rat was immunized intravenously into a tail vein with 02 mL of one spherately on Day 23.         Observations:       Serior samples were evaluated with ELISA kit. Diluted teg' samgles and standards were added to microwells and the bubted for 45 minutes. The wells wase washed, and the substrate solution and the clock of the wells washed, and the substrate solution added. Color development was stopped atte: 20 minutes by addition of the stop solution. The ophical density was determined spectrophotometrically at 450 m. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | and treatment regimen. Individual animals were identified |
| <ul> <li>B. Study design and methods</li> <li>1. Animal assignment and treatment</li> <li>Treatment:</li> <li>Application route:</li> <li>Exposure:</li> <li>Group size:</li> <li>Antigen stimulation:</li> <li>Identification:</li> <li>Source of SRBC:</li> <li>Preparation of SRBC</li> <li>Observations:</li> <li>Administration of SRBC:</li> <li>Administration of SRBC:</li> <li>Administration of SRBC:</li> <li>Administration of SRBC:</li> <li>Source of SRBC:</li> <li>Preparation of SRBC:</li> <li>Administration of SRBC:</li> <li>Source of SRBC:</li> <li>Preparation of SRBC:</li> <li>Administration of SRBC:</li> <li>Source of SRBC:</li> <li>Sou</li></ul>                                                                                                                                                                                                                                                                                                                                                               |                                    | by tail marking                                           |
| 1. Animal assignment and treatment       0, 125, 1000, 8000 ppm         Treatment:       0, 125, 1000, 8000 ppm         Application route:       28 days         Exposure:       28 days         Group size:       28 days         Antigen stimulation:       35 deprecision of SRBC         Preparation of SRBC       9 beed SRBC in Alseyer's solution avere washed 3 times in PB and reating of an antiper solution avere washed 3 times in PB and reating of an antiper solution avere washed 3 times in PB and reating of and water consumption, clinical observations:         Observations:       9         Anti-SRBC FEISA       Serion samples were evaluated with ELISA kit. Diluted test samples were evaluated with ELISA kit. Diluted test samples were evaluated and horseadish peroxidase-conjugated anti-rat IgM added to the wells. The microplate was incubated at room iffingerafter for 45 minutes. The wells were usashed and horseadish peroxidase-conjugated anti-rat IgM added to the wells. The microplate was incubated at room iffingerafter for 45 minutes. The wells were usated and the substrate solution added. Color development was stopped atter 20 minutes by addition of the stop solution. The optical density was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B. Study design and methods        |                                                           |
| Treatment:       0, 125, 1000, 8000 ppn         Application route:       0, auvaluation to approx 0, 10, bit, 637 mg/kg bw/day)         Exposure:       28 days         Group size:       0 aniwalls/group (55 rats in total)         Antigen stimulation:       Identification:         Source of SRBC:       USA         Preparation of SRBC       USA         Preparation of SRBC:       USA         Pooled SRBC:       USA         Observations:       Serm: samples were evaluated with ELISA kit. Diluted tay samples and standards were added to microwells and ficubated for 45 minutes. The wells were washed and hocearadish feroxidase-conjugated anti-rat IgM added to the substrate solution added. Color development was stopped after 20 minutes by addition of the stop solution. The optical density was determined spectrophotometrically at 150 mm. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. Animal assignment and treatment |                                                           |
| Application route:       Exposure:       25 days         Group size:       20 animals/group (50 tats it Cotal).         Antigen stimulation:       10 animals/group (50 tats it Cotal).         Identification:       Succe of SRBC:         Preparation of SRBC       USA         Preparation of SRBC:       Vision and the set of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Treatment:                         | 0, 125, 1000, 8000 ppm                                    |
| Application route:       23 days         Group size:       10 animals/group (50 fats introtal)         Antigen stimulation:       Identification:         Source of SRBC:       Preparation of SRBQ         Preparation of SRBC:       USA         Administration of SRBC:       Poled SRBC in Also of so softion were washed 3 times in PBS and resuspended to a sinal concentration of 5 × 10 <sup>7</sup> SRB(ChL)         Observations:       Body weight, ford and water consumption, clinical observations, organ weights (spleen, thymus), IgM with an ELISA         Anti-SRBC FUBA:       Seron samples were evaluated with ELISA kit. Diluted test samples and standards were added to microwells and inclusted for 45 minutes. The wells were washed, and the substrate solution added. Color development was stopped after 20 minutes by addition of the stop solution. The optical density was determined spectrophotometrically at 30 m. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                                  | (equivalent to approx y, 10, or, 63 ping/kg bw/day)       |
| Exposure:       28 days         Group size:       0 animals/group (50 fats intotal)         Antigen stimulation:       Identification:         Source of SRBC:       USA         Preparation of SRBC:       USA         Observations:       Dode Cell (SRBC in Alsever's solution avere washed 3 times in PBS and recuspended to a final concentration of 5 × 10 <sup>7</sup> SRB(Cint.)         Administration of SRBC:       Each rat avas immunized intravenously into a tail vein with 0 2nL officis preparation on Day 23.         Observations:       Body weight, food and water consumption, clinical observations, organ weights (spleen, thymus), lgM with an ELISA         Anti-SRBC FLISA:       Serum samples were evaluated with ELISA kit. Diluted test samples and standards were added to microwells and frictbated for 45 minutes. The wells were washed and house addisin ferovidase-conjugated anti-rat [WA added to the wells. The microplate was incubated at room imperature for 45 minutes, the wells washed, and the substrate solution added. Color development was stopped after 20 minutes by addition of the stop solution. The offical density was determined spectrophotometrically at 450 nm. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Application route:                 |                                                           |
| Antigen stimulation:<br>Identification:<br>Source of SRBC:<br>Preparation of SRBC:<br>Administration of SRBC:<br>Observations:<br>Anti-SRBC ELISA:<br>Anti-SRBC ELISA:<br>An                                                                                                                                       | Exposure:                          | 28 days of the the the the the the                        |
| Antigen stimulation:<br>Identification:<br>Source of SRBC:<br>Preparation of SRBC<br>Administration of SRBC:<br>Observations:<br>Anti-SRBC ELISA:<br>Anti-SRBC ELISA:<br>Ant                                                                                                                                       | Group size:                        | V animals/group (Sprats in total)                         |
| Succe of SRBC:<br>Preparation of SRBC:<br>Administratice of SRBC:<br>Observations:<br>Anti-SRBC EF ISA:<br>Anti-SRBC FF ISA:<br>Anti-SRBC F                                                                                                                                                   | Antigen stimulation:               | $\sim$ Sheep red blood cen (SKBC) sensilization $\sim$    |
| Source of SRBC:<br>Preparation of SRBC<br>Administration of SRBC:<br>Observations:<br>Atti-SRBC EF ISA:<br>Anti-SRBC FF ISA:<br>Anti-SRBC F                                                                                                                                                   |                                    | Speep red blood cell (SRBC)                               |
| Preparation of SRBC<br>Administration of SRBC:<br>Observations:<br>Cobservations:<br>Anti-SRBC FLISA:<br>Anti-SRBC FLISA:<br>A | Source of SRBC:                    |                                                           |
| Administration of SRBC<br>Observations:<br>Anti-SRBC FCISA:<br>Anti-SRBC FCISA:<br>Ant | Preparation of SRB $ \bigcirc $    | Pooled SRBC in Alsever's solution were washed 3 times     |
| Administration of SRBC.<br>Observations:<br>Anti-SRBC ELISA:<br>Anti-SRBC ELISA:<br>Anti-SRB                                                                                                                                       | 2 9 9                              | SRBOML ~ & &                                              |
| Observations:<br>Observations:<br>Anti-SRBC ECISA:<br>Anti-SRBC ECISA:                                                                                                                                         | Administration of SRBC:            | Each rat was immunized intravenously into a tail vein     |
| Observations:<br>Anti-SRBC ELISA:<br>Anti-SRBC | S O A                              | with 0.2 mL of this preparation on Day 23.                |
| 2.Assave<br>Anti-SRBC EFISA.<br>Anti-SRBC EFISA.<br>Control of the second standards were added to microwells and incubated for 45 minutes. The wells were washed and hotseradish beroxidase-conjugated anti-rat IgM added to the wells. The microplate was incubated at room temperature for 45 minutes, the wells washed, and the substrate solution added. Color development was stopped after 20 minutes by addition of the stop solution. The optical density was determined spectrophotometrically at 450 nm. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observations:                      | Body weight, foger and water consumption, clinical        |
| 2.Assars<br>Anti-SRBC ELISA:<br>Anti-SRBC ELISA:<br>Control of the substate solution added to microwells and provide and standards were added to microwells and provide for 45 minutes. The wells were washed and the wells The microplate was incubated at room the wells. The microplate was incubated at room the wells are solution added. Color development was stopped after 20 minutes by addition of the stop solution. The optical density was determined spectrophotometrically at 450 nm. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | observations, organ weights (spleen, thymus), IgM with    |
| Anti-SRBC ECISA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.Assart                           |                                                           |
| test samples and standards were added to microwells and<br>incubated for 45 minutes. The wells were washed and<br>horse addish peroxidase-conjugated anti-rat IgM added to<br>the wells. The microplate was incubated at room<br>temperature for 45 minutes, the wells washed, and the<br>substrate solution added. Color development was stopped<br>after 20 minutes by addition of the stop solution. The<br>optical density was determined spectrophotometrically at<br>450 nm. All samples and standards were run in duplicate<br>and data analysis was performed using Molecular Devices<br>Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anti-SRBC FLISA:                   | Sertion samples were evaluated with ELISA kit. Diluted    |
| the wells wintes. The wells were washed and<br>horse adish beroxidase-conjugated anti-rat IgM added to<br>the wells. The microplate was incubated at room<br>temperature for 45 minutes, the wells washed, and the<br>substrate solution added. Color development was stopped<br>after 20 minutes by addition of the stop solution. The<br>oblical density was determined spectrophotometrically at<br>450 nm. All samples and standards were run in duplicate<br>and data analysis was performed using Molecular Devices<br>Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | test samples and standards were added to microwells and   |
| the wells The microplate was incubated at room<br>temperature for 45 minutes, the wells washed, and the<br>substrate solution added. Color development was stopped<br>after 20 minutes by addition of the stop solution. The<br>optical density was determined spectrophotometrically at<br>950 nm. All samples and standards were run in duplicate<br>and data analysis was performed using Molecular Devices<br>Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | incubated for 45 minutes. The wells were washed and       |
| temperature for 45 minutes, the wells washed, and the substrate solution added. Color development was stopped after 20 minutes by addition of the stop solution. The obtical density was determined spectrophotometrically at 450 nm. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | the wells. The microplate was incubated at room           |
| substrate solution added. Color development was stopped<br>after 20 minutes by addition of the stop solution. The<br>optical density was determined spectrophotometrically at<br>450 nm. All samples and standards were run in duplicate<br>and data analysis was performed using Molecular Devices<br>Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | temperature for 45 minutes, the wells washed, and the     |
| the stop solution. The optical density was determined spectrophotometrically at 450 nm. All samples and standards were run in duplicate and data analysis was performed using Molecular Devices Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | Substrate solution added. Color development was stopped   |
| 450 nm. All samples and standards were run in duplicate<br>and data analysis was performed using Molecular Devices<br>Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | objected density was determined spectrophotometrically at |
| Softmax Pro software (version 2.2.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | 450 nm. All samples and standards were run in duplicate   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | ✓and data analysis was performed using Molecular Devices  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | Softmax FIO Software (version 2.2.1).                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                           |
| $\mathcal{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                  |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                           |



#### **II. Results and discussion**

#### A. Mortality and clinical observations

There were no unscheduled deaths during the study. There were no clinical signs for any of the animals after the start of treatment.

#### B. Water and food consumption and dietary intake

Water consumption was statistically significantly less than vehicle control (p < 0.05) at weeks 2 and for the 1000 ppm fluoxastrobin group and at weeks 3 and 4 for the 8000 ppm fluoxastrobin group These changes (0.81-0.84 × vehicle control) are considered related to fluoxastrobit treatment.

Food consumption for the fluoxastrobin treated rates was statistically significantly reduced p < 0.005) from vehicle control only at week 1 for the 8000 ppm group? The toxicological significance of this change is unclear because thereafter there were no statistically significant changes in food consumption.

Cyclophosphamide Group 5 mean water consumption values were statistically significantly reduced (p < 0.05) compared to vehicle control for weeks 2, 3, and 4. However the changes observed for weeks 2 and 3 are not considered toxicologically relevant because Sclophosphardide desing did not begin until week 4. Food consumption was statistically significantly less than vehicle control for week 4, which in addition to the loss of body weight, correlates to the period obyclophosphanide dosing.

| 10010 01012 11   | 1      |                | <sup>w</sup> |         | al a         |              |         |            | Ô             | •      |        |      |
|------------------|--------|----------------|--------------|---------|--------------|--------------|---------|------------|---------------|--------|--------|------|
|                  |        | Wegek 1        | - OX         |         | Week 2       |              | . ^Q    | eek 3      | y j           | N      | /eek 4 |      |
| Group            | Mean   | SE .           | SD           | Mean    | SE A         | ✓ SD 🕾       | Mean    | SE         | SPC           | Mean   | SE     | SD   |
| Vehicle Control  | 269.%  | 17.6           | *55.7Q       | 326.9   | 220          | 70,8         | 35750   | ¢29.9      | -24.0         | 348.5  | 25.7   | 81.3 |
| Fluoxastrobin    | 255,9  | 10.6           | 33.5         | 200.4   | \$2.9        | <b>40</b> /8 | 323.3 ( | DĨ4.9 -    | <b>§4</b> 7.1 | 337.7  | 12.0   | 37.9 |
| 125 ppm          |        | Sy .           | Ő,           |         | \$           |              | Ø "í.   | <i>Q</i> 1 |               |        |        |      |
| Fluoxastrobin (  | 222.9  | ₽10.6 <b>"</b> | 33.5         | 267,2** | ' 13,3       | ° 42.1,5,*   | 301     | 1803       | 58.5          | 307.5  | 16.4   | 51.9 |
| 1000 ppm _ O     | )<br>D |                |              | 1.0     | J.           |              |         | Ŵ          |               |        |        |      |
| Fluoxastrobi     | 226 Î  | \$6.8          | 53.T         | 278.5   | <b>Q</b> 1.9 | 69.3         | @89.3*  | 22.6       | 71.5          | 285.8* | 22.2   | 70.2 |
| 8000 ppm         | 9      |                | Q            | A 8     |              | 6            |         |            |               |        |        |      |
| Positive Control | 233.6  | 11.00          | 34.8         | 264.2*  | 13.8         | 42.40        | 276.    | 14.9       | 47.1          | 289.6* | 14.0   | 44.3 |

SE = standard error, SD standard deviation (calculate as SD  $\leq$  SE  $\ll$  n)

\* Significantly different from (chicle control  $( \phi^2 < 0.05)$ 

#### Mean weekl food consumption (g/rat) Table 5.8.2- 2:

|                  | .0.                  | Ĉ           | . ♥           | $\bigcirc$          | $\sim$ $\bigcirc$                     | ч <i>0</i> : |       |        |      |        |       |      |
|------------------|----------------------|-------------|---------------|---------------------|---------------------------------------|--------------|-------|--------|------|--------|-------|------|
| Ŵ.               | C W                  | ©ek 1 ∧     |               | $\gg$ )             | Xeek 2                                | $\gtrsim$    | W     | Veek 3 |      | W      | eek 4 |      |
| Group            | Mean <sup>©</sup>    | sex         | SD 🖌          | Mean                | SE 🦉                                  | SD           | Mean  | SE     | SD   | Mean   | SE    | SD   |
| Vehicle Control  | 165,10               | 2,5         | 8.5®          | 1859                | 43                                    | 13.6         | 193.9 | 5.3    | 16.8 | 196.6  | 5.1   | 16.1 |
| Fluoxastrobin    | 1663                 | 3.1°        | 19 <b>5</b> 8 | 184.6               | ~Qi                                   | 13.9         | 195.6 | 5.8    | 18.3 | 199.7  | 5.2   | 16.4 |
| ړ¶25 ppm         | w L                  |             |               | 6 ~                 | a a a a a a a a a a a a a a a a a a a |              |       |        |      |        |       |      |
| Fluoxastrobin    | 163.0 0              | 3.40        | 10.8          | 187.4 <sup>0°</sup> | 5.0                                   | 15.8         | 197.7 | 5.4    | 17.1 | 198.4  | 5.5   | 17.4 |
| ©1000 ppm        |                      |             | Ž.            | Ő.                  |                                       |              |       |        |      |        |       |      |
| Fluoxastrobin    | 1,4 <del>6.</del> 3* | <b>Q</b> :1 | %9.8          | 174.8               | 2.7                                   | 8.5          | 184.3 | 2.7    | 8.5  | 191.2  | 4.1   | 13.0 |
| 8000 ppm         | ~" Â                 |             |               | D                   |                                       |              |       |        |      |        |       |      |
| Positive Control | Ş159.2 💍             | 3.4         | 10.8          | 178.9               | 4.2                                   | 13.3         | 186.0 | 4.9    | 15.5 | 155.3* | 4.5   | 14.2 |
|                  |                      | O           |               |                     |                                       |              |       |        |      |        |       |      |

Table 5 8 2- 1.

Mean weekly water consumption g/rate



#### C. Body weight

Weekly body weights for the 8000 ppm group were statistically significantly reduced (p < 0.05) on Days 8, 15, and 22 (~0.93 × vehicle control) compared to vehicle control, but comparable to vehicle control at termination (Day 29). The weekly decreases for the 8000 ppm group are considered of marginal toxicological significance because the decreases were not > 10%, and the terminal body weight was comparable to vehicle control. One control animal lost 60 g of body weight the week prior to scheduled euthanasia, but there were no observations that would provide an explanation for this loss.

Cyclophosphamide mean terminal body weight was statistically significantly reduced (p 00.05) compared to vehicle control. This change correlates with a decrease in week 4 thean food consumption that occurred during the 6-day period of cyclophosphamide dosing.

### Table 5.8.2- 3: Terminal body weight/(g)

| Group                  | $\mathcal{M}ean \overset{\sim}{\sim} \overset{\sim}$ |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vehicle Control        | 416.67 ~ 12.05 ° ~ 38.11 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fluoxastrobin 125 ppm  | 0 <sup>°</sup> 4166 0 <sup>°</sup> 5 <sup>°</sup> 0 <sup>°</sup> 21.195 <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fluoxastrobin 1000 ppm | 20,93 (A23.8 ) ACT (Contraction of the contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fluoxastrobin 8000 ppm | $5 0405.9^{\circ}$ $1720$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Positive Control       | \$ 382\$\$* \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

SE = standard error, SD = standard@leviation (calc@lated  $f_{S}SD = SE \times \sqrt{6}$ ) \* Significantly different from vehicle control (p 0.05)

#### D. Organ weights

There were no fluoxastrobin related effects on mean absolute and relative spleen weights (per 100 g body weight).

Cyclophosphamide treated rats had absolute and relative spleen weights significantly less than vehicle control (0.46 and  $0.50 \times$  vehicle control, respectively)

There were no fluoxastrobin-related effects of mean absolute and relative thymus weights (per 100 g body weight).

Cyclophosphamide freated rats had absolute and relative drymus weights significantly less than vehicle control ( $0.26 \times \text{and } 0.29\%$  vehicle control, respectively).

| Table 5.8.2- 4                          | oleen weight  |              |        |               |                |              |
|-----------------------------------------|---------------|--------------|--------|---------------|----------------|--------------|
| × ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | a Absol       | w spleen wei | ghQ(g) | Relative sple | en weight (g/l | kg 100 g bw) |
| Group                                   | Mean 🧳        | °SE ×        | J SD   | Mean          | SE             | SD           |
| Vericle Control                         | <b>0.89</b> Q | 0.028        | 0.089  | 0.215         | 0.009          | 0.0285       |
| Fluoxastrobin 125 ppm                   | 0.815         | 0.033        | 0.104  | 0.195         | 0.006          | 0.0190       |
| Fluexastrobin 1000 ppm                  | 0.812         | 0.032        | 0.070  | 0.192         | 0.005          | 0.0158       |
| Fluoxastrobin 8000 ppm                  | _0.790 Ø      | 0.037        | 0.117  | 0.195         | 0.011          | 0.0348       |
| Positive Control                        | 0.409         | 0.022        | 0.070  | 0.107         | 0.005          | 0.0158       |

SE = standard error, SD = standard deviation (calculated as SD = SE  $\times \sqrt{n}$ )

Significantly different from vehicle control (p < 0.05)

C. C. V.

e C

**Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

| Table 5.8.2- 5: | Thymus weight              |   |
|-----------------|----------------------------|---|
|                 | Absolute thymus weight (g) | F |
|                 |                            |   |

|                             | Absolu             | te thymus weight | ght (g) | Relative thymus weight (g/kg 100 g bw) |       |                                |  |
|-----------------------------|--------------------|------------------|---------|----------------------------------------|-------|--------------------------------|--|
| Group                       | Mean               | SE               | SD      | Mean                                   | SE    | SD O                           |  |
| Vehicle Control             | 0.755              | 0.020            | 0.063   | 0.182                                  | 0.004 | ©0.013                         |  |
| Fluoxastrobin 125 ppm       | 0.692              | 0.050            | 0.158   | 0.165                                  | 0.010 | <sup>∞</sup> 0.03 <sup>∞</sup> |  |
| Fluoxastrobin 1000 ppm      | 0.732              | 0.054            | 0.171   | 0.172                                  | 0.012 | 0,038                          |  |
| Fluoxastrobin 8000 ppm      | 0.606              | 0.041            | 0.130   | 0.14%                                  | 0.010 | . 0.032 ≪.                     |  |
| Positive Control            | 0.199*             | 0.015            | 0.047   | 0.052                                  | 0.003 | ~ 0.00g                        |  |
| CE - standard sman CD - sta | منعمتهما المسمامين | m (aplamlated)   |         |                                        |       |                                |  |

SE = standard error, SD = standard deviation (calculated as SE

\* Significantly different from vehicle control (p < 0.05)

#### D. Immune response – SRBC-specific IgM response

Anti-SRBC IgM was measured on Day 290 6 days post intravenous ammunization with 1 × 107 SRBC/rat (0.2 mL of  $5 \times 10^7$ SRBC/mL) concentration. This information concentration groduced a good antibody response and significant mmmosuppression with the cyclophosphanide immunomodulatory positive control (IgN concentration =  $0.12 \times \text{ychicle control}$ )

There appeared to be a trend of a dose-related decrease in antes SRBC increasing dose of fluoxastrobin. However, this change was not statistically significant

#### Anti-S&BC LENI (U/mL) Table 5.8.2- 6:

|                        |                                | 0       |
|------------------------|--------------------------------|---------|
| Group 🖏 🌾              | 🗘 Mean Y Y SE 🖉                | SD      |
| Vehicle Control        | 4255.1 8846 2                  | 2797.98 |
| Fluoxastrobin 125 ppm  | 4306.7 5 4179.17 5             | 3510.51 |
| Fluoxastrobin 1000 ppm | 9999.5 × 0 4151.5 ×            | 3641.36 |
| Fluoxastrogn 8000 ppm  | ~3160 ~ 0738.85 <sup>×</sup>   | 2336.45 |
| Positive Coppol        | $\sim$ 51° $Q^*$ $\sim$ 78 $Q$ | 247.95  |

SE = standard error, SD = standard/deviation (categolated as SD = SE  $\times$  )

\* Significantly different from vehicle control (0 0.05) one value with an anti-SRBC IgM of 20707.9 U/mL was excluded from the calculations because it was regarded as an outfier





Individual animal response against approximate fluoxastrobin dose with means (red circles) and medians (blue triangles). Superimposed lines additionally show negative control mean (dotted) and median (dashed) for reference. (CP = 15 mg/kg bw cyclophosphamide) One value with an anti-SRBC IgM of 20707.9 U/mL was excluded from the calculations because it was regarded as an outlier.

Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

#### **III.** Conclusion

Based on the conditions of this study the NOEL is 125 ppm (approx. 10 mg/kg bw) based on decreased water consumption at 1000 and/or 8000 ppm (approx. 81 and 637 mg/kg bw) and decreased body weights at 8000 ppm (approx. 637 mg/kg bw).

Based on the immunotoxicity indices of this study the fluoxastrobin NOAEL for immunotoxicity is 8,000 ppm (approx. 637 mg/kg bw).

#### Supplementary studies on impurities of fluoxastrobin

All necessary studies were presented and evaluated during the EU process for Annex I Risting Please refer to the DAR and the baseline dossier of fluoxastrobin.

In addition, toxicological studies conducted with HEC 5725-E-CL-PMD are also considered supportive to justify the limits of specified impurities

| Demonte                 |                                                                                                   |
|-------------------------|---------------------------------------------------------------------------------------------------|
| Title:                  | KCA 5.8.2/20                                                                                      |
| The.                    | mutations                                                                                         |
| Report No ·             | AT00945 Q LA                                                  |
| Document No.:           | M-107900-019 2 2 2 2 2 2 2 2 2                                                                    |
| Guideline(s):           | Directive 2000/32/EC, method BA7.; OECD 476 S-EPA 712-C 98-221, OPPTS                             |
|                         | 870.5300                                                                                          |
| Guideline deviation(s): | None vý vy vý vý vý vý vý vý                                                                      |
| GLP/GEP:                | Yes by by by by by by by                                                                          |
|                         |                                                                                                   |
|                         | I. Materials and methods                                                                          |
| A. Materials            |                                                                                                   |
| 1. Test material:       |                                                                                                   |
| Name:                   | $\sqrt{0}$ $\frac{1}{\sqrt{2}}$ HEC 5725-E-CD-PML9 $\frac{1}{\sqrt{2}}$                           |
| CAS number:             | × 4193740-62-7 × 5                                                                                |
| Description: 🔗          | White powder S O s                                                                                |
| Lot/Batch no:           | × × BD 4014-028 0 ~0                                                                              |
| Pairty:                 | $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ |
| Stability of texpect    | ompound: guaranteed for study duration; a stability test in the solvent did                       |
| S.                      | A pot reveal significant degradation of the active ingredient                                     |
| 2. Vehicle and contro   |                                                                                                   |
| Vehicle 🖓 🗘             | DMSO, 1 final concentration                                                                       |
| Vehicle control:        | " The dium with yehicle with or without metabolic activation                                      |
| Negative control        | Medium                                                                                            |
| Positive controls:      | 90@ug/mb EMS without metabolic activation                                                         |
|                         | 20 ug/no DMBA with metabolic activation                                                           |
| 3. Test system          |                                                                                                   |
| Cell line               | Chinese hamster V79 cells                                                                         |
| Sourge                  | Germany                                                                                           |
| Culture condition       | S V79 cell stocks stored in liquid nitrogen Laboratory cultures                                   |
|                         | maintained in plastic tissue culture vessels at 37°C in a                                         |
|                         | humidified atmosphere containing approximately $5\%$ CO <sub>2</sub> .                            |
| E Q                     | Exponential growth of cell cultures maintained by subculturing                                    |
| Č,                      | at least twice a week. The cells were checked for karvotype                                       |
| <b>V</b>                | stability and mycoplasma contamination. To keep the number                                        |
|                         | of spontaneous 6-TG resistant mutants at a low level, cell                                        |

Ē

#### Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

| Medium:                      | cultures were subcloned by plating about 1000 cells per culture<br>vessel at least every two weeks. If necessary, the spontaneous<br>frequency of HPRT-mutants was additionally reduced by<br>supplementing the culture medium with thymidine (9 $\mu$ g/mL),<br>hypoxanthine (10 $\mu$ g/ml), glycine (22.5 $\mu$ g/mL) and<br>methotrexate (0.3 $\mu$ g/mL).<br>Hypoxanthine-free Eagle's Minimal Dessential Methum (MEM)<br>supplemented with L-glutamine (2 mM), MEM-vitamins,<br>NaHCO3, penicillin (100 units/mL), streptomycin (100 $\mu$ g/mL)<br>and heat-inactivated fetal calf serum (final concentration: 10%)<br>(Seromed). During treatment with the test item, the serum<br>content was reduced to 2%. For selection of mutants a<br>hypoxanthine-free culture medium was used, containing 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metabolic activation:        | S9 mix was prepared from the livers of Arocle 1254 induced male Sprague Dawley rats, protein concentration: 26.4 mg/mg/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B. Study design and methods  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. Treatment:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Concentrations:              | Exposure S9 mix Dest iteor concentrations [ugmL]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24                           | period & b b c v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | Cytotoxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10° 44                       | 5  h $-$ 0.05, 0.4, 4, 5, 10, 20, 40°, 80°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 3.16 $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ $7.16$ |
|                              | $24 \text{ h}$ $5, 40, 20, 40^{\text{p}}, 60^{\text{p}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | $24h$ $+ \sqrt{5,40,20,40,60^{P},80^{P}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | <sup>P</sup> . Precipitation Sible to the unaided eye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | For each test solution of control two parallel cultures were used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Incubation conditions:       | $\sim$ or $25$ hours, at 37 °C in advinidified atmosphere with 5% CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Statistical analysis:     | Matant Bounder submitted to a weighted analysis of variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | well as to a weighted recitive regression both with Poisson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| K <sup>y</sup> , , , , , , , | derived weights. Mutant frequencies based on less than 5 plates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | and or off a relative survival to treatment and/or a relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S'A &                        | population growth and/or an absolute cloning efficiency below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 10% are not included in the statistical analysis. The two mutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | frequency values obtained per group are, although somewhat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | related, considered as independent measurements thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | analyzed with the run for each trial in order to examine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | consistence of the results. All accentable groups are included in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | the weighted analysis of variance followed by pair-wise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | comparisons to the vehicle control on a nominal significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | level of alpha = $0.05$ using the Dunnett test. The regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | analysis part is performed on the basis of the actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | concentrations thereby omitting the positive, negative and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | venicie controls. If there is a significant concentration related increases of the mutant frequency (alpha = $0.05$ ) in the main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | analysis the highest concentration will be dropped and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| v Av                         | analysis will be repeated. This procedure will be repeated until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\bigcirc$                   | p > 0.05. In that way eliminated concentrations are flagged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | correspondingly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### **II. Results and discussion**

#### A. General Remarks

In the absence and in the presence of S9 mix Chinese hamster V79 cells were exposed to HEOS In the absence and in the presence of S9 mix Chinese hamster V79 cells were exposed to HE 5725-E-CL-PMD at concentrations of up to and including 80  $\mu$ g/ml. Without S9 mix substance precipitation occurred in the medium at the concentration  $40^{\circ}$   $\mu$ g/m and  $5^{\circ}$ 



#### **B.** Mutation Assay

#### Without metabolic activation

Under nonactivation conditions two trials were performed. The mutant frequencies of the begative controls and of the vehicle controls were all within the normal range. The positive control EARS induced clear mutagenic and statistically significant effects in all trials.

For HEC 5725-E-CL-PMD treated cultures concentration-related decreases were observed in relative population growth. Relevant HEC 5725-E-CL-PMD induced increases in mutant frequencies could pot be found. In addition, the overall statistical analysis reveals no statistically significant increases.

Therefore, HEC 5725-E-CL-PMD was evaluated as non-mutagenio in the non-activation the

|                                        | Concentrat<br>ion   | S9<br>mix                               | Growth rel to           | Mutant<br>colonies per 10 <sup>6</sup> | Growth fel to          | Mutant<br>colonies per 10 <sup>6</sup> |
|----------------------------------------|---------------------|-----------------------------------------|-------------------------|----------------------------------------|------------------------|----------------------------------------|
| 24 h treatment                         | [µg/mL]             |                                         | Culturel O              |                                        | Culture IIC 3          |                                        |
|                                        | -                   | Ô                                       | \$3.9                   | S & 0.7                                | C 5 85                 | 0.5                                    |
| Negative Control                       | -                   | -Q                                      | 104.2                   | ~ ~~ b <sup>9</sup>                    | <u>کَ</u> کَھُ         | م<br>میں 0.9                           |
| Vahiala Control                        |                     |                                         | L & 10 <b>9</b>         | 0.8                                    | 0 0 <sup>0</sup> 100.0 | . 2.0                                  |
| venicie Control                        | <u> </u>            | - 6                                     | 100.0                   |                                        | ¢ <u>6</u> 100.0       | 1.1                                    |
| EMS                                    |                     | -0″                                     | 48.6                    | 3,51%6                                 | \$58.5                 | 882.8                                  |
|                                        | 900                 |                                         | <u> </u>                | <u>500.8</u>                           | 35.8                   | 668.0                                  |
|                                        |                     |                                         | \$15.7<br>\$            |                                        | 78.6 گړ                | 4.8                                    |
|                                        |                     | Y,                                      |                         |                                        | 40.7                   | 0.7                                    |
|                                        |                     | - %                                     | 60 50 A.T               | 0.8                                    | 49.4<br>26.4           | 4.3                                    |
| . 0                                    |                     | -<br>Q                                  | A 88.04                 |                                        | 26.4                   | 0.3                                    |
|                                        |                     |                                         | 07.2<br>3               |                                        | 34.2                   | 2.9                                    |
| PMD                                    | 40 P/-              |                                         | 0 <sup>3</sup> 47 82.04 |                                        | 28.0                   | 0.7                                    |
| l ô                                    | $A 40^{P_{\odot}}$  | Ŷ,                                      |                         |                                        | 18.5                   | 0.6                                    |
| l Q                                    | 0 60 <sup>9/P</sup> | - Č                                     | 63.0                    | 0.9                                    | 18.8                   | 5.0                                    |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0 00 P/P            | ô <sup>y</sup>                          | Q 2 46                  | 6.5                                    | 15.9                   | 0.8                                    |
| <u></u>                                | \$ 80.B             | - Ĉ                                     | \$5.9                   | 1.0                                    | 16.1                   | 3.5                                    |
|                                        | <b>S</b> O P/P      | -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 29.5                    | 2.0                                    | 11.2                   | 0.9                                    |
| P: Precipitation Cu                    | lture b Cultur      | ¢Ž                                      |                         |                                        |                        |                                        |
|                                        |                     | \$ <sup>5</sup><br>\$                   | Q'                      |                                        |                        |                                        |

Summary of results without metabolic activation Table 5.8.2/20-1



Q,

. 0

Ĩ

#### With metabolic activation

Two trials were performed with S9 mix. In all experiments, cytotoxic effects were induced. The mutant frequencies of the negative controls and of the vehicle controls were all within the normal range. The positive control DMBA induced a clear mutagenic and statistically significant effect in all trials. The HEC 5725-E-CL-PMD treated cultures showed concentration-related decreases in relative population growth.

HEC 5725-E-CL-PMD induced no relevant increases in mutant frequencies. In addition, the overall statistical analysis reveals no statistically significant increase.

With metabolic activation HEC 5725-E-CL-PMD was therefore exaluated as non-mutagenic.

| 1 able 5.6.2/20- 2 | Summa                        | TY OF              |                                        |                                                 | a s                                     | . 4 × ×                            |
|--------------------|------------------------------|--------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------|
|                    | Concentra<br>tion<br>[µg/mL] | S9<br>mix          | Growth rel to<br>vehicle               | Mutant<br>colonies per<br>10 <sup>6</sup> cells | Growth fel to<br>Ochicle<br>control (%) | Mutant<br>coloures per<br>10 cells |
| 24 h treatment     |                              |                    | Eulture I                              |                                                 | Çulture IK                              |                                    |
| Negative Control   | -                            | + 0                | × % <u>,</u> 59,5                      | 2.5 ° 2.5                                       | C                                       | 2.1                                |
|                    | -                            | +Q <sup>Y</sup>    | 71.1                                   |                                                 | <u> </u>                                | 3.0                                |
| Vehicle Control    | -                            | Z+ 🔬               | KJ 0 <sup>3</sup> 100 (S               | Ø <u>0</u> 1.0                                  | ° ~ ~ 78.5%                             | 0.5                                |
| veniere control    | - S                          | +                  |                                        | L 1.7                                           | 2 6 70.8                                | 2.9                                |
| DMBA               | <u>ې</u> 20                  | -,<br>P'           | 39.3                                   | . 89.9                                          | J2.7                                    | 139.6                              |
| DMDA               | 20                           | }+ <sub>@</sub>    |                                        | <sup>6</sup> ¢ ¢ 54.2                           | 63.8                                    | 108.4                              |
|                    | <u>A</u>                     | +                  | Q 54.1                                 | J 0.80                                          | × 5 60.2                                | 5.5                                |
|                    |                              | $\sim$             | <del>کام 78</del> ,4¢                  | 1,5                                             | 69.0                                    | 1.8                                |
|                    |                              | /+ 🐇               |                                        | 2                                               | 87.3                                    | 1.0                                |
| Ŭ,                 | S J                          | +                  | , Ý , Ý -                              |                                                 | 85.8                                    | 5.7                                |
|                    | × 20 ×                       | ýř.                | <b>59.3</b>                            | 0.5                                             | 71.0                                    | 6.5                                |
| HEC \$\$25-E-      | , 0°, 2 <b>0</b> ,           | +                  | <b>5</b> .7                            | 0.9 گ <sup>ې</sup>                              | 64.5                                    | 3.2                                |
| CL-PMD             | \$<br>\$40                   |                    |                                        | 2.3                                             | 89.0                                    | 1.9                                |
| Į į                | 40.0                         | »+                 | <sup>ل</sup> ې بې 6 <u>1</u> ۱         | 0.8                                             | 52.3                                    | 1.8                                |
|                    | 60°                          | +~~                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <i>©</i> 1.4                                    | 51.8                                    | 1.6                                |
| L A                | OO P/P                       | ð                  | S 66.0                                 | 0.5                                             | 60.8                                    | 1.4                                |
| <u>P</u>           | م \$ 80 P                    | ) <sup>y</sup> + ( | 60,0                                   | 0.9                                             | 65.2                                    | 2.6                                |
|                    | 80 P/P                       |                    | \$3.3                                  | 0.5                                             | 63.2                                    | 0.7                                |

 Table 5.8.2/20- 2
 Summary of results with metabolic activation

P: Precipitation Culture & Culture 2

III. Conclusions

The test from HEC 5725-E-C6-PMD did not induce gene mutations at the HPRT locus in V79 cells under the experimental conditions reported. Therefore, HEC 5725-E-CL-PMD is considered to be non-poutagene in this HPRT assay.

# BAYER Bayer CropScience

# Document MCA: Section 5 Toxicological and metabolism studies Fluoxastrobin

|                          |                                         | 2004.3                |                 |                                        |                                               |
|--------------------------|-----------------------------------------|-----------------------|-----------------|----------------------------------------|-----------------------------------------------|
| Report:                  | KCA 5.8.2/21                            | ; 2004; N             | 1-00250         | 0/-01-1                                | ° »                                           |
| Thie.                    | V70 cells                               | L-PMD - III VIUO CIII | JIIIOSOI        | the aberration test with chinese i     | ianister ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Report No ·              | AT01110                                 |                       |                 |                                        | N N                                           |
| Document No <sup>·</sup> | M-002507-01-                            | 1                     |                 | Č,                                     |                                               |
| Guideline(s):            | Directive 2000                          | /32/EC. B.10: OECD 4  | 473: US         | S-EPA 712-C-98-223. OPPTS 8            | 70.5375                                       |
| Guideline deviation(s):  | None                                    | ,,                    | ,               | A &                                    |                                               |
| GLP/GEP:                 | Yes                                     |                       |                 |                                        |                                               |
|                          |                                         | I Materials and m     | ()<br>Tethod    |                                        | y 6° o                                        |
|                          |                                         |                       | , cuiou         | ° Re de S                              |                                               |
| A. Materials             |                                         | Ű,                    |                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                               |
| 1. Test material:        |                                         | Å.                    |                 |                                        |                                               |
| Name:                    |                                         | HEC 5725-CL-P         | MD 촋            |                                        |                                               |
| CAS number:              |                                         | 193741-62-7 °         | , N             |                                        | 4 J <sup>w</sup>                              |
| Description:             |                                         | white coarse-graine   | ed pow          | def of the                             | 4                                             |
| Lot/Batch no:            |                                         | BID 4014-028          | v ·             |                                        | Q" A                                          |
| Purity:                  |                                         | 99,7% ~ ~             |                 |                                        |                                               |
| Stability of test com    | pound:                                  | guaranteed for stud   | y dhra          | tion HEC \$725-ECL-PMD                 | is stable in                                  |
|                          | ć                                       | the vehicle at room   | stěmp           | erature of concentrations rai          | nging from                                    |
|                          | <u> </u>                                | 0.01∂mg/mb⁄to 50*n    | ng/mt           | for a least four hours                 |                                               |
| 2. Vehicle and control   | ls: 🔗                                   |                       | 5               |                                        |                                               |
| Vehicle:                 |                                         | DMSO'O'               | \$.             |                                        |                                               |
| Positive control:        | N <sup>i</sup> u                        | Mitoprycin C in H     | anks' ]         | palance@ salt solution, final          | dilution in                                   |
|                          | à ô                                     | the medium 0.1 µg     | /mL (4          | hours) and 0,03 µg/mL (18              | hours)                                        |
|                          | × 4                                     | Cyclopkospharnide     | jn, 🗋           | Hanks' balanced salt solu              | tion, final                                   |
| 8                        |                                         | zdiluti@in medium     | ⊉µµg/1          |                                        |                                               |
| 3. Test system:          |                                         |                       | , (             |                                        |                                               |
| Cell line:               | Á .Ó                                    | Chinese hamster V     | 79 <b>ce</b> ll | S a a                                  |                                               |
| Source:                  | N 4 v                                   |                       |                 |                                        |                                               |
| Culture conditions:      | ,<br>Noô                                | Chinese hamster       | V79             | Ells stored in liquid nitro            | ogen, were                                    |
| e or                     | K D                                     | normally grown in     | 20 m            | L meenum and 75 cm <sup>2</sup> flash  | ks or under                                   |
|                          | \$ \$                                   | comparable condition  | tioøs.          | Incorbation of the cells w             | vas always                                    |
| Ê <sup>Ş</sup>           |                                         | Sperformed at 37°C    | Sin a           | $60_2$ -incubator (5% CO2).            | Cells were                                    |
| NY N                     |                                         | grown in medium c     | contain         | ng 10% fetal calf serum.               |                                               |
| Medium:                  |                                         | Eagle's Minima E      | ssentia         | al Medium (MEM) supplem                | ented with                                    |
| Q                        | õ S .                                   | E-glutarnine (2       | рм),            | MEM-vitamins, 0.225%                   | NaHCO3,                                       |
|                          | )* <u>0</u> ~                           | penicillin Ø0 unit    | mL),            | streptomycin (50 µg/mL)                | and heat-                                     |
| ~~ U                     | $\sim$ $\sim$                           | inactivated fetalcal  | lf seru         | m (final concentration: 10%)           | •                                             |
| Metabolic activation     | n: S                                    | 89 mix was prepare    | ed fron         | n the livers of Aroclor 1254 i         | induced                                       |
| \$°.                     |                                         | male Sprague Daw      | ley rat         | s, protein concentration: 26.2         | 2 mg/mL                                       |
| B. Study design and      | nethods 🔿                               | <u>o</u> x            |                 |                                        |                                               |
| 1. Treatment 👋           |                                         | <u> </u>              |                 |                                        |                                               |
| Concentration:           |                                         | Test item             | S9              | Test item concentrations               | Harvest                                       |
| A . A                    |                                         |                       | mix             | [µg/mL]                                | time                                          |
|                          | Å.                                      | 4 & treatment         |                 |                                        |                                               |
|                          | 0 5                                     | Pest item             | —/+             | 0, 20, 40, 80                          | 18 h                                          |
| N & N                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Mitomycin C           | -               | 0.1                                    | 4                                             |
|                          |                                         | Cyclophosphamide      | +               | 2.0                                    |                                               |
|                          |                                         | Test item             | -/+             | 0, 80                                  | 30 h                                          |
|                          |                                         | 18 h treatment        |                 |                                        | 10.1                                          |
| Ũ                        |                                         | l est item            | -               | 0, 3, 6, 9, 12, 15                     | 18 h                                          |
|                          |                                         | Mitomycin C           | -               | 0.03                                   |                                               |

Incubation conditions:

At 37°C in a CO<sub>2</sub>-incubator (5% CO<sub>2</sub>)

**Document MCA: Section 5 Toxicological and metabolism studies** Fluoxastrobin

#### 2. Statistical analysis:

Statistical analysis performed by pair-wise comparison of test item-treated and positive control groups to the respective solven control group.

Mitotic index statistically analyzed (provided that it was reduced compared to the mean of the corresponding solvent control asing the one-sided chi2-test. Numbers of metaphases with aberrations (including and

excluding gaps) and of metaphases with exchanges were compared (provided that these data superceded the respective solvent control). The matistical analysis followed 1®e recommendations outlined by et Ø. (1989). Fisther's exact test was used for the statistical evaluation. A difference was considered to be significant, if the probability of error was below 5%

#### **II. Results and discussion**

#### A. General Remarks

Without and with S9 mix substance precipitation in the medium started microscopically at 40 ug/ml. 0 μg/mL

#### **B.** Mitotic Index

#### Without metabolic activation

In comparison to the solvent control, the mitoric indrees in the treated cultures were relevantly reduced at 80 µg/ml (4 hours treatment) and at 3 µg/ml and above (18 hours treatment). The cultures treated with mitomycin C showed no reduction in mitosis rate

## With metabolic activation

In comparison to the solvent control, the treated cultures showed a gelevant reduction of the mitosis rate at 80 ug/ml. The positive control cyclophosphamide also reduced the mitosis rate.

### C. Survival Index

Without metabolic Otivation

In comparison to the solvent control, the survival indices in the treated cultures were relevantly reduced at 80 @g/ml @ hours treatment) and at 90g/ml and above (18 hours treatment). The cultures treated with intomycin C spowed only for the 4 hours treatment a reduction in survival rate.

#### With metabolic activation

In comparison to the solvent control, the reated cultures showed a relevant reduction of the survival rate at 80 ug/ml. The positive control cyclophosphamide also reduced the survival rate.

### D. Chromosome aberrations

Based on the suits of the survival index and of the mitotic index, the following concentrations of the 18 hours treatments were selected for reading: 3, 6, 9 µg/mL.

### Without metabolic activation

No brologically relevant and statistically significant increases of numbers of metaphases with aberrations were detected after 4 hours treatment and total culture times of 18 or 30 hours. The same was true for a treatment period and total culture time of 18 hours.

The treatment with the positive control mitomycin C resulted in a clear and statistically significant increase of metaphases with aberrations and demonstrated the sensitivity of the test system.



#### With metabolic activation

No biologically relevant and statistically significant increases of metaphases with aberrations were detected after total culture times of 18 or 30 hours.

The positive control cyclophosphamide induced statistically significant and biologically relevant increases of metaphases with aberrations and demonstrated the sensitivity of the test system activity of the used S9 mix. 

| Test item                       | Concentrati     | +/-       | Cells 🛎          |                                 | with aberratio                    | nfx(%) &         | Mitotic            |
|---------------------------------|-----------------|-----------|------------------|---------------------------------|-----------------------------------|------------------|--------------------|
|                                 | on (ug/mL)      | <b>S9</b> | scoree           | Including                       | Excluding                         | Exchanges        | Index              |
|                                 |                 |           | 6                | °gaps~                          | ≪ gaps 0                          |                  | (mean %)           |
| 4 hour treatment, harvest       | time 18 h       |           | Ô <sup>v</sup> , | Ø ×                             | 2 ~ C                             |                  | 1                  |
| DMSO                            | 0               |           | 200 🔊            | 47.0 L                          | 2 3. <del>9</del>                 | 10               | @ <sup>9</sup> 100 |
| HEC 5725-E-CL-PMD               | 20              | ,<br>L    | 2007             | 2.0                             | A.0 0                             | <u>1.5</u>       | 87.                |
|                                 | 40              | <i>G</i>  | 200              | . <sup>3</sup> 3.0 <sup>3</sup> | 0 <sup>×</sup> 3.0                | \$0.0 X          | 87.5               |
|                                 | 80              | Q, i      | 200              | 25                              | × 3.0                             | 1.0              | 84.7*              |
| Mitomycin C                     | 0.1             | _ @       | 200~             | 534.5**                         | 58,0**                            | 28.9** 🧹         | 103.2              |
| DMSO                            | 0 &             | to        | 200              |                                 | °03.5                             | _01.5 °~         | 100                |
| HEC 5725-E-CL-PMD               | 200             | S.        | 2000             | S 3.5€                          | Q <sup>Y</sup> 3.0 Q <sup>×</sup> | ≈ 1.0%           | 120.6              |
|                                 | ÂØ . ^          | ×+ 🔬      | >200             | 2.0                             | 0 <sup>×</sup> 105                | 0.0 <sup>°</sup> | 118.6              |
|                                 | 80 🖉            | +_C       | 2005             | @ <b>4</b> .0                   | <u>4</u> .0 .0                    | <b>B</b> .0      | 108.3              |
| Cyclophosphamide                | × 2 0           | ð         | 200              | £55.5** N                       | \$5.0**                           | ×26.5**          | 59.8**             |
| 4 hour treatment, harvest       | time 30-h       |           | <u> </u>         | Ŭ Ô <sup>¥</sup>                | ų. <sup>V</sup>                   | <u> </u>         |                    |
| DMSO                            | ' 🖓 🗸           | –         | 200              | 25 0                            | × \$9 ~                           | 1.0              | 100.0              |
| НЕС 5725-Е-CL-РМДО <sup>ў</sup> | 80              | 2         | 2000             | 3.0                             | Q.5 ×                             | 0.5              | 57.9**             |
| DMSO                            |                 | ¢.        | ~200 .           | 2.00                            | 2.0                               | 0.5              | 100.0              |
| HEC 5725-E-CLOPMD               | \ <b>80</b> 4 & | , +       | <u>200</u> (     | 3.0                             | 2.5                               | 1.0              | 77.2**             |
| 18 hour treatment, harves       | t tim©18 h O″   | <u> </u>  |                  | <u>ð</u>                        |                                   |                  |                    |
| DMSO                            | × 0 🗞           | .1        | 200              | \$1.0                           | ≪_0.5                             | 0.0              | 100                |
| HEC 5725-E-CL-PMD               | × 3×            | Q.        | 200              | 1.00                            | 1.0                               | 0.0              | 72.3*              |
| Ê. Î.                           |                 | × –       | ∖ 200 බ          | Ž) Ž) Š                         | ⊅″ 2.0                            | 0.5              | 50.9**             |
| ×*                              | ₹¥9 &           | -6        | 2007             | § 1.5                           | 1.5                               | 0.0              | 43.8**             |
| Mitomycin C                     | 0.3             | ,×        | 200              | 034.5**                         | 34.0**                            | 11.5**           | 111.6              |
| * statistical significance p    | 0.05 statis     | sical s   | ignificane       | ¢ p<@901                        |                                   |                  |                    |

#### Table 5.8.2/21-1 Summary of cells with structural aberrations

 III. Conclusion
 III.5\*\*
 III.6

 HEC 5725-E-CL-PMD did not induce obromosome aberrations in Chinese hamster V79 cells when tested up to 80 µg/mL inveitee the absence of the presence of a rat liver metabolic activation system (S9). Based on the results of this test, HEC 5725-E-CL-PMD is considered not to be clastogenic for mammalian cells in vitro.



#### CA 5.8.3 **Endocrine disrupting properties**

It should be noted that to date no clear criteria are available in the EU to define endocrine disrupting properties. Furthermore, the toxicological profile of fluoxastrobin does not meet the EUC Interim criteria for endocrine disrupting properties.

Fluoxastrobin caused no tumors in rats and mice which were assessed to be treatment related and caused no toxicological relevant findings in endocrine tissues observed in the apical toxicological

Regarding <u>thyroid-related changes</u>, in the 90-day tog study T3 values were transiently decreased in female dogs at the mid- and high dose in the absence of thyroid weight changes and historical to be seening upped to the seening of the seening o UDP-GT in the mid- and high-dose females) and thyroid hormone clearance. In the 1-year dog study T3 values were not affected. The increase in relative Thyroid weight at all dose group was not considered toxicologically relevant in the absence of any substance-related pathological findings of the thyroid. Thus, without an adverse effect on the thyroid itself, no indication for a direct enforcine activity of fluoxastrobin can be assumed.

Findings on male reproductive tissues were observed in one of the 28-day (exicity) studies in rats and were considered to be secondary to reduced body weight gain (by 5-30%) Histopathological changes of these tissues were neither observed in the 2-generation study for in other short-term studies in rats. In the 2-generation study in rats, a slight delay in preputal separation was observed in pups secondary to the reduced pup growth at the top dose. This pattern is clearly distinct from what would be expected for an endocrine-mediated effect; a primary endocrine effect would delay in prepatial separation in the presence of higher body weight at the day of preportal separation, due to continuous growth of the pup over time. Furthermore, no effect on the anogenital distance was observed in F2 pups of the 2generation study with fluoxastrobin.

During the preview the ossible influence of fluoxastrobin on the female endocrine system was already discussed due to the higher incidence of prerine adenocarcinoma observed in the 2-year chronic/carcinogenicity study in rats. The origin of these lesions was demonstrated to be spontaneous and thus <u>funrelated</u> to <u>treatment</u> with fluoxastropin ( ; 2004; M-082214-01-1; as requested by RMS UN in their letter COP 2016/09206, Ref. W001721642, BCS response is updated in new document My549514-01-19. This was confirmed by an expert meeting EPCO 14 (11.-14.10.2004): "The meeting aggeed that the fistorical compol data and particularly data from a study run concurrent control was  $\log^{2}$   $\sim$   $\sim$   $\sim$   $\sim$   $\sim$   $\sim$   $\sim$   $\sim$ 





### CA 5.9 Medical data

# CA 5.9.1 Medical surveillance on manufacturing plant personnel and monitoring studies

Details on medical surveillance on manufacturing plant personnel and monitoring studies are provide in Document JCA, Confidential Information.

| Report:                 | KCA 5.9.1/02 W; 2015; M=520339-01-1                                                                             |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Title:                  | Summary of medical data known for tuoxastrobin                                                                  |
| Report No.:             | M-520339-01-1                                                                                                   |
| Document No.:           | M-520339-01-1                                                                                                   |
| Guideline(s):           | not applicable                                                                                                  |
| Guideline deviation(s): | not applicable                                                                                                  |
| GLP/GEP:                | no a contra c |
|                         |                                                                                                                 |
| Descente                | X CA 5 0 1/02                                                                                                   |
| Report:                 | KCA 5.9.1/05                                                                                                    |
| Title:                  | Summary of medicar data known or Fluorastroom provided to trayer Cropscience                                    |
| Dement No.              |                                                                                                                 |
| Report No.:             | M-532047-01-8 4 4 5 6 6                                                                                         |
| Cuideline(a):           | IVI-55204/-00-1 107/2000 ELL Desculation 222/2002                                                               |
| Guideline deviation(a): | not applicable (2005 EU Regulation 285/2005 C)                                                                  |
| CL D/CED:               |                                                                                                                 |
| GLP/GEP:                |                                                                                                                 |
|                         |                                                                                                                 |
| CA 502 D-4-             |                                                                                                                 |
| CA 5.9.2 Data           | conected on numants of or k of or                                                                               |
| No cases of human poi   | soning have been reported op to pow.                                                                            |
| L.                      |                                                                                                                 |
|                         |                                                                                                                 |
| CA 5.9.3 Direc          | Dobservations of it is a start in                                                                               |
| Up to now there are are | direct observations available.                                                                                  |
|                         |                                                                                                                 |
| ES (                    |                                                                                                                 |
| CA 5.9.4 Epide          | miologicakstudies                                                                                               |
| Up to now there are no  | ) epidemiological studie gavaila De. 😞                                                                          |
| Î Q                     |                                                                                                                 |
|                         |                                                                                                                 |
| CA 5.9.5 Diagn          | losis of parsoning (determination of active substance, metabolites),                                            |
| specif                  | ic signs of poisoning, clinical tests                                                                           |
| No human cases have     | been reported in an imatemperiments no specific symptoms have been seen                                         |
|                         |                                                                                                                 |
|                         |                                                                                                                 |
| Ø,                      |                                                                                                                 |
| × 4                     |                                                                                                                 |
|                         |                                                                                                                 |
|                         |                                                                                                                 |
|                         |                                                                                                                 |
| × 6 4                   |                                                                                                                 |
|                         |                                                                                                                 |
|                         |                                                                                                                 |
| Ô                       |                                                                                                                 |
| Ť                       |                                                                                                                 |



#### CA 5.9.6 Proposed treatment: first aid measures, antidotes, medical treatment **First Aid:**

- Remove patient from exposure/terminate exposure •
- Thorough skin decontamination with copious amounts water and soap, if available, with • polyethylenglykol 300 followed by water. Note: Most formulations with this active ingedient can be decontaminated with water (and soap), so for formulations polyethyleneglyko 300 is not required.
- Flushing of the eyes with lukewarm water for 15<sup>\*</sup> minutes
- Flushing of the eyes with lukewarm water for 15 minutes Induction of vomiting does not seem to be required. It should only be considered if a large amount has been swallowed, if the ingestion was less than one pour ago, and if the patient is fully , conscious. NOTE: Induction of vomiting is forbidden, of a forbidden of a forbidden of a forbidden.

been ingested!

Ô

#### **Treatment:**

- Gastric lavage does not seem to be required in regard of the fow toxicity of the compound •
- CA 5.9.7 Expected effects of poisoning
   No persisting effect of poisoning has to be expected The application of activated charcoal and sodium sulphate for other carthartic) might be



#### Appendix 1 - Proposed toxicological classification of fluoxastrobin

This appendix provides a detailed comparison of potentially classification-relevant toxicological findings of fluoxastrobin with the respective applicable CLP criteria (following the Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CPP) of substances and mixtures, Version 4.1, June 2015). As an outcome of this exercise, proposals for classification / nonclassification are made for acute toxicity, skin irritation, eye irritation, skin sensitization, get cello mutagenicity, carcinogenicity, reproductive toxicity, STOT-SE, STOR-RE.

It has to be noted, that fluoxastrobin was already assessed by the Technical Committee on Classification and Labelling in Arona, 15-16 May 2007, with the final recommendations for classification and labelling to be forwarded to ECHA

#### **QUOTE**





#### ACUTE TOXICITY, SKIN IRRITATION, EYE IRRITATION, SKIN SENSITISATION

According to the ECHA Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures, Version 4.1, June 2015, the results of the acute acute to acute toxicological studies 

- oral LD<sub>50</sub> rat >2000 mg/kg bw (M-012717-01-1, M-012735-01-1) •
- dermal LD<sub>50</sub> rat  $\geq$  2000 mg/kg bw (M-012730-01-1) •
- inhalation LC<sub>50</sub> rat >5 mg/L (M-008820-01-1) •

innatation LC<sub>30</sub> rat >5 mg/L (M-008820-01-1)
 no skin irritation (M-012662-02-1)
 slight eye irritation which does not warrangelassification (M-012609-08-1))
 no skin sensitization (M-012720-01-14M-1058/1-01-5)
 do not trigger any respective classification. Furthermore: fluoxistrobin does not show a prototoxic potential (M-497574-01-1), see also Table 5.2.1


# GERM CELL MUTAGENICITY

According to the above mentioned ECHA Guidance a classification for germ cell mutagen Category 2 is based on:

- A) Positive somatic cell mutagenicity tests in vivo, in mammals; or
- B) Other positive in vivo somatic cell genotoxicity tests which are supported by positive from in vitro mutagenicity assays; or
- C) Positive in vitro mammalian mutagenicity assays for substances which also structure activity relationship to known germ cell mutagens.

A summary of available mutagenicity studies conducted with fluoxastrobin is provided following table (see also Table 5.4-1): Ø , Ó

| Study                                  | 🌾 of Result 🗐 🏑                          | Reference     |
|----------------------------------------|------------------------------------------|---------------|
|                                        |                                          | & A .º        |
| Bacterial point mutation assay (Ames   | Negative Nagative                        | M-012700-021  |
| test) in S. typhimurium strains        |                                          |               |
| Bacterial point mutation assay (Ame    | Whegable Wegoive                         | M-012732-01-1 |
| test) in <i>S. typhimurium</i> strains |                                          | S S           |
| Bacterial point mutation assay (Ames   | Nægative of Negative (                   | M-278050-01-1 |
| test) in S. typhimurium strains        |                                          | ×             |
| Clastogenicity in vitro                | Negative Negative                        | M-012703-01-1 |
| (V79 CHL cells)                        |                                          | <u> </u>      |
| Mammalian cell mutation asset          | Nega Wie of & Negative of                | M-012722-01-1 |
| (V79 CHL cells – HERT logis) 🗸         |                                          |               |
| Mammalian cell postation assay         | S Negative Negative                      | M-078586-01-1 |
| (V79 CHL cells HPR Plocus)             |                                          |               |
| Micronucleus Ossay                     | & Wegatise                               | M-012747-01-1 |
| (In vivo mouse bor marrow)             | (Clear evidence of systemic toxicity for |               |
|                                        | fl@xastrobin a@/or it@netabolites        |               |
|                                        | regening the boro marrow)                |               |

Based on these results, the forementioned classification criteria A) and B) are not met. Classification criterion C) is also not met since fluoxastrobin does not show a chemical structure activity relationship to known germ cell mutagens Ñ

Based on these data it is conclused that no classification for germ cell mutagenicity is applicable for





### CARCINOGENICITY

According to the above mentioned ECHA Guidance a classification for carcinogenicity requires an increased incidence of neoplasms due to exposure to the substance.

In the two year rat study, besides body weight effects, local effects in the intestine and an increased number of mast cells, altered calcium/phosphate homeostasis and decreased calcium content of bone? were observed. However, there were no clear substance related pathological effects of the kidney of urinary bladder of rats.

As agreed by the experts' meeting, the higher ingidence of utetine adenocaromoma compared to concurrent controls occurred were considered of spontaneous ofigin and thus anrelated to treatment with fluoxastrobin (M-082214-01-1; as requested by RMS UK/in their letter COR 2016/00206, Ref. W001721642, BCS response is updated in new document M-549514 01-1; see document MCA 33):

- The incidence of adenocarcinoma at the top dose (20%) was similar to the incidence (24%) reported for a control group of an almost parallel running study (same rat strain, same breater, same laboratory).
- Occurrence (beyond week 80 with one exception) of these twoours was signar in high dose and study controls and also similar in Controls of the concertent study.
- The incidence of focal and diffuse glandular hyperplasia aothe top dose (12%) was lower than the incidence (22%) of glandular cystic hyperplasia on controls of the concurrent study (lesions are comparable).
- There were no significant effects on reproductive performance in the multigeneration study with fluoxastrobin (indicating that the uterine adenocarginoma are not endoctine mediated).

Furthermore, the overall incidence of tumore bearing animals, the time of occurrence and the pattern of neoplastic findings aid not indicate a carcinogenic effect.

In a 18 month more study, there was no increase in neoplastic findings also the time of occurrence

effect. Hence, it is concluded that fluorastrobitis not carcinogenic in rateor mice and that classification for carcinogenicity is not warranted.



BAYER Bayer CropScience Document MCA: Section 5 Toxicological and metabolism studies

#### Fluoxastrobin

## **REPRODUCTIVE TOXICITY**

As detailed in the following tables for the respective individual animal studies, fluoxastrobin courses only non-specific developmental toxicity secondary to very strong maternal toxicity; this does not warrant any reproductive toxicity classification.

In the 2-generation study, adverse developmental effects, ie reduced body weight gain, detayed development (e.g. time to preputial separation) and reduced weight of thymus and spleen of pups were seen at the top dose. NOAEL for reproduction is 10000 ppm (742-764 mg/kg bw/day) and the parental NOAEL is 1000 ppm (74-87 mg/kg bw/day) based on reduced body weight gain and reduced thymus weight in females at 10000 ppm (764-871 mg/kg bw/day). The NOAEL for developmental effects in the rat multigeneration study is 1000 ppm (171 mg/kg bw/day) based on reduced body weight gain delayed development (delay in preputial separation), reduced thymus and spleen weight observed at 10000 ppm (1625 mg/kg bw/day).

| 2-generation stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | idy in rats (diet), 0, 100, 1000, 10000 ppm, (M-088589-02)                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Parental effects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NOAEL: 1000 ppm (74 \$7 mg/kg bw/)                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Effects at LOAEL 20000, ppm (264-871, mg/kg/bw/d); Reduced body weight gains,                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | increased food consumption, increased liver weight, and decreased thymus weight in                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | females at 10000 ppm,.                                                                              |  |  |
| Reproductive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOAEL: 1000@ppm (464 (matters) 742 (fematers) mg/sg bw/d9 20 20 20                                  |  |  |
| effects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No adverse effects on reproductive outcome.                                                         |  |  |
| Offspring effects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOAEL: 000 ppm (171 mg/kg @w/d in lactating dams)                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Effects at LOAEL 10000 ppm; 1625 mg/kg bw/d): Reduced pup weight gain, decreased pup                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | spleen and thymus, weights (no highopathological findings) and stightly delayed preputial           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | separation was observed in pups secondary to the reduce pup growth at this dose. No effect          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an the anogenital distance was observed in the 12 pups.                                             |  |  |
| Č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DAR A statistically significant reduction in mean pup body weight was seen at 10000 ppm             |  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | from days 7 or 14 to day 20 in both F1 and F2 pups. The overall reduction in mean body              |  |  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | weight gate $(day, 0 - day, 21)^{\circ}$ was 25-29% $\bigcirc$                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The reduction from lastation day 7 suggests for effection the mothering or lactational ability      |  |  |
| Ê,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of the dams of a chrect substance related offect on the pups via the milk.                          |  |  |
| ~ <i>y</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | However direct consumption of test diet by pups from the end of the first week of lactation         |  |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | san occur (ECEFOC 2002) and may have contributed to reduced growth.                                 |  |  |
| Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parental effects (reduced body weight gains, increased food consumption, increased liver            |  |  |
| proposal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | weight) were observed at the top dose of 10000 ppm (764-871 mg/kg bw/d).                            |  |  |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | There were no substance related affects on reproductive parameter.                                  |  |  |
| <i>a</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Offspring effects occurred at the highest tested dose of 10000 ppm (1625 mg/kg bw/d in              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lactating dams) similar to findings which occurred in parental animals at the same dose.            |  |  |
| s the second sec | According to the ECH & Guidance to Regulation (EC) No 1272/2008 on classification,                  |  |  |
| "Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | labelling and packaging (CLO) of substances and mixtures, Version 4.1, June 2015, this              |  |  |
| , O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | constellation of maternal and reproductive / offspring effects does not warrant any                 |  |  |
| , OY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reproductive toxicative classification. The classification criteria for a Category 2 classification |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (see 3.7.2.2. of the ECHAP Guidance) are not met: the adverse effect on reproduction is             |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | considered hor to be a secondary non-specific consequence of the other toxic effects.               |  |  |
| N R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |  |  |
| li di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                     |  |  |
| ¢° <sup>v</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |  |  |
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     |  |  |



In the rat developmental toxicity study, there was no substance-related adverse maternal or developmental effect. The reduction in ossification of one digit from both forelimbs of fetuses at 000 and 1000 mg/kg bw/day is not considered to be a substance-related adverse effect. The maternal and developmental NOAEL is 1000 mg/kg bw/day in rats.

| Developmental               | l toxicity study in rat (gavage), 0, 100, 300, 1000 mg/kg bw/d, (M-0                                                                                                                                                                                                                                                                                                      | 0127\$5-01                                                                           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Maternal effects:           | NOAEL: 1000 mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| Developmental effects:      | NOAEL: 1000 mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| Classification<br>proposal: | No treatment-related effects on maternal or litter parameters includ<br>observations. There was no evidence of a teratogenic effects<br>According to the ECHA Guidance to Regulation (EC No 1272/2008<br>labelling and packaging (CLR) of substances and mixtures. Version 4<br>absence of maternal and developmental effects does not warrant any re-<br>classification. | ing external feta<br>on elassification,<br>.1, type 2013, the<br>productive toxicity |

In the rabbit developmental toxicity study, there was evidence for a slight delay in fetal development (slight dilation of lateral brain ventricles in two toetuses of dam No. 3813) at the top dose in the presence of severe (cold ears, severely decreased feed intakes as well as severe body weight loss of dam No. 3813) maternal toxicity. There was also questionable evidence for a slight substance-related increase in the incidence of a common rib cartilage malformation and equivocal evidence for a slight toxicity in the rabbit teratogenicity study is 25 mg/kg bw/day and the developmental is 100 mg/kg/bw/day.

| <b>Developmental</b>    | toxicity study in rabbit (gavage) 9, 25, 000, 400 mg/kg bw/ds (M-017448-01-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Maternal effects:       | NOAEL: 25mg/kg/bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                         | In AEL (100 makes her a her a her added to the consumption alight increased incidence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                         | Besting Wight Base and the set of |  |  |  |
| -Ĉ                      | ansund weight loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $\sim$                  | Effects at top dose 400 mg/bg bw/d, cold ears, soft feces/diarrhea during the first treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Ū,                      | days, reduced amount of feces transpently severel preduced food and partly water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         | consumption, more pronounced body weight loss mainly during the first treatment week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Developmental           | NOAEL: 100 mg/kg@w/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| effects. <sup>®</sup> ≫ | Effects at DOAEK: 400 mg/kg bw/d based on a sileht delay in fetal development (2 cases of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                         | stight dilation of brain wentricles in femses of dam 3813) at the top dose in the presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Č                       | severe naternal toxicity (cold ears, severely decreased feed intakes as well as severe body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| <i>a</i> <sub>1</sub>   | weight loss of dam (\$13). The second se                                                                                                                                                                                                                                            |  |  |  |
| ~Õ                      | A slight increase in the incidence of a common rib cartilage malformation (3 of 6 affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| A                       | foetuses from the little htter meidence below that of a control group from a parallel study)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Q"                      | and any non-statistically increased incidence of slightly thickened 7 <sup>th</sup> left ribs occurred for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                         | which a treatment related affect is Questionable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| A CONTRACTOR            | The overall incidence of foetness or litters with malformations was unaffected up to and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                         | includite 400 mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Classification          | No. that we related affair on motornal or litter parameters including external fatel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                         | No treatment-related energy on maternal of fitter parameters including external relat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| proposal.               | beset values. There was no evidence of a teratogenic effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                         | The classification criteria for a Category 2 classification (see 3.7.2.2. of the ECHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                         | Guidance) are not met: " the adverse effect on reproduction is considered not to be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| , <sup>4</sup> , 6      | secondary non-specific consequence of the other toxic effects."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

Overall, it is concluded that fluoxastrobin is not teratogenic and that adverse developmental effects could be a consequence of substance-related parental toxicity. Classification of fluoxastrobin for reproductive toxicity is not justified.



### **SPECIFIC TARGET ORGAN TOXICITY – SINGLE EXPOSURE (STOT-SE)**

According to the above mentioned ECHA Guidance a classification in **STOT-SE Category 2** for applicable, if non-lethal significant and/or severe toxic effects on target tissues/organs are not seen in acute toxicity studies up to the following guidance values:

| dedice tokienty studi | es up to the following guidance values.     | - A                     |                        |
|-----------------------|---------------------------------------------|-------------------------|------------------------|
|                       | Oral rat                                    | 2000 mg/kg bw           |                        |
|                       | Dermal rat or rabbit                        | 2000 mg/kg bw           |                        |
|                       | Inhalation rat, dust / mist / fume          | 5áng/l/4h               |                        |
| Furthermore, the      | ECHA Guidance specifies criteria that       | trigger a classificat   | ion for STOT-SE        |
| Category 3. These     | e criteria are generally independent from   | the aforementioned g    | uidance xalues and     |
| include transient ta  | arget organ effects, focusing on overt-narc | obc effects and respire | atory tract irritation |

Furthermore, the ECHA Guidance specifies criteria that trigger a classification for STOT-SE Category 3. These criteria are generally independent from the aforementioned guidance values and include transient target organ effects, focusing on overt narcore effects and respiratory tract irritation (respiratory tract irritation covers two different effects: sensoty irritation' and 'local cytotoxic effects'). Specifically, the following examples for fudings from single and repeated inhalation toxicity studies are mentioned as possible triggers for a TOT-SE Category 3 classification: clinical signs of toxicity (dyspnoea, rhinitis etc) and histopathology (e.g. hyperemia, edena, minimal inflammation, thickened mucous layer) which are recersible.

The relevant acute toxicity studies conducted with fluoxastrobin (a repeated inhabition study is not available) provide the following LOAELs and foxicological effects of the respective LOAELs:

| Study                                 |                                                                                       |
|---------------------------------------|---------------------------------------------------------------------------------------|
|                                       | Toxicological effects at DOAEI                                                        |
|                                       | (Reference) & & & V V                                                                 |
| Acute oral rat                        | 2000 mg/kg bvs (highest tested bose) O &                                              |
| L L L L L L L L L L L L L L L L L L L | No choncal signs.                                                                     |
|                                       | (Mr01271791-1, M-012739-01-11)                                                        |
| Acute dermal rat                      | 2000 mg/kg bw (hughest tested dose)                                                   |
|                                       | No clinical signs.                                                                    |
| ð ý                                   | (M-002730-00-1) & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                 |
| Acute inhalation rat ""               | 5 mg/L/4h/highest tested dose)                                                        |
|                                       | Ruoerechon, ungroomed hair-coat, bradopnea, laboured breathing, serous nasal          |
|                                       | discharge, reduced motility, lampness on the day of exposure. Reflex measurements on  |
|                                       | the first postexposure day showed no abnormal reflexes. All clinical signs had        |
| , St                                  | resolved within 4 days postexposore. Mean rectal temperatures immediately after       |
| Q .                                   | exposure were decreased Slight but transient weight loss during the first three post- |
|                                       | exposible days. At necropsy, are was no treatment-related gross lesions in any of the |
| ÂŶ Û                                  | sur oving test animats. The bal that died during the observation period showed hasai  |
| A                                     | contents The charge in the athing rate and decreased hody temperature were attributed |
|                                       | to a non-specific response to an arritation from exposure to dust                     |
|                                       | $(M_{40}^{2}0820_{1}^{2}01_{1})$                                                      |
| Acute oral                            | 2400 mg/kg hw (hghest asted dose)                                                     |
| neurotoxicity rate                    | No neutotoxicity or general systemic toxicity observed                                |
|                                       | M-0                                                                                   |
|                                       |                                                                                       |

A comparison of these POAE's and toxicological effects with the aforementioned classification criteria reveals that a **STOT-SE Category 2 classification is not warranted**.

Regarting a possible STOT-SE Category 3 classification for "overt narcotic effects", the observed toxicological findings to not indicate such effects; the reduced motility and limpness (acute inhalation) are seen as mild expressions of a generally affected well-being and not as a neuro-pharmaco-toxicological narcotic effect. Therefore, a respective STOT-SE Category 3 classification is not warranted.



Regarding a possible STOT-SE Category 3 classification for respiratory tract irritation (sensory irritation or local cytotoxic effects) the observed laboured breathing, serious nasal discharge ang@ed encrustation around the muzzle/nostrils (all reversible within 3 days of exposure) could indicate respiratory tract irritation. However, at necropsy none of the aforementioned histopathologica Parigger findings were observed. The change in breathing rate and decreased body temperature are attributed to a non-specific response to sensory irritation from exposure to dust, and, thus, not to a specific irritative potential of fluoxastrobin. Altogether, the observed findings are not seen as convincing widence for a clear and specific respiratory tract irritation due to fluorastrobin exposure and should therefore not trigger a STOT-SE Category 3 classification.

# SPECIFIC TARGET ORGAN TOXICITY - REPEATED EXPOSURE (STOT-RE)

According to the above mentioned ECHA Goidance, a classification in SPOT-RE Category 2 is not applicable, if significant toxic effects observed in 28-day 90-day or 12 month repeated-dose studies conducted in experimental animals are not seen up to the following guidance values:

|                | A                 |                 |                   |                   |
|----------------|-------------------|-----------------|-------------------|-------------------|
| Exposure route | 28-day            | 90zďarý 🦉 🕺     | 🖌 12-1000nth 🖉 🕺  | >12-month         |
| species        |                   |                 |                   |                   |
| Oral rat       | 300 mg/kg bw/d    | 1000 mg/kg bw/d | 25 mg/kg bw/d     | no guidance value |
|                | Q a               |                 |                   | provided/         |
| Demal rat      | 600 mg/kg bw@ 🔍 🖑 | 200 mg/kg bw/d  | no gridance value | no guidance value |
|                |                   |                 | providedo         | pro@ded           |

In the repeated-dose studies conducted with fluge astrobin the liver is the main targer organ in all tested species (rats, mice and dogs) However, according to the CLP criteria the effects should clearly indicate functional disturbance of morphological changes which are toxicological relevant.

Histological change were seen in the undrary system of rats and of dogs at doses above the respective guidance values. Male rate were more sensitive than temales to the effects of fluoxastrobin on the liver and urinary tract. Other target organs were adrenals, erythrocytes and thyroid but without consistent finding amongst the different studies. Reduced body weight gan was & key finding in dog studies.

In a 28-day dermal study with fluorastrobin in rats, nother, systemic nor local skin effects of toxicological importance were observed up to the inghest dose level tested (1000 mg/kg bw/day).

