

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer AG No parts of the document or any information contained therein may be disclosed to any third part

rein nay be decompared where of the second of data protection has exprese to the summaries and the second of data protection has exprese to the second of data protection has express to the second of da The summaries and evaluations contained in this document are hased on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, oprenew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based,

Version history

Date	Data points containing amendments or additions ¹ and brief description	Document identifier and		
2016-01-15	Initial document submitted for Annex I renewal Ethephon	M-344744-01-1		
2017-06-XX	Amendment to report 1 , 2017; M-539124-02-1 (CA 7.1.3.1.1; p.36) and summary update included. Statements on RMS requests on pH dependency, adsorption/desorption and water/sediment are incorporated (1 , 2017; M-587404-01-1; CA 7, 3.1.1, CA 7.2.2.3) Change of legal entity fom Bayer CropScence AG to Bayer AG Crop Science Division	$M_{3}^{4474492-1} \xrightarrow{0}{7} \qquad \qquad$		

¹ It is suggested that applicants adopt a similar approach by showing revisions and version hotory as batlined in SANCO/10180/2013 Chapter 4 How to revise an Assessment Report

(NCO/10180/2013 Chapter 4 flow to revise an Assessment Report and a second seco
$\tilde{\mathcal{T}}$
× A

Table of Contents

		Page
CA 7	FATE AND BEHAVIOUR IN THE ENVIRONMENT	
CA 7.1	Fate and behaviour in soil	6
CA 7.1.1	Route of degradation in soil	6
CA 7.1.1.1	Aerobic degradation	8
CA 7.1.1.2	Anaerobic degradation	. 8
CA 7.1.1.3	Soil photolysis	,9 J9
CA 7.1.2	Rate of degradation in soil	10
CA 7.1.2.1		10
CA 7.1.2.1.1	Aerobic degradation of the active substance	,10
CA 7.1.2.1.2	Aerobic degradation of metabolites, breakdown and reaction products	
CA 7.1.2.1.3	Anaerobic degradation of the active substance	25
CA 7.1.2.1.4	Anaerobic degradation of metabolites, breakdown and reaction products	25
CA 7.1.2.2	Field studies	25
CA 7.1.2.2.1	Soil dissipation studies Soil accumulation studies Adsorption and desorption in soft Adsorption and desorption Adsorption and desorption	
CA 7.1.2.2.2	Soil accumulation studies .	36
CA 7.1.3	Adsorption and desorption in soft	36
CA 7.1.3.1	Adsorption and desorption	36
CA 7.1.3.1.1	Adsorption and desorption of the active substance	36
CA 7.1.3.1.2	Adsorption and desorption of metabolite break lown and reaction product Aged sorption	is. 50
CA 7.1.3.2	Aged sorption	50
CA 7.1.4	Mobility in soil and a grade second	50
CA 7.1.4.1	Column leaching statics $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	50
CA 7.1.4.1.1	Column leaching of the active substance	50
CA 7.1.4.1.2	Column deaching of metabolites, breakdown and reaction products	50
CA 7.1.4.2	Lysimeter studies	
CA 7.1.4.3	Fiel Geaching studies	50
CA 7.2	Fate and behaviour in water and sediment	51
CA 7.2.1	Route and rate of degradation a aquatic systems (chemical and photochem	iical
Į S	vdegradation k	52
CA 7.2.1.1	Hydrolytic degradation . ""	52
CA 7.2.1.2	Litrect photochegoical dégradation	53
CA 7.2.1.3	Undirect photochemical degradation	53
CA 7.2.2	Route and rate of biological degradation in aquatic systems	59
CA 7.2.2.1	"Ready biodegradability"	59
CA 7.2.22	Aerobic mineralisation in surface water	59
CA 7 2.3	Water sediment study	
CA 7.2.2.4	Irradiated water/sediment study	
CA 7.2.3 [~]	Degradation in the saturated zone	76
CA 7.3	Sate and behavjour in air	76
CA 7.3.1	Route and rate of degradation in air	76
CA 7.3.2	Trapsport via air	
CA 7.3.3	Local and global effects	
CA 7.4	Definition of the residue	79
CA 7.4.1	Definition of the residue for risk assessment	79
CA 7.4.2	Definition of the residue for monitoring	80
CA 7.5	Monitoring data	80

INTRODUCTION

Ethephon is a plant growth regulator and was included into Annex I of Directive 91/414 in 2006 (Directive 2006/85/EC, dated 23rd of October 2006, Entry into Force 1st of August 2007).

This dossier contains only summaries of studies, which were not available at the time of the first Annex I inclusion of ethephon and were, therefore, not evaluated during the first EU review of this compound. All other studies, which were already submitted by Bayer AG (formerly Bayer CropScience AG) for the first Annex I inclusion, are contained in the Monograph and in the Baseline Dossier (P-012067-01). These studies are summarised written in grey typeface in the dossier prepared for the fenewar of approval.

The here presented and submitted studies used different synonyms and codes for the active substance ethephon, its metabolites and correspondence compounds. In order to present a common basis for the evaluation the following list summarises and names used.

Formula	Codes used
Report name used in summaries	UPAC index name? Other names codes
Ethephon	AP F016382
K,	Ethephon technical concentrate
	\swarrow Ethephon Base 250 \checkmark
Ethephon-2-hepa	INCPA, 29HEPA LY
	(2-hydroxyethyl)phosphonic acid

In addition, a list of metabolites which contains the structures, the synonyms and code numbers attributed to the compound is presented in Document N3 of this dossier. The matrices in which the metabolites were identified are also included in this list.

numbers attributed to the compound is presented in Document N3 of this dossi matrices in which the metabolites were identified are also included in this list.

CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Information on the updated dossier for the current EU review of ethephon

Data on the fate and behaviour of ethephon (AE F016382) in soil, water and air were evaluated during the previous EU review. For studies submitted during that review, please refer to the corresponding section in the Baseline Dossier provided by Bayer CropScience. This current MCA document summarizes the evaluations and decisions made during the previous EU review, and focuses on *additional* environmental fate studies which are now submitted for the current EU review.

The evaluations and decisions with regard to this section from the previous EV review can be found in the DAR of December 2004, its addendum of February 2006, and the EFSA Conclusion on ethephon dated September 2008.

An overview of the previously-evaluated data is provided in each chapter of this section. References for *previously-evaluated* studies are stated in grey text. Additional studies submitted for the current EU review are stated in black text. The latter have been submitted in order to full current/regulatory requirements. The numbering and the headings correspond to the new EU guidelines.

CA 7.1 Fate and behaviou On soil

The fate and behaviour of ethephon in soil has been investigated in Ocomprehensive series of laboratory studies and, when required, extended by data from field experiments. The laboratory studies on ethephon were all conducted with [%C]-labeled active substance.

Additionally, where required, a study has been conducted on a metabolite of ethephon.

CA 7.1.1 Nonte of degradation in Sil

The main metabolic pathway of ethephon in soil was degradation to form ethylene (maximum 62%) and non-extractable soil residues (maximum 60%). Significant mineralisation to form carbon dioxide was observed in one soil (maximum 20%). A metabolite, 2-hydroxyethylphosphonic acid (HEPA), was detected in aerobic soil at a maximum of 7.4% at a single timepoint, but otherwise did not exceed 5%.

A similar pathway was observed under anaerobic conditions, where ethephon was rapidly degraded to form mainly ethyleps (maximum 94%), with HEPA observed at a maximum of 4% AR.

In a soil photolysis study, ethephon was readily degraded with a similar decline seen under irradiated conditions and in dark controls indicating that photolytic degradation had only a minor effect on the degradation rate. HEPA was detected in irradiated samples (maximum 10.6% AR after 10 days) and > 5% at two consecutive timepoints in dark control samples (maximum 6% after 30 days). Ethylene and carbon dioxide were formed at maxima of 12% and 6%, respectively. No other metabolites exceeded 2%.

studies.

Page 7 of 81 2017-07-24

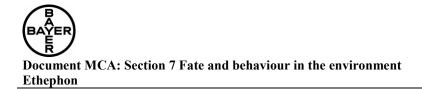

OН OН Сľ Ethephon (2-Chloroethyl)phosphonie Ø 200 PA droxy obn soil (maximum 7%) \$\$¥ bo und resid extPacted obiceoil (maximum 60 E≵hylene Clarbon Dioxide Boil (maximum 62% aerobic soil (maximum 22%) A Carlon 0, Major route

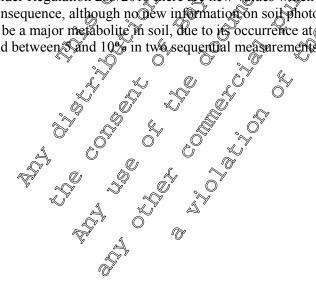
Figure 7.1.1-1: The proposed route of degradation for ethephon in soil

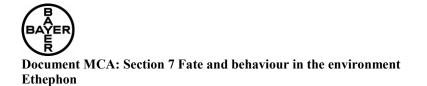
CA 7.1.1.1 Aerobic degradation

The route of degradation of ethephon in aerobic soil had been investigated in two studies under laboratory conditions in five soils at 20°C and 45% maximum water holding capacity (MWHC) and in one soil at 10°C and 45% MWHC (KCA 7.1.1.1 /01 and KCA 7.1.1.1 /02). These two studies were evaluated during the previous EU review and are listed below. No new information on the route of aerobic degradation in soil is submitted for the current EU review.

Donoute	KCA 7.1.1.1/01.
Report: Title:	KCA 7.1.1.1/01; 2001; M-200033-01-Y
Tittle:	Route and rate of degradation under aerotic conditions in the soil 420 degrees C and 10 degrees C and in three contrasting 50 is at 20 degrees C (14) Herebore
Report No.:	10 degrees C and in three contrasting soils at 20 degrees C (14) Ethephop C016772
Document No.:	
Guideline(s):	ED Council Directive 91/414/EC as an ended by commission Directive 95 6/EEC
Guideline(b).	of July 1995
	US EPA OPPTS 835.4100.
Guideline deviation(s):	not specified
GLP/GEP:	M-203033-01-1 ED Council Directive 91/414/ECC as an ended by Commission Directive 95 6/EEC of July 1995 US EPA OPPTS 835.4100 not specified yes
Report:	KCA 7.1.1.1/02
Title:	(14C)-Ethephone Route and rate a degradation upder aeros conditions in one soil at
	20 degrees C
Report No.:	C033199
Document No.:	M-232779401-1 5 4 Q
Guideline(s):	EU Council Directive 91914/EEC, as amonded by Commission Directive 95/36/EC
	of Jun 1995 Section 7, Sub-section 7. 14, 2.
$C = \frac{1}{2} $	USEPA ODTS 83CH100
Guideline deviation(s): GLP/GEP:	St specifed V O
GLI/GEI:	of July 1995 Section 7, Sub-section 7, Eq.2. USCPA OD TS 8364100
ð	
Two additional studies	were considered upreliable by the RMS in the previous EU review (
1991, M-187639-01-1	
1991, WI-10/009-01-1	
CA 7112	obic degradation
CA 7.1.1.2 Anaer	
_`~~` Ø	
The route oDdegradatio	on of thephon in an erobic soil had been investigated in a study under flooded
laboratory conditions in	n one soil @20°C @CA 7.1.1.2 /01). This study was evaluated during the
previous EU review, ar	the reference is provided below.
Report:	₩ A 7.1.1.2/01; M.; 2001; M-204496-01-1
Title:	Route and rate of degradation in soil under anaerobic conditions at 20 degrees C (14C)-Ethephon
Report No.:	C013378
Document No.:	M-204496-01-1
Guideline(s):	EU (=EEC): 95/36/EEC, 7.1.1.1.2
Guideline deviation(s):	
GLP/GEP:	yes

The data evaluation by the notifier considered the changes in data requirements since the time of the previous EU review. The current study guideline for anaerobic studies is OECD 307 with an aerobic phase for one half-life or 30 d (whichever is shorter) followed by anaerobic waterlogged phase of up to 120 d. The aerobic phase permits the behaviour of significant aerobic metabolites to be investigated under anaerobic conditions.

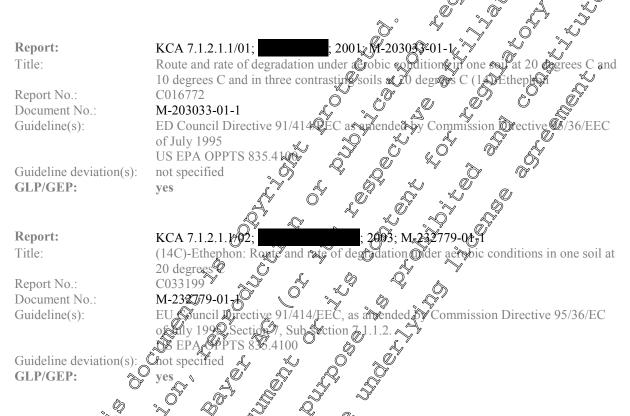

The existing anaerobic study for ethephon under flooded anaerobic conditions did not have an aerobic phase. In aerobic conditions no major metabolites other than ethylene and HEPA are detected within one half-life of parent in any aerobic soil. All other metabolites are < 1% within this time period. Under anaerobic conditions the same pathway was observed with ethylene (maximum 94, 1%) and HEPA (maximum 3.7%) formed and no other metabolites exceeding 5%. Thus it is concluded the existing study is sufficient to fully understand the behaviour of ethephon in anaerobic soil. All ence, no new information on the route of anaerobic degradation in soil is submitted for the current for review.


CA 7.1.1.3 Soil photolysis

The soil photolysis of ethephon had been investigated in a study under laboratory conditions in one soil at 20°C (KCA 7.1.1.2 /01). This study was evaluated during the previous EU review and the reference is provided below.

D (
Report:	KCA 7.1.1.3/01,;;, 2006, M-1995, 7-01-1
Title:	Photodegradation in coll (140) Ethephon O
Report No.:	C010717 C
Document No.:	M-199517-01-4 2 6
Guideline(s):	EU (=\$EC): 9556/EC \$ \$ \$ \$
Guideline deviation(s):	
GLP/GEP:	

Under Regulation 285/2013 there are new values which trigger data requirements for metabolites. As a consequence, although nonew information on soil photolysis is submitted, HEPA is now considered to be a major metabolite in soil, due to its occurrence at 00% (10.6%) of AR in irradiated samples and between 5 and 10% in two sequendial measurements in dark control samples (KCA 7.1.1.3 /01).



CA 7.1.2 Rate of degradation in soil

CA 7.1.2.1 Laboratory studies

CA 7.1.2.1.1 Aerobic degradation of the active substance

The rate of degradation of ethephon in aerobic soil had been investigated in two studies under laboratory conditions in five soils (KCA 7.1.2.1.1 /01 and KCA 7.1.2.1.1 /02). These studies were evaluated during the previous EU review, and the references are provided below.

No new studies have been submitted for Annex I Renewal, however the experimental data generated in the aerobic soil degradation studies listed drove have now been re-evaluated according to FOCUS kinetics guidance (KCA 7, 1.2.1.1, 03). This re-evaluation is summarised below.

Report: O [*] KCA7.1.2.15703; ; 2015; M-534660-01-1
Title: Kinetic evaluation a faerobic metabolism of ethephon in soil according to FOCUS
Contraction of the second seco
Report to .: EnSa 5-0138
Document No_{1}^{2} M-504660-01
Guideline(s): 4 "Generic Guidance for Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration". Report of the FOCUS
Work Group on Degradation Kinetics. EC Document Reference: None, version 1.1,
2014; "Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration". Report of the FOCUS
Work Group on Degradation Kinetics. EC Document Reference Sanco/10058/2005
version 2.0, 2006
Guideline deviation(s): none
GLP/GEP: no

Executive Summary

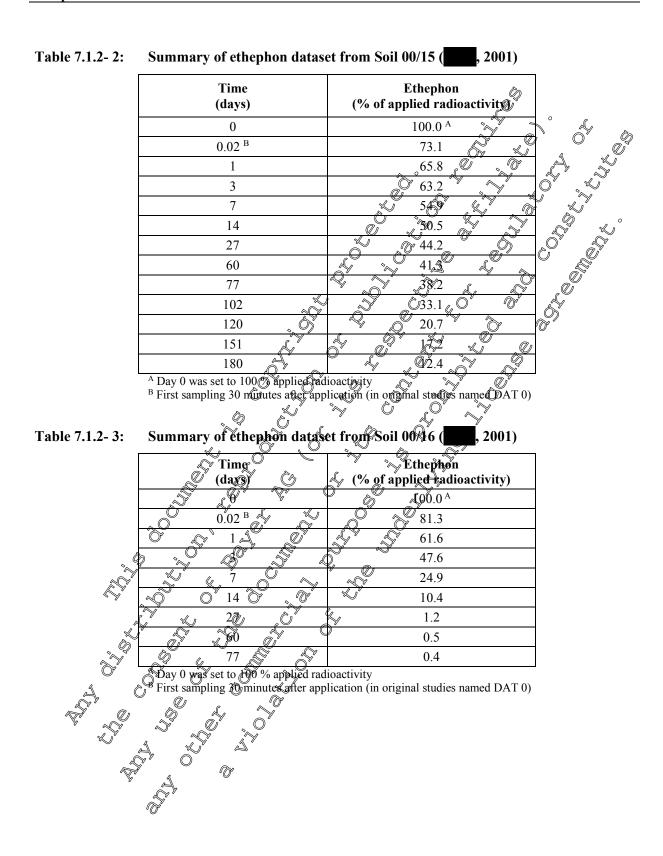
The aim of this study was to evaluate aerobic soil degradation data for ethephon to derive DT₅₀ values according to FOCUS kinetics guidance.

The degradation behaviour of ethephon has been investigated in five soils under aboratory conditions [Burr, 2001 & Fitzmaurice, 2003].

Kinetic modelling evaluations (KinGUI v2.1) showed statistically valid results could be derived according to FOCUS Kinetics acceptance criteria. The DT₅₀ values (20 °C and pF2) selected for use as modelling endpoints are summarised below.

DT50 🖉 🌱
lays o
1 3 7.2 S
47.9 6 0
2.22, 5
328
6.35
12.4

MATERIALS AND METHODS I.


The experimental data generated in two aerobic soil aborator studies [prexiously reviewed for the first approval of ethephon, Burr, 2001 & Fitzmaurice, 2003] were to evaluated according to the FOCUS guidance document on degradation kinetics using the software KinGUI v2.1. The aim of this evaluation was to derive DT₅ values for use as modelling and trigger endpoints.

The datasets evaluated for each of the soils are provided in Table 7.4.2-1 to Table 7.1.2-5. All soils were incubated at a temperature of 20 °C and a soft moisture content of 45% maximum water holding capacity. Optimisations, were carried out for the initial residue (M_0) and the degradation rate constant (Kp) for ethephon in all datasets. Modelling endpoints were formalised to a soil moisture content of pF 2.

Table 7.1.2- 1: Summary of ethephon datase	x from Soil 00/14 (2007, 2001)
Time Contraction of the contract	Ethephon (% of applied radioactivity)
	100.0 ^A
	90.3
	78.1
	69.3
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	59.9
	47.5
	34.5
T Co	15.0
S 77	7.1
102	3.1
120	1.0
151	1.3
180	1.4
^A Day 0 was set to 100 % applied rad	ioactivity

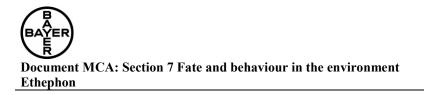
00 % applied radioa

^B First sampling 30 minutes after application (in original studies named DAT 0)

Table 7.1.2- 4:	Summary of ethephon dataset from Soil 00/18 (2001)			
	Time (days)	Ethephon (% of applied radioactivity)		
	0	100.0 ^A		
	0	100.0 A		
	0.02 ^B	76.9		
	0.02 ^B	84.7 67 🖉		
	1	67.6 √ ×√		
	1			
	3	$\begin{array}{c c} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		
	3	Q 4.6 7 5		
	7			
	7	Q ~ ~ 47:0 ~		
	14	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	28 5	Q 41.6 Q		
	28	0 ⁷ 0 ⁷ 407 5 0 5 51.2 0 5 5		
	56 2 2			
	56			
	**** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	© 20.9		
		× 17.1		
		23 <u>3.2</u> 2 (19.8		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 19.8		
		Q 0 14.9		
Δ		<u>کې کې 14.4</u>		
	1 ,			
	Day 0 was set to 100 % applied rad	1.7		
·	• A Day 0 was set to 100 % applied rad	ioactivity Scation (in original studies named DAT 0)		
able 7.1.2- 5;	Summary of ethephon datas	ioactivity Scation (in original studies named DAT 0) et from Soil 03/01 (, 2		
	Contine Continue	Ethephon		
Č,	$\begin{bmatrix} \mathbf{x}^2 & \mathbf{x} & \text{Time} \mathbf{x}^2 & \mathbf{y}^2 \\ \mathbf{x}^2 & \mathbf{y}^2 & \mathbf{y}^2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}^2 & \mathbf{y}^2 \\ \mathbf{x}^2 & \mathbf{y}^2 \end{bmatrix}$	(% of applied radioactivity)		
A C		107.7 ^A		
		90.2		
		69.9		
Å		52.4		
- Starten - Star	A AA	36.2		

28.2

15.0


10.8

### Table 7.1.2- 4: Summary of ethephon dataset from Soil 00/18 (2001)

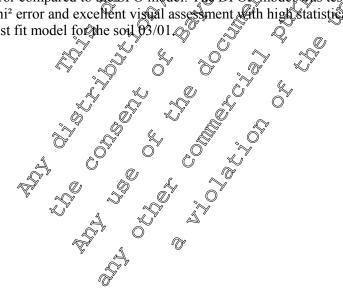
44 ^A Day 0 was set to material balance

21

38



### II. RESULTS AND DISCUSSION


The modelling endpoints ( $DT_{50}$  values) for ethephon are summarised in Table 7.1.2- 6 and the trigger endpoints are summarised in Table 7.1.2- 7.

For Soils 00/14 and 00/16 the single first order model (SFO) showed a good visual fit, an acceptable Chi² error, significant parameter estimations and a random scatter of the data in the residual plot. It was therefore chosen as appropriate to derive modelling endpoints. For derivation of trigger endpoints the bi-phasic first order multi compartment model (FOMC) was tested and resulted in improved visual assessment and a lower Chi² error for both soils. The bi-phasic double first order on parallel model (DFOP) clearly improved the statistical relevance and visual assessment and was therefore chosen for derivation of trigger endpoints for soils 00/14 and 00/16.

For Soil 00/15 the visual assessment of the SFO model was reasonable, although the Chi² error was^o high and the residual data showed large scatter. However, as the fit was statistically significant the SFO model was accepted for derivation of modelling indpoints. The anount & applied radio etivity at the end of the study was > 10% and therefore the POMC model was excluded. The bi-phosic DFOP model was tested and resulted in a clearly better visual assessment and lower Chi² error than the SFO fit. Consequently, the DFOP model was chosen as the best fit model for Soil 00/95.

For Soil 00/18 a reasonable visual fit with a high Chi² error and a large scatter of the residual data was obtained with the SFO model. However, the fit was statistically significant and therefore the SFO model was considered appropriate to derive modelling endpoints. For derivation of trigger endpoints the bi-phasic model FOMC was tested as a first step which resulted in a slightly improved visual fit and lower Chi² error. As a second step the DFOP model was tested which was statistically significant and provided an even lower Chi² error and a better visual assessment. The DFOP model was therefore chosen as the best fit model for soil 00/18.

For Soil 03/01 an acceptable visual fit a good Chi² erfor, significant parameter estimation and a random scatter of the data in the residual plot were obtained from the SFO model. It was therefore considered appropriate to derive modelling endpoints. The bi-phasic model FOMC was tested as a first step for derivation of trigger endpoints and provided a much better visual assessment and Chi² error compared to the SFO model. The DFOP model was tested additionally and resulted in a very low Chi² error and excellent visual assessment with high statistical significance. It was therefore chosen as best fit model for the soil 03/01



		-					
Soil	pH	Kinetic	DT _{50 SFO}	DT _{50 REF pF2}	Minimum	Parameter	Visual
	(CaCl ₂ )	model	(days)	& 20°C	$\chi^2$ error	Confidence	
				(days)		t-test	
00/14	6.1	SFO	18.10	13.24	11.50	¢گ×0.001	Good
00/15	5.0	SFO	72.05	47.89	17.46 🗞		Acceptable
00/16	7.1	SFO	3.53	2.22	13.27	≲0,001	Good
00/18	6.7	SFO	49.36	32.81	20.4V	<ul><li><a>©0.001</a></li></ul>	Acceptable
03/01	7.6	SFO	10.12	6.35	10.72	×<0.000	Acceptable
Geometrie	c mean		18.70	12.40			Ŵ
				(C n			ñ .

Table 7.1.2- 6:	Ethephon modelling endpoint DT ₅₀ values
-----------------	-----------------------------------------------------

Table 7.1.2- 7:	Ethephon trigger endpoir	t DT50 Malues

Table 7.1	.2-7: Et	hephon trig	ger endpoint ]	DT50 Salues			
Soil	pH (CaCl ₂ )	Kinetic model	Soil DT ₅₀ (days)	Soil DT (daxs)	1000000000000000000000000000000000000	Parameter Confidence	🖉 Visual
00/14	6.1	DFOP	15.04	70.78	4.59	$k_1 = 0.018$ $k_2 \leq 0.001$	Good
00/15	5.0	DFOP	42/04	257.00	11.29y	k ∲ 0.155 k 2 <0.001	Good
00/16	7.1	DFOP	©2.50 °	×J3.68		$k_1 < 0.001$ $k_2 < 0.001$	Good
00/18	6.7	DFOP ^S	* 20,09 A		0 10.29	$\begin{array}{c} k_1 = 0.006 \\ k_2 < 0.001 \end{array}$	Good
03/01	7.6	DFQP	6.29	44.98 °~y	×¥.08	$\begin{array}{c} k_1 < 0.001 \\ k_2 < 0.001 \end{array}$	Good
Geometric	mean		11.48	73066	Ş		

No statistically significant correlation between the degradation half-life of ethephon and the pH value of the soils was detected using the German Input Decision tool (UBA, 2012). However, higher degradation rates were found for the softs with high pH and the lowest degradation rate was found for the soil with the lowest pH. As a precautionary approach, the worst case DT₅₀ of 47.9 days for acidic soils (Soil 00/15) and a geometric mean DI 3 of 38 days from the two alkaline soils (Soils 00/16 and 03/01) were used in separate modelling assessments for acidic and alkaline soils in line with FOCUS K) (2014) recommendations.

# CONCLUSIONS

° Kinetic modelling analysis of the data from five aerobic soils treated with ethephon provided acceptable model fits.

Ì.

The model  $\log_{100}^{100}$  endpoints for  $PEC_{sof}$ ,  $PEC_{gw}$  and  $PEC_{sw}$  derived from the aerobic soil data are summarised below

BAYER
Document MCA: Section 7 Fate and behaviour in the environment
Ethephon

PEC _{soil} endpoint:	Worst-case SFO $DT_{50}$ value, un-normalised	72.1 days
FOCUS PEC _{gw} and PEC _{sw} endpoints:	Geometric mean $DT_{50}$ value in all soils, normalised to pF 2 and 20 °C (n=5)	12.4 days
-	Worst case DT ₅₀ value in loam soil (00/15, pH 5), normalised to pF 2 and 20 °C	9 47.9 days
	Geometric mean DT ₅₀ value in clay loam soil (00/16. 03/01, pH > 7), normalised to pF 2 and 20 °C (n=26.	J.8 days ^{by}

### CA 7.1.2.1.2 Aerobic degradation of metabolites, breakdown and reaction products

For the metabolite HEPA, laboratory data on the rate of degradation in acrobic soil could not be derived from studies performed with the active substance. Hence, a new study with the metabolite separately-dosed to soil was performed for the current EU review (KGA 7.1.2, 2/01). This study is summarised below.

Report:	KCA 7.1.2.1.2/01; , , , , , , , , , , , , , , , , , , ,
Title:	2-hydroxyethylphosphonic acts: Aerobic degradation in four soits
Report No.:	EnSa-15-0130
Document No.:	M-533483-01-1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guideline(s):	OECD Test Gaudeline No. 307
	Commission Regulation (EU) No 283/2013 in accordance with Regulation
	(EC) No.1 107/2009
Guideline deviation(s):	Due to the very fast degradation of the test item the duration of this study was limited
	to seven days after treatment with four sampling intervals only. This has no impact on
	the results of the study.
GLP/GEP:	yes Q' O A a A
	Č A KI Č SU

### Executive Summa

The rate of degradation of 2-hydroxyethyphosphonic acid (HEPA) was determined in four soils under aerobic conditions under laboratory conditions. The soil were incubated in the dark at a temperature of 20.0 °C and a soil moisture content of 54.4% of maximum water holding capacity (MWHC) for 7 days.

	(days)
1.6	5.3
1.9	6.2
0.9	3.0
1.7	5.6
	1.9

HEPA was very rapidly degraded in aerobic soil. 'Best fit' SFO degradation kinetics resulted in  $DT_{50}$  values ranging from (5) to 1.7 days and  $DT_{90}$  values from 3.0 to 6.2 days.

#### I. **MATERIALS AND METHODS**

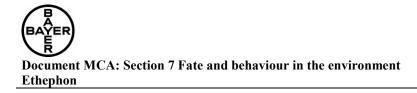
#### **MATERIALS** A.

1.

2.

**Test material:** 2-Hydroxyethylphosphonic acid HO 2-Hydroxyethylphosphonie acid HEPA, 2-HEPA AE F020271 AE F020271 Q 1B95 0001 95.3% 22987-29.9 Methanol:Water (1:1 V/V) PG9(O)(=O)CCO Four fresh agricultural soils codected from various sites in Germany were used for the study. The soils were selected to **Chemical name (IUPAC) Synonyms Batch number: Chemical purity:** CA registry number: **Application vehicle: SMILES code:** Soils Germany were used for the study. The soils were selected to

cover a range of ple organic matter and clay content. Ò


. ¢

		<u> </u>	Y	
Parameter		Besult	s/Umits	
Soil Designation	Daacher Hof AXXa	Höfchen@m & Hohensen	∬ ^y Dollendorf II	Laacher Hof Wurmwiese
Soil Taxonomic Classification (USDA)	Sandy, mixed, Omesic Typic	Loamy, mixed mesic Typic Argudaly	Fine-loamy, mixed, active, frigid Typic Eutrudept	Loamy, mixed, mesic Typic Argudalf
Textural Class ( $VSDA$ ) Sand [50 $\mu$ m – 2 mm	Sapdy loan	Silt Joam	Loam 38%	Sandy loam 52%
Silt $[2 \mu\text{m} - 50 \mu\text{m}]$		55%	35%	31%
Clay [< 2 μm] pH (soil/0.0 CaCl	<del>م کومہ</del> لاہے 5.5 ک	13% 0 ⁵ 6.0	27% 7.3	17% 4.8
pH (soil/water 1/1)		Ø 6.3	7.4	5.1
pH (saturated paste) pH (solv 1 N KC 1/1)	5.8 °° 5.2 °	6.3 5.7	7.4 7.0	5.1 4.4
Organic Carbon (combustion)	1.5% Y	1.7%	5.1%	1.6%
Organic Matter	296%	2.9%	8.8%	2.8%
Cation Exchange	7.9 meq/100 g	10.1 meq/100 g	19.5 meq/100 g	8.8 meq/100 g
Water Holding Capacity				
МѠҤС	49.0 g H ₂ O <i>ad</i> 100 g DW	59.6 g H ₂ O <i>ad</i> 100 g DW	83.0 g H ₂ O <i>ad</i> 100 g DW	57.1 g H ₂ O <i>ad</i> 100 g DW
1/10 bar (pF 2.0)	13.9%	31.8%	39.2%	20.3%
Bulk Density (disturbed)	1.16 g/cm ³	1.00 g/cm ³	0.90 g/cm ³	1.05 g/cm ³



# Document MCA: Section 7 Fate and behaviour in the environment Ethephon

Parameter		Result	s/Units	
Soil Designation	Laacher Hof AXXa	Höfchen am Hohenseh	Dollendorf II	Laacher Hof Wurmwiese
Biomass	424 mg microbial C/kg soil DW	4288 mg microbial C/kg soil DW	713 mg microbial C/kg soil DW	2214 mg microbial C/kg soil DW
^A % organic matter = %	organic carbon x 1.724	MWHC = Maxin	num water holding cap	pacity
B. STUDY DES	SIGN AND METHO	DS	num water holding cap	
In-life dates		Ĉ	y° 4 27	
Study initiation date:	7 April 2	2015	ST IN	
Study completion dat	te: 7 Septer	mber 2015		
Experimental start da	te: 13 April	ا 2015 ک		
Experimental comple	tion date: 28 Augu	ust 2015		- -
	C	× Ş		
Experimental desig	n .	8 8 8		
Parameter		Descript	ion ⁽² ⁽¹⁾	U
Duration of test		7 days.		-
Duration of test	Č,Š¥	Study of	ginally planned for 12	
			on faster than original	ly assumed test
Soil condition			after 7 days.	2 mm) avatama nna
Son condition		jincubate	ampled, sjil sieved (≤ under @st conditions t.	for 10 days prior to
Soil sample weight		10 <b>@g</b> dry	v weight equivalents po	er replicate
Test concentrations	kæ test item/ha	Chased O etherhon	witem/ha maximum single field of 2.24 kg/ha, maxim THEPA, and a 5 fold in	um occurrence of
			l reasons)	icrease in rate for
	jug test item/kg soft DW	Nominal Actual:	2762 2693	
Control conditions (if u	ised)		for soil microbial bion	nass, untreated soil
Number of replications	V V V	Two per	sampling interval	
Test apparatos		O ^y 300 mL l y foam plu	Erlenmeyer flasks clos gs	ed with polyurethane
Traps for yolatiles		None		
Test material	dentity of solvent		l/water, 1/1 (v/v)	
application	Volume of application s		er 100 g soil dry weig	
	Application method	Dropwise adjustabl	e application to the soi e pipette	l surface using an
Traps for volatiles	×××	None		
Is there any indication the walls of the test app	of the test material absor	bing to No		
Experimental	Temperature	20 °C		
conditions	Moisture content	54.4% M	WHC	
	Continuous darkness (Y	res/No) Dark		



### Sampling

Parameter		Description		
Sampling intervals		Duplicate samples were processed and analyzed 0, 1, 3 and 7 days after treatment (DAT).		
Soil sampling procedures		Complete treated samples were removed at each sampling time and extracted as detailed below.		
Collection of volatiles	3	None		
Sampling intervals /	Moisture content	Each sampling inter Cal		
checks	Sterile	Not appleable		
	Other	Soil microbial bromase was determined for untreated soil of DATA		
Sample storage before analysis		Rbe soils were processed immediately after Campling. Soil extracts were analyzed by HCC- MS/MS. Storage stability investigations were not necessary due to the use of an internal gable-labelled		
Analytical procedu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	stapidard C C C C C		

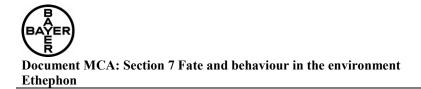
Each sample was extracted as follows:

- a) Soil was extracted three times and ambient temperature with 100 mL photphate buffer (pH 7) using a mechanical shaker for 90 min des. Soil and softent were separated by centrifugation at 3480 g for 10 minutes after each extraction step.
- b) The soil was then extracted twice with 100 mL phosphate buffer (pH 7) using a microwave at a temperature of 70 °C with a mechanical stirrer for 10 minutes. After each extraction step soil and solvent were separated by centrifugation as before.
- c) All extracts were combined in a 500 mL rolumetric cylinder, an internal reference standard added (2-hydroxyethyl-1,2,2-d4)phosphonic add) and the contents made up to volume.

An aliquot of the combined soil extract was transferred into a Centrifugation tube and centrifuged at 25000 x g for 5 minutes. The clear supernation was transferred into a HPLC vial and analyzed by HPLC-MS/MS

At each sampling interval (except  $DA \oplus 0$ ) concurrent recovery samples were prepared at the LOQ and at the application rate. These samples were extracted and analysed alongside, and in the same manner, as the incubated samples  $\mathcal{A}$ 

The amount of MEPA & soil extracts was determined by HPLC-MS/MS in selected reaction monitoring (SRM) mode using an internal standard. The identity of HEPA was confirmed by HPLC-MS/MS including accurate mass determination.


The half life (DT₅₀) of JTEPA in each soft was determined using a simple first order (SFO), double first order in parallel (JFOP) and first order multi compartment (FOMC) models from the KinGUI kinetic modeling software

II,

### **RESULTS AND DISCUSSION**

### Analytical Methodology

The mean recoveries of HEPA at DAT-0 were between 82.9 and 105% of applied for all soils (see Table 7.1.2- 8). Extraction efficiency during the course of the study was demonstrated by concurrent recovery samples fortified with the test item at the LOQ (corresponding to 5% of the nominal application rate; 138  $\mu$ g/kg) and at the application rate (100% of the nominal application rate; 2762  $\mu$ g/kg). Overall recoveries ranged from 92.2 to 110% (mean 103% of applied).



The mass selective detector was operated in the negative electrospray ionization selected reaction monitoring mode (SRM), tuned for the mass transitions of HEPA and a significant product ion. The detector response of HEPA was linear over the concentration range determined (1 to 150% of the application rate) with a correlation coefficient of > 0.99. The accuracy and precision of the method was assessed on the basis of a set of recovery rates determined for all soils at the 200Q and nominal application rate. The mean recovery rates were in the range of 69.3 to 112% of applied for all soils and concentrations (overall mean 97.2% of applied, RSD 5.4%, n = 40). The relative standard determines for each recovery set ranged from 3.5 to 6.4 for all soils, except for Doller off soil where it was 23.3%, showing a good overall repeatability of the method. Background weels, of the test item in blank soil matrix was < 40% of the LOQ in all soils with no interference by other matrix components. The LOD in soil was set to 1/5 LOQ (corresponding to 1% of the monitor application rate, 27.62 pg/kg).

### **HEPA concentrations**

The concentration of HEPA in soil extracts dissipated apidly in all four soils. The amount in soil extracts decreased from 101% applied at DAT-0 to \$4% at DAT-7 in soil Leacher Hof AXX8, from 99.0 to 9.0% applied in soil Höfchen am Hohensel, from \$2.9 to 6.2% applied in soil Dollerdorf II and from 105 to 9.9% applied in soil Leacher Hof Wurnwiese. The quantities of HEPA extracted from each soil with time are shown in detail in Table 71.2-8 at % of applied and in Table 7.1.2-9 as µg/kg soil dw.

		<u> </u>	<u>v 4, a</u>		
Soil (USDA soil texture)	Replicate				7
		96.9	95.2	→ <u>9.1</u>	8.0
Laacher Hof AXXa (Sandy loam)	2	_ (j05 _ x)	061	> 10.5	8.8
Höfchen am Hohenseh (Silt loam)	Mean ^O	101	\$95.8 \$	9.8	8.4
		O 98.14	82,5	24.9	8.8
Höfchen am Hohenseh (Silt loam)		100	86,5	27.8	9.3
	Mean	99.0	81.5	26.4	9.0
		82.4	38.2	5.3	5.4
Dollendorf II (Loam)		≥ 83Q4	40.7	5.4	6.9
	(K Mean )	<u>\$2.9</u>	39.4	5.3	6.2
Laacher Hof Wurmxiese	$0^{\prime} 1^{\prime} 0^{\prime}$	s 105 ×	93.9	16.1	9.7
(Sandy loam)		() 10 <del>5</del> /	94.2	18.4	10.0
	Mean O	105	94.0	17.3	9.9
(Sandy loam)	A Mean of				

Table 7.1.2- 8:	Degradation	of HEPA in a	erobic soil (a	s % of applied)	

1

2

Mean

1

2

Mean

1

2

Mean

ion of HEPA in aerobic soil (as μg/kg soil dw)						
Dauliaata		D	AT			
Replicate	0	1	3	7		
1	2610	2564	240	216		
2	2819	2596	282	236		
Mean	2711	2580	263	<u>)</u> 226 <i>b</i>		

67

748

710

142

144

44

435

495

465

Ľ

2223

~2168

1027

1:095

≈**1**060

2527

@2194

Table 7.1.2- 9: D	Degradation of HE	PA in aerobic so	il (as µg/kg soil dw)
-------------------	-------------------	------------------	-----------------------

### **Degradation kinetics**

Laacher Hof Wurmwiese

Soil

(USDA soil texture)

Laacher Hof AXXa (Sandy loam)

Höfchen am Hohenseh

(Silt loam)

Dollendorf II

(Sandy loam)

(Loam)

Ø DT₅₀ and DT₉₀ values for the degradation of HEPA were determined to wing the recommendations of the FOCUS work group, with calculations performed according to the FOCUS guidance document on degradation kinetics using the software KinGUlyersion 21. 0.

 $\bigcirc$ 

2641

2692

2666

2220

2245

2232

2839

2828

**Q**¥34

SFO kinetics showed 'best fit' to the data with the improgement for FOMC or double first order in parallel (DFOP) kinetics for all four sources. , S

Table 7.1.2- 10:	'Best Fit'	DA 50 an	d ĎŤ ₉₀ va	lues for HE	PA (in aei	obic soil
	C	**	e de	O [°]	a í	

Soil	Kine@c mødel	Sour pH (CaCl ₂ ) ~	C DT 50 C (days)	DT90 (days)	Min χ² error	Visual
Laacher Hof AXXa (Sandy loam)	<b>A</b> SFO	5.5-Q	1.6	5.3	25.2	Poor
Höfchen am Høhenselo (Silt loam)	SFO [°]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 1.9	6.2	10.2	Moderate
Dollendorf II	SFO SFO	7.30°	0.9	3.0	8.0	Good
Dollendorf II (Loam) Laacher Hof Vurmwiese (Sandy Ioam)	SEO SEO	Q1.8	1.7	5.6	18.9	Poor
	2 . M.	CON	CLUSIONS			

HEPA was very rapidly degraded in aerobic soil. Best fit' SFO degradation kinetics resulted in DT₅₀ values ranging from 0.9 to 1.7 days and DT₉₀ values from 3.0 to 6.2 days.

A kinetic evaluation of the experimental data generated in the above aerobic soil study has been conducted according to FOCUS kinetics guidance with the aim of deriving DT₅₀ values for use as modelling and trigger endpoints (KCA 7.1.2.1.2/02). This kinetic evaluation is summarised below.

236/

25D

244

145

187

**C6**6

261

270

265



Document MCA: Section 7 Fate and behaviour in the environment
Ethephon

Report:	KCA 7.1.2.1.2/02; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Title:	2-Hydroxyethylphosphonic acid - Kinetic evaluation of aerobic metabolism in soil
	according to FOCUS kinetics
Report No.:	EnSa-15-0788
Document No.:	M-534855-01-1
Guideline(s):	"Generic Guidance for Estimating Persistence and Degradation Kinetics from
	Environmental Fate Studies on Pesticides in EU Registration?. Report of the FOCUS
	Work Group on Degradation Kinetics. EC Document Reference: Rone, vettion 1.1
	2014; "Guidance Document on Estimating Persistence and Degradation Kinetics, from
	Environmental Fate Studies on Pesticides in EU Registration," Report of the FOCUS
	Work Group on Degradation Kinetics. ECoocument Reference Sanco 1005&2005
	version 2.0, 2006
Guideline deviation(s):	not applicable $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$
GLP/GEP:	no Q A A A
	no y y y y y

### **Executive Summary**

The degradation behaviour of HEPA has been investigated in four soils under laboratory conditions [KCA 7.1.2.1.2/01, 2015]. Actinetic evaluation of the study was conducted following FOCUS recommendations in order to derive kinetic parameters suitable for modelling and environmental risk assessments (modelling endpoints). The DT₅₀ alues (20 °C and pF2) selected for use as modelling endpoints are summarised below.

Soil 0	Soil ph
	(CaCl ₂ ) (CaCl ₂ ) (Cand pF2
Y S	(days)
Laacher Hof AXXa (Sandy loam)	5.5 0 1.6
Höfchen am Hohenseh (Silt Joam)	6.0 1.9
Dollendorf II (Kam)	
Laacher Hof Wurmwiese (Sandy loam)	04.8 0 ⁹ 1.7
Geometric mean	1.5

# MATERIALS AND METHODS

The experimental daya generated in an aerobic soil laboratory study [KCA 7.1.2.1.2/01,

2015] were evaluated according to the FOCUS guidance document on degradation kinetics using the software KingVI v2.1. The aim of this evaluation was to derive DT₅₀ values for use as modelling endpoints. Frigger endpoints were derived in the aerobic soil study and are also summarised here for completeness.

The datasets evaluated for each of the soils are provided in Table 7.1.2- 11 to Table 7.1.2- 14. All soils were incredated at a temperature of 20 °C and a soil moisture content of 54% maximum water holding capacity. Optimisations were carried out for the initial residue  $(M_0)$  and the degradation rate constant (k) for HBPA in all datasets. Normalisation of the modelling endpoints to 20°C and pF 2 was not required as the soils had been incubated at 20 °C and a soil moisture content above field capacity.

	Time (days)	HEPA (% of applied)
	0	96.9 _{Q1}
	0	104.7
	1	95.2 5 0
	1	96.4
	3	<u>9.1 4</u> <u>y</u>
	3	
	7	
	7	
		104.7 95.2 96.4 0°9.1 105 80 80 8.8 8.8 8.8 96.4 96.4 96.4 96.4 96.4 96.4 96.4 96.4
ole 7.1.2- 12:	Summary of HEPA data	
	2015)	
	Time 🔊	HEPA O
	(days)	HEPA (% of Applied)
	0 0	
	0 🔊	
		× 0 829 × ×
	× S	
·		$\begin{array}{c c} & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$
		<u> </u>
l		
1.717 12.	Summary of DEDA de	set from Dollendorf II ( <b>1997)</b> , 2015)
ر ne /.1.2- 13. الملك	Summary of HEPA data	set Hom Donendorr II (, 2013)
E, ^g	Summary of UPPA data	HEPA (% of applied)
		82.4
, Q	<u> </u>	83.4
ð,		38.2
(		40.7
Ŝ ^v ()		5.3
÷ ,ş	$\sim$	5.4
Ŵ	$A \qquad \sqrt{y} \qquad 7 \qquad \sqrt{y} \qquad 7 \qquad \sqrt{y} \qquad $	5.4
	<u>y 0 7</u>	6.9

# Table 7.1.2- 14: Summary of HEPA dataset from Laacher Hof Wurmwiese (2015)

Time (days)	HEPA (% of applied)
0	105.4
0	105.0
1	$\begin{array}{c c} 105.0 & & & \\ \hline 93.9 & & & \\ \hline 93.9 & & & \\ \hline 94.2 & & & \\ \hline & & & \\ \hline \end{array}$
1	~ 94.2 K ~ ~
3	
3	
7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	

### II. RESULTS AND DISCUSSION &

The modelling and trigger endpoints for HEP7 are summarised in Table 7.1.2-15. Model selection was conducted following the decision scheme defined in the ROCUS kinetics guidance document

The SFO model was used for all soils for the evaluation of model by endpoints. Although the SFO fit was not optimal it was considered acceptable for all four soils as the restributed were randomly distributed around zero. Only four data points were available for each soil due to the very rapid degradation of HEPA which did not allow for further measurement. However, as acceptable fits were obtained with the data the endpoints are also considered acceptable.

The FOMC model did not show a better fit to the data compared to SFO in any of the soils. As measured residues were < 10% at the end of the experiment so other biphasic models were tested.

# Table 7.1.2- 15: HEPA trigger and modelling endpoint DT values

Soil	Kinetic	DT ₅₀	DE 50 REF	Min $\chi^2$	T-test	Visual
à sì a	moder	(days)	<b>, @¥</b> 2 & 20°C	error		
		$\sim$	🎾 (days)			
Laacher Hof AXXa (Sandy Yoam)	<b>∕S</b> FO	🖓 1.6 _©	1.6	25.2	0.008	Poor
Höfchen am Hohenseh (Silt loam)	SFO SFO	1	1.9	10.2	< 0.001	Moderate
Dollendorf II (Loam)	SFQ	0.9	0.9	8.0	< 0.001	Good
Laacher Hof Wurrhwiese (Sandy loaur)	SFO	0~1.7	1.7	18.9	0.002	Poor
Geometric means O' V	ď.	1.5	1.5			

## **CONCLUSIONS**

Kinetionodelling analysis of the data from four aerobic soils treated with HEPA provided acceptable model fits.

The modelling entroints or PEC _{soil} , PEC _{gw} and PEC _{sw} derived from the aerobic soil data	are
The modelning enclosing of the solid in the gw and the sw derived from the deroble solid data	are
summarised betow.	

PEC _{soil} endpoint:	Worst-case SFO DT50 value, un-normalised	1.9 days
FOCUS $PEC_{gw}$ and $PEC_{sw}$ endpoints:	Geometric mean $DT_{50}$ value in all soils, normalised to pF 2 and 20 °C (n=4)	1.5 days

### CA 7.1.2.1.3 Anaerobic degradation of the active substance

The rate of degradation of ethephon in anaerobic soil had been investigated in a study under flooded laboratory conditions in one soil at 20°C (KCA 7.1.2.1.3/01). The study was evaluated during the previous EU review, and the reference is provided below. The  $DT_{50}$  value for degradation of ethephon in flooded anaerobic soil was 2.2 days. No new information is submitted for the gurrent EU review.

Report:KCA 7.1.2.1.3/01; M.; 2001; M-204496-00Title:Route and rate of degradation in soil under maeroble conditions at 26 degrees (14C)-EthephonReport No.:C013378Document No.:M-204496-01-1Guideline(s):EU (=EEC): 95/36/EEC, 7.1.1.1.2Guideline deviation(s):--GLP/GEP:yes

# CA 7.1.2.1.4 Anaerobic degradation of metabolites breakdown and reaction products

Under anaerobic conditions no metabolité exceeding 5% of applied was formed from the degradation of ethephon other than ethylene. Consequently no information has been submitted for Annex I Renewal.

### CA 7.1.2.2 Field studies

### CA 7.1.2.2.1 Soil dissipation studie

A US field dissipation and was evaluated during the previous DU review (KCA 7.1.2.2.1/01). The reference is provided below.

0

Report: Title: Report No.: Guideline deviation(s): GLP/GEP: KCA 7.1.2.2.1/0, K

The data requirements for active substances stated in Regulation 283/2013 have changed since the previous EV review. Field dissipation studies are now required when laboratory degradation rates; DegT_{50lab} or DegT_{50lab} values in one or more soils (at 20 °C and pF 2) exceed 60 days and 200 days, respectively.

The degradation of exceeds 200 days. As a consequence a new European field dissipation study has been conducted for the current EU review (KCA 7.1.2.2.1/02). This study is summarised below.

K	
Document MCA: Section 7 Fate and behaviour in the environmen	t
Ethephon	

Report:KCA 7.1.2.2.1/02;KCA 7.1.2.2.1/02;KCA 7.1.2.2.1/02;Title:Terrestrial field dissipation study with Ethrel SL 480 (Active ingredient: Ethephon)	on
	011
bare soil at 2 different sites in northern and 2 different sites in southern Europe	
Report No.: M-514111-01-1	
Document No.: M-514111-01-1	
Guideline(s): NAFTA Guidance Document for Conducting Terrestrial Fiel@Dissipation Studies,	
Regulatory Directive DIR2006-01, March 2006	
• EPA (Environmental Protection Agency) US: Fate, Transport and Transformation	'n
Test Guidelines, OPPTS 835.6100, Terrestrial Field Dissipation October 2008	4
• SETAC – Procedures for Assessing the Environmental Fate and Ecotoxicity of	
Pesticides, March 1995	
• EFSA Panel on Plant Protection Products; Guidance for valuating laboratory and	
field dissipation studies to obtain Deg 50 values of plant protection products in soil.	
EFSA Journal 2010;8(12):1936, 67 @p	
Guideline deviation(s): none	
GLP/GEP: yes	

### **Executive Summary**

A.

The soil dissipation of ethephon under European field conditions was investigated after application of Ethrel SL 480 at four sites in Vélez-Málaga (Spain), Duglolo di Mezzolara (Italy, Banbury (UK) and Bakum (Germany). A single application of Ethrel SL 480 was applied once to bare soil at each site in May 2013 at a nominal application rate of 1.00 product/ha, equivalent to 480 g/ha ethephon. After application the plots received  $\geq 10$  mm water within  $\frac{1}{2}$  days other bo irrigation or rainfall. Soil samples were collected to a depth of 30 cm for timepoints up to 4 months and analysed for ethephon. The limit of quantification (LOQ) and limit of determination (LOQ) for ethephon were 5 and 1.5 µg/kg dry soil respectively.

Ethephon degraded rapidly an soil order field conditions at all sites Best fit's simple first order degradation kinetics resulted in 19750 values ranging from 4.7 to 28.4 days and DT₉₀ values from 15.7 to 94.5 days.

Trial	C Location A	Kinetic model	(CaCl ₂ )	DT ₅₀ (days)	DT ₉₀ (days)	Min χ ² error	Visual
13/02566990-01	Vélez-Málaga (Spain)	SFO	27.5	8.7	28.9	11.5	Good
13/02566990-02		<b>⊗</b> \$FO ≼	7.7	4.7	15.7	7.5	Good
13/02566990-03	Baybury (UK)	SFQ	6.4	13.2	43.9	6.5	Good
13/02566990-04	Bakum Germany	SFO	5.6	28.4	94.5	3.1	Good

# ⁴ I. ⁵ MATERIALS AND METHODS

1.	Name (cormulated product):	Ethrel SL 480
	Active ingredient:	Ethephon
	Nominal vertive ingredient content:	480.0 g a.s./L
	Actual active ingredient content:	40.4 % wt/wt (487.7 g/L, density 1.208 kg/L at 20°C)
	Expiry Date	2015-04-12
	Specification ID	10200001940 - 02
	Batch ID	NK49CX0211
	Certificate of Analysis ID	13003918

#### B. **STUDY DESIGN AND METHODS**

### **In-life dates**

Study initiation date: 19 April 2013

Study completion date: 27 January 2015

Experimental start date: 23 April 2013

Date of first application: 2 May 2013

Date of last analysis: 13 December 2014

### **Experimental design**

A terrestrial field dissipation study with ethephon formulated as Ethrel St 480, a Soluble Gruid concentrate containing 480 g a.s./L, was conducted under field conditions after application to bare soil at two Southern European sites, Vélez-Málaga in Spán (Tria 43/02566990-04) and Dugliologi Mezzolara in Italy (Trial 13/02566990-02) and twe Northern European sites, Banbury in the UK (Trial 13/02566990-03) and Bakum in Germany (Trial 13/02566990-04)! At each site one treated plot and one control plot were maintained. Each treated plot was divided into 4 subplots.

Prior to application soil cores for soil characterisation (0-302m, 30-50 cm, 5 and 75 to ca. 100 cm) were taken. Details are provided below.

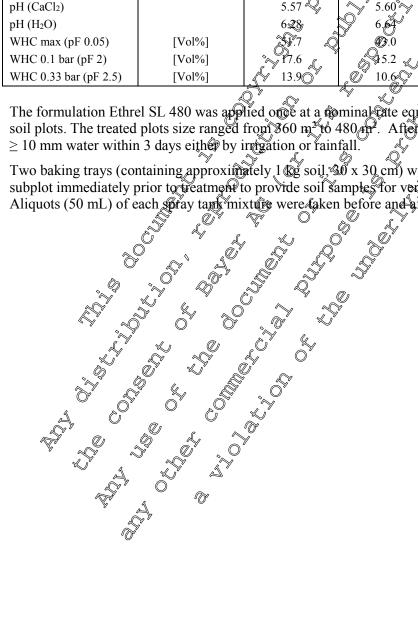
Soil Characterisation	for Trial	13/02566990-0	l in Vélez	z-Málaga	(Spain)

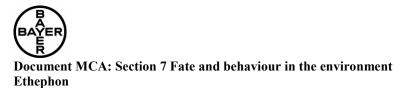
Soil Property	Unit		© Depth	ı [cm]	
		<u> </u>	30-50	50-75	75-95*
Soil type (USDA)		Sand Toam 🔬	Loam	Sandy loam	Sandy loam
Clay (<0.002 mm)	j%] O	₩3.5 🌱	¶1.6 ~	11.0	8.6
Silt (0.002-0.050 mm)	Ø [°] [%] Ø [°]	<u>ک</u> 31.3 ک	40.0	33.3	26.3
Sand (0.050-2.00 mm)	\$~ [%] <i>0</i> ~	T 55.D	48,4	55.6	65.1
CEC	لُ [mval BÂ7100 g]	\$ <b>14</b> ,2 C	× <u>1</u> 2/2	10.0	10.4
Chalk	[% GaCO3] {	A.67	4.50	3.00	1.67
Organic carbon (TOC)	Carbon ,	1.57	0.60	0.46	0.36
Inorganic carbon (TIC)	`∕y[% Carbon]	N 0.56	0.54	0.36	0.20
Total carbon (TCC)	[% <b>Ç</b> arbon]	≈µ3 ~	1.14	0.82	0.56
Organic matter	Q%] Õ	<u>∞</u> 2.71 [∞]	1.03	0.79	0.62
(calc., TOC x 1.724)	$\swarrow$				
pH (CaCl ₂ )	S S	ζ 7.4 <b>0</b> °	7.74	7.71	7.69
pH (H ₂ O)		8,22	8.76	8.77	8.70
WHC max (pf 0.05)	Wol%]	Q41.8	48.2	45.7	38.6
WHC 0.1 bar (pF 2)	Qvol%	26.9	26.3	24.1	23.8
WHC 0.33 Dar (pF 2.5)	[Vol%]	<u>م</u> 24.0	21.7	20.4	17.2
		7			

### Soil Characterisation for Trial 13/02566990-02 in Dugliolo di Mezzolara (Italy)

Soil Property	Unit	Depth [cm]				
		0-30	30-50	50-75	75-90*	
Soil type (USDA)		Sandy loam	Sandy loam	Sand	Sand	
Clay (<0.002 mm)	[%]	10.1	7.8		1.5	
Silt (0.002-0.050 mm)	[%]	28.6	23.5	\$ 6.8	\$3.9	
Sand (0.050-2.00 mm)	[%]	61.3	68.7	\$ 91.4 V	0 _{94.5}	
CEC	[mval BA/100 g]	7.3	5.9	J 3.40	A 2,2	
Chalk	[% CaCO ₃ ]	18.4	Z9.3 ~	2125	¥ <u>,2</u> ].9	
Organic carbon (TOC)	[% Carbon]	0.54	0.37	°∼0.13 K	\$0.03	
Inorganic carbon (TIC)	[% Carbon]	2.20	2.43 0	ر 2.5 <b>%</b>	2.62	
Total carbon (TC)	[% Carbon]	2.74	© 2.80 [°]	~ 2, T	Q st 2. <b>€</b> \$	
Organic matter	[%]	0.93	<u>6064</u>		6,05	
(calc., TOC x 1.724)		A S		Ϋ́ς.		
pH (CaCl ₂ )		7.72 🖓	7.84	7.92 0	7.93	
pH (H ₂ O)		8:43	8.76	8.9	8.94	
WHC max (pF 0.05)	[Vol%]	2 <b>19</b> .1 Q	<b>60</b> .9 %	35.4	32.5	
WHC 0.1 bar (pF 2)	[Vol%]	28.6	£ 28.1 ×	@18.1	12.7	
WHC 0.33 bar (pF 2.5)	[Vol%]	15.00	Ø 13.4 S	€.2,©	4.9	
			× × ×			
Soil Characterisation for Trial 13/02566990 03 in Banbury (UK)						

# Soil Characterisation for Trial 13/02566999-03 in Banbury (UK)


	~		<u> </u>	~~~	
Soil Property	Unit 🖗	Ô,	Depth	(chri	
	. **	j, 0∹3a [≪]	30-59	50-75	75-95*
Soil type (USDA)	ž o	🛛 🕹 🔧	Clay loam	Silt loam	Silt loam
Clay (<0.002 mm)	Ĩ%]	23.2	×33.6	10.1	3.2
Silt (0.002-0.050 mm)	S [%]	42.90 [°]	<i>©</i> 32,2 <i>∀</i> ^{<i>y</i>}	53.9	52.1
Sand (0.050-2.00 mm)	Č [%]	33,9	3 3¢A	36.0	44.7
CEC	🖲 [mval BA/100 🌮	Q23.3 Q	20.1	22.1	21.2
Chalk	CaCO ₂	0.17 5 1.99Q	0.17	0.08	0.08
Organic carbon (TOC)	°∼,[% Carton]	Š 1.9Q	0.66	0.51	0.46
norganic carbon (TIC)	[% Carbon]	~Q.02 ~	0.02	0.01	0.01
Fotal carbon ( 🌮 🔊	[%@arbon] 🏷	<b>€</b> @1.95 ₩	0.68	0.52	0.47
Organic matter	× [%]	3.33	1.14	0.88	0.79
calc., TOC x 1.724		ý Oʻ			
oH (CaCl2)		6.36	6.35	5.60	5.12
oH (H2O)			7.09	6.17	5.70
WHC max (pF 0.05)	QVol%],O`	57.3	58.5	55.3	60.0
WHC max (pF 0.05) WHC 0.1 (pF 2) WHC 625 bar (pC 2.5)	[Vol%]	^م 39.6	42.2	49.1	43.6
WHC 653 bar (p@2.5)	Q [V61%]	32.7	36.5	41.1	33.0
, k					


Soil Property	Unit	Depth [cm]				
		0-30	30-50	50-75	75-100*	
Soil type (USDA)		Sandy loam	Sandy loam	Loamy	Loamy sand	
Clay (<0.002 mm)	[%]	5.4	2.4	399°	6.3	
Silt (0.002-0.050 mm)	[%]	35.9	30.9	×14.4	L11.4	
Sand (0.050-2.00 mm)	[%]	58.7	66.7	81.6 V	0 ⁻ 82.2	
CEC	[mval BA/100 g]	12.1	9.6	0 4.10°	A 2, SU	
Chalk	[% CaCO ₃ ]	0.17	26,08 ~	√ <0,08	¥ _{₹0} 0,08	
Organic carbon (TOC)	[% Carbon]	1.88	0.98	_°∽_0.20 ≪	مُ	
Inorganic carbon (TIC)	[% Carbon]	0.02		(J) <0.01	< 0.01	
Total carbon (TC)	[% Carbon]	1.90	© 0,29 [°]	0,20°	Q ⁴ 0.12	
Organic matter (calc., TOC x 1.724)	[%]	3.24	\$0 ⁶⁹ «			
pH (CaCl ₂ )		5.57 ×	5.60	5.46	<b>4.75</b>	
pH (H ₂ O)		6.28	9 6. <b>6</b> 4	6.5	£ 5.74	
WHC max (pF 0.05)	[Vol%]	<b>X</b> .7 Q	<b>@</b> .0 %	32.6	37.1	
WHC 0.1 bar (pF 2)	[Vol%]	× 17.6	£ \$15.2 _€	£11.2	9.9	
WHC 0.33 bar (pF 2.5)	[Vol%]	13.90	Ø 10.6-S	6.0 C	7.1	

### Soil Characterisation for Trial 13/02566990-04 in Bakum (Germany)

The formulation Ethrel SL 480 was applied one at a forminal cate equivalent 19480 g a.s/ha to bare soil plots. The treated plots size ranged from \$60 m² to 480 m². After application the plots received

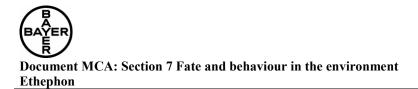
Two baking trays (containing approximately 1 by soil, 30 x 30 cm) were placed diagonally across each subplot immediately prior to treatment to provide soil samples for verification of the application rate. Aliquots (50 mL) of each pray tank mixture were taken before and after application.





Name	13/02566990-01	13/02566990-02	13/02566990-03	13/02566990-04
Trial location	Vélez-Málaga (Spain)	Dugliolo di Mezzolara (Italy)	Banbury (United Kingdom)	Bakum (Germany)
Coordinates	36° 44' 35.95" N 04° 06' 51.46" W	44° 37' 28.25'' N 11° 35' 16.48 E''	52° 05' 51" N 01° 26' 57'' W	52° 46' 17.8'' N 08° 14' 13.1'' E
Region	Southern Europe	Southern Europe	Northern Europe	Northern Europe
Treated plot size (m ² )	480	480	360 🏷	A\$10 6
Number of subplots	4	4	4 🔗 🐇	
Subplot size (m ² )	120	120	, <b>1</b> 10 , 01	120
Application Date	6 May 2013	23 May 2013	0 17 May 2013	228 May 2013
Nominal application rate [L product/ha]	1.0	1.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×1,0
Water rate (L/ha)	450	450	× 400 ×	S 300
Actual application rate [L product/ha]	1.027	0.9660	d,025	
Target (%)	+2.7	-0.6	+2.5	¢+3.3
Nominal application rate [g ethephon/ha]	480	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		480
Actual application rate [g ethephon/ha]	493	498 498 0 9 0 9	492 Q	495.8 V
Equipment	Spraying boom ( AT0604	Spraying boom ECHO SHR 70 SI, Code 414	Spraving boom	Spraying boom AT0606
Nozzle type / number	Air Mix 110,003, Flat Fan	AFC 02, ¥lat Fan	Flat Fan	Air Mix 110-02, Flat Fan

During the study the test areas were vept free from weeds by periodic application of the herbicide glyphosate, and on one occasion, pleamba to control weeds.


Climatic measurements were recorded by weather stations located at the test site (Italy) or within 2 to 350 m. When required the test site were inigated to reach 110% of the historical rainfall in each month. In the Southern European trials (Spain and Italy) additional irrigation of 10 mm per week was applied during July, August and September.

### Sampling «

Samples were taken at timepoints up to 4 months after application. At Day 0 soil cores of 110 mm diameter (32 replicate cores, 2 samples pet subplot 4 cores per sample) were taken immediately after application to adepth of 10 cm from the freated plots and eight from baking trays placed within the treated plots prior to application. At subsequent sampling dates soil cores were taken from 0-10 cm and 10-40 cm soil depth at sampling intervals to 28 days, and from 0-10 cm and 10-60 cm soil depth at later sampling dates (60 to 120 days). At each timepoint soil cores of 110 mm diameter were taken from the 0-10 cores per subplot, were taken from the 0-10 cores of 110 mm diameter were taken from the 0-10 cores per subplot) were taken from the 0-10 cores of 110 mm diameter were taken from the 0-10 cores per subplot) were taken from the 0-10 cores per subplot) were taken from the 0-10 cores per subplot of 0.0 cores per subplot to 28 days. For each depth sixteen replicate soil cores (4 cores per subplot) were taken from taken from taken from taken for the 0-10 cores per subplot) were taken from the 0-10 cores per subplot taken from the 0-10 cores per subplot taken from the 0-10 cores per subplot) were taken from the 0-10 cores per subplot per taken from the 0-10 cores per subplot per taken from taken from taken from taken from taken from taken for taken from taken from taken from taken from taken for taken from taken

Samples from the treated plots were collected on the day of application and at further intervals of 3, 7, 14 (±1), 28 (±2), 60 (±3), 90 (±4) and 120 (±4) days after treatment (DAT). Soil cores from the control plots were taken 0 to 7 days before treatment. Soil cores were frozen within 24 hours of collection and shipped frozen to the analytical laboratory in Germany. The samples were then stored at < -18 °C until required for analysis.

Soil cores from the treated plots were divided into 10 cm increments and horizons from each subplot combined and homogenized.



### Analytical procedures

The analytical method BCS 00899 was used for the determination of ethephon in soil. Samples were extracted as follows:

- (a) Aliquots (20 g) of soil sample were extracted with 40 mL water/phosphore acid mixture (1000/7; v/v) in a microwave oven.
- (b) An aliquot of extract (1.5 mL) was centrifuged at 15000 rpm for 5 minutes prior to analysis by HPLC-MS/MS

The analytical method was successfully validated according to Guidance Document SANCO/825700 rev 8.1 for the determination of residues of ethephon in soil. The LOQ and LOD for ethephon were 5 and 1.5  $\mu$ g/kg dry soil respectively.

### **Degradation kinetics**

 $DT_{50}$  and  $DT_{90}$  values for the degradation of ethephon were determined following the recommendations of the FOCUS work group, with calculations performed according to the FOCUS guidance document on degradation kinetics using the software KinGUI version 24.

Measured values between the LOQ and the LOD were used directly. Residue levels befow the LOD were set to ½ LOD, equivalent to 1.1 g/ha, as recommended by FOCUS.

SFO kinetics showed an excellent fit to the field data, with no improvement for FOMC or DFOP kinetics, so SFO kinetics were selected as 'bestofit' for all four trials.

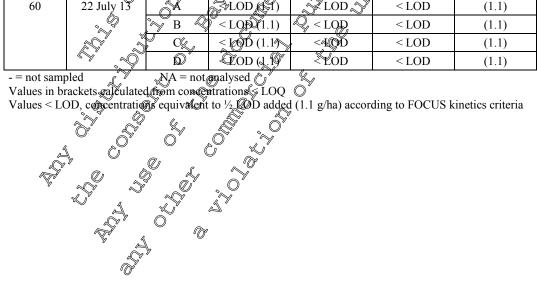
## IL RESULTS AND DISCUSSION

The mean recovery found in the baking tray specimens used for verification of the application rate ranged from  $82 \pm 9.1$  % of the nominal concentration in Bañbury (UK) to  $101 \pm 10.8$  % in Vélez-Málaga (Spain). Recovery rates of ethephon in the spray tank mixtures ranged from 87 % to 106 % of the nominal concentration in Vérez-Málaga (Spain), 77 % to 106% in Dugliolo di Mezzolara (Italy), 97% to 102 % in Banbury (UK) and 98% to 106 % in Bakum (Fermany).

Levels of residues in the four replicate treated subplots were generally in good agreement throughout the trials. Measured concentrations of ethophon (0g/kg) were converted to ethephon (g/ha) based on measured soil density. The results are presented in Table 7.1.2- 16 to Table 7.1.2- 19.

Measured ethéphor concentrations in soil at Day 0 répresented between 53-54% of the nominal application rate at Banbury (UK) to 85-87% at Bakum (Germany). Ethephon residues declined from between 300.1 and 352 % g/ha at 0 DAT to below the LOQ after 92 days in Vélez-Málaga (Spain), between 316 4 and 324 0 g/ha to below the LOQ after 27 days in Dugliolo di Mezzolara (Italy), from between 25% and 261.5 g/ha to below the LOQ after 95 days in trial Banbury (UK) and from between 409.8 and 415.6 g/ha to below 10% of the DAT 0 concentrations after 90 days in Bakum (Germany).

No ethephon desidues were detected below 20 cm soil depth in any sample.




DAT	Sample	Replicate			Ethephon [g/ha]		
	Date		0-10 cm	10-20 cm	20-30 cm	Dotal	Total Mear
0	6 May 13	А	385.3	-	-	<b>\$</b> 85.3	352.8
		В	304.0	-	-	304.0	Å »
		С	365.8	-	- 🖉	365,8	
		D	356.3	-	- 0	<u> </u>	$\mathcal{A}$
0R	6 May 13	А	305.6	-	ò° - ∛	305.6	\$90.1
		В	279.5	- "《		∼∕ 279.5	
		С	327.5	- 0	~~	327,5	õ., •
		D	287.8	z,	L - V	287.8	
3	9 May 13	А	248.9	2 <b>®</b> .0	< LOD@1.1)	ر 534.0 ک	<b>Ø</b> 91.4
		В	182.4	27.2 ×	< LOD (1.1)	210-7	
		С	200.7	(4.6)	≪40D (1.15)	208.4	Ũ
		D	210.2	× (32)	LOD (1.9)	214.5	2
7	13 May 13	А	167.8	18:6	) < LOD (1.1)	O 187.5 O	174.3
		В	98.50	\$56.0	< LOD (1.1)	150%	
		С	136.3	< LOD ( ( 1)	_ < OD (1_0)	138.5	
		D	041.1	× < LOD (1.1)	LOD (4,1)	©143.3	
15	21 May 13	А	⁰ 91.2 ×	×1/8.4	<lod (1.1)="" td="" ~<=""><td>0 110.7</td><td>106.0</td></lod>	0 110.7	106.0
		В	lo2	^{14.0}	< KOD (1.1)	118.0	
		С	<b>2</b> 29 24	5.2 ⁹	< COD (14)	101.7	
		D	90.2	(&A) (	[2< LOD (0.1)	93.7	
29	4 June 13	Å	35. JA	11.9	< LOD(1.1)	48.1	42.5
		B B	33	◎ 10.0 @	<død (1.1)<="" td=""><td>44.5</td><td></td></død>	44.5	
	Ó	СУ	27.4	, 15.4	CLOD (1.1)	43.9	
	, Ó	D	<u>24.9</u>		V <lod (1.1)<="" td=""><td>33.6</td><td></td></lod>	33.6	
64	9 July 13	Å.	10.4	≤\$OD (1.D)	< LOD	11.5	9.5
	~ <i>Q</i>	°∼у в 🔍	1,0)	QLOD (1.1)	< LOD	11.2	
			, 0 ^{7.0} ~ ~	<loq(1.1)< td=""><td>&lt; LOD</td><td>8.1</td><td></td></loq(1.1)<>	< LOD	8.1	
		Ď	° 6.3 °	<lod (1.1)<="" td=""><td>&lt; LOD</td><td>7.4</td><td></td></lod>	< LOD	7.4	
92	6 Aug 13	≪JA (	U 5.4Ô	\$LOD (1.1)	< LOD	6.5	(5.2)
		Ş В Ş	(J,8)	$\mathbb{Q}_{\text{LOD}(1.1)}$	< LOD	(5.4)	
		Ç	£3.7) ¢	< LOD (1.1)	< LOD	(4.8)	
	<i>``</i> `````	Ň	(3.0)	< LOD (1.1)	< LOD	(4.1)	
120 🚄	3 Sept 13	A	(3 9)	< LOD (1.1)	< LOD	(5.0)	(3.9)
S	v – –	B	~(3,6)	< LOD (1.1)	< LOD	(4.7)	
· \%"	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Sa (2.0)	< LOD (1.1)	< LOD	(3.1)	
	× A	<b>B</b>	(1.7)	< LOD (1.1)	< LOD	(2.8)	
= not samp	oled S	$\bigcirc A = not$	analysed		1		
	rackets calculate			$(1, 1, -/(k_1)) = (1, 1)$	line to FOOLIG 1		
aues < LC	""Š	as equivalent	$10 \frac{1}{2}$ LOD addec	i (1.1 g/na) accor	ding to FOCUS k	inetics criteria	
	10%						

Table 7.1.2- 16:	Ethephon residues in soil samples from Trial 13/02566990-01 (Vélez-Málaga,
	Spain)

Table 7.1.2- 17:	Ethephon residues in soil samples from Trial 13/02566990-02 (Dugliolo di
	Mezzolara, Italy)

DAT	Sample	Replicate	Ethephon [g/ha]					
	Date		0-10 cm	10-20 cm	20-30 cm	Total	Total Mean	
0	23 May 13	А	332.2	-	-	\$32.2	324.0	
		В	311.6	-	-	311.6	Å »	
		С	327.2	-	- 🔏	3272		
		D	324.9	-	- 0	<u>,</u> <b>104</b> .9		
0R	23 May 13	А	280.9	-	or° - √	280.9	\$ 6.4	
		В	293.0	- 4		∼≫ 293.6		
		С	376.6	ٽي -	~~- Ŵ	376.6	ġ, o	
		D	315.1	z,	& - °	چانج.1		
3	26 May 13	А	236.2	< LOD (1.1)		237.3	Ø30.8	
		В	229.2	< 60D (1,1)	s <b>≜</b> 0D	2303	Ĩ	
		С	209.5	< LOD (D)	Kg LOD Ky	200.6	Ũ	
		D	243.8	< LOD (1.1)	$\mathbb{O} < LOQ^{O}$	244.9	P	
7	30 May 13	А	100.7	< LOD (1.1)	) < LOD	Ö 101.80 [°]	100.9	
		В	106 A	\$DOD (14)	jod 🔬	1075		
		С	92.4	< LOD ( ( )	<b>W</b> LOD Y	<b>3</b> .5		
		D	<b>09</b> 9.9	$^{\circ}$ < LOP (1.1)	Cy < LOAD	0101.0		
14	6 June 13	А	U 40.4 ~	≤ EOD (1.1).	°<ÈQĎ ∘	41.5	39.5	
		В	گې 36 <del>گ</del> ې	< LOD (1.1)	LOD	37.7		
		C 🔊	303	K LOD (₽.1)	🖓 LOD	38.4		
		D	39.2	< LØQ (1.1)	¢ < ľođà	40.3		
27	19 June 13	Ň	(5.5 <del>)</del>	< LOD (1.1)	∕ <b>t</b> OD	(6.6)	(6.8)	
		S B ∅	× (5%)	©ĽOD (1∅⁄)	×LOD	(6.9)		
		СУС	(5.9)	< LOD(1.1)	C < LOD	(7.0)		
	<u> </u>	D	_ (5.7) (5.7)	< LOD (1.1)	C < LOD	(6.8)		
60	22 July 13	Â	JLOD (d. 1)	JIOD J	< LOD	(1.1)	(1.1)	
		°~у в 🔍	< LOD (1.1)	~Q < LOD	< LOD	(1.1)		
			< LOD (1.1)	<400D	< LOD	(1.1)		
= not sam	\$ <u>`</u>		COD (J. 19	< LOD	< LOD	(1.1)		



DAT	Sample	Replicate	Ethephon [g/ha]					
	Date		0-10 cm	10-20 cm	20-30 cm	Total	Total Mean	
0	17 May 13	А	271.3	-	-	2531.3	261.5	
		В	257.4	-	-	257.4		
		С	244.0	-	-	244.0	Å ø	
		D	273.3	-	- &	273,3		
0R	17 May 13	А	236.8	-	0	<b>2</b> 06.8	2529	
		В	258.2	-	o° - √	258.2	, K	
		С	276.7	- 4		276		
		D	239.8	- 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	239.8		
3	20 May 13	А	196.3	<LOD $(1.1)$	LOD O	P7.4	1,95.0	
		В	211.3	< LOD (1.1)		© 212.4 Ĉ	Ű	
		С	179.5	<00 (1,1)	s toD '	180-6	Ő	
		D	188.7	< ĽOD ₍ OI)	Ka LOD K	18	Ũ	
7	24 May 13	А	172.0	< LOD (1.1)	$\mathcal{O} < LOQ$	173.1	171.5	
		В	179.6	< LOD (1.1)	< LOD	0° 180.7°°		
		С	168	SPOD (1)	£¥OD ≮	16 <b>8</b> A		
		D	167.8	< LOD (1/1)	<b>WLOD</b>	62.9		
13	30 May 13	А	D21.0	$^{\circ}$ < LOP (1.1)	 Corr                                                                                                                                                                                                                                                                                                                                                   <	<b>©</b> 122.1	138.4	
		В	159.0	≤ ÊØD (1.1).	<2000 %	160.1		
		C 💊	129	(2.2)	< KOD (1.1)	132.7		
		D 🏷	13.0	★ LOD (₽.1)	[™] LOD	132.1		
28	14 June 13	A C	52.8	< LØQ (1.1)	S < row	53.9	53.4	
		_ ÔF	¢¥ 47.	< LOD (1.1)	≤ <u>1</u> OD	48.9		
		C C	588	OLOD (104)	√LOD	59.4		
		D 🖗	£ ^{54.7} K	, < LOD (1.1)	© < LOD	55.8		
63	19 July 13	As	© 13.5 \$	< LOD (1.1)	♥ <lod< td=""><td>14.6</td><td>12.2</td></lod<>	14.6	12.2	
		Ô ^B	14.80	₹ <b>J</b> *OD (1.0)*	< LOD	15.9		
		с 🖇	12.3	~ €LOD (1.1)	< LOD	13.6		
		DK	8.1	< LOQ (1.1)	< LOD	9.2		
94	19 Aug 19	Д, Î	⁰ 5.8 م	< LOD (1.1)	< LOD	6.9	(4.4)	
	L.	K B (	گ 5 <u>،</u> ۵	LOD (1.1)	< LOD	6.1		
		S C	á s	< LOD (1.1)	< LOD	4.9		
		P	2.8	< LOD (1.1)	< LOD	3.9		
124	98 Sept S	Å	5.3°	< LOD (1.1)	< LOD	6.4	(4.1)	
4	N O	B	4	< LOD (1.1)	< LOD	5.8		
S S	, 	C	3.8	< LOD (1.1)	< LOD	4.9		
¥.	N N	, p	2.7	< LOD (1.1)	< LOD	3.8		

Table 7.1.2-18: Ethephon residues in soil samples from Trial 13/02566990-03 (Banbury, UK)

- = not sampled Values in brackets categorizated from concentrations < LOQ Values < LOD, concentrations equivalent to ½ LOD added (1.1 g/ha) according to FOCUS kinetics criteria



DAT	Sample	Replicate	Ethephon [g/ha]						
	Date		0-10 cm	10-20 cm	20-30 cm	Total	Total Mean		
0	28 May 13	А	410.1	-	-	<b>4</b> 10.1	415.6		
		В	404.5	-	-	404.5			
		С	414.3	-	- &	414,3			
		D	433.5	-	0	3.5 <i>↓</i>			
0R	28 May 13	А	437.0	-	by° - ∜	437.0	×409.8		
		В	387.0	- 41	S 4	× 387.6			
		С	409.7	- 0	×- 4	40.9.7			
		D	405.6	, s	L' - O'	A05.6			
3	31 May 13	А	378.6	< LOD (1.1)	LOD <	<u></u> 379.7 C	<b>B</b> \$1.6		
		В	392.5	<60D(1,1)	≲teod	¹ √ 39 <b>3</b> 6	Ő		
		С	409.6	< ĽOD40	Kỹ LOD Ky	400.7	U		
		D	381.4	< LOD (1.1)	O < LOQ	982.5	·		
7	4 June 13	А	322.3	< LOD (1.1)	) < LOD	© 323.4° /	327.4		
		В	319 🥑	SDOD (1)	TOD K	3200			
		С	323.8	< LOD ( ( )	<b>W</b> LOD Y	334.9			
		D	<u>(3</u> 29.0	$r^{\nu} < LOD(1.1)$	< LOD	330.1			
14	11 June 13	А	0 _{263.5} ~	< <b>EOĎ</b> (1.1).℃	ČQŽ>	264.6	284.6		
		В	දි 282ස්	< LOD (1.1)	LOD	283.2			
		C N	309.8	✓ LOD (₽.1)	^Q ≪ LOD _S	310.9			
		D	278.5	< LOD (1.1)	Ş < LOD	279.6			
27	24 June 13	Ì	^A 234 <del>5</del> ∕	< LOD (1.1)	<u>&lt;1</u> 0D	235.6	220.8		
		B (	¥ 20 <b>₹</b> \$	©ĽOD (1Ø⁄)	LOD	208.9			
		у с 🗇	245.0	, <lod(1.1)< td=""><td>©[♥]<lod< td=""><td>246.1</td><td></td></lod<></td></lod(1.1)<>	© [♥] <lod< td=""><td>246.1</td><td></td></lod<>	246.1			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D	@191.5	< LOD (1.1)	Ø <lod< td=""><td>192.6</td><td></td></lod<>	192.6			
59	26 July 13	<u> </u>	81.0	≤\$OD (1,5)	< LOD	82.1	99.2		
		°~ В - Ц	73.9	~ LOD (1.1)	< LOD	75.0			
	Ê Î		006.5	< LOQ (1.1)	< LOD	107.6			
	<u> </u>	D´	©131.0 ©	< LOD (1.1)	< LOD	132.1			
90	26 Aug 13	A (ບ <u>28.</u> ບ້	&LOD (1.1)	< LOD	29.8	42.0		
	l ő a		26%	LOD (1.1)	< LOD	28.0			
		C	\$43.5	< LOD (1.1)	< LOD	44.6			
	26 Sem 13	- Å	64.3	< LOD (1.1)	< LOD	65.4			
121	26 Sept/13	A (< LOD (1.1)	< LOD	22.7	27.7		
		В	~19.9	< LOD (1.1)	< LOD	21.0			
Ÿ			<u></u> ^O 31.3	< LOD (1.1)	< LOD	32.4			
	L' A	<u>ين کې</u>	گ 33.4	< LOD (1.1)	< LOD	34.5			

Table 7.1.2- 19:	Ethephon residues in soil samples from Trial 13/02566990-04 (Bakum,
	Germany)

- = not sampled $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ A = not analysed

Values in brackets calculated from concentrations < LOQ

Values < LOD, concentrations equivalent to $\frac{1}{2}$ LOD added (1.1 g/ha) according to FOCUS kinetics criteria

 DT_{50} and DT_{90} values for ethephon in soil were estimated according to the FOCUS guidance document on degradation kinetics using the KinGUI version 2.1 software. Based on chi² confidence criterion and visual inspection the SFO model was selected as being the best-fit for all four trials. DT_{50} values ranged from 4.7 to 28.4 days. The kinetics results are presented in the following table:

Table 7.1.2- 20:'Best-Fit' DT50 and DT90 values for ethephon in European Field Dissipation
Trials

Trial	Location	Kinetic model	Soil pH (CaCl ₂)	DT ₅₀ (days)	DT ₉₀ (days)	Min χ ² error	Visual
13/02566990-01	Vélez-Málaga (Spain)	SFO	7.5	8.7	28.9	11.5	Good
13/02566990-02	Dugliolo di Mezzolara (Italy)	SFO	7.7	4.7	°45.7	7.5	Good
13/02566990-03	Banbury (UK)	SFO	6.4	13.2	£43.9 🔊	6.5	Good Good
13/02566990-04	Bakum (Germany)	SFO	5.6	28.4	94.50	3 . 1	Good

III. CONCLUSION

Ethephon degraded rapidly in soil under field conditions at all sites. A single application of Ethrel-SL 480, equivalent to 480 g/ha of ethephon, was made at each site in May 2013. Best fit's FO degradation kinetics resulted in DT_{50} values ranging from 4.7 to 28 4 days and DT_{50} values from 15.7 to 94.5 days.

CA 7.1.2.2.2 Soil accumulation studies

Soil accumulation studies are required where it is established from soil dissipation studies that the $DisT_{90field}$ in one or more soils is greater than one year. Dissipation studies conducted in Europe and the US show the $DisT_{90field}$ for ethepkin will not exceed this freger and therefore soil accumulation studies are not required.

CA 7.1.3 Adsorption and desorption in soil

CA 7.1.3.1 Adsorption and desorption

CA 7.1.3.1.1 Adsorption and desorption of the active Substance

A new study investigating the adsorption and desorption of ethephon in soil had been conducted since the previous EU goview (SCA 723.1.1/95).

In the previous adsorption desorption study with etheption all the soils used were acidic, with the pH of some soils artificially adjusted by the addition of hydrochloric acid prior to sieving. A portion of the silt and clay fractions in one soil was removed by sieving to 0.053 mm to artificially create a loamy sand soil. The silt and clay fractions removed were then sieved to 2 mm to artificially create a clay soil. Additionally the relationship assumed between organic carbon and organic matter in the study was not standard; % Organic Carbon = (% Organic Matter / 1.8) - 0.1944 rather than % Organic Carbon = (% Organic Matter / 1.724). For these reasons the previous study is considered to be supported superseded by Document KCA 7.1.3.1.1/02. This new study is summarised below.

Report:	KOA 7.1.3.1.1/02; 2017; M-539124-02-1
Title:	Final report amendment 1 - [UL-14C]ethephon: Adsorption/desorption on four soils
Report No.:	<mark>815-04002</mark>
Document No.:	M-539124-02-1
Guideline(s):	OECD Test Guideline No. 106; Commission Regulation (EU) No 283/2013 in
	accordance with Regulation (EC) No 1107/2009; US EPA OCSPP Test Guideline No.
	835.1230
Guideline deviation(s):	none
GLP/GEP:	yes and the second s

Executive Summary

The adsorption/desorption characteristics of $[UL^{-14}C]$ -ethephon was studied in four different German soils: Laacher Hof AXXa (sandy loam), Dollendorf II (loam), Hoefchen am Hohenseh 4a (silt loam) and Laacher Hof Wurmwiese (loam) in the dark at 23 ± 2 °C using the batch equilibrium method.

Soil	Soil ID	Source	Texture (USDA)	рН * СС [%]
Laacher Hof AXXa	AX	Monheim, Germany	sandy loam	6.3 2.0
Dollendorf II	DD	Blankenheim, Germany	loan	7.3 5.
Hoefchen am Hohenseh 4a	HH	Burscheid, Germany	° stilt loam ∽	A.I A.1
Laacher Hof Wurmwiese	WW	Monheim, German	loan x	

* pH values were derived from aqueous 0.01 M CaCl₂ suspensions

The adsorption phase of the study was carried out using air-dried, sterilized soils, equiporated in aqueous 0.01 M CaCl₂ solution at a soil-to-solution ratio of 4.10. [UK-⁴C]-ethephon was applied in aqueous 0.01 M CaCl₂ solution at nominal test concentrations of 1.0, 0.3, 0.1, 0.03 and 0.0, mg/L. The adsorption phase was equilibrated for 2 hours (soil WW) or 5 hours (soils A), HH, OD). A desorption step was only conducted for soil A. for 5 hours, due to the limited stability of the test item observed for the other soils.

Material balances were quantitative ranging from 92.1% to 100.2% AR. Ethephonowas sufficiently stable throughout the study for all soils with patental mass balances ranging from 87.3 89.5 to 91.8% AR. No adsorption to the surface of the test vessels was observed.

TI E 11.1	1 /*				· ~ · 1	are/summarised belo	
I ne Freundlich	adsorption and	l desørbtioi	r≥constants	for ethepho	n #n soil	are/summarised belo	W.
		8 8 - P			01		

Soil	Adsorption			Desorption				
	Kr "	Kfoc	► 1/n [™]	Ref	Kseles	Kfocdes	1/n	R ²
	[/mL/g	[mL@	Å.		[m]L/g]	[mL/g]		
Laacher Hof AXXa	6 1	306.5	1.0007	© <mark>0.9953</mark> A	/ ^{15.3}	<mark>766.2</mark>	<mark>1.0647</mark>	<mark>0.9947</mark>
Dollendorf II	<mark>5.2</mark>	<mark>¥01.9</mark>	<mark>1.045</mark>	0.9955	<mark>n.p.</mark>	<mark>n.p.</mark>	<mark>n.p.</mark>	<mark>n.p.</mark>
Hoefchen am Hohensch 4a	کر <mark>13.0</mark> ک	621.10	<mark>0.97\$8</mark>	0.2992	<mark>n.p.</mark>	<mark>n.p.</mark>	<mark>n.p.</mark>	<mark>n.p.</mark>
Laacher Hof Wurthwiese	6.8	3423	0 <u>0</u> 896	0.9983	<mark>n.p.</mark>	<mark>n.p.</mark>	<mark>n.p.</mark>	<mark>n.p.</mark>
Mean 🔊 💭	∕ <mark>√7.8</mark>	<mark>.342.9</mark> ≽	1.0018	0.9970	<mark>15.3</mark>	<mark>766.2</mark>	<mark>1.0647</mark>	<mark>0.9947</mark>
n.p. not performed	O [×] (ð <u>,</u> 10	r D					

In general the organic matter in coll, determined a organic carbon content, is the most important component responsible for binding organic chemicals. However, ethephon is a diprotic acid ($pK_{a1} = 2.8$, $pK_{a2} = 2.2$) and the predominant species onder environmental conditions are the negatively charged mono-anion (below pH 7.2) and di-anion (above pH 7.2). Based on its Log P_{ow} the molecule has a very low lipophilicity. The adsorption of ethephon is predominantly based on non-specific interactions with the scal but the binding to the soil organic matter may be a significant process as well. Therefore, the adsorption coefficients K_F were correlated with the organic carbon content of the soil. The K_{Foc} values ranged from 401.9 to 621.1 mL/g (arithmetic mean 342.9 mL/g). and binding to the soil organic matter is a subordinated process only. This is confirmed by the narrow range of K_f values (9.3 to 11.0 mL/g) measured across four soils, without correlation to organic carbon content. Thus adsorption coefficients K_f for ethephon were not normalised to the organic carbon content of the soil.

There was no significant correlation between pH and adsorption for the investigated soils.

Ethephon was strongly adsorbed to soil with a mean K_F-value of 10 mL/g. Ethephon can be classified as being of low mobility in soil using the Briggs classification scale to assess potential mobility in soil.

I. **MATERIALS AND METHODS**

1. Test Material:

Synonyms

2.

Batch number: Specific activity:

CA registry number:

Application vehicle:

Soils

[UL-¹⁴C]ethephon

HO

 Image: Constraint of the study of the s Chemical name (IUPAC): **Radiochemical Purity: Stability of test compound:**

were used for the study. The only were selected to cover a range of p(), organic matter and clay content. All soils were sterilized by gamma irradiation prior to use

Ô

Į.			Y.	
Parameter		🗸 🔐 Result	s/Units	
Soil Designation	Laacher Hof	Dépendorf	Höfchen am Hohenseh	Laacher Hof Wurmwiese
Soil ID	AX	₹ [×] ₽₽	HH	WW
Batch ID	20130830	20140321	20140321	20140321
Geographic Location	Mowheim am Raein / North Rhing Westphalia / Germany	Blankenheim / North Rhine Westphalia / Germany	Burscheid / North Rhine Westphalia / Germany	Monheim am Rhein / North Rhine Westphalia / Germany
GPS Coordinates	N 951° 04 645' 6° 006° 53, 530'	N 050° 22.785' E 006° 42.790'	N 051° 04.013' E 007° 06.305'	N 051° 04.857' E 006° 55.251'
Textural Cass (USDA)	Sandy loam	Loam	Silt loam	Loam
Sand \sim [50 μ m s	∕72%	29%	19%	50%
Silt [2 µm – 50 µm]	19%	44%	66%	32%
Clay $(2 \mu m)$	ه∕ 9%	27%	15%	18%
pH (Soil/0.01 M CaCl ₂ 1/2)	6.3	7.3	6.1	5.1
pH (Soil/Water 1/1)	6.5	7.4	6.4	5.4
pH (Saturated Paste)	6.5	7.4	6.3	5.5
pH (Soil/1 N KCl 1/1)	6.1	7.0	5.7	4.8
Organic Carbon (combustion)	2.0%	5.1%	2.1%	2.0%
Organic Matter ^A	3.4%	8.8%	4.8%	3.4%
Cation Exchange Capacity	9.0 meq/100 g	21.5 meq/100 g	11.3 meq/100 g	10.4 meq/100 g

Document MCA: Section 7 Fate and behaviour in the environment Ethephon

Parameter		Results/Units						
Water Holding Capacity								
MWHC	47.7 g H ₂ O <i>ad</i> 100 g DW	85.0 g H ₂ O <i>ad</i> 100 g DW	57.7 g H ₂ O ad 100 g DW	59.2 g H ₂ O <i>ad</i> 100 g DW				
1/3 bar	10.7%	32.8%	22.7%	17.2%				
1/10 bar (pF 2.0)	15.9%	39.2%	36.6%	° 2 4 .4%				
Bulk Density (disturbed)	1.21 g/cm ³	0.98 g/cm ³	1.12)g/cm ³	$1.0^{\circ} g/cm_{\odot}^{3}$				

^A % organic matter = % organic carbon x 1.724

MWHC = Maximum water polding apacity

B. **STUDY DESIGN AND METHODS**

In-life dates

Study initiation date:	19 June 2015
Study completion date:	3 December 2005
Experimental start date:	29 June 201
Experimental completion date:	25 Augus 03015
Final Report Amendment 1:	14 June 2017

Experimental design

The stability in aqueous solution, adsorption to glassware, soil to solution ratio, equilibration time, parental mass balance and overall material balance were determined in preliminary testing. The stability of ethephon was confirmed in 0.01 M calcium chloride solution over 48 hours. No significant adsorption of ethephon to gassware occurred in soil-free control samples.

The test to establish a suitable equilibration time was conducted at a soil solution ratio of 1:10 in all four soils. Adsorption equilibrium plateau concentrations were not reached within 48 hours with the amount of radioactivity in soil was steadily increasing due to the formation of non-extractable residues. In order to achieve an acceptable parenta mass balance the adsorption equilibrium time was limited to 5 hours for soit AX, DD and HH and 2 hours for soil WW. Due to the limited stability of ethephon a description step was only conducted for son AX. Five hours were considered appropriate as desorption equilibration time equal of the adsorption equilibration time.

Mean parental mass balances at these times were 91.8, 90.3, 87.3 and 89.5% AR for soil AX, DD, HH and WW, respectively at was concluded that no significant degradation of ethephon occurred over the duration of the study Material balances were 98.0% AR for soil AX, 92.1% AR for soil DD, 100.2% AR for soil HH and 99.1% AR for soil WW

A soil sofution ratio of 1/210 was selected for all soils in the definitive test. With an equilibration time of 2 (Soil WW/ to 5 hours (Soils AX, JPH and DD) the amount of test substance adsorbed ranged between 26 and 60%. The queous supernatant after adsorption and desorption was separated by centrifugation and the amount of test item in the supernatants was analysed by liquid scintillation counting (LSC) The sorption parameters were calculated using Freundlich isotherms.

Parameter	Description
Soil condition	Soils were air-dried, sieved to ≤ 2 mm, sterilized by gamma- irradiation and pre-equilibrated for 20 hours with aqueous 0.01 M CaCl ₂ solution.
Soil sample weight	2 g (dry weight) per replicate

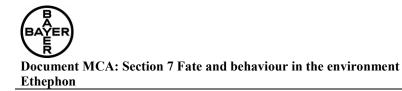
Adsorption phase

Document MCA: Section 7 Fate and behaviour in the environment Ethephon

Parameter		Description		
Equilibration solution		0.01M CaCl ₂ (20 mL per replicate)		
Control		No soil (test item in 0.01M CaCl ₂ only)		
Test item concentration	Nominal application rates	Nominal concentrations in test solution: 0.01 mg/L, 0.03 mg/L, 0.1 mg/L, 0.3 mg/L, and 1.0 Gig/L		
	Analytically measured concentrations	Concentrations in test solution: 0,009 mg/L, 0.03 mg/L, 0.10 mg/L, 0.32 mg/L, and 1.0 mg/L		
Identity and concentration	on of co-solvent	Methanol with 1% formic and, solvent concentration in test solution between 9.0008 and 0.0002% (v/ $\%$		
Soil: Solution ratio		1:10 i.e. 2 g sold dry weight equivalent to 20 mL solution (corrected for soil mosture)		
pH of the	Initial	pH of aqueous 0.01 M CaCD solution without soil: 7.0		
equilibration solution	Final	pH with soil and test item after accorption equilibrium: Range 4.87 - 4.78		
Number of replicates	Control	N/A ~ X & Q		
-	Treatments	Duplicator (
Equilibration	Time 🔍	5 hours (soils QX, DD, and HH) Thours (soil WW)		
conditions	Temperature	236 C 0 5 5 0		
	Dark Q	Xes y y y		
	Shaking method	Mechanical flatbed shaker, 130 ppm		
Method of separation of	supernatant 🔬 🔬	Centuri fugati de C		
Centrifugation	Speed (g) Speed	1295 x g 6 Q		
	Duration 0	A minutes of S		
	Method of separating supernatant	Supernatant was carefully decanted.		

Desorption phase

Parameter		Description		
Soil samples from adsorp	tion phase used	Yes		
Amount of test item prese state/adsorbed amount (m		The amounts of test item adsorbed to soil after adsorption ranged from 34.2 to 41.9% AR		
Number of desorption cyc	eles	1 (Soil AX only)		
Equilibrium solution and treatment for desorption	quantity used per	The decanted solution was replaced by fresh aqueous 0.01 M CaCl ₂ solution. A total volume of 20 mL was used as equilibration solution		
Soil: Solution ratio		1:10 i.e. 2 coil dry weight equivalent to 20 mb solution (corrected for soik proisture)		
Number of replicates	Control	N/A O O O O O		
	Treatments	Duppicate		
Desorption	Time	5 hours S & S		
Equilibration conditions	Temperature	\$23.6 °C		
	Dark 🏷	Yes i i i		
	Shaking method	Mechanica Platbed Shaker, 130 rpm		
Method of separation of s	upernatant	Centrifugation 2 . 9 . 8		
Centrifugation	Speed (g) 🗘 🝾	1295xxyg O ~ ~ ~		
	Duration 6	4 minutes		
	Method of separating supermatant	Supernatant was carefully decanted.		


Analytical procedures

The amount of radioactivity in supernatants and soil corracts was quantified by LSC. Before chromatographic analysis aqueous samples were stabilized with formic acid (0.1% of nominal total volume) and analysed immediately

Radioactivity in the soft pellet was extracted in selected soil samples to establish the parental mass balance in soft samples from the equilibrium time preliminary test over 48 hours. Samples were extracted as follows

- a) Soil from 1, 2 and 5 hour timepoints was extracted three times at ambient temperature using a mechanical space for 30 minutes with 20 mL aqueous formic acid (1% v/v) followed by a final extraction with 15 mL of acetore.
- b) Soil from 24 and 48 hour timepoints was extracted twice at ambient temperature using a mechanical shaker for 60 minutes with 20 mL aqueous formic acid (1% v/v), twice with 20 mL acetometrile/water 1:1 acidified with formic acid (final acid concentration 1%), followed by a final extraction with 15 mL of acetone.
- c) Radioactivity remaining unextracted in the soil pellet was determined by combustion and LSC to establish the material balance.

As ethephon was found to bind irreversibly to the solid phase scintillator of the radioactivity detector it was not possible to use HPLC with radiodetection to measure the stability directly. The adsorption of the test item to the scintillator increased the base line from run to run and could not be reduced by the washing the system with water or organic solvents. A very intensive washing procedure was required to reduce the background down to a minimum. The washing could not be included in routine washing methods and thus, measuring all samples on a routine basis was not possible but was done for selected

samples. The absence of a transformation product in those HPLC runs confirmed the stability of the test item. Furthermore, the amount of ethephon in supernatants and soil extracts determined by HPLC-MS/MS were compared with those derived by LSC measurement, assuming the test item was stable. All HPLC-MS/MS results were in full agreement with the LSC measurement, confirming test item stability. Furthermore, test item stability was proven by HPLC analysis with radipatetection of selected samples.

RESULTS AND DISCUSSION II.

The recovery of radioactivity was quantitative, with mean valides of ranging from 98.0% AR for soil AX, 92.1% AR for soil DD, 100.2% AR for soil HH and 99 W AR for soil WW. It was concluded that no significant degradation of ethephon occurred over the duration of the study. Mean parental ... mass balances were 91.8, 90.3, 87.3 and 89.5% AR for sell AX, DD, HH and WW, respectively A summary of the recoveries and parental mass balance data is presented in the table below: Å

Table 7.1.3-1: Preliminary Test: Summary o	f Results	dsorption	Kinetics	s, Parei	ntal Mass Ba	<mark>lance</mark>
and Material Balance for all S	oik	Ĉ	, O ^Y	F	, S	

D

	Dalance loi a) "0"	Š ^y
Parameters		Ads.	orption time (h	ours	ž
Mean values [% AR]	1		<u>, s</u>	× 24	<mark>48</mark>
<mark>Soil I (AX)</mark>					
Amount adsorbed to soil ¹	<mark>18.6</mark>	20.2	25.30 ⁴	^م م <u>30.8</u>	<mark>46.1</mark>
Non-extractable residues ²	°∼∕ <mark>3.9</mark>	Ç <mark>5.4</mark>) 🤷	[♥] 7.5	<mark>8.6</mark>
Parental Mass Balance ²	« <mark>94.0</mark>	92.7 ×	َ گَي <mark>91.8</mark> کَي کَ	89.6 🕅	<mark>83.2</mark>
Overall Material Balance ²	2 <mark>98</mark> 20	<u>کہ <mark>987</mark></u>	98. 4	<mark>97.0</mark>	<mark>91.8</mark>
Soil DD					
Amount adsorbed to Spil ¹	16. 3	18.4 0 1	2 <u>3.7</u>	<mark>36.7</mark>	<mark>50.2</mark>
Non-extractable residues ²	7 <mark>, , , ,</mark>		S <u>1.8</u>	<mark>4.2</mark>	<mark>5.7</mark>
Parental Mass Balance ²	^م <mark>94.2</mark>	[™] , [™] 98.6 @	<mark>90.2</mark>	<mark>76.6</mark>	<mark>51.2</mark>
Overall Material Balance ²	9550 B	95.5 ⁹	<mark>92.1</mark>	<mark>80.8</mark>	<mark>56.9</mark>
Soil HH	e de la companya de l	Ö 4			
Amount adsorbed to sof	29 <mark>39.3</mark>	45.0	<mark>50.7</mark>	<mark>59.2</mark>	<mark>66.6</mark>
Non-extractable residues ²	106	0 ⁵⁷ 12.3	<u>12.8</u>	<mark>27.9</mark>	<mark>30.3</mark>
Parental Mass Bapance ²	9 <mark>90.4</mark> 5	87.2 ^{87.2}	<mark>87.3</mark>	<mark>75.2</mark>	<mark>72.9</mark>
Overall Material Balance ²	<mark>ر 101.0</mark>	۶ <mark>99.5</mark> ک	<u>100.2</u>	<mark>103.1</mark>	103.2
Son WW					
Amount adsorbed to soil	2 7 .2	<mark>31.0</mark>	<mark>37.8</mark>	<mark>46.7</mark>	<mark>57.0</mark>
Non-extractable residues ²	© <mark>7.2</mark>	<mark>9.6</mark>	12.0	<mark>23.6</mark>	<mark>23.2</mark>
Parental Mass Balance ²	<mark>92.4</mark>	<mark>89.4</mark>	<mark>88.3</mark>	<mark>80.7</mark>	<mark>77.9</mark>
Overall Material Balance ²	<mark>99.5</mark>	<mark>99.1</mark>	<mark>100.3</mark>	<mark>104.3</mark>	101.0
Values taken from proliminar	1	· · · · · · · · · · · · · · · · · · ·			

¹ Values taken from preliminary adsorption equilibrium test

² Values taken from preliminary parental mass balance test

³ values in italic indicate the equilibrium time of the definitive test

In the definitive adsorption test 34.2 - 41.9% AR, 26.0 - 33.7% AR, 55.7 - 60.2% AR and 38.6 - 32.5%42.9% AR were adsorbed in soil AX, DD, HH and WW, respectively.

The Freundlich adsorption and desorption constants for ethephon in soil are summarised below.

		-		•			-
Soil	pН	OC		Adsor	ption		Desorption
Texture (USDA)		[%]	K _f [mL/g]	K _{foc} [mL/g]	1/n	R ²	K _{fdes} K _{focdes} 1/n R ² [mL/g
Laacher Hof AXXa (sandy loam)	6.3	2.0	<mark>6.1</mark>	<mark>306.5</mark>	1.0007	0.9953	15.3 766.2 1.0647 0.9947
Dollendorf II (loam)	7.3	5.1	<mark>5.2</mark>	<mark>101.9</mark>	1.045	0.995 %	n.p. n.p. Ap.
Hoefchen am Hohenseh 4a (silt loam)	6.1	2.1	13.0	<mark>621.1</mark>	0:9718	∧ <mark>0,9992</mark> ♀	n.p. n.p. n.p. n.p.
Laacher Hof Wurmwiese (loam)	5.1	2.0	<mark>6.8</mark>	342.9	0.9898	0.9083	n.p. n.p. n.p. n.p. n.p.
Me	ean		<mark>7.8</mark>	3 <mark>42.9</mark>	1.0018	0.9970	15.3 766 1.0647 0.9947
n.p. not per	formed			Ô ^v C	Ň, Ô	- C	

Adsorption and desorption constants for ethephon in soil Table 7.1.3-2:

In general the organic matter in soil, determined as organic carbon ontent, is the most important component responsible for binding organic chemicals. However, the phon is a diprotic acid ($pK_{a1} =$ 2.8, $pK_{a2} = 7.2$) and the predominant species upder environmental conditions are the negatively charged mono-anion (below pH 7.2) and di-anion (above pH 1/2). The rog Pow values of ethephon are \leq - 0.63 demonstrating the molecule has a very low lipophilicity. Thus, the adsorption of ethephon is believed to be predominantly based on non-specific interactions with soil but the binding to the soil organic matter may be a significant process as well. Therefore, the adsorption coefficients K_F were correlated with the organic carbon content of the soil The K values ranged from 101.9 to 621.1 mL/g (arithmetic mean 3429 mL/g) and binding to the soil organic matter is a subordinated process only. This is confirmed by the narrow range of Kavalues (9.3 to 11.0 mL/g) measured across four soils, without correlation to organic carbon content. Thus adsorption coefficients Ke for ethephon were not normalised to the organic carbon content of the soil.

There was no significant correlation between pH and adsorption for the investigated soils.

1

Ethephon was strongly adsorbed for soil with a mean KF value of 10 mL/g and mean slope (1/n) of 0.8619 D'sing the Brigge classification scale to assess a chemical's potential mobility in soil (based on its KFY, ethephon can be clastified as being of low mobility in the soils examined. Ň

The adsorption constants $K_{F (ads)}$ of ethephon for the tested soils calculated based on the Freundlich isotherms ranged from 5.2 to 13.0 mL/g (arithmetic mean 7.8 mL/g). The desorption constant K_{F(des)} of ethephon could only be determined for soil AX and was in the same order of magnitude than the respective adsorption constant.

There was no significant correlation between pH and adsorption for the investigated soils. Ethephon was stable during the definitive test. The parental mass balance was \geq 87% AR. No major degradation product was observed.

Document MCA: Section 7 Fate and behaviour in the environment Ethephon

Using the Briggs classifications for the estimation of the mobility of chemicals in soil based on K_F values, ethephon can be classified as low mobile for adsorption in all tested soils and low mobile for desorption in soil AX.

Report:	KCA 7.1.3.1.1/0	3; ; 2017; M-587404-01-
Title:	Discussion of co	mments provided by RMS (the Netherlands) in the draft RAR -
	Volume 3 - Anne	ex B (AS / PPP) - Ethephon - B.8 Epteronmental fate and behaviour
Report No.:	<mark>M-587404-01-1</mark>	
Document No.:	<mark>M-587404-01-1</mark>	
Guideline(s):	none	
Guideline deviation(s):		
GLP/GEP:	no	

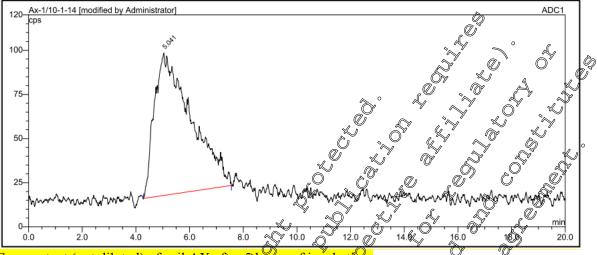
1. Discussion of the validity of the adsorption/ desorption study performed by (2015), listed in Annex Point KCA 7.1.4.1 /02 and considered as not acceptable by RMS

a) The Freundlich exponent and adsorption value were transposed therror juthe original report. The corrected values can be found in the Final report Amendment 1. New K_{Free} values have been calculated from the corrected K_F values. Please first the corrected values in the table below.

Table 7.1.3- 3: Corrected Adsorption Parameters for Ethephon						
Table 7.1.3- 3: Corrected Adsorption Parameters for Ethephon	T-11. 712 2. Commented Address	· · · · · · · · · · · · · · · · · · ·	D <i>X</i>	4	. F 4 b . I	$ ^{\vee}$
	I ADIE / I 3- 3' CORRECTED ADSOR	'ntion	Parame	reve tor	· Emenno	n (())
		puon	I GA MINIC	101 3/101	Lucpho	

<mark>Soil</mark>	<mark>pH (CaCl2)</mark>	OC X		[©] Kr [©]	Kfoc	<mark>1/n</mark>
<mark>AX</mark>	<mark>6.3</mark>	2 <u>.0</u>	<mark>0.79</mark> %		306.5	1.0007
DD	<mark>7.3</mark>	5.1	گ <mark>0.72</mark>	5.2 Å	<mark>101.9</mark>	1.045
HH	<mark>6.1</mark>	S 2.∦		6 13.0 C	<mark>621.1</mark>	<mark>0.9718</mark>
WW	5.1	2.0	2 <mark>84</mark>		<mark>342.3</mark>	<mark>0.9896</mark>
	O,	A D				

b) The applicant does not agree to the statement made by the RMS that the substance is unstable during the equilibration times chosen for the main study. The reasons are discussed below:


Degradation of test item in supernatants and soil extracts

Sufficient stability of the test item in the sterilised systems was shown during the performance of the parental mass balance est. As it was not possible to demonstrate stability of the test item using HPLC/radiodetection due to adsorption effects of the test item to the solid phase scintillator of the radioactivity detector, the stability of the test item was confirmed by LC-MS/MS detection. Further details on this procedure will be included in an amendment to the study report. Available results from HPLC/radiodection show no peak besides the peak of ethephon (Figure 7.1.3-1).

A C S

Figure 7.1.3-1: Representative HPLC/radiodetection Chromatogram of Test Item in Supernatant of Soil AX

CHROMATOGRAM Channel 1 - radioaktiv

Supernatant (not diluted) of soil AX after 5 hours of incubation, Sample ID: AX-1/10-1-14 CaCl2; File ID: 20150838-S1504002-S01

Tables 8 to Table 11 in the study report reveal that in all cases the amounts of the test item (test item in solution [% AA]) determined by LC-MS/MS are higher or similar to the radioactivity determined in solution (radioactivity in solution % AR). This confirms that the test item represents the major part of the radioactivity in the supernatant solution and soil extracts and that no further components are present. A summary of the patental mass balance test is shown in Table 12 in the study report and in Table 7.1.3- 4 below.

Table 7.1.3- 4: Preliminary Test: Summary of Results from Adsorption Kinetics, Parental Mass Balance and Material Balance for all Soils (Table 12 in study report)

 \mathcal{O}

			, ,		
Parameters	Adsorption tim	<mark>e (hyurs)</mark> N			
Mean values [% AR]	Ĵ,	20 	<mark>5</mark>	<mark>24</mark>	<mark>48</mark>
Parameters Mean values [% AR]					
Amount adsorbed to sold		‰ <mark>20.2</mark>	<mark>25.3</mark>	<mark>30.8</mark>	<mark>46.1</mark>
Non-extractable residues	a a a a a a a a a a a a a a a a a a a	<mark>5.4</mark>	<mark>6.2</mark>	<mark>7.5</mark>	<mark>8.6</mark>
Parental Mass Balance	94.0 O	<mark>92.7</mark>	<mark>91.8</mark>	<mark>89.6</mark>	<mark>83.2</mark>
Overall Material Balance	≥, <mark>98.0</mark> , ×	<mark>98.7</mark>	<mark>98.0</mark>	<mark>97.0</mark>	<mark>91.8</mark>
Soil DD Amount adsorbed to soil	S.				
Soil DD Amount adsorbed to soil	³ / _{16.3}	<mark>18.4</mark>	<mark>23.7</mark>	<mark>36.7</mark>	<mark>50.2</mark>
	23 <u>1.4</u>	<mark>1.6</mark>	<mark>1.8</mark>	<mark>4.2</mark>	<mark>5.7</mark>
Parental Mass Balance	<mark>94.2</mark>	<mark>93.6</mark>	<mark>90.2</mark>	<mark>76.6</mark>	<mark>51.2</mark>
Overall Material Balance	<mark>95.5</mark>	<mark>95.5</mark>	<mark>92.1</mark>	<mark>80.8</mark>	<mark>56.9</mark>
Soil HH					
Amount adsorbed to soil	<mark>39.3</mark>	<mark>45.0</mark>	<mark>50.7</mark>	<mark>59.2</mark>	<mark>66.6</mark>
Non-extractable residues	<mark>10.6</mark>	<mark>12.3</mark>	12.8	<mark>27.9</mark>	<mark>30.3</mark>
Parental Mass Balance	<mark>90.4</mark>	<mark>87.2</mark>	<mark>87.3</mark>	<mark>75.2</mark>	<mark>72.9</mark>

Document MCA: Section 7 Fate and behaviour in the environment Ethephon

Parameters	Adsorption tim	<mark>ie (hours)</mark>			
Mean values [% AR]	1	2	<mark>5</mark>	<mark>24</mark>	<mark>48</mark>
Overall Material Balance	101.0	<mark>99.5</mark>	<u>100.2</u>	103.1	<u>103.2</u>
Soil WW				, O ²	
Amount adsorbed to soil	<mark>27.2</mark>	<mark>31.0</mark>	37.8	^م رجع <mark>46.7</mark> °	\$ <mark>57.0</mark>
Non-extractable residues	7.2	<mark>9.6</mark>	12.0	\$ 2 <u>2.6</u>	^{23.2}
Parental Mass Balance	92.4	<mark>89.4</mark>	≥° <mark>88.3</mark>	^≈ <mark>\$0.7</mark>	7.29
Overall Material Balance	<mark>99.5</mark>	<mark>99.1</mark>	0 1003	104. 3	°~101.0
	1	Č.			× ·

Parental mass balances, i.e. the amount of test item in the extracts (highlighted in bold), were shown to be >90% for soils AX (91.8% after 5 h) and DD (90.2% after Sh) and thus the requirements of the OECD 106 guidance regarding stability are considered to be fully mot. NER were present in these soils with 6.2 and 1.8% AR, respectively which is not considered to be unacceptable high Please note that the effect of temperature is discussed below \bigcirc

For soils HH and WW, the parental mass balances were with \$7.3 and 89.3% AR very close to the 90% requested by the test guidelines and the thus considered to be also valid. The slightly lower parental mass balances mainly result from the formation of NER which accounter for 12.8 and 9.6% Ô AR, respectively.

Mean material balances were 98,0% AR for soil AX after 5 h, 92,4% AR for soil DD after 5 h, 100.2% AR for soil HH after 5 h and 99 % AR for soil WW after 2 h. The complete material balances found for all soils demonstrated that there was no significant uss of radioactivity from the test systems or during sample processing which would have been expected in case of a significant formation of the major transformation product ethylene. @,

After the periods chosen as equilibration time in the definitive test (5 hours for soils AX, DD and HH, 2 hours for soil WWO, the parental mass balances decrease \$90% in all soils. This indicates that degradation started after completion of the definitive test. Overall the equilibration times chosen for the definitive test can be seen as a comptomise between Gulfilling the requirements for stability and reaching the adsorption equilibrium (see below).

Adsorption kinetics

Ø 1

The results of the adsorption kinetics test revealed that the adsorption equilibrium of ethephon (plateau concentrations) was not reached within the 48 hours of the test. The table below shows that after 5 and 2 hours the adsorbed amounts still prcrease. This demonstrates that the adsorption measured at the equilibrium times of the definitive test generally underestimates the sorption of ethephon. A. Ò

Thus the appreant does not agree to the statement made by the RMS that the study generally overestimates adsorption due to the mentioned stability issues.

Table 7.1.3-5: Results of Preliminary Adsorption Equilibrium (Table 7 in study report)

	An	nount of Test Iter	<mark>n Adsorbed [%</mark>	<mark>6 AR]</mark>	
Soil ID/ Time [h]	1	2	<mark>5</mark>	24	<mark>48</mark>
AX	<mark>18.6</mark>	<mark>20.3</mark>	<mark>25.3</mark>	30.8 [°]	<mark>46.1</mark>
DD	<mark>16.3</mark>	<mark>18.5</mark>	<mark>23.2</mark>	%6.7	
HH	<mark>39.3</mark>	<mark>45.0</mark>	<mark>50.7</mark>	67 <mark>59.2</mark> ≪	66.6 Ø
WW	<mark>27.2</mark>	<mark>31.2</mark>	, <mark>37,8</mark>	46.7	57.0 ⁰

Influence of temperature:

The RMS addressed the fact that the preliminary tests and the definiti slightly berformed at different temperatures. Due to the following reasons, the temperature change is not considered ° relevant:

- All preliminary tests and the main test were performed at temperatures between 20 and 25°C as required by the test guidelines. It is a common procedure to directly compare & to values determined in this temperature range of temperature entrection is not necessary.
- The radioactivities in the supernatants obtained in the parental mass Galance test (temperature: 19.7 to 20.4°C) were compared with the results of fier 3 fremperature: 229 to 24.0°C) and presented in the table below: A 1 Ĉ,

Table 7.1.3- 6: Comparison of radioactivity in supermatants parental mass balance test and

definitive test		-	V Y		
Soil and a		X		HH	<mark>WW</mark>
Equilibration time		[™] <mark>5 h</mark> 🥎	² / <mark>5/h</mark>	<mark>5 h</mark>	<mark>2 h</mark>
RA in solution in parental mass bala presented in Table 8 to Table 11 in th		<mark>59</mark> 9	67.4	<mark>47.7</mark>	<mark>53.6</mark>
RA in solution in Tier 3 nghest test (% AR) presented in Table 13 (100 - % adsor	A 67	64.1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<mark>68.7</mark>	<mark>44.3</mark>	<mark>61.4</mark>
Difference (% ÅR)		<mark>@.4</mark>	<mark>-1.3</mark>	<mark>3.4</mark>	<mark>-7.8</mark>
	N N	\ll			

The comparison shows that for the soils AX, DD and HH the radioactivity in the supernatants is similar (difference <5%) for soit WW the difference is somewhat larger. However, there is no trend visible which could be assigned to temperature.

0

S L, Ô Also in an compartion of KOC values determined within the preliminary adsorption equilibrium test with the Kore values determined in the definitive test (justifiable as adsorption is almost linear) no trend which might have been caused by temperature is visible (see table below).

Table 7.1.3-7: Comparison of Kod values determined in preliminary Adsorption Equilibrium Test with Astoc values from definitive test

<mark>Soil</mark>	pH (CaC)2)	<mark>OC</mark>	Koc [mL/g] (equilibrium test)	<mark>K_{Foc} [mL/g]</mark> (definitive test)
AX	<mark>6.3</mark>	2.0	<mark>274 (5 h)</mark>	<mark>306.5</mark>
DD	<mark>7.3</mark>	<mark>5.1</mark>	145 (5 h)	<mark>101.9</mark>
HH	<mark>6.1</mark>	<mark>2.1</mark>	<mark>433 (5 h)</mark>	<mark>621.1</mark>
<mark>WW</mark>	<mark>5.1</mark>	2.0	<mark>339 (2 h)</mark>	<mark>342.3</mark>

0

Conclusion: The difference in temperature is not expected to have influenced the test item behavior significantly.

Results from hydrolysis study:

The hydrolysis data provided by Das, Y.T. (1990) in Annex Point KCA 7.2.1.1/ 0^{1} show that after 6 hours, the test item still accounts for > 90% at pH 7 and 25°C (see table below). This supports the findings of the adsorption/desorption study in which was shown that the test item is stable for about 2-5 hours under sterilised conditions and that the main degradation started after completion of the definitive test.

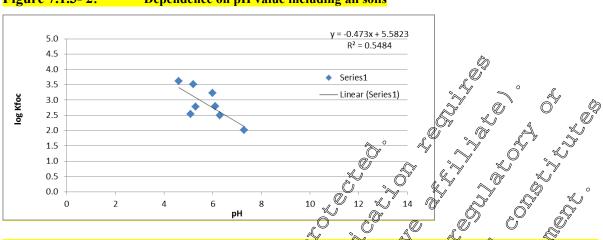
Table 7.1.3- 8:	Quantification of [ethyl(U)- ¹⁴ C]Etheph	on, measu	red in th	e test s	olutions	at three pH	
	values at each sampling time (at 25°C)	Ö	~~	K,	\sim	Q 1	

<mark>рН = 5</mark>		<mark>рН = 7</mark>	e (ŗ,	<mark>pH = 9</mark>	, , , ,	Average of	Ş
Sampling hour	Average of two replicates	Sampling hour	replicates	2	Sampling I		Average of replicates	<mark>f two</mark>
0 12 36 84 168 252 360 504 720	99.9±1.3 96.0±0.2 94.6±1.2 91.3±0.4 85.7±0.1 84.8±0.9 81.7±0.1 78.4±0.4 73.6±0.1	$ \begin{array}{c} 0 \\ 6 \\ 12 \\ 24 \\ 72 \\ 72 \\ 768 \\ 6 \\ 72 \\ 72 \\ 74 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75$	13.4±0.1		$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 5 \\ 3 \\ 6 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$		96.2±0.9 96.2±1.9 90.4±2.7 82.6±2.6 73.8±6.2 42.6±0.9 24.6±0.1	

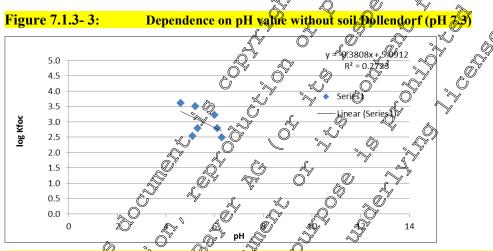
2. pH dependency

Table 7.1.3-9: Dependence on pH value

 \bigcirc


<mark>Study</mark>	Soft of the	p <mark>H</mark>	K _{foc} [ml/g]	log K _{foc}	<mark>1/n</mark>
<mark>Das Y.T.</mark> (1991)	Clay Q & Q	5.2 ^{a)}	<mark>3220</mark>	<mark>3.51</mark>	<mark>0.987</mark>
	Silt loom [®] O [°] O [°]	5.3 ^{a)}	<mark>608</mark>	<mark>2.78</mark>	1.017
	Sandy loam	¢ <mark>4.6 ^{a)}</mark>	<mark>4078</mark>	<mark>3.61</mark>	<mark>0.977</mark>
1 North Contraction of the second sec	· Sandy load (Scullert)	<mark>6 ^{a)}</mark>	<mark>1676</mark>	<u>3.22</u>	<mark>0.987</mark>
		6.3 (CaCl ₂)	306.5 ^{b)}	<mark>2.49</mark>	1.0007
(2013)	DD (Joam) ^{c)}	7.3 (CaCl ₂)	101.9 ^{b)}	2.01	1.0450
	HH (silt loam)	6.1 (CaCl ₂)	621.1 ^{b)}	<mark>2.79</mark>	<mark>0.9718</mark>
	WW (loam)	5.1 (CaCl ₂)	342.3 ^{b)}	<mark>2.53</mark>	<mark>0.9896</mark>
	G	Geometric mean	<mark>980.6</mark>	Average:	<mark>0.9900</mark>

a) medium not known

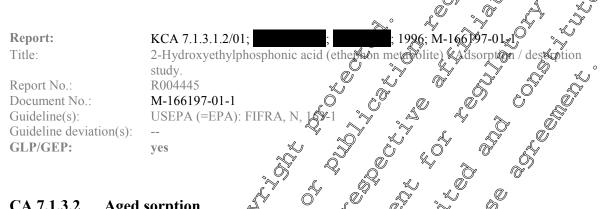

b) re-calculated based on values in Figure 17-20 in the report

c) excluded from calculation of geometric mean and average

Figure 7.1.3-2: Dependence on pH value including all soils

As the correlation is generally weak and seems to be mainly caused by the data point with the highest pH (soil Dollendorf) the data were also plotted without the soil;

In Figure 3 there is no pH-dependency visible for the softs with pH < 6 or around 6. Thus the applicant proposes the following procedure for modelling to address the pH dependency:


Divide the soils $\mu_p H < \kappa_{and} sole with p H > 7$
K_{foc} for soils with pH ≤ 2 . 280.6 mJ/g (geomean, n < 7), 1/n: 0.99 (arithmetic mean, n= 7)
K_{foc} for soils with pH 27 : 102 pf /g (value for one soil > pH 7), 1/n = 1.045
(sof) Dollendorf investigated in the new study, parental mass balance
sufficient and NER only 1.8% after 5 h)

Conclusion: Based on the results of the two available adsorption studies, it can be concluded that soils with pH < 7 do not show a pH dependency and can be grouped for the PEC calculations. As ethephon has a pka₂ value of 7.2, a lower adsorption can generally be expected at higher pH values. This assumption was confirmed with the lower K_{foc} value observed for soil DD having a pH value of 7.3 (in 0.01 M CaCl 3). For the risk assessment the applicant thus proposes to use the value of 102 mL/g for soils with a pH > 7. This is the worst case of all available results. The parental mass balance and the low amounts of NER formed in this soil confirm the stability of ethephon under study conditions.

The section of the statement referring to water/sediment studies is presented in Annex Point KCA 7.2.2.3/03.

CA 7.1.3.1.2 Adsorption and desorption of metabolites, breakdown and reaction products

The adsorption and desorption of HEPA had been investigated in four soils and an aquatic sediment at 25 °C (KCA 7.1.3.1.2 /01). This study was evaluated during the previous EU review, and the reference is provided below. No new information on the adsorption and desorption in solutions submitted for the current EU review.

CA 7.1.3.2 Aged sorption

bigher ther study which is not required for ethephon. An assessment of aged sorption is an with

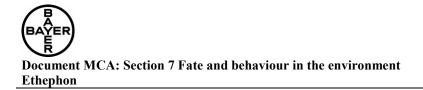
CA 7.1.4 Mobility in soil

Column leaching studies CA 7.1.4.1

Column Seaching of the active substance CA 7.1.4.1.1

Soil adsorption coefficient values established for etheption are provided in CA 7.1.3.1.1. Therefore, column leaching stockes are not required

CA 7.1.4.1.2 Column leaching of metabolites, breakdown and reaction products

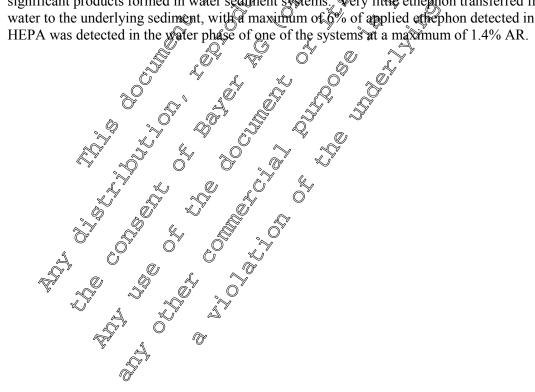

Soil adsorption coefficient values established for HEPA are provided in CA 7.1.3.1.2. Therefore, column leaching studies are not required

Lysimeter studies CA 7.1.4.2

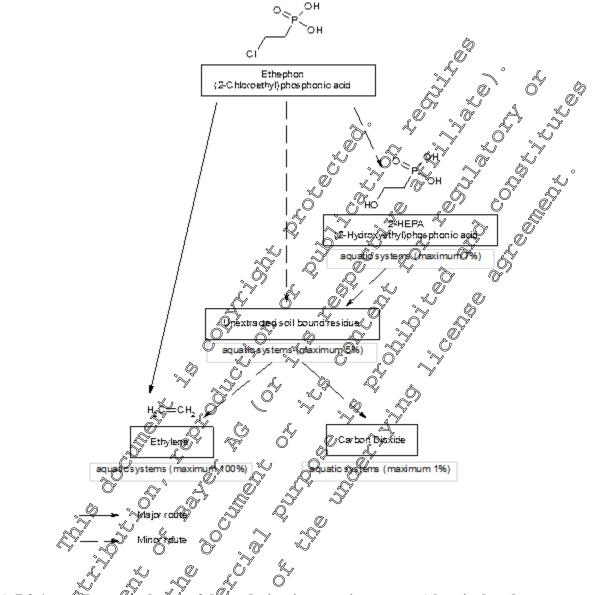
The potential mobility of ethephon and its metabolites has been assessed by modelling which confirmed that the compound does not constitute a risk to groundwater. Therefore a lysimeter study is not required.

Field leaching studies CA 7.1.4.3

The potential mobility of ethephon and its metabolites has been assessed by modelling which confirmed that the compound does not constitute a risk to groundwater. Therefore a field leaching study is not required.

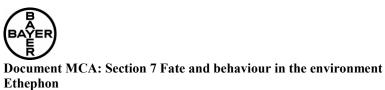

CA 7.2 Fate and behaviour in water and sediment

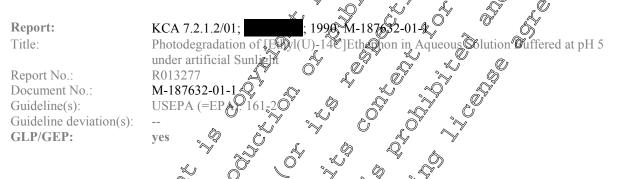
The fate and behaviour of ethephon in aquatic systems has been investigated under abiotic and biotic conditions. Studies were evaluated during the previous EU review. Two additional laboratory studies are provided for the current EU review (an aqueous photolysis study in natural water, and a study on aerobic mineralisation in surface water).


In sterile aqueous buffer solution at 25°C, ethephon was found to be stable to hydrolysis under acidic conditions but to hydrolyse rapidly to ethylene in neutral and alkali conditions, with DT₅₀ values of 73.5 days at pH 5, 2.4 days at pH 7 and 1.0 day at pH 9. The photolytic degradation of ethephon in water has been investigated under sterile conditions in acetate onffer solution at pH 5 and in natural water at pH 7.5 at 25 °C. The rate of degradation of ethephon was latgely dependent on the pH of the test systems with similar half-lives observed in non-irradiated and tradiated experiments and it can be concluded that photolysis does not play a significant role in the breakdown of ethephon in aquatic systems. Ethylene was the only major degradation product. In anatural water study not previously evaluated, the metabolite HEPA was detected in both irradiated samples and dark controls, at a maximum of 7.4% AR. In irradiated samples it exceeded 5% at the two final timepoints.

Ethephon was found to be not readily biodegradable according for OEQL Test Guideline 301D. In a new aerobic mineralisation study (OECD 309) the fate of ethephon was investigated in natural water at pH 7.8. The degradation rate was independent of concentration and very similar in the biotic and sterile systems. Ethephon was very rapidly degraded to ethylene, with no other significant metabolites formed. Mineralisation was a minor route of degradation.

In two water / sediment systems (pH of water phase %.9 and 6.8) ethephon was rapidly degraded to ethylene which accounted for over 95% of the applied material at the end of the study with no other significant products formed in water sedunent systems. Gery little ethephon transferred from the water to the underlying sediment, with a maximum of 6% of applied ethephon detected in sediment. HEPA was detected in the water phase of one of the systems at a maximum of 1.4% AR.

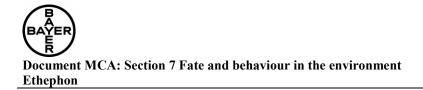

Figure 7.2-1: The proposed route of degradation for ethephon in aquatic systems


CA 7.2.1 Route and rate of degradation in aquatic systems (chemical and photochemical degradation)

CA 7.2 A1 Hydrolytic degradation

The hydrolysis of etherhon had been investigated in sterile aqueous buffer at pH 5, 7 and 9 at a temperature of 25 °C (KCA 9.2.1.101). The study was evaluated during the previous EU review, and the reference is provided below. No new information is submitted for the current EU review.

KCA 7.2.1.1/01; ; 1990; M-187629-01-1 **Report:** Title: Hydrolysis of [Ethyl(U)-14C]Ethephon in Aqueous Solutions buffered at pH 5, 7 and 0 Report No .: R013276 Document No .: M-187629-01-1 Guideline(s): USEPA (=EPA): 161-1 Guideline deviation(s): **GLP/GEP:** ves CA 7.2.1.2 **Direct photochemical degradation** The aqueous photolysis of ethephon had been studied in spetile aqueous buffer at ph temperature of 25 °C (KCA 7.2.1.2/01). The study was evaluated during the provious EL review, and the reference is provided below. No new information @ submitted for the current EU terrie


CA 7.2.1.3 Indirect Photochemical degradation

An aqueous photolysis study in batural water was conducted with ethephon as required under Japanese regulations. The study was conducted after the previous EU review and so it is now submitted for this current EU review. The study is summarised below.

Report: KCAO.2.1.3/07; (140); (14

The photolysis of [¹⁴C]-enephon was investigated in sterile natural water. The compound was applied to water at a nominal rate of 1 mg/L. Test samples were continuously irradiated with light from a xenon arc lamp, which emitted light that was filtered to give a spectral distribution close to that of natural sunlight. The pH of the water was 7.5. Samples were maintained at 25 °C and the illumination was continued for up to 6.5 days, equivalent to 30.8 days natural sunlight (Japan).

Duplicate samples were taken at time 0 and 157 hours. Single samples were taken at 4, 6, 24, 28, 48 and 61 hours. A set of control samples were incubated under the same conditions but kept in the dark. Single samples were taken at 24, 48 and 168 hours for non-irradiated samples.

Overall mean recoveries throughout the experiment were 97% and 96% for the irradiated and nonirradiated samples, respectively.

[¹⁴C]-Ethephon was rapidly degraded to [¹⁴C]-ethylene which formed 88 and 92% AR after *ca*. 7 days incubation in irradiated and dark controls groups, respectively. Mineralization was a minor route of degradation, with $[^{14}C]$ -carbon dioxide accounting for < 1% AR. HEPA was detected in both irradiated samples and dark controls, at a maximum of 7.4% AR. In irradiated samples it exceeded 5% at the two final timepoints. A second degradate, characterized as dissolved ethylenet based on its retention time, reached a maximum of 5.4% but did not exceed 5% at any other timepoints

The degradation rate of ethephon observed in the non-irradiated system was very similar to that seen in the irradiated experiment.

		× 0'		77
Tast Sustan		SFO ~~		
Test System	DT ₅₀ (days)	DT90 (days)	$\int \mathbf{r}^2$	
Irradiated	0.74	~ 2.4 s	0.99	9
Dark control	0.73	2.43	0.99	X
	*		ÓN RY	<u></u>

It can be concluded that ethephon is very rapidly hydrotysed in natural water to ethylene at pH 7.5 and that photolysis would not play a significant role in the breakdown of ethephon in natural systems.

ERIALS

- A. MATERIALS
- [UIØ' C] Ethephon **Test material:** 1. **Chemical name** -Chloroethylphosphosphonic acid Aceronitrits Aceronitrits Natural water from Reservoir Pond at Boarded Barns Fa Natural water from Reservoir Pond at Boarded Barns Fa Natural water from Reservoir Pond at Boarded Barns Fa Fyfield Road, Ongar, Essex was used. Water was sie through a 0.22 µm Millipore filter to sterilize prior to use.
 - Natural water from Reservoir Pond at Boarded Barns Farm, Fyfield Road, Ongar, Essex was used. Water was sieved

2.

Characteristics of the test water

Number of

Test apparatus

replicates

Irradiated

Darkness

Irradiated

Darkness

Name	Reservoir Pond		
Origin	Boarded Barns Farm, Ongar, Essex.		
Ordnance Survey reference	TL 562047		
Date of collection	3rd November 2004		
Dissolved Organic Carbon	24.7 mg/p		
Dissolved Organic Matter c	42.58 mg/L 4		
Total Phosphorus	$\sim \sim \sqrt{<0.05 \text{ mg/L}}$		
Total Nitrogen	0 32,2 mg/k		
Nitrate	2 2 2 1.0 mg/2		
Total Hardness	202.0 mg D CaCOS		
Electrical Conductivity	0 6 48404S cm ⁻¹ C Q		
рН	DY 27 2 7.5 0		
Residue on Evaporation	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
Suspended Solids	0 (
Dissolved Oxygen At collection	94% Saturated		
After sterilisation and refaeration	C S SF% Saturated		
Experimental design			
Parameter 😽 🖧 🔿	Description		
Nature of light source	Xenon lamp		
Emission wavelength spectrum			
Measured light intensity 300 - 800 nm) 327 W/m ²			
Light intensity t (306 400 nm)			
Filters used	UV filter		
Relationship to matural soulight			
Duration of the test 157 hours (30 days sunlight equivalent)			
Test system	Sterile natural water (sterilized by filtration), pH 7.5		
Test concentration (mg/L)	0.87 mg/L in dark controls 1.0 mg/L in irradiated samples		
Control conditions	Darkness		

Duplicate at 0 and 157 h, single at other timepoints

Glass photolysis vessels of capacity 60mL, quartz lids

Duplicate at 0, single at other timepoints

for irradiated vessels. Glass calibrated tubes

Document MCA: Section 7 Fate and behaviour in the environment Ethephon

Parameter		Description		
		Four pyridinium hydrogen bromide perbromide traps (PHBPB, for ethylene) and a 2M sodium hydroxide trap (2M KOH, for carbon dioxide)		
Preparation of test	Volume per vessel	50 mL		
medium	Method of sterilisation	Filtration °		
Test material	Identity of solvent	Acetonitrile co-solvent $(02\% v/y)$ O'		
application	Volume of application solution	100 μL		
	Application method	Positive displacement Gilson pipette		
Indication of test material adsorbing to walls of test apparatus		No to		
Experimental	Temperature (°C)			
conditions	Continuous irradiation	XQs & a a a		

Sampling

		Â	
Sampling	A A A A	J	J D O W A
Parameter	<u> </u>		Description Or Or
Sampling intervals	Irradiated	Ĉ	0, 4, 6, 24, 28, 48, 61 and 157 hours
	Darkness		0, 24,48 and 68 hours
Sampling procedure	s s	,	Complete comples removed a each timepoint
Collection of CO ₂ and		0/	Complete trap system removed at each timepoint.
	·~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	,	Additional trap changes carried out at 24, 48, 72 and
		1	96 Hours after treatment.
Sample storage befo			HPLC proples were obtained immediately.
Verification of steril		à	Sterility was confirmed at each timepoint.
	S. O' N.	0	

Description of analytical procedures

Ĵſ,

At each sampling time, the prior of radio tivity in water and volatile traps was quantified by LSC. The metabolic profile was determined by SPLC with radiodetector. The identity of ethephon and HEPA was confirmed in selected samples by LC-MS.

The half-lives (DT₅₀) of [¹⁴Cbethephon in irradiated samples and dark controls were determined using a single first order (SFO) kinetic model. **K**

BESULTS AND DISCUSSION

The total recoveries and distribution or radio of tivity are shown in detail in Table 7.2.1-1 to Table ° 7.2.1-2. ° .0 \bigcirc

Mass Balance	
Total radioactivity	Sum of activity in the water phase, and that trapped in volatile traps as ¹⁴ C- ethylene in the PHBPB traps and as ¹⁴ CO ₂ in the 2M KOH traps.
Recovery at 0 DAT	Range 98.6 to 102.3% AR - Average 100.4% AR
Overall recovery (all A) samples)	Irradiated: Range 90.0 to 102.4% AR - Average 96.9% AR Dark control: Range 90.1 to 102.3% AR - Average 96.0% AR

Volatilisation

Ethephon rapidly degraded to form $[^{14}C]$ -ethylene in both irradiated samples and dark controls (87.6 and 92.2% AR). Only small amounts of $^{14}CO_2$ were formed.				
¹⁴ CO ₂ evolved at end of test	Irradiated Water	0.28% AR		
	Dark Control	Not stated, negligible		
¹⁴ C-Ethylene evolved at end of	Irradiated Water	87.6% AR		
test	Dark Control	92.2%		

Transformation of Parent Material

[¹⁴C]-Ethephon was rapidly degraded to [¹⁴C]-ethylene which formed 88 and 92% AR after *ca.* 7 days incubation in irradiated and dark controls groups, respectively. Mineralisation was a minor route of degradation, with [¹⁴C]-carbon dioxide accounting for 1% AR.

Minor amounts of HEPA were detected in both irradiated samples and dark controls (maximum 5.2% and 7.4%, respectively). In irradiated water samples HEPA exceeded 5% at the final two timepoints and thus has been included in aquatic risk assessments. The maximum devel of HEPA was observed in the dark control samples (7.4% after 24 hours) but the metabolite did not exceed 5% at two consecutive timepoints. A second degradate, characterized as dissolved ethylene based on its retention time, reached a maximum of 5.4% after 4 hours but did not exceed 5% at any other timepoint.

The results are presented in Table 7.2.9-3 to Table 7.2.9-3.

DT₅₀ of ethephon in natural water

The degradation of ethephon observed in the dafk control experiment was very similar to that seen in the irradiated experiment. SEO/DT₅₀ values for ethephon in stepile natural water at pH 7.5 were 0.74 days under irradiated conditions and 0.73 days in dark controls. The results are presented in Table 7.2.1-5. The decline of ethephon observed in the study was due to hydrolysis with the degradation rate independent of the light conditions.

Table 7.2.1-1: Distribution and recovery of [14C]-ethermon in irradiated natural water

Incubation					
time (hours)	7 L 4	Sunlight *	Water, phase	Ethylene	Total Recovery
		Q X	×98.62	-	98.62
0	B K		لاي 102.25	-	102.25
	🗸 Mean 💡		© 100.44	-	100.44
4	Ă		89.13	7.04	96.17
6 0*		Ő1.18 ×	79.34	10.67	90.01
24	C A	4.74	45.55	50.83	96.38
48		5,58	39.87	62.53	102.40
48	A A	°~9.45	20.59	74.74	95.33
61		12.04	12.26	87.45	99.71
	A A	Ø	6.72	91.30	98.02
157	B	31.0	6.76	83.87	90.63
	Mean		6.74	87.59	94.32

1 day in the suntest = 4.74 sunlight equivalent days, Japan

Incubation	Replicate	Days	% of applied radioactivity			
time (hours)			Water phase	Ethylene	Total Recovery	
	А		98.62	- 02	98.62	
0	В	0	102.25	- 4	。 102.25	
	Mean		100.44	a de la companya de l	60.44	
24	А	1	44.38	45.70	90.07	
48	А	2	21.42	£74.01 ×	J 95,43	
168	А	7	5.89	92.16 \$	98,05	
Table 7.2.1- 3: Composition of radioactivity in irradiated natural water						

Distribution and recovery of [¹⁴C]-ethephon in dark controls Table 7.2.1- 2:

Table 7.2.1- 3:	Composition	of radioactivity	in irradia	ited natu	ralwater	
-----------------	-------------	------------------	------------	-----------	----------	--

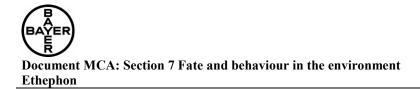

Incubation	Replicate	Wotor phase C Ethon W HEDA					
time (hours)		Water phase		HEPA RRT 0.35	Anknown ARRT 0.23		
	А	98.62	Q.96.78		1.84		
0	В	102.25	ی 101 43 8 ک		0.77		
	Mean	100.44	0 29.13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.31		
4	А	8913	83.37	0.38	5.38		
6	А	©79.34°~	ͺ≪ັ 75.QΦ [®]	\$ 0.92	3.98		
24	А	Q 45.55	40.03	\$ 2.08	3.43		
28	А	39.87	3 3.26 [∧]	م 2.12	4.49		
48	A 🖑	Q10.59 \	`≫ 16.25	2.85	1.49		
61	A Ø	0 ¹ 12.265	در 6.63 ^۲ د	5.03	0.60		
	ĄŚ	6.72 [°]	.07 ×	3.65	-		
157	B	\$ 9.76 🔬	<u> </u>	6.76	-		
	Mean	6.74	L 1.5C	5.20	-		

Table 7.2.1-4 Composition of radioactivity in dark controls

Incubation	Replicate		, % of applied	l radioactivity	
time (hours)		Water phase	[♥] Ethephon	HEPA RRT 0.35	Unknown RRT 0.23
		§98.62	96.78	-	1.84
0 4	B O	D 102,23	101.48	-	0.77
, A	Mean	100:44	99.13	-	1.31
24		4.38	35.10	7.44	1.84
48 🔊	A A	21.42	18.89	1.02	1.51
168	AO AO	5.89	-	5.89	-
	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0°		•	•

Table 7.2.1- 5: Summary of DT50 values for [14C]-ethephon in natural water systems

Test Sustan		SFO	
Test System	DT ₅₀ (days)	DT ₉₀ (days)	r ²
Irradiated	0.74	2.47	0.999
Dark control	0.73	2.43	0.998

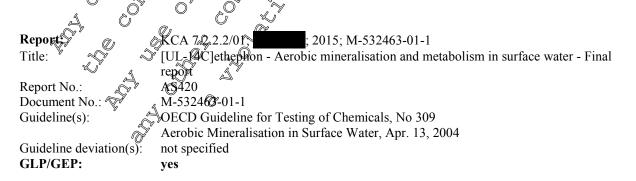
Conclusions

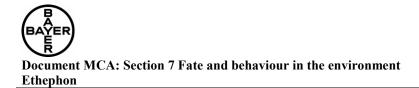
The rate of photodegradation of $[^{14}C]$ -ethephon was investigated in sterile natural water at pH 7.5. The compound was applied to water at nominal rate of 1 mg/L. Test samples were continuously irradiated at 25 °C for up to 6.5 days. Control samples were incubated under similar conditions in the dark.

[¹⁴C]-Ethephon was rapidly degraded to ethylene which formed 88 and 92% AF after *cq.* 7 days incubation in irradiated and dark controls groups, respectively. HEPA was detected in both irradiated samples and dark controls, at a maximum of 7.4% AR. In irradiated samples it exceeded 5% at the two final timepoints.

The degradation of ethephon observed in the non-irradiated system was identical to that seen in the irradiated experiment, with DT_{50} values of 0.73 and 0.74 days. It can be concluded that ethephon is very rapidly hydrolysed in natural water systems to ethylene at pH/7.5 and that photolysis would not play a significant role in the breakdown of ethephon invatural systems.

CA 7.2.2 Route and rate of biological degradation in aquatic systems


CA 7.2.2.1 "Ready biodegradability


The ready biodegradability of ethephon had been oudied is a closed bottle test according to OECD 301 D (KCA 7.2.2.1/01). This study was evaluated during the previous EV review, and the reference is provided below. No new information is submitted for the current EU review.

		Õ	, í	- Ĉo	²	~
Report:	KCA 7.2.2.1/0	18	; 2002	<u>;</u> M-212	2566-01-1	Ô)
Title:	Study on the "(Oady biod	egradabNi	ty" of 🕻	hephon	Ņ,
Report No.:	C027156	' Ĉa	al a	"Y	Á	
Document No.:	MC212566-09-	1	ÓŸ	, Ø	\searrow	
Guideline(s):	QECD: Q1D	8	, 6	Q.	a.	
Guideline deviation(s):	0 ·				Ø 7	
GLP/GEP:	yes 1	u j	, K	, Ç	/	
Č.	O O		Ň	Š		
		Ň	Q,	<i>(</i>] 1		
	20	\sim	~ ~	V V		

CA 7.2.2.2 Aerobic mineralisation in surface water

An assessment of aerobic mineralization is surface water is new study requirement under Regulation 1107/2009. An aerobic mineralization study (OECD 309) was performed for the current EU review (KCA 7.2.2.2)). This new study is summarised below.

Executive Summary

The extent of mineralisation and the rate and route of degradation of [¹⁴C]-ethephon was investigated in Kellmetschweiher natural water at pH 7.8. The compound was applied to the water at nominal rates of 10 and 100 μ g/L (low and high concentrations respectively). The higher application rate was also applied to a sterilised test system. The systems were incubated under aerobic conditions and maintained at 20 °C for 5 days. For each system, duplicate samples were taken at 1, 3, 6, 12, 24, 72 and 120 hours for analysis.

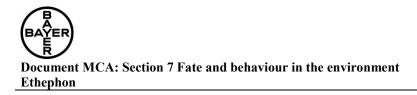
Separate test systems were treated with $[^{14}C]$ -sodium benzoate at 100 µg@. The compound was completely degraded within 120 hours, indicating a viable microbial population was present in the water.

The mean overall mass balance values for the low and high test concentrations were 96.7 CAR (low concentration) and 93.4% AR (high concentration) with ranges of 93.6 to 99.8 8% AR and 87.4 to 98.3 % AR respectively. The mass balance value for the sterifised incontation group was 96.0% AR.

¹⁴C]-Ethephon was very rapidly degraded to ¹⁴C]-Ethylens, which reached 75 to 80% AR after 5 days. No other metabolite exceeded 3% AR. Mineralisation was a minor foute of degradation, with $[^{14}C]$ -carbon dioxide accounting for < 2% AR T

The degradation rates (DegT₅₀) of ethephon were estimated using CAKE (version 2,0) software by fitting SFO kinetics to the data. The degradation rate was independent of concentration and very similar in the biotic and sterile systems. The regults are summarised below:

System	Test concentration SFO	
System	DegT50 (hours)	Chi ²
TZ 11 . 1 . 11		4.82
Kellmetschweiher natural water	100 ¥9.0 × 63.0	3.59
natural water	Sterile (5) (23.5) (3) (78.1)	2.11


		TERIALS AND METHODS
A.	MATERIALS	
1.	Test material:	[UL- ¹⁴ C] Ethephon
	Chemical name of the	2. Chloroethylphosphosphonic acid
	Specific activity:	4.28 Mt g/mg
	Lot or katch number 🥬	KML 9785 / CFQ 13687
	Lot or batch number:	لاً،28 كَلْهُمْ (mg KML 9785 / CFQ 13687 هوالله بالمالية (MPLC)
	CAregistry number:	6672-87-0
	Application vehicle:	Acetonitrile
2.	CAregisticy number:	Natural water from the "Kellmetschweiher" pond locate near the town of Schifferstadt was used. Water was sieve through a 0.1 mm mesh prior to use.
	Contraction of the second seco	

Characteristics of the test water

Name	Pond Kellmetschweiher
O de la constante de	
Origin	Near the town of Schifterstadt
	Rhineland-Palatinate
	German O
Geographical coordinates:	9°21'52, 78"N
	₹ 8°19 °58 .94"E ₹
Date of collection	Apr. 09, 2015
Weather conditions	O Sunny Sunny
Water temperature	v v 16,29C S
pH at sampling site	<u>, 77</u> C
RedOx-potential [mV]	204 m
Oxygen content and saturation [mg/L] [%]	∫ 10Q21 mg/KQ*106%℃
Hardness °dH	Q.3°d H [1.66 mmof)]
Total Nitrogen (TNb)	× 0°
Total Phosphorus [mg/L]	
Total Ammonium [mg/L]	~~ 0.02
Total Nitrate [mg/L]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dissolved Orthophosphate [mg/L] 2 2	0.03*
Total Organic Carbon (TOC) [mg/L 2	10.5
Dissolved Organic Carbon (DOO)[mg/L]	10.5
Biochemical Oxyger Demand after 5 days (BOD5) [mg/h]	< 3*
Chemical Oxygen Deman (COD) (mg/L]	33.9
Total Nitrite [mg/L]	$\leq 0.01*$
* Limit of quadification STUDY DESIGN AND METHODS dates nitiation chate:	
STUDY DESIGN AND METHODS	
STUDY DESIGN AND METHODS	
nitiation date: 29 April 2015	
completion date 21 July 2015	
nental start arte: 5 April 2015	
netral completion date: 23 June 2015	
nitiation date: prompletion date: prompletion date: prompletion date: prompletion date: 21 July 2015 3 April 2015 23 June 2015 23 June 2015	

Experimental design

Parameter		Description		
Duration of test		5 days		
Concentration in test	100 µg/L dose level	121.4 - 123.1 µg/L		
system	10 µg/L dose level	7.20 - 7.30 μg/L		
	Sterile controls	131.03 - 131.65 µg/L 🖉 🖉 🦉		
	[¹⁴ C]-Sodium benzoate	101.47 µg/L		
Number of replication	S	Duplicate test setem for each dose level.		
Test apparatus		1 L glass flasks (internal diameter 10 cm), surface area 78.5 cm ²		
Volume of natural wat	ter per vessel	400 mL× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Test material	Identity of solvent	Acetenitrile A		
application	Volume of application solution	108 μL for 100 μg/L dose level 42 μL for 0 μg/L dose level 511 μL for sterife controls		
	Application method	Pipette & L		
Traps for CO ₂ and org	, , , , , , , , , , , , , , , , , ,	[¹⁴ Q]-Ethephon: Flow through trapping system with series of volatile traps: 1 x 2N NoOH, 5 x Qyridinium hydrobromide performide in glassif acetic acid (PHBPB),1 x 3% sodium thiosulfate solution (Na ₂ S ₂ O ₃) [¹⁴ C]-Sodium benzoate: Static system with soda lime trap		
Is there any indication absorbing to the walls	of the test material			
Experimental	Temperature	20 °C, Range 21.3 - 25.2 °C		
conditions Lighting $[1^{\text{Q}}]$ -Etherhon: Diffuse light conditions as test condu fume hood (due to safety reasons) $[1^{\text{Q}}]$ -Etherhon: Diffuse light conditions as test condu fume hood (due to safety reasons) $[1^{\text{Q}}]$ -Etherhon: Diffuse light conditions as test condu				

Sampling

Parameter		Description
Sampling intervals by treatment	[¹⁴ C]-Ethephon: Low and high concentrations	Duplicate aliquots collected at 1, 3, 6, 12, 24 and 72 hours. At 120 hours the remaining water samples collected. All PHBPB traps sampled when aliquots removed for
		analysis. At 120 hours PHBPB, NaOH and Na ₂ S ₂ Or traps taken.
	[¹⁴ C]-Ethephon: Sterilised	Duplicate aliquots collected \mathfrak{W}_1 , 3, 6, \mathfrak{P}_4 and \mathfrak{P}_2 hours. At 120 hours the penaining water samples collected.
		All PHBPB traps sampled when aliquots removed for analysis. At 120 hours PHBPB, NaOH and Na ₂ S ₂ O ₃ traps taken.
	[14C]-Sodium benzoate	Duplicate samples collected at 1, 3, 9, 24, 72 and 126 pours
	Blank controls	Water quality measurements at 0 and 120 hours.
Sampling procedures		Aliquots were removed at each sampling time. The amount of radioactivity was quantified by LSC. A sub-aliquot was analysed by HPLC or HPLC-MS/MS. Sub-aliquots were acidifted with 25 µL acid (pH 1)
Quantification of radi solutions	oactivity in trapping	
	Ŭ 🌾	

Description of analytical procedures

At each sampling time, the amount of adioaction y in water and volatilor aps was quantified by LSC. The metabolic profile in the high dospand sterile control groups was determined by HPLC with radiodetector. In the low dose group levels of ethephon were determined by HPLC-MS/MS.

The amount of sodium benzoate remaining at each time point was measured by HPLC. At the final timepoint [¹⁴C]-carbon dioxide bound to soda time traps was fiberated by addition of 6M HCl and then trapped in scintillation cocktail prior to quantification by LSC.

A mass balance for each test system was calculated by the summation of radioactivity remaining in the water, in aliquots of water previously removed for sampling and in volatiles traps.

The half-lives $(\text{Deg} \Omega_0)$ of $[\Omega_0]$ -ethephon (from the HPLC or HPLC-MS/MS analysis) were determined using a SFO kinetic model using the software CAKE version 2.0.

VII. RESOLTS AND DISCUSSION

The total recoveries and distribution of radioactivity from each water system are shown in detail in 1 to Table 7.2.2- 3 Table 72.2

Mass Balance

Total radioactivity	Sum of activity in the water phase, in aliquots of water removed for sampling and that trapped in volatile traps as ¹⁴ C-ethylene in the PHBPB traps, as ¹⁴ CO ₂ in the 2N NaOH traps and trace amounts of radioactivity in the Na ₂ S ₂ O ₃ graps.				
Mean Recovery at 0	Natural Water (100 µg/L)	98.0% AR			
DAT	Natural Water (10 µg/L)	98.1% AR			
	Sterile Natural Water (100 µg/L)	98.9% AR 5 4 0			
Overall recovery (all	Natural Water (100 µg/L)	Mean 93.4% AR, Range 87.4 to 98.3 & AR			
samples)	Natural Water (10 µg/L)	Wean 96.8% AR, Range 93,6 to 99.8% AR			
	Sterile Natural Water (100 µg/L)	Mean 96.0% AR, Range 91.7 to 99.3 % AR			

Radioactive Residues

Volatile Degradation Products

	Products
Radioactive Residues	
Volatile Degradation	Products
Ethephon rapidly degrade were formed.	to form [¹⁴ C]-ethylene $\sqrt{74\%}$ AB) in all ost systems. Only small abounts of ¹⁴ CO ₂
¹⁴ CO ₂ evolved at end of	Natural Water (100 yg/L)
test	Natural Water (16) rg/L)
	Sterilised Natural Water (100 uga) 00% AR
¹⁴ C-Ethylene evolved at	Natural Water (100 ug/L)
end of test	Natural Water (10 rg/L) 85.55 AR
	Sterilised Natural Water (100 µg/H) 80.0% AR

Transformation of Parent Material in Water Pase

In all groups [¹⁴C]-ethephon was rapidly degraded to [C]-ethephone which formed 74, 86 and 80% AR after 5 days incubation in the low, high and sterile dose groups, respectively. An unidentified degradation product was @served@nce at @ maximum of 2.2% AR after 24 hours in the high dose group and at 3.0% AR after 72 hours in the sterile group Mineralisation was a minor route of degradation, with [14C] carbon dioxid accounting for \$2% AR.

The results are presented in Table 7.2.2-4 to Table 7.2.2-6.

Degradation of [14C]-Sodium benzoate

[¹⁴C]-Sodium benzoate was completed degraded within 120 hours indicating a viable microbial Ô population was established A.

DegT5% of ethephon in Gatural water systems

The single first-order DegT walues ranged from 19 to 23.5 hours. The results are presented in Table 7.2.2-7. The degradation rate was independent of concentration and very similar in the biotic and sterile groups. 🧸 Ø

Table 7.2.2- 1:	Distribution and recovery of [¹⁴ C]-ethephon in natural water (High dose
	100 μg/L)

time (hours)		Water			% of applied radioactivity				
			Water	PHBPB	2N NaOH	$Na_2S_2O_3$	Total		
		phase	aliquots	traps ^A	traps	W traps			
			removed ^A		\$		S A		
1	А	95.88	2.05	0.36	- 2		0 98.2 8 3		
	В	95.97	1.51	0.19	-0-	. 0° - A	97.66		
	Mean	95.92	1.78	0.27 💍	° - Y A	- 0	ູ ∜97.97		
3	А	88.60	3.62	2.06	\$ - \$		^{94.28}		
	В	89.38	3.05	4,4	× - ×		96,58		
	Mean	88.99	3.33	3.10	- "	<u>6</u> - <u>0</u>	\$.43		
6	А	77.71	5.06	11.85 [°]			94.62		
	В	78.20	4.51	₹ 11 ′.9 ↓	× - ×		@ 94.62		
	Mean	77.95	4.79 Ѡ	<u>h</u> 88		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	94.62		
12	А	62.87	6.35	Q3.65		- ~	92.87		
	В	63.28	5.79	\$ 25.5\$	Å - ×		94.65		
	Mean	63.07	A6.07	24.62	\$. \$	- 0	93.76		
24	А	41.16	°° 7.09	¢44.72	Ľ.	<i>Ö</i> -	92.97		
	В	40.90 C	/ 7:140	≪*45.44 [©] *		- L	93.44		
	Mean	41.09	J.10	45.08	\$ - ~	-	93.21		
72	А	10.84	7.80	JØ.53	v v	0.32	89.50		
	В	0.84 C	7.8⊩	°%67.77	ZZ,	1.02	87.43		
	Mean	© 10.840 ×	<u>گ</u> 81 Å	69.15	- ⁻	0.67	88.47		
120	A S	5,80	¥8.00 U	75,91	Ç ^V 1.28	0.32	91.32		
	B	5.77	\$ 7.9\$	93.03	1.36	1.02	89.17		
	Mean		8000	5 ⁹ 74.45	1.32	0.67	90.25		

^A Cumulative total ^A Cumulative total

Table 7.2.2- 2:	Distribution and recovery of [¹⁴ C]-ethephon in natural water (Low dose
	10 µg/L)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Incubation	Replicate	% of applied radioactivity					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	time (hours)			aliquots			W traps	Total
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	А	95.48	1.47	0.65	- 2	, Q	⁰ 97.64
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		В	96.40	1.48	0.65	- 0 1	. 0 - A	98.52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mean	95.94	1.48	0.65	· - ·	<u> </u>	\$ %98.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	А	88.60	2.86		\$- \$		^{96.31}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		В	88.65	2.92	5.69	~ - ~		96,75
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mean	88.62	2.89	\$5.02		<u>6</u> - <u>6</u>	90 7.53
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	А	78.54	4.22	12.60 [°]			95.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		В	77.47	4.28	₽°11°89″	°7 - s		Ø 93.55
B 61.90 5.81 29.60 $ 97.$ Mean 62.16 5.48 21.68 $ 97.$ 24 A 41.62 6.45 47.26 $ 95.3$ B 41.01 $6:50$ 49.89 $ 95.3$ Mean 41.30 6.48 48.57 $ 96.3$ 72 A 19.27 7.12 73.27 $ 99.3$ B 3.17 7.16 78.88 $ 99.3$ Mean 16.22 014 76.08 $ 99.3$ 120 A 3.99 7.44 89.85 0.94 0.00 95.3 B 3.67 7.37 87.16 1.36 0.19 99.3 Mean 3.60 7.90 85.56 1.15 0.10 97.4		Mean	78.01	4.25 Ѡ	1 <u>2</u> .20		8-4	94.45
Mean 62.16 5.48 27.68 $ 2$ 95.2 24 A 41.62 6.45 47.26 $ 95.2$ B 41.01 6.50 49.89 $ 97.2$ Mean 41.30 6.48 48.57 $ 97.2$ 72 A 19.27 7.12 72.27 $ 99.2$ B 3.17 7.16 78.88 $ 99.2$ B 3.17 7.16 78.88 $ 99.2$ Mean 16.22 014 76.08 $ 99.2$ 120 A 3.29 7.44 89.85 0.94 0.00 95.2 B 3.67 7.37 87.16 1.36 0.19 99.2 Mean 3.50 7200 85.56 1.15 0.10 97.4	12	А	62.43	5.46			~ - ~	93.55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		В	61.90	5.91			<u>a</u>	97.10
B 41.01 $6:50$ 49.890 $ 97.5$ Mean 41.30 6.48 48.57 $ 96.5$ 72 A 19.27 7.12 7.22 7.22 $ 99.5$ B 3.17 7.16 78.88 $ 99.5$ Mean 16.22 714 76.08 $ 99.5$ Mean 16.22 714 76.08 $ 99.5$ Mean 16.22 7.44 89.85 0.94 0.00 95.5 B 3.67 7.37 87.16 1.36 0.19 99.7 Mean 3.50 7200 85.56 1.15 0.10 97.6		Mean	62.16		γ ο	Ũ - ×	Q -	95.33
Mean 41,30 6.48 48.57 $ 96.7$ 72 A 19.27 7.12 72.7 $ 99.6$ B 71.7 7.16 78.88 $ 99.6$ Mean 16.22 014 76.08 $ 99.6$ Mean 16.22 014 76.08 $ 99.6$ 120 A 3.59 7.44 89.85 0.94 0.00 95.2 B 3.67 7.37 87.16 1.36 0.19 99.7 Mean 3.50 7200 85.56 1.15 0.10 97.4	24	А	41.62	6.45	A7.26		<i>õ</i> -	95.33
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		В	41.01 C	6:50	≪°49.89 ⁰ ″		-	97.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mean		6.48	12	£° - ∕>′	-	96.36
Mean 16.22 7.14 76.08 $ 99.4$ 120 A 3.39 7.44 83.85 0.94 0.00 95.4 B 3.67 7.37 87.16 1.36 0.19 99.4 Mean 3.50 7200 85.56 1.15 0.10 97.4	72	А		× 7.12	· · · · ·	R Ó	-	99.66
120 A 3,39 7.44 85,85 0.94 0.00 95 B 3.67 7.37 87.16 1.36 0.19 99.' Mean 3.50 7200 85.56 1.15 0.10 97.'		В	3.17 C	7.16	°778.88		-	99.21
B 3.67 7.32 87.16 1.36 0.19 99.2 Mean 3.50 7200 85.56 1.15 0.10 97.4		Mean		~ 🔍 🔵	(a).		-	99.44
Mean 3.50 720 85.56 1.15 0.10 97.	120	A Š	3,39	[™] 7.44 [©]		ر» 0.94 (^{ال}	0.00	95.56
		BO	(())	§ 7.3	87.16	1.36	0.19	99.75
^ Cumulative total O hot sampled Q		Mean	©~3.50 £	7240	§ 85.56	1.15	0.10	97.66

Table 7.2.2- 3:	Distribution and recovery of [¹⁴ C]-ethephon in natural water (High dose
	100 μg/L sterile)

Incubation	Replicate		% of applied radioactivity				
time (hours)		Water phase	Water aliquots removed ^A	PHBPB traps ^A	2N NaOH traps	Na2S2O3 Viraps	Total
1	А	96.55	1.56	0.45	- 2	, Q	© 98.57
	В	97.03	1.54	0.74	- 07	. 0 - A	9 2 .31
	Mean	96.79	1.55	0.59	° - 4	× - 0×	\$98.94
3	А	89.79	3.12	3.95	\$- \$		96.86
	В	90.68	3.13	4.¥	~ ~	<u></u>	98,23
	Mean	90.24	3.12	×4.18		<u>6</u> - 0	\$7 .54
6	А	79.81	4.56	12.03 °	<u>_</u>	<u>, o</u>	96.40
	В	80.35	4.63	12:16	×	, Č	Ø 97.14
	Mean	80.08	4.59 📞	12:09		P - S	96.77
24	А	46.37	5.3	~\$40.67	× í	\$ - @	92.37
	В	48.48	6.31		× - ×	Ū.	96.70
	Mean	47.42	\$.83	4,1,29	0 · ~	Q -	94.54
72	А	15.13	6.12 ⁵		, ^z	<i>õ</i> -	91.74
	В	17.01 C	\$?00	√70.49 √ 70.80 √ 70.80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	95.81
	Mean	16.00	67.06	70.65	L - V	-	93.78
120	А	3.25	6.37	8F.53	× 1.09	0.00	92.25
	В	9.31	8.29-	>78.40	s,0,65	0.01	96.66
	Mean	0 6.280 ×		79.96	0.87	0.00	94.46

Incubation	Replicate		% of applied radioactivity				
time (hours)		Water phase	Ethephon	Unknown	Total		
				RT 6.8-7.5			
1	А	95.88	95.88		95.88		
	В	95.97	95.97	- 🏹	25297		
	Mean	95.92	95.92	6	95.92 Q		
3	А	88.6	88.60		88.60		
	В	89.38	89.38	- ~	82,38		
	Mean	88.99	88.99		× \$8 8.99		
6	А	77.71	77.70 🖌				
	В	78.20	78,20 0		C 7829		
	Mean	77.95		<u>`</u>	1 95		
12	А	62.87	62.87		@62.87		
	В	63.28	63.28		63.28		
	Mean	63.07	63.07	- 0	63.07		
24	А	41.16	39.62	154 0	41.16		
	В	40.90	38.09	2.81 J	40.90		
	Mean	41.03 ×	Õ [™] 3 \$ \$86 ~~	2.18	41.04		
72	А	10.84	×10.84 Č		10.84		
	В	×10.84	10.84		10.84		
	Mean	10.84	0 10.84	×	10.84		
120	А	5.80	5.80 ~	~~ -	5.80		
	В	6 59 N	^{م ۲} 5.77	~~~	5.77		
	Mean 🔊	× ~5.79	5.79	× -	5.79		

Table 7.2.2- 4: Characterisation of radioactive residues in natural water (High dose 100 µg/L)

Table 7.2.2- 5:	Characterisation of radioactive residues in natural water (High dose 100 µg/L
	sterile)

Incubation	Replicate		% of applied	radioactivity	
time (hours)		Water phase	Ethephon	Unknown 🗞 RT 6.8-7,5	Total
1	А	96.55	96.55	- 🏹	96,55
	В	97.03	97.03	6 4	97.03
	Mean	96.79	96.79	<u> </u>	96.79
3	А	89.79	89.79	· ~ , ~ .	0 89.79
	В	90.68	90.68 🔬	Ô [°] , ⁴ , a	×90.68
	Mean	90.24	90.2		90.24 °
6	А	79.81	79.81	- 0	[©] 79 <i>8</i> €
	В	80.35	\$0.35	A - 4 ~	80.35
	Mean	80.08	80.08		80.08
12	А	46.37	46.30	, O'- O'	46.37
	В	48.48	O∑ 48.¥8 Q	· · · · · · · · · · · · · · · · · · ·	<i>6</i> 48.48
	Mean	47.42	47.42		47.42
72	А	15.13	11.6%	Ø 3746 2	15.13
	В	17.010	° 1 4 53 °	×72.48	17.01
	Mean	16.07	× 3.10 °	2.97	16.07
120	А	~3 ² 5 D	3.25	6 Y	3.25
	В	9.31	0 9.3U	× 0-	9.31
	Mean	6.28 ⁰	6.28	-	6.28

Incubation time	Replicate	Water phase	
(hours)	Replicate	Ethephon (µg/L)	
1	Α	5.14	
	В	5.12 °	C
	Mean	5,13	
3	Α	QAX93 ~	<u> </u>
	В	· ~ 4.87~ ~	¥ *
	Mean	4.20 5	[°]
6	A C	0 ⁷ (3x80 0 ⁷	Ğ
	B	V 0 ⁴ .11 V	Ž
	Mear	3.95	
12		3:40	
	B' Q'	× × × 3.65 ×	0
24	Mean C		
24		<u>~</u> 2009	
	Q Mean *		
72 (A Q A	187	
· - (By B	, ¹	
	By O Mean Q	0, 1.91	
	A No A No Co	0.26	
	B A	0.26	
	B Mean O	0.26	

Table 7.2.2- 6: Determination of ethephon in natural water (Low dose 10 µg/L)

Table 7.2.2- 7:Summary of Deg T_{50} values for (1+C)-ethephon in natural water systems

System	Test concentration	Ŷ, a,	SFO	
System 4	(µg/b)	Deg Fag (hours)	DegT90 (hours)	Chi ²
		21.1	70.1	4.82
Kellmetschweiher natural water		19.0	63.0	3.59
<u>`</u> `	Steril	23.5	78.1	2.11
	<u> </u>	V		

CONCLUSIONS

The extent of mineralisation and the rate and route of degradation of $[^{14}C]$ -ethephon was investigated in Kellmetschweiher batural water at pH 7.8. The compound was applied to the water at nominal rates of 10 and 100 µg/Is (low and high, respectively). The 100 µg/L rate was also applied to sterilised natural water. The systems were incubated under aerobic conditions and maintained at 20 °C for 5 days.

Mean mass balance from each incubation group were quantitative, ranging from 93 to 97%.

[¹⁴C]-ethephon was very rapidly degraded to [¹⁴C]-ethylene, which reached 75 to 86% AR after 5 days. No other metabolite exceeded 3% AR. Mineralisation was a minor route of degradation, with [¹⁴C]-carbon dioxide accounting for < 2% AR.

 $DegT_{50}$ values for ethephon in natural water ranged from 19 to 23.5 hours. The degradation rate was independent of concentration and very similar in the biotic and sterile systems.

CA 7.2.2.3 Water/sediment study

The degradation and fate of ethephon had been investigated in two aerobic water sediment systems under laboratory conditions (KCA 7.2.2.3/01). This study was evaluated during the previous EU review, and the reference is provided below. No new studies are submitted for the current EU review. The need to investigate acidic water/sediment systems is discussed (KCA 7.2.2.3/03).

$\mathcal{A}^{\mathcal{Y}} = \mathcal{O}^{\mathcal{Y}}$	Ç0
Report: KCA 7.2.2.3/01; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	7 -01- 1
Title: Degradation and retention in two water/sediment systems (1%)-Etherbon	F
Report No.: C010433	
Document No.: M-199017-01-1	
Guideline(s): Dutch Guidelines for the Submission of Applications for Registration of Destici	des,
Part G Section 2.1.(1). March 1995 \checkmark \checkmark \checkmark	v V
and EU Council Directive 91/41 ECC, a Omended by Compassion Pirective 95/36/ECC of July 1995. Section 7 2, 1-3	1
95/36/ECC of July 1995, Sectido 7.2.1-3.2.	
95/36/ECC of July 1995, Section 7.2.1-3.2. Guideline deviation(s): not specified ves	
GLP/GEP: yes	
The experimental data generated in the above water sediment study have now been re-evaluated	
according to FOCUS kinetics guidance (KCA \$2.2.3/02) for the current EU restew. This re-	
evaluation is summarised below.	
Report: KCA 2.2.3/08 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
Title: Ethephon (ELP) - Kinetic evaluation of degradation and dissipation behaviour i	n
water / sedment systems according to FOCUS Finetics	
Report No.: DrSa-15-0164	
Document No.: M-534853-01-1 C C C C C C C C C C C C C C C C C C	
Guideline(s): "Generic Guidance for Estimating Persistence and Degradation Kinetics from Epytronmental Fate Studies on Pesticides in EU Registration". Report of the FO	CUS
Work Groop on Degradation Kinetics. EC Document Reference: None, version	
2014; "Guidance Document on Estimating Persistence and Degradation Kinetic	
Environmental Pate Studies on Posticides in EU Registration". Report of the FC	
Work Group on Degradation Kinetics. EC Document Reference Sanco/10058/2	
$\sqrt{1000}$ version 2.002006 $\sqrt{1000}$	
Guideline deviation(s): pot applicable	
GLP/GEP: A no so so	
Executive Summary Q	
The aim of this study was to Evaluate water sediment degradation data for ethephon to derive D	50
values according to FOCUS kinetics guidance. The degradation and dissipation behaviour of eth	

values according to FOCUS kinetics guidance. The degradation and dissipation behaviour of ethephon in the aquatic environment had been investigated in two aerobic water sediment systems, Manningtree and Ongar, which were incubated under laboratory conditions at 20 °C in the dark [KCA 7.2.2.3/01, *et al.*, 2000] Other than ethylene, no major metabolites were detected in either system. The

metabolite HEPA was detected at a maximum of 1.4% in the water phase of the Ongar system.

Following FOCUS recommendations, level P-I degradation half-lives for the total system and level P-I dissipation half-lives for the water and sediment phases were determined. SFO fits were statistically significant and provided good visual fits to the data.

Additionally a level P-II two-compartmental approach to estimate degradation in the water column and sediment compartments was undertaken. The evaluations resulted in very good fits for the water phase and moderate fits in the sediment phase. However in the Ongar sediment compartment the degradation and transfer rates were not significantly different from zero and thus were not considered further.

Modelling and trigger endpoints are summarised below:

Modelling and trigg	er endpoir	nts are s	ummaris	sed belo	W:					, 1 Co
Water sediment system	Whole s (day	•	χ^2		nter 1ys)	χ ²	Sedi Ø (da	ment	x ²	
	DT50	DT 90		DT50	DT90	ð,	DT 50 ~	D T90	Ó× .º	
Manningtree (P-I)	2.98	9.89	2.48	2.56	8.50	1.43	8.75	29.1	5.55	SFO
Manningtree (P-II)	-	-		3.12 ^в	10,4	1:53	2.46	7,156	18.05	SFO
Ongar (P-I)	2.61	8.67	5.88	2.19	≪⊅ .27	5.19	7.65	635.4	O .28	SFO
Mean (P-I)	2.79 ^{A,C}	9.26		2.37	7.86		8.18	27.2		

^{A)} Suitable for use in FOCUS Steps 1-2 of the modelling assessment and as trigger endpoints

^{B)} Suitable for use in FOCUS Step 3 of the modelling assessment for degradation in the water phase

^{C)} Suitable for use in FOCUS Step 3 of the modelling assessment for degradation in the sediment phase

MATERIADS AND METHODS I.

The experimental data generated in an perobic water sediment study [previously reviewed for the first et al., 2000] were re evaluate Daccording to the FOCUS guidance approval of ethephon, document on degradation kinetics asing the software KinGUI v2.1 The aim of this evaluation was to derive DT₅₀ values for use as modelling and trigger endpoints. \mathbb{Q}^2

The datasets evaluated for each water ediment system are provided in Table 7.2.2-8 to Table 7.2.2-9. Transfer of ethephon from the water phase to sediment was low. The maximum occurrence in sediment was 5.91 % in Manningfree at day 2 and 6.02 % In Ongarat day 4.

Table 7.2.2- 8:	Summary of ethephon	ı dataset from	Manningtree wat	er sediment system
	(1900) et al., 200 0)	S Q		v
	et al., 4900)		1 CT	

Time (days)	Total system ^A (% of applied adjoint total	Water phase (% of applied radioactivity)	Time from Peak (days)	Sediment phase (% of applied radioactivity)
0	98.53 ^B	§ 98,53 ^B	-	-
0.25	97.95	694 .88	-	-
1	81.80	76.67	-	-
2	63 .28	⁰ 57.37	0 ^C	5.91
4 8	39.73	34.23	2	5.50
3 8 ⁷ (1)	14,49	11.01	6	3.48
14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.43	12	2.59
30 1	×1.09 Å	0.62	28	0.47

^A Values of total system are the sup of concentrations in water and sediment phase.

^B Values at day 0 were set to material balance.

^C For sediment the init value (listed as Time from Peak 0 days) was the time at which maximum concentration was reached after application.

Table 7.2.2- 9:	Summary of ethephon dataset from Ongar water sediment system (Lowden et
	<i>al.</i> , 2000)

Time (days)	Total system ^A (% of applied radioactivity)	Water phase (% of applied radioactivity)	Time from Peak (days)	Sediment phase (% of applied radioactivity)
0	98.72 ^в	98.72 ^в	- **	\° € .
0.25	100.47	96.96	- 2	
1	78.54	73.12	, T	A - X
2	61.39	55.57		O X
4	31.45	25.43	S 0 C	£ 6,02
8	12.96	8.72		° 4.24 °
14	9.60	7.43 🔊	10 5	0 [×] 2.170 [×]
30	1.77	0.86		0.084

^A Values of total system are the sum of concentrations in water and sediment phase.

^B Values at day 0 were set to material balance.

 \bigcirc ^C Day 0 was set to corresponding time at which maximum concentration was keached after application.

RESULTS AND DISCUSSION II.

Degradation/Dissipation Kinetics Que-Compartmental Approach (Level RSI)

For degradation rates in the total system and dissipation rates in the vater and sediment phases, SFO fits were statistically significant and provided good visual fits to the data. The bi-phasic FOMC model was tested but in all cases resulted in no improvement of fit or statistics. DT₅₀ values for ethephon are summatised in Table 7.2.2- 10 for degradation in the total system; in

Table 7.2.2-11 for dissipation in water phase and in Table 7.2.2-12 for dissipation in the sediment phase.

Table 7.2.2-10: Degradation Kinetics Total System (leverP-I)

Water Sediment System	Kinet model	DT50 C (days)	ADT90	Min χ ² error	Parameter Confidence / t-test	Visual
Manningtree	SFO O	Q.98 👡	9.89	2.5	< 0.001	Good
Ongar	≪y″SF@	2.61 °	8.67	5.9	< 0.001	Good
Geometric mean			9.26			
. ~	Ø 1		Sec. 1			

Water Sediment System	Känetic A Abiodel		DT90 (days)	Min χ ² error	Parameter Confidence / t-test	Visual
Manningtree	Ş [™] SFØ	2.56	8.50	1.4	< 0.001	Good
Ongar	SFO	2.19	7.27	5.2	< 0.001	Good
Geometric mean	- A	2.37	7.86			

Table 7.2.2-11: Dissipation Kenetics Water Phase (level P-I)

Water Sediment System	Kinetic model	DT ₅₀ (days)	DT90 (days)	Min χ ² error	Parameter Confidence / t_test	Visual
Manningtree	SFO	8.75	29.05	5.5	Ø .002	Good
Ongar	SFO	7.65	25.42	5.3	× 0.007	Good
Geometric mean		8.18	27.17			Ű

Table 7.2.2- 12:	Dissipation Kinetics Sediment Phase (level P-I)
------------------	---

Degradation Kinetics Two-Compartmental Approach (Level P-II)

A two-compartmental approach was used to estimate the degradation of ethephon in water and sediment compartment in parallel, including partitioning processes via reaction rates. SFO kineties was used to describe degradation separately in the water and sediment phase, a well as reversible transfer or partitioning between these compartments

The evaluation resulted in a very good fit to the measured data of ethephon in the water phase, visually as well as statistically (χ^2 error and t-test). The full to the measured data of ethephon in the sediment phase, however, was moderate for both aquate systems and resulted in relatively high but acceptable, χ^2 errors of 18% and 15%. Correlations could be observed between transfer and degradation rates. In the Manningtree system, significant degradation in the sediment and no back-transfer to the water phase were predicted by the model. However in the Ongar system the degradation rate from sediment to sink and the transfer rate from sediment to water were not significantly different from zero and thus were not recommended for use in exposure assessments.

Water Sediment System	Compartment	Kinetic	DT50 (days)	DT ₉₀ (days)	Min χ ² Aerror	Parameter Confidence / t-test	Visual
Manningtree	Water	SFOL	2.12	0 ^{*10.3} 50	1.5	< 0.001	Good
	Sedument	SEO	2.16 ^a	× 7.10	18.0	0.024	Acceptable
Ongar	Water O	SFO &	2.32 ×	7: 69 b	5.3	< 0.001	Good
	Sediment	SFO	>1000%	@1000 °	14.6	0.5	Acceptable

Table 7.2.2-13: Degradation Kinetics Water and Sediment Phase (level P-II)

^a No trigger entroints estimated from level P-II – use level P-I DegT50 in sediment instead

^b Not considered for endpoint estimation as notal rate constants of this system were reliable

° Not reliable / not considered for endpoint estimation

The geometric mean total system $DegT_{50}$ values of 2.79 days was deemed appropriate for water, sediment, and total system for FOCOS surface water Step 1 and 2 calculations. For FOCUS Step 3 modelling the $DegT_{50}$ value of 3.12 days from the evaluation of Manningtree water phase (level P-II) and the geometric total system $DegT_{50}$ values of 2.79 days for the sediment phase were selected.

III. CONCLUSIONS

Kinetic modelling analysis of the data from two aerobic water sediment studies treated with ethephon provided acceptable model fits.

The modelling endpoints for PEC_{sw} derived from the water sediment data are summarised below.

Document MCA: Section 7 Fate and behaviour in the environment Ethep<u>hon</u>

Water sediment system	Whole s (day	•	χ ²		iter iys)	χ^2		ment 1ys)	χ^2	Model
	DT50	DT90		DT50	DT90		DT50	DT90		
Manningtree (P-I)	2.98	9.89	2.48	2.56	8.50	1.43	8.75	29,1	5.55	SFO
Manningtree (P-II)	-	-		3.12 ^B	10.4	1.53	2.16	<i>@</i> .16	18.05	SFO
Ongar (P-I)	2.61	8.67	5.88	2.19	7.27	5.19		25.4	°5.28 🔊	
Mean (P-I)	2.79 ^{A,C}	9.26		2.37	7.86		8.48	27,2	0	Ű

A) Suitable for use in FOCUS Steps 1-2 of the modelling assessment and as trigger endpoints Ŵ

^{B)} Suitable for use in FOCUS Step 3 of the modelling assessment for degradation in the water phase

^{C)} Suitable for use in FOCUS Step 3 of the modelling assessment for degraphion in the sediment phase

The geometric mean total system DegT_{50} values of 2.79 days was Gemed appropriate for water, sediment, and total system for FOCUS surface water Step 1 and 2 calculations. For FOCOS Step 3 modelling the DegT₅₀ value of 3.12 days from the evaluation Manningtree water phase (level P-II) and the geometric total system DegT₅₀ values of 2.79 days for the sectiment phase were selected.

Report: ; **20**17; **M**587404-01-1 KCA 7.2.2.3/03; Title: Discussion of comments provided by Roals (the Wetherlands) in the draft RAR -Volume 3 - Annex B (AS / IOP) - Ethephon - B.8 Environmental fate and behaviour <mark>M-587404-01-1</mark> .Õ_[™] Report No.: <mark>M-587404-01-1</mark> Document No.: Guideline(s): none Guideline deviation(s): **GLP/GEP:** no

Request for a new study according to OECD 309/308

 \bigcirc

RMS requested a study with acidic water sediment systems. However, the applicant Bayer does not consider a new study necessary for the risk assessment and to the following reasons: ð

- Ĩ, Ň Q • the available studies were made at pH values representative for the majority of water/sediment systems in Europe. The pH values of 3975 European surface waters were evaluated by et al. (2015) According to this investigation, 95 percent of European surface waters (n equals 3075) with a documented fistory of AI exposure fail within a rather narrow pH range, between 7.0 and 8.5. It is thas concluded that the risk assessment provided in the submitted Dossier is sufficient to address the risk for the majority of aquatic organisms. ×, Ŵ Ò
- the PEC, modelling performed for acidic water/sediment systems using default DT₅₀ values of 1000 days for water and sediment, revealed no risk for aquatic organisms in surface water. It is thus concluded, that the risk for organisms in surface water is sufficiently addressed with the available date A new study is not expected to read to a more conservative risk assessment here.

Value for persistence assessment

The persistence assessment for water and sediment was made based on the default DT₅₀ values of 1000 days proposed for modelling of acidic water/sediment systems (as studies were only made for pH > 7). However, base to the results of the hydrolysis study provided in Section KCA 7.2.1.1/01, the DT₅₀ value at pH 5^s and 25°C was calculated as 99.1 days. Thus the use of the default value of

(2015): Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe; Bull Environ Contam Toxicol. 2016 Jan;96(1):3-8. doi: 10.1007/s00128-015-1665-7; M-539960-01-1

1000 days for the persistence assessment seems to be too conservative. We propose to use the DT_{50} value of 99.1 days for the persistence assessment in both, the sediment and the water phase.

CA 7.2.2.4 Irradiated water/sediment study

An irradiated water sediment study is an optional higher tier study which is not required for ethephon.

CA 7.2.3 Degradation in the saturated zone

Ethephon is readily degraded in soil and is not expected to move through the groundwater.

CA 7.3 Fate and behaviour in air

CA 7.3.1 Route and rate of degradation in aic

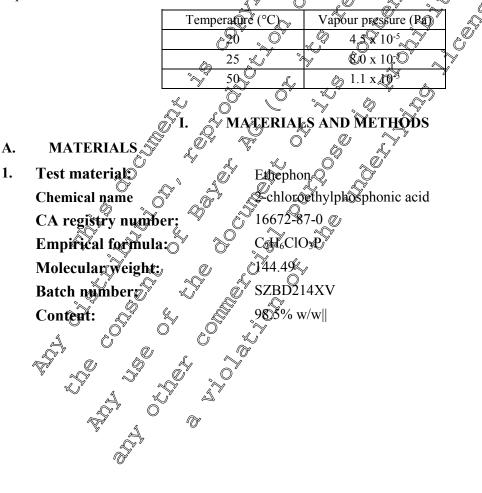
The Atkinson method of calculation had been used to estimate the DT of for degradation of ethephon in air (KCA 7.3.1/01). This report was evaluated during the previous EU review, and the reference is provided below.

Report:	KCA 7.3.1/01; (1997); 2001; M-209690-01-7
Title:	Estimation of the degradation of ethyphon by photo-oxidation in air Model calculation
	according to Atlasson
Report No.:	
Document No.:	M-201690-00+1
Guideline(s):	QCD: Manograph 1, 1990 Q
Guideline deviation(s):	
GLP/GEP:	yes at a construction of the construction of t
ð	yes to the
A new vapour bressure	yes and the second seco
A new vanour pressure	$\frac{1}{2}$ $\frac{1}$

A new vapour pressure study (KCA /.30,702) and Henry's Law constant calculation have been conducted. Ethephon bas a low vapour pressure, 4.5 x 90⁻⁵ Pa at 20 °C, and Henry's law constant 8.1 $x10^{-9}$ Pa m³ mol⁻¹ at pH 4 (and < 6.5 $x10^{-9}$ Pa m³ mol⁻¹ at pH < 0.2). The compound is an acid with a pK_{a1} of 2.8 and $a_{4}pK_{a2}$ of \mathbb{Z}_{2} and will be jonised to some extent at most environmentally relevant pHs. Thus it would not be expected to be present in significant concentrations in air following use of the compound according the proposed SAP.

Ethylene is a volator degradation product of ethephon, formed at a maximum of 62% and 99% of applied ethephon from aerobic soft and water sediment systems, respectively. Ethylene is a naturallyoccurring plant hormotic produced in significant amounts by all plant tissues. It is a volatile compound with a high vapour pressure [6950 x 10³ Pa at 25°C]. Any ethylene formed from ethephon will be present in air because of its physical chemical properties and would not be expected to be found in any significant amounts in soil and water. The rate constants of ethylene reacting with OH radicals, NO₃ radicals and ozone have been measured experimentally and were used as part of the database developed by Atkinson to determine theoretical rates of degradation of organic compounds in air. The half-life of ethylene was determined as 1.45 days using the Atkinson model (OECD SIDS Ethylene, 1998). The new vapour pressure study is summarised below.

Document MCA: Section 7 Fate and behaviour in the environment	
Ethephon	


Report:	KCA 7.3.1/02; ; 2015; M-514117-01-1
Title:	Ethephon (AE F016382), pure substance: Vapour pressure
Report No.:	CSL-14-1777.01
Document No.:	M-514117-01-1
Guideline(s):	European Commission Council Regulation (EC) No 440/2008 Method A.4.; OECD
	Test Guidelines 104 and 113; US EPA Product Properties Tet Guideline OCSPP
	830.7950
Guideline deviation(s):	not specified
GLP/GEP:	ves

Executive Summary

The vapour pressure and thermal stability of ethephon were determined according to the ethusion method (vapour pressure balance) and differential scapping calorimetry (DSC) method

Thermal Stability: Ethephon showed an endothermic effect in the temperature range of 45 - 55 °C, caused by melting of the test item. No further endothermic or exothermic effects were observed up to the maximum test temperature of 300 °C.

Vapour Pressure: The following vapour pressure values for edephon were extrapolated from the experimental data.

Thermal stability (DSC): A DSC measurement in a closed glass crucible under nitrogen was performed up to a temperature of 300 °C to determine the thermal stability of the test item.

Vapour pressure with the effusion method (vapour pressure balance): The test equipment was brought to vacuum (approximately 10^{-4} Pa) at room temperature before starting the measurements. The vapour pressure was then determined for six temperatures in the range of 58 to 78 °C.

II. RESULTS AND DISCUSSION

Thermal Stability: Ethephon showed an endothermic effect in the temperature range of $45 - 85 \circ C$, caused by melting of the test item. No further endothermic or exothermic effects were observed up to the maximum test temperature of 300 °C.

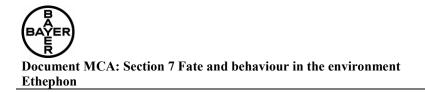
Vapour Pressure: The measured vapour pressure values for ethephon are listed below.

Table 7.3.1-1: Measured vapour pressure values by the Effusion method

	•		0		\sim
Number	Temperatur	e (°C) Vap	our préssure	(Pa)	U
1	58		2.13×x 10-3		P
2	62		€07 x 10€		Å
3	<u>,</u> 69	Q Q	5.06 x 10 ⁻³	ð	The state of the s
4	72 گ		7.72 10-3	Ø. Ø	,
5	75] Ø5 x 10-2	Y Q	
6	O ^V B	Ô Á	¥.36 x 19 ²	, Or	

The vapour pressure at temperatures of 20,25 and 50 °C was calculated by extrapolation of the measured vapour pressure curve.

Table 7.3.1- 2: Extrapolated vapour pressure values at 20, 25 and 50 °C


l Col	` <i>a</i> .¥	A TH	0'	(//)	· .
	Æmp	erature (°		Vapour pre	ssure (Pa)
~0		Õ ²⁰		Q 4. Q X	10-5
Or d		25		′§20 x	10-5
	Ø	50	-Q	<i>ℚ</i> 1.1 x	10-3
\$\$ _\$	× ,			, Ç	
Y AO'	0.		MCONA	UIGIONG	2

The vapour pressure of ethephon at 20 °C was estimated as 4.5×10^{-5} Pa.

CA 7.3.2 Transport via aio

No studies on transport via air had been conducted for ethephon and no new studies have been submitted for Annex I Renewal. Confined volatility studies are optional studies which are not required for thephon.

The provision of confine Ovolatility studies can be helpful where trigger values for volatilisation are exceeded (vapour pressure = 10^{-5} Pa (plant) or 10-4 Pa (soil) at 20 °C), when they may be used as a refinement to avoid the need for drift mitigation measures. However as no drift mitigation measures are required for the equatic risk assessment the studies are not needed for ethephon.

CA 7.3.3 Local and global effects

No studies on local and global effects had been conducted for ethephon and no new studies have been submitted for Annex I Renewal.

For substances that are applied in high amounts, the following effects shall be considered:

- global warming potential (GWP);
- ozone depleting potential (OPD);
- photochemical ozone creation potential (POCP);
- accumulation in the troposphere;
- acidification potential (AP);
- eutrophication potential (EP).

s of 480 g as./ha these effects are not As ethephon is applied once a year at a maximum application rate considered.

CA 7.4 Definition of the resid

Definition of the residue for risk assessmen CA 7.4.1

Residue definition for soil:

The active substance ethephon had prevously been considered in the residue definition for soil.

The metabolite HEPA was observed in aerobic soil studies and maximum of 7.4% and in tests on soil photolysis at a maximum of 10.6%. In view of new triggers set in FU data requirements, the existing residue definition for soft is now amended to also include HEPA

Residue definition for groundwater:

The residue definition for groundwater should include by default the compounds defined for soil, i.e. the active substance and now is amended to include the metabolite HEPA.

Residue definition for surface water and sediment:

The residue definition for surface water and sediment should include by default the compounds included for soik and groundwater?

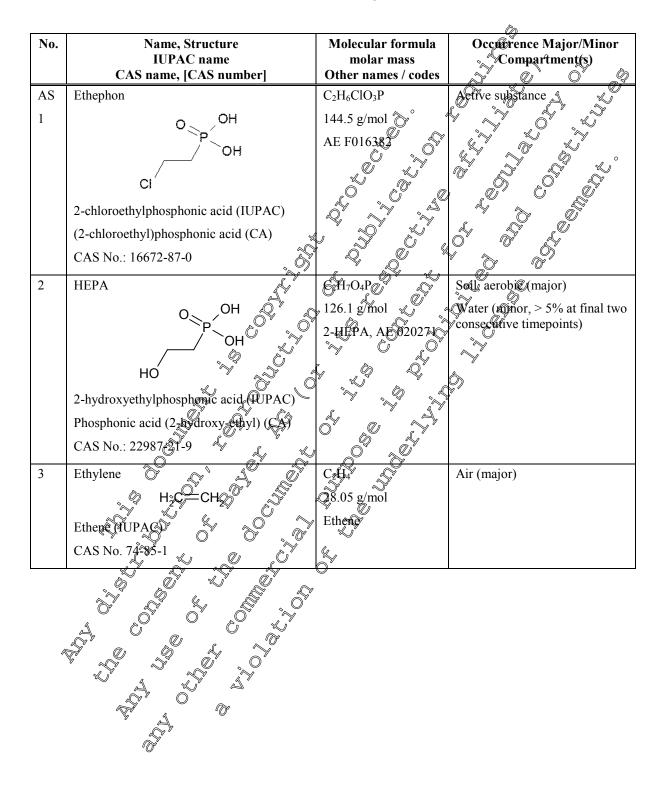
No metabolites were observed in water sediment tests or tests on aerobic mineralisation exceeding the triggers for inclusion in the residue definition. The metabolite HEPA was formed in the water phase of water sediment softems at a maximum of 1.4% but not in sediment. However, HEPA was observed in a natural water photolysis study in both irradiated samples and dark controls, at a maximum of 7.4% AR. Invirradiated samples the grietabolic exceeded 5% at the two final timepoints. Hence, in view of new triggers set in the EU data requirements, HEPA should be considered in the residue definition for surface water.

Residue definition for air

The active substance ethephon and its degradate ethylene had previously been considered in the risk assessment for air. No additional compounds are included in the residue definition.

CA 7.4.2 Definition of the residue for monitoring

The residue definitions proposed for monitoring are:


Soil: Ethephon Ethephon Groundwater: Surface water: Ethephon Sediment: Ethephon Air: Ethephon and Ethylene

The information and assessments available on the environmental fate and behaviour of ethephon were sufficient to complete an appropriate EU lever environmental exposure assessment without monitoring L. Ô K) data.

		A	Ó ^y "@	Ĵ ĝ	
	Ć	,° , ~	* * Es	Å,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Ũ				Ş
	°~~	Č,	, Ö	, de la companya de	
S		ç, ç		Č)	
Ĵ,		Č6	n L		Ý
	Ű	T (Ĵ, ^v o	, [*]	,
	A A			s, ^e	
ð _g		Ű		Ş	
	Ŵ,	Š 4	Ŷ _ſ		
	% ₂ 0		- S		
			K,		
L G	~~~~		\supset ^{ν}		
	» م	Ø			
	ý ^v _v o	U			
	A				
The second secon	Ø,				
Ś,					
"Or					

List of metabolites observed in environmental fate testing

A list of metabolites observed in environmental fate testing is included below.

