

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer AG and/or affiliated entities. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer AG and a , L L affiliated entities. -

The summaries and evaluations contained in this document are based on onput sheet proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the from Bayer AG or respective affiliates or
 from Bayer AG or respective affiliates or
 from other applicants once the period of data agotection has expired basis of the summaries and evaluation of unpublished proprietary data contained in this

Version history

	version history	0
Date [yyyy-mm-dd]	Data points containing amendments or additions ¹ and brief description	Document identifier and version number
		A S S
¹ It is suggested in SANCO/101	Data points containing amendments or additions ¹ and brief description	and version bistory as outlined

Table of Contents

CP 7 TOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUCT

INTRODUCTION

The purpose of this MCP-Dossier Section 7 is to support the approval process of the new active substance Isoflucypram in the territory of Europe under Regulation (EC) No 1107/2009 Solution (EC) No 1107/2009 Solution (EC) Solution is an emulsifiable concentrate (EC) containing 50 g/L Isoflucypram for use in cereal crops.

Isoflucypram is a novel broad spectrum fungicide of the chemical class of N-kyclopropyl-N-benzyle pyrazole-carboxamides with an outstanding efficacy against the major construction of the chemical diseases of cereal crops (wheat, triticale, rye, barley and oats) and excellent grop solety.

Since Isoflucypram is an SDH inhibitor and thus assigned to the FRAC resistance Group 7 the application scope of Isoflucypram-containing products on sereals with only one foliar spray at a maximum of 75 g a.s./ha supports an effective anti-resistance management strates. Tailor-made and broad spectrum Isoflucypram combinations how highly beneficial properties in terms of plant physiology beside the long-lasting and certain curative efficacy to control fungal diseases and to maximize the full yield potentiat of the great groups.

This document summarises to icological information based on a calculation method, Fisk assessments for operator, bystander and workers and the classification proposal which are relevant for the approval of Isoflucypram alongside the proposed intended uses, including the representative uses, under Regulation (EC) No 1/107/2009 in accordance with the requirements laid down in the Commission Regulation (EU) No 284/2019 and under Glassification Regulation (EQ) No 1/272/2008.

Details of the literature search indertaken for Isoftecyprant, its metabolites and products have been summarized in the Document MCA section.

Throughout the development of the formulation Isoffucypram EG 50 the following synonyms may have been used and referred to in individual study (ports: Bayer Code: BCS-CN88460 EC 50 and the Bayer-internal abbreviation short Code: ISY EC 50. All products described by either of these codes refer to the same formulation with ideatical composition. In the following Summary Dossier we use the abbreviation (SY EC 50.

CP 7.1

Overall summary of acute toxicity

Acute tox

According to the Regulation (EC) No 1272/2008 Annex 3.1.3.6.2.1, the classification of a mixture such as the formulated plant protection product ISY EC 50 has been estimated with a calculation method. The basic data for this calculation are summarized in Table 7.1-1 overleaf and details presented inder the corresponding Points.

Study Type	Species	Results	Reference
Acute oral –	none	No relevant ingredients for calculation	Details presented under
calculation method			GP 7.1.1
ATEmix			
Acute dermal –	none	No relevant ingredients for calculation	Details presented under
calculation method		4	CP 7.1.2
ATEmix			
Acute inhalation –	none	No relevant ingredients for calculation	Details presented und
calculation method			CP 7@.3
ATEmix			
Skin irritation –	none	Irritant Q o	Details presented under
evaluation based on		Classification according to Regulation	€P 7,10 [°] ,
ingredients		(EC) No 1272/2008	
		Category 2 - Hars 2 4	
Eye irritation –	none	Irritant	Details presented under °
evaluation based on		Classification according to Regulation	\$CP 7.1.5 & @
ingredients		$(\mathbf{EC}) N_0 + 272/2008:$	
		Category 2 - H319 ~ O <	
Skin sensitization –	none	Sensitizing Classification according to Regulation (EC) No@272/2@8:	Details presented under
evaluation based on		Classification according to Regulation	CP 7, 5, 6 K
ingredients			
		\mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C}	

Table 7.1- 1:Acute toxicity studies with ISY EC 50

CP 7.1.1 Oral tox

According to the Regulation (EC) No 1272/2008 Annex 3.1.3.6.2.1 the classification of a mixture such as a formulated plant protection product may be estimated with a calculation method.

The representative formulation ISY EC 50 contains no ingredients relevant for calculation of an oral ATEmix. Therefore SY EQ 50 should not be classified for oral toxicity. For details, please refer to the CONFIDENTIAL Document CP, Point 7 4 and 12.3.

 \bigcirc

Ľ

Conclusion

Thus, no classification for oral toxicity required according to Regulation (EC) No 1272/2008.

CP 7.1.2 O Derma toxicity

According to the Regulation (DC) No 1272/2008 Annex 3.1.3.6.2.1, the classification of a mixture such as a formulated plant protection product may be estimated with a calculation method.

The representative formulation ISY EC 0 contains no ingredients relevant for calculation of a dermal ATEmix. Therefore, ISY EC 59 should not be classified for dermal toxicity. For details, please refer to the CONFIDENTIAL Document QCP, Point 7.4 and 12.3.

Conclusion

Thus, no classification for dermal toxicity is required according to Regulation (EC) No 1272/2008.

CP 7.1.3 Inhalation toxicity

According to the Regulation (EC) No 1272/2008 Annex 3.1.3.6.2.1, the classification of a mixture such as a formulated plant protection product may be estimated with a calculation method.

The representative formulation ISY EC 50 contains two ingredients relevand for calculation of an inhalation ATEmix. The calculation method shows that the presence of these two ingredients does not require that ISY EC 50 to be classified for inhalation toxicity. For details, please refer to the CONFIDENTIAL Document JCP, Point 7.4 and 12.3.

Conclusion

Thus, no classification for inhalation toxicity is required according to Regulation (FR) 1272/2008.

CP 7.1.4 Skin irritation

The skin irritating properties were evaluated according to Regulation (ECONo 4272/2008, Annex 1 Table 3.2.3, for classification of mixtures.

In the representative formulation ISP EC 50, there are no skin corrosive Category Engrephents. The overall content of skin irritant Category 2 ingredients is 37.55%, which is greater than the generic concentration limit of $\geq 10\%$ for classification. Therefore, SY EC 50 should be classified with skin irritant Category 2. For details, please refer to the CONTIDENTIAL Document JCD, Point 7.4 and 12.3.

Conclusion

Thus, classification as skin irritant Category 2 is required according to Regulation (EC) No 1272/2008.

CP 7.1.5

Eye irritation

The skin pritating properties were expluated according to Regulation (EC) No 1272/2008, Annex 1 Table 3.2.3, for classification of mixtures.

In the representative formulation ISY EC 50, there are no ingredients classified for eye effects Category 1 or skin correstive Category 1. The overall content of eye irritant Category 2 ingredients is 37.75%, which is above the generic concentration limit of $\geq 10\%$ for classification. The sum of 10 times the concentration of ingredients classified as eye effects Category 1 plus the concentration of ingredients classified as eye effects Category 1 plus the concentration of ingredients classified as eye effects Category 2 is therefore also 37.75%. This value is greater than the trigger value of $\geq 10\%$ for classification of the mixture as eye irritant Category 2. For details, please refer to the CONFIDENTIAL Document JCP, Point 7.4 and 12.3.

Conclusion

Thus, classification as exercirritant Category 2 is required according to Regulation (EC) No. 1272/2008.

CP 7.1.6 Skin sensitization

The skin sensitizing properties were evaluated according to Regulation (EC) No 1272/2008, Annex 1 Table 3.5 for classification of mixtures.

The representative formulation ISY EC 50 contains with the active substance isoflucypram (BCS-CN88460) one ingredient, which is relevant for classification of the mixture for skin

sensitization. The concentration of isoflucypram in the mixture at 5.15% is greater than the trigger value of \geq 5% for classification for skin sensitization Category 1. For details, please refer to the CONFIDENTIAL Document JCP, Point 7.4 and 12.3.

Conclusion

Thus, classification as skin sensitizer Category 1 is required according to Regulation (EG) No 1272/2008.

CP 7.1.7 Supplementary studies on the plant protection product

No such studies are necessary since there are no concerns arising e.g., from potential synergistic of additive effects exerted by the active substance or other components in SY EG 50 that would require further investigations.

CP 7.1.8 Supplementary studies for combinations of plant protection products

No such studies are necessary since IS vEC 50 is not intended for use in combination with other plant protection products.

CP 7.2 Data on exposur

The non-dietary risk assessment is presented for isoflucypram using the tepresentative formulation ISY EC 50 for the use as fungicide in careals. The product is formulated as an emulsifiable concentrate and contains the active substance isoflucypram at 50 p/L.

Exposure is estimated using the EFSA Guidance Document on non-dietary risk assessment: "EFSA, 2014. Guidance of the assessment of exposure of operators workers, residents and bystanders in risk assessment for plant protection, products. EFSA Journal 2014, 2(10): 3874, 55pp., doi:10.2903/j.efsa.2014.3874."

On 24 January 2017 the European Commission published ad update on the implementation of EFSA's non-dietary exposure oridance Document, SANTE 10832 2015 dev. 1.7. It notes that the derivation of the toxicological reference value (AACEL) for the corresponding acute risk assessments is still outstanding. However, the Standing Commutee developed an outline to set AAOEL values. Consideration of acute operator exposure as well as bystander exposure should only be made where an AAOEL has been established during an approval, deview or renewal evaluation of an active substance.

Rev. 1.7 of the Guidance Document applies to applications for the approval or renewal of approval of active substances and to applications & authorise of renew authorisations for plant protection products submitted since 1st March 2017 as follows. Where necessary, an AAOEL should be proposed during the EU peer-review taking into account the Annex to this Commission Guidance Document."

As for the active ingredient soflue pram to be evaluated an AAOEL has been proposed, an acute risk assessment is included in this submission.

Endpoints relevant for non-dietary risk assessment:

AOE4. Based on the NOAEL of 18.4 mg/kg bw/day (males) from the rat 90-day study conducted with isoflueypram and applying an uncertainty factor of 100, a systemic AOEL of 0.18 mg/kg bw/day is derived for use in the non-dietary risk assessment.

AAOEL: For isoflucypram a systemic AAOEL of 1.25 mg/kg bw/day is proposed based on the NOAEL of 125 mg/kg bw/day in the rat developmental toxicity study and applying an uncertainty factor of 100.

For details on the derivation of these endpoints please refer to the Summary Document MC Section 5, Appendix 2.

Bioavailability:

No correction of AOEL/AAOEL is made for bioavailability. Metabolism studies performed with bile duct cannulated male and female rats showed oral absorption of 80 and 84% for male and female rats, respectively. Oral absorption rates were calculated by summation of the recovered test compound related radioactivity in urine, bile, and body excluding GIT. The barry component determine Din the bile-duct cannulation tests amounted to 74% and 82% of the recovered dose for male and female rats, respectively. No correction factor for the extent of oral absorption being rapidly excreted via hile is applied (potential for bile first pass effect) since the key effect on which the AOED is based is a direct effect on the liver / since the liver is one of the main darget organs and the liver ordings are taken into account when setting the AOEL. This is in line with the SANCO 7531-rev. 10 Draf guidance for the setting and application of Acceptable Operator, Exposure Levels (AOEL 9) in the EU1, where it is stated that "... where the critical targeforgan "tissue"s NOT the Der or gastroinestinal tract and the biliary component is unlikely to have reached the rarget organ stissue (i.e. is excreted very rapidly) exclusion of the biliary component from the estimate of the bioay at able system dose should be considered...". The SANCO 7531-rey 0 is fisted as relevant guidance document in EC Notices 2013/C 95/01². In addition to the findings observed on the liver in the rat, mouse, and dog, treatmentrelated effects are also observed in the throid and kidney of the rat and mouse. These treatmentrelated effects support the high bioavailability of isoflucypram. Furthermore, the measurement of high levels of the monitoring metabolites of isothicypram in the blood in the long-term studies in rat, mouse, and dog, as well as in the developmental toxicity studies in the rat and rabbit, shows that isoflucypram is highly bioavailable

For details (further findings from rat metabolism studies, and concentrations of metabolites measured in key toxicity oudies please refer to the Sommary Document MCA, Section 5.

Dermal absorption:

Dermal absorption for isoflucypram was evaluated with the representative formulation ISY EC 50 using in vitro human skin. As a soult of the dormal absorption study the following dermal absorption values are used for the risk assessment based on the critical GAP uses.

- 2% for the concentrate (50 g a.s./b)
- 5% for a low spray concentration (0.1875) Hs see under Point CP 7.3

For details see under Point

pa.exProod/sites/food/files/plant/docs/pesticides_ppp_app-proc_guide_tox_accpt-exp-levs-

² <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2013:095:0001:0020:EN:PDF</u>

CP 7.2.1 Operator exposure

The EFSA Guidance on non-dietary risk assessment is used. The critical GAP (cGAP) for operator risk assessment is presented in Table 7.2.1-1.

Table 7.2.1-1	Critical GAP for operator exposure evaluations for isoflucy@sam
	Critical Grif for operator exposure evaluations for isonaey grann

Crop grouping	F/ G	Application method	Max. application rate (kg a.s./ha)	Spray volume (L/ha)**	Dermal A absocration (%) *
Cereals (wheat, rye, triticale, barley, oats)	F	Field crop sprayer	0.075	6 9 400	

F = field; G = greenhouse

* dermal absorption value used for the product / in-use dilution.

** With the selected model approach route specific exposure of the operator is independent of the respective spray volume/in-use concentration used for the application. Hence, the critical OAP concerning the spray volume is selected based on the worst case dermal absorption value used to assess systemic exposure during application. In the present case this value refers to the lowest in-use concentration (0.1875 g/t) tested in the dermal absorption study. This low dose results from the highest in-use dilution of the use pattern for cereats, 75 grispflucypresm/ha your a maximum of 400 Lavater/ha.

The product ISY EC 50 will be foliar applied in cereals with tractor-modified/trailed field crop (boom) sprayers. Detailed calculations for the cGAP scenario are presented in CP 7.2.1.1.

Summary

A summary of the exposure estimates resulting from the cGAP is presented in the Table 7.2.1-2. Detailed calculations are summarized upper CP. 2.1.1.

Table 7.2.1-2 Predicted systemic operator exposure to isoflecypram

		ě.V			/ ()		
Crop grouping	F / O	Application A	PRE 9	Systemic	(0.18 @rg/kg * b@/day)	Systemic exposure (mg/kg bw/day)	% of AAOEL (1.25 mg/kg bw/day)
Cereals	F		No PPE ¹			0.0228	2
	Ŵ	pailed boom	With PPP ²		<1	0.0047	<1
$\overline{F = Field; G = 0}$	Stee	nhouse 🔊	\sim	Y AY AY			

¹ No PPE: J Work wear arms, body and bes covered

Work way - arms body and legs covered. In addition gloves during mixing and loading as well as when handling contaminated surfaces

Assessment

Longer term systemic experies

According to the EFSA model for low crops, in this case cereals, systemic exposure of operators to isoflucy fram who are wearing no PPE, but a working coverall and working with bare hands is about 3% of the AOEL. Systemic exposure of operators wearing, in addition, protective gloves during mixing/loading and when getting into contact with contaminated surfaces is <1% of the AOEL.

Acute systemic exposure

According to the EFSA model, for low crops, in this case cereals, systemic exposure of operators to isoflucypram who are wearing no PPE, but a working coverall and working with bare hands is about

2% of the AAOEL. Systemic exposure of operators wearing, in addition, protective gloves during mixing/loading and when getting into contact with contaminated surfaces is <1% of the AAOEL.

Conclusion

Based on these favourable exposure estimates there is no unacceptable risk anticipated for operators with regard to exposure to isoflucypram, even when considering the minimum working standard where operators just wear one layer of work clothing. However, according to Good Agricultural Practice it is recommended that in addition to one layer of work clothing protective gloves are worn when handling the concentrate or contaminated surfaces.

CP 7.2.1.1 Estimation of operator exposure

Exposure estimations are made using the EFSA Guidance on the assessment of posure of operators including the EFSA calculator³ (version: 20 Mar 2045).

The product is applied using field crop sprayers in arable crops. Exposure is calculated based on the cGAP for isoflucypram in cereals (see Table 72.1-1).

A summary of the input parameters and the exposure output is presented in Table 7.25.1-1 below.

Table 7.2.1.1-1 Summary of operator exposure during application in cereals No PPE: Work wear: acms, body and legs covered 2

(Supporting Information)

With PPE: Gloves during mixing/loading and application, work wear: arms, body and legs covered

Substance	isoflucypram	Formulation = Soluble concentrates,	Application rate-0.075 kg	Spray dilution = 0.1875 g a.s./l	
		emulsifiable concentrate, etc.	a.s. /ha		volatile substances having
					a vapour prestore of
				Oř	<5*10-3Pa
Scenario	Cereals / Outdoor / Do	ownward spraying / Vehicle-mounted		Buffer = 2-3	Number applications
				104	Application interval = 865
				1	days a co
Percentage	Dermal for product = 2	Dermal for in use dilution = 5	Oral = 100	Inhalation / 100	
Absorption			Ĉ	A .	
RVNAS	0.18 mg/kg bw/day		RVAAS	1.25 ryg/kg bw/day	
DFR	3 μg a.s./cm ² per kg		DT ₅₀	3@ Gays x /	
	a.s./ha			<u> </u>	
			1	0	
Operator Mode	I	Mixing, loading and application AOEM	Å,		
Potential	Longer term systemic e	exposure mg/kg bw/day	0.0084	% & BVNAS	4.67%
exposure		ų.	<u> </u>		°~~ *V
	Acute systemic exposu	re mg/kg bw/day	0.05992	As of RVAAS	4.74%
Mixing and Load	ling	Gloves = Yes	Clothing = Work wear -	RPE = NQAe	Soluble bass
			arms, body and legs cover	éd q da 🖓	
		star and a star and a star a sta			
Application		Gloves = Yes	Clothing = Work wear - angs, body and tegs covers	RPE = None 🗡 💦	Closed cabin = Ag
			anges, body and legs covere		A O
		~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			U r
Exposure	Longer term systemic e	exposure mg/kg bwkday	79/0003	% of AVNAS N	0.19%
(including PPE	с ,				
options above)	Acute systemic exposu	re mg/kg bw/day	0.0047	AGOT RVAAS	Q.37%
		re mg/kg bw/day			4
				NY 60 . U	\bigcirc^{ν}
		~~ &, cy	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
			W .		

CP 7.2.1.2 Measurement of operator exposure

Since the exposure estimate carried out indicate that neither the AOEL por the AAOEL will be exceeded under practical conditions of use, a study to provide a measure of operator exposure was not necessary and was therefore not carried out.

CP 7.2.2 Bystander and resident exposure

The EKSA Guidance on assessment of non-dietary exposure is used. Exposure estimations for the resident longer term scenatio as well as the acute by stander scenario are provided using the EFSA calculator.

The critical GAP (cGOP) for resident bystonder risk assessment is presented in Table 7.2.2-1 below.

Table 7.2.2-1 Summary of critical GAP for residents and bystander

grouping	of A	(kæ a.s./http://www.a.s./http:///http://www.a.s./http://www.a.s./http://www.a.s./http://www.a.	Sprav volume (LQ)a) *	Max conc. of a.s. in spray (g/L)	Max no. of appl.	Min. spray interval (days)	Dermal absorption (%) **
Cereals	Field crop	00075	♀ 100	0.75	1	365	5%

*) The minimum spray volume together with the maximum application rate is considered for the exposure calculation as with this approach the maximum in-use concentration is covered, which according to the EFSA calculator represents the worst case in terms of resident and bystander exposure.

**) As tier one the highest value established based on the results determined in the in vitro study on dermal absorption is used.

A summary of the exposure estimates resulting from the critical GAP is presented in Tables 7.2.2-2 and 7.2.2-3 following overleaf. Further information on input parameters and EFSA calculator output are shown under Point CP 7.2.2.1.

Tier 1		Adult ¹			Child	
Routes of exposure	75 th centile (mg/kg	in % of AOEL [#]	Mean (mg/kg	75 th centile (mg/kg	in % of AOEL#	Mean Ang/kg Mw/day
	bw/day)		bw/day)	🖉 bw/day) 🖉		w/day)
Spray drift *	0.0002	0.13	0.0001	§ 0.0010	0.57 🦼	2 0.0006 V 4
Vapour	0.0002	0.13	0.0002	0.001Q [*]	° 0.58	<u>8</u> w/day 0.0096 <u>5</u> 0.0011
Surface deposits	0.0000	0.01	Ø.0000		~0.06 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0001
Entry into treated crops	0.0004	0.20	0:0003	× 100006	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	Sum of all pa in % of AC	thways.» DEL	\$ 0.36 \$ \$	Sum of all pa in% of a	ÖEL#🌮	© 1.24
	veight: adult = 60 k 18 mg/kg bw/day	a W	kg Ø Ö		8 8	
Exposure at 2-3 r	n distance 🚿	ž 🖓		× jõ× j	ĥ	O ^v
alues in bold indi	cate the highest exp	osure values	bserved /			ŝ
	cate the highest exp	, ^O Ø				

Table 7.2.2-2 Predicted systemic longer term exposures (resident) to isoflucy pram in cerears

Table 7.2.2-3 Predicted systemic acute exposures (bystander) to isoflucypram in cereals

Tier 1 Tier	Adult ¹ y	Ch 🖉	ild ¹
Routes of exposure	95 th /centile / in % of	95 th centile	in % of
	(mg/kg bw/day) 🖉 AAOEL# 👸	(mg/kg bw/day)	AAOEL [#]
Spoay drift *	2 0.0006 0.05	0.0024	0.19
Ky Vapour . O	0.0002	0.0011	0.09
		r	
Surface deposits	Ø 0.0001 Ø Ø.01 m	0.0003	0.03
Entry into trated crops	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0006	0.05
		0.0006	0.05

¹ Considered bodyweight: adult = 60 kg, child = 10 kg

AAOEL of ISY: 1.25 mg/kg bx day * Exposure at 2-3 m dictance

osurevalues observed Values in bold indicate the highest ex

Assessment

Resident and bystander xpostere to soflucypram is estimated to be well below the AOEL and AAOEL @espectively. Exhaustion of the endpoint is <2% and <1% for the longer term and acute assessment, respectively.

Copciusion

Based on these favourable exposure estimates there is no unacceptable risk anticipated for residents and bystanders with regard to exposure to isoflucypram.

CP 7.2.2.1 Estimation of bystander and resident exposure

Exposure estimations are made using the EFSA guidance on the assessment of exposure of residents and bystander including the EFSA calculator (version: 20 Mar 2015).

The exposure calculations consider the maximum application rate together with the minimum spray volume as these results in the maximum in-use concentration which according to the selected model approach represents the worst case in terms of resident and bystander exposure. Furthermore, as suggested by the calculator the worst case dermal absorption value, i.e. 5% in this case, is used for the calculations as tier one.

As recommended by EFSA the EFSA calculator distance to the application equipment of 2-3 means of presented in the following tables.

Table 7.	.2.2.1-1 Sum	mary of resident and byst			a 4
Substance	isoflucypram	Formulation = Soluble concentrates,	Application rate 0.075 kg	O Spray diggion = 0.75 g a.s./	l sepour pressave = low

Substance	isoflucypram	Formulation = Solubl	e concentrates,	Application ra	0.075 kg	Spray diturion =	0.75 g a.s./l	Appour pressure = low
		emulsifiable concent	rate, et 🕰	🖓 🕼 /ha 🖉 🖉) Q	A		Ovolatile substances by
			"S"	× ~ ×		A	» .	a vapour pressure of
						× ×		<5*10-3Pa
cenario	Cereals / Outdoor / I	Downward spraying / Vel	<u> </u>	*		Buffer = 2,8	ar i	Number applications =
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				opplication interval = 3
		d .		°∼,	i ~	s de la companya de l	S L	Cadays 🖉
Percentage	Dermal for product =	2 Dermal for in se dil	ution = 5	Öral = 100	Ň	Inhatation = 100	) _N	
Absorption		Y	jo jo		Ő	1. <u>0</u>	0	1
RVNAS	0.18 mg/kg bw/day		* <u>0</u> ****	RVAAS		1.25 mg/kg bw/	Jay 🏷	Se al la
DFR	3 μg a.s./cm² per kg	K,		PT ₅₀		30 day	Ro	0
	a.s./ha	<u>~</u>		<del>Z O</del>	~~	<u> </u>	<u>ş</u>	
Resident - child	Spray drift (75th	percentile) mg/kg bw/da		/ 0.0010 - <u>-</u>	- \	% of RVNAS	<u> </u>	0.57%
vesident - child		Y 4	· · · · · · · · · · · · · · · · · · ·		Ĉ,	× ×,ř	ACY	0.5778
		centile) mg/kg bw/day		exeri .	O' &	, % of RVNAS	<u>,                                    </u>	0.59%
		(75th per/@ntile) mg/kg/l	(01 n	Q20001 x	y O	% of RVMAS	() [×]	0.06%
	Entry into the tee	l crops (75th percentile)	mg/kg/w/day 🧉	J0.0006	.C	% of RVNAS	Ŷ	0.35%
			KI A.	^Q`	Ch	L U		
	All pattiways (me	an) mg/kg by(/day	$\sim$	0.003%2	2	% of RVMS		1.24%
Resident - adult	Spr@drift (75t	ercentile) mg/kg bw/da	4 60 [°]	x0.0002	, "	% of RVNAS		0.13%
	Vapour (750) per	centiley/ng/kg bw/day	 	90.0002 ~ S	0~	% OF RVNAS		0.13%
2		(78th percentile) mg/kg l		0.0000		Of RVNAS		0.01%
je star star star star star star star star	Entry into treate	Grops (75) Percentile	eig/kg bw/day	<u>6</u>	y v	% of RVNAS		0.20%
	All pathwag(me	an) ng /kg bw/day		0.0006	Å	% of RVNAS		0.36%
	Ę,				Å,			
Bystander -	Spory drift (95th	percentile) mg/kg bw/da	<u>y</u> .0″.	@0024 <i>(</i>	ř	% of RVAAS		0.19%
child	Gpour (95th per	centil@ng/kg bw/day	N 0	Y0.0011		% of RVAAS		0.09%
	Surface deposits	(95th percentile) mg/kg l	wittay Q	0.000		% of RVAAS		0.03%
la l	Entry into treate	Props (95) percentile)	mg/kg byvtoby	8,0006		% of RVAAS		0.05%
Bystander	Spray drift (95th	percentite) mg/kg/pw/da	v 🖉 🎽	¥0.0006		% of RVAAS		0.05%
idult 🦂	Vapour (95th per	centue) mg/kg.bv//day	- <b>Q</b>	¢ 0.0002		% of RVAAS		0.02%
		(95th percentile) mg/kg	w/day	0.0001		% of RVAAS		0.01%
		crops (980 percention)		0.0004		% of RVAAS		0.03%
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					

2.2 Areasurement of bystander and resident exposure

Since the exposure estimate carried out indicate that neither the AOEL nor the AAOEL will be exceeded under practical conditions of use, a study to provide a measure of resident and bystander exposure was not necessary and was therefore not carried out.

CP 7.2.3 Worker exposure

The EFSA Guidance on assessment of non-dietary exposure is used. The critical GAP (cGAP) for worker risk assessment is presented in Table 7.2.3-1.

Table 7.2.3-1 Critical GAP for worker exposure evaluations								
Crop grouping	F / G	Re-entry activity	Appli- cation rate (kg a.s./ha)	Numbe r of appli- cations	Min. spray interval (days)	TC (arms, body, and legs covered (em ² /hr))	DFR* (µg/cm ²) per kg a.s. Ma)	Dermal absorp- tion (%)
Cereals F = field; G = gr	F	Crop inspection	0.075		365			5%

default of the EFSA guidance;

** according to the EFSA guidance on assessment of non-distary exposure the higher of the values for the product and for the in-use dilution, therefore the highest variate established based on the results determined in the in vitro study. on dermal absorption is used.

following the As already indicated, considering the char worker exposure assessed recommendations given by ECSA. Hence worker exposure to poflucypram is evaluated regarding inspection activities performed in cereals Corresponding tier one exposure calculations consider the guidance proposed default assumptions. The exposure calculations assume 2 as worst case – re-entry shortly after treatment when spray is dry. Furthermore, it was considered that workers wear one layer of clothing but no PPE \bigcirc

A summary of the exposure estimates resulting from the critical GAP is presented in Table 7.2.3-2. Further information on input parameters and EFSA calculator output are presented in CP 7.2.3.1. ð

ð	Š.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Č,	and a
Summary 🖏	<i>10</i>	Q L		ô'	
		No D	.» O'	y ~C?	
Table 72.3-2 Pre	dicted wo	der exposi	ure to isofbi	cypram	~~ ⁰

Crop grouping	Re-entry activity	Clothing scenaric *	Systemic exposure (mg/kg bw/day)	% of AOEL (0.18 mg/kg bw/day)
Cereals	Cop inspection	No PRE	0.0005	<1

Assessment (

Worker exposure was assessed assuming – as worst case – re-entry shortly after treatment when spray is dry. Furtherapore, it was considered that workers wear one layer of clothing but no PPE. The corresponding ther one exposure estimate for crop inspection according to the EFSA Guidance already indicates that the exposure to isoflucypram is well below the AOEL by showing an exhaustion of the endpoint of less than 1%. Therefore, it is concluded that no unacceptable risk is anticipated for workers when re-entering crops treated with ISY EC 50, even if the workers do not wear PPE and reenter crops shortly after treatment when spray is dry.

Conclusion

Based on these favourable exposure estimates no unacceptable risk is anticipated for workers with regard to exposure to isoflucypram, even if workers do not wear PPE.

CP 7.2.3.1 Estimation of worker exposure

Exposure estimations are made using the EFSA Guidance on the assessment of exposure of corker including the EFSA calculator (version: 20 Mar 2015).

The product is applied using field crop sprayers in arable crops. Exposure is calculated based on the cGAP for cereals (see Table 7.2.3-1).

A summary of the input parameters and the exposure output resulting from the EFSA calculator is presented below.

Table 7.2.3.1-1 Summary of worker exposure to isoftucypram: cereals - Fier 1

Substance	isoflucypram	Formulation = Soluble @pcentrates Appli@pion rate-@075 kg Spray dilution ≠ 0.1	1875 3.s./I Vapour pressure low
		emulsifiable concențațe, etc. 🖌 a.s Ura 💙 🗶	U volatile substances having
		emulsifiable concentrate, etc. 4 a.sAba	Vapour pressure of
Scenario	Cereals / Outdoor /	Downward spraying Vehicle-mounted	Number applications = 1,
			Application interval = 365
			days days
Percentage	Dermal for product	= 2 Dermal for in use dilution = 5 (Oral = 100) Inhalation = 100	<u> </u>
Absorption			<u> </u>
RVNAS	0.18 mg/kg bw/day	RVAAS	v K
DFR	3 μg a.s./cm² per kg	DT J 30 days	A A A A A A A A A A A A A A A A A A A
	a.s./ha		
	Potential exposures		<u> </u>
Worker -			2.60%
Inspection, irrigation	Working clother m		0.29%
	Working dothing an	d Noves mg/ks w/day	
	.0		
	TO S		
	~~~···		

#### CP 7.2,3.2 Measurement of worker exposure

Since the exposure estimate carried out indicate that the AOEL will not be exceeded under practical conditions of use a study to provide a measure of worker exposure was not necessary and was therefore not carried on  $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$ 

### CP 7.3 Dec mal absorption

The dermal penetration through human dermatomed skin of [14C]-BCS-CN88460 in the BCS-CN88460 EC 50 formulation (Isoflucy) are EC 50 or ISY EC 50) was investigated at two concentrations corresponding to the neat product (50 g /L) and one representative spray dilution (0.1875 g/L) A summary of the study is given in the following section along with a conclusion and recommendation regarding the dermal absorption of isoflucy) formulated as an EC 50.



Report:	KCP 7.3/01; ; 2017; M-587209-01-1
Title:	BCS-CN88460 EC 50 [14C]-BCS-CN88460 - In vitro dermal absorption study using
Report No.:	human skin SA 16319
Document No.:	M-587209-01-1 OECD Guideline for the testing of Chemicals Skin Absorption In Vitro Method
Guideline(s):	Guideline 428 (April 2004); OECD Environmental Health and Safety Publications
	Series on testing and Assessment No 28, Guidance Document for the Conduct of Skin Absorption Studies (March 2004); EFSA Panel on Plant Protection Products and their and their sector of the sector of
	Residues (PPR): Guidance on Dermal Absorption, ERSA Journal 2012. 10(4) 2665
Guideline deviation(s): GLP/GEP:	none $\overline{\nabla}^{*}$ $\overline{\nabla}^{*}$ $\overline{\nabla}^{*}$ $\overline{\nabla}^{*}$
Material and method	
Human skin:	Source:
	Number and sex minimum of 6 donors per dose level, female.
	Number and sex minimum of 6 donors per dose level, female.
	Number and sex minimum of 6 donors per dose level, female. Anatomical orgion Abdomen. Thickness: 350 to 450 tm. Batch: NLL 8674-32-3. Purify = 98.1% ( $v/w$ ).
Test Material:	
Non-radiolabelled:	Batch: NLL 8874-3923.
	$\tilde{y}$ Purity = 95.1% (w/w). $\tilde{y}$
Radiolabelled:	
	Baten: KML 10306.
. Ø Ø	Batch: KML 10306.
Ê,	Specific activity: 4.22 MB6/mg.
	Radioputity of the formulation? >99%.
Formulation: _@ , (	The formulation used in this experiment was the emulsifiable concentrate BCS- CN88460 C 50 (Specification No. 102000031262) containing 50 g/L
	BCS- CN88460 C 50 Specification No. 102000031262) containing 50 g/L
A start	isofluc(pram) (If was used at two nominal concentrations: neat, 50 g/L with concentration of 0.1873 g/L
~0	
Test system:	A flow-through diffusion cell system (Franz's cell modified, Gallas, France) Was used to study the absorption of the test substance (exposure area of 1 cm ²
L. S	sking A diffusion cell consisted of a donor chamber and a receptor chamber
	between which the skin was positioned. The receptor fluid was Eagle's bedium supplymented with 5% bovine serum albumin and gentamycin (50
	mg/Lo at a pH of ca 7.4. The receptor chamber was warmed by a constant
	circulation of warm water which maintained the receptor fluid at $32 \pm 2^{\circ}C$ (close to the normal skin temperature). The receptor fluid was pumped
Test system:	through the receptor chamber at a rate of 1.5 mL/h and stirred continuously
õ	whilst in the receptor chamber by means of a magnetic bar.



Skin integrity: Before dose application, the integrity of the skin samples was assessed by measuring the trans-epidermal water loss (TEWL) from the stratum corneum. An evaporimeter probe (Tewameter TM300[®] System, Courage & Khazaka) was placed securely on the top of the donor chamber and the amount of water diffusing through the skin was measured. Skin samples with a TEXL of greater than 15 g/hm² were considered potentially damaged and were not used. These samples were replaced by new skin fragments which were also tested for integrity before use in the study. The dose preparation was applied to the split thickness skin sample with a **Treatment:** pipette at the rate of approximately 10 µC/cm² exposed skip. The dose preparations were assayed for radioactivity content (by LSC) by using dose checks (surrogate dose) taken before, during and after the dosing process. The receptor fluid passing through the receptor chamber was collected in Sampling: glass vials held in a Gaction collector. The fraction collector was started after dose application. Samples were then collected hourly, for the duration of the experiment (24 hours) At 8 hours post-application, the skin was swapped with freshly prepared 1% w Tween 800n PBS (phosphate buffer saline) using a minimum of 15 precision wipes Kimtech Seconces from Kimberly-Clark professional), in order to remove and retain the non-absorbed dose, until no radioactivity was detected with a Geiger-Müller monitor. At the end of the study (24 hours after application), the treated skip and the skin adjacent to the treatment site (surrounding swaps) were swapped. Each skin sample was tapestripped to gemove the strature conjetim. Phis involved the application of Monagerm advesive gape (Monaderm, Monaco) for 5 seconds before the tape was carefully removed against the direction of hair growth. This procedure was continued initia 'shiny' oppearance of the epidermis was evident, which indicated that the stratum corner had been removed. The tape-strips were collected into scintillation wals for analysis. The skin surrounding the application site (surrounding skin) was separated from the treated skin. Both surrounding skin and tape-stripped treated skin were tetained for analysis.  $\bigcirc$ The amounts of radioactivity in the various samples were determined by **Radioassay:** liquid sontillation counting (SC). Samples were counted for 10 minutes or for 2 Sigma % in an appropriate scintillation cocktail using a Packard 1900 TR counter with on-line computing facilities. Quenching effects were determined using an external standard and spectral quench parameter (tSIE) methody Efficiency, correlation curves were prepared for each scintillation

cocktail and were regularly checked by the use of [¹⁴C-n-hexadecane standards. The contillation counter was recalibrated when a deviation of greater than 2% was observed when counting quality control standards. The limit of detection was taken to be twice the background values for blank samples in appropriate scintillation cocktails.

#### Findings:

BCS CN88460 was demonstrated to be sufficiently soluble in the receptor fluid to avoid any risk of back diffesion. Measurements of the homogeneity of the two concentrations of formulation applied indicated that it was acceptable. The study results are presented in Table 7.6.2-1.



#### Table 7.3-1: Mean distribution of radioactivity at 24 hours after dose application of [¹⁴C]- BCS-CN88460 in a EC 50 formulation at the nominal rates of 50 g/L and 0.1875 g/L to human skin samples

0.1875 g/L to human skin samples				<i>°</i>		
Results expressed in terms of percent	tage of applied radioac	tivity	•			
1 51	0 9 11	~	Č	», ···		
	Distribution of radio	activity (%	dose) 🐇			
	Neat formulation:	- Of the second	() () () () () () () () () () () () () (			
	High dose	Dilution:	Lowdose	SÍ Ø		
Dose Levels	(50 g/L)	(0.187	/5/⁄9/L) ∿			
Species	Human (n=4)	Humar	n.m=6) ~			
	Mean SD	Mean	SĐ			
SURFACE COM		K)	, Q.	\$ <u>6</u>		
Skin swabs (8h)	98.1 0 5.61 •	86,3	1.16 C			
Skin swabs (24h) ^a	0.91 0.998	Q.89	0.795	a s		
Total skin swabs	99.0 35,54	88.2	0.795 1 <b>28</b>	~(7		
Surface Dose (1 st two tape-strips) &	0,98 6.943 🕊	2.53	0.306	K) ^v		
Donor chamber	0,27 0.295	025	L 0.37 A	o		
Total % non-absorbed 🔬 👘	@100.3 @ 5,30	~91.1	Ď 1.410°			
SKIN COMPAR		Ĵ [×] .	¢,			
Skin ^b	0.491	0.86	6445	L. C.		
Stratum corneum 🖉 🖉	0.327	298	0.613	P		
Total % at dose site	×1.21 0.795	S.63	0.66\$			
© RECEPTOR COMR	ARTMENT	<u>ç</u> N				
Receptor fluid (0-24h)	0,90 .074	1.48	0.831			
Receptor that terminal	0.02 0.016	0007	0.040			
Receptor chamber	0.04 2 0.088	∂N.D.	N.A.			
Total % directly absorbed	0.17 0.142	¥ 1.55 Q	<b>0.86</b> 7			
Total % Potentially Absorbable &	<u><u></u><u></u><u></u><u></u><u>39</u> <u>39</u> <u>0.907</u></u>	5019	1.090			
	, 101.6 O 5.0₩	<b>\$96.3</b>	1.01			
V Evaluation according to FSA Guidance						
absorption $>75\%$ within half of study duration $\sqrt{9}$	©No (24%) 🔍	No (	62%)			
🖉 standard dewation 25% 🥎 🔏	V YS VY	N	lo			
recovery <95% & V	D No	N	lo			
	V O V					
Total % Potentially Absorbable			5			

Sum of radioactivity found in swabs at termination and in surrounding swabs.
^b: sum of radioactivity found in stur after tage-stringping procedure and in surrounding skin.
^c: tage-strips evoluting number? & 2 which are considered to be pon-absorbed dose.
^d: sum of radioactivity found for receptor fluid (0-24h), receptor fluid terminal and receptor chamber.
^e: total % directly assorbed total wat dosesite 0

- f: values considered for the adjusted Tota & Potentially Apsorbable according to EFSA are in bold Italics

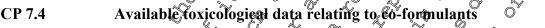
SD: standard deviation

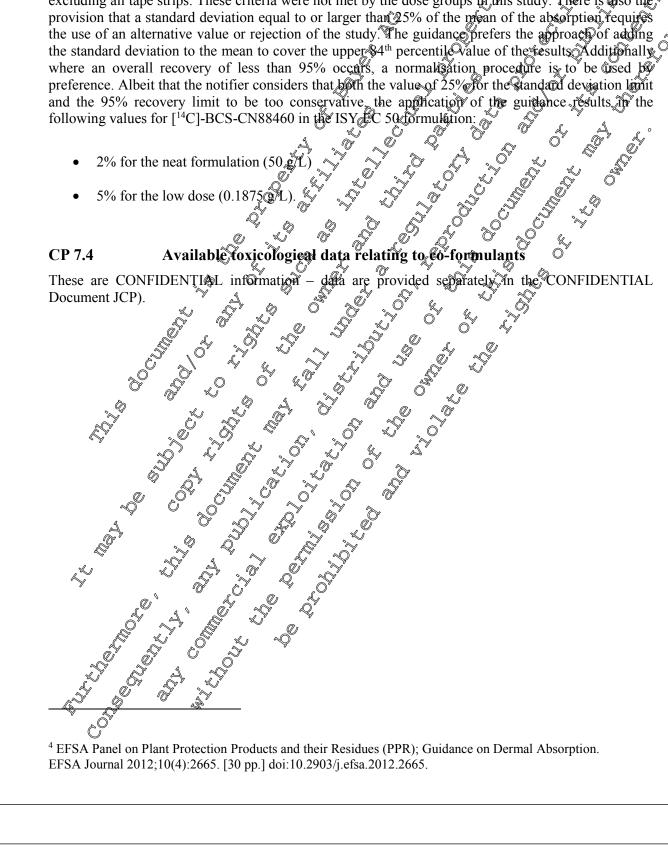
Ø n. In not detected (below the limit of detection

n.a. : not applicable n: number of skin cells used for calculation

In the above table, the presented means do not always calculate exactly from the presented individual data. This is due to rounding-up differences resulting from the use of the spreadsheet program.

#### Conclusion


The definal penetration drough human dermatomed skin of [14C]-BCS-CN88460 in the BCS-CN88450 EC 50 formulation (ISY EC 50) was investigated at two concentrations corresponding to the neat product (50 g/L) and a representative spray dilution of 0.1875 g/L.


The mean percentage of BCS-CN88460 in the EC 50 formulation that was considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours for the neat formulation was 1.4% for the human skin. Applying the EFSA Guidance this value adjusts to 2%.



The mean percentage of BCS-CN88460 in the EC 50 formulation that was considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours for the low dose rate was 5.2% for human skin. Applying the EFSA guidance this value adjusts to 5%.

According to the EFSA Guidance⁴ there is the provision that when the sampling period is 24 hours (which is the case for this study) and over 75% of the total absorption (material in the receptor duid at the end of the study) occurred within half of the duration (12 hours) of the total sampling period that the absorption will be taken as the sum of receptor fluid, receptor chamber washes and the skin sample excluding all tape strips. These criteria were not met by the dose groups in this study. There is also the? provision that a standard deviation equal to or larger that 25% of the mean of the absorption requires the use of an alternative value or rejection of the study. The guidance prefers the approace of adding the standard deviation to the mean to cover the upper \$4th percentile value of the results Additionally



